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ABSTRACT: Problems in civil engineering are often characterized by significant uncertainty in
their material parameters. Sampling methods are a straightforward manner to account for this un-
certainty, which is typically modeled as a random field. The underlying engineering problem is
typically discretized by means of the Finite Element (FE) method. Adequately incorporating the
uncertainty in the FE model is paramount when performing stochastic simulations. In this work,
we present two novel approaches to incorporate this uncertainty when considering the p-refined
Multilevel quasi-Monte Carlo method (p-MLQMC) as a stochastic method. The p-MLQMC
method is a recently proposed improved Multilevel Monte Carlo method which combines a hi-
erarchy of p-refined FE meshes with a quasi-Monte Carlo sampling rule based on rank-1 lattice
sequences. We show that the two new approaches, the ‘Supermesh Global Approach’ (SGA)
and the ‘Supermesh Local Approach’ (SLA) outperform our previously proposed approaches in
terms of computational cost. Furthermore, we also compare in terms of computational cost, SGA
and SLA against the existing Multilevel (quasi)-Monte Carlo methods (h-ML(Q)MC) which are
based on an h-refinement scheme.

1 INTRODUCTION

Problems in the engineering sciences are typ-
ically subject to uncertainty. This uncertainty
can be present in the material parameters, as
for example, the cohesion of the soil in a slope
stability problem. Purely deterministic solu-
tions provide only limited insight into the as-
sessment of structural safety or stability, un-
der uncertain material conditions. There is
therefore an increasing need for fast stochas-
tic methods which can assess the uncertainty
on the output of a model. A popular stochas-
tic sampling method is the Multilevel Monte
Carlo Method (MLMC). First developed by
Giles, see Giles (2015, 2008), the MLMC
methods relies on a hierarchy of meshes with
increasing resolution, also known as levels, in
order to reduce the total computational cost.

In the MLMC method, most of the samples
are taken on low-resolution and computation-
ally cheap meshes, while a decreasing num-
ber of samples are taken on high-resolution
and computationally expensive meshes. The
efficiency of the MLMC method is deter-
mined by the correlation between the subse-
quent resolution levels. A high correlation re-
sults in a more efficient method. The mesh
hierarchy is typically constructed by select-
ing a coarse Finite Element (FE) mesh ap-
proximation of the considered problem, and
recursively applying the h-refinement scheme.
While MLMC outperforms standard Monte
Carlo (MC) in terms of computational cost by
at least a factor 10 for problems in civil en-
gineering, see Blondeel et al. (2018), many
improvements upon MLMC have been devel-
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oped. One notable improvement is the Mul-
tilevel quasi-Monte Carlo method, see Giles
and Waterhouse (2009). Here, the randomly
generated Monte Carlo sample points are re-
placed with deterministically generated quasi-
Monte Carlo (QMC) sample points. Us-
ing this approach, we have demonstrated that
the MLQMC method outperforms the MLMC
method in terms of computational cost, see
Blondeel et al. (2019). However, because
of the type of mesh refinement used for
classical Multilevel (quasi-)Monte Carlo (h-
ML(Q)MC), i.e., h-refinement, the computa-
tional cost, which is necessary to compute one
sample on a high-resolution mesh, is high.
This stems from a geometrical increase of the
number of degree of freedom (DOF) for each
refined mesh, which results in a high num-
ber of DOF’s on the higher resolution meshes,
and thus a high cost to compute one solve
on these meshes. This led us to develop a
novel multilevel method, called p-refined Mul-
tilevel quasi-Monte Carlo (p-MLQMC), see
Blondeel et al. (2020). This multilevel method
combines a mesh hierarchy based on a p-
refinement scheme with a QMC sampling rule.
This approach yields significant computational
cost savings with respect to h-MLMC. How-
ever, incorporating the uncertainty in the FE
model presents more of a challenge when the
p-MLQMC method is used than when the h-
MLMC method is used. We therefore have in-
vestigated how to adequately incorporate the
uncertainty, modeled as a random field by
means of the Karhunen–Loève expansion, in
the FE model, see Blondeel et al. (2021). In
the context of incorporating the uncertainty
when using the p-MLQMC method, we distin-
guished different approaches, all based on the
integration point method, see Matthies et al.
(1997). The two main approaches are the
Non-Nested Approach (NNA), and the Local
Nested Approach (LNA). The core idea unify-
ing these methods is to account for the discrete
random field samples, obtained by the evalu-
ation of the random field at certain carefully
chosen evaluation points, during the numeri-
cal integration of the element stiffness matri-

ces. The choice of the random field evalua-
tion points is crucial in order to obtain a high
correlation between the different levels, and
so to achieve a corresponding low computa-
tional cost. The correlation directly impacts
the variance reduction over the levels, i.e., the
decrease of the variance of the differences of
a quantity of interest with increasing level, de-
termines the number of samples per level. In
this work we present two improved methods,
which are also based on the integration point
method. These methods are the Supermesh
Global Approach (SGA) and the Supermesh
Local Approach (SLA). The model problem
on which we benchmark these approaches con-
sists of a slope stability problem. The slope
stability problem is a geotechnical engineering
problem, where the goal is to assess the stabil-
ity of natural or man-made slopes. This stabil-
ity can, among others, be assessed by investi-
gating the vertical displacement of the top of
the slope.

The paper is structured as follows. First
we introduce the concepts behind p-MLQMC.
Second we discuss how the uncertainty is mod-
eled and how it needs to be account for, in the
FE model. Third we discuss the underlying FE
solver, and present the model problem. Fourth
we present the results comparing the previous
approaches (NNA, LNA) with the newly pro-
posed ones (SGA, SLA). Last we compare the
computational costs of SGA and SLA against
h-ML(Q)MC for a given set of tolerances.
2 MULTILEVEL METHODS

The expected value of a function P against an
s-dimensional probability density function φ is
defined by

E [P] :=∫
R
· · ·

∫
R

P(x1, . . . , xs)φ(x1, . . . , xs)dx1 · · ·dxs

=

∫
Rs

P(x)φ(x)dx.

(1)

In order to approximate the integral in Eq. (1),
an equal-weight quadrature rule can be used.
An example of such an equal-weight quadra-
ture rule is the Monte Carlo method. In our
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case, the function P is obtained by means of
a FE method on a chosen discretization level
L, i.e., E[P] ≈ E[PL]. This introduces a first
approximation error. The integral itself is
then approximated using a quadrature rule, i.e.,
E[PL] ≈ QMLQMC

L . This introduces a second
approximation error.
2.1 Telescoping Sum and Mesh Hierarchies

The core idea of Multilevel Monte Carlo meth-
ods is to rely on a hierarchy of meshes in or-
der to achieve a speedup with respect to Monte
Carlo. The expected value of a quantity of in-
terest on a high-resolution mesh is written as
the expected value of a quantity of interest on
a low-resolution mesh to which a series of cor-
rection terms are added. In particular, given a
hierarchy of approximations P0,P1, . . . ,PL for
the quantity of interest P computed on an in-
creasingly higher resolution mesh, we have the
telescopic sum identity

E[PL] = E[P0] +

L∑
`=1

E[P` −P`−1]. (2)

The speedup is then achieved by taking a
majority of samples on low-resolution and
computationally cheap meshes, and by tak-
ing only a decreasing number of samples
on higher resolution and computationally ex-
pensive meshes. Classically, the hierarchy
of meshes is obtained by applying an h-
refinement scheme to a low-resolution mesh
model. However, here we opt for a hierarchy
based on a p-refinement scheme, i.e., increas-
ing the polynomial’s order of the shape func-
tions with increasing level. In Figure 1, we
show the first two levels of the hierarchy. Here,
the FE nodal points are represented as black
dots. A more thorough discussion of the slope
stability problem and the FE model is given in
§4.
——— Level 0 ——— ——— Level 1 ———

Figure 1. p-refined hierarchy of meshes used for the
slope stability problem with the QoI indicated by �.

2.2 Estimators and Variances

The MLQMC estimator used in the p-
MLQMC method is given by

QMLQMC
L :=

1
R0

R0∑
r=1

1
N0

N0∑
n=1

P0(u(r,n)
0 )

+

L∑
`=1

1
R`

R∑̀
r=1

 1
N`

N∑̀
n=1

(
P`(u(r,n)

`
)−P`−1(u(r,n)

`
)
) .

(3)

Using the short-hand notation ∆P` B P` −
P`−1 with P−1B 0, the MLQMC estimator can
be written as

QMLQMC
L =

L∑
`=0

1
R`

R∑̀
r=1

1
N`

N∑̀
n=1

∆P`(u(r,n)
`

) (4)

C
L∑
`=0

∆Q`, (5)

where ∆Q` is an estimator for the difference
∆P`. It is important to note that we assume that
the sample points u(r,n)

`
are independent of r.

More details on the construction of the sample
points will be given in the next subsection.

The MLQMC estimator is an unbiased esti-
mator for E[PL], since

E
[
QMLQMC

L

]
= E[PL]. (6)

Its variance is given by

V
[
QMLQMC

L

]
=

L∑
`=0

V
[
∆QMLQMC

`

]
, (7)

where the variance V [∆Q`] can be approxi-
mated by the sample variance V` over the R`
independent contributions, i.e.,

V` B
1

R` (R` −1)

R∑̀
r=1

 1
N`

N∑̀
n=1

∆P(r,n)
`
−∆Q`


2

.

(8)

Figure 2. Illustrative example of the random shifting
procedure applied to points belonging to a rank-1 lattice
sequence.
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2.3 On the choice of the sample points u(r,n)

While the MLMC method is based on
(pseudo-)random distributed sample points,
the MQLMC method uses deterministic sam-
ple points, i.e., QMC points, u(r,n)

`
. More

specifically, here we use a rank-1 lattice se-
quence. In order to recover unbiased estimates
of the estimator, the computation of the estima-
tor and its variance include an averaging over
a number of shifts r = 1,2, ...,R` on each level
`. The procedure of random shifting consists
of adding to each point of the lattice sequence,
a uniformly distributed number Ξr ∈ [0,1)s af-
ter which the fractional part is taken. This is
illustrated in Figure 2. In our implementation
R` = 10 for ` = {0, . . . ,L}.

The shifted version of the lattice points is
given by
u(r,n) := Φ−1 (frac(φ2(n)z +Ξr)) ,n ∈ N, (9)
where Φ−1 is the inverse cumulative density
function (CDF) of the distribution of interest,
frac(x) := x−bxc, x> 0, φ2 is the radical inverse
function in base 2 and z is an s-dimensional
vector of positive integers. The generating vec-
tor z was constructed with the component-by-
component (CBC) algorithm with decreasing
weights, γ j = 1/ j2, see Kuo (2007). In this
paper, we consider a standard normal distribu-
tion.
2.4 Variance Reduction

Multilevel methods rely on a variance reduc-
tion across the levels in order to achieve a com-
putational speedup. This means that the sam-
ple variance of the difference for increasing
level ` continuously decreases, i.e., V [∆P1] >
V [∆P2] > · · · > V [∆PL]. This variance reduc-
tion is only obtained when a strong positive
correlation is achieved between the results of
two successive levels, i.e.,
V [∆P`] = V [P` −P`−1]

= V [P`] +V [P`−1]−2cov(P`,P`−1) ,
(10)

where cov(P`,P`−1) = ρ`,`−1
√
V [P`]V [P`−1]

is the covariance between P` and P`−1 with
ρ`,`−1 the correlation coefficient. The value of
cov(P`,P`−1) must be large in order to have a
large variance reduction, and hence an efficient
multilevel method.

2.5 Number of Samples per Level

In the MLQMC method, the number of sam-
ples is computed by means of a ‘doubling’
algorithm. The procedure starts by comput-
ing a number of warm-up samples together
with a user-defined number of shifts on each
level. From these samples V

[
∆QMLQMC

`

]
is

estimated on each level `, see Eq. (8). The
iterative step consists of selecting the level τ
on which the ratio of the variance of the es-
timator with the sample cost is maximal, i.e.,
argmax
τ∈L

(Vτ/Cτ). On this level τ the number

of samples is multiplied with a constant factor.
This procedure is repeated until V

[
QMLQMC

L

]
<

ε2

2 . In our approach, this constant is chosen as
1.2.
3 REPRESENTING THE UNCERTAINTY

In the slope stability problem, the cohesion of
the soil is uncertain. This uncertainty is mod-
eled as a random field, which is constructed
by means of the Karhunen–Loève (KL) expan-
sion,

Z(x,ω) = Z(x) +

s∑
n=1

√
θnξn(ω)bn(x) . (11)

Here, Z(x) is the mean of the field and ξn(ω)
denote i.i.d. standard normal random variables.
The symbols θn and bn(x) denote the eigen-
values and eigenfunctions respectively, which
are the solutions of the eigenvalue problem∫

D C(x,y)bn(y)dy = θnbn(x) with a given co-
variance kernel C(x,y). Note that in order to
represent the uncertainty of the cohesion of the
soil, we do not use Z(x,ω) but exp(Z(x,ω)), see
§4.
3.1 Incorporation into the model

In order to incorporate the uncertainty in the
FE model with the p-MLQMC method, we
use the integration point method, see Matthies
et al. (1997). Within the framework of the in-
tegration point method, we compute discrete
instances of the random field, using Eq. (11),
evaluated at the points x = {x(i)}ni=1. The goal
thus consists of finding ‘adequate’ points x
where to evaluate the random field.

In the integration point method, we incorpo-
rate the uncertainty at the level of the FE stiff-
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Figure 3. Slope stability mesh with quadrature points in
global coordinates designated by 4.

ness matrices. The assembly of the FE stiffness
matrices results in the global stiffness matrix
K, see § 4. Practically, the FE stiffness ma-
trices are obtained by means of numerical inte-
gration where we use a set of quadrature points
q = {q(i)}ni=1, i.e.,

Ke =

∫
Ωe

BT DBdΩe ≈

n∑
i=1

w(i)(B(i))T D(i)B(i),

(12)
where the matrix B(i) = B(q(i)) contains the
derivatives of the shape functions, evaluated
at the quadrature points q(i), the matrix D(i) =

D
(
x(i), ·

)
contains the model uncertainty eval-

uated at point x(i), and w(i) is a quadrature
weight. The uncertainty in the matrix D(i) orig-
inates from the evaluation of the random field
at a carefully chosen spatial location x(i). An
example of the slope stability mesh contain-
ing the location of all the quadrature points in
global (mesh) coordinates is shown in Figure 3.

In previous work, see Blondeel et al. (2021,
2020), we presented different possible imple-
mentations of the integration point method.
We constructed for each level ` a set of points
x`B {x(i)

`
}
n`
i=1, where the random field was eval-

uated. The resulting discrete random field sam-
ple points were afterwards taken into account
during numerical integration of Eq. (12). Note
that the number of evaluation points of the
random field increases with increasing level,
i.e., n0 < n1 < . . . < nL. We highlight the
two most important approaches from our pre-
vious work, the Non-Nested Approach (NNA)
and the Local Nested Approach (LNA). In the
NNA method, the random field is evaluated
in the quadrature points, i.e., x(i)

`
= q(i)

`
for

i = 1,2, . . . ,n. In the LNA method, to com-
pute the difference ∆P` on level `, the random

field is evaluated in the n` quadrature points
q` for the evaluation of P`, and in the n`−1
closest quadrature points of q` for the evalu-
ation of P`−1. LNA showed a speedup up to
a factor 5 with respect to NNA, by providing
a stronger correlation between the solutions
of two successive levels, see §2.4. However,
LNA suffered from a major drawback, an ad-
ditional bias was introduced in the computed
expected value obtained by evaluating the tele-
scopic sum in Eq. (2). In the next section, we
present two improved approaches, which do
not suffer from this additional bias, but still
provide a strong correlation between the solu-
tion of two successive levels.

3.1.1 Supermesh Global Approach

Suppose we have a set of quadrature points
q` = {q(i)

`
}
n`
n=1 available on each level ` =

0,1, . . . ,L. In the Supermesh Global approach
(SGA), all the quadrature points on each level
are mapped to one Supermesh. This Super-
mesh then contains all the quadrature points of
all the levels, i.e., qsupermesh := ∪L

`=0q`. This
is illustrated in Figure 4 on one reference tri-
angular element. The quadrature points q` on
the different levels are represented by 4. The
evaluation points, represented by  , used for
the Karhunen–Loève expansion are then equal
to qsupermesh, i.e., xsupermesh := qsupermesh. In
Algorithm 1 we present, in pseudocode, the
procedure used to obtain the required samples
Z` and Z`−1 from the Gaussian random field,
evaluated in q` (respectively, q`−1), i.e., Z` :=
Z (x`, ·) and Z`−1 := Z (x`−1, ·), when comput-
ing a sample from the multilevel difference
∆P`.

We thus only compute instances of
Z(qsupermesh, ·). The values for Z` and
Z`−1 are restricted from Z(qsupermesh). The
restricted random field is then taken into
account during the numerical integration of
the element stiffness matrices, see Eq. (12).

In the case of SGA, no bias is present on the
computed expected value obtained by means of
evaluating the telescoping sum property. This
is because the approximations, ∆P`, on the
different levels ` all have the same stochastic
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—– Level 0 —– —– Level 1 —– —– Level 2 —– —– Level 3 —–

— Supermesh —

Figure 4. Illustration of the Supermesh Global Ap-
proach.

Data: current level `;
quadrature points q` with ` = 0, . . . ,L;
Result: sample of the random field Z` on level `;
sample of the random field Z`−1 on level `−1 if ` > 0;
qsupermesh←

⋃L
`=0 q` ;

Zsupermesh← Z(qsupermesh, · ) ;
Z` ← Zsupermesh |q(i)

supermesh∈q`
;

if ` > 0 then
Z`−1← Zsupermesh |q(i)

supermesh∈q`−1
;

end
Algorithm 1. Computing the required samples of
the Gaussian random field for the evaluation of the
multilevel difference ∆P` using SGA.

properties, i.e., all random field instances are
restricted from the random field computed on
the supermesh. However, the level extensibil-
ity is not present in this approach. If an addi-
tional level is needed by the multilevel simula-
tion, a new supermesh needs to be generated,
with the addition that the previously computed
samples cannot be reused in the new mesh hi-
erarchy.

3.1.2 Supermesh Local Approach

Because there was no level extensibility
present in SGA, we developed an approach
where the level extensibility is present, i.e.,
the Supermesh Local Approach (SLA). The
selection of random field evaluation points in
SLA is similar to the one in the Supermesh
Global Approach (SGA), except we do not
construct one “big” supermesh, but construct
multiple “smaller” supermeshes on each level
` = 0, . . . ,L, i.e., for every set of consecutive
levels, we construct one supermesh. The pro-
cedure is as follows. For all levels ` = 0, . . . ,L

—- Level 0 —- —- Level 1 —- —- Level 2 —- —- Level 3 —-

- Supermesh 0 - - Supermesh 1 - - Supermesh 2 - - Supermesh 3 -

Figure 5. Illustration of the Supermesh Local Approach.

we compute q`,supermesh such that q`,supermesh :=
q` ∪q`−1 with q−1 := ∅, and evaluate the ran-
dom field Z`,supermesh in all points q`,supermesh.
Next, the values for Z` and Z`−1 are obtained
by restriction of Z`,supermesh, see Algorithm 2.
The approach is also illustrated in Figure 5, by
means of colored frames.

Data: current level `;
quadrature points q` with ` = 0, . . . ,L and q`−1 = ∅;
Result: sample of the random field Z` on level `;
sample of the random field Z`−1 on level `−1 if ` > 0;
q`,supermesh← q` ∪q`−1 ;
Z`,supermesh← Z(q`,supermesh, · ) ;
Z` ← Z`,supermesh |q(i)

`,supermesh∈q`
;

if ` > 0 then
Z`−1← Z`,supermesh |q(i)

`,supermesh∈q`−1
;

end
Algorithm 2. Computing the required samples of
the Gaussian random field for the evaluation of the
multilevel difference ∆P` using SLA.

This procedure implies that in the evalua-
tion of the multilevel differences, the differ-
ent realizations of the Gaussian random field
with the same quadrature points q` may orig-
inate from different supermeshes. For exam-
ple, when computing a sample of ∆Pτ, and
a sample of ∆Pτ−1, two supermeshes are in-
volved: one with nτ,supermesh := |qτ| + |qτ−1|

with quadrature points qτ,supermesh := qτ ∪
qτ−1 for the evaluation of ∆Pτ and one with
nτ−1,supermesh := |qτ−1| + |qτ−2| with quadra-
ture points qτ−1,supermesh := qτ−1 ∪ qτ−2 for
the evaluation of ∆Pτ−1. The Gaussian ran-
dom field Zτ−1 will then be computed from
the supermesh with nτ,supermesh points for the
evaluation of ∆Pτ, and from the supermesh
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with nτ−1,supermesh points for the evaluation of
∆Pτ−1.

Contrary to the case of SGA, in case of SLA
an infinitesimal bias is present on the com-
puted expected value obtained by means of
evaluating the telescoping sum property. As
was stated above, the approximations ∆Pτ and
∆Pτ−1, are computed from random field sam-
ples generated on different supermeshes, i.e.,
Zτ,supermesh and Zτ−1,supermesh. For the com-
putation of Zτ,supermesh, the set of quadrature
points qτ,supermesh := qτ ∪ qτ−1 is used, while
for Zτ−1,supermesh, the set of quadrature points
qτ−1,supermesh := qτ−1 ∪ qτ−2 is used. The su-
permeshes share in part the same quadrature
points, i.e., qτ−1, this ensures that both su-
permeshes exhibit the same stochastic prop-
erties. However, we observe that the numeri-
cally computed eigenvalues and eigenvector of
the Karhunen–Loève expansion, see Eq. (11),
differ slightly for both supermeshes. This is
because Zτ−1,supermesh is not computed in qτ,
and Zτ,supermesh is not computed in qτ−2. This
will lead to an infinitesimal bias being present
on the computed expected value obtained by
means of the telescoping sum. Contrary to
SGA, in SLA the mesh hierarchy is easily ex-
tensible. Additional level can easily be added
while reusing the computed samples from the
previous mesh hierarchy.

3.2 Computational Cost Discussion

In this section we briefly discuss the off-line
cost for SGA and SLA. This off-line cost is
the cost of computing the eigenvalues and
eigenvectors used in the Karhunen–Loève
expansion. This cost is proportional to O(n3),
where n stands for the discrete number of
points in which the eigenvalues and eigen-
vectors are computed. For SGA, the total
computational cost is proportional to the
number of points in the union of all the

quadrature points, i.e., O
(∣∣∣⋃L

`=0 q`
∣∣∣3), where

| · | stands for the cardinality operator. We
know that

∣∣∣⋃L
`=0 q`

∣∣∣ ≤ ⋃L
`=0 |q`| ≤

∑L
`=0 n`,

implying that O
(∣∣∣⋃L

`=0 q`
∣∣∣3) ≤ O((∑L

`=0 n`
)3

)
.

For SLA, the computational cost is pro-

Table 1. Comparing the start-up costs.

SGA SLA
Supermesh upp. eff. upp. eff.

0 / / 5283 5283

1 / / 11553 11223

2 / / 15513 15183

3 / / 21453 21123

4 / / 32343 32013

5 / / 44223 43893

6 / / 65673 65673

Total 118803 117153 7481.653 7459.213

portional to O
(∑L

`=1 |q`∪q`−1|
3 + |q0|

3
)
.

Similarly, this expression can be
bounded as O

(∑L
`=1 |q`∪q`−1|

3 + |q0|
3
)
≤

O
(∑L

`=1(n` + n`−1)3 + n3
0

)
. These two expres-

sions enable us to compare the upper-bounds
of the start-up cost of the two methods. In
Table 1, we give a comparison between the
upper-bounds (upp.) of the start-up cost and
the effective (eff.) start-up cost for the imple-
mentation in this work, see Table 2. We show
that here, the start-up cost of SLA is lower
than the start-up cost of SGA. The expression
for the upper-bound can thus be used for
determining which method will exhibit a lower
start-up cost.

4 MODEL PROBLEM

The model problem we consider for bench-
marking the p-MLQMC method, consists of
a slope stability problem where the cohesion
of the soil has a spatially varying uncertainty,
see Whenham et al. (2007). In a slope sta-
bility problem, the safety of the slope can be
assessed by evaluating the vertical displace-
ment of the top of the slope when sustain-
ing its own weight. We consider the dis-
placement in the plastic domain, which is gov-
erned by the Drucker–Prager yield criterion. A
small amount of isotropic linear hardening is
taken into account for numerical stability rea-
sons. Because of the nonlinear stress-strain re-
lation arising in the plastic domain, a Newton–
Raphson iterative solver is used. In order to
compute the displacement in a slope stability
problem, an incremental load approach is used,
i.e., the total load resulting from the weight of
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Table 2. Characteristics of the mesh hierarchy for p-
MLQMC.

p-MLQMC
Level Nel DOF Order Nquad

0 33 160 2 16
1 33 338 3 19
2 33 582 4 28
3 33 892 5 37
4 33 1268 6 61
5 33 1710 7 73
6 33 2218 8 126

the slope is added in steps starting with a force
of 0N, until the downward force resulting from
its weight is reached. This approach results in
the following system of equations for the dis-
placement,

K∆u = f +∆f −k, (13)

where ∆u stands for the displacement incre-
ment, K the global stiffness matrix resulting
from the assembly of element stiffness matri-
ces Ke, see Eq. (12). The right hand side of
Eq. (13) stands for the residual. Here, f is the
sum of the external force increments applied in
the previous steps, ∆f is the applied load incre-
ment of the current step, and k is the internal
force resulting from the stresses. For a more
thorough explanation on the methods used to
solve the slope stability problem we refer to
(de Borst et al., 2012, Chapter 2 §4 and Chap-
ter 7 §3 and §4).

In Table 2 we list the number of elements
(Nel), degrees of freedom (DOF), element or-
der (Order), and the number of quadrature
points per element (Nquad), per level for the
p-MLQMC method. The number of quadra-
ture points in the p-MLQMC method is chosen
as to increase the spatial resolution of the field
per increasing level, and to ensure numerical
stability of the computations of the displace-
ment in the plastic domain. In this paper we
consider two-dimensional uniform, Lagrange
triangular elements.

The quantity of interest (QoI) is taken as the
vertical displacement in meters of the upper
left node of the model. This is depicted in Fig-
ure 1 by �. The uncertainty of the cohesion
of the soil is represented by means of a log-
normal random field. This field is obtained by

applying the exponential to the field obtained
in Eq. (11), Zlognormal(x,ω) = exp(Z(x,ω)). For
the covariance Kernel C(x,y) of the random
field, we use the Matérn covariance kernel,

σ2

2ν−1Γ (ν)

(
√

2ν
‖x−y‖2

λ

)ν
Kν

(
√

2ν
‖x−y‖2

λ

)
,

(14)

with ν = 2.0 the smoothness parameter, Kν the
modified Bessel function of the second kind,
σ2 = 1 the variance and λ = 0.2 the correlation
length. The characteristics of the lognormal
distribution used to represent the uncertainty
of the cohesion of the soil are as follows: a
mean of 8.02kPa and a standard deviation of
400Pa. The spatial dimensions of the slope
are: a length of 20m, a height of 14m and a
slope angle of 30°. The material characteris-
tics are: a Young’s modulus of 30MPa, a Pois-
son ratio of 0.25, a density of 1330kg/m3 and a
friction angle of 20°. Plane strain is considered
for this problem. The number of stochastic di-
mensions considered for the generation of the
Gaussian random field is s= 400, see Eq. (11).
With a value s= 400, 99% of the variability of
the random field is accounted for.

The stochastic part of our simulations was
performed with the Julia packages Multileve-
lEstimators.jl, see Robbe (2018), and Gaus-
sianRandomFields.jl, see Robbe (2017). The
FE code used, is an in-house Matlab code de-
veloped by the Structural Mechanics Section
of the KU Leuven, see François et al. (2021).
All the results have been computed on a work-
station equipped with 2 physical cores, Intel
Xeon E5-2680 v3 CPU’s, each with 12 logi-
cal cores, clocked at 2.50 GHz, and a total of
128 GB RAM.

5 RESULTS

In this section we will discuss the results ob-
tained with the p-MLQMC method. The p-
MLQMC method is combined with the im-
proved approaches used to incorporate the un-
certainty, i.e., SGA and SLA, as well as the
previous approaches, i.e., NNA and LNA.
We also compare SGA and SLA against h-
ML(Q)MC in terms of computational cost.
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Figure 6. Uncertainty on the QoI.
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Figure 7. Variance and Expected Value over the levels.

5.1 Uncertainty on the QoI

In Figure 6, we show the uncertainty on the
QoI, obtained with the p-MLQMC method.
The shades of grey represent the probability
density function (PDF), the black line repre-
sents the mean, and the black dotted lines rep-
resent the 1 sigma bounds.

5.2 Variance and Expected Value

In Figure 7, we show the approximation of the
variance over the levels V [P`], the approxima-
tion of the variance of the difference over the
levels V [∆P`], the approximation of the ex-
pected value over the levels E [P`] and the ap-
proximation of the expected value of the differ-
ence over the levels E [∆P`].

We observe that E [P`] remains constant
over the levels, while E [∆P`] decreases with
increasing level. As explained in §2.4, mul-
tilevel methods are based on a variance re-
duction by means of a hierarchical refinement
of FE meshes. In practice this means that
the sample variance V [P`] remains constant
across the levels, while the sample variance of
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Figure 8. Number of samples per level for a user re-
quested tolerance of 1.165×10−5.
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Figure 9. Absolute runtimes in function of the requested
user tolerance of NNA, LNA, SGA and SLA.

the difference over the levels V [∆P`] decreases
for increasing level. This is indeed what we
observe for LNA, SGA and SLA. For NNA we
observe that V [∆P`] does not decrease.
5.3 Number of samples

We show the number of samples per level for
a user requested tolerance of 1.165× 10−5 in
Figure 8. The corresponding runtime has been
indicated in Figure 9 by the vertical line. As
expected, the trends of the sample sizes over
the levels reflect the trends of the variance of
the difference from Figure 7. Except for NNA,
all methods show a good decrease of the num-
ber of samples per increasing level.

5.4 Computational complexity

We show the total runtime as a function of
the user-requested tolerance ε on the RMSE in
Figure 9.

We observe that the SGA and SLA im-
plementations both outperform the LNA and
NNA implementations in terms of computa-
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tional cost. LNA is outperformed by a factor
ranging between 1 and 3. However, for finer
tolerances, the computational cost of LNA,
SGA and SLA is equal. This is because for
these three approaches, the samples have a
strong correlation, see §, 2.4. While LNA has
the same cost complexity for finer tolerances, a
bias is present on the computed expected value
in the telescoping sum. NNA is outperformed
by a factor ranging between 4 and 8. The SGA
and SLA implementations have the same com-
putational cost for a given tolerance.

5.4.1 Comparison with h-ML(Q)MC

In this section we compare the supermesh
based approaches combined with the p-
MLQMC method against the existing h-
ML(Q)MC methods in terms of computational
cost. In Fig. 10 we show the computational
cost, expressed in seconds for the different
approaches used for p-MLQMC, and for h-
ML(Q)MC.
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Figure 10. Absolute runtimes in function of the re-
quested user tolerance of SGA, SLA and h-ML(Q)MC.

As can be observed, h-MLQMC is outper-
formed by a factor 80 by both SGA and SLA,
while h-MLMC is outperformed up to a factor
240 by both SGA and SLA.

6 CONCLUSION

In this work we presented two novel ap-
proaches based on the integration point method
in order to account for the uncertainty in the
FE model when a stochastic simulation is per-
formed using p-refined Multilevel quasi-Monte
Carlo. These two novels approaches are the

Supermesh Global Approach (SGA) and the
Supermesh Local Approach (SLA). We have
shown at which discrete points the uncertainty,
represented as a random field by means of the
Karhunen–Loève expansion, is evaluated. We
also discussed how to incorporate said uncer-
tainty in the FE model. In addition, we in-
vestigated if the telescoping sum remains un-
biased when applying either of both methods.
We have demonstrated that this is indeed the
case. We showed that SGA and SLA both out-
perform NNA and LNA by a factor 1 to 3,
and 4 to 8 respectively. For finer tolerances,
the computational cost of LNA is equal to the
one of SGA and SLA. The computational cost
for SGA and SLA is the same for a given tol-
erance. Furthermore, we also compared the
supermesh approaches against the existing h-
MLQMC and h-MLMC methods. We found
that SGA and SLA outperform h-MLMC by a
factor 240, while h-MLMC is outperformed by
a factor 240 by SGA and SLA.
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