KATHOLIEKE UNIVERSITEIT LEUVEN
FACULTEIT WETENSCHAPPEN

FACULTEIT INGENIEURSWETENSCHAPPEN
DEPARTEMENT COMPUTERWETENSCHAPPEN
AFDELING INFORMATICA

Celestijnenlaan 200A - B-3001 Leuven

A CONSTRAINT-CENTRIC APPROACH
FOR OBJECT-ORIENTED
CONCEPTUAL MODELLING

Promotor: Proefschrift voorgedragen tot
Prof. dr. ir. Eric Steegmans het behalen van het doctoraat
in de wetenschappen: informatica
door

Stefan VAN BAELEN

Mei 2007

KATHOLIEKE UNIVERSITEIT LEUVEN
FACULTEIT WETENSCHAPPEN

FACULTEIT INGENIEURSWETENSCHAPPEN
DEPARTEMENT COMPUTERWETENSCHAPPEN
AFDELING INFORMATICA

Celestijnenlaan 200A - B-3001 Leuven

A CONSTRAINT-CENTRIC APPROACH
FOR OBJECT-ORIENTED
CONCEPTUAL MODELLING

Jury: Proefschrift voorgedragen tot
Prof. dr. Guido Dedene, voorzitter het behalen van het doctoraat
Prof. dr. ir. Eric Steegmans, promotor in de wetenschappen: informatica
Prof. dr. ir. Wouter Joosen door

Prof. dr. Tom Holvoet Stefan VAN BAELEN

Prof. dr. Hans-Gerhard Gross (TU Delft, Nederland)

U.D.C.681.3*D.2.1,D.2.4

Mei 2007

0 Katholieke Universiteit Leuven, Faculteit Wetenschappen & Ingenieurswetenschappen
Arenbergkasteel, B-3001 Leuven, Belgium

Alle rechten voorbehouden. Niets uit deze uitgave mag worden vermenigvuldigd en/of
openbaar gemaakt worden door middel van druk, fotokopie, microfilm, elektronisch of op
welke andere wijze ook zonder voorafgaande schriftelijke toestemming van de uitgever.

All rights reserved. No part of the publication may be reproduced in any form by print,
photoprint, microfilm, or any other means without written permission from the publisher.

D/2007/7515/54
ISBN 978-90-5682-820-2

Abstract

Object-oriented analysis, and more specifically conceptual modelling, is a software
engineering activity that aims at studying, analysing, and capturing the knowledge
about the universe of discourse for a system to be developed. This should result in the
specification of a consistent and unambiguous model that describes all domain
knowledge, facts, and rules, in which every element from the universe of discourse
has a transparent one-to-one correspondence to an entity in the conceptual model.

We propose in this dissertation a constraint-centric approach towards object-oriented
conceptual modelling. This is achieved by the usage of high-level constraint
specifications as the core model structure for conceptual modelling. In particular, our
approach enriches the conceptual model structure on two levels: by the definition of
new structural concepts to express model constraints implicitly in the model structure,
and by the introduction of constraints with supporting resolution mechanisms as a
first-class model concept.

Concerning the definition of structural concepts, we developed new concepts with a
dedicated applicability context attached in order to specify constraints implicitly in
the model structure. The incorporation of model constraints in each methodological
concept, the usage of existential dependency as the key modelling criterion, the
introduction of explicit class archives, and the formal specification of model events
and queries enrich the expressive power of a conceptual model structure.

Concerning the introduction of constraints as a first-class model concept, we
developed a mechanism to specify model constraints using many-sorted first order
logic. The constraint trigger concept attached to a constraint defines a generic
constraint solver that can resolve constraint violations by injecting additional
behaviour into an event or by firing an event due to progress of time.

Our approach has converged into the EROOS methodology of which two versions are
proposed. A core version, the EROOS kernel, uses a constructional modelling
approach in which information can only be added to a conceptual model instance. An
extended version, the EROOS universe, provides additional support for recurrent
EROOQOS kernel analysis patterns through advanced and more practical concepts using
the core version as the underlying base.

Acknowledgments

During the process of performing and finishing my dissertation, | have received
enormous support from a lot of colleagues, friends, family members, and loved ones,
without whom this dissertation would never have been written.

First, | would especialy like to thank my promoter Prof. Dr. ir. Eric Steegmans who
provided me the drive to perform this research. | cannot thank him enough for all the
time we have spent in numerous interesting discussions but also often heavy religious
wars. Also a big word of thanks goes to Prof. Dr. ir. Johan Lewi, the head of the
Software Development Methodology (SOM) research group at the time | started my
research. He is the godfather of my research, and gave me the opportunity to perform
this work in the first place. Together with Eric, he has been all these years a
continuous source of lots of interesting remarks concerning my work.

My thanks also go to the members of the jury, Prof. Dr. Guido Dedene, Prof. Dr. ir.
Wouter Joosen, Prof. Dr. Tom Holvoet, and Prof. Dr. Hans-Gerhard Gross, for taking
the time to read this text and providing useful comments that helped to improve the
quality of this text.

| aso want to thank the Research Foundation of Flanders (FWO Vlaanderen) for
providing me a doctoral research grant (aspirant NFWO) for 4 years that enabled me
to execute this research.

Of course, | specifically want to thank all members of the Software Development
Methodology research group that came and go within the time | performed my
research on this topic. Although | am probably going to forget to acknowledge
someone, | especially want to mention Walid Al-Ahmad, Pieter Bekaert, Sam De
Backer, Geert Delanote, Frank Devos, Maarten D’ Haese, Jan Dockx, David Jehoul,
Elke Malliet, Jamal Said, Bart Swennen, Eric Van Gestel, Peter Van Hirtum, and
Helena Van Riel. They were excellent colleagues that always provided a critical
platform to test new ideas and helped to identify potential contradictions and
inconsistencies.

Vi

ACKNOWLEDGMENTS

| also want to thank all people with whom | had a fruitful collaboration during the
past and running European ITEA research projects. From K.U.Leuven, | especially
want to thank Prof. Dr. ir. Karel De Vlaminck, Prof. Dr. ir. Y olande Berbers, Yvan
Barbaix, Joris Gorinsek, Aram Hovsepyan, David Urting, Bert Vanhooff, and
Andrew Wils. From Barco, | want to thank Lieven Demeestere, Andy De Mets, Jean-
Christophe Monfret, Stijn Rammeloo, and Hans Van Genechten for our fruitful
collaboration. From Jabil Circuit, formerly Philips Hasselt, | want to thank Linde
Loomans. From E2S, | want to thank Michel Huybrechts en Guy Pauwels. | also want
to thank all project partners with whom | came in contact with during the last years
for providing me a rich scale of various perspectives on software and System
engineering, and helping me to broaden the viewpoint from my originaly rather
theoretical ivory tower.

Last but not least, | want to thank my family and friends for their continuous
encouragements, specifically my mother Godelieve and my sister Nina, my fellow
students Mark, Antoon, Bruno, Frank, and Joris, my friends of the gymnastics
association GymFed, and my friends of the board and society games club Speelduivel
- De Leuvense Spellenclub. But utmost appreciation goes to my dearest spouse
Marion Meeusen and wonderful daughter Zanna Van Baelen without whom my life
would never have been such incredibly fantastic adventurous journey as today.

Modeling is hard -
Modeling skills are gained over years of experience
and only when a devel oper chooses to gain them

Scott W. Ambler

The Object Primer:

Agile Model-Driven Development
with UML2.0

How the customer explained it How the Project Leader How the Analyst designed it How the Programmer wrote it How the Business Consultant
understood it described it

How the project was What operations installed
documentad

How the customer was billed How it was supported What the customer really
needed

Original author of cartoon unknown
(source: http://lwww.jroller.com/resources/behrangsa/software-project.j pg)

To Marion and Zanna

Contents

ADSTIACT. ...t et b et e i
ACKNOWIEAGMENTS ..ot ae e e srae e anbeeeeenees v
(0701 1 1= 0 | £ T OSSO RPPRPRP Xi
LIST Of FIQUIES ..ttt eab e eas Xix
List of Tables and SCripts ... e XXI
LiSt Of DEeFINITIONS ..ot e e XXxiii
Chapter 1 INtrOUCTION ..cooiiiii e 1
05 = 1o o o 10 Vo TP SSR 2
111 The Software Life CYCle......cooviiieecececeesee e 2
1.1.2 Object-Oriented ANAIYSISooiiiiiee e 4
1.1.2.1 Scopeand Goal of the AnalySiS Phase.........cceceviririieieseninreee e 4
1122 TheNecessity Of ANAYSIScccciiiiriiiiireeie e 6
1.1.2.3 Distinction between Analysis and Design CONCerns..........ccooeevvereereereenenn. 6
1124 Classification of ANAYSIS VIEBWS........ccouvirerieiiiireniineseeseeese e 8
11241 Structural AnalySiS Methods...........cooeiirinirieeee e 8
1.1.2.42 Behavioural AnalysiS Methods.........cccccvveeiineiiiiicie e 8
11243 UML asthe Catalyst of ANalySIS VIEWS.........ccvverereneneeircneseene e 9
113 Problems and Open Issues for Object-Oriented AnalysiS........ccveeveeieniinnns 10
1.1.31 Modelling NOaiON.......cceiiririeiie e eiie e 10
1.1.3.2 MOdel CONSISLENCYcveveriierieiiiesieiiesieseeee et ses e see s st s eneeneennas 12
1.1.3.3 Model INfOrMalitycoeeoeieeieriie e s 13
1.1.3.4 MethodologiCal SUPPOItoceeieeeiieie ettt snes 15

Xi

Xii CONTENTS

1.1.35 Analysis Demarcation and Further Transition..........cccccevveeveeieieseseeseennn. 16
0 € o | TSRS 17
1.3 CONEIIDULIONS ...t e neen 18
O O 1Y Y = SRR 19

Chapter 2 A Taxonomy for Model Constraint Formalisms in Object-

OFENteA ANAIYSIS ...ttt nnee e 21
21 TheRoleof Modd Constraintsin Object-Oriented Analysis..........ccccceeenuenee. 21
2.2 Modéd Constraintsversus Derivation RUIES.........cccooiiiriiii e 23
221 Model Constraintsin Object-Oriented ANalySIS.......ccooveeeiienerieeiineeieens 23
222 Constraint LOgic Programmingccceeeeeenesisneseseseesesressessesessessesnses 23
223 Datahase CONSIAINTS........ccveeirererieiese e see sttt st s sre e e e s e enee e 24
224 ECAA Rulesin Active Databasescccoveierieeiienie e 24
2.3 Exampleof theLibrary System...... e 26
24 Specification of Model Constraintsusing Informal Textc.ccoecvvvveveieinenee. 26
24.1 Constraints using Informal Text for the Library Example.........cccoeviveenee. 27
24.2 Evaluation of Constraints using Informal TeXtcccvvvievinnininneeieneenn, 28
25 Specification of Model Constraintsusing Operational Restrictions............... 30
251 Constraints using Operational Restrictions for the Library Example............ 30
2511 SeqUENCE DIAgraMS.......cccviiiieerieiie sttt s se et e e s 31
25.1.2 Statechart DIagramsS.......cccoveiereriie e 33
2.5.1.3 PreCONGItIONScooviiiiieiiieiere ettt s 34
25.2 Evaluation of Constraints using Operational Restrictions............ccocveiveinns 34
26 Model Constraintsasa First-ClassModel Conceptccoovvereneeneneneenne 37
26.1 Constraints as a First-Class Model Concept for the Library Example.......... 38
26.2 Evaluation of Constraints as a First-Class Model Conceptccoeveeeeenene 39
2.7 Integration of Model Constraintsin Existing M odel Concepts.........cccceeueeeeee. 41
2.7.1 Integrated Model Constraints for the Library Example..........ccccvveviveieninns 42
272 Evaluation of Integrated Model CoNnStraints...........cccevvveeieniesinieesinsiesenneens 43
28 Modéd Constraints Implied by the Model Structure........ccocoeveeveececcecienen, 44
281 M odel-Implied Constraints for the Library Example..........cccoovveiineninnens 47
28.2 Evaluation of Model-Implied CONStraints..........ccoevveeeveenesieeiesesesseesie e 48

29 Comparison and CONCIUSIONS.........coicieiirierieiese e et ne s 50

CONTENTS Xiii

Chapter 3 Key Principles for Conceptual Modelling........cccccocvevviieiiiinenee 53
31 PrinCiple of UNIQUENESS........ccciiiiiireee et s 53
3.2 Principle of NO RedUNAANCYcccoiiririiiiirecee e e 54
3.3 Principle of UnambDiguitycccoriiiiiriiniee s 55
34 Principle of COMPIELENESS........cooiiiieeeee et 55
35 Principle of MinimMaliSM ..o e s 56
3.6 PrinCiple of PreCiSENESSottt st s 56
3.7 PrinCiple of NO HISLOIY ...oiiiiiiie ettt 57
3.8 Principleof Modé-Implied CONStraints...........ccooeeereierneie e 57
3.9 Principle of ADSIFACIONcccoeiieiiecie e 58
310 Additional CoNSIAEr ALIONSc.oiieuiiriiie e 58
3.10.1 Extendibility in Conceptual Modelling..........ccovriiiiiiinice e 58
3.10.2 Correctnessin Conceptual Modelling........cccoovevevieeiieece e 59
Chapter 4 A Methodological Kernel for Conceptual Modelling 61
41 Mode, Model Instance, and Event INStanCe.........ccocovereieeenenencnie e 62
4.2 Classes, Objects, and Static Classificationccoeverenenenie e 63
421 The Population Of @ Class........cccciiieiiiicieie s 64
4.2.2 Model Constraintsimplied by the Class ConCept..........cceeviierernenenieeinnnns 65
4.2.3 Specification of an EROOS ClaSS........cccoereeieriirienienie e 66
4.2.4 EROOS Kernel Classes for the Library Example.........cccccovvevvieiieceveennene, 68
425 Contributions, Related Work, and Reflections...........coocvveeeivveeee v, 68
4.3 Attributes, Domains, Values, and Decoration..........c.ccccceverereriieneniesieseeneennes 69
43.1 VaAlUE DOMAEINS ...ttt sr e 70
4.3.2 AIDULE VAIUBS. ... e e 72
4.3.3 Model Constraintsimplied by the Attribute Concept............ccoovvveierieninnenns 73
434 Specification of an EROOS AttribULE...........cooeiiiiiee e 74
4.3.5 Default AIDULES ..o e 77
4.3.6 Implicit AttribDUte QUENTES........coeeeeeee e e 78
4.3.7 EROOQOS Attributes for the Library EXample ... 78
4.3.8 Contributions, Related Work, and Reflections...........c.ccooviiiinieienc e, 79
44 Relations, Links, and REfINEMENtccoiiiiiiiiie s 81
44.1 EROOS Relations and ObJeCt LinkS.........ccocuriririeiieiinineneeseeese e 81

44.2 Model Constraintsimplied by the Relation Concept...........cccoovveieneneenenne 84

Xiv CONTENTS

44.3 Specification of an EROOS Relation...........ccoovviiieeienieniniee s 85
444 Implicit Refinement and Participation QUENTEScccoererierenenieeie e, 87
445 Integrated Relationship Constraints on CoNNECLIVItYcccvevvvreveieeiieniinns 89
4.4.6 Integrated Relationship Constraints on MUltipliCity........ccccocevevieieeieereenenn 20
447 EROOS Relations for the Library Example ... 91
4.4.8 Contributions, Related Work, and Reflections...........c.ccooeiiinieienciinieenne, 93
45 EROOSConstraintsand Confinement..........ccocoeviiireiienenieseeie e 9
451 General Principles of Confinement in EROOS............ccooeveninieniienesineenen 95
45.2 Specification of an EROOS CONSIraiNtccevereineenesiesieeseeseseesieseesieenens 98
45.3 Restrictions on EROOS Join CONSIIaiNtSccervereereenenerie e 101
454 EROQOS Constraints for the Library Example.........cccoovveeveiesenceeienecene 102
455 Contributions, Related Work, and Reflections...........cccocveeviiviinin e 104
4.6 |s-A Specialisationsand Static SUDAIVISION..........ccccerieiiiiie e 107
46.1 Is-A Specialisation versus Subclassing versus Subtyping.........c.cccceeeeeene. 108
4.6.2 Specialisation Partitions and Multiple Generalisations.............ccceceveennene. 109
4.6.3 Specification of an EROOS SpecCialiSation............ccccverererieenenesenie e 111
4.6.4 Model Constraintsimplied by the Specialisation Concept............cccceerunee. 112
4.6.5 Strengthening Constraints for a Specialisation...........cccoveeevvieeenie e 113
4.6.6 Causal Dependency for SpecialiSations..........ccovvieerereneriee e 116
4.6.7 Implicit Specialisation QUENTES..........ccueriiiiriiie e e 117
4.6.8 EROOS Specialisations for the Library Example........ccccccovvievenceeneenne. 117
4.6.9 Contributions, Related Work, and Reflections.............coccovverenninincnienns 119
47 Queriesand Ornamentalioncccceeueeiieerieeeecee e e eneas 119
47.1 Specification of an EROOS QUETYccoerueriierieneneee e 119
4.7.2 Examples of EROOS QUENES.......ccccuerierieiieeieriise e 121
4.7.3 EROOS Queries for the Library Example.........cccocoveiinennnieseneeeee e 121
4.7.4 Contributions, Related Work, and Reflections.............ccocooeviiiiinicicnene 123
4.8 Eventsand ENriChMENT ...t 123
48.1 Eventsinan EROOS MOccoouiiiiirieree s 123
4.8.2 Specification of an EROOS EVENL.........ccccerieiirininiee e e 124
4.8.3 EROOQOS Events for the Library EXample.........ccooeoenneninineneeece e 125
484 Contributions, Related Work, and Reflections............ccoccoevirennenincninnns 126
4.9 Design I'ssuesconcerning Model Constraints........cooceceveeeeieeieeniesennessesennens 127
491 Design Issues for Model-Implied Constraints............ccccoverereereneeeeeneneen 127
49.2 Design Issues for First-Class Model Constraints............cccoeveeerieeeenenennes 128
410 Evaluation of the EROOSKEMNEccoiiiiiiieeeeece e 131
4101 Achieving UNIQUENESS........cceiiiiiiiie st sieeses e esiessteesresssessse e ssseessesneens 131
410.2 Achieving NO REAUNTANCYooeiuiriirie it 132
410.3 Achieving UnNambigUItycccoeierierirnieneeieeie e s e 133
4.10.4 Achieving COMPIELENESSccveviii e e 134

4105 Achieving MinimMaliSmccccieiiiiiiiie e e 134

CONTENTS XV

410.6 AChIeVING PreCiSENESSuoiuiiieieiie ettt st ere s 135
4.10.7 AChieViNg NO HiStOrYcccoviiiiiiiiie et 135
4.10.8 Achieving Model-Implied CONSLraiNtS.........ccccveieeieeieesieesiee e see e sieeseens 135
410.9 Achieving ABSIraCtioNccooviiiieie s 136
Chapter 5 Advanced Concepts for Conceptual Modellingc.cccuu...... 137
51 ClassArchivesand Object DeStruCtioncoeeveierienirieene e e 137
511 EROOS Kernel Analysis Pattern for Class Archives.........ccoeveeeeieneneenne. 137
51.2 The Class ArChIVE. ... 138
513 Attributes for the Class Archive ..., 140
5.1.3.1 Default Attributes for the Class Archive..........ccccooinniiiiiceeee, 141
514 Queries on the Class ArChiVe..........ccooco i 142
515 Class Archive as Relation PartiCipant..........cccccevieveeniienieeinesie e 143
516 EROOS Relations for the Library Example Revisitedc.cccocveveiennenne. 149
517 Contributions, Related Work, and Reflections.............ccocvoeviniiinin e 150
52 Mutability of Attribute Values and Relation Participants..........cccoceveviienenne 151
521 EROOS Kernel Analysis Pattern for Mutabilityccccoevvvieeiieeie e, 151
522 Specification of a Mutable EROOS AIHDULEccceveeievierieieieseeiene 152
523 Specification of a Mutable EROOS Relation Participant...........cccccoceeeeeene 154
524 Attribute and Relation Mutation EVENLS.........c.coeeeiiinineneneeiee e 155
525 Implicit Attribute, Refinement, and Participation Queries.............cccceeunee. 157
5.2.6 EROOS Mutability for the Library Example..........ccovinininiiicieee 158
527 Contributions, Related Work, and Reflections............ccocoeeviiiiinic e 159
53 Compoundsand Mutual Dependency.........ccocuueeirreresienerienieseseesee s e 159
531 EROOS Compounds and Object Compound Links..........c.ccoeeeervnernernnne 160
532 Model Constraintsimplied by the Compound Conceptccceoevvereennnne. 161
533 Integrated Compound Constraints on CONNECLIVILYccccoerveeieieerieeneenn. 162
534 Integrated Compound Constraints on Mutabilitycccocevvvieiieieninnennn. 162
535 Specification of an EROOS COMPOUNdcccovirerreerenenieriene e 163
53.6 Implicit CompPouNd QUETIES.........cceeeeieriiieeriese sttt 165
537 Compound MULELION EVENLS.......c.ciereeiree et 166
538 Class Archive as a Compound PartiCipant.............cccoereereerenerneesnsenenneens 167
539 EROQOS Compounds for the Library Example........cccccovevveieivnivcieneciene. 170
5.3.10 Contributions, Related Work, and Reflections............ccocvevivinicnieicnine 171
54 EROOSCONSraiNt TriQOErS . .coooumereeeerienierieeiesieseeseeeesessessesseessessessaeseessens 172
54.1 Semantics of Functionality in EROOS...........ccooinininnieree e 173
54.2 The Trigger CONCEPL ..ottt e 174
54.21 Triggersand Model Validity.........cccooeiirieeniniesinie s 174
5.4.2.2 Addition Triggers versus Adaptation TrHggerS......ocevevereerereseesieseenns 175
54.2.3 Multiple Trigger VIolalionS........cccceeeeieiiieniiseesie e e eie e e 176

I N S I o o= G @ = RSOSSN 177
54.25 Event Triggers versus Time TrigOerSccoourrrrerreeieseesesseeseeseesseeseeneas 177

5426 TimeTriggersand Object Creationccovvveveeiieiinsiesseesieeses e 178

XVi CONTENTS

54.3 Extending EROOS Model Concepts with Trigger Specifications............... 179
5.4.3.1 Trigger Specification for EROOS CONStraintS..........cccoverrererenersnneene 179
5.4.3.2 Trigger Specification for Integrated Model Constraints............ccccueeveee. 181
5.4.3.3 Trigger Specification for Implicit Model Constraints...........c.ccccereeuenne. 182

54.4 Techniques for Describing the Overall Model Behaviour ..o 183
54.4.1 Central Effect DESCriptioNS........cccoiverieeieiiieiisiee et sses e ses e e 184
54.4.2 Modular Effect DeSCriplionS.......cccovereiieeeiiesiesiesseesieeses e see e seesseens 185
5.4.4.3 Distributed Effect Descriptions using TriggerS.......ccoeeerrererenerneseennes 187

545 Using Nondeterminism in Functionality Specifications............ccccoceeveennene. 189

5.4.6 EROOS Constraint Triggers for the Library Example.........cccccoeeivevienieenne. 191

54.7 Contributions, Related Work, and Reflections............cccocveevineinin e 191

55 Derived Groupsand Dynamic SUDIVISIONccecveeiviieiencin e 193

55.1 EROOS Analysis Pattern for Dynamic Specialisationc.cccocevevennenne. 193

55.2 EROQOS Groups and Dynamic SpecialiSation...........ccccveeeeiesesieeeeseseennes 196

553 EROQOS Groups for the Library Example..........cccoooerninininneneece e 198

554 Contributions, Related Work, and Reflections.............ccocvceiiniiinieieneee 199

56 Evaluation of the EROOS UNIVEISE......cceiuiiiiiiniinerie et 200

56.1 AChIeVING UNIQUENESS......cceeieiieciieie ettt sttt eneas 201

5.6.2 Achieving NO ReAUNTANCYooerriiriieeie et 202

5.6.3 Achieving Model-Implied CONStraints...........cocuoererienerieneese e 203

56.4 Final REFIECLIONS.......c.eiiiieceeee e s 203

Chapter 6 CONCIUSIONS.....uuiiiiiiiiiiiee e e e 205
6.1 Summary and ContribULIONS........ccoveiiriniiseese e e 205

6.1.1 Advanced Methodological CONCEPLS........ccueiererierieiieinreeeseee s 206

6.1.2 Model Constraintsimplied by the EROOS Model Structure...........c.......... 207

6.1.3 Model Constraints as a First-Class Model Conceptccoeeverereeeieereenne. 208

6.1.4 Value Added for Model-Driven Developmentcoeveeevenenenieeseenennens 209

(O - 11T F= 4 o o E RO 210
6.3 DirectionsSfor FULUF@WOIKccooiiiiriiie e e 212
27T o] 1T Yo =11 V2SR 215
LiSt Of PUBICALIONS ..o e s 229

[T o X0 | =101 1 YA ESR 235

CONTENTS XVii

Summary in Dutch / Nederlandstalige samenvattingccccccoeccevneee e, [
N 1 0 1= T 1 o OO SS i
1.1 Problemen en vraagstukken betreffende objectgeoriénteerde analyse............... i
i B T < £ = | [o = o SRR iv
G T = T o =" (= o PR RS TP STR iv
2 Eentaxonomievoor modelbeper kingsformalismen in objectgeoriénteerde
ANAIYS. ... ettt bt b et e e e Rt R e et e bt ae e R be et ebe e e e nrene v
3 Kernprincipesvoor conceptuele modellering........ccovvevenininsiesenieeene e Vii
4 Een methodologische kern voor conceptuele modellering.........ccccceveveivecnieneene viii
4.1 Klassen, objecten en statische ClassifiCatie........covvvviiiieriene s IX
4.2 Attributen, domeinen, waarden en decoratie..........ccooerererrenerieeie e IX
4.3 Relaties, verbanden en VerfijNningccccooeveiiienieeieeiie e X
4.4 EROOS beperkingen en reStriCtie.........cooeirerereeieseeies e X
45 |s-A specialisaties en statische onderverdeling.........cccoevveveeveecce e, Xi
4.6 QUENY'SEN OrNAMENTALIE ... ccveeeeiiie et r e enas Xi
4.7 GebeurtenisSen €N VEITITKINGcvieirie e se e Xii
5 Geavanceerde concepten voor conceptuele modellering........ccocovvveeeieneienenne Xii
5.1 Klassenarchief en objectvernietiging..........ccoeverereienie s Xii
5.2 Mutabiliteit van attribuutwaarden en relatieparticipanten..........cccocevveivenens Xiii
5.3 Composieten en wederzijdse afhankelijkheid.............ocooooviiiiiiiininieienen, Xiii
54 EROOS beperkingSrEaCHIES.cciueiiire et Xiii
55 Afleidbare groepen en dynamische onderverdelingccceeeeieciesienieennne Xiv
B CONCIUSIES ...ttt sttt et a et et a e b b e et e seenbesre e e srenneenen Xiv
6.1 Toegevoegde waarde voor modelgedreven ontwikkelingccccoevvivneennene XV
6.2 VAlIUALIE. ... et XVi

6.3 VOB ONAEIZOEK ettt e ettt e e e re e e e e e ee e eeeeeeeaaens XVii

List of Figures

Figure2.1: A Basic UML Model for the Library Systemc.cccccoevvienieiinvinicnneniens 27
Figure 2.2: Sequence Diagram for the Fine Constraint Realisation..........cccccovevevveieeinens 31
Figure 2.3: Sequence Diagram for Fine introducing an Explicit Timer Object................. 32
Figure 2.4: Sequence Diagram for the receive-check-accept Constraint Realisation 33
Figure 2.5: State Diagram for the receive-check-accept Constraint Redlisation............... 34
Figure 2.6: UML Model with Multiplicity Constraints for the Library System................ 42
Figure 2.7: Alternativesin UML for Modelling ASSOCIatioNS...........ccovevereeienensicnieeiene 46
Figure 2.8: A Hierarchical Model for the Library Systemcccoceviveinieniene s 47
Figure 4.1: Objects in an EROOS Class Population at Moment t............ccoceveveeieneennn 65
Figure 4.2: Graphical Representation of an EROOS CI&SS..........cccvvviienieiie e 67
Figure 4.3: Objects decorated by an Attribute of Domain D at Moment t...........ccccceeueen. 73
Figure 4.4: Graphical Representation of an EROOS Attribute..........ccccceevvivecenieviennenn, 74
Figure 4.5: Objects refined by a Binary and Unary Relation at Moment t........................ 82
Figure 4.6: Decomposition of an n-ary Relation into Binary Relations...........ccccccecvenn. 83
Figure 4.7: Graphical Representation of a Unary and Binary EROOS Relation............... 85
Figure 4.8: Graphical Representation of EROOS Multiplicity Constraints...................... 90
Figure 4.9: EROOS Kernel Relations for the Library Systemcccoccevvviiniinncinniennnnns 91
Figure 4.10: EROOS Constraint Specification from the Viewpoint of the Top Class......97
Figure 4.11: Graphical Representation of an EROOS Constraintcccevveeveeiveieennnns 98
Figure 4.12: Forbidden EROOS JoiN CONSLFAINLScovveivereiirieesiesesreesiesreseeseesiesreenas 102
Figure 4.13: Allowed EROOS JOIN CONSLIaiNt........ccceirriereereniniesiesessee e seessesseesseseennes 102
Figure 4.14: Graphical Representation of an EROOS Specialisationcccceevevneene. 109
Figure 4.15: EROOS Specialisation Partitions............ccoceverieeieieienesiesie e 110
Figure 4.16: Strengthening a Participant for an EROOS Specialisationcc.cccueuee. 114
Figure 4.17: Changing the Relation Arity for an EROOS Specialisationccc...... 115
Figure 4.18: Forbidden Causal Dependency between EROOS Speciadlisations.............. 116
Figure 4.19: Forbidden Causal Model Dependency for an EROOS Specialisation........ 117
Figure 4.20: EROQOS Specialisation for the Library System..........cccvvevvninveenennieenn. 118
Figure 4.21: Graphical Representation of an EROOS QUENYccccoerevvierienieeeenieseene 120
Figure 4.22: Graphical Representation of an EROOS Eventcccccovvevvivcveneneenne. 125
Figure 5.1: EROOS Kernel Analysis Pattern for an ACtiVitycccceveinicienesenieenn. 138
Figure 5.2: Present and Past Population set for an EROOS Universe Class................... 139

Xix

XX

LIST OF FIGURES

Figure 5.3: Graphical Representation of an EROOS Archive Attributeccccueeee.. 141
Figure 5.4: Graphical Representation of an EROOS Archive QUErYccccccvvevrerneennn. 142
Figure 5.5: Participation Typesfor an EROOS ClaSScccuveerieriinieenie e seeesesseeneas 144
Figure 5.6: EROOS Archive Participation CONStraiNtS.........ccocvveeieereseeseeressieseesenseennns 146
Figure 5.7: EROOS Relations for the Library System Revisited..........ccocooveieienieneenen. 150
Figure 5.8: EROOS Analysis Pattern for aMutable Attribute...........cccecveveeieiceniennen, 152
Figure 5.9: Graphical Representation of a Mutable EROOS Attribute............cccccevvvennee. 152
Figure 5.10: Graphical Representation of a Mutable EROOS Participant...................... 154
Figure 5.11: Graphical Representation of a Mutation Event............ccccoovieiiieienicienne. 157
Figure 5.12: EROOS Mutability for the Library System........cccooevieviiiiinveniccecie e, 159
Figure 5.13: Objectsinvolved in an EROOS Compound at Moment t...........ccceeevenee. 161
Figure 5.14: EROOS Compound and Alternative CONSIUCES..........cocceeerererieneeneseennes 161
Figure 5.15: Graphical Representation of a Mutable EROOS Compound...................... 163
Figure 5.16: EROOS Compound PartiCipation TYPES........ccocurerreerierererniesieseeeesie e 168
Figure 5.17: EROOS Compounds for the Library Systemcccocvoiiiineniccicnenene. 171
Figure 5.18: EROOS Analysis Pattern for a Time Trigger Creating Objects.................. 179
Figure 5.19: Techniques for Describing the Overall Model Behaviourccco.... 183
Figure 5.20: Modelling Dynamic Specialisation using EROOS Queries..........ccceevvneen. 194
Figure 5.21: EROOS Analysis Pattern for Dynamic Specialisation.............cccceeeverennenne. 195
Figure 5.22: Graphical Representation of an EROOS Group...........cccceevveenesesveseseennes 196
Figure 5.23: Using EROOS Groups for Dynamic Specialisation..........ccccevvevveieeiveennn. 198
Figure 5.24: EROOS Groups for the Library System.........cccccovvviinieniene e 199

List of Tables and Scripts

Table 2.1: OCL Specifications for Constraint Realisation using Preconditions............... 35
Table 2.2: OCL Specifications for Constraints as First-Class Model Concept.................. 39
Table 2.3: Criteriain UML when Modelling ASSOCIatioNS...........ccoveiereeninienie e 45
Table 2.4: Overview of Specification Techniques for Model Constraints............ccceeeee... 51
Table 4.1: EROOS ClaSS SCHPL......cotrerieieeeeerieseeseeiee st stesie s ssesse e se e s seese e 67
Table 4.2: EROOS Class Script for the Library Example.........ccooeveieienieniniencecesene, 68
Table 4.3: EROOS AIDULE SCIPLooueieeieieeie e s e 75
Table 4.4: Implicit EROOS Script for the Default Attribute Creation Timestamp........... 77
Table 4.5: EROOS Attribute Script for the Library EXample..........ccoovvriviiienceceneene. 79
Table 4.6: EROOS Kernel Relation SCrPt........cccviieiieiiiiieeseesie e 86
Table 4.7: EROOS CONSraiNt SCIPL......cveiiiereeiieeiesriesieesieeseesessreesseeseessseessesssesssesssesnes 99
Table 4.8: EROOS Constraint for No Printing when in Liquidationc.ccccceveiinnen. 104
Table 4.9: EROOS Constraint for Single Copy BOITOWING.........cccoverereeiereneeneeie s 104
Table 4.10: EROOS SpecialiSation SCrPL......c.ooiviiiiriiiieeie et see e see s see e 111
Table 4.11: EROOS QUENY SCHPL......oitiiteeeeieriereereesiestesieseesiesreesssseesiessessesssessesseessessens 120
Table 4.12: Example of an EROOS Query Script for an Object Ageccccevvieicecienenne 121
Table 4.13: Example of an EROOS Query Script for a Dual Participation Check 121
Table 4.14: EROOS Query for the Number of BOrrowiNgs..........ccovevereenenenieenienieneens 122
Table 4.15: EROOS Query for the Amount of the Fine..........cccccevvevievecviecce e 122
Table 4.16: EROOS EVENE SCIHPL ...vvoiviieieeiesiese e sttt sre e s srsasesre e sressesnens 124
Table 4.17: EROOS Event of Deregistration for the Library Example..........ccccoecvvuenen. 126
Table 5.1: EROOS Constraint for an ACHVITYcccoereririeeie e 138
Table 5.2: EROOS UNIVErse Class SCHPLoiviieieiesinieseese st etie e seesie e e 139
Table 5.3: EROOS Archive Atribute SCHptcooeiviieieeeeeeere s 141
Table 5.4: Implicit EROOS Script for the Default Attribute Destruction Timestamp142
Table 5.5: EROOS Archive QUENY SCIIPL.......coviierere et snens 143
Table 5.6: Alternatives for a Relation with Participation ReStrictionccccocvereenee. 147
Table 5.7: EROOS Universe Relation SCript.......ccoucveiiiieeiieeieiiessiesreesie e sieesseesseeneeens 148
Table 5.8: EROOS Universe Attribute SCript........ccceveveiiiieie e 153
Table 5.9: EROOS Mutation EVENt SCIPL.......ccooeiiirirereieesieeese e 156
Table 5.10: Event Expression in an EROOS Event SCriptccoooevivieriine s 157
Table 5.11: EROOS Compound-Part SCIiPL........ceiiueiiererieeseesiessieessessseessesssessesssesneens 163

XXi

XXii

Table5.12;
Table 5.13:
Table 5.14:
Table 5.15:
Table 5.16:
Table5.17:
Table 5.18:
Table 5.19:
Table 5.20:
Table 5.21:
Table 5.22:
Table 5.23:
Table 5.24:
Table 5.25:
Table 5.26:

LIST OF TABLES AND SCRIPTS
EROOS Compound Mutation Event SCript........cccocevevenieniennsesieseene e 167
Possibilities for a Compound with Part and Whole Restrictions................. 169
Unsupported Restriction Casesin EROOS.ccccocivrieiie i 170
EROOS Compound Script Usage of Class Archive.........cccocevvviceeieenenenne. 170
EROOS Constraint for aTime Trigger Creating Objectscccceveevrruenne. 179
Trigger Specification for EROOS CONSLraints..........ccevvverveeveesenseesseesnennnes 180
Trigger Specification for Integrated and Implicit Constraints...................... 182
Central Effect Description of return booK............ccoceeeeienienieieninee e 184
Modular Effect Description of return DOOK............cccoeieierieeninie s 186
Distributed Effect Description of return BookK...........cccoccvveeveievieneeneenee, 188
Nondeterministic Distributed Effect Description of return book................. 190
Time and Event Trigger for the Library Example..........ccccoeininiiiincnnns 191
EROOS Constraints for Simulating Dynamic Specialisationc.......... 195
EROOS GroUP SCHPL ..coveeeeieeiesieseeiienie st see s stes e see e see e seeenes 196

Time and Event Trigger for the Library Example..........ccocooeiiiniiiinennn. 198

List of Definitions

Definition 4.1: Model, Model Instance, and Event InStance..........ccceeoeecvveeeeeeecieeeee e 63
Definition 4.2: EROOS KEIMNEI ClIaSS.......ccviiiiei ettt eesaee e s 66
Definition 4.3; EROOS Creation EVENL........covuiieeeee e ieeeeeeeeeeeeeereseesieeeesesssnsseresessesens 68
Definition 4.4: EROOS KENEl AtTIDULEveeeeiieeeeiee ettt sree e e 74
Definition 4.5: Extended Creation Event for an EROOS Attribute..........c.ccccceeeveeiveenneen. 75
Definition 4.6: Implicit EROOS Kernel Attribute QUENY.........ccoeeveerievienerneeie e 78
Definition 4.7: EROOS Kernel REIGLIONeevveiiieiiieie e eeeeeee e s e e e s 85
Definition 4.8: Extended Creation Event for an EROOS Relationccccccceeeveevveenneen. 86
Definition 4.9: Implicit EROOS Refinement QUENYcccoererierieeiienieninreeie e 88
Definition 4.10: Implicit EROOS PartiCipation QUENYccovvereerieeiiesieeneesieesie e seeens 88
Definition 4.11: EROOS CONSITAINTcccooiieiiie ettt e st e e saaeee s s snreeee e s s 98
Definition 4.12: EROOS SPECIAliSAlIONccevieieiiisiiiee ettt 112
Definition 4.13: Implicit EROOS Specialisation QUENYcccoeeeiirereriienene e 117
Definition 5.1: EROOS UNIVEISE ClaSS.......cccuiieiiieeeiiiee et seer e e s sinae e 140
Definition 5.2: EROOS Archive AttHDULEcueeivieeee ettt 141
Definition 5.3: EROOS UNIVErSE AttHDULE.oo it 153
Definition 5.4: EROOS UNIVErSE REIGLION........coococuiiieiieciie ettt 155
Definition 5.5: EROOS Relation MUtation EVENtcocveevivciei i 156
Definition 5.6: EROOS Attribute MUtation EVENLcoocceeeie e 157
Definition 5.7: Implicit EROOS Universe Attribute QUErYccccoevenieveieiecieseene, 158
Definition 5.8: EROOS COMPOUNG......c.ceiiiiiiiinieiesiiseeseesesresie s sses e s sseeseeseesnes 164
Definition 5.9: Extended Creation Event for an EROOS Compound-Part 165
Definition 5.10: Implicit EROOS Compound QUENYcccouererieeieeresieeeereesieseeeseeseenes 166
Definition 5.11: EROOS Compound Mutation EVENt............cccecviririnenienene e 167
Definition 5.12: EROOS Constraint With Trggerccooeroeeerere e 180
Definition 5.13: EROOS GIOUP.......coviiteitieiesiisieereeiesteseeseessessesssessessessesssessessessesssessesses 197

XXiii

Chapter 1

| ntroduction

One of the real challenges for software engineering is, on the one hand, being able to
obtain a good understanding of the needs and requirements for the software system to
be built, and, on the other hand, the ability to deal with and respond to changing
conditions and requirements throughout the development of the system and its further
life cycle. Brooks already stated in 1987 that ‘ The hardest single part of building a
software system is deciding precisely what to build.”, while * All successful software
gets changed ... The software product is embedded in a cultural matrix of
applications, users, laws, and machine vehicles. These all change continualy, and
their changes inexorably force change upon the software product’ [20]. Almost 20
years later, Ambler states that ‘Domain knowledge is important ... If you do not
understand the problem domain there is very little chance that you can be
effective’[4], while Martin states that ‘It is the ability to respond to change that often
determines the success or failure of a software product’ [98].

In order to build a software system that conforms to the needs of the customers and
end users, the software engineer must be able to obtain a clear insight into all issues
regarding the software system and the context in which it must operate. In addition,
modern software systems are far too complex to be built in an ad hoc way, but instead
require clear and unambiguous methods and notations to develop qualitative systems
that fulfil the needs and expectations of the customers. In order to master both the
continuously changing requirements as well as the complexity of software systems,
rigorous development methods, techniques, and notations are needed to model and
structure the requirements in an optimal manner.

Object-oriented analysis, and more specifically conceptual modelling, is a key asset
in dealing with changing requirements, since it enables to express these requirements
in a consistent manner within the context of the universe of discourse and can as such

2 INTRODUCTION

provide clear insight into the impact of a changing requirement on the software
system and the environment in which it operates.

This introduction firstly discusses the background for this dissertation. Object-
oriented analysis is positioned in the broader context of the overall software life
cycle. The need and purpose of object-oriented analysis are stated, and its main
characteristics are discussed. Hereafter, the major difficulties with current object-
oriented analysis methods, and the main challenges for object-oriented analysis are
identified. Next we state the goals addressed by this work. We conclude this
introductory chapter with an overview of the text.

1.1 Background

1.1.1 The Software Life Cycle

The ever-increasing size and complexity of software demands for rigorous techniques
and suitable tool support for the development of software. In software engineering, as
in other engineering disciplines, the development process of a software system is
structured into a number of phases in order to cope with the inherent complexity of it.
Each phase is focussed on different aspect of the development process, and has its
own purpose, goal, focus points, notations, and formalisms to express its results.
Although there is no real consensus on the exact number and naming of the phases
into which a software engineering process can be divided, the following phases are
commonly identified:

* Analysis Phase: In this phase, the universe of discourse (UoD, also called
problem domain, business domain, real world or system context) in which the
software system will operate is studied, and modelled into a conceptual model
(also called domain model, business model or analysis model). A conceptual
model is a formal model in which every element from the universe of discourse
has a transparent and one-to-one correspondence to an entity in the conceptual
model. Its goal is to obtain a proper insight in the context in which the system
will operate. A conceptual model provides a complete description of the current
or envisaged universe of discourse expressed in one or more diagrams. In
addition, the requirements of the system are identified and specified both on a
functional and non-functional level. The specification of the requirements should
be based on the facts and information that occur within the universe of discourse
through the usage of the conceptual model. Sometimes a further distinction is
made between the requirements phase [47][41][122], focussed on capturing the
requirements and expressing them in a mostly textual format, and the domain
analysis phase [89][7], focussing on studying the universe of discourse (context)
and constructing a conceptual model for it (context realization).

» Architectural Phase: In this phase, an architecture for the software system is
defined. An architecture describes the structure of the system, which comprises
software elements, the externally visible properties of those elements, and the

1.1. BACKGROUND 3

relationships among them [10]. The result of this phase is an architectural
model, which contains a complete description of the architecture of the system
including its links with other systems and the external world.

» Design phase: In this phase, the software elements within the architecture are
further elaborated. This includes a whole range of activities, going from taking
decisions about the realisation of the software elements and the definition of their
internal substructures, evaluating potential usage of software libraries and
available (possibly off-the-shelf) components, incorporation and application of
software patterns, definition of interfaces between software elements, to
identification of implementation classes, and describing their interrelations and
their internals. Sometimes a further distinction is made between high-level
design, focussing on components, interfaces, classes and their interrelationships,
and low-level design, focussing on class internals, such as state diagrams,
operations, and instance variables [171]. The result of this phase is a design
model, containing all the details about the system to be realised.

* Implementation phase: In this phase, the software system is implemented and
executable code is produced according to its design. The result of this phaseis an
executable program(s) in asingle or multiple programming languages.

» Deployment phase: in this phase, the system will be deployed in its environment
in which it will operate. This includes providing the necessary run-time support
for the system and establishing its interaction with the external world.

Although often a dedicated maintenance phase is identified, covering all tasks and
activities that have to be performed to keep the system running and up-to-date with
the expectations and requirements of the customers and the end users after system
deployment, we do not consider this as a true phase on its own. In fact, the
maintenance phase can better be seen as a continuous activity throughout all
identified phases above, adding to and adjusting the outcomes of the software
engineering phases in order to maintain the system according to the needs of its
customers and end users. All tasks that have to be performed during maintenance can
be categorised into one of the development phases that were mentioned above. In the
same manner, a testing phase or more broadly a validation and verification phase
could be identified. Also, this phase could be considered as not a true phase on its
own, since validation, verification, and testing occurs to a certain extent during all
phases of the software development process [11][98][12][149].

The process of developing a software system realises a certain path through a number
of activities that will be performed in the phases defined above. Although it is
possible that these phases are executed fully sequentialy, the development of a
software system often follows an iterative, incremental development process,
focussing on the realisation of a part of the functionality after which the software
system is further been extended [173][55][88].

Models are used to express the properties and structure of the software elements in
order to reason and communicate about them. Throughout the software development

4 INTRODUCTION

process, models can be further detailed by extending them with additional
information that is relevant in a phase, transforming them into lower-level models
using the same or different notations, and, eventually, generate code from them.
Model-Driven Development (MDD) techniques [50][83] can be used to automate
transformations from one model into another.

The object-oriented paradigm, which has been existing for almost 40 years, is
nowadays widely accepted within the Software Engineering community as the
paradigm to structure software systems in an optimal way. Although this paradigm
originated from implementation languages, such as Simula [33] and Smalltalk [56], it
is currently being used in all phases of the development process. The object-oriented
paradigm focuses on identifying objects, clustering them into classes, and describing
their characteristics, behaviour and interrelationships.

This work mainly focuses on the analysis phase. In addition, the relationship between
the analysis phase and the design phase will be discussed to some extent. The
implementation and deployment phase are beyond the scope of this work.

1.1.2 Object-Oriented Analysis

This section gives an overview of the most important aspects within object-oriented
analysis. It will identify the main distinctions with object-oriented design and
implementation, and will highlight the necessity of it for the overall software
development process. Last, we will present and compare the different approaches to
object-oriented analysis. In order to classify the object-oriented analysis methods in a
number of methodological families, this section introduces the notion of analysis
views, focussing on the models that a method produces. A large number of
comparisons of object-oriented analysis and design methods have been made
[6][35][102][32][45][68][69][164][66][23].

1.1.2.1 Scope and Goal of the Analysis phase

Although object-oriented analysis is mostly founded on object-oriented design and
programming ideas, conceptual modelling is aso heavily influenced by the data-
oriented development methods. The roots of object-oriented analysis can actually be
situated on four domains:

* The object-oriented programming paradigm [33][56] and object-oriented design
approaches [17][16][29].
* Function-oriented and structured analysis (SA), design (SD), and programming

approaches [54][37][169][170][116][81], such as Structured Systems Analysis
and Design Method (SSADM) [40][123].

e The relational model [30], Entity-Relationship (ER) modelling [24][42], and
data-oriented development methods [105][106].

e System design approaches such as Jackson Structured Programming (JSP) [72]
and Jackson System Development (JSD) [73].

1.1. BACKGROUND 5

The goal of the analysis phase is to acquire an insight into the universe of discoursein
which the software system will operate, and to express the requirements of the system
to be applied within the universe of discourse according to the needs of the customers
and the end users. The input to analysis is a universe of discourse and a problem
statement. The output of analysis is an understanding of the problem domain,
expressed in a conceptual model, and a requirements specification for a software
system or a family of related software products [8]. During the analysis, the universe
of discourse is thoroughly studied and the knowledge is captured in a conceptual
model, also called a domain, business or analysis model.

An object-oriented conceptual model can actually be specified merely for a better
understanding of the universe of discourse without necessarily having to be realised
by a software system. It can as such be applied for Business Process Re-engineering
(BPR) [78][19][67][53][77], in which an actual business process from the universe of
discourse is modelled, studied, and improved, or being transformed into a totally new
process. As such, the requirements in such a conceptual model will express the new
procedures, rules and regulations that should be followed in the ameliorated process.

The object-oriented paradigm is highly suited for performing analysis and expressing
the domain analysis results. Objects and classes, the primary modelling constructs of
the object-oriented paradigm, are excellent means for performing a classification of
relevant items from the universe of discourse, since the universe of discourse can be
considered as a universe of related things that either are objects or subjects. Based on
the core concept of a class, both structural elements, representing facts and
interdependences from the universe of discourse, as well as behavioural elements,
representing the ways in which these facts can evolve over time, can be used to
construct a complete model of the universe of discourse that is relevant for the
software system to be developed. Since an object-oriented model consists of an
integration of both structure and behaviour, the resulting domain model will both
cover the aspect of ‘which information is present within the universe of discourse at a
certain moment in time' as the aspect of ‘how can the information within the universe
of discourse evolve over time'.

The results of the analysis phase can be considered on three levels:

A domain model of the present universe of discourse, containing a complete
specification of the universe of discourse as it exists and operates at the current
moment. It describes relevant elements that exist in the universe of discourse, the
properties concerning them, and the events in which they can become involved.
Such model is called by Ludewig [94] a descriptive model.

» The specification of the functional requirements, which will use the domain
model as the context to which they refer.

* An analysis model expressing the solution model, describing the ultimate
envisioned transmuted universe of discourse in which the functional
requirements have been realised. Such model is called by Ludewig [94] a
prescriptive or explorative model.

6 INTRODUCTION

However, the analysis results cannot always be clearly separated according to the
three levels above, since a number of elements cannot always be identified as
belonging to a single level. In fact, the specification of the functional requirements
will often be done by directly incorporating them into a prescriptive domain model.
On the other hand, the distinction between the universe of discourse as it is and the
universe of discourse as it should be is easier to make, although, in some cases, only
the latter will be modelled during software development.

1.1.2.2 The Necessity of Analysis

According to Jackson [73], a software engineer should start by building a model of
reality, after which the functional requirements should be described based on this
model of reality. This improves extendibility, preciseness, and communication
between the software engineers and the customers.

We claim that an accurate and precise description of the functional and non-
functional requirements cannot be done without a clear insight into the universe of
discourse and without being based on a detailed model of all aspects from the
universe of discourse. Without the knowledge of how the universe of discourse is
structured, and which inherent properties are embedded within it, it is impossible to
describe how the envisioned system should behave in its context. For example,
business processes that the system should support, or rules and regulations that the
system should enforce cannot exhaustively be specified without having proper insight
into the elements that they apply upon. This will lead to incomplete requirements
elicitation and imprecise requirements definition.

A process that does not take into account object-oriented analysis will rest on an
implicit image and understanding of the universe of discourse by the software
engineers, each having to build an implicit conceptual model in their mind. Since
these implicit conceptual models will never explicitly be reviewed, assessed or agreed
upon, they will lead to incomplete, incorrect, and incompatible visions on the
universe of discourse, giving rise to the introduction of errors and inconsistencies
during later development stages, and customer dissatisfaction due to the discrepancy
between their requirements for the system and the actual properties of the software
system that is delivered.

1.1.2.3 Distinction between Analysis and Design Concerns

There are many visions on and definitions of object-oriented analysis. Object-oriented
analysis is defined by Yuan [171] as ‘an activity of discovering, understanding, and
describing facts about real-world objects and their behaviors in the problem to be
solved. These facts are something system developers cannot change or invent.’, while
object-object design is defined as ‘an activity of building the system architecture as
well as each system class. This involves inventing and specifying classes and their
properties in the solution domains.’ Monarchi [102] defines analysis as ‘modelling
the problem domain by identifying and specifying a set of semantic objects that
interact and behave according to system requirements.’, while object-oriented design

1.1. BACKGROUND 7

is “modelling the solution domain, which includes the semantic classes and interface,
application, and base/utility classes identified during the design process.’

Since the analysis phase focuses on the universe of discourse, software- and
hardware-related issues are not yet relevant at this stage. The transition to a software
system will gradually introduce these issues during later stages of the development.
Although a number of concepts seem to be quite similar due to the usage of the same
object-oriented paradigm, there are some important major distinctions between, on
the one hand, object-oriented analysis, and, on the other hand, object-oriented design
and implementation:

The concepts used in object-oriented analysis try to capture knowledge that is
present within the universe of discourse. Although concepts as classes and
objects are being used to represent them, these concepts try to grab information
from the universe of discourse and thus refer to real-life items, people or facts.
Although a real-life class in an analysis model can lead to the implementation of
asimilar classin the actual system, the concepts in a conceptual model are from
a different nature and have no direct commonalities with software classes,
software objects, database tables or database records.

The structural elements in an analysis model try to capture the real-life
information and dependencies from the universe of discourse. The information
represented in an analysis model reflects facts present in the universe of
discourse. Although a real-life fact in the analysis model can lead to a specific
pointer or an instance variable value of a software object, the structures in a
conceptual model have nothing directly in common with instance variables,
pointers or data base entries. In addition, the use of inheritance in an analysis
model reflects the fact that a certain real-life element type can be seen as a
subtype of another real-life element type, which can but does not necessarily
have to lead to an implementation inheritance relationship between software
classes.

The behavioural elements of an analysis model try to capture changes of real-life
information within the universe of discourse. The represented events reflect
occasions from the universe of discourse. Although a real-life event can lead to a
specific call of a class method on a software object, the events in a conceptual
model have nothing directly in common with methods, operations or stored
procedures.

The model constraints of an analysis model try to capture rules and regulations
from the universe of discourse, whether they represent physical laws or human
imposed restrictions. Although they can, and often also they will be enforced on
the software level, the constraints of a conceptual model have nothing directly in
common with the realisation of them in the software, and the decisions to be
taken on how, where, and when to check and enforce them in the ultimate
software system.

Since an analysis model reflects the facts and occurrences from the universe of
discourse, the information contained in the model is supposed to be correct, and

8 INTRODUCTION

the events in synchronisation with the occurrences in the real-life world. Issues
regarding the accuracy and validity of the stored information, and the time span
between the occurrence of the event and its registration in the system are,
therefore, only a concern of the actual software system, and are as such not
treated in the analysis model.

Although object-oriented analysis uses the same kind of concepts as object-oriented
design and implementation, there is a profound distinction on the kind of elements
they model, the level of detail of the information in the model, and the quality criteria
that are used during the construction of the model.

1.1.2.4 Classification of Analysis Views

Object-oriented analysis methods often offer a number of diverse analysis views on
the universe of discourse. Therefore, the number of models they produce as a result of
their activity can vary. Although most object-oriented analysis methods incorporate
both structural and behavioural aspects to a certain extent, one can clearly distinguish
two distinct families: structural-focussed analysis methods and behavioural-focussed
analysis methods.

1.1.24.1 Structural Analysis Methods

Structural object-oriented analysis methods, such as Booch [15], OMT [93][126],
OOA [28], OOIE [96][97], OOSA [43], and Fusion [31], are mainly focussed on
discovering and identifying domain entities, their properties, and the interrelations
between them. The domain model, expressed as a class diagram or a static structure
diagram [128] providing a class centred description of the information, is the primary
asset of this type of methods. Classes are used as the major modelling concept, and
are further detailed using attributes and operations, and they are interconnected with
each other using associations.

Although their main focus is to obtain a good capturing of the information structures
present inside the universe of discourse, operations are nevertheless a specific point
of interest for these methods. Descriptions are made based on the ways objects
interact with each other to fulfil their responsibilities. Typical object interactions are
identified and captured as operations applicable on the objects of the corresponding
classes. This results in object interaction diagrams, such as collaboration diagrams
and message sequence diagrams [128].

1.1.24.2 Behavioural Analysis Methods

Behavioural object-oriented analysis methods, such as SM [134][133], RDD [167],
OBA [124], OOSE [76][75], BON [103][156], and UON [115], are mainly focussed
on discovering and identifying inter-object behaviour. They focus on specifying the
interface of the objects and defining the protocols between them. For instance, CRC
cards can be used as the mgjor modelling concept, defining the necessary Classes,
their Responsibilities, and their mutual Collaborations. Although behavioural object-

1.1. BACKGROUND 9

oriented analysis methods also use classes as their core concept, the class is rather
studied in isolation, focussing on the interaction with the class, while structural
analysis methods study the class in its broader context, focussing on the interrelations
with other classes. A number of behavioural analysis methods make a further
distinction between different types of behavioural elements, such as events,
operations, methods and signals.

Although class behaviour is the main focus of behavioural methods, class properties
and interrelationships are, nevertheless, present in aslightly different form. Instead of
defining properties and interrelationships as first-class entities, they can only be
retrieved by interacting with the object, thereby obtaining the information indirectly
using the provided operations for the object.

Since behavioural object-oriented analysis methods focus specifically on classes and
the interaction with them, they tend to describe the software system rather than the
universe of discourse. Therefore behavioural object-oriented analysis methods can be
characterised as software analysis methods rather than domain analysis methods.

1.1.243 UML as the Catalyst of Analysis Views

The Object Management Group (OMG) has tried to standardise the notation used for
the description of software artefacts during the overall software life cycle by defining
the Unified Modeling Language (UML) [120][119][107][109][128]. Through the
standardisation of a modelling notation, UML tries to establish a common vocabulary
that can be understood by any software engineer. It establishes a common notation
and semantics for software artefacts by defining a number of areas that can be
modelled, views that can be defined for each area, models or diagrams that can be
used to express each view, and concepts that can occur within these diagrams.
Whereas UML 1.4 defines 9 diagram types (class, object, use case, sequence,
collaboration, statechart, activity, component, and deployment diagram), UML 2.0
defines 4 mgjor areas (structural, dynamic, physical, and model management area), 9
views (static, design, use case, state machine, activity, interaction, deployment, model
management, and profile view), and 11 diagram types (class, internal structure,
collaboration, component, use case, state machine, activity, sequence,
communication, deployment, and package diagram).

The general adoption of UML as the de facto standard notation for the description of
software artefacts from the analysis up to the implementation phase has led to arather
dominant position of structural object-oriented analysis methods. Although the
emergence of Agile software development [11][98] gave rise to a revival of more
behavioural object-oriented analysis techniques, the Agile Modelling approach
[3][18] has redirected the Agile community again to the usage of UML and more
structural based obj ect-oriented analysis techniques.

In addition to the standardisation of the modelling notation, there are even efforts to
standardise the software development process. The Unified Process (UP) [74] tries to

10 INTRODUCTION

define a component-based software development process framework as a reference
model that is use-case driven, architecture-centric, iterative, and incremental.

1.1.3 Problems and Open Issues for Object-Oriented Analysis

This section identifies a number of problems and open issues for object-oriented
analysis. Although we provide an isolated description of the open issues, many of
them are rather interrelated. As an example, since UML tries to integrate a large
number of notations for software artefacts into a single modelling language, it is a
very extensive language that offers the possibility of using a huge number of
concepts. Therefore, it is unclear for an analyst to evaluate and identify the best-fitted
modelling concept for expressing a specific item. So the modelling notation is related
to the methodological approach. Another example is the fact that the usage of
informal specifications and the usage of a complex notation with several separate
models can easily give rise to an inconsistent analysis model.

1.1.3.1 Modelling Notation

Almost all current object-oriented analysis methods use the Unified Modeling
Language as the notation for defining the outcomes of the analysis phase. Since the
Unified Modeling Language is mainly defined as a unification of primarily object-
oriented design notations, it has a clear focus on object-oriented design and
implementation concepts. Although it is possible to express conceptual models using
UML as the notation, the provided concepts will drive the analyst heavily to a more
software focussed analysis model rather than a conceptual model. This can lead to
several problems:

» Since the object-oriented paradigm originated from object-oriented programming
languages, many object-oriented concepts are still largely biased towards a
progranming context. Therefore UML is better suited for building a
computational model rather than a conceptua model. For instance, all
functionality is designated on the object level in order to be invoked on a specific
object, or on the class level in case of class methods. However, it could be useful
to define functionality on a model level during the analysis phase. As another
example, the value of attributes and associations can be changed, as an analogy
to the fact that instance values and pointer sets are often manipulated on a
programming level. However, the knowledge that an attribute had a particular
value at a certain moment in time is a fact one should be able to reason about,
without being concerned about how this value should be stored and referred to in
the model.

e UML tries to cover the specification of all software artefacts during the whole
software engineering life cycle. It must therefore allow the modeller to use the
UML concepts on the analysis level, the high-level design level as well as the
detailed design and implementation level. As such, each definition in UML is the
result of a compromise between different viewpoints, alowing several
interpretations in order to fit the needs of al levels on which it can be applied.
From the standpoint of UML, it is useful to have a loose definition of the

1.1. BACKGROUND 11

concepts in order to enlarge its applicability. But from the standpoint of the
analyst, it is very difficult to evaluate which concept should be used in which
manner when there is no clear interpretation for it. This can lead to different
interpretations of analysis models by several modellers, since the exact meaning
of certain model constructs can be very ambiguous.

« UML contains a large number of concepts that are not aimed for being used
during object-oriented analysis. Moreover, some concepts can be useful on the
analysis level, but only on a rather abstract level without defining them in full
details using all capabilities of the UML notation. But since these unsuited
analysis concepts and unnecessary detailed descriptions are an integral part of
UML, it is very confusing for an analyst for which purposes and to which extent
these concepts should be used during the analysis phase. As an example,
sequence and deployment diagrams are concepts that are more related to later
phases of the software development process, while details such as visibility and
navigability in a class diagram should not yet be addressed during the analysis
phase. By using such arich and complex notation as UML on the analysis level,
the analyst gets overwhelmed by a huge variation of concepts spread out over
several abstraction levels. The analyst must determine oneself which concepts
could be useful for expressing analysis models. Thisis referred to by Wand [160]
as construct excess, in which a notation offers constructs that do not correspond
to a type of facts from the universe of discourse. This leads to analysis models
incorporating certain low-level elements that should not have been defined yet,
or providing a huge level of details that is not suited for the analysis level. In
both cases, it gives rise to the fact that unnecessary decisions are taken much too
early in the development process.

« Although UML offers a large number of concepts, it lacks concepts useful for
object-oriented analysis. For instance, UML lacks the possibility to reason
explicitly about dead or passive objects, expressing information that once was
valid but has ceased to exist. This is referred to by Wand [160] as construct
deficit, in which a type of facts from the universe of discourse cannot be
represented by any of the modelling constructs. Although UML offers a profile
mechanism in order to extend its notation using stereotypes and stereotype
attributes (called tagged values in UML 1.x), it is impossible to add other kinds
of extensions to UML. This leads to analysis models that try to express certain
information by realising it using inadequate concepts offered by the notation.

e Since UML does not offer a clear-cut set of integrated and complementary
concepts, a huge problem of overlapping modelling concepts arises. An analyst
constantly has to evaluate during analysis which concepts to use for expressing
certain information. For instance, a relation between two items can be modelled
as a pure association, an association class, an association reified into an
autonomous class having two assisting associations, or as referential attributes
inside the items themselves. This is referred to by Wand [160] as construct
redundancy, in which a type of facts from the universe of discourse can be
represented by more than one modelling construct. This leads to different
personal styles in analysis models, which obstruct the communication between

12 INTRODUCTION

analysts and hamper the reuse of analysis models over time. As a result,
discussions during model reviews will often focus on the modelling style rather
than the information content that is expressed in the model. Analysis modelling
guidelines could try to solve this problem to a certain extent. But a modelling
notation that limits or even avoids analogous modelling constructs would be a
better solution than offering modelling guidelines. Forcing the modeller to use a
particular concept for modelling specific information improves the clarity and
increases the communication power of the model.

As a conclusion, we state that object-oriented analysis needs a limited set of powerful
concepts targeted to capturing knowledge and information during the analysis phase,
and a corresponding modelling language to express this knowledge into a conceptual
model. Although a restricted set of concepts offered by UML can be suitable for
analysis, the usage of UML tends to drive the analysts to a computational view rather
than a conceptual view. In spite of the fact that UML offers certain means for
extending its notation using profiles [107][109][128], this is not sufficient to
transform UML into a suitable analysis notation.

1.1.3.2 Model Consistency

Most object-oriented analysis methods produce different kinds of models as a result
of the analysis activity. This allows multiple views on the universe of discourse, each
focussing on specific aspects that are important for the software system. In addition to
class diagrams, often used by structural analysis methods, other diagrams are used to
express additional information, such as use case diagrams for a functional view on the
system, and statechart diagrams, activity diagrams, and sequence diagrams for
dynamic views on the system.

Although most methods incorporate a number of specific rules to enforce consistency
in a model, limited attention is paid to the consistency between the models. For
instance, an event that triggers a state transition inside an object must be part of the
interface of that object, or called by a method that is part of its interface. Two
solutions can be followed to obtain model consistency:

* Consistency rules can be defined between models in order to keep the
information present in one model in line with the information defined in another
model. As such, every element that is referred to inside a model should have a
core model to which it belongs and in which it is completely defined. Concepts
should be designated as such that there is a single specific model in which they
must be defined, after which they can be used in other model types. However,
such approach can lead to a number of other problems. On the one hand, it
creates interdependencies between models, since certain models can only be
constructed after other models have been composed. On the other hand, it can
lead to a mutual dependency between models, where one model depends on
concepts defined in another model and vice versa. In addition, one should take
care that a model update is propagated through all other models that refer to the
updated elements.

1.1. BACKGROUND 13

1.1.33

Instead of supporting multiple models, a single model could be build that
captures all information present in the different models. As an example, instead
of modelling a statechart diagram, information from the universe of discourse
that could lead to state transitions can be captured inside a class model. The state
information that is contained inside the statechart diagram can then be derived
from the information inside the conceptual model when necessary. The same
approach can be made for activity diagrams by capturing knowledge about the
start and end of an activity in the conceptual model, and deriving the ongoing
activities afterwards from this model. Such approach will give rise to bigger class
models, since all information that is normally spread out over a number of
models will now be contained in the single class model. However, since
consistency only has to be maintained in a single model, the effort of achieving
consistency is reduced while the multi-model problems can be avoided.

Model Informality

Most object-oriented analysis methods offer informally defined concepts and
notations as well as a mechanism for incorporating informal elements in a model. But
such an approach leads to ambiguity and misinterpretation of the analysis outcomes.
This ambiguity is situated on two levels: the model concept level and the model
information level.

Many object-oriented analysis methods only define the semantics of their
concepts in an informal manner. The semantics are often stated in a textual
description that can lead to misinterpretation and ambiguity. Examples are used
to illustrate its meaning and usage, but are often very fragmentary and
incomplete. Although methods try to express their semantics in a clear manner, a
number of implicit assumptions are made that are not always explicitly stated. As
such, an analyst starts to learn the modelling notation by example, and does not
master the specificities and the full power of the offered notation. In fact, this is
how novice modellers often acquire their knowledge of UML. In addition,
precise model concepts with formal syntax and semantics enables model
consistency checking on the analysis level in order to obtain error-free analysis
results. Methods with informally defined concepts cannot perform model
consistency checking, nor use the model as an input for model transformations.
Models in such methods remain rather fancy but noncommittal pictures of the
universe of discourse.

Not only are the modelling concepts ill-defined, the information contained inside
the ultimate analysis results is often incomplete and only paraphrased in natural
language. For instance, UML offers the concept of a note to record comments or
other textual information in a model. Notes are among others used for defining
general restrictions on amodel, and for defining the effect of events and methods
inside a model. In addition, use cases are often informally specified using
structured text descriptions. However, informal model entities can lead to a huge
number of problems, such as model errors, incompleteness, contradictoriness,
and ambiguity.

14

INTRODUCTION

— Errors occur when the informal descriptions are wrong. It is possible that
the offered concepts are inadequate to formulate the precise meaning. In
such case, an analyst could try to formulate a closely related situation
instead that could also not be fully correct. The model hereby wrongly
specifies what must be valid in certain cases.

- Incompleteness occurs when the informal model entities do not completely
describe the full set of cases on which they apply or the full set of rules that
must be imposed. The model does not specify what must be valid in certain
cases.

— Contradictoriness occurs when several informal model entities describe
rules or situations that contradict each other. It is hereby impossible to
achieve avalid model instantiation in certain cases.

— Ambiguity occurs when the informal model entities are not precisely
described so that the intention of the description is not clear. One is obliged
to interpret the descriptions in a certain manner. It is impossible to decide
what must be valid in certain cases solely based on the information
contained inside the model.

Moreover, it is impossible to validate and verify a model for consistency and
correctness when informal descriptions are part of it, since informal model
entities cannot automatically be checked or used as input for model
transformations. Informal models cannot be the ultimate source of knowledge
that can be shared between the customers, end users, analysts, designers, and
implementers, but in contrary will be the cause of misconceptions and
misunderstandings between all parties involved in a software development
process.

In analogy to the CMMI [27] levels of the capability model for software engineering,
Warmer [161] proposes the following six Modelling Maturity Levels (MML):

(]

Level 0 corresponds to having no specification at all of the software system. The
results of this level is that (1) there are conflicting views among the developers,
(2) it is only suitable for small applications, (3) the system can only be
understood by the programmers themselves, and (4) may choices are made in an
ad hoc fashion.

Level 1 corresponds with a textual specification of the system in a number of
documents. The results of this level is that (1) the specification is ambiguous, (2)
the programmers must make business decisions based on their persona
interpretation of the documents, and (3) it is impossible to keep the specification
up to date.

Level 2 corresponds with a textual specification of the system augmented with
several high-level diagrams. The results of this level is that the drawbacks of
level 1 are still present, although the documents are easier to understand because
of the diagrams.

1.1. BACKGROUND 15

* Level 3 corresponds with a model specification of the system augmented with
text. The results of this level is that (1) the diagrams are real representations of
the software, (2) the transformation into code has still to be done manually, (3) it
is still very difficult to keep the specification up to date, and (4) the programmers
must still make business decisions themselves although it has less influence on
the system architecture.

* Level 4 corresponds with precise models of the system. The results of this level
is that (1) programmers do not make business decisions anymore, (2) keeping
models and code up to date is essential and easy, and (3) iterative and
incremental development are facilitated by the transition from model to code.

* Level 5 corresponds with precise models from which the code of the system can
completely be generated. In this manner, software developers use models to
express their software constructs whereupon code generators, in the same way as
compilers do, generate the full executable code. At this level, the modelling
language can be seen as a high-level programming language of its own.

As a conclusion, we can state that object-oriented analysis needs both a formal
definition of the concepts used for modelling as well as a formal description of the
knowledge captured inside the model.

1.1.3.4 Methodological Support

As its name indicates, the Unified Modeling Language (UML) is merely a modelling
language that provides a notation for the specification of software models. It does not
offer any guidelines for the software engineer on how to perform object-oriented
analysis, and how to build analysis models. It is inadequate to offer only a modelling
notation without offering a method and additional concrete guidance for the analyst
on which models to build, which concepts to use, and how to transform facts from the
universe of discourse into analysis model entities. It can be useful for offering an
adequate toolbox of modelling concepts usable for developing an analysis model, but
this should be accompanied by a concrete approach on how the universe of discourse
should be modelled, and which criteria should be used for mapping facts from the
universe of discourse into optimal model structures.

Preferably there should exist a single clear and unique path from the universe of
discourse to the resulting model using the most adequate modelling concepts for each
information fact from the universe of discourse. A good analysis method should
provide analysts with clear criteria and guidance for analysing the universe of
discourse and selecting the most suitable methodological concepts to capture its
knowledge. These criteria should be unambiguous in order to avoid as much as
possible uncertainty and doubt for the analyst in choosing between apparently
equivalent variants within the modelling notation.

Moreover, the methodological guidance should focus on the analysis goals of
capturing the knowledge from the universe of discourse without introducing design or
implementation aspects at the analysis stage. All too often, analysis approaches tend

16

INTRODUCTION

to focus on the software to be built rather than on the universe of discourse to be
captured, thereby neglecting and obfuscating certain aspects from the universe of
discourse, and inclining to let software related decisions determine the actual
structure of the analysis model.

As argued earlier in Section 1.1.2.2, software development methods that neglect or
minimise the analysis phase will give rise to a limited and informal vision on the
universe of discourse and the system requirements, introducing potentially huge
problems during or after the software development process. Therefore, only a sound
and explicit methodological analysis approach with unambiguous modelling
concepts, and a unique and univocal manner for modelling knowledge from the
universe of discourse, will give proper support to the analyst for constructing analysis
models in a suitable and efficient manner.

1.1.3.5 Analysis Demarcation and Further Transition

In Sections 1.1.1 and 1.1.2.3, we have stated the difference between object-oriented
analysis, architecture, and design. Object-oriented analysis focuses fully on the
universe of discourse, describing the facts, rules, and regulations from the universe of
discourse, the functional requirements that must be redlised, and the envisioned
transmuted universe of discourse in which the functional requirements have been
realised. From the architectural phase on, the focus shifts to software- and hardware-
related issues concerning the system to be realised.

In a large number of object-oriented methods, the boundary between the analysis
phase, and the architecture and design phase is very vague. From the analysis phase
on, details concerning the software realisation creep in and cause a software bias in
the description of the universe of discourse. As such, the analysis model is no longer
a pure conceptual model, but contains a number of details and decisions that should
better be postponed until a subsequent computational model.

This vague border between analysis and design is often seen as an advantage in order
to obtain a smooth transition from analysis to design, without creating a large gap
between these phases. Larman [89] claims that it might even be contra-productive to
have arigid definition and separation of these two phases. MOSIS [64] does not even
distinguish analysis from design as separate phases. However, we claim that the
nature and the concerns of analysis and design are so different that it is an absolute
must to have a clear division of these phases and their kind of activities:

» Thekey condition for any successful activity is to have a clear focus on the goals
and objectives of the activity. Regarding modelling, this means that the answer
on the fundamental question of ‘what must be described in an analysis model’
should be crystal clear. A vague border between analysis and design impedes the
analysis modelling activity, since one cannot make a clear assessment of which
elements to include in an analysis model and which not. The analysis activity as
such turns into an unconducted and unstructured activity with arbitrary decisions
that are taken by the analyst, and noncommittal results that are obtained.

1.2. GOALS 17

A number of analysis methods promote design by elaboration [132], a kind of
seamless transition from analysis into design. They claim this can be achieved by
a continuous refinement of the analysis model, thereby gradualy obtaining a
suitable design model. Although it could be possible to refactor a high-level
design model into a low-level design model, we claim that a seamless
transformation of an analysis model into a design model is utopian,
impracticable, and inadequate for developing suitable architectural and design
models. Since an analysis model focuses solely on the universe of discourse, it
can be expected that the analysis model structure is inadequate to represent a
software system structure to be developed. As presented in Section 1.1.1, the
main objective of the architectural phase that follows the analysis phase is, in
fact, to obtain a suitable structure for the software system, based on the quality
attributes to achieve and on the architectural drivers needed to realise these
attributes [10]. It is a naive and incorrect vision to suppose that an analysis model
can seamlessly be translated into a suitable architectural model. Although the
architectural phase is based on the knowledge gathered during the analysis phase,
the architectural structure is build upon a set of criteriathat are different from the
ones used during the analysis phase.

As a conclusion, we can state that the object-oriented analysis phase should be clearly
separated from the consecutive but much more software-focussed phases. Moreover,
the transition of the analysis model, describing the universe of discourse and the
functional requirements, into a software architecture is rather complex and far from
evident, and therefore should not be considered as a mere model refinement activity.
However this does not mean that the analysis models are just throwaway models that
are merely constructed for achieving a better understanding of the universe of
discourse, without providing any input for the consecutive software models. Design
by translation [132] can be a successful approach for the transition from analysis to
design. Design templates can provide means of transforming analysis constructs into
design constructs [110][111][112]. Automated or semi-automated model
transformations from analysis models into certain bigger or smaller portions of design
models using Model-Driven Development (MDD) [50][83] techniques can be
beneficial and can help to capitalise the analysis results during software development.

1.2 Goals

The goals of this dissertation are threefold.

» Definition of key principles for conceptual modelling. Current object-oriented
analysis methods have a number of deficiencies regarding the modelling
notation, the model consistency, the model informality, the methodological
support, and the analysis demarcation. Based on this identification, the first
objective of this dissertation is to formulate a number of key principles for
conceptual modelling that are necessary in order to offer proper support for
modelling the knowledge from the universe of discourse.

18

INTRODUCTION

Evaluation and comparison of model constraint specification formalisms
and notations. Model constraints play an important role in object-oriented
analysis. There exist several different specification formalisms to express model
constraints. The usage of a specific formalism can cause a different impact of the
model constraint on the resulting conceptual model. Several alternative
modelling concepts for model constraints are even offered inside a single
analysis method and notation. The second objective of this dissertation is to
compare, evaluate, and build a taxonomy for model constraint specification
formalisms and notations, and to investigate their suitability for representing
knowledge from the universe of discourse.

Development of an appropriate object-oriented analysis method and
accompanying notation for conceptual modelling. Current analysis methods
and notations, including UML, are not suited to describe conceptual modelsin an
adequate manner. The third objective of this dissertation is to develop an
appropriate object-oriented analysis method and a supporting notation for
conceptual modelling in accordance with the identified key principles for
conceptual modelling. This method should incorporate proper constraint
specification formalisms. Such an analysis method is an indispensable asset to
create a clear insight in the universe of discourse, capture its knowledge,
properties, and structure in an appropriate format, and position the envisioned
software system in its true real-world environment.

1.3 Contributions

The main contributions of this dissertation are.

Advanced methodological concepts for achieving the key principles for
conceptual modelling. We propose (1) a set of key principles for conceptual
modelling that are necessary in order to create an adequate model of the universe
of discourse, (2) a taxonomy for model constraint formalisms in object-oriented
analysis, (3) a constructional conceptual model approach in which information
can only be added to a model instance, (4) a querying mechanism to retrieve
historical information regarding former attribute values, object links and creation
and destruction times of objects, and (5) a formal notation for the semantics of
gueries and events that predates and is largely comparable with the Object
Constraint Language (OCL).

The definition of new structural concepts to express model constraints
implicitly within the model structure. We propose (1) the incorporation of
model constraints in each methodological concept by definition, (2) the usage of
existential dependency as the key modelling criterion for constructing the
conceptual model, resulting in a hierarchical relational model structure, and (3)
the introduction of explicit class archives that can express lifetime dependencies
between objects. These concepts enrich the expressive power of a conceptual
model structure.

1.4. OVERVIEW 19

e Theintroduction of constraints with supporting resolution mechanisms as a
first-class model concept. We propose a mechanism to specify model
constraints as a first-class model concept, using a formal notation based on
many-sorted first order logic. The constraint mechanism predates and is largely
comparable with the Object Constraint Language (OCL). In addition, we propose
the concept of a constraint trigger that can specify a generic constraint solver to
resolve constraint violations, by injecting specific error handling behaviour into
an event, or by firing an event due to progress of time

1.4 Overview

This dissertation contains six chapters. In addition to this introduction, the remainder
of this dissertation is organised in the following chapters:

Chapter 2 proposes a taxonomy for model constraint formalisms in object-oriented
analysis. We present an overview and a comparison of approaches for dealing with
model constraints in object-oriented analysis. The role of model constraints in object-
oriented analysis is situated, and different approaches for the specification of model
constraints are presented and compared. We argue that model constraint
specifications should form the core model structure for a conceptual model.

Chapter 3 proposes the key principles for conceptual modelling, being Uniqueness,
No Redundancy, Unambiguity, Completeness, Minimalism, Preciseness, No History,
Existential Dependency, and Abstraction. We claim that these principles are of
utmost importance during analysis in order to obtain the most suitable conceptual
model.

Chapter 4 proposes the EROOS kernel for conceptual modelling, which is developed
according to the key principles for conceptual modelling. The EROOS kernel is based
on a backbone of model-implied constraint specifications, using existential
dependency as the key criterion for obtaining the most suitable conceptual model
structure. It proposes a constructional approach for a conceptual model in which
information can only be added to the conceptual model instance.

Chapter 5 defines an advanced methodology built on top of the EROOS kernel.
Although the EROOS kernel concepts are actually sufficient to build a conceptual
model, it is more practical to have additional suitable concepts at one’s disposal to
simplify the specification of recurrent EROOS analysis patterns. The EROOS
universe proposes advanced concepts for modelling the universe of discourse. Key
contributions of this dissertation that are proposed in this chapter include class
archives, compound structures for modelling mutual dependency, and constraint
triggers for automatic event triggering and constraint violation resolution.

Last, we conclude this dissertation in Chapter 6 by a summary and an overview of the
major contributions of our work, and directions for future research.

Chapter 2

A Taxonomy for Model Constraint
Formalismsin Object-Oriented
Analysis

This chapter introduces the notion of model constraints in object-oriented analysis,
and provides a taxonomy for model constraint notations. The comparison of different
notations for model constraints highlights the importance of proper support for the
specification of model constraints during the analysis phase, and identifies
deficiencies in current object-oriented analysis methodologies and their notations.

2.1 The Role of Model Constraints in Object-Oriented Analysis

Model constraints play a key role in object-oriented analysis. All object-oriented
analysis methodol ogies incorporate the notion of model constraints in their notations
somehow, each in their own manner. By means of model constraints, intrinsic
properties of the system to be modelled can be described in a very elegant way.
Model constraint specifications are used to express business rules, legal laws, social
rules, physical limitations, undesired behaviour, and invalid situations within the
universe of discourse in the conceptual model, as such restricting the potential valid
instances of the model. Model constraints can be seen as general rules of the universe
of discourse restricting certain events or services, or forcing certain business policies.
They describe normal or wanted situations within the universe of discourse, excluding
undesired, inadmissible, and forbidden situations. A model constraint is an analysis

1 A part of the work presented in this chapter has been published in [152] and [151].

21

22 ATAXONOMY FOR MODEL CONSTRAINT FORMALISMSIN OBJECT-ORIENTED ANALY SIS

model concept that can be used to specify these kinds of rules, thereby formalising
and capturing the actual semantics of the rule into the conceptual model.

Within an analysis model, model constraints are a means to express general properties
of model entities. Model constraints must remain valid during the entire lifetime of a
model execution or simulation. As such, model constraints describe properties that
must be true at each moment in time, without necessarily determining how they are to
be preserved. The number of potential valid instances of the specified model is
diminished because the information present in the system at a certain moment in time,
expressed by an instantiated model, must obey all model constraint rules. In
formulating model constraints at the analysis level, only the aspect of ‘what
properties must be satisfied by a model instance’ is covered, thereby abstracting from
‘how these properties can be achieved’ and ‘when they must be controlled’. These
aspects should be deferred to a later phase of the software life cycle.

The specification of model constraints and business rules is not a major concern of
most object-oriented analysis methodologies. Although the Unified Modeling
Language (UML) [120][119][107][109][128] provides support for model constraint
specifications through its Object Constraint Language (OCL) supplement [108][161],
the integration of OCL with other UML model concepts is rather minimal. In fact,
UML2.0 even excluded OCL from its core definition, and repositioned it as a separate
add-on to UML. Model constraints are too often treated as a kind of non-formal or
semi-formal documentation and comments rather than a distinct and important model
concept on its own. When introducing model constraints, a large number of analysis
methodologies present them as a kind of patch glue that can optionally be used to
bring more consistency into the analysis specification, besides stressing that it is often
either too obvious or too complicated and as such not needed in practice. When
constraints are introduced in an analysis method, the interaction between the
constraints and the object behaviour is often neglected. It is not clear in which manner
an event that violates a certain constraint could be refused without putting the whole
model instance in an invalid status. For instance, UML states that the condition of a
constraint must be maintained as true. Otherwise, the system is invalid with
conseguences outside the scope of UML. In this way, constraints are not truly
imposed on a model and its potential behaviour, but only serve as requirements
validation rules for the model state at a certain moment in time.

The ways in which model constraints are introduced in the model differ from
methodology to methodology, and even differ between different types of model
constraints within a single methodology. EXxisting object-oriented analysis
methodologies mostly use a mixture of different specification techniques. However,
some techniques do not always reflect the importance of certain model constraint
types, while others are rather improper notations that cannot be applied consistently
to analogous cases. There exist different formalisms in which model constraints can
be described, each having their distinct benefits and drawbacks. The importance of
model constraints in a methodology is, in fact, reflected in its offered specification
notation, which can vary from informal textual descriptions to treating model
constraints as afirst-class model concept.

2.2. MODEL CONSTRAINTSVERSUSDERIVATION RULES 23

In the remainder of this chapter, we categorise the different kind of model constraint
specification mechanisms in a taxonomy, examine and compare them, and describe
their appropriateness for conceptual modelling. We use the term model concept to
indicate the concepts that are part of a methodology and defined on a meta-level, e.g.,
class, association or attribute, and the term model element or model entity to indicate
instantiations of these concepts that are defined in the model, e.g., specific classes,
associations or attributes.

2.2 Model Constraints versus Derivation Rules

The term constraint is a rather overloaded concept in computer science. Therefore,
we give a definition of the term as it is being used in object-oriented analysis, in
general, and in this text, in particular. Moreover, we try to position the concept of
model constraints in object-oriented analysis, as a specification formalism for
modelling restrictions, next to analogous concepts in the domain of logic
programming and database design. Last, the difference between model constraints
and Event-Condition-Action-Alternative (ECAA) firing rules is described.

2.2.1 Model Constraints in Object-Oriented Analysis

Constraints play a significant role in Object-Oriented Analysis [65][113][156][125]
[58]. In object-oriented analysis, a model constraint is a kind of restriction on the
analysis model. Model constraints are declarative specifications of logical rules that
must be fulfilled by each concrete instance of the analysis model, without specifying
where and when the checks occur. In other words, model constraints are properties of
an analysis model that must be satisfied by its instances at each moment intime. Asa
consequence, model constraints have an impact on the model state, diminishing the
valid instances of an analysis model, as well on the model behaviour, forbidding
certain model instance transitions. So, the main purpose of model constraints in
object-oriented analysis is to maintain the validity of the instantiated model during the
entire lifetime of amodel execution or simulation.

2.2.2 Constraint Logic Programming

In Constraint Logic Programming (CLP), constraints are used to describe high-level
computation and derivation rules [5][36][52]. Given a set of known (bound) domain
values, the ultimate goal is to find proper values for a number of free domain
variables, using a set of constraints as boundary conditions. So the specified
constraints do not define the solution algorithm, but give a declarative specification of
al conditions that must be fulfilled by a correct solution. The underlying system uses
computational rules to derive suitable results for the free variables starting from the
values of the bound variables and fulfilling all stated constraints. So, the purpose of
constraints in CLP is to specify boundary conditions that must be valid during
calculation of the free problem variables.

24 A TAXONOMY FOR MODEL CONSTRAINT FORMALISMSIN OBJECT-ORIENTED ANALY SIS

2.2.3 Database Constraints

Databases constraints can be divided in three main categories:

* Inherent model-based constraints, which are inherently present in the data model
of the database. They express basic characteristics of relations that can never be
changed.

e Schemabased constraints that can be expressed directly in the schemas of the
data model, typically by specifying them in the Data Definition Language
(DDL). Examples of such constraints are domain constraints, restricting the
range of allowed attribute values, key constraints, expressing the uniqueness of a
combination of attributes, constraints on null values, and entity and referentia
integrity constraints.

e Application-based constraints, such as semantic integrity constraints consisting
of state and transition constraints. They cannot be expressed directly in the data
model. This kind of constraints have to be expressed and enforced in the
application logic that resides on top of the database, or by using a constraint
specification language. In fact, these constraints will not belong to the database
but will be realised throughout the application logic using the database.

Integrity constraints define whether a certain database state is a valid or invalid.
Integrity constraints specified on a database schema are expected to remain valid on
every database state of that schema. The Database Management System (DBMYS) is
responsible for ensuring that the integrity constraints are not violated. Entity integrity
specifies that no primary key value can be a null value, while referential integrity
specifies that a foreign key must refer to an existing tuple. Semantic integrity
constraints can be specified using the CHECK clause for a table definition or a create
assertion. These constraints will be checked only whenever a tuple is inserted or
updated.

Database constraints are very closely related to analysis model constraints, since they
are defined also on a database schema and pose constraints on the validity of each
database state. However, a number of database constraint constructs already define
the precise moments at which the constraints will be checked, hereby neglecting the
fact that constraints are expected to be valid in every valid database state at any time.

2.2.4 ECAA Rules in Active Databases

Model constraints are quite different from Event-Condition-Action-Alternative
(ECAA) rules [117][163], although there is a kind of similarity between them. M odel
constraints are genera restrictions on the analysis model, restricting its potential
model instances during the whole lifetime. This means that at each moment in time,
the model instance must fulfil all specified model constraints. ECAA rules follow a
totally different approach. ECAA rules are stimulus-response based. They specify
actions to be performed automatically whenever particular events happen or specific
conditions occur. The event part defines the set of operations that can serve as a

2.2. MODEL CONSTRAINTSVERSUSDERIVATION RULES 25

stimulus for the action to be fired. The condition part defines specific conditions that
must be valid in order to activate the action, or the conditions that must be false in
order to activate the alternative action. When a specific event occurs, several actions
could be fired automatically based on the conditions specified in the ECAA rules.
ECAA rules are triggered whenever a particular event is generated at the moment a
specific condition is valid, regardless of how the event was generated. As such, itisa
technique to inject additional behaviour into a model, without specifying the exact
details about the places where the behaviour must be executed. It is even possible to
omit the condition part of an ECAA rule, so that the action will be fired each time the
specified event occurs. In the same manner, it is possible to omit the event part of an
ECAA rule, so that an action will be fired each time the condition becomes valid
irrespectively of the events that have led to this condition. UML2.0 defines a change
event, which can be compared with a condition-action sequence of an ECAA rule.

Seen from a more process-oriented viewpoint, model constraints can be used to
define rule-constrained processes while ECAA rules can be used to define rule-based
Jor OCEsSes.

e For ruleconstrained processes, the potential processes are described
independently from the rules that act upon them. Model constraint rules are then
imposed on the business processes, limiting the outcomes and the allowed paths
for these processes. Model constraints are unconditional, since they must remain
valid at each moment in time for all instance models, regardless of the underlying
process that created the instance model

* For rule-based processes, the processes themselves are defined throughout the
application of the constraint rules. ECAA rules are interrelated, and ultimately
define the final outcomes of the processes. This requires reasoning to be applied
on the model, constructing the process given the events that occur, the conditions
that are valid at a certain moment in time, and the triggers that will be fired.
ECAA rules must not be valid at each moment in time for an instance model. In
fact, whether a condition is valid or not at a certain moment is actually irrelevant
for the instance model but it is only important for the construction of the
underlying process. ECAA rules define conditions that are used to specify and
extend a process, and execute additional functionality when appropriate, but do
not allow to reason about properties of instance models.

Since ECAA rules can be used to describe the injection of additional functionality
into the model at a certain moment in time, this mechanism is excellent to be applied
in cases where a separation of concerns is needed, such as for the modelling of certain
specific cases or exceptional situations within an object-oriented model. ECAA rules
can introduce crosscutting behaviour into amodel, and can therefore be seen as akind
of Aspect-Oriented Software Development (AOSD) [46] technique. We propose to
apply a mixed approach, enabling the specification of both rule-constraint as well as
rule-based processes. In order to achieve this, we enrich the rule-constrained
processes using model constraints with rule-based processes using ECAA-like rules.

26 A TAXONOMY FOR MODEL CONSTRAINT FORMALISMSIN OBJECT-ORIENTED ANALY SIS

2.3 Example of the Library System

We will illustrate the different model constraint specification types with the running
example of a library system. The informal description of the universe of discourse
regarding the library system is as follows: ‘ The library system offers book copies that
can be borrowed by its clients.” Additional model constraints that must be valid in the
universe of discourse are the following:

{1} The system may never lend books to persons that are not registered at the library.
{2} A person may never borrow more than one copy of the same book.

{3} A person may never borrow more than a specified number of books at the same time.
{4} A person may never borrow a book longer than a certain restricted period of time.

{5} When a person does not return the borrowed books within a certain time period, a fine
must be raised. The size of the fine is dependent on the number of days overdue.

{6} A person may not borrow additional books while existing fines are still unpaid.

Notice that although the present tense has been used in the formulation of this
informal description, it does not impose on the model how and when to perform the
necessary checks and actions in order to keep its consistency. The informal
description could also have been described in a past tense, which would suggest a
more retroactive instead of a proactive reaction pattern.

{1} The system may only have lent books to persons that have been registered at the library.
{2} A person may only have borrowed no more than one copy of the same book.

{3} A person may only have borrowed a specified number of books at the same time.

{4} A person may only have borrowed a book for a restricted period of time.

{5} When a person has returned the borrowed books after a certain time period, a fine must
have been raised. The size of the fine is dependent on the number of days overdue.

{6} A person may only have borrowed new books while all existing fines have been paid.

Although the rules only state what must remain valid, and not how and when checks
are being performed in order to enforce the validity of these rules, the realisation in
the actual software system must be as such that these rules are valid at any moment in
time and can never be violated. There is a certain freedom of choice on how to
actually implement constraint checks, but the software engineer is nevertheless
restricted due to the fact that these properties must always remain valid.

2.4 Specification of Model Constraints using Informal Text

Most object-oriented analysis methodologies and notations only have informal
support for specifying generic model constraints on the model instance structure.
Moreover, certain methodologies such as OOA [28], RDD [167] and SM [134][133],
neglect almost totally the importance of model constraints. Properties of the universe
of discourse cannot be expressed explicitly, but have to be expressed in separate texts

2.4. SPECIFICATION OF MODEL CONSTRAINTSUSING INFORMAL TEXT 27

as an additional part of the documentation set for the object-oriented analysis model,
or as textual notes within the analysis model. Instead of incorporating the
identification and specification of model constraints as a distinct part in the analysis
phase, these methods consider them to be a minor point of interest for the model. This
leads to a negligence of the important role of model constraints in the universe of
discourse, and in its representation within the conceptual model. Although model
constraints are generally of utmost importance, whether they express business rules,
rules of logic, rules of physics, or human-defined laws and regulations, expressing
them informally will never lead to the same amount of impact on the conceptual
model as they have in the universe of discourse.

2.4.1 Constraints using Informal Text for the Library Example

We illustrate model constraint specifications using informal text with the running
example of the Library System that was introduced in Section 2.1. In Figure 2.1, a
UML model of the basic classes and associations is presented. This model is capable
to capture the following facts:

* A number of copies of a certain book can be printed (association print).
« Albrary can possess book copies (association possession).
e Aperson can be registered at a library (association registration).

A person can borrow a book copy (class Borrowing with associations borrower and
borrowed item).

* Alibrary can apply a fine for a person (association fine).

* The library can state the maximum lending period {4}, the maximum number of lending
items for an individual borrower {3}, and the amount of the fine to impose for each day
overdue {5} (attributes for class Library).

7 T Library
Person | — //registration T . .
_ ,/ max lending period
\\\W/\ . ~_max lending items
borrower ,, —fine — daily fine amount
/' ‘\
4 \
i ' -
| Y possession
Borrowing | o .
ot dat 9 ' borrowed item \\ Copy | print | Book
start date ! 5
1 N 1
AN ! Borrow .
1

N

Borrowing durf_nct)_n
restrictions restrictions Copy
restrictions

Figure 2.1: A Basic UML Mode for theLibrary System

28 A TAXONOMY FOR MODEL CONSTRAINT FORMALISMSIN OBJECT-ORIENTED ANALY SIS

The informal model constraints that have to be added to this model are the following:
« Copy restrictions: >

— A book copy can only exist if exactly one book is associated with it.

— A book copy can be lent to no more than one person.

— A book copy can be in possession of no more than one library.
. Borrowing restrictions:

— A borrowing can only exist if one person and one copy are associated with it.2

— A person that borrows a book copy must be registered at the same library as the
one that is in possession of that book {1}.

— Aperson may only borrow no more than one copy of the same book {2}.
— A person may only borrow a certain number of books at the same time {3}.

- A person may not borrow new books at a library while existing fines from that
library are still unpaid {6}.

. Borrow duration restrictions:

- When a person did not return the borrowed books after the maximum lending
period, a fine must have been raised {4}{5}.

These informally specified model constraints can be attached to the model by means
of textual comments in UML, although they will not have a specific semantic
meaning for the model. In fact, a UML comment (called note in UML1.X) is just a
notational element for rendering various kinds of textual information. The content of
anote is merely basic text or a text document. Although textual clarificationsinside a
comment could potentially have a huge semantic impact on the UML model, this is
not as such defined within the UML meta-model. Moreover, the allowed syntax for
including comments and other notes within model entities is not further specified by
UML. For the specification of model constraints, and partly also for the specification
of functions and operations, the Object Constraint Language (OCL) [108][161],
which is further discussed in section 2.6, could be used. However, UML does not
oblige the modeller to specify all possible model constraints using OCL, nor does it
make a distinction between textual notes and OCL notes.

2.4.2 Evaluation of Constraints using Informal Text

The usage of formal versus informal specifications is an actual controversy in the
object-oriented analysis research area. One of the main reasons stated for using
informal specifications in object-oriented analysis is to stimulate the creative process
of analysis by avoiding to impose strict rules on the analysis process. As a
consequence, a strict formal description of the outcomes of this process is rejected.

2 In fact, UML associations provide means to express lower and upper bound values, which are called
multiplicity values. We discuss multiplicity constraintsin section 2.7.

% In fact, thisis only true in the assumption that every borrowed copy gives rise to a new borrowing object.
A single borrowing object could also contain more than one copy, grouping all book copies that have been
borrowed at the same time.

2.4. SPECIFICATION OF MODEL CONSTRAINTSUSING INFORMAL TEXT 29

On the other hand, Ambler [3] indicates ‘you can often learn more in five minutes
drawing a diagram with your users than you can in five hours discussing it or reading
about it in corporate manuals.” We argue that, although the analysis process must
keep its flexibility and creativity, its outcomes must be formal.

First, informally specified model constraints will never achieve to obtain the same
amount of impact on the analysis model as the original constraints and rules have on
the universe of discourse. Formal specification techniques are better suitable to
impose such model constraints since they can enforce them explicitly on the analysis
model instance. Model constraints that are attached to the analysis model by means of
UML notes can easily be overlooked, diminishing their importance and their impact
on the modelled universe of discourse. In the same way as classes, associations,
attributes, and inheritance constructs are used to express knowledge in an analysis
model, model constraints need and deserve suitable modelling support in order to be
specified correctly and consistently.

A second reason to use formal model constraint specification techniques is the
ambiguity of natural languages. Language in nature allows a certain degree of
interpretation. Even when one tries to specify a rigorous textual explanation,
misconceptions by the reader are difficult to avoid, whether it is not understanding the
total set of restrictions that must be applied, reading more restrictions than intended to
or misinterpreting the restriction. An informal specification is always exposed to
human interpretation. This will often not correspond to the intention of the analyst
who formulated it. Too much is left to the interpretation of the reader, whether the
person is an expert of the universe of discourse, a model reviewer or a designer.
When the design phase must start with an informal analysis description as a base, it
will almost certainly be inevitable for errors to creep in, leading to a system that does
not comply with its intended requirements. In case aformal analysis description with
clear, well-defined semantics is produced, the following phases of the software life
cycle have a reference model for its intended behaviour, and as such a solid base for
the development of the software system.

As an example, the textual specification of the model constraints above does not say
exactly whether a person can borrow a copy of the same book at two different
libraries at the same time. In fact, the current formulation suggests that this situation
is forbidden, although one could expect that the library system would apply such
restrictions only locally. Although the modeller had a specific restriction in mind
during the formulation of the model constraint, the underlying suppositions that
seemed obvious and self-evident to the modeller were not captured by the textual
specification of the model constraint. An outsider who receives such model and must
try to comprehend its semantic meaning likely has a different background as the
modeller, and will not be able to reconstruct all underlying implicit intentions.
Because the textual model constraint specifications will never capture all implicit
rules in a precise manner, the model specification is always ambiguous and will give
rise to afalse interpretation of the model. This will often lead to misconceptions and
the introduction of logical errorsinto the ultimate system to be built.

30 A TAXONOMY FOR MODEL CONSTRAINT FORMALISMSIN OBJECT-ORIENTED ANALY SIS

A third reason to use formal model constraint specification techniques above informal
ones is that verification techniques can be used to verify the obtained analysis model
before going into system development. This will prevent logical errors and
inconsistencies in requirements from the analysis phase on. Although the outcomes of
the analysis process do not necessarily have to be directly executable, it will be a
good thing to make them interpretable. As such, efficient checking, testing, and
prototyping can be done at the analysis level. The UML community is also currently
undergoing this evolution to executable UML models [99][141], which has led to the
UML extension proposal regarding action semantics.

A fourth reason to use formal model constraint specification techniques is that they
can be used as an input for further model transformations. The Model-Driven
Development (MDD) [50][83] approach advocates semi-automatic model
transformations, gradually introducing more detail and platform-dependency in the
lower-level models. Models can only be used within an MDD approach when they
contain their information in aformal notation that can be investigated, evaluated, and
transformed into a different format. Even a straightforward implementation could be
produced automatically in order to do a sort of simulation and rapid prototyping of
the conceptual model. Therefore, formal descriptions of behaviour effects of the
events and methods, and formal definitions of model constraints are advisable.

As a conclusion, we can state that a more precise and formal formulation of model
constraints in object-oriented analysis is definitely necessary. Textual descriptions are
inadequate as an analysis result. Different ways in which model constraints can be
specified more formally are presented in the next sections.

2.5 Specification of Model Constraints using Operational
Restrictions

More formal model constraints can be incorporated in the analysis model by
regulating and controlling the allowed event occurrences, the sending of messages
and the execution of methods. As such, model constraints can be enforced and
unwanted model instance transitions can be prohibited. Most object-oriented analysis
methodologies provide concepts to model such execution restrictions for events. By
means of local execution restrictions on classes, e.g., using state transition diagrams
for a class and preconditions for its methods, or global execution restrictions on the
model, e.g., using interaction diagrams, the allowed occurrences and execution orders
of messages and methods can be controlled, avoiding violations of the model
constraints to be maintained.

2.5.1 Constraints using Operational Restrictions for the Library
Example

We illustrate model constraint specifications using operational restrictions with the
running example of the Library System as introduced in Section 2.1. The UML model

2.5. SPECIFICATION OF MODEL CONSTRAINTSUSING OPERATIONAL RESTRICTIONS 31

of the basic classes and associations as presented in Figure 2.1 will form the base
model that is extended with operational restrictions. To realise all model constraints
of the example through controlling the execution of methods, almost every method of
each class will have to be controlled. Each class in the model can possibly contain a
method that could give rise to a violation of a specified model constraint. Since a
class has the right to change the association links* in which it takes part, each method
of that class can be the cause of a potential model constraint violation due to a change
of its association links.

25.1.1 Sequence Diagrams

A sequence diagram is a diagram that shows object interactions arranged in time
sequence, indicating the objects participating in the interactions and the sequences of
messages exchanged. The sequence diagram of the model constraint {5} concerning
the fine is presented in Figure 2.2. It expresses the fact that a fine must automatically
be generated when aborrowing is overdue.

p : Person c: Copy | : Library

I I

I lend(p) I
D 1

|

|

|

|

|

|

|

|

|

opt J [overdue]

lendingPeriod
Exceeded()

createFine(p) \D
l
I

Figure 2.2: Sequence Diagram for the Fine Constraint Realisation

The interpretation of the diagram for the model constraint {5} isasfollows:

» Thefirst arrow indicates that a person starts a borrowing of a specific book copy.
The person object sends the lend message directly to the book copy object. An
alternative would be to model it as an event sent to the library indicating the book
copy to be borrowed.

* The book copy object checks whether the stated lending period has not been
exceeded. If the book copy is overdue, a ‘lendingPeriodExceeded’ message will
be generated to trigger the creation of afine.

“ A link isatuple, an instance of an association containing an individual connection between 2 objects.

32 ATAXONOMY FOR MODEL CONSTRAINT FORMALISMSIN OBJECT-ORIENTED ANALY SIS

* When the ‘lendingPeriodExceeded’ message is being generated, the book copy
object sends a consecutive ‘ createFine message to the library object, indicating
the responsible person of the violating borrowing as a parameter.

Another approach to represent the same model constraint concerning the fine is by the
explicit introduction of a timer object as presented in Figure 2.3. As such, a start
message is sent to a timer object whenever a new lending has started. The timer is
then responsible to send a ‘timeOut’ notification message back to the originator
indicating the elapse of the requested time period. After receipt of the ‘timeOut’
message, the ‘lendingPeriodExceeded’ message can be generated and the fine can be
created. When the book copy is returned on time, the timer must be stopped explicitly
in order to avoid an erroneous overdue notification and consecutive fine creation.

p : Person c: Copy | : Library

[I I
I lend(p) | endi 1
D w start (max lending perlrd, C) ¢ Timer
l |
I |
| |
l |
I |
I)
I
I
I
I

timeOut()

I
I
|
!
t createFine(p) /U
I
I

Figure 2.3: Sequence Diagram for Fineintroducing an Explicit Timer Object

The sequence diagrams for the other model constraints stated in Section 2.4 can be
built using a generic receive-check-accept specification pattern for constraint
realisation. This pattern can be used whenever the validity of a message has to be
checked, for example according to the state of the instantiated model at the moment
of occurrence. This pattern can be seen as a kind of design pattern for testing a
number of preconditions of a certain message before the message is actually
executed. The interpretation of the sequence diagram for this pattern is as follows:

* The sender generates a message and passes it to the receiver. This message
triggers the receive-check-accept pattern.

» Thereceiver checks whether the received message is valid or not according to the
stated acceptance criteria. These criteria can amongst others be based on the
current state of the instantiated model.

2.5. SPECIFICATION OF MODEL CONSTRAINTSUSING OPERATIONAL RESTRICTIONS 33

* When the acceptance criteria are fulfilled, the message will be accepted and
processed by the receiver. If not, the message will be ignored.”

: Sender : Receiver

I
receiveMessage(params) |

I
ID ! checkValidity
| (params)
I \
| et J [valid]
[acceptMessage
| (params)
I
I
I
I

Figure 2.4: Sequence Diagram for the receive-check-accept Constraint Realisation

2.5.1.2 Statechart Diagrams

A statechart diagram [61][60][59][135], which actually is an extension of a Final
State Machine (FSM) [2], is a diagram that shows a state machine for a class,
indicating the sequences of states that an object goes through in response to events
during its lifetime. The previous model constraints could also be expressed by means
of statechart diagrams. A generic state diagram pattern applying the same receive-
check-accept behaviour is presented in Figure 2.5. This pattern can be used as an
alternative realisation whenever the validity of a message has to be checked. The
interpretation of the state diagram for this pattern is as follows:

* Whenever an object is passive, thus able to receive a message, it is in the
‘ReceivingMsgs’ state.

* When the object receives a message, the validity of the message is tested.

— If the message is not valid, the object will ignore it (or send an error
message if needed).

— If the message is valid, the object accepts the message and performs the
necessary actions to process the message correctly (‘ AcceptingMsy’ state).
Afterwards, the object returns to the ‘ ReceivingMsgs' state.

® In case an error message has to be sent when an invalid message arrives, the pattern can easily be
extended to incorporate such behaviour.

34 A TAXONOMY FOR MODEL CONSTRAINT FORMALISMSIN OBJECT-ORIENTED ANALY SIS

[not valid] / \

receiveMessage (params) |

(‘ L [valid]

Receiving recelveMessage (params) Accepting
Msgs Msg

acceptMessage(params)

Figure 2.5: State Diagram for the receive-check-accept Constraint Realisation

25.1.3 Preconditions

A precondition is an expression for an operation that must be valid before the
operation can be invoked. The stated model constraints can also be expressed by
means of preconditions on the involved methods. Especially the methods
manipulating the links of the involved associations and the values of the involved
attributes are of utmost importance. The informal model constraints defined in
Section 2.4.1 are expressed in Table 2.1 using preconditions in the Object Constraint
Language (OCL) [108][161]. The OCL keywords are hereby indicated in bold.

Each OCL expression firstly defines its context in the UML model. This is a
reference to an element in the UML model to which the OCL expression belongs. In
the case of Table 2.1, the context defines the method to which the precondition
belongs by means of defining the class, the method name, the parameters, and the
return type. Hereafter, the corresponding precondition is expressed. Since this
precondition applies for every method invocation of each object of the involved class,
the object on which the method is being applied can be indicated by using the OCL
keyword ‘self’. The OCL expression can be formed using basic values and types,
logical and collection expressions, attribute values, association navigation, and query
methods.

2.5.2 Evaluation of Constraints using Operational Restrictions

The approach of modelling constraints using operational restrictions by transforming
the model constraints into action control constructs, whether they are interaction
diagrams, state transition diagrams or preconditions, cause several problems for
object-oriented analysis models. A first problem is the gap that is introduced between
the universe of discourse and the resulting analysis model. Instead of describing
which rules apply in the universe of discourse, the analysis model describes how they
must be realised within the model. The model constraints themselves are not specified
as such, but they are transformed into restrictions on messages and method executions
for the involved objects.

2.5. SPECIFICATION OF MODEL CONSTRAINTSUSING OPERATIONAL RESTRICTIONS 35

A book copy can be lent to no more than one person
context Copy::lend (p : Person)

pre: self.borrowed item >i seEnpty()

A book copy can be in possession of no more than one library
context Library::addPossession (c : Copy)

pre: c.possession->i senpty()

A person that borrows a book copy must be registered at the same library as the one that isin
possession of that book { 1}
context Copy::lend (p : Person)

pre: p.registration->intersection(self.possession)->notEmty()

A person may only borrow no more than 1 copy of the same book { 2}
context Copy::lend (p : Person)

pre: p.borrower.borrowed item >sel ect(copy |
(copy. possessi on = sel f.possession) and
(copy <> self)).print->excludes(self.print)

A person may only borrow a certain number of books at the same time { 3}
context Copy::lend (p : Person)

pre: p.borrower.borrowed item >sel ect(copy |
copy. possessi on = sel f.possession)->si ze()
< sel f.possession.max | ending itens

A person may not borrow new books at a library while existing fines from that library are till
unpaid { 6}

context Copy::lend (p : Person)

pre: self.possession. fine->excludes(p)

Table 2.1: OCL Specificationsfor Constraint Realisation using Preconditions

The way in which model constraints will be checked and maintained must certainly
be specified at some point during the development life cycle, but at the design level
rather than at the analysis level. The analysis phase must be centred on conceptual
modelling, and should support a direct mapping of information from the universe of
discourse into the conceptual model. Specifying model constraints by means of
controlling method execution introduces a gap between the universe of discourse and
the conceptual model. When constraints must be implemented using lower-level
concepts instead of being treated as model concepts of their own, the conceptual
model will no longer be a proper reflection of the universe of discourse. The
specification of model constraints using operational restrictions is therefore a rather
artificial and unsuited approach for conceptual modelling.

A second problem of specifying the model constraint realisations instead of the basic
model constraints themselves concerns revisions and future modifications. The
drawback of specifying model constraints using operational restrictions becomes

36 A TAXONOMY FOR MODEL CONSTRAINT FORMALISMSIN OBJECT-ORIENTED ANALY SIS

visible when the lifetime of an analysis model is taken into consideration. An analysis
model is a development artefact that later will be subject to human auditing and
maintenance. Since the model constraints are not present in the analysis model as
individual entities but only through their realisation in terms of operational
restrictions, it is very hard to preserve the consistency of these model constraint
realisations. Each extension or change of the analysis model can influence the validity
of the realised model constraints by introducing unforeseen and unwanted side
effects.

For instance, if a new event must be introduced that can manipulate an association
directly, such as transferring a book copy from one library to another, the diagrams
that realise the operational restrictions have to be extended in order to incorporate the
cases introduced by the new event. After any addition of a new event for a class, one
is obliged to review the entire set of interaction diagrams to be able to maintain their
correctness and consistency. Because these diagrams are already realisations of the
model constraints, they have to be corrected after the slightest change within the
model that has an impact on them, since every addition of an event can lead to a
potential violation of the model constraints. In the case that preconditions are used for
realising the constraints, every event that will be added to the model must take care
that all constraints remain valid. The analyst must provide an additional precondition
for each constraint that can possibly be violated by the new event. When a
precondition is forgotten, the model will no longer enforce the intended constraints in
a correct manner and, thus, will be incorrect. Therefore, it is very hard to maintain the
consistency of model constraint realisations by means of operational restrictions
during the software life cycle, which in nature will consist of several consecutive
revisions, modifications, and adaptations.

When amodel constraint is specified as a concept of its own, it will remain present as
such in revised and modified versions of the analysis model. An analyst cannot break
the realisation of the constraint, since it is present in the model as a single entity.
When the model constraint is realised in an operational way, the semantic meaning of
the model constraints is scattered around the whole model through a number of
operation restrictions that enforce the constraint. It will be hard to assess the
consequences of model additions and model changes on the model constraint
realisation scheme. The analyst must perform a kind of reverse engineering activity
by trying to extract the high-level model constraints from their lower-level realisation
patterns. When adding or changing the model, the analyst must update the constraint
realisations in order to preserve the implemented constraints. When model constraints
would be formulated in a single place and could remain present in the model as a
distinct concept, they would be highly visible and better comprehensible. Additions
and changes to the model would not have a direct impact on the stated constraints,
since their specification will remain unaffected.

As a conclusion, we can state that the analysis phase should be centred on the
description of the universe of discourse, providing a direct mapping of it into a
conceptual model. Although realising model constraints by means of operational
restrictions results in a formal description of the model constraints, this approach is

2.6. MODEL CONSTRAINTSASA FIRST-CLASS MODEL CONCEPT 37

actually inadequate for conceptual modelling. The specification of model constraints
in a conceptual model should be formal, explicit, consistent, unscattered, and
independent from issues regarding how they ultimately will be realised.

2.6 Model Constraints as a First-Class Model Concept

Model constraints should be treated as a first-class concept in an object-oriented
analysis model, since they are of the same importance level as classes, attributes,
associations, and events. To overcome the difficulties of transforming high-level
constraints into low-level specification mechanisms and to get a more formal
specification mechanism for constraint, a distinct notation and specification
formalism for model constraints is needed.

When early object-oriented analysis methods were used in practice, people realised
that there was a large need for having a more formal way of specifying model
constraints in order to obtain consistency within analysis models. The Object
Constraint Language (OCL) [108][161], which originated in 1995 within IBM, was
presented as an add-on for UML in order to express model constraints and invariant
conditions that must be valid for the system being modelled. Since OCL is a pure
expression language, it does not have any side effects that can alter the state of the
instantiated model. Although OCL can also be used to specify postconditions, it
merely describes the state change that arises from a method execution instead of
explicitly triggering the state change in the model.

UML constraints are attached to one or more model entities® A UML constraint
contains a Boolean expression in textual form (natural language, OCL, mathematical
notation, programming language, et cetera.) that must be valid for each instance of a
model. More precisely, the expression must always yield true when evaluated for the
instances of the constrained elements at any time when the system is stable, i.e. after
execution of an operation. Although constraints are introduced as a first-class model
concept in UML, constraints do not have a specific graphical notation but use the
comments symbol ([%). The only difference between a constraint and a textual
comment is that the string of the constraint expression is placed between curly
brackets, e.g. ‘{constraint}’.” Notice that since the UML meta-class Constraint is
derived from the meta-class PackageableElement, constraints can be given a name,
although this featureisrarely used in UML.

® Constraints can also be attached to stereotypes or added to UML profiles. Such constraints do not have an
impact on the instantiated model, but impose contraints on the model itself. These kinds of constraints
belong to the meta-model and impose rules on the model regarding the correct usage of a stereotype or the
alowed formulation of the model. Since this kind of meta-model constraints does not have a direct impact
on the model instance, they will not further be treated in this text.

" Notice that UML does also provide some other specific ways of specifying constraints, such as the text in
brackets following a single element or aligned with a dashed arrow from one element to another, expressing
constraints on 2 elements.

38 A TAXONOMY FOR MODEL CONSTRAINT FORMALISMSIN OBJECT-ORIENTED ANALY SIS

2.6.1 Constraints as a First-Class Model Concept for the Library
Example

We illustrate the specification of model constraints as a first-class model concept with
the running example of a Library System as introduced in Section 2.1. The UML
model as presented in Figure 2.1 will form the base model on which the model
constraints will be added. The informal model constraints that were added to this
model can be described in OCL as presented in Table 2.2.

Copy restrictions:

A book copy can only exist if exactly one book is associated with it
cont ext Copy

inv: self.print->size() =1

A book copy can be lent to no more than one person.
cont ext Copy

inv: self.borrowed item borrower->size() <=1

A book copy can be in possession of no more than one library.
cont ext Copy

inv: self.possession->size() <=1

Borrowing restrictions:

A borrowing can only exist if exactly one person and one copy are associated with it.
cont ext Borrow ng
inv: (self.borrower->size() = 1) and
(self.borrowed item>size() = 1)

A person that borrows a book copy must be registered at the same library as the one that is in
possession of that book { 1}
cont ext Copy

inv: self.borrowed itemborrower.registration
->i ntersection(sel f.possession)->not Enpty()

A person may only borrow no more than 1 copy of the same book {2}
cont ext Copy

inv: self.borrowed item borrower.borrower.borrowed item
->sel ect (copy | (copy.possession = self.possession) and
(copy <> self)).print->excludes(self.print)

A person may only borrow a certain number of books at the same time { 3}
context Person

inv: self.registration->forAll (library | self.borrower.borrowed item
->sel ect (copy | copy.possession = |library)->size()
< library. max |l ending itens)

A person may not borrow new books at a library while existing fines from that library are till
unpaid { 6}

cont ext Copy

inv: self.possession.fine->intersection(self.borrowed item borrower)

->i senpt y()

2.6. MODEL CONSTRAINTSASA FIRST-CLASS MODEL CONCEPT 39

Borrow duration restrictions:

When a person did not return the borrowed books after the maximum lending period, a fine must
have been raised {4} {5} .
cont ext Copy
inv: if now-self.borrowed itemstart date) >
sel f. possessi on. max | endi ng period
then sel f.borrowed item borrower.fine
->i ntersection(sel f.possession)->not Enpty()
endi f

Table2.2: OCL Specificationsfor Constraints as First-Class Model Concept

Although this approach alows a formal notation of model constraints as a first-class
model concept, there is some arbitrariness introduced in the formulation of a model
constraint, since the model constraint specification is described as an invariant
starting from a specific class chosen between all involved classes. In order to abolish
this asymmetry totally, a hierarchy between classes and associations could be
introduced. One can then specify every model constraint starting from the highest
class or classes of the hierarchy. Such approach has been developed in the EROOS
methodology and is presented in Chapter 4.

2.6.2 Evaluation of Constraints as a First-Class Model Concept

The approach of treating model constraints as a first-class concept leads to a
consistent, unambiguous, and formal model constraint specification. However, the
cases that are not well supported by the specification technique of using constraints as
a first-class model concept are threefold. First, a number of model constraints are
very closely related to specific model entities, e.g., the cardinality constraints for the
associations. Instead of separating such constraints from the model entity to which
they relate, it is better to integrate these kinds of constraints in the model entity. On
the one hand, this integration allows a better organisation of the model, creating more
cohesion in the model by obtaining a clustering of closely related specifications.
Instead of creating a model scattered with a lot of small and quite unrelated model
entities, the entities should better be clustered together in a logical manner. On the
other hand, this approach forces analysts to focus on these kinds of constraints
whenever they introduce such model entities. By separating model constraints from
the model entities to which they belong, one introduces the danger of overlooking
these important constraints during the development of the analysis model. Integrating
them into their related entities focuses the attention of the modeller on these
constraints each time amodel entity is defined.

Second, classes that are actually reifications of higher-level associations always lead
to the specification of additional model constraints in order to specify all details
concerning these associations. For example, giving the Borrowing class in the library

40 A TAXONOMY FOR MODEL CONSTRAINT FORMALISMSIN OBJECT-ORIENTED ANALY SIS

example, the model constraint on the existence of a person and a copy for a
borrowing object expresses the fact that a borrowing is actually an association
between a person and a copy object. They emerge due to the fact that a high-level
association object (a Borrowing object) cannot exist without the knowledge of the
participants it relates to (a Person and a Copy object). When the higher-level
association is broken down into an association reified as a class having two assisting
lower-level associations, for example the Borrowing class and the borrower and
borrowed item associations, the characteristics must be enforced by means of explicit
additional model constraints.

A final drawback appears when one object or association link is dependent on the
existence of another object or link, e.g., the model constraint on the existence of a
registration link in order to allow the existence of a borrowing object. This constraint
expresses the existential dependency for a borrowing object on a corresponding
registration link. This kind of constraints can be seen as model glue that keeps the
model entities consistent with respect to the rules of the universe of discourse. When
a flat, non-hierarchical analysis model is being developed, many structural
dependency constraints have to be enforced explicitly, since they cannot be expressed
in the model structure.

Such approach is favourable neither from the viewpoint of the model engineer nor
from the viewpoint of the model reader, reviewer, or re-user. This is due to the fact
that the structural dependencies between classes are only specified by means of
additional model constraints and not by the model structure. The modeller has to
make an explicit transition from the logical structure of the information within the
universe of discourse to a different representation of it in the model. The reader of
such loose model with many additional structural model constraints attached will
have to put the pieces of the puzzle together before that person gets insight in the
actual model structure. Instead of highlighting the basic structure of the model, one of
the important elements of an analysis model, it is neglected and shifted to additional
constraints. Moreover, it is possible for an analyst to construct a model without
having to consider the structural constraints that are present in the universe of
discourse. Since a good model should capture many constraints directly in its
structure, aflat model structure is inadequate for conceptual modelling.

To conclude, we can state that the notation of constraints as a first-class model
concept leads to a consistent, unambiguous, and forma model constraint
specification. However, this approach has two important drawbacks. On the one hand,
model constraints related to a specific model entity are better integrated with them in
order to obtain a complete and consistent model, and retaining a better overview on
the overall model. On the other hand, important structural dependencies become
hidden in constraint specifications instead of forming the core of the model structure.
Therefore, it is more appropriate to express certain kinds of model constraints directly
in the model structure, reflecting the logic structural dependencies within the universe
of discourse implicitly in the internal model structure.

2.7.INTEGRATION OF MODEL CONSTRAINTSIN EXISTING MODEL CONCEPTS 41

2.7 Integration of Model Constraints in Existing Model Concepts

Most object-oriented analysis methods that incorporate constraints in their model in a
formal and explicit manner, integrate them with other concepts of the method. For
example, constraints concerning associations and attributes are integrated in the
definition of the association and the attribute, while constraints about objects of a
class are specified as part of the class description. The specification of such
constraints is mostly restricted to a single entity of amodel concept.® This can be very
useful and suitable for certain types of constraints. However, other constraint types
are forced into a single concept or a single model entity despite the fact that they can
spread out over several of them.

A typical example of a model constraint that is integrated in an existing model
concept is the definition of multiplicity constraints for association ends. This kind of
constraint is ailmost always integrated in the association definition. Obviously, such
constraint is a basic part of an association. Separating the multiplicity from the
association end definition will introduce the danger of overlooking this important
aspect concerning associations during the development of the analysis model. Such
constraints are of utmost importance for the model entity on which they interact. If
these constraints are not integrated in their related model entities, they can too often
be neglected, which giverise to errors, misunderstandings, and deficiencies within the
application.

Other examples of useful integration of model constraints in existing model concepts
are the multiplicity of attributes, which indicated the possibility of having a single or
many attribute values for an attribute of an object, attribute range restrictions, limiting
the alowed range of an attribute between a lower and an upper bound, and the
changeability properties of an attribute and an association end. For example, UML1.x
allows defining the changeability of an association role or an attribute as changeable,
addOnly or frozen. It is useful to specify whether certain attributes may only be
defined at creation time of the object or can change during the life cycle of the object.
For instance, the date of birth of a person may only be defined at the time of birth of
that person and may afterwards never been changed. Also, the name of a person,® the
account number of a bank account, and the approval date of a loan are examples of
immutable attributes. On the other hand, the address of a person, and her or his length
and weight are examples of attributes for which the actual value will vary during the
lifetime of a person. The absence of a mutator for the attribute does not prevent any
change to the attribute, because such mutator can always be added later to the model.
Therefore, the property of attribute changeability has to be defined in order to prevent
future changes.

® There is a slight difference between constraints that spread out over more than one concept and
constraints that spread out over more than one entity of a single concept. An example of the former is a
constraint that includes both an attribute and an association, whereas an example of the latter is a constraint
that deals with link restrictions of more than one association.

° We are hereby neglecting the legal possibilities to change one’s name.

42 A TAXONOMY FOR MODEL CONSTRAINT FORMALISMSIN OBJECT-ORIENTED ANALY SIS

2.7.1 Integrated Model Constraints for the Library Example

Weillustrate the approach of integrating model constraints in existing model concepts
with the running example of the Library System as introduced in Section 2.1. Figure
2.6 presents the basic UML model of Figure 2.1 extended with attribute multiplicity
and multiplicity constraints for the association ends.

5 o L Library
erson | — registration ——_ : -
g ~Imax lending period[1]
T~ max lending itemsJ[1]
1 0.* " fine _— |dailyfine amount[1]
— 0..*
borrower ‘
\‘ 0..1
0.x possession
Borrowing | 0.
startdate[l] | porroweditem | cgpy | print | Book

Figure 2.6: UML Model with Multiplicity Constraintsfor the Library System

The following model constraints have been expressed using integrated constraints:
* Association end restrictions:

— A book copy can only be borrowed no more than once at the same time.

— A book copy can only exist if exactly one book is associated with it.

— A Book copy can be in possession of no more than one library.

— Aborrowing can only exist if one person and one copy are associated with it.

— There are no restrictions on other association ends, e.g., a person can have
several registrations at different libraries, or can even have no registration at all.

. Attribute restrictions:

— Alibrary has exactly one value for its attributes max lending period, max lending
items, and daily fine amount.*

- Aborrowing has exactly one value for its attribute start date.*°
* Changeability restrictions:

— No changeability restrictions have been added to the model. This means that every
association and attribute in the model is changeable. Due to the fact that the
property of being changeable is the default value in UML, it cannot be stated
explicitly. In contrast with this, the fact that an association or attribute is
unchangeable after object creation can be stated with the stereotype {frozen} as
the property string for the association end or attribute.

10 Notice that a multiplicity of [1] is the default value for attributes in UML, expressing that each attribute
must always have exactly one value.

2.7.INTEGRATION OF MODEL CONSTRAINTSIN EXISTING MODEL CONCEPTS 43

However, the model constraints introduced in Section 2.1 cannot be expressed by
means of model constraints integrated in a model entity:

* Model constraints {1}, {2}, and {6} deal with restrictions between several
classes and associations. For instance, model constraint {1} involves classes
Library, Person, Copy, and Borrowing, and associations registration, borrower,
borrowed item, and possession.

e Model constraints {3}, {4}, and {5} deal with three associations, namely
borrower, borrowed item, and possession, and a number of attributes, namely
max lending items for {3}, and max lending period and start date for {4} and
{5}. Model constraint {5} even involves the association fine.

The problem of integrating these constraints in a model entity is the selection of the
most suitable model entity to integrate with. As an example, model constraint { 3} can
be defined in the classes Person, Library or Copy, but aso in the associations
borrower, borrowed item or possession or even in the attribute definition of max
lending items. Constraint {1} is a typical example of a join constraint in an
association ring. A join or anti-join constraint is a constraint that states ‘if an object
al of class A is connected through successive associations with a2, also of class A,
then al must be equal to a2, respectively different from a2’. In this case, one could
choose between four classes, namely Person, Library, Copy, and Borrowing, and four
associations, namely borrower, borrowed item, possession, and registration. The
choi ce between these alternatives will have to be made rather arbitrarily, since thereis
no good criterion to select one over another. No matter which one is chosen, this will
lead to the introduction of arbitrariness and asymmetry in the obtained model.

2.7.2 Evaluation of Integrated Model Constraints

Constraints that easily can be integrated in existing model concepts only bear upon a
single entity of a concept of the analysis method, such as a single association or a
single attribute definition. However, if a constraint can spread out over several
entities of the same concept, or, even worse, over several concepts, it isimpossible to
decently integrate the constraint in a single concept. Constraints that spread out over
several associations cannot be placed consistently with one particular association. A
method may decide to place rules between attributes of the association participants
directly in the association definition, e.g., asin OMT [93][126]. But, for instance,
rules between attributes of objects connected by two or more consecutive
associations, or join and anti-join constraints in an association ring cannot be
adjudged to a particular dedicated class or association.

These kinds of constraints spread out over a large part of the model instead of being
localised to some instances of a single concept. When these constraints are integrated
in asingle class or in a single association, arbitrariness will have a huge impact on the
model. We could have chosen an alternative viewpoint for placing and specifying the
same constraint. It would even be hard to see that two constraints are actually
identical when they are specified from a different viewpoint. In addition, the
information distribution in the obtained model will be very asymmetrical. Useful

44 A TAXONOMY FOR MODEL CONSTRAINT FORMALISMSIN OBJECT-ORIENTED ANALY SIS

information concerning classes is hidden in the definition of other classes,
associations or attributes. Another possibility, next to placing constraints in one
particular class, is to place a copy of the constraint in every class that is influenced by
it. However, this will give rise to an enormous amount of consistency problems and
information duplication.

A second problem of inconsistently integrating constraints in model entities is that a
bad placement of constraints in the model will lead to a diminishing of reuse
capabilities. When constraints are scattered over the whole model and inappropriately
integrated in rather arbitrary chosen model entities, it will be very hard to get a proper
insight in the existing model structures and the superimposed rules. Such approach
will encourage the analyst to rather start all over again from scratch instead of to
reuse parts of the existing model. A separate notation mechanism for constraints
influencing more than one specific model entity is therefore appropriate.

As a conclusion, we can state that some constraint types are strong related to existing
model concepts. Therefore, it would be advisable to integrate them in the concept
they belong to. However, a large number of constraints may be spread out over a
variety of model entities and can therefore not be placed properly in asingle entity. In
such cases, a mechanism to specify constraints formally and explicitly, as introduced
in Section 2.7, would be more appropriate.

2.8 Model Constraints Implied by the Model Structure

To diminish the gap between the logical information structure of the universe of
discourse and the actual conceptual model structure, the expressive power of the
model structure elements should be enriched. This can be done in several manners:
through introducing new structural model concepts, through strengthening the
semantics of the existing concepts or through defining strict usage rules for each
concept. Two examples of constraints implied by the model structure, are (1) the
change from a flat association structure to a hierarchical association structure, which
treats associations as classes themselves, and (2) the obligation for class attributes to
have a meaningful value at all times, thus excluding the null value.

Treating associations as first-class entities by reification of an association link into an
object, introduces a hierarchical model structure based on existential dependency
between objects. Analysis methods and notations, such as OMT [93][126], OSA [43],
and UML [120][119][107][109][128], provide association classes that offer the
possibility to model an association as a class (although they are often only used in
exceptional cases and not supported by many UML modelling tools). On a meta-
level, AssociationClass inherits from both Association and Class, and thus inherits all
potential properties that can be defined for an association as well as a class. However,
it is merely a technique of objectifying links in order to allow attributes to be
specified for the link. Association classes are not treated as ordinary classes, with
objects having their own identity, but remain, in essence, associations with class-like

2.8. MODEL CONSTRAINTSIMPLIED BY THE MODEL STRUCTURE 45

properties. The identity of an object from an association class is defined in UML1.x
as a combination of the identities of the objects taking part in the association link.
Thus, an association class can be considered as a kind of a derived class, for which
the derived objects are determined by the association link between the two associated
objects.

Such approach has important consequences. For instance, duplicates are impossible,
since it would introduce two association class objects having the same identity when
they associate the same two objects. UML1.x explicitly states ‘There are not two
links of the same association that connects the same set of instances in the same way’ .
This applies for ordinary links as well as links of an association class. However,
UML2.0 [108][128] has introduced the possibility of labelling the multiplicity of an
association as a ‘{bag}’, which alows the duplication of association links.
Furthermore, an analyst already has to make a choice at the analysis level whether a
relationship from the universe of discourse is going to be modelled as (1) a straight
association, for which the analyst has the choice between an ordinary association, a
qualified association,** an aggregation or a composition, (2) an association class, or
(3) an association reified into a class having two assisting associations for linking the
original participants. This choice will often depend on the fact whether association
attributes should be expressed, whether duplication should be possible within the
association, and whether other associations should be able to refer to the association
links. Table 2.3 expresses the choices an UML modeller has to make and the criteria
the modeller will mostly use. The different styles of modelling, presented in Figure
2.7, are from top to bottom an ordinary association, an association class, an
association reified into a class, a qualified association, and an aggregation.

Link Duplicate | Link as UML model entity most suitable

attributes | links participant

No No No Association

No No Yes Association with other associations redirected to one
of the participating classes (no * to * multiplicity)™

No No Yes Association Class (* to * multiplicity)™

No Yes No Association or Reified Association

No Yes Yes Association Class or Reified Association

Yes No No Assaciation Class or Qualified Association

Yes No Yes Association Class or Reified Association

Yes Yes No Association Class or Reified Association

Yes Yes Yes Association Class or Reified Association

Table2.3: Criteriain UML when M odelling Associations

A qualifier for an association end is an attribute whose values serve to partition the set of associated
objects. They can be considered as attributes of the association link.

2 In the library example, for instance, additional associations to the borrowing object can be redirected to
the book copy object, since there is only a single borrowing object attached to a book copy object.

3 When the association has a* to * multiplicity, an additional association to the link cannot be redirected
to one of the objects participating in the link, since these objects can participate in more than one link.

46 A TAXONOMY FOR MODEL CONSTRAINT FORMALISMSIN OBJECT-ORIENTED ANALY SIS

Person borrowing Copy
0..1 0.*
Person Copy
0.1 i 0.*
Borrowing
Person borrower Borrowing borrowed item Copy
1 0.* -
0.1 1
Person |Borrowing borrowing Copy
i
0.1 0.1
Person borrowing Copy
0.1 0..*

Figure2.7: Alternativesin UML for M odelling Associations

Other approaches to express certain types of model constraint directly in the model
structure, are the use of obliged values for class attributes and the modelling of
dependencies between object states as explicit existential dependency associations.

e The obliged presence of an attribute value results in a reduction of alternative
model variants for modelling certain facts, guiding the analyst to a clearer and
more expressive model. Instead of modelling an attribute with a potential
undefined value, an additional class must be introduced for such attributes. This
newly introduced class represents the fact that an attribute value is actually
present and defined at a certain moment.

By explicitty modelling dependencies between object states as existential
dependency associations, a better insight in these dependencies can be
established. Since alarge part of the model constraints deals with specifying state
consistency and state dependency between objects, such constraints can be
expressed directly in the model structure. By reifying states into classes, state
consistency and state dependency constraints can be transformed into existential
dependency constraints between reified state objects. In fact, reifying states into

2.8. MODEL CONSTRAINTSIMPLIED BY THE MODEL STRUCTURE 47

objects results in more expressive and extendible structural models. State
consistency and state dependency constraints can also be specified in statechart
diagrams. However, their specification should best not be hidden inside a
statechart diagram, but should be highlighted in the model structure.

2.8.1 Model-Implied Constraints for the Library Example

Although UML is not very suited to express a hierarchical association structure, it is
possible to imitate such structure using association classes. The model of Figure 2.1
can be transformed into a hierarchical model using association classes as shown in
Figure 2.8. By using existential dependency as the main criterion for specifying
associations, the model structure can highlight the dependencies between objects. For
instance, a borrowing object can only exist if a person is registered at a library,
expressed by the association class Registration, and if a library is in possession of a
book copy, expressed by the association class Possession. An analyst can easily
express that a condition has to be fulfilled before a certain service can be requested,
as indicated in the example where a person must firstly be registered at a library
before that person can borrow a book. In order to obtain hierarchical model structures
in UML, amodelling rule could be stipulated that obliges to transform all associations
with multiplicity lower bounds of zero into association classes. This forces the
modeller to reify most associations into association classes.

Publisher
Library |
. . 0.* | {bag}
Person 0.* 0.* |maxlending period[1] 0.1 0.* | Copy
I max lending items[1] T .
] . . 1
u: daily fine amount[1] \ 0% {bag}
i
. | Book
! 0..1 \
! \
1 \
1 A
Registration 0.1 Possession
T
'

Borrowing
start date[1]

Figure 2.8: A Hierarchical Model for the Library System

48 A TAXONOMY FOR MODEL CONSTRAINT FORMALISMSIN OBJECT-ORIENTED ANALY SIS

The hierarchical model structure designates classes to different hierarchical
dependency levels:

» Classes on level 0, namely Person, Library, Book, and Publisher in the example,
are not directly dependent on any other class. Objects of these classes can come
into existence without any additional restrictions.

e Classes on level 1, namely Registration and Copy in the example, are dependent
on classes of level 0. In fact, since every object expresses an association link
between two other objects, an object of level 1 is existentially dependent on two
objects of level 0. As an example, a copy link object cannot exist without a book
object and a publisher object.

e Classes on level 2, namely Possession in the example, are dependent on two
other objects of alower level, namely a copy object of level 1 and alibrary object
of level O.

e Classes on level 3, namely Borrowing in the example, are dependent on two
other objects of a lower level, namely a possession object of level 2 and a
registration object of level 1.

* Last, classes on level 4, namely Fine in the example, are dependent on two other
objects of alower level, namely a borrowing object of level 3 and alibrary object
of level 0. A fine link object expresses the fact that a fine can only be given to a
borrowing that is overdue. Notice that this additional condition for the fine
object, namely the fact the borrowing must be overdue, is not yet expressed in
the presented model. In fact, an additional constraint must be added to the model
in order to express this condition. The existential dependency only forbids fines
to exist without arising from a borrowing.

The definition of the ‘{bag}’ property string in UML2.0, namely that *the association
end represents an object collection that permits the same element to appear more than
once’, and the fact that the bag property is associated to the association end instead of
the association, indicates that its usage is more directed to the specification of
implementation issues rather than the modelling of the association property.
Therefore, associations should better be made first-class entities in UML instead of
being both an association and a class at the same time. By a true encapsulation of
every association into a class of its own, the choice to model a certain relationship of
the universe of discourse as a direct association, an association class or an association
reified into a class will disappear, since it would always be modelled as an association
encapsulated into a class. The decision whether an association encapsulated into a
class will be implemented by means of a class or an ordinary association could be
deferred to the design phase.

2.8.2 Evaluation of Model-Implied Constraints

The specification of model constraints implied by the model structure provides a
number of advantages. On the one hand, information dependencies in the model
become clearly highlighted. Since constraints are expressed directly in the model

2.8. MODEL CONSTRAINTSIMPLIED BY THE MODEL STRUCTURE 49

structure, the information dependencies from the universe of discourse play a core
role in the corresponding conceptual model. When important constraints can be
implied by the model structure, the logical structure of the universe of discourse is
directly reflected in the conceptual model structure. This allows people to get better
and faster insights in the information represented by the analysis model, thereby
easily obtaining a view on the information structures in the universe of discourse.

A second advantage is that the number of constraints that has to be added to the
model will diminish, since a number of these constraints will already be expressed in
the model structure. As an example, model constraint {1} is directly expressed in the
model structure that is represented in Figure 2.8. The association class Borrowing
expresses that a borrowing can only occur by a person that has been registered at the
library. The registration participant for the association captures this fact, expressing
that a borrowing object is existentially dependent on a registration object, which, in
turn, is existentially dependent on a person and a library object.

The representation of existential dependency should best not be restricted to binary
associations, expressing that a link object is dependent on 2 association objects. It
should also be possible to express that a link object is dependent on only a single
other object. This can currently be simulated in UML using an ordinary association
between the dependent object and the object on which it depends, having a
multiplicity lower bound of 1 at for the latter. An aternative representation could be a
reification of a 1-tuple represented by a unary association into an object. Although
UML offers both binary and n-ary associations, it does not allow the direct modelling
of an unary association. In addition, since UML associations have been extended in
order to allow duplicate links, it should also be possible to constrain the number of
duplicate links that are allowed to exist at the same moment. In Section 4.3.7, we
propose the concept of unary associations and duplication occurrence constraints in
the EROOS methodology as a solution for these UML restrictions.

Existential dependency among objects may seem too restrictive for the ultimate
software system to be built. A large deal of run-time flexibility, e.g., in populating the
model with instances, would be lost. However, object-oriented analysis is basically
concerned with building an abstraction of the universe of discourse, expressing
information, facts, and dependencies present in the universe of discourse without
considering how to express this information in the system at run-time. Therefore,
focusing on the universe of discourse in its normal appearance should have priority
over the unavailability of information to the system at run-time.

As a conclusion, we can state that the specification of model constraints implied by
the model structure diminishes the gap between the logical information structure of
the universe of discourse and the corresponding model structure, since the constraints
are highlighted directly in the model structure. However, UML and other analysis
methods do not fully support such high-level structural concepts in their notation.
Therefore, the expressive power of the model structure concepts should be enriched
in order to obtain methods that can produce suitable models expressing the constraints
from the universe of discourse directly in the model structure.

50 A TAXONOMY FOR MODEL CONSTRAINT FORMALISMSIN OBJECT-ORIENTED ANALY SIS

2.9 Comparison and Conclusions

In this chapter, we have presented a taxonomy for model constraints. We have shown
that model constraints can be specified in a number of manners, more specificaly:

as informal text, expressing the constraint in natural language as an informal
addendum to the model specification,

as operational restrictions, realising the constraint using method execution
control,

as a first-class model concept, introducing model constraints as a basic building
block of an analysis model,

integrated in existing model concepts, specifying a model constraint in the
definition of the model entity on which it applies,

and implied by the model structure, using existential dependency, obliged
attribute values, and reified object states in order to enrich the model structure.

We have argued about the advantages and disadvantages of each approach, using the
gap between the logical information structure of the universe of discourse and the
corresponding model structure as the most important criterion. A summary of the
advantages and disadvantages of the discussed specification techniques for model
constraintsis presented in Table 2.4.

After comparison of the different approaches for model constraint specification, our
conclusions are the following:

Specifying constraints as informal text is too informal as an outcome of the
analysis phase. This will give rise to the introduction of human interpretation
errors during later stages of the development.

Specifying constraints explicitly by operational restrictions is useful during the
design stage, but too low level on the analysis level. Such approach is not
advisable because it introduces a huge gap between the universe of discourse and
the analysis model. Instead of describing which rules apply in the universe of
discourse, the analysis model describes how they are enforced. In addition,
constraints must always be converted from their conceptual meaning to their
operational implementation and vice versa.

Constraints can be considered as independent model entities, and, in general,
need to be modelled as a first-class model concept. As such, the importance of
constraints in an analysis model is highlighted to the right extent. However, other
constructs are sometimes better suited in certain cases. First, constraints closely
related to certain model entities should better be directly integrated in these
elements in order to achieve a clear focus on these constraints during analysis.
Second, existential dependency and other structural model constraints should be
expressed directly in the model structure instead of being specified as
independent constraints. Instead of highlighting the basic structure of the model,
the structure would be neglected and hidden into the specified constraints.

2.9. COMPARISON AND CONCLUSIONS

51

Constraint specification

Advantages

Disadvantages

Informal text

Expressivity of natural
language

Limited impact on
model

Imprecise descriptions
No verification possible

Operational restrictions

Formal technique
Clear insight in places

Low-level specification
mechanism

where to check e Gap between analysis
constraints model and universe of
discourse
* Model extension and
revision problems
First-class model concept » Consistent, e Gap between model

unambiguous, formal

entities and related

and general applicable constraints
model constraint * Unsuited for reified
description associations

No reflection of logical
domain structure

Integrated in model concepts

Focus on specific
constraint typesin the
concept definition
Useful for constraints
on asingle model entity

Arbitrarinessin
constraint placement
Improper description
when constraints spread
out over several model
entities

* Limited reuse
Implied by model structure » Model highlightslogical | « Changein logical
structure of the universe structure has huge
of discourse impact on the model
structure

Table 2.4: Overview of Specification Techniquesfor M odel Constraints

e Congtraints closely related to certain model entities, such as attribute and

association end multiplicity, attribute range restrictions, and general
changeability properties of attributes and associations, could easily be integrated
in these model entities. However, when constraints can spread out over several
model entities, it is not advisable to integrate them in a single entity. This leads to
asymmetry and arbitrariness in the constraint specification.

Existential dependency and other structural model constraints should best
directly be implied by the model structure. A hierarchical association structure
can capture existential dependency constraints implicitly in the model structure.
This reduces the number of additiona constraints, and highlights and

52 A TAXONOMY FOR MODEL CONSTRAINT FORMALISMSIN OBJECT-ORIENTED ANALY SIS

incorporates the logical structure of the universe of discourse directly in the
corresponding analysis model.

UML does not provide suitable support for specifying constraints in the right manner
in an analysis model. The expressive power of the UML model structure must be
enriched in order to obtain suitable conceptual models expressing the structures from
the universe of discourse directly in the model structure. In Chapter 4 and Chapter 5,
we propose two versions of the EROOS methodology, the EROOS kernel and the
EROOQOS universe, that define suitable notations and formalisms to specify a large
number of constraints from the universe of discourse directly in the conceptual model
structure.

Chapter 3

Key Principlesfor Conceptual
M odelling

Before we present the EROOS methodology, we first propose the key principles for
conceptual modelling that have led to certain methodological decisions in EROOS,
and provide arguments as to why these principles are of utmost importance during
conceptual modelling in order to obtain the most suitable models.

3.1 Principle of Unigueness

The Principle of Uniqueness states that every fact from the universe of discourse
must result in a unique model element in the corresponding conceptual model. There
should exist no alternatives in modelling facts from the universe of discourse in order
to avoid different conceptual models that are somehow equivalent. Instead, the model
concepts offered by a methodology should be such that the analyst is guided from the
universe of discourse to be modelled to the most appropriate conceptual model that
represents these facts.

Although this principle is lacking in current analysis methodologies, we argue that it
is of utmost importance to incorporate this principle in an analysis methodology. On
the one hand, the analyst has a huge and difficult task of mapping the information
from the universe of discourse into an appropriate conceptual model. It should not be
the responsibility of the analyst to decide on choosing an appropriate style for
modelling certain information in the conceptual model. Instead, the analyst should
primarily focus on deciding whether or not facts related to the universe of discourse
are relevant according to the requirements that must be incorporated in the model. A
good analysis methodology should offer conceptual support for the transformation of

53

54 KEY PRINCIPLES FOR CONCEPTUAL MODELLING

facts from the universe of discourse into a suitable conceptual model, having clear
criteria in leading the analyst toward the most appropriate model concept. It is the
task of the methodology to investigate and evaluate all potential alternative modelling
concepts and notations that can be used in expressing certain facts, and to force the
analyst in using the most suitable concept.

In addition, the Principle of Unigueness leads to a true standardisation on the analysis
level. It is not enough to standardise the notation, as the Object Management Group
(OMG) has done with the Unified Modeling Language (UML) as a general software
development notation. There are still a number of flavours or personal preferences
possible in UML for expressing certain information. As an example, we have
identified in Section 2.8 that an association can be represented as an ordinary
association, a qualified association, an aggregation, a composition, an association
class, and even an association reified into a class. This creates confusion for the
analyst during the development of a conceptual model about which concept to choose
in order to model certain information. In addition, the intention of the analyst using a
specific model concept must be reconstructed during model revisions. Considering
the lifetime of a conceptual model and the number of people involved in creating,
extending, adapting, and reviewing these models, it is beneficial in terms of time and
complexity of having a single model for a single universe of discourse when models
are frequently passed between people.

Notice that the Principle of Uniqueness is also known under different names, amongst
other, as construct redundancy [160], in which a type of facts within the universe of
discourse can be represented by more than one modelling construct, or as No-Choice
[38].

3.2 Principle of No Redundancy

The Principle of No Redundancy states that every single information item that is
represented in a conceptual model must have a distinct added value of its own, and
should not be derivable from the other items present in the conceptual model. Each
fact from the universe of discourse should directly be reflected in the conceptual
model by means of a model entity that can be traced back to the universe of
discourse.

Models incorporating a large degree of redundancy are much more difficult to keep
consistent than models without any redundancy. In addition to consistency problems
that can arise from the mapping of the universe of discourse to the conceptual model,
model redundancy introduces additional consistency problems within the conceptual
model. This creates an extralevel of complexity inside the conceptual model.

Another disadvantage of model redundancy is that the information captured in a
model is more difficult to grasp by model readers, reviewers, and re-users. Instead of
focussing on the information in the model, they have to filter the model in order to
detect and reduce the redundant information, or are puzzled about the difference

3.3. PRINCIPLE OF UNAMBIGUITY 55

between 2 model entities that actually represent the same information. A model
without redundancy is easier to comprehend than a model containing redundant
information.

Notice that the Principle of No Redundancy is also addressed as uniqueness [38].

3.3 Principle of Unambiguity

The Principle of Unambiguity states that each conceptual model element must result
from a distinct fact in the universe of discourse. There should exist no two different
situations in the universe of discourse that result in the same conceptual model
element.

When a conceptual model can be interpreted in many ways, it can mentally be
mapped back onto different situations in the universe of discourse. In this manner, a
single conceptual model can express different realities. If this is the case, the
conceptual model is ambiguous about which facts from the universe of discourse are
actually covered by the model. This can cause confusion, misunderstanding, and
misinterpretations. To reduce this source of confusion and diminish the threat of
discrepancy between the required and the actual delivered software system, a
conceptual model element should be traceable to a single and unique fact from the
universe of discourse.

Notice that the Principle of Unambiguity is also addressed, amongst other, as
unambiguous [62], or as construct overload [160], in which the same concept
represents several types of facts from the universe of discourse.

3.4 Principle of Completeness

The Principle of Completeness [172] states that all relevant information from the
universe of discourse must also be reflected in the conceptual model. A conceptual
model cannot reflect a certain universe of discourse when a number of facts are not
represented in the model. If some facts are not described explicitly, and they are only
present in the mind of the analyst or domain expert, the conceptual model is not
complete, and can lead to errors, misunderstandings, confusion and arbitrary
decisions during later stages of the development process. Although it is acceptable
that certain technical elements of the solution domain are not expressed in a
conceptual model, the universe of discourse should be modelled to its full extent.

When incomplete conceptual models are used as a kind of sketch of the universe of
discourse, details but also important or even crucial information could have been
omitted. It is conceivable, that a software engineer faced with missing information,
will neglect certain important elements, or give her or his own personal interpretation
that can differ from the facts within the universe of discourse. When important

56 KEY PRINCIPLES FOR CONCEPTUAL MODELLING

development decisions are based on imprecise, incomplete, and non-exhaustive
information, this can lead to serious problems and failures in the system being
developed.

The Principle of Completeness could be compared with construct deficit that have
been defined by Wand [160], which states that a fact from the universe of discourse
cannot be represented by any modelling construct. Although construct deficit implies
incompleteness, incompleteness does not imply construct deficit, since
incompleteness does not necessarily arise from the fact that it is impossible to model
certain facts from the universe of discourse. These facts could somehow be omitted
by the modeller.

3.5 Principle of Minimalism

The Principle of Minimalism states that only the relevant information in the universe
of discourse must be reflected in the conceptual model. A conceptual model should
not contain any surplus or irrelevant information that cannot be connected to the
universe of discourse to be modelled and the requirements for the actual system.
When information cannot directly be linked to a relevant knowledge fact within the
universe of discourse, it is superfluous and should be omitted from the conceptual
model. An analyst should be aware of the boundaries of the universe of discourse and
should not try to model unimportant or unrelated facts.

Software engineers are often inclined to anticipate on a large number of potential
future extensions to the system to be built, or to construct an oversized system that
can be reused in other applications operating within the same or arelated universe of
discourse. This is also postulated by the agile software development community and
expressed in the Agile Manifesto [11][98] as the principle of *Smplicity is Essential’.
It is the task of the analyst to construct a complete conceptual model of the whole
universe of discourse, while it should be constricted within the boundaries of the
universe of discourse.

Notice that the Principle of Minimalism is also addressed as Abstract [62], as
Abstraction [38], as Pertinency, as Noise, or as Parsimony.

3.6 Principle of Preciseness

The Principle of Preciseness states that all facts and information of the universe of
discourse must be modelled in aformal way using suitable concepts that are offered
for this purpose by the supporting analysis methodology. No text elements or notes in
natural language should be part of the conceptua model without having a
corresponding formal model representation of the facts they intend to express.

3.7. PRINCIPLE OF NO HISTORY 57

As previously argued in Section 2.4, formal specifications are preferable over
informal, textual specifications in a conceptual model due to unambiguity, the
possibility of performing model validation and verification, and the impact that can
be achieved on the other model elements [34].

3.7 Principle of No History

The Principle of No History states that the resulting conceptual model must be
independent of the order in which the facts from the universe of discourse have been
modelled. The conceptual model should only be dependent on the total set of
information from the universe of discourse that has to be modelled, and not on the
order in which these pieces of information have been added to the model. A
conceptual model should be a representation of the universe of discourse, and should
not represent any history information concerning the construction of the model.

In fact, the Principle of Uniqueness that was stated above, already implies the
Principle of No History, since if only a single conceptual model can result from a set
of facts from the universe of discourse, it definitely cannot contain any history
information concerning the construction of the conceptual model. When history
information concerning the construction could have an influence on the resulting
model, the same set of facts from the universe of discourse can lead to a variety of
models depending on the order in which the facts have been modelled, which is in
contradiction with the Principle of Uniqueness.

Nevertheless, we find it important to stress the Principle of No History as a distinct
conceptual modelling principle. Since it is possible that an analysis method does not
comply with the Principle of Uniqueness, such method could in addition be assessed
regarding its compliance with the Principle of No History.

3.8 Principle of Model-Implied Constraints

The Principle of Model-Implied Constraints states that constraints arising from rules
and regulations in the universe of discourse must be reflected in the structure of the
conceptual model. This means that the concepts offered by an analysis methodol ogy
should be able to express these important constraints directly in the model structure.
In addition, information in the universe of discourse that is dependent on other kind
of core information as a prerequisite for its existence, should as such be reflected in
the conceptual model. This means that the model entity expressing the conditional
information should also be modelled as being dependent on the model entity that
presents the core information.

The reason behind this principle is to reflect and preserve the implicit structures and
the existential dependency relations from the universe of discourse in the core

58 KEY PRINCIPLES FOR CONCEPTUAL MODELLING

structure of the resulting conceptual model. We have extensively argued in Chapter 2
why this principleis of utmost importance for conceptual modelling.

3.9 Principle of Abstraction

The Principle of Abstraction states that complex information in a conceptual model,
due to the intrinsic complexity of the universe of discourse, must be presented in its
full detail in the resulting conceptual model. However, a conceptual model can offer
model views in a more abstracted form for the ease of the model reader.

Producing abstract views on the universe of discourse should not be one of the main
concerns of conceptual modelling, since a conceptual model must be able to capture
the universe of discourse in its full detail. However, for interaction with customers
and end users, it can be useful to build summary models and condensed views on the
possibly complex overall conceptual model.

When abstract views on a conceptual model are not considered to be a basic part of
the conceptual model, the Principle of Abstraction is not contradictory to the
Principle of Uniqueness and the Principle of No Redundancy as presented in Sections
3.1 and 3.2. Abstract model views are not considered as true alternatives for
modelling the universe of discourse, but merely offer a condensed and more
understandable view on the conceptual model.

3.10 Additional Considerations

Extendibility and correctness with respect to the universe of discourse are sometimes
postulated as important issues for conceptual modelling. However, we have not
incorporated them in our proposed set of key principles for conceptual modelling.

3.10.1 Extendibility in Conceptual Modelling

Devos [38] proposes extendibility as one of the principles for conceptual modelling.
The proposed principle states * It must be possible to extend a model with a set of real-
world facts without modifying existing specifications.” However, we argue that this
principle is inadequate for conceptual modelling due to a number of reasons.

First, this proposition could be contraproductive in realising the Principle of
Unigueness and Model-Implied Constraints. In realising the Principles of Uniqueness
and Model-Implied Constraints, a methodology tries to guide the analyst to a unique
model that expresses all essential constraints in its core model structure. If one wants
to adhere to the proposed principle of extendibility, the consequence is that the core
model structure that was constructed during the first modelling iteration cannot be
altered anymore to reflect the additional information that must be captured during the
second modelling iteration. This leads to the situation in which the information from

3.10. ADDITIONAL CONSIDERATIONS 59

the second iteration is modelled using unintegrated model structures that are
artificially connected with the model structures that were specified during the first
iteration. Since a conceptual model should be a unique representation of the universe
of discourse containing all dependencies in its core model structure, it should be
possible to review the originally developed model structures when additional
information must be added to the model during the second iteration.

Second, this proposition is in contradiction with the Principle of No History when
being applied to conceptual modelling. On the one hand, according to the proposed
principle of extendibility, models must be extendible without having to alter
previously defined model elements. But on the other hand, according to the Principle
of No History, models must be independent of the order in which elements have been
added to the model. It is only possible to satisfy both principles at the same time
when model elements are fully independent from each other. In this manner,
additional model elements would not have an impact on previously defined model
elements. However, model elements in conceptual models are often heavily
interrelated and dependent on each other. It is therefore almost impossible to add new
model elements while at the same time keeping them isolated from existing model
elements.

Therefore, we consider the proposed principle of extendibility as inadequate, and do
not adopt it as a key principle for conceptual modelling.

3.10.2 Correctness in Conceptual Modelling

Although correctness is a sound principle to strive for, it is very difficult to achieve in
practice. Correctness can be situated on two levels, namely (1) external correctness,
which is the correctness of the conceptual model in relation to the universe of
discourse, and (2) internal correctness in the model.

Regarding external correctness, Ludewig [94] points out that this can never be
achieved completely. Every person has a distorted view on the world. In order to
approach correctness, we have to improve our models constantly through a
comparison with the reality. Whenever the conceptual model and the universe of
discourse do not agree, the reality is always right and the model is always wrong.** It
is therefore impossible to prove that a model is correct in relation to the universe of
discourse. One can only prove that a model is incorrect. A model is correct as long as
no evidence to the contrary can be provided. The goal of conceptual modelling is thus
to achieve a conceptual model that is the best estimation of the universe of discourse
given the facts and information that we know, and for which no evidence to the
contrary can be provided.

“In the case of Business Process Re-engineering (BPR), the opposite is true. The newly defined business
process is the ultimate goa that must be redised by enforcing it in reality.

60

KEY PRINCIPLES FOR CONCEPTUAL MODELLING

Internal correctness, also called Consistency, is a necessity for any specification
formalism. Concerning the conceptual modelling, the modelling methodology must
state the methodological rules and guidelines to which a model must adhere.
Furthermore, by complying with the principle of No Redundancy, sources of internal
incorrectness can be removed since the redundant information must no longer be kept
consistent with its counterparts. The principle of Preciseness enables model
verification and validation, since formal notations can be interpreted and checked on

internal correctness.

Chapter 4

A Methodological Kernel for
Conceptual Modelling

The development of the EROOS™ conceptual modelling methodology™® was led by
the conclusions of our study on model constraint formalisms in object-oriented
analysis in Chapter 2, and the key principles for conceptual modelling that were
proposed in Chapter 3. The EROOS methodology wants to guide the analyst to a
unique conceptual model for a specific universe of discourse. In the EROOS
methodology, constraints play a crucial role in the modelling process. First, EROOS
introduces the usage of existential dependency as the main criterion to determine the
core model structure, thereby expressing model constraints implicitly in the EROOS
model structure. Second, the impact of model constraints on every model concept is
carefully considered, integrating model constraints in certain model concepts when
appropriate. Third, model constraints in EROOS are treated as a first-class model
concept linked to the model entities that they affect.

Chapter 4 and Chapter 5 provide a detailed description of the EROOS methodol ogy.
We propose two version of the EROOS methodology: A core version in this chapter,
the EROOS kernel, in which information can only be added to the conceptual model
instance, and an extended version in Chapter 5, the EROOS universe, in which
additional support for recurrent EROOS kernel analysis patterns is provided through
advanced and more practical concepts, using the core version as the underlying base.

> EROOS was originally an acronym for ‘Entity-Relationship Object-Oriented Specifications', but is
currently considered to be a proper noun.

18 A part of the work presented in this and the following chapter has been published in [154], [153], [150],
[90], [91], [142], and [143].

61

62 A METHODOLOGICAL KERNEL FOR CONCEPTUAL MODELLING

4.1 Model, Model Instance, and Event Instance

The main goal of conceptual modelling is to develop a model of the universe of
discourse in which the ultimate system will actually operate. The resulting conceptual
model expresses the analyst’s perception of the universe of discourse, and serves as
the mgjor means of communication between the customers, which are the prime
contractors having ordered the system, the end users, the experts on the universe of
discourse, and the software engineers responsible for the actual development of the
system. The goal of conceptual modelling is to capture all facts and knowledge from
the universe of discourse into a conceptual model that will serve as a reference for it,
specified using the concepts offered by the analysis methodology. A model is a meta-
representation in the sense that it does not contain any specific facts from the universe
of discourse at a particular moment in time. A model only describes potential
structures that can exist between elements in the universe of discourse. It is a
description of all capabilities of the universe of discourse without describing any
instantaneous exposure within the universe of discourse.

However, it is possible to represent a snapshot of the universe of discourse, which is
the description of an actual situation in the universe of discourse at a particular
moment in time, using a model instance. A model instance contains specific objects,
each having their own properties and concrete relationships with other objects. A
model instance expresses information about a concrete situation in the universe of
discourse. A model instance can only contain information that is situated within the
boundaries of the allowed structures as defined in its conceptual model.

A model instance can remain valid for a certain period. However, at any moment in
time, a model instance can change due to a set of events that occur in the universe of
discourse. Since the model instance is a representation of the information in the
universe of discourse, any occurrence that causes a change of certain information is
reflected by a change of the model instance representing this information. The set of
concrete events that cause a transformation of a model instance is indicated as an
event set instance. The definitions of Model, Model Instance, Model Instance
Universe, Event Set Instance, and Event Universe can be found in Definition 4.1.

A Model is a set of nethodol ogi cal concept instances
(classes, attributes, relations, etc.) representing potentia
i nformation structures in the universe of discourse. It is a
nmet a-representation describing all potential situations that
can occur in the universe of discourse

A Mddel Instance is an instantiation of a nodel at a
particular noment in tine, representing a concrete situation
in the universe of discourse at that tinme. Al though a nodel
instance is a representation of a situation at a particular
nmonent in tinme, it can remain valid for a certain period

The Model Instance Universe is the collection of all npde
i nstances that can exist at a certain noment. It is the set
of all potential instantiations of a nodel.

4.2. CLASSES, OBJECTS, AND STATIC CLASSIFICATION 63

An Event Set Instance is a concrete set of events that
defines a transition at particular nmonent in time from an
exi sting nodel instance, which was valid until that nonent,
to a new nodel instance, which will become valid starting
fromthat noment. The new nodel instance is obtained by
adding information to the existing nodel instance.

The Event Universe is the collection of all events that can
occur in a nodel. It is the union of all events that already
have occured in the past and all events that could occur in
the future.

G ven

Model M Model Instance Universe MU, Mdel |nstance M;

Event Uni verse EU, Event Set |nstance E;

M7= (MU M, QU EYU E t, Ma, Ma, M M M M, Mo M M
Mo, M) | My = Mg O Mg A M = M O M (nodel structure)

M: TIME-> MU| YVt € TIMEE M; € M;,; (growng nodel instance)

E. TIME - P(EU) (rmodel behavi our)

t: MUx P(EU) » MU | t(M,E.+) = My (new i nstance)

Definition 4.1: Model, Model | nstance, and Event | nstance

4.2 Classes, Objects, and Static Classification

When modelling facts and knowledge from the universe of discourse into a
conceptual model, information will be represented in the model as objects, also called
instances. An object is amodel representation of an observable fact in the universe of
discourse. An object does not necessarily map to a tangible item in the universe of
discourse, but can also map to an abstract item, a piece of knowledge, or an important
occurrence in the universe of discourse. An object can represent any kind of thing that
comes into existence at a certain instance of time as a representation of a fact that
arises in the universe of discourse. In the EROOS kernel, an object can only be
created. The EROOS universe offers advanced concepts in which an object can aso
cease to exist at a certain moment in time. This will lead to the possibility of object
destruction, which is treated in section 5.1. Objects are distinguished from values,
whose lifetime is infinite, i.e., a value has always existed in the past and will always
exist in the future while an object comes into existence at a specific moment in time.
An event is an occurrence that can be observed in the universe of discourse in
connection with the appearance of afact, or the creation of an item.

We introduce the notion of a class as a concept for structuring the set of objects into
collections of objects having the same properties. In this manner, all properties
common to a collection of objects can be specified once for the whole class. In

" The different elements that compose amodel will be presented in the next sections.

64

A METHODOLOGICAL KERNEL FOR CONCEPTUAL MODELLING

EROQOS, a class is a static classification of a collection of objects with the same
properties, defining a specific type for the objects that is shared by all objects in the
collection. Classes constitute the basic building blocks of a conceptual model in
EROOS. All model elements that introduce additional properties, such as relations,
attributes, and constraints are defined on top of one or more classes.

In developing conceptual models, both structural and behavioural aspects must be
considered. The structural aspects of a conceptual model comprise a specification of
how the universe of discourse might look like at a particular moment in time. The
behavioural aspects specify how the universe of discourse may evolve in the course
of time. All elements of a conceptual model will describe the structural aspects of the
information that can be contained in a model instance, and the behavioural aspect of
how a model instance can be transformed into a consecutive model instance.

From a structural point of view, classes serve to cluster objects with the same
properties. Instead of having to define every single object that can come into
existence in the analysis instance model, a class alows to define a skeleton
description for an object only once as a part of the conceptual model, whereupon a
number of objects can be introduced in the instance model based on this unified
description. The structural aspect in the definition of a class is confined to the
clustering of objects and the introduction of a single name to indicate the whole
cluster. The behavioural aspect in the definition of a class consists of the specification
of an event, indicated as a creation event, which creates a new object inside the model
instance as the representation of an occurrence in the universe of discourse.

This section further describes the properties concerning classes and their objects in
detail, together with the model constraints implied by the class concept. Hereafter, the
different aspects involved in the introduction of a class are surveyed, namely the
structural and behavioural aspects in terms of initial functionality for the class, and
the rules to be obeyed when introducing a new class. Last, the EROOS classes that
can be identified in the running example of the library system are presented.

4.2.1 The Population of a Class

In human life, it is common practice to cluster elements with similar properties in
order to perform a classification of elements as part of a mental model. Such
classifications are a means to master complexity by clustering elements, finding
commonalities between these elements, and identifying common relationships
between them. This clustering will be reflected in a conceptual model by means of
classes. The characteristics and behaviour common to the collection of objects
associated with a class can then described once and for all at the level of that class. In
contrary with a set, which is a static and fixed collection of elements that cannot be
changed anymore, an EROOS class is a dynamic collection of objects, since at all
times new obj ects can be added to a class. At each moment in time, a class collection
corresponds to afixed set of objects that are part of the collection at that moment. The
collection associated with a class is named the population of that class. The process
of defining classes is named static classification. Figure 4.1 presents a population of a

4.2. CLASSES, OBJECTS, AND STATIC CLASSIFICATION 65

class at a particular moment t, having fifteen objects within the class population at
that moment.

Figure 4.1: Objectsin an EROOS Class Population at M oment t

4.2.2 Model Constraints implied by the Class Concept

EROOQOS incorporates important model constraints directly in its methodological
concepts. The following constraints are directly implied by the class concept:

Digunctness: Different concrete classes in EROOS are assumed to divide the
universe of objects into digoint collections. In other words, each object is and
will always be associated with a single concrete class. Different concrete classes
are not allowed to share any of their objects.’®

Immutability: The bond of a given object with its class is static. In particular, at
the moment an object is created, it is bound to a class and it will keep that bond
for its entire lifetime. Objects cannot switch from one class to another.

Finiteness: The collection of objects associated with aclassisfinite.

Uniqueness: Whenever a new object of a class C is created, that object will be
different from any already existing objects of the class C or of any other classes.
From its creation on, each object will have its own and unique object identity
[82] so that it can be differentiated from all other existing objects. The object
identity is encapsulated, but can be observed using equality and inequality:

— Given two expressions e; and e, both expressions referring to an object, the
assertion ‘e; = &’ is true, if and only if both expressions refer to the same
object, i.e, the identity of the objects referred to by e; and &, is the same.

This means that, athough all external observable properties concerning two
objects can be the same, the objects can still be totally different in nature due to
their unigue object identity.

The definition of aclass can be found in Definition 4.2.

18 Notice that the implied constraint of disjunctness only holds for concrete classes. Section 4.6 introduces
abstract class that do not comply with the implied constraint of digunctness.

66 A METHODOLOGICAL KERNEL FOR CONCEPTUAL MODELLING

A Concrete Cass is a nodel entity defining, at each nonent
intime, a disjoint object population set, which is el enent
of the correspondi ng nodel instance. This popul ation set can
only be extended over tinme.

The Object Universe is the representation of the entire
collection of objects that can exist for a nodel. It is the
union of all objects that came into existence in past nodel
i nstances and all objects that could cone into existence in
future nodel instances.

G ven

Model M Object Universe QU;, Concrete class C,C € M;

C TIME = P(QY) | (finiteness)
Vt ETIME G € Gat (inmutability)
Yt,ueT M CGCNC,= (di sj unct ness)

Definition 4.2;: EROOS Kernel Class

4.2.3 Specification of an EROOS Class

The definition of a class in EROOS is given in a class script and comprises both
structural and behavioural aspects. From a structural point of view, classes serve to
cluster objects with the same properties into disjoint collections. The structural aspect
in the definition of a class is confined to the introduction of a single and proper name
for the objects. The name of a class must be an expression in some natural language,
rooted in some culture, and refer to a cultural entity. The name for a class must reflect
as good as possible the entity in the universe of discourse that it is supposed to model.
There is no need to restrict oneself to English names, nor to ASCII or even to the
Roman alphabet. Classical computer-oriented issues, such as the use of digits as a
first character or the use of spaces in a name, are purely technical and of no
importance in a conceptual model. For readability purposes, EROOS class names
have to be represented as singular nouns and in uppercase. Moreover, all classes
introduced in a conceptual model must have different names in order to be
distinguishable.

A class script also includes behavioural aspects. Each class must at all times be
complemented with a specification of the events in which its objects can become
involved. When a new class is defined, the functionality to be introduced is restricted
to the specification of a single creation event. A creation event is an event by means
of which a new object of the given class comes into existence and is added to the
population of that class. It reflects the fact that, in the universe of discourse being
modelled, a new object with an identity distinct from the identity of any already
existing objects has come into existence. The specification of a creation event in a
class script is limited to the definition of a proper name for the event, which must
reflect as good as possible the occurrence in the universe of discourse that it is

4.2. CLASSES, OBJECTS, AND STATIC CLASSIFICATION 67

supposed to model. For readability purposes, EROOS event names have to be non-
conjugated verbs, i.e., verbs in infinitive form, and represented in small letters. All
events for asingle class must have different names.

An event in EROOS occurs at a specific moment in time and it is instantaneous. An
event thus has no duration. Whenever the duration of a creation event should be
considered as a period, because its duration is important for the universe of discourse,
this fact should be modelled as two objects, each having its own distinct creation
event. The composite creation event must as such be split in two basic creation
events, namely a first one to express the start of the creation activity, and a second
one to express the end of the creation activity. Notice that the modelling of an
occurrence can be dependent on its relevance in the universe of discourse. Whereas in
one model a certain occurrence, whose duration is considered to be irrelevant, is
modelled as an event of a single object, that same occurrence could be modelled as
two distinct events belonging to different objects as soon as aspects of its duration
turn out to be important. The EROOS approach concerning modelling events allows
the analyst to make a clear distinction between, on the one hand, the modelling of an
event or occurrence that is instantaneous, which can be represented by a creation
event for a single object, and, on the other hand, the modelling of an activity lasting
for a certain period, which must be represented by two creation event representing the
start and end of the activity.

In EROQS, all elements of a conceptual model can be represented both textually and
graphically. Whereas the textual representation fully defines all details concerning a
certain model element, the graphical representation provides a condensed view on the
element. The structural and behavioural aspects involved in the definition of a class
are defined in a class script, as given in Table 4.1. As presented in Figure 4.2, a class
is graphically represented in the form of a rectangle with the name of the class
specified inside. The definition of a creation event can be found in Definition 4.3.

<EROCS kernel class script> =
"cl ass" <CLASS NAVE>
"creation event”
<creation event nane>
"end cl ass" <CLASS NAME>

Table4.1: EROOS Class Script

<CLASS
NAME>

Figure 4.2: Graphical Representation of an EROOS Class

A METHODOLOGICAL KERNEL FOR CONCEPTUAL MODELLING

nodel instance at a certain tinme, adds a new object to the
obj ect popul ation set for that class.

G ven

Model M Cbject Universe QU Event Universe EU,
Event Set Instance E, Concrete Class C € My;
Creation Event ci,..chn € EU;

Ci, .+Ch € sy O 3 04, .., 0, € QU :

A creation event is an event of a class that, if applied on a

(o1, ..., 0h &€ CG) A (G =C O {0y, ., 0n} (Uni queness)

Definition 4.3: EROOS Creation Event

4.2.4 EROOS Kernel Classes for the Library Example

Given the example of the library system that was presented in Section 2.3, the
following EROOS kernel classes can be identified: PERSON, DEATH (of a person),
LIBRARY, DISSOLUTION (of a library), REGISTRATION, DEREGISTRATION,
BOOK, DISMISS (a book that has been taken out of print), PUBLISHER,
LIQUIDATION (of a publishing company), COPY, DESTRUCTION (of a book
copy), POSSESSION, WRITE-OFF (of a book possession), BORROWING,
RETURN (of aborrowing), FINE, and PAYMENT (of afine). Since an EROOS class
script do not provide any additional information next to the definition of a creation
event name for the class, we only give the EROOS class script for the class of
REGISTRATION in Table 4.2 as an example.

cl ass REGQ STRATI ON

creati on event ‘
register ‘

end cl ass REGQ STRATI ON

Table4.2: EROOS Class Script for the Library Example

4.2.5 Contributions, Related Work, and Reflections

The EROOS class concept is largely comparable with the class concept in UML. Our
contributions concerning the class concept are the following:

The constructional model approach, in which model instances can only grow
and information can only be added to a model instance, is a crucial property of
the EROOS kernel in achieving the Principle of Uniqueness. Objects cannot be
destroyed, but instead the destruction of an object must be reified into the
creation of adistinct object representing this destruction event.

4.3. ATTRIBUTES, DOMAINS, VALUES, AND DECORATION 69

* The methodological approach using instantaneous events obliges the modeller
to split an occurrence with arelevant duration into two model events. This allows
aproper guiding of the modeller to a unique conceptual model for the universe of
discourse to be modelled.

An observation that can be made is that the application of the EROOS kernel
methodology gives rise to a class model with a huge number of classes. In order to
model activities in the EROOS kernel, the activity must be split into two events
characterising the activity, namely the start of the activity and the end of the activity.
A large part of the knowledge in the universe of discourse has the form of an activity,
in which, for instance, a temporal validity or verity can be seen as an activity starting
at the moment the fact becomes valid and ending at the moment the fact expires or
becomes invalid. Therefore, most information is modelled using two related classes,
in which afirst class indicates the start and a second dependent class indicates the end
of the activity or validity. The EROOS universe, presented in Chapter 5, will offer
advanced modelling concepts to merge these two objects into a single object that
represents the whole period and has both a creation event and a destruction event.

A second observation concerns the synchronicity between the occurrences in the
universe of discourse and the events in the conceptual model. There is sometimes a
need for a clear definition of the exact moment in time when a model event must be
activated, e.g., the moment that the person signs the application form in the example
of the library registration.

4.3 Attributes, Domains, Values, and Decoration

In addition to objects, which capture facts about events occurring in the universe of
discourse, values are used to describe specific properties and relevant information
related to these events. As such, classes can be decorated with attributes, allowing
objects to have specific attribute values containing relevant information regarding
their occurrence. Attributes will be introduced in this section to model properties in
terms of relationships involving objects and values. Attributes are said to decorate
classes, providing a description of the relevant information that is related to the object
and its creation event. When an attribute is defined for a class, each object of the
decorated class will have to be associated at all times with a value of the proper
domain, which describes all values of a specific type.

The introduction of an attribute decorating a given class must always be
complemented with decoration functionality. This forces the analyst to specify the
impact of the decoration on the creation event, in addition to the static properties
underlying the decoration of a class. The creation event introduced in the class script
must be extended with specific information regarding the attribute, establishing a
binding of the new object with a proper value of the corresponding domain. Notice
that the EROOS kernel does not allow changing any information that is captured
inside a model instance. Only additional information can be added to a model

70 A METHODOLOGICAL KERNEL FOR CONCEPTUAL MODELLING

instance. However, a change of an attribute can be modelled by introducing a change
object, reflecting the fact that an attribute value has been changed in the universe of
discourse. In addition to the extended creation event, the decoration functionality also
automatically includes an implicit attribute query returning the information contained
in the attribute, which can be used for later retrieval.

First, this section introduces the differences between values and objects, and the
general principles underlying the decoration of a class. The model constraints implied
by the attribute concept, as well as the structural and behavioural component of an
attribute script, are described thereafter. Third, the default attribute Creation
Timestamp and the implicit attribute query ‘-’ are introduced. Last, the attributes that
can be identified in the running example of the library system are presented.

4.3.1 Value Domains

In EROOS, objects are clearly distinguished from values. Any kind of thing that
could come into existence at a certain moment in time, can be modelled as an object.
Contrary to objects, values are information descriptions from the universe of
discourse for which the lifetime is considered to be infinite. Consequently, whereas
objects of a class are to be created explicitly using a creation event, EROOS assumes
that values of a domain have always existed in the past and will always exist in the
future. Objects capture facts and information about events in the universe of
discourse, whereas values are used to describe specific properties and relevant
information related to these events. The basic differences between objects and values
lead to different concepts for modelling them. Whereas objects having similar
properties are clustered into classes, domains are introduced for describing values of
the same type using type descriptions. Domains include a specification of functions
that can be applied to its values, expressing calculations or equations that can be
applied to them.

EROOQOS defines a number of commonly used domains as part of the methodology. A
conceptual model developed in EROOS can include additional domain specifications,
defining values belonging to the given domain and functions applicable to these
values. However, not just any set of values can be used in decorating classes. A newly
introduced domain must either fulfil the rules of a basic domain or must be composed
from already existing valid domains. Each domain will need to specify (1) a mapping
to a mathematical set, (2) a standard domain unity specified for the unity element of
the set, (3) a set of additional domain units and their mapping to the domain unity,
and (4) a set of functions that map values of certain domains to other values of the
same or other domains. We define 4 categories of domainsin EROOS:

e Magnitude domains describe physical magnitudes in the universe of discourse.
Examples of such domains are:

— The domain of MASS offers a set of values for expressing the weight of
material objects. Values of this domain can be expressed in different units,
such as grams, kilograms, pounds, and tons. The standard unity of the
domainisgram(g).

4.3. ATTRIBUTES, DOMAINS, VALUES, AND DECORATION 71

— The domain of LENGTH offers a set of values for expressing the size of
material objects. Values of this domain can be expressed in different units,
such as metres, kilometres, yards, foots, and miles. The standard unity of the
domain will be metre (m).

— Thedomain of TIME offers a set of values for expressing moments in time.
Values of this domain can be expressed in different ways using a specific
era as a kind of unit. An era is a system for dating events from a specific
reference point in time. This reference point refers to a particular event or
moment in history, such as the birth of Christ or the coronation of the last
Japanese Emperor. The standard unity of the domain will be Common Era
(CE), aso caled Anno Domini (AD). In addition, the domain of TIME
offers a dynamic function, denoted as now, which returns the current time at
the moment the expression is evaluated.

— Thedomain of DURATION offers a set of values for expressing the duration
of certain activities. Values of this domain can be expressed in different
units such as milliseconds, minutes, hours, days, and years. The standard
unity of the domain will be second (s).

— The domain of TEMPERATURE offers a set of values for expressing the
temperature of objects and fluids. Values of this domain can be expressed in
different units, such as degrees Celsius, degrees Fahrenheit, and degrees
Kelvin. The standard unity of the domain will be degree Celsius (°C).

— Other domains include CURRENT, having ampére (A) as standard unity,
RES STANCE, having ohm (Q) as standard unity, and LUMINOSITY, having
candela (cd) as standard unity.

All magnitude domains at least include addition, subtraction, and comparison as
functions applicable to their values, in addition to multiplication and division,
that will result in avalue of acomposed domain, as explained further on.

* Reference domains describe textual references in the universe of discourse.
These reference domains are represented using strings, i.e., sequences of Unicode
characters. A particular domain may impose restrictions on the alphabet it covers,
and on the length of the sequences it supports. All reference domains will
therefore be defined as subsets of the all-embracing domain of STRING, offering
all sequences of characters of any length that can be represented in Unicode.

* Denomination domains describe dedicated pricing and money references in the
universe of discourse. Although the currency conversion between distinct
denominations is actually undefined, currency conversions are often performed
using a predefined conversion scheme or using an approximation of the actual
conversion rates defined by the global money market at a particular moment in
time. Currencies defining a domain are for instance EUR VALUE (euro as the
unity), USD VALUE (US Dallar as the unity), and GBP VALUE (GB Pound as
the unity). Due to the fact that it is impossible to define a static transformation
between all available currencies, the currencies are not units of an encompassing

72 A METHODOLOGICAL KERNEL FOR CONCEPTUAL MODELLING

domain of VALUE, but instead define their own distinct domain having
currency-specific denominations.

e Composed domains describe values obtained by applying mathematical
calculations on a number of values from several domains. Although, in principal,
the obtained values could be represented by couples, e.g., (10m, 20m) as a value
of LENGTH x LENGTH, a composed value describes only the end result of the
calculation, e.g. 200 m? as a value of the composed domain LENGHT?.

— The composed domain of VOLUME offers a set of values for expressing dry
and liquid measures of capacity. Values of this domain can be expressed in
different units, such as litres, pints, and gallons. The standard unity of the
domain will be litre (I). Notice that the domain of VOLUME is actually a
composed domain, since it is equal to LENGHT?3, and the unity of litre is
equal to decimetre®.

Notice that it is forbidden in EROOS to use Boolean and integer attribute types.
Although such attributes are commonly used in object-oriented analysis, design and
implementation, we claim that there is a better way to represent the information
contained in a Boolean and integer attribute. In EROOQOS, the analyst is forced to reify
a Boolean and integer attribute into a class, thereby explicitly modelling the facts that
are concealed behind these attributes. A Boolean attribute expresses a fact that can be
true or false. This can also be represented using a relation participation, in which a
participant object can be participating in a relation link (true) or not (false). Another
representation could be a static subdivision into two specialization classes (true and
false class). An integer represents a number as the outcome of a specific count.
EROOS forces the analyst to explicitly model the elements that have been counted,
instead of modelling it in a summary version using a count attribute.

In addition, attributes can only represent a single domain value in EROOS. If there is
a need to model multi-valued attributes, the analyst must reify the multi-valued
attribute into a set of object, each having asingle attribute value attached.

4.3.2 Attribute Values

Associations involving objects of a class and values of a domain are treated
differently from associations involving objects only. Whereas the latter are modelled
by means of relations, associations involving objects and values will be modelled by
means of attributes. Attributes are restricted to model binary associations. The
structuring of the objects of a class C decorated by an attribute involving values of a
domain D, is at each moment in time a function from C to D, as illustrated in Figure
4.3. In order to emphasise the difference between objects, which have internal
properties, and values, which do not have internal properties, values are shown using
a textual representation. The defined characteristics for objects resulting from the
decoration of their class C are represented by lines connecting the decorated objects
with values of the decorating domain.

4.3. ATTRIBUTES, DOMAINS, VALUES, AND DECORATION 73

Permanent binding of an object with an attribute value may seem to be too restrictive
for the ultimate system to be developed. These values are often unknown to the
software system, or must be measured in order to obtain an approximation of the
value. However, object-oriented analysis is basically concerned with building an
abstraction of the universe of discourse, expressing information present in the
universe of discourse without considering how this information can be obtained by
the system at run-time. Therefore, focusing on the information from the universe of
discourse in its normal appearance should have priority over implementation issues
concerning the software system. Implementation issues regarding observations and
measurements of attribute values are described by Fowler [49].

= dx D

1\

dz

Figure 4.3: Objects decorated by an Attribute of Domain D at Moment t

4.3.3 Model Constraints implied by the Attribute Concept

EROOS incorporates important model constraints directly in the methodological
concepts. The following constraints are directly implied by the attribute concept:

Permanent binding: Each attribute decorating a given class implies the
permanent binding of every decorated object with a specific value of the
decorating domain. This means that each object of the decorated class must at all
times be associated with a value of the decorating domain. If it should be the case
that certain objects could exist without being associated with such a value, it is
clear that these objects do not share the attribute as a common property for the
class. In such case, an additional class must be introduced, expressing the fact
that an attribute value has been associated to an object of the original class.

Immutability: The attribute association of a given object with its value is
considered to be static. In particular, at the moment an object is created, it must
directly be bound to a value of the proper domain, and it will keep that bond for
its entire lifetime. Objects cannot switch from one attribute value to another
during their lifetime. If it is needed to change an attribute value, an additional
class must be introduced expressing the fact that an attribute value has been
changed.*®

The definition of an attribute can be found in Definition 4.4.

9 |n the EROOS universe, an attribute value can be changed into another value of the attribute domain.

74 A METHODOLOGICAL KERNEL FOR CONCEPTUAL MODELLING

An attribute is a nodel entity defining a property for a
class for which, at each nonent in tine, every object of the
class, called a decorated object, nust be associated with a
specific value of the domain defined for the attribute.

A domain is a collection of values that refer to static and
unchangeabl e properties in the universe of discourse. A
donai n can be a magnitude, reference, denomination, or a
conposed donai n.

G ven

Model M Cass C € M,; Attribute CA € M,; Donmain D € M;

CA TIME- (G - D) | 20 (per manent bi ndi ng)
Vit €TIME CA € CAn (i mut abi lity)

Definition 4.4: EROOS Kernel Attribute

4.3.4 Specification of an EROOS Attribute

The specification of an attribute decorating a class is represented in an attribute script.
This script introduces the definition of the attribute along with an extension of the
creation event. Since every object must at all times be associated with a specific
attribute value of the proper domain, the creation event must define how the
associated value will be determined. This is done by (1) defining a parameter for the
creation event by which the proper attribute value can be set, or (2) by defining a
default domain value for all objects of the class.* The syntax of an attribute script is
given in Table 4.3. As presented in Figure 4.4, an attribute is graphically represented
in the form of an ellipse containing the attribute name, attached to the corresponding
class. The definition of an extended creation event can be found in Definition 4.5.

<CLASS ‘ <Attribute
NAME> Name>

Figure 4.4: Graphical Representation of an EROOS Attribute

® As an alternative, the definition can be given as:

CA: TIME - (P (OU) - D) |Vt € TIME: dom(CA,)-C; or asCA: C - D.
2 Since attribute values cannot be changed in the EROOS kernel, defining a default value for an attribute is
not very meaningful since all objects of the class would share the same value in such case. Default values
are more useful in the EROOS universe, where objects can change their attribute values over time.

4.3. ATTRIBUTES, DOMAINS, VALUES, AND DECORATION 75

<EROCS kernel attribute script> =
"class" <CLASS NAME>
"definition"
"decorated by" ["unique"] "attribute"

<Attribute Name> ":" <DQOVAI N NAME>
["constrained by" [<lower bound> ("<" | "<")]
<Attribute Name> [("<" | "<") <higher bound>]]

"creation event"
<creation event nane>
["(" <paraneter name> ":" <DOMAI N NAME> ")"]

"effect”
("new self="<Attribute Name> "
| "new sel f>"<Attribute Nanme> "

"end cl ass" <CLASS NAMVE>

<par anet er nane>
<domai n expressi on>)

Table4.3: EROOS Attribute Script

An extended creation event for a class decoration, is an
event of a class that, if applied on a nodel instance at a
certain tine, in addition to adding a new object to the

obj ect population set for that class, will define a val ue of
the appropriate domain as the attribute value for the object.

G ven
Model M bject Universe QU;, Event Universe EU,
Event Set Instance E; Class C € M,; Attribute CA € M;
Domain D € M, Attribute Value a € D, Creation event ¢ € EU,
cla) E 4 0 T 0 € AQU:

(0 € G) A (0 € Gi) A (CA(0) = a)

Definition 4.5: Extended Creation Event for an EROOS Attribute

An attribute can only serve to decorate a single class. If there is a need to define an
attribute for more than one class, each class will have to define its own distinct
attribute, possibly all sharing the same attribute name. However, it is also possible to
define an attribute for a generalisation class, as presented in Section 4.6, which is
then, by default, part of each specialisation class that is derived from this class. A
class can be decorated by a number of attributes, in which each attribute defines a
certain property for all objects of the class. A domain can be used to decorate a
number of classes, decorating each class a number of times, for which each time a
distinct attribute for that class is defined. The resulting overall class description script
is a combination of all individual attribute scripts for a class. The different
components in the specification of an attribute script, as shown in Table 4.3, are the
following:

76

A METHODOLOGICAL KERNEL FOR CONCEPTUAL MODELLING

The domain of the attribute value and a name for the attribute must be specified.
In the same manner as class names, the name of an attribute must be an
expression in some natural language and must refer to a cultural entity. For
readability purposes, EROOS attribute names must be singular and represented in
title case. Moreover, all attributes decorating a single class must have different
attribute names in order to distinguish them.

In most cases, the binding between objects of a decorated class and values of the
attribute domain will be a many-to-one binding, in which an object has a single
atribute value, whereas that value can decorate an unrestricted number of
objects. However, it is possible to define an integrated constraint that imposes the
uniqueness of an attribute value among all objects of the class, using the unique
keyword. The integrated uniqueness constraint imposes a one-to-one binding
between the class and the domain, in which a value can only be used as an
attribute value for a single object. For instance, this allows the modelling of
registration numbers for an institute, or passport numbers for a government.
Notice that, due to the property of permanent binding, each object of the
decorated class must be associated with a specific value. The attribute value for
an object cannot be left undefined.

An integrated constraint can be defined that imposes restrictions on the allowed
domain values by defining a lower and/or higher bound. As such, a restricted
range of attribute values can be defined for the attribute.

The specification of the creation event in an attribute script must correspond to
its definition in the class script. In particular, the name of the creation event in
the attribute script must be identical to its name as defined in the class script.

A formal argument serves as a symbolic name for a value of the decorating
domain. Each time the creation event occurs, a concrete argument has to be
supplied for each formal argument. The formal argument will be used in
establishing the binding of the new created object with a value of the decorating
domain. Typically, the argument name is but does not have to be identical to the
name of the attribute. Argument names must be represented in lowercase.

The final component in the definition of a decorated creation event specifies the
new binding of the decorated object with a value of the domain. For that purpose,
an assertion will be included. The assertion states that, if the given implicit query
-><attribute name>, defined in section 4.3.6, will be applied to the newly created
object, referred to as self, at the moment the creation has occurred, referred to as
new, the value described by the expression on the right-hand side must be
returned as a result. A more detailed treatment of assertions can be found in
section 4.7.4 on events. Broadly speaking, the domain expression defining the
actual domain value can be built using the formal argument along with constants
of the domain. The expression may involve functions and operators applicable to
values of the decorating domain.

4.3. ATTRIBUTES, DOMAINS, VALUES, AND DECORATION 77

4.3.5 Default Attributes

EROOQOS attributes serve to model properties shared by all the objects of asingle class.
Attributes shared by all objects of every class are referred to as default attributes.
Their definition is an integral part of the EROOS methodology. The Creation
Timestamp for an object is defined as a default attribute in EROOS. The Creation
Timestamp is used to specify the exact time at which an object has come into
existence. The Creation Timestamp will be fixated at the time of creation of the
object, i.e., at the moment of occurrence of the creation event. Although the Creation
Timestamp does not have to be defined explicitly, its semantics can be defined in an
implicit default EROQOS attribute script, as presented in Table 4.4.

The definition of the default attribute Creation Timestamp introduces its hame and
domain, the TIME domain, as well as the extension of the creation event specifying
that the default attribute Creation Timestamp has to be initialised with the current
time, expressed using the keyword now. Because the attribute Creation Timestamp is
available by default for every class, it would be incorrect to explicitly introduce an
attribute expressing the same information as the Creation Timestamp, since this
would lead to two equal attributes decorating the same class, namely, the explicit
attribute and the default attribute Creation Timestamp.

<EROCS default creation tinestanp> =
"cl ass" <CLASS NAVE>
"definition"
"decorated by attribute Creation Tinmestanp : TIME"
"creation event"
<creation event nanme>
"effect”

"new sel f =Creati on Tinestanp = now'
"end cl ass" <CLASS NAME>

Table4.4: Implicit EROOS Script for the Default Attribute Creation Timestamp

Moreover, it is not permitted in EROOS to model an attribute that can be derived
from other attributes present in the model [131]. For example, when modelling atime
period, the start time, end time, and duration cannot be modelled together. In such
case, only the start time and duration should be modelled, since the end time can be
derived. Although it seems that we could also have chosen to model the start time and
the end time as attributes, this is however not the case. EROOS obliges the modeller
to take those attributes that do not give rise to additional constraints in the model.
Since the choice of start time and end time as attributes would introduce an additional
constraint stating that the end time must be larger than the start time, while the choice
of start time and duration as attributes would not introduce any additional constraint,
EROOQOS oblige the analyst to model these attributes, whereas the end time can be

78 A METHODOLOGICAL KERNEL FOR CONCEPTUAL MODELLING

modelled as a query, as presented in Section 4.6.9. Tasker [146] identifies a number
of types of situations to help analysts recognise derivable attributes.

4.3.6 Implicit Attribute Queries

The definition of an attribute decorating a class is automatically complemented with
an implicit query for retrieving the attribute value. In general, a query offers the
ability to inspect the properties of an object. Given an attribute A decorating a class C
and involving the domain D, the implicit query ‘—=A’, applicable to each object ¢ of
the decorated class C, returns the value of the decorating domain D that is associated
with the object c. This implicit query ‘=A’ isused in (1) specifying the semantics of
the creation event, (2) specifying queries in order to retrieve information from a
model instance, (3) specifying model constraints for which the attribute is relevant,
and (4) specifying the semantics of mutation events in the EROOS universe, as
presented in Section 5.1.7. The definition of the implicit query ‘A’ can be found in
Definition 4.6.

An inplicit query -»A or -»C/ A for an attribute A of a class C
is a query that can be applied on an object of class C at a
noment t, and that returns the attribute value bound with the
obj ect on nonent t.

G ven
Model M Cass C € M,; Attribute CA € M, Domain D € M;
Query »C A € N;
-CA TIME-> (G - D |
Vt €TIM Voe G: =-CA (0) =CA (0)

Definition 4.6: Implicit EROOS Kernel Attribute Query

4.3.7 EROOS Attributes for the Library Example

Given the example of the library system that was presented in Section 2.3, two
attributes can be identified for the class LIBRARY, namely Maximum Lending Period
and Amount Of Daily Fine. The resulting creation event for the library class can be
composed through a combination of all parameters and effects of the individual
attribute scripts, as presented in Table 4.5.

Notice that, as modelled in the UML model presented in Figure 2.1 on page 27, it is
forbidden in EROOS to model

e an attribute that represents the maximum number of items that may be lent from
a library, since it is not allowed to use integer attributes. A reification of this
attribute into a class has to be made. Thisis presented further in Section 4.4.7.

4.3. ATTRIBUTES, DOMAINS, VALUES, AND DECORATION 79

an attribute that represents the start date of a borrowing, since this is already
expressed by means of the default attribute Creation Timestamp for the class
BORROWING.

cl ass LI BRARY
definition
decorated by
attribute Maxi num Lendi ng Period : DURATI ON
attribute Amount O Daily Fine : EUR VALUE
creation event
establish (1 ending period: DURATI ON,
fine anpbunt: EUR VALUE)
ef f ect
new sel f =Maxi mum Lendi ng Period = | endi ng peri od
new sel f =Anpunt O Daily Fine = fine amunt
end cl ass LI BRARY

Table4.5: EROOS Attribute Script for the Library Example

4.3.8 Contributions, Related Work, and Reflections

Our contributions concerning the attribute concept are the following:

The constructional model approach, in which model instances can only grow
and information can only be added to a model instance, is a crucia property of
the EROOS kernel in achieving the Principle of Uniqueness. Attribute values
cannot be changed, but instead the mutation of an attribute value must be reified
into the creation of a distinct object representing this mutation event. It allows
modellers to focus on the information of the universe of discourse that must be
modelled. A modeller does not have to decide on which information will be kept
inside a model and which information could be overridden, since the set of
knowledge and facts inside a model instance can only be enlarged.

The default attribute Creation Timestamp for all objects of every class, enables
the modeller to reason about the moment at which an object has come into
existence. This attribute does not have to be modelled explicitly, but it is
automatically available for every object in EROOS. A modeller often has to
reason about the time a certain event occurred, for example, to reconstruct the
order in which certain requests were made, to determine the age of a certain
object or to calculate the duration of a certain activity. The modeller does no
longer have to model these attributes, nor is it necessary to decide whether such
attributes are needed in the model. The EROOS methodology automatically
exposes this kind of information for all objects.

80

A METHODOLOGICAL KERNEL FOR CONCEPTUAL MODELLING

* Theprohibition of using Boolean attributesand integer attributesin EROOS,
the fact that attribute values cannot be undefined, and the prohibition of
derived attributes, forces the analyst to model explicitly a number of factsin the
model using classes, specialisation hierarchies, and queries, rather than hide this
information in a compact form inside an attribute. Such incorporation of implicit
model constraints in each methodological concept provides dedicated semantics
for each model concept, thereby limiting its usage to a specific context and
forcing the analyst to use the most adequate concepts in all situations.

The EROQOS attribute concept is largely comparable with the attribute concept in
UML. However, our methodological approach that drives the analysis to a single and
unique conceptual model, is a rather novel vision on conceptual modelling. Most
analysis methods use modelling guidelines and metrics [118][26][25][44], and
analysis patterns [48] in order to steer the analyst to a resulting conceptual model of
sufficient quality. We clam that such approaches are rather informal and
noncommittal, and do not offer the analyst suitable methodological support for
performing conceptual modelling. Although a casual analysis methodology seems
rather attractive in providing sufficient freedom for the modelling process, a strict and
rigid approach, incorporating well-defined outcomes, are of more avail to the analyst.

The constructional model approach in which model instances can only grow through
the addition of information, thereby enlarging the set of knowledge and facts that are
stored in a model, is largely comparable with the evolution monotonicity concept in
the MOOSE framework [155]. Information additions to the model substitute model
mutations. Afterwards, the latest and most relevant information can easily be
retrieved from the model instance at any moment using querying mechanisms.

An observation that can be made is that the application of the EROOS kernel
methodology gives rise to a class model with a huge number of classes. Since the
EROOS kernel focuses on achieving the Property of Uniqueness, al information in
the EROOS model is specified as individual objects. This leads to a huge number of
classes present in a conceptual model. While other analysis models allows a modeller
to specify Boolean attributes, integer attributes and undefined attributes, the EROOS
methodology forces the modeller to introduce additional objects for representing
these facts. Especially transforming integer attributes into classes give rise to a huge
increase in the number of objects present in a model instance. For instance,
considering a show with a limited number of allowed attendants. The EROOS
methodology forces the analyst to model every single possible attendance, e.g.,
represented as an entrance ticket, as an object on its own instead of modelling the
maximum number of attendants for the show.

A second observation is that attribute values tend to have a limited validity. Since the
EROOS kernel offers only mechanisms for extending the information contained in a
model instance rather than changing this information, attribute updates have to be
modelled using explicit update objects. Therefore, objects representing facts with
related attribute values often have update objects attached to them for modelling
changed attribute values.

4.4. RELATIONS, LINKS, AND REFINEMENT 81

4.4 Relations, Links, and Refinement

Objects, as a representation of facts from the universe of discourse, usually do not
exist on their own. Typically, a fact in the universe of discourse is related to many
other facts, and may even be dependent on a number of facts in order to be valid. A
relation in EROOS serves to describe relationships among objects as they can be
observed in the universe of discourse. First, this section introduces the principles
underlying the refinement of a class, namely the encapsulation of relations within
classes and the property of existentia dependency for the modelling of relations.
Hereafter, the model constraints implied by the relation concept are defined. Third,
the notion of arelation script is introduced, the implicit relation queries* |’ and * 1’
are defined in order to retrieve information about the relation, and the integrated
constraints on connectivity and multiplicity are presented. Last, the EROOS relations
that can be identified in the running example of the library system are presented.

4.4.1 EROOS Relations and Object Links

One of the basic characteristics of EROOS, distinguishing it from UML and other
methods and notations for Object-Oriented Analysis, concerns the methodological
rule that relations cannot exist on their own. In EROOS, every relation is
encapsulated in a class. It is only in the design phase that we have to decide if a
relation will be implemented by means of a class or an ordinary association. As such,
the choice to model a certain relational thing as a relation or a class, will totally
disappear. It is always be modelled as both a class and relation at the same time.

A relation expresses a number of facts from the universe of discourse, and therefore
must always be contained inside a class representing and materialising these facts as
objects. A relation encapsulated in a class is said to refine the class, defining
additional characteristics for each object of that class by encapsulating a link between
objects of other classes within the refined object. Each object of the refined class will
at all times be associated with exactly one object of each of the classes involved in the
relation, which are called participants. This property is referred to as existential
dependency, whereby objects of the refined class are existentially dependent on
objects of the participating classes. At the same time, the relation expresses that
objects of each participating class have the potential to become associated with
objects of the other participating class, via refined objects that encapsulate the
association links.

Relations in EROOS are restricted to model unary and binary relations. A relation in
EROOS is thus either a binary relation, i.e., a relation involving 2 participating
classes, or aunary relation, i.e., arelation involving a single participating class. The
structuring of the objects of a class R, refined by a binary relation involving classes A
and B, and a class S, refined by a unary relation involving class C, at a certain
moment t, isillustrated in Figure 4.5.

82

A METHODOLOGICAL KERNEL FOR CONCEPTUAL MODELLING

Figure4.5: Objectsrefined by a Binary and Unary Relation at Moment t

The characteristics resulting from the refinement of a class are represented by lines,
connecting refined objects with objects of the participating classes. As such, the
object referred to asr is associated with object a of class A and object b of classB. In
fact, the object r is associated with the tuple (a,b) expressing a link of the relation for
class R between classes A and B. In the same way, the object referred to as sin is
associated with the object ¢, or more precisely associated with the tuple (c) expressing
alink of the relation for class S involving class C. Notice that several objects of a
refined class can be associated with a single object of a participating class or even
with the same tuple of objects, for example r and r,, and also s and s,. Such objects
are called duplicates, since they share the same link. Duplicate objects differ from one
another due to the unique object identity assigned to each of them. Each object of a
refined class must at all times be associated with an object from each of the classes
participating in the relation underlying the refinement. On the other hand, objects of
the participating classes can exist without being associated with any objects of the
refined class, for example b, and c,.

EROOS restricts relations to be unary or binary. Relations of a higher degree are to be
modelled as a combination of unary and binary relations. Rumbaugh [128] indicated
that associations with an arity higher than two are usually not useful unless the
multiplicity is many on all ends. Even in such case, EROOS obliges to decompose an
n-ary relation into a number of binary relations. The reason behind the restriction to
unary and binary relations, is to force the analyst to look for underlying dependencies
that are often not directly visible at first sight. Instead of modelling an n-ary relation,
the analyst has to study the relation between each pair of participating classesin order
to find potential dependencies that are unrelated to the original n-ary dependency. If
one wants to model, for instance, arelation R=(A,B,C) between classes A, B, and C,

4.4. RELATIONS, LINKS, AND REFINEMENT 83

the analyst has to investigate the universe of discourse to assess whether there exist
preceding dependencies between (A,B), (A,C) or (B,C).

Depending on the universe of discourse, one of the following binary decompositions,
presented in Figure 4.6, must be chosen: ((A,B),C), ((A,C),B), (A,B,Q)),
((A,B),(A,Q)), ((A,B),(B,C)), or ((A,C), (B,C)).?? The criterion for making the proper
binary decomposition is to investigate whether there exists a preceding dependency
between objects of two participating classes independently from the relation R. For
instance in the case of R=((A,C),B), details from the universe of discourse could
show that objects of classes A and C can be related in some manner without directly
having to be linked to objects of class B in the relation R.

R=((A.B).C) i R=((A.C).B) | R=(A,(B.,C))
AB : :
A 6 B 1| A B i A B
RO | R /@ | R\Q\
e | 5
C e C C ®
AB
A o) B A '65 B A B

C

OB
o5

A@ C

R=((A,B),(A,C)) R=((A.B).(B.C)) R=((A.C),(B,C))

R O | R O

Figure 4.6: Decomposition of an n-ary Relation into Binary Relations

In EROQS, the refinement of classes by means of unary and binary relations must
result in apure hierarchical structuring of the classes. A class cannot be refined with a
relation directly or indirectly involving its own objects. Due to the property of
existential dependency, such self-refinements would make it impossible to create the

% Notice that this is not an exhaustive list, since more complex structures, involving intermediate classes,
could be identified. The ultimate relation R will however always exist of two participating classes that are
directly or indirectly dependent on classes A, B, and C.

84 A METHODOLOGICAL KERNEL FOR CONCEPTUAL MODELLING

first instance of that class. More precisely, for each chain of refinements consisting of
relations R; refining a class C; with Ci.; as aparticipating class (1 < i < n), Cj# C, for
al 0<j <k < n.2® In addition, each of the classes must somehow be related to each of
the other classes in the model by means of a number of model entities. This enforces
the modelling Principle of Minimalism, as defined in Section 3.5. The Principle of
Minimalism guides the analyst in determining which aspects of the universe of
discourse are important to be modelled, and which of them can be ignored in the
context of the model to be developed. As such, if aclassis not related to other classes
in a conceptual model, either an aspect of reality has been modelled that is of no
relevance, or some aspects, e.g., a number of relations, have been overlooked.

Existential dependency among objects may seem too restrictive for the ultimate
system to be developed. A large deal of run-time flexibility, in populating the
implementation classes with instances, would be lost. As aready mentioned, focusing
on the structures from the universe of discourse in its normal appearance should have
priority over implementation issues concerning the software system. Implementation
issues regarding object-oriented conceptual models are discussed in Section 4.8.4.

4.4.2 Model Constraints implied by the Relation Concept

EROOS incorporates important model constraints directly in the methodological
concepts. The following constraints are directly implied by the relation concept:

» Existential dependency: A relation refining a class implies the existential
dependency of the refined objects on exactly two objects in the case of a binary
relation, and on one object in the case of a unary relation. This means that each
object of the refined class must, at all times, be associated with an object of each
of the participating classes. If it should be possible that certain objects must exist
without being associated with such participating objects, the relation property is
not shared by all objects of the class. In such case, an additional class must be
introduced, expressing the fact that certain objects are dependent on participation
objects while other objects do not comply with such obliged dependency.

* Immutability: The association of a given object with its participating objects is
considered to be static. In particular, at the moment an object is introduced, it
must be associated with an object of each of the participating classes, and it will
keep that association for its entire lifetime. Objects cannot switch from one
participating object to another during their lifetime. If it is needed to change a
participating object, an additional class must be introduced expressing the fact
that a link to a participating object has been changed.?*

The definition of arelation can be found in Definition 4.7.

As explained later, specialisation structures can be used to model recursive existential dependency
hierarchies. However, in such case there must always be a speciaised class that is unrefined and thus can
serve as akind of sentinel for the recursive dependency structure.

#|n the EROOS universe, alink of arelation can be redirected to another object of the participating class.

4.4. RELATIONS, LINKS, AND REFINEMENT 85

Arelation is a nodel entity defining a property for a class
for which, at each monent in time, every object of the class,
called a refined object, nust be associated to a specific
object, called a participant object, of the participating
class defined for the relation.

A relation can either be a binary relation, defining exactly
2 participating classes for the refined class, or a unary
relation, defining exactly 1 participating class.

G ven

Mbdel M Cass CD E F,Gé& M,; Binary Relation CB € My;

Unary Relation CU € M;;

CB: TIME-= (G ~-=(DxE)) | (existential dependency)
Vit eTIME CB < CBo (i mutabi lity)

CU TIME-(F - G) | (existential dependency)
Vit e TIME CJ € CU (immutability)

Definition 4.7: EROOS Kernel Relation

4.4.3 Specification of an EROOS Relation

The specification of arelation refining a class is represented in arelation script. This
relation script identifies the participating class or classes of arelation. The property of
existential dependency influences the creation of objects of arefined class. Each time
a new refined object is to be created, its binding with objects of each of the
participating classes must be established as well. Therefore, the creation event must
be extended in order to establish the bindings of the new refined object with an object
of each of the participating classes. The syntax of arefinement script is given in Table
4.6. As presented in Figure 4.7, arelation is graphically represented in the form of a
double circle within the refined class, and attached to the classes that participate in
the relation. The double circle expresses the possibility of duplicate links. Duplicate
links are possible when links are encapsulated in objects, since the object identity will
distinguish the objects even if two objects contains an identical link between the same
participating objects. The definition of the extended creation event can be found in
Definition 4.8.

<ROLE
<CLASS NAME> NAME> <CLASS

@) NAME>

<ROLE |<CLASS NAME>| <ROLE
NAME> ') NAME>

<> 7 <j>

<CLASS
NAME>

<CLASS
NAME>

Figure4.7: Graphical Representation of a Unary and Binary EROOS Relation

86 A METHODOLOGICAL KERNEL FOR CONCEPTUAL MODELLING

<EROCS kernel relation script> =
"cl ass" <CLASS NAME>
"definition"
("refined with binary rel ation"

(<positive nunber> | "unlimted" | "«")2 <CLASS NAVE>
["as" <ROLE NAME>] ","
(<positive nunber> | "unlimted" | "o") <CLASS NAME>

["as" <ROLE NAME>]
| "refined with unary rel ation"
<CLASS NAME> ["as" <ROLE NAME>]|)
(("unlimted" | "o") "occurrences" | "one occurrence"
| <positive nunber larger than 1> "occurrences")%
"creation event"
<creation event name>
"(" <parameter name> ":" <CLASS NAME>
["," <paraneter nane> ":" <CLASS NAME>] ")"
"effect”
"new sel f |"<Participant Name> "=" <paraneter nane>
["new sel f |"<Participant Name> "=" <paraneter nanme>]
"end cl ass" <CLASS NAME>

Table 4.6: EROOS Kernel Relation Script

An extended creation event for a class refinenent, is an
event of a class that, if applied on a nmbdel instance at a
certain tinme, in addition to adding a new object to the

obj ect population set for that class, will define alink to
objects of the appropriate participating classes as the
relation link for the object.

G ven
Model M Object Universe QU;, Event Universe EU,
Event Set Instance E; Cass Bl1,B2,U € M,; Object p € B1;
hject q € B2; Object r € U, Creation event cl,c2 € EUY,
Binary Relation CB € M,; Unary Relation CU € M;;
cl(p,q) € B+, 0 30 € AJ:
(o0 € G) A (0o € Gu) A (CBu(0) =(p,a))
c2(r) ek, 0 30 € QU
(0 & G) A (0 € Gi1) A (CUu(0) =17)

Definition 4.8: Extended Creation Event for an EROOS Relation

% See Section 4.4.5 for the definition of connectivity constraints, and Section 4.4.6 for multiplicity
constraints.

4.4. RELATIONS, LINKS, AND REFINEMENT 87

A relation can only serve to refine a single class, whereas a class can be refined by
only one relation. If there is a need to define a specific relation for more than one
class, each class will have to define its own distinct relation, possibly all sharing the
same role names. However, it is possible to define a relation for a generalisation
class, as presented in Section 4.6, which is then, by default, part of each specialisation
class that is derived from this class. The different components in the specification of a
relation script, as shown in Table 4.6, are the following:

e Thedefinition of arelation essentially identifies the participating class or classes.
In addition, arole name for each participating class can be defined as areference
to it, in order to emphasise the role that a participating class assumes in the
relation. For readability purposes, a role name must be a singular noun in
uppercase, and must be unique for the relation in order to distinguish them. Role
names are mandatory in binary relations that model links involving two objects
of the same class, i.e, relations from a participating class to itself. In such
relations, the participating class has two distinct roles in the relation, which must
be distinguished using role names.

e The specification of the creation event in a relation script must correspond to its
definition in the class script. In particular, the name of the creation event in the
relation script must be identical to its name as defined in the class script.

A formal argument serves a symbolic name for an object of the participating
class. Each time the creation event occurs, a concrete argument has to be
supplied for each formal argument. The formal argument will be used in
establishing the binding of the new object with an object of each participating
class. Typically, the argument name is but does not have to be identical to the
role name or the name of the participating class. Argument names must be
represented in lowercase.

e The fina component in the definition of a refined creation event specifies the
binding of the refined object with an object of the participating class. For that
purpose, an assertion will be included. The assertion states that, if the given
implicit query | <Participant Name>, defined in section 4.4.4, will be applied to
the newly created object, referred to as self, at the moment of creation, referred to
as new, the object on the right-hand side must be returned as a result.

4.4.4 Implicit Refinement and Participation Queries

The definition of arelation refining a class is automatically complemented with one
or two implicit refinement queries applicable to all objects of the decorated class, and
an implicit participation query applicable to all objects of each participating class.
These queries offer the ability to inspect and retrieve information concerning the
current binding of a refined object with objects of the participating classes. Given a
relation refining a class C involving the participating classes P and Q,

» theimplicit refinement queries* | P and* | Q’,or * | PR and‘ || QR’ in case that
PR and QR are role names given to P and Q in the relation, applicable to each

88

A METHODOLOGICAL KERNEL FOR CONCEPTUAL MODELLING

object c of the refined class C, returns the object of the participating class P and
Q contained in the relation link for the refined object c.

« the implicit participation query ‘ 1 C' or * 1 PR/C’, applicable to each object p of
the participating class P, and * 1 C' or * 1 QR/C’, applicable to each object q of
the participating class Q, returns the set of objects of class C that encapsulates a
relation link in which the object p, respectively q, participates.

Therelation between® [P and‘1C issVce CVpeP.c|P=p=ceplC

An implicit refinement query [P or |CP for arefined class C
having a participant P, or |R JCOUR [RP, or |CR P when
the participant P has a role nane R is a query that can be
applied on an object of the refined class at a nonment t, and
that returns the participant object contained in the link for
t hat object on nonment t.

G ven
Model M Binary Relation CB € M,; Unary Relation CU € M;y;
Gass CODP,QR E M,;; Query |[CP, |TQ |[DR € N;
P TIME = (G = P) |
Vt eTIME Vc e G: |[TP(c) = P(CB(c))
dQ TIME - (G ~->Q) |
Vt eTIME Vce G: [Q(c) = QCB(c))
JDDR TIME - (O - R) |
Vt €eTIME VdeD: |[DR(d = Cy(d)

Definition 4.9: Implicit EROOS Refinement Query

An inplicit participation query 1Cor TP/ Cfor a participant
P of a refined class C, or inplicit query {R C or 1P/ R C when
the participant P has a role name R is a query that can be
applied on an object of the participating class at a noment

t, and that returns the set of all refined objects that
contains a link in which the object is involved on nonment t.

G ven
Model M Binary Relation CB € M,; Unary Relation CU € M;
Cass COP,QR E M,;; Query tP/IC 1QC TR C € N,
TPIC TIME - (PL » P(C)) | VIt € TIME

VpePkh: Yce G : ce tPIG(p) « P(CB(c)) =p
TQC TIME-(Q = PC))| Yt € TIM

VgeQ: YVce G: ce 1QG(g) « QCB(c)) =
'"R'D TIME - (R - P(DO))| Vt e TIM

Vi eR: VYVdeD: de tRD(r) & CJ(d) =7

Definition 4.10: Implicit EROOS Participation Query

4.4. RELATIONS, LINKS, AND REFINEMENT 89

The notation supports the view of zooming into the elements that are an existential
part of an object (projection |), and zooming out to the elements in which an object is
contained (election 1). These implicit queries are mainly used in (1) specifying the
semantics of the creation event, (2) specifying queries in order to retrieve information
from a model instance, (3) specifying relation navigation paths from an object to a set
of related objects in a model instance, and (4) specifying the semantics of mutation
events in the EROOS universe, as presented in Section 5.1.7. The definition of the
implicit refinement and participation queries can be found in Definition 4.9,
respectively Definition 4.10.

4.4.5 Integrated Relationship Constraints on Connectivity

The definition of a binary relation can be complemented with connectivity
constraints, restricting the existence of certain combination of links. The definition of
an EROQS relation also specifies how many different objects of one participating
class can be associated with a single object of the other participating class at a
moment in time, through objects of the refined class encapsulating the links, and vice
versa. This type of constraint, referred to as connectivity constraint, is integrated into
the EROOS relation concept. The specification of a connectivity constraint consists of
the specification of a connectivity value for each class participating in the binary
relation. When no restriction is placed on the number of related objects, the value for
the connectivity constraint is defined as ‘oo’ or unlimited.

The specification of a connectivity constraint is integrated in the participant clause of
the relation specification. In particular, as outlined in Table 4.6, the description of
each participant clause must start with a positive number written in a numerical or
verbose style, referred to as the connectivity value of the participant, or ‘e’ or
unlimited to specify an unrestricted value. As presented in Figure 4.7, a connectivity
constraint is graphically represented by noting the connectivity value in the
neighbourhood of the participating class.

e I’ represents the connectivity value for the participating class on the left-hand
side, i.e., the maximum number of objects of that class that can be associated
with a single object of the participating class on the right-hand side, through
objects of the refined class encapsulating the links.

e ']’ represents the connectivity value for the participating class on the right-hand
side, i.e., the maximum number of objects of that class that can be associated
with a single object of the participating class on the left-hand side, through
objects of the refined class encapsulating the links.

The value ‘e’ or unlimited will not be included in graphical representations since it
does not stand for an actual restriction. In such cases, the line connecting the refined
class with the participating class will not be having a connectivity value.

90 A METHODOLOGICAL KERNEL FOR CONCEPTUAL MODELLING

4.4.6 Integrated Relationship Constraints on Multiplicity

The definition of a unary relation or a binary relation can be complemented with a
multiplicity constraint, restricting the number of identical links that can be
encapsulated in objects of the refined class. Since relation links in EROOS are always
encapsulated in a refined object, the same link can be used severa times to refine
different objects of the refined class. Such links, called duplicates, can be
distinguished from each other by means of the intrinsic object identity of the object in
which the link is encapsulated. A multiplicity constraint for a binary relation specifies
how many times a single object of the participating class on the left-hand side can be
associated with the same object of the participating class on the right-hand side,
through objects of the refined class that encapsulate the links. A multiplicity
constraint for a unary relation specifies how many times a single object of the
participating class can be used as a participant for objects of the refined class.

The specification of the multiplicity constraint, presented in Table 4.6, is specified in
a separate clause in the definition of arelation. The definition of arelation includes a
multiplicity clause in which the multiplicity value for the relation must be defined in
the form of a positive number in a numerical or verbose style, or be defined as
unrestricted, using ‘e’ or unlimited. The graphical representation of multiplicity
constraints for a unary and binary relation is illustrated in Figure 4.8.

e If the number of duplicates is bounded to a specific vaue ‘i’ (i > 1), the
multiplicity value is noted inside a double circle, representing the relation.

e If an unlimited number of duplicates are allowed (‘c0’ or unlimited as
multiplicity value), adouble circle is drawn for the relation.

e If the number of duplicates is set to 1, thus actually when no duplicates are
allowed, asingle circleis drawn for the relation.

® NAME> O NAME> O NAME>
<CLASS NAME>
<CLASS o <CLASS <CLASS <CLASS NAME <CLASS
NAME> © NAME> NAME> O NAME>
<CLASS <CLASS NAME> <CLASS
NAME> @, NAME>

Figure 4.8: Graphical Representation of EROOS M ultiplicity Constraints

4.4. RELATIONS, LINKS, AND REFINEMENT

91

4.4.7 EROOS Relations for the Library Example

Given the example of the library system that was presented in Section 2.3, a large
number of relations can be identified. Based on the classes for the library system that
were defined in Section 4.2.4, the relations between these classes are represented in
Figure 4.9. Since the EROOS relation scripts do not provide any additional
information next to the extension of the creation event, we have omitted them.

DISMISS DESTRUCTION
SECONDARY
AUTHOR Q /O
DEATH — BOOK COPY
O PERSON MAIN AUTHOR @ @ PUBLISHER
DESELECTION
Q FINE LIQUI(%ATION
I
DEREGISTRA | |REGISTRATION |SELECTION | ;rgy| CORRQWING /O
TION O Q\
PAYMENT
RETURN : :
ALLOWANCE \O 1
/O TICKET
/
DISSSUTION LIBRARY \ PO%S)ESSION
@)

REBRUCTION
Maximum Amount Of WRITE-OFF
Lending Period Daily Fine

Figure4.9: EROOS Kernel Relationsfor theLibrary System

The following observation can be made:

The relation structure can get quite complex when all relevant relations are
added. This is due to the split-up of activities into two object that represent the
start and the end of the activity. The EROOS universe, presented in Chapter 5,
will enable to merge these two objects into a single object representing the whole
activity. The darker shaded classes can then be merged with their counterparts to
whom they are attached.

The refinement for the class PAYMENT using a binary relation between FINE
and RETURN expresses the fact that a person can only pay her or his fine for a
book after the borrowed book has been returned. It is impossible to calculate the
amount of the fine as long as the borrowing has not been ended.

The identification of relations give rise to the discovery of new classes for the
library system, such as SECONDARY AUTHOR, representing the secondary
authors of a book, ALLOWANCE, representing the fact that a registered person

92

A METHODOLOGICAL KERNEL FOR CONCEPTUAL MODELLING

has the possibility of borrowing a certain number of books, REDUCTION,
representing the fact that a library can decrease the maximum number of books
that can be lent to a single person, SELECTION, representing the fact that a
person can have chosen a certain book for borrowing, and DESELECTION,
representing that a person has chosen not to borrow a certain selected book. In
fact, the class ALLOWANCE is areification of an integer attribute representing
the maximum number of lending items, as indicated in Figure 2.1 on page 27.
Because the EROOS methodology does not allow to model integer attributes, the
modeller is forced to make explicit an ALLOWANCE object that represents the
possibility of borrowing a book. The class REDUCTION represents a
diminishing of the attribute. The constraint expressing that a person can only
borrow a maximum number of books, is now expressed by means of an
existential dependency from the borrowing object on an allowance object. The
reason behind this restriction is that the modeller should have a clear view on
such reified attribute in order to being able to utilise it when necessary, eg.,
when the borrowing period of a book differs between different lent item.

The multiplicity constraints seem to be very loosely formulated. For example, the
fact that a person can have many registrations at the same library seems to be not
in correspondence with the universe of discourse. It is impossible that a person
has more than one registration at the same time at a library. But one must also
take into account that a deregistration does not cause the registration object to
disappear, but merely denotes that the registration object is participating in a
deregistration object. The model is thus correct, since a number of finished
registrations can exist together with a single running registration. What is
currently missing in the model, is a constraint stating that there can exist only one
active registration for a person at a library. However, a multiplicity constraint for
the deregistration, restricting the possibility for a person to deregister more than
once for a certain registration, is nevertheless appropriate for the current model.

One would expect the specification of more connectivity constraints. For
instance, one could express that a book copy can be in possession of at most one
library. However, since the EROOS kernel offers a constructional model
approach, it does not make sense to introduce these kinds of connectivity
constraints. Since objects cannot be destroyed in the EROOS kernel, a
connectivity constraint would restrict the existence of links to the first link that
has been created. So, when a book copy is written-off by one library and is
afterwards acquired by another library, it cannot come into possession of the
second library, since the connectivity constraint only allows a copy to be related
to at most one library. The writing-off of the possession only creates an object of
the class WRITE-OFF, and does not destroy the possession object. Regarding the
fines, one can nevertheless state that a fine can be paid only once using the
appropriate return object, and that the return of a borrowing can give rise to the
payment of at most one fine.

Although a distinction has been made between the main author of a book and the
secondary authors of a book, the order in which the secondary authors are ranked
is not captured in the model. However, we will introduce this ordering in Section

4.4. RELATIONS, LINKS, AND REFINEMENT 93

4.6, when specialisation has been introduced for the EROOS kernel. In addition,
there is no class representing the end of the lifetime of a secondary author object,
since they are considered to exist as long as a book has not been dismissed.

4.4.8 Contributions, Related Work, and Reflections

Our contributions concerning the relation concept are the following:

* The systematic usage of existential dependency as the main criterion to
determine the core model structure, is a key contribution of our work. Such
approach leads to a hierarchical object dependency structure that gives a clear
insight in which information is dependent on certain other information. It leads to
a powerful model that implies a large number of model constraints directly
through its model structure. Relations in EROOS are explicitly and uniquely
modelled, since they are always encapsulated in a refined class. In contrast to
that, UML offers only a number of possibilities to model relations, such as
associations, association classes, qualified associations, aggregates,
compositions, and an association reified into a class.

* The constructional model approach, in which model instances can only grow
and information can only be added to a model instance, is a crucial property of
the EROOS kernel in achieving the Principle of Uniqueness. Relation
participants cannot be changed, but instead the mutation of a participant must be
reified into the creation of a distinct object representing this mutation event. It
allows modellers to focus on the information of the universe of discourse that
must be modelled. A modeller does not have to decide on which information will
be kept inside a model and which information could be overridden, since the set
of knowledge and facts inside a model instance can only be enlarged.

The EROOS relation concept is somewhat comparable with the association concept in
UML. Similarities between classes and relations are also identified by Rumbaugh
[129]. However, in this approach that has evolved into OMT [93][126], there remains
a strict distinction between classes and relations. Using existential dependency as the
key modelling criterion to construct the conceptual model structure, has also been
applied by the M.E.R.O.DE. methodology [138][136][137]. M.E.R.O.DE. defines
existential dependency as ‘the total embedding of the life of a so-called marsupial
object occurrence into a mother object occurrence’ . Since objects come only into
existence in the EROOS kernel and are never been destroyed, we define existential
dependency as ‘the obligation of the existence of a participant object (corresponding
to the mother object in M.E.R.O.DE.) a the moment the refined object
(corresponding to the marsupial object in M.E.R.O.DE.) is created’. The EROOS
universe, which is defined in Chapter 5, introduces the concept of a class archive, and
enables to specify a specific restriction between the destruction timestamps of the
objects. This allows for a refined (marsupial) object to outlive its participant (mother)
object, which is impossible in M.E.R.O.DE. In UML1.x [120][119][107], it is
possible to simulate existential dependency using arestricted form of multiplicity for
associations, obliging that at least one participant in an association must have a lower
bound multiplicity higher than zero. In UML2.0 [109][128], existential dependency

94 A METHODOLOGICAL KERNEL FOR CONCEPTUAL MODELLING

can be expressed using association classes, since the restriction on association link
duplicates can be removed using the ‘{bag}’ property string for an association end.
However, such approach is considered to be on the same level as modelling
guidelines, since the UML notation does not enforce such rules on the model.

An observation that can be made is that the application of the EROOS kernel
methodology gives rise to a class model with a huge number of classes. Every
relation will introduce a distinct class that encapsulates the association. However, we
don’'t consider the introduction of this class as a disadvantage, because it creates a
hook in the model that enables the attachment of future properties, and that can be
used for the expression of additional existential dependency constraints.

A second observation is that connectivity and multiplicity constraints seem to be
inadequate for the EROOS kernel. This is due to the fact that that constructional
model approach only allows adding new objects to a model instance. However, the
EROOS universe, presented in Chapter 5, introduces the ability to destroy object.
This enables a proper usage of connectivity and multiplicity constraints for relations.

A third observation is that the EROOS kernel does not allow the specification of
mutual dependency between objects. The only possibility of modelling mutually
dependent objects is to merge them into a single object. The EROOS universe
introduces the concept of compounds to model mutually dependent objects.

4.5 EROOS Constraints and Confinement

In observing and modelling the universe of discourse, objects, attributes, and relations
must comply with a lot of human-imposed, physical or legal laws, rules, and
regulations, restricting certain characteristics and their evolution. As discussed in
Chapter 2, this results in model instance restrictions delimiting the valid instances of a
conceptual model in order to comply with the universe of discourse. Constraints
reflect rules from the universe of discourse that cannot be broken and thus must be
satisfied at all times.

The EROOS concepts introduced in the previous sections, namely classes, attributes,
and relations, already incorporate a number of implied and integrated constraints.
However, as discussed in Chapter 2, not all restrictions occurring in the universe of
discourse are suited to be expressed using implied or integrated constraints.
Therefore, the explicit specification of constraints as a first-class model concept is
introduced in EROOS in order to enable the description of all kind of restrictions on
the conceptual model that apply in the universe of discourse. To make a clear
distinction with other kinds of constraints present in a model, such as implied
constraints, e.g. existential dependency constraints for relations, and integrated
constraints, e.g. lower and higher bound constraints on attributes, we explicitly call
this type of constraint an EROOS constraint. Although EROOS constraints are
specified separately from the definition of other concepts, they remain dependent on a

4.5. EROOS CONSTRAINTS AND CONFINEMENT 95

number of structural model items that are being confined by the constraint. The model
elements upon which the EROOS constraint acts are indicated as its context.

EROQOS constraints impose hard restrictions on a model. At each moment in time, a
model instance is obliged to fulfil all defined EROOS constraints. Events that will
lead to a constraint violation should be forbidden and, thus, are rejected by the model.
In such a case, the model instance will remain in the state it was at the moment before
the event occurred.”® One of the basic characteristics of EROOS, distinguishing it
from a number of other methods for object-oriented analysis that are using informal
annotations to the model, is the fact that constraints are expressed formally, using
many-sorted first order logic (MSFOL) [95]. As explained in Chapter 2, the
formalisation of EROOS constraint expressions must lead to the avoidance of
ambiguities and misunderstandings in a conceptua model. The expressivity of
EROOQOS constraints is largely comparable with invariants specified in the Object
Constraint Language (OCL) [108][161] for UML.

Contrary to the other modelling concepts, EROOS constraints do not define new
model structures, in which additional characteristics of objects are described, or new
behaviour, in which new events applicable to objects are specified. EROOS
constraints merely describe rules that restrict the already defined structures and
behaviour of the model. This affects the set of potential states for the model instance,
and the events in which objects can be involved at a specific moment in time.

This section introduces the general principles underlying EROOS constraints and
confinement, and presents the notion of constraint scripts to define the EROOS
constraints in a model. Hereafter, specific restrictions on EROOS join constraints are
presented as a means to avoid information duplication in a relation hierarchy. Last,
the types of EROOS constraints that can be identified in the running example of the
library system are presented.

4.5.1 General Principles of Confinement in EROOS

An EROOS constraint enforces a logical rule on a certain part of the conceptual
model, called the context of the constraint, which must always be kept valid. The
context can include a number of classes, relations, attributes, or other EROOS model
concepts that will be defined later in this text. Notice that the context is not restricted
to asingle class, asis the case for OCL invariants.

Since many classes are potentially involved in the specification of a single EROOS
constraint, a large number of equivalent formulations of an EROOS constraint could
be possible. For instance, each involved class has the possibility of specifying the
given EROOS constraint as it can be observed from the viewpoint of that class.
However, equivalence among conceptual models tremendously compromises their re-

% |n the EROOS universe, we propose constraint triggers that can resolve certain constraint violation by
adding additional functionality to the event in order to regain a valid model instance. As such, a constraint
trigger serves as a general problem solver for the constraint it belongs to.

96

A METHODOLOGICAL KERNEL FOR CONCEPTUAL MODELLING

use for an analogous universe of discourse. In addition, understandability of the
conceptual model for customers, end-users, and other software engineers decreases
when different notations for a single aspect from universe of discourse are possible.
Therefore, the EROOS method enforces the analyst to formulate an EROOS
constraint from a specific viewpoint, namely the top class or top classes of the
constraint, whereas other equivalent formulations for the constraint are forbidden.
The top classes of a constraint are those classes in the relation hierarchy from which
all other involved classes, mentioned in the context of the EROOS constraint, can be
reached using only a refinement query (|). The EROOS constraint is specified as a
rule that must be valid for all top objects of the top classes, namely

Y itc, € TCy,..., VY tc, € TC,: <constraint expression for tcy,...,tc,>

* When the EROOS constraint must be true for all objects of a specific class, it can
be specified from the viewpoint of that class.

* When the EROOS constraint must only be true for the objects of a class P that
are participating in a certain relation link, encapsulated in class R, it must be
specified from the viewpoint of the refined class R, since class R is the highest
involved class for the EROOS constraint.

» If the EROOS constraint must only be valid for the objects of class P that are not
participating in a certain relation link encapsulated in class R, it cannot be
defined from the viewpoint of objects of class R. In this case, the constraint must
be defined directly from the viewpoint of class P, but is restricted to the
collection of objects that are not participating in any relation link of R. We
indicate such constraint as a not participating constraint, namely

Y p € Pnot participating in R: <constraint expression for p>

* When the EROOS constraint must only be true for the objects of a class P that
are participating in two relation links, encapsulated in the classesR and S, it must
be specified from the viewpoint of the pair of refined classes R and S, since these
two classes are the highest involved classes for the EROOS constraint.

The determination of the top class(es) for a constraint and the corresponding
viewpoints for specifying EROOS constraints are illustrated in Figure 4.10.

The formalism for expressing EROOS constraints is based on many-sorted first order
logic (MSFOL) [95]. However, there are some restrictions for constructing valid
constraint expressions that apply (1) to the predicates allowed for an expression, and
(2) to the operators alowed for combining predicates in order to obtain complex
expressions. The idea behind the imposed restrictions is to force analysts to use
implied constraints whenever appropriate, and force a single and unique manner for
specifying EROOS constraints. In principal, the formalism provided for expressing
EROQOS constraints should not be too powerful enough such that it becomes possible
to express implied constraints using the concept of an EROOS constraint. The
advantage of a unique specification manner for a constraint concerns the fact that it
provides solid criteria in developing conceptual models. This leads to a single

4.5. EROOS CONSTRAINTS AND CONFINEMENT 97

common model among all analysts involved in the development of a conceptual
model. In order to reach the objective of a unique EROOS model for a specific
universe of discourse, as stated by the conceptual modelling Principles of Uniqueness
and Minimalism, EROOS also explicitly inhibits the definition of an EROOS
constraint that can logically be derived from other constraints already present in the
conceptual model. As such, the specification of constraints in an EROOS model can
be restricted to the set of relevant constraints, and does not include a huge set of
rather trivial derived constraints. The uniqueness of a model constraint expression is
the key point that differentiates EROOS constraints from OCL invariants.

VpeF:
< constraint expression for p>

VreR:
<constraint expression for
al objectsinr| P>

V p € P not participating in R:
<constraint expression for p>

VreER VsER:
<constraint expression for
al objectsin the intersection
of ryPands| P>

Figure4.10: EROOS Constraint Specification from the Viewpoint of the Top Class

98 A METHODOLOGICAL KERNEL FOR CONCEPTUAL MODELLING

4.5.2 Specification of an EROOS Constraint

EROOQOS constraints restrict the defined structures and possible behaviour of the
model. The definition of an EROOS constraint is presented in Definition 4.11. The
syntax of an EROOS constraint script is given in Table 4.7. As presented in Figure
4.11, an EROOS constraint is graphically represented in the form of a triangle
attached to the top class(es) of the constraint, and annotated with the constraint name

or areference number.
<CLASS <constraint
NAME> name>

<CLASS | <CLASS
NAME> | NAME>
<CLASS
NAME> <j>: <constraint name>

Figure 4.11: Graphical Representation of an EROOS Constraint

An EROCS constraint is a nodel entity restricting the set of
possi bl e i nstances of a nodel by defining rules that nmust be
valid for a nodel instance at each nmonent in tinme

G ven

Model M Model Instance Universe MU, Mdel |nstance M;
Constraint CT € My;

Cr: TIME- MU| Vt € TIMEE M, € CT, (constraint validity)

Definition 4.11: EROOS Constraint

The different aspects involved in the definition of an EROOS constraint are:

* The lowercase constraint name refers to the logical constraint in the universe of
discourse. The constraints that share a same top class must have different names.

* The top classes enumerate the classes from which the constraint is formulated.
They must be the highest classes of the relation hierarchy from which the
constraint can be formulated. Using these top classes, the constraint expression
may not contain any participation query 1 C, either directly in its specification or
indirectly through the use of assistance queries.

» The context clause enumerates the model entities upon which the constraint
interacts. Each constraint enforces a logical rule on a certain part of the model

4.5. EROOS CONSTRAINTS AND CONFINEMENT 99

that is affected by the constraint. The context of a constraint can be automatically
derived from its logical clause. Each element that is used in the logical
expression of the constraint is mentioned in its context.

<EROOS kernel constraint script> =
“constraint" <constraint name>
("top class" <TOP CLASS NAMVE>
| "top classes" <TOP CLASS NAME> ("," <TOP CLASS NAME>)*)
"context"
(<TOP CLASS NAME> <context clause>)+
"definition"
("for all" <identifier> ("," <identifier>)*
"in" <TOP CLASS NAME>
["not participating in" <CLASS NAME> (" 1"<CLASS NAME>) *
("," < CLASS NAME> (" 1"<CLASS NAME>)*)*] ":")+
<l ogi cal cl ause>
"end constraint" <constraint name>

<context clause> =
["having" ("attribute" <ATTRI BUTE NAME>
| "attributes" <ATTRI BUTE NAME> (", "<ATTRI BUTE NAMVE>) +)]
["havi ng"
("query" <QUERY NAME>
"returning" <return type> [<context clause>]
| "queries" < QUERY NAME>
"returning" <return type> [<context clause>]
("," <QUERY NAME> "returning" <return type>
[<context clause>])+)]
["havi ng"
("participant (" <descending path> [<context clause>]")"
| "participants ("<descending path> [<context clause>]
("," <descending path> [<context clause>])+ ")")]
["being participant of ("
<CLASS NAME> ["/"<ROLE NAME] [<context clause>]
("," <CLASS NAME> ["/"<ROLE NAME]
[<context clause>])* ")"]

<descendi ng path> =
([<CLASS NAME> "/"] [<ROLE NAME "/"] <CLASS NAME> |
[<CLASS NAME> "/"] <ROLE NAME>

Table4.7: EROOS Constraint Script

100

A METHODOLOGICAL KERNEL FOR CONCEPTUAL MODELLING

The ‘for all’ clause introduces a number of formal identifier objects of the top
classes for the constraint, and should include at least one identifier for every top
class. Each formal identifier ranges over all object of its top class. The logical
constraint clause is formulated as viewed from these formal identifier objects. As
such, the logical clause must be valid for every possible object of the top class,
or, in the case that more than one top class are involved, for every possible
combination of actual objects of the top classes. Notice that alogical clause using
more than one formal identifier of the same top class must also be valid in case
that these formal identifiers are substituted with the same actual object of the top
class. This means that the constraint must also be valid for condition(c,c) in

Y cl, c2 € C: condition(cl, c2)
However, an explicit expression (cl # c2) could be added to the condition.

Both a mathematical style, i.e., V ¢ € C, and a verbose style, i.e., for all cin C,
of specification are allowed. To specify a constraint on objects not participating
in acertain relation, the not participating clause is used. It is possible to specify a
‘not participating’ clause involving an indirect participation. For instance, when
aconstraint is specified for a class A not participating in B 1 C1 D, al objects of
class A that do not participate indirectly in D are confined. It is possible to split
such constraint in a number of parts, namely (1) all objects of A not participating
in B, (2) all objects of A participating in B but not further in C, which must be
expressed from the viewpoint of ‘B not participating in C', and (3) all objects of
A participating in B and further in C but not participating in D, which must be
expressed from the viewpoint of ‘C not participating in D’. However, such
scattering of the constraint is only allowed when the conditions imposed on these
different subsets of class A vary.

It is not allowed to specify alogical clause that can never be satisfied. Therefore,
it is also not allowed to specify a constraint with a not participating clause and a
condition that always fails. Such type of constraint would express an existential
dependency from the participant object to the refined object. The constraint

V p € Pnot participating in R: false

would express that an object p of class P that does not participate in a certain
relation link r of class R, always results in a constraint violation. This constraint
actually obliges that every object p of class P must participate in at least one
refined object r of class R. Such constraint would violate the existential
dependency hierarchy in EROOS, which expresses that a refined object cannot
exist without a participant object, but that an object of a participating class can
always exist without having to participate in a refined object. Therefore, it is
allowed to specify a constraint on objects that do not participate in a certain
relation, but only if such object can fulfil this condition in a certain manner.

The logical clause of a constraint is a many-sorted first order logic expression
that expresses the rule enforced by the constraint on the model. This logical
clause is constructed by combining Boolean expressions and other logical

clauses, using logical operators such as not (=), and (A), or (), xor (O),

4.5. EROOS CONSTRAINTS AND CONFINEMENT 101

if...then... (O), if and only if...then... (), and if athen x elsey ((@a] x) A
(ma O y)). A Boolean expression is constructed from primitive components,
such as objects, values, bags, queries, and primitive operations.

The logical clause however is severely restricted to avoid interference with other
EROOQOS concepts. For instance, it is forbidden to use the participant query * 1’ in the
logical clause of a constraint, either (1) directly using the participant query in the
logical expression, (2) indirectly by using queries that use the participant query
themselves, or (3) implicitly by specifying sets of objects ranging over a class that is
no direct participant of a top class. In addition, it is not allowed to use the and-
operator on the top level of the logical clause in order to combine two unrelated
constraints. Such constraints must be split into separate constraints, one for each
operand. Combining several unrelated constraints in a composite constraint
diminishes the reusability and extendibility of a model. It is easier to grasp a number
of small individual constraints than to get insight into a complex composite
constraint. However, related constraints should best be combined. It is therefore
improper to split a constraint requiring ‘a=b’ into two constraints ‘al] b’ and ‘b &,
or to split aconstraint ‘if athen x elsey’ into two constraints‘al] x’ and ‘-all y’.

4.5.3 Restrictions on EROQOS Join Constraints

As stated earlier, the logical clause of an EROOS constraint is severely restricted to
avoid interference with other EROOS concepts. Constraint types that must be avoided
are certain forms of join constraints. Join constraints put an equality on a certain
number of their (mostly indirect) participants. Join constraints state that objects
obtained by following different relational paths through the model, starting from a
certain class, must be equal. We can identify three kinds of join constraints:

e« Ajoin constraint for a class C that puts a restriction on objects of a pure indirect
participating class, meaning that the class is no direct participant of C, is allowed.

e Congtraints on binary relations having two identical participating classes, and
that are expressing an obligation for the two participant objects to be equal, are
forbidden. Such binary relations must be transformed into unary relations.

e Congtraints on binary relations for equality between a direct participant object
and one of their indirect participants are also forbidden in EROOS. Such binary
relations must also be transformed into a unary relation.

The reason behind the restriction of these kinds of constraints is to avoid (1)
information duplication, and (2) interference between binary and unary relations. In
such cases, EROOS forces the analyst to make use of the unary relation concept
instead of using a binary relation with a corresponding join constraint. As illustrated
in Figure 4.12, the second participant of the relation adds no additional information to
the model, and thus is superfluous, while both participants in Figure 4.13 express
specific information that cannot be omitted. This restriction on join constraints
complies with the key conceptual modelling principles of Uniqueness, No
Redundancy, and Model-Implied Constraints, because it forces the analyst to a unique

102 A METHODOLOGICAL KERNEL FOR CONCEPTUAL MODELLING

conceptual model that is as small as possible, using existential dependency as the core
criterion for determining its structure.

O—"— X
AS;I _> o X
for all cin C:
clR=c|S
c """""" foralcinc.
o cx= -
| Cy{Col... | ChI X Q
|
C L ...
ZQ_ :> CO—
' Ry
C |
X /e W
O x Sy

Figure4.12: Forbidden EROOS Join Constraints

C for all cin C:

Q % C{Col...{ Cral X =
| CLCopl ... Cpi X
. __QCZa Czb__...

-
e X C”b__...

Figure 4.13: Allowed EROQOS Join Constraint

4.5.4 EROOS Constraints for the Library Example

Given the example of the library system presented in Section 2.3, and the relation
hierarchy defined in Section 4.4.7, a large set of constraints must be added to this
model. There are two types of constraints that must be added to the model:

e Logical rules that are a reflection from impossibilities in the universe of
discourse. There are a lot of constraints that have to be added to the conceptual
model in order to enforce consistency that is embedded in the nature of the
universe of discourse. Examples of such constraints are the fact that a person
cannot perform any borrowings when that person has died, or the fact that no
new copies of abook can be printed when the publisher has gone into liquidation,

4.5. EROOS CONSTRAINTS AND CONFINEMENT 103

as presented in Table 4.8. This type of constraints poses restrictions on the
creation of certain objects when the participant object is already participating in
another relation.

* Logical rules that have to be imposed in the universe of discourse. Such
constraints impose rules that restrict unwanted behaviour. There are a number of
subtypes that can be identified:

Constraints that restrict the creation of certain objects with a participant
object that is already, or, on the contrary, is not yet participating in another
relation. Examples of such constraints are the fact that a person cannot
perform any borrowing when that person has been deregistered from the
library, or that a person cannot perform any borrowings when that person
has unpaid fines.

Constraints that restrict the creation of certain objects because specific
objects already exist. Examples of such constraints are the fact that a book
copy can only be in possession of a single library, the fact that a book copy
can only be borrowed when there is no other active borrowing for that copy,
the fact that for each person only a single active borrowing can be attached
to an allowance object, or the fact that a person cannot borrow a second
copy of the same book, as presented in Table 4.9.

Congtraints that restrict the existence of objects based on certain attribute
values. Examples of such constraints are the fact that a fine must exist when
the maximum lending period has been exceeded. Notice that it is needed to
explicitly model the progress of time in the EROOS kernel in order to be
able to specify this constraint. Since the fine constraint obliges the creation
of a fine when the deadline is exceeded, the progress of time would stop
when this constraint would be violated. The only manner, in which a
modeller can automatically create afine, is through the explicit modelling of
the progress of time. The EROOS universe offers constraint triggers in
Section 5.3.10 in order to specify such time-triggered behaviour.

Join constraints that request the equality of certain participants. Examples of
such constraints are the fact that a person can only select and borrow a book
from the same library as where that person is registered, and the fact that a
person can only pay the fine of a borrowing if that person already has
returned the book copy.

An observation that can be made is that the constraint regarding the number of
allowed borrowings cannot be expressed using an EROOS constraint, since such
constraint would need an integer attribute representing the maximum number of
lending items. Because EROOS does not allow to model integer attributes, the
modeller is forced to reify the attribute into a class that represents the possibility of
borrowing a book. The constraint regarding the number of allowed borrowings is
transformed into an existential dependency restriction from a borrowing object on an
allowance object.

104 A METHODOLOGICAL KERNEL FOR CONCEPTUAL MODELLING

constraint no printing when in liquidation
top cl asses
COPY, LI QUI DATI ON
cont ext
COPY havi ng participant (PUBLISHER),
LI QUI DATI ON havi ng partici pant (PUBLI SHER)
definition
for all copy in COPY:
for all liquidation in LI QU DATI ON:
i f copy | PUBLISHER = |i quidati on}PUBLI SHER t hen
copy—Creati onTi nest anp
< liquidation-=Creati onTi nestanp
end constraint no printing when |liquidation

Table 4.8: EROOS Constraint for No Printing when in Liquidation

constraint single copy borrow ng
top cl ass
BORROW NG
cont ext
BORROW NG havi ng partici pant (
SELECTI ON havi ng partici pants (REG STRATI ON,
POSSESSI ON havi ng partici pant (
COPY havi ng partici pant (BOXK))))
definition
for all bl,b2 in BORRON NG
if (bl # b2) and
bl | SELECTI ON| REA STRATI ON = b2} SELECTI ON| REG STRATI ON
t hen bl | SELECTI ON| POSSESSI ON| COPY | BOOK
b2 | SELECTI ON| POSSESSI ON|, COPY | BOOK
end constraint single copy borrow ng

Table4.9: EROOS Constraint for Single Copy Borrowing

455 Contributions, Related Work, and Reflections

Our contributions concerning the constraint concept are the following:

* In addition to a large number of constraints that are implied by the EROOS
model structure, EROOS constraints offer the possibility of modelling
constraints as a first-class model concept. Using a formal notation, model

4.5. EROOS CONSTRAINTS AND CONFINEMENT 105

constraints can be superimposed on a model in order to express rules and
regulations of the universe of discourse. Our work, first published internationally
in 1992 [153], predates and is largely comparable with OCL, which originated in
1995 within IBM [161].

* Contrary to OCL, EROOS forces a single and unique manner for specifying
EROOS constraints. This is achieved by (1) the obligation to formulate
constraints from the top class(es) in the relation hierarchy, and (2) the
introduction of the not participating clause. The advantage of a unique
specification manner for a constraint concerns the fact that it provides solid
criteria in developing conceptual models. This leads to a single common model
among all analysts involved in the development of a conceptual model. EROOS
also explicitly inhibits the definition of an EROOS constraint that can logically
be derived from other constraints already present in the conceptual model. As
such, the specification of constraints in an EROOS model can be restricted to the
set of relevant constraints, and does not include a huge set of rather trivial
derived constraints.

e Contrary to OCL, EROOS forces analysts to use implied constraints whenever
appropriate. The formalism provided for expressing EROOS constraints is
developed as such that it isimpossible to expressimplied constraints using the
concept of an EROOS constraint. This is achieved by the prohibition of using
the participation query (1) in the formulation of an EROOS constraint.

The introduction of formal model constraints as a first-class model concept in
EROOS is largely comparable with the Object Constraint Language (OCL)
[108][161]. A major difference between OCL and EROOS is the viewpoint from
which the constraint can be formulated. In the EROOS methodology, each constraint
has a single and unique viewpoint from which it is formulated, namely the top class
or top classes in the relation hierarchy that are involved in the constraint. EROOS
forces the modeller to use this strict constraint specification viewpoint in order to
obtain uniqueness for conceptual modelling. OCL has very loose specification rules,
and puts no restrictions on the constraint expressions, or on the specification
viewpoints. A constraint in OCL can be formulated from the viewpoint from any
involved class.

An observation that can be made is that for the specification of events, as introduced
in Section 4.8, an analyst often has to interpret and to circumvent the model
constraints that must be obliged at all times. When specifying the effect the event has
on the model, the analyst must take care that al model constraints remain valid.
Otherwise, the event will violate a model constraint and will be refused. This leads to
a recurring pattern of (1) describing the standard behaviour of an event, (2) checking
whether the state of the new model instance remains valid, and (3) providing a
constraint exception handling mechanism that tries to resolve the constraint violation.
As such, the model contains a lot of duplication of constraint checking and resolving
descriptions inside the event specifications. A generic mechanism to detect and react
to constraint violations would be appropriate in order to avoid the repetition of this
kind of constraint checking and handling specifications. As part of the EROOS

106 A METHODOLOGICAL KERNEL FOR CONCEPTUAL MODELLING

universe, Section 5.3.9 presents a mechanism for the specification of constraint
triggers that can intervene and extend the event behaviour whenever a constraint
could become violated, and a mechanism for nondeterminism in EROQOS
specifications in order to facilitate the selection of appropriate model instance items
that comply with all stated model constraints.

A second observation is that for the specification of time related restrictions in the
EROOS kernel, an analyst is obliged to model the progress of time explicitly.
Although it is possible to express time related constraints, there is no possibility to
capture a violation of a time related constraint caused by the progress of time. One
could use the indication of the current time at the moment of evaluation, indicated as
now, and express an explicit condition that this value must be smaller than a certain
moment in time. But it is impossible to specify that an event will be triggered when
the specified constraint would be violated. For example, it is impossible for the
library system to specify that a fine object must automatically be created when the
borrowing reaches its expiry date. Such constraint would result in a time standstill in
the model, which would correspond with an erroneous situation. A possible solution
to model this kind of time triggered behaviour in the EROOS kernel would be the
explicit modelling of the progress of time. As such, at each moment the time
progresses in the model, one could check whether a certain time related constraint
could be violated, and respond to it by triggering the behaviour that must be executed
when reaching the deadline, e.g., raising a fine, switching to an alarm level, starting
corrective or repossession measures, et cetera. The constraint triggering mechanism
of the EROOS universe presented in Section 5.3.9 can facilitate the specification of
such kind of time-triggered behaviour.

A third observation is that, while EROOS constraints impose restrictions on a
conceptual model that must always be satisfied, some situations could demand for a
set of rather contradicting rules applicable on certain information. This is often the
case in planning and scheduling systems. Fur such systems, only a limited number of
constraints must be satisfied at all times, called crisp constraints, while a large set of
rules are used to define satisfaction levels for evaluating the obtained solutions. This
type of rulesis called soft constraints [51][14], which define a level of preference or a
level of importance concerning the satisfaction of the rules. These rules are not real
constraints in the sense that they must be satisfied at all times, but they define
satisfaction selection rules that can discriminate the set of possible solutions
complying with all crisp constraints. Integrating such approach of soft constraints into
EROOS would provide a better support for planning and scheduling systems.
Although the universe of discourse concerning a planning and scheduling system is
quite easy to model in EROOS, a model for the calculation of the most optimal
solution is much harder. However, it is possible to obtain an elegant solution of a
planning system using constraint triggers and nondeterminism, as is demonstrated in
the case studies of the electronic agenda system.

4.6.1S-A SPECIALISATIONS AND STATIC SUBDIVISION 107

4.6 Is-A Specialisations and Static Subdivision

In addition to concrete classes as presented in Section 4.2, EROOS introduces another
type of classes for classification purposes, namely abstract classes. Contrary to
concrete classes, abstract classes do not have objects on their own. The collection of
objects associated with an abstract class is instead obtained by joining the respective
collections of objects of other classes for which the abstract class is an abstraction.
The concept of specialisation is used in EROOS to express an ‘is a (kind of)’ meta
relationship between two classes, namely a generalised abstract class and a
specialised class. We call a specialisation between classes a meta-relationship since it
relates the classes on a meta-level rather than relating the objects of the class. This
meta-relationship models the fact that objects of a number of classes resemble each
other. The abstract class is statically subdivided into a number of specialised classes.
Notice that a specialised class can be a leaf class in the inheritance hierarchy, in
which it is a concrete class, but also an abstract class in turn, having again a number
of specialised classes as its descendants. Next to specialisation, which concretises
abstract classes into specialised classes, one could also identify the inverse concept of
generalisation, which abstracts specialised classes into generalised classes. The
resemblance of classes can come from two sources. (1) observable features, and (2)
common sense knowledge.

e According to the first source, objects of two classes resemble each other if they
share common structural and behavioural features. These features can be defined
on the level of the abstract class. For instance, shared structural features can be a
number of attributes, relation refinements, relation participations, and constraints.
These features are called observable because an analyst can detect them in the
universe of discourse, by closely observing and looking for commonalities.

» The second source of detecting resemblances between classes is common sense
and background knowledge of the universe of discourse. Two objects resemble
each other because they are known to do so in the universe of discourse.
Although resemblance can be a feature or property on its own, this kind of
resemblance often is, but does not have to be supported by a number of common
observable features.

By using the concept of specialisation, the common features of classes can be
expressed once only, without introducing redundant specifications in the model. The
specialised class inherits all features from the generalised class. In addition, it is
possible that a single class is a specialisation of more than one generalised class at the
same time, inheriting all features from each generalised class. Each specialisation
hierarchy can be looked upon from two viewpoints. On the one hand, one can
consider the generalised class as the entity in the focus of attention. The
specialisations are then special cases of this generic concept. On the other hand, when
the specialisation classes are considered to be the entity in the focus of attention, the
generalisation class is the description of the common features of all specialised
classes. Which of these viewpoints is commonly used, depends on the context or on

108

A METHODOLOGICAL KERNEL FOR CONCEPTUAL MODELLING

the information that the observer uses to reason about the universe of discourse.
However, both approaches lead to the same specialisation hierarchy in EROOS.

4.6.1 Is-A Specialisation versus Subclassing versus Subtyping

As argued by Lalonde [87], the ‘Is-A (kind of) meta-relationship in EROOS is
different from subclassing, also called inheritance in object-oriented programming
languages, and from subtyping. The difference lies in the criteria to be used when
evaluating whether a class should be a descendant of another class. What is more
general in one viewpoint could be described as more specialised in another viewpoint:

Subclassing, aso known as inheritance, is an implementation mechanism that
allows a programmer to share code and representation by letting a class inherit all
code, including methods and instance variables, from another class. The subclass
can hide or overwrite certain methods in order to fine-tune its own
implementation. It is a form of implementation reusability by inheriting rather
than copying code.

Subtyping is a behavioural substitutability relationship that follows the Liskov
Substitution Principle (LSP) [92]. It uses the criterion of substitutability, namely
that an instance of a supertype can be substituted by an instance of a subtype
without noticing any differences. How the subtypes are implemented is totally
irrelevant, as long as they have the right interfaces and behaviour to be
substitutable. A class is thus a special case of another class if it provides at least
the same services, including the same interface and behaviour, as the original
class, without violating any additional explicit or implicit suppositions. It is
possible that the specialised class provides more services than the general class,
or that existing services are extended such that they cover more cases. As long as
the original class does not rely on certain extensions not being covered, e.g., by
relying on the occurrence of certain exceptions to be thrown, additional
extensions can be made while adhering to the criterion of substitutability.

The*1s-A (kind of)’ meta-relationship, as being used in EROQOS, follows the rules
of the logical specialisation relationship between classes. A class is a kind of
other class when it complies with the specification of that class, both on a
structural as well as on a behavioural level. This means that its objects can be
seen as objects of the other class in the universe of discourse. A specialised class
must therefore comply with all the features defined for the generalised class, such
as dtributes, relation refinements, relation participants, constraints, and
functionality. Structural elements and functionality correspond to a number of
implicit and integrated constraints that are incorporated in the methodological
concept. For instance, if a class is decorated by an attribute, all objects of that
class must have a proper domain value for that attribute. Likewise, al objects of
arefined class must have an object of each of its participating classes associated
with them. Therefore, a class is a specialisation of another class if it satisfies at
least all constraints, both implicit, explicit, as well as EROOS constraints,
specified for the generalised class. It is possible that the objects of the more
specialised class satisfy more constraints than the objects of the more general

4.6.1S-A SPECIALISATIONS AND STATIC SUBDIVISION 109

class. Specialisation thus corresponds to the process of more strictly defining a
specific class by restricting it with more constraints through the definition of
additional model entities.

Because objects of the specialised class must satisfy more constraints, they are
likely to be less general in use. Therefore, they can probably provide less
functionality than the more general class. On the other hand, objects of the
specialised class can have more structural features attached to them and provide
additional functionality related to these features. Notice that ‘is a (kind of)’ is
sometimes also referred to as subtyping, for example by Wegner [162] which
defines it as the addition of predicates that constrain the structure of expressions.

4.6.2 Specialisation Partitions and Multiple Generalisations

As presented in Section 4.2, each concrete EROOS class is associated with a
collection of objects. The creation event of a concrete class adds a new object to the
population of the class. Objects of a specific concrete class cannot be created, queried
or manipulated by the functionality of another concrete class. Therefore, the
collections of objects associated with concrete classes are disjoint. Moreover, each
object belongs to exactly one collection of a concrete class.

In contrast, abstract classes are not associated with an object collection, because they
do not have objects of their own. They merely describe common features of objects
from a number of specialised classes. Therefore, an abstract class is said to be
associated indirectly with a collection of objects, namely the union of the direct and
indirect associated collections of all classes it generalises. A class that is specialised
in a number of other classes is always an abstract class in EROOS, while a class that
has not been specialised, is always a concrete class. Figure 4.14 illustrates how the
collections of objects that are associated with classes, are related to each other. Parts
of the ellipses representing the collections are hatched to indicate that these parts of
the collection are empty and do not contain any objects.

P
<partition
name>

Q R

Figure 4.14: Graphical Representation of an EROOS Specialisation

110 A METHODOLOGICAL KERNEL FOR CONCEPTUAL MODELLING

Not only is the collection of objects associated with the generalised class equal to the
union of the collections of the specialised classes, but also no object may belong to
two or more specialised classes in a specialisation hierarchy. Specialisation classes
that are specialised from the same generalised class must completely partition the
objects described by that generalised class into disjoint subsets. It is possible to
specify more than one partition for a generalised class. When two specialised classes
must share some objects, they must be defined in different specialisation partitions.
When more than one partition is defined for a specialisation, they must be orthogonal
partitions, since each must fully partition the same collection of the generalised class
in digoint subsets. All objects described by the generalised class must be fully
qualified for each partition, i.e., they must be assigned to a specific specialised class
according to all partitions of that generalised class. Therefore, when more than one
partition is specified for a specific class, al direct specialisations of that class must be
abstract classes since an object may belong only to a single concrete class. Moreover,
all further concrete specialisation classes lower in the specialisation hierarchy must be
specialisations of one class from each partition. Partitions can be named or nameless.
Specialisation relationships with no partition name are assumed to belong to the same
default partition. Figure 4.15 shows two specialisation partitions P and Q for a single
class C, and the corresponding collections of objects. Notice that both partitions P and
Q are complete classifications of the objects in class C, but neither describe the
objects completely. Therefore, the classes P1, P2, Q1, and Q2 are abstract classes,
while only the classes C11, C12, C21, and C22 are concrete classes.

C

Cl1 C12 Cc21 C22

Figure 4.15: EROOS Specialisation Partitions

A class can be a specialisation of more than one generalised class at the same time,
but only when the generalised classed belong to a different partition. When more than
one partition is present, it even must be specialised from one generalised class of each
partition. In order to prevent multiple specialisations coming from rather unrelated
classes, a multiple specialisation has the restriction that all generalised classes must
be specialised from a single most general class.

4.6.1S-A SPECIALISATIONS AND STATIC SUBDIVISION 111

The EROOS methodology explicitly prohibits the definition of identical partitions,
since they do not provide any added value to the conceptual model. In addition,
specialisation classes in a partition that cannot contain any objects, e.g., due to the
fact that its generalised classes have contradictory constraints attached so that an
object can never belong to both classes, are also forbidden.

4.6.3 Specification of an EROOS Specialisation

The syntax of an EROOS specialisation script is given in Table 4.10. A specialisation
script can be formulated from two viewpoints: The viewpoint of the generalised class,
for which all partitions and its specialised classes are defined, and the viewpoint of
the specialised class, for which all involved partitions and its generalised classes are
defined. As presented in Figure 4.15, an EROOS specialisation partition is
graphically represented in the form of a semi-circle with the generalised class
attached to the curve and all specialised classes attached to the bottom.

<EROCS specialisation script> =
"cl ass" <CLASS NAVE>
"definition"
"speci al i sati on"
"(" <generalisation clause>
("," <generalisation clause>)+ ")"
"end cl ass" <CLASS NAME>

<general i sati on cl ause> =
"of " <CLASS NAVE> ["according to partition" <partition nane>]

<EROCS generalisation script> =
"cl ass" <CLASS NAVE>
"definition"
"speci al i sed"”
"(" <specialisation clause>
("," <specialisation clause>)+ ")"
"end cl ass" <CLASS NAME>

<speci al i sati on cl ause> =
["according to partition" <partition name>1] "in"
"(" <CLASS NAME> ("," <CLASS NAME>)+ ")"

Table 4.10: EROOS Specialisation Script

112

A METHODOLOGICAL KERNEL FOR CONCEPTUAL MODELLING

4.6.4 Model Constraints implied by the Specialisation Concept

EROOS incorporates important model constraints directly in the methodological
concepts. The following constraints are directly implied by the specialisation concept:

Abstractness. Generalised classes do not have objects associated with them that
are not also associated to a concrete class. Generalised classes are considered
abstract. They are only indirectly associated with a collection of objects through
the union of the collections of all direct and indirect specialisation classes. Each
object is directly associated with a concrete class and can be indirectly associated
to anumber of generalised classes.

Immutability: The association of a given object with its generalisation classes is
considered to be static. In particular, at the moment an object is to be created, it
will be associated with a single concrete class and it will keep that association for
its entire lifetime. In addition, the associations with the generalised classes are
also established at the moment of object creation and cannot be altered in a later
stage of the object lifetime.

Finiteness. The collection of objects associated with any generalised class will
always be finite, since it is the union of the finite object collections that are
associated with its specialisation classes.

A specialisation is a nodel entity defining an ‘is a kind of’
nmet a- associ ati on between cl asses, in which the objects of the
speci alised class derive all nodel entities that have been
defined for the generalised cl ass.

An abstract class is a class that does not define its own

obj ect population set. Instead, it has a derived object
description set that is equal to the union of the object
description sets associated to its specialised classes. The
obj ect description set of a concrete class is equal to its
obj ect popul ation set.

A partition is a set of specialisations for a single
generalisation class, in which the object description set of
the generalisation is equal to the conplete and non-

over | appi ng union of the object description sets of the

speci alisation classes in the partition.

G ven

Model M Object Universe QU; Class C, .,.C'" € M;

Abstract Class A € Mg, Partition P € M;

A TIME - P(QY) |

Vt eTIME P(A ={C,., C} O0A =C, 0..0C, (partition
Vt eTIME VC C €PA: G NCy =g di sj unct ness) ¥’

Definition 4.12: EROOS Specialisation

% This definition also implies abstractness, immutability and finiteness, since an abstract class is the union
of its specialised classes, each of them conforming to the properties of immutability and finiteness.

4.6.1S-A SPECIALISATIONS AND STATIC SUBDIVISION 113

e Partition Digunctness. In EROOS, different specialised classes in the same
partition are assumed to divide the universe of objects into digoint collections.
Each object associated with a generalised class must be associated with exactly
one specialised class in a partition. Whenever two specialised classes must share
a number of objects, they should be defined in distinct partitions. Different
specialised classes in the same partition are not alowed to share objects.

The definition of a specialisation can be found in Definition 4.12.

4.6.5 Strengthening Constraints for a Specialisation

Specialisation can have an impact on other entities present in an EROOS model.
Functionality and constraints associated with attributes and relations can be restricted
for the specialised class. New structural elements can be specified for a specialised
class, and a specialised class aso inherits the features from its generalisation classes.
All attributes, relations, participations, EROOS constraints, events, and queries of the
generalised class are inherited by its specialisation classes. Consequently, amongst
others, if the more general class has been refined, no new relation can be specified for
its specialised classes.

Although abstract classes have a creation event defined for them, it can never be
applied directly because an abstract class cannot have objects of its own. Therefore,
the creation event only serves as a contract for the specialised classes to be obeyed.
The effect of a creation event for an abstract class is to add a new object to the
derived population associated to that class. Since the specialised creation event adds
an object to the population of its class, and since the population of an abstract classis
the mere union of the populations of its specialised classes, a new object will thus be
indirectly added to the derived object collection of the abstract class.

The model entities and functionality of a specialised class come from two sources: (1)
the own model entities and functionality that is directly specified for the specialised
class, and (2) the functionality defined for all direct and indirect generalised classes
from which the specialised class is derived. As such, all constraints specified for the
generalisation class are guaranteed to be satisfied by all objects of the specialisation
class. However, objects of the specialisation class cannot guarantee to behave exactly
as specified for the generalised class, due to the fact that extra constraints can be
introduced on the level of the specialised class. Therefore, certain events defined on
the level of the generalised class could possibly violate the rules specified for the
specialisation class, and can be refused whenever they occur.

Adding new constraints on the specialisation level can lead to strengthening attributes
and participants of a relation. Strengthening an attribute can be done by adding an
integrated ‘unique’ constraint to the specialised version, or strengthening the lower
and upper bounds for the allowed attribute values, thus increasing the lower bound or
decreasing the upper bound.

114

A METHODOLOGICAL KERNEL FOR CONCEPTUAL MODELLING

As illustrated in Figure 4.16, strengthening a participant can be done in three
manners:

The strengthened participant can have the original participant as its direct or
indirect participant.

A participating class A can be replaced by a refined class C in which A
participates. This participation does not have to be direct, as long as the new
participating class is somehow dependent on the original participating class.
Strengthening a participating class corresponds to limiting the kind of objects
that can participate in the relation. The restriction states that only objects of the
new participating class C, which are guaranteed to be dependent on an object of
the original participating class A, are now alowed to participate in the restricted
relation. It adheres to the constraint on the generalised level, since the newly
refined object of class C guarantees to have the original participant object of
class A as one of its own participants. A conformance rule for the strengthening
must be defined, but is mostly automatically deducible.

The strengthened participant can be a direct or indirect specialisation of the
original participant.

A participating class X can be replaced by one of its specialised classes Y. This
specialised class can be adirect or an indirect specialisation of X. The restriction
corresponds to limiting the kind of objects that can participate in the relation,
namely, only objects that belong to the specialised class. It adheres to the
constraint on the generalised level, since the newly specialised object of class Y
guarantees to adhere to the original generalised class X.

The strengthened participant can have the original participant as its own direct
or indirect specialised participant through a number of relations and
specialisations.

This is a combination of the previous two cases, in which the specialisation can
be applied on any of the intermediate classes between the new participating class
and the old one.

R
A O X D é T
C R z S
______O_______ Y Q\ U \Y
Conformance rule: Conformance rule: s,
B for all rin R: for all sin S h Wé
ryRIC|A=r|RA s|SIW|U=s| 9T

Figure 4.16: Strengthening a Participant for an EROOS Specialisation

4.6.1S-A SPECIALISATIONS AND STATIC SUBDIVISION 115

Note that strengthened model entities are distinguished from newly defined model
entities by using a dashed line to represent them. In this way, it is directly visible that
these model entities are not newly defined for the specialised class, but are actually
strengthened features inherited from a generalised class. All model entities that have
not been strengthened will be derived automatically in their most restrictive form.

As illustrated in Figure 4.17, strengthening a relation by changing the arity of it can
be done in two manners:

Abinary relation can berestricted to a unary relation.

A binary relation R that relates the same participating class A twice, can be
strengthened to a unary relation when the participant objects must be equal at all
times for the strengthened relation. In fact, this is the only valid specification to
model such rule in EROOS given the specific restrictions on join constraints as
described in Section 4.5.3. It would therefore be forbidden to specify an
additional EROQOS constraint for expressing this restriction. An example of such
restriction is a manager-subordinate relationship, for which a specialisation could
be defined for a CEO, expressing that this person manages oneself.

A unary relation can be extended to a binary relation.

Unary relations can be extended to binary relations by specifying a new, second
participant for them. This participant does not have somehow to be related to the
first participant, since it is an additional element that is introduced on the level of
the specialised class. Such specialisation of a unary into a binary relation can be
seen as an extension, since an additional participant D is added to the relation for
S having participant C, but also a restriction, since objects of the specialised class
cannot exist anymore without being dependent on a specific object of class D.
When it is not obvious which participant is the original one, a conformance rule
for the strengthening must be defined.

RIR

— R2 5
9
L8 S

Conformance rule:
for all rin R:
ryR/A=r|R1=r|R2

Figure4.17: Changing the Relation Arity for an EROQOS Specialisation

Although implied and integrated constraints for attributes and relations can be
strengthened, an EROQOS constraint cannot be strengthened. We could imagine

116 A METHODOLOGICAL KERNEL FOR CONCEPTUAL MODELLING

introducing EROOS constraint specialisations in order to obtain a stronger rule on the
specialised level than on the generalised level, but the distinction between
strengthening an EROOS constraint and introducing a new EROQOS constraint for the
specialised level is unclear and ambiguous. Therefore, EROOS always treats the
strengthening of an EROOS constraint as the introduction of a new EROOS
constraint on the specialised level.

4.6.6 Causal Dependency for Specialisations

When evaluating the appropriateness of the EROOS methodology during case studies
and student projects, as explained in Section 6.1.4, we noticed that a number of
analysts often introduce a large number of specialisations that could be deduced from
(1) aspecific root specialisation, or (2) other information inside the conceptual model.
When such causally dependent specialisations can be defined in an EROOS model,
the methodology would violate the Principle of No Redundancy as defined in Section
3.2. Causal dependency between specialisations is illustrated in Figure 4.18. A class
R can be refined with a relationship having participant X. When X is specialised in 2
specialisation classes Y and Z, it implicitly partition the class R into 2 collections of
objects, namely (1) the objects having a participant object belonging to the
specialised class Y, and (2) the objects having a participant object belonging to the
specialised class Z. When class R would also be partitioned to express this
partitioning in an explicit manner, the partitioning for class R can be deduced from
the partitioning of its participating class X. In order to avoid such derived partitions, it
is forbidden in EROOS to specify a partition for a refined class that can be deduced
from a partition for one of its direct or indirect participating classes whenever the
partition does not include any additional information in the model. In Section 5.4.7,
we describe the concept of groups to specify a collection of objects that can
automatically be selected based on existing information contained in the model.

A 5 X
R
N\ . Y Z
/\RZ
U/

Figure 4.18: Forbidden Causal Dependency between EROQOS Specialisations

Analogous to the causal specialisation dependency, it is also forbidden in EROOS to
introduce a specialisation that is causally dependent on other information inside the

4.6.1S-A SPECIALISATIONS AND STATIC SUBDIVISION 117

model. These kinds of causal model dependencies can be identified by the usage of
two EROOQOS constraints, stating a specific condition for the one subclass and its
negation for the other subclass. Also in this case, a group should be used to divide
obj ects based on existing information contained in the model.

R
A O X

condition ¢

| — R

condition not ¢

R(~c) ——|

Figure4.19: Forbidden Causal M odel Dependency for an EROOS Specialisation

4.6.7 Implicit Specialisation Queries

The definition of a specialisation introduces an implicit query in, also called element
of or ‘€’ to check whether an object of the generalised class is an actual member of a
specialised class. The definition of thisimplicit query can be found in Definition 4.13.

An inmplicit query ‘in', ‘element of’, or ‘&€ for a concrete
or abstract class is a query that can be applied on an
object, and that returns the fact whether this object belongs
to the object description set of that class.

G ven
Model M Object Universe QU; Query in € M;
in. TIME - ((QUXx M,) - Boolean) |

Vt eTIME Voe QU VCeWM:

oinC+=o0¢€G

Definition 4.13: Implicit EROQOS Specialisation Query

4.6.8 EROOS Specialisations for the Library Example

Given the example of the library system that was presented in Section 2.3, and the
relation hierarchy that was defined in Section 4.4.7, afew specialisation partitions can
be identified. However, one important specialisation that can be defined is the
generalisation of the main author and secondary author into a single class AUTHOR,
as presented in Figure 4.20. In addition to the grouping of all authors for a book, the

118

A METHODOLOGICAL KERNEL FOR CONCEPTUAL MODELLING

order in which the authors are ranked can now be captured explicitly in the model.
The following observations can be made:

The class AUTHOR represents all authors for a book. It is refined with a unary
relation having PERSON as the participating class, representing the persons that
are authors of a book. Since a person can be author of many books, the
multiplicity value is defined as ‘many’.

The class BOOK is a specialisation of AUTHOR, thereby inheriting the relation
to PERSON. This relation represents the main author for a book. Since a book
and its main author are mutually dependent, the EROOS kernel forces the analyst
to merge these two facts into a single object called BOOK. A book represents the
concept of abook and the main author at the same time.

The class of SECONDARY AUTHOR is also a specialisation of AUTHOR,
thereby inheriting the relation to PERSON. This participant is a person that is
one of the secondary authors of a book. However, we have specialised the
relation from a unary to a binary relation, expressing the fact that the secondary
author follows another author, who, in turn, can be the main author, or another
secondary author.

AUTHOR

O PERSON

PREVIOUS
ﬁEXT
SECONDARY/
BOOK AUNHOI

Figure 4.20: EROQOS Specialisation for the Library System

The specialisation hierarchy give rise to a dependency chain between the authors:

The main author, expressed by the class BOOK, is dependent only on a single
person, being the main author

The second author, expressed by the class SECONDARY AUTHOR, is refined
with a relation link between the person being the second author, and the main
author, expressed by the class BOOK that is generalised as AUTHOR.

The third author, expressed by the class SECONDARY AUTHOR, is refined
with a relation link between the person being the third author, and the second
author, expressed by the class SECONDARY AUTHOR that is generalised as
AUTHOR.

The result of such model structure, is that the last author is dependent on its
predecessor, etc., the second author is dependent on the first author, while the first
author, being merged with the book object, is not dependent on any other authors.

4.7. QUERIES AND ORNAMENTATION 119

4.6.9 Contributions, Related Work, and Reflections

The EROOS specialisation concept is largely comparable with the generalization
concept in UML. Our contributions concerning the specialisation concept are:

* The mechanism of strengthening constraints for a specialisation is a key
contribution of our work. A relation participant class, expressing existential
dependency of arefined object on a participating object, can be strengthened to a
class that has the participant class as a direct or indirect specialised participant
class through a number of relations and specialisations. This enables the modeller
to express more stringent dependencies for a specific subset of arefined class.

» The systematic approach to specialisation, obliging (1) partition digunctness
for every specidlisation hierarchy, (2) the strict separation between abstract
generalisation classes and concrete leaf classes, and (3) the prohibition of causal
dependency, forces the analyst to modelling clean specialisation structures and
surveyable multiple inheritance trees.

An observation that can be made is that in order to express dynamic specialisation, a
query must be defined returning the fact whether an object belongs to a certain
dynamic subset or not. If this information cannot be derived from the information
aready contained in the model, an explicit class must be added to the model
reflecting this fact. As an example, a dynamic class of adults cannot be derived from
aclass of persons, but it should be modelled as a query for a person returning the fact
whether the person is an adult or not. In addition, it is impossible to derive a dynamic
class of students from a class of persons, but it should be modelled as a class of
enrolments refined with a person and an institute. A query for a person can return the
fact whether the person is registered as a student or not. Thus, dynamic subgroups are
only implicitly present in a model and cannot be made explicit. It would be
convenient to highlight such dynamic subsets directly inside a model.

4.7 Queries and Ornamentation

In previous sections, we already introduced a number of implicit EROOS queries in
order to retrieve information about the model instance at a specific moment in time.
As such, an attribute automatically introduces a decoration query (-), a relation
defines a number of refinement (|) and participation (1) queries whereas a
specialisation gives rise to the introduction of a specialisation query for each class (in,
element of or €). This section introduces the general concept of a query for enlarging
the information retrieval capabilities in a model and defining facilities for extracting
derived information from amodel instance.

4.7.1 Specification of an EROOS Query

In general, a query offers the ability to inspect the properties of objects in a model
instance. In order to be able to inspect the model instance at a certain moment in time,

120

A METHODOLOGICAL KERNEL FOR CONCEPTUAL MODELLING

the analyst can define EROOS queries. Queries are said to ornament a class. An
EROOQOS query is specified in aquery script, asgivenin Table 4.11.

<EROCS query script> =
"cl ass" <CLASS NAME>
"context"
<cont ext cl ause>
"query"
<query name> ["(" <paraneter name> : <TYPE NAVE>
("," <paraneter nane> ":" <TYPE NAME>)* ")"]
"returns" <TYPE NAME>
"result" <query expression>
"end cl ass" <CLASS NAME>

Table4.11: EROOS Query Script

The different components in the specification of aquery are the following:

The query name, represented in lowercase, should provide a good description of
the information to be returned. Query names are not restricted to verbs. However,
the name of a query must differ from the names introduced for other queries of
the class, aswell as from the names used for the events associated with that class.

A query can introduce, by means of successive formal arguments, symbolic
names for values and objects to be supplied each time the query is instantiated.

The final component of a query script specifies the result type and the actual
result to be returned by the query. The query expression must return an object,
value, or set, according to the defined return type. The expression is evaluated at
the time the result of the query is needed. The expression determining the result
of aquery, isto be built from the object on which the query is applied (self), the
values and objects that serves as actual arguments for the query, the default
EROOQOS attributes, domain values, and domain functions.

Since the focus of this text is on the constraint-centric approach in EROOS, we refer
to the EROOS Reference Manual [143] for a complete and in-depth description of
EROQOS queries. As presented in Figure 4.21, queries are represented graphically by
means of a circle connected to the class of the object on which the query applies. The
name of aquery is preceded by a question mark.

<CLASS | 2<Query
NAME> Name

Figure4.21: Graphical Representation of an EROOS Query

4.7. QUERIES AND ORNAMENTATION 121

4.7.2 Examples of EROOS Queries

As an example of an EROOS query, the age of an object can be defined by comparing
the time at the moment the query is evaluated with the Creation Timestamp of the
object. The specification of such query is given in Table 4.12. When the age of an
object is an important semantic property in the universe of discourse, it should be
introduced in the model and be given a proper name for describing this property.

class C
cont ext
having attribute Creation Tinestanmp?®
query
age returns Duration
result now - self-=Creation Tinmestanp
end class C

Table 4.12: Example of an EROOS Query Script for an Object Age

As another example of a query for a relation, one can define a query for a class
participating in two relations. The query, given in Table 4.13, has to check whether
the object participatesin at least arelation link of each relation.

class P
cont ext
bei ng participant of (R S)
query
full participation returns Bool ean
result (self 1R # enpty set) and (self 1S # enpty set)
end class P

Table 4.13: Example of an EROOS Query Script for a Dual Participation Check

4.7.3 EROOS Queries for the Library Example

Given the example of the library system presented in Section 2.3, and the relation
hierarchy defined in Section 4.4.7, we could define a large number of useful queries.
We restrict ourselves to two examples. A query returning the number of books that a
person has borrowed at a certain moment, is expressed in Table 4.14. A query
returning the amount of the fine at a certain moment, is expressed in Table 4.15.

% Notice that since the attribute Creation Timestamp is a default attribute, the context could have been
omitted. Howeve, we explicitly show it in the example for didactical purposes.

122 A METHODOLOGICAL KERNEL FOR CONCEPTUAL MODELLING

cl ass PERSON
cont ext
bei ng partici pant of (REGQ STRATI ON
bei ng partici pant of (SELECTION
bei ng partici pant of (BORRON NG
bei ng participant of (RETURN))))
query
nunber of borrow ngs
returns Natural
result
| et borrow ngs = sel f 1 REG STRATI ON1 SELECTI ON1 BORRON NG
et current borrowi ngs =
{bin borrowings | bfRETURN = enpty set}
#(current borrow ngs)?®
end cl ass PERSON

Table4.14: EROOS Query for the Number of Borrowings

class FINE
cont ext
havi ng partici pant (BORROW NG
bei ng partici pant of (RETURN)
havi ng partici pant (ALLOWANCE
havi ng partici pant (LI BRARY
having attribute Anount of Daily Fine)))
query
anmount
returns EUR VALUE
result
| et duration =
(if self |BORRON NGTRETURN = enpty set
t hen now
el se sel f | BORRON NG| RETURN-Cr eati on Ti nest anp)
- sel f | BORROW NG—»Creation Ti nestanp
sel f | BORRON NG| ALLOWANCE | LI BRARY—=Anpbunt of Daily Fine
* days(duration)
end cl ass FINE

Table 4.15: EROOS Query for the Amount of the Fine

|n EROOS, the cardinality of a set can be denoted using #(), card(), or cardinality().

4.8. EVENTS AND ENRICHMENT 123

4.7.4 Contributions, Related Work, and Reflections

The EROOS query concept is comparable with the definition of query operations in
OCL. Our contribution concerning the query concept is the definition of a formal
notation for expressing the semantics of queries. This allows a complete and
precise description of the behaviour part of a model. As such, the conceptual model
can be used for simulation, which leads to a better validation of the model by the
customers, and for model transformation to more software focussed models at a lower
abstraction level. Our work predates and is largely comparable with OCL. Since the
focus of this text is on the constraint-centric approach in EROQOS, we refer to the
EROOS Reference Manual [143] for a complete and in-depth description of EROOS
queries.

4.8 Events and Enrichment

In Section 4.2, creation events were introduced as a means to create objects of a class.
This section introduces the concept of a general event as a clustering of a number of
other events, being creation events and other general events, in order to model the
behaviour of a more complex change that can occur in the universe of discourse.

4.8.1 Events in an EROOS Model

An EROOS model consists of structural aspects, such as classes, attributes, relations,
constraints, and specialisations, as well as behavioural aspects, such as queries and
events. EROOS events provide the means to create a new instantiation of the EROOS
model, by extending the model instance with a number of new objects. As such,
events define changes that can be applied upon the model instance. A creation event
is a reflection in the conceptual model of changes that occur in the universe of
discourse. Events are said to enrich a class with additional functionality. A creation
event, introduced in Section 4.2, allows the specification of an event that introduces a
new object for a class. But an analyst often wants to describe a clustering of events or
a conditional event based on a number of properties that are important for the event.
The EROOS concept of a general event offers the possibility for the specification of
such more complex events.

An event consists of a description of the effect it has on the model instance when it is
successful, i.e., when it violates no constraints that have been stated in the model.
This effect description is totally declarative and states what happens instead of how it
happens. As such, a new model instance is defined based on the state of the existing
model instance. An event can be atomic, or composed by clustering a number of other
events. An event is instantaneous and timeless, which means that there exists no time
period between the moment the event is initiated and the moment the effect is visible
in the model. When queries are used in an event, they obtain information about the
model instance at the time the event occurred, i.e., just before the change of the event
has been applied. In fact, the changes caused by an event are directly visible after the

A METHODOLOGICAL KERNEL FOR CONCEPTUAL MODELLING

event has taken place. When an event takes place at time t, the event is visible in the
timeframe]t, o[. So queries that are mentioned in the event are evaluated at time t
and will not see the changes caused by the event yet.

Whenever the duration of an event should be considered as a period, because its
duration is important for the universe of discourse, the composite event must be split
in two basic events, namely a first one to express the start of the activity, and a
second one to express the end of the activity. In this manner, the EROOS approach
alows the analyst to make a clear distinction between the modelling of an event or
occurrence that is instantaneous, represented by a single event, and the modelling of
an activity that lasts for a certain period, represented by two events.

4.8.2 Specification of an EROOS Event

In general, an event offers the ability to cluster a number of events into a single event.
This allows the specification of functionality that creates a number of objects from
several classes using a single event, or that conditionally creates an object. An event
is applied on an existing object (self) that forms the reference point for expressing the
event.*® An EROOS event is specified in an event script, as given in Table 4.16.

<EROCS event script> =
"cl ass" <CLASS NAVE>
"context"
<cont ext cl ause>
"general event"
<general event nane>
["(" <parameter nane> ":" <TYPE NAME>
("," <paraneter nane> ":" <TYPE NAME>)* ")"]
"ef fect"
<event expression>
"end cl ass" <CLASS NAME>

<event expression> =
(["let" <menonic> "="] <CLASS NAME>"."
<creation event nanme>"("<paraneter expression>")"
| <object expression>"."<general event nane>

"(" <paraneter expression> ")")+

Table4.16: EROOS Event Script

% One can consider the object on which the event is applied as a default argument for the event.

4.8. EVENTS AND ENRICHMENT 125

The different components in the specification of an event script are the following:

» The name of an event should provide a good description of the occurrence from
the universe of discourse that it represents. The event name must be a lowercase
verb to express the change it applies onto the model instance, and should be
unigue in the context of the class for which it is defined.

* An event can introduce, by means of successive formal arguments, symbolic
names for values and objects to be supplied each time the event is instantiated.

e Thefina component of an event script specifies its effect on the model instance.
The event expression is an (eventually conditional) enumeration of an event
collection, consisting of other EROOS general events and basic creation events
from a variety of classes. The expression that determines the event collection, is
to be built from the object on which the event is applied (self), the values and
objects that serve as actual arguments for the event, the default EROOS
attributes, domain values, and domain functions. The effect description of an
event will be evaluated at the time the event is activated. In the case that a
random choice has to be made between elements from a certain set, the EROOS
selection operator random one of can be used. This selection operator makes a
random selection of asingle element from a set of potential elements.

Since the focus of this text is on the constraint-centric approach in EROOS, we refer
to the EROOS Reference Manual [143] for a complete and in depth description of
EROOS Events. As presented in Figure 4.22, EROOS events are represented
graphically by means of a circle connected to the class of the object on which the
event applies. The name of an event is preceded by an exclamation mark.

<CLASS . I<Event
NAME> Name>

Figure4.22: Graphical Representation of an EROOS Event

4.8.3 EROOS Events for the Library Example

Given the example of the library system that was presented in Section 2.3, and the
relation hierarchy that was defined in Section 4.4.7, we could define a large number
of useful events. We restrict ourselves to the example of a deregistration of a person
at a library, which is expressed in Table 4.17. In order to perform a deregistration, a
person must (1) return all its current borrowings, (2) pay all its open fines, and (3)
deselect all her or his selected books.

126 A METHODOLOGICAL KERNEL FOR CONCEPTUAL MODELLING

cl ass REQ STRATI ON
cont ext
havi ng partici pant (LI BRARY
havi ng attri bute Maxi num Lendi ng Peri od)
bei ng partici pant of (DEREG STRATI ON,
SELECTI ON bei ng partici pant of (DESELECTI ON,
BORROW NG bei ng participant of (
RETURN bei ng partici pant of (PAYMENT),
FI NE bei ng participant of (PAYMENT))))
general event
deregi ster conplete
ef f ect
DEREG STRATI ON. cr eat e(sel f)
for all s in self {SELECTI ON:
s 1 DESELECTI ON = enpty set [0 DESELECTI ON. create(s)
| et returned books = sel f { SELECTI ON{ BORROW NG
bt RETURN = enpty set
for all b in returned books:
et return = RETURN. create(b)
if now - b-Creation Tinestanp >
sel f | LI BRARY-=Maxi mum Lendi ng Peri od
then let fine = FINE. create(b)
PAYMENT. cr eat e(fine, return)
for all f in self1SELECTI ONtBORROWN NG1 FI NE:
f 1PAYMENT = enpty set O
PAYMENT. creat e(f, f | BORROAN NG RETURN)
end cl ass REQ STRATI ON

Table 4.17: EROOS Event of Der egistration for the Library Example

4.8.4 Contributions, Related Work, and Reflections

Our contributions concerning the event concept are the following:

* Thedéefinition of aformal notation for expressing the semantics of events. This
allows a complete and precise description of the behaviour part of a model. Our
work predates and is largely comparable with OCL.

* The methodological approach using instantaneous events obliges the modeller
to split an occurrence with arelevant duration into two model events. This allows
aproper guiding of the modeller to a unique conceptual model for the universe of
discourse to be modelled.

4.9. DESIGN ISSUES CONCERNING MODEL CONSTRAINTS 127

The EROOS event concept is largely comparable with the definition of operations in
OCL. The formal specification of events, in contrast with the common approach of
informal and textual event descriptions in most analysis methods, can be compared
with formal specification formalisms [39], such as Z [63][140], the Vienna
Development Method (VDM) [79], and the B-method [1], and the use of formal
specifications in programming languages, such as Eiffel [100]. In addition to Z that
has a state-based transition formalism, defining a model instance based on the
previous model instance, EROOS extends this approach with a time-based transition
scheme, defining a possibly new model instance based on the previous model
instance at each moment in time. Since the focus of this text is on the constraint-
centric approach in EROOS, we refer to the EROOS Reference Manual [143] for a
complete and in depth description of EROOS Events.

4.9 Design Issues concerning Model Constraints

Conceptual modelling must be focused on the universe of discourse. The final
outcomes of the analysis phase results in a complete description of the universe of
discourse. Aspects of the software solution domain are not incorporated in the
conceptual model. Therefore, constraints in a conceptual model are a high-level
specification mechanism for rules and regulations from the universe of discourse,
without incorporating any decisions on how and when they are going to be checked
and enforced. Since constraints are an important part of the universe of discourse and
therefore deserve to play an important and influential role in a conceptual model, they
are mostly of such importance that they also have to be enforced in the actual
software system. The design phase is the right place and time to take decisions on the
actual details regarding the enforcement of the specified model constraints. We
present an overview of techniques for realising constraint checking for implied model
constraints and first-class model constraints at the design and implementation level.
Additional design considerations have been described by Said [130].

4.9.1 Design Issues for Model-Implied Constraints

A hierarchical structuring of relations resultsin alarger number of classes and amore
complicated association structure to implement. Therefore, it is advisable to transform
the hierarchical structures into a simpler, flat structure in order to implement them.
UML associations are preferred at the design level for reasons of simplicity and
implementation ease. An association do not have an identity or attached functionality.
It is rather straightforward to transform the developed hierarchical model into a
bipartite, flat model, consisting of classes and associations. Each EROOS binary
relation can be transformed into two associations, each connecting a participating
class to the refined class. We have developed a model transformer from EROOS
models to UML models, in which the EROOS hierarchical model structure is
flattened into aUML model.

128 A METHODOLOGICAL KERNEL FOR CONCEPTUAL MODELLING

It is also possible to optimise a model by reversing the reification of arelation into a
class. As such, a refined class can be optimised by replacing it with a plain UML
association. However, the consequence is that all functionality defined for the class
must be shifted to one of its participating classes. This can be done easily when the
relation contains no duplicate relation links, and has a connectivity of ‘1’ for at least
one of the participants. In that case, the functionality can be shifted to the participant
class. Considering the library system, since a book can be borrowed by at most one
registered person at the same time, the borrowing functionality can be incorporated in
the book object. This is due to the fact that there is a one-to-one correspondence
between a borrowing and a book, although it is optional from the viewpoint of the
book. By performing such optimisation transformation, the number of classes
contained in the analysis model can be diminished at the design level. The design
level isthe right place to decide which refined classes have to be optimised and which
ones should be implemented as classes. The main concern for such optimisation
process is to find a good balance between the data (memory) and the procedural
(processing) part of a system.

Existential dependency among objects may seem too restrictive for the ultimate
system to be developed. A large dea of run-time flexibility, in populating the
implementation classes with instances, would be lost. Since the conceptual model is
focussed on the universe of discourse in its normal appearance, issues regarding
unavailability of information to the system at run-time were not yet taken into
account. Therefore, it is possible that some constraints present in the conceptual
model must be relaxed for implementation reasons.

4.9.2 Design Issues for First-Class Model Constraints

Constraints that are specified as a first-class model concept, have to be enforced in
some manner in the actual software system. At the design phase, several topics arise
concerning the constraint enforcement. The main issues are concerned with when and
how to perform the constraint checking. The software engineer must determine the
place and time that the system must perform the necessary checks for detecting
possible constraint violations. In addition, the system must also determine the actions
that must be taken when a constraint violation is detected that is going to occur or has
already occurred. Two distinct approaches can be distinguished, namely a proactive
and a retroactive approach.

e The proactive approach consists of preventing the occurrence of a constraint
violation. First of all, the set of operations that can be the source of a constraint
violation must be determined. For each operation, a precondition must be derived
that can detect possible constraint violations. When all preconditions are satisfied
for an operation, the operation can be executed without violating any constraints.
Notice that such precondition must be an active precondition that must always be
checked before the action may be executed. It is an obliged condition, and not a
kind of design contract that is only checked during debugging, e.g., as in Eiffel
[100]. The preconditions prevent the system from entering a wrong state. Given a
certain system state, the operations that bring the system in an erroneous state are

4.9. DESIGN ISSUES CONCERNING MODEL CONSTRAINTS 129

prevented before they could have been executed. This approach causes a loss of
efficiency due to a high number of tests, but keeps the system in a highly
consistent state at each moment in time.

» Theretroactive approach consists of detecting incorrect system states, whereupon
the system will perform either (1) a sort of rollback to the previous valid state, or
(2) the invocation of an error recovery procedure that tries to fix the system in
some manner. Before an actual change is performed in the system, the necessary
measures are taken in order to enable an undoing of the change. For instance, the
old value of an instance variable that must be changed, can be stored temporarily
until a valid system state has been reached. This results in an important gain of
efficiency, but can leave the system in an inconsistent state during a certain time.
In addition, a mechanism to detect invalid system states must be put in operation.

The choice between these two approaches is often situation specific. A trade-off has
to be made between efficiency and consistency, depending on the criteria that are of
utmost importance for the ultimate system.

Regarding the technical realisation of constraint enforcement, a number of solutions
can be identified:

* A constraint checking meta-layer can be developed that intercepts operation
calls, and performs the necessary checks and measures to enforce the constraint.
As such, the constraint checking meta-layer governs and controls the normal
execution of operations, and intervenes when necessary.

» A software library for EROOS constraints can be developed in order to support
constraint checking at run-time. Such library can provide facilities for evaluating
constraints expressions, so that they can be checked at run-time. An EROOS
constraint interpreter can be developed that parses constraint expressions,
computes their validity, and triggers error handling code when necessary.

e Aspect-Oriented Software Development (AOSD) techniques [46] can be used to
weave constraint-related behaviour into the normal system behaviour. As such,
the constraint checking facilities are specified as a separate entity, and can be
woven into the system functionality at the places where constraint checking and
error handling code must be injected.

» Constraint logic programming techniques, including supporting languages and
libraries, could be integrated in order to detect constraint violations and support
rule deduction. Wu [168] discusses different approaches to combine logic
programming and object-oriented programming.

As pat of the validation for the EROOS methodology, we have developed a
generator for a retroactive run-time constraint meta-layer that can recover from
constraint violations. The decisions that have to be made concerning the constraint
validity, are ordered in severa successive levels in order to obtain separation of
concerns. We generate code to locate where and when each constraint can be
violated. At these violation checkpoints, a meta-layer implementing a constraint

130

A METHODOLOGICAL KERNEL FOR CONCEPTUAL MODELLING

control mechanism is triggered, which traces back to each constraint that could have
been violated at that place. This reduces the moments and the objects to be checked.
Therealisation is done in four steps:

First, code is introduced to preserve the old system values for each change that
can occur in the system, using the memento design pattern. This design pattern
forces the encapsulation of an object state into a memento object, in order to
enable the manipulation of its internal state. As such, the object memento is
cloned before an actual change is executed on any of the object’ s state variables.
When a rollback has to be performed, it is sufficient to restore the old memento
object for the changed object and discard the erroneous one.

Then, the classes that are involved in each constraint are determined. Each
constraint will be checked on all objects of its involved classes after the
invocation of each of its operations. Since al involved classes will be checked,
operations on other classes cannot be of any influence on the validity of the
constraint. This will decrease the moments on which a constraint has to be
checked. Notice that our involvement identification is done rather roughly on a
class-based level, triggered by every operation of a class. However, operations
are often restricted to manipulate certain specific characteristics of an object,
such as attributes or association references. Such operations will not violate
constraints about other characteristics of the class, and, therefore, need not to be
checked at all times. The determination of the violation checkpoints could be
made more fine-grained, triggering only at the moment when certain specific
operations of the class that can violate the constraint, are executed. They do not
have to be triggered at those places where the constraint cannot be violated.
However, this would need a deeper analysis to determine which operations can
violate which constraints. The moments when a constraint has to be checked,
could heavily decrease when performing such advanced, complex operation
analysis.

Third, we determine the set of objects of the involved classes that have to be
verified after an operation on an object of the class is executed. Mostly, it will
not be necessary to check each object of the class when a certain operation has
been executed. It is mostly sufficient to check only the object on which the
operation has been applied. Those common situations will give rise to a decrease
of the objects on which a constraint has to be checked.

Last, code is injected to implement a violation checkpoint. Such checkpoint
triggers the constraint control meta-layer and passes the set of constraints
together with the set of objects that have to be checked. This component will
verify the validity of the identified constraints for the given objects. When a
constraint has been violated, a rollback mechanism is invoked in order to restore
the old state of all changed objects. In case that all constraints have been
preserved, the state change can be committed and no further actions are needed
by the constraint control meta-layer.

4.10. EVALUATION OF THE EROOS KERNEL 131

4.10 Evaluation of the EROOS Kernel

The EROOS kernel provides a number of basic concepts to perform conceptual
modelling, and to capture the knowledge and information of the universe of discourse
in a conceptual model. Moreover, the concepts offered by the EROOS kernel are fine-
tuned and restricted in their applicability, in order to obtain the key principles for
conceptual modelling stated in Chapter 3. In this section, we evaluate the EROOS
kernel according to these key principles, argue how the EROOS kernel succeeds in
achieving the principles, and give an overview of related work. Although it is not our
goal to perform a thorough evaluation of UML according to the key principles for
modelling, Opdahl [114] indicates a number of major problems in UML, such as
failing to comply with the key principles of uniqueness, unambiguity, completeness
and preciseness. While developing the EROOS methodology, we tried to adopt and
integrate all key principles for conceptual model that have been identified.

4.10.1 Achieving Uniqueness

The Principle of Uniqueness is a key principle ingrained in the EROOS kernel. It has
a huge impact on the precise definition of the EROOS concepts, and the delimitation
of their applicability. The EROOS kernel achieves to create a single and unique
conceptual model due to three important factors:

e The incorporation of model constraints in each methodological concept
provides a dedicated meaning to each model concept, thereby limiting its usage
to a specific context and forcing the analyst to use certain concepts in specific
situations. As an example, the prohibition of using Boolean and integer attribute
types, forces the analyst to introduce a specific class or specialisation hierarchy
to model this kind of information. As another example, the prohibition of using
the participation query inside an EROOS constraint specification, forces the
analyst to use relations to express the existential dependency, or a different
expression viewpoint for the constraint using specific top classes.

 The usage of existential dependency as the core model structure, forces the
analyst to use a specific structure for every situation to be modelled. The usage of
an alternative model structure will introduce a number of existential dependency
constraints that are different from the rules in the universe of discourse, and
therefore lead to the description of a different situation.

* Thefact that information can only be added to a model in the EROOS kernel,
leads to the property that there is no information loss inside a model. This means
that the modeller does not have to be concerned with weighing up the advantages
and disadvantages of modelling the full information in all its details, versus
modelling an optimised representation of the information that contains only the
data that is strictly needed. As such, all fundamental information is modelled as
core facts. Derived information can be expressed as queries, and evaluated
whenever necessary. As an example, no computable attribute will be modelled
and kept up-to-date in the EROOS kernel. Instead, all values that compose the

132 A METHODOLOGICAL KERNEL FOR CONCEPTUAL MODELLING

basic elements of the computable attribute will be modelled as single facts,
enabling the calculation of the exact attribute value at any moment in time.

There are some cases in which additional methodological criteria are needed in order
to enforce uniqueness in a model. As an example, during the modelling of a period,
the necessity of modelling the start time, end time, and duration can lead to the
definition of three attributes, of which two are actually sufficient. Moreover, by
choosing to model the start time and end time, the analyst is even obliged to add an
additional EROOS constraint in order to express the fact that the end time must be
greater than the start time. Due to the fact that the EROOS methodology (1) prohibits
the modelling of derived information, and (2) obliges to model those attributes that do
not give rise to additional constraints, an analyst is forced to model the start time and
duration as attributes, and transforming the end time into a query.

4.10.2 Achieving No Redundancy

The Principle of No Redundancy is achieved by the fact that each EROOS concept
captures specific information inside the conceptual model. The extension of a model
with additional concepts therefore introduces more information inside the model and
leads to a different model. When the model is extended with information that could
be derived from information already present in the model, the analyst cannot specify
the equality of the information. For every concept that could be duplicated inside a
model, it is impossible to define such equality constraint. Therefore, the modeller
cannot express derived information in amodel, but has to represent it using queries.

* In the case of class duplication, the objects of both classes express different
occurrences in the universe of discourse. In order to model derived objects, they
should be made mutually dependent. Since the EROOS kernel only allows the
specification of unidirectional existential dependency, it is impossible to express
that two objects are a single unity. Such model always expresses a different
situation, in which both objects are not mutually dependent and can exist
independent from each other. Therefore, they both express a specific and distinct
fact, and cannot be considered as redundant.

* In the case of attribute duplication, it could be possible that the value for a
specific attribute can be derived from values of other attributes, as illustrated in
the previous section. Therefore, the EROOS methodology prohibits the
modelling of derived attribute information, forcing the analyst to a model with
the least number of attributes and EROOS constraints. Derived attributes must be
transformed into EROOS queries.

* Inthe case of relation duplication, the fact that a relation is always encapsulated
in a class would introduce both an additional relation and a corresponding class
for a duplicated relation. Therefore, this case is identical as the one of class
duplication. However, relations can give rise to a second kind of duplication,
namely participant duplication. Participant duplication means that a participant
object in a relation link has unnecessarily multiple presences in the existential
dependency path for a refined object. Such situations are revealed through the

4.10. EVALUATION OF THE EROOS KERNEL 133

presence of EROOS join constraints, which put an equality constraint on a
certain number of direct or indirect participant objects. EROOS explicitly inhibits
thiskind of join constraints, thereby avoiding participant derivation.

* Incase of EROOS constraint derivation, EROOS explicitly inhibits the definition
of EROOS constraints that can be derived from other kind of model constraints.
Therefore, it is not allowed to specify constraints that can be derived from other
constraints in the model.

* In case of EROOS specialisation, the well-formedness rules regarding partitions
explicitly inhibits the definition of identical specialisations in a partition, since
the specialised classes must completely partition the generalised class into
digoint subsets. In addition, identical partitions as well as specialised classes that
cannot contain any objects are forbidden. Last, derivable specialisation partition
structures are avoided due to the specific rules regarding causal specialisation
dependency.

4.10.3 Achieving Unambiguity

The Principle of Unambiguity is achieved by a precise definition of the EROOS
methodological concepts. As such, the information contained inside a conceptual
model has a well-defined meaning that expresses a specific fact from the universe of
discourse. It is therefore impossible that distinct situations in the universe of
discourse result in the same conceptual model. It is possible that a certain subset of
two different universes of discourse results into the same EROOS conceptual model
when they both have certain knowledge and facts in common. Due to the Principle of
Uniqueness, the shared subset of the two universes of discourse will definitely result
in the same conceptual model.

Since every single fact in a conceptual model has a clearly defined meaning that
expresses a certain fact in the universe of discourse, there will be a one-to-one
mapping from the conceptual model to a real or envisioned universe of discourse. A
problem that can arise, is a discrepancy between events that occur in the universe of
discourse, and the view of the corresponding modelled event in the mind of a person
who tries to obtain an understanding of the modelled universe of discourse. This
potential discrepancy arises due to the fact that the correspondence between the
universe of discourse and the conceptual model cannot formally be defined, since
there exists no global reference model of the universe of discourse to refer to. In fact,
the conceptual model has exactly the purpose of being the reference model of the
universe of discourse for the software system to be built. Therefore, it is of utmost
importance to use a proper naming scheme to facilitate a correct and precise mapping
between elements in the universe of discourse, and elements in the conceptual model.
Besides the context of an event, which includes its properties, dependencies and
related knowledge, the event name is the only information available to map the
modelled event onto areal-world event in the universe of discourse.

134 A METHODOLOGICAL KERNEL FOR CONCEPTUAL MODELLING

4.10.4 Achieving Completeness

The Principle of Completeness is achieved by the fact that the EROOS methodology
only offers well-defined formal concepts for modelling knowledge of the universe of
discourse. It is impossible to add additional informal documents or descriptions to an
EROOS conceptua model in order to attach this kind of information to the
conceptual model. The EROOS conceptual model is the sole source of knowledge
that is captured in the conceptual model. It is the task of the analyst to accomplish a
complete model of the universe of discourse. The analyst has to assess whether the
resulting conceptual model covers all elements of the universe of discourse or not.

An analysis methodology can only guide the analyst in achieving completeness, but
cannot enforce the completeness of a conceptual model regarding a certain universe
of discourse. The EROOS methodology assists the analyst by emerging concealed or
latent facts, and forces the analyst to model them explicitly in the conceptual model.
For instance, the fact that relations always must be encapsulated in a class, forces the
relation to manifest in the conceptual model. As another example, the prohibition of
Boolean and integer attribute types forces the analyst to highlight the hidden facts
behind these attributes, and explicitly reify them as objects or specify them inside the
specialisation hierarchy.

4.10.5 Achieving Minimalism

The Principle of Minimalism is achieved by the fact that an EROOS model must be a
coherent model, without any classes that are unrelated to other classes in the model.
Moreover, every modelled element must be related to a functional requirement or to
an element of the real or envisioned universe of discourse. However, this is not
enforceable, since it is largely the responsibility of the analyst, in consultation with
the clients and the end users, to decide whether an element belongs to the envisioned
universe of discourse or not. Software metrics for Object-Oriented Models
[118][26][25][44], which propose measurements for coupling and cohesion, could
assist the modeller in deciding whether certain elements are loosely coupled. But such
metrics are often a poor indicator to measure the quality criterion of minimalism.
Therefore, it is the task of the analyst to accomplish a minimal model of the universe
of discourse. The analyst has to assess whether certain knowledge belongs to the
universe of discourse, or whether it falls beyond its boundaries. An analysis
methodology can only guide the analyst in achieving minimalism, but cannot enforce
the minimalism of a conceptual model regarding a certain universe of discourse.

The Principle of Minimalism should not be viewed in isolation, but should be
considered in relationship with the Principle of Completeness. Certain model
optimisations to obtain an apparently smaller model, thereby achieving a higher
degree of minimalism, could conceal or obfuscate certain important elements that
should be highlighted to obtain model completeness. In achieving the right balance
between minimalism and completeness, the EROOS methodology favours
completeness through highlighting hidden facts, above minimalism through model
reductions and optimisations.

4.10. EVALUATION OF THE EROOS KERNEL 135

4.10.6 Achieving Preciseness

The Principle of Preciseness is achieved by a complete formalisation of the analysis
results in EROOS. No textual specifications can be made inside an EROOS model.
All model entities, event descriptions, model constraint specifications in an EROOS
conceptual model are formally specified. As such, the information in the conceptual
model can fully be verified at each moment in time, in order to check its correctness
and validity. Not only the structural part of the conceptual model, but also the
behavioural part isformally specified.

A formal specification of the structure and behaviour of a conceptual model allows
formal verification of the analysis results, and rapid prototyping in order to achieve
early customer feedback. We have validated our behaviour specification by building a
generator for model simulations that automatically generates a C++ [144] or Java [57]
application with an accompanied user interface, in order to support rapid prototyping
and early model validation.

4.10.7 Achieving No History

Since an EROOS conceptual model only represents basic facts and their
interdependencies, the Principle of No History is fulfilled by the EROOS
methodology. No historical information regarding the model creation process can be
captured in the resulting EROOS conceptual model. A change in the model will have
adirect impact on the model structure, and cannot be superimposed on the old version
of the model.

An EROOS model captures a lot of historical information regarding the event
occurrences, but this kind of historical information is an inherent part of the universe
of discourse. Information about the gradual materialisation of a conceptual model
cannot be retrieved from the resulting EROOS model.

4.10.8 Achieving Model-Implied Constraints

The Principle of Model-Implied Constraints is a key principle ingrained in the
EROOS kernel. It is achieved through the extensive and sound definition of the
concepts offered by the EROOS methodology. A large number of model constraints
are directly implied by the EROOS concepts. This chapter has extensively described
the model-implied constraints for each EROOS concept, such as digunctness,
immutability, finiteness, and uniqueness for classes, permanent binding and
immutability for attributes, existential dependency and immutability for relations, and
abstractness, immutability, finiteness, and partition disjunctness for specialisations.

Through the encapsulation of every relation in a class, an existential dependency
hierarchy is established as the core model structure. Every dependency of an item on
the existence of other items will be reflected in the model by a direct or indirect
relational dependency between (1) the objects expressing these refined items and (2)
the obj ects expressing the dependent items. This establishes an implicit and automatic

136 A METHODOLOGICAL KERNEL FOR CONCEPTUAL MODELLING

enforcement of the dependency constraints that exist in the universe of discourse.
However, the EROOS kernel lacks the possibility to make a separate description of
two items that are mutually dependent. In order to reach model uniqueness, mutually
dependent items can only be modelled by merging them into a single unity object.
The EROOS universe, presented in Chapter 5, offers advanced concepts that facilitate
the separate modelling of mutually dependent items.

4.10.9 Achieving Abstraction

Regarding the Principle of Abstraction, the EROOS kernel only offers a full detailed
view on a conceptual model. EROOS does not offer concepts for generating model
views, in order to present a model in an abstracted form to a model reader. The only
concern of the EROOS kernel is to offer means to create a complete and detailed
conceptual model for the universe of discourse. However, it is possible to generate
abstract views from an EROOS model, using for instance Model-Driven
Development (MDD) [50][83] techniques to transform an EROOS model into a more
abstract model that is better focussed to the needs of the model reader. As such, a
detailed conceptual model can be translated into a suitable customer interaction
model using MDD model transformations.

Chapter 5

Advanced Conceptsfor Conceptual
M odelling

An EROOS model is composed of both structural elements, such as classes,
attributes, relations, specialisations, and constraints, as well as behavioural elements,
such as queries and events. In the previous chapter, the concepts and notations of the
EROOS kernel have been presented. Although these core concepts are sufficient to
build a conceptual model that complies with the key principles for conceptual
modelling, it is useful to have better suitable concepts at one's disposal in order to
simplify the specification of recurrent patterns. Based on common analysis patterns
that have been detected for the EROOS kernel, the EROOS universe offers the
analyst advanced and more practical concepts for modelling the universe of discourse.

5.1 Class Archives and Object Destruction

This section introduces the EROOS kernel analysis pattern that has identified the
necessity of introducing the concept of a class archive. The definition of the class
archive, the specification of attributes and queries for a class archive, and the usage of
the class archive as relation participant, are described theresfter. Last, the class
archive concept is applied on the running example of the library system.

5.1.1 EROOS Kernel Analysis Pattern for Class Archives

Objects often represent properties from the universe of discourse having a
temporarily meaningful lifetime. The property can represent an activity, or it can have
a limited physical time of existence, a limited time of validity, or a specific duration
in which the property is active or enabled. This results in a specific EROOS kernel

137

138 ADVANCED CONCEPTS FOR CONCEPTUAL MODELLING

analysis pattern that is presented in Figure 5.1 and Table 5.1. The class
‘LIVING/ACTIVE' represents the property when it is active, while the class
‘DEAD/PASSVE' models the expiration or end of the property. All meaningful
attributes and relations are attached to the class ‘LIVING/ACTIVE'. A number of
constraints explicitly check that the property has not yet expired for a valid
participation in a refined class, e.g., ‘INVOLVEMENT . This EROOS kernel analysis
pattern can also be observed in the example of the library system, presented in Figure
4.9 on page 91. In order to simplify the specification of this recurring EROOS kernel
analysis pattern, the EROOS universe provides notational support by means of an
extension of the class concept.

DEAD/PASSIVE S 7.
no involvement

when dead

INVOLVEMENT

O

Figure5.1: EROOSKernel Analysis Pattern for an Activity

LIVING/ACTIVE

constraint no invol venent when dead
top cl asses DEAD/ PASSI VE, | NVOLVEMENT
cont ext
DEAD/ PASSI VE havi ng participant (LIVI NG ACTI VE),
I N\VOLVEMENT having partici pant (LIVING ACTI VE)
definition
for all d in DEAD/ PASSI VE:
for all i in I NVOLVEMENT:
d{LIVING ACTIVE # i | LIVING ACTI VE
end constraint no invol venent when dead

Table5.1: EROOS Constraint for an Activity

5.1.2 The Class Archive

In order to support the modelling of an object with a temporary lifetime, object
destruction is introduced in the EROOS universe as an extension for the class
concept. As such, all objects of a class automatically have an active lifetime in which
most of their events and activities will occur. Objects that have passed their active
lifetime, indicated by the occurrence of a destruction event for the object, are put into
the class archive. The destruction event reflects the fact that a property or an item in
the universe of discourse corresponding with the object has ceased to exist, or stopped

5.1. CLASS ARCHIVES AND OBJECT DESTRUCTION 139

to be of any importance. This corresponds with the existence of a DEAD/PASSIVE
object for the class LIVING/ACTIVE in Figure 5.1

The population of a class, representing the set of objects associated with that class,
will be split in two digoint collections, namely a present population set and a past
population set. The present population set represents the living objects, which are
those objects for which the destruction event has not yet occurred. The past
population set, also called archive, is an object collection of the class that contains all
dead objects, which are those objects that have been involved in a corresponding
destruction event. The method will offer possibilities for checking whether an object
is ‘alive’ or ‘dead’, as well as for retrieving information about the final attribute
values of the dead object and the relation link it has been representing. Figure 5.2
shows the detailed representation of a class, together with the basic state diagram
expressing the course of life for an object, and the partitioning of the population set of
a class into a present and past part at a moment t. The extended class script and
definition of aclassisgiven in Table 5.2 and Definition 5.1. Notice that the definition
allows a new object to be involved both in a creation and destruction event at the
same moment t, in which case the object will be added to the overall population set as
well as the past population set of the class. In fact, the life span of such stillborn
objects will be of zero length.

<CLASS NAME>

| °|
|]

creation — destruction O

Figure5.2: Present and Past Population set for an EROOS Universe Class

<EROGCS uni verse cl ass script> =
"cl ass" <CLASS NAVE>
"creation event"
<creation event nane>
"destruction event”
<destruction event nane>
"end cl ass" <CLASS NAME>

Table5.2. EROOS Universe Class Script

140 ADVANCED CONCEPTS FOR CONCEPTUAL MODELLING

A concrete class is a nodel entity defining, at each nonent
intime, a disjoint object population set, which is el enent

of the correspondi ng nodel instance. This total popul ation
set can only be extended in tine, and is split into two
disjoint parts: a present popul ation set that represents the
living objects of the class, and a past popul ation set,
called archive, that represents the dead objects. The archive
set can only be extended in tine, whereas the popul ati on set
can grow due to new objects but also shrink due to the

m gration of objects to the archive

A creation event is an event of a class that, if applied on a
nodel instance at a certain tinme, adds a new object to the
obj ect popul ation set for that class. The object will be
added to the present population set, unless it is at the sanme
nmonment involved in a destruction event, in which case it is
directly added to the past popul ation set.

A destruction event is an event of a class that, if applied
on an object of a nodel instance at a certain time, renoves
an object fromthe present popul ation set of the class, and
add it to the the past population set of the class.

G ven
Model M Obj ect Universe QU, Event Universe EU
Event Set |Instance E, Concrete class C € My;
ohject 04,..,0, € QU; Destruction Event di, .,d, € EU,
C: TIME - P(QJ) | VIt €TIME C, € G
Vt eTIME C, € Cny

C: TIME - P(QU) | VEt €TIME & =G\ C,
01, .,0, € Cy A 0,.dy, .., 0,.dy € Eu1

O Chy =C' O {0y, .., on}

Definition 5.1: EROOS Universe Class

5.1.3 Attributes for the Class Archive

In EROOQS, an attribute can be specified for a class archive, meaning that the attribute
will only have to be defined for dead objects, thus belonging to the archive. The
permanent binding for an attribute is preserved, but since the attribute is attached to
the class archive, only dead objects can and must have an attribute value attached to
them. Obviously, the definition of an archive attribute influences the destruction
event of an object, since the destruction event must establish the binding with a value
of the decorating domain in order to fulfil all implied constraints concerning the
archive attribute. The definition of an archive attribute can be found in Definition 5.2,
whereas the specification of an archive attribute script is given in Table 5.3 and the
graphical notation is presented in Figure 5.3.

5.1. CLASS ARCHIVES AND OBJECT DESTRUCTION 141

An archive attribute is a nodel entity defining a property

for a class archive for which, at each nonment in tine, every
obj ect of the past popul ation of a class must be associated
to a specific value of the domain defined for the attribute.

G ven
Model M Cass C € M,; Attribute CA" € M, Domain D € M;
CA: TIME-> (C'y D) | VYVt € TIME CA, c CA",,

Definition 5.2: EROOS Archive Attribute

<EROCS archive attribute script> =
"cl ass" <CLASS NAVE>

"definition"
"decorated by" ["unique"] "archive attribute"
<Attribute Name> ":" <DOVAI N NAME>
["constrained by" [<lower bound> ("<" | "<")]
<Attribute Nane> [("<" | "<£") <higher bound>]]

"destruction event"
<destruction event nane>

["(" <parameter nane> ":" <DOVAI N NAME> ")"]
"ef fect”
("new self-="<Attribute Name> "=" <paraneter nane>

| "new sel f>"<Attribute Name> "
"end cl ass" <CLASS NAME>

<domai n expressi on>)

Table5.3: EROQOS Ar chive Attribute Script

<Archive
Attribute Name>

Figure5.3: Graphical Representation of an EROOS Archive Attribute

<CLASS NAME>

5.1.3.1 Default Attributes for the Class Archive

When introducing the class archive in the EROOS universe, a default attribute is
introduced for the class archive, namely the Destruction Timestamp. The default
attribute Destruction Timestamp, implicitly decorating each past object of every class,
is used to specify the exact time at which an object has ceased to exist. The
Destruction Timestamp will be fixated at the time of the destruction of the object, i.e.,

142

ADVANCED CONCEPTS FOR CONCEPTUAL MODELLING

at the moment of occurrence of the destruction event. Although the Destruction
Timestamp does not have to be defined explicitly, its semantics can be defined in an
implicit default EROQOS attribute script, as presented in Table 5.4.

<EROCS default destruction tinmestanp>
"cl ass" <CLASS NAME>
"definition"
"decorated by"
"archive attribute Destruction Tinestanp :
"destruction event”
<destruction event name>
"effect”
"new sel f =Destruction Tinestanmp = now'

TI VE"

"end cl ass"

<CLASS NAME>

Table5.4: Implicit EROOS Script for the Default Attribute Destruction Timestamp

5.1.4 Queries on the Class Archive

Since EROOS queries serve to retrieve information about the model instance, and the
properties of the objects within it, at a specific moment in time, they could also be
applied on objects of the class archive. There are no restrictions for using queries that
were originally specified on a class, since they can be used for retrieving the
properties of living as well as dead objects.

In addition to queries applicable on all objects, a specific set of queries can only be
applied on objects of the class archive, namely those that involve the usage of an
archive attribute or the Destruction Timestamp. Since these attributes only obtain a
value at the moment the destruction event occurs, such queries cannot be applied on
objects that are still living.

As presented in Table 5.5, the specification of an archive queries is analogous to the
specification of an ordinary query with two distinction, namely (1) the keyword
archive query that is used to define a query for the class archive, and (2) the capacity
of using archive queries and the Destruction Timestamp (->Destruction Timestamp).
The graphical representation of an archive query is presented in Figure 5.4.

<CLASS NAME>

| °|
| g

Figureb.4: Graphical Representation of an EROOS Archive Query

5.1. CLASS ARCHIVES AND OBJECT DESTRUCTION 143

<EROCS archive query script> =
"cl ass" <CLASS NAME>
"context"
<cont ext cl ause>
"archive query"
<query nanme> ["(" <parameter nanme> ":" <TYPE NAME>
("," <paraneter name> ":" <TYPE NAME>)* ")"]
"returns" <TYPE NAME>
"result" <archive query expression>
"end cl ass" <CLASS NAME>

Table 5.5: EROOS Archive Query Script

5.1.5 Class Archive as Relation Participant

The introduction of an archive for a class leads to two kinds of objects: the living
objects, belonging to the present population of the class, and the dead objects
belonging to the past population. This fact can now be exploited when using classes
within other EROOS concepts. Instead of using the present population of a class as a
participant, the class archive or even the total population set, which is the union of the
present and the past population, can be used when dependency relationships between
refined objects and participant objects are defined. This alows the formulation of
additional restrictions between the lifetimes of a refined object and a participant
object. There exist three types of relation participation for a class. All three types
include the core existential dependency property that must be valid for every refined
object r and participating object p, namely

p->Creation Timestamp < r- Creation Timestamp®"
In addition, the core object property must be valid for every object o, namely
0—>Creation Timestamp < o-Destruction Timestamp

« A ‘present participation’, as presented in Figure 5.5.a, obliges that the
participant object p is alive during the whole lifetime of the refined object r.

p—Creation Timestamp < r->Creation Timestamp < r->Destruction Timestamp
< p—~Destruction Timestamp

* A ‘past participation’, as presented in Figure 5.5.b, obliges that the participant
object p that is related to the refined object r, is dead.

p->Creation Timestamp < p->Destruction Timestamp < r-Creation Timestamp
<r->Destruction Timestamp

% Notice that this property only applies when no mutation has taken place, as defined in Section 5.1.7.

144

ADVANCED CONCEPTS FOR CONCEPTUAL MODELLING

A ‘total participation’, as presented in Figure 5.5.c, obliges that the participant
object p can be either alive or dead during the lifetime of the refined object r.

(p—~Creation Timestamp < r-Creation Timestamp < r-Destruction Timestamp)
[(p—>Creation Timestamp < p->Destruction Timestamp)

P R P

R
| F—O | F——0
| 1] |] — —0]
a) Present Participation
P R P R
| 9 0 | | [0 79
| i | F—E—0 1
b) Past Participation
s) R P . R
| 5 O | I) 9]
| i | 7l L0 il

c) Total Participation

Figure5.5: Participation Typesfor an EROOS Class

In addition to the three participation types of a relation, additional integrated
constraints can be added to a participation, further restricting the dependency rules
between the refined object and the participating object. A number of these restrictions
can also be represented in a graphical form, as presented in Figure 5.6.

A ‘not deceased’ participant expresses an additional constraint on the participant
object at the time of the creation of a refined object, obliging that the
participating object is not yet deceased prior to the moment the refined object is
created. Thisis presented in Figure 5.6.a.

r--Creation Timestamp < p—Destruction Timestamp

This constraint cannot be combined with a present participation, since it is
aready implied by the condition for a present participation. It can only be
combined with a total participation or a past participation. For a past
participation, the restriction is strengthened to

p—Creation Timestamp < p->Destruction Timestamp = r—Creation Timestamp
<r->Destruction Timestamp

5.1. CLASS ARCHIVES AND OBJECT DESTRUCTION 145

A ‘not surviving participant expresses an additional constraint on the
participant object at the time of the destruction of the refined object, obliging that
the refined object cannot be destroyed before the related participating object is
destroyed. Thisis presented in Figure 5.6.b.

p->Destruction Timestamp < r--Destruction Timestamp

This constraint cannot be combined with a past participation, since it is already
implied by the condition for a past participation. It can only be combined with a
total participation or a present participation. For a present participation, the
restriction is strengthened to

p—Creation Timestamp < r—-Creation Timestamp < r-Destruction Timestamp
= p—~Destruction Timestamp

Notice that ‘not surviving’' can be combined with ‘not deceased’” for a total
participation. Thisis presented in Figure 5.6.c.

p—Creation Timestamp < r—-Creation Timestamp < p->Destruction Timestamp
<r->Destruction Timestamp

A ‘significantly’ restriction expresses a strict time ordering, namely ‘<,
excluding border conditions in which objects can be created or destroyed
simultaneously, namely ‘<'. A ‘significantly’ indication can be combined with all
of the previous introduced participation types.

- A ‘significantly not deceased’ total or past participant obliges that the
participating object will remain living after the refined object is created.

r->Creation Timestamp < p—Destruction Timestamp

Notice that this restriction can be combined with the ‘not surviving’
restriction for atotal participation.

p—Creation Timestamp < r—Creation Timestamp < p->Destruction
Timestamp < r-Destruction Timestamp.

- A ‘dignificantly not surviving' present or total participant obliges that that
the refined object will still remain living after the destruction of the
participating object.

p—Destruction Timestamp < r- Destruction Timestamp

Notice that this restriction can be combined with the ‘not deceased’
restriction for atotal participation.

p—-Creation Timestamp < r—Creation Timestamp < p->Destruction
Timestamp < r—Destruction Timestamp

It can even be combined with the *significantly not deceased’ restriction for
atotal participation.

p—-Creation Timestamp < r-Creation Timestamp < p->Destruction
Timestamp < r->Destruction Timestamp

146

ADVANCED CONCEPTS FOR CONCEPTUAL MODELLING

A ‘significantly deceased’ past participation obliges that the lifetime of the
past participant object must clearly be ended before the creation of the
refined object can take place.

p—Creation Timestamp < p->Destruction Timestamp < r->Creation

Timestamp < r-Destruction Timestamp

A ‘gignificantly surviving' present participant obliges that that the
participating object will still remain living after the destruction of the
refined object.

r-Destruction Timestamp < p— Destruction Timestamp

A ‘significantly lived’ present, past or total participation obliges that the
participant object has clearly be created before the creation of the refined
obj ect can take place.

p—Creation Timestamp < r->Creation Timestamp

This restriction can be combined with all previous introduced participant
restriction, except for the ‘significantly deceased’ participant restriction
sinceit is aready implied by this restriction.

A ‘significantly not instantaneous participation obliges that the
participant object has clearly be created before the destruction of the refined
obj ect can take place.

p—>Creation Timestamp < r-Destruction Timestamp

This restriction can be combined with a number of participant restrictionsin
order to create eleven additional combinations of meaningful participant
restrictions.

P R P R
| F— O 9 | 4 | O 9
| T — O Al il I O il
a) Not Deceased Total Participation and Not Deceased Past Participation
P R P R
| ob— O of || °| L —O °l
| T O i | i ——O 1]

b) Not Surviving Present Participation and Not Surviving Total Participation

R

)

°|

Q

1]

c) Not Deceased Not Surviving Total Participation

Figure5.6: EROOS Archive Participation Constraints

5.1. CLASS ARCHIVES AND OBJECT DESTRUCTION

147

Restriction between participant p and refinementr Number

Name of Participation Restriction p.CTS...r.CTS|p.CTS...r.DTS|p.DTS...r.CTS|p.DTS...r.DTS of cases
Sign.Deceased Past < < < < 1
Sign.Living Sign.Not Surviving Past < < <= < 2
Sign.Living Past < < <= <= 3
Sign.Living Not Deceased Sign.Not Surviving Past < < = < 1
Sign.Living Not Deceased Past < < = <= 2
Sign.Living Not Deceased Sign.Not Surviving Total < < >= < 2
Sign.Living Not Deceased Not Surviving Total < < >= <= 4
Sign.Living Not Surviving Present < < >= = 2
Sign.Living Present < < >= >= 3
Sign.Living Not Deceased Total < < >= <=> 5
Sign.Living Sign.Not Deceased Sign.Not Surviving Total < < > < 1
Sign.Living Sign.Not Deceased Not Surviving Total < < > <= 2
Sign.Living Sign.Not Deceased Not Surviving Present < < > = 1
Sign.Living Sign.Not Deceased Present < < > >= 2
Sign.Living Sign.Surviving Present < < > > 1
Sign.Living Sign.Not Deceased Total < < > <=> 3
Sign.Living Sign.Not Surviving Total < < <=> < 3
Sign.Living Not Surviving Total < < <=> <= 5
Sign.Living Total < < <=> <=> 6
Sign.Not Surviving Past <= < <= < 3
Sign.Not Instantaneous Past <= < <= <= 4
Not Deceased Sign.Not Surviving Past <= < = < 2
Sign.Not Instantaneous Not Deceased Past <= < = <= 3
Not Deceased Sign.Not Surviving Total <= < >= < 4
Sign.Not Instantaneous Not Deceased Not Surviving Total <= < >= <= 7
Sign.Not Instantaneous Not Surviving Present <= < >= = 3
Sign.Not Instantaneous Present <= < >= >= 5
Sign.Not Instantaneous Not Deceased Total <= < >= <=> 9
Sign.Not Deceased Sign.Not Surviving Total <= < > < 2
Sign.Not Deceased Not Surviving Total <= < > <= 4
Sign.Not Deceased Not Surviving Present <= < > = 2
Sign.Not Instantaneous Sign.Not Deceased Present <= < > >= 4
Sign.Not Instantaneous Sign.Surviving Present <= < > > 2
Sign.Not Instantaneous Sign.Not Deceased Total <= < > <=> 6
Sign.Not Surviving Total <= < <=> < 5
Sign.Not Instantaneous Not Surviving Total <= < <=> <= 8
Sign.Not Instantaneous Total <= < <=> <=> 10
Past <= <= <= <= 5
Not Deceased Past <= <= = <= 4
Not Deceased Not Surviving Total <= <= >= <= 8
Not Surviving Present <= <= >= = 4
Present <= <= >= >= 6
Not Deceased Total <= <= >= <=> 10
Sign.Not Deceased Present <= <= > >= 5
Sign.Surviving Present <= <= > > 3
Sign.Not Deceased Total <= <= > <=> 7
Not Surviving Total <= <= <=> <= 9
Total <= <= = <=> 11

Table5.6: Alternativesfor a Relation with Participation Restriction

148 ADVANCED CONCEPTS FOR CONCEPTUAL MODELLING

The specification of an EROOS universe relation with participation constraints can be
found in Table 5.7. As presented in Table 5.6, the offered integrated constraints cover
all potential order restrictions between the Creation and Destruction Timestamps of a
refined and a participating object, except those cases for which

e an object is obliged to have a life span of zero length. This must rather be
modelled as an event instead of an object (see also Table 5.14 on page 170).

e aparticipant object is obliged to be created at the same time as a refined object,
which violates the existential dependency of the refined object on the participant
object. Such obligation creates a mutual dependency between the refined and
participating object. Mutual dependencies cannot be expressed using EROOS
relations. The concept of an EROOS compound, presented in Section 5.2.5, is
introduced for modelling mutual dependencies (see also Table 5.13 on page 169).

<EROCS universe relation script> =
"class" <CLASS NAME>
"definition"
("refined with binary relation”
(<positive nunmber> | "unlimted" | "o")
<participant description> ",k "
(<positive nunber> | "unlimted" | "o")
<partici pant description>
| "refined with unary relation" <participant description>)
(("unlimted" | "o") "occurrences" | "one occurrence"”
| <positive number |arger than 1> "occurrences")
"creation event"
<creation event nanme>

"(" <parameter name> ":" <CLASS NAME>
["," <paraneter nane> ":" <CLASS NAME>] ")"
"ef fect"
"new sel f |["<Participant Nane> "=" <paraneter nane>
["new sel f |["<Participant Nane> "=" <paraneter name>]

"end cl ass" <CLASS NAMVE>

<participant description> = ("nutable" | "imutable") 32
[["significantly"]"not deceased"” | "significantly deceased"]
[["significantly"]"not surviving" |"significantly surviving"]
["significantly lived" | "significantly not instantaneous"]
["present” | "past" | "total"] <CLASS NAME> [° | T | °tT]
["as" <ROLE NAME>]

Table5.7: EROOS Universe Relation Script

% See Section 5.2.3 for the definition of amutable participant.

5.1. CLASS ARCHIVES AND OBJECT DESTRUCTION 149

5.1.6 EROOS Relations for the Library Example Revisited

Given the example of the library system that was presented in Section 2.3, and the
relation hierarchy that was defined in Section 4.4.7, we can now revisit this model
using EROOS universe classes that have class archives. As already indicated, this will
result in a strong reduction of the number of classes, as shown in Figure 5.7. In
addition, specific connectivity constraints can now be added to the relations, since
these connectivity constraints only deal with restrictions on present objects. The
following observations can be made:

Most participants have a present participation, obliging that every refined object
has a living participant object. An example is the registration relation between a
person and a library

A number of participants have a not deceased total participation, obliging that
the participating object must be living when the refined object is created.
However, this participating object may afterwards die. Examples are the
publisher and book for a copy, and the allowance object for a borrowing. When
the library changes its policy on the maximum number of allowed lent items, the
ongoing borrowings should be untouched, since they cannot be recalled.

A selection has a not deceased past participation in a borrowing, obliging that
the selection has ended when the borrowing is made. In fact, the selection object
is transformed into a borrowing object.

A fine has a not deceased not surviving total participation, obliging that the
borrowing has not yet ended when the fine is created, but that borrowing must
have ended when the fine is paid, represented by the destruction of the fine
object.

A secondary author has a total participation in person, meaning that the person
attached as an author to a book, can be living or dead. This expresses that it is
possible that a certain author has died before the book is finished, expressed by
the creation event of book.

A secondary author has a not surviving present participation in author, obliging
that the author must exist as long as the secondary author exists, and that the
author must be destroyed at the moment the secondary author is destroyed. The
only thing that cannot be expressed is the fact that all authors must be created at
the same time. The relation that is currently defined, allows new secondary
authors to be added to an existing book. However, once a secondary author has
been added, it can only be removed by removing all authors, including the book
object. In order to model the full dependency between authors, which is a mutual
dependency, we need the concept of compounds that is presented in Section
5.2.7.

150

ADVANCED CONCEPTS FOR CONCEPTUAL MODELLING

AU'@R
—

7/ i
PREVIOU //_l\

L[/

SECONDARY
AUTHOR

NEXT

T
PERSON 1 /%K PUBLISHER
MAIN AUTHOR 00—

Il

i
SELECTION BORROWING
O /Q FINE
1 ~—0] |
REGISTRATION™ | -, | m— S
/__SINTEM fl—0 7
O | |
ALLOWANCE | /|
BORROWING
— | TICKET
LIBRARY 7 PO%ESSION
1

Maximum Amount Of
ending Period Daily Fine

Figure5.7: EROOS Relationsfor the Library System Revisited

5.1.7 Contributions, Related Work, and Reflections

Our contributions concerning the class archive concept are the following:

Our approach concerning class archives is a novel and original contribution to
conceptual modelling. Other analysis methods do not provide destructors, or
consider destroyed objects as useless for the model. The introduction of class
archives, and their usage in existential dependency relationships, provides a
powerful and high-level modelling concept, in which important dependency
constraints can be implied directly by the model structure. All kind of restrictions
between the lifetime of arefined object and its participant object, can directly be
specified in the relation definition.

The default attribute Destruction Timestamp for all objects of every class,
enables the modeller to reason about the moment at which an object has ceased
to exist. This attribute does not have to be modelled explicitly, but it is
automatically available for every object in EROOS. The default Creation and
Destruction Timestamp attributes permit reasoning about the moments objects

5.2. MUTABILITY OF ATTRIBUTE VALUES AND RELATION PARTICIPANTS 151

are created and destroyed, for instance, by formulating queries that calculate the
average life span. The modeller does no longer have to decide whether such
attributes are needed in the model, since the EROOS methodology automatically
exposes this kind of information for all objects.

* Objects that cease to exist are not vanished from the conceptual model, but still
can be addressed to gather historical information regarding past events, former
attribute values and the old relation links. The destruction of an object only
reflects that the fact it is representing, has ceased to exist in the universe of
discourse. Issues regarding the fact whether the object is still needed for
obtaining certain information, or for performing certain tasks, are not under
discussion during conceptual modelling.

Most object-oriented analysis methods do not pay much attention to the end of the
lifetime of an object. Like many recent programming languages, some methods
consider objects to remain living as long as they are relevant for the system being
modelled. When objects are no longer needed, a garbage collector can automatically
collect them and remove them from the system. A number of analysis methods and
programming languages, such as C++ [144] and Ada [9], explicitly deal with the
destruction of objects. However, they also consider an object to be deleted when it is
no longer needed within the program. The EROOS universe decouples the destruction
of an object from the removal of an object from the model. Objects in an EROOS
conceptual model are never deleted from the model, but remain always available for
querying, and even for participating in relations having past participants. The
destruction of an object in the EROOS universe expresses that the original fact from
the universe of discourse, which is represented by the object, is no longer valid.

An observation that can be made is that it is rather difficult to uncover the
participation restrictions that are present in the universe of discourse. The modeller
often tries to deduce them from a number of examples, but one must certain that the
set of examples cover the full range of possibilities in the universe of discourse.

5.2 Mutability of Attribute Values and Relation Participants

This section introduces the EROOS kernel analysis pattern that has identified the
necessity of introducing mutability of attribute values and relation participants. The
definition of a mutable attribute and relation participant, the specification of mutation
events, and the revised definition of implicit queries, are described thereafter. Last,
mutability is applied on the running example of the library system.

5.2.1 EROOS Kernel Analysis Pattern for Mutability

Attribute values and relation participants do often not remain constant in the universe
of discourse, but tend to change over time. After fixating their initial value at creation
time, additional events can lead to a situation where the initial value becomes
outdated, irrelevant, and useless. Such situation results in a specific EROOS kernel

152 ADVANCED CONCEPTS FOR CONCEPTUAL MODELLING

analysis pattern that is presented in Figure 5.8. In the left part of the figure, attribute
update objects are attached to the object that contains the initial attribute value. The
provided query returns the attribute value of the latest update. In the right part, a
generalisation class clusters the objects representing the initial attribute values, with
the objects representing the updated values in order to obtain a single modelling of
the attribute value on the generalisation level. In addition, the updates are sequentially
ordered by refining the update with the generalisation class as the participant, using a
‘not deceased past participation’ restriction for the participant. This expresses that
only the last attribute update object is alive. Objects modelling previous values that
have become irrelevant, must be destroyed in the model. In order to simplify the
specification of this recurring EROOS kernel analysis pattern, the EROOS universe
provides notational support by means of mutation events to model attribute value
updates and relation participant updates.

ATTRIBUTED .
VALUE ZAttribute CLASS <Attribute
UPD(A,)TE Name> s 9] Name>
| Tl ?Most
Recent
<Attribute N\ Value
INITIAL ‘ Name> | ,
VALUE
SETTING % Mot \Lcﬁ’II_DL,i\I'EI'E 'VNAIL?EL
Recent
Value —0O SETTING

Figure 5.8: EROOS Analysis Pattern for a Mutable Attribute

5.2.2 Specification of a Mutable EROOS Attribute

Attribute mutability is introduced in the EROOS universe as an extension of the
attribute concept. A mutable attribute allows changing the binding of an object with
its attribute value over time, under the condition that a specific domain value is
defined at each moment in time. In fact, a mutable attribute is a contraction of the
EROOS kernel analysis pattern, as presented in Figure 5.8, into a single class. The
syntax of a decoration script is given in Table 5.8, while Definition 5.3 presents the
definition of an attribute in the EROOS universe. As presented in Figure 5.9, a
mutable attribute is graphically represented by a small wave interrupting the line that
connects the attribute to its decorated class.

<CLASS <Attribute
NAME> Name>

Figure5.9: Graphical Representation of a Mutable EROOS Attribute

5.2. MUTABILITY OF ATTRIBUTE VALUES AND RELATION PARTICIPANTS 153

<EROCS universe attribute script> =
"class" <CLASS NAME>
"definition"
"decorated by"

("nmutable" | "imutable") ["unique"] "attribute"
<Attribute Nane> ":" <DOVAI N NAVE>
["constrained by" [<lower bound> ("<" | "<")]
<Attribute Name> [("<" | "<") <higher bound>]]

"creation event"”
<creation event nane>

["(" <parameter nane> ":" <DOMAI N NAME> ")"]
"effect”
("new self-="<Attribute Name> "=" <paraneter nane>

| "new self-="<Attribute Name>
"end cl ass" <CLASS NAME>

<domai n expression>)

Table5.8: EROOS Universe Attribute Script

An attribute is a nodel entity defining a property for a
class for which, at each nonment in tine, every object of the
class, called a decorated object, nust be associated with a
specific value of the domain defined for the attribute.

A domain is a collection of values that refer to static and
unchangeabl e properties in the universe of discourse. A
donai n can be a magnitude, reference, denomination, or a
conposed donai n.

An imutabl e attribute is an attribute for which the domain
val ue associated to the object, is fixed during the entire
lifetime of the object.

A nmutable attribute is an attribute for which the domain
val ue associated to the object, can change during the
lifetime of the object.

G ven

Model M Cass C € M,; Domain D € M;

I mutable Attribute CTA € M, Mitable Attribute CMA € M

CA TIME-(G - D) | (per manent bi ndi ng)
YVt € TIME CA S OAu (i mutability)
CVA: TIME- (G - D) (per manent bi ndi ng)

Definition 5.3: EROOS Universe Attribute

Notice that archive attributes, as well as the default attributes Creation Timestamp
and Destruction Timestamp, are immutable by nature. The destruction event moves

154 ADVANCED CONCEPTS FOR CONCEPTUAL MODELLING

the object to the class archive and puts the object in a kind of final state. As such, the
information that is encapsulated in the object, is frozen and cannot be changed
anymore. Since archive attributes are only defined for objects in the class archive,
their values can only be defined in the destruction event. Concerning the Creation
Timestamp, it is obvious that, since an object can only be created once, the creation
time is fixated at the moment the creation event occurs, and cannot be revised or
changed anymore. This does not mean that the knowledge inside the software system
about creation events that have occurred in universe of discourse, can never be
revised. Only the fact that an event has happened and, therefore, an object has been
created, cannot be rectified. Issues regarding the uncertain of knowledge about
creation times, which can occur for an actual system, are design issues and should be
dealt with during the design phase.

5.2.3 Specification of a Mutable EROOS Relation Participant

In the same manner as attributes can be changed, it is possible to change the
participant of a refined object by changing the relation link that is encapsulated in a
refined object. The EROOS universe allows the definition of a mutable relation
participant that can change over time, alowing a refined object to change its
participant object into another object of the participating class. However, the refined
object has to adhere to the existential dependency constraint, stating that, at each
moment in time, a specific object of the participating class must be connected to the
refined object. A mutable participant removes the immutability constraint implied by
the relation concept, while keeping the existential dependency constraint of the
refined class on the participating class. The syntax of a refinement script was given in
Table 5.7 on page 148, while the definition of a relation in the EROOS universe is
given in Definition 5.4. As presented in Figure 5.10, a mutable participant is
graphically represented by a small wave interrupting the line that connects the refined
class to the participating class.

<CLASS NAME>| <ROLE

NAME> <CLASS
O ' NamEs
ROLE ROLE
<CLASS “Names | CASS NAMES e, <CLASS
NAME> [\ O o NAVE>
<|>

Figure5.10: Graphical Representation of a Mutable EROOS Participant

5.2. MUTABILITY OF ATTRIBUTE VALUES AND RELATION PARTICIPANTS 155

Arelation is a nodel entity defining a property for a class
for which, at each monent in time, every object of the class,
called a refined object, nust be associated to a specific
object, called a participant object, of the participating
class defined for the relation.

A relation can either be a binary relation, defining exactly
2 participating classes for the refined class, or a unary
relation, defining exactly 1 participating class.

An immutabl e participant is a participant for which the
partici pant object associated to the refined object, is fixed
during the entire lifetime of the refined object.

A mutabl e participant is a participant for which the
partici pant object associated to the refined object, can
change during the lifetime of the refined object.

G ven

Mbdel M Cass CD EF G e M;

Bi nary | mmutabl e/l mutable Relation CIIB € M,;
Bi nary | mmutabl e/ Mutable Relation CIMB € Ny;
Bi nary Mutabl e/l mmutable Relation CM B € Ny;
Bi nary Mut abl e/ Mut abl e Rel ati on CMMVB € My;
Unary Imutable Relation CIU € M;;

Unary Mutable Relation CMJ € N;

ailg: TiIve - (G - (bx &)) | (existential dependency)
Vit eTIM: CB € CBa (inmutability of D and E)
amMB: TIME- (G - (Dx EK)) | (existential dependency)
Vit eTIME DCB) S D(CB+1) (imutability of D)
CMB: TIME-» (G -»>(Dx &)) | (existential dependency)
VteTM ECB) € E(CB.) (imutability of E)
CwB: TIME - (G - (Dx &)) | (existential dependency)
U TIME = (Ff - G) | (existential dependency)
Vit € TIME CJ € CU (i mutability)
CMJ TIME » (Ff - G) (exi stential dependency)

Definition 5.4: EROOS Universe Relation

5.2.4 Attribute and Relation Mutation Events

When attributes and relation participants are declared mutable, a mutation event can
be defined. The mutation event will reflect a change that occurs in the universe of
discourse, by changing the object properties in the model. In addition to creation and
destruction events, mutation events will change the properties of the object on which
it is applied. After the moment the mutation event has occurred, the implicit
decoration query ‘-, refinement query * | ’, and participation query ‘ 1’ will return
the new value, respectively the new objects, that has been defined in the mutation

156 ADVANCED CONCEPTS FOR CONCEPTUAL MODELLING

event. In addition to the current value of an attribute, a participant or a refinement
object, the old information remains accessible by using a time indication ‘ @t’ for the
query. This allows retrieving historical information concerning past attribute values
and relation links. Figure 5.11 shows the graphical representation of a mutation event.
The mutation script is given in Table 5.9, while the definition of a mutation event is
presented in Definition 5.5 for participants, and Definition 5.6 for attributes.

<EROOCS nutation event script> =
"cl ass" <CLASS NAVE>
"context" <context clause>
"nmutation event"”
<mut ati on event name>

["(" (<paraneter name> ":" <DOVAI N NAMVE> |
<par aneter nanme> ":" <CLASS NAME>
["," <paraneter nane> ":" <CLASS NAME>]) ")"]
"ef fect”

("new sel f->"<Attribute Name> "
| "new sel f>"<Attribute Name> "="
| "new self->"<Attribute Nanme> "="

<par anet er nane>
<domai n expressi on>

<domai n function> ("self->"<Attribute Nane>

["," <paraneter nane>])
| "new self |"<Participant Nane> "=" <paraneter nane>
["new self |["<Participant Name> "=" <paraneter name>])

"end cl ass" <CLASS NAMVE>

Table 5.9: EROOS Mutation Event Script

A relation nutation event for a class refinenent, is an event
of a class that, if applied on a nodel instance at a certain
time t, define a newlink to objects of the participating
classes as the relation link of the object starting fromt.

G ven

Model M Event Universe EU, Event Set Instance E;

Class B,B1,B2,U Ul € M,; Object o € B; (bject pl,p2 € BIl;
hject ql,q2 € B2; hject r € U, Object s € U1,

Binary Relation CB € My;; Unary Relation CU € Ny;

Rel ati on Mutation Event mi, n2, n8, mi € EU,

mi(o,pl,ql) € B O CB(0) = (pl,ql)
nm2(o,p2) € E+ O CBi(0) = (p, ACB(0)))
nm8(0,02) € E.; O CB.y(0) = (P(CB(0)),Qq)
mi(r,s) € E O CUu(r) =s

Definition 5.5: EROOS Relation M utation Event

5.2. MUTABILITY OF ATTRIBUTE VALUES AND RELATION PARTICIPANTS 157

An attribute nutation event for a class decoration, is an

event of a class that, if applied on a nodel instance at a
certaintine t, will define a new value of the appropriate
donmain as the attribute value for the object starting from
monent t.

G ven

Model M Event Universe EU, Event Set |nstance E;
Cass C &€ M,; hject o0 € C, Attribute CA € M;
Domain D € N, Attribute Value a € D

Attribute Muitation Event m € EU;

mo,a) € B+ O CAu(o) = a

Definition 5.6: EROOS Attribute M utation Event

<CLASS] <Mutation
NAME> Name>

Figure5.11: Graphical Representation of a Mutation Event

A mutation event is a special case of an EROOS event, as presented in Section 4.7.3.
Instead of clustering a number of events in a new event, a mutation event is a core
building block that can be used in the definition of other events. It defines the
possibility of changing the value of an attribute or participant object. Table 5.10
presents an extension of the specification formalism for events that was given earlier
in Table 4.16 on page 124, alowing the usage of destruction and mutation events in
addition to creation and general events.

< event expressi on> =

(["let" <menonic> "="] <CLASS NAME>"."
<creation event nane>"("<paraneter expression>")"
| <object expression>"." (<destruction event nane>

| mutation event nane> | <general event nanme>)

"(" <parameter expression> ")")+

Table 5.10: Event Expression in an EROOS Event Script

5.2.5 Implicit Attribute, Refinement, and Participation Queries

In order to retrieve old values of attributes, participants and refinements, the implicit
decoration query ‘-, refinement query ‘|’ and participation query ‘1’ can be
extended with a time indication ‘@t'. When using a time indication, the implicit

158 ADVANCED CONCEPTS FOR CONCEPTUAL MODELLING

guery does not return the latest defined value or object, but will return the value or
object that was defined in the model instance at the moment t. In order to be
applicable, the query cannot be specified for moments that are later than ‘now’, nor
for moments t that are sooner than the Creation Timestamp of the object on which it
is applied. The definition of the implicit attribute query ‘=A@t can be found in
Definition 5.7. Since the definition of the refinement query * | P@t' and participation
query ‘ 1 R@t' are analogous, they have been omitted.

An inplicit query -A@ or -C A@ for an attribute A of a
class Cis a query that can be applied on an object of class
Cat any nonent t’ 2 t, and that returns the attribute val ue
that was associated to the object on nmonent t (wWitht 2=
Creation Tinmestanp of the object on which it is applied).

G ven
Mdel M Cass C € M,; Attribute CA € M,; Domain D € M;
Query »CA € N,
-CA TIME = (]-0,t'] = (G = D))
Vt,t" € TIME Voe G: (t" 2t) O (»CA (t,0) = CA(0))

Definition 5.7: Implicit EROOS Univer se Attribute Query

5.2.6 EROOS Mutability for the Library Example

Given the example of the library system that was presented in Section 2.3, and the
relation hierarchy that was defined in Section 5.1.6, we can identify the attribute
‘Amount Of Daily Fine' as being mutable, as presented in Figure 5.12. We could also
specify the attribute ‘Maximum Lending Period’ as mutable, but this creates a
potential problem for the running borrowings and the applied fines. The analyst must
clearly identify the rules that are applicable in such situation. It is possible that
running borrowings are considered to keep their old deadline, but it could also be the
case that the new shorter or longer deadline is retroactively imposed on these running
borrowings, removing earlier applied fines or creating additional fines.** When the
new rules apply to al running and new borrowings, the constraint that checks the
deadline must refer to the most recent attribute value. However, when the old rules
still apply for the running borrowings, the constraint that checks the deadline must
refer to the attribute value at the moment the borrowing object has been created.

¥ Regardless of the fact whether it is a good policy of a library to retroactively charge fines when the
maximum lending period is unilaterally reduced.

5.3. COMPOUNDS AND MUTUAL DEPENDENCY 159

LIBRARY

Maximum Amount Of
Lending Period Daily Fine

Figure5.12: EROOS M utability for the Library System

5.2.7 Contributions, Related Work, and Reflections

The EROOS mutability concept is largely comparable with the {readOnly} property
modifier in UML. Our approach concerning availability of past attribute and
relation information is a novel and original contribution to conceptual modelling.
This is achievable due to the fact that the mutability concept is defined on top of the
constructional model of the EROOS kernel. While other analysis methods consider
attributes as instance variables that are overwritten when a new value is defined,
EROOS allows the modeller to reason about any past model instance state using a
time indication for an attribute, arefinement or a participation query.

An observation that can be made is that mutability support contradicts the principle
of Uniqueness. However, it has a large impact on controlling the size of conceptual
model. Instead of having to model all changes of attribute values or relation
participants as separate objects, the attribute value of the original object can be
adjusted. Mutability is commonly used in software engineering, and, therefore, the
EROOS universe offers the mutability concept for conceptual modelling. In contrast
to other analysis notations and programming languages, all information concerning
the previous values and attached objects remain reachable in the model. However,
one must be aware that mutability raises an important question of how certain
changes must be represented in a conceptual model, either as a class or as a mutation.
This can often not clearly be decided and is therefore left to the judgement of the
modeller. The EROOS universe guides the modeller to use mutations when (1) no
additional information is needed concerning the actual update, and (2) no specific
constraints are imposed on the update. In all other cases, the explicit creation of
mutation objects is obliged, since information and constraints can only be attached to
objects and not to events.

5.3 Compounds and Mutual Dependency

The EROOS kernel offers a number of concepts to build a conceptual model of the
universe of discourse. Existential dependency between objects, expressed through
relations, is used as the main criterion for building a model of the relevant

160 ADVANCED CONCEPTS FOR CONCEPTUAL MODELLING

information, facts and knowledge of the universe of discourse, and their interrelations
and dependencies. However, no explicit support is provided for modelling mutually
dependent elements in the universe of discourse. Mutual dependency expresses the
fact that one element cannot exist without another element, and vice versa. EROOS
relations cannot be used to express mutual dependency between objects. Although a
refined object is existentially dependent on its participant objects, a participant object
cannot depend directly or indirectly on the object in which it participates. Mutually
dependent elements must be merged into a single object. However, such approach
introduces a disruption between the universe of discourse and the conceptual model,
since the traceability of the information from the universe of discourse into objects of
the conceptual model is no longer evident. Therefore, the EROOS universe introduces
the concept of compound to model mutual dependency between objects. Additional
constraints, such as connectivity and mutability constraints, are integrated in the
definition of a compound.

5.3.1 EROOS Compounds and Object Compound Links

An EROOS compound involves two classes, namely (1) a class expressing enclosure
objects, having the ‘whole’ role in the compound, and (2) a class expressing enclosed
objects, having the ‘part’ role. A compound is a special kind of association that
expresses mutual dependency between a single compound-whole and number of
compound-part objects. An additional restriction is placed on the objects of the part
class, which states that they can only be connected to exactly one object of the whole
class. As such, each part object must at all times be attached to exactly one whole
object, while each whole object must at all times be attached to at least one part
object. In analogy with EROQOS relations and relation links, the connection between a
part object and a whole object is called compound link, which expresses that the part
object is attached to the whole object. A compound link can be seen as encapsulated
in both the whole object and the part object.

The object structure that can be associated with a compound relationship at a certain
moment t, is illustrated in Figure 5.13. As presented in Figure 5.14.a, a compound is
graphically represented in the form of a line between the whole class and the part
class that forks at the side of the part class. The fork at the side of the part class
expresses the fact that one or more part objects can be attached to a single whole
object. This achieves the principle of uniqueness as defined in Section 3.1, forcing the
analyst to introduce additional model entities, or use more appropriate modelling
concepts in specific cases.

e In order to model compounds between two whole objects containing each other,
the analyst is forced to decompose it into a number of basic whole-part
compounds between the whole objects, revealing hidden part objects linking the
two whole objects, as presented in Figure 5.14.b.

e Itisimpossible to model duplicate compound links in EROQOS. If a part object
participates more than one time in a whole object, the participation of the part
object in the whole object must be made explicit using an intermediate class as
shown in Figure 5.14.c.

5.3. COMPOUNDS AND MUTUAL DEPENDENCY

161

e Compounds between a whole object and zero or more part objects, must be
transformed into an ordinary relation, refining the part class and having the
whole class as an ordinary participant, as presented in Figure 5.14.d. As such,
objects of the transformed whole class can exist without being connected to a
transformed part object, which can be added at the moment of creation of a
transformed whole object or in its later lifetime.

Figure5.13: Objectsinvolved in an EROOS Compound at M oment t

a)

b)

d)

Figure5.14: EROOS Compound and Alternative Constructs

il
<PART NAME>

<WHOLE

<WHOLE 1>

NAME>

1 ippeN

<MUTIPLE

(il

PART>

PART>

<DUPLICATE>

[k,oof

<WHOLE 2>

< TRANSFORMED
PART>

@)

<TRANSFORMED
WHOLE>

<WHOLE>

Compounds can thus be seen as arestricted form of a part-whole structure, in which
(1) awhole must contain 1 or more parts of the same kind, and (2) a part cannot exist
without being attached to a single whole. Notice that some dependencies seem to be
part-whole dependencies, such as the connection between a car and its wheels, but are
of adifferent nature, since a wheel can exist without being connected to the car, and a
car can exist without having four wheels attached. However, there is a dependency
between a driving car and its mounted wheels.

5.3.2 Model Constraints implied by the Compound Concept

EROOS incorporates important model constraints directly in the methodological

concepts. The following constraints are directly implied by the compound concept:

 Mutual existential dependency: A compound between two classes implies the
existential dependency of (1) the part object on exactly one whole object, and (2)

162 ADVANCED CONCEPTS FOR CONCEPTUAL MODELLING

of the whole object on one or more part objects. This means that each object of
the part class must at all times be associated with exactly one object of the whole
class, and each object of the whole class must at all times be associated with at
least one object of the part class.

e Immutability: When a whole and a part class are declared immutable, the
compound association between a whole and a part object is considered to be
static. Moreover, the total set of compound links for a whole object is also
considered to be static and not expandable. In particular, at the moment a whole
object is created, it must be associated with all its part objects, and it will keep
that association for its entire lifetime, i.e., part objects cannot switch from one
part object to another during their lifetime. Notice that the immutability
constraint can be relaxed for a whole object, a part object, or both.

5.3.3 Integrated Compound Constraints on Connectivity

The definition of a compound can be complemented with constraints restricting the
amount of part objects that can be connected to a single whole object. An EROOS
compound definition allows the possibility of specifying a lower and upper bound on
the number of part objects that may exist for a specific whole object. The lower
bound must be at least one, while the upper bound can be defined as a value, or as
unlimited (‘’). The specification of a compound connectivity constraint is
integrated in the part clause of the compound specification, as presented in Section
5.3.5. A compound connectivity constraint is graphically represented by noting the
lower and upper connectivity values at the part class, as presented in Figure 5.14.

5.3.4 Integrated Compound Constraints on Mutability

EROQOS provides the possibility of defining a compound whole and a compound part
as mutable, which allows changing the links between awhole and a part object. These
mutations are only allowed under the condition that, at each moment in time, a
specific whole object must be connected to at least one part object, and a specific part
object must be connected to exactly one whole object. Notice that mutability for a
compound-whole and a compound-part object is different in nature:

» Defining mutability for a whole, allows a whole to change the set of parts to
which it is connected. As such, it is possible to change existing compound links,
by adding parts to a whole, or removing parts from a whole. This does not
necessarily mean that the parts are mutable too. New parts can be added to a
whole when they are created, and removed when they are destroyed. As such,
parts can stay connected al the time to the same whole.

» Defining mutability for a part, allows a part to change the whole to which it is
attached. This does not necessarily mean that the whole is mutable too. It is for
instance possible that the part can only be reconnected to a new whole at the
moment an old whole is destroyed and a new whole is created. As such, a whole
can stay connected all the time to afixed set of parts.

5.3. COMPOUNDS AND MUTUAL DEPENDENCY 163

As presented in Figure 5.15, a mutable whole is graphically represented by a small
wave interrupting the line connecting the whole class, while a mutable part is
represented by a small wave interrupting the line connecting the part class.

<WHOLE 1 M g ; M
<PART NAME> <WHOLE 2

Figure5.15: Graphical Representation of a Mutable EROOS Compound

5.3.5 Specification of an EROOS Compound

The definition of a compound between a whole class and a part class, is represented
in a compound script. 1t can be specified from the viewpoint of the part or the whole
class. The property of mutual dependency influences the creation of whole and part
objects. Each time a whole object is created, the binding with its part objects must be
established as well. In the same manner, a binding with a whole object must be
established each time a part object is created. Functionality acting on the compound
and its compound links will be placed at the part object, extending the creation event
for the part class that defines its binding with a whole object. A class can be involved
in many compounds, as a compound-whole as well as a compound-part. The whole
class of the compound must always be different from the part class of the compound.
The syntax of a compound-part script is given in Table 5.11. The definition of a
compound can be found in Definition 5.8, while the definition of the extended
creation event for acompound can be found in Definition 5.9.

<compound- part script> =
"cl ass" <CLASS NAVE>
"definition"
"invol ved as compound- part"”
"mn" <positive nunber>
"max" (<positive nunber> | "unlinmted" | "o")
<part description> 3
"havi ng conpound-whol e" <whol e description> 3
"creation event"
<creation event name>

"(" <parameter name> ":" <CLASS NAME> ")"
"ef fect"
"new sel f > "<Conpound-Wol e Nane> "=" <parameter name>

"end cl ass" <CLASS NAMVE>

Table5.11: EROOS Compound-Part Script

¥ See Table 5.15 on page 170 for the definition of the part and whole descriptions.

164

ADVANCED CONCEPTS FOR CONCEPTUAL MODELLING

A conpound is a nodel entity defining a property for two

cl asses, nanely a part class and a whol e class, for which, at
each nonent in time, every object of the part class must be
associ ated to exactly one object of the whole class, and
every object of the whole class nust be associated to at

| east one object of the part class.

An inmmutabl e part is a part class for which the whol e object
associ ated to each part object, is fixed during the entire
lifetime of the part object.

A mutable part is a part class for which the whol e object can
change during the lifetinme of the part object.

An imrut abl e whole is a whole class for which the set of part
obj ects associated to each whol e object, is fixed during the
entire lifetime of the whole object.

A mutabl e whole is a whole class for which the set of part
obj ects can change during the lifetime of the whole object.
G ven

Model M dass PWeE M;

Mut abl e Whol e/ Mut abl e Part Conpound CWM € M,;

Mut abl e Whol e/ | nrut abl e Part Conpound CM € My;

I mrut abl e Whol e/ Mut abl e Part Conmpound CIM € My;

I mrut abl e Whol e/ I rmut abl e Part Conpound ClI € M,

Cl: TIME » (P =» W) | (dependency P to W
Vt eTIME Vwe W: Op € P: Cly(p) =w and Wto P)
Vit €gTIME Cdly € Clyyg (imutability of part
Vit ETIME VweW: AlL(w =al Y (w and whol e)

CM: TIME = (P - W) | (dependency P to W
Vt eTIME Vwe W: Op € P: CM(p) =w and Wto P)
Vt e TIME CM; € CM (imutability of part)

CM TIME - (P - W) | (dependency P to W
Vt eTIME Vwe W: Op € P: CAM(p) =w and Wto P)
Vt €TIME YVwe W: AdMYL (w) = AMY (W (imut. of whole)

CWTIME - (P = W) | (dependency P to W
Vt eTIME Vwe W: Op € h: CMWMp) = w and Wto P)

Definition 5.8: EROOS Compound

The different components in the specification of a compound script are:

The specification of a compound essentially identifies the whole and part class
involved in the compound. In addition, constraints of multiplicity and mutability
can be integrated into the compound definition. A role name for the whole and

the part class can be specified as areference to it.

5.3. COMPOUNDS AND MUTUAL DEPENDENCY 165

The specification of the creation event for the part class specifies the binding of
the part object with an object of the whole class. For that purpose, a formal
argument is provided for the creation event of a compound-part class in order to
establish the binding of the newly created part object with a compound-whole
object. The assertion states that, if the given implicit query > <Compound-
Whole Name>, defined in section 5.3.6, will be applied to the newly created
object, referred to as self, at the moment the creation has occurred, referred to as
new, the object on the right-hand side must be returned as a resullt.

An extended creation event for a conpound, is an event of a
part class that, if applied on a nodel instance at a certain
time, in addition to adding a new object to the object

popul ation set for that class, will define a conpound link to
the obj ect of the appropriate whol e cl ass.

G ven
Model M Obj ect Universe QU, Event Universe EU;
Event Set Instance E; Class P € M,; Object w € C
Conpound CO € M,; Creation event ¢ € EU,
c(w e, 03I pe :

(p € P) A (P € Pu) A(CQu(p) =W

Definition 5.9: Extended Creation Event for an EROOS Compound-Part

5.3.6 Implicit Compound Queries

The definition of an EROOS compound is automatically complemented with two
implicit compound queries, offering the ability to inspect the compound links for a
part and whole object. Given a compound for a whole class W and a part class P,

the implicit compound query ‘>W’, or ‘>WR’ in case that WR is a role name
given to the compound-whole class W, applicable to each object p of the
compound-part class P, returns the object of the whole class W incorporated in
the compound link for p.

the implicit compound query ‘< P, or ‘< PR’ in case that PR is arole name
given to the compound-part class P, applicable to each object w of the
compound-whole class W, returns the set of objects of the part class P that are
connected to the object w.

Therelation between ‘=W’ and ‘< P’ can be defined as follows:

VpeP.YWEW: p>W=w < pEw<P

The notation supports the view of navigating between the whole and the part class
according to its graphical notation. These implicit queries are mainly used in (1)
specifying the semantics of creation events and mutation events, (2) specifying

166 ADVANCED CONCEPTS FOR CONCEPTUAL MODELLING

gueries in order to retrieve information from a model instance, and (3) specifying
model navigation expressions between a whole and a part class. Notice that, in
addition to the current value of a compound-whole and compound-part, old
information remains accessible by using a time indication ‘@t for the implicit
compound queries. This allows the analyst to retrieve historical information
concerning past compound links. The definition of the implicit compound queries ‘>’
and ‘<’ can befound in Definition 5.10.

An inplicit conmpound query > W& or > P/W@ for a part class
P, or > W@, > P W@, » WWa, or > P WWWaR for a whole
with role nane WR, is a query that can be applied on an
object of the part class at a noment t’ > t, and that returns
t he whol e obj ect contained in the conpound link for that part
object on nonment t (t = Creation Tinestanp of the object)

An inplicit compound query < P@ or <WP@ for a whole class
W or <PR@Q, <WPR@Q, <PRPQ or <WPR P@ for a part
with role nane PR, is a query that can be applied on an
object of the whole class at a nonent t’ > t, and that
returns the set of all part objects contained in the conpound
links for that whol e object on nonent t (t = Creation

Ti mest anp of the object).

G ven
Model M Conpound CO € M, dass PWE M;
Query > PIW —<WP € WM;
> P/IW TIME - (]-0,t'] = (PL = W)) |
Vt,t' € TIME Vp€EPR:
(t' =2t) O (>PW(t,p) =Ca(p))
<WP: TIME = (]-0t"] = (W=>%(P))) |
Vt, t" ETIME YweW: VpeEPR:
(tV >2t) O (Pe =<WP (t,w) « CQ(p) =w)

Definition 5.10: I mplicit EROOS Compound Query

5.3.7 Compound Mutation Events

In order to change compound links for a whole and a part object, a mutation event
must be defined. Such event reflects a change within the universe of discourse into
the conceptual model. After the moment the mutation event has occurred, the implicit
compound queries will return the new objects that have been defined in the mutation
event. The part and whole mutation script is given in Table 5.12, while the definition
of acompound mutation event is presented in Definition 5.11.

5.3. COMPOUNDS AND MUTUAL DEPENDENCY 167

<conpound nutati on event script> =
"cl ass" <CLASS NAVE>
"context"
<cont ext cl ause>
"mutation event"
<mutati on event nane>

"(" <paranmeter name> ":"
(<CLASS NAME> | <object set nane>) ")"

"ef fect"
("new sel f > "<Conpound-Wol e Nane> "=" <paraneter nanme>

| "new sel f < "<Conpound-Part Name> "="
<obj ect set expression>)

"end cl ass" <CLASS NAMVE>

Table 5.12: EROOS Compound M utation Event Script

A conpound part nutation event for a conpound, is an event of
a part class that, if applied on a nodel instance at a
certain tinme t, will define a new conmpound link to the whole
obj ect as the compound |ink of the part object.

A conpound whol e nutation event for a conpound, is an event
of a whole class that, if applied on a nodel instance at a

certain time t, will define a new set of conpound links to
part objects as the conmpound |ink of the whole object.
dven

Model M Event Universe EU, Event Set Instance E;
Class PbWeEe M,; hject p € P, hject wx € W
hject Set Q € P(P); Compound CO € My;

Conpound Mutation Event event nil, nR2 € EU;
m(p,w) € B 0 CQ.u(p) =w

mM(x,Q € B U VgeQ Cu(g) =X

Definition 5.11: EROOS Compound M utation Event

5.3.8 Class Archive as a Compound Participant

In analogy with relations, EROOS compounds offer the possibility of using the class
archive of the whole class and the part class in the definition of the compound. This
allows the formulation of additional restrictions between the lifetimes of the whole
object and the part objects. Given the fact that a compound expresses a mutual
dependency between the whole object and the part objects, the past popul ation cannot
be used in the definition of acompound. This leads to four types of class involvement
in a compound. All four types include the core mutual existential dependency

168 ADVANCED CONCEPTS FOR CONCEPTUAL MODELLING

property that must be valid for every whole object w and part objects object p,
namely

w->Creation Timestamp = p— Creation Timestamp®

e A ‘present part-present whole participation’, as presented in Figure 5.16.a,
obliges that the part object p is alive during the entire lifetime of the whole object
w, and that the whole object w is alive during the entire lifetime of the part object
p. This can be expressed as:

p—Creation Timestamp = w—Creation Timestamp < w->Destruction Timestamp
= p—Destruction Timestamp

* A ‘present part-total whole participation’, as presented in Figure 5.16.b,
obliges that the part object p is alive during the entire lifetime of the whole object
w, but that the whole object w can die during the lifetime of the part object p.
This can be expressed as.

p—Creation Timestamp = w->Creation Timestamp < w->Destruction Timestamp
< p—>Destruction Timestamp

e A ‘total part-present whole participation’, as presented in Figure 5.16.c,
obliges that the whole object w is alive during the entire lifetime of the part
object p, but that the part object p can die during the lifetime of the whole object
w. This can be expressed as:

p—Creation Timestamp = w->Creation Timestamp < p—Destruction Timestamp
< w-Destruction Timestamp

A ‘total part-total whole participation’, as presented in Figure 5.16.d, only
obliges that the part object p and whole object w are created together. The part
object p can die during the lifetime of the whole object w, and vice versa.

<PART NAME>

o

<WHOLE NAME>

[§]

a) Present Part-Present Whole Participation

<PART NAME>

[

<WHOLE NAME>

[

c) Total Part-Present Whole Participation

<PART NAME>

[°F

<WHOLE NAME>

[I

[T

b) Present Part-Total Whole Participation

<PART NAME>

[

<WHOLE NAME>

[I

d) Total Part- Total Whole Participation

Figure5.16: EROOS Compound Participation Types

¥ Notice that this property only applies when no mutation of the part or the whole object has taken place.

5.3. COMPOUNDS AND MUTUAL DEPENDENCY 169

In addition to the four compound participation types, additional integrated constraints
can be added to a compound participation, further restricting the dependency rules
between the whole object and the part objects. These restrictions can be combined in
order to create additional combinations of meaningful participant restrictions.

A ‘significantly not deceased whole participation’ obliges that the whole
object will remain living after the whole and the part objects have been created.

w->Creation Timestamp = p—Creation Timestamp < w—Destruction Timestamp

A ‘significantly not deceased part participation’ obliges that the part object
will remain living after the whole and the part objects have been created.

p—>Creation Timestamp = w—Creation Timestamp < p->Destruction Timestamp

A ‘significantly surviving present part/significantly not surviving total whole
participation’ obliges that a part object will still remain living after the
destruction of the whole object.

w->Destruction Timestamp < p— Destruction Timestamp

A ‘significantly not surviving total part/significantly surviving present whole
participation’ obliges that the whole object will still remain living after the
destruction of the part objects.

p—Destruction Timestamp < w— Destruction Timestamp

Restrictions between whole object w and part object p | Number

Name of Compound Restriction w.CTS/p.CTS |w.CTS/p.DTS |w.DTS/p.CTS|w.DTS/p.DTS |of cases
Sign.Surviving Present Part-Sign.Not Deceased

Sign.Not Surviving Total Whole = < >= < 2
Present Part-Sign.Not Deceased Total Whole = < >= <= 3
Total Part-Sign.Not Deceased Total Whole = < >= <=>

Sign.Not Deceased Sign.Surviving Present Part-

Sign.Not Deceased Sign.Not Surviving Total Whole = < > < 1
Sign.Not Deceased Present Part-Sign.Not

Deceased Total Whole = < > <= 2
Sign.Not Deceased Present Part-Sign.Not

Deceased Present Whole = < > = 1
Sign.Not Deceased Total Part-Sign.Not Deceased

Present Whole = < > >= 2
Sign.Not Deceased Sign.Not Surviving Total Part-

Sign.Not Deceased Sign.Surviving Present Whole = < > > 1
Sign.Not Deceased Total Part-Sign.Not Deceased

Total Whole = < > <=> 3
Present Part-Total Whole = <= >= <= 4
Present Part-Present Whole = <= >= = 2
Total Part-Present Whole = <= >= >= 4
Total Part-Total Whole = <= >= <=> 6
Sign.Not Deceased Total Part-Present Whole = <= > >= 3
Sign.Not Deceased Sign.Not Surviving Total Part-

Sign.Surviving Present Whole = <= > > 2
Sign.Not Deceased Total Part-Total Whole = <= > <=> 4

Table 5.13: Possibilities for a Compound with Part and Whole Restrictions

170

The offered integrated constraints cover all potential restrictions between the
Creation and Destruction Timestamps of a part object and a whole object, as
presented in Table 5.13, except those cases presented in Table 5.14. In these cases, an
object is obliged to have a life span of zero length, which models an event rather than
an object. The specification of integrated compound constraints, as a further detailing

ADVANCED CONCEPTS FOR CONCEPTUAL MODELLING

of the compound script in Table 5.11 on page 163, can befound in Table 5.15.

Table5.14: Unsupported Restriction Casesin EROOS

Restriction between participant p and refined objectr | Number of

Name of Participant Restriction | p.CTS/r.CTS | p.CTS/r.DTS | p.DTS/r.CTS | p.DTS/r.DTS | possibilities
Zero lifespan for object r < < = = 1
Zero lifespan for object r <= <= = = 2

Restrictions between whole object w and part object p| Number of

Name of Compound Restriction |w.CTS/p.CTS|w.CTS/p.DTS|w.DTS/p.CTS|w.DTS/p.DTS| possibilities
Zero lifespan for object w = < = < 1
Zero lifespan for object w = <= = <= 2
Zero lifespan for objects p and w = = = = 1
Zero lifespan for object p = = >= >= 2
Zero lifespan for object p = = > > 1

<whol e description> =

("nmutable" | "imutable")

["significantly not deceased"]
["significantly not surviving" |
["present” | "total"] <CLASS NAME> |
["as" <ROLE NAME>]

°

O-I-]

<part description> =

("mutable" | "imutable")

["significantly not deceased"]
["significantly not surviving" |
["present" | "total"] <CLASS NAVE> [° |
["as" <ROLE NAVE>]

OT]

"significantly surviving"]

"significantly surviving"]

Table 5.15: EROOS Compound Script Usage of Class Archive

5.3.9 EROOS Compounds for the Library Example

Given the example of the library system that was presented in Section 2.3, and the
revisited relation hierarchy that was defined in Section 5.1.6, we can identify a mutual
dependency between a book and its authors. As stated during the discussion of the
revisited relation hierarchy, it was not yet possible to express the fact that all authors

5.3. COMPOUNDS AND MUTUAL DEPENDENCY 171

must be created at the same moment in time. Moreover, the book and the main author
had to be modelled as a single object. By introducing an EROOS compound between
a book as a whole object and its authors as part objects, as presented in Figure 5.17,
we can (1) segregate the book object from its main author object, and (2) define that
there is a mutual dependency between a book and its authors, expressing that that all
authors must be created at the same moment as the book is created. An observation
that can be made is that it is not necessary to introduce ordered relation participant
sets or ordered compound-part sets, since the ordering can be made explicit using
specialisation hierarchies.

AUTES)R BOOK
| 7]
PREV|0U7(/
N
[[/
SECOND
AUTHOR
NEXT °
PERSON 1 Tl | 'MAIN AUTHOR
[7 [

Figure5.17: EROOS Compoundsfor theLibrary System

5.3.10 Contributions, Related Work, and Reflections

Our contributions concerning the compound concept are the following:

e The introduction of compounds offers the modeller a clear and well-defined
concept for modelling mutual dependency and part-whole structures, consisting
of a non-empty whole and a number of dependent parts. While UML offers an
ambiguous definition for aggregates and composition, which (1) do not imply the
obligation of mutual dependency, and (2) do not clearly indicate the differences
between associations, aggregates and compositions, EROOS explicit defines the
distinction between relations, expressing a unilateral existential dependency, and
compounds, expressing a mutual dependency.

A consequent application of the mutability, class archive, and integrated
constraints approach for the compound concept, offers a coherent
methodol ogical approach for conceptual model ling.

The EROOS compound concept is somewhat comparable with the aggregation and
composition concept in UML. UML offers (1) aggregation, which expresses whole-
part relationships, and (2) composition, which expresses a strong ownership of parts

172 ADVANCED CONCEPTS FOR CONCEPTUAL MODELLING

by the composite and coincident lifetime. However, these concepts do not incorporate
an obliged dependency, since it is possible to express that an aggregation and a
composite can have optional parts, or that a part possibly does not belong to any
aggregation or composite. The only restriction in UML is that a part object can only
belong to no more than one composite object, although a part object can also belong
to other composite objects through different compositions. In addition, although there
is coincident lifetime of parts with the composite, a part can even be removed from a
composite before the death of a composite. UML does not make a clear semantic
distinction between association, aggregation, and composite. Rumbaugh [128] even
explicitly states that the distinction in UML between aggregation and association is a
matter of taste, rather than a difference in semantics. EROOS only offers relations,
expressing existential dependency, and compounds, expressing mutual dependency.
The difference between these two relational conceptsis clearly defined:

* When two objects are not dependent on each other, they should both be
participants in an additional relation between them, captured in arefined class.

* When one object is dependent on the other object, the class of the first object is
refined by arelation, having the class of the second object as participant.

* When the two objects are mutually dependent, a compound between the two
classes must be defined.

An observation that can be made is that compounds offer to possibility for modelling
object slicing, using a whole having a part with connectivity [1,1]. It is currently still
unclear how to make a distinction between desired object slicing, e.g., when the
whole object specifies a continuing property of a membership whereas the part
objects specify yearly renewals, and unwanted object slicing, e.g., when the lifetimes
of the whole and the part fully coincides.

5.4 EROOS Constraint Triggers

The EROOS methodology introduces events to specify functionality in the conceptual
model, and uses implied, integrated, and first-class EROOS constraints as a means to
control the validity of the event occurrences and the resulting model instance. During
the specification of events, an analyst often has to detect and avoid constraints
violations, since the analyst must take care that all model constraints remain valid
when an event is executed. Constraint triggers®™ are introduced in the EROOS
universe in order to specify constraint exception handling mechanisms. Constraint
triggers can resolve constraint violations in an active manner, by injecting additional
functionality at the moment that possible constraint violations occur.

% A part of the work presented in this chapter has been published in [148].

5.4. EROOS CONSTRAINT TRIGGERS 173

5.4.1 Semantics of Functionality in EROOS

A conceptual model is a mapping of facts and knowledge from the universe of
discourse. At each moment in time, a specific situation in the universe of discourse is
represented in a model instance, containing specific objects that have properties and
interrelationships. Events that occur in the universe of discourse are represented by
EROOS events, which can be creation events, mutation events, destruction events,
and general events, and give rise to a transition from an existing model instance into a
new model instance that will be valid from that moment on.

Model constraints, represented in EROOS by means of implied, integrated, and first-
class EROOS constraints, serve as validators for the allowed model instances. A
constraint restricts the set of possible instances of a model by defining rules that must
be valid for each model instance at each moment in time. Whenever a set of events
lead to a model instance that is in contradiction with the defined model constraints,
the events will be refused and the new model is rgjected. In such case, the old model
instance that was valid at the moment when the set of events occurred, will be
preserved. This all or nothing property is fundamental for the specification of
functionality in EROOS. The conditions under which an event can occur, are not fully
specified for each event, but must be deduced from the specification of the event, and
the specification of all properties and constraints described in the model. A model
transition due to a set of events will only succeed when the new model instance
complies with all model constraints, or will be rgjected if it fails to do so.

In addition to the ‘all or nothing’ property, a second property is of utmost importance
in the understanding of the basic semantics of EROOS functionality. The ‘Frame
Axiom', also called ‘Inertia Axiom', states that each element in the model instance
that has not explicitly been changed in the specification of an event, must remain
unaltered. This enables proper reasoning about a model transition since, due to the
fact that an event only changes a few model items, it would be impossible to make
any statement on the expected values of the unspecified model entities.

A drawback in the specification of functionality is that the effect it has on the model
instance, must be fully specified at the level of the event. Since functionality
transforms a model instance into a new model instance, the functionality has to take
into account all model constraints that the model instance must comply with. This
often means that specification of an event is heavily dependent on the existing model
constraints, having to consider them thoroughly, and formulate a number of
conditional expressions in order to comply with them in every situation. Otherwise,
the event will violate a model constraint and will be refused. This leads to a recurring
pattern of (1) describing the standard behaviour of an event, (2) checking whether the
state of the new model instance remains valid, and (3) providing an constraint
exception handling mechanism that tries to resolve the constraint violation. Therefore,
a model contains a lot of duplication of constraint checking and resolving
specifications. In addition, the definition of a new model constraint often has a direct
impact on the existing functionality that acts upon the properties involved in the
constraint. As such, the specification of functionality using events has a very

174 ADVANCED CONCEPTS FOR CONCEPTUAL MODELLING

centralised approach. Each event has to take into account that its specification
satisfies every constraint in the model, often branching off certain cases that need to
be dealt with in a specific manner.

5.4.2 The Trigger Concept

To overcome the drawbacks of a centralised functionality description, and to avoid
the repetition of constraint checking and resolving specifications, constraint triggers
have been introduced in the EROOS universe. In order to describe specific
functionality that deals with constraint preservation, integrated, implied, and EROOS
constraints can be extended with a trigger specification clause. A constraint trigger is
a kind of exception handling mechanism for the constraint that specifies a general
constraint solver, which can be used in order to resolve occurring constraint
violations. The trigger describes a number of actions that must be performed when a
violation of the constraint occur in order to try to solve the constraint violation.

5.4.2.1 Triggers and Model Validity

Constraint triggers only come into action when the newly obtained model instance
does not comply with the defined model constraints. Based on the invalid model
instance, constraint triggers inject functionality that tries to resolve the constraint
violations, and restore the validity of the obtained model instance. As such, constraint
triggers can be seen as a kind of firing rules that are only triggered when the
constraint to which they are attached, becomes invalid.

The model normally refuses an event that would violate a model constraint, causing
the model instance to remain in the state it was at the moment that the event has
occurred. However, when an event trigger is specified, events that violate certain
constraints can be tolerated in those cases where the trigger rule can resolve the
constraint violation. In such cases, the event is tolerated and the trigger rule will be
added to the global effect of the event in order to fulfil the specified constraints. As
such, a trigger rule serves as a constraint violation solver for the constraint to which
the trigger is attached. When an event occurs, there are four possible situations:

» The event does not violate any constraint. In this case, the event is allowed, and
its effect is realised. The presence of an event trigger is irrelevant in this
situation.

» Theevent violates a specific constraint that has no event trigger specified. In this
case, the event is refused, and its effect is not realised. The state of the model
instance will not be changed.

* The event violates a specific constraint, but the trigger for that constraint can
resolve the violation. In this case, the event is allowed, and its effect is realised.
Moreover, the effect of the trigger is added to the effect of the event.

* The event violates a specific constraint that has an event trigger, but the trigger
cannot solve the constraint violation. In this case, the event is refused, and its
effect is not realised. The state of the model instance will not be changed.

5.4. EROOS CONSTRAINT TRIGGERS 175

Constraint triggers allow a constraint centred description of functionality, introducing
both a specific event part and a number of constraint specific trigger parts. As such,
the functionality dealing with constraint preservation can be defined at the level of the
constraint to which it belongs. However, it is not compulsory to specify an event
trigger for a constraint. The modeller is free to define an event trigger for constraint
solving, or to refrain from defining a trigger. In the last case, the event will only be
accepted when no constraint violations have occurred.

Notice that constraint triggers do not question or weaken the validity of the model
constraints. The fact that the model instance must comply with all constraints at each
moment in time, remains an intrinsic principle. Also, the ‘all or nothing’ property for
functionality remains valid, meaning that functionality is only accepted when all
constraints are preserved, and refused when at least one constraint is violated.
Constraint triggers allow the extension of the net effect of an event, in order to
preserve the validity of the constraint. The invalid model instance that is obtained
before the constraint trigger fires, is only an intermediate state that is used in the
calculation of the ultimate state, and is comparable with the semicolon (‘;) operator
in Z [140]. This intermediate state will not be visible in the overall model instance
transition. There exists no single moment in time on which the invalid model instance
is reached.

5.4.2.2 Addition Triggers versus Adaptation Triggers

In order to solve constraint violations, different type of actions can be taken to resolve
the situation. Typical actions that can solve a constraint violation, are (1) the
destruction of objects that violate the constraint, (2) the creation of violation
registration objects that record the violation, (3) the application of additional mutation
events to adjust certain attribute values, (4) the replacement of certain participant
objects in order to obtain a better fit, or (5) the refining of the event parameters. In
general, constraint triggers can be classified in two categories:

* Inaddition to the functionality of the event that caused the violation, a constraint
trigger can superadd functionality in order to preserve the constraint validity.
Such triggers are called addition triggers, since they add functionality to the
original event. In order to preserve the validity of the constraint, addition triggers
will extend the original functionality by, e.g., creating new objects, destroying
existing objects, or changing object properties. Thus, addition triggers can only
extend the original functionality by changing object properties that were not yet
the subject of change by the original functionality, and cannot contradict the
original functionality that was the cause of the invalid model instance. Therefore,
constraint triggers therefore relax the boundaries of the frame axiom, since they
add additional functionality to the event functionality before the frame axiom is
applied. Whenever an addition trigger would revoke event behaviour, the trigger
is considered invalid and the event will be refused.

* Instead of using the functionality description that was defined by the event, the
trigger can adjust or revoke certain functionality in order to obtain a valid state of
the model instance, for instance, by change certain parameters of the event. Such

176

ADVANCED CONCEPTS FOR CONCEPTUAL MODELLING

triggers are called adaptation triggers, since they adapt the functionality that was
originally defined by the event. In order to preserve the validity of the constraint,
addition triggers will change the stated functionality by, e.g., introducing
mutation events to change certain attribute values or participant objects. The
effect of an adaptation trigger is comparable with a multi-level effect definition
using the full capabilities of the semicolon (*;’) operator in Z [140]. The original
functionality defines a provisional assistance model instance, whereupon the
final model instance is defined through adjusting or changing certain values that
are not in line with the stated model constraints.

In order to point out the important difference between addition and adaptation trigger,
the modeller must explicitly state whether it is allowed to adapt the originally
specified event behaviour or not. The specification of the trigger must define whether
it is an addition (default) or an adaptation trigger. The EROOS methodology provides
both kinds of triggers, since it is sometimes necessary to adjust the functionality that
has caused a constraint violation. For instance, consider the decrease of a certain
deadline value that results into the definition of the deadline on a moment in the past.
This will certainly violate a number of deadline constraints in the model. A modeller
could specify that in such cases, the deadline must only be decreased to the next day
instead of a moment in the past. But since the functionality description of the deadline
already indicated that the deadline must be on that specific moment in the past, an
addition trigger could not change the deadline attribute anymore. In such case, an
adaptation trigger that adjusts the deadline to the next day, would be most

appropriate.

5.4.2.3 Multiple Trigger Violations

It is possible that an event violates more than one constraint at the same time. If a
number of constraints have a trigger specification attached, these triggers will be
activated simultaneously. The effect clauses of al triggers are added to the effect
clause of the original event that violated these constraints. When the total effect of the
event and all triggers of the violated constraints solve the constraint violations, so that
the newly obtained model instance is compliant with all defined model constraints,
the event will be accepted and the unified effect of the event and the triggers will be
realised. It is impossible to ignore a specific trigger of a violated constraint, even in
the case where another trigger can solve both constraint violations at the same time.
In fact, the four situations for an event occurrence can be restated as follows:

» Theevent does not violate any constraint, in which case the event is allowed.

 The event violates certain constraints without trigger specifications, in which
case the event is refused.

* The event violates certain constraints, and the union of all triggers for these
violated constraints solves all constraints violations. In this case, the event is
allowed, but will be extended with the total functionality defined in the triggers
of the violated constraints.

5.4. EROOS CONSTRAINT TRIGGERS 177

* The event violates certain constraints, but the union of all violated constraints
triggers does not solve all violations. In this case, the event is refused.

5.4.2.4 Trigger Chains

Constraint triggers that are activated when a constraint violation occurs, can at their
turn cause a following constraint violation. This second constraint violation can at its
turn trigger a second set of trigger event, that may eventually lead to a third violation,
et cetera. Such trigger chain is allowed when it finally leads to a valid model instance
without any contradictions between the functionality introduced by the triggers. In
fact, when the model instance obtained after the evaluation of a certain trigger chain
is a valid model instance, the original event plus all triggers form the total
functionality that will be applied. However, when the chain of triggering (1) causes a
contradiction with the original event or with previous triggers, (2) creates a recursive
trigger loop, or (3) leads to a constraint violation for which no trigger has been
defined, the original functionality and the functionality injected by the triggers will be
refused.

5.4.25 Event Triggers versus Time Triggers

Constraints cannot only be violated due to an occurrence of an event. It is possible
that constraints become violated in a model without any specific event occurrences.
Certain constraint involving time, such as the ones having an expression in the form
of ‘“now < upper limit’, can be violated by the progress of time. When the actual time
exceeds the stated upper limit, the constraint will become violated without any further
event occurrence. It is impossible to refuse the event that caused this constraint
violation, since the source of the violation is the mere progress of time. It is unnatural
and intolerable to refuse the progress of time in a conceptual model. This leads to a
time freeze, which is a temporarily freezing of the time in order to preserve the
specified constraints until another event resolves the erroneous situation. One can
never prevent the progress of time in the universe of discourse. Therefore, a
constraint that can give rise to a time freeze, is incorrect and, thus, forbidden in the
EROOS methodology.

Constraints that pose an upper limit restriction on the actual time, must always be
extended with atrigger that can solve situations in which a time freeze can occur. It is
not only obliged to add a so-called time trigger to these kind of constraints, but the
specified trigger must be defined in such a manner that it can resolve possible
constraint violations due to progress of time in all circumstances. When atime trigger
is specified, it must be provable that a constraint violation by progress of time can
always be resolved by the trigger, thereby preventing a time freeze. Since a time
trigger defines an event that will occur when a constraint is violated due to the
progress of time, it can be seen as an extension of the effect of the progress of time.
Another way to view time triggers, is as a specia kind of automatic event occurrence
a a certain moment in time, since the time trigger will fire at the moment the
constraint is going to be violated by the progress of time.

178 ADVANCED CONCEPTS FOR CONCEPTUAL MODELLING

When specifying a trigger for a constraint, one can make a distinction, if needed,
between a constraint violation by an event occurrence or by the progress of time. In
fact, two kinds of triggers can be specified for a constraint.

* Anevent trigger isonly triggered when the constraint violation is caused by an
event or another trigger. It will not be applied to solve a constraint violation due
to the progress of time.

« A timetrigger is only triggered when the constraint violation is caused by the
progress of time. It will not be applied to solve a constraint violation due to a
direct or indirect event occurrence.

It is possible to specify asingle trigger that acts both as atime and event trigger, and
can be used for each violation of any source whatsoever. It is also possible to merely
specify a time trigger, thereby refusing changes caused by an event and that violate
the constraint. Notice that it is impossible to merely specify an event trigger for a
constraint that can lead to a time freeze. Given the example of the upper time limit,
one can specify a different reaction on a constraint violation when it is caused

e by changing the upper limit to a value less than the current time, for instance,
refusing such change,

e or by the progress of time that exceeds the upper limit, for instance, extending
the upper limit with a certain period or destroying the object.

When a time trigger causes a following constraint violation, this violation will be
considered as an event triggered violation, since the source of the violation is not
directly the progress of time, but the event that was triggered by the time trigger.
Even in such cases, it must be provable that the number of consecutive violations
ultimately resolves into a valid situation and does not lead to a time freeze.

5.4.2.6 Time Triggers and Object Creation

A typical analysis pattern using time triggers, is the creation of a specific object in
order to objectify the occurrence of a constraint violation. Such cases occur often in
the universe of discourse, in which violations must be recorded, fines must be given
at certain moments, interventions must be started at a specific moment in time, et
cetera. Such situations lead to an EROOS solution pattern as described in Figure 5.18.
The activity, for which the duration is restricted for a certain limited period, will be
given a deadline attribute indicating the expiry time for the activity. A constraint for
each activity is specified, indicating that a violation object must exist when an activity
exceeds its deadline. A time trigger attached to this constraint, creates a violation
object at the moment the deadline is reached, expressing the fact that the validity
period of the activity has expired. The constraint and trigger attached to the activity
class are specified in Table 5.16. Often, an additional constraint will be attached to
the violation class stating that a violation object may only exist when the validity
period of the underlying activity actually has expired.

5.4. EROOS CONSTRAINT TRIGGERS 179

constraint in violation when deadline exceeded
top class ACTIVITY
cont ext
ACTIVITY having attribute Deadline
bei ng partici pant of VI OLATI ON
definition
for all activity in ACTIVITY
not participating in VI OLATI ON:
now < activity-Deadline
tinme trigger
VI OLATION. create (activity)
end constraint in violation when deadli ne exceeded

Table5.16: EROOS Constraint for a Time Trigger Creating Objects

, in violation when
deadline exceeded

VIOLATION

ACTIVITY

Figure5.18: EROOS Analysis Pattern for a Time Trigger Creating Objects

5.4.3 Extending EROOS Model Concepts with Trigger Specifications

In EROOS, model constraints can be extended with a trigger specification clause in
order to specify additional behaviour that can solve possible constraint violations. Not
only first-class EROOS constraints can be extended with a trigger specification, but
also integrated and implicit model constraints, since they also incorporate arestriction
on the allowed model instances. The following sections presents how triggers are
specified in the EROOS methodol ogy.

5.4.3.1 Trigger Specification for EROOS Constraints

EROOS constraints can be extended with a trigger clause, specifying events that are
added to the original event in case that the constraint is violated. Table 5.17 presents
the specification of atrigger clause for a constraint, while Definition 5.12 provides its
definition.

180 ADVANCED CONCEPTS FOR CONCEPTUAL MODELLING

An EROCS constraint trigger is an event that is applied on a
nodel instance at a certain nonent in tinme whenever its
associ ated EROCS constraint is not valid in the internmedi ate
nodel instance. The ultimte nodel instance results from
applying the triggered event on the invalid internediate
nodel instance, where all constraints are valid for the new
nodel instance obtained by applying the constraint trigger.
Whenever the new y obtai ned nodel instance do not conply with
certain nodel constraints, the events that occurred are
refused, and the original nodel instance that held when the
event occurrence occurred, remnins preserved

G ven
Model M Event Universe EU, Mdel Instance M;
Constraint CT € M,; Constraint Trigger ctt € EU
Mt = t(My, Ea?)
Mg ™= t(Mt+1ia Et+li+l)
ctt € '™ = Mu' & Clin
Mz =Mt | (VCT € My Mg € CTi) A
(Vj | 1<j<i: 3C2 €& M : Mud & CBi.)

Definition 5.12: EROOS Constraint with Trigger

<constraint script> =
"constraint" <constraint nanme>
("top class" <TOP CLASS NAME> |
| "top classes" <TOP CLASS NAMVE> ("," <TOP CLASS NAME>)*)
"context" (<TOP CLASS NAME> <context clause>)+
"definition"
("for all" <identifier> ("," <identifier>)*
"in" <TOP CLASS NAME>
["not participating in" <CLASS NAME> (" 1"<CLASS NAME>) *
("," < CLASS NAME> (" 1"<CLASS NAME>)*)*] ":")+
<l ogi cal clause>
<trigger specificaton>
"end constraint" <constraint name>

<trigger specificaton> =
(["addition" | "adaption"] "event trigger"
[<logical clause> "0O"|"default O"] <event expression>)*
[["addition" | "adaption"] "tine trigger"
<event expression>]
[["addi tion"|"adaption"]"time & ["default"] "event trigger"

<event expression>]

Table5.17: Trigger Specification for EROOS Constraints

5.4. EROOS CONSTRAINT TRIGGERS 181

A trigger can be identified as an addition trigger or an adaptation trigger. In addition,
the different types of triggers that can be specified are the following:

5.4.3.2

A time trigger is triggered when the constraint violation is caused due to the
progress of time. A time trigger can only be specified when no time & event
trigger has been specified. As stated higher, the specification of a time trigger is
obliged whenever the progress of time can violate a constraint, since a time
freeze must at all times be avoided.

An event trigger is triggered when the constraint violation is caused due to the
occurrence of an event or another trigger. An event trigger can be made
conditionally, so that it only triggers when invalid model state meets a certain
condition. When more than one overlapping condition has been met, the
functionality of the triggers will be joined, in the same manner as triggers of
multiple constraints violations are joined. It is possible to specify a default trigger
that will only be used when none of the conditional triggers are fulfilled.

When atime & event trigger is specified, it will be used as a trigger to solve
each violation of the constraint, irrespective of the source of the violation being
an event or the progress of time. A time & event trigger can also be designated as
default trigger, but only when no other default event trigger is been defined.

Trigger Specification for Integrated Model Constraints

In the same manner as triggers try to solve constraint violations for EROOS
constraints, it is possible to attach triggers to integrated model constraints, in order to
specify behaviour that can solve violations of such constraints. Constraints can be
attached to the following integrated model constraints in the EROOS methodol ogy:

Immutability for attributes, relation participants, and compounds. Whenever an
immutable attribute, participant, part object, or whole object is being changed, an
immutability adaptation trigger can be specified to restore the original situation.
This trigger seems to be identically the same as the default behaviour when an
immutability constraint is violated, since the events are refused and the model
instance remains unchanged. However, such adaptation trigger can be very useful
to preserve the effect of other events that occurred in conjunction with the
forbidden mutation event. In contrast with the default behaviour that refuses all
occurred events, the trigger only revokes the attribute change and allows all other
event functionality.

Unigueness for attributes. Whenever an object is created using a non-unique
value for its attribute, the attribute uniqueness trigger can try to resolve the
situation by selecting a (eventually default) value that is suitable for the newly
created object.

Lower and/or upper bound restrictions for attributes. Whenever an attribute
value is changed into a new value that lays outside the range of the allowed
values, the attribute lower and/or upper bound trigger tries to resolve the situation
by selecting a suitable value that lies inside the allowed range.

182 ADVANCED CONCEPTS FOR CONCEPTUAL MODELLING

e Connectivity and multiplicity restriction for relations and compounds. Whenever
arelation or compound violates its connectivity and multiplicity restrictions, the
connectivity or multiplicity trigger tries to resolve the situation by destroying
objects or changing object links.

e Participation restriction for relations and compounds. Whenever a relation or
compound violates its participation restrictions, the participation trigger tries to
resolve the situation by destroying objects or changing object links.

Triggers attached to integrated model constraints are usually event triggers. However,
it is possible to specify atime trigger for an integrated constraint, for instance, in case
of alower bound restriction based on the current time. Triggers for integrated model
constraints are specified as part of the model entity script, and refer to the integrated
constraints for which they are applicable. The specification of integrated constraint
triggersis presented in Table 5.18.

<EROCS nodel entity> =
"cl ass" <CLASS NAME>

<nodel entity definition>

(<trigger type> ":" <event expression>)*
"end cl ass" <CLASS NAME>

<trigger type> =

[<reference>] "immutability" | "uni queness" | "bounds"
"l ower bound" | "upper bound" | "connectivity"
"multiplicity" | "participation" | "permanent binding"
"exi stential dependency" | "mutual dependency"]

["addition" | "adaption"]

["event” | "tinme" | "time & event”] "trigger”

Table5.18: Trigger Specification for Integrated and Implicit Constraints

5.4.3.3 Trigger Specification for Implicit Model Constraints

In addition to EROOS constraints and integrated model constraints, triggers can also
be attached to implicit model constraints to solve potential violations. Such triggers
are always event triggers. They are specified as part of the model entity script, as
presented in Table 5.18, and refer to the implicit constraint on which they apply.

* Permanent binding for attributes. Whenever an object is created without defining
a specific value for one of its attributes, the attribute permanent binding trigger
tries to resolve the situation by selecting a (eventually default) value that is
suitable for the newly created object. In the same manner, an archive attribute
can be set when an object is destroyed without providing a specific value for it.

5.4. EROOS CONSTRAINT TRIGGERS 183

» Existential dependency for relations. Whenever an object is created without
determining a specific participant, the existential dependency trigger tries to
resolve the situation by selecting a suitable object for the missing participant.

e Mutual dependency for compounds. Whenever a whole is created without
determining a specific part, or vice versa, the mutual dependency trigger tries to
resolve the situation by selecting a suitable part, respectively whole.

5.4.4 Techniques for Describing the Overall Model Behaviour

Although an EROOS model fulfils the principle of uniqueness for the structural part
of the model, the behavioural part can be described in several manners. There exist a
variety in the granularity of the model behaviour descriptions. The model behaviour
can be specified using large-scale events as presented in Figure 5.19.a, which create a
rather centralised effect description, or using rather small-scale events as presented in
Figure 5.19.b, which create a modular fine-grained effect description. The
introduction of constraint triggers enables a new technique for describing the model
behaviour as presented in Figure 5.19.c, consisting of a distribution of the overall
effect of an event into a basic description of the event that is mandatory, and a
number of optional trigger specifications attached to model constraints, and that fire
whenever the event violates the constraints.

a) Central Effect Description SUBJECT
CLASS
b) Modular Effect Description SUBJECT effect a
CLASS event 2
effect b
CLASS 2 event 3
CLASS 3 —.—m
c) Trigger-based Distributed SUBJECT
Effect Description CLASS
CLASS 2 I <

CLASS 3

_—==> Constraint €2 and €3
Trigger: event 3

_J

Figure5.19: Techniquesfor Describing the Overall M odel Behaviour

184 ADVANCED CONCEPTS FOR CONCEPTUAL MODELLING

5.4.4.1 Central Effect Descriptions

The technique of central effect descriptions consists of the introduction of a single
event description for each event that can occur in the universe of discourse. This
event description will fully describe the overall effect of the event on the model
instance. The advantage of a central effect description technique is that the impact of
an event onto the model instance is clearly and completely visible at a central place.
By a mere examination of the effect description of the event, one can obtain fully
insight in the changes that occur in a model instance when the event is executed, and
the impact it will have on the existing situation.

cl ass BORROW NG
cont ext
havi ng participant (SELECTI ON
havi ng partici pants (
POSSESSI ON bei ng partici pant of (RESERVED | TEM
havi ng partici pant (COPY
havi ng partici pant (BOOK
bei ng partici pant of (PRESENCE
bei ng partici pant of (RESERVATI ON
bei ng partici pant of (RESERVED I TEM)))),
REG STRATI ON bei ng partici pant of (RESERVATI ON)
havi ng partici pant (LIBRARY)))
general event
return book
ef f ect
self.return
| et possession = self | SELECTI ON] POSSESSI ON
let library = self | SELECTI ON| REG STRATI ON| LI BRARY
l et reservations= |ibrary!REG STRATI ON1RESERVATI ON
N possessi on | COPY | BOOK 1 PRESENCE 1 RESERVATI ON
if reservations # enpty set
t hen
| et oldest = randomone of {r in reservations |
not exists r2 in reservations:
r2-Creation Tinmestanp < r-=Creation Tinestanp}
RESERVED | TEM cr eat e(ol dest, possessi on)
ol dest . destroy
end cl ass BORROW NG

Table5.19: Central Effect Description of return book

5.4. EROOS CONSTRAINT TRIGGERS 185

As an example, consider the returning of a borrowed book for the example of the
library system that was presented in Section 5.1.6 on page 149. Suppose that the
library has set up a reservation system for its clients. When a book is returned, the
event description must provide a full specification of all tasks that must be performed
at the moment of returning the book. For instance, if there exists a reservation for that
book, the book copy must be labelled as reserved. The central description of the
return event can be found in Table 5.19.

A drawback of central effect descriptions is that it is very complicated to develop
them, since one must have a complete view on the model, including all its constraints.
By specifying the effect description of the event, one must consider the consequences
of each slightest change in the model, since a small change can violate a number of
model constraints. The technique of central effect descriptions forces the modeller to
provide a full description of the impact of the event on the model, describing the
complete transition of the old into the new model instance, while preserving the
validity of al implied, integrated, and EROOS constraints.

A second drawback is that commonalities in the effect descriptions of events lead to
duplication inside the model. When a number of events have identical parts within
their effect descriptions, this functionality must be duplicated for each event. Such
duplication creates overhead (1) in the understanding of the events, forcing the model
reader to detect such commonalities on its own, and (2) in changing or correcting
errors in the model descriptions, since the errors will multiply and must be adjusted
inside each duplicated description.

5.4.4.2 Modular Effect Descriptions

The technique of modular effect descriptions resembles the way of specifying and
decomposing methods in object-oriented programming. Each event that can occur in
the universe of discourse, leads to the introduction of a representative event in the
conceptual model. Instead of having a single description for the specification of the
event, the specification is decomposed into additional events, creating a modular
effect description for the original event. These additional events can consist of fully
contained effect descriptions of their own, or can again be decomposed into a number
of supportive events.

We illustrate modular effect descriptions using the example of the book reservation
for the library system, as described in the previous section. The specification of the
return event, which uses an auxiliary event for the reservation creation, can be found
in Table 5.19. Notice that the event * check reservations can be reused, e.g., when the
library acquires a new printed copy of a book.

The advantage of the modular effect description technique is that common
functionality for events can be factored out into a separate event. When a good
decomposition of an event description is made, split up in logical parts with suitable
names, the complexity of effect descriptions can be largely reduced. Complex event
descriptions can be decomposed into a number of more simple events that are easier

186

ADVANCED CONCEPTS FOR CONCEPTUAL MODELLING

to describe and understand, while these event descriptions can at their turn be reused

in order to compose more complex events.

cl ass BORROW NG
cont ext
havi ng participant (SELECTION
havi ng partici pant (POSSESSI ON

havi ng event check reservations))
general event

return book
ef f ect
self.return
| et possession = self | SELECTI ONJ POSSESSI ON
possessi on. check reservations
end cl ass BORROW NG

cl ass POSSESSI ON
cont ext
bei ng partici pant of (RESERVED | TEM
havi ng participants (
COPY having participant (BOOK
bei ng partici pant of (PRESENCE
bei ng partici pant of (RESERVATI ON
being participant of (RESERVED I TEM))),
LI BRARY bei ng participant of (REG STRATION

bei ng partici pant of (RESERVATION)))
general event

check reservati ons
ef f ect

l et reservations=
sel f | LI BRARY 1 REGI STRATI ONT RESERVATI ON
N sel f | COPY | BOOK 1 PRESENCE ! RESERVATI ON

if reservations # enpty set

t hen
| et oldest = randomone of {r in reservations |

not exists r2 in reservations:

r2-Creation Tinmestanp < r-Creation Tinestanp}
RESERVED | TEM cr eat e(ol dest, self)
ol dest . destroy
end cl ass POSSESSI ON

Table 5.20: Modular Effect Description of return book

5.4. EROOS CONSTRAINT TRIGGERS 187

A second advantage is that change and error correction is facilitated, since analogous
effect descriptions only occur at a single place in the model. This reduces the amount
of corrections that must be made to a model, since the adj ustments must only be made
at asingle point in the model.

A drawback is that the impact of an event on the model instance is not easily
assessed, since it is not contained in an all-embracing description. A model reader
must compose the overall effect of an event on her or his own, by following an event
trace from the top event to a number of auxiliary events. In order to comprehend the
total impact of the top event onto a model instance, all auxiliary events must be
comprehended. As already stated higher, this process can be facilitated by choosing
appropriate names for the auxiliary events.

A second and more important drawback is that, as in the case of central effect
descriptions, it is quite complicated to develop modular effect descriptions due to the
presence of model constraints that have to be preserved. On the one hand, the
modeller must provide a full description of the impact of the event on the model
through the specification of a number of auxiliary events. On the other hand, one
must take care that the obtained new model instance complies with all implied,
integrated, and EROOS constraints that are present in the model. As argued in the
previous section, the modeller must have a complete view on the whole model in
order to preserve the validity for all model constraints.

5.4.4.3 Distributed Effect Descriptions using Triggers

The introduction of constraint triggers in the EROOS methodology allows a modeller
to include triggered functionality in the overall specification of events. Thisresultsin
adistributed effect description for events, in which the basic event description can be
augmented with small pieces of functionality that are specified in constraint triggers.
These trigger specifications will be added when needed, according to the constraints
that are violated by the basic event behaviour. Instead of having a full effect
description in the event, at a single point as for central descriptions, or through the
composition of multiple events as for modular descriptions, only the basic model
change is defined directly in the event. As such, the overall effect on the model
instance is obtained by combining the basic effect of the event with the effect of all
constraint triggers that are activated.

We illustrate distributed effect descriptions using the example of the book reservation
for the library system, as described in the previous sections. The specification of the
basic return event and the constraint trigger can be found in Table 5.19.

The main advantage of the distributed effect description technigue is the simplicity to
develop effect descriptions, since one must no longer take care that the event
description fully complies with all implied, integrated, and EROOS constraints that
are present in the model. Every constraint violation can be dealt with in its attached
constraint trigger. This allows that the basic event description only contains the core

188 ADVANCED CONCEPTS FOR CONCEPTUAL MODELLING

cl ass BORROW NG
general event
return book
ef f ect
self.return
end cl ass BORROW NG

constraint no free copy for a reservation
top cl asses RESERVATI ON, POSSESSI ON
cont ext
RESERVATI ON bei ng partici pant of (RESERVED | TEM
havi ng participants (
PRESENCE havi ng partici pant (BOXK),
REGQ STRATI ON havi ng partici pant (LI BRARY)),
POSSESSI ON bei ng parti ci pant of
(RESERVED | TEM , BORROW NG
havi ng parti ci pant (COPY
havi ng partici pant (BOCK))
definition
for all r in RESERVATI ON:
for all p in POSSESSI ON not participating in
RESERVED | TEM BORROW NG
r J PRESENCE | BOOK # p | COPY | BOOK
addition event trigger
let reservations = { r2 in RESERVATI ON :
(r2 | REA STRATI ON| LI BRARY = r | REG STRATI ON| LI BRARY) and
(r2 | PRESENCE | BOOK = r |, PRESENCE | BOOX) }
et older reservations = { r2 in reservations :
(r2-=Creation Tinmestanmp < r—-Creation Tinestanp) }
if older reservations = enpty set
then let rr = randomone of {r2 in reservations |
(r2-=Creation Tinestanp = r—»Creation Tinestanp) }
RESERVED | TEM create(rr, p)
rr.destroy
end constraint no free copy for a reservation

Table 5.21: Distributed Effect Description of return book

changes that have to occur in the model instance. The preservation of the model
constraints can be delegated to the constraint triggers, which have more knowledge
about the context and are better focussed to solve the constraint violation. The

5.4. EROOS CONSTRAINT TRIGGERS 189

modeller no longer needs a complete view on every detail of the entire model, since
the preservation of the constraint validity does not solely belong to the event.

The distributed effect description technique has the same advantages as the modular
effect description technique, that is (1) offering the possibility of factoring out
common functionality description parts into separate events, which allows
decomposition and reuse of event descriptions, and (2) facilitating changes and error
correction by reducing duplication inside event descriptions.

The drawback of distributed effect descriptions is that, even more than in the case of
the modular effect description technique, the impact of an event on the model
instance is not easily assessed. The totality of the change caused by an event on the
overall model instance, is not directly visible at a central place, but has to be
composed using the basic event description and the constraint triggers of all relevant
constraints. However, this process can be facilitated by offering tool support to (1)
identify constraints that can be violated by the event, and (2) stating the impact of the
associated triggers relevant for this event.

5.4.5 Using Nondeterminism in Functionality Specifications

During the specification of events, an analyst often has to interpret and to circumvent
the model constraints in order to preserve their validity. For example, objects and
values often have to be chosen based on the compliance of their properties with
certain model constraints. This leads to a recurring pattern of (1) selecting the set of
all potential objects, (2) restricting this set to those objects that can satisfy the stated
model constraints when they are selected, and (3) making a random selection between
these potential objects using a specific EROOS selection operator, namely ‘random
one of’. This pattern can be observed in the specifications that are presented in Table
5.19, Table 5.20, and Table 5.21. Such specification causes a duplication of constraint
checking and resolving descriptions, since the constraints already express the required
properties that the objects in the model must fulfil. Since the EROOS kernel only
offers support for erratic nondeterminism, by which an arbitrary and random choice is
made between all available elements, the modeller oneself must first create the set of
eligible elements on which then a nondeterministic choice can be made.

The EROOS universe offers a global angelic nondeterministic operator [139][157]
‘selective one of’ that does not make a random choice between all possible elements,
but restrict its choice to those elements that fulfil certain boundary condition, more
precisely, those objects that comply with the desired properties as stated by the model
constraints. This means that only those objects are selected that can lead to a model
instance in which all model constraints are fulfilled. A random selection between all
remaining candidate objects is only made at the final stage, when it is clear which
valid model instances can be obtained. The elements that are taken into account while
making the selective angelic nondeterministic choice are the following:

* The model instance that was valid before the event occurred is the starting point
for making a selective nondeterministic choice.

190

ADVANCED CONCEPTS FOR CONCEPTUAL MODELLING

The effects of the deterministic events that occur at the same time as the
nondeterministic event are all taken into consideration.

In case that a nondeterministic choice can be made that leads to a possible model
instance fulfilling al model constraints, taken into account all other
nondeterministic choices that have to be made simultaneously, one of the
solutions will be chosen at random.

If no nondeterministic choice can be made that leads to a possible model
instance, every case in which a nondeterministic choice causes a violation of a
constraint with attached trigger clause, is taken further into consideration. The
functionality defined in the trigger clause is added to the basic event functionality
and the specific choice that gave rise to this possible solution. Since different
choices can possibly trigger different constraints, a humber of possible model
instances can be obtained that ultimately lead to a valid model instance. In such
case, one of these valid model instances will be chosen at random. As explained
in Section 5.4.2.4, it is possible that a further trigger chain is caused that
ultimately leads to avalid model instance.

In case that no nondeterministic choice can be made that leads directly or
indirectly to avalid model instance, the event is refused.

constraint no free copy for a reservation
top cl asses RESERVATI ON, POSSESSI ON
cont ext
RESERVATI ON bei ng partici pant of (RESERVED | TEM
havi ng parti ci pant PRESENCE
havi ng partici pant (BOXK),
POSSESSI ON bei ng parti ci pant of
(RESERVED | TEM , BORROW NG)
havi ng partici pant (COPY
havi ng partici pant (BOCK))
definition
for all r in RESERVATI ON:
for all p in POSSESSI ON not participating in
RESERVED | TEM BORROW NG
r | PRESENCE | BOOK # p | COPY | BOOK
addition event trigger
I et reservation = selective one of (RESERVATI ON)
RESERVED | TEM cr eat e(r eservati on,
sel ective one of (POSSESSI ON))
reservation. destroy
end constraint no free copy for a reservation

Table 5.22: Nondeter ministic Distributed Effect Description of return book

5.4. EROOS CONSTRAINT TRIGGERS 191

The global angelic nondeterministic operator reduces a large number of
overspecification for events and triggers, for which otherwise constraint avoidance
specifications must be made by explicitly calculating the set of eligible elements. We
illustrate non-deterministic distributed effect descriptions using the book reservation
example for the library system, as described in the previous section. The specification
of the constraint trigger can be found in Table 5.22. Notice that this constraint trigger
supports on the presence of certain constraints, such as (1) the fact that the
registration and possession for a reserved item must contain the same library and
book, and (2) the fact that only the oldest reservation for a book can be involved in a
reserved item. Bekaert [13] provides an elaboration of nondeterminism in EROOS.

5.4.6 EROOS Constraint Triggers for the Library Example

Given the example of the library system that was presented in Section 2.3, and the
relation hierarchy that was defined in Section 5.1.6, we can specify a constraint
trigger for the class of borrowing that automatically creates a fine object when the
borrowing exceeds its deadline, as presented in Table 5.23. Notice that the deadline is
defined by the value of the attribute Maximum Lending Period at the moment the
borrowing was created. Since this constraint can be violated due to the progress of
time, the trigger is formulated as atime trigger.

constrai nt borrowi ng not exceeded
top cl ass BORROW NG
cont ext
BORROW NG bei ng participant of (FINE)
havi ng partici pant (ALLOMANCE
havi ng partici pant (LI BRARY
havi ng attribute Maxi mum Lendi ng Peri od))
definition
for all b in BORRON NG not participating in FINE
now - b-Creation Tinestanp <=
sel f | ALLOMNCE | LI BRARY
-Maxi mum Lendi ng Peri od@b-Creati on Ti mest anp)
addition tinme trigger
FI NE. cr eat e(b)
end cl ass BORROW NG

Table5.23: Timeand Event Trigger for the Library Example

5.4.7 Contributions, Related Work, and Reflections

Our approach concerning constraint triggers is a novel and original contribution to
conceptual modelling. The introduction of constraint triggers provides an elegant

192 ADVANCED CONCEPTS FOR CONCEPTUAL MODELLING

description of the universe of discourse, in which a generic constraint solver can be
attached to a constraint. The goal of a constraint trigger is to resolve constraint
violations by injecting error handling behaviour into an event, or by firing an event
due to the progress of time. This enables the specification of distributed effect
descriptions for events, in which only the basic effect is specified for an event. Small
additional pieces of functionality are specified in constraint triggers that are added to
the basic event description according to the constraint violations caused by the event.
This approach creates a separation between the description of the normal event
handling and the exceptional event handling. The normal event handling is specified
in the event, whereas the exceptional event handling is specified in a number of
constraint triggers. Without constraint triggers, event descriptions contain a lot of
duplicated constraint checking and avoidance specifications, in which possible
constraint violations must be captured and resolved. Such approach leads to a lot of
duplication overhead inside a model. Constraint triggers support separation of
concerns, by clustering all functionality regarding the constraint handling in a single
place. It can be used to introduce specific constraint related crosscutting behaviour
into a model, through the extension of all events that can violate the constraint.
Therefore, it can be considered as a kind of Aspect-Oriented Software Development
(AOSD) [46] technique.

The EROOS constraint trigger concept is somewhat comparable with ECAA rulesin
active databases, as presented in Section 2.2.4. It can be seen as a kind of adaptation
and extension of ECAA rules for constraints. Other analysis methods, such as OOIE
[96][97], BON [156], MOSES [64], OBA [125], and SOMA [58], have incorporated
ECAA rules, while implementation extensions have been proposed to integrate
ECAA rules in programming languages [85][86]. The main difference in our
approach is that a constraint trigger must solve the constraint violation that triggered
it. Since the goal of constraint triggers is the provision of a generic specification for
solving constraint violations, the execution of a constraint trigger must ultimately lead
to the preservation of the constraint validity. ECAA rules are merely injecting
additional functionality based on certain events that occur, or additional conditions
that are valid at a certain moment in time. They are not concerned about preserving
certain conditions in a model, although the action could be specified in such manner
that the firing condition will become invalid.

Rumbaugh [127] proposes the technique of operation propagation, in which
destruction propagation is used in order to automatically delete a number of
associated objects from a model whenever an object is removed. The technique arose
due to practical issues, since otherwise an explicit specification of the complete
destruction event must be made, including the removal of a set of associated objects.
However, it can be considered as a specific kind of constraint triggering mechanism.
Especially, when the multiplicity of an association at the side of the removed object is
larger than zero, there is an existential dependency from the connected object on the
removed object. In this case, the destruction propagation can be seen as a trigger for
the existential dependency constraint, which deletes all objects that are existentially
dependent on the removed obj ect.

5.5. DERIVED GROUPS AND DYNAMIC SUBDIVISION 193

An observation that can be made is that the approach of distributed effect descriptions
using the constraint trigger concept conceals the impact of an event on the model
instance. One has to compose the overall effect description oneself, by combining the
basic event description with all trigger descriptions of those constraints that can be
violated by the event. Therefore, tool support is appropriate in order to help
identifying the constraints that can be violated by an event, and stating the impact of
the associated triggers that are relevant for the event.

5.5 Derived Groups and Dynamic Subdivision

This section introduces the EROOS kernel analysis pattern that has identified the
desirability of introducing derived groups. We present how dynamic specialisation
can be simulated using constraint triggers and object slices, which perform automatic
creation and destruction of derived groups. Hereafter, we present the concept of
EROOS groups in order to obtain a better suitable modelling of dynamic
specialisation and computable groups in the EROOS universe. Last, derived groups
are applied on the running example of the library system.

5.5.1 EROOS Analysis Pattern for Dynamic Specialisation

As presented in Chapter 3, the EROOS kernel was founded on a number of key
principles for conceptual modelling. Although the principle of No Redundancy states
that every single item of information inside a model must have an added value of its
own, it is often convenient to be able to extract derived information from a model.
Derived information is information inside a model that can be deduced from other
elements that are already contained in the model. Derived information can be
modelled to a certain extent in the EROOS kernel using the concept of aquery. Based
on information that is contained inside a model instance, a query can calculate a result
or a property for an object, or select a number of objects based on certain criteria.
Derived attributes and derived specialisation hierarchies are forbidden in the EROOS
kernel, but must instead be modelled using the query concept.

Due to the principle of No Redundancy, the EROOS methodology does not support
dynamic specialisation. Dynamic specialisation is the ability of making dynamic
changing ‘is-a specialisation hierarchies, in which objects can dynamically move
from one specialised class to another based on certain criteria. We refer to such
dynamic object sets as groups in order to make a distinction with classes, which are
defined in Section 4.6 as static object sets incorporating the constraint of
immutability. Dynamic specialisation can be distinguished in two cases:

* When the transfer of an object from one group to another is caused by an event
noticeable in the universe of discourse, it should be modelled as a distinct class.
These kinds of dynamic properties and object roles are captured in EROOS as
first-class elements, instead of making them subgroups of a generalised class. For
instance, a student cannot be modelled as a specialised class of person in
EROQS, since it is a dynamically changing group. However, the fact that a

194

ADVANCED CONCEPTS FOR CONCEPTUAL MODELLING

person becomes a student, can be modelled as a class on its own, incorporating a
relationship between the person doing the enrolment and the educational institute
accepting the person as a student. The fact that a person is a student or not, can
be derived using a query for the person, evaluating whether the person is
involved in any enrolments at a certain moment in time. Figure 5.20.a illustrates
an EROOS kernel analysis pattern in which a dynamic property is represented as
arefinement. The participant class can dynamically obtain and lose the property.

When the transfer of the object from one group to another is based on

information that is already contained in the model, it should be modelled as a
guery instead. These kinds of derived properties are captured in EROOS as
gueries, since the information is aready contained in the model. When
information about the grouping is needed, it can be derived using a query that
returns the fact whether the object has the property or not. Figure 5.20.b
illustrates an EROOS kernel analysis pattern in which a class can only be refined
using specific participant objects that fulfil a certain property, e.g., based on an
attribute value. The group of potential participants is (1) expressed using the
query ‘has property’, and (2) enforced using the constraint ‘ property true’.

property

REFINEMENT REFINEMENT true

Q Q

| |
DYNAMIC
PROPERTY CLASS CLASS
O 4@ has
property

a) Dynamic Property as a refined class b) Dynamic Property as a query

Figure5.20: M odelling Dynamic Specialisation using EROOS Queries

Due to the introduction of constraint triggers in the EROOS universe, it is possible to
realise a simulation of dynamic specialisation by using triggers for the automatic
creation and destruction of derived groups. The dynamic specialisation is not
performed on the core object, but on a changeable object slice that is connected to it.
This object slice is necessary, since it is not possible to destroy and reconstruct the
core object, e.g., due to relationship links in which the object already can be involved,
and due to its Creation Timestamp that would be changed. Constraint triggers can be
specified that automatically create the dynamic object slice when a certain condition
is valid, and change this dynamic slice when the condition no longer is valid. This
specific analysis pattern to realise dynamic specialisation in the EROOS universe, is
presented in Figure 5.21 and Table 5.24. Although it is possible to specify dynamic
specialisation using derived groups, it is not an appropriate specification since, it
duplicates the derivation condition into a positive and negative expression, and
introduces additional explicit object creation and destruction triggers. Therefore,
EROOS offers an additional concept for modelling dynamic specialisation.

5.5. DERIVED GROUPS AND DYNAMIC SUBDIVISION 195

constraint property true
top class SLICE HAVI NG PROPERTY
cont ext
SLI CE HAVI NG PROPERTY
speci al i sati on of (DYNAM C PROPERTY SLI CE
havi ng speci al i sation (SLI CE NOT HAVI NG PROPERTY)
havi ng conpound-whol e (CLASS))
definition
for all p in SLICE HAVI NG PROPERTY
p-> CLASS. has property
addition event trigger
p. destroy
SLI CE NOT HAVI NG PROPERTY. cr eat e(p=> CLASS)
end constraint property true
constraint property fal se
top class SLICE NOT HAVI NG PROPERTY
cont ext
SLI CE NOT HAVI NG PROPERTY
speci al i sati on of (DYNAM C PROPERTY SLI CE
havi ng speci alisation (SLI CE HAVI NG PROPERTY)
havi ng conpound-whol e (CLASS))
definition
for all n in SLICE NOT HAVI NG PROPERTY
not (n> CLASS. has property)
addi ti on event trigger
n. destroy
SLI CE HAVI NG PROPERTY. create (n-> CLASS)
end constraint property fal se

Table 5.24: EROOS Constraintsfor Simulating Dynamic Specialisation

REFINEMENT DYNAMIC (1.1]
PROPERTY CLASS
Q SLICE >
\\\ J\ <f:>has
property | ! property
true SLICE HAVING SLICE NOT

PROPERTY HAVING property
| PROPERTY false

Figure 5.21: EROOS Analysis Pattern for Dynamic Specialisation

196 ADVANCED CONCEPTS FOR CONCEPTUAL MODELLING

5.5.2 EROOS Groups and Dynamic Specialisation

The concept of an EROOS group offers the possibility to model dynamic
specialisation in a more convenient manner. Dynamic subdivisions of a class can be
defined, which is automatically composed using a condition that is used as a selection
criterion for the group. As such, objects remain statically attached to their native
class, while they can dynamically (1) become part of a group, or (2) leave the group.
The conditional rule that forms the group, serves as afilter on the class for selecting
objects that must belong to the group. An EROOS group script is a dynamic
specialisation of a single class. However, a group can also be defined as a subgroup
of an already existing group, which enables to model a further dynamic subdivision
within an existing subdivision.

The syntax of an EROOS group script is given in Table 5.25. A group script is
defined for a base class or group, and specifies a rule that dynamically and
continuously selects objects from the base class or group in order to form the new
group. As presented in Figure 5.22, an EROOS group is graphically represented in the
form of a double-bordered rectangle that is connected to its base class or group, using
an arrow from the base class or group to the new group. The definition of a group can
be found in Definition 5.13.

<group script> =
"group” <GROUP NAMVE>
"base" [<CLASS NAME> | <GROUP NAME>]
"context" <context clause>
"definition"
"conposed by"
<l ogi cal cl ause>
(<trigger type> ":" <event expression>)*
"end group" <GROUP NAME>

Table5.25: EROOS Group Script

<CLASS <GROUP
NAME> NAME>
<GROUP <GROUP
NAME> NAME>

Figure 5.22: Graphical Representation of an EROOS Group

5.5. DERIVED GROUPS AND DYNAMIC SUBDIVISION 197

A group is a nodel entity defining, at each noment in tine,
an obj ect popul ation set. This set is a subset of the
popul ati on set of the base class or the base group from which
the group has been derived. The subset is dynanically,
automatical ly and continuously created by selecting al
objects of the base class or the base group that fulfil the
sel ection rule defined by the group.

G ven

Model M Object Universe QU Class C € My, Goup G € N,
Direct Goup DG € M,, Indirect Goup IG € N,

DG TIME - (QU) | V't € TIME DG (0

c
IG TIME » (O | VYt e TIME 1G € G

Definition 5.13: EROOS Group

The following considerations must be made regarding EROOS groups.

Although a group can be defined as a subgroup of an aready existing group, it is
forbidden to define mutually dependent groups. Two groups cannot be direct or
indirect dependent on each other.

The archive that is associated to a group complies with the archive of the class of
which the group is directly or indirectly a subset. The group archive does not
contain objects that ceased to fulfil the group composition rule, but only contains
dead objects that fulfil the group composition rule. However, since historical
information concerning past model instances remains available in EROOS, and
can be obtained using the time indication ‘@t’, it is possible to define a query
that select all objects that once fulfilled the group condition but stopped doing so.

As presented in Figure 5.23, a group can be used as a participant in a relation
definition. In fact, it is arepresentation of an underlying structure that was shown
in Figure 5.20.b, in which the relation is directed to the base class of the group,
having an additional constraint for the refined class that expresses the same
condition as the one used to form the group. However, notice that objects are not
statically connected to the group, but can dynamically become part of the group
or can cease to be part of it. Therefore, when a model contains a relation to a
group participant, the modeller must consider how the model should react when a
participant object ceases to belong to the participant group. In fact, the same
consideration has to be made in the underlying model that is presented in Figure
5.20.b, since this model also raises a validity issue when the property of the
participating object stops to be valid. Although not strictly necessary, it is
advisable to define an existential dependency trigger for such relation in order to
properly deal with property changes.

198 ADVANCED CONCEPTS FOR CONCEPTUAL MODELLING

REFINEMENT

Q_

CLASS

v

CLASS HAVING
PROPERTY

Figure 5.23: Using EROOS Groups for Dynamic Specialisation

5.5.3 EROOS Groups for the Library Example

Given the example of the library system that was presented in Section 2.3, and the
relation hierarchy that was defined in Section 5.1.6, we can specify a dynamic group
of overdue borrowings. An overdue borrowing can automatically be selected from the
class of borrowings, based on the Creation Timestamp of the borrowing and the
Maximum Lending Period of a library. Overdue borrowings must be connected to a
fine, and a fine must also be connected to an overdue borrowing. Therefore a mutual
dependency can be defined between an overdue borrowing and afine, as presented in
Figure 5.24. Since objects can automatically become part of the overdue borrowing
group due to the progress of time, the time trigger presented in Table 5.26 must be
formulated in order to preventing atime freeze.

group OVERDUE BORROW NG
base BORROW NG
cont ext
havi ng partici pant (SELECTI ON
havi ng parti ci pant (LI BRARY
having attri bute Maxi mum Lendi ng Peri od))
definition
conposed by
(if self in BORRON NGt then sel f—=Destruction Tinestanp
el se now) - self-=Creation Tinestanp
> sel f | SELECTI ON| LI BRARY
-Maxi mum Lendi ng Peri od@b-Creati on Ti mest anp)
i nvol ved as conpound- whol e
i mmut abl e total OVERDUE BORROW NG
havi ng conpound-part min 1 max 1 i mutable FINE
mut ual dependency addition time trigger
FI NE. cr eat e(sel f)
end group OVERDUE BORROW NG

Table5.26: Timeand Event Trigger for the Library Example

5.5. DERIVED GROUPS AND DYNAMIC SUBDIVISION 199

BORROWING

v

OVERDUE
[1,1] BORROWING

FINE I :

Figure5.24: EROOS Groupsfor theLibrary System

5.5.4 Contributions, Related Work, and Reflections

Our approach concerning derived groups is a novel and original contribution to
conceptual modelling. Derived groups capture more constraints directly in the model
structure. Instead of specifying an explicit EROOS constraint for a relation, the
relation can be directed to a specific group, which identifies the set of objects that can
be a valid participant in the relation. Hereby, the EROOS constraint expression is
transformed into a group composition rule. In addition, derived groups give a deeper
insight in the potentials of a class, since it explicitly highlights in the model that the
fact of belonging to a certain group, enables the participation in a number of relations.

The EROOS group concept is somewhat comparable with dynamic inheritance and
role modelling techniques. Dynamic inheritance refers to the ability to add, delete, or
change parents from objects (or classes) at run-time. Dynamic inheritance has been
introduced in different forms:

» Nierstrasz [104] defines the concept of dynamic inheritance as a mechanism that
permit objects to alter their behaviour in the course of normal interactions
between objects. He distinguishes three forms of dynamic inheritance: (1) part
inheritance, in which an object explicitly changes its behaviour by accepting new
parts from other objects, (2) scope inheritance, in which the changes occur
indirectly through changes inherited from the environment, and (3) dynamic
subclassing, in which an object moves from one class to another at run-time.
Certain programming languages, such as Smalltalk [56] and CLOS [80], provide
scope inheritance in some form or another. Other languages, such as Self [147],
provide dynamic part inheritance in the form of delegation. Mohindra[101] uses
a dynamic subclassing mechanism to dynamically create new classes at run-time.
These approaches differ from the dynamic specialisation that we propose. Instead
of determining at run-time which inheritance structures we have to adapt, we
want to statically determine the groups to which an object can belong at run-time.

e Another approach related to dynamic inheritance is dynamic role modelling
[121][166][165][145]. Role modelling allows an object to dynamically change its
role in a model, thereby obtaining new functionality that is assigned to the role,
and removing functionality that is no longer needed. We take a different

200

ADVANCED CONCEPTS FOR CONCEPTUAL MODELLING

approach to modelling roles. Since roles are optional properties that an object can
obtain, we use the base object as a participant in a role relationship. For instance,
instead of modelling a student role for a person, we define a class of enrolments,
refined with a person and an institute as its participants. Roles can be compared
to EROOS groups. Based on the enrolments relation, we could define a student’s
group for the class of persons, thereby selecting only those persons that are
participating in an active enrolment. Although this seems to correspond to the
student role of a person, the main difference is that EROOS groups are
automatically composed based on the grouping rule, whereas roles must be given
explicitly to and taken from an object. The allocation of roles is similar to the
creation and destruction of the enrolment object, rather than to the formation of
the EROOS group.

» KISS[84] introduces role specialisations that can be acquired by an object based
on associations in which the object participates. As such, a person that
participates in a study association will automatically be part of the subgroup
defined by the student role, while at the same time the person can also be part of
other subgroup according to its other participations. However, dynamic
specidisation in KISS is restricted to the participation property that can be
derived from an existing association, and cannot be defined using a general
compoasition rule as in EROOS.

An observation that can be made is that derived groups offer an alternative manner
for modelling constraints in an EROOS model. Modellers can choose between, e.g.,
using a constraint restricting a participant, and using a derived group as a participant.
When constraints are transformed into group composition rules, the number of
structural model elements, which is already high in comparison with other analysis
methods, will even further increase. Therefore, the right balance must be found
between structural elements, such as groups, and EROOS constraint specifications.

5.6 Evaluation of the EROOS Universe

Based on the core concepts offered by the EROOS kernel, we have presented a
number of advanced concepts for performing conceptual modelling. These advanced
concepts offer methodological support for recurring EROOS kernel analysis patterns,
and provides a more practical methodology to the analyst. The EROOS universe
offers a methodological approach of integrating model constraints in the modelling
concepts and the model structure. Functionality is modelled in a distributed manner,
by separating the basic specification of the event from exceptional constraint
violation handling. Explicit attention is paid to the lifetime of an object without
deciding when the object must be removed from the model, since historical
information remains available in the model.

Since the concepts of the EROOS universe were defined from the viewpoint of the
analyst, they sometimes contradict to a certain extent with some of the key principles
for conceptual modelling as defined in Chapter 3. We again evaluate each key

5.6. EVALUATION OF THE EROOS UNIVERSE 201

principle for conceptual modelling and describe the impact of the proposed
extensions on achieving the principles. Since thereis no direct impact of the proposed
additional concepts on the Principles of Unambiguity, Completeness, Minimalism,
Preciseness, No History, and Abstraction, we refer to their evaluation in Section 4.10.
Therefore, we only discuss the impact of the EROOS universe on the Principles of
Uniqueness, No Redundancy, and Model-Implied Constraints.

5.6.1 Achieving Uniqueness

The Principle of Uniqueness is maintained in the EROOS universe to a reasonably
large extent. The impact of the proposed extensions is as follows:

Class archives offer an alternative way of modelling information that has a
restricted lifetime. By introducing class archives, we explicitly force the modeller
to reason about the duration of the validity of the modelled elements. Since class
archives particularly reduce the number of classes contained in the model, as well
as the number of constraints present to express dependencies, we consider it as
an adequate concept for conceptual modelling. In order to comply with the
Principle of Uniqueness, class archives are introduced for every EROOS class.

Mutability has a certain impact on achieving the Principle of Uniqueness.
However, it is a concept that is well established in computer science, since
variables are a common concept in programming. In an object-oriented approach,
objects are considered to be entities that encapsulate an amount of changeable
information. Although mutability is a natural concept for a modeller, it raises the
guestion of how certain changes must be represented in a model, e.g., either asa
distinct class or as an attribute mutation. This can often not be decided in an
unambiguous manner. For example, consider the balance of a bank account. An
analyst could model deposits and withdrawals as mutations of the balance
attribute, or as first-class transaction objects. A modeller often base decisions on
personal preferences or on a personal viewpoint of the universe of discourse.

Mutability in EROOS is not concerned about optimisation of information, nor on
deciding which information is needed for future retrieval. Since EROOS enables
the retrieval of old information from past model instances, all information that
once was present in a model can be accessed. Mutability in EROOS offers a
dense view on a model, by hiding objects that represent information changes. By
introducing mutability, the EROOS universe guides the modeller to use
mutations when (1) no additional information is needed concerning the actual
update, and (2) no specific constraints are imposed on the update. The EROOS
universe impose the modeller to use object creation when (1) additional
information is needed, such as the person who performed the update, or the
actual moment on which the update occurred, or (2) specific constraints must be
imposed on the update, such as an explicit authority for performing the update, or
astrict increase in attribute values.

Compounds introduce a limited amount of variability. Whereas the EROOS
kernel forces the analyst to model mutually dependent objects as a single object,
the EROOS universe offers the ability to separate them into two distinct objects.

202

ADVANCED CONCEPTS FOR CONCEPTUAL MODELLING

When the usage of compounds is restricted to the modelling of mutually
dependent whole-part structures, it can clearly be distinguished from the
approach in which the objects are merged into one. In fact, a mutual dependency
is closer related to the information in the universe of discourse, since the whole
object can be clearly distinguished from its first part. When compounds are used
to model object slicing, splitting an object into several parts that are mutually
dependent on each other, it is less obvious to provide clear guidelines for
obtaining a uniqgue model. Individual object-to-object mutual dependencies
should be avoided as much as possible, and only used in cases when the lifecycle
of the one object is different from the other object, e.g., an overall membership
that is mutually dependent on yearly subscriptions.

Constraint triggers offer an alternative specification of reactive behaviour for
constraint violations. As such, specifications in which all conditions regarding a
constraint are explicitly checked in order to preserve its validity, can be avoided.
Constraint triggers should be given preference over alternatives that duplicate
constraint-checking specifications. Since EROOS propagates the usage of
constraint triggers over explicit constraint checking specifications, their
introduction does not have an impact on the Principle of Uniqueness

Derived groups offer an alternative manner for modelling constraints in an
EROOS model. Since relations can use derived groups as a participant, a
constraint restricting the participant in a certain manner can be transformed into a
compasition rule for the participating group. One could argue that an approach
using derived groups is even preferable to constraints, since the constraint is
implicitly captured in the model structure.®” In addition, derived groups give a
deeper insight in the potentials of a class, since it explicitly highlights that the
fact of belonging to a certain group, enables the participation in a number of
relations. Due to these benefits, we relax the Principle of Uniqueness to a certain
extent, and offer the modeller the choice between using constraints and derived
groups. The modeller must consider whether it is beneficial to highlight the
derived group in an explicit manner or not.

5.6.2 Achieving No Redundancy

The Principle of No Redundancy is maintained in the EROOS universe to a large
extent. Only compounds and derived groups have a certain impact on it.

Compounds offer the ability of modelling mutually dependent objects. As stated
in the evaluation of the Principle of No Redundancy for the EROOS there is a
danger of duplication using mutual dependency. In the previous section, we
already argued that individual object-to-object mutual dependencies should be
restricted to the cases where the lifetimes of the two objects differ. Using this
methodological rule, it is impossible to model duplicate objects, since a different
lifetime reflects a difference in knowledge captured inside the model.

" Actualy, the constraint is not really implicitly captured, since it is moved to the group, and acts as a
composition rule for that group.

5.6. EVALUATION OF THE EROOS UNIVERSE 203

Derived groups offer a manner to model derived information. Therefore, the
usage of derived groups in amodel violates the principle of No Redundancy. Due
to its benefits for the modeller, we relax the Principle of Uniqueness to a certain
extent and offer the modeller the choice whether to use derived groups or not.

5.6.3 Achieving Model-Implied Constraints

The principle of Model-Implied Constraints is enforced in the EROOS universe
through the introduction of class archives, compounds, and derived groups.

Class archives offer the possibility of implying archive related constraints
directly by the relation definition. Existential dependency hierarchies can contain
living as well as dead objects. As such, existential dependency can be used to
model that a certain situation must have occurred before a specific can be
created, eg., a borrowing must have been returned before a fine can be
calculated. In addition, constraints concerning lifetime dependencies do no
longer have to be formulated explicitly, but can be expressed implicitly in the
model structure using class archives as participants. This enlarges the set of
constraints that are implied by the model structure.

EROOS compounds offer the ability to express mutual dependency directly in
the model structure. The EROOS kernel only supports the expression of
unidirectional existential dependency, so that mutually dependent objects must
be merged into a single fused object. The EROOS universe enables to capture
mutual dependency constraint in the model structure.

Derived groups enable to transform alarge part of the explicit model constraints
into constraints implied by the model structure. Instead of having to specify an
explicit EROOS model constraint for a refined class, the relation can directly be
targeted to the group of participant objects that fulfil the necessary conditions for
participating in the relation. The derived group must of course be defined,
thereby transforming the constraint into a group composition rule. Nevertheless,
the dependency of the refined class on a specific subgroup of the participating
class is implicitly captured in the model structure, and can be visualised in the
model. As stated higher, this visualisation of the constraint gives a deeper insight
in the potentials of a class, since it explicitly highlights that the fact of belonging
to a certain group, enables the participation in a number of relations.

5.6.4 Final Reflections

The EROOS universe tries to obtain the right balance between adhering to the
principles for conceptual modelling as defined in Chapter 3, and achieving a more
practical approach for conceptual modelling, through the offering of advanced
conceptual modelling concepts for recurring EROOS kernel analysis patterns.
Although the EROOS universe concepts are adhering less to the stated key principles
for conceptual modelling, in comparison with the EROOS kernel, the EROOS
universe still addresses the conceptual modelling principles much better than UML
and most analysis methods [114]. However, a number of issues could be raised.

204

ADVANCED CONCEPTS FOR CONCEPTUAL MODELLING

The concepts that are proposed by the EROOS universe could be too complex for
customers, end users, and practitioners to understand. According to our
experience in teaching EROOS through industrial workshops, a large number of
people can learn rather quickly to comprehend the knowledge represented inside
an EROOS model, and were able to judge the correctness of a representation of
the universe of discourse. Higher educated people and people with a
mathematical background, can easily learn to assess the EROOS methodology in
an active manner. But it is likely that a number of persons involved in the
software engineering process, will not easily be able to read and review EROOS
conceptual models. Model-Driven Development (MDD) [50][83] techniques can
help to transform an EROOS model into a form that is more easily understood by
people not familiar with the EROOS methodology. It is possible to transform a
model element into a number of statements in natural language that tries to
formulate the precise meaning of the element in a more understandable manner.
For example, the HOORA Analysis Tool (HAT) [70][71] is amodelling tool that
uses model transformation techniques to generate textual documents from a
UML model. The same approach could be applied to transform EROOS models.

The EROOS methodology forces the analyst to highlight certain information
explicitly as objects. For instance, integer, Boolean and multi-valued attributes
must be transformed into objects, which specifically model the individual
elements that are concealed behind these attribute. As an example, it is
impossible to model the fact that hundred seats are available in a concert hall
without modelling every single seat as an object. This leads to the presence of a
large number of objects in a model instance. We claim that it is necessary to
highlight and make explicit all concealed information in a conceptual model in
order to alert the analyst about these facts. Although an analyst would prefer to
model certain elements in a different manner, one must be aware that conceptual
modelling is not a form of art, in which the analyst tries to make a personal
impression of the universe of discourse. Conceptual modelling is a discipline, in
which a rigorous process must be followed to capture all knowledge from the
universe of discourse into a conceptual model. Note that the conceptual model
does not dictate the implementation structures. Based on an EROOS conceptual
model, the architectural and design phase will determine the most optimal
implementation structure for the software system. In the same manner, the design
phase will determine which information concerning archived objects must be
stored, and which default EROOS attributes must be implemented.

The concepts that are proposed by the EROOS universe, force the analyst to
integrate statechart and activity diagrams into the class diagram, thereby
transforming states into first-class objects. One could argue that statechart
diagrams can be useful to model the possible states of an element. We claim that
a single model approach for conceptual modelling (1) improves the consistency
of the model, avoiding inconsistencies between information in the class model
and the statechart model, and (2) highlights concealed information in a
conceptual model by reifying object states into explicit state objects.

Chapter 6

Conclusions

In this chapter, we summarise the main contributions of this dissertation in the area of
object-oriented conceptual modelling, and indicate possible directions for further
research.

6.1 Summary and Contributions

In this dissertation, a constraint-centric approach towards object-oriented conceptual
modelling is proposed. This is achieved by the usage of high-level constraint
specifications as the core model structure for conceptual modelling. Our approach has
converged into the EROOS methodology for conceptual modelling, of which two
versions are proposed. A core version, the EROOS kernel, uses a constructional
modelling approach in which information can only be added to a conceptual model
instance. An extended version of the methodology, the EROOS universe, provides
additional support for recurrent EROOS kernel analysis patterns through advanced
and more practical concepts using the core version as the underlying base.

The contributions of this dissertation can be situated on three levels: (1) advanced
methodological concepts for achieving the key principles for conceptual modelling,
(2) the definition of new structural concepts to express model constraints implicitly in
the model structure, and (3) the introduction of constraints with supporting resolution
mechanisms as a first-class model concept.

205

206

CONCLUSIONS

6.1.1 Advanced Methodological Concepts

Concerning methodological concepts for conceptual modelling, we have made
following contributions:

Taxonomy for model constraint formalisms in object-oriented analysis. We have
developed ataxonomy for model constraints in object-oriented analysis, based on
an evaluation and comparison of model constraint specification formalisms and
notations. We defined 5 types of constraint specification types, and have argued
the advantages and disadvantages of each approach. We have shown that
formulating constraints as informal text or as operational restrictions is not a
suitable approach for conceptual modelling. We propose to (1) enrich the
conceptual model structure using existential dependency, thereby implying
constraints by the model structure, (2) integrate constraints in specific model
entities if they are closely related to each other, and (3) specify constraints that
can spread out over several model entities as a first-class model concept.

Principles for conceptual modelling. We have defined the key principles for
conceptual modelling that are of utmost importance during analysis for making
suitable conceptual models. We have argued why these principles are important
for conceptual modelling, and used them as evaluation and validation criteria for
our own work. Although anumber of principles and quality criteriafor modelling
can be found in literature, we claim to have a more elaborate set of principles,
and a more precise definition of the principles. Based on our taxonomy for model
constraint formalisms in obj ect-oriented analysis, we have proposed the Principle
of Model-Implied Constraint as a key principle for conceptual modelling.

Constructional conceptual model approach. In order to comply with the principle
of uniqueness, we have developed a constructional model approach, in which
model instances can only grow and information can only be added to a model.
Our approach alows modellers to focus on which information from the universe
of discourse to model, instead of how to model the information when it could
become outdated. A modeller does no longer have to decide about whether the
information must be kept inside a model or can be overridden, since the set of
knowledge and facts inside an EROOS model can only be enlarged.

Availability of historical information. We have defined the concept of a class
archive to express the fact that some items do not longer exist, or that some
information has ceased to be valid. Although objects can be destroyed in an
EROOS model, they do not vanish from the conceptual model. They still can be
addressed to gather historical information regarding former attribute values and
relation links. So the destruction of an object only reflects the fact that
information represented by the object has ceased to exist in the universe of
discourse. Issues regarding the need for an object in order to obtain certain
information, or for performing certain tasks, should not be considered during
conceptual modelling. Our approach allows modellers to focus on which
information to model, instead of how to preserve the information. Since a

6.1. SUMMARY AND CONTRIBUTIONS 207

conceptual model does not only need to express the facts that occurred in the
universe of discourse, but also when they occurred, we have provided a default
creation and destruction timestamp for each object. The presence of these default
attributes for all objects of every class enables the modeller to reason about the
moments at which an object has come into existence and has ceased to exist.
Since a modeller often has to reason about the time a certain event occurred, and
about the life span of objects, the EROOS methodology automatically offers this
kind of information for all objects. In our approach, the modeller does no longer
have to decide whether such attributes are needed within a model, since they are
always available. The decision on whether they have to be realised in the actual
software system can be deferred to the design phase.

Formal notation for the semantics of queries and events. We have developed a
formal specification of model events and queries in order to obtain a complete
and precise description of the behaviour part of a model. As such, the conceptual
model can be used for simulation, which leads to a better validation of the model
by the customers, as well as for model transformation to more software focussed
models at a lower abstraction level. Our work predates and is largely comparable
with the Object Constraint Language (OCL).

6.1.2 Model Constraints implied by the EROOS Model Structure

Concerning the definition of new structural concepts, we proposed well-defined
modelling concepts with a dedicated applicability context in order to express model
constraints implicitly in the model structure. We have made following contributions:

The incorporation of model constraints in each methodological concept by
definition. Contrary with UML that provides a large set of loosely defined
concepts that are applicable in many situations, we have defined a small set of
well-defined methodological concepts that incorporate important constraints by
definition. The EROOS concepts incorporate a number of model-implied
constraints, such as disunctness, immutability, finiteness, uniqueness, permanent
binding, existential dependency, abstractness, and partition disunctness. This
deliberately limits their usage to specific usage contexts, and forces the analyst to
use adequate concepts in each situation. Our approach guides the analyst to the
most optimal conceptual model, and reifies certain concealed elements from the
universe of discourse into explicit objects in the conceptual model.

The usage of existential dependency as the key modelling criterion for
constructing the conceptual model structure. A key contribution of the EROOS
methodology is its hierarchical relational model structure. We have developed a
model structure that is solely determined by existential dependency of
information in the universe of discourse. Our approach leads to a hierarchical
object dependency structure that gives a clear insight in which information is
dependent on certain other information. It leads to a powerful model that implies
a large number of model constraints directly in its model structure. Whereas
UML offers the choice of using different kinds of associations, our approach
always encapsulates a relation into a refined class. We propose three kinds of

208

CONCLUSIONS

relational concepts. (1) A unary relation captures a dependency on a single
object, (2) a binary relation captures a dependency on two objects, which can be
seen as the reification of a relation between two classes into a class of its own,
and (3) a compound captures a mutual dependency between a non-empty whole
and anumber of dependent parts.

Explicit class archives. We have defined the concept of a class archive to express
the fact that some items do not longer exist, or that some information has ceased
to be valid. We have extended the relation concept in order to use class archives
in existential dependency relationships. Our approach results in a powerful and
high-level modelling concept, in which important dependency constraints can
directly be implied by the model structure. All kinds of restrictions between the
lifetime of a refined object and its participant object can be specified directly in
the relation definition.

6.1.3 Model Constraints as a First-Class Model Concept

Concerning the introduction of constraints as a first-class model concept, we have
made following contributions:

Model constraints as a first-class model concept. In addition to alarge number of
constraints that are directly implied by the EROOS model structure, we have
developed a mechanism for specifying model constraints as a first-class model
concept. Using a formal notation based on many-sorted first order logic, model
constraints can be superimposed on a model in order to express rules and
regulations from the universe of discourse. Our work predates and is largely
comparable with the Object Constraint Language (OCL) for UML, which
originated in 1995 within IBM. EROOS constraints enforce logical rules on a
certain part of the conceptual model. Every event that occurs in a conceptual
model, due to an occurrence in the universe of discourse, may only change the
model instance in such a manner that it satisfies all constraints. The formalisation
of model constraints in a conceptual model is a key necessity for a further usage
of the conceptual model in the software engineering lifecycle. For instance,
model transformations from a conceptual model into lower-level design models
can only succeed when the conceptual model is fully formalised. In addition, we
developed in EROOS a single and unique viewpoint from which a constraint
must be formulated, namely the top classes in the relation hierarchy. This leads to
standardised and uniform constraint specifications in a conceptual model.

Constraint trigger concept. We have proposed the constraint trigger concept in
order to attach a generic constraint solver to a constraint. The goal of a constraint
trigger is to resolve constraint violations by injecting error handling behaviour
into an event, or by firing an event due to progress of time. This enables the
specification of distributed effect descriptions for events, in which only the basic
effect is specified for an event. Small additional pieces of functionality are
specified in constraint triggers that will be added to the basic event description
according to the constraint violations caused by the event. This approach creates
a separation between the description of the normal event handling and the

6.1. SUMMARY AND CONTRIBUTIONS 209

exceptional event handling, since the normal event handling is specified in the
event, whereas the exceptional event handling is specified in a number of
constraint triggers. Without constraint triggers, event descriptions contain a lot of
duplicated constraint checking and avoidance specifications, in which possible
constraint violations must be captured and resolved. Constraint triggers support
separation of concerns, by clustering all functionality regarding the constraint
handling in a single place. It can be used to introduce specific constraint related
crosscutting behaviour into a model, through the extension of all events that can
violate the constraint. Therefore, it can be considered as a kind of Aspect-
Oriented Software Development (AOSD) technique.

6.1.4 Value Added for Model-Driven Development

EROOS brings added value to a Model-Driven Development (MDD) approach by the
formalisation of conceptual modelling. This enables to advance the start of the MDD
process towards the analysis phase, starting with a conceptual model of the universe
of discourse.

Model-Driven Development (MDD) is a framework for software development, which
uses a rigorous development by translation approach to construct lower-level
Platform-specific Models (PSM) based on higher-level Platform-Independent Models
(PIM). The goa is to separate architectural and design-oriented issues from
technology and implementation-oriented decisions using a layered model
transformation structure. This allows to gradually introduce more detail and platform
dependency into the lower-level development models. Such approach can ultimately
result in a (semi-) automatic generation of the implementation code for the software
system. MDD supports on formalised models that (1) can be used as an input for a
model transformer, and (2) are produced as the outcome of a transformation step.

Since most analysis methods produce models containing informal descriptions, these
models are not usable in an MDD approach. Informal descriptions cannot be used as
an input for model transformation, since it is extremely difficult to extract structured
information from an informal model element. Models can only be used within an
MDD approach when they contain their information in a formal notation that can be
investigated, evaluated, and transformed into a different format. Since EROOS
provides a full formalisation of all structural and behavioural elements of a
conceptual model, it is highly suited as an input model notation for an MDD
transformation.

The transformation of conceptual models in a (semi-) automatic manner is beneficial
to the areas of conceptual modelling as well as MDD.

e Concerning conceptual modelling, it can help to capitalise the analysis results
during consecutive software engineering phases. A conceptual model is not a
mere description of the universe of discourse and the functional requirements,
but can be uses as a profitable asset that serves as a base for the overall system
development. In addition, MDD transformations can enable rapid prototyping

210

CONCLUSIONS

and produce model simulations in order to verify and validate the conceptual
model. Moreover, abstract views on a conceptual model could be generated
techniques to improve the communication with the clients and end users. As
such, a detailed conceptual model can be translated into a suitable customer
interaction model using MDD model transformation techniques.

Concerning MDD, a formal conceptual model enables to start the MDD process
from the formalised conceptual model of the universe of discourse, instead of
having to start from a platform-independent software model. This very first
platform-independent software model could be generated by transforming the
conceptual EROOS model.

6.2 Validation

We have validated the EROOS methodology on three levels:

In order to assess the capabilities of EROOS for conceptual modelling, we have
performed a large number of case studies. In cooperation with other members of
SOM research group, and a number of industrial partners, we have applied the
EROOS methodology on a large number of case studies from different
application domains. These case studies have been performed as research
projects in cooperation with industrial partners, as Master of Science theses,
often in cooperation with industry, and as student projects part of a Master's
course on object-oriented analysis (OGA). The studied domains include:

— Workflow and administrative systems: management information system
(thesis with E2S), trouble ticketing system (thesis with LUDIT-
KULeuvenNet), high school administration system (thesis with NVKSO),
library system (thesis), sale by auction system (thesis), departmental
database (thesis), boat rental system (thesis), car rental system (OGA),
airline reservation and check-in system (OGA), and a telephone decree
(OGA).

— Planning and scheduling systems: electronic agenda system (thesis).

— Process steering and control systems: air conditioning system (thesis with
E2S and Daikin), cooking simulation and expert system (thesis with Alma),
railway infrastructure control system (thesis with ‘De Leuvense modeltrein-
club’), elevator control system (thesis), and traffic light system (thesis).

— Electronic and mechanical systems: flexible multiplexer (research project
with Alcatel), Network Management System (thesis with Siemens), audio
set usage specification (thesis with Philips), Internet Telephony System
(thesis with Philips), radiological workstation (thesis with ‘UZ
Gasthuisberg’), steel factory material flow (thesis with Sidmar), PABX
telephone system (thesis), and physics measurement environment (thesis).

6.2. VALIDATION 211

— Entertainment and visualisation systems: augmented reality man machine
interface (thesis), graphical user interface capability modelling (thesis),
adventure game (thesis), and ‘Magic: The Gathering’ card game (thesis).

- Software systems: syntax oriented editor generator (thesis with E2S),
software modelling case tool (thesis), programming environment for Logo
(thesis), load balancing for multiprocessor systems (thesis), E-mail system
(thesis), specification of EROOS in EROOS (thesis), and electronic agenda
(OGA).

The large variety of domains that have been modelled using EROQOS, support our
claim that the EROOS methodology is not only adequate for the description of
information systems, but is actually suitable for the conceptual modelling of
many domain types.

Our findings concerning these case studies, are that (1) EROOS is suited to
describe a wide variety of domain types, (2) the EROOS methodology helps to
reveal hidden domain knowledge, (3) EROOS is a good vehicle to teach object-
orientation, in general, and conceptual modelling, in particular, (4) it requires a
rather large effort and a precise approach and attitude to construct EROOS
conceptual models, (5) MDD tool support is needed to capitalise on the
conceptual modelling activity, and (6) people with aM.Sc. degree can be trained
rather easily to acquire active EROOS modelling skills, while people with a
B.Sc. degree often only manage to acquire passive EROOS modelling skills,
which means that they succeed to understand, assess and review EROOS models
but have difficultiesin constructing them.

* In order to assess the capabilities of EROOS in achieving the principle of
uniqueness, we have compared and evaluated the use of EROOS in a Master’'s
course on object-oriented analysis (OGA - ‘objectgerichte analyse’, formerly
OGO- ‘ objectgericht ontwerp’). Our findings were that besides naming diversity,
the three main causes of model differences are (1) the level of detail of the
performed modelling, in which students had a different opinion on the relevance
of certain facts from the universe of discourse, (2) personal knowledge of the
universe of discourse, in which certain errors were introduced due to the inability
to obtain a proper insight in the universe of discourse, and (3) errors that were
made against the EROOS methodology, in which the students did not use the
modelling concepts in a valid manner.

e We have developed tool support for the EROOS methodology concerning
modelling, simulation, and transformation, consisting of

— amodelling tool that allows a modeller to construct EROOS models, and
generate script specifications and model diagrams. This EROOS tool is
actually developed by Bart Swennen of the SOM research group.

— agenerator for model simulations that automatically generates a C++ or a
Java application with an accompanied generic user interface for an EROOS
model, in order to support rapid prototyping and early model validation. The
application contains automatically generated constraint checking code,

212

CONCLUSIONS

which enforces the model constraints by checking the resulting model
instance after an event occurrence, and performing a rollback whenever a
constraint is violated. This generator is developed in a number of successive
Master’ s theses.

a transformer of EROOS models to UML models, in which the EROOS
hierarchical model structure is flattened into a UML model, comprising a
number of classes and plain associations. This transformer is also developed
in aMaster’ sthesis.

6.3 Directions for Future Work

The search for the perfect conceptual modelling methodology is far from over. To
conclude this dissertation, we point out some possible directions for further research:

¢ EROOS methodological improvements. Concerning the EROOS methodology,
some issues could be further elaborated:

Support for distributed effect descriptions. The introduction of the constraint
trigger concept enables the specification of a distributed effect description,
in which the basic event functionality is separated from the constraint error
handling functionality. However, a drawback of such distributed effect
descriptions is that the impact of an event on the model instance is not easily
assessed. The analyst has to compose the overall effect description oneself,
by combining the basic event description with all constraint trigger
descriptions of those constraints that can be violated by the event.
Therefore, tool support is appropriate in order to help identifying the
constraints that can be violated by an event, and stating the impact of the
associated triggers that are relevant for the event.

Soft Constraints. EROOS constraints impose restrictions on a conceptual
model that must be satisfied at all times. Soft constraints are constraints that
have an attached level of preference or importance. As such, not all
constraints must be satisfied at all times, but the goal is to reach the highest
available satisfaction level. Further research could integrate the notion of
soft constraint in the EROOS methodology.

Extensions to EROOS. Bekaert [13] suggests a number of improvements
that could be made to EROQOS, such as (1) triggered-only events, which are
events that can only occur as a constraint trigger, (2) creation and
destruction time constraints, which are constraints that only must be
satisfied at the moment on which an object is created or destroyed, and (3)
the introduction of temporal logic and artificial intelligence techniques.

An ontological mapping to the Bunge-Wand-Weber (BWW) reference
model. The semantics of an EROOS conceptual model could be mapped to
the Bunge-Wand-Weber (BWW) model [21][22][158][160][159], which isa

6.3. DIRECTIONS FOR FUTURE WORK 213

reference model for constructs in information systems modelling. Opdahl
[114] presented such mapping for the Unified Modeling Language (UML).

* Model-Driven Development Support from EROOS to UML. In contrast with the
standardisation of UML by the Object Management Group (OMG), which forced
most analysis methods to the usage of UML as their modelling notation, the
Model Driven Development (MDD) approach supports the usage of models in
several kinds of notations different from UML. By introducing model
transformation techniques, MDD propagates to use the right model and notation
at each level of abstraction. For instance, EROOS could be used as a conceptual
modelling notation, whereupon the EROOS model can be transformed into a
UML model that serves as a design notation. Such approach capitalises the
analysis results obtained by the EROOS methodology into practical software-
oriented UML models. Although we have developed a prototype transformer
from EROOS to UML, a suitable MDD transformation infrastructure demands
additional advanced support, namely

— providing suitable tool support for EROOS, including multi-user facilities
and versioning support,

- providing aMOF (Meta Object Facility) description of EROOS models,

— studying and developing transformation patterns from EROOS to UML
constructs,

— realising a transformation environment in which software engineers can
easily select a number of transformation patterns to generate a suitable
UML model starting from a conceptual EROOS model.

e Modd transformations to abstract customer views. EROOS models can become
very complex, which makes them difficult for customers and end users to
comprehend. More abstract representations, either textual or graphical, could be
made starting from the information contained in an EROOS model. In fact, it is
possible to transform a model element into a number of statements in natural
language, which could try to formulate the precise meaning of the EROOS model
element in a more understandable manner. Such abstractions could be better
suited as a customer interaction format during the model validation activities.
MDD techniques could be developed to transform EROOS models into more
abstract representations, and vice versa.

» Realisation of a constraint-centric approach in UML. This dissertation focuses
on the integration of constraints in the EROOS methodology. Although UML
offers the Object Constraint Language (OCL) as a constraint specification
formalism, it does not offer proper notational support for expressing integrated
and applied constraints. A number of techniques that have been developed in
EROOS could be transposed to UML in order to make UML better suitable for
conceptual modelling, e.g., by defining an EROOS profile for UML. Since UML
is the de facto common language for object-oriented modelling, through its
standardisation by the OMG, the impact on bringing our results into practice will
become much larger when they can be applied in a UML context.

Bibliography

[1]

[2]

(3]

[4]

[5]
[6]

[7]

[8]

[9]

[10]

Abrial, J.-R., The B-Book: Assigning Programs to Meanings. Cambridge
University Press, 1996.

Aho, A.V., and Ullman, J.D., The Theory of Parsing, Translation and
Compiling, Volume I: Parsing. Prentice-Hall, 1972.

Ambler, SW., Agile Modeling: Effective Practices for eXtreme
Programming and the Unified Process. Wiley, 2002.

Ambler, SSW., The Object Primer: Agile M odel-Driven Development with
UML2.0, Third Edition. Cambridge University Press, 2004.

Apt, K.R., Principles of Constraint Programming. University Press, 2003.

Arnold, P., Bodoff, S., Coleman, D., Gilchrist, H., and Hayes, F., An
Evaluation of Five Object-oriented Development Methods. In: Wiener,
R.S., editor, Journal of Object-Oriented Programming (JOOP) Special
Issue on Analysis and Design, pages 107-121, 1991.

Atkinson, C., Bayer, J., Bunse, C., Kamsties, E., Laitenberger, O., Laqua,
R., Muthig, D., Paech, B., Wust, J., and Zettel, J., Component-based
Product Line Engineering with UML. Addison-Wesley, 2002.

Bar-David, T., Formal Methods: The Elevator, A Rigorous and Friendly
Introduction to Object Modeling. In: Report on Object Analysis and
Design (ROAD), 1(1):10-16, 1994.

Barnes, J.G.P., Programming in Ada Plus an Overview of Ada 9X, Fourth
Edition. Addison-Wesley, 1993.

Bass, L., Clements, P., and Kazman, R., Software Architecture in Practice,
Second Edition. Addison-Wesley, 2003.

215

216

[11]

[12]
[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]
[24]

BIBLIOGRAPHY

Beck, K., Beedle, M., van Bennekum, A., Cockburn, A., Cunningham, W.,
Fowler, M., Grenning, J., Highsmith, J., Hunt, A., Jeffries, R., Kern, J.,
Marick, B., Martin, R.C., Mellor, S., Schwaber, K., Sutherland, J., and
Thomas, D.: Manifesto for Agile Software Development. The Agile
Alliance, The Lodge at Snowbird Ski Resort, Utah, USA, 2001.

Beck, K., Test-Driven Development by Example. Addison-Wesley, 2003.

Bekaert, P., Behavioral Semantics for EROOS Conceptual M odeling:
Separation of Concerns Through Nondeterminism. Ph.D. Dissertation,
K.U.Leuven, Department of Computer Science, Leuven, Belgium, 2006.

Bistarelli, S., Fruhwirth, T., Marte, M., and Rossi, F., Soft Concurrent
Propagation and Solving in Constraint Handling Rules. In: Computational
Intelligence, 20(2):287-307, 2004.

Booch, G., Object Oriented Analysis and Design with Applications,
Second Edition. Benjamin-Cummings, 1994.

Booch, G., Object Oriented Design with Applications. Benjamin-
Cummings, 1991.

Booch, G., Object-Oriented Design. In: ACM SIGAda Ada Letters,
1(3):64-76, 1982.

Borger, M., Baier, T., Wienberg, F., and Lamersdorf, W., Extreme
Modeling. In: Succi, G., and Marchesi, M., editors, Extreme Programming
Examined, Addison Wesley, pages 175-189, 2001.

Born, G., Process Management to Quality Improvement: The Way to
Design, Document and Re-engineer Business Systems. Wiley, 1994.

Brooks Jr., F.P., No Silver Bullet: Essence and Accidents of Software
Engineering. In: Computer 20(4):10-19, 1987.

Bunge, M., Treatise on Basic Philosophy, Volume 3: Ontology I: The
Furniture of the World. Reidel, 1977.

Bunge, M., Treatise on Basic Philosophy, Volume 4: Ontology II: A
World of Systems. Reidel, 1979.

Carmichael, A., editor, Object Development Methods. SIGS Books, 1994.

Chen, P.P., The Entity-Relationship Model: Toward a Unified View of
Data. In: ACM Transactions on Database Systems, 1(1):9-36, 1976.

BIBLIOGRAPHY 217

[25]

[26]

[27]

[28]

[29]
[30]

[31]

[32]

[33]

[34]

[35]

[36]
[37]

[38]

Chidamber, S.R., and Kemerer, C.F., A Metrics Suite for Object-Oriented
Design. In: IEEE Transactions on Software Engineering, 18(11):943-956,
1994,

Chidamber, S.R., and Kemerer, C.F., Towards a Metrics Suite for Object-
Oriented Design. In: Paepcke, A., editor, ACM Conference on Object
Oriented Programming, Systems, Languages and Applications (OOPSLA
'91), ACM SIGPLAN Notices, 26(11):197-211, 1991.

Chrissis, M.B., Konrad. M., and Shrum, S., CMMI: Guidelines for Process
Integration and Product Improvement. Addison-Wesley, 2003.

Coad, P., and Yourdon, E., Object-Oriented Analysis, Second Edition.
Y ourdon Press, 1991.

Coad, P., and Y ourdon, E., Object-Oriented Design. Y ourdon Press, 1991.

Codd, E.F., A Relational Model of Datafor Large Shared Data Banks. In:
Communications of the ACM, 13(6):377-387, 1970.

Coleman, D., Arnold, P., Bodoff, S., Dallin, C., Gilchrist, H., Hayes, F.,
and Jeremaes, P., Object-Oriented Development: The FUSION Method.
Prentice-Hall, 1994.

Cribbs, J.,, Moon, S., and Roe, C., An Evaluation of Object-Oriented and
Design Methodologies. SIGS Books, 1992.

Dahl, O.-J,, and Nygaard, K., SIMULA: An ALGOL-based Simulation
Language. In: Communications of the ACM, 9(9):671-678, 1966.

de Champeaux, D., America, P., Coleman, D., Duke, R., Lea, D., and
Leavens, G., Forma Techniques for OO Software Development
(PANEL). In: Paepcke, A., editor, ACM Conference on Object Oriented
Programming, Systems, Languages and Applications (OOPSLA ’'91),
ACM SIGPLAN Notices, 26(11):166-170, 1991.

de Champeaux, D., and Faure, P.,, A Comparative Study of Object-
Oriented Analysis Methods. In: Journal of Object-Oriented Programming
(JOOP), 5(1):21-33, 1992.

Dechter, R., Constraint Processing. Morgan Kaufmann, 2003.

Demarco, T., Structured Analysis and System Specification. Prentice-Hall,
1979.

Devos, F., Patterns and Anti-Patterns in Object-Oriented Analysis. Ph.D.
Dissertation, K.U.Leuven, Department of Computer Science, Leuven,
Belgium, 2004.

218

[39]

[40]

[41]

[42]

[43]

[44]

[45]

[46]

[47]

[48]

[49]

[50]

[51]

[52]

[53]

BIBLIOGRAPHY

Dodani, M., Semantically Rich Object-Oriented Software Engineering
Methodologies. In: Report on Object Analysis and Design (ROAD),
1(1):17-21, 1994.

Downs, E., Clare, P., and Coe, |., Structured Systems Analysis and Design
Method: Application and Context. Prentice Hall, 1987.

D’Souza, D, Rationalizing Object Models and Design, Part 1. Models
versus Designs. In: Report on Object Analysis and Design (ROAD),
1(1):22-27, 1994.

Elmasri, R., Weeldreyer, J., and Hevner, A., The Category Concept: An
Extension to the Entity-Relationship Model. In: International Journal on
Data and Knowledge Engineering, 1(1):75-116, 1985.

Embley, D.W., Kurtz, B.D., and Woodfield, S.N., Object-Oriented
Systems Analysis. Y ourdon Press, 1992.

Fenton, N.E., and Pfleeger, S.L., Software Metrics: A Rigorous &
Practical Approach, Second Edition. PWS Publishing Company, 1997.

Fichman, R.G., and Kemerer, C.F., Object-Oriented and Conventional
Analysis and Design Methods. Comparison and Critique. In: IEEE
Computer, 25(10):22-39, 1992.

Filman, R.E., Elrad, T., Clarke, S., and Aksit, M., Aspect-Oriented
Software Development. Addison-Wesley, 2005.

Firesmith, D.G., Object-Oriented Software Requirements Analysis and
Logical Design: A Software Engineering Approach. Wiley, 1993.

Fowler, M., Analysis Patterns. Reusable Object Models. Addison-Wesley,
1996.

Fowler, M., Cairns, T., and Thursz, M., Observations and Measurements.
In: Report on Analysis and Design (ROAD), 2(3):20-37 1995.

Frankel, D.S., Model Driven Architecture: Applying MDA to Enterprise
Computing. Wiley, 2003.

Freuder, E.C., and Wallace, R.J., Partiad Constraint Satisfaction. In:
Artificial Intelligence, 58(1-3):21-70, 1992.

Frihwirth, T., and Abdennadher, S., Essentials of Constraint
Programming. Springer-Verlag, 2003.

Furey, T.R., Garlitz, JL., and Kelleher, M.L., Applying Information
Technology to Reengineering. In: Planning Review, 21(6):22-25, 1993.

BIBLIOGRAPHY 219

[54]

[55]
[56]

[57]

[58]
[59]

[60]

[61]

[62]

[63]

[64]

[65]

[66]

[67]

[68]

[69]

Gane, C., and Sarson, T., Structured Systems Analysis. Tools and
Techniques. Prentice-Hall, 1979.

Gilb, T., Software Metrics. Little, Brown, and Co., 1976.

Goldberg, A., and Robson, D., Smalltalk-80: The Language and its
Implementation. Addison-Wesley, 1983.

Gosling, J., Joy, B., Steele, G., and Bracha, G., The Java Language
Specification, Third Edition. Prentice Hall, 2005.

Graham, |, Migrating to Object Technology. Addison-Wesley, 1995.

Harel, D., and Politi, M., Modeling Reactive Systems with Statecharts:
The Statemate Approach, McGraw-Hill, 1998.

Harel, D., On Visua Formalisms. In: Communications of the ACM,
31(5):514-530, 1988.

Harel, D., StateCharts: A Visual Formalism for Complex Systems. In:
Science of Computer Programming, 8(3): 231-274, 1987.

Hayes, F., and Coleman, D., Coherent Models for Object-Oriented
Analysis. In: Pagpcke, A., editor, ACM Conference on Object Oriented
Programming, Systems, Languages and Applications (OOPSLA ’91),
ACM SIGPLAN Notices, 26(11):171-183, 1991.

Hayes, |, editor, Specification Case Studies. Prentice-Hall, 1987.

Henderson-Sellers, B., and Edwards, J.M., Book Two of Object-Oriented
Knowledge: The Working Object. Prentice-Hall, 1994.

Henderson-Sellers, B., Fung, M, and Yap, L.M., The Role of Business
Rules and Quality in Methodologies. In: Report on Object Analysis and
Design (ROAD), 2(4):10-17, 1995.

Hoeydalsvik, G.M., Object Analysis and Design: Description of Methods.
Wiley, 1994.

Hunt, V.D., Process Mapping: How to Reengineer Your Business
Processes. Wiley, 1996.

Hutt, A.T.F., editor, Object-Oriented Analysis and Design: Comparison of
Methods. Wiley, 1994.

Hutt, A.T.F., editor, Object-Oriented Analysis and Design: Description of
Methods. Wiley, 1994.

220

[70]

[71]

[72]

[73]

[74]

[75]

[76]

[77]

[78]

[79]

[80]

[81]

[82]

[83]

BIBLIOGRAPHY

Huybrechts, M., and Pauwels, G., Agile MDA. Internal ITEA-AGILE
Project Report, 2005.

Huybrechts, M., Rammeloo, S., and Van Baelen, S., Readlizing Agility
through Model Driven Architecture. In: AGILE Newsletter 2/2006, I TEA-
AGILE consortium, 2006.

Jackson, M.A., Principles of Program Design. Academic Press, 1975.
Jackson, M.A., System Development. Prentice-Hall, 1983.

Jacobson, |., Booch, G., and Rumbaugh, J., The Unified Software
Development Process. Addison-Wesley, 1999.

Jacobson, ., Christerson, M., Jonsson, P., and Overgaard, G., Object-
Oriented Software Engineering: A Use Case Driven Approach. Addison-
Wesley, 1992.

Jacobson, 1., Object Oriented Development in an Industrial Environment.
In: Meyrowitz, N., editor, ACM Conference on Object Oriented
Programming, Systems, Languages and Applications (OOPSLA ’87),
ACM SIGPLAN Notices, 22(12):183-191, 1987.

Jacobson, |., The Object Advantage: Business Process Re-engineering
with Object Technology. Addison-Wesley, 1995.

Johansson, H.J., McHugh, P., Pendlebury, A.J.,, and Wheeler, W.A.,
Business Process Reengineering: Break Point Strategies for Market
Dominance. Wiley, 1993.

Jones, C.B., Systematic Software Development using VDM. Prentice-Hall,
1986.

Keene, S., Object-oriented Programming in Common Lisp: A
Programmer’s Guide to CLOS. Addison-Wesley, 1988.

Kendall, K.E., and Kendall, J.E., Systems Analysis & Design. Prentice
Hall, 1988.

Khoshafian, S.N., and Copeland, G.P., Object Identity. In: Meyrowitz, N.,
editor, ACM Conference on Object Oriented Programming, Systems,
Languages and Applications (OOPSLA ’'86), ACM SIGPLAN Notices,
21(11):406-416, 1986.

Kleppe, A., Warmer, J.,, and Bast, W., MDA Explained: The Model
Driven Architecture: Practice and Promise. Addison-Wesley, 2003.

BIBLIOGRAPHY 221

[84]

[85]

[86]

[87]

[88]

[89]

[90]

[91]

[92]

[93]

[94]

[95]

Kristen, G.JH.M., Object Orientation: The KISS Method, From
Information Architecture to Information System. Addison-Wesley, 1994.

Laffra, C., and van den Bos, J., Constraints in Concurrent Object-Oriented
Environments. In: Agha, G., Hewitt, C., Wegner, P., and Yonezawa, A.,
Proceedings of the ECOOP-OOPSLA Workshop on Object-Based
Concurrent Programming, ACM SIGPLAN OOPS Messenger, 2(2):64-67,
1991.

Laffra, C., and van den Bos, J., Propagators and Concurrent Constraints.
In: Agha, G., Hewitt, C., Wegner, P.,, and Yonezawa, A., editors,
Proceedings of the ECOOP-OOPSLA Workshop on Object-Based
Concurrent Programming, ACM SIGPLAN OOPS Messenger, 2(2):64-67,
1991.

LalLonde, W., and Pugh, J., Smalltalk: Subclassing # Subtyping # Is-A. In:
Journal of Object-Oriented Programming (JOOP), 3(5):57-62, 1991.

Larman, C., and Basili, V.R., Iterative and Incremental Development: A
Brief History. In: IEEE Computer, 36(6):47-56, 2003.

Larman, C., Applying UML and Patterns: An Introduction to Object-
Oriented Analysis and Design and the Unified Process, Second Edition.
Prentice-Hall, 2002.

Lewi, J., Steegmans, E., and Van Baelen, S., EROOS: Entity-Relationship
Object-Oriented Specifications. K.U.Leuven, Department of Computer
Science, CW Report 111, Leuven, Belgium, 1990.

Lewi, J., Steegmans, E., Dockx, J., Swennen, B., Van Baglen, S., and Van
Riel, H., Object Oriented Software Development with EROOS: The
Analysis Phase. K.U.Leuven, Department of Computer Science, CW
Report 169, Leuven, Belgium, 1993.

Liskov, B., Data Abstraction and Hierarchy. In: ACM SIGPLAN Notices
23(5):17-34, 1988.

Loomis, M., Shah, A., and Rumbaugh, J., An Object Modeling Technique
for Conceptual Design. In: Bézivin, J., Hullot, J-M., Cointe, P., and
Lieberman, H., editors, ECOOP '87 - European Conference on Object-
Oriented Programming, Lecture Notes in Computer Science (LNCS), Vol.
276, Springer-Verlag, pages 192-202, 1987.

Ludewig, J., Models in Software Engineering. In: Software and Systems
Modeling, 2(1):5-14, 2003.

Manzano, M., Extensions of First Order Logic. Cambridge University
Press, 1996.

222

[96]

[97]

[98]

[99]

[100]

[101]

[102]

[103]

[104]

[105]

[106]

[107]

[108]
[109]

BIBLIOGRAPHY

Martin, J., and Odell, J.J., Object-Oriented Analysis and Design. Prentice-
Hall, 1992.

Martin, J., and Odell, J.J., Object-Oriented Methods. A Foundation.
Prentice-Hall, 1994.

Martin, R.C., Agile Software Development: Principles, Patterns, and
Practices. Prentice-Hall, 2003.

Méellor, S.J., and Balcer, M .J., Executable UML: A Foundation for Model-
Driven Architecture. Addison-Wesley, 2002.

Meyer, B., Object-Oriented Software Construction. Prentice-Hall, 1988.

Mohindra, A, and Devarakonda, M.V., Dynamic Insertion of Object
Services. In: Proceedings of the USENIX Conference on Object-Oriented
Technologies (COOTS), USENIX, 1995.

Monarchi, D.E., and Puhr, G.I., A Research Typology for Object-Oriented
Analysis and Design. In: Communications of the ACM, 35(9):35-47,
1992.

Nerson, J-M., Applying Object-Oriented Analysis and Design. In:
Communications of the ACM, 35(9):63-74, 1992.

Nierstrasz, O., A Survey of Object-Oriented Concepts, Object-Oriented
Concepts. In: Kim, W. and Lochovsky, F., editors, Databases and
Applications, pages 3-21, ACM Press and Addison-Wesley, 1989.

Nijssen, G.M., A Gross Architecture for the Next Generation Database
Management Systems. In: Nijssen, G.M., editor, Proceeding of the 1976
IFIP Working Conference on Modelling in Data Base Management
Systems, North-Holland Publishing, pages. 1-24, 1976.

Nijssen, G.M., Current Issues in Conceptua Schema Concepts. In:
Nijssen, G.M., editor, Proceeding of the 1977 IFIP Working Conference
on Modelling in Data Base Management Systems, North-Holland
Publishing, pages 31-66, 1977.

Object Management Group, OMG Unified Modeling Language
Specification, Version 1.3. OMG, 1999.

Object Management Group, UML 2.0 OCL Specification. OMG, 2003.

Object Management Group, Unified Modeling Language: Superstructure,
Version 2.0. OMG, 2005.

BIBLIOGRAPHY 223

[110]

[111]

[112]

[113]

[114]

[115]

[116]

[117]

[118]

[119]

[120]

[121]

[122]

[123]

Odell, J., and Fowler, M., Analysis and Design: From Analysis to Design
Using Templates, Part 1. In: Report on Analysis and Design (ROAD),
1(6):19-23, 1995.

Odell, J., and Fowler, M., Analysis and Design: From Analysis to Design
Using Templates, Part Il. In: Report on Analysis and Design (ROAD),
2(1):10-14, 1995.

Odell, J., and Fowler, M., Analysis and Design: From Analysis to Design
Using Templates, Part I11. In: Report on Analysis and Design (ROAD),
2(3):7-10, 1995.

Odell, J.J., Specifying Requirements using Rules. In: Journal of Object-
Oriented Programming (JOOP), 6(2):20-24, 1993.

Opdahl, A.L., and Henderson-Sellers, B., Ontological Evaluation of the
UML Using the Bung-Wand-Weber Model. In: Software and Systems
Modeling, 1(1):43-67, 2002.

Page-Jones, M., Constantine, L., and Weiss, S., Modeling Object-Oriented
Systems: The Uniform Object Notation. In: Computer Language,
7(10):69-87, 1990.

Page-Jones, M., The Practica Guide to Structured System Design.
Prentice-Hall, 1988.

Paton, N.W., Diaz, O., Williams. M.H., Campin, J,, Dinn, A., and Jaime,
A., Dimensions of Active Behavior. In Paton, N.W., and Williams. M.H.,
editors, Proceedings of the 1st International Workshop on Rules in
Database Systems, Springer-Verlag, pages 40-57, 1994.

Pfleeger, S.L., Software Engineering: The Production of Quality Software,
Second Edition. Macmillan, 1991.

Rational Software Corporation, UML Semantics, Version 1.0. Rational,
1997.

Rational Software Corporation, Unified Modeling Language Notation
Guide, Version 1.0. Rational, 1997.

Reenskaug, T., Wold, P., and Lehne, O.A., Working with Objects: The
OORAM Software Engineering Method. Prentice-Hall, 1996.

Robertson, S., and Robertson, J., Mastering the Requirements Process,
Second Edition. Addison-Wesley, 2006.

Robinson, K., and Berrisford, G., Object Oriented SSADM. Prentice-Hall,
1994.

224

[124]

[125]

[126]

[127]

[128]

[129]

[130]

[131]

[132]

[133]

[134]

[135]

[136]

BIBLIOGRAPHY

Rubin, K., and Goldberg, A., Object Behavior Analysis. In:
Communications of the ACM, 35(9):48-62, 1992.

Rubin, K.S., McClaughry, P., and Pelligrini, D., Modeling Rules using
Object Behavior Analysis and Design. In: Object Magazine 4(3):63-67,
1994,

Rumbaugh, J., Blaha, M., Premerlani, W., Eddy, F., and Lorenson, W.,
Object-Oriented M odeling and Design. Prentice-Hall, 1991.

Rumbaugh, J., Controlling Propagation of Operations using Attributes on
Relations. In: Meyrowitz, N., editor, ACM Conference on Object Oriented
Programming, Systems, Languages and Applications (OOPSLA ’88),
ACM SIGPLAN Notices, 23(11):285-296, 1988.

Rumbaugh, J., Jacobson, I., and Booch, G., The Unified Modeling
Language Reference Manual, Second Edition. Addison-Wesley, 2005.

Rumbaugh, J., Relations as Semantic Constructs in an Object-Oriented
Language. In: Meyrowitz, N., editor, ACM Conference on Object
Oriented Programming, Systems, Languages and Applications (OOPSLA
'87), ACM SIGPLAN Notices, 22(12):466-481, 1987.

Said, J., Pattern-Based Approach for Object-Oriented Software Design.
Ph.D. Dissertation, K.U.Leuven, Department of Computer Science,
Leuven, Belgium, 2003.

Schlaer, S., and Lang, N., Dependence between Attributes. In: Report on
Analysis and Design (ROAD), 2(4):18-23, 1995.

Shlaer, S., and Méellor, S., A Deeper Look at the Transition from Analysis
to Design. In: Journal of Object-Oriented Programming (JOOP), 5(9):16-
21, 1993.

Shlaer, S., and Méellor, S.J., Object Lifecycles. Modeling the World in
States. Prentice-Hall, 1992.

Shlaer, S., and Méllor, S.J., Object-Oriented Systems Analysis: Modeling
the World in Data. Prentice-Hall, 1988.

Shlaer, S., Methods and Architectures: Modeling Dynamic Behavior. In:
Report on Object Analysis and Design (ROAD), 1(1):6-9, 1994.

Snoeck, M., and Dedene, G., Existence Dependency: The Key to Semantic
Integrity between Structural and Behavioural Aspects of Object Types. In:
|EEE Transactions on Software Engineering, 24(24):233-251, 1998.

BIBLIOGRAPHY 225

[137]

[138]

[139]

[140]

[141]

[142]

[143]

[144]

[145]

[146]

[147]

[148]

Snoeck, M., Dedene, G., Verhelst, M., and Depuydt, A.-M., Object-
Oriented Enterprise Modelling with MERODE. Leuven University Press,
1999.

Snoeck, M., On A Process Algebra Approach for the Construction and
Analysis of M.E.R.O.DE.-based Conceptual Models. Ph.D. Dissertation,
K.U.Leuven, Department of Computer Science, Leuven, Belgium, 1995.

Seondergaard, H., and Sestoft, P., Non-Determinism in Functional
Languages. In: The Computer Journal, 35(5):514-523, 1992.

Spivey, JM., The Z Notation: A Reference Manual. Prentice-Hall, 1989.

Starr, L., Executable UML: How to Build Class Models. Prentice-Hall,
2002.

Steegmans, E., Lewi, J., D’Haese, M., Dockx, J., Jehoul, D., Swennen, B.,
Van Baelen, S., and Van Hirtum, P., EROOS Reference Manual. Version
1.0. K.U.Leuven, Department of Computer Science, CW Report 208,
Leuven, Belgium, 1995.

Steegmans, E., Lewi, J., D’Haese, M., Dockx, J., Jehoul, D., Swennen, B.,
Van Baelen, S., and Van Hirtum, P., EROOS Reference Manual. Version
1.1. K.U.Leuven, Department of Computer Science, Leuven, Belgium,
1996.

Stroustrup, B., The C++ Programming Language. Addison-Wesley, 1985.

Subieta, K., Jodlowski, A., Habela, P., and Plodzien, J., Conceptual
Modeling of Business Applications with Dynamic Object Roles. In:
Corchuelo, R., Ruiz-Cortés, A. and Wrembel, R., editors, Technologies
Supporting Business Solutions, Advances in Computation: Theory and
Practice (ACTP), pages 49-71, Nova Science Publishers, 2003.

Tasker, D., Object Facts: Sources, Derived, or a Combination of Both. . In:
Report on Analysis and Design (ROAD), 2(1):41-45, 1995.

Ungar, D., Smith, R., Chambers, C., and Holzle, U., Object, Message, and
Performance: How They Coexist in Self. In: IEEE Computer, 25(10):53-
64, 1992.

Van Baelen, S., Enriching Constraints and Business Rules in Object-
Oriented Analysis with Models Trigger Specifications. In: Demeyer, S,
and Bosch, J., editors, Proceedings of European Conference on Object
Oriented Programming Workshop Reader (ECOOP 98), Lecture Notes in
Computer Science (LNCS), Vol. 1543, Springer-Verlag, pages 197-199,
1998.

226

[149]

[150]

[151]

[152]

[153]

[154]

[155]

[156]

[157]

[158]

BIBLIOGRAPHY

Van Beaelen, S, Gorinsek, J., and Wils, A., editors, The DESS
Methodology. ITEA-DESS Project Report D.1, ITEA-DESS Consortium,
2001.

Van Baelen, S, Lewi, J., and Steegmans, E., Abstraction Stratification in
an Object-Oriented Development Method like EROOS. In: de
Champeaux, D., editor, Workshop on Object-Oriented Software
Development Process, Sixth European Conference on Object-Oriented
Programming (ECOOP 1992), Utrecht, The Netherlands, 1992.

Van Baelen, S., Lewi, J., and Steegmans, E., Constraints in Object-
Oriented Analysis and Design. In: Magnusson, B., Meyer, B., Nerson,
JM., and Perrot, J.F., editors, Technology of Object-Oriented Languages
and Systems TOOLS 13 (TOOLS Europe 1994), Prentice-Hall, pages 185-
199, 1994.

Van Baelen, S., Lewi, J., Steegmans, E., and Swennen, B., Constraints in
Object-Oriented Analysis. In: Nishio, S., and Yonezawa, A., editors,
Object Technologies for Advanced Software (ISOTAS), Lecture Notes in
Computer Science (LNCYS), Vol. 742, Springer-Verlag, pages 393-407,
1993.

Van Baglen, S, Lewi, J., Steegmans, E., and Van Riel, H., EROOS: An
Entity-Relationship based Object-Oriented Specification Method. In:
Heeg, G., Magnusson, B., and Meyer, B., editors, Technology of Object-
Oriented Languages and Systems TOOLS 7 (TOOLS Europe 1992),
Prentice-Hall, pages 103-117, 1992.

Van Baglen, S., Lewi, J., Steegmans, E., and Van Riel, H., EROOS: An
Entity-Relationship based Object-Oriented Development Method. In:
DECUS BELUX 1992 Symposium Proceedings, DECUS, pages 42-64,
1992.

Van Gestel, E., MOOSE: A Framework uniting Data Base Modelling,
Object-Orientation an Formal Specifications, Engineering Style. Ph.D.
Dissertation, K.U.Leuven, Department of Computer Science, Leuven,
Belgium, 1994.

Walden, K., and Nerson, J.-M., Seamless Object-Oriented Architecture.
Prentice-Hall, 1994.

Walicki, M., and Meldal, S., Singular and Plural Nondeterministic
Parameters. In: SIAM Journal on Computing, 26(4):991-1005, 1997.

Wand, Y., and Weber, R.,, An Ontological Model of an Information
System. In: IEEE Transactions on Software Engineering, 16(11):1082-
1092, 1990.

BIBLIOGRAPHY 227

[159]

[160]

[161]

[162]

[163]

[164]

[165]

[166]

[167]

[168]

[169]

[170]

[171]

[172]

[173]

Wand, Y., and Weber, R., On the Deep Structure of Information Systems.
In: Information Systems Journal, 5(3):203-223, 1995.

Wand, Y., and Weber, R.,, On the Ontological Expressiveness of
Information Systems Analysis and Design Grammars. In: Journal of
Information Systems, 3(4):217-237, 1993.

Warmer, J., and Kleppe, A., The Object Constraint Language, Second
Edition: Getting Y our Models Ready For MDA. Addison-Wesley, 2003.

Wegner, P., Concepts and Paradigms of Object-Oriented Programming.
In: ACM SIGPLAN OOPS Messenger, 1(1):7-87, 1990.

Widom, J., and Ceri, S., Active Database Systems. Morgan Kaufmann,
1996.

Wieringa, R., A Survey of Structured and Object-Oriented Software
Specification Methods and Techniques. In: ACM Computing Surveys
(CSUR), 30(4):459-527, 1998.

Wieringa, R., de Jonge, W., and Spruit, P., Using Dynamic Classes and
Role Classes to Model Object Migration. In: Theory and Practice of
Object Systems (TAPOS), 1(1):61-83, 1995.

Wirfs-Brock, R., Stereotyping: A Technique for Characterizing Object and
Their Interactions. In: Object Magazine, 3(4):50-53, 1993.

Wirfs-Brock, R., Wilkerson, B., and Wiener, L., Designing Object-
Oriented Software. Prentice Hall, 1990.

Wu, S.-1., Integrating Logic and Object-Oriented Programming. In: ACM
SIGPLAN OOPS Messenger, 2(1):28-37, 1991.

Y ourdon, E., and Constantine, L., Structured Design. Prentice-Hall, 1979.
Yourdon, E., Modern Structured Analysis. Y ourdon Press, 1989.

Yuan, G., A Depth-First Process Model for Object-oriented Development
with Improved OOA/OOD Notations. In: Report on Analysis and Design
(ROAD), 2(1):23-37, 1995.

Yue, K., What Does It Mean to Say that a Specification is Complete?. In:
Proceedings of the Fourth International Workshop on Software
Specification and Design, 1987.

Zurcher, FW., and Randell, B., lterative Multi-Level Modeling: A
Methodology for Computer System Design. In: Proceedings of the IFIP
Congress, |IEEE, pages 867-871, 1968.

List of Publications

Edited Volumes

1. Pikkarainen, M., Bozheva, T., and Van Baelen, S., editors, International
Workshop on Agile: Experience, Standardization and Application in the
Embedded Domain. Nemetschek, 141 pages, 2006.

Book Chapters

1. Berbers, Y., Rigole, P., Vandewoude, Y., and Van Baelen, S., CoConES: An
Approach for Components and Contracts in Embedded Systems. In: Atkinson,
C., Bunse, C., Gross, H.-G., and Peper, C., editors, Component-Based
Software Development for Embedded Systems. An Overview of Current
Research Trends, Lecture Notes in Computer Science (LNCS), Vol. 3778,
Springer-Verlag, pages 209-231, 2005.

Contributions at International Conferences, Published in
Proceedings

1. Van Beirendonck, H., Beaufays, J., Van Baelen, S., and De Vlaminck, K.,
Petri Nets for Modeling Dynamic Characteristics in HOOD. In: The
Management of Large Software Projects in the Space Industry, Cépadués-
Editions, pages 121-129, 1991.

2. Van Baelen, S., Lewi, J.,, Steegmans, E., and Van Riel, H., EROOS: An
Entity-Relationship based Object-Oriented Development Method. In: DECUS
BELUX 1992 Symposium Proceedings, DECUS, pages 42-64, 1992.

3. Van Baelen, S, Lewi, J., Steegmans, E., and Van Riel, H., EROOS: An
Entity-Relationship based Object-Oriented Specification Method. In: Heeg,
G., Magnusson, B., and Meyer, B., editors, Technology of Object-Oriented
Languages and Systems TOOLS 7 (TOOLS Europe 1992), Prentice-Hall,
pages 103-117, 1992.

4. Van Baelen, S., Lewi, J., Steegmans, E., and Swennen, B., Constraints in
Object-Oriented Analysis. In: Nishio, S., and Yonezawa, A., editors, Object
Technologies for Advanced Software (ISOTAS), Lecture Notes in Computer
Science (LNCS), Vol. 742, Springer-Verlag, pages 393-407, 1993.

229

230

10.

11.

12.

LIST OF PUBLICATIONS

Van Baelen, S., Lewi, J., and Steegmans, E., Constraints in Object-Oriented
Analysis and Design. In: Magnusson, B., Meyer, B., Nerson, J.-M., and
Perrot, J.F., editors, Technology of Object-Oriented Languages and Systems
TOOLS 13 (TOOLS Europe 1994), Prentice-Hall, pages 185-199, 1994.

Van Baelen, S., Enriching Constraints and Business Rules in Object-Oriented
Analysis with Models Trigger Specifications. In: Demeyer, S., and Bosch, J.,
editors, Proceedings of European Conference on Object Oriented
Programming Workshop Reader (ECOOP 98), Lecture Notes in Computer
Science (LNCYS), Vol. 1543, Springer-Verlag, pages 197-199, 1998.

Urting, D., Van Baelen, S., and Berbers, Y., Embedded Software using
Components and Contracts. In: Gerard, S., Terrier, F., Selic, B., Damm, G.,
Yi, W., and Petterson, P., editors, ECOOP 2001 Workshop on Specification,
Implementation and Validation of Object-Oriented Embedded Systems
(SIVOES 2001), Budapest, Hungary, 2001.

Barbaix, Y., Van Baelen, S, and De Vlaminck, K., Handling Time
Constraints with Virtual Timers. In: Gerard, S, Terrier, F., Selic, B., Damm,
G., Yi, W, and Petterson, P., editors, ECOOP 2001 Workshop on
Specification, Implementation and Validation of Object-Oriented Embedded
Systems (SIVOES 2001), Budapest, Hungary, 2001.

Urting, D., Van Baelen, S, Holvoet, T., and Berbers, Y., Embedded Software
Development: Components and Contracts. In: Gonzalez, T., editor,
Proceedings of the IASTED International Conference on Parallel and
Distributed Computing and Systems, ACTA Press, pages 685-690, 2001.

Urting, D., Berbers, Y., Van Baelen, S, Holvoet, T., Vandewoude, Y., and
Rigole, P., A Tool for Component Based Design of Embedded Software. In:
Noble, J., and Potter, J., editors, Technology of Object-Oriented Languages
and Systems TOOLS 40 (TOOLS Pacific 2002): Objects for Internet, Mobile
and Embedded Applications, Conferences in Research and Practice in
Information Technology, Vol. 10, Australian Computer Society, pages 159-
168, 2002.

Gorinsek, J., Van Baglen, S., Berbers, Y., and De Vlaminck, K., EMPRESS:
Component based Evolution for Embedded Systems. In: Kniesel, G.,
Costanza, P., and Dimitriev, M., editors, Workshop on Unanticipated
Software Evolution (USE 2002), European Conference on Object-Oriented
Programming (ECOOP 2002), Malaga, Spain, 2002.

Van Baelen, S., Urting, D., and Berbers, Y., The SEESCOA Composer Tool:
Using Contracts for Component Composition and Run-Time Monitoring. In:
Gerard, S., Ober, 1., Papadopoulos, G., Plouzeau, N., Rioux, L., Selic, B., and
Weis, T., editors, UML 2002 Workshop on Component Based Software

LIST OF PUBLICATIONS 231

13.

14.

15.

16.

17.

18.

19.

20.

Engineering and Modeling Non-functional Aspects (SIVOES-MONA 2002),
Dresden, Germany, 2002.

Gorinsek, J., Van Baelen, S., Berbers, Y., and De Vlaminck, K., Managing
Quality of Service during Evolution using Component Contracts. In: Kniesel,
G., Costanza, P., and Fiadeiro, JL., editors, ETAPS 2003 Second
International Workshop on Unanticipated Software Evolution (USE 2003),
Warsaw, Poland, pages 57-62, 2003.

Wils, A., Gorinsek, J., Van Baelen, S, Berbers, Y., and De Vlaminck, K.,
Flexible Component Contracts for Local Resource Awareness. In: Bryce, C.,
and Czakowski, G., editors, 9th Workshop on Mobile Object Systems:
Resource-Aware Computation (MOS 2003), European Conference on Object-
Oriented Programming (ECOOP 2003), Darmstadt, Germany, 2003.

Berbers, Y., Rigole, P., Van Baelen, S., and Vandewoude, Y., Components
and Contracts in Software Development for Embedded Systems. In: De
Backer, L., editor, Proceedings of the First European Conference on the Use
of Modern Information and Communication Technologies, pages 219-226,
2004.

Pauty, J., Van Baelen, S, and Berbers, Y., Adapting Model-Driven
Architecture to Ubiquitous Computing. In: Kortuem, G., editor, Workshop on
Software Engineering Challenges for Ubiquitous Computing, Lancaster
University, pages 42-43, 2006.

Wils, A., and Van Baelen, S., Agility in the Avionics World. In: Pikkarainen,
M., Bozheva, T., and Van Baelen, S, editors, International Workshop on
Agile: Experience, Standardization and Application in the Embedded Domain,
Nemetschek, 2006.

Wils, A., and Van Baelen, S., Agility and Component-based Devel opment. In:
Pikkarainen, M., Bozheva, T., and Van Baelen, S., editors, International
Workshop on Agile: Experience, Standardization and Application in the
Embedded Domain, Nemetschek, 2006.

Wils, A., Van Baelen, S., Holvoet, T., and De Vlaminck, K., Agility in the
Avionics Software World. In: Abrahamsson, P., Marchesi, M., and Succi, G.,
editors, Extreme Programming and Agile Processes in Software Engineering
(XP 2006), Lecture Notes in Computer Science (LNCS), Vol. 4044, pages
123-132, 2006.

Hovsepyan, A., Van Baelen, S., Vanhooff, B., Joosen, W., and Berbers, Y.,
Key Research Challenges for Successfully Applying MDD within Real-Time
Embedded Software Development. In: Vassiliadis, S., Wong, S., and
Modeling, and Simulation (SAMOS V1), Lecture Notes in Computer Science
(LNCS), Vol. 4017, pages 49-58, 2006.

232

LIST OF PUBLICATIONS

21. Vanhooff, B., Van Baelen, S., Hovsepyan, A., Joosen, W., and Berbers, Y.,

Towards a Transformation Chain Modeling Language. In: Vassiliadis, S,
Wong, S., and Hamdénen, T., editors, Embedded Computer Systems:
Architectures, Modeling, and Simulation (SAMOS V1), Lecture Notes in
Computer Science (LNCYS), Vol. 4017, pages 39-48, 2006.

Contributions at International Conferences, not Published or only as
Abstract

1

Van Baelen, S., Lewi, J., and Steegmans, E., Abstraction Stratification in an
Object-Oriented Development Method like EROOS. In: de Champeaux, D.,
editor, Workshop on Object-Oriented Software Development Process, Sixth
European Conference on Object-Oriented Programming (ECOOP 1992),
Utrecht, The Netherlands, 1992.

Van Baelen, S, Urting, D., Van Belle, W., Jockers, V., Holvoet, T., Berbers,
Y., and De Vlaminck, K., Toward a Unified Terminology for Component-
based Development. In: Bosch, J., Szyperski, C., Weck, W., Fifth
International Workshop on Component-Oriented Programming (WCOP
2000), Fourteenth European Conference on Object-Oriented Programming
(ECOOP 2000), Cannes, France, 2000.

Van Baelen, S., and Van Genechten, H., DESS: Project and Methodology
Overview. In: ITEA Software Engineering Session, Third ITEA Symposium,
Amsterdam, The Netherlands, 2002.

Contributions at National Confer ences, Published in Proceedings

1

Steegmans, E., Dockx, J., Swennen, B., and Van Baelen, S., Object Gericht
Programmeren: Revolutie of Evolutie. In: Proceedings Object Gericht
Programmeren, KVIV, pages 1-25, 1994.

Steegmans, E., Dockx, J., Swennen, B., and Van Baelen, S., Het Object-
Gerichte Ontwikkelingsproces: Object-Gerichte Analyse. In: Proceedings
Object-Gerichte Technologie, BIRA, pages 1-14, 1995.

Steegmans, E., Dockx, J., Swennen, B., and Van Baelen, S., Het Object-
Gerichte Ontwikkelingsproces: Object-Gericht Ontwerp. In: Proceedings
Object-gerichte Technologie, BIRA, pages 15-20, 1995.

De Backer, S, De Vlaminck, K., Steegmans, E., and Van Baelen, S., Unified
Modeling Language. In: Nog, C., and Baute, W., editors, Proceedings Unified
Modeling Language (UML), KVIV, 1999.

Van Baelen, S., Agile Development: What and How? In: Peeters, B., and
Smets, S., editors, Proceedings Agile Development and Testing, KVIV, 2005.

LIST OF PUBLICATIONS 233

6.

Van Baelen, S., Introduction to Agile Development. In: Peeters, B., editor,
Proceedings Agile Development en Testing: Een Vernieuwde Kijk op
Software Ontwikkeling, KVIV, pages 1-8, 2006.

Technical Reports

1

10.

Lewi, J.,, Steegmans, E., and Van Baelen, S, EROOS: Entity-Relationship
Object-Oriented Specifications. K.U.Leuven, Department of Computer
Science, CW Report 111, Leuven, Belgium, 1990.

Lewi, J., Steegmans, E., Dockx, J., Swennen, B., Van Baelen, S, and Van
Riel, H., Object Oriented Software Development with EROOS: The Analysis
Phase. K.U.Leuven, Department of Computer Science, CW Report 169,
Leuven, Belgium, 1993.

Steegmans, E., Lewi, J., D’Haese, M., Dockx, J., Jehoul, D., Swennen, B.,
Van Baelen, S, and Van Hirtum, P., EROOS Reference Manual, Version 1.0.
K.U.Leuven, Department of Computer Science, CW Report 208, Leuven,
Belgium, 1995.

Steegmans, E., Lewi, J., D’Haese, M., Dockx, J., Jehoul, D., Swennen, B.,
Van Baelen, S., and Van Hirtum, P., EROOS Reference Manual, Version 1.1.
K.U.Leuven, Department of Computer Science, Leuven, Belgium, 1996.

Barbaix, Y., and Van Baelen S, editors, Methodology Document for
Addressing Resource Constraints Problems in Embedded Systems. ITEA-
DESS Project Report D.1.3.1, ITEA-DESS Consortium, 2000.

Van Baelen S,, editor, Guidelines for Component-based Development. ITEA-
DESS Project Report D.1.4.3, ITEA-DESS Consortium, 2001.

Barbaix, Y., Van Baglen S,, and Wils, A., editors, Timing, Memory and other
Resource Constraints. ITEA-DESS Project Report D.1.3.2, ITEA-DESS
Consortium, 2001.

Van Baelen S, editor, Definition of Components and Notation for
Components. ITEA-DESS Project Report D.1.4.4, ITEA-DESS Consortium,
2001.

Van Baelen, S, Gorinsek, J., and Wils, A., editors, The DESS Methodol ogy.
ITEA-DESS Project Report D.1, ITEA-DESS Consortium, 2001.

Van Baelen S, editor, Essentials and Requisites for the Management of
Evolution: Evolution of Component Systems. ITEA-EMPRESS Project
Report D1.2 part 2, ITEA-EMPRESS Consortium, 2003.

234

LIST OF PUBLICATIONS

11. Gross, H.-G., and Van Baglen, S,, editors, Modeling and System Support for
Design-Time Evolution. ITEA-EMPRESS Project Report D2.1-2.2, ITEA-
EMPRESS Consortium, 2003.

12. Gerlach, J., and Van Baelen, S., editors, Run-time Evolution and Dynamic
(Re)Configuration of Components: Model, Notation, Process and System
Support. ITEA-EMPRESS Project Report D24-2.5, ITEA-EMPRESS
Consortium, 2003.

13. Bozheva, T., Hulkko, H., Ihme, T., Jartti, J., Salo, O., Van Baelen, S,, and
Wils, A., Agile in Embedded Software Development: State-of-the-Art Review
in Literature and Practice. ITEA-AGILE Project Report D1, ITEA-AGILE
Consortium, 2005.

14. Van Baglen S, An Agile Approach on Model-Driven Architecture (MDA). In:
Abrahamsson, P., and Dooms. K., editors, AGILE Newsletter 2/2005, | TEA-
AGILE Consortium, 2005.

15. Wils, A., Van Baelen, S., and Rammeloo, S., Introducing Agility in the
Avionics Software World. In: Abrahamsson, P., and Dooms. K., editors,
AGILE Newsletter 1/2006, ITEA-AGILE Consortium, 2006.

16. Wils, A., and Van Baelen, S., Architecture Centric Agility. In: Abrahamsson,
P., and Dooms. K., editors, AGILE Newsletter 1/2006, ITEA-AGILE
Consortium, 2006.

17. Huybrechts, M., Rammeloo, S., and Van Baelen, S., Realizing Agility through
Model Driven Architecture. In: Abrahamsson, P., and Dooms. K., editors,
AGILE Newsletter 2/2006, ITEA-AGILE Consortium, 2006.

18. Wils, A., and Van Baelen, S., Towards An Agile Avionics Process. ITEA-
AGILE Project Report D2.12, ITEA-AGILE Consortium, 2007.

19. Wils, A., and Van Baelen, S, Agile Practices for Embedded Systems. ITEA-
AGILE Project Report D2.13, ITEA-AGILE Consortium, 2007.

20. Wils, A., and Van Beaelen, S., Software Architecture and eXtreme
Programming. ITEA-AGILE Project Report D214, ITEA-AGILE
Consortium, 2007.

Biography

Stefan Van Baelen was born in Mol, Belgium, on August 7, 1967. He received a
Bachelor of Science degree (‘Kandidaat Informatica’) in 1987, and a Master of
Science degree (‘Licentiaat Informatica) in Informatics in 1989 from the
K.U.Leuven. He graduated magna cum lauda with the thesis ‘Development of an
Environment for the Design of Systems using State Machines' under the supervision
of Prof. Dr. ir. Johan Lewi, and in cooperation with Alcatel Bell Antwerp, Belgium.
The same year, he started to perform his civil service at the Department of Computer
Science and became a member of the Software Development Methodology (SOM -
‘Software Ontwikkelingsmethodologi€e') research group. From 1991 until 1995, he
obtained a doctoral research grant (‘ aspirant NFWQO') from the Research Foundation
of Flanders (FWO Vlaanderen’).

In 1996, Stefan Van Baelen participated in a research project with Acunia (formerly
SmartMove and Take Five) on defining a software architecture for a mobile
computing platform (EWACS), in cooperation with the DistriNet (Distributed
Systems and Computer Networks) research group. Afterwards, he joined the
DistriNet research group, and participated in a large number of national and
international research projects, including the IWT-STWW project on Software
Engineering for Embedded Systems using a Component Oriented Approach
(SEESCOA), in cooperation with the Free University of Brussels (VUB), the
University of Ghent (UGent), and the University of Hasselt (UHasselt), the ITEA
project on software on Development process for real-time Embedded Software
Systems (DESS), the ITEA project on Evolution Management and Process for Real-
Time Embedded Software Systems (EMPRESS), the ITEA project on Agile Software
Development of Embedded Systems (AGILE), the ongoing ITEA project on Model-
based Approach to Real-Time Embedded Systems development (MARTES), and the
ongoing ITEA project on Support for Predictable Integration of Mission Critical
Embedded Systems (SPICES). The ITEA-EMPRESS project was in cooperation with
Jabil Circuit (formerly Philips Hasselt), while all mentioned ITEA projects were in
cooperation with Barco and a large number of international partners including,
amongst others, Airbus, Nokia, Philips, NXP, DaimlerChrysler, Siemens, Bosch,
Bull, Thales, Telelogic, Telefonica, and France Télécom. For many of these projects,
Stefan Van Baelen performed the tasks of local DistriNet research coordinator,
European Task Leader, and European Work Package Leader.

Stefan Van Baglen has served as an external referee for Communications of the ACM

(Special Section on Flexible and Distributed Software Development Processes), and
for the Dutch National Science Foundation.

235

Een beperkingscentrale benadering
VOoOor objectgeoriénteerde
conceptuele modellering

Samenvatting

Objectgeoriénteerde analyse, en meer bepaald conceptuele modellering, is een
softwareontwikkelingsactiviteit die streeft naar het bestuderen, analyseren en
vastleggen van het probleemdomein voor een systeem in ontwikkeling. Dit moet
resulteren in een specificatie van een consistent en ondubbelzinnig model dat alle
domeinkennis, feiten en regels beschrijft. Hierbij heeft elk element van het
probleemdomein een transparante een-op-een overeenkomst met een entiteit uit het
conceptueel model.

In dit doctoraat stellen we een beperkingscentrale benadering voor
obj ectgeoriénteerde conceptuele modellering voor, gebruik makende van hoogniveau
beperkingsspecificaties als kernstructuur van het conceptueel model. Deze aanpak
verrijkt de conceptuele modelstructuur op twee vlakken: enerzijds door de definitie
van nieuwe structurele concepten om modelbeperkingen impliciet in de
modelstructuur zelf uit te drukken, en anderzijds door de introductie van beperkingen
met bijbehorende oplossingsmechanismen als een eersteklas model concept.

Betreffende de definitie van structurele concepten, ontwikkelden we nieuwe
concepten met een bijbehorende duidelijke toepasbaarheidscontext, om zo
modelbeperkingen impliciet in de modelstructuur te kunnen uitdrukken. De integratie
van modelbeperkingen in elk methodologisch concept, het gebruik van existentiéle
afhankelijkheid als het kerncriterium voor modellering, de introductie van expliciete
klassenarchieven en de formele specificatie van model gebeurtenissen (‘events’) en
modelquery’ s verrijken de expressieve kracht van een conceptuele modelstructuur.

Betreffende de introductie van beperkingen als een eersteklas modelconcept,
ontwikkelden we een mechanisme om modelbeperkingen te specificeren met behulp

1.1

NEDERLANDSTALIGE SAMENVATTING

van meersoortige eerste orde logica. Het concept beperkingsreactie (‘constraint
trigger’) verbonden met een beperking, definieert een algemene beperkingsoplosser
die beperkingsschendingen kan oplossen door bijkomend gedrag in een gebeurtenis te
injecteren of door gebeurtenissen te laten starten door de vooruitgang van detijd.

Onze aanpak convergeerde in de EROOS methodiek waarvan twee versies worden
voorgesteld. De basisversie, namelijk de EROOS kern, gebruikt een constructieve
modelleeraanpak waarbij informatie enkel kan toegevoegd worden aan een
conceptuele modelinstantiatie. De uitgebreide versie, namelijk het EROOS
universum, biedt bijkomende ondersteuning aan voor terugkerende analysepatronen
voor de EROOS kern door middel van geavanceerde en meer praktische concepten.
Hierbij wordt de EROOS kern als onderliggende basis gebruikt.

Inleiding

Een van de belangrijkste uitdagingen voor softwareontwikkeling is om enerzijds een
goed inzicht te krijgen in de noden en vereisten van het softwaresysteem dat gebouwd
dient te worden, en anderzijds te kunnen omgaan met veranderende omstandigheden
en vereisten tijdens het ontwikkelingsproces. Om een softwaresysteem te kunnen
construeren dat voldoet aan de noden van de klanten en eindgebruikers moet een
ontwikkelaar een duidelijk inzicht krijgen in alle kwesties betreffende het systeem en
de omgeving waarin het moet opereren. Daarenboven zijn moderne softwaresystemen
veel te complex om op een ad hoc wijze te construeren. Een duidelijke en
ondubbelzinnig methodiek en notatie zijn noodzakelijk om kwalitatieve systemen te
ontwikkelen die aan de noden en verwachtingen van de klanten voldoen. Om zowel
de continue veranderende vereisten as de complexiteit van softwaresystemen te
kunnen beheersen, zijn rigoureuze methoden, technieken en notaties nodig voor
softwareontwikkeling om zo de vereisten op een optimale manier te modelleren en
structureren.

Objectgeoriénteerde analyse, en meer bepaald conceptuele modellering, is een
sleutelelement om veranderende vereisten te beheersen, aangezien het ervoor zorgt
dat de specificatie van deze vereisten op een consistente manier in de context van het
probleemdomein kan gebeuren. Zodoende schept dit de mogelijkheid om een
duidelijk zicht te krijgen op de impact van een veranderende vereiste op het
softwaresysteem en de omgeving waarin het opereert.

Problemen en vraagstukken betreffende objectgeoriénteerde
analyse

Een aantal problemen en vraagstukken betreffende objectgeoriénteerde analyse
kunnen worden geidentificeerd.

* Modédleringsnotatie: Objectgeoriénteerde analyse heeft nood aan een beperkte
set van krachtige concepten die specifiek gericht zijn naar het uitdrukken van

NEDERLANDSTALIGE SAMENVATTING iii

kennis en informatie uit het probleemdomein, en een bijbehorende notatie die
deze kennis in een conceptueel model kan beschrijven. Hoewel een beperkte set
van UML (Unified Modeling Language) concepten geschikt kunnen zijn voor
analyse, zal het gebruik van UML de analist eerder naar een computationele dan
naar een conceptuele zienswijze sturen. Hoewel UML mogelijkheden biedt om
de notatie uit te breiden, is dit niet voldoende om UML in een geschikte
analysenotatie te transformeren.

 Modeconsistentie: Hoewel de meeste objectgeoriénteerde analysemethodieken
een aantal regels bevatten om consistentie in een model te bekomen, wordt er
maar beperkt aandacht besteed aan consistentie tussen modellen.
Modelelementen worden gedefinieerd in een welbepaald model, waarna ze
kunnen gebruikt worden in andere modellen. Dit credert echter een
specificatievolgorde tussen de modellen, en kan zelfs leiden tot wederzijdse
afhankelijkheid. Daarenboven moeten modelveranderingen worden gepropageerd
naar alle modellen die gebruik maken van de veranderde elementen. Een andere
aanpak om modelconsistentie te bekomen kan bestaan uit het gebruik van een
uniek model dat alle informatie van de verschillende modellen bevat. Een
dergelijke aanpak geeft aanleiding tot grotere klassenmodellen, omdat alle
informatie hierin moet vervat zijn. Maar aangezien consistentie enkel binnen één
model moet worden verwezenlijkt, zullen de nadelen van consistentie over
meerdere modellen vermeden worden.

* Moddinformaliteit: Informele modellen geven aanleiding tot een groot aantal
problemen, zoals modelfouten, onvolledigheden, tegenstrijdigheden en
ambiguiteiten. Objectgeoriénteerde analyse heeft enerzijds nood aan een formele
definitie van de concepten die gebruikt worden voor modellering, en anderzijds
aan een formele beschrijving van de kennis die bevat zit in een conceptueel
model.

* Methodologische ondersteuning: Het is ontoereikend om de analist enkel een
modelleringsnotatie aan te bieden zoals UML. Een andlist heeft nood aan een
methodiek, richtlijnen en een concrete leidraad voor het construeren van
conceptuele modellen, het gebruik van de methodologische concepten, en de
transformatie van de kennis in het probleemdomein naar analyse-entiteiten. Bij
voorkeur moet dit resulteren in een ondubbelzinnig en uniek analysemodel,
waarin geen ontwerp- en implementatieaspecten aan bod komen.

* Analyseafbakening en verdere transitiee In veel objectgeoriénteerde
methodieken is de grens tussen analyse, architectuur en ontwerp heel vaag. Vanaf
de analysefase sluipen aspecten betreffende de softwarerealisatie in het model en
veroorzaken zo een softwarematige vooringenomenheid ten opzichte van het
probleemdomein. Daarenboven propageren een aantal methodieken een
geleidelijke transitie van analyse naar ontwerp, zodat er geen breuk ontstaat
tussen deze fasen. De analysefase moet echter gericht zijn op het
probleemdomein, en moet daarom duidelijk gescheiden worden van latere
softwaregerichte fasen. De transitie van een conceptueel model naar een
softwarearchitectuur is bovendien vrij complex en niet evident, waardoor het niet
kan beschouwd worden as een loutere modelverfijningsactiviteit.

1.2

NEDERLANDSTALIGE SAMENVATTING

Modelgedreven ontwikkelingstechnieken (MDD) kunnen hierbij wel op een
nuttig manier helpen om de analyseresultaten op een adequate wijze te
kapitaliseren door een (semi-) automatische transformatie van analysemodellen
naar kleine of grote delen van een ontwerpmodel.

Doelstellingen

De doelstellingen van dit doctoraat zijn drieledig:

1.3

Definitie van de kernprincipes voor conceptuele modellering. De huidige
objectgeoriénteerde analysemethodieken hebben een aantal gebreken aangaande
de modelleringsnotatie, model consistentie, modelinformaliteit, methodologische
ondersteuning en analyseafbakening. Op basis van deze identificatie is de eerste
doelstelling van dit doctoraat om een aantal kernprincipes voor conceptuele
modellering op te stellen die nodig zijn om een degelijke ondersteuning te bieden
voor het modelleren van de kennis uit het probleemdomein.

Evaluatie en vergelijking van specificatieformalismen en notaties voor
modelbeperkingen. Modelbeperkingen spelen een belangrijke rol in
objectgeoriénteerde analyse. Er bestaan verscheidene specificatief ormalismen om
modelbeperkingen uit te drukken. Het gebruik van een bepaald formalisme kan
een verschillende impact veroorzaken van de modelbeperking op het resulterende
conceptueel model. Er worden zelfs verschillende alternatieve
modelleerconcepten voor modelbeperkingen aangeboden binnen eenzelfde
analysemethodiek. De tweede doelstelling van dit doctoraat is om
specificatieformalismen voor model beperkingen te vergelijken, te evalueren, een
taxonomie ervoor te ontwikkelen, en hun geschiktheid voor de representatie van
kennis uit het probleemdomein te onderzoeken.

Ontwikkeling van een geschikte objectgeoriénteerde analysemethodiek en
bijbehorende notatie voor conceptuele modellering. De huidige
analysemethodieken en notaties, met inbegrip van UML, zijn niet geschikt om
conceptuele modellen op een adequate manier te beschrijven. De derde
doelstelling van dit doctoraat is een objectgeoriénteerde analysemethodiek en
bijbehorende notatie voor conceptuele modellering te ontwikkelen die voldoet
aan de geidentificeerde kernprincipes voor conceptuele modellering. De
methodiek moet bovendien een geschikt specificatieformalisme voor
beperkingen aanbieden. Een dergelijke analysemethodiek is essentieel om
kennis, eigenschappen en structuren van het probleemdomein in een geschikt
formaat vast te leggen, en het voorziene softwaresysteem te positioneren in zijn
reéle omgeving.

Bijdragen

De belangrijkste bijdragen van dit doctoraat zijn:

Geavanceerde methodologische concepten om de kernprincipes van
conceptuele modellering te bereiken. De geleverde bijdragen zijn (1) de

NEDERLANDSTALIGE SAMENVATTING v

2

definitie van de kernprincipes voor conceptueel modelleren die nodig zijn om een
adequaat model van het probleemdomein te bekomen, (2) een taxonomie voor
modelbeperkingsformalismen in objectgeoriénteerde analyse, (3) een
constructionele aanpak voor conceptueel modelleren waarbij informatie enkel
kan toegevoegd worden aan een modelinstantiatie, (4) een querymechanisme om
historische informatie betreffende oude attribuutwaarden, objectverbanden en
tijdstippen van objectcreatie en -destructie te bekomen, en (5) een formele notatie
voor de semantiek van query’s en gebeurtenissen die voorafgaat aan en
grotendeels vergelijkbaar is met de Object Constraint Language (OCL).

De definitie van nieuwe structurele concepten om modelbeperkingen
impliciet in de modelstructuur zelf uit te drukken. De geleverde bijdragen zijn
(1) de integratie van modelbeperkingen in de definitie van elk methodologisch
concept, (2) het gebruik van existentiéle afhankelijkheid als het kerncriterium
voor het bepalen van het conceptueel model, wat resulteert in een hiérarchische
relationele modelstructuur, en (3) de introductie van expliciete klassenarchieven
die beperkingen op de kunnen uitdrukken. Deze concepten verrijken de
expressieve kracht van de conceptuele modelstructuur.

De introductie van beperkingen met bijbehor ende r esolutiemechanismen als
een eersteklas modelconcept. We stellen een mechanisme voor om
modelbeperkingen te specificeren als eersteklas modelconcept, gebruik makende
van een formele notatie die gebaseerd is op meersoortige eerste orde logica. Het
mechanisme voor beperkingen gaat vooraf aan en is grotendeels vergelijkbaar
met de Object Constraint Language (OCL). Daarenboven stellen we het concept
van beperkingsreacties voor, welke een agemene oplosser voor
beperkingsschendingen kan specificeren. Dit gebeurt door specifiek
foutenbehandelingsgedrag te injecteren in een gebeurtenis, of door gebeurtenis
op te starten op basis van de vooruitgang van de tijd.

Een taxonomie voor modelbeperkingsformalismen in
objectgeoriénteerde analyse

M odelbeperkingen spelen een sleutelrol in objectgeoriénteerde analyse. Door middel
van modelbeperkingen kunnen intrinsieke eigenschappen van het te modelleren
systeem elegant worden beschreven. We categoriseerden de verschillende
specificatieformalismen voor modelbeperkingen in een taxonomie, bestudeerden en
vergeleken ze, en beschreven hun geschiktheid voor conceptuele modellering. Na
vergelijking van verschillende benaderingen voor de specificatie van
modelbeperkingen, zijn onze conclusies de volgende:

M odel beperkingen kunnen worden gespecificeerd als informele tekst, waarbij de
beperking in een natuurlijke taal als een informeel addendum bij de
modelspecificatie wordt uitgedrukt. Dit is echter te informeel als resultaat van de

vi

NEDERLANDSTALIGE SAMENVATTING

analysefase en geeft aanleiding tot menselijke interpretatiefouten gedurende
latere ontwikkelingsfasen.

Modelbeperkingen kunnen worden gespecificeerd als operationele restricties,
waarbij de modelbeperking wordt gerealiseerd door uitvoeringscontroles op de
operaties. Dit is nuttig tijdens de ontwerpfase maar van een te laag niveau tijdens
de analysefase. Een dergelijke aanpak is niet wenselijk, omdat het een grote
kloof introduceert tussen het probleemdomein en het analysemodel. In plaats van
te beschrijven welke regels er gelden in het probleemdomein, beschrijft het
analysemodel hoe deze regels worden afgedwongen. Bovendien moeten
beperkingen steeds worden geconverteerd vanuit hun conceptuele betekenis naar
hun operationele implementatie, en vice versa.

Modelbeperkingen kunnen worden gespecificeerd als een eersteklas
modelconcept, waarbij modelbeperkingen worden behandeld als bouwblokken
van een analysemodel. Hierbij worden modelbeperkingen als onafhankelijke
modelentiteiten behandeld, wat hun belangrijkheid op een gepaste manier
benadrukt. In bepaalde gevallen zijn echter andere constructies geschikter.
Allereerst worden beperkingen die nauw gerelateerd zijn aan bestaande
modelentiteiten beter direct hierin geintegreerd. Zodoende is er een duidelijke
focus op dergelijke beperkingen tijdens de analyse. Daarnaast worden
existentiéle afhankelijkheid en andere structurele modelbeperkingen beter direct
uitgedrukt in de modelstructuur in plaats van te worden gemodelleerd als
afzonderlijke beperkingen. In plaats van de basisstructuur van het model te
benadrukken, wordt de structuur verwaarloosd en verborgen in de
gespecificeerde beperkingen.

Model beperkingen kunnen worden geintegreerd in bestaande model concepten,
waarbij een modelbeperking wordt gespecificeerd in de modelentiteit waarop de
beperking betrekking heeft. Dit is mogelijk voor beperkingen die nauw
verbonden zijn met een modelentiteit, zoals multipliciteit voor attributen en
associatieuiteinden, beperkingen op het attribuutbereilk, en agemene
veranderingsei genschappen van attributen en associaties. Als beperkingen zich
echter uitstrekken over verschillende modelentiteiten, is het niet aangewezen om
ze te integreren in een bepaalde entiteit omdat dit leidt tot asymmetrie en
willekeur in de specificatie van beperkingen.

Model beperkingen kunnen impliciet uitgedrukt worden in de modelstructuur,
waarbij existentiéle afhankelijkheid, verplichte attribuutwaarden en gereificeerde
objecttoestanden worden gebruikt om de modelstructuur te verrijken. Een
hiérarchische associatiestructuur kan existentiéle afhankelijkheidsbeperkingen
impliciet in de modelstructuur uitdrukken. Dit limiteert het aantal bijkomende
beperkingen, en benadrukt en incorporeert de logische structuur van het
probleemdomein direct in het overeenkomstige analysemodel.

UML biedt geen geschikte ondersteuning voor een gepaste specificatie van
beperkingen in een analysemodel. De expressieve kracht van de UML modelstructuur
moet worden verrijkt om zo geschikte conceptuele modellen te bekomen die de
structuren van het probleemdomein rechtstreeks in de modelstructuur uitdrukken.

NEDERLANDSTALIGE SAMENVATTING vii

3

Kernprincipes voor conceptuele modellering

Alvorens we de EROOS methodiek voorstellen, presenteren we eerst de
kernprincipes voor conceptuele modellering die geleid hebben tot bepaalde
methodol ogische beslissingen in EROOS. We geven in de volledige tekst argumenten
waarom deze principes van het allergrootste belang zijn voor conceptuele modellering
om zo de meest geschikte modellen te bekomen.

e Het principe van uniciteit stelt dat elk feit van het probleemdomein moet
resulteren in een uniek modelelement in het overeenkomstige conceptueel model.
Er mag geen adternatief bestaan om feiten van het probleemdomein te
modelleren, zodat we vermijden om verschillende conceptuele modellen te
bekomen die enigszins equivalent zijn. In plaats daarvan moeten de door de
methodiek aangeboden modelconcepten de analist leiden van het te modelleren
probleemdomein naar het meest geschikte conceptueel model dat deze feiten
representeert.

 Het principe van geen overtolligheid stelt dat elk individueel informatie-
element, voorgesteld in een conceptueel model, een waarde op zich moet hebben.
Het mag niet afleidbaar zijn van andere elementen in het conceptueel model. Elk
feit van het probleemdomein moet direct gereflecteerd worden in het conceptueel
model door een bepaalde modelentiteit, dat op zijn beurt terug getraceerd kan
worden naar dit probleemdomein.

* Het principe van geen ambiguiteit stelt dat elk element in het conceptueel
model moet voortvioeien uit een feit van het probleemdomein. Twee
verschillende situaties in een probleemdomein mogen niet resulteren in een
éénzelfde element binnen een conceptueel model.

e Het principe van volledigheid stelt dat alle relevante informatie van het
probleemdomein moet gereflecteerd worden in het conceptueel model. Dit wil
zeggen dat een conceptueel model onvolledig is als een aantal feiten niet
expliciet beschreven zijn, maar enkel aanwezig zijn in het hoofd van de analist of
domeinexpert. Dit kan leiden tot fouten, misverstanden, verwarring en arbitraire
beslissingen tijdens latere fasen van het ontwikkelingsproces. Alhoewel het
aanvaardbaar is dat bepaalde technische aspecten uit het oplossingsdomein niet
voorgesteld worden in een conceptueel model, moet het probleemdomein in volle
omvang worden gemodelleerd.

e Het principe van minimalisme stelt dat enkel relevante informatie uit het
probleemdomein mag voorgesteld worden in het conceptueel model. Het model
mag geen irrelevante informatie bevatten die niet gerelateerd kan worden met het
probleemdomein of de vereisten voor het softwaresysteem. Als modelinformatie
niet afgeleid kan worden uit een relevant kennisfeit uit het probleemdomein, is
het overbodig en moet het worden weggelaten. Een analist moet bewust zijn van
de grenzen van het probleemdomein en mag niet proberen om onbelangrijke of
ongerelateerde feiten te modelleren.

viii

NEDERLANDSTALIGE SAMENVATTING

e Het principe van nauwkeurigheid stelt dat elk feit uit het probleemdomein op
een formele wijze moet gemodelleerd worden met behulp van de concepten uit
de ondersteunende analysemethodiek. Tekstuele elementen of aantekeningen in
een natuurlijke taal mogen geen deel uitmaken van het conceptueel model zonder
een overeenkomstige formele representatie in het model.

e Het principe van geen historiek stelt dat het conceptueel model onafhankelijk
moet zijn van de volgorde waarin de feiten uit het probleemdomein werden
gemodelleerd. Het conceptueel model mag enkel afhankelijk zijn van de totale
verzameling van informatie uit het probleemdomein dat gemodelleerd moet
worden, en niet van de volgorde waarin deze informatie-elementen toegevoegd
werden aan het model. Een conceptueel model moet een representatie zijn van
een probleemdomein, en mag dus geen informatie bevatten betreffende de
historiek van de constructie van het model.

* Het principe van modelgeimpliceerde beperkingen stelt dat beperkingen die
resulteren uit wetten en reguleringen van het probleemdomein ook weerspiegeld
moeten worden in de structuur van het conceptueel model. Dit betekent dat de
concepten uit een analysemethodiek in staat moeten zijn om deze belangrijke
beperkingen direct in de modelstructuur uit te drukken. Daarenboven moet
informatie die existentieel afhankelijk is van andere basisinformatie, eveneens
gereflecteerd worden in het conceptueel model. Een modelentiteit die een feit
beschrijft dat afhangt van een ander basisfeit, moet ook in het model afhankelijk
zijn van de representatie van dit basisfeit.

e Het principe van abstractie stelt dat complexe informatie, voortvlioeiend uit de
intrinsieke complexiteit van het probleemdomein, gedetailleerd moet worden
voorgesteld in het overeenkomstige conceptueel model. Een conceptueel model
kan echter modeloverzichten geven in een meer abstracte vorm voor het
welbehagen van de personen die het model moeten bestuderen. Het opstellen van
abstracte modeloverzichten mag echter geen kernpunt zijn bij het conceptueel
modelleren, aangezien het conceptueel model het probleemdomein gedetailleerd
moet voorstellen. Maar ter bevordering van de interactie met de klanten en
eindgebruikers, kan het wel nuttig zijn om modeloverzichten op te maken die een
gecomprimeerde visie bieden op een mogelijkerwijs complex conceptueel model.

Een methodologische kern voor conceptuele modellering

De EROOS methodiek wenst de analist te begeleiden naar een uniek conceptueel
model voor een bepaald probleemdomein. In het modelleringsproces spelen
beperkingen een cruciale rol. Ten eerste introduceert EROOS het gebruik van
existentiéle afhankelijkheid als het hoofdcriterium om de modelstructuur te bepalen,
waarbij modelbeperkingen impliciet in deze structuur worden uitgedrukt. Ten tweede
werd de impact van modelbeperkingen op elk modelelement grondig bestudeerd,
waarbij modelbeperkingen geintegreerd worden in modelconcepten indien

NEDERLANDSTALIGE SAMENVATTING iX

aangewezen. Ten derde worden modelbeperkingen als een eersteklas model concept
behandeld en verbonden met de betrokken modelelementen.

We presenteren twee versies van de EROOS methodiek: een kernversie (‘EROOS
kernel’), waarbij informatie enkel kan worden toegevoegd aan een conceptueel
modelinstantiatie, en een uitgebreide versie (‘EROOS universe'), waarbij er
bijkomende ondersteuning wordt geboden voor EROOS analysepatronen door middel
van geavanceerde en meer praktische concepten, met de EROOS kernel als
onderliggende basis.

4.1

Klassen, objecten en statische classificatie

Het EROOS klassenconcept is grotendeels vergelijkbaar met het klassenconcept in
UML. Onze bijdragen in dit verband zijn:

4.2

De constructionele modelaanpak, waarbij modelinstantiaties enkel kunnen
groeien door informatie toe te voegen aan een modelinstantiatie, is een cruciale
eigenschap van de EROOS kernel om het principe van uniciteit te bereiken.
Objecten kunnen niet vernietigd worden, maar in plaats daarvan moet de
vernietiging van een object gereificeerd worden in de creatie van een afzonderlijk
object dat de vernietigingsgebeurtenis voorstelt.

De methodologische aanpak met ogenblikkelijke gebeurtenissen verplicht de
analist om een gebeurtenis met een relevante duur te splitsen in twee
modelgebeurtenissen. Deze aanpak stuurt de analist naar een uniek conceptueel
model voor het probleemdomein.

Attributen, domeinen, waarden en decoratie

Het EROOS attribuutconcept is grotendeels vergelijkbaar met het attribuutconcept in
UML. Onze bijdragen in dit verband zijn:

De constructionele modelaanpak die reeds hoger werd toegelicht.
Attribuutwaarden kunnen niet veranderen, maar de verandering moet gereificeerd
worden in de creatie van een afzonderlijk object dat de veranderingsgebeurtenis
voorstelt. Hierdoor kunnen analisten focussen op de informatie uit het te
modelleren probleemdomein. Een analist moet niet beslissen over welke
informatie in het model beschikbaar moet blijven en welke mag overschreven
worden. De hoeveelheid kennis en feiten in een modelinstantiatie kan namelijk
enkel vergroot worden.

Het standaardattribuut Creation Timestamp voor elk object van iedere klasse
laat de analist toe om te redeneren over het moment waarop een object ontstaan
is. Dit attribuut moet niet expliciet gemodelleerd worden, maar is automatisch
beschikbaar voor elk object in EROOS. Een analist moet vaak redeneren over het
tijdstip waarop een bepaalde gebeurtenis heeft plaatsgevonden, bijvoorbeeld om
de volgorde van bepaalde gebeurtenissen te reconstrueren, om de ouderdom van
een object te bepalen of om de duur van een bepaalde activiteit te berekenen. De
analist moet dergelijke attributen niet langer modelleren, en hoeft zich ook niet af

4.3

NEDERLANDSTALIGE SAMENVATTING

te vragen of dergelijke attributen nodig zijn in het model. De EROOS methodiek
voorziet deze informatie automatisch voor alle objecten.

Het verbod om Booleaanse en getalattributen te gebruiken in EROOS, het feit
dat attribuutwaarden niet ongedefinieerd kunnen zijn en het verbod om
afgeleide attributen te modelleren. Dit verplicht de analist om een aantal feiten
in het model expliciet te modelleren met behulp van klassen,
specialisatiehiérarchieén of query’s, in plaats van deze informatie compact als
een attribuut voor te stellen. Een dergelijke integratie van impliciete
modelbeperkingen in elk methodologisch concept geeft een welbepaalde
semantiek aan elk modelconcept. Hierdoor het gebruik ervan wordt gelimiteerd
tot een specifieke context en de analist gedwongen wordt om het meest geschikte
concept in elke situatie te gebruiken.

Relaties, verbanden en verfijning

Het EROOS relatieconcept is enigszins vergelijkbaar met het associatieconcept in
UML. Onze bijdragen in dit verband zijn:

4.4

Het systematische gebruik van existentiéle afhankelijkheid als basiscriterium
om de modelstructuur te bepalen, is een kernbijdrage van dit werk. Een
dergelijke aanpak leidt tot een hiérarchische afhankelijkheidsstructuur voor
objecten. Deze geeft een duidelijk inzicht in de afhankelijkheden tussen de
informatie-elementen. Dit leidt tot een krachtig model dat een groot aantal
modelbeperkingen direct in de modelstructuur impliceert. Relaties in EROOS
zijn expliciet en op unieke wijze gemodelleerd, aangezien ze steeds ingekapseld
worden in een vefijnde klasse. UML daarentegen biedt een aantal
mogelijkheden aan om relaties te modelleren, zoals associations, association
classes, qualified associations, aggregates, compositions, en een associatie
gereificeerd in een klasse.

De constructionele modelaanpak die reeds hoger werd toegelicht.
Relatieparticipanten kunnen niet veranderen, maar de verandering van een
relatieparticipant moet gereificeerd worden in de creatie van een afzonderlijk
object dat de veranderingsgebeurtenis voorstelt.

EROOQOS beperkingen en restrictie

Het EROOS beperkingsconcept is grotendeels vergelijkbaar met het invariantconcept
in OCL. Onze bijdragen in dit verband zijn:

In aanvulling van een groot aantal beperkingen die geimpliceerd worden door de
EROOS modelstructuur, biedt EROOS de mogelijkheid aan om beper kingen als
eersteklas modelconcept voor te stellen. Gebruik makende van een formele
notatie, kunnen modelbeperkingen opgelegd worden om regels en regulaties van
het probleemdomein uit te drukken. Ons werk dat voor het eerst gepubliceerd
werd in 1993, is vergelijkbaar met OCL dat in 1995 binnen IBM werd
ontwikkeld.

NEDERLANDSTALIGE SAMENVATTING Xi

4.5

In tegenstelling met OCL, legt EROOS een unieke manier voor de specificatie
van EROOS beperkingen op. Dit wordt bereikt door (1) de verplichting om
beperkingen te formuleren vanuit de top klasse(n) van de relatiehiérarchie, en (2)
door de introductie van de ‘not participating’ clausule. Een unieke
specificatiemanier voor beperkingen heeft als voordeel dat het voor duidelijke
criteria zorgt bij de ontwikkeling van conceptuele modellen. Dit leidt tot een
uniek gemeenschappelijk model voor alle analisten die betrokken zijn bij de
ontwikkeling van een conceptueel model. EROOS verbiedt ook expliciet de
specificatie van een EROOS beperking die logisch kan afgeleid worden van
andere beperkingen die reeds aanwezig zijn in het conceptueel model. Zo kan de
specificatie van beperkingen in een EROOS model begrensd worden tot de
verzameling van relevante beperkingen en zal het weinig afgeleide beperkingen
bevatten.

In tegenstelling met OCL, legt EROOS de analisten de verplichting op om
indien mogelijk geimpliceerde beperkingen te gebruiken. Het formalisme
voor EROOS beperkingen is zo ontwikkeld dat het niet mogelijk is om
geimpliceerde beperkingen uit te drukken met behulp van het EROOS
beperkingsconcept. Dit wordt bereikt door het verbod op het gebruik van de
participatiequery (1) in de formulering van een EROOS beperking.

Is-A specialisaties en statische onderverdeling

Het EROOS specialisatieconcept is grotendeels vergelijkbaar met het generalisatie-
concept in UML. Onze bijdragen in dit verband zijn:

4.6

Het mechanisme om beperkingen binnen een specialisatie te verstrengen, is
een kernbijdrage van dit werk. Een participantklasse van een relatie, die een
existentiéle afhankelijkheid uitdrukt van een verfijnd object op een participerend
object, kan verstrengd worden. Bij een dergelijke verstrenging kan een
participantklasse vervangen worden door een klasse die deze participantklasse
via een aantal relaties en specialisaties direct of indirect bevat. Dit laat de analist
toe om strengere afhankelijkheden voor een bepaald deel van de verfijnde klasse

op te leggen.

De systematische aanpak voor een specialisatie, die partitiedisjunctie voor elke
specialisatiehiérarchie, een strikte scheiding tussen abstracte generalisatieklassen
en concrete eindklassen (‘leaf classes') en een verbod op causale afhankelijkheid
oplegt. Dit stuurt de analist naar een model met zuivere specialisatiestructuren en
overzichtelijke meervoudige overervingsbomen.

Query’s en ornamentatie

Het EROOS queryconcept is grotendeels vergelijkbaar met query operations in OCL.
Onze bijdrage in dit verband is de for mele notatie om de semantiek van query’s uit
te drukken. Dit ondersteunt een complete en precieze beschrijving van het
gedragsgedeelte van een model. Zo kan een conceptueel model gebruikt worden voor
simulatie, wat tot een betere validatie van het model door de klant leidt, alsook voor

Xii NEDERLANDSTALIGE SAMENVATTING

modeltransformatie naar een meer softwaregeoriénteerd model op een lager
abstractieniveau. Ons werk is vergelijkbaar met OCL, dat op een later tijdstip werd
ontwikkeld.

4.7 Gebeurtenissen en verrijking

Het EROOS gebeurtenisconcept is grotendeels vergelijkbaar met operaties in OCL.
Onze bijdrage in dit verband is de formele notatie om de semantiek van
gebeurtenissen uit te drukken laat een complete en precieze beschrijving van het
gedragsgedeelte van een model toe en is vergelijkbaar met OCL.

5 Geavanceerde concepten voor conceptuele modellering

Alhoewel de concepten van de EROOS kern toereikend zijn om een model te
construeren dat voldoet aan de kernprincipes voor conceptuele modellering, is het
nuttig om geschiktere concepten ter beschikking te stellen voor de specificatie van
veel voorkomende analysepatronen. Op basis van de identificatie van dergelijke
analysepatronen, biedt het EROOS universum geavanceerde en praktischere
concepten voor het modelleren van het probleemdomein.

5.1 Klassenarchief en objectvernietiging

Onze bijdragen in verband met het klassenarchiefconcept zijn:

» Het concept klassenarchief is een origineel en vernieuwende bijdrage tot het
domein van conceptuele modellering. Andere analysemethodieken bieden geen
destructoren aan of beschouwen vernietigde objecten als nutteloos voor een
model. De introductie van klassenarchieven en hun gebruik in existentiéle
afhankelijkheidsrelaties biedt een krachtig en hoogniveau modelleringsconcept
waarbij belangrijke afhankelijkheidsbeperkingen impliciet in de modelstructuur
worden uitgedrukt. Verschillende soorten beperkingen tussen de levensduur van
een vefijnd object en zijn participantobject kunnen zo rechtstreeks in de
relatiedefinitie worden gespecificeerd.

* Het standaardattribuut Destruction Timestamp voor elk object van iedere
klasse laat de analist toe om te redeneren over het moment waarop een object
vernietigd is. Dit attribuut moet niet expliciet gemodelleerd worden, maar is
automatisch beschikbaar voor elk object in EROOS. Hierdoor kunnen
bijvoorbeeld query’s worden gedefinieerd die de gemiddelde levensduur van een
object berekenen. De analist hoeft niet meer te beslissen of dergelijke attributen
nodig zijn in het model aangezien de EROOS methodiek deze informatie
automatisch voor alle objecten aanbiedt.

e Objecten die vernietigd worden, verdwijnen niet uit het model maar zijn nog
steeds raadpleegbaar om historische informatie te verkrijgen over voorbije

NEDERLANDSTALIGE SAMENVATTING Xiii

gebeurtenissen, vroegere attribuutwaarden en oude relatieverbanden. De
vernietiging van een object houdt enkel in dat het feit uit het probleemdomein
opgehouden heeft te bestaan. Tijdens conceptuele modellering zijn kwesties
betreffende de relevantie van informatie om bepaal de taken uit te voeren, niet aan
deorde

5.2 Mutabiliteit van attribuutwaarden en relatieparticipanten

Het EROOS mutabiliteitsconcept is grotendeels vergelijkbaar met de {readOnly}
property modifier in UML. Onze bijdrage in dit verband is de beschikbaarheid van
oude informatie van attributen en relaties. Dit wordt mogelijk gemaakt door het
feit dat het mutabiliteitsconcept gedefinieerd wordt bovenop het constructionele
model van de EROOS kern. In tegenstelling tot andere analysemethodieken die
attributen als variabelen beschouwen welke overschreven worden als een nieuwe
waarde wordt gedefinieerd, biedt EROOS de mogelijkheid om te redeneren over
vroegere modelinstantiaties. Dit kan door gebruik te maken van een tijdsindicatie
voor attribuut-, verfijnings- en particatiequery’s.

5.3 Composieten en wederzijdse afhankelijkheid

Het EROOS composietconcept is enigszins vergelijkbaar met aggregatie en
compositie in UML. Onze bijdragen in dit verband zijn:

» De invoering van composieten geeft de analist een duidelijk omlijnd concept
voor het modelleren van wederzijdse afhankelijkheid en geheel-deelstructuren,
bestaande uit een niet leeg geheel en een aantal van afhankelijke delen. UML
geeft een ambigue definitie voor aggregaten en composities die (1) geen
wederzijdse afhankelijkheid impliceert en (2) niet duidelijk de verschillen
aangeeft tussen associaties, aggregaten en composities. EROOS geeft een
expliciete definitie van de verschillen tussen relaties die een unilaterale
existentiéle afhankelijkheid uitdrukken en composieten die een wederzijdse
afhankelijkheid uitdrukken.

e Een consequente toepassing van mutabiliteit, klassenarchieven en
geintegreerde beperkingen voor het composietconcept biedt een coherente
methodol ogische aanpak voor conceptuele modellering.

5.4 EROOS beperkingsreacties

Onze aanpak betreffende beperkingsreacties is een origineel en vernieuwende
bijdrage tot het domein van conceptuele modellering. De introductie van
beperkingsreacties zorgt voor een elegante beschrijving van het probleemdomein,
waarbij een algemene beperkingsoplosser aan een beperking kan gerelateerd worden.
De beperkingsreacties kunnen beperkingsschendingen oplossen door specifiek
foutenbehandelingsgedrag in een gebeurtenis te injecteren. Beperkingsreacties
kunnen ook gebeurtenissen opstarten op basis van de vooruitgang van de tijd. Dit laat
toe om gedistribueerde effectbeschrijvingen voor gebeurtenissen op te stellen, waarbij

Xiv

NEDERLANDSTALIGE SAMENVATTING

dlereerst het basiseffect van een gebeurtenis wordt gespecificeerd. De
beperkingsreacties specificeren kleine bijkomende functionaliteitsbeschrijvingen die
aan het effect van de gebeurtenis worden toegevoegd op basis van de beperkingen die
geschonden worden door de gebeurtenis. Een dergelijke aanpak zorgt voor een
scheiding van de specificatie van de normale functionaliteit voor de gebeurtenis en de
exceptionele functionaliteit voor de foutenbehandeling. De normale functionaliteit
wordt in de gebeurtenis zelf beschreven, terwijl de functionaliteit van de
foutenbehandeling in een aantal beperkingsreacties wordt beschreven. Zonder het
gebruik van beperkingsreacties bevat de specificatie van een gebeurtenis een groot
deel gedupliceerde beschrijvingen. Deze gedupliceerde specificaties komen vooral
van de foutenbehandeling en van de functionaliteit voor het bewaren van de
geldigheid van beperkingen. Dit veroorzaakt een grote hoeveelheid aan duplicatie in
een model. Beperkingsreacties ondersteunen een aanpak van scheiding van belangen
(separation of concerns), door de centrale groepering van alle functionaliteit
betreffende foutenbehandeling. Beperkingsreacties kunnen gebruikt worden om
crosscutting behaviour betreffende beperkingen in een model te specificeren,
waardoor alle gebeurtenissen worden uitgebreid met de functionaliteit om de
geldigheid van de beperking te behouden. Het kan daarom aanzien worden als een
techniek voor aspectgeoriénteerde softwareontwikkeling (AOSD).

5.5 Afleidbare groepen en dynamische onderverdeling

Onze aanpak betreffende afleidbare groepen is een originele en vernieuwende
bijdrage tot het domein van conceptuele modellering. Afleidbare groepen kunnen
meer beperkingen direct in de model structuur uitdrukken. In plaats van een expliciete
EROOS beperking voor een relatie te specificeren, kan de relatie een specifieke
objectengroep als participant bepalen. Deze groep identificeert de verzameling van
objecten die als een geldige participant in de relatie kunnen optreden. Hierbij wordt
de EROOS beperking getransformeerd naar een compositieregel voor een afleidbare
groep. Daarenboven geven afleidbare groepen ook een dieper inzicht in het potentieel
van een klasse. In het model wordt namelijk expliciet aangegeven dat een object in
een aantal relaties kan participeren als het object tot een specifieke groep behoort.

Conclusies

In dit doctoraat hebben we een beperkingscentrale benadering voor
objectgeoriénteerde conceptuele modellering voorgesteld, gebruik makende van
hoogniveau beperkingsspecificaties als kernstructuur van het conceptueel model.
Onze aanpak convergeerde in de EROOS methodiek waarvan twee versies werden
voorgesteld. De basisversie, namelijk de EROOS kern, gebruikt een constructieve
modelleeraanpak waarbij informatie enkel kan toegevoegd worden aan een
conceptuele modelinstantiatie. De uitgebreide versie, namelijk het EROOS
universum, biedt bijkomende ondersteuning aan voor terugkerende analysepatronen

NEDERLANDSTALIGE SAMENVATTING XV

van de EROOS kern door middel van geavanceerde en meer praktische concepten.
Hierbij wordt de EROOS kern als onderliggende basis gebruikt.

De bijdragen van dit doctoraat, die hierboven gedetailleerd werden beschreven,
situeren zich op drie vliakken, namelijk (1) geavanceerde methodologische concepten
om de kernprincipes van conceptuele modellering te bereiken, (2) de definitie van
nieuwe structurele concepten om model beperkingen impliciet in de modelstructuur
zelf uit te drukken, en (3) de introductie van beperkingen met bijbehorende
resolutiemechanismen als een eersteklas modelconcept.

6.1 Toegevoegde waarde voor modelgedreven ontwikkeling

EROOS verleent toegevoegde waarde aan modelgedreven ontwikkeling (Model-
Driven Development - MDD) door de formalisering van conceptuele modellering. Dit
laat toe het MDD proces te starten vanaf de analysefase, vertrekkende van het
conceptueel model van het probleemdomein.

MDD is een raamwerk voor softwareontwikkeling, waarbij een rigoureuze aanpak
wordt gevolgd die steunt op ontwikkeling door transformatie. Op basis van
hoogniveau platformonafhankelijke modellen (Platfor m-1ndependent Models - PIM)
worden laagniveau platformspecifieke modellen (Platform-Specific Models - PSM)
geconstrueerd. Het doel is om architecturale en ontwerpgeoriénteerde zaken te
scheiden van technologische en implementatiegeoriénteerde beslissingen door middel
van een gelaagde structuur van modeltransformaties. Dit laat toe om gradueel meer
detail en platformafhankelijkheid in de laagniveau modellen te introduceren. Een
dergelijke aanpak kan uiteindelijk leiden tot (semi-) automatische codegeneratie voor
het softwaresysteem. MDD steunt op geformaliseerde modellen die (1) als
invoermodel kunnen gebruikt worden voor een modeltransformator en (2)
geproduceerd worden als het resultaat van een transformatiestap.

Omdat uit de meeste analysemethodieken modellen voortvioeien die informele
beschrijvingen bevatten, zijn deze modellen niet geschikt voor een MDD aanpak.
Informele beschrijvingen kunnen niet gebruikt worden als invoer voor een
modeltransformatie omdat het zeer moeilijk is om gestructureerde informatie uit een
informeel element te extraheren. Modellen kunnen enkel gebruikt worden voor een
MDD aanpak als de informatie in een formele notatie wordt uitgedrukt die
onderzocht, geévalueerd en getransformeerd kan worden naar een ander formaat.
Omdat EROOS een volledige formalisering van de structurele en gedragselementen
van een conceptueel model aanbiedt, is het geschikt as notatie voor de
invoermodellen van een MDD transformatie.

De transformatie van conceptuele modellen op een (semi-) automatische manier is
zowel interessant voor het domein van conceptuele modellering als voor MDD.

» Betreffende conceptuele modellering kan het helpen om de analyseresultaten in
de volgende softwareontwikkelingsfasen te laten renderen. Een conceptueel
model is niet louter een beschrijving van het probleemdomein en de functionele

XVi

6.2

NEDERLANDSTALIGE SAMENVATTING

vereisten, maar wordt ook als een waardevol bezit beschouwd dat als basis kan
dienen voor de verdere systeemontwikkeling. Daarenboven maken MDD
transformaties rapid prototyping en modelsimulaties mogelijk om zo de
conceptuele modellen te verifiéren en valideren. Daarnaast kunnen abstracte
visies op het conceptueel model gegenereerd worden om zo de communicatie
met de klant en eindgebruiker te bevorderen.

Betreffende MDD laat een formeel conceptueel model toe om het MDD proces
vanaf het probleemdomein te darten in plaats van vanaf een
platformonafhankelijk softwaremodel. Dit softwaremodel kan dan door een
transformatie van het conceptueel model worden bekomen.

Validatie

We hebben de EROOS methodiek op drie vlakken gevalideerd:

Om de mogelijkheden en de geschiktheid van EROOS voor conceptuele
modellering te kunnen evalueren, hebben we een groot aantal gevalstudies
uitgevoerd. In samenwerking met andere leden van de SOM onderzoeksgroep en
verscheidene industriéle partners, hebben we de EROOS methodiek toegepast op
een aantal gevalstudies uit diverse applicatiedomeinen. Deze gevalstudies werden
uitgevoerd in het kader van onderzoeksprojecten in samenwerking met de
industrie, licentiaatsthesissen die meestal door een industri€le partner werden
begeleid en as studentenprojecten in een licentiaatscursus over
objectgeoriénteerde analyse (OGA, vroeger OGO). De grote variéteit aan
applicatiedomeinen toont aan dat EROOS een algemene methodiek is die kan
toegepast worden op een groot aantal domeinen, en dus niet enkel geschikt is
voor het modelleren van informatiesystemen.

Onze conclusies betreffende de gevalstudies zijn dat (1) EROOS geschikt is om
een grote variéteit aan applicatiedomeinen te modelleren zoals hoger reeds
vermeld, (2) de EROOS methodiek helpt om verborgen domeinkennis aan het
licht te brengen, (3) EROOS een goed middel is om objectoriéntatie en
conceptuele modellering aan te leren, (4) het een vrij grote inspanning en een
nauwkeurige aanpak en attitude vraagt om conceptuele modellen in EROOS te
construeren, (5) MDD toolondersteuning nodig is om het conceptueel modelleren
ten volle te laten renderen en (6) personen met een opleiding van academisch
niveau redelijk eenvoudig in staat zijn om de EROOS methodiek aan te leren.
Personen met een opleiding van professioneel niveau daarentegen zijn vaak enkel
in staat om passieve modelleringsvaardigheden verwerven. Dit betekent dat ze
meestal wel in staat zijn om EROOS modellen te begrijpen en te evalueren, maar
moeilijkheden ondervinden om dergelijke modellen zelf te construeren.

Om het principe van uniciteit te evalueren, hebben we het gebruik van EROOS in
een licentiaatscursus over objectgeoriénteerde analyse (OGA, vroeger OGO)
vergeleken en geévalueerd. Onze bevindingen zijn dat er drie grote oorzaken van
modelverschillen zijn, namelijk (1) het niveau van detail bij het modelleren,
waarbij studenten een verschillende inschatting hadden van de relevantie van

NEDERLANDSTALIGE SAMENVATTING Xvii

bepaalde feiten uit het probleemdomein, (2) de persoonlijke kennis van het
probleemdomein, waardoor fouten werden geintroduceerd door het gebrek aan
inzicht in het probleemdomein en (3) fouten die gemaakt werden tegen de regels
van de EROOS methodiek, waardoor studenten bepaalde concepten op een
incorrecte manier gebruikten.

* We hebben toolondersteuning voor de EROOS methodiek ontwikkeld voor
modellering, simulatie en transformatie, bestaande uit:

— Een modelleertool dat toelaat om EROOS modellen te construeren en
hieruit specificaties en modeldiagrammen te genereren. Deze EROOS tool
is ontwikkeld door Bart Swennen van de SOM onderzoeksgroep.

- Een generator voor modelsimulaties die automatisch een C++ of Java
applicatie genereert met een bijbehorende generische gebruikersinterface
voor een EROOS model. Dit ondersteunt rapid prototyping en de
mogelijkheid tot vroege modelvalidatie. De applicatie bevat automatische
gegenereerde code voor beperkingscontrole die de modelbeperkingen
afdwingt door de resulterende modelinstantiatie te controleren na elke
gebeurtenis. Indien de modelinstantiatie bepaalde beperkingen schendt, zal
er deze geweigerd worden en de toestand die bestond voor de uitvoering van
de gebeurtenis hersteld worden (rollback). Deze generator werd ontwikkeld
in een aantal opeenvolgende licentiaatsthesi ssen.

- Een transformator van EROOS naar UML modellen waarbij de
hiérarchische EROOS modelstructuur afgeviakt wordt in het UML model
door gebruik te maken van klassen en simpele associaties. Deze
transformator werd ook ontwikkeld in een licentiaatsthesis.

6.3 Verder onderzoek

De zoektocht naar de perfecte conceptuele modelleringsmethodiek is verre van
beéindigd. Enkele mogelijke richtingen voor verder onderzoek zijn (1)
methodogische verbeteringen voor EROOS, zoals ondersteuning voor gedistribueerde
effectbeschrijvingen, zachte beperkingen en EROQOS uitbreidingen, (2) ondersteuning
voor modelgedreven softwareontwikkeling van EROOS naar UML, (3)
modeltransformaties naar abstracte visies op het conceptueel model om de
communicatie met de klant en eindgebruiker te bevorderen, en (4) de realisatie van
een beperkingscentrale benadering in UML.

