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Abstract 

Object-oriented analysis, and more specifically conceptual modelling, is a software 
engineering activity that aims at studying, analysing, and capturing the knowledge 
about the universe of discourse for a system to be developed. This should result in the 
specification of a consistent and unambiguous model that describes all domain 
knowledge, facts, and rules, in which every element from the universe of discourse 
has a transparent one-to-one correspondence to an entity in the conceptual model.  

We propose in this dissertation a constraint-centric approach towards object-oriented 
conceptual modelling. This is achieved by the usage of high-level constraint 
specifications as the core model structure for conceptual modelling. In particular, our 
approach enriches the conceptual model structure on two levels: by the definition of 
new structural concepts to express model constraints implicitly in the model structure, 
and by the introduction of constraints with supporting resolution mechanisms as a 
first-class model concept. 

Concerning the definition of structural concepts, we developed new concepts with a 
dedicated applicability context attached in order to specify constraints implicitly in 
the model structure. The incorporation of model constraints in each methodological 
concept, the usage of existential dependency as the key modelling criterion, the 
introduction of explicit class archives, and the formal specification of model events 
and queries enrich the expressive power of a conceptual model structure. 

Concerning the introduction of constraints as a first-class model concept, we 
developed a mechanism to specify model constraints using many-sorted first order 
logic. The constraint trigger concept attached to a constraint defines a generic 
constraint solver that can resolve constraint violations by injecting additional 
behaviour into an event or by firing an event due to progress of time. 

Our approach has converged into the EROOS methodology of which two versions are 
proposed. A core version, the EROOS kernel, uses a constructional modelling 
approach in which information can only be added to a conceptual model instance. An 
extended version, the EROOS universe, provides additional support for recurrent 
EROOS kernel analysis patterns through advanced and more practical concepts using 
the core version as the underlying base. 
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Chapter 1 Introduction 

Introduction 

One of the real challenges for software engineering is, on the one hand, being able to 
obtain a good understanding of the needs and requirements for the software system to 
be built, and, on the other hand, the ability to deal with and respond to changing 
conditions and requirements throughout the development of the system and its further 
life cycle. Brooks already stated in 1987 that ‘The hardest single part of building a 
software system is deciding precisely what to build.’, while ‘All successful software 
gets changed … The software product is embedded in a cultural matrix of 
applications, users, laws, and machine vehicles. These all change continually, and 
their changes inexorably force change upon the software product’ [20]. Almost 20 
years later, Ambler states that ‘Domain knowledge is important … If you do not 
understand the problem domain there is very little chance that you can be 
effective’[4], while Martin states that ‘It is the ability to respond to change that often 
determines the success or failure of a software product’ [98]. 

In order to build a software system that conforms to the needs of the customers and 
end users, the software engineer must be able to obtain a clear insight into all issues 
regarding the software system and the context in which it must operate. In addition, 
modern software systems are far too complex to be built in an ad hoc way, but instead 
require clear and unambiguous methods and notations to develop qualitative systems 
that fulfil the needs and expectations of the customers. In order to master both the 
continuously changing requirements as well as the complexity of software systems, 
rigorous development methods, techniques, and notations are needed to model and 
structure the requirements in an optimal manner.  

Object-oriented analysis, and more specifically conceptual modelling, is a key asset 
in dealing with changing requirements, since it enables to express these requirements 
in a consistent manner within the context of the universe of discourse and can as such 
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provide clear insight into the impact of a changing requirement on the software 
system and the environment in which it operates. 

This introduction firstly discusses the background for this dissertation. Object-
oriented analysis is positioned in the broader context of the overall software life 
cycle. The need and purpose of object-oriented analysis are stated, and its main 
characteristics are discussed. Hereafter, the major difficulties with current object-
oriented analysis methods, and the main challenges for object-oriented analysis are 
identified. Next we state the goals addressed by this work. We conclude this 
introductory chapter with an overview of the text. 

1.1 Background 

1.1.1 The Software Life Cycle 

The ever-increasing size and complexity of software demands for rigorous techniques 
and suitable tool support for the development of software. In software engineering, as 
in other engineering disciplines, the development process of a software system is 
structured into a number of phases in order to cope with the inherent complexity of it. 
Each phase is focussed on different aspect of the development process, and has its 
own purpose, goal, focus points, notations, and formalisms to express its results. 
Although there is no real consensus on the exact number and naming of the phases 
into which a software engineering process can be divided, the following phases are 
commonly identified: 

• Analysis Phase: In this phase, the universe of discourse (UoD, also called 
problem domain, business domain, real world or system context) in which the 
software system will operate is studied, and modelled into a conceptual model 
(also called domain model, business model or analysis model). A conceptual 
model is a formal model in which every element from the universe of discourse 
has a transparent and one-to-one correspondence to an entity in the conceptual 
model. Its goal is to obtain a proper insight in the context in which the system 
will operate. A conceptual model provides a complete description of the current 
or envisaged universe of discourse expressed in one or more diagrams. In 
addition, the requirements of the system are identified and specified both on a 
functional and non-functional level. The specification of the requirements should 
be based on the facts and information that occur within the universe of discourse 
through the usage of the conceptual model. Sometimes a further distinction is 
made between the requirements phase [47][41][122], focussed on capturing the 
requirements and expressing them in a mostly textual format, and the domain 
analysis phase [89][7], focussing on studying the universe of discourse (context) 
and constructing a conceptual model for it (context realization). 

• Architectural Phase: In this phase, an architecture for the software system is 
defined. An architecture describes the structure of the system, which comprises 
software elements, the externally visible properties of those elements, and the 



1.1. BACKGROUND 3 

 

relationships among them [10]. The result of this phase is an architectural 
model, which contains a complete description of the architecture of the system 
including its links with other systems and the external world.  

• Design phase: In this phase, the software elements within the architecture are 
further elaborated. This includes a whole range of activities, going from taking 
decisions about the realisation of the software elements and the definition of their 
internal substructures, evaluating potential usage of software libraries and 
available (possibly off-the-shelf) components, incorporation and application of 
software patterns, definition of interfaces between software elements, to 
identification of implementation classes, and describing their interrelations and 
their internals. Sometimes a further distinction is made between high-level 
design, focussing on components, interfaces, classes and their interrelationships, 
and low-level design, focussing on class internals, such as state diagrams, 
operations, and instance variables [171]. The result of this phase is a design 
model, containing all the details about the system to be realised.  

• Implementation phase: In this phase, the software system is implemented and 
executable code is produced according to its design. The result of this phase is an 
executable program(s) in a single or multiple programming languages. 

• Deployment phase: in this phase, the system will be deployed in its environment 
in which it will operate. This includes providing the necessary run-time support 
for the system and establishing its interaction with the external world.  

Although often a dedicated maintenance phase is identified, covering all tasks and 
activities that have to be performed to keep the system running and up-to-date with 
the expectations and requirements of the customers and the end users after system 
deployment, we do not consider this as a true phase on its own. In fact, the 
maintenance phase can better be seen as a continuous activity throughout all 
identified phases above, adding to and adjusting the outcomes of the software 
engineering phases in order to maintain the system according to the needs of its 
customers and end users. All tasks that have to be performed during maintenance can 
be categorised into one of the development phases that were mentioned above. In the 
same manner, a testing phase or more broadly a validation and verification phase 
could be identified. Also, this phase could be considered as not a true phase on its 
own, since validation, verification, and testing occurs to a certain extent during all 
phases of the software development process [11][98][12][149]. 

The process of developing a software system realises a certain path through a number 
of activities that will be performed in the phases defined above. Although it is 
possible that these phases are executed fully sequentially, the development of a 
software system often follows an iterative, incremental development process, 
focussing on the realisation of a part of the functionality after which the software 
system is further been extended [173][55][88]. 

Models are used to express the properties and structure of the software elements in 
order to reason and communicate about them. Throughout the software development 
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process, models can be further detailed by extending them with additional 
information that is relevant in a phase, transforming them into lower-level models 
using the same or different notations, and, eventually, generate code from them. 
Model-Driven Development (MDD) techniques [50][83] can be used to automate 
transformations from one model into another. 

The object-oriented paradigm, which has been existing for almost 40 years, is 
nowadays widely accepted within the Software Engineering community as the 
paradigm to structure software systems in an optimal way. Although this paradigm 
originated from implementation languages, such as Simula [33] and Smalltalk [56], it 
is currently being used in all phases of the development process. The object-oriented 
paradigm focuses on identifying objects, clustering them into classes, and describing 
their characteristics, behaviour and interrelationships. 

This work mainly focuses on the analysis phase. In addition, the relationship between 
the analysis phase and the design phase will be discussed to some extent. The 
implementation and deployment phase are beyond the scope of this work. 

1.1.2 Object-Oriented Analysis 

This section gives an overview of the most important aspects within object-oriented 
analysis. It will identify the main distinctions with object-oriented design and 
implementation, and will highlight the necessity of it for the overall software 
development process. Last, we will present and compare the different approaches to 
object-oriented analysis. In order to classify the object-oriented analysis methods in a 
number of methodological families, this section introduces the notion of analysis 
views, focussing on the models that a method produces. A large number of 
comparisons of object-oriented analysis and design methods have been made 
[6][35][102][32][45][68][69][164][66][23].  

1.1.2.1 Scope and Goal of the Analysis phase 

Although object-oriented analysis is mostly founded on object-oriented design and 
programming ideas, conceptual modelling is also heavily influenced by the data-
oriented development methods. The roots of object-oriented analysis can actually be 
situated on four domains: 

• The object-oriented programming paradigm [33][56] and object-oriented design 
approaches [17][16][29]. 

• Function-oriented and structured analysis (SA), design (SD), and programming 
approaches [54][37][169][170][116][81], such as Structured Systems Analysis 
and Design Method (SSADM) [40][123]. 

• The relational model [30], Entity-Relationship (ER) modelling [24][42], and 
data-oriented development methods [105][106]. 

• System design approaches such as Jackson Structured Programming (JSP) [72] 
and Jackson System Development (JSD) [73]. 
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The goal of the analysis phase is to acquire an insight into the universe of discourse in 
which the software system will operate, and to express the requirements of the system 
to be applied within the universe of discourse according to the needs of the customers 
and the end users. The input to analysis is a universe of discourse and a problem 
statement. The output of analysis is an understanding of the problem domain, 
expressed in a conceptual model, and a requirements specification for a software 
system or a family of related software products [8]. During the analysis, the universe 
of discourse is thoroughly studied and the knowledge is captured in a conceptual 
model, also called a domain, business or analysis model.  

An object-oriented conceptual model can actually be specified merely for a better 
understanding of the universe of discourse without necessarily having to be realised 
by a software system. It can as such be applied for Business Process Re-engineering 
(BPR) [78][19][67][53][77], in which an actual business process from the universe of 
discourse is modelled, studied, and improved, or being transformed into a totally new 
process. As such, the requirements in such a conceptual model will express the new 
procedures, rules and regulations that should be followed in the ameliorated process. 

The object-oriented paradigm is highly suited for performing analysis and expressing 
the domain analysis results. Objects and classes, the primary modelling constructs of 
the object-oriented paradigm, are excellent means for performing a classification of 
relevant items from the universe of discourse, since the universe of discourse can be 
considered as a universe of related things that either are objects or subjects. Based on 
the core concept of a class, both structural elements, representing facts and 
interdependences from the universe of discourse, as well as behavioural elements, 
representing the ways in which these facts can evolve over time, can be used to 
construct a complete model of the universe of discourse that is relevant for the 
software system to be developed. Since an object-oriented model consists of an 
integration of both structure and behaviour, the resulting domain model will both 
cover the aspect of ‘which information is present within the universe of discourse at a 
certain moment in time’ as the aspect of ‘how can the information within the universe 
of discourse evolve over time’.  

The results of the analysis phase can be considered on three levels:  

• A domain model of the present universe of discourse, containing a complete 
specification of the universe of discourse as it exists and operates at the current 
moment. It describes relevant elements that exist in the universe of discourse, the 
properties concerning them, and the events in which they can become involved. 
Such model is called by Ludewig [94] a descriptive model. 

• The specification of the functional requirements, which will use the domain 
model as the context to which they refer.  

• An analysis model expressing the solution model, describing the ultimate 
envisioned transmuted universe of discourse in which the functional 
requirements have been realised. Such model is called by Ludewig [94] a 
prescriptive or explorative model. 
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However, the analysis results cannot always be clearly separated according to the 
three levels above, since a number of elements cannot always be identified as 
belonging to a single level. In fact, the specification of the functional requirements 
will often be done by directly incorporating them into a prescriptive domain model. 
On the other hand, the distinction between the universe of discourse as it is and the 
universe of discourse as it should be is easier to make, although, in some cases, only 
the latter will be modelled during software development. 

1.1.2.2 The Necessity of Analysis 

According to Jackson [73], a software engineer should start by building a model of 
reality, after which the functional requirements should be described based on this 
model of reality. This improves extendibility, preciseness, and communication 
between the software engineers and the customers. 

We claim that an accurate and precise description of the functional and non-
functional requirements cannot be done without a clear insight into the universe of 
discourse and without being based on a detailed model of all aspects from the 
universe of discourse. Without the knowledge of how the universe of discourse is 
structured, and which inherent properties are embedded within it, it is impossible to 
describe how the envisioned system should behave in its context. For example, 
business processes that the system should support, or rules and regulations that the 
system should enforce cannot exhaustively be specified without having proper insight 
into the elements that they apply upon. This will lead to incomplete requirements 
elicitation and imprecise requirements definition. 

A process that does not take into account object-oriented analysis will rest on an 
implicit image and understanding of the universe of discourse by the software 
engineers, each having to build an implicit conceptual model in their mind. Since 
these implicit conceptual models will never explicitly be reviewed, assessed or agreed 
upon, they will lead to incomplete, incorrect, and incompatible visions on the 
universe of discourse, giving rise to the introduction of errors and inconsistencies 
during later development stages, and customer dissatisfaction due to the discrepancy 
between their requirements for the system and the actual properties of the software 
system that is delivered. 

1.1.2.3 Distinction between Analysis and Design Concerns 

There are many visions on and definitions of object-oriented analysis. Object-oriented 
analysis is defined by Yuan [171] as ‘an activity of discovering, understanding, and 
describing facts about real-world objects and their behaviors in the problem to be 
solved. These facts are something system developers cannot change or invent.’, while 
object-object design is defined as ‘an activity of building the system architecture as 
well as each system class. This involves inventing and specifying classes and their 
properties in the solution domains.’ Monarchi [102] defines analysis as ‘modelling 
the problem domain by identifying and specifying a set of semantic objects that 
interact and behave according to system requirements.’, while object-oriented design 
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is ‘modelling the solution domain, which includes the semantic classes and interface, 
application, and base/utility classes identified during the design process.’ 

Since the analysis phase focuses on the universe of discourse, software- and 
hardware-related issues are not yet relevant at this stage. The transition to a software 
system will gradually introduce these issues during later stages of the development. 
Although a number of concepts seem to be quite similar due to the usage of the same 
object-oriented paradigm, there are some important major distinctions between, on 
the one hand, object-oriented analysis, and, on the other hand, object-oriented design 
and implementation:  

• The concepts used in object-oriented analysis try to capture knowledge that is 
present within the universe of discourse. Although concepts as classes and 
objects are being used to represent them, these concepts try to grab information 
from the universe of discourse and thus refer to real-life items, people or facts. 
Although a real-life class in an analysis model can lead to the implementation of 
a similar class in the actual system, the concepts in a conceptual model are from 
a different nature and have no direct commonalities with software classes, 
software objects, database tables or database records.  

• The structural elements in an analysis model try to capture the real-life 
information and dependencies from the universe of discourse. The information 
represented in an analysis model reflects facts present in the universe of 
discourse. Although a real-life fact in the analysis model can lead to a specific 
pointer or an instance variable value of a software object, the structures in a 
conceptual model have nothing directly in common with instance variables, 
pointers or data base entries. In addition, the use of inheritance in an analysis 
model reflects the fact that a certain real-life element type can be seen as a 
subtype of another real-life element type, which can but does not necessarily 
have to lead to an implementation inheritance relationship between software 
classes.  

• The behavioural elements of an analysis model try to capture changes of real-life 
information within the universe of discourse. The represented events reflect 
occasions from the universe of discourse. Although a real-life event can lead to a 
specific call of a class method on a software object, the events in a conceptual 
model have nothing directly in common with methods, operations or stored 
procedures.  

• The model constraints of an analysis model try to capture rules and regulations 
from the universe of discourse, whether they represent physical laws or human 
imposed restrictions. Although they can, and often also they will be enforced on 
the software level, the constraints of a conceptual model have nothing directly in 
common with the realisation of them in the software, and the decisions to be 
taken on how, where, and when to check and enforce them in the ultimate 
software system.  

• Since an analysis model reflects the facts and occurrences from the universe of 
discourse, the information contained in the model is supposed to be correct, and 
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the events in synchronisation with the occurrences in the real-life world. Issues 
regarding the accuracy and validity of the stored information, and the time span 
between the occurrence of the event and its registration in the system are, 
therefore, only a concern of the actual software system, and are as such not 
treated in the analysis model.  

Although object-oriented analysis uses the same kind of concepts as object-oriented 
design and implementation, there is a profound distinction on the kind of elements 
they model, the level of detail of the information in the model, and the quality criteria 
that are used during the construction of the model. 

1.1.2.4 Classification of Analysis Views 

Object-oriented analysis methods often offer a number of diverse analysis views on 
the universe of discourse. Therefore, the number of models they produce as a result of 
their activity can vary. Although most object-oriented analysis methods incorporate 
both structural and behavioural aspects to a certain extent, one can clearly distinguish 
two distinct families: structural-focussed analysis methods and behavioural-focussed 
analysis methods. 

1.1.2.4.1 Structural Analysis Methods 

Structural object-oriented analysis methods, such as Booch [15], OMT [93][126], 
OOA [28], OOIE [96][97], OOSA [43], and Fusion [31], are mainly focussed on 
discovering and identifying domain entities, their properties, and the interrelations 
between them. The domain model, expressed as a class diagram or a static structure 
diagram [128] providing a class centred description of the information, is the primary 
asset of this type of methods. Classes are used as the major modelling concept, and 
are further detailed using attributes and operations, and they are interconnected with 
each other using associations.  

Although their main focus is to obtain a good capturing of the information structures 
present inside the universe of discourse, operations are nevertheless a specific point 
of interest for these methods. Descriptions are made based on the ways objects 
interact with each other to fulfil their responsibilities. Typical object interactions are 
identified and captured as operations applicable on the objects of the corresponding 
classes. This results in object interaction diagrams, such as collaboration diagrams 
and message sequence diagrams [128]. 

1.1.2.4.2 Behavioural Analysis Methods 

Behavioural object-oriented analysis methods, such as SM [134][133], RDD [167], 
OBA [124], OOSE [76][75], BON [103][156], and UON [115], are mainly focussed 
on discovering and identifying inter-object behaviour. They focus on specifying the 
interface of the objects and defining the protocols between them. For instance, CRC 
cards can be used as the major modelling concept, defining the necessary Classes, 
their Responsibilities, and their mutual Collaborations. Although behavioural object-
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oriented analysis methods also use classes as their core concept, the class is rather 
studied in isolation, focussing on the interaction with the class, while structural 
analysis methods study the class in its broader context, focussing on the interrelations 
with other classes. A number of behavioural analysis methods make a further 
distinction between different types of behavioural elements, such as events, 
operations, methods and signals. 

Although class behaviour is the main focus of behavioural methods, class properties 
and interrelationships are, nevertheless, present in a slightly different form. Instead of 
defining properties and interrelationships as first-class entities, they can only be 
retrieved by interacting with the object, thereby obtaining the information indirectly 
using the provided operations for the object. 

Since behavioural object-oriented analysis methods focus specifically on classes and 
the interaction with them, they tend to describe the software system rather than the 
universe of discourse. Therefore behavioural object-oriented analysis methods can be 
characterised as software analysis methods rather than domain analysis methods. 

1.1.2.4.3 UML as the Catalyst of Analysis Views  

The Object Management Group (OMG) has tried to standardise the notation used for 
the description of software artefacts during the overall software life cycle by defining 
the Unified Modeling Language (UML) [120][119][107][109][128]. Through the 
standardisation of a modelling notation, UML tries to establish a common vocabulary 
that can be understood by any software engineer. It establishes a common notation 
and semantics for software artefacts by defining a number of areas that can be 
modelled, views that can be defined for each area, models or diagrams that can be 
used to express each view, and concepts that can occur within these diagrams. 
Whereas UML 1.4 defines 9 diagram types (class, object, use case, sequence, 
collaboration, statechart, activity, component, and deployment diagram), UML 2.0 
defines 4 major areas (structural, dynamic, physical, and model management area), 9 
views (static, design, use case, state machine, activity, interaction, deployment, model 
management, and profile view), and 11 diagram types (class, internal structure, 
collaboration, component, use case, state machine, activity, sequence, 
communication, deployment, and package diagram). 

The general adoption of UML as the de facto standard notation for the description of 
software artefacts from the analysis up to the implementation phase has led to a rather 
dominant position of structural object-oriented analysis methods. Although the 
emergence of Agile software development [11][98] gave rise to a revival of more 
behavioural object-oriented analysis techniques, the Agile Modelling approach 
[3][18] has redirected the Agile community again to the usage of UML and more 
structural based object-oriented analysis techniques. 

In addition to the standardisation of the modelling notation, there are even efforts to 
standardise the software development process. The Unified Process (UP) [74] tries to 
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define a component-based software development process framework as a reference 
model that is use-case driven, architecture-centric, iterative, and incremental. 

1.1.3 Problems and Open Issues for Object-Oriented Analysis 

This section identifies a number of problems and open issues for object-oriented 
analysis. Although we provide an isolated description of the open issues, many of 
them are rather interrelated. As an example, since UML tries to integrate a large 
number of notations for software artefacts into a single modelling language, it is a 
very extensive language that offers the possibility of using a huge number of 
concepts. Therefore, it is unclear for an analyst to evaluate and identify the best-fitted 
modelling concept for expressing a specific item. So the modelling notation is related 
to the methodological approach. Another example is the fact that the usage of 
informal specifications and the usage of a complex notation with several separate 
models can easily give rise to an inconsistent analysis model. 

1.1.3.1 Modelling Notation 

Almost all current object-oriented analysis methods use the Unified Modeling 
Language as the notation for defining the outcomes of the analysis phase. Since the 
Unified Modeling Language is mainly defined as a unification of primarily object-
oriented design notations, it has a clear focus on object-oriented design and 
implementation concepts. Although it is possible to express conceptual models using 
UML as the notation, the provided concepts will drive the analyst heavily to a more 
software focussed analysis model rather than a conceptual model. This can lead to 
several problems: 

• Since the object-oriented paradigm originated from object-oriented programming 
languages, many object-oriented concepts are still largely biased towards a 
programming context. Therefore UML is better suited for building a 
computational model rather than a conceptual model. For instance, all 
functionality is designated on the object level in order to be invoked on a specific 
object, or on the class level in case of class methods. However, it could be useful 
to define functionality on a model level during the analysis phase. As another 
example, the value of attributes and associations can be changed, as an analogy 
to the fact that instance values and pointer sets are often manipulated on a 
programming level. However, the knowledge that an attribute had a particular 
value at a certain moment in time is a fact one should be able to reason about, 
without being concerned about how this value should be stored and referred to in 
the model. 

• UML tries to cover the specification of all software artefacts during the whole 
software engineering life cycle. It must therefore allow the modeller to use the 
UML concepts on the analysis level, the high-level design level as well as the 
detailed design and implementation level. As such, each definition in UML is the 
result of a compromise between different viewpoints, allowing several 
interpretations in order to fit the needs of all levels on which it can be applied. 
From the standpoint of UML, it is useful to have a loose definition of the 
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concepts in order to enlarge its applicability. But from the standpoint of the 
analyst, it is very difficult to evaluate which concept should be used in which 
manner when there is no clear interpretation for it. This can lead to different 
interpretations of analysis models by several modellers, since the exact meaning 
of certain model constructs can be very ambiguous. 

• UML contains a large number of concepts that are not aimed for being used 
during object-oriented analysis. Moreover, some concepts can be useful on the 
analysis level, but only on a rather abstract level without defining them in full 
details using all capabilities of the UML notation. But since these unsuited 
analysis concepts and unnecessary detailed descriptions are an integral part of 
UML, it is very confusing for an analyst for which purposes and to which extent 
these concepts should be used during the analysis phase. As an example, 
sequence and deployment diagrams are concepts that are more related to later 
phases of the software development process, while details such as visibility and 
navigability in a class diagram should not yet be addressed during the analysis 
phase. By using such a rich and complex notation as UML on the analysis level, 
the analyst gets overwhelmed by a huge variation of concepts spread out over 
several abstraction levels. The analyst must determine oneself which concepts 
could be useful for expressing analysis models. This is referred to by Wand [160] 
as construct excess, in which a notation offers constructs that do not correspond 
to a type of facts from the universe of discourse. This leads to analysis models 
incorporating certain low-level elements that should not have been defined yet, 
or providing a huge level of details that is not suited for the analysis level. In 
both cases, it gives rise to the fact that unnecessary decisions are taken much too 
early in the development process. 

• Although UML offers a large number of concepts, it lacks concepts useful for 
object-oriented analysis. For instance, UML lacks the possibility to reason 
explicitly about dead or passive objects, expressing information that once was 
valid but has ceased to exist. This is referred to by Wand [160] as construct 
deficit, in which a type of facts from the universe of discourse cannot be 
represented by any of the modelling constructs. Although UML offers a profile 
mechanism in order to extend its notation using stereotypes and stereotype 
attributes (called tagged values in UML 1.x), it is impossible to add other kinds 
of extensions to UML. This leads to analysis models that try to express certain 
information by realising it using inadequate concepts offered by the notation. 

• Since UML does not offer a clear-cut set of integrated and complementary 
concepts, a huge problem of overlapping modelling concepts arises. An analyst 
constantly has to evaluate during analysis which concepts to use for expressing 
certain information. For instance, a relation between two items can be modelled 
as a pure association, an association class, an association reified into an 
autonomous class having two assisting associations, or as referential attributes 
inside the items themselves. This is referred to by Wand [160] as construct 
redundancy, in which a type of facts from the universe of discourse can be 
represented by more than one modelling construct. This leads to different 
personal styles in analysis models, which obstruct the communication between 
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analysts and hamper the reuse of analysis models over time. As a result, 
discussions during model reviews will often focus on the modelling style rather 
than the information content that is expressed in the model. Analysis modelling 
guidelines could try to solve this problem to a certain extent. But a modelling 
notation that limits or even avoids analogous modelling constructs would be a 
better solution than offering modelling guidelines. Forcing the modeller to use a 
particular concept for modelling specific information improves the clarity and 
increases the communication power of the model. 

As a conclusion, we state that object-oriented analysis needs a limited set of powerful 
concepts targeted to capturing knowledge and information during the analysis phase, 
and a corresponding modelling language to express this knowledge into a conceptual 
model. Although a restricted set of concepts offered by UML can be suitable for 
analysis, the usage of UML tends to drive the analysts to a computational view rather 
than a conceptual view. In spite of the fact that UML offers certain means for 
extending its notation using profiles [107][109][128], this is not sufficient to 
transform UML into a suitable analysis notation. 

1.1.3.2 Model Consistency 

Most object-oriented analysis methods produce different kinds of models as a result 
of the analysis activity. This allows multiple views on the universe of discourse, each 
focussing on specific aspects that are important for the software system. In addition to 
class diagrams, often used by structural analysis methods, other diagrams are used to 
express additional information, such as use case diagrams for a functional view on the 
system, and statechart diagrams, activity diagrams, and sequence diagrams for 
dynamic views on the system. 

Although most methods incorporate a number of specific rules to enforce consistency 
in a model, limited attention is paid to the consistency between the models. For 
instance, an event that triggers a state transition inside an object must be part of the 
interface of that object, or called by a method that is part of its interface. Two 
solutions can be followed to obtain model consistency: 

• Consistency rules can be defined between models in order to keep the 
information present in one model in line with the information defined in another 
model. As such, every element that is referred to inside a model should have a 
core model to which it belongs and in which it is completely defined. Concepts 
should be designated as such that there is a single specific model in which they 
must be defined, after which they can be used in other model types. However, 
such approach can lead to a number of other problems. On the one hand, it 
creates interdependencies between models, since certain models can only be 
constructed after other models have been composed. On the other hand, it can 
lead to a mutual dependency between models, where one model depends on 
concepts defined in another model and vice versa. In addition, one should take 
care that a model update is propagated through all other models that refer to the 
updated elements. 
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• Instead of supporting multiple models, a single model could be build that 
captures all information present in the different models. As an example, instead 
of modelling a statechart diagram, information from the universe of discourse 
that could lead to state transitions can be captured inside a class model. The state 
information that is contained inside the statechart diagram can then be derived 
from the information inside the conceptual model when necessary. The same 
approach can be made for activity diagrams by capturing knowledge about the 
start and end of an activity in the conceptual model, and deriving the ongoing 
activities afterwards from this model. Such approach will give rise to bigger class 
models, since all information that is normally spread out over a number of 
models will now be contained in the single class model. However, since 
consistency only has to be maintained in a single model, the effort of achieving 
consistency is reduced while the multi-model problems can be avoided. 

1.1.3.3 Model Informality 

Most object-oriented analysis methods offer informally defined concepts and 
notations as well as a mechanism for incorporating informal elements in a model. But 
such an approach leads to ambiguity and misinterpretation of the analysis outcomes. 
This ambiguity is situated on two levels: the model concept level and the model 
information level.  

• Many object-oriented analysis methods only define the semantics of their 
concepts in an informal manner. The semantics are often stated in a textual 
description that can lead to misinterpretation and ambiguity. Examples are used 
to illustrate its meaning and usage, but are often very fragmentary and 
incomplete. Although methods try to express their semantics in a clear manner, a 
number of implicit assumptions are made that are not always explicitly stated. As 
such, an analyst starts to learn the modelling notation by example, and does not 
master the specificities and the full power of the offered notation. In fact, this is 
how novice modellers often acquire their knowledge of UML. In addition, 
precise model concepts with formal syntax and semantics enables model 
consistency checking on the analysis level in order to obtain error-free analysis 
results. Methods with informally defined concepts cannot perform model 
consistency checking, nor use the model as an input for model transformations. 
Models in such methods remain rather fancy but noncommittal pictures of the 
universe of discourse. 

• Not only are the modelling concepts ill-defined, the information contained inside 
the ultimate analysis results is often incomplete and only paraphrased in natural 
language. For instance, UML offers the concept of a note to record comments or 
other textual information in a model. Notes are among others used for defining 
general restrictions on a model, and for defining the effect of events and methods 
inside a model. In addition, use cases are often informally specified using 
structured text descriptions. However, informal model entities can lead to a huge 
number of problems, such as model errors, incompleteness, contradictoriness, 
and ambiguity.  
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− Errors occur when the informal descriptions are wrong. It is possible that 
the offered concepts are inadequate to formulate the precise meaning. In 
such case, an analyst could try to formulate a closely related situation 
instead that could also not be fully correct. The model hereby wrongly 
specifies what must be valid in certain cases. 

− Incompleteness occurs when the informal model entities do not completely 
describe the full set of cases on which they apply or the full set of rules that 
must be imposed. The model does not specify what must be valid in certain 
cases.  

− Contradictoriness occurs when several informal model entities describe 
rules or situations that contradict each other. It is hereby impossible to 
achieve a valid model instantiation in certain cases.  

− Ambiguity occurs when the informal model entities are not precisely 
described so that the intention of the description is not clear. One is obliged 
to interpret the descriptions in a certain manner. It is impossible to decide 
what must be valid in certain cases solely based on the information 
contained inside the model.  

Moreover, it is impossible to validate and verify a model for consistency and 
correctness when informal descriptions are part of it, since informal model 
entities cannot automatically be checked or used as input for model 
transformations. Informal models cannot be the ultimate source of knowledge 
that can be shared between the customers, end users, analysts, designers, and 
implementers, but in contrary will be the cause of misconceptions and 
misunderstandings between all parties involved in a software development 
process.  

In analogy to the CMMI [27] levels of the capability model for software engineering, 
Warmer [161] proposes the following six Modelling Maturity Levels (MML): 

• Level 0 corresponds to having no specification at all of the software system. The 
results of this level is that (1) there are conflicting views among the developers, 
(2) it is only suitable for small applications, (3) the system can only be 
understood by the programmers themselves, and (4) may choices are made in an 
ad hoc fashion.  

• Level 1 corresponds with a textual specification of the system in a number of 
documents. The results of this level is that (1) the specification is ambiguous, (2) 
the programmers must make business decisions based on their personal 
interpretation of the documents, and (3) it is impossible to keep the specification 
up to date.  

• Level 2 corresponds with a textual specification of the system augmented with 
several high-level diagrams. The results of this level is that the drawbacks of 
level 1 are still present, although the documents are easier to understand because 
of the diagrams.  



1.1. BACKGROUND 15 

 

• Level 3 corresponds with a model specification of the system augmented with 
text. The results of this level is that (1) the diagrams are real representations of 
the software, (2) the transformation into code has still to be done manually, (3) it 
is still very difficult to keep the specification up to date, and (4) the programmers 
must still make business decisions themselves although it has less influence on 
the system architecture.  

• Level 4 corresponds with precise models of the system. The results of this level 
is that (1) programmers do not make business decisions anymore, (2) keeping 
models and code up to date is essential and easy, and (3) iterative and 
incremental development are facilitated by the transition from model to code.  

• Level 5 corresponds with precise models from which the code of the system can 
completely be generated. In this manner, software developers use models to 
express their software constructs whereupon code generators, in the same way as 
compilers do, generate the full executable code. At this level, the modelling 
language can be seen as a high-level programming language of its own.  

As a conclusion, we can state that object-oriented analysis needs both a formal 
definition of the concepts used for modelling as well as a formal description of the 
knowledge captured inside the model.  

1.1.3.4 Methodological Support 

As its name indicates, the Unified Modeling Language (UML) is merely a modelling 
language that provides a notation for the specification of software models. It does not 
offer any guidelines for the software engineer on how to perform object-oriented 
analysis, and how to build analysis models. It is inadequate to offer only a modelling 
notation without offering a method and additional concrete guidance for the analyst 
on which models to build, which concepts to use, and how to transform facts from the 
universe of discourse into analysis model entities. It can be useful for offering an 
adequate toolbox of modelling concepts usable for developing an analysis model, but 
this should be accompanied by a concrete approach on how the universe of discourse 
should be modelled, and which criteria should be used for mapping facts from the 
universe of discourse into optimal model structures.  

Preferably there should exist a single clear and unique path from the universe of 
discourse to the resulting model using the most adequate modelling concepts for each 
information fact from the universe of discourse. A good analysis method should 
provide analysts with clear criteria and guidance for analysing the universe of 
discourse and selecting the most suitable methodological concepts to capture its 
knowledge. These criteria should be unambiguous in order to avoid as much as 
possible uncertainty and doubt for the analyst in choosing between apparently 
equivalent variants within the modelling notation. 

Moreover, the methodological guidance should focus on the analysis goals of 
capturing the knowledge from the universe of discourse without introducing design or 
implementation aspects at the analysis stage. All too often, analysis approaches tend 
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to focus on the software to be built rather than on the universe of discourse to be 
captured, thereby neglecting and obfuscating certain aspects from the universe of 
discourse, and inclining to let software related decisions determine the actual 
structure of the analysis model. 

As argued earlier in Section 1.1.2.2, software development methods that neglect or 
minimise the analysis phase will give rise to a limited and informal vision on the 
universe of discourse and the system requirements, introducing potentially huge 
problems during or after the software development process. Therefore, only a sound 
and explicit methodological analysis approach with unambiguous modelling 
concepts, and a unique and univocal manner for modelling knowledge from the 
universe of discourse, will give proper support to the analyst for constructing analysis 
models in a suitable and efficient manner. 

1.1.3.5 Analysis Demarcation and Further Transition 

In Sections 1.1.1 and 1.1.2.3, we have stated the difference between object-oriented 
analysis, architecture, and design. Object-oriented analysis focuses fully on the 
universe of discourse, describing the facts, rules, and regulations from the universe of 
discourse, the functional requirements that must be realised, and the envisioned 
transmuted universe of discourse in which the functional requirements have been 
realised. From the architectural phase on, the focus shifts to software- and hardware-
related issues concerning the system to be realised. 

In a large number of object-oriented methods, the boundary between the analysis 
phase, and the architecture and design phase is very vague. From the analysis phase 
on, details concerning the software realisation creep in and cause a software bias in 
the description of the universe of discourse. As such, the analysis model is no longer 
a pure conceptual model, but contains a number of details and decisions that should 
better be postponed until a subsequent computational model. 

This vague border between analysis and design is often seen as an advantage in order 
to obtain a smooth transition from analysis to design, without creating a large gap 
between these phases. Larman [89] claims that it might even be contra-productive to 
have a rigid definition and separation of these two phases. MOSIS [64] does not even 
distinguish analysis from design as separate phases. However, we claim that the 
nature and the concerns of analysis and design are so different that it is an absolute 
must to have a clear division of these phases and their kind of activities: 

• The key condition for any successful activity is to have a clear focus on the goals 
and objectives of the activity. Regarding modelling, this means that the answer 
on the fundamental question of ñwhat must be described in an analysis modelò 
should be crystal clear. A vague border between analysis and design impedes the 
analysis modelling activity, since one cannot make a clear assessment of which 
elements to include in an analysis model and which not. The analysis activity as 
such turns into an unconducted and unstructured activity with arbitrary decisions 
that are taken by the analyst, and noncommittal results that are obtained. 
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• A number of analysis methods promote design by elaboration [132], a kind of 
seamless transition from analysis into design. They claim this can be achieved by 
a continuous refinement of the analysis model, thereby gradually obtaining a 
suitable design model. Although it could be possible to refactor a high-level 
design model into a low-level design model, we claim that a seamless 
transformation of an analysis model into a design model is utopian, 
impracticable, and inadequate for developing suitable architectural and design 
models. Since an analysis model focuses solely on the universe of discourse, it 
can be expected that the analysis model structure is inadequate to represent a 
software system structure to be developed. As presented in Section 1.1.1, the 
main objective of the architectural phase that follows the analysis phase is, in 
fact, to obtain a suitable structure for the software system, based on the quality 
attributes to achieve and on the architectural drivers needed to realise these 
attributes [10]. It is a naïve and incorrect vision to suppose that an analysis model 
can seamlessly be translated into a suitable architectural model. Although the 
architectural phase is based on the knowledge gathered during the analysis phase, 
the architectural structure is build upon a set of criteria that are different from the 
ones used during the analysis phase. 

As a conclusion, we can state that the object-oriented analysis phase should be clearly 
separated from the consecutive but much more software-focussed phases. Moreover, 
the transition of the analysis model, describing the universe of discourse and the 
functional requirements, into a software architecture is rather complex and far from 
evident, and therefore should not be considered as a mere model refinement activity. 
However this does not mean that the analysis models are just throwaway models that 
are merely constructed for achieving a better understanding of the universe of 
discourse, without providing any input for the consecutive software models. Design 
by translation [132] can be a successful approach for the transition from analysis to 
design. Design templates can provide means of transforming analysis constructs into 
design constructs [110][111][112]. Automated or semi-automated model 
transformations from analysis models into certain bigger or smaller portions of design 
models using Model-Driven Development (MDD) [50][83] techniques can be 
beneficial and can help to capitalise the analysis results during software development.  

1.2 Goals 

The goals of this dissertation are threefold.  

• Definition of key principles for conceptual modelling. Current object-oriented 
analysis methods have a number of deficiencies regarding the modelling 
notation, the model consistency, the model informality, the methodological 
support, and the analysis demarcation. Based on this identification, the first 
objective of this dissertation is to formulate a number of key principles for 
conceptual modelling that are necessary in order to offer proper support for 
modelling the knowledge from the universe of discourse. 
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• Evaluation and comparison of model constraint specification formalisms 
and notations. Model constraints play an important role in object-oriented 
analysis. There exist several different specification formalisms to express model 
constraints. The usage of a specific formalism can cause a different impact of the 
model constraint on the resulting conceptual model. Several alternative 
modelling concepts for model constraints are even offered inside a single 
analysis method and notation. The second objective of this dissertation is to 
compare, evaluate, and build a taxonomy for model constraint specification 
formalisms and notations, and to investigate their suitability for representing 
knowledge from the universe of discourse.  

• Development of an appropriate object-oriented analysis method and 
accompanying notation for conceptual modelling. Current analysis methods 
and notations, including UML, are not suited to describe conceptual models in an 
adequate manner. The third objective of this dissertation is to develop an 
appropriate object-oriented analysis method and a supporting notation for 
conceptual modelling in accordance with the identified key principles for 
conceptual modelling. This method should incorporate proper constraint 
specification formalisms. Such an analysis method is an indispensable asset to 
create a clear insight in the universe of discourse, capture its knowledge, 
properties, and structure in an appropriate format, and position the envisioned 
software system in its true real-world environment. 

1.3 Contributions 

The main contributions of this dissertation are.  

• Advanced methodological concepts for achieving the key principles for 
conceptual modelling. We propose (1) a set of key principles for conceptual 
modelling that are necessary in order to create an adequate model of the universe 
of discourse, (2) a taxonomy for model constraint formalisms in object-oriented 
analysis, (3) a constructional conceptual model approach in which information 
can only be added to a model instance, (4) a querying mechanism to retrieve 
historical information regarding former attribute values, object links and creation 
and destruction times of objects, and (5) a formal notation for the semantics of 
queries and events that predates and is largely comparable with the Object 
Constraint Language (OCL). 

• The definition of new structural concepts to express model constraints 
implicitly within the model structure. We propose (1) the incorporation of 
model constraints in each methodological concept by definition, (2) the usage of 
existential dependency as the key modelling criterion for constructing the 
conceptual model, resulting in a hierarchical relational model structure, and (3) 
the introduction of explicit class archives that can express lifetime dependencies 
between objects. These concepts enrich the expressive power of a conceptual 
model structure. 
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• The introduction of constraints with supporting resolution mechanisms as a 
first-class model concept. We propose a mechanism to specify model 
constraints as a first-class model concept, using a formal notation based on 
many-sorted first order logic. The constraint mechanism predates and is largely 
comparable with the Object Constraint Language (OCL). In addition, we propose 
the concept of a constraint trigger that can specify a generic constraint solver to 
resolve constraint violations, by injecting specific error handling behaviour into 
an event, or by firing an event due to progress of time 

1.4 Overview 

This dissertation contains six chapters. In addition to this introduction, the remainder 
of this dissertation is organised in the following chapters: 

Chapter 2 proposes a taxonomy for model constraint formalisms in object-oriented 
analysis. We present an overview and a comparison of approaches for dealing with 
model constraints in object-oriented analysis. The role of model constraints in object-
oriented analysis is situated, and different approaches for the specification of model 
constraints are presented and compared. We argue that model constraint 
specifications should form the core model structure for a conceptual model.  

Chapter 3 proposes the key principles for conceptual modelling, being Uniqueness, 
No Redundancy, Unambiguity, Completeness, Minimalism, Preciseness, No History, 
Existential Dependency, and Abstraction. We claim that these principles are of 
utmost importance during analysis in order to obtain the most suitable conceptual 
model. 

Chapter 4 proposes the EROOS kernel for conceptual modelling, which is developed 
according to the key principles for conceptual modelling. The EROOS kernel is based 
on a backbone of model-implied constraint specifications, using existential 
dependency as the key criterion for obtaining the most suitable conceptual model 
structure. It proposes a constructional approach for a conceptual model in which 
information can only be added to the conceptual model instance. 

Chapter 5 defines an advanced methodology built on top of the EROOS kernel. 
Although the EROOS kernel concepts are actually sufficient to build a conceptual 
model, it is more practical to have additional suitable concepts at oneòs disposal to 
simplify the specification of recurrent EROOS analysis patterns. The EROOS 
universe proposes advanced concepts for modelling the universe of discourse. Key 
contributions of this dissertation that are proposed in this chapter include class 
archives, compound structures for modelling mutual dependency, and constraint 
triggers for automatic event triggering and constraint violation resolution. 

Last, we conclude this dissertation in Chapter 6 by a summary and an overview of the 
major contributions of our work, and directions for future research. 
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Chapter 2 A Taxonomy for Model Constraint Formalis

A Taxonomy for Model Constraint 
Formalisms in Object-Oriented 
Analysis 

This chapter introduces the notion of model constraints in object-oriented analysis, 
and provides a taxonomy for model constraint notations.1 The comparison of different 
notations for model constraints highlights the importance of proper support for the 
specification of model constraints during the analysis phase, and identifies 
deficiencies in current object-oriented analysis methodologies and their notations. 

2.1 The Role of Model Constraints in Object-Oriented Analysis 

Model constraints play a key role in object-oriented analysis. All object-oriented 
analysis methodologies incorporate the notion of model constraints in their notations 
somehow, each in their own manner. By means of model constraints, intrinsic 
properties of the system to be modelled can be described in a very elegant way. 
Model constraint specifications are used to express business rules, legal laws, social 
rules, physical limitations, undesired behaviour, and invalid situations within the 
universe of discourse in the conceptual model, as such restricting the potential valid 
instances of the model. Model constraints can be seen as general rules of the universe 
of discourse restricting certain events or services, or forcing certain business policies. 
They describe normal or wanted situations within the universe of discourse, excluding 
undesired, inadmissible, and forbidden situations. A model constraint is an analysis 

                                                  
1 A part of the work presented in this chapter has been published in [152] and [151]. 
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model concept that can be used to specify these kinds of rules, thereby formalising 
and capturing the actual semantics of the rule into the conceptual model. 

Within an analysis model, model constraints are a means to express general properties 
of model entities. Model constraints must remain valid during the entire lifetime of a 
model execution or simulation. As such, model constraints describe properties that 
must be true at each moment in time, without necessarily determining how they are to 
be preserved. The number of potential valid instances of the specified model is 
diminished because the information present in the system at a certain moment in time, 
expressed by an instantiated model, must obey all model constraint rules. In 
formulating model constraints at the analysis level, only the aspect of ‘what 
properties must be satisfied by a model instance’ is covered, thereby abstracting from 
‘how these properties can be achieved’ and ‘when they must be controlled’. These 
aspects should be deferred to a later phase of the software life cycle.  

The specification of model constraints and business rules is not a major concern of 
most object-oriented analysis methodologies. Although the Unified Modeling 
Language (UML) [120][119][107][109][128] provides support for model constraint 
specifications through its Object Constraint Language (OCL) supplement [108][161], 
the integration of OCL with other UML model concepts is rather minimal. In fact, 
UML2.0 even excluded OCL from its core definition, and repositioned it as a separate 
add-on to UML. Model constraints are too often treated as a kind of non-formal or 
semi-formal documentation and comments rather than a distinct and important model 
concept on its own. When introducing model constraints, a large number of analysis 
methodologies present them as a kind of patch glue that can optionally be used to 
bring more consistency into the analysis specification, besides stressing that it is often 
either too obvious or too complicated and as such not needed in practice. When 
constraints are introduced in an analysis method, the interaction between the 
constraints and the object behaviour is often neglected. It is not clear in which manner 
an event that violates a certain constraint could be refused without putting the whole 
model instance in an invalid status. For instance, UML states that the condition of a 
constraint must be maintained as true. Otherwise, the system is invalid with 
consequences outside the scope of UML. In this way, constraints are not truly 
imposed on a model and its potential behaviour, but only serve as requirements 
validation rules for the model state at a certain moment in time. 

The ways in which model constraints are introduced in the model differ from 
methodology to methodology, and even differ between different types of model 
constraints within a single methodology. Existing object-oriented analysis 
methodologies mostly use a mixture of different specification techniques. However, 
some techniques do not always reflect the importance of certain model constraint 
types, while others are rather improper notations that cannot be applied consistently 
to analogous cases. There exist different formalisms in which model constraints can 
be described, each having their distinct benefits and drawbacks. The importance of 
model constraints in a methodology is, in fact, reflected in its offered specification 
notation, which can vary from informal textual descriptions to treating model 
constraints as a first-class model concept.  
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In the remainder of this chapter, we categorise the different kind of model constraint 
specification mechanisms in a taxonomy, examine and compare them, and describe 
their appropriateness for conceptual modelling. We use the term model concept to 
indicate the concepts that are part of a methodology and defined on a meta-level, e.g., 
class, association or attribute, and the term model element or model entity to indicate 
instantiations of these concepts that are defined in the model, e.g., specific classes, 
associations or attributes. 

2.2 Model Constraints versus Derivation Rules 

The term constraint is a rather overloaded concept in computer science. Therefore, 
we give a definition of the term as it is being used in object-oriented analysis, in 
general, and in this text, in particular. Moreover, we try to position the concept of 
model constraints in object-oriented analysis, as a specification formalism for 
modelling restrictions, next to analogous concepts in the domain of logic 
programming and database design. Last, the difference between model constraints 
and Event-Condition-Action-Alternative (ECAA) firing rules is described. 

2.2.1 Model Constraints in Object-Oriented Analysis  

Constraints play a significant role in Object-Oriented Analysis [65][113][156][125] 
[58]. In object-oriented analysis, a model constraint is a kind of restriction on the 
analysis model. Model constraints are declarative specifications of logical rules that 
must be fulfilled by each concrete instance of the analysis model, without specifying 
where and when the checks occur. In other words, model constraints are properties of 
an analysis model that must be satisfied by its instances at each moment in time. As a 
consequence, model constraints have an impact on the model state, diminishing the 
valid instances of an analysis model, as well on the model behaviour, forbidding 
certain model instance transitions. So, the main purpose of model constraints in 
object-oriented analysis is to maintain the validity of the instantiated model during the 
entire lifetime of a model execution or simulation. 

2.2.2 Constraint Logic Programming 

In Constraint Logic Programming (CLP), constraints are used to describe high-level 
computation and derivation rules [5][36][52]. Given a set of known (bound) domain 
values, the ultimate goal is to find proper values for a number of free domain 
variables, using a set of constraints as boundary conditions. So the specified 
constraints do not define the solution algorithm, but give a declarative specification of 
all conditions that must be fulfilled by a correct solution. The underlying system uses 
computational rules to derive suitable results for the free variables starting from the 
values of the bound variables and fulfilling all stated constraints. So, the purpose of 
constraints in CLP is to specify boundary conditions that must be valid during 
calculation of the free problem variables.  
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2.2.3 Database Constraints 

Databases constraints can be divided in three main categories: 

• Inherent model-based constraints, which are inherently present in the data model 
of the database. They express basic characteristics of relations that can never be 
changed. 

• Schema-based constraints that can be expressed directly in the schemas of the 
data model, typically by specifying them in the Data Definition Language 
(DDL). Examples of such constraints are domain constraints, restricting the 
range of allowed attribute values, key constraints, expressing the uniqueness of a 
combination of attributes, constraints on null values, and entity and referential 
integrity constraints. 

• Application-based constraints, such as semantic integrity constraints consisting 
of state and transition constraints. They cannot be expressed directly in the data 
model. This kind of constraints have to be expressed and enforced in the 
application logic that resides on top of the database, or by using a constraint 
specification language. In fact, these constraints will not belong to the database 
but will be realised throughout the application logic using the database. 

Integrity constraints define whether a certain database state is a valid or invalid. 
Integrity constraints specified on a database schema are expected to remain valid on 
every database state of that schema. The Database Management System (DBMS) is 
responsible for ensuring that the integrity constraints are not violated. Entity integrity 
specifies that no primary key value can be a null value, while referential integrity 
specifies that a foreign key must refer to an existing tuple. Semantic integrity 
constraints can be specified using the CHECK clause for a table definition or a create 
assertion. These constraints will be checked only whenever a tuple is inserted or 
updated. 

Database constraints are very closely related to analysis model constraints, since they 
are defined also on a database schema and pose constraints on the validity of each 
database state. However, a number of database constraint constructs already define 
the precise moments at which the constraints will be checked, hereby neglecting the 
fact that constraints are expected to be valid in every valid database state at any time. 

2.2.4 ECAA Rules in Active Databases 

Model constraints are quite different from Event-Condition-Action-Alternative 
(ECAA) rules [117][163], although there is a kind of similarity between them. Model 
constraints are general restrictions on the analysis model, restricting its potential 
model instances during the whole lifetime. This means that at each moment in time, 
the model instance must fulfil all specified model constraints. ECAA rules follow a 
totally different approach. ECAA rules are stimulus-response based. They specify 
actions to be performed automatically whenever particular events happen or specific 
conditions occur. The event part defines the set of operations that can serve as a 
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stimulus for the action to be fired. The condition part defines specific conditions that 
must be valid in order to activate the action, or the conditions that must be false in 
order to activate the alternative action. When a specific event occurs, several actions 
could be fired automatically based on the conditions specified in the ECAA rules. 
ECAA rules are triggered whenever a particular event is generated at the moment a 
specific condition is valid, regardless of how the event was generated. As such, it is a 
technique to inject additional behaviour into a model, without specifying the exact 
details about the places where the behaviour must be executed. It is even possible to 
omit the condition part of an ECAA rule, so that the action will be fired each time the 
specified event occurs. In the same manner, it is possible to omit the event part of an 
ECAA rule, so that an action will be fired each time the condition becomes valid 
irrespectively of the events that have led to this condition. UML2.0 defines a change 
event, which can be compared with a condition-action sequence of an ECAA rule. 

Seen from a more process-oriented viewpoint, model constraints can be used to 
define rule-constrained processes while ECAA rules can be used to define rule-based 
processes. 

• For rule-constrained processes, the potential processes are described 
independently from the rules that act upon them. Model constraint rules are then 
imposed on the business processes, limiting the outcomes and the allowed paths 
for these processes. Model constraints are unconditional, since they must remain 
valid at each moment in time for all instance models, regardless of the underlying 
process that created the instance model  

• For rule-based processes, the processes themselves are defined throughout the 
application of the constraint rules. ECAA rules are interrelated, and ultimately 
define the final outcomes of the processes. This requires reasoning to be applied 
on the model, constructing the process given the events that occur, the conditions 
that are valid at a certain moment in time, and the triggers that will be fired. 
ECAA rules must not be valid at each moment in time for an instance model. In 
fact, whether a condition is valid or not at a certain moment is actually irrelevant 
for the instance model but it is only important for the construction of the 
underlying process. ECAA rules define conditions that are used to specify and 
extend a process, and execute additional functionality when appropriate, but do 
not allow to reason about properties of instance models. 

Since ECAA rules can be used to describe the injection of additional functionality 
into the model at a certain moment in time, this mechanism is excellent to be applied 
in cases where a separation of concerns is needed, such as for the modelling of certain 
specific cases or exceptional situations within an object-oriented model. ECAA rules 
can introduce crosscutting behaviour into a model, and can therefore be seen as a kind 
of Aspect-Oriented Software Development (AOSD) [46] technique. We propose to 
apply a mixed approach, enabling the specification of both rule-constraint as well as 
rule-based processes. In order to achieve this, we enrich the rule-constrained 
processes using model constraints with rule-based processes using ECAA-like rules. 



26 A TAXONOMY FOR MODEL CONSTRAINT FORMALISMS IN OBJECT-ORIENTED ANALYSIS 

2.3 Example of the Library System 

We will illustrate the different model constraint specification types with the running 
example of a library system. The informal description of the universe of discourse 
regarding the library system is as follows: ‘The library system offers book copies that 
can be borrowed by its clients.’ Additional model constraints that must be valid in the 
universe of discourse are the following: 

{1} The system may never lend books to persons that are not registered at the library. 

{2} A person may never borrow more than one copy of the same book. 

{3} A person may never borrow more than a specified number of books at the same time. 

{4} A person may never borrow a book longer than a certain restricted period of time. 

{5} When a person does not return the borrowed books within a certain time period, a fine 
must be raised. The size of the fine is dependent on the number of days overdue. 

{6} A person may not borrow additional books while existing fines are still unpaid. 

Notice that although the present tense has been used in the formulation of this 
informal description, it does not impose on the model how and when to perform the 
necessary checks and actions in order to keep its consistency. The informal 
description could also have been described in a past tense, which would suggest a 
more retroactive instead of a proactive reaction pattern. 

{1} The system may only have lent books to persons that have been registered at the library. 

{2} A person may only have borrowed no more than one copy of the same book. 

{3} A person may only have borrowed a specified number of books at the same time. 

{4} A person may only have borrowed a book for a restricted period of time. 

{5} When a person has returned the borrowed books after a certain time period, a fine must 
have been raised. The size of the fine is dependent on the number of days overdue. 

{6} A person may only have borrowed new books while all existing fines have been paid. 

Although the rules only state what must remain valid, and not how and when checks 
are being performed in order to enforce the validity of these rules, the realisation in 
the actual software system must be as such that these rules are valid at any moment in 
time and can never be violated. There is a certain freedom of choice on how to 
actually implement constraint checks, but the software engineer is nevertheless 
restricted due to the fact that these properties must always remain valid. 

2.4 Specification of Model Constraints using Informal Text 

Most object-oriented analysis methodologies and notations only have informal 
support for specifying generic model constraints on the model instance structure. 
Moreover, certain methodologies such as OOA [28], RDD [167] and SM [134][133], 
neglect almost totally the importance of model constraints. Properties of the universe 
of discourse cannot be expressed explicitly, but have to be expressed in separate texts 
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as an additional part of the documentation set for the object-oriented analysis model, 
or as textual notes within the analysis model. Instead of incorporating the 
identification and specification of model constraints as a distinct part in the analysis 
phase, these methods consider them to be a minor point of interest for the model. This 
leads to a negligence of the important role of model constraints in the universe of 
discourse, and in its representation within the conceptual model. Although model 
constraints are generally of utmost importance, whether they express business rules, 
rules of logic, rules of physics, or human-defined laws and regulations, expressing 
them informally will never lead to the same amount of impact on the conceptual 
model as they have in the universe of discourse. 

2.4.1 Constraints using Informal Text for the Library Example 

We illustrate model constraint specifications using informal text with the running 
example of the Library System that was introduced in Section 2.1. In Figure 2.1, a 
UML model of the basic classes and associations is presented. This model is capable 
to capture the following facts: 

• A number of copies of a certain book can be printed (association print). 

• A library can possess book copies (association possession). 

• A person can be registered at a library (association registration). 

• A person can borrow a book copy (class Borrowing with associations borrower and 
borrowed item). 

• A library can apply a fine for a person (association fine). 

• The library can state the maximum lending period {4}, the maximum number of lending 
items for an individual borrower {3}, and the amount of the fine to impose for each day 
overdue {5} (attributes for class Library). 

 

 

Figure 2.1: A Basic UML Model for the Library System 
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The informal model constraints that have to be added to this model are the following: 

• Copy restrictions: 2 

− A book copy can only exist if exactly one book is associated with it. 

− A book copy can be lent to no more than one person. 

− A book copy can be in possession of no more than one library. 

• Borrowing restrictions: 

− A borrowing can only exist if one person and one copy are associated with it.3 

− A person that borrows a book copy must be registered at the same library as the 
one that is in possession of that book {1}. 

− A person may only borrow no more than one copy of the same book {2}. 

− A person may only borrow a certain number of books at the same time {3}. 

− A person may not borrow new books at a library while existing fines from that 
library are still unpaid {6}.  

• Borrow duration restrictions: 

− When a person did not return the borrowed books after the maximum lending 
period, a fine must have been raised {4}{5}. 

These informally specified model constraints can be attached to the model by means 
of textual comments in UML, although they will not have a specific semantic 
meaning for the model. In fact, a UML comment (called note in UML1.x) is just a 
notational element for rendering various kinds of textual information. The content of 
a note is merely basic text or a text document. Although textual clarifications inside a 
comment could potentially have a huge semantic impact on the UML model, this is 
not as such defined within the UML meta-model. Moreover, the allowed syntax for 
including comments and other notes within model entities is not further specified by 
UML. For the specification of model constraints, and partly also for the specification 
of functions and operations, the Object Constraint Language (OCL) [108][161], 
which is further discussed in section 2.6, could be used. However, UML does not 
oblige the modeller to specify all possible model constraints using OCL, nor does it 
make a distinction between textual notes and OCL notes. 

2.4.2 Evaluation of Constraints using Informal Text 

The usage of formal versus informal specifications is an actual controversy in the 
object-oriented analysis research area. One of the main reasons stated for using 
informal specifications in object-oriented analysis is to stimulate the creative process 
of analysis by avoiding to impose strict rules on the analysis process. As a 
consequence, a strict formal description of the outcomes of this process is rejected. 

                                                  
2 In fact, UML associations provide means to express lower and upper bound values, which are called 
multiplicity values. We discuss multiplicity constraints in section 2.7. 
3 In fact, this is only true in the assumption that every borrowed copy gives rise to a new borrowing object. 
A single borrowing object could also contain more than one copy, grouping all book copies that have been 
borrowed at the same time. 
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On the other hand, Ambler [3] indicates ‘you can often learn more in five minutes 
drawing a diagram with your users than you can in five hours discussing it or reading 
about it in corporate manuals.’ We argue that, although the analysis process must 
keep its flexibility and creativity, its outcomes must be formal.  

First, informally specified model constraints will never achieve to obtain the same 
amount of impact on the analysis model as the original constraints and rules have on 
the universe of discourse. Formal specification techniques are better suitable to 
impose such model constraints since they can enforce them explicitly on the analysis 
model instance. Model constraints that are attached to the analysis model by means of 
UML notes can easily be overlooked, diminishing their importance and their impact 
on the modelled universe of discourse. In the same way as classes, associations, 
attributes, and inheritance constructs are used to express knowledge in an analysis 
model, model constraints need and deserve suitable modelling support in order to be 
specified correctly and consistently. 

A second reason to use formal model constraint specification techniques is the 
ambiguity of natural languages. Language in nature allows a certain degree of 
interpretation. Even when one tries to specify a rigorous textual explanation, 
misconceptions by the reader are difficult to avoid, whether it is not understanding the 
total set of restrictions that must be applied, reading more restrictions than intended to 
or misinterpreting the restriction. An informal specification is always exposed to 
human interpretation. This will often not correspond to the intention of the analyst 
who formulated it. Too much is left to the interpretation of the reader, whether the 
person is an expert of the universe of discourse, a model reviewer or a designer. 
When the design phase must start with an informal analysis description as a base, it 
will almost certainly be inevitable for errors to creep in, leading to a system that does 
not comply with its intended requirements. In case a formal analysis description with 
clear, well-defined semantics is produced, the following phases of the software life 
cycle have a reference model for its intended behaviour, and as such a solid base for 
the development of the software system.  

As an example, the textual specification of the model constraints above does not say 
exactly whether a person can borrow a copy of the same book at two different 
libraries at the same time. In fact, the current formulation suggests that this situation 
is forbidden, although one could expect that the library system would apply such 
restrictions only locally. Although the modeller had a specific restriction in mind 
during the formulation of the model constraint, the underlying suppositions that 
seemed obvious and self-evident to the modeller were not captured by the textual 
specification of the model constraint. An outsider who receives such model and must 
try to comprehend its semantic meaning likely has a different background as the 
modeller, and will not be able to reconstruct all underlying implicit intentions. 
Because the textual model constraint specifications will never capture all implicit 
rules in a precise manner, the model specification is always ambiguous and will give 
rise to a false interpretation of the model. This will often lead to misconceptions and 
the introduction of logical errors into the ultimate system to be built. 
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A third reason to use formal model constraint specification techniques above informal 
ones is that verification techniques can be used to verify the obtained analysis model 
before going into system development. This will prevent logical errors and 
inconsistencies in requirements from the analysis phase on. Although the outcomes of 
the analysis process do not necessarily have to be directly executable, it will be a 
good thing to make them interpretable. As such, efficient checking, testing, and 
prototyping can be done at the analysis level. The UML community is also currently 
undergoing this evolution to executable UML models [99][141], which has led to the 
UML extension proposal regarding action semantics. 

A fourth reason to use formal model constraint specification techniques is that they 
can be used as an input for further model transformations. The Model-Driven 
Development (MDD) [50][83] approach advocates semi-automatic model 
transformations, gradually introducing more detail and platform-dependency in the 
lower-level models. Models can only be used within an MDD approach when they 
contain their information in a formal notation that can be investigated, evaluated, and 
transformed into a different format. Even a straightforward implementation could be 
produced automatically in order to do a sort of simulation and rapid prototyping of 
the conceptual model. Therefore, formal descriptions of behaviour effects of the 
events and methods, and formal definitions of model constraints are advisable.  

As a conclusion, we can state that a more precise and formal formulation of model 
constraints in object-oriented analysis is definitely necessary. Textual descriptions are 
inadequate as an analysis result. Different ways in which model constraints can be 
specified more formally are presented in the next sections.  

2.5 Specification of Model Constraints using Operational 
Restrictions 

More formal model constraints can be incorporated in the analysis model by 
regulating and controlling the allowed event occurrences, the sending of messages 
and the execution of methods. As such, model constraints can be enforced and 
unwanted model instance transitions can be prohibited. Most object-oriented analysis 
methodologies provide concepts to model such execution restrictions for events. By 
means of local execution restrictions on classes, e.g., using state transition diagrams 
for a class and preconditions for its methods, or global execution restrictions on the 
model, e.g., using interaction diagrams, the allowed occurrences and execution orders 
of messages and methods can be controlled, avoiding violations of the model 
constraints to be maintained.  

2.5.1 Constraints using Operational Restrictions for the Library 
Example 

We illustrate model constraint specifications using operational restrictions with the 
running example of the Library System as introduced in Section 2.1. The UML model 



2.5. SPECIFICATION OF MODEL CONSTRAINTS USING OPERATIONAL RESTRICTIONS 31 

 

of the basic classes and associations as presented in Figure 2.1 will form the base 
model that is extended with operational restrictions. To realise all model constraints 
of the example through controlling the execution of methods, almost every method of 
each class will have to be controlled. Each class in the model can possibly contain a 
method that could give rise to a violation of a specified model constraint. Since a 
class has the right to change the association links4 in which it takes part, each method 
of that class can be the cause of a potential model constraint violation due to a change 
of its association links.  

2.5.1.1 Sequence Diagrams 

A sequence diagram is a diagram that shows object interactions arranged in time 
sequence, indicating the objects participating in the interactions and the sequences of 
messages exchanged. The sequence diagram of the model constraint {5} concerning 
the fine is presented in Figure 2.2. It expresses the fact that a fine must automatically 
be generated when a borrowing is overdue. 

 

 

Figure 2.2: Sequence Diagram for the Fine Constraint Realisation 

The interpretation of the diagram for the model constraint {5} is as follows:  

• The first arrow indicates that a person starts a borrowing of a specific book copy. 
The person object sends the lend message directly to the book copy object. An 
alternative would be to model it as an event sent to the library indicating the book 
copy to be borrowed.  

• The book copy object checks whether the stated lending period has not been 
exceeded. If the book copy is overdue, a ‘lendingPeriodExceeded’ message will 
be generated to trigger the creation of a fine. 

                                                  
4 A link is a tuple, an instance of an association containing an individual connection between 2 objects. 

 
c : Copy p : Person 

lendingPeriod 
Exceeded() 

l : Library 
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lend(p) 

opt  
[overdue]  
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• When the ‘lendingPeriodExceeded’ message is being generated, the book copy 
object sends a consecutive ‘createFine’ message to the library object, indicating 
the responsible person of the violating borrowing as a parameter.  

Another approach to represent the same model constraint concerning the fine is by the 
explicit introduction of a timer object as presented in Figure 2.3. As such, a start 
message is sent to a timer object whenever a new lending has started. The timer is 
then responsible to send a ‘timeOut’ notification message back to the originator 
indicating the elapse of the requested time period. After receipt of the ‘timeOut’ 
message, the ‘lendingPeriodExceeded’ message can be generated and the fine can be 
created. When the book copy is returned on time, the timer must be stopped explicitly 
in order to avoid an erroneous overdue notification and consecutive fine creation. 

 

l : Library p : Person c : Copy 

t :Timer 
lend(p) 

start (max lending period, c) 

createFine(p) 

timeOut() 
opt  

 

Figure 2.3: Sequence Diagram for Fine introducing an Explicit Timer Object 

The sequence diagrams for the other model constraints stated in Section 2.4 can be 
built using a generic receive-check-accept specification pattern for constraint 
realisation. This pattern can be used whenever the validity of a message has to be 
checked, for example according to the state of the instantiated model at the moment 
of occurrence. This pattern can be seen as a kind of design pattern for testing a 
number of preconditions of a certain message before the message is actually 
executed. The interpretation of the sequence diagram for this pattern is as follows:  

• The sender generates a message and passes it to the receiver. This message 
triggers the receive-check-accept pattern. 

• The receiver checks whether the received message is valid or not according to the 
stated acceptance criteria. These criteria can amongst others be based on the 
current state of the instantiated model.  
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• When the acceptance criteria are fulfilled, the message will be accepted and 
processed by the receiver. If not, the message will be ignored.5 

 

 

Figure 2.4: Sequence Diagram for the receive-check-accept Constraint Realisation 

2.5.1.2 Statechart Diagrams 

A statechart diagram [61][60][59][135], which actually is an extension of a Final 
State Machine (FSM) [2], is a diagram that shows a state machine for a class, 
indicating the sequences of states that an object goes through in response to events 
during its lifetime. The previous model constraints could also be expressed by means 
of statechart diagrams. A generic state diagram pattern applying the same receive-
check-accept behaviour is presented in Figure 2.5. This pattern can be used as an 
alternative realisation whenever the validity of a message has to be checked. The 
interpretation of the state diagram for this pattern is as follows:  

• Whenever an object is passive, thus able to receive a message, it is in the 
‘ReceivingMsgs’ state. 

• When the object receives a message, the validity of the message is tested.  

− If the message is not valid, the object will ignore it (or send an error 
message if needed).  

− If the message is valid, the object accepts the message and performs the 
necessary actions to process the message correctly (‘AcceptingMsg’ state). 
Afterwards, the object returns to the ‘ReceivingMsgs’ state. 

 

                                                  
5 In case an error message has to be sent when an invalid message arrives, the pattern can easily be 
extended to incorporate such behaviour. 
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Figure 2.5: State Diagram for the receive-check-accept Constraint Realisation  

2.5.1.3 Preconditions 

A precondition is an expression for an operation that must be valid before the 
operation can be invoked. The stated model constraints can also be expressed by 
means of preconditions on the involved methods. Especially the methods 
manipulating the links of the involved associations and the values of the involved 
attributes are of utmost importance. The informal model constraints defined in 
Section 2.4.1 are expressed in Table 2.1 using preconditions in the Object Constraint 
Language (OCL) [108][161]. The OCL keywords are hereby indicated in bold. 

Each OCL expression firstly defines its context in the UML model. This is a 
reference to an element in the UML model to which the OCL expression belongs. In 
the case of Table 2.1, the context defines the method to which the precondition 
belongs by means of defining the class, the method name, the parameters, and the 
return type. Hereafter, the corresponding precondition is expressed. Since this 
precondition applies for every method invocation of each object of the involved class, 
the object on which the method is being applied can be indicated by using the OCL 
keyword ‘self’. The OCL expression can be formed using basic values and types, 
logical and collection expressions, attribute values, association navigation, and query 
methods.  

2.5.2 Evaluation of Constraints using Operational Restrictions 

The approach of modelling constraints using operational restrictions by transforming 
the model constraints into action control constructs, whether they are interaction 
diagrams, state transition diagrams or preconditions, cause several problems for 
object-oriented analysis models. A first problem is the gap that is introduced between 
the universe of discourse and the resulting analysis model. Instead of describing 
which rules apply in the universe of discourse, the analysis model describes how they 
must be realised within the model. The model constraints themselves are not specified 
as such, but they are transformed into restrictions on messages and method executions 
for the involved objects.  
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receiveMessage (params) 
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A book copy can be lent to no more than one person 

context Copy::lend (p : Person) 

pre: self.borrowed item->isEmpty() 

A book copy can be in possession of no more than one library 
context Library::addPossession (c : Copy) 

pre: c.possession->isEmpty() 

A person that borrows a book copy must be registered at the same library as the one that is in 
possession of that book {1}  

context Copy::lend (p : Person) 

pre: p.registration->intersection(self.possession)->notEmpty() 

A person may only borrow no more than 1 copy of the same book {2}  
context Copy::lend (p : Person) 

pre: p.borrower.borrowed item->select(copy |  

       (copy.possession = self.possession) and  

       (copy <> self)).print->excludes(self.print) 

A person may only borrow a certain number of books at the same time {3}  
context Copy::lend (p : Person) 

pre: p.borrower.borrowed item->select(copy |  

      copy.possession = self.possession)->size() 

      < self.possession.max lending items 

A person may not borrow new books at a library while existing fines from that library are still 
unpaid {6}  

context Copy::lend (p : Person)  

pre: self.possession.fine->excludes(p) 

 

Table 2.1: OCL Specifications for Constraint Realisation using Preconditions  

The way in which model constraints will be checked and maintained must certainly 
be specified at some point during the development life cycle, but at the design level 
rather than at the analysis level. The analysis phase must be centred on conceptual 
modelling, and should support a direct mapping of information from the universe of 
discourse into the conceptual model. Specifying model constraints by means of 
controlling method execution introduces a gap between the universe of discourse and 
the conceptual model. When constraints must be implemented using lower-level 
concepts instead of being treated as model concepts of their own, the conceptual 
model will no longer be a proper reflection of the universe of discourse. The 
specification of model constraints using operational restrictions is therefore a rather 
artificial and unsuited approach for conceptual modelling. 

A second problem of specifying the model constraint realisations instead of the basic 
model constraints themselves concerns revisions and future modifications. The 
drawback of specifying model constraints using operational restrictions becomes 
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visible when the lifetime of an analysis model is taken into consideration. An analysis 
model is a development artefact that later will be subject to human auditing and 
maintenance. Since the model constraints are not present in the analysis model as 
individual entities but only through their realisation in terms of operational 
restrictions, it is very hard to preserve the consistency of these model constraint 
realisations. Each extension or change of the analysis model can influence the validity 
of the realised model constraints by introducing unforeseen and unwanted side 
effects. 

For instance, if a new event must be introduced that can manipulate an association 
directly, such as transferring a book copy from one library to another, the diagrams 
that realise the operational restrictions have to be extended in order to incorporate the 
cases introduced by the new event. After any addition of a new event for a class, one 
is obliged to review the entire set of interaction diagrams to be able to maintain their 
correctness and consistency. Because these diagrams are already realisations of the 
model constraints, they have to be corrected after the slightest change within the 
model that has an impact on them, since every addition of an event can lead to a 
potential violation of the model constraints. In the case that preconditions are used for 
realising the constraints, every event that will be added to the model must take care 
that all constraints remain valid. The analyst must provide an additional precondition 
for each constraint that can possibly be violated by the new event. When a 
precondition is forgotten, the model will no longer enforce the intended constraints in 
a correct manner and, thus, will be incorrect. Therefore, it is very hard to maintain the 
consistency of model constraint realisations by means of operational restrictions 
during the software life cycle, which in nature will consist of several consecutive 
revisions, modifications, and adaptations. 

When a model constraint is specified as a concept of its own, it will remain present as 
such in revised and modified versions of the analysis model. An analyst cannot break 
the realisation of the constraint, since it is present in the model as a single entity. 
When the model constraint is realised in an operational way, the semantic meaning of 
the model constraints is scattered around the whole model through a number of 
operation restrictions that enforce the constraint. It will be hard to assess the 
consequences of model additions and model changes on the model constraint 
realisation scheme. The analyst must perform a kind of reverse engineering activity 
by trying to extract the high-level model constraints from their lower-level realisation 
patterns. When adding or changing the model, the analyst must update the constraint 
realisations in order to preserve the implemented constraints. When model constraints 
would be formulated in a single place and could remain present in the model as a 
distinct concept, they would be highly visible and better comprehensible. Additions 
and changes to the model would not have a direct impact on the stated constraints, 
since their specification will remain unaffected. 

As a conclusion, we can state that the analysis phase should be centred on the 
description of the universe of discourse, providing a direct mapping of it into a 
conceptual model. Although realising model constraints by means of operational 
restrictions results in a formal description of the model constraints, this approach is 
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actually inadequate for conceptual modelling. The specification of model constraints 
in a conceptual model should be formal, explicit, consistent, unscattered, and 
independent from issues regarding how they ultimately will be realised. 

2.6 Model Constraints as a First-Class Model Concept 

Model constraints should be treated as a first-class concept in an object-oriented 
analysis model, since they are of the same importance level as classes, attributes, 
associations, and events. To overcome the difficulties of transforming high-level 
constraints into low-level specification mechanisms and to get a more formal 
specification mechanism for constraint, a distinct notation and specification 
formalism for model constraints is needed.  

When early object-oriented analysis methods were used in practice, people realised 
that there was a large need for having a more formal way of specifying model 
constraints in order to obtain consistency within analysis models. The Object 
Constraint Language (OCL) [108][161], which originated in 1995 within IBM, was 
presented as an add-on for UML in order to express model constraints and invariant 
conditions that must be valid for the system being modelled. Since OCL is a pure 
expression language, it does not have any side effects that can alter the state of the 
instantiated model. Although OCL can also be used to specify postconditions, it 
merely describes the state change that arises from a method execution instead of 
explicitly triggering the state change in the model. 

UML constraints are attached to one or more model entities.6 A UML constraint 
contains a Boolean expression in textual form (natural language, OCL, mathematical 
notation, programming language, et cetera.) that must be valid for each instance of a 
model. More precisely, the expression must always yield true when evaluated for the 
instances of the constrained elements at any time when the system is stable, i.e. after 
execution of an operation. Although constraints are introduced as a first-class model 
concept in UML, constraints do not have a specific graphical notation but use the 
comments symbol (�). The only difference between a constraint and a textual 
comment is that the string of the constraint expression is placed between curly 
brackets, e.g. ‘{constraint}’.7 Notice that since the UML meta-class Constraint is 
derived from the meta-class PackageableElement, constraints can be given a name, 
although this feature is rarely used in UML. 

                                                  
6 Constraints can also be attached to stereotypes or added to UML profiles. Such constraints do not have an 
impact on the instantiated model, but impose contraints on the model itself. These kinds of constraints 
belong to the meta-model and impose rules on the model regarding the correct usage of a stereotype or the 
allowed formulation of the model. Since this kind of meta-model constraints does not have a direct impact 
on the model instance, they will not further be treated in this text. 
7 Notice that UML does also provide some other specific ways of specifying constraints, such as the text in 
brackets following a single element or aligned with a dashed arrow from one element to another, expressing 
constraints on 2 elements. 
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2.6.1 Constraints as a First-Class Model Concept for the Library 
Example 

We illustrate the specification of model constraints as a first-class model concept with 
the running example of a Library System as introduced in Section 2.1. The UML 
model as presented in Figure 2.1 will form the base model on which the model 
constraints will be added. The informal model constraints that were added to this 
model can be described in OCL as presented in Table 2.2. 

 
Copy restrictions: 
A book copy can only exist if exactly one book is associated with it 

context Copy 

inv: self.print->size() = 1 

A book copy can be lent to no more than one person.  
context Copy  

inv: self.borrowed item.borrower->size() <= 1 

A book copy can be in possession of no more than one library.  
context Copy  

inv: self.possession->size() <= 1 
 

Borrowing restrictions: 
A borrowing can only exist if exactly one person and one copy are associated with it.  

context Borrowing  

inv: ( self.borrower->size() = 1) and 

     ( self.borrowed item->size() = 1 ) 

A person that borrows a book copy must be registered at the same library as the one that is in 
possession of that book {1} 

context Copy  

inv: self.borrowed item.borrower.registration 

      ->intersection(self.possession)->notEmpty() 

A person may only borrow no more than 1 copy of the same book {2}  
context Copy  

inv: self.borrowed item.borrower.borrower.borrowed item 

      ->select(copy | (copy.possession = self.possession) and  

       (copy <> self)).print->excludes(self.print) 

A person may only borrow a certain number of books at the same time {3}  
context Person  

inv: self.registration->forAll(library | self.borrower.borrowed item 

        ->select(copy | copy.possession = library)->size() 

         < library.max lending items) 

A person may not borrow new books at a library while existing fines from that library are still 
unpaid {6}  

context Copy  

inv: self.possession.fine->intersection(self.borrowed item.borrower) 

        ->isEmpty() 
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Borrow duration restrictions: 
When a person did not return the borrowed books after the maximum lending period, a fine must 
have been raised {4}{5}.  

context Copy  

inv: if now -self.borrowed item.start date) >  

          self.possession.max lending period  

     then self.borrowed item.borrower.fine 

      ->intersection(self.possession)->notEmpty() 

     endif 

 

Table 2.2: OCL Specifications for Constraints as First-Class Model Concept 

Although this approach allows a formal notation of model constraints as a first-class 
model concept, there is some arbitrariness introduced in the formulation of a model 
constraint, since the model constraint specification is described as an invariant 
starting from a specific class chosen between all involved classes. In order to abolish 
this asymmetry totally, a hierarchy between classes and associations could be 
introduced. One can then specify every model constraint starting from the highest 
class or classes of the hierarchy. Such approach has been developed in the EROOS 
methodology and is presented in Chapter 4. 

2.6.2 Evaluation of Constraints as a First-Class Model Concept 

The approach of treating model constraints as a first-class concept leads to a 
consistent, unambiguous, and formal model constraint specification. However, the 
cases that are not well supported by the specification technique of using constraints as 
a first-class model concept are threefold. First, a number of model constraints are 
very closely related to specific model entities, e.g., the cardinality constraints for the 
associations. Instead of separating such constraints from the model entity to which 
they relate, it is better to integrate these kinds of constraints in the model entity. On 
the one hand, this integration allows a better organisation of the model, creating more 
cohesion in the model by obtaining a clustering of closely related specifications. 
Instead of creating a model scattered with a lot of small and quite unrelated model 
entities, the entities should better be clustered together in a logical manner. On the 
other hand, this approach forces analysts to focus on these kinds of constraints 
whenever they introduce such model entities. By separating model constraints from 
the model entities to which they belong, one introduces the danger of overlooking 
these important constraints during the development of the analysis model. Integrating 
them into their related entities focuses the attention of the modeller on these 
constraints each time a model entity is defined. 

Second, classes that are actually reifications of higher-level associations always lead 
to the specification of additional model constraints in order to specify all details 
concerning these associations. For example, giving the Borrowing class in the library 
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example, the model constraint on the existence of a person and a copy for a 
borrowing object expresses the fact that a borrowing is actually an association 
between a person and a copy object. They emerge due to the fact that a high-level 
association object (a Borrowing object) cannot exist without the knowledge of the 
participants it relates to (a Person and a Copy object). When the higher-level 
association is broken down into an association reified as a class having two assisting 
lower-level associations, for example the Borrowing class and the borrower and 
borrowed item associations, the characteristics must be enforced by means of explicit 
additional model constraints. 

A final drawback appears when one object or association link is dependent on the 
existence of another object or link, e.g., the model constraint on the existence of a 
registration link in order to allow the existence of a borrowing object. This constraint 
expresses the existential dependency for a borrowing object on a corresponding 
registration link. This kind of constraints can be seen as model glue that keeps the 
model entities consistent with respect to the rules of the universe of discourse. When 
a flat, non-hierarchical analysis model is being developed, many structural 
dependency constraints have to be enforced explicitly, since they cannot be expressed 
in the model structure.  

Such approach is favourable neither from the viewpoint of the model engineer nor 
from the viewpoint of the model reader, reviewer, or re-user. This is due to the fact 
that the structural dependencies between classes are only specified by means of 
additional model constraints and not by the model structure. The modeller has to 
make an explicit transition from the logical structure of the information within the 
universe of discourse to a different representation of it in the model. The reader of 
such loose model with many additional structural model constraints attached will 
have to put the pieces of the puzzle together before that person gets insight in the 
actual model structure. Instead of highlighting the basic structure of the model, one of 
the important elements of an analysis model, it is neglected and shifted to additional 
constraints. Moreover, it is possible for an analyst to construct a model without 
having to consider the structural constraints that are present in the universe of 
discourse. Since a good model should capture many constraints directly in its 
structure, a flat model structure is inadequate for conceptual modelling.  

To conclude, we can state that the notation of constraints as a first-class model 
concept leads to a consistent, unambiguous, and formal model constraint 
specification. However, this approach has two important drawbacks. On the one hand, 
model constraints related to a specific model entity are better integrated with them in 
order to obtain a complete and consistent model, and retaining a better overview on 
the overall model. On the other hand, important structural dependencies become 
hidden in constraint specifications instead of forming the core of the model structure. 
Therefore, it is more appropriate to express certain kinds of model constraints directly 
in the model structure, reflecting the logic structural dependencies within the universe 
of discourse implicitly in the internal model structure. 
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2.7 Integration of Model Constraints in Existing Model Concepts 

Most object-oriented analysis methods that incorporate constraints in their model in a 
formal and explicit manner, integrate them with other concepts of the method. For 
example, constraints concerning associations and attributes are integrated in the 
definition of the association and the attribute, while constraints about objects of a 
class are specified as part of the class description. The specification of such 
constraints is mostly restricted to a single entity of a model concept.8 This can be very 
useful and suitable for certain types of constraints. However, other constraint types 
are forced into a single concept or a single model entity despite the fact that they can 
spread out over several of them. 

A typical example of a model constraint that is integrated in an existing model 
concept is the definition of multiplicity constraints for association ends. This kind of 
constraint is almost always integrated in the association definition. Obviously, such 
constraint is a basic part of an association. Separating the multiplicity from the 
association end definition will introduce the danger of overlooking this important 
aspect concerning associations during the development of the analysis model. Such 
constraints are of utmost importance for the model entity on which they interact. If 
these constraints are not integrated in their related model entities, they can too often 
be neglected, which give rise to errors, misunderstandings, and deficiencies within the 
application.  

Other examples of useful integration of model constraints in existing model concepts 
are the multiplicity of attributes, which indicated the possibility of having a single or 
many attribute values for an attribute of an object, attribute range restrictions, limiting 
the allowed range of an attribute between a lower and an upper bound, and the 
changeability properties of an attribute and an association end. For example, UML1.x 
allows defining the changeability of an association role or an attribute as changeable, 
addOnly or frozen. It is useful to specify whether certain attributes may only be 
defined at creation time of the object or can change during the life cycle of the object. 
For instance, the date of birth of a person may only be defined at the time of birth of 
that person and may afterwards never been changed. Also, the name of a person,9 the 
account number of a bank account, and the approval date of a loan are examples of 
immutable attributes. On the other hand, the address of a person, and her or his length 
and weight are examples of attributes for which the actual value will vary during the 
lifetime of a person. The absence of a mutator for the attribute does not prevent any 
change to the attribute, because such mutator can always be added later to the model. 
Therefore, the property of attribute changeability has to be defined in order to prevent 
future changes. 

                                                  
8 There is a slight difference between constraints that spread out over more than one concept and 
constraints that spread out over more than one entity of a single concept. An example of the former is a 
constraint that includes both an attribute and an association, whereas an example of the latter is a constraint 
that deals with link restrictions of more than one association. 
9 We are hereby neglecting the legal possibilities to change one’s name. 
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2.7.1 Integrated Model Constraints for the Library Example 

We illustrate the approach of integrating model constraints in existing model concepts 
with the running example of the Library System as introduced in Section 2.1. Figure 
2.6 presents the basic UML model of Figure 2.1 extended with attribute multiplicity 
and multiplicity constraints for the association ends. 

 
 

Person 

Book 

Library 

max lending period[1] 
max lending items[1] 
daily fine amount[1] 

0..* 0..* 
registration 

0..* 
0..* fine 

Copy 

1 0..* 

print 
0..* 

possession 
Borrowing 
start date[1] 

0..* 

1 

borrower 

1 0..1 

borrowed item 

0..1 

1 

 

Figure 2.6: UML Model with Multiplicity Constraints for the Library System  

The following model constraints have been expressed using integrated constraints: 

• Association end restrictions: 

− A book copy can only be borrowed no more than once at the same time. 

− A book copy can only exist if exactly one book is associated with it. 

− A Book copy can be in possession of no more than one library.  

− A borrowing can only exist if one person and one copy are associated with it. 

− There are no restrictions on other association ends, e.g., a person can have 
several registrations at different libraries, or can even have no registration at all. 

• Attribute restrictions: 

− A library has exactly one value for its attributes max lending period, max lending 
items, and daily fine amount.10 

− A borrowing has exactly one value for its attribute start date.10 

• Changeability restrictions:  

− No changeability restrictions have been added to the model. This means that every 
association and attribute in the model is changeable. Due to the fact that the 
property of being changeable is the default value in UML, it cannot be stated 
explicitly. In contrast with this, the fact that an association or attribute is 
unchangeable after object creation can be stated with the stereotype {frozen} as 
the property string for the association end or attribute.  

                                                  
10 Notice that a multiplicity of [1] is the default value for attributes in UML, expressing that each attribute 
must always have exactly one value. 
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However, the model constraints introduced in Section 2.1 cannot be expressed by 
means of model constraints integrated in a model entity: 

• Model constraints {1}, {2}, and {6} deal with restrictions between several 
classes and associations. For instance, model constraint {1} involves classes 
Library, Person, Copy, and Borrowing, and associations registration, borrower, 
borrowed item, and possession. 

• Model constraints {3}, {4}, and {5} deal with three associations, namely 
borrower, borrowed item, and possession, and a number of attributes, namely 
max lending items for {3}, and max lending period and start date for {4} and 
{5}. Model constraint {5} even involves the association fine. 

The problem of integrating these constraints in a model entity is the selection of the 
most suitable model entity to integrate with. As an example, model constraint {3} can 
be defined in the classes Person, Library or Copy, but also in the associations 
borrower, borrowed item or possession or even in the attribute definition of max 
lending items. Constraint {1} is a typical example of a join constraint in an 
association ring. A join or anti-join constraint is a constraint that states ‘if an object 
a1 of class A is connected through successive associations with a2, also of class A, 
then a1 must be equal to a2, respectively different from a2’. In this case, one could 
choose between four classes, namely Person, Library, Copy, and Borrowing, and four 
associations, namely borrower, borrowed item, possession, and registration. The 
choice between these alternatives will have to be made rather arbitrarily, since there is 
no good criterion to select one over another. No matter which one is chosen, this will 
lead to the introduction of arbitrariness and asymmetry in the obtained model. 

2.7.2 Evaluation of Integrated Model Constraints 

Constraints that easily can be integrated in existing model concepts only bear upon a 
single entity of a concept of the analysis method, such as a single association or a 
single attribute definition. However, if a constraint can spread out over several 
entities of the same concept, or, even worse, over several concepts, it is impossible to 
decently integrate the constraint in a single concept. Constraints that spread out over 
several associations cannot be placed consistently with one particular association. A 
method may decide to place rules between attributes of the association participants 
directly in the association definition, e.g., as in OMT [93][126]. But, for instance, 
rules between attributes of objects connected by two or more consecutive 
associations, or join and anti-join constraints in an association ring cannot be 
adjudged to a particular dedicated class or association.  

These kinds of constraints spread out over a large part of the model instead of being 
localised to some instances of a single concept. When these constraints are integrated 
in a single class or in a single association, arbitrariness will have a huge impact on the 
model. We could have chosen an alternative viewpoint for placing and specifying the 
same constraint. It would even be hard to see that two constraints are actually 
identical when they are specified from a different viewpoint. In addition, the 
information distribution in the obtained model will be very asymmetrical. Useful 
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information concerning classes is hidden in the definition of other classes, 
associations or attributes. Another possibility, next to placing constraints in one 
particular class, is to place a copy of the constraint in every class that is influenced by 
it. However, this will give rise to an enormous amount of consistency problems and 
information duplication.  

A second problem of inconsistently integrating constraints in model entities is that a 
bad placement of constraints in the model will lead to a diminishing of reuse 
capabilities. When constraints are scattered over the whole model and inappropriately 
integrated in rather arbitrary chosen model entities, it will be very hard to get a proper 
insight in the existing model structures and the superimposed rules. Such approach 
will encourage the analyst to rather start all over again from scratch instead of to 
reuse parts of the existing model. A separate notation mechanism for constraints 
influencing more than one specific model entity is therefore appropriate. 

As a conclusion, we can state that some constraint types are strong related to existing 
model concepts. Therefore, it would be advisable to integrate them in the concept 
they belong to. However, a large number of constraints may be spread out over a 
variety of model entities and can therefore not be placed properly in a single entity. In 
such cases, a mechanism to specify constraints formally and explicitly, as introduced 
in Section 2.7, would be more appropriate. 

2.8 Model Constraints Implied by the Model Structure  

To diminish the gap between the logical information structure of the universe of 
discourse and the actual conceptual model structure, the expressive power of the 
model structure elements should be enriched. This can be done in several manners: 
through introducing new structural model concepts, through strengthening the 
semantics of the existing concepts or through defining strict usage rules for each 
concept. Two examples of constraints implied by the model structure, are (1) the 
change from a flat association structure to a hierarchical association structure, which 
treats associations as classes themselves, and (2) the obligation for class attributes to 
have a meaningful value at all times, thus excluding the null value. 

Treating associations as first-class entities by reification of an association link into an 
object, introduces a hierarchical model structure based on existential dependency 
between objects. Analysis methods and notations, such as OMT [93][126], OSA [43], 
and UML [120][119][107][109][128], provide association classes that offer the 
possibility to model an association as a class (although they are often only used in 
exceptional cases and not supported by many UML modelling tools). On a meta-
level, AssociationClass inherits from both Association and Class, and thus inherits all 
potential properties that can be defined for an association as well as a class. However, 
it is merely a technique of objectifying links in order to allow attributes to be 
specified for the link. Association classes are not treated as ordinary classes, with 
objects having their own identity, but remain, in essence, associations with class-like 
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properties. The identity of an object from an association class is defined in UML1.x 
as a combination of the identities of the objects taking part in the association link. 
Thus, an association class can be considered as a kind of a derived class, for which 
the derived objects are determined by the association link between the two associated 
objects. 

Such approach has important consequences. For instance, duplicates are impossible, 
since it would introduce two association class objects having the same identity when 
they associate the same two objects. UML1.x explicitly states ‘There are not two 
links of the same association that connects the same set of instances in the same way’. 
This applies for ordinary links as well as links of an association class. However, 
UML2.0 [108][128] has introduced the possibility of labelling the multiplicity of an 
association as a ‘{bag}’, which allows the duplication of association links. 
Furthermore, an analyst already has to make a choice at the analysis level whether a 
relationship from the universe of discourse is going to be modelled as (1) a straight 
association, for which the analyst has the choice between an ordinary association, a 
qualified association,11 an aggregation or a composition, (2) an association class, or 
(3) an association reified into a class having two assisting associations for linking the 
original participants. This choice will often depend on the fact whether association 
attributes should be expressed, whether duplication should be possible within the 
association, and whether other associations should be able to refer to the association 
links. Table 2.3 expresses the choices an UML modeller has to make and the criteria 
the modeller will mostly use. The different styles of modelling, presented in Figure 
2.7, are from top to bottom an ordinary association, an association class, an 
association reified into a class, a qualified association, and an aggregation. 

 
Link  
attributes 

Duplicate 
links 

Link as 
participant  

UML model entity most suitable 

No No No Association 
No No Yes Association with other associations redirected to one 

of the participating classes (no * to * multiplicity)12 
No No Yes Association Class (* to * multiplicity)13 
No Yes No Association or Reified Association 
No Yes Yes Association Class or Reified Association 
Yes No No Association Class or Qualified Association 
Yes No Yes Association Class or Reified Association 
Yes Yes No Association Class or Reified Association 
Yes Yes Yes Association Class or Reified Association 

 

Table 2.3: Criteria in UML when Modelling Associations 

                                                  
11 A qualifier for an association end is an attribute whose values serve to partition the set of associated 
objects. They can be considered as attributes of the association link. 
12 In the library example, for instance, additional associations to the borrowing object can be redirected to 
the book copy object, since there is only a single borrowing object attached to a book copy object. 
13 When the association has a * to * multiplicity, an additional association to the link cannot be redirected 
to one of the objects participating in the link, since these objects can participate in more than one link. 
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Figure 2.7: Alternatives in UML for Modelling Associations 

Other approaches to express certain types of model constraint directly in the model 
structure, are the use of obliged values for class attributes and the modelling of 
dependencies between object states as explicit existential dependency associations.  

• The obliged presence of an attribute value results in a reduction of alternative 
model variants for modelling certain facts, guiding the analyst to a clearer and 
more expressive model. Instead of modelling an attribute with a potential 
undefined value, an additional class must be introduced for such attributes. This 
newly introduced class represents the fact that an attribute value is actually 
present and defined at a certain moment.  

• By explicitly modelling dependencies between object states as existential 
dependency associations, a better insight in these dependencies can be 
established. Since a large part of the model constraints deals with specifying state 
consistency and state dependency between objects, such constraints can be 
expressed directly in the model structure. By reifying states into classes, state 
consistency and state dependency constraints can be transformed into existential 
dependency constraints between reified state objects. In fact, reifying states into 
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objects results in more expressive and extendible structural models. State 
consistency and state dependency constraints can also be specified in statechart 
diagrams. However, their specification should best not be hidden inside a 
statechart diagram, but should be highlighted in the model structure.  

2.8.1 Model-Implied Constraints for the Library Example 

Although UML is not very suited to express a hierarchical association structure, it is 
possible to imitate such structure using association classes. The model of Figure 2.1 
can be transformed into a hierarchical model using association classes as shown in 
Figure 2.8. By using existential dependency as the main criterion for specifying 
associations, the model structure can highlight the dependencies between objects. For 
instance, a borrowing object can only exist if a person is registered at a library, 
expressed by the association class Registration, and if a library is in possession of a 
book copy, expressed by the association class Possession. An analyst can easily 
express that a condition has to be fulfilled before a certain service can be requested, 
as indicated in the example where a person must firstly be registered at a library 
before that person can borrow a book. In order to obtain hierarchical model structures 
in UML, a modelling rule could be stipulated that obliges to transform all associations 
with multiplicity lower bounds of zero into association classes. This forces the 
modeller to reify most associations into association classes. 
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Figure 2.8: A Hierarchical Model for the Library System 
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The hierarchical model structure designates classes to different hierarchical 
dependency levels: 

• Classes on level 0, namely Person, Library, Book, and Publisher in the example, 
are not directly dependent on any other class. Objects of these classes can come 
into existence without any additional restrictions. 

• Classes on level 1, namely Registration and Copy in the example, are dependent 
on classes of level 0. In fact, since every object expresses an association link 
between two other objects, an object of level 1 is existentially dependent on two 
objects of level 0. As an example, a copy link object cannot exist without a book 
object and a publisher object.  

• Classes on level 2, namely Possession in the example, are dependent on two 
other objects of a lower level, namely a copy object of level 1 and a library object 
of level 0.  

• Classes on level 3, namely Borrowing in the example, are dependent on two 
other objects of a lower level, namely a possession object of level 2 and a 
registration object of level 1. 

• Last, classes on level 4, namely Fine in the example, are dependent on two other 
objects of a lower level, namely a borrowing object of level 3 and a library object 
of level 0. A fine link object expresses the fact that a fine can only be given to a 
borrowing that is overdue. Notice that this additional condition for the fine 
object, namely the fact the borrowing must be overdue, is not yet expressed in 
the presented model. In fact, an additional constraint must be added to the model 
in order to express this condition. The existential dependency only forbids fines 
to exist without arising from a borrowing. 

The definition of the ‘{bag}’ property string in UML2.0, namely that ‘the association 
end represents an object collection that permits the same element to appear more than 
once’, and the fact that the bag property is associated to the association end instead of 
the association, indicates that its usage is more directed to the specification of 
implementation issues rather than the modelling of the association property. 
Therefore, associations should better be made first-class entities in UML instead of 
being both an association and a class at the same time. By a true encapsulation of 
every association into a class of its own, the choice to model a certain relationship of 
the universe of discourse as a direct association, an association class or an association 
reified into a class will disappear, since it would always be modelled as an association 
encapsulated into a class. The decision whether an association encapsulated into a 
class will be implemented by means of a class or an ordinary association could be 
deferred to the design phase. 

2.8.2 Evaluation of Model-Implied Constraints 

The specification of model constraints implied by the model structure provides a 
number of advantages. On the one hand, information dependencies in the model 
become clearly highlighted. Since constraints are expressed directly in the model 
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structure, the information dependencies from the universe of discourse play a core 
role in the corresponding conceptual model. When important constraints can be 
implied by the model structure, the logical structure of the universe of discourse is 
directly reflected in the conceptual model structure. This allows people to get better 
and faster insights in the information represented by the analysis model, thereby 
easily obtaining a view on the information structures in the universe of discourse. 

A second advantage is that the number of constraints that has to be added to the 
model will diminish, since a number of these constraints will already be expressed in 
the model structure. As an example, model constraint {1} is directly expressed in the 
model structure that is represented in Figure 2.8. The association class Borrowing 
expresses that a borrowing can only occur by a person that has been registered at the 
library. The registration participant for the association captures this fact, expressing 
that a borrowing object is existentially dependent on a registration object, which, in 
turn, is existentially dependent on a person and a library object. 

The representation of existential dependency should best not be restricted to binary 
associations, expressing that a link object is dependent on 2 association objects. It 
should also be possible to express that a link object is dependent on only a single 
other object. This can currently be simulated in UML using an ordinary association 
between the dependent object and the object on which it depends, having a 
multiplicity lower bound of 1 at for the latter. An alternative representation could be a 
reification of a 1-tuple represented by a unary association into an object. Although 
UML offers both binary and n-ary associations, it does not allow the direct modelling 
of an unary association. In addition, since UML associations have been extended in 
order to allow duplicate links, it should also be possible to constrain the number of 
duplicate links that are allowed to exist at the same moment. In Section 4.3.7, we 
propose the concept of unary associations and duplication occurrence constraints in 
the EROOS methodology as a solution for these UML restrictions.  

Existential dependency among objects may seem too restrictive for the ultimate 
software system to be built. A large deal of run-time flexibility, e.g., in populating the 
model with instances, would be lost. However, object-oriented analysis is basically 
concerned with building an abstraction of the universe of discourse, expressing 
information, facts, and dependencies present in the universe of discourse without 
considering how to express this information in the system at run-time. Therefore, 
focusing on the universe of discourse in its normal appearance should have priority 
over the unavailability of information to the system at run-time.  

As a conclusion, we can state that the specification of model constraints implied by 
the model structure diminishes the gap between the logical information structure of 
the universe of discourse and the corresponding model structure, since the constraints 
are highlighted directly in the model structure. However, UML and other analysis 
methods do not fully support such high-level structural concepts in their notation. 
Therefore, the expressive power of the model structure concepts should be enriched 
in order to obtain methods that can produce suitable models expressing the constraints 
from the universe of discourse directly in the model structure. 
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2.9 Comparison and Conclusions 

In this chapter, we have presented a taxonomy for model constraints. We have shown 
that model constraints can be specified in a number of manners, more specifically: 

• as informal text, expressing the constraint in natural language as an informal 
addendum to the model specification, 

• as operational restrictions, realising the constraint using method execution 
control, 

• as a first-class model concept, introducing model constraints as a basic building 
block of an analysis model, 

• integrated in existing model concepts, specifying a model constraint in the 
definition of the model entity on which it applies, 

• and implied by the model structure, using existential dependency, obliged 
attribute values, and reified object states in order to enrich the model structure. 

We have argued about the advantages and disadvantages of each approach, using the 
gap between the logical information structure of the universe of discourse and the 
corresponding model structure as the most important criterion. A summary of the 
advantages and disadvantages of the discussed specification techniques for model 
constraints is presented in Table 2.4. 

After comparison of the different approaches for model constraint specification, our 
conclusions are the following: 

• Specifying constraints as informal text is too informal as an outcome of the 
analysis phase. This will give rise to the introduction of human interpretation 
errors during later stages of the development. 

• Specifying constraints explicitly by operational restrictions is useful during the 
design stage, but too low level on the analysis level. Such approach is not 
advisable because it introduces a huge gap between the universe of discourse and 
the analysis model. Instead of describing which rules apply in the universe of 
discourse, the analysis model describes how they are enforced. In addition, 
constraints must always be converted from their conceptual meaning to their 
operational implementation and vice versa. 

• Constraints can be considered as independent model entities, and, in general, 
need to be modelled as a first-class model concept. As such, the importance of 
constraints in an analysis model is highlighted to the right extent. However, other 
constructs are sometimes better suited in certain cases. First, constraints closely 
related to certain model entities should better be directly integrated in these 
elements in order to achieve a clear focus on these constraints during analysis. 
Second, existential dependency and other structural model constraints should be 
expressed directly in the model structure instead of being specified as 
independent constraints. Instead of highlighting the basic structure of the model, 
the structure would be neglected and hidden into the specified constraints. 
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Constraint specification Advantages Disadvantages 
Informal text • Expressivity of natural 

language 
• Limited impact on 

model 
• Imprecise descriptions 
• No verification possible 

Operational restrictions • Formal technique 
• Clear insight in places 

where to check 
constraints 

• Low-level specification 
mechanism 

• Gap between analysis 
model and universe of 
discourse 

• Model extension and 
revision problems 

First-class model concept • Consistent, 
unambiguous, formal 
and general applicable 
model constraint 
description 

• Gap between model 
entities and related 
constraints 

• Unsuited for reified 
associations 

• No reflection of logical 
domain structure 

Integrated in model concepts • Focus on specific 
constraint types in the 
concept definition 

• Useful for constraints 
on a single model entity 

• Arbitrariness in 
constraint placement  

• Improper description 
when constraints spread 
out over several model 
entities 

• Limited reuse  
Implied by model structure • Model highlights logical 

structure of the universe 
of discourse  

• Change in logical 
structure has huge 
impact on the model 
structure 

Table 2.4: Overview of Specification Techniques for Model Constraints 

• Constraints closely related to certain model entities, such as attribute and 
association end multiplicity, attribute range restrictions, and general 
changeability properties of attributes and associations, could easily be integrated 
in these model entities. However, when constraints can spread out over several 
model entities, it is not advisable to integrate them in a single entity. This leads to 
asymmetry and arbitrariness in the constraint specification.  

• Existential dependency and other structural model constraints should best 
directly be implied by the model structure. A hierarchical association structure 
can capture existential dependency constraints implicitly in the model structure. 
This reduces the number of additional constraints, and highlights and 
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incorporates the logical structure of the universe of discourse directly in the 
corresponding analysis model. 

UML does not provide suitable support for specifying constraints in the right manner 
in an analysis model. The expressive power of the UML model structure must be 
enriched in order to obtain suitable conceptual models expressing the structures from 
the universe of discourse directly in the model structure. In Chapter 4 and Chapter 5, 
we propose two versions of the EROOS methodology, the EROOS kernel and the 
EROOS universe, that define suitable notations and formalisms to specify a large 
number of constraints from the universe of discourse directly in the conceptual model 
structure. 
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Chapter 3 Key Principles for Conceptual Modelling 

Key Principles for Conceptual 
Modelling 

Before we present the EROOS methodology, we first propose the key principles for 
conceptual modelling that have led to certain methodological decisions in EROOS, 
and provide arguments as to why these principles are of utmost importance during 
conceptual modelling in order to obtain the most suitable models.  

3.1 Principle of Uniqueness 

The Principle of Uniqueness states that every fact from the universe of discourse 
must result in a unique model element in the corresponding conceptual model. There 
should exist no alternatives in modelling facts from the universe of discourse in order 
to avoid different conceptual models that are somehow equivalent. Instead, the model 
concepts offered by a methodology should be such that the analyst is guided from the 
universe of discourse to be modelled to the most appropriate conceptual model that 
represents these facts.  

Although this principle is lacking in current analysis methodologies, we argue that it 
is of utmost importance to incorporate this principle in an analysis methodology. On 
the one hand, the analyst has a huge and difficult task of mapping the information 
from the universe of discourse into an appropriate conceptual model. It should not be 
the responsibility of the analyst to decide on choosing an appropriate style for 
modelling certain information in the conceptual model. Instead, the analyst should 
primarily focus on deciding whether or not facts related to the universe of discourse 
are relevant according to the requirements that must be incorporated in the model. A 
good analysis methodology should offer conceptual support for the transformation of 
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facts from the universe of discourse into a suitable conceptual model, having clear 
criteria in leading the analyst toward the most appropriate model concept. It is the 
task of the methodology to investigate and evaluate all potential alternative modelling 
concepts and notations that can be used in expressing certain facts, and to force the 
analyst in using the most suitable concept. 

In addition, the Principle of Uniqueness leads to a true standardisation on the analysis 
level. It is not enough to standardise the notation, as the Object Management Group 
(OMG) has done with the Unified Modeling Language (UML) as a general software 
development notation. There are still a number of flavours or personal preferences 
possible in UML for expressing certain information. As an example, we have 
identified in Section 2.8 that an association can be represented as an ordinary 
association, a qualified association, an aggregation, a composition, an association 
class, and even an association reified into a class. This creates confusion for the 
analyst during the development of a conceptual model about which concept to choose 
in order to model certain information. In addition, the intention of the analyst using a 
specific model concept must be reconstructed during model revisions. Considering 
the lifetime of a conceptual model and the number of people involved in creating, 
extending, adapting, and reviewing these models, it is beneficial in terms of time and 
complexity of having a single model for a single universe of discourse when models 
are frequently passed between people. 

Notice that the Principle of Uniqueness is also known under different names, amongst 
other, as construct redundancy [160], in which a type of facts within the universe of 
discourse can be represented by more than one modelling construct, or as No-Choice 
[38]. 

3.2 Principle of No Redundancy 

The Principle of No Redundancy states that every single information item that is 
represented in a conceptual model must have a distinct added value of its own, and 
should not be derivable from the other items present in the conceptual model. Each 
fact from the universe of discourse should directly be reflected in the conceptual 
model by means of a model entity that can be traced back to the universe of 
discourse. 

Models incorporating a large degree of redundancy are much more difficult to keep 
consistent than models without any redundancy. In addition to consistency problems 
that can arise from the mapping of the universe of discourse to the conceptual model, 
model redundancy introduces additional consistency problems within the conceptual 
model. This creates an extra level of complexity inside the conceptual model. 

Another disadvantage of model redundancy is that the information captured in a 
model is more difficult to grasp by model readers, reviewers, and re-users. Instead of 
focussing on the information in the model, they have to filter the model in order to 
detect and reduce the redundant information, or are puzzled about the difference 
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between 2 model entities that actually represent the same information. A model 
without redundancy is easier to comprehend than a model containing redundant 
information. 

Notice that the Principle of No Redundancy is also addressed as uniqueness [38]. 

3.3 Principle of Unambiguity 

The Principle of Unambiguity states that each conceptual model element must result 
from a distinct fact in the universe of discourse. There should exist no two different 
situations in the universe of discourse that result in the same conceptual model 
element. 

When a conceptual model can be interpreted in many ways, it can mentally be 
mapped back onto different situations in the universe of discourse. In this manner, a 
single conceptual model can express different realities. If this is the case, the 
conceptual model is ambiguous about which facts from the universe of discourse are 
actually covered by the model. This can cause confusion, misunderstanding, and 
misinterpretations. To reduce this source of confusion and diminish the threat of 
discrepancy between the required and the actual delivered software system, a 
conceptual model element should be traceable to a single and unique fact from the 
universe of discourse. 

Notice that the Principle of Unambiguity is also addressed, amongst other, as 
unambiguous [62], or as construct overload [160], in which the same concept 
represents several types of facts from the universe of discourse. 

3.4 Principle of Completeness 

The Principle of Completeness [172] states that all relevant information from the 
universe of discourse must also be reflected in the conceptual model. A conceptual 
model cannot reflect a certain universe of discourse when a number of facts are not 
represented in the model. If some facts are not described explicitly, and they are only 
present in the mind of the analyst or domain expert, the conceptual model is not 
complete, and can lead to errors, misunderstandings, confusion and arbitrary 
decisions during later stages of the development process. Although it is acceptable 
that certain technical elements of the solution domain are not expressed in a 
conceptual model, the universe of discourse should be modelled to its full extent. 

When incomplete conceptual models are used as a kind of sketch of the universe of 
discourse, details but also important or even crucial information could have been 
omitted. It is conceivable, that a software engineer faced with missing information, 
will neglect certain important elements, or give her or his own personal interpretation 
that can differ from the facts within the universe of discourse. When important 
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development decisions are based on imprecise, incomplete, and non-exhaustive 
information, this can lead to serious problems and failures in the system being 
developed. 

The Principle of Completeness could be compared with construct deficit that have 
been defined by Wand [160], which states that a fact from the universe of discourse 
cannot be represented by any modelling construct. Although construct deficit implies 
incompleteness, incompleteness does not imply construct deficit, since 
incompleteness does not necessarily arise from the fact that it is impossible to model 
certain facts from the universe of discourse. These facts could somehow be omitted 
by the modeller. 

3.5 Principle of Minimalism 

The Principle of Minimalism states that only the relevant information in the universe 
of discourse must be reflected in the conceptual model. A conceptual model should 
not contain any surplus or irrelevant information that cannot be connected to the 
universe of discourse to be modelled and the requirements for the actual system. 
When information cannot directly be linked to a relevant knowledge fact within the 
universe of discourse, it is superfluous and should be omitted from the conceptual 
model. An analyst should be aware of the boundaries of the universe of discourse and 
should not try to model unimportant or unrelated facts. 

Software engineers are often inclined to anticipate on a large number of potential 
future extensions to the system to be built, or to construct an oversized system that 
can be reused in other applications operating within the same or a related universe of 
discourse. This is also postulated by the agile software development community and 
expressed in the Agile Manifesto [11][98] as the principle of ‘Simplicity is Essential’. 
It is the task of the analyst to construct a complete conceptual model of the whole 
universe of discourse, while it should be constricted within the boundaries of the 
universe of discourse. 

Notice that the Principle of Minimalism is also addressed as Abstract [62], as 
Abstraction [38], as Pertinency, as Noise, or as Parsimony. 

3.6 Principle of Preciseness 

The Principle of Preciseness states that all facts and information of the universe of 
discourse must be modelled in a formal way using suitable concepts that are offered 
for this purpose by the supporting analysis methodology. No text elements or notes in 
natural language should be part of the conceptual model without having a 
corresponding formal model representation of the facts they intend to express. 
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As previously argued in Section 2.4, formal specifications are preferable over 
informal, textual specifications in a conceptual model due to unambiguity, the 
possibility of performing model validation and verification, and the impact that can 
be achieved on the other model elements [34]. 

3.7 Principle of No History 

The Principle of No History states that the resulting conceptual model must be 
independent of the order in which the facts from the universe of discourse have been 
modelled. The conceptual model should only be dependent on the total set of 
information from the universe of discourse that has to be modelled, and not on the 
order in which these pieces of information have been added to the model. A 
conceptual model should be a representation of the universe of discourse, and should 
not represent any history information concerning the construction of the model. 

In fact, the Principle of Uniqueness that was stated above, already implies the 
Principle of No History, since if only a single conceptual model can result from a set 
of facts from the universe of discourse, it definitely cannot contain any history 
information concerning the construction of the conceptual model. When history 
information concerning the construction could have an influence on the resulting 
model, the same set of facts from the universe of discourse can lead to a variety of 
models depending on the order in which the facts have been modelled, which is in 
contradiction with the Principle of Uniqueness. 

Nevertheless, we find it important to stress the Principle of No History as a distinct 
conceptual modelling principle. Since it is possible that an analysis method does not 
comply with the Principle of Uniqueness, such method could in addition be assessed 
regarding its compliance with the Principle of No History.  

3.8 Principle of Model-Implied Constraints 

The Principle of Model-Implied Constraints states that constraints arising from rules 
and regulations in the universe of discourse must be reflected in the structure of the 
conceptual model. This means that the concepts offered by an analysis methodology 
should be able to express these important constraints directly in the model structure. 
In addition, information in the universe of discourse that is dependent on other kind 
of core information as a prerequisite for its existence, should as such be reflected in 
the conceptual model. This means that the model entity expressing the conditional 
information should also be modelled as being dependent on the model entity that 
presents the core information. 

The reason behind this principle is to reflect and preserve the implicit structures and 
the existential dependency relations from the universe of discourse in the core 
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structure of the resulting conceptual model. We have extensively argued in Chapter 2 
why this principle is of utmost importance for conceptual modelling. 

3.9 Principle of Abstraction 

The Principle of Abstraction states that complex information in a conceptual model, 
due to the intrinsic complexity of the universe of discourse, must be presented in its 
full detail in the resulting conceptual model. However, a conceptual model can offer 
model views in a more abstracted form for the ease of the model reader. 

Producing abstract views on the universe of discourse should not be one of the main 
concerns of conceptual modelling, since a conceptual model must be able to capture 
the universe of discourse in its full detail. However, for interaction with customers 
and end users, it can be useful to build summary models and condensed views on the 
possibly complex overall conceptual model. 

When abstract views on a conceptual model are not considered to be a basic part of 
the conceptual model, the Principle of Abstraction is not contradictory to the 
Principle of Uniqueness and the Principle of No Redundancy as presented in Sections 
3.1 and 3.2. Abstract model views are not considered as true alternatives for 
modelling the universe of discourse, but merely offer a condensed and more 
understandable view on the conceptual model.  

3.10 Additional Considerations 

Extendibility and correctness with respect to the universe of discourse are sometimes 
postulated as important issues for conceptual modelling. However, we have not 
incorporated them in our proposed set of key principles for conceptual modelling. 

3.10.1 Extendibility in Conceptual Modelling 

Devos [38] proposes extendibility as one of the principles for conceptual modelling. 
The proposed principle states ‘It must be possible to extend a model with a set of real-
world facts without modifying existing specifications.’ However, we argue that this 
principle is inadequate for conceptual modelling due to a number of reasons. 

First, this proposition could be contraproductive in realising the Principle of 
Uniqueness and Model-Implied Constraints. In realising the Principles of Uniqueness 
and Model-Implied Constraints, a methodology tries to guide the analyst to a unique 
model that expresses all essential constraints in its core model structure. If one wants 
to adhere to the proposed principle of extendibility, the consequence is that the core 
model structure that was constructed during the first modelling iteration cannot be 
altered anymore to reflect the additional information that must be captured during the 
second modelling iteration. This leads to the situation in which the information from 
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the second iteration is modelled using unintegrated model structures that are 
artificially connected with the model structures that were specified during the first 
iteration. Since a conceptual model should be a unique representation of the universe 
of discourse containing all dependencies in its core model structure, it should be 
possible to review the originally developed model structures when additional 
information must be added to the model during the second iteration. 

Second, this proposition is in contradiction with the Principle of No History when 
being applied to conceptual modelling. On the one hand, according to the proposed 
principle of extendibility, models must be extendible without having to alter 
previously defined model elements. But on the other hand, according to the Principle 
of No History, models must be independent of the order in which elements have been 
added to the model. It is only possible to satisfy both principles at the same time 
when model elements are fully independent from each other. In this manner, 
additional model elements would not have an impact on previously defined model 
elements. However, model elements in conceptual models are often heavily 
interrelated and dependent on each other. It is therefore almost impossible to add new 
model elements while at the same time keeping them isolated from existing model 
elements. 

Therefore, we consider the proposed principle of extendibility as inadequate, and do 
not adopt it as a key principle for conceptual modelling. 

3.10.2 Correctness in Conceptual Modelling 

Although correctness is a sound principle to strive for, it is very difficult to achieve in 
practice. Correctness can be situated on two levels, namely (1) external correctness, 
which is the correctness of the conceptual model in relation to the universe of 
discourse, and (2) internal correctness in the model.  

Regarding external correctness, Ludewig [94] points out that this can never be 
achieved completely. Every person has a distorted view on the world. In order to 
approach correctness, we have to improve our models constantly through a 
comparison with the reality. Whenever the conceptual model and the universe of 
discourse do not agree, the reality is always right and the model is always wrong.14 It 
is therefore impossible to prove that a model is correct in relation to the universe of 
discourse. One can only prove that a model is incorrect. A model is correct as long as 
no evidence to the contrary can be provided. The goal of conceptual modelling is thus 
to achieve a conceptual model that is the best estimation of the universe of discourse 
given the facts and information that we know, and for which no evidence to the 
contrary can be provided. 

                                                  
14 In the case of Business Process Re-engineering (BPR), the opposite is true. The newly defined business 
process is the ultimate goal that must be realised by enforcing it in reality. 
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Internal correctness, also called Consistency, is a necessity for any specification 
formalism. Concerning the conceptual modelling, the modelling methodology must 
state the methodological rules and guidelines to which a model must adhere. 
Furthermore, by complying with the principle of No Redundancy, sources of internal 
incorrectness can be removed since the redundant information must no longer be kept 
consistent with its counterparts. The principle of Preciseness enables model 
verification and validation, since formal notations can be interpreted and checked on 
internal correctness.  
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Chapter 4 A Methodological Kernel for Conceptual M

A Methodological Kernel for 
Conceptual Modelling 

The development of the EROOS15 conceptual modelling methodology16 was led by 
the conclusions of our study on model constraint formalisms in object-oriented 
analysis in Chapter 2, and the key principles for conceptual modelling that were 
proposed in Chapter 3. The EROOS methodology wants to guide the analyst to a 
unique conceptual model for a specific universe of discourse. In the EROOS 
methodology, constraints play a crucial role in the modelling process. First, EROOS 
introduces the usage of existential dependency as the main criterion to determine the 
core model structure, thereby expressing model constraints implicitly in the EROOS 
model structure. Second, the impact of model constraints on every model concept is 
carefully considered, integrating model constraints in certain model concepts when 
appropriate. Third, model constraints in EROOS are treated as a first-class model 
concept linked to the model entities that they affect. 

Chapter 4 and Chapter 5 provide a detailed description of the EROOS methodology. 
We propose two version of the EROOS methodology: A core version in this chapter, 
the EROOS kernel, in which information can only be added to the conceptual model 
instance, and an extended version in Chapter 5, the EROOS universe, in which 
additional support for recurrent EROOS kernel analysis patterns is provided through 
advanced and more practical concepts, using the core version as the underlying base. 

                                                  
15 EROOS was originally an acronym for ‘Entity-Relationship Object-Oriented Specifications’, but is 
currently considered to be a proper noun. 
16 A part of the work presented in this and the following chapter has been published in [154], [153], [150], 
[90], [91], [142], and [143]. 
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4.1 Model, Model Instance, and Event Instance 

The main goal of conceptual modelling is to develop a model of the universe of 
discourse in which the ultimate system will actually operate. The resulting conceptual 
model expresses the analyst’s perception of the universe of discourse, and serves as 
the major means of communication between the customers, which are the prime 
contractors having ordered the system, the end users, the experts on the universe of 
discourse, and the software engineers responsible for the actual development of the 
system. The goal of conceptual modelling is to capture all facts and knowledge from 
the universe of discourse into a conceptual model that will serve as a reference for it, 
specified using the concepts offered by the analysis methodology. A model is a meta-
representation in the sense that it does not contain any specific facts from the universe 
of discourse at a particular moment in time. A model only describes potential 
structures that can exist between elements in the universe of discourse. It is a 
description of all capabilities of the universe of discourse without describing any 
instantaneous exposure within the universe of discourse. 

However, it is possible to represent a snapshot of the universe of discourse, which is 
the description of an actual situation in the universe of discourse at a particular 
moment in time, using a model instance. A model instance contains specific objects, 
each having their own properties and concrete relationships with other objects. A 
model instance expresses information about a concrete situation in the universe of 
discourse. A model instance can only contain information that is situated within the 
boundaries of the allowed structures as defined in its conceptual model. 

A model instance can remain valid for a certain period. However, at any moment in 
time, a model instance can change due to a set of events that occur in the universe of 
discourse. Since the model instance is a representation of the information in the 
universe of discourse, any occurrence that causes a change of certain information is 
reflected by a change of the model instance representing this information. The set of 
concrete events that cause a transformation of a model instance is indicated as an 
event set instance. The definitions of Model, Model Instance, Model Instance 
Universe, Event Set Instance, and Event Universe can be found in Definition 4.1. 

 
A Model is a set of methodological concept instances 
(classes, attributes, relations, etc.) representing potential 
information structures in the universe of discourse. It is a 
meta-representation describing all potential situations that 
can occur in the universe of discourse. 

A Model Instance is an instantiation of a model at a 
particular moment in time, representing a concrete situation 
in the universe of discourse at that time. Although a model 
instance is a representation of a situation at a particular 
moment in time, it can remain valid for a certain period. 

The Model Instance Universe is the collection of all model 
instances that can exist at a certain moment. It is the set 
of all potential instantiations of a model. 



4.2. CLASSES, OBJECTS, AND STATIC CLASSIFICATION 63 

 

An Event Set Instance is a concrete set of events that 
defines a transition at particular moment in time from an 
existing model instance, which was valid until that moment, 
to a new model instance, which will become valid starting 
from that moment. The new model instance is obtained by 
adding information to the existing model instance. 

The Event Universe is the collection of all events that can 
occur in a model. It is the union of all events that already 
have occured in the past and all events that could occur in 
the future. 

Given  

Model M; Model Instance Universe MIU; Model Instance MI; 

Event Universe EU; Event Set Instance E; 

M17 = (MIU, MI, OU, EU, E, t, Mccl, Macl, Md, Ma, Mbr, Mur, Mct, Mp, Mq, 

       Mco, Mg) | Mcl = Mccl ∪  Macl ¾ Mr = Mbr ∪  Mur;   (model structure) 
MI: TIME � MIU | " t ³ TIME: MIt ² MIt+1  (growing model instance) 

E: TIME � 3(EU)      (model behaviour) 

t: MIU x 3(EU) � MIU | t(MIt,Et+1) = MIt+1               (new instance) 

Definition 4.1: Model, Model Instance, and Event Instance 

4.2 Classes, Objects, and Static Classification 

When modelling facts and knowledge from the universe of discourse into a 
conceptual model, information will be represented in the model as objects, also called 
instances. An object is a model representation of an observable fact in the universe of 
discourse. An object does not necessarily map to a tangible item in the universe of 
discourse, but can also map to an abstract item, a piece of knowledge, or an important 
occurrence in the universe of discourse. An object can represent any kind of thing that 
comes into existence at a certain instance of time as a representation of a fact that 
arises in the universe of discourse. In the EROOS kernel, an object can only be 
created. The EROOS universe offers advanced concepts in which an object can also 
cease to exist at a certain moment in time. This will lead to the possibility of object 
destruction, which is treated in section 5.1. Objects are distinguished from values, 
whose lifetime is infinite, i.e., a value has always existed in the past and will always 
exist in the future while an object comes into existence at a specific moment in time. 
An event is an occurrence that can be observed in the universe of discourse in 
connection with the appearance of a fact, or the creation of an item. 

We introduce the notion of a class as a concept for structuring the set of objects into 
collections of objects having the same properties. In this manner, all properties 
common to a collection of objects can be specified once for the whole class. In 

                                                  
17 The different elements that compose a model will be presented in the next sections. 



64 A METHODOLOGICAL KERNEL FOR CONCEPTUAL MODELLING 

EROOS, a class is a static classification of a collection of objects with the same 
properties, defining a specific type for the objects that is shared by all objects in the 
collection. Classes constitute the basic building blocks of a conceptual model in 
EROOS. All model elements that introduce additional properties, such as relations, 
attributes, and constraints are defined on top of one or more classes. 

In developing conceptual models, both structural and behavioural aspects must be 
considered. The structural aspects of a conceptual model comprise a specification of 
how the universe of discourse might look like at a particular moment in time. The 
behavioural aspects specify how the universe of discourse may evolve in the course 
of time. All elements of a conceptual model will describe the structural aspects of the 
information that can be contained in a model instance, and the behavioural aspect of 
how a model instance can be transformed into a consecutive model instance. 

From a structural point of view, classes serve to cluster objects with the same 
properties. Instead of having to define every single object that can come into 
existence in the analysis instance model, a class allows to define a skeleton 
description for an object only once as a part of the conceptual model, whereupon a 
number of objects can be introduced in the instance model based on this unified 
description. The structural aspect in the definition of a class is confined to the 
clustering of objects and the introduction of a single name to indicate the whole 
cluster. The behavioural aspect in the definition of a class consists of the specification 
of an event, indicated as a creation event, which creates a new object inside the model 
instance as the representation of an occurrence in the universe of discourse.  

This section further describes the properties concerning classes and their objects in 
detail, together with the model constraints implied by the class concept. Hereafter, the 
different aspects involved in the introduction of a class are surveyed, namely the 
structural and behavioural aspects in terms of initial functionality for the class, and 
the rules to be obeyed when introducing a new class. Last, the EROOS classes that 
can be identified in the running example of the library system are presented. 

4.2.1 The Population of a Class 

In human life, it is common practice to cluster elements with similar properties in 
order to perform a classification of elements as part of a mental model. Such 
classifications are a means to master complexity by clustering elements, finding 
commonalities between these elements, and identifying common relationships 
between them. This clustering will be reflected in a conceptual model by means of 
classes. The characteristics and behaviour common to the collection of objects 
associated with a class can then described once and for all at the level of that class. In 
contrary with a set, which is a static and fixed collection of elements that cannot be 
changed anymore, an EROOS class is a dynamic collection of objects, since at all 
times new objects can be added to a class. At each moment in time, a class collection 
corresponds to a fixed set of objects that are part of the collection at that moment. The 
collection associated with a class is named the population of that class. The process 
of defining classes is named static classification. Figure 4.1 presents a population of a 
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class at a particular moment t, having fifteen objects within the class population at 
that moment. 

 
 

Ct 

 

Figure 4.1: Objects in an EROOS Class Population at Moment t 

4.2.2 Model Constraints implied by the Class Concept 

EROOS incorporates important model constraints directly in its methodological 
concepts. The following constraints are directly implied by the class concept: 

• Disjunctness: Different concrete classes in EROOS are assumed to divide the 
universe of objects into disjoint collections. In other words, each object is and 
will always be associated with a single concrete class. Different concrete classes 
are not allowed to share any of their objects.18 

• Immutability: The bond of a given object with its class is static. In particular, at 
the moment an object is created, it is bound to a class and it will keep that bond 
for its entire lifetime. Objects cannot switch from one class to another.  

• Finiteness: The collection of objects associated with a class is finite.  

• Uniqueness: Whenever a new object of a class C is created, that object will be 
different from any already existing objects of the class C or of any other classes. 
From its creation on, each object will have its own and unique object identity 
[82] so that it can be differentiated from all other existing objects. The object 
identity is encapsulated, but can be observed using equality and inequality: 

− Given two expressions e1 and e2, both expressions referring to an object, the 
assertion ‘e1 = e2’ is true, if and only if both expressions refer to the same 
object, i.e., the identity of the objects referred to by e1 and e2 is the same.  

This means that, although all external observable properties concerning two 
objects can be the same, the objects can still be totally different in nature due to 
their unique object identity. 

The definition of a class can be found in Definition 4.2. 

                                                  
18 Notice that the implied constraint of disjunctness only holds for concrete classes. Section 4.6 introduces 
abstract class that do not comply with the implied constraint of disjunctness. 
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A Concrete Class is a model entity defining, at each moment 
in time, a disjoint object population set, which is element 
of the corresponding model instance. This population set can 
only be extended over time. 

The Object Universe is the representation of the entire 
collection of objects that can exist for a model. It is the 
union of all objects that came into existence in past model 
instances and all objects that could come into existence in 
future model instances. 

Given  

Model M; Object Universe OU; Concrete class C,C’ ³ Mccl; 

C: TIME � 3(OU) |          (finiteness) 

  " t ³ TIME: Ct ² Ct+1         (immutability) 

  " t,u ³ TIME: Ct ¬ C’u = «       (disjunctness) 

Definition 4.2: EROOS Kernel Class 

4.2.3 Specification of an EROOS Class 

The definition of a class in EROOS is given in a class script and comprises both 
structural and behavioural aspects. From a structural point of view, classes serve to 
cluster objects with the same properties into disjoint collections. The structural aspect 
in the definition of a class is confined to the introduction of a single and proper name 
for the objects. The name of a class must be an expression in some natural language, 
rooted in some culture, and refer to a cultural entity. The name for a class must reflect 
as good as possible the entity in the universe of discourse that it is supposed to model. 
There is no need to restrict oneself to English names, nor to ASCII or even to the 
Roman alphabet. Classical computer-oriented issues, such as the use of digits as a 
first character or the use of spaces in a name, are purely technical and of no 
importance in a conceptual model. For readability purposes, EROOS class names 
have to be represented as singular nouns and in uppercase. Moreover, all classes 
introduced in a conceptual model must have different names in order to be 
distinguishable. 

A class script also includes behavioural aspects. Each class must at all times be 
complemented with a specification of the events in which its objects can become 
involved. When a new class is defined, the functionality to be introduced is restricted 
to the specification of a single creation event. A creation event is an event by means 
of which a new object of the given class comes into existence and is added to the 
population of that class. It reflects the fact that, in the universe of discourse being 
modelled, a new object with an identity distinct from the identity of any already 
existing objects has come into existence. The specification of a creation event in a 
class script is limited to the definition of a proper name for the event, which must 
reflect as good as possible the occurrence in the universe of discourse that it is 
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supposed to model. For readability purposes, EROOS event names have to be non-
conjugated verbs, i.e., verbs in infinitive form, and represented in small letters. All 
events for a single class must have different names. 

An event in EROOS occurs at a specific moment in time and it is instantaneous. An 
event thus has no duration. Whenever the duration of a creation event should be 
considered as a period, because its duration is important for the universe of discourse, 
this fact should be modelled as two objects, each having its own distinct creation 
event. The composite creation event must as such be split in two basic creation 
events, namely a first one to express the start of the creation activity, and a second 
one to express the end of the creation activity. Notice that the modelling of an 
occurrence can be dependent on its relevance in the universe of discourse. Whereas in 
one model a certain occurrence, whose duration is considered to be irrelevant, is 
modelled as an event of a single object, that same occurrence could be modelled as 
two distinct events belonging to different objects as soon as aspects of its duration 
turn out to be important. The EROOS approach concerning modelling events allows 
the analyst to make a clear distinction between, on the one hand, the modelling of an 
event or occurrence that is instantaneous, which can be represented by a creation 
event for a single object, and, on the other hand, the modelling of an activity lasting 
for a certain period, which must be represented by two creation event representing the 
start and end of the activity. 

In EROOS, all elements of a conceptual model can be represented both textually and 
graphically. Whereas the textual representation fully defines all details concerning a 
certain model element, the graphical representation provides a condensed view on the 
element. The structural and behavioural aspects involved in the definition of a class 
are defined in a class script, as given in Table 4.1. As presented in Figure 4.2, a class 
is graphically represented in the form of a rectangle with the name of the class 
specified inside. The definition of a creation event can be found in Definition 4.3. 

 
<EROOS kernel class script> =  

"class" <CLASS NAME> 

  "creation event" 

    <creation event name>  

"end class" <CLASS NAME> 

Table 4.1: EROOS Class Script 

 

<CLASS 
   NAME> 

 

Figure 4.2: Graphical Representation of an EROOS Class 



68 A METHODOLOGICAL KERNEL FOR CONCEPTUAL MODELLING 

A creation event is an event of a class that, if applied on a 
model instance at a certain time, adds a new object to the 
object population set for that class. 

Given  

Model M; Object Universe OU; Event Universe EU; 

Event Set Instance E; Concrete Class C ³ Mccl;  

Creation Event c1,…,cn ³ EU; 

c1,…,cn ³ Et+1 ⇒  $ o1, …, on ³ OU :  

 (o1, …, on ´ Ct) ¾ (Ct+1 = Ct ∪  {o1, …, on}         (Uniqueness) 

Definition 4.3: EROOS Creation Event 

4.2.4 EROOS Kernel Classes for the Library Example  

Given the example of the library system that was presented in Section 2.3, the 
following EROOS kernel classes can be identified: PERSON, DEATH (of a person), 
LIBRARY, DISSOLUTION (of a library), REGISTRATION, DEREGISTRATION, 
BOOK, DISMISS (a book that has been taken out of print), PUBLISHER, 
LIQUIDATION (of a publishing company), COPY, DESTRUCTION (of a book 
copy), POSSESSION, WRITE-OFF (of a book possession), BORROWING, 
RETURN (of a borrowing), FINE, and PAYMENT (of a fine). Since an EROOS class 
script do not provide any additional information next to the definition of a creation 
event name for the class, we only give the EROOS class script for the class of 
REGISTRATION in Table 4.2 as an example. 

 
class REGISTRATION 

  creation event 

    register 

end class REGISTRATION 

Table 4.2: EROOS Class Script for the Library Example 

4.2.5 Contributions, Related Work, and Reflections 

The EROOS class concept is largely comparable with the class concept in UML. Our 
contributions concerning the class concept are the following: 

• The constructional model approach, in which model instances can only grow 
and information can only be added to a model instance, is a crucial property of 
the EROOS kernel in achieving the Principle of Uniqueness. Objects cannot be 
destroyed, but instead the destruction of an object must be reified into the 
creation of a distinct object representing this destruction event.  
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• The methodological approach using instantaneous events obliges the modeller 
to split an occurrence with a relevant duration into two model events. This allows 
a proper guiding of the modeller to a unique conceptual model for the universe of 
discourse to be modelled.  

An observation that can be made is that the application of the EROOS kernel 
methodology gives rise to a class model with a huge number of classes. In order to 
model activities in the EROOS kernel, the activity must be split into two events 
characterising the activity, namely the start of the activity and the end of the activity. 
A large part of the knowledge in the universe of discourse has the form of an activity, 
in which, for instance, a temporal validity or verity can be seen as an activity starting 
at the moment the fact becomes valid and ending at the moment the fact expires or 
becomes invalid. Therefore, most information is modelled using two related classes, 
in which a first class indicates the start and a second dependent class indicates the end 
of the activity or validity. The EROOS universe, presented in Chapter 5, will offer 
advanced modelling concepts to merge these two objects into a single object that 
represents the whole period and has both a creation event and a destruction event. 

A second observation concerns the synchronicity between the occurrences in the 
universe of discourse and the events in the conceptual model. There is sometimes a 
need for a clear definition of the exact moment in time when a model event must be 
activated, e.g., the moment that the person signs the application form in the example 
of the library registration. 

4.3 Attributes, Domains, Values, and Decoration 

In addition to objects, which capture facts about events occurring in the universe of 
discourse, values are used to describe specific properties and relevant information 
related to these events. As such, classes can be decorated with attributes, allowing 
objects to have specific attribute values containing relevant information regarding 
their occurrence. Attributes will be introduced in this section to model properties in 
terms of relationships involving objects and values. Attributes are said to decorate 
classes, providing a description of the relevant information that is related to the object 
and its creation event. When an attribute is defined for a class, each object of the 
decorated class will have to be associated at all times with a value of the proper 
domain, which describes all values of a specific type. 

The introduction of an attribute decorating a given class must always be 
complemented with decoration functionality. This forces the analyst to specify the 
impact of the decoration on the creation event, in addition to the static properties 
underlying the decoration of a class. The creation event introduced in the class script 
must be extended with specific information regarding the attribute, establishing a 
binding of the new object with a proper value of the corresponding domain. Notice 
that the EROOS kernel does not allow changing any information that is captured 
inside a model instance. Only additional information can be added to a model 
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instance. However, a change of an attribute can be modelled by introducing a change 
object, reflecting the fact that an attribute value has been changed in the universe of 
discourse. In addition to the extended creation event, the decoration functionality also 
automatically includes an implicit attribute query returning the information contained 
in the attribute, which can be used for later retrieval. 

First, this section introduces the differences between values and objects, and the 
general principles underlying the decoration of a class. The model constraints implied 
by the attribute concept, as well as the structural and behavioural component of an 
attribute script, are described thereafter. Third, the default attribute Creation 
Timestamp and the implicit attribute query ‘�’ are introduced. Last, the attributes that 
can be identified in the running example of the library system are presented. 

4.3.1 Value Domains 

In EROOS, objects are clearly distinguished from values. Any kind of thing that 
could come into existence at a certain moment in time, can be modelled as an object. 
Contrary to objects, values are information descriptions from the universe of 
discourse for which the lifetime is considered to be infinite. Consequently, whereas 
objects of a class are to be created explicitly using a creation event, EROOS assumes 
that values of a domain have always existed in the past and will always exist in the 
future. Objects capture facts and information about events in the universe of 
discourse, whereas values are used to describe specific properties and relevant 
information related to these events. The basic differences between objects and values 
lead to different concepts for modelling them. Whereas objects having similar 
properties are clustered into classes, domains are introduced for describing values of 
the same type using type descriptions. Domains include a specification of functions 
that can be applied to its values, expressing calculations or equations that can be 
applied to them.  

EROOS defines a number of commonly used domains as part of the methodology. A 
conceptual model developed in EROOS can include additional domain specifications, 
defining values belonging to the given domain and functions applicable to these 
values. However, not just any set of values can be used in decorating classes. A newly 
introduced domain must either fulfil the rules of a basic domain or must be composed 
from already existing valid domains. Each domain will need to specify (1) a mapping 
to a mathematical set, (2) a standard domain unity specified for the unity element of 
the set, (3) a set of additional domain units and their mapping to the domain unity, 
and (4) a set of functions that map values of certain domains to other values of the 
same or other domains. We define 4 categories of domains in EROOS:  

• Magnitude domains describe physical magnitudes in the universe of discourse. 
Examples of such domains are: 

− The domain of MASS offers a set of values for expressing the weight of 
material objects. Values of this domain can be expressed in different units, 
such as grams, kilograms, pounds, and tons. The standard unity of the 
domain is gram (g).  
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− The domain of LENGTH offers a set of values for expressing the size of 
material objects. Values of this domain can be expressed in different units, 
such as metres, kilometres, yards, foots, and miles. The standard unity of the 
domain will be metre (m).  

− The domain of TIME offers a set of values for expressing moments in time. 
Values of this domain can be expressed in different ways using a specific 
era as a kind of unit. An era is a system for dating events from a specific 
reference point in time. This reference point refers to a particular event or 
moment in history, such as the birth of Christ or the coronation of the last 
Japanese Emperor. The standard unity of the domain will be Common Era 
(CE), also called Anno Domini (AD). In addition, the domain of TIME 
offers a dynamic function, denoted as now, which returns the current time at 
the moment the expression is evaluated.  

− The domain of DURATION offers a set of values for expressing the duration 
of certain activities. Values of this domain can be expressed in different 
units such as milliseconds, minutes, hours, days, and years. The standard 
unity of the domain will be second (s).  

− The domain of TEMPERATURE offers a set of values for expressing the 
temperature of objects and fluids. Values of this domain can be expressed in 
different units, such as degrees Celsius, degrees Fahrenheit, and degrees 
Kelvin. The standard unity of the domain will be degree Celsius (ºC).  

− Other domains include CURRENT, having ampère (A) as standard unity, 
RESISTANCE, having ohm � � as standard unity, and LUMINOSITY, having 
candela (cd) as standard unity.  

All magnitude domains at least include addition, subtraction, and comparison as 
functions applicable to their values, in addition to multiplication and division, 
that will result in a value of a composed domain, as explained further on. 

• Reference domains describe textual references in the universe of discourse. 
These reference domains are represented using strings, i.e., sequences of Unicode 
characters. A particular domain may impose restrictions on the alphabet it covers, 
and on the length of the sequences it supports. All reference domains will 
therefore be defined as subsets of the all-embracing domain of STRING, offering 
all sequences of characters of any length that can be represented in Unicode. 

• Denomination domains describe dedicated pricing and money references in the 
universe of discourse. Although the currency conversion between distinct 
denominations is actually undefined, currency conversions are often performed 
using a predefined conversion scheme or using an approximation of the actual 
conversion rates defined by the global money market at a particular moment in 
time. Currencies defining a domain are for instance EUR VALUE (euro as the 
unity), USD VALUE (US Dollar as the unity), and GBP VALUE (GB Pound as 
the unity). Due to the fact that it is impossible to define a static transformation 
between all available currencies, the currencies are not units of an encompassing 
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domain of VALUE, but instead define their own distinct domain having 
currency-specific denominations.  

• Composed domains describe values obtained by applying mathematical 
calculations on a number of values from several domains. Although, in principal, 
the obtained values could be represented by couples, e.g., (10m, 20m) as a value 
of LENGTH x LENGTH, a composed value describes only the end result of the 
calculation, e.g. 200 m2 as a value of the composed domain LENGHT2. 

− The composed domain of VOLUME offers a set of values for expressing dry 
and liquid measures of capacity. Values of this domain can be expressed in 
different units, such as litres, pints, and gallons. The standard unity of the 
domain will be litre (l). Notice that the domain of VOLUME is actually a 
composed domain, since it is equal to LENGHT3, and the unity of litre is 
equal to decimetre3.  

Notice that it is forbidden in EROOS to use Boolean and integer attribute types. 
Although such attributes are commonly used in object-oriented analysis, design and 
implementation, we claim that there is a better way to represent the information 
contained in a Boolean and integer attribute. In EROOS, the analyst is forced to reify 
a Boolean and integer attribute into a class, thereby explicitly modelling the facts that 
are concealed behind these attributes. A Boolean attribute expresses a fact that can be 
true or false. This can also be represented using a relation participation, in which a 
participant object can be participating in a relation link (true) or not (false). Another 
representation could be a static subdivision into two specialization classes (true and 
false class). An integer represents a number as the outcome of a specific count. 
EROOS forces the analyst to explicitly model the elements that have been counted, 
instead of modelling it in a summary version using a count attribute. 

In addition, attributes can only represent a single domain value in EROOS. If there is 
a need to model multi-valued attributes, the analyst must reify the multi-valued 
attribute into a set of object, each having a single attribute value attached.  

4.3.2 Attribute Values 

Associations involving objects of a class and values of a domain are treated 
differently from associations involving objects only. Whereas the latter are modelled 
by means of relations, associations involving objects and values will be modelled by 
means of attributes. Attributes are restricted to model binary associations. The 
structuring of the objects of a class C decorated by an attribute involving values of a 
domain D, is at each moment in time a function from C to D, as illustrated in Figure 
4.3. In order to emphasise the difference between objects, which have internal 
properties, and values, which do not have internal properties, values are shown using 
a textual representation. The defined characteristics for objects resulting from the 
decoration of their class C are represented by lines connecting the decorated objects 
with values of the decorating domain. 
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Permanent binding of an object with an attribute value may seem to be too restrictive 
for the ultimate system to be developed. These values are often unknown to the 
software system, or must be measured in order to obtain an approximation of the 
value. However, object-oriented analysis is basically concerned with building an 
abstraction of the universe of discourse, expressing information present in the 
universe of discourse without considering how this information can be obtained by 
the system at run-time. Therefore, focusing on the information from the universe of 
discourse in its normal appearance should have priority over implementation issues 
concerning the software system. Implementation issues regarding observations and 
measurements of attribute values are described by Fowler [49]. 

 
 

Ct 

D dx 
dy 

dz 

 

Figure 4.3: Objects decorated by an Attribute of Domain D at Moment t 

4.3.3 Model Constraints implied by the Attribute Concept 

EROOS incorporates important model constraints directly in the methodological 
concepts. The following constraints are directly implied by the attribute concept: 

• Permanent binding: Each attribute decorating a given class implies the 
permanent binding of every decorated object with a specific value of the 
decorating domain. This means that each object of the decorated class must at all 
times be associated with a value of the decorating domain. If it should be the case 
that certain objects could exist without being associated with such a value, it is 
clear that these objects do not share the attribute as a common property for the 
class. In such case, an additional class must be introduced, expressing the fact 
that an attribute value has been associated to an object of the original class.  

• Immutability: The attribute association of a given object with its value is 
considered to be static. In particular, at the moment an object is created, it must 
directly be bound to a value of the proper domain, and it will keep that bond for 
its entire lifetime. Objects cannot switch from one attribute value to another 
during their lifetime. If it is needed to change an attribute value, an additional 
class must be introduced expressing the fact that an attribute value has been 
changed.19 

The definition of an attribute can be found in Definition 4.4.  

                                                  
19 In the EROOS universe, an attribute value can be changed into another value of the attribute domain.  
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An attribute is a model entity defining a property for a 
class for which, at each moment in time, every object of the 
class, called a decorated object, must be associated with a 
specific value of the domain defined for the attribute. 

A domain is a collection of values that refer to static and 
unchangeable properties in the universe of discourse. A 
domain can be a magnitude, reference, denomination, or a 
composed domain. 

Given  

Model M; Class C ³ Mcl; Attribute CA ³ Ma; Domain D ³ Md;  

CA: TIME � ( Ct � D ) | 
20        (permanent binding) 

  " t ³ TIME: CAt ² CAt+1         (immutability) 

Definition 4.4: EROOS Kernel Attribute 

4.3.4 Specification of an EROOS Attribute  

The specification of an attribute decorating a class is represented in an attribute script. 
This script introduces the definition of the attribute along with an extension of the 
creation event. Since every object must at all times be associated with a specific 
attribute value of the proper domain, the creation event must define how the 
associated value will be determined. This is done by (1) defining a parameter for the 
creation event by which the proper attribute value can be set, or (2) by defining a 
default domain value for all objects of the class.21 The syntax of an attribute script is 
given in Table 4.3. As presented in Figure 4.4, an attribute is graphically represented 
in the form of an ellipse containing the attribute name, attached to the corresponding 
class. The definition of an extended creation event can be found in Definition 4.5. 

 
  

<Attribute  
   Name> 

<CLASS 
   NAME> 

 

Figure 4.4: Graphical Representation of an EROOS Attribute  

                                                  
20 As an alternative, the definition can be given as:                                                                                           . 
     CA: TIME � (3 (OU) � D ) | " t ³ TIME: dom(CAt) = Ct  or as CA: C � D. 
21 Since attribute values cannot be changed in the EROOS kernel, defining a default value for an attribute is 
not very meaningful since all objects of the class would share the same value in such case. Default values 
are more useful in the EROOS universe, where objects can change their attribute values over time. 
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<EROOS kernel attribute script> =  

"class" <CLASS NAME> 

  "definition" 

    "decorated by" [ "unique" ] "attribute"   

        <Attribute Name> ":" <DOMAIN NAME> 

        [ "constrained by" [ <lower bound> ( "<" | "�" ) ]  

          <Attribute Name> [ ( "<" | "�" ) <higher bound> ] ] 

  "creation event" 
    <creation event name>  
      [ "(" <parameter name> ":" <DOMAIN NAME> ")" ] 

    "effect" 
      ( "new self�"<Attribute Name> "=" <parameter name> 
      | "new self�"<Attribute Name> "=" <domain expression> ) 

"end class" <CLASS NAME> 

Table 4.3: EROOS Attribute Script  

An extended creation event for a class decoration, is an 
event of a class that, if applied on a model instance at a 
certain time, in addition to adding a new object to the 
object population set for that class, will define a value of 
the appropriate domain as the attribute value for the object. 

Given  

Model M; Object Universe OU;, Event Universe EU;  

Event Set Instance E; Class C ³ Mcl; Attribute CA ³ Ma; 

Domain D ³ Md; Attribute Value a ³ D; Creation event c ³ EU;  

c(a) ³ Et+1 ⇒  $ o ³ OU :  

   (o ´ Ct) ¾ (o ³ Ct+1) ¾ (CAt+1(o) = a) 

Definition 4.5: Extended Creation Event for an EROOS Attribute 

An attribute can only serve to decorate a single class. If there is a need to define an 
attribute for more than one class, each class will have to define its own distinct 
attribute, possibly all sharing the same attribute name. However, it is also possible to 
define an attribute for a generalisation class, as presented in Section 4.6, which is 
then, by default, part of each specialisation class that is derived from this class. A 
class can be decorated by a number of attributes, in which each attribute defines a 
certain property for all objects of the class. A domain can be used to decorate a 
number of classes, decorating each class a number of times, for which each time a 
distinct attribute for that class is defined. The resulting overall class description script 
is a combination of all individual attribute scripts for a class. The different 
components in the specification of an attribute script, as shown in Table 4.3, are the 
following:  
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• The domain of the attribute value and a name for the attribute must be specified. 
In the same manner as class names, the name of an attribute must be an 
expression in some natural language and must refer to a cultural entity. For 
readability purposes, EROOS attribute names must be singular and represented in 
title case. Moreover, all attributes decorating a single class must have different 
attribute names in order to distinguish them. 

• In most cases, the binding between objects of a decorated class and values of the 
attribute domain will be a many-to-one binding, in which an object has a single 
attribute value, whereas that value can decorate an unrestricted number of 
objects. However, it is possible to define an integrated constraint that imposes the 
uniqueness of an attribute value among all objects of the class, using the unique 
keyword. The integrated uniqueness constraint imposes a one-to-one binding 
between the class and the domain, in which a value can only be used as an 
attribute value for a single object. For instance, this allows the modelling of 
registration numbers for an institute, or passport numbers for a government. 
Notice that, due to the property of permanent binding, each object of the 
decorated class must be associated with a specific value. The attribute value for 
an object cannot be left undefined.  

• An integrated constraint can be defined that imposes restrictions on the allowed 
domain values by defining a lower and/or higher bound. As such, a restricted 
range of attribute values can be defined for the attribute.  

• The specification of the creation event in an attribute script must correspond to 
its definition in the class script. In particular, the name of the creation event in 
the attribute script must be identical to its name as defined in the class script.  

• A formal argument serves as a symbolic name for a value of the decorating 
domain. Each time the creation event occurs, a concrete argument has to be 
supplied for each formal argument. The formal argument will be used in 
establishing the binding of the new created object with a value of the decorating 
domain. Typically, the argument name is but does not have to be identical to the 
name of the attribute. Argument names must be represented in lowercase.  

• The final component in the definition of a decorated creation event specifies the 
new binding of the decorated object with a value of the domain. For that purpose, 
an assertion will be included. The assertion states that, if the given implicit query 
�<attribute name>, defined in section 4.3.6, will be applied to the newly created 
object, referred to as self, at the moment the creation has occurred, referred to as 
new, the value described by the expression on the right-hand side must be 
returned as a result. A more detailed treatment of assertions can be found in 
section 4.7.4 on events. Broadly speaking, the domain expression defining the 
actual domain value can be built using the formal argument along with constants 
of the domain. The expression may involve functions and operators applicable to 
values of the decorating domain.  
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4.3.5 Default Attributes 

EROOS attributes serve to model properties shared by all the objects of a single class. 
Attributes shared by all objects of every class are referred to as default attributes. 
Their definition is an integral part of the EROOS methodology. The Creation 
Timestamp for an object is defined as a default attribute in EROOS. The Creation 
Timestamp is used to specify the exact time at which an object has come into 
existence. The Creation Timestamp will be fixated at the time of creation of the 
object, i.e., at the moment of occurrence of the creation event. Although the Creation 
Timestamp does not have to be defined explicitly, its semantics can be defined in an 
implicit default EROOS attribute script, as presented in Table 4.4. 

The definition of the default attribute Creation Timestamp introduces its name and 
domain, the TIME domain, as well as the extension of the creation event specifying 
that the default attribute Creation Timestamp has to be initialised with the current 
time, expressed using the keyword now. Because the attribute Creation Timestamp is 
available by default for every class, it would be incorrect to explicitly introduce an 
attribute expressing the same information as the Creation Timestamp, since this 
would lead to two equal attributes decorating the same class, namely, the explicit 
attribute and the default attribute Creation Timestamp. 

 
<EROOS default creation timestamp> =  

"class" <CLASS NAME> 

  "definition" 

    "decorated by attribute Creation Timestamp : TIME" 

  "creation event" 

    <creation event name> 

    "effect" 

      "new self�Creation Timestamp = now" 
"end class" <CLASS NAME> 

Table 4.4: Implicit EROOS Script for the Default Attribute Creation Timestamp 

Moreover, it is not permitted in EROOS to model an attribute that can be derived 
from other attributes present in the model [131]. For example, when modelling a time 
period, the start time, end time, and duration cannot be modelled together. In such 
case, only the start time and duration should be modelled, since the end time can be 
derived. Although it seems that we could also have chosen to model the start time and 
the end time as attributes, this is however not the case. EROOS obliges the modeller 
to take those attributes that do not give rise to additional constraints in the model. 
Since the choice of start time and end time as attributes would introduce an additional 
constraint stating that the end time must be larger than the start time, while the choice 
of start time and duration as attributes would not introduce any additional constraint, 
EROOS oblige the analyst to model these attributes, whereas the end time can be 
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modelled as a query, as presented in Section 4.6.9. Tasker [146] identifies a number 
of types of situations to help analysts recognise derivable attributes. 

4.3.6 Implicit Attribute Queries 

The definition of an attribute decorating a class is automatically complemented with 
an implicit query for retrieving the attribute value. In general, a query offers the 
ability to inspect the properties of an object. Given an attribute A decorating a class C 
and involving the domain D, the implicit query ‘�A’, applicable to each object c of 
the decorated class C, returns the value of the decorating domain D that is associated 
with the object c. This implicit query ‘�A’ is used in (1) specifying the semantics of 
the creation event, (2) specifying queries in order to retrieve information from a 
model instance, (3) specifying model constraints for which the attribute is relevant, 
and (4) specifying the semantics of mutation events in the EROOS universe, as 
presented in Section 5.1.7. The definition of the implicit query ‘�A’ can be found in 
Definition 4.6. 

 
An implicit query �A or �C/A for an attribute A of a class C 
is a query that can be applied on an object of class C at a 
moment t, and that returns the attribute value bound with the 
object on moment t. 

Given  

Model M; Class C ³ Mcl; Attribute CA ³ Ma; Domain D ³ Md; 

Query �C/A ³ Mq; 

�C/A: TIME � ( Ct � D) |  

   " t ³ TIME, " o ³ Ct : �C/At (o) = CAt (o) 

Definition 4.6: Implicit EROOS Kernel Attribute Query  

4.3.7 EROOS Attributes for the Library Example 

Given the example of the library system that was presented in Section 2.3, two 
attributes can be identified for the class LIBRARY, namely Maximum Lending Period 
and Amount Of Daily Fine. The resulting creation event for the library class can be 
composed through a combination of all parameters and effects of the individual 
attribute scripts, as presented in Table 4.5. 

Notice that, as modelled in the UML model presented in Figure 2.1 on page 27, it is 
forbidden in EROOS to model 

• an attribute that represents the maximum number of items that may be lent from 
a library, since it is not allowed to use integer attributes. A reification of this 
attribute into a class has to be made. This is presented further in Section 4.4.7. 
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• an attribute that represents the start date of a borrowing, since this is already 
expressed by means of the default attribute Creation Timestamp for the class 
BORROWING. 

 
class LIBRARY 

  definition 

    decorated by  

      attribute Maximum Lending Period : DURATION 

      attribute Amount Of Daily Fine : EUR VALUE 

  creation event 

    establish (lending period: DURATION, 

               fine amount: EUR VALUE) 

    effect 

      new self�Maximum Lending Period = lending period 

      new self�Amount Of Daily Fine = fine amount 

end class LIBRARY 

Table 4.5: EROOS Attribute Script for the Library Example 

4.3.8 Contributions, Related Work, and Reflections 

Our contributions concerning the attribute concept are the following: 

• The constructional model approach, in which model instances can only grow 
and information can only be added to a model instance, is a crucial property of 
the EROOS kernel in achieving the Principle of Uniqueness. Attribute values 
cannot be changed, but instead the mutation of an attribute value must be reified 
into the creation of a distinct object representing this mutation event. It allows 
modellers to focus on the information of the universe of discourse that must be 
modelled. A modeller does not have to decide on which information will be kept 
inside a model and which information could be overridden, since the set of 
knowledge and facts inside a model instance can only be enlarged. 

• The default attribute Creation Timestamp for all objects of every class, enables 
the modeller to reason about the moment at which an object has come into 
existence. This attribute does not have to be modelled explicitly, but it is 
automatically available for every object in EROOS. A modeller often has to 
reason about the time a certain event occurred, for example, to reconstruct the 
order in which certain requests were made, to determine the age of a certain 
object or to calculate the duration of a certain activity. The modeller does no 
longer have to model these attributes, nor is it necessary to decide whether such 
attributes are needed in the model. The EROOS methodology automatically 
exposes this kind of information for all objects. 
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• The prohibition of using Boolean attributes and integer attributes in EROOS, 
the fact that attribute values cannot be undefined, and the prohibition of 
derived attributes, forces the analyst to model explicitly a number of facts in the 
model using classes, specialisation hierarchies, and queries, rather than hide this 
information in a compact form inside an attribute. Such incorporation of implicit 
model constraints in each methodological concept provides dedicated semantics 
for each model concept, thereby limiting its usage to a specific context and 
forcing the analyst to use the most adequate concepts in all situations.  

The EROOS attribute concept is largely comparable with the attribute concept in 
UML. However, our methodological approach that drives the analysis to a single and 
unique conceptual model, is a rather novel vision on conceptual modelling. Most 
analysis methods use modelling guidelines and metrics [118][26][25][44], and 
analysis patterns [48] in order to steer the analyst to a resulting conceptual model of 
sufficient quality. We claim that such approaches are rather informal and 
noncommittal, and do not offer the analyst suitable methodological support for 
performing conceptual modelling. Although a casual analysis methodology seems 
rather attractive in providing sufficient freedom for the modelling process, a strict and 
rigid approach, incorporating well-defined outcomes, are of more avail to the analyst. 

The constructional model approach in which model instances can only grow through 
the addition of information, thereby enlarging the set of knowledge and facts that are 
stored in a model, is largely comparable with the evolution monotonicity concept in 
the MOOSE framework [155]. Information additions to the model substitute model 
mutations. Afterwards, the latest and most relevant information can easily be 
retrieved from the model instance at any moment using querying mechanisms.  

An observation that can be made is that the application of the EROOS kernel 
methodology gives rise to a class model with a huge number of classes. Since the 
EROOS kernel focuses on achieving the Property of Uniqueness, all information in 
the EROOS model is specified as individual objects. This leads to a huge number of 
classes present in a conceptual model. While other analysis models allows a modeller 
to specify Boolean attributes, integer attributes and undefined attributes, the EROOS 
methodology forces the modeller to introduce additional objects for representing 
these facts. Especially transforming integer attributes into classes give rise to a huge 
increase in the number of objects present in a model instance. For instance, 
considering a show with a limited number of allowed attendants. The EROOS 
methodology forces the analyst to model every single possible attendance, e.g., 
represented as an entrance ticket, as an object on its own instead of modelling the 
maximum number of attendants for the show. 

A second observation is that attribute values tend to have a limited validity. Since the 
EROOS kernel offers only mechanisms for extending the information contained in a 
model instance rather than changing this information, attribute updates have to be 
modelled using explicit update objects. Therefore, objects representing facts with 
related attribute values often have update objects attached to them for modelling 
changed attribute values.  
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4.4 Relations, Links, and Refinement 

Objects, as a representation of facts from the universe of discourse, usually do not 
exist on their own. Typically, a fact in the universe of discourse is related to many 
other facts, and may even be dependent on a number of facts in order to be valid. A 
relation in EROOS serves to describe relationships among objects as they can be 
observed in the universe of discourse. First, this section introduces the principles 
underlying the refinement of a class, namely the encapsulation of relations within 
classes and the property of existential dependency for the modelling of relations. 
Hereafter, the model constraints implied by the relation concept are defined. Third, 
the notion of a relation script is introduced, the implicit relation queries ‘�’ and ‘�’ 
are defined in order to retrieve information about the relation, and the integrated 
constraints on connectivity and multiplicity are presented. Last, the EROOS relations 
that can be identified in the running example of the library system are presented. 

4.4.1 EROOS Relations and Object Links 

One of the basic characteristics of EROOS, distinguishing it from UML and other 
methods and notations for Object-Oriented Analysis, concerns the methodological 
rule that relations cannot exist on their own. In EROOS, every relation is 
encapsulated in a class. It is only in the design phase that we have to decide if a 
relation will be implemented by means of a class or an ordinary association. As such, 
the choice to model a certain relational thing as a relation or a class, will totally 
disappear. It is always be modelled as both a class and relation at the same time. 

A relation expresses a number of facts from the universe of discourse, and therefore 
must always be contained inside a class representing and materialising these facts as 
objects. A relation encapsulated in a class is said to refine the class, defining 
additional characteristics for each object of that class by encapsulating a link between 
objects of other classes within the refined object. Each object of the refined class will 
at all times be associated with exactly one object of each of the classes involved in the 
relation, which are called participants. This property is referred to as existential 
dependency, whereby objects of the refined class are existentially dependent on 
objects of the participating classes. At the same time, the relation expresses that 
objects of each participating class have the potential to become associated with 
objects of the other participating class, via refined objects that encapsulate the 
association links. 

Relations in EROOS are restricted to model unary and binary relations. A relation in 
EROOS is thus either a binary relation, i.e., a relation involving 2 participating 
classes, or a unary relation, i.e., a relation involving a single participating class. The 
structuring of the objects of a class R, refined by a binary relation involving classes A 
and B, and a class S, refined by a unary relation involving class C, at a certain 
moment t, is illustrated in Figure 4.5. 
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Figure 4.5: Objects refined by a Binary and Unary Relation at Moment t 

The characteristics resulting from the refinement of a class are represented by lines, 
connecting refined objects with objects of the participating classes. As such, the 
object referred to as r is associated with object a of class A and object b of class B. In 
fact, the object r is associated with the tuple (a,b) expressing a link of the relation for 
class R between classes A and B. In the same way, the object referred to as s in is 
associated with the object c, or more precisely associated with the tuple (c) expressing 
a link of the relation for class S involving class C. Notice that several objects of a 
refined class can be associated with a single object of a participating class or even 
with the same tuple of objects, for example r and r2, and also s and s2. Such objects 
are called duplicates, since they share the same link. Duplicate objects differ from one 
another due to the unique object identity assigned to each of them. Each object of a 
refined class must at all times be associated with an object from each of the classes 
participating in the relation underlying the refinement. On the other hand, objects of 
the participating classes can exist without being associated with any objects of the 
refined class, for example b2 and c2. 

EROOS restricts relations to be unary or binary. Relations of a higher degree are to be 
modelled as a combination of unary and binary relations. Rumbaugh [128] indicated 
that associations with an arity higher than two are usually not useful unless the 
multiplicity is many on all ends. Even in such case, EROOS obliges to decompose an 
n-ary relation into a number of binary relations. The reason behind the restriction to 
unary and binary relations, is to force the analyst to look for underlying dependencies 
that are often not directly visible at first sight. Instead of modelling an n-ary relation, 
the analyst has to study the relation between each pair of participating classes in order 
to find potential dependencies that are unrelated to the original n-ary dependency. If 
one wants to model, for instance, a relation R=(A,B,C) between classes A, B, and C, 
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the analyst has to investigate the universe of discourse to assess whether there exist 
preceding dependencies between (A,B), (A,C) or (B,C). 

Depending on the universe of discourse, one of the following binary decompositions, 
presented in Figure 4.6, must be chosen: ((A,B),C), ((A,C),B), (A,(B,C)), 
((A,B),(A,C)), ((A,B),(B,C)), or ((A,C), (B,C)).22 The criterion for making the proper 
binary decomposition is to investigate whether there exists a preceding dependency 
between objects of two participating classes independently from the relation R. For 
instance in the case of R=((A,C),B), details from the universe of discourse could 
show that objects of classes A and C can be related in some manner without directly 
having to be linked to objects of class B in the relation R.  
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Figure 4.6: Decomposition of an n-ary Relation into Binary Relations 

In EROOS, the refinement of classes by means of unary and binary relations must 
result in a pure hierarchical structuring of the classes. A class cannot be refined with a 
relation directly or indirectly involving its own objects. Due to the property of 
existential dependency, such self-refinements would make it impossible to create the 

                                                  
22 Notice that this is not an exhaustive list, since more complex structures, involving intermediate classes, 
could be identified. The ultimate relation R will however always exist of two participating classes that are 
directly or indirectly dependent on classes A, B, and C. 
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first instance of that class. More precisely, for each chain of refinements consisting of 
relations Ri refining a class Ci with Ci-1 as a participating class (1 ≤ i ≤ n), Cj ≠ Ck, for 
all 0 ≤ j <k ≤ n.23 In addition, each of the classes must somehow be related to each of 
the other classes in the model by means of a number of model entities. This enforces 
the modelling Principle of Minimalism, as defined in Section 3.5. The Principle of 
Minimalism guides the analyst in determining which aspects of the universe of 
discourse are important to be modelled, and which of them can be ignored in the 
context of the model to be developed. As such, if a class is not related to other classes 
in a conceptual model, either an aspect of reality has been modelled that is of no 
relevance, or some aspects, e.g., a number of relations, have been overlooked.  

Existential dependency among objects may seem too restrictive for the ultimate 
system to be developed. A large deal of run-time flexibility, in populating the 
implementation classes with instances, would be lost. As already mentioned, focusing 
on the structures from the universe of discourse in its normal appearance should have 
priority over implementation issues concerning the software system. Implementation 
issues regarding object-oriented conceptual models are discussed in Section 4.8.4. 

4.4.2 Model Constraints implied by the Relation Concept 

EROOS incorporates important model constraints directly in the methodological 
concepts. The following constraints are directly implied by the relation concept: 

• Existential dependency: A relation refining a class implies the existential 
dependency of the refined objects on exactly two objects in the case of a binary 
relation, and on one object in the case of a unary relation. This means that each 
object of the refined class must, at all times, be associated with an object of each 
of the participating classes. If it should be possible that certain objects must exist 
without being associated with such participating objects, the relation property is 
not shared by all objects of the class. In such case, an additional class must be 
introduced, expressing the fact that certain objects are dependent on participation 
objects while other objects do not comply with such obliged dependency.  

• Immutability: The association of a given object with its participating objects is 
considered to be static. In particular, at the moment an object is introduced, it 
must be associated with an object of each of the participating classes, and it will 
keep that association for its entire lifetime. Objects cannot switch from one 
participating object to another during their lifetime. If it is needed to change a 
participating object, an additional class must be introduced expressing the fact 
that a link to a participating object has been changed.24 

The definition of a relation can be found in Definition 4.7. 

                                                  
23 As explained later, specialisation structures can be used to model recursive existential dependency 
hierarchies. However, in such case there must always be a specialised class that is unrefined and thus can 
serve as a kind of sentinel for the recursive dependency structure. 
24 In the EROOS universe, a link of a relation can be redirected to another object of the participating class.  
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A relation is a model entity defining a property for a class 
for which, at each moment in time, every object of the class, 
called a refined object, must be associated to a specific 
object, called a participant object, of the participating 
class defined for the relation. 

A relation can either be a binary relation, defining exactly 
2 participating classes for the refined class, or a unary 
relation, defining exactly 1 participating class. 

Given  

Model M; Class C,D,E,F,G ³ Mcl; Binary Relation CB ³ Mbr; 

Unary Relation CU ³ Mur; 

CB: TIME � ( Ct � ( Dt x Et) ) |         (existential dependency) 

  " t ³ TIME: CBt ² CBt+1          (immutability) 

CU: TIME � ( Ft � Gt ) |          (existential dependency) 

  " t ³ TIME: CUt ² CUt+1          (immutability) 

Definition 4.7: EROOS Kernel Relation 

4.4.3 Specification of an EROOS Relation  

The specification of a relation refining a class is represented in a relation script. This 
relation script identifies the participating class or classes of a relation. The property of 
existential dependency influences the creation of objects of a refined class. Each time 
a new refined object is to be created, its binding with objects of each of the 
participating classes must be established as well. Therefore, the creation event must 
be extended in order to establish the bindings of the new refined object with an object 
of each of the participating classes. The syntax of a refinement script is given in Table 
4.6. As presented in Figure 4.7, a relation is graphically represented in the form of a 
double circle within the refined class, and attached to the classes that participate in 
the relation. The double circle expresses the possibility of duplicate links. Duplicate 
links are possible when links are encapsulated in objects, since the object identity will 
distinguish the objects even if two objects contains an identical link between the same 
participating objects. The definition of the extended creation event can be found in 
Definition 4.8. 
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Figure 4.7: Graphical Representation of a Unary and Binary EROOS Relation  
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<EROOS kernel relation script> =  

"class" <CLASS NAME> 

  "definition" 

    ( "refined with binary relation"  

    ( <positive number> | "unlimited" | "∞")25 <CLASS NAME>  
        [ "as" <ROLE NAME> ] "," 

    ( <positive number> | "unlimited" | "∞") <CLASS NAME>  
        [ "as" <ROLE NAME> ] 

    | "refined with unary relation" 

      <CLASS NAME> [ "as" <ROLE NAME> ] ) 

     ( ( "unlimited" | "∞" ) "occurrences" | "one occurrence" 
     | <positive number larger than 1> "occurrences" )25 

  "creation event" 

    <creation event name>  

      "(" <parameter name> ":" <CLASS NAME>  

        [ "," <parameter name> ":" <CLASS NAME> ] ")" 

    "effect" 

      "new self�"<Participant Name> "=" <parameter name> 

      [ "new self�"<Participant Name> "=" <parameter name> ] 

"end class" <CLASS NAME>  

Table 4.6: EROOS Kernel Relation Script 

An extended creation event for a class refinement, is an 
event of a class that, if applied on a model instance at a 
certain time, in addition to adding a new object to the 
object population set for that class, will define a link to 
objects of the appropriate participating classes as the 
relation link for the object. 

Given  

Model M; Object Universe OU;, Event Universe EU; 

Event Set Instance E; Class B1,B2,U ³ Mcl; Object p ³ B1; 

Object q ³ B2; Object r ³ U; Creation event c1,c2 ³ EU; 

Binary Relation CB ³ Mbr;Unary Relation CU ³ Mur; 

c1(p,q) ³ Et+1 ⇒  $ o ³ OU :  

   (o ´ Ct) ¾ (o ³ Ct+1) ¾ (CBt+1(o) = (p,q)) 

c2(r) ³ Et+1 ⇒  $ o ³ OU :  

   (o ´ Ct) ¾ (o ³ Ct+1) ¾ (CUt+1(o) = r) 

Definition 4.8: Extended Creation Event for an EROOS Relation 

                                                  
25 See Section 4.4.5 for the definition of connectivity constraints, and Section 4.4.6 for multiplicity 
constraints. 
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A relation can only serve to refine a single class, whereas a class can be refined by 
only one relation. If there is a need to define a specific relation for more than one 
class, each class will have to define its own distinct relation, possibly all sharing the 
same role names. However, it is possible to define a relation for a generalisation 
class, as presented in Section 4.6, which is then, by default, part of each specialisation 
class that is derived from this class. The different components in the specification of a 
relation script, as shown in Table 4.6, are the following:  

• The definition of a relation essentially identifies the participating class or classes. 
In addition, a role name for each participating class can be defined as a reference 
to it, in order to emphasise the role that a participating class assumes in the 
relation. For readability purposes, a role name must be a singular noun in 
uppercase, and must be unique for the relation in order to distinguish them. Role 
names are mandatory in binary relations that model links involving two objects 
of the same class, i.e., relations from a participating class to itself. In such 
relations, the participating class has two distinct roles in the relation, which must 
be distinguished using role names. 

• The specification of the creation event in a relation script must correspond to its 
definition in the class script. In particular, the name of the creation event in the 
relation script must be identical to its name as defined in the class script.  

• A formal argument serves a symbolic name for an object of the participating 
class. Each time the creation event occurs, a concrete argument has to be 
supplied for each formal argument. The formal argument will be used in 
establishing the binding of the new object with an object of each participating 
class. Typically, the argument name is but does not have to be identical to the 
role name or the name of the participating class. Argument names must be 
represented in lowercase.  

• The final component in the definition of a refined creation event specifies the 
binding of the refined object with an object of the participating class. For that 
purpose, an assertion will be included. The assertion states that, if the given 
implicit query �<Participant Name>, defined in section 4.4.4, will be applied to 
the newly created object, referred to as self, at the moment of creation, referred to 
as new, the object on the right-hand side must be returned as a result.  

4.4.4 Implicit Refinement and Participation Queries 

The definition of a relation refining a class is automatically complemented with one 
or two implicit refinement queries applicable to all objects of the decorated class, and 
an implicit participation query applicable to all objects of each participating class. 
These queries offer the ability to inspect and retrieve information concerning the 
current binding of a refined object with objects of the participating classes. Given a 
relation refining a class C involving the participating classes P and Q, 

• the implicit refinement queries ‘�P’ and ‘�Q’, or ‘�PR’ and ‘�QR’ in case that 
PR and QR are role names given to P and Q in the relation, applicable to each 
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object c of the refined class C, returns the object of the participating class P and 
Q contained in the relation link for the refined object c.  

• the implicit participation query ‘�C’ or ‘�PR/C’, applicable to each object p of 
the participating class P, and ‘�C’ or ‘�QR/C’, applicable to each object q of 
the participating class Q, returns the set of objects of class C that encapsulates a 
relation link in which the object p, respectively q, participates. 

The relation between ‘�P’ and ‘�C’ is: " c ³ C: " p ³ P: c�P = p ⇔ c ³ p�C 
 

An implicit refinement query �P or �C/P for a refined class C 
having a participant P, or �R, �C/R, �R/P, or �C/R/P when 
the participant P has a role name R, is a query that can be 
applied on an object of the refined class at a moment t, and 
that returns the participant object contained in the link for 
that object on moment t. 

Given  

Model M; Binary Relation CB ³ Mbr; Unary Relation CU ³ Mur; 

Class C,D,P,Q,R ³ Mcl; Query �C/P,�C/Q,�D/R ³ Mq; 

�C/P: TIME � ( Ct � Pt ) |  

   " t ³ TIME: " c ³ Ct : �C/Pt(c) = P(CBt(c)) 

�C/Q: TIME � ( Ct � Qt ) |  

   " t ³ TIME: " c ³ Ct : �C/Qt(c) = Q(CBt(c)) 

�D/R: TIME � ( Dt � Rt ) |  

   " t ³ TIME: " d ³ Dt : �D/Rt(d) = CUt(d) 

Definition 4.9: Implicit EROOS Refinement Query  

An implicit participation query �C or �P/C for a participant 
P of a refined class C, or implicit query �R/C or �P/R/C when 
the participant P has a role name R, is a query that can be 
applied on an object of the participating class at a moment 
t, and that returns the set of all refined objects that 
contains a link in which the object is involved on moment t. 

Given  

Model M; Binary Relation CB ³ Mbr; Unary Relation CU ³ Mur; 

Class C,D,P,Q,R ³ Mcl; Query �P/C,�Q/C,�R/C ³ Mq; 

�P/C: TIME � ( Pt � 3(Ct) ) | " t ³ TIME: 

   " p ³ Pt : " c ³ Ct : c ³ �P/Ct(p) À P(CBt(c)) = p 

�Q/C: TIME � ( Qt � 3(Ct) ) | " t ³ TIME: 

    " q ³ Qt : " c ³ Ct : c ³ �Q/Ct(q) À Q(CBt(c)) = q 

�R/D: TIME � ( Rt � 3(Dt) ) | " t ³ TIME: 

    " r ³ Rt : " d ³ Dt : d ³ �R/Dt(r) À CUt(d) = r 

Definition 4.10: Implicit EROOS Participation Query  
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The notation supports the view of zooming into the elements that are an existential 
part of an object (projection ↓ ), and zooming out to the elements in which an object is 
contained (election ↑ ). These implicit queries are mainly used in (1) specifying the 
semantics of the creation event, (2) specifying queries in order to retrieve information 
from a model instance, (3) specifying relation navigation paths from an object to a set 
of related objects in a model instance, and (4) specifying the semantics of mutation 
events in the EROOS universe, as presented in Section 5.1.7. The definition of the 
implicit refinement and participation queries can be found in Definition 4.9, 
respectively Definition 4.10. 

4.4.5 Integrated Relationship Constraints on Connectivity 

The definition of a binary relation can be complemented with connectivity 
constraints, restricting the existence of certain combination of links. The definition of 
an EROOS relation also specifies how many different objects of one participating 
class can be associated with a single object of the other participating class at a 
moment in time, through objects of the refined class encapsulating the links, and vice 
versa. This type of constraint, referred to as connectivity constraint, is integrated into 
the EROOS relation concept. The specification of a connectivity constraint consists of 
the specification of a connectivity value for each class participating in the binary 
relation. When no restriction is placed on the number of related objects, the value for 
the connectivity constraint is defined as ‘∞’ or unlimited.  

The specification of a connectivity constraint is integrated in the participant clause of 
the relation specification. In particular, as outlined in Table 4.6, the description of 
each participant clause must start with a positive number written in a numerical or 
verbose style, referred to as the connectivity value of the participant, or ‘∞’ or 
unlimited to specify an unrestricted value. As presented in Figure 4.7, a connectivity 
constraint is graphically represented by noting the connectivity value in the 
neighbourhood of the participating class.  

• ‘i’ represents the connectivity value for the participating class on the left-hand 
side, i.e., the maximum number of objects of that class that can be associated 
with a single object of the participating class on the right-hand side, through 
objects of the refined class encapsulating the links.  

• ‘j’ represents the connectivity value for the participating class on the right-hand 
side, i.e., the maximum number of objects of that class that can be associated 
with a single object of the participating class on the left-hand side, through 
objects of the refined class encapsulating the links.  

The value ‘∞’ or unlimited will not be included in graphical representations since it 
does not stand for an actual restriction. In such cases, the line connecting the refined 
class with the participating class will not be having a connectivity value.  
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4.4.6 Integrated Relationship Constraints on Multiplicity 

The definition of a unary relation or a binary relation can be complemented with a 
multiplicity constraint, restricting the number of identical links that can be 
encapsulated in objects of the refined class. Since relation links in EROOS are always 
encapsulated in a refined object, the same link can be used several times to refine 
different objects of the refined class. Such links, called duplicates, can be 
distinguished from each other by means of the intrinsic object identity of the object in 
which the link is encapsulated. A multiplicity constraint for a binary relation specifies 
how many times a single object of the participating class on the left-hand side can be 
associated with the same object of the participating class on the right-hand side, 
through objects of the refined class that encapsulate the links. A multiplicity 
constraint for a unary relation specifies how many times a single object of the 
participating class can be used as a participant for objects of the refined class. 

The specification of the multiplicity constraint, presented in Table 4.6, is specified in 
a separate clause in the definition of a relation. The definition of a relation includes a 
multiplicity clause in which the multiplicity value for the relation must be defined in 
the form of a positive number in a numerical or verbose style, or be defined as 
unrestricted, using ‘∞’ or unlimited. The graphical representation of multiplicity 
constraints for a unary and binary relation is illustrated in Figure 4.8.  

• If the number of duplicates is bounded to a specific value ‘i’ (i > 1), the 
multiplicity value is noted inside a double circle, representing the relation.  

• If an unlimited number of duplicates are allowed (‘∞’ or unlimited as 
multiplicity value), a double circle is drawn for the relation.  

• If the number of duplicates is set to 1, thus actually when no duplicates are 
allowed, a single circle is drawn for the relation. 
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Figure 4.8: Graphical Representation of EROOS Multiplicity Constraints 
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4.4.7 EROOS Relations for the Library Example 

Given the example of the library system that was presented in Section 2.3, a large 
number of relations can be identified. Based on the classes for the library system that 
were defined in Section 4.2.4, the relations between these classes are represented in 
Figure 4.9. Since the EROOS relation scripts do not provide any additional 
information next to the extension of the creation event, we have omitted them. 
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Figure 4.9: EROOS Kernel Relations for the Library System 

The following observation can be made: 

• The relation structure can get quite complex when all relevant relations are 
added. This is due to the split-up of activities into two object that represent the 
start and the end of the activity. The EROOS universe, presented in Chapter 5, 
will enable to merge these two objects into a single object representing the whole 
activity. The darker shaded classes can then be merged with their counterparts to 
whom they are attached.  

• The refinement for the class PAYMENT using a binary relation between FINE 
and RETURN expresses the fact that a person can only pay her or his fine for a 
book after the borrowed book has been returned. It is impossible to calculate the 
amount of the fine as long as the borrowing has not been ended. 

• The identification of relations give rise to the discovery of new classes for the 
library system, such as SECONDARY AUTHOR, representing the secondary 
authors of a book, ALLOWANCE, representing the fact that a registered person 
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has the possibility of borrowing a certain number of books, REDUCTION, 
representing the fact that a library can decrease the maximum number of books 
that can be lent to a single person, SELECTION, representing the fact that a 
person can have chosen a certain book for borrowing, and DESELECTION, 
representing that a person has chosen not to borrow a certain selected book. In 
fact, the class ALLOWANCE is a reification of an integer attribute representing 
the maximum number of lending items, as indicated in Figure 2.1 on page 27. 
Because the EROOS methodology does not allow to model integer attributes, the 
modeller is forced to make explicit an ALLOWANCE object that represents the 
possibility of borrowing a book. The class REDUCTION represents a 
diminishing of the attribute. The constraint expressing that a person can only 
borrow a maximum number of books, is now expressed by means of an 
existential dependency from the borrowing object on an allowance object. The 
reason behind this restriction is that the modeller should have a clear view on 
such reified attribute in order to being able to utilise it when necessary, e.g., 
when the borrowing period of a book differs between different lent item. 

• The multiplicity constraints seem to be very loosely formulated. For example, the 
fact that a person can have many registrations at the same library seems to be not 
in correspondence with the universe of discourse. It is impossible that a person 
has more than one registration at the same time at a library. But one must also 
take into account that a deregistration does not cause the registration object to 
disappear, but merely denotes that the registration object is participating in a 
deregistration object. The model is thus correct, since a number of finished 
registrations can exist together with a single running registration. What is 
currently missing in the model, is a constraint stating that there can exist only one 
active registration for a person at a library. However, a multiplicity constraint for 
the deregistration, restricting the possibility for a person to deregister more than 
once for a certain registration, is nevertheless appropriate for the current model. 

• One would expect the specification of more connectivity constraints. For 
instance, one could express that a book copy can be in possession of at most one 
library. However, since the EROOS kernel offers a constructional model 
approach, it does not make sense to introduce these kinds of connectivity 
constraints. Since objects cannot be destroyed in the EROOS kernel, a 
connectivity constraint would restrict the existence of links to the first link that 
has been created. So, when a book copy is written-off by one library and is 
afterwards acquired by another library, it cannot come into possession of the 
second library, since the connectivity constraint only allows a copy to be related 
to at most one library. The writing-off of the possession only creates an object of 
the class WRITE-OFF, and does not destroy the possession object. Regarding the 
fines, one can nevertheless state that a fine can be paid only once using the 
appropriate return object, and that the return of a borrowing can give rise to the 
payment of at most one fine.  

• Although a distinction has been made between the main author of a book and the 
secondary authors of a book, the order in which the secondary authors are ranked 
is not captured in the model. However, we will introduce this ordering in Section 
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4.6, when specialisation has been introduced for the EROOS kernel. In addition, 
there is no class representing the end of the lifetime of a secondary author object, 
since they are considered to exist as long as a book has not been dismissed. 

4.4.8 Contributions, Related Work, and Reflections 

Our contributions concerning the relation concept are the following: 

• The systematic usage of existential dependency as the main criterion to 
determine the core model structure, is a key contribution of our work. Such 
approach leads to a hierarchical object dependency structure that gives a clear 
insight in which information is dependent on certain other information. It leads to 
a powerful model that implies a large number of model constraints directly 
through its model structure. Relations in EROOS are explicitly and uniquely 
modelled, since they are always encapsulated in a refined class. In contrast to 
that, UML offers only a number of possibilities to model relations, such as 
associations, association classes, qualified associations, aggregates, 
compositions, and an association reified into a class. 

• The constructional model approach, in which model instances can only grow 
and information can only be added to a model instance, is a crucial property of 
the EROOS kernel in achieving the Principle of Uniqueness. Relation 
participants cannot be changed, but instead the mutation of a participant must be 
reified into the creation of a distinct object representing this mutation event. It 
allows modellers to focus on the information of the universe of discourse that 
must be modelled. A modeller does not have to decide on which information will 
be kept inside a model and which information could be overridden, since the set 
of knowledge and facts inside a model instance can only be enlarged. 

The EROOS relation concept is somewhat comparable with the association concept in 
UML. Similarities between classes and relations are also identified by Rumbaugh 
[129]. However, in this approach that has evolved into OMT [93][126], there remains 
a strict distinction between classes and relations. Using existential dependency as the 
key modelling criterion to construct the conceptual model structure, has also been 
applied by the M.E.R.O.DE. methodology [138][136][137]. M.E.R.O.DE. defines 
existential dependency as ‘the total embedding of the life of a so-called marsupial 
object occurrence into a mother object occurrence’. Since objects come only into 
existence in the EROOS kernel and are never been destroyed, we define existential 
dependency as ‘the obligation of the existence of a participant object (corresponding 
to the mother object in M.E.R.O.DE.) at the moment the refined object 
(corresponding to the marsupial object in M.E.R.O.DE.) is created’. The EROOS 
universe, which is defined in Chapter 5, introduces the concept of a class archive, and 
enables to specify a specific restriction between the destruction timestamps of the 
objects. This allows for a refined (marsupial) object to outlive its participant (mother) 
object, which is impossible in M.E.R.O.DE. In UML1.x [120][119][107], it is 
possible to simulate existential dependency using a restricted form of multiplicity for 
associations, obliging that at least one participant in an association must have a lower 
bound multiplicity higher than zero. In UML2.0 [109][128], existential dependency 
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can be expressed using association classes, since the restriction on association link 
duplicates can be removed using the ‘{bag}’ property string for an association end. 
However, such approach is considered to be on the same level as modelling 
guidelines, since the UML notation does not enforce such rules on the model.  

An observation that can be made is that the application of the EROOS kernel 
methodology gives rise to a class model with a huge number of classes. Every 
relation will introduce a distinct class that encapsulates the association. However, we 
don’t consider the introduction of this class as a disadvantage, because it creates a 
hook in the model that enables the attachment of future properties, and that can be 
used for the expression of additional existential dependency constraints. 

A second observation is that connectivity and multiplicity constraints seem to be 
inadequate for the EROOS kernel. This is due to the fact that that constructional 
model approach only allows adding new objects to a model instance. However, the 
EROOS universe, presented in Chapter 5, introduces the ability to destroy object. 
This enables a proper usage of connectivity and multiplicity constraints for relations. 

A third observation is that the EROOS kernel does not allow the specification of 
mutual dependency between objects. The only possibility of modelling mutually 
dependent objects is to merge them into a single object. The EROOS universe 
introduces the concept of compounds to model mutually dependent objects. 

4.5 EROOS Constraints and Confinement  

In observing and modelling the universe of discourse, objects, attributes, and relations 
must comply with a lot of human-imposed, physical or legal laws, rules, and 
regulations, restricting certain characteristics and their evolution. As discussed in 
Chapter 2, this results in model instance restrictions delimiting the valid instances of a 
conceptual model in order to comply with the universe of discourse. Constraints 
reflect rules from the universe of discourse that cannot be broken and thus must be 
satisfied at all times. 

The EROOS concepts introduced in the previous sections, namely classes, attributes, 
and relations, already incorporate a number of implied and integrated constraints. 
However, as discussed in Chapter 2, not all restrictions occurring in the universe of 
discourse are suited to be expressed using implied or integrated constraints. 
Therefore, the explicit specification of constraints as a first-class model concept is 
introduced in EROOS in order to enable the description of all kind of restrictions on 
the conceptual model that apply in the universe of discourse. To make a clear 
distinction with other kinds of constraints present in a model, such as implied 
constraints, e.g. existential dependency constraints for relations, and integrated 
constraints, e.g. lower and higher bound constraints on attributes, we explicitly call 
this type of constraint an EROOS constraint. Although EROOS constraints are 
specified separately from the definition of other concepts, they remain dependent on a 
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number of structural model items that are being confined by the constraint. The model 
elements upon which the EROOS constraint acts are indicated as its context. 

EROOS constraints impose hard restrictions on a model. At each moment in time, a 
model instance is obliged to fulfil all defined EROOS constraints. Events that will 
lead to a constraint violation should be forbidden and, thus, are rejected by the model. 
In such a case, the model instance will remain in the state it was at the moment before 
the event occurred.26 One of the basic characteristics of EROOS, distinguishing it 
from a number of other methods for object-oriented analysis that are using informal 
annotations to the model, is the fact that constraints are expressed formally, using 
many-sorted first order logic (MSFOL) [95]. As explained in Chapter 2, the 
formalisation of EROOS constraint expressions must lead to the avoidance of 
ambiguities and misunderstandings in a conceptual model. The expressivity of 
EROOS constraints is largely comparable with invariants specified in the Object 
Constraint Language (OCL) [108][161] for UML.  

Contrary to the other modelling concepts, EROOS constraints do not define new 
model structures, in which additional characteristics of objects are described, or new 
behaviour, in which new events applicable to objects are specified. EROOS 
constraints merely describe rules that restrict the already defined structures and 
behaviour of the model. This affects the set of potential states for the model instance, 
and the events in which objects can be involved at a specific moment in time.  

This section introduces the general principles underlying EROOS constraints and 
confinement, and presents the notion of constraint scripts to define the EROOS 
constraints in a model. Hereafter, specific restrictions on EROOS join constraints are 
presented as a means to avoid information duplication in a relation hierarchy. Last, 
the types of EROOS constraints that can be identified in the running example of the 
library system are presented. 

4.5.1 General Principles of Confinement in EROOS 

An EROOS constraint enforces a logical rule on a certain part of the conceptual 
model, called the context of the constraint, which must always be kept valid. The 
context can include a number of classes, relations, attributes, or other EROOS model 
concepts that will be defined later in this text. Notice that the context is not restricted 
to a single class, as is the case for OCL invariants. 

Since many classes are potentially involved in the specification of a single EROOS 
constraint, a large number of equivalent formulations of an EROOS constraint could 
be possible. For instance, each involved class has the possibility of specifying the 
given EROOS constraint as it can be observed from the viewpoint of that class. 
However, equivalence among conceptual models tremendously compromises their re-

                                                  
26 In the EROOS universe, we propose constraint triggers that can resolve certain constraint violation by 
adding additional functionality to the event in order to regain a valid model instance. As such, a constraint 
trigger serves as a general problem solver for the constraint it belongs to. 
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use for an analogous universe of discourse. In addition, understandability of the 
conceptual model for customers, end-users, and other software engineers decreases 
when different notations for a single aspect from universe of discourse are possible. 
Therefore, the EROOS method enforces the analyst to formulate an EROOS 
constraint from a specific viewpoint, namely the top class or top classes of the 
constraint, whereas other equivalent formulations for the constraint are forbidden. 
The top classes of a constraint are those classes in the relation hierarchy from which 
all other involved classes, mentioned in the context of the EROOS constraint, can be 
reached using only a refinement query (�). The EROOS constraint is specified as a 
rule that must be valid for all top objects of the top classes, namely  

" tc1 ³ TC1,…, " tcn ³ TCn: <constraint expression for tc1,…,tcn> 

• When the EROOS constraint must be true for all objects of a specific class, it can 
be specified from the viewpoint of that class. 

• When the EROOS constraint must only be true for the objects of a class P that 
are participating in a certain relation link, encapsulated in class R, it must be 
specified from the viewpoint of the refined class R, since class R is the highest 
involved class for the EROOS constraint.  

• If the EROOS constraint must only be valid for the objects of class P that are not 
participating in a certain relation link encapsulated in class R, it cannot be 
defined from the viewpoint of objects of class R. In this case, the constraint must 
be defined directly from the viewpoint of class P, but is restricted to the 
collection of objects that are not participating in any relation link of R. We 
indicate such constraint as a not participating constraint, namely 

" p ³ P not participating in R: <constraint expression for p> 

• When the EROOS constraint must only be true for the objects of a class P that 
are participating in two relation links, encapsulated in the classes R and S, it must 
be specified from the viewpoint of the pair of refined classes R and S, since these 
two classes are the highest involved classes for the EROOS constraint.  

The determination of the top class(es) for a constraint and the corresponding 
viewpoints for specifying EROOS constraints are illustrated in Figure 4.10.  

The formalism for expressing EROOS constraints is based on many-sorted first order 
logic (MSFOL) [95]. However, there are some restrictions for constructing valid 
constraint expressions that apply (1) to the predicates allowed for an expression, and 
(2) to the operators allowed for combining predicates in order to obtain complex 
expressions. The idea behind the imposed restrictions is to force analysts to use 
implied constraints whenever appropriate, and force a single and unique manner for 
specifying EROOS constraints. In principal, the formalism provided for expressing 
EROOS constraints should not be too powerful enough such that it becomes possible 
to express implied constraints using the concept of an EROOS constraint. The 
advantage of a unique specification manner for a constraint concerns the fact that it 
provides solid criteria in developing conceptual models. This leads to a single 
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common model among all analysts involved in the development of a conceptual 
model. In order to reach the objective of a unique EROOS model for a specific 
universe of discourse, as stated by the conceptual modelling Principles of Uniqueness 
and Minimalism, EROOS also explicitly inhibits the definition of an EROOS 
constraint that can logically be derived from other constraints already present in the 
conceptual model. As such, the specification of constraints in an EROOS model can 
be restricted to the set of relevant constraints, and does not include a huge set of 
rather trivial derived constraints. The uniqueness of a model constraint expression is 
the key point that differentiates EROOS constraints from OCL invariants. 
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Figure 4.10: EROOS Constraint Specification from the Viewpoint of the Top Class 
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4.5.2 Specification of an EROOS Constraint 

EROOS constraints restrict the defined structures and possible behaviour of the 
model. The definition of an EROOS constraint is presented in Definition 4.11. The 
syntax of an EROOS constraint script is given in Table 4.7. As presented in Figure 
4.11, an EROOS constraint is graphically represented in the form of a triangle 
attached to the top class(es) of the constraint, and annotated with the constraint name 
or a reference number. 
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Figure 4.11: Graphical Representation of an EROOS Constraint 

An EROOS constraint is a model entity restricting the set of 
possible instances of a model by defining rules that must be 
valid for a model instance at each moment in time 

Given  

Model M; Model Instance Universe MIU; Model Instance MI; 

Constraint CT ³ Mct;  

CT: TIME � MIU | " t ³ TIME: MIt ³ CTt     (constraint validity) 

Definition 4.11: EROOS Constraint 

The different aspects involved in the definition of an EROOS constraint are: 

• The lowercase constraint name refers to the logical constraint in the universe of 
discourse. The constraints that share a same top class must have different names.  

• The top classes enumerate the classes from which the constraint is formulated. 
They must be the highest classes of the relation hierarchy from which the 
constraint can be formulated. Using these top classes, the constraint expression 
may not contain any participation query �C, either directly in its specification or 
indirectly through the use of assistance queries. 

• The context clause enumerates the model entities upon which the constraint 
interacts. Each constraint enforces a logical rule on a certain part of the model 
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that is affected by the constraint. The context of a constraint can be automatically 
derived from its logical clause. Each element that is used in the logical 
expression of the constraint is mentioned in its context. 

 
<EROOS kernel constraint script> =  

"constraint" <constraint name> 

  ( "top class" <TOP CLASS NAME> 

  | "top classes" <TOP CLASS NAME> ("," <TOP CLASS NAME> )* ) 

  "context"  

    ( <TOP CLASS NAME> <context clause> )+ 

  "definition" 

    ( "for all" <identifier> ( "," <identifier> )*  

      "in" <TOP CLASS NAME>  

      ["not participating in" <CLASS NAME> ("�"<CLASS NAME>)* 

        ( "," < CLASS NAME> ( "�"<CLASS NAME> )* )* ] ":" )+ 

      <logical clause> 

"end constraint" <constraint name> 

 

<context clause> = 

  [ "having" ( "attribute" <ATTRIBUTE NAME> 

    | "attributes" <ATTRIBUTE NAME> (","<ATTRIBUTE NAME>)+ )] 

  [ "having"  

    ( "query" <QUERY NAME>  

      "returning" <return type> [ <context clause> ] 

    | "queries" < QUERY NAME>  

      "returning" <return type> [ <context clause> ]  

      ( "," <QUERY NAME> "returning" <return type>  

        [<context clause>] )+ )] 

  [ "having"  

    ( "participant (" <descending path> [<context clause>]")" 

    | "participants ("<descending path> [ <context clause> ] 

      ( "," <descending path> [ <context clause> ] )+ ")" )] 

  ["being participant of ("  

    <CLASS NAME> [ "/"<ROLE NAME ] [ <context clause> ] 

      ( "," <CLASS NAME> [ "/"<ROLE NAME ]  

        [ <context clause> ] )* ")" ]  

 

<descending path> = 

  ( [ <CLASS NAME> "/" ] [ <ROLE NAME "/" ] <CLASS NAME> | 

    [ <CLASS NAME> "/" ] <ROLE NAME> 

Table 4.7: EROOS Constraint Script 
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• The ‘for all’ clause introduces a number of formal identifier objects of the top 
classes for the constraint, and should include at least one identifier for every top 
class. Each formal identifier ranges over all object of its top class. The logical 
constraint clause is formulated as viewed from these formal identifier objects. As 
such, the logical clause must be valid for every possible object of the top class, 
or, in the case that more than one top class are involved, for every possible 
combination of actual objects of the top classes. Notice that a logical clause using 
more than one formal identifier of the same top class must also be valid in case 
that these formal identifiers are substituted with the same actual object of the top 
class. This means that the constraint must also be valid for condition(c,c) in  

" c1, c2 ³ C : condition(c1, c2) 

However, an explicit expression (c1 ≠ c2) could be added to the condition. 

• Both a mathematical style, i.e., " c ³ C, and a verbose style, i.e., for all c in C, 
of specification are allowed. To specify a constraint on objects not participating 
in a certain relation, the not participating clause is used. It is possible to specify a 
‘not participating’ clause involving an indirect participation. For instance, when 
a constraint is specified for a class A not participating in B�C�D, all objects of 
class A that do not participate indirectly in D are confined. It is possible to split 
such constraint in a number of parts, namely (1) all objects of A not participating 
in B, (2) all objects of A participating in B but not further in C, which must be 
expressed from the viewpoint of ‘B not participating in C’, and (3) all objects of 
A participating in B and further in C but not participating in D, which must be 
expressed from the viewpoint of ‘C not participating in D’. However, such 
scattering of the constraint is only allowed when the conditions imposed on these 
different subsets of class A vary.  

• It is not allowed to specify a logical clause that can never be satisfied. Therefore, 
it is also not allowed to specify a constraint with a not participating clause and a 
condition that always fails. Such type of constraint would express an existential 
dependency from the participant object to the refined object. The constraint  

" p ³ P not participating in R: false 

would express that an object p of class P that does not participate in a certain 
relation link r of class R, always results in a constraint violation. This constraint 
actually obliges that every object p of class P must participate in at least one 
refined object r of class R. Such constraint would violate the existential 
dependency hierarchy in EROOS, which expresses that a refined object cannot 
exist without a participant object, but that an object of a participating class can 
always exist without having to participate in a refined object. Therefore, it is 
allowed to specify a constraint on objects that do not participate in a certain 
relation, but only if such object can fulfil this condition in a certain manner. 

• The logical clause of a constraint is a many-sorted first order logic expression 
that expresses the rule enforced by the constraint on the model. This logical 
clause is constructed by combining Boolean expressions and other logical 
clauses, using logical operators such as not (¬ ), and (¾), or (∨ ), xor (⊕ ), 
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if…then… (⇒ ), if and only if…then... (À), and if a then x else y ((a ⇒  x) ¾ 
(¬a ⇒  y)). A Boolean expression is constructed from primitive components, 
such as objects, values, bags, queries, and primitive operations.  

The logical clause however is severely restricted to avoid interference with other 
EROOS concepts. For instance, it is forbidden to use the participant query ‘�’ in the 
logical clause of a constraint, either (1) directly using the participant query in the 
logical expression, (2) indirectly by using queries that use the participant query 
themselves, or (3) implicitly by specifying sets of objects ranging over a class that is 
no direct participant of a top class. In addition, it is not allowed to use the and-
operator on the top level of the logical clause in order to combine two unrelated 
constraints. Such constraints must be split into separate constraints, one for each 
operand. Combining several unrelated constraints in a composite constraint 
diminishes the reusability and extendibility of a model. It is easier to grasp a number 
of small individual constraints than to get insight into a complex composite 
constraint. However, related constraints should best be combined. It is therefore 
improper to split a constraint requiring ‘aÀb’ into two constraints ‘a⇒ b’ and ‘b⇒ a’, 
or to split a constraint ‘if a then x else y’ into two constraints ‘a ⇒  x’ and ‘¬a ⇒  y’. 

4.5.3 Restrictions on EROOS Join Constraints 

As stated earlier, the logical clause of an EROOS constraint is severely restricted to 
avoid interference with other EROOS concepts. Constraint types that must be avoided 
are certain forms of join constraints. Join constraints put an equality on a certain 
number of their (mostly indirect) participants. Join constraints state that objects 
obtained by following different relational paths through the model, starting from a 
certain class, must be equal. We can identify three kinds of join constraints: 

• A join constraint for a class C that puts a restriction on objects of a pure indirect 
participating class, meaning that the class is no direct participant of C, is allowed. 

• Constraints on binary relations having two identical participating classes, and 
that are expressing an obligation for the two participant objects to be equal, are 
forbidden. Such binary relations must be transformed into unary relations. 

• Constraints on binary relations for equality between a direct participant object 
and one of their indirect participants are also forbidden in EROOS. Such binary 
relations must also be transformed into a unary relation. 

The reason behind the restriction of these kinds of constraints is to avoid (1) 
information duplication, and (2) interference between binary and unary relations. In 
such cases, EROOS forces the analyst to make use of the unary relation concept 
instead of using a binary relation with a corresponding join constraint. As illustrated 
in Figure 4.12, the second participant of the relation adds no additional information to 
the model, and thus is superfluous, while both participants in Figure 4.13 express 
specific information that cannot be omitted. This restriction on join constraints 
complies with the key conceptual modelling principles of Uniqueness, No 
Redundancy, and Model-Implied Constraints, because it forces the analyst to a unique 
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conceptual model that is as small as possible, using existential dependency as the core 
criterion for determining its structure. 
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Figure 4.12: Forbidden EROOS Join Constraints 
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Figure 4.13: Allowed EROOS Join Constraint 

4.5.4 EROOS Constraints for the Library Example 

Given the example of the library system presented in Section 2.3, and the relation 
hierarchy defined in Section 4.4.7, a large set of constraints must be added to this 
model. There are two types of constraints that must be added to the model: 

• Logical rules that are a reflection from impossibilities in the universe of 
discourse. There are a lot of constraints that have to be added to the conceptual 
model in order to enforce consistency that is embedded in the nature of the 
universe of discourse. Examples of such constraints are the fact that a person 
cannot perform any borrowings when that person has died, or the fact that no 
new copies of a book can be printed when the publisher has gone into liquidation, 
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as presented in Table 4.8. This type of constraints poses restrictions on the 
creation of certain objects when the participant object is already participating in 
another relation. 

• Logical rules that have to be imposed in the universe of discourse. Such 
constraints impose rules that restrict unwanted behaviour. There are a number of 
subtypes that can be identified: 

− Constraints that restrict the creation of certain objects with a participant 
object that is already, or, on the contrary, is not yet participating in another 
relation. Examples of such constraints are the fact that a person cannot 
perform any borrowing when that person has been deregistered from the 
library, or that a person cannot perform any borrowings when that person 
has unpaid fines.  

− Constraints that restrict the creation of certain objects because specific 
objects already exist. Examples of such constraints are the fact that a book 
copy can only be in possession of a single library, the fact that a book copy 
can only be borrowed when there is no other active borrowing for that copy, 
the fact that for each person only a single active borrowing can be attached 
to an allowance object, or the fact that a person cannot borrow a second 
copy of the same book, as presented in Table 4.9.  

− Constraints that restrict the existence of objects based on certain attribute 
values. Examples of such constraints are the fact that a fine must exist when 
the maximum lending period has been exceeded. Notice that it is needed to 
explicitly model the progress of time in the EROOS kernel in order to be 
able to specify this constraint. Since the fine constraint obliges the creation 
of a fine when the deadline is exceeded, the progress of time would stop 
when this constraint would be violated. The only manner, in which a 
modeller can automatically create a fine, is through the explicit modelling of 
the progress of time. The EROOS universe offers constraint triggers in 
Section 5.3.10 in order to specify such time-triggered behaviour.  

− Join constraints that request the equality of certain participants. Examples of 
such constraints are the fact that a person can only select and borrow a book 
from the same library as where that person is registered, and the fact that a 
person can only pay the fine of a borrowing if that person already has 
returned the book copy.  

An observation that can be made is that the constraint regarding the number of 
allowed borrowings cannot be expressed using an EROOS constraint, since such 
constraint would need an integer attribute representing the maximum number of 
lending items. Because EROOS does not allow to model integer attributes, the 
modeller is forced to reify the attribute into a class that represents the possibility of 
borrowing a book. The constraint regarding the number of allowed borrowings is 
transformed into an existential dependency restriction from a borrowing object on an 
allowance object. 
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constraint no printing when in liquidation 

  top classes 

    COPY, LIQUIDATION 

  context 

    COPY having participant (PUBLISHER), 

    LIQUIDATION having participant (PUBLISHER) 

  definition 

    for all copy in COPY: 

    for all liquidation in LIQUIDATION: 

     if copy�PUBLISHER = liquidation�PUBLISHER then 

       copy�CreationTimestamp 

         < liquidation�CreationTimestamp 

end constraint no printing when liquidation 

Table 4.8: EROOS Constraint for No Printing when in Liquidation 

constraint single copy borrowing 

  top class 

    BORROWING 

  context 

    BORROWING having participant ( 

      SELECTION having participants (REGISTRATION, 

        POSSESSION having participant (  

          COPY having participant (BOOK)))) 

  definition 

    for all b1,b2 in BORROWING: 

     if (b1 ≠ b2) and  
       b1�SELECTION�REGISTRATION = b2�SELECTION�REGISTRATION 

     then b1�SELECTION�POSSESSION�COPY�BOOK 

          ≠ b2�SELECTION�POSSESSION�COPY�BOOK 
end constraint single copy borrowing 

Table 4.9: EROOS Constraint for Single Copy Borrowing 

4.5.5 Contributions, Related Work, and Reflections 

Our contributions concerning the constraint concept are the following: 

• In addition to a large number of constraints that are implied by the EROOS 
model structure, EROOS constraints offer the possibility of modelling 
constraints as a first-class model concept. Using a formal notation, model 
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constraints can be superimposed on a model in order to express rules and 
regulations of the universe of discourse. Our work, first published internationally 
in 1992 [153], predates and is largely comparable with OCL, which originated in 
1995 within IBM [161]. 

• Contrary to OCL, EROOS forces a single and unique manner for specifying 
EROOS constraints. This is achieved by (1) the obligation to formulate 
constraints from the top class(es) in the relation hierarchy, and (2) the 
introduction of the not participating clause. The advantage of a unique 
specification manner for a constraint concerns the fact that it provides solid 
criteria in developing conceptual models. This leads to a single common model 
among all analysts involved in the development of a conceptual model. EROOS 
also explicitly inhibits the definition of an EROOS constraint that can logically 
be derived from other constraints already present in the conceptual model. As 
such, the specification of constraints in an EROOS model can be restricted to the 
set of relevant constraints, and does not include a huge set of rather trivial 
derived constraints.  

• Contrary to OCL, EROOS forces analysts to use implied constraints whenever 
appropriate. The formalism provided for expressing EROOS constraints is 
developed as such that it is impossible to express implied constraints using the 
concept of an EROOS constraint. This is achieved by the prohibition of using 
the participation query (�) in the formulation of an EROOS constraint. 

The introduction of formal model constraints as a first-class model concept in 
EROOS is largely comparable with the Object Constraint Language (OCL) 
[108][161]. A major difference between OCL and EROOS is the viewpoint from 
which the constraint can be formulated. In the EROOS methodology, each constraint 
has a single and unique viewpoint from which it is formulated, namely the top class 
or top classes in the relation hierarchy that are involved in the constraint. EROOS 
forces the modeller to use this strict constraint specification viewpoint in order to 
obtain uniqueness for conceptual modelling. OCL has very loose specification rules, 
and puts no restrictions on the constraint expressions, or on the specification 
viewpoints. A constraint in OCL can be formulated from the viewpoint from any 
involved class.  

An observation that can be made is that for the specification of events, as introduced 
in Section 4.8, an analyst often has to interpret and to circumvent the model 
constraints that must be obliged at all times. When specifying the effect the event has 
on the model, the analyst must take care that all model constraints remain valid. 
Otherwise, the event will violate a model constraint and will be refused. This leads to 
a recurring pattern of (1) describing the standard behaviour of an event, (2) checking 
whether the state of the new model instance remains valid, and (3) providing a 
constraint exception handling mechanism that tries to resolve the constraint violation. 
As such, the model contains a lot of duplication of constraint checking and resolving 
descriptions inside the event specifications. A generic mechanism to detect and react 
to constraint violations would be appropriate in order to avoid the repetition of this 
kind of constraint checking and handling specifications. As part of the EROOS 
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universe, Section 5.3.9 presents a mechanism for the specification of constraint 
triggers that can intervene and extend the event behaviour whenever a constraint 
could become violated, and a mechanism for nondeterminism in EROOS 
specifications in order to facilitate the selection of appropriate model instance items 
that comply with all stated model constraints.  

A second observation is that for the specification of time related restrictions in the 
EROOS kernel, an analyst is obliged to model the progress of time explicitly. 
Although it is possible to express time related constraints, there is no possibility to 
capture a violation of a time related constraint caused by the progress of time. One 
could use the indication of the current time at the moment of evaluation, indicated as 
now, and express an explicit condition that this value must be smaller than a certain 
moment in time. But it is impossible to specify that an event will be triggered when 
the specified constraint would be violated. For example, it is impossible for the 
library system to specify that a fine object must automatically be created when the 
borrowing reaches its expiry date. Such constraint would result in a time standstill in 
the model, which would correspond with an erroneous situation. A possible solution 
to model this kind of time triggered behaviour in the EROOS kernel would be the 
explicit modelling of the progress of time. As such, at each moment the time 
progresses in the model, one could check whether a certain time related constraint 
could be violated, and respond to it by triggering the behaviour that must be executed 
when reaching the deadline, e.g., raising a fine, switching to an alarm level, starting 
corrective or repossession measures, et cetera. The constraint triggering mechanism 
of the EROOS universe presented in Section 5.3.9 can facilitate the specification of 
such kind of time-triggered behaviour.  

A third observation is that, while EROOS constraints impose restrictions on a 
conceptual model that must always be satisfied, some situations could demand for a 
set of rather contradicting rules applicable on certain information. This is often the 
case in planning and scheduling systems. Fur such systems, only a limited number of 
constraints must be satisfied at all times, called crisp constraints, while a large set of 
rules are used to define satisfaction levels for evaluating the obtained solutions. This 
type of rules is called soft constraints [51][14], which define a level of preference or a 
level of importance concerning the satisfaction of the rules. These rules are not real 
constraints in the sense that they must be satisfied at all times, but they define 
satisfaction selection rules that can discriminate the set of possible solutions 
complying with all crisp constraints. Integrating such approach of soft constraints into 
EROOS would provide a better support for planning and scheduling systems. 
Although the universe of discourse concerning a planning and scheduling system is 
quite easy to model in EROOS, a model for the calculation of the most optimal 
solution is much harder. However, it is possible to obtain an elegant solution of a 
planning system using constraint triggers and nondeterminism, as is demonstrated in 
the case studies of the electronic agenda system.  
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4.6 Is-A Specialisations and Static Subdivision 

In addition to concrete classes as presented in Section 4.2, EROOS introduces another 
type of classes for classification purposes, namely abstract classes. Contrary to 
concrete classes, abstract classes do not have objects on their own. The collection of 
objects associated with an abstract class is instead obtained by joining the respective 
collections of objects of other classes for which the abstract class is an abstraction. 
The concept of specialisation is used in EROOS to express an ‘is a (kind of)’ meta-
relationship between two classes, namely a generalised abstract class and a 
specialised class. We call a specialisation between classes a meta-relationship since it 
relates the classes on a meta-level rather than relating the objects of the class. This 
meta-relationship models the fact that objects of a number of classes resemble each 
other. The abstract class is statically subdivided into a number of specialised classes. 
Notice that a specialised class can be a leaf class in the inheritance hierarchy, in 
which it is a concrete class, but also an abstract class in turn, having again a number 
of specialised classes as its descendants. Next to specialisation, which concretises 
abstract classes into specialised classes, one could also identify the inverse concept of 
generalisation, which abstracts specialised classes into generalised classes. The 
resemblance of classes can come from two sources: (1) observable features, and (2) 
common sense knowledge.  

• According to the first source, objects of two classes resemble each other if they 
share common structural and behavioural features. These features can be defined 
on the level of the abstract class. For instance, shared structural features can be a 
number of attributes, relation refinements, relation participations, and constraints. 
These features are called observable because an analyst can detect them in the 
universe of discourse, by closely observing and looking for commonalities. 

• The second source of detecting resemblances between classes is common sense 
and background knowledge of the universe of discourse. Two objects resemble 
each other because they are known to do so in the universe of discourse. 
Although resemblance can be a feature or property on its own, this kind of 
resemblance often is, but does not have to be supported by a number of common 
observable features. 

By using the concept of specialisation, the common features of classes can be 
expressed once only, without introducing redundant specifications in the model. The 
specialised class inherits all features from the generalised class. In addition, it is 
possible that a single class is a specialisation of more than one generalised class at the 
same time, inheriting all features from each generalised class. Each specialisation 
hierarchy can be looked upon from two viewpoints. On the one hand, one can 
consider the generalised class as the entity in the focus of attention. The 
specialisations are then special cases of this generic concept. On the other hand, when 
the specialisation classes are considered to be the entity in the focus of attention, the 
generalisation class is the description of the common features of all specialised 
classes. Which of these viewpoints is commonly used, depends on the context or on 
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the information that the observer uses to reason about the universe of discourse. 
However, both approaches lead to the same specialisation hierarchy in EROOS.  

4.6.1 Is-A Specialisation versus Subclassing versus Subtyping 

As argued by Lalonde [87], the ‘Is-A (kind of)’ meta-relationship in EROOS is 
different from subclassing, also called inheritance in object-oriented programming 
languages, and from subtyping. The difference lies in the criteria to be used when 
evaluating whether a class should be a descendant of another class. What is more 
general in one viewpoint could be described as more specialised in another viewpoint: 

• Subclassing, also known as inheritance, is an implementation mechanism that 
allows a programmer to share code and representation by letting a class inherit all 
code, including methods and instance variables, from another class. The subclass 
can hide or overwrite certain methods in order to fine-tune its own 
implementation. It is a form of implementation reusability by inheriting rather 
than copying code. 

• Subtyping is a behavioural substitutability relationship that follows the Liskov 
Substitution Principle (LSP) [92]. It uses the criterion of substitutability, namely 
that an instance of a supertype can be substituted by an instance of a subtype 
without noticing any differences. How the subtypes are implemented is totally 
irrelevant, as long as they have the right interfaces and behaviour to be 
substitutable. A class is thus a special case of another class if it provides at least 
the same services, including the same interface and behaviour, as the original 
class, without violating any additional explicit or implicit suppositions. It is 
possible that the specialised class provides more services than the general class, 
or that existing services are extended such that they cover more cases. As long as 
the original class does not rely on certain extensions not being covered, e.g., by 
relying on the occurrence of certain exceptions to be thrown, additional 
extensions can be made while adhering to the criterion of substitutability. 

• The ‘Is-A (kind of)’ meta-relationship, as being used in EROOS, follows the rules 
of the logical specialisation relationship between classes. A class is a kind of 
other class when it complies with the specification of that class, both on a 
structural as well as on a behavioural level. This means that its objects can be 
seen as objects of the other class in the universe of discourse. A specialised class 
must therefore comply with all the features defined for the generalised class, such 
as attributes, relation refinements, relation participants, constraints, and 
functionality. Structural elements and functionality correspond to a number of 
implicit and integrated constraints that are incorporated in the methodological 
concept. For instance, if a class is decorated by an attribute, all objects of that 
class must have a proper domain value for that attribute. Likewise, all objects of 
a refined class must have an object of each of its participating classes associated 
with them. Therefore, a class is a specialisation of another class if it satisfies at 
least all constraints, both implicit, explicit, as well as EROOS constraints, 
specified for the generalised class. It is possible that the objects of the more 
specialised class satisfy more constraints than the objects of the more general 
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class. Specialisation thus corresponds to the process of more strictly defining a 
specific class by restricting it with more constraints through the definition of 
additional model entities. 

Because objects of the specialised class must satisfy more constraints, they are 
likely to be less general in use. Therefore, they can probably provide less 
functionality than the more general class. On the other hand, objects of the 
specialised class can have more structural features attached to them and provide 
additional functionality related to these features. Notice that ‘is a (kind of)’ is 
sometimes also referred to as subtyping, for example by Wegner [162] which 
defines it as the addition of predicates that constrain the structure of expressions. 

4.6.2 Specialisation Partitions and Multiple Generalisations 

As presented in Section 4.2, each concrete EROOS class is associated with a 
collection of objects. The creation event of a concrete class adds a new object to the 
population of the class. Objects of a specific concrete class cannot be created, queried 
or manipulated by the functionality of another concrete class. Therefore, the 
collections of objects associated with concrete classes are disjoint. Moreover, each 
object belongs to exactly one collection of a concrete class.  

In contrast, abstract classes are not associated with an object collection, because they 
do not have objects of their own. They merely describe common features of objects 
from a number of specialised classes. Therefore, an abstract class is said to be 
associated indirectly with a collection of objects, namely the union of the direct and 
indirect associated collections of all classes it generalises. A class that is specialised 
in a number of other classes is always an abstract class in EROOS, while a class that 
has not been specialised, is always a concrete class. Figure 4.14 illustrates how the 
collections of objects that are associated with classes, are related to each other. Parts 
of the ellipses representing the collections are hatched to indicate that these parts of 
the collection are empty and do not contain any objects.  
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Figure 4.14: Graphical Representation of an EROOS Specialisation 
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Not only is the collection of objects associated with the generalised class equal to the 
union of the collections of the specialised classes, but also no object may belong to 
two or more specialised classes in a specialisation hierarchy. Specialisation classes 
that are specialised from the same generalised class must completely partition the 
objects described by that generalised class into disjoint subsets. It is possible to 
specify more than one partition for a generalised class. When two specialised classes 
must share some objects, they must be defined in different specialisation partitions. 
When more than one partition is defined for a specialisation, they must be orthogonal 
partitions, since each must fully partition the same collection of the generalised class 
in disjoint subsets. All objects described by the generalised class must be fully 
qualified for each partition, i.e., they must be assigned to a specific specialised class 
according to all partitions of that generalised class. Therefore, when more than one 
partition is specified for a specific class, all direct specialisations of that class must be 
abstract classes since an object may belong only to a single concrete class. Moreover, 
all further concrete specialisation classes lower in the specialisation hierarchy must be 
specialisations of one class from each partition. Partitions can be named or nameless. 
Specialisation relationships with no partition name are assumed to belong to the same 
default partition. Figure 4.15 shows two specialisation partitions P and Q for a single 
class C, and the corresponding collections of objects. Notice that both partitions P and 
Q are complete classifications of the objects in class C, but neither describe the 
objects completely. Therefore, the classes P1, P2, Q1, and Q2 are abstract classes, 
while only the classes C11, C12, C21, and C22 are concrete classes. 
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Figure 4.15: EROOS Specialisation Partitions 

A class can be a specialisation of more than one generalised class at the same time, 
but only when the generalised classed belong to a different partition. When more than 
one partition is present, it even must be specialised from one generalised class of each 
partition. In order to prevent multiple specialisations coming from rather unrelated 
classes, a multiple specialisation has the restriction that all generalised classes must 
be specialised from a single most general class.  
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The EROOS methodology explicitly prohibits the definition of identical partitions, 
since they do not provide any added value to the conceptual model. In addition, 
specialisation classes in a partition that cannot contain any objects, e.g., due to the 
fact that its generalised classes have contradictory constraints attached so that an 
object can never belong to both classes, are also forbidden. 

4.6.3 Specification of an EROOS Specialisation 

The syntax of an EROOS specialisation script is given in Table 4.10. A specialisation 
script can be formulated from two viewpoints: The viewpoint of the generalised class, 
for which all partitions and its specialised classes are defined, and the viewpoint of 
the specialised class, for which all involved partitions and its generalised classes are 
defined. As presented in Figure 4.15, an EROOS specialisation partition is 
graphically represented in the form of a semi-circle with the generalised class 
attached to the curve and all specialised classes attached to the bottom.  

 
<EROOS specialisation script> =  

"class" <CLASS NAME> 

  "definition" 

    "specialisation"  

    "(" <generalisation clause> 

      ( "," <generalisation clause> )+ ")" 

"end class" <CLASS NAME> 

 

<generalisation clause> = 

"of" <CLASS NAME> ["according to partition" <partition name>] 

 

<EROOS generalisation script> =  

"class" <CLASS NAME> 

  "definition" 

    "specialised"  

    "(" <specialisation clause> 

      ( "," <specialisation clause> )+ ")" 

"end class" <CLASS NAME> 

 

<specialisation clause> = 

[ "according to partition" <partition name> ] "in" 

  "(" <CLASS NAME> ( "," <CLASS NAME> )+ ")" 

Table 4.10: EROOS Specialisation Script  
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4.6.4 Model Constraints implied by the Specialisation Concept 

EROOS incorporates important model constraints directly in the methodological 
concepts. The following constraints are directly implied by the specialisation concept: 

• Abstractness: Generalised classes do not have objects associated with them that 
are not also associated to a concrete class. Generalised classes are considered 
abstract. They are only indirectly associated with a collection of objects through 
the union of the collections of all direct and indirect specialisation classes. Each 
object is directly associated with a concrete class and can be indirectly associated 
to a number of generalised classes. 

• Immutability: The association of a given object with its generalisation classes is 
considered to be static. In particular, at the moment an object is to be created, it 
will be associated with a single concrete class and it will keep that association for 
its entire lifetime. In addition, the associations with the generalised classes are 
also established at the moment of object creation and cannot be altered in a later 
stage of the object lifetime. 

• Finiteness: The collection of objects associated with any generalised class will 
always be finite, since it is the union of the finite object collections that are 
associated with its specialisation classes. 

 
A specialisation is a model entity defining an ‘is a kind of’ 
meta-association between classes, in which the objects of the 
specialised class derive all model entities that have been 
defined for the generalised class.  

An abstract class is a class that does not define its own 
object population set. Instead, it has a derived object 
description set that is equal to the union of the object 
description sets associated to its specialised classes. The 
object description set of a concrete class is equal to its 
object population set. 

A partition is a set of specialisations for a single 
generalisation class, in which the object description set of 
the generalisation is equal to the complete and non-
overlapping union of the object description sets of the 
specialisation classes in the partition. 

Given  

Model M; Object Universe OU; Class C1,…,Cn ³ Mcl; 

Abstract Class A ³ Macl; Partition P ³ Mp; 

A: TIME � 3(OU) |  

 " t ³ TIME: P(A) = {C1,…, Cn} ⇒  At = C
1
t ∪  … ∪  Cnt     (partition 

 " t ³ TIME: " C, C' ³ P(A): Ct ¬ C't = «    disjunctness)27 

Definition 4.12: EROOS Specialisation 

                                                  
27 This definition also implies abstractness, immutability and finiteness, since an abstract class is the union 
of its specialised classes, each of them conforming to the properties of immutability and finiteness. 
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• Partition Disjunctness: In EROOS, different specialised classes in the same 
partition are assumed to divide the universe of objects into disjoint collections. 
Each object associated with a generalised class must be associated with exactly 
one specialised class in a partition. Whenever two specialised classes must share 
a number of objects, they should be defined in distinct partitions. Different 
specialised classes in the same partition are not allowed to share objects. 

The definition of a specialisation can be found in Definition 4.12. 

4.6.5 Strengthening Constraints for a Specialisation 

Specialisation can have an impact on other entities present in an EROOS model. 
Functionality and constraints associated with attributes and relations can be restricted 
for the specialised class. New structural elements can be specified for a specialised 
class, and a specialised class also inherits the features from its generalisation classes. 
All attributes, relations, participations, EROOS constraints, events, and queries of the 
generalised class are inherited by its specialisation classes. Consequently, amongst 
others, if the more general class has been refined, no new relation can be specified for 
its specialised classes. 

Although abstract classes have a creation event defined for them, it can never be 
applied directly because an abstract class cannot have objects of its own. Therefore, 
the creation event only serves as a contract for the specialised classes to be obeyed. 
The effect of a creation event for an abstract class is to add a new object to the 
derived population associated to that class. Since the specialised creation event adds 
an object to the population of its class, and since the population of an abstract class is 
the mere union of the populations of its specialised classes, a new object will thus be 
indirectly added to the derived object collection of the abstract class.  

The model entities and functionality of a specialised class come from two sources: (1) 
the own model entities and functionality that is directly specified for the specialised 
class, and (2) the functionality defined for all direct and indirect generalised classes 
from which the specialised class is derived. As such, all constraints specified for the 
generalisation class are guaranteed to be satisfied by all objects of the specialisation 
class. However, objects of the specialisation class cannot guarantee to behave exactly 
as specified for the generalised class, due to the fact that extra constraints can be 
introduced on the level of the specialised class. Therefore, certain events defined on 
the level of the generalised class could possibly violate the rules specified for the 
specialisation class, and can be refused whenever they occur.  

Adding new constraints on the specialisation level can lead to strengthening attributes 
and participants of a relation. Strengthening an attribute can be done by adding an 
integrated ‘unique’ constraint to the specialised version, or strengthening the lower 
and upper bounds for the allowed attribute values, thus increasing the lower bound or 
decreasing the upper bound.  
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As illustrated in Figure 4.16, strengthening a participant can be done in three 
manners: 

• The strengthened participant can have the original participant as its direct or 
indirect participant. 

A participating class A can be replaced by a refined class C in which A 
participates. This participation does not have to be direct, as long as the new 
participating class is somehow dependent on the original participating class. 
Strengthening a participating class corresponds to limiting the kind of objects 
that can participate in the relation. The restriction states that only objects of the 
new participating class C, which are guaranteed to be dependent on an object of 
the original participating class A, are now allowed to participate in the restricted 
relation. It adheres to the constraint on the generalised level, since the newly 
refined object of class C guarantees to have the original participant object of 
class A as one of its own participants. A conformance rule for the strengthening 
must be defined, but is mostly automatically deducible. 

• The strengthened participant can be a direct or indirect specialisation of the 
original participant. 

A participating class X can be replaced by one of its specialised classes Y. This 
specialised class can be a direct or an indirect specialisation of X. The restriction 
corresponds to limiting the kind of objects that can participate in the relation, 
namely, only objects that belong to the specialised class. It adheres to the 
constraint on the generalised level, since the newly specialised object of class Y 
guarantees to adhere to the original generalised class X. 

• The strengthened participant can have the original participant as its own direct 
or indirect specialised participant through a number of relations and 
specialisations. 

This is a combination of the previous two cases, in which the specialisation can 
be applied on any of the intermediate classes between the new participating class 
and the old one. 
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Figure 4.16: Strengthening a Participant for an EROOS Specialisation 
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Note that strengthened model entities are distinguished from newly defined model 
entities by using a dashed line to represent them. In this way, it is directly visible that 
these model entities are not newly defined for the specialised class, but are actually 
strengthened features inherited from a generalised class. All model entities that have 
not been strengthened will be derived automatically in their most restrictive form. 

As illustrated in Figure 4.17, strengthening a relation by changing the arity of it can 
be done in two manners: 

• A binary relation can be restricted to a unary relation. 

A binary relation R that relates the same participating class A twice, can be 
strengthened to a unary relation when the participant objects must be equal at all 
times for the strengthened relation. In fact, this is the only valid specification to 
model such rule in EROOS given the specific restrictions on join constraints as 
described in Section 4.5.3. It would therefore be forbidden to specify an 
additional EROOS constraint for expressing this restriction. An example of such 
restriction is a manager-subordinate relationship, for which a specialisation could 
be defined for a CEO, expressing that this person manages oneself. 

• A unary relation can be extended to a binary relation. 

Unary relations can be extended to binary relations by specifying a new, second 
participant for them. This participant does not have somehow to be related to the 
first participant, since it is an additional element that is introduced on the level of 
the specialised class. Such specialisation of a unary into a binary relation can be 
seen as an extension, since an additional participant D is added to the relation for 
S having participant C, but also a restriction, since objects of the specialised class 
cannot exist anymore without being dependent on a specific object of class D. 
When it is not obvious which participant is the original one, a conformance rule 
for the strengthening must be defined.  
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Conformance rule: 
for all r in R’: 
   r�R’/A = r�R1 = r�R2  

Figure 4.17: Changing the Relation Arity for an EROOS Specialisation 

Although implied and integrated constraints for attributes and relations can be 
strengthened, an EROOS constraint cannot be strengthened. We could imagine 
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introducing EROOS constraint specialisations in order to obtain a stronger rule on the 
specialised level than on the generalised level, but the distinction between 
strengthening an EROOS constraint and introducing a new EROOS constraint for the 
specialised level is unclear and ambiguous. Therefore, EROOS always treats the 
strengthening of an EROOS constraint as the introduction of a new EROOS 
constraint on the specialised level. 

4.6.6 Causal Dependency for Specialisations 

When evaluating the appropriateness of the EROOS methodology during case studies 
and student projects, as explained in Section 6.1.4, we noticed that a number of 
analysts often introduce a large number of specialisations that could be deduced from 
(1) a specific root specialisation, or (2) other information inside the conceptual model. 
When such causally dependent specialisations can be defined in an EROOS model, 
the methodology would violate the Principle of No Redundancy as defined in Section 
3.2. Causal dependency between specialisations is illustrated in Figure 4.18. A class 
R can be refined with a relationship having participant X. When X is specialised in 2 
specialisation classes Y and Z, it implicitly partition the class R into 2 collections of 
objects, namely (1) the objects having a participant object belonging to the 
specialised class Y, and (2) the objects having a participant object belonging to the 
specialised class Z. When class R would also be partitioned to express this 
partitioning in an explicit manner, the partitioning for class R can be deduced from 
the partitioning of its participating class X. In order to avoid such derived partitions, it 
is forbidden in EROOS to specify a partition for a refined class that can be deduced 
from a partition for one of its direct or indirect participating classes whenever the 
partition does not include any additional information in the model. In Section 5.4.7, 
we describe the concept of groups to specify a collection of objects that can 
automatically be selected based on existing information contained in the model. 
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Figure 4.18: Forbidden Causal Dependency between EROOS Specialisations 

Analogous to the causal specialisation dependency, it is also forbidden in EROOS to 
introduce a specialisation that is causally dependent on other information inside the 
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model. These kinds of causal model dependencies can be identified by the usage of 
two EROOS constraints, stating a specific condition for the one subclass and its 
negation for the other subclass. Also in this case, a group should be used to divide 
objects based on existing information contained in the model.  
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Figure 4.19: Forbidden Causal Model Dependency for an EROOS Specialisation  

4.6.7 Implicit Specialisation Queries 

The definition of a specialisation introduces an implicit query in, also called element 
of or ‘³’, to check whether an object of the generalised class is an actual member of a 
specialised class. The definition of this implicit query can be found in Definition 4.13. 

 
An implicit query ‘in’, ‘element of’, or ‘³’ for a concrete 
or abstract class is a query that can be applied on an 
object, and that returns the fact whether this object belongs 
to the object description set of that class. 

Given  

Model M; Object Universe OU; Query in ³ Mq; 

in: TIME � ( (OU x Mcl ) � Boolean) |  

   " t ³ TIME: " o ³ OU: " C ³ Mcl : 

     o in C ⇔ o ³ Ct 

Definition 4.13: Implicit EROOS Specialisation Query  

4.6.8 EROOS Specialisations for the Library Example 

Given the example of the library system that was presented in Section 2.3, and the 
relation hierarchy that was defined in Section 4.4.7, a few specialisation partitions can 
be identified. However, one important specialisation that can be defined is the 
generalisation of the main author and secondary author into a single class AUTHOR, 
as presented in Figure 4.20. In addition to the grouping of all authors for a book, the 
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order in which the authors are ranked can now be captured explicitly in the model. 
The following observations can be made: 

• The class AUTHOR represents all authors for a book. It is refined with a unary 
relation having PERSON as the participating class, representing the persons that 
are authors of a book. Since a person can be author of many books, the 
multiplicity value is defined as ‘many’. 

• The class BOOK is a specialisation of AUTHOR, thereby inheriting the relation 
to PERSON. This relation represents the main author for a book. Since a book 
and its main author are mutually dependent, the EROOS kernel forces the analyst 
to merge these two facts into a single object called BOOK. A book represents the 
concept of a book and the main author at the same time. 

• The class of SECONDARY AUTHOR is also a specialisation of AUTHOR, 
thereby inheriting the relation to PERSON. This participant is a person that is 
one of the secondary authors of a book. However, we have specialised the 
relation from a unary to a binary relation, expressing the fact that the secondary 
author follows another author, who, in turn, can be the main author, or another 
secondary author.  

 
  AUTHOR 

PERSON 

BOOK 
SECONDARY 
AUTHOR 
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NEXT 

 

Figure 4.20: EROOS Specialisation for the Library System 

The specialisation hierarchy give rise to a dependency chain between the authors:  

• The main author, expressed by the class BOOK, is dependent only on a single 
person, being the main author 

• The second author, expressed by the class SECONDARY AUTHOR, is refined 
with a relation link between the person being the second author, and the main 
author, expressed by the class BOOK that is generalised as AUTHOR. 

• The third author, expressed by the class SECONDARY AUTHOR, is refined 
with a relation link between the person being the third author, and the second 
author, expressed by the class SECONDARY AUTHOR that is generalised as 
AUTHOR. 

The result of such model structure, is that the last author is dependent on its 
predecessor, etc., the second author is dependent on the first author, while the first 
author, being merged with the book object, is not dependent on any other authors. 
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4.6.9 Contributions, Related Work, and Reflections 

The EROOS specialisation concept is largely comparable with the generalization 
concept in UML. Our contributions concerning the specialisation concept are: 

• The mechanism of strengthening constraints for a specialisation is a key 
contribution of our work. A relation participant class, expressing existential 
dependency of a refined object on a participating object, can be strengthened to a 
class that has the participant class as a direct or indirect specialised participant 
class through a number of relations and specialisations. This enables the modeller 
to express more stringent dependencies for a specific subset of a refined class. 

• The systematic approach to specialisation, obliging (1) partition disjunctness 
for every specialisation hierarchy, (2) the strict separation between abstract 
generalisation classes and concrete leaf classes, and (3) the prohibition of causal 
dependency, forces the analyst to modelling clean specialisation structures and 
surveyable multiple inheritance trees.  

An observation that can be made is that in order to express dynamic specialisation, a 
query must be defined returning the fact whether an object belongs to a certain 
dynamic subset or not. If this information cannot be derived from the information 
already contained in the model, an explicit class must be added to the model 
reflecting this fact. As an example, a dynamic class of adults cannot be derived from 
a class of persons, but it should be modelled as a query for a person returning the fact 
whether the person is an adult or not. In addition, it is impossible to derive a dynamic 
class of students from a class of persons, but it should be modelled as a class of 
enrolments refined with a person and an institute. A query for a person can return the 
fact whether the person is registered as a student or not. Thus, dynamic subgroups are 
only implicitly present in a model and cannot be made explicit. It would be 
convenient to highlight such dynamic subsets directly inside a model. 

4.7 Queries and Ornamentation 

In previous sections, we already introduced a number of implicit EROOS queries in 
order to retrieve information about the model instance at a specific moment in time. 
As such, an attribute automatically introduces a decoration query (�), a relation 
defines a number of refinement (�) and participation (�) queries whereas a 
specialisation gives rise to the introduction of a specialisation query for each class (in, 
element of or ³). This section introduces the general concept of a query for enlarging 
the information retrieval capabilities in a model and defining facilities for extracting 
derived information from a model instance. 

4.7.1 Specification of an EROOS Query 

In general, a query offers the ability to inspect the properties of objects in a model 
instance. In order to be able to inspect the model instance at a certain moment in time, 
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the analyst can define EROOS queries. Queries are said to ornament a class. An 
EROOS query is specified in a query script, as given in Table 4.11. 

 
<EROOS query script> =  

"class" <CLASS NAME> 

  "context" 

    <context clause>  

  "query" 

    <query name> [ "(" <parameter name> : <TYPE NAME> 

        ( "," <parameter name> ":" <TYPE NAME> )* ")" ] 

    "returns" <TYPE NAME>  

    "result" <query expression>  

"end class" <CLASS NAME> 

Table 4.11: EROOS Query Script 

The different components in the specification of a query are the following: 

• The query name, represented in lowercase, should provide a good description of 
the information to be returned. Query names are not restricted to verbs. However, 
the name of a query must differ from the names introduced for other queries of 
the class, as well as from the names used for the events associated with that class.  

• A query can introduce, by means of successive formal arguments, symbolic 
names for values and objects to be supplied each time the query is instantiated.  

• The final component of a query script specifies the result type and the actual 
result to be returned by the query. The query expression must return an object, 
value, or set, according to the defined return type. The expression is evaluated at 
the time the result of the query is needed. The expression determining the result 
of a query, is to be built from the object on which the query is applied (self), the 
values and objects that serves as actual arguments for the query, the default 
EROOS attributes, domain values, and domain functions. 

Since the focus of this text is on the constraint-centric approach in EROOS, we refer 
to the EROOS Reference Manual [143] for a complete and in-depth description of 
EROOS queries. As presented in Figure 4.21, queries are represented graphically by 
means of a circle connected to the class of the object on which the query applies. The 
name of a query is preceded by a question mark.  
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Figure 4.21: Graphical Representation of an EROOS Query 
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4.7.2 Examples of EROOS Queries 

As an example of an EROOS query, the age of an object can be defined by comparing 
the time at the moment the query is evaluated with the Creation Timestamp of the 
object. The specification of such query is given in Table 4.12. When the age of an 
object is an important semantic property in the universe of discourse, it should be 
introduced in the model and be given a proper name for describing this property. 

 
class C 

  context 

    having attribute Creation Timestamp28 

  query 

    age returns Duration  

      result now - self�Creation Timestamp 

end class C 

Table 4.12: Example of an EROOS Query Script for an Object Age 

As another example of a query for a relation, one can define a query for a class 
participating in two relations. The query, given in Table 4.13, has to check whether 
the object participates in at least a relation link of each relation.  

 
class P 

  context 

    being participant of (R, S) 

  query 

    full participation returns Boolean 

      result (self�R ≠ empty set) and (self�S ≠ empty set) 
end class P 

Table 4.13: Example of an EROOS Query Script for a Dual Participation Check 

4.7.3 EROOS Queries for the Library Example 

Given the example of the library system presented in Section 2.3, and the relation 
hierarchy defined in Section 4.4.7, we could define a large number of useful queries. 
We restrict ourselves to two examples. A query returning the number of books that a 
person has borrowed at a certain moment, is expressed in Table 4.14. A query 
returning the amount of the fine at a certain moment, is expressed in Table 4.15.  

                                                  
28 Notice that since the attribute Creation Timestamp is a default attribute, the context could have been 
omitted. Howeve, we explicitly show it in the example for didactical purposes. 
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class PERSON 

 context 

   being participant of (REGISTRATION 

     being participant of (SELECTION 

       being participant of (BORROWING 

         being participant of (RETURN)))) 

 query 

  number of borrowings 

    returns Natural 

    result 

      let borrowings = self�REGISTRATION�SELECTION�BORROWING 

      let current borrowings =  

          {b in borrowings | b�RETURN = empty set} 

        #(current borrowings)29 

end class PERSON 

Table 4.14: EROOS Query for the Number of Borrowings 

class FINE 

  context 

    having participant (BORROWING 

      being participant of (RETURN) 

      having participant (ALLOWANCE 

        having participant (LIBRARY 

          having attribute Amount of Daily Fine))) 

  query 

    amount 

      returns EUR VALUE 

      result 

        let duration =  

          (if self�BORROWING�RETURN = empty set  

           then now 

            else self�BORROWING�RETURN�Creation Timestamp) 

           - self�BORROWING�Creation Timestamp 

       self�BORROWING�ALLOWANCE�LIBRARY�Amount of Daily Fine 

         * days(duration) 

end class FINE 

Table 4.15: EROOS Query for the Amount of the Fine 

                                                  
29 In EROOS, the cardinality of a set can be denoted using #(), card(), or cardinality(). 
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4.7.4 Contributions, Related Work, and Reflections 

The EROOS query concept is comparable with the definition of query operations in 
OCL. Our contribution concerning the query concept is the definition of a formal 
notation for expressing the semantics of queries. This allows a complete and 
precise description of the behaviour part of a model. As such, the conceptual model 
can be used for simulation, which leads to a better validation of the model by the 
customers, and for model transformation to more software focussed models at a lower 
abstraction level. Our work predates and is largely comparable with OCL. Since the 
focus of this text is on the constraint-centric approach in EROOS, we refer to the 
EROOS Reference Manual [143] for a complete and in-depth description of EROOS 
queries. 

4.8 Events and Enrichment 

In Section 4.2, creation events were introduced as a means to create objects of a class. 
This section introduces the concept of a general event as a clustering of a number of 
other events, being creation events and other general events, in order to model the 
behaviour of a more complex change that can occur in the universe of discourse.  

4.8.1 Events in an EROOS Model 

An EROOS model consists of structural aspects, such as classes, attributes, relations, 
constraints, and specialisations, as well as behavioural aspects, such as queries and 
events. EROOS events provide the means to create a new instantiation of the EROOS 
model, by extending the model instance with a number of new objects. As such, 
events define changes that can be applied upon the model instance. A creation event 
is a reflection in the conceptual model of changes that occur in the universe of 
discourse. Events are said to enrich a class with additional functionality. A creation 
event, introduced in Section 4.2, allows the specification of an event that introduces a 
new object for a class. But an analyst often wants to describe a clustering of events or 
a conditional event based on a number of properties that are important for the event. 
The EROOS concept of a general event offers the possibility for the specification of 
such more complex events. 

An event consists of a description of the effect it has on the model instance when it is 
successful, i.e., when it violates no constraints that have been stated in the model. 
This effect description is totally declarative and states what happens instead of how it 
happens. As such, a new model instance is defined based on the state of the existing 
model instance. An event can be atomic, or composed by clustering a number of other 
events. An event is instantaneous and timeless, which means that there exists no time 
period between the moment the event is initiated and the moment the effect is visible 
in the model. When queries are used in an event, they obtain information about the 
model instance at the time the event occurred, i.e., just before the change of the event 
has been applied. In fact, the changes caused by an event are directly visible after the 
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event has taken place. When an event takes place at time t, the event is visible in the 
timeframe ]t, ∞[. So queries that are mentioned in the event are evaluated at time t 
and will not see the changes caused by the event yet. 

Whenever the duration of an event should be considered as a period, because its 
duration is important for the universe of discourse, the composite event must be split 
in two basic events, namely a first one to express the start of the activity, and a 
second one to express the end of the activity. In this manner, the EROOS approach 
allows the analyst to make a clear distinction between the modelling of an event or 
occurrence that is instantaneous, represented by a single event, and the modelling of 
an activity that lasts for a certain period, represented by two events. 

4.8.2 Specification of an EROOS Event 

In general, an event offers the ability to cluster a number of events into a single event. 
This allows the specification of functionality that creates a number of objects from 
several classes using a single event, or that conditionally creates an object. An event 
is applied on an existing object (self) that forms the reference point for expressing the 
event.30 An EROOS event is specified in an event script, as given in Table 4.16. 

 
<EROOS event script> =  

"class" <CLASS NAME> 

  "context" 

    <context clause> 

  "general event" 

    <general event name>  

      [ "(" <parameter name> ":" <TYPE NAME> 

        ( "," <parameter name> ":" <TYPE NAME> )* ")" ] 

    "effect"  

      <event expression>  

"end class" <CLASS NAME> 

 

<event expression> = 

 ( ["let" <mnemonic> "=" ] <CLASS NAME>"."  

     <creation event name>"("<parameter expression>")" 

 | <object expression>"."<general event name>  

     "(" <parameter expression> ")" )+ 

Table 4.16: EROOS Event Script  

                                                  
30 One can consider the object on which the event is applied as a default argument for the event. 
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The different components in the specification of an event script are the following: 

• The name of an event should provide a good description of the occurrence from 
the universe of discourse that it represents. The event name must be a lowercase 
verb to express the change it applies onto the model instance, and should be 
unique in the context of the class for which it is defined.  

• An event can introduce, by means of successive formal arguments, symbolic 
names for values and objects to be supplied each time the event is instantiated.  

• The final component of an event script specifies its effect on the model instance. 
The event expression is an (eventually conditional) enumeration of an event 
collection, consisting of other EROOS general events and basic creation events 
from a variety of classes. The expression that determines the event collection, is 
to be built from the object on which the event is applied (self), the values and 
objects that serve as actual arguments for the event, the default EROOS 
attributes, domain values, and domain functions. The effect description of an 
event will be evaluated at the time the event is activated. In the case that a 
random choice has to be made between elements from a certain set, the EROOS 
selection operator random one of can be used. This selection operator makes a 
random selection of a single element from a set of potential elements. 

Since the focus of this text is on the constraint-centric approach in EROOS, we refer 
to the EROOS Reference Manual [143] for a complete and in depth description of 
EROOS Events. As presented in Figure 4.22, EROOS events are represented 
graphically by means of a circle connected to the class of the object on which the 
event applies. The name of an event is preceded by an exclamation mark.  
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Figure 4.22: Graphical Representation of an EROOS Event 

4.8.3 EROOS Events for the Library Example 

Given the example of the library system that was presented in Section 2.3, and the 
relation hierarchy that was defined in Section 4.4.7, we could define a large number 
of useful events. We restrict ourselves to the example of a deregistration of a person 
at a library, which is expressed in Table 4.17. In order to perform a deregistration, a 
person must (1) return all its current borrowings, (2) pay all its open fines, and (3) 
deselect all her or his selected books. 
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class REGISTRATION 

  context 

    having participant (LIBRARY 

      having attribute Maximum Lending Period) 

    being participant of (DEREGISTRATION,  

      SELECTION being participant of (DESELECTION,  

        BORROWING being participant of (  

          RETURN being participant of (PAYMENT), 

          FINE being participant of (PAYMENT)))) 

  general event 

    deregister complete 

      effect 

        DEREGISTRATION.create(self) 

        for all s in self�SELECTION: 

          s�DESELECTION = empty set ⇒  DESELECTION.create(s) 

        let returned books = self�SELECTION�BORROWING: 

          b�RETURN = empty set 

        for all b in returned books:  

          let return = RETURN.create(b) 

          if now - b�Creation Timestamp >  

             self�LIBRARY�Maximum Lending Period 

          then let fine = FINE.create(b) 

               PAYMENT.create(fine,return) 

        for all f in self�SELECTION�BORROWING�FINE: 

          f�PAYMENT = empty set ⇒  

            PAYMENT.create(f,f�BORROWING�RETURN) 

end class REGISTRATION 

Table 4.17: EROOS Event of Deregistration for the Library Example 

4.8.4 Contributions, Related Work, and Reflections 

Our contributions concerning the event concept are the following: 

• The definition of a formal notation for expressing the semantics of events. This 
allows a complete and precise description of the behaviour part of a model. Our 
work predates and is largely comparable with OCL.  

• The methodological approach using instantaneous events obliges the modeller 
to split an occurrence with a relevant duration into two model events. This allows 
a proper guiding of the modeller to a unique conceptual model for the universe of 
discourse to be modelled.  
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The EROOS event concept is largely comparable with the definition of operations in 
OCL. The formal specification of events, in contrast with the common approach of 
informal and textual event descriptions in most analysis methods, can be compared 
with formal specification formalisms [39], such as Z [63][140], the Vienna 
Development Method (VDM) [79], and the B-method [1], and the use of formal 
specifications in programming languages, such as Eiffel [100]. In addition to Z that 
has a state-based transition formalism, defining a model instance based on the 
previous model instance, EROOS extends this approach with a time-based transition 
scheme, defining a possibly new model instance based on the previous model 
instance at each moment in time. Since the focus of this text is on the constraint-
centric approach in EROOS, we refer to the EROOS Reference Manual [143] for a 
complete and in depth description of EROOS Events. 

4.9 Design Issues concerning Model Constraints 

Conceptual modelling must be focused on the universe of discourse. The final 
outcomes of the analysis phase results in a complete description of the universe of 
discourse. Aspects of the software solution domain are not incorporated in the 
conceptual model. Therefore, constraints in a conceptual model are a high-level 
specification mechanism for rules and regulations from the universe of discourse, 
without incorporating any decisions on how and when they are going to be checked 
and enforced. Since constraints are an important part of the universe of discourse and 
therefore deserve to play an important and influential role in a conceptual model, they 
are mostly of such importance that they also have to be enforced in the actual 
software system. The design phase is the right place and time to take decisions on the 
actual details regarding the enforcement of the specified model constraints. We 
present an overview of techniques for realising constraint checking for implied model 
constraints and first-class model constraints at the design and implementation level. 
Additional design considerations have been described by Said [130]. 

4.9.1 Design Issues for Model-Implied Constraints 

A hierarchical structuring of relations results in a larger number of classes and a more 
complicated association structure to implement. Therefore, it is advisable to transform 
the hierarchical structures into a simpler, flat structure in order to implement them. 
UML associations are preferred at the design level for reasons of simplicity and 
implementation ease. An association do not have an identity or attached functionality. 
It is rather straightforward to transform the developed hierarchical model into a 
bipartite, flat model, consisting of classes and associations. Each EROOS binary 
relation can be transformed into two associations, each connecting a participating 
class to the refined class. We have developed a model transformer from EROOS 
models to UML models, in which the EROOS hierarchical model structure is 
flattened into a UML model.  
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It is also possible to optimise a model by reversing the reification of a relation into a 
class. As such, a refined class can be optimised by replacing it with a plain UML 
association. However, the consequence is that all functionality defined for the class 
must be shifted to one of its participating classes. This can be done easily when the 
relation contains no duplicate relation links, and has a connectivity of ‘1’ for at least 
one of the participants. In that case, the functionality can be shifted to the participant 
class. Considering the library system, since a book can be borrowed by at most one 
registered person at the same time, the borrowing functionality can be incorporated in 
the book object. This is due to the fact that there is a one-to-one correspondence 
between a borrowing and a book, although it is optional from the viewpoint of the 
book. By performing such optimisation transformation, the number of classes 
contained in the analysis model can be diminished at the design level. The design 
level is the right place to decide which refined classes have to be optimised and which 
ones should be implemented as classes. The main concern for such optimisation 
process is to find a good balance between the data (memory) and the procedural 
(processing) part of a system. 

Existential dependency among objects may seem too restrictive for the ultimate 
system to be developed. A large deal of run-time flexibility, in populating the 
implementation classes with instances, would be lost. Since the conceptual model is 
focussed on the universe of discourse in its normal appearance, issues regarding 
unavailability of information to the system at run-time were not yet taken into 
account. Therefore, it is possible that some constraints present in the conceptual 
model must be relaxed for implementation reasons. 

4.9.2 Design Issues for First-Class Model Constraints 

Constraints that are specified as a first-class model concept, have to be enforced in 
some manner in the actual software system. At the design phase, several topics arise 
concerning the constraint enforcement. The main issues are concerned with when and 
how to perform the constraint checking. The software engineer must determine the 
place and time that the system must perform the necessary checks for detecting 
possible constraint violations. In addition, the system must also determine the actions 
that must be taken when a constraint violation is detected that is going to occur or has 
already occurred. Two distinct approaches can be distinguished, namely a proactive 
and a retroactive approach. 

• The proactive approach consists of preventing the occurrence of a constraint 
violation. First of all, the set of operations that can be the source of a constraint 
violation must be determined. For each operation, a precondition must be derived 
that can detect possible constraint violations. When all preconditions are satisfied 
for an operation, the operation can be executed without violating any constraints. 
Notice that such precondition must be an active precondition that must always be 
checked before the action may be executed. It is an obliged condition, and not a 
kind of design contract that is only checked during debugging, e.g., as in Eiffel 
[100]. The preconditions prevent the system from entering a wrong state. Given a 
certain system state, the operations that bring the system in an erroneous state are 
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prevented before they could have been executed. This approach causes a loss of 
efficiency due to a high number of tests, but keeps the system in a highly 
consistent state at each moment in time. 

• The retroactive approach consists of detecting incorrect system states, whereupon 
the system will perform either (1) a sort of rollback to the previous valid state, or 
(2) the invocation of an error recovery procedure that tries to fix the system in 
some manner. Before an actual change is performed in the system, the necessary 
measures are taken in order to enable an undoing of the change. For instance, the 
old value of an instance variable that must be changed, can be stored temporarily 
until a valid system state has been reached. This results in an important gain of 
efficiency, but can leave the system in an inconsistent state during a certain time. 
In addition, a mechanism to detect invalid system states must be put in operation. 

The choice between these two approaches is often situation specific. A trade-off has 
to be made between efficiency and consistency, depending on the criteria that are of 
utmost importance for the ultimate system.  

Regarding the technical realisation of constraint enforcement, a number of solutions 
can be identified: 

• A constraint checking meta-layer can be developed that intercepts operation 
calls, and performs the necessary checks and measures to enforce the constraint. 
As such, the constraint checking meta-layer governs and controls the normal 
execution of operations, and intervenes when necessary. 

• A software library for EROOS constraints can be developed in order to support 
constraint checking at run-time. Such library can provide facilities for evaluating 
constraints expressions, so that they can be checked at run-time. An EROOS 
constraint interpreter can be developed that parses constraint expressions, 
computes their validity, and triggers error handling code when necessary. 

• Aspect-Oriented Software Development (AOSD) techniques [46] can be used to 
weave constraint-related behaviour into the normal system behaviour. As such, 
the constraint checking facilities are specified as a separate entity, and can be 
woven into the system functionality at the places where constraint checking and 
error handling code must be injected. 

• Constraint logic programming techniques, including supporting languages and 
libraries, could be integrated in order to detect constraint violations and support 
rule deduction. Wu [168] discusses different approaches to combine logic 
programming and object-oriented programming. 

As part of the validation for the EROOS methodology, we have developed a 
generator for a retroactive run-time constraint meta-layer that can recover from 
constraint violations. The decisions that have to be made concerning the constraint 
validity, are ordered in several successive levels in order to obtain separation of 
concerns. We generate code to locate where and when each constraint can be 
violated. At these violation checkpoints, a meta-layer implementing a constraint 
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control mechanism is triggered, which traces back to each constraint that could have 
been violated at that place. This reduces the moments and the objects to be checked. 
The realisation is done in four steps: 

• First, code is introduced to preserve the old system values for each change that 
can occur in the system, using the memento design pattern. This design pattern 
forces the encapsulation of an object state into a memento object, in order to 
enable the manipulation of its internal state. As such, the object memento is 
cloned before an actual change is executed on any of the object’s state variables. 
When a rollback has to be performed, it is sufficient to restore the old memento 
object for the changed object and discard the erroneous one. 

• Then, the classes that are involved in each constraint are determined. Each 
constraint will be checked on all objects of its involved classes after the 
invocation of each of its operations. Since all involved classes will be checked, 
operations on other classes cannot be of any influence on the validity of the 
constraint. This will decrease the moments on which a constraint has to be 
checked. Notice that our involvement identification is done rather roughly on a 
class-based level, triggered by every operation of a class. However, operations 
are often restricted to manipulate certain specific characteristics of an object, 
such as attributes or association references. Such operations will not violate 
constraints about other characteristics of the class, and, therefore, need not to be 
checked at all times. The determination of the violation checkpoints could be 
made more fine-grained, triggering only at the moment when certain specific 
operations of the class that can violate the constraint, are executed. They do not 
have to be triggered at those places where the constraint cannot be violated. 
However, this would need a deeper analysis to determine which operations can 
violate which constraints. The moments when a constraint has to be checked, 
could heavily decrease when performing such advanced, complex operation 
analysis. 

• Third, we determine the set of objects of the involved classes that have to be 
verified after an operation on an object of the class is executed. Mostly, it will 
not be necessary to check each object of the class when a certain operation has 
been executed. It is mostly sufficient to check only the object on which the 
operation has been applied. Those common situations will give rise to a decrease 
of the objects on which a constraint has to be checked. 

• Last, code is injected to implement a violation checkpoint. Such checkpoint 
triggers the constraint control meta-layer and passes the set of constraints 
together with the set of objects that have to be checked. This component will 
verify the validity of the identified constraints for the given objects. When a 
constraint has been violated, a rollback mechanism is invoked in order to restore 
the old state of all changed objects. In case that all constraints have been 
preserved, the state change can be committed and no further actions are needed 
by the constraint control meta-layer. 
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4.10 Evaluation of the EROOS Kernel 

The EROOS kernel provides a number of basic concepts to perform conceptual 
modelling, and to capture the knowledge and information of the universe of discourse 
in a conceptual model. Moreover, the concepts offered by the EROOS kernel are fine-
tuned and restricted in their applicability, in order to obtain the key principles for 
conceptual modelling stated in Chapter 3. In this section, we evaluate the EROOS 
kernel according to these key principles, argue how the EROOS kernel succeeds in 
achieving the principles, and give an overview of related work. Although it is not our 
goal to perform a thorough evaluation of UML according to the key principles for 
modelling, Opdahl [114] indicates a number of major problems in UML, such as 
failing to comply with the key principles of uniqueness, unambiguity, completeness 
and preciseness. While developing the EROOS methodology, we tried to adopt and 
integrate all key principles for conceptual model that have been identified. 

4.10.1 Achieving Uniqueness 

The Principle of Uniqueness is a key principle ingrained in the EROOS kernel. It has 
a huge impact on the precise definition of the EROOS concepts, and the delimitation 
of their applicability. The EROOS kernel achieves to create a single and unique 
conceptual model due to three important factors: 

• The incorporation of model constraints in each methodological concept 
provides a dedicated meaning to each model concept, thereby limiting its usage 
to a specific context and forcing the analyst to use certain concepts in specific 
situations. As an example, the prohibition of using Boolean and integer attribute 
types, forces the analyst to introduce a specific class or specialisation hierarchy 
to model this kind of information. As another example, the prohibition of using 
the participation query inside an EROOS constraint specification, forces the 
analyst to use relations to express the existential dependency, or a different 
expression viewpoint for the constraint using specific top classes.  

• The usage of existential dependency as the core model structure, forces the 
analyst to use a specific structure for every situation to be modelled. The usage of 
an alternative model structure will introduce a number of existential dependency 
constraints that are different from the rules in the universe of discourse, and 
therefore lead to the description of a different situation. 

• The fact that information can only be added to a model in the EROOS kernel, 
leads to the property that there is no information loss inside a model. This means 
that the modeller does not have to be concerned with weighing up the advantages 
and disadvantages of modelling the full information in all its details, versus 
modelling an optimised representation of the information that contains only the 
data that is strictly needed. As such, all fundamental information is modelled as 
core facts. Derived information can be expressed as queries, and evaluated 
whenever necessary. As an example, no computable attribute will be modelled 
and kept up-to-date in the EROOS kernel. Instead, all values that compose the 
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basic elements of the computable attribute will be modelled as single facts, 
enabling the calculation of the exact attribute value at any moment in time. 

There are some cases in which additional methodological criteria are needed in order 
to enforce uniqueness in a model. As an example, during the modelling of a period, 
the necessity of modelling the start time, end time, and duration can lead to the 
definition of three attributes, of which two are actually sufficient. Moreover, by 
choosing to model the start time and end time, the analyst is even obliged to add an 
additional EROOS constraint in order to express the fact that the end time must be 
greater than the start time. Due to the fact that the EROOS methodology (1) prohibits 
the modelling of derived information, and (2) obliges to model those attributes that do 
not give rise to additional constraints, an analyst is forced to model the start time and 
duration as attributes, and transforming the end time into a query.  

4.10.2 Achieving No Redundancy 

The Principle of No Redundancy is achieved by the fact that each EROOS concept 
captures specific information inside the conceptual model. The extension of a model 
with additional concepts therefore introduces more information inside the model and 
leads to a different model. When the model is extended with information that could 
be derived from information already present in the model, the analyst cannot specify 
the equality of the information. For every concept that could be duplicated inside a 
model, it is impossible to define such equality constraint. Therefore, the modeller 
cannot express derived information in a model, but has to represent it using queries. 

• In the case of class duplication, the objects of both classes express different 
occurrences in the universe of discourse. In order to model derived objects, they 
should be made mutually dependent. Since the EROOS kernel only allows the 
specification of unidirectional existential dependency, it is impossible to express 
that two objects are a single unity. Such model always expresses a different 
situation, in which both objects are not mutually dependent and can exist 
independent from each other. Therefore, they both express a specific and distinct 
fact, and cannot be considered as redundant. 

• In the case of attribute duplication, it could be possible that the value for a 
specific attribute can be derived from values of other attributes, as illustrated in 
the previous section. Therefore, the EROOS methodology prohibits the 
modelling of derived attribute information, forcing the analyst to a model with 
the least number of attributes and EROOS constraints. Derived attributes must be 
transformed into EROOS queries. 

• In the case of relation duplication, the fact that a relation is always encapsulated 
in a class would introduce both an additional relation and a corresponding class 
for a duplicated relation. Therefore, this case is identical as the one of class 
duplication. However, relations can give rise to a second kind of duplication, 
namely participant duplication. Participant duplication means that a participant 
object in a relation link has unnecessarily multiple presences in the existential 
dependency path for a refined object. Such situations are revealed through the 
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presence of EROOS join constraints, which put an equality constraint on a 
certain number of direct or indirect participant objects. EROOS explicitly inhibits 
this kind of join constraints, thereby avoiding participant derivation. 

• In case of EROOS constraint derivation, EROOS explicitly inhibits the definition 
of EROOS constraints that can be derived from other kind of model constraints. 
Therefore, it is not allowed to specify constraints that can be derived from other 
constraints in the model. 

• In case of EROOS specialisation, the well-formedness rules regarding partitions 
explicitly inhibits the definition of identical specialisations in a partition, since 
the specialised classes must completely partition the generalised class into 
disjoint subsets. In addition, identical partitions as well as specialised classes that 
cannot contain any objects are forbidden. Last, derivable specialisation partition 
structures are avoided due to the specific rules regarding causal specialisation 
dependency.  

4.10.3 Achieving Unambiguity 

The Principle of Unambiguity is achieved by a precise definition of the EROOS 
methodological concepts. As such, the information contained inside a conceptual 
model has a well-defined meaning that expresses a specific fact from the universe of 
discourse. It is therefore impossible that distinct situations in the universe of 
discourse result in the same conceptual model. It is possible that a certain subset of 
two different universes of discourse results into the same EROOS conceptual model 
when they both have certain knowledge and facts in common. Due to the Principle of 
Uniqueness, the shared subset of the two universes of discourse will definitely result 
in the same conceptual model. 

Since every single fact in a conceptual model has a clearly defined meaning that 
expresses a certain fact in the universe of discourse, there will be a one-to-one 
mapping from the conceptual model to a real or envisioned universe of discourse. A 
problem that can arise, is a discrepancy between events that occur in the universe of 
discourse, and the view of the corresponding modelled event in the mind of a person 
who tries to obtain an understanding of the modelled universe of discourse. This 
potential discrepancy arises due to the fact that the correspondence between the 
universe of discourse and the conceptual model cannot formally be defined, since 
there exists no global reference model of the universe of discourse to refer to. In fact, 
the conceptual model has exactly the purpose of being the reference model of the 
universe of discourse for the software system to be built. Therefore, it is of utmost 
importance to use a proper naming scheme to facilitate a correct and precise mapping 
between elements in the universe of discourse, and elements in the conceptual model. 
Besides the context of an event, which includes its properties, dependencies and 
related knowledge, the event name is the only information available to map the 
modelled event onto a real-world event in the universe of discourse. 
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4.10.4 Achieving Completeness 

The Principle of Completeness is achieved by the fact that the EROOS methodology 
only offers well-defined formal concepts for modelling knowledge of the universe of 
discourse. It is impossible to add additional informal documents or descriptions to an 
EROOS conceptual model in order to attach this kind of information to the 
conceptual model. The EROOS conceptual model is the sole source of knowledge 
that is captured in the conceptual model. It is the task of the analyst to accomplish a 
complete model of the universe of discourse. The analyst has to assess whether the 
resulting conceptual model covers all elements of the universe of discourse or not.  

An analysis methodology can only guide the analyst in achieving completeness, but 
cannot enforce the completeness of a conceptual model regarding a certain universe 
of discourse. The EROOS methodology assists the analyst by emerging concealed or 
latent facts, and forces the analyst to model them explicitly in the conceptual model. 
For instance, the fact that relations always must be encapsulated in a class, forces the 
relation to manifest in the conceptual model. As another example, the prohibition of 
Boolean and integer attribute types forces the analyst to highlight the hidden facts 
behind these attributes, and explicitly reify them as objects or specify them inside the 
specialisation hierarchy. 

4.10.5 Achieving Minimalism 

The Principle of Minimalism is achieved by the fact that an EROOS model must be a 
coherent model, without any classes that are unrelated to other classes in the model. 
Moreover, every modelled element must be related to a functional requirement or to 
an element of the real or envisioned universe of discourse. However, this is not 
enforceable, since it is largely the responsibility of the analyst, in consultation with 
the clients and the end users, to decide whether an element belongs to the envisioned 
universe of discourse or not. Software metrics for Object-Oriented Models 
[118][26][25][44], which propose measurements for coupling and cohesion, could 
assist the modeller in deciding whether certain elements are loosely coupled. But such 
metrics are often a poor indicator to measure the quality criterion of minimalism. 
Therefore, it is the task of the analyst to accomplish a minimal model of the universe 
of discourse. The analyst has to assess whether certain knowledge belongs to the 
universe of discourse, or whether it falls beyond its boundaries. An analysis 
methodology can only guide the analyst in achieving minimalism, but cannot enforce 
the minimalism of a conceptual model regarding a certain universe of discourse.  

The Principle of Minimalism should not be viewed in isolation, but should be 
considered in relationship with the Principle of Completeness. Certain model 
optimisations to obtain an apparently smaller model, thereby achieving a higher 
degree of minimalism, could conceal or obfuscate certain important elements that 
should be highlighted to obtain model completeness. In achieving the right balance 
between minimalism and completeness, the EROOS methodology favours 
completeness through highlighting hidden facts, above minimalism through model 
reductions and optimisations. 
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4.10.6 Achieving Preciseness 

The Principle of Preciseness is achieved by a complete formalisation of the analysis 
results in EROOS. No textual specifications can be made inside an EROOS model. 
All model entities, event descriptions, model constraint specifications in an EROOS 
conceptual model are formally specified. As such, the information in the conceptual 
model can fully be verified at each moment in time, in order to check its correctness 
and validity. Not only the structural part of the conceptual model, but also the 
behavioural part is formally specified. 

A formal specification of the structure and behaviour of a conceptual model allows 
formal verification of the analysis results, and rapid prototyping in order to achieve 
early customer feedback. We have validated our behaviour specification by building a 
generator for model simulations that automatically generates a C++ [144] or Java [57] 
application with an accompanied user interface, in order to support rapid prototyping 
and early model validation. 

4.10.7 Achieving No History 

Since an EROOS conceptual model only represents basic facts and their 
interdependencies, the Principle of No History is fulfilled by the EROOS 
methodology. No historical information regarding the model creation process can be 
captured in the resulting EROOS conceptual model. A change in the model will have 
a direct impact on the model structure, and cannot be superimposed on the old version 
of the model.  

An EROOS model captures a lot of historical information regarding the event 
occurrences, but this kind of historical information is an inherent part of the universe 
of discourse. Information about the gradual materialisation of a conceptual model 
cannot be retrieved from the resulting EROOS model. 

4.10.8 Achieving Model-Implied Constraints 

The Principle of Model-Implied Constraints is a key principle ingrained in the 
EROOS kernel. It is achieved through the extensive and sound definition of the 
concepts offered by the EROOS methodology. A large number of model constraints 
are directly implied by the EROOS concepts. This chapter has extensively described 
the model-implied constraints for each EROOS concept, such as disjunctness, 
immutability, finiteness, and uniqueness for classes, permanent binding and 
immutability for attributes, existential dependency and immutability for relations, and 
abstractness, immutability, finiteness, and partition disjunctness for specialisations.  

Through the encapsulation of every relation in a class, an existential dependency 
hierarchy is established as the core model structure. Every dependency of an item on 
the existence of other items will be reflected in the model by a direct or indirect 
relational dependency between (1) the objects expressing these refined items and (2) 
the objects expressing the dependent items. This establishes an implicit and automatic 
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enforcement of the dependency constraints that exist in the universe of discourse. 
However, the EROOS kernel lacks the possibility to make a separate description of 
two items that are mutually dependent. In order to reach model uniqueness, mutually 
dependent items can only be modelled by merging them into a single unity object. 
The EROOS universe, presented in Chapter 5, offers advanced concepts that facilitate 
the separate modelling of mutually dependent items. 

4.10.9 Achieving Abstraction 

Regarding the Principle of Abstraction, the EROOS kernel only offers a full detailed 
view on a conceptual model. EROOS does not offer concepts for generating model 
views, in order to present a model in an abstracted form to a model reader. The only 
concern of the EROOS kernel is to offer means to create a complete and detailed 
conceptual model for the universe of discourse. However, it is possible to generate 
abstract views from an EROOS model, using for instance Model-Driven 
Development (MDD) [50][83] techniques to transform an EROOS model into a more 
abstract model that is better focussed to the needs of the model reader. As such, a 
detailed conceptual model can be translated into a suitable customer interaction 
model using MDD model transformations. 
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Chapter 5 Advanced Concepts for Conceptual Model

Advanced Concepts for Conceptual 
Modelling 

An EROOS model is composed of both structural elements, such as classes, 
attributes, relations, specialisations, and constraints, as well as behavioural elements, 
such as queries and events. In the previous chapter, the concepts and notations of the 
EROOS kernel have been presented. Although these core concepts are sufficient to 
build a conceptual model that complies with the key principles for conceptual 
modelling, it is useful to have better suitable concepts at one’s disposal in order to 
simplify the specification of recurrent patterns. Based on common analysis patterns 
that have been detected for the EROOS kernel, the EROOS universe offers the 
analyst advanced and more practical concepts for modelling the universe of discourse. 

5.1 Class Archives and Object Destruction  

This section introduces the EROOS kernel analysis pattern that has identified the 
necessity of introducing the concept of a class archive. The definition of the class 
archive, the specification of attributes and queries for a class archive, and the usage of 
the class archive as relation participant, are described thereafter. Last, the class 
archive concept is applied on the running example of the library system. 

5.1.1 EROOS Kernel Analysis Pattern for Class Archives 

Objects often represent properties from the universe of discourse having a 
temporarily meaningful lifetime. The property can represent an activity, or it can have 
a limited physical time of existence, a limited time of validity, or a specific duration 
in which the property is active or enabled. This results in a specific EROOS kernel 
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analysis pattern that is presented in Figure 5.1 and Table 5.1. The class 
‘LIVING/ACTIVE’ represents the property when it is active, while the class 
‘DEAD/PASSIVE’ models the expiration or end of the property. All meaningful 
attributes and relations are attached to the class ‘LIVING/ACTIVE’. A number of 
constraints explicitly check that the property has not yet expired for a valid 
participation in a refined class, e.g., ‘INVOLVEMENT’. This EROOS kernel analysis 
pattern can also be observed in the example of the library system, presented in Figure 
4.9 on page 91. In order to simplify the specification of this recurring EROOS kernel 
analysis pattern, the EROOS universe provides notational support by means of an 
extension of the class concept. 

 
  

no involvement 
when dead 

DEAD/PASSIVE 

INVOLVEMENT 
LIVING/ACTIVE 

 

Figure 5.1: EROOS Kernel Analysis Pattern for an Activity 

constraint no involvement when dead 

  top classes DEAD/PASSIVE, INVOLVEMENT 

  context 

    DEAD/PASSIVE having participant (LIVING/ACTIVE), 

    INVOLVEMENT having participant (LIVING/ACTIVE) 

  definition 

    for all d in DEAD/PASSIVE: 

    for all i in INVOLVEMENT: 

      d�LIVING/ACTIVE � i�LIVING/ACTIVE 

end constraint no involvement when dead 

Table 5.1: EROOS Constraint for an Activity 

5.1.2 The Class Archive 

In order to support the modelling of an object with a temporary lifetime, object 
destruction is introduced in the EROOS universe as an extension for the class 
concept. As such, all objects of a class automatically have an active lifetime in which 
most of their events and activities will occur. Objects that have passed their active 
lifetime, indicated by the occurrence of a destruction event for the object, are put into 
the class archive. The destruction event reflects the fact that a property or an item in 
the universe of discourse corresponding with the object has ceased to exist, or stopped 
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to be of any importance. This corresponds with the existence of a DEAD/PASSIVE 
object for the class LIVING/ACTIVE in Figure 5.1 

The population of a class, representing the set of objects associated with that class, 
will be split in two disjoint collections, namely a present population set and a past 
population set. The present population set represents the living objects, which are 
those objects for which the destruction event has not yet occurred. The past 
population set, also called archive, is an object collection of the class that contains all 
dead objects, which are those objects that have been involved in a corresponding 
destruction event. The method will offer possibilities for checking whether an object 
is ‘alive’ or ‘dead’, as well as for retrieving information about the final attribute 
values of the dead object and the relation link it has been representing. Figure 5.2 
shows the detailed representation of a class, together with the basic state diagram 
expressing the course of life for an object, and the partitioning of the population set of 
a class into a present and past part at a moment t. The extended class script and 
definition of a class is given in Table 5.2 and Definition 5.1. Notice that the definition 
allows a new object to be involved both in a creation and destruction event at the 
same moment t, in which case the object will be added to the overall population set as 
well as the past population set of the class. In fact, the life span of such stillborn 
objects will be of zero length. 

 
 

<CLASS NAME> 

† 
º 

creation  
event living dead 

destruction 
event 

Ct º † 

 

Figure 5.2: Present and Past Population set for an EROOS Universe Class 

<EROOS universe class script> =  

"class" <CLASS NAME> 

  "creation event" 

    <creation event name>  

  "destruction event" 

    <destruction event name>  

"end class" <CLASS NAME> 

Table 5.2: EROOS Universe Class Script 
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A concrete class is a model entity defining, at each moment 
in time, a disjoint object population set, which is element 
of the corresponding model instance. This total population 
set can only be extended in time, and is split into two 
disjoint parts: a present population set that represents the 
living objects of the class, and a past population set, 
called archive, that represents the dead objects. The archive 
set can only be extended in time, whereas the population set 
can grow due to new objects but also shrink due to the 
migration of objects to the archive. 

A creation event is an event of a class that, if applied on a 
model instance at a certain time, adds a new object to the 
object population set for that class. The object will be 
added to the present population set, unless it is at the same 
moment involved in a destruction event, in which case it is 
directly added to the past population set. 

A destruction event is an event of a class that, if applied 
on an object of a model instance at a certain time, removes 
an object from the present population set of the class, and 
add it to the the past population set of the class. 

Given  

Model M; Object Universe OU; Event Universe EU;  

Event Set Instance E; Concrete class C ³ Mccl; 

Object o1,…,on ³ OU; Destruction Event d1,…,dn ³ EU; 

C†: TIME � 3(OU) | " t ³ TIME: C†t ² Ct 

                   " t ³ TIME: C†t ² C
†
t+1 

Cº: TIME � 3(OU) | " t ³ TIME: Cºt = Ct \ C
†
t 

o1,…,on ³ Cºt ¾ o1.d1, …, on.dn ³ Et+1 

       ⇒  C†t+1 = C
†
t ∪  {o1, …, on} 

Definition 5.1: EROOS Universe Class 

5.1.3 Attributes for the Class Archive 

In EROOS, an attribute can be specified for a class archive, meaning that the attribute 
will only have to be defined for dead objects, thus belonging to the archive. The 
permanent binding for an attribute is preserved, but since the attribute is attached to 
the class archive, only dead objects can and must have an attribute value attached to 
them. Obviously, the definition of an archive attribute influences the destruction 
event of an object, since the destruction event must establish the binding with a value 
of the decorating domain in order to fulfil all implied constraints concerning the 
archive attribute. The definition of an archive attribute can be found in Definition 5.2, 
whereas the specification of an archive attribute script is given in Table 5.3 and the 
graphical notation is presented in Figure 5.3. 
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An archive attribute is a model entity defining a property 
for a class archive for which, at each moment in time, every 
object of the past population of a class must be associated 
to a specific value of the domain defined for the attribute.  

Given  

Model M; Class C ³ Mcl; Attribute CA
† ³ Ma; Domain D ³ Md; 

CA†: TIME � ( C†t � D ) | " t ³ TIME: CA
†
t ² CA

†
t+1 

Definition 5.2: EROOS Archive Attribute 

<EROOS archive attribute script> =  

"class" <CLASS NAME> 

  "definition" 

    "decorated by" [ "unique" ] "archive attribute"  

        <Attribute Name> ":" <DOMAIN NAME> 

        [ "constrained by" [ <lower bound> ( "<" | "�" ) ]  

          <Attribute Name> [ ( "<" | "�" ) <higher bound> ] ] 

  "destruction event" 

    <destruction event name> 

      [ "(" <parameter name> ":" <DOMAIN NAME> ")" ] 

    "effect" 

      ( "new self�"<Attribute Name> "=" <parameter name>  

      | "new self�"<Attribute Name> "=" <domain expression> ) 

"end class" <CLASS NAME> 

Table 5.3: EROOS Archive Attribute Script  

 

<Archive 
Attribute Name> 

<CLASS NAME> 

† 
º 

 

Figure 5.3: Graphical Representation of an EROOS Archive Attribute  

5.1.3.1 Default Attributes for the Class Archive 

When introducing the class archive in the EROOS universe, a default attribute is 
introduced for the class archive, namely the Destruction Timestamp. The default 
attribute Destruction Timestamp, implicitly decorating each past object of every class, 
is used to specify the exact time at which an object has ceased to exist. The 
Destruction Timestamp will be fixated at the time of the destruction of the object, i.e., 
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at the moment of occurrence of the destruction event. Although the Destruction 
Timestamp does not have to be defined explicitly, its semantics can be defined in an 
implicit default EROOS attribute script, as presented in Table 5.4.  

 
<EROOS default destruction timestamp> =  

"class" <CLASS NAME> 

  "definition" 

    "decorated by"  

      "archive attribute Destruction Timestamp : TIME" 

  "destruction event" 

    <destruction event name> 

    "effect" 

      "new self�Destruction Timestamp = now"  

"end class" <CLASS NAME> 

Table 5.4: Implicit EROOS Script for the Default Attribute Destruction Timestamp 

5.1.4 Queries on the Class Archive 

Since EROOS queries serve to retrieve information about the model instance, and the 
properties of the objects within it, at a specific moment in time, they could also be 
applied on objects of the class archive. There are no restrictions for using queries that 
were originally specified on a class, since they can be used for retrieving the 
properties of living as well as dead objects.  

In addition to queries applicable on all objects, a specific set of queries can only be 
applied on objects of the class archive, namely those that involve the usage of an 
archive attribute or the Destruction Timestamp. Since these attributes only obtain a 
value at the moment the destruction event occurs, such queries cannot be applied on 
objects that are still living. 

As presented in Table 5.5, the specification of an archive queries is analogous to the 
specification of an ordinary query with two distinction, namely (1) the keyword 
archive query that is used to define a query for the class archive, and (2) the capacity 
of using archive queries and the Destruction Timestamp (�Destruction Timestamp). 
The graphical representation of an archive query is presented in Figure 5.4. 

 
 

?<Archive 
   Query  
   Name> 

º 

<CLASS NAME> 

† 
 

Figure 5.4: Graphical Representation of an EROOS Archive Query 
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<EROOS archive query script> =  

"class" <CLASS NAME> 

  "context" 

    <context clause>  

  "archive query" 

    <query name> [ "(" <parameter name> ":" <TYPE NAME> 

        ( "," <parameter name> ":" <TYPE NAME> )* ")" ] 

    "returns" <TYPE NAME>  

      "result" <archive query expression>  

"end class" <CLASS NAME> 

Table 5.5: EROOS Archive Query Script  

5.1.5 Class Archive as Relation Participant 

The introduction of an archive for a class leads to two kinds of objects: the living 
objects, belonging to the present population of the class, and the dead objects 
belonging to the past population. This fact can now be exploited when using classes 
within other EROOS concepts. Instead of using the present population of a class as a 
participant, the class archive or even the total population set, which is the union of the 
present and the past population, can be used when dependency relationships between 
refined objects and participant objects are defined. This allows the formulation of 
additional restrictions between the lifetimes of a refined object and a participant 
object. There exist three types of relation participation for a class. All three types 
include the core existential dependency property that must be valid for every refined 
object r and participating object p, namely 

p�Creation Timestamp ��r� Creation Timestamp31 

In addition, the core object property must be valid for every object o, namely 

o�Creation Timestamp ��o�Destruction Timestamp 

• A ‘present participation’, as presented in Figure 5.5.a, obliges that the 
participant object p is alive during the whole lifetime of the refined object r.  

p�Creation Timestamp �� r�Creation Timestamp �� r�Destruction Timestamp 
��p�Destruction Timestamp 

• A ‘past participation’, as presented in Figure 5.5.b, obliges that the participant 
object p that is related to the refined object r, is dead.  

p�Creation Timestamp ��p�Destruction Timestamp �� r�Creation Timestamp 
��r�Destruction Timestamp 

                                                  
31 Notice that this property only applies when no mutation has taken place, as defined in Section 5.1.7. 
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• A ‘total participation’, as presented in Figure 5.5.c, obliges that the participant 
object p can be either alive or dead during the lifetime of the refined object r. 

(p�Creation Timestamp ��r�Creation Timestamp ��r�Destruction Timestamp) 
∧  (p�Creation Timestamp ��p�Destruction Timestamp) 

 
 

R P 

† 
º 

R P 

† 
º 

R P 

† 
º 

a) Present Participation 

b) Past Participation 

c) Total Participation 

R P 

† 
º 

R P 

† 
º 

R P 

† 
º 

† 
º 

† 
º 

† 
º 

 

Figure 5.5: Participation Types for an EROOS Class 

In addition to the three participation types of a relation, additional integrated 
constraints can be added to a participation, further restricting the dependency rules 
between the refined object and the participating object. A number of these restrictions 
can also be represented in a graphical form, as presented in Figure 5.6. 

• A ‘not deceased’ participant expresses an additional constraint on the participant 
object at the time of the creation of a refined object, obliging that the 
participating object is not yet deceased prior to the moment the refined object is 
created. This is presented in Figure 5.6.a. 

r�Creation Timestamp ��p�Destruction Timestamp 

This constraint cannot be combined with a present participation, since it is 
already implied by the condition for a present participation. It can only be 
combined with a total participation or a past participation. For a past 
participation, the restriction is strengthened to 

p�Creation Timestamp ��p�Destruction Timestamp = r�Creation Timestamp 
��r�Destruction Timestamp 
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• A ‘not surviving’ participant expresses an additional constraint on the 
participant object at the time of the destruction of the refined object, obliging that 
the refined object cannot be destroyed before the related participating object is 
destroyed. This is presented in Figure 5.6.b. 

p�Destruction Timestamp ��r�Destruction Timestamp 

This constraint cannot be combined with a past participation, since it is already 
implied by the condition for a past participation. It can only be combined with a 
total participation or a present participation. For a present participation, the 
restriction is strengthened to 

p�Creation Timestamp �� r�Creation Timestamp �� r�Destruction Timestamp 
= p�Destruction Timestamp 

Notice that ‘not surviving’ can be combined with ‘not deceased’ for a total 
participation. This is presented in Figure 5.6.c. 

p�Creation Timestamp �� r�Creation Timestamp �� p�Destruction Timestamp 
��r�Destruction Timestamp 

• A ‘significantly’ restriction expresses a strict time ordering, namely ‘<’, 
excluding border conditions in which objects can be created or destroyed 
simultaneously, namely ‘�’. A ‘significantly’ indication can be combined with all 
of the previous introduced participation types. 

− A ‘significantly not deceased’ total or past participant obliges that the 
participating object will remain living after the refined object is created.  

r�Creation Timestamp < p�Destruction Timestamp 

Notice that this restriction can be combined with the ‘not surviving’ 
restriction for a total participation. 

p�Creation Timestamp �� r�Creation Timestamp < p�Destruction 
Timestamp ��r�Destruction Timestamp.  

− A ‘significantly not surviving’ present or total participant obliges that that 
the refined object will still remain living after the destruction of the 
participating object.  

p�Destruction Timestamp < r� Destruction Timestamp 

Notice that this restriction can be combined with the ‘not deceased’ 
restriction for a total participation. 

p�Creation Timestamp �� r�Creation Timestamp �� p�Destruction 
Timestamp < r�Destruction Timestamp 

It can even be combined with the ‘significantly not deceased’ restriction for 
a total participation. 

p�Creation Timestamp �� r�Creation Timestamp < p�Destruction 
Timestamp < r�Destruction Timestamp 
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− A ‘significantly deceased’ past participation obliges that the lifetime of the 
past participant object must clearly be ended before the creation of the 
refined object can take place.  

p�Creation Timestamp �� p�Destruction Timestamp < r�Creation 
Timestamp ��r�Destruction Timestamp 

− A ‘significantly surviving’ present participant obliges that that the 
participating object will still remain living after the destruction of the 
refined object.  

r�Destruction Timestamp < p� Destruction Timestamp 

− A ‘significantly lived’ present, past or total participation obliges that the 
participant object has clearly be created before the creation of the refined 
object can take place.  

p�Creation Timestamp < r�Creation Timestamp 

This restriction can be combined with all previous introduced participant 
restriction, except for the ‘significantly deceased’ participant restriction 
since it is already implied by this restriction.  

− A ‘significantly not instantaneous’ participation obliges that the 
participant object has clearly be created before the destruction of the refined 
object can take place.  

p�Creation Timestamp < r�Destruction Timestamp 

This restriction can be combined with a number of participant restrictions in 
order to create eleven additional combinations of meaningful participant 
restrictions. 

 

a) Not Deceased Total Participation and Not Deceased Past Participation 

b) Not Surviving Present Participation and Not Surviving Total Participation 

R P 

† 
º 

R P 

† 
º 

R P 

† 

º 

† 
º 

† 
º 

† 
º 

R P 

† 

º 

† 
º 

c) Not Deceased Not Surviving Total Participation 

R P 

† 

º 

† 
º 

 

Figure 5.6: EROOS Archive Participation Constraints 
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Restriction between participant p and refinement r 
Name of Participation Restriction  p.CTS…r.CTS p.CTS…r.DTS p.DTS…r.CTS p.DTS…r.DTS 

Number 
of cases 

Sign.Deceased Past < < < < 1 

Sign.Living Sign.Not Surviving Past < < <= < 2 

Sign.Living Past < < <= <= 3 

Sign.Living Not Deceased Sign.Not Surviving Past < < = < 1 

Sign.Living Not Deceased Past < < = <= 2 

Sign.Living Not Deceased Sign.Not Surviving Total < < >= < 2 

Sign.Living Not Deceased Not Surviving Total < < >= <= 4 

Sign.Living Not Surviving Present < < >= = 2 

Sign.Living Present < < >= >= 3 

Sign.Living Not Deceased Total < < >= <=> 5 

Sign.Living Sign.Not Deceased Sign.Not Surviving Total < < > < 1 

Sign.Living Sign.Not Deceased Not Surviving Total < < > <= 2 

Sign.Living Sign.Not Deceased Not Surviving Present < < > = 1 

Sign.Living Sign.Not Deceased Present < < > >= 2 

Sign.Living Sign.Surviving Present < < > > 1 

Sign.Living Sign.Not Deceased Total < < > <=> 3 

Sign.Living Sign.Not Surviving Total < < <=> < 3 

Sign.Living Not Surviving Total < < <=> <= 5 

Sign.Living Total < < <=> <=> 6 

Sign.Not Surviving Past <= < <= < 3 

Sign.Not Instantaneous Past <= < <= <= 4 

Not Deceased Sign.Not Surviving Past <= < = < 2 

Sign.Not Instantaneous Not Deceased Past <= < = <= 3 

Not Deceased Sign.Not Surviving Total <= < >= < 4 

Sign.Not Instantaneous Not Deceased Not Surviving Total <= < >= <= 7 

Sign.Not Instantaneous Not Surviving Present <= < >= = 3 

Sign.Not Instantaneous Present <= < >= >= 5 

Sign.Not Instantaneous Not Deceased Total <= < >= <=> 9 

Sign.Not Deceased Sign.Not Surviving Total <= < > < 2 

Sign.Not Deceased Not Surviving Total <= < > <= 4 

Sign.Not Deceased Not Surviving Present <= < > = 2 

Sign.Not Instantaneous Sign.Not Deceased Present <= < > >= 4 

Sign.Not Instantaneous Sign.Surviving Present <= < > > 2 

Sign.Not Instantaneous Sign.Not Deceased Total <= < > <=> 6 

Sign.Not Surviving Total <= < <=> < 5 

Sign.Not Instantaneous Not Surviving Total <= < <=> <= 8 

Sign.Not Instantaneous Total <= < <=> <=> 10 

Past <= <= <= <= 5 

Not Deceased Past <= <= = <= 4 

Not Deceased Not Surviving Total <= <= >= <= 8 

Not Surviving Present <= <= >= = 4 

Present <= <= >= >= 6 

Not Deceased Total <= <= >= <=> 10 

Sign.Not Deceased Present <= <= > >= 5 

Sign.Surviving Present <= <= > > 3 

Sign.Not Deceased Total <= <= > <=> 7 

Not Surviving Total <= <= <=> <= 9 

Total <= <= <=> <=> 11 

Table 5.6: Alternatives for a Relation with Participation Restriction 
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The specification of an EROOS universe relation with participation constraints can be 
found in Table 5.7. As presented in Table 5.6, the offered integrated constraints cover 
all potential order restrictions between the Creation and Destruction Timestamps of a 
refined and a participating object, except those cases for which 

• an object is obliged to have a life span of zero length. This must rather be 
modelled as an event instead of an object (see also Table 5.14 on page 170). 

• a participant object is obliged to be created at the same time as a refined object, 
which violates the existential dependency of the refined object on the participant 
object. Such obligation creates a mutual dependency between the refined and 
participating object. Mutual dependencies cannot be expressed using EROOS 
relations. The concept of an EROOS compound, presented in Section 5.2.5, is 
introduced for modelling mutual dependencies (see also Table 5.13 on page 169). 

 
<EROOS universe relation script> =  

"class" <CLASS NAME> 

  "definition" 

  ( "refined with binary relation"  

    ( <positive number> | "unlimited" | "∞")  
      <participant description> "," 

    ( <positive number> | "unlimited" | "∞")  
      <participant description>  

  | "refined with unary relation" <participant description> ) 

    ( ( "unlimited" | "∞" ) "occurrences" | "one occurrence" 
    | <positive number larger than 1> "occurrences" ) 

  "creation event" 

    <creation event name>  

      "(" <parameter name> ":" <CLASS NAME>  

        [ "," <parameter name> ":" <CLASS NAME> ] ")" 

    "effect" 

      "new self�"<Participant Name> "=" <parameter name> 

      ["new self�"<Participant Name> "=" <parameter name> ] 

"end class" <CLASS NAME> 

 

<participant description> = ( "mutable" | "immutable" ) 32 

[["significantly"]"not deceased" | "significantly deceased" ] 

[["significantly"]"not surviving" |"significantly surviving"] 

["significantly lived" | "significantly not instantaneous"] 

["present" | "past" | "total" ] <CLASS NAME> [ ° | † | °† ] 

["as" <ROLE NAME> ] 

Table 5.7: EROOS Universe Relation Script 
                                                  
32 See Section 5.2.3 for the definition of a mutable participant. 
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5.1.6 EROOS Relations for the Library Example Revisited 

Given the example of the library system that was presented in Section 2.3, and the 
relation hierarchy that was defined in Section 4.4.7, we can now revisit this model 
using EROOS universe classes that have class archives. As already indicated, this will 
result in a strong reduction of the number of classes, as shown in Figure 5.7. In 
addition, specific connectivity constraints can now be added to the relations, since 
these connectivity constraints only deal with restrictions on present objects. The 
following observations can be made: 

• Most participants have a present participation, obliging that every refined object 
has a living participant object. An example is the registration relation between a 
person and a library 

• A number of participants have a not deceased total participation, obliging that 
the participating object must be living when the refined object is created. 
However, this participating object may afterwards die. Examples are the 
publisher and book for a copy, and the allowance object for a borrowing. When 
the library changes its policy on the maximum number of allowed lent items, the 
ongoing borrowings should be untouched, since they cannot be recalled. 

• A selection has a not deceased past participation in a borrowing, obliging that 
the selection has ended when the borrowing is made. In fact, the selection object 
is transformed into a borrowing object. 

• A fine has a not deceased not surviving total participation, obliging that the 
borrowing has not yet ended when the fine is created, but that borrowing must 
have ended when the fine is paid, represented by the destruction of the fine 
object.  

• A secondary author has a total participation in person, meaning that the person 
attached as an author to a book, can be living or dead. This expresses that it is 
possible that a certain author has died before the book is finished, expressed by 
the creation event of book. 

• A secondary author has a not surviving present participation in author, obliging 
that the author must exist as long as the secondary author exists, and that the 
author must be destroyed at the moment the secondary author is destroyed. The 
only thing that cannot be expressed is the fact that all authors must be created at 
the same time. The relation that is currently defined, allows new secondary 
authors to be added to an existing book. However, once a secondary author has 
been added, it can only be removed by removing all authors, including the book 
object. In order to model the full dependency between authors, which is a mutual 
dependency, we need the concept of compounds that is presented in Section 
5.2.7. 
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Figure 5.7: EROOS Relations for the Library System Revisited 

5.1.7 Contributions, Related Work, and Reflections 

Our contributions concerning the class archive concept are the following: 

• Our approach concerning class archives is a novel and original contribution to 
conceptual modelling. Other analysis methods do not provide destructors, or 
consider destroyed objects as useless for the model. The introduction of class 
archives, and their usage in existential dependency relationships, provides a 
powerful and high-level modelling concept, in which important dependency 
constraints can be implied directly by the model structure. All kind of restrictions 
between the lifetime of a refined object and its participant object, can directly be 
specified in the relation definition.  

• The default attribute Destruction Timestamp for all objects of every class, 
enables the modeller to reason about the moment at which an object has ceased 
to exist. This attribute does not have to be modelled explicitly, but it is 
automatically available for every object in EROOS. The default Creation and 
Destruction Timestamp attributes permit reasoning about the moments objects 
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are created and destroyed, for instance, by formulating queries that calculate the 
average life span. The modeller does no longer have to decide whether such 
attributes are needed in the model, since the EROOS methodology automatically 
exposes this kind of information for all objects. 

• Objects that cease to exist are not vanished from the conceptual model, but still 
can be addressed to gather historical information regarding past events, former 
attribute values and the old relation links. The destruction of an object only 
reflects that the fact it is representing, has ceased to exist in the universe of 
discourse. Issues regarding the fact whether the object is still needed for 
obtaining certain information, or for performing certain tasks, are not under 
discussion during conceptual modelling. 

Most object-oriented analysis methods do not pay much attention to the end of the 
lifetime of an object. Like many recent programming languages, some methods 
consider objects to remain living as long as they are relevant for the system being 
modelled. When objects are no longer needed, a garbage collector can automatically 
collect them and remove them from the system. A number of analysis methods and 
programming languages, such as C++ [144] and Ada [9], explicitly deal with the 
destruction of objects. However, they also consider an object to be deleted when it is 
no longer needed within the program. The EROOS universe decouples the destruction 
of an object from the removal of an object from the model. Objects in an EROOS 
conceptual model are never deleted from the model, but remain always available for 
querying, and even for participating in relations having past participants. The 
destruction of an object in the EROOS universe expresses that the original fact from 
the universe of discourse, which is represented by the object, is no longer valid.  

An observation that can be made is that it is rather difficult to uncover the 
participation restrictions that are present in the universe of discourse. The modeller 
often tries to deduce them from a number of examples, but one must certain that the 
set of examples cover the full range of possibilities in the universe of discourse. 

5.2 Mutability of Attribute Values and Relation Participants 

This section introduces the EROOS kernel analysis pattern that has identified the 
necessity of introducing mutability of attribute values and relation participants. The 
definition of a mutable attribute and relation participant, the specification of mutation 
events, and the revised definition of implicit queries, are described thereafter. Last, 
mutability is applied on the running example of the library system. 

5.2.1 EROOS Kernel Analysis Pattern for Mutability 

Attribute values and relation participants do often not remain constant in the universe 
of discourse, but tend to change over time. After fixating their initial value at creation 
time, additional events can lead to a situation where the initial value becomes 
outdated, irrelevant, and useless. Such situation results in a specific EROOS kernel 
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analysis pattern that is presented in Figure 5.8. In the left part of the figure, attribute 
update objects are attached to the object that contains the initial attribute value. The 
provided query returns the attribute value of the latest update. In the right part, a 
generalisation class clusters the objects representing the initial attribute values, with 
the objects representing the updated values in order to obtain a single modelling of 
the attribute value on the generalisation level. In addition, the updates are sequentially 
ordered by refining the update with the generalisation class as the participant, using a 
‘not deceased past participation’ restriction for the participant. This expresses that 
only the last attribute update object is alive. Objects modelling previous values that 
have become irrelevant, must be destroyed in the model. In order to simplify the 
specification of this recurring EROOS kernel analysis pattern, the EROOS universe 
provides notational support by means of mutation events to model attribute value 
updates and relation participant updates. 
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Figure 5.8: EROOS Analysis Pattern for a Mutable Attribute 

5.2.2 Specification of a Mutable EROOS Attribute 

Attribute mutability is introduced in the EROOS universe as an extension of the 
attribute concept. A mutable attribute allows changing the binding of an object with 
its attribute value over time, under the condition that a specific domain value is 
defined at each moment in time. In fact, a mutable attribute is a contraction of the 
EROOS kernel analysis pattern, as presented in Figure 5.8, into a single class. The 
syntax of a decoration script is given in Table 5.8, while Definition 5.3 presents the 
definition of an attribute in the EROOS universe. As presented in Figure 5.9, a 
mutable attribute is graphically represented by a small wave interrupting the line that 
connects the attribute to its decorated class.  
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Figure 5.9: Graphical Representation of a Mutable EROOS Attribute  
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<EROOS universe attribute script> = 

"class" <CLASS NAME> 

  "definition" 

    "decorated by"  

      ( "mutable" | "immutable" ) [ "unique" ] "attribute" 

        <Attribute Name> ":" <DOMAIN NAME> 

        [ "constrained by" [ <lower bound> ( "<" | "�" ) ]  

          <Attribute Name> [ ( "<" | "�" ) <higher bound> ] ] 

  "creation event" 

    <creation event name>  

      [ "(" <parameter name> ":" <DOMAIN NAME> ")" ] 

    "effect" 

      ( "new self�"<Attribute Name> "=" <parameter name>  

      | "new self�"<Attribute Name> "=" <domain expression> ) 

"end class" <CLASS NAME> 

Table 5.8: EROOS Universe Attribute Script  

An attribute is a model entity defining a property for a 
class for which, at each moment in time, every object of the 
class, called a decorated object, must be associated with a 
specific value of the domain defined for the attribute.  

A domain is a collection of values that refer to static and 
unchangeable properties in the universe of discourse. A 
domain can be a magnitude, reference, denomination, or a 
composed domain. 

An immutable attribute is an attribute for which the domain 
value associated to the object, is fixed during the entire 
lifetime of the object. 

A mutable attribute is an attribute for which the domain 
value associated to the object, can change during the 
lifetime of the object. 

Given  

Model M; Class C ³ Mcl; Domain D ³ Md; 

Immutable Attribute CIA ³ Ma; Mutable Attribute CMA ³ Ma; 

CIA: TIME � ( Ct � D ) |        (permanent binding) 

  " t ³ TIME: CIAt ² CIAt+1          (immutability) 

CMA: TIME � ( Ct � D )        (permanent binding) 

Definition 5.3: EROOS Universe Attribute 

Notice that archive attributes, as well as the default attributes Creation Timestamp 
and Destruction Timestamp, are immutable by nature. The destruction event moves 
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the object to the class archive and puts the object in a kind of final state. As such, the 
information that is encapsulated in the object, is frozen and cannot be changed 
anymore. Since archive attributes are only defined for objects in the class archive, 
their values can only be defined in the destruction event. Concerning the Creation 
Timestamp, it is obvious that, since an object can only be created once, the creation 
time is fixated at the moment the creation event occurs, and cannot be revised or 
changed anymore. This does not mean that the knowledge inside the software system 
about creation events that have occurred in universe of discourse, can never be 
revised. Only the fact that an event has happened and, therefore, an object has been 
created, cannot be rectified. Issues regarding the uncertain of knowledge about 
creation times, which can occur for an actual system, are design issues and should be 
dealt with during the design phase. 

5.2.3 Specification of a Mutable EROOS Relation Participant 

In the same manner as attributes can be changed, it is possible to change the 
participant of a refined object by changing the relation link that is encapsulated in a 
refined object. The EROOS universe allows the definition of a mutable relation 
participant that can change over time, allowing a refined object to change its 
participant object into another object of the participating class. However, the refined 
object has to adhere to the existential dependency constraint, stating that, at each 
moment in time, a specific object of the participating class must be connected to the 
refined object. A mutable participant removes the immutability constraint implied by 
the relation concept, while keeping the existential dependency constraint of the 
refined class on the participating class. The syntax of a refinement script was given in 
Table 5.7 on page 148, while the definition of a relation in the EROOS universe is 
given in Definition 5.4. As presented in Figure 5.10, a mutable participant is 
graphically represented by a small wave interrupting the line that connects the refined 
class to the participating class. 
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Figure 5.10: Graphical Representation of a Mutable EROOS Participant 
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A relation is a model entity defining a property for a class 
for which, at each moment in time, every object of the class, 
called a refined object, must be associated to a specific 
object, called a participant object, of the participating 
class defined for the relation. 

A relation can either be a binary relation, defining exactly 
2 participating classes for the refined class, or a unary 
relation, defining exactly 1 participating class. 

An immutable participant is a participant for which the 
participant object associated to the refined object, is fixed 
during the entire lifetime of the refined object. 

A mutable participant is a participant for which the 
participant object associated to the refined object, can 
change during the lifetime of the refined object. 

Given  

Model M; Class C,D,E,F,G ³ Mcl;  

Binary Immutable/Immutable Relation CIIB ³ Mbr; 

Binary Immutable/Mutable Relation CIMB ³ Mbr; 

Binary Mutable/Immutable Relation CMIB ³ Mbr; 

Binary Mutable/Mutable Relation CMMB ³ Mbr; 

Unary Immutable Relation CIU ³ Mur; 

Unary Mutable Relation CMU ³ Mur; 

CIIB: TIME � ( Ct � ( Dt x Et) ) |         (existential dependency) 

  " t ³ TIME: CBt ² CBt+1           (immutability of D and E) 

CIMB: TIME � ( Ct � ( Dt x Et) ) |         (existential dependency) 

  " t ³ TIME: D(CBt) ² D(CBt+1)          (immutability of D) 

CMIB: TIME � ( Ct � ( Dt x Et) ) |         (existential dependency) 

  " t ³ TIME: E(CBt) ² E(CBt+1)          (immutability of E) 

CMMB: TIME � ( Ct � ( Dt x Et) ) |         (existential dependency) 

CIU: TIME � ( Ft � Gt ) |         (existential dependency) 

  " t ³ TIME: CUt ² CUt+1          (immutability) 

CMU: TIME � ( Ft � Gt )         (existential dependency) 

Definition 5.4: EROOS Universe Relation 

5.2.4 Attribute and Relation Mutation Events 

When attributes and relation participants are declared mutable, a mutation event can 
be defined. The mutation event will reflect a change that occurs in the universe of 
discourse, by changing the object properties in the model. In addition to creation and 
destruction events, mutation events will change the properties of the object on which 
it is applied. After the moment the mutation event has occurred, the implicit 
decoration query ‘�’, refinement query ‘�’, and participation query ‘�’ will return 
the new value, respectively the new objects, that has been defined in the mutation 



156 ADVANCED CONCEPTS FOR CONCEPTUAL MODELLING 

event. In addition to the current value of an attribute, a participant or a refinement 
object, the old information remains accessible by using a time indication ‘@t’ for the 
query. This allows retrieving historical information concerning past attribute values 
and relation links. Figure 5.11 shows the graphical representation of a mutation event. 
The mutation script is given in Table 5.9, while the definition of a mutation event is 
presented in Definition 5.5 for participants, and Definition 5.6 for attributes. 

 
<EROOS mutation event script> =  

"class" <CLASS NAME> 

  "context" <context clause> 

  "mutation event" 

    <mutation event name>  

      [ "(" ( <parameter name> ":" <DOMAIN NAME> | 

              <parameter name> ":" <CLASS NAME>  

        [ "," <parameter name> ":" <CLASS NAME> ]) ")" ] 

    "effect" 

      ( "new self�"<Attribute Name> "=" <parameter name>  

      | "new self�"<Attribute Name> "=" <domain expression>  

      | "new self�"<Attribute Name> "=" 

         <domain function> ("self�"<Attribute Name>  

           [ "," <parameter name> ] )  

      | "new self�"<Participant Name> "=" <parameter name> 

      [ "new self�"<Participant Name> "=" <parameter name> ]) 

"end class" <CLASS NAME> 

Table 5.9: EROOS Mutation Event Script 

A relation mutation event for a class refinement, is an event 
of a class that, if applied on a model instance at a certain 
time t, define a new link to objects of the participating 
classes as the relation link of the object starting from t. 

Given  

Model M; Event Universe EU; Event Set Instance E;  

Class B,B1,B2,U,U1 ³ Mcl; Object o ³ B; Object p1,p2 ³ B1; 

Object q1,q2 ³ B2; Object r ³ U; Object s ³ U1; 

Binary Relation CB ³ Mbr; Unary Relation CU ³ Mur; 

Relation Mutation Event m1,m2,m3,m4 ³ EU; 

m1(o,p1,q1) ³ Et+1 ⇒  CBt+1(o) = (p1,q1) 

m2(o,p2) ³ Et+1 ⇒  CBt+1(o) = (p,Q(CBt(o))) 

m3(o,q2) ³ Et+1 ⇒  CBt+1(o) = (P(CBt(o)),q) 

m4(r,s) ³ Et+1 ⇒  CUt+1(r) = s 

Definition 5.5: EROOS Relation Mutation Event 
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An attribute mutation event for a class decoration, is an 
event of a class that, if applied on a model instance at a 
certain time t, will define a new value of the appropriate 
domain as the attribute value for the object starting from 
moment t. 

Given  

Model M; Event Universe EU; Event Set Instance E;  

Class C ³ Mcl; Object o ³ C; Attribute CA ³ Ma; 

Domain D ³ Md; Attribute Value a ³ D; 

Attribute Mutation Event m ³ EU; 

m(o,a) ³ Et+1 ⇒  CAt+1(o) = a 

Definition 5.6: EROOS Attribute Mutation Event 
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Figure 5.11: Graphical Representation of a Mutation Event 

A mutation event is a special case of an EROOS event, as presented in Section 4.7.3. 
Instead of clustering a number of events in a new event, a mutation event is a core 
building block that can be used in the definition of other events. It defines the 
possibility of changing the value of an attribute or participant object. Table 5.10 
presents an extension of the specification formalism for events that was given earlier 
in Table 4.16 on page 124, allowing the usage of destruction and mutation events in 
addition to creation and general events. 

 
< event expression> = 

  ( ["let" <mnemonic> "=" ] <CLASS NAME>"." 

     <creation event name>"("<parameter expression>")" 

  | <object expression>"." ( <destruction event name>  

    | mutation event name> | <general event name> ) 

      "(" <parameter expression> ")" )+ 

Table 5.10: Event Expression in an EROOS Event Script  

5.2.5 Implicit Attribute, Refinement, and Participation Queries 

In order to retrieve old values of attributes, participants and refinements, the implicit 
decoration query ‘�’, refinement query ‘�’ and participation query ‘�’ can be 
extended with a time indication ‘@t’. When using a time indication, the implicit 
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query does not return the latest defined value or object, but will return the value or 
object that was defined in the model instance at the moment t. In order to be 
applicable, the query cannot be specified for moments that are later than ‘now’, nor 
for moments t that are sooner than the Creation Timestamp of the object on which it 
is applied. The definition of the implicit attribute query ‘�A@t’ can be found in 
Definition 5.7. Since the definition of the refinement query ‘�P@t’ and participation 
query ‘�R@t’ are analogous, they have been omitted. 

 
An implicit query �A@t or �C/A@t for an attribute A of a 
class C is a query that can be applied on an object of class 
C at any moment t’ � t, and that returns the attribute value 
that was associated to the object on moment t (with t ��
Creation Timestamp of the object on which it is applied). 

Given  

Model M; Class C ³ Mcl; Attribute CA ³ Ma; Domain D ³ Md; 

Query �C/A ³ Mq; 

�C/A: TIME � ( ]-∞,t’] � ( Ct � D) )  

   " t,t’ ³ TIME: " o ³ Ct: (t’ � t) ⇒  (�C/At’(t,o) = CAt(o)) 

Definition 5.7: Implicit EROOS Universe Attribute Query 

5.2.6 EROOS Mutability for the Library Example  

Given the example of the library system that was presented in Section 2.3, and the 
relation hierarchy that was defined in Section 5.1.6, we can identify the attribute 
‘Amount Of Daily Fine’ as being mutable, as presented in Figure 5.12. We could also 
specify the attribute ‘Maximum Lending Period’ as mutable, but this creates a 
potential problem for the running borrowings and the applied fines. The analyst must 
clearly identify the rules that are applicable in such situation. It is possible that 
running borrowings are considered to keep their old deadline, but it could also be the 
case that the new shorter or longer deadline is retroactively imposed on these running 
borrowings, removing earlier applied fines or creating additional fines.33 When the 
new rules apply to all running and new borrowings, the constraint that checks the 
deadline must refer to the most recent attribute value. However, when the old rules 
still apply for the running borrowings, the constraint that checks the deadline must 
refer to the attribute value at the moment the borrowing object has been created. 

                                                  
33 Regardless of the fact whether it is a good policy of a library to retroactively charge fines when the 
maximum lending period is unilaterally reduced. 
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Figure 5.12: EROOS Mutability for the Library System 

5.2.7 Contributions, Related Work, and Reflections 

The EROOS mutability concept is largely comparable with the {readOnly} property 
modifier in UML. Our approach concerning availability of past attribute and 
relation information is a novel and original contribution to conceptual modelling. 
This is achievable due to the fact that the mutability concept is defined on top of the 
constructional model of the EROOS kernel. While other analysis methods consider 
attributes as instance variables that are overwritten when a new value is defined, 
EROOS allows the modeller to reason about any past model instance state using a 
time indication for an attribute, a refinement or a participation query. 

An observation that can be made is that mutability support contradicts the principle 
of Uniqueness. However, it has a large impact on controlling the size of conceptual 
model. Instead of having to model all changes of attribute values or relation 
participants as separate objects, the attribute value of the original object can be 
adjusted. Mutability is commonly used in software engineering, and, therefore, the 
EROOS universe offers the mutability concept for conceptual modelling. In contrast 
to other analysis notations and programming languages, all information concerning 
the previous values and attached objects remain reachable in the model. However, 
one must be aware that mutability raises an important question of how certain 
changes must be represented in a conceptual model, either as a class or as a mutation. 
This can often not clearly be decided and is therefore left to the judgement of the 
modeller. The EROOS universe guides the modeller to use mutations when (1) no 
additional information is needed concerning the actual update, and (2) no specific 
constraints are imposed on the update. In all other cases, the explicit creation of 
mutation objects is obliged, since information and constraints can only be attached to 
objects and not to events. 

5.3 Compounds and Mutual Dependency 

The EROOS kernel offers a number of concepts to build a conceptual model of the 
universe of discourse. Existential dependency between objects, expressed through 
relations, is used as the main criterion for building a model of the relevant 
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information, facts and knowledge of the universe of discourse, and their interrelations 
and dependencies. However, no explicit support is provided for modelling mutually 
dependent elements in the universe of discourse. Mutual dependency expresses the 
fact that one element cannot exist without another element, and vice versa. EROOS 
relations cannot be used to express mutual dependency between objects. Although a 
refined object is existentially dependent on its participant objects, a participant object 
cannot depend directly or indirectly on the object in which it participates. Mutually 
dependent elements must be merged into a single object. However, such approach 
introduces a disruption between the universe of discourse and the conceptual model, 
since the traceability of the information from the universe of discourse into objects of 
the conceptual model is no longer evident. Therefore, the EROOS universe introduces 
the concept of compound to model mutual dependency between objects. Additional 
constraints, such as connectivity and mutability constraints, are integrated in the 
definition of a compound. 

5.3.1 EROOS Compounds and Object Compound Links  

An EROOS compound involves two classes, namely (1) a class expressing enclosure 
objects, having the ‘whole’ role in the compound, and (2) a class expressing enclosed 
objects, having the ‘part’ role. A compound is a special kind of association that 
expresses mutual dependency between a single compound-whole and number of 
compound-part objects. An additional restriction is placed on the objects of the part 
class, which states that they can only be connected to exactly one object of the whole 
class. As such, each part object must at all times be attached to exactly one whole 
object, while each whole object must at all times be attached to at least one part 
object. In analogy with EROOS relations and relation links, the connection between a 
part object and a whole object is called compound link, which expresses that the part 
object is attached to the whole object. A compound link can be seen as encapsulated 
in both the whole object and the part object.  

The object structure that can be associated with a compound relationship at a certain 
moment t, is illustrated in Figure 5.13. As presented in Figure 5.14.a, a compound is 
graphically represented in the form of a line between the whole class and the part 
class that forks at the side of the part class. The fork at the side of the part class 
expresses the fact that one or more part objects can be attached to a single whole 
object. This achieves the principle of uniqueness as defined in Section 3.1, forcing the 
analyst to introduce additional model entities, or use more appropriate modelling 
concepts in specific cases. 

• In order to model compounds between two whole objects containing each other, 
the analyst is forced to decompose it into a number of basic whole-part 
compounds between the whole objects, revealing hidden part objects linking the 
two whole objects, as presented in Figure 5.14.b. 

• It is impossible to model duplicate compound links in EROOS. If a part object 
participates more than one time in a whole object, the participation of the part 
object in the whole object must be made explicit using an intermediate class as 
shown in Figure 5.14.c. 
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• Compounds between a whole object and zero or more part objects, must be 
transformed into an ordinary relation, refining the part class and having the 
whole class as an ordinary participant, as presented in Figure 5.14.d. As such, 
objects of the transformed whole class can exist without being connected to a 
transformed part object, which can be added at the moment of creation of a 
transformed whole object or in its later lifetime. 
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Figure 5.13: Objects involved in an EROOS Compound at Moment t 
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Figure 5.14: EROOS Compound and Alternative Constructs 

Compounds can thus be seen as a restricted form of a part-whole structure, in which 
(1) a whole must contain 1 or more parts of the same kind, and (2) a part cannot exist 
without being attached to a single whole. Notice that some dependencies seem to be 
part-whole dependencies, such as the connection between a car and its wheels, but are 
of a different nature, since a wheel can exist without being connected to the car, and a 
car can exist without having four wheels attached. However, there is a dependency 
between a driving car and its mounted wheels. 

5.3.2 Model Constraints implied by the Compound Concept 

EROOS incorporates important model constraints directly in the methodological 
concepts. The following constraints are directly implied by the compound concept:  

• Mutual existential dependency: A compound between two classes implies the 
existential dependency of (1) the part object on exactly one whole object, and (2) 
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of the whole object on one or more part objects. This means that each object of 
the part class must at all times be associated with exactly one object of the whole 
class, and each object of the whole class must at all times be associated with at 
least one object of the part class.  

• Immutability: When a whole and a part class are declared immutable, the 
compound association between a whole and a part object is considered to be 
static. Moreover, the total set of compound links for a whole object is also 
considered to be static and not expandable. In particular, at the moment a whole 
object is created, it must be associated with all its part objects, and it will keep 
that association for its entire lifetime, i.e., part objects cannot switch from one 
part object to another during their lifetime. Notice that the immutability 
constraint can be relaxed for a whole object, a part object, or both. 

5.3.3 Integrated Compound Constraints on Connectivity 

The definition of a compound can be complemented with constraints restricting the 
amount of part objects that can be connected to a single whole object. An EROOS 
compound definition allows the possibility of specifying a lower and upper bound on 
the number of part objects that may exist for a specific whole object. The lower 
bound must be at least one, while the upper bound can be defined as a value, or as 
unlimited (‘∞’). The specification of a compound connectivity constraint is 
integrated in the part clause of the compound specification, as presented in Section 
5.3.5. A compound connectivity constraint is graphically represented by noting the 
lower and upper connectivity values at the part class, as presented in Figure 5.14. 

5.3.4 Integrated Compound Constraints on Mutability 

EROOS provides the possibility of defining a compound whole and a compound part 
as mutable, which allows changing the links between a whole and a part object. These 
mutations are only allowed under the condition that, at each moment in time, a 
specific whole object must be connected to at least one part object, and a specific part 
object must be connected to exactly one whole object. Notice that mutability for a 
compound-whole and a compound-part object is different in nature: 

• Defining mutability for a whole, allows a whole to change the set of parts to 
which it is connected. As such, it is possible to change existing compound links, 
by adding parts to a whole, or removing parts from a whole. This does not 
necessarily mean that the parts are mutable too. New parts can be added to a 
whole when they are created, and removed when they are destroyed. As such, 
parts can stay connected all the time to the same whole. 

• Defining mutability for a part, allows a part to change the whole to which it is 
attached. This does not necessarily mean that the whole is mutable too. It is for 
instance possible that the part can only be reconnected to a new whole at the 
moment an old whole is destroyed and a new whole is created. As such, a whole 
can stay connected all the time to a fixed set of parts. 
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As presented in Figure 5.15, a mutable whole is graphically represented by a small 
wave interrupting the line connecting the whole class, while a mutable part is 
represented by a small wave interrupting the line connecting the part class.  
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Figure 5.15: Graphical Representation of a Mutable EROOS Compound 

5.3.5 Specification of an EROOS Compound 

The definition of a compound between a whole class and a part class, is represented 
in a compound script. It can be specified from the viewpoint of the part or the whole 
class. The property of mutual dependency influences the creation of whole and part 
objects. Each time a whole object is created, the binding with its part objects must be 
established as well. In the same manner, a binding with a whole object must be 
established each time a part object is created. Functionality acting on the compound 
and its compound links will be placed at the part object, extending the creation event 
for the part class that defines its binding with a whole object. A class can be involved 
in many compounds, as a compound-whole as well as a compound-part. The whole 
class of the compound must always be different from the part class of the compound. 
The syntax of a compound-part script is given in Table 5.11. The definition of a 
compound can be found in Definition 5.8, while the definition of the extended 
creation event for a compound can be found in Definition 5.9. 

 
<compound-part script> =  

"class" <CLASS NAME> 

  "definition" 

    "involved as compound-part" 

      "min" <positive number>  

      "max" ( <positive number> | "unlimited" | "∞" ) 
      <part description> 34 

    "having compound-whole" <whole description> 34 

  "creation event" 

    <creation event name>  

      "(" <parameter name> ":" <CLASS NAME> ")" 

    "effect" 

      "new self ->-- "<Compound-Whole Name> "=" <parameter name> 

"end class" <CLASS NAME> 

Table 5.11: EROOS Compound-Part Script  

                                                  
34 See Table 5.15 on page 170 for the definition of the part and whole descriptions. 
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A compound is a model entity defining a property for two 
classes, namely a part class and a whole class, for which, at 
each moment in time, every object of the part class must be 
associated to exactly one object of the whole class, and 
every object of the whole class must be associated to at 
least one object of the part class. 

An immutable part is a part class for which the whole object 
associated to each part object, is fixed during the entire 
lifetime of the part object. 

A mutable part is a part class for which the whole object can 
change during the lifetime of the part object. 

An immutable whole is a whole class for which the set of part 
objects associated to each whole object, is fixed during the 
entire lifetime of the whole object. 

A mutable whole is a whole class for which the set of part 
objects can change during the lifetime of the whole object. 

Given  

Model M; Class P,W ³ Mcl; 

Mutable Whole/Mutable Part Compound CMM ³ Mco; 

Mutable Whole/Immutable Part Compound CMI ³ Mco; 

Immutable Whole/Mutable Part Compound CIM ³ Mco; 

Immutable Whole/Immutable Part Compound CII ³ Mco; 

CII: TIME � ( Pt � Wt ) |          (dependency P to W 

  " t ³ TIME: " w ³ Wt: ∃  p ³ Pt: CIIt(p) = w       and W to P) 

  " t ³ TIME: CIIt ² CIIt+1                  (immutability of part 

  " t ³ TIME: " w ³ Wt: CII
-1
t(w) = CII

-1
t+1(w)         and whole) 

CMI: TIME � ( Pt � Wt ) |          (dependency P to W 

  " t ³ TIME: " w ³ Wt: ∃  p ³ Pt: CMIt(p) = w       and W to P) 

  " t ³ TIME: CMIt ² CMIt+1                 (immutability of part) 

CIM: TIME � ( Pt � Wt ) |          (dependency P to W 

  " t ³ TIME: " w ³ Wt: ∃  p ³ Pt: CIMt(p) = w       and W to P) 

  " t ³ TIME: " w ³ Wt: CIM
-1
t (w) = CIM

-1
t+1(w)  (immut. of whole) 

CMM TIME � ( Pt � Wt ) |          (dependency P to W 

  " t ³ TIME: " w ³ Wt: ∃  p ³ Pt: CMM(p) = w       and W to P) 

Definition 5.8: EROOS Compound 

The different components in the specification of a compound script are:  

• The specification of a compound essentially identifies the whole and part class 
involved in the compound. In addition, constraints of multiplicity and mutability 
can be integrated into the compound definition. A role name for the whole and 
the part class can be specified as a reference to it. 
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• The specification of the creation event for the part class specifies the binding of 
the part object with an object of the whole class. For that purpose, a formal 
argument is provided for the creation event of a compound-part class in order to 
establish the binding of the newly created part object with a compound-whole 
object. The assertion states that, if the given implicit query ->--  <Compound-
Whole Name>, defined in section 5.3.6, will be applied to the newly created 
object, referred to as self, at the moment the creation has occurred, referred to as 
new, the object on the right-hand side must be returned as a result.  

 
An extended creation event for a compound, is an event of a 
part class that, if applied on a model instance at a certain 
time, in addition to adding a new object to the object 
population set for that class, will define a compound link to 
the object of the appropriate whole class. 

Given  

Model M; Object Universe OU; Event Universe EU;  

Event Set Instance E; Class P ³ Mcl; Object w ³ C; 

Compound CO ³ Mco; Creation event c ³ EU; 

c(w) ³ Et+1 ⇒  $ p ³ OU :  

   (p ´ Pt) ¾ (p ³ Pt+1) ¾ (COt+1(p) = w) 

Definition 5.9: Extended Creation Event for an EROOS Compound-Part 

5.3.6 Implicit Compound Queries 

The definition of an EROOS compound is automatically complemented with two 
implicit compound queries, offering the ability to inspect the compound links for a 
part and whole object. Given a compound for a whole class W and a part class P, 

• the implicit compound query ‘->-- W’, or ‘->-- WR’ in case that WR is a role name 
given to the compound-whole class W, applicable to each object p of the 
compound-part class P, returns the object of the whole class W incorporated in 
the compound link for p. 

• the implicit compound query ‘--<-  P’, or ‘--<-  PR’ in case that PR is a role name 
given to the compound-part class P, applicable to each object w of the 
compound-whole class W, returns the set of objects of the part class P that are 
connected to the object w. 

The relation between ‘->-- W’ and ‘--<-  P’ can be defined as follows: 

" p ³ P: " w ³ W : p->-- W = w ⇔ p ³ w--<-  P 

The notation supports the view of navigating between the whole and the part class 
according to its graphical notation. These implicit queries are mainly used in (1) 
specifying the semantics of creation events and mutation events, (2) specifying 
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queries in order to retrieve information from a model instance, and (3) specifying 
model navigation expressions between a whole and a part class. Notice that, in 
addition to the current value of a compound-whole and compound-part, old 
information remains accessible by using a time indication ‘@t’ for the implicit 
compound queries. This allows the analyst to retrieve historical information 
concerning past compound links. The definition of the implicit compound queries ‘->-- ’ 
and ‘--<-  ’ can be found in Definition 5.10. 

 
An implicit compound query ->-- W@t or ->-- P/W@t for a part class 
P, or ->-- WR@t, ->-- P/WR@t, ->-- WR/W@t, or ->-- P/WR/W@t for a whole 
with role name WR, is a query that can be applied on an 
object of the part class at a moment t’ � t, and that returns 
the whole object contained in the compound link for that part 
object on moment t (t ��Creation Timestamp of the object) 

An implicit compound query --<- P@t or --<- W/P@t for a whole class 
W, or --<- PR@t, --<- W/PR@t, --<- PR/P@t or --<- W/PR/P@t for a part 
with role name PR, is a query that can be applied on an 
object of the whole class at a moment t’ � t, and that 
returns the set of all part objects contained in the compound 
links for that whole object on moment t (t ��Creation 
Timestamp of the object). 

Given  

Model M; Compound CO ³ Mco; Class P,W ³ Mcl; 

Query ->-- P/W,  --<- W/P ³ Mq; 

->-- P/W: TIME � ( ]-∞,t’] � ( Pt � Wt ) ) |  
   " t,t’ ³ TIME: " p ³ Pt :  

     (t’ � t) ⇒  ( ->-- P/Wt’(t,p) = COt(p) ) 

--<- W/P: TIME � ( ]-∞,t’] � ( Wt � 3(Pt) ) ) |  
   " t, t’ ³ TIME: " w ³ Wt : " p ³ Pt :  

     (t’ � t) ⇒  ( P ³ --<- W/Pt’(t,w) À COt(p) = w ) 

Definition 5.10: Implicit EROOS Compound Query  

5.3.7 Compound Mutation Events 

In order to change compound links for a whole and a part object, a mutation event 
must be defined. Such event reflects a change within the universe of discourse into 
the conceptual model. After the moment the mutation event has occurred, the implicit 
compound queries will return the new objects that have been defined in the mutation 
event. The part and whole mutation script is given in Table 5.12, while the definition 
of a compound mutation event is presented in Definition 5.11. 
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<compound mutation event script> =  

"class" <CLASS NAME> 

  "context" 

    <context clause> 

  "mutation event" 

    <mutation event name>  

      "(" <parameter name> ":"  
          ( <CLASS NAME> | <object set name> ) ")" 

    "effect" 

     ( "new self->-- "<Compound-Whole Name> "=" <parameter name> 

     | "new self--<-  "<Compound-Part Name> "="  
        <object set expression> ) 

"end class" <CLASS NAME> 

Table 5.12: EROOS Compound Mutation Event Script 

A compound part mutation event for a compound, is an event of 
a part class that, if applied on a model instance at a 
certain time t, will define a new compound link to the whole 
object as the compound link of the part object. 

A compound whole mutation event for a compound, is an event 
of a whole class that, if applied on a model instance at a 
certain time t, will define a new set of compound links to 
part objects as the compound link of the whole object. 

Given  

Model M; Event Universe EU; Event Set Instance E;  

Class P,W ³ Mcl; Object p ³ P; Object w,x ³ W;  

Object Set Q ³ 3(P); Compound CO ³ Mco; 

Compound Mutation Event event m1,m2 ³ EU; 

m1(p,w) ³ Et+1 ⇒  COt+1(p) = w 

m2(x,Q) ³ Et+1 ⇒  " q ³ Q: COt+1(q) = x 

Definition 5.11: EROOS Compound Mutation Event 

5.3.8 Class Archive as a Compound Participant 

In analogy with relations, EROOS compounds offer the possibility of using the class 
archive of the whole class and the part class in the definition of the compound. This 
allows the formulation of additional restrictions between the lifetimes of the whole 
object and the part objects. Given the fact that a compound expresses a mutual 
dependency between the whole object and the part objects, the past population cannot 
be used in the definition of a compound. This leads to four types of class involvement 
in a compound. All four types include the core mutual existential dependency 
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property that must be valid for every whole object w and part objects object p, 
namely 

w�Creation Timestamp = p� Creation Timestamp35 

• A ‘present part-present whole participation’, as presented in Figure 5.16.a, 
obliges that the part object p is alive during the entire lifetime of the whole object 
w, and that the whole object w is alive during the entire lifetime of the part object 
p. This can be expressed as: 

p�Creation Timestamp = w�Creation Timestamp ��w�Destruction Timestamp 
= p�Destruction Timestamp 

• A ‘present part-total whole participation’, as presented in Figure 5.16.b, 
obliges that the part object p is alive during the entire lifetime of the whole object 
w, but that the whole object w can die during the lifetime of the part object p. 
This can be expressed as: 

p�Creation Timestamp = w�Creation Timestamp ��w�Destruction Timestamp 
��p�Destruction Timestamp  

• A ‘total part-present whole participation’, as presented in Figure 5.16.c, 
obliges that the whole object w is alive during the entire lifetime of the part 
object p, but that the part object p can die during the lifetime of the whole object 
w. This can be expressed as:  

p�Creation Timestamp = w�Creation Timestamp ��p�Destruction Timestamp 
��w�Destruction Timestamp 

• A ‘total part-total whole participation’, as presented in Figure 5.16.d, only 
obliges that the part object p and whole object w are created together. The part 
object p can die during the lifetime of the whole object w, and vice versa. 

 
  <PART NAME> 

† 

º 

<WHOLE NAME> 

† 

º 

<PART NAME> 

† 

º 

<WHOLE NAME> 

† 

º 

<PART NAME> 

† 

º 

<WHOLE NAME> 

† 

º 

<PART NAME> 

† 

º 

<WHOLE NAME> 

† 

º 

a) Present Part-Present Whole Participation b) Present Part-Total Whole Participation 

d) Total Part- Total Whole Participation c) Total Part-Present Whole Participation 
 

Figure 5.16: EROOS Compound Participation Types 

                                                  
35 Notice that this property only applies when no mutation of the part or the whole object has taken place. 
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In addition to the four compound participation types, additional integrated constraints 
can be added to a compound participation, further restricting the dependency rules 
between the whole object and the part objects. These restrictions can be combined in 
order to create additional combinations of meaningful participant restrictions. 

• A ‘significantly not deceased whole participation’ obliges that the whole 
object will remain living after the whole and the part objects have been created.  

w�Creation Timestamp = p�Creation Timestamp < w�Destruction Timestamp 

• A ‘significantly not deceased part participation’ obliges that the part object 
will remain living after the whole and the part objects have been created.  

p�Creation Timestamp = w�Creation Timestamp < p�Destruction Timestamp 

• A ‘significantly surviving present part/significantly not surviving total whole 
participation’ obliges that a part object will still remain living after the 
destruction of the whole object.  

w�Destruction Timestamp < p� Destruction Timestamp 

• A ‘significantly not surviving total part/significantly surviving present whole 
participation’ obliges that the whole object will still remain living after the 
destruction of the part objects.  

p�Destruction Timestamp < w� Destruction Timestamp 
 

 

Restrictions between whole object w and part object p 
Name of Compound Restriction w.CTS/p.CTS w.CTS/p.DTS w.DTS/p.CTS w.DTS/p.DTS 

Number 
of cases 

Sign.Surviving Present Part-Sign.Not Deceased 
Sign.Not Surviving Total Whole = < >= < 2 

Present Part-Sign.Not Deceased Total Whole = < >= <= 3 

Total Part-Sign.Not Deceased Total Whole = < >= <=> 4 
Sign.Not Deceased Sign.Surviving Present Part-
Sign.Not Deceased Sign.Not Surviving Total Whole = < > < 1 
Sign.Not Deceased Present Part-Sign.Not 
Deceased Total Whole = < > <= 2 
Sign.Not Deceased Present Part-Sign.Not 
Deceased Present Whole = < > = 1 
Sign.Not Deceased Total Part-Sign.Not Deceased 
Present Whole = < > >= 2 
Sign.Not Deceased Sign.Not Surviving Total Part-
Sign.Not Deceased Sign.Surviving Present Whole = < > > 1 
Sign.Not Deceased Total Part-Sign.Not Deceased 
Total Whole = < > <=> 3 

Present Part-Total Whole = <= >= <= 4 

Present Part-Present Whole = <= >= = 2 

Total Part-Present Whole = <= >= >= 4 

Total Part-Total Whole = <= >= <=> 6 

Sign.Not Deceased Total Part-Present Whole = <= > >= 3 
Sign.Not Deceased Sign.Not Surviving Total Part-
Sign.Surviving Present Whole = <= > > 2 

Sign.Not Deceased Total Part-Total Whole = <= > <=> 4 

Table 5.13: Possibilities for a Compound with Part and Whole Restrictions 
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The offered integrated constraints cover all potential restrictions between the 
Creation and Destruction Timestamps of a part object and a whole object, as 
presented in Table 5.13, except those cases presented in Table 5.14. In these cases, an 
object is obliged to have a life span of zero length, which models an event rather than 
an object. The specification of integrated compound constraints, as a further detailing 
of the compound script in Table 5.11 on page 163, can be found in Table 5.15. 

 
Restriction between participant p and refined object r 

Name of Participant Restriction p.CTS/r.CTS p.CTS/r.DTS p.DTS/r.CTS p.DTS/r.DTS 
Number of 

possibilities 

Zero lifespan for object r < < = = 1 

Zero lifespan for object r <= <= = = 2 

      

Restrictions between whole object w and part object p 
Name of Compound Restriction w.CTS/p.CTS w.CTS/p.DTS w.DTS/p.CTS w.DTS/p.DTS 

Number of 
possibilities 

Zero lifespan for object w = < = < 1 

Zero lifespan for object w = <= = <= 2 

Zero lifespan for objects p and w = = = = 1 

Zero lifespan for object p = = >= >= 2 

Zero lifespan for object p = = > > 1 

Table 5.14: Unsupported Restriction Cases in EROOS 

<whole description> =  

( "mutable" | "immutable" ) 

[ "significantly not deceased" ] 

[ "significantly not surviving" | "significantly surviving"] 

["present" | "total" ] <CLASS NAME> [ ° | °† ]  

[ "as" <ROLE NAME> ] 

 

<part description> =  

( "mutable" | "immutable" ) 

[ "significantly not deceased" ] 

[ "significantly not surviving" | "significantly surviving"] 

["present" | "total" ] <CLASS NAME> [ ° | °† ] 

[ "as" <ROLE NAME> ] 

Table 5.15: EROOS Compound Script Usage of Class Archive 

5.3.9 EROOS Compounds for the Library Example 

Given the example of the library system that was presented in Section 2.3, and the 
revisited relation hierarchy that was defined in Section 5.1.6, we can identify a mutual 
dependency between a book and its authors. As stated during the discussion of the 
revisited relation hierarchy, it was not yet possible to express the fact that all authors 
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must be created at the same moment in time. Moreover, the book and the main author 
had to be modelled as a single object. By introducing an EROOS compound between 
a book as a whole object and its authors as part objects, as presented in Figure 5.17, 
we can (1) segregate the book object from its main author object, and (2) define that 
there is a mutual dependency between a book and its authors, expressing that that all 
authors must be created at the same moment as the book is created. An observation 
that can be made is that it is not necessary to introduce ordered relation participant 
sets or ordered compound-part sets, since the ordering can be made explicit using 
specialisation hierarchies. 
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Figure 5.17: EROOS Compounds for the Library System 

5.3.10 Contributions, Related Work, and Reflections 

Our contributions concerning the compound concept are the following: 

• The introduction of compounds offers the modeller a clear and well-defined 
concept for modelling mutual dependency and part-whole structures, consisting 
of a non-empty whole and a number of dependent parts. While UML offers an 
ambiguous definition for aggregates and composition, which (1) do not imply the 
obligation of mutual dependency, and (2) do not clearly indicate the differences 
between associations, aggregates and compositions, EROOS explicit defines the 
distinction between relations, expressing a unilateral existential dependency, and 
compounds, expressing a mutual dependency. 

• A consequent application of the mutability, class archive, and integrated 
constraints approach for the compound concept, offers a coherent 
methodological approach for conceptual modelling. 

The EROOS compound concept is somewhat comparable with the aggregation and 
composition concept in UML. UML offers (1) aggregation, which expresses whole-
part relationships, and (2) composition, which expresses a strong ownership of parts 
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by the composite and coincident lifetime. However, these concepts do not incorporate 
an obliged dependency, since it is possible to express that an aggregation and a 
composite can have optional parts, or that a part possibly does not belong to any 
aggregation or composite. The only restriction in UML is that a part object can only 
belong to no more than one composite object, although a part object can also belong 
to other composite objects through different compositions. In addition, although there 
is coincident lifetime of parts with the composite, a part can even be removed from a 
composite before the death of a composite. UML does not make a clear semantic 
distinction between association, aggregation, and composite. Rumbaugh [128] even 
explicitly states that the distinction in UML between aggregation and association is a 
matter of taste, rather than a difference in semantics. EROOS only offers relations, 
expressing existential dependency, and compounds, expressing mutual dependency. 
The difference between these two relational concepts is clearly defined: 

• When two objects are not dependent on each other, they should both be 
participants in an additional relation between them, captured in a refined class. 

• When one object is dependent on the other object, the class of the first object is 
refined by a relation, having the class of the second object as participant.  

• When the two objects are mutually dependent, a compound between the two 
classes must be defined.  

An observation that can be made is that compounds offer to possibility for modelling 
object slicing, using a whole having a part with connectivity [1,1]. It is currently still 
unclear how to make a distinction between desired object slicing, e.g., when the 
whole object specifies a continuing property of a membership whereas the part 
objects specify yearly renewals, and unwanted object slicing, e.g., when the lifetimes 
of the whole and the part fully coincides. 

5.4 EROOS Constraint Triggers 

The EROOS methodology introduces events to specify functionality in the conceptual 
model, and uses implied, integrated, and first-class EROOS constraints as a means to 
control the validity of the event occurrences and the resulting model instance. During 
the specification of events, an analyst often has to detect and avoid constraints 
violations, since the analyst must take care that all model constraints remain valid 
when an event is executed. Constraint triggers36 are introduced in the EROOS 
universe in order to specify constraint exception handling mechanisms. Constraint 
triggers can resolve constraint violations in an active manner, by injecting additional 
functionality at the moment that possible constraint violations occur.  

                                                  
36 A part of the work presented in this chapter has been published in [148]. 
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5.4.1 Semantics of Functionality in EROOS 

A conceptual model is a mapping of facts and knowledge from the universe of 
discourse. At each moment in time, a specific situation in the universe of discourse is 
represented in a model instance, containing specific objects that have properties and 
interrelationships. Events that occur in the universe of discourse are represented by 
EROOS events, which can be creation events, mutation events, destruction events, 
and general events, and give rise to a transition from an existing model instance into a 
new model instance that will be valid from that moment on. 

Model constraints, represented in EROOS by means of implied, integrated, and first-
class EROOS constraints, serve as validators for the allowed model instances. A 
constraint restricts the set of possible instances of a model by defining rules that must 
be valid for each model instance at each moment in time. Whenever a set of events 
lead to a model instance that is in contradiction with the defined model constraints, 
the events will be refused and the new model is rejected. In such case, the old model 
instance that was valid at the moment when the set of events occurred, will be 
preserved. This all or nothing property is fundamental for the specification of 
functionality in EROOS. The conditions under which an event can occur, are not fully 
specified for each event, but must be deduced from the specification of the event, and 
the specification of all properties and constraints described in the model. A model 
transition due to a set of events will only succeed when the new model instance 
complies with all model constraints, or will be rejected if it fails to do so. 

In addition to the ‘all or nothing’ property, a second property is of utmost importance 
in the understanding of the basic semantics of EROOS functionality. The ‘Frame 
Axiom’, also called ‘Inertia Axiom’, states that each element in the model instance 
that has not explicitly been changed in the specification of an event, must remain 
unaltered. This enables proper reasoning about a model transition since, due to the 
fact that an event only changes a few model items, it would be impossible to make 
any statement on the expected values of the unspecified model entities. 

A drawback in the specification of functionality is that the effect it has on the model 
instance, must be fully specified at the level of the event. Since functionality 
transforms a model instance into a new model instance, the functionality has to take 
into account all model constraints that the model instance must comply with. This 
often means that specification of an event is heavily dependent on the existing model 
constraints, having to consider them thoroughly, and formulate a number of 
conditional expressions in order to comply with them in every situation. Otherwise, 
the event will violate a model constraint and will be refused. This leads to a recurring 
pattern of (1) describing the standard behaviour of an event, (2) checking whether the 
state of the new model instance remains valid, and (3) providing an constraint 
exception handling mechanism that tries to resolve the constraint violation. Therefore, 
a model contains a lot of duplication of constraint checking and resolving 
specifications. In addition, the definition of a new model constraint often has a direct 
impact on the existing functionality that acts upon the properties involved in the 
constraint. As such, the specification of functionality using events has a very 
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centralised approach. Each event has to take into account that its specification 
satisfies every constraint in the model, often branching off certain cases that need to 
be dealt with in a specific manner. 

5.4.2 The Trigger Concept 

To overcome the drawbacks of a centralised functionality description, and to avoid 
the repetition of constraint checking and resolving specifications, constraint triggers 
have been introduced in the EROOS universe. In order to describe specific 
functionality that deals with constraint preservation, integrated, implied, and EROOS 
constraints can be extended with a trigger specification clause. A constraint trigger is 
a kind of exception handling mechanism for the constraint that specifies a general 
constraint solver, which can be used in order to resolve occurring constraint 
violations. The trigger describes a number of actions that must be performed when a 
violation of the constraint occur in order to try to solve the constraint violation. 

5.4.2.1 Triggers and Model Validity 

Constraint triggers only come into action when the newly obtained model instance 
does not comply with the defined model constraints. Based on the invalid model 
instance, constraint triggers inject functionality that tries to resolve the constraint 
violations, and restore the validity of the obtained model instance. As such, constraint 
triggers can be seen as a kind of firing rules that are only triggered when the 
constraint to which they are attached, becomes invalid. 

The model normally refuses an event that would violate a model constraint, causing 
the model instance to remain in the state it was at the moment that the event has 
occurred. However, when an event trigger is specified, events that violate certain 
constraints can be tolerated in those cases where the trigger rule can resolve the 
constraint violation. In such cases, the event is tolerated and the trigger rule will be 
added to the global effect of the event in order to fulfil the specified constraints. As 
such, a trigger rule serves as a constraint violation solver for the constraint to which 
the trigger is attached. When an event occurs, there are four possible situations: 

• The event does not violate any constraint. In this case, the event is allowed, and 
its effect is realised. The presence of an event trigger is irrelevant in this 
situation.  

• The event violates a specific constraint that has no event trigger specified. In this 
case, the event is refused, and its effect is not realised. The state of the model 
instance will not be changed.  

• The event violates a specific constraint, but the trigger for that constraint can 
resolve the violation. In this case, the event is allowed, and its effect is realised. 
Moreover, the effect of the trigger is added to the effect of the event.  

• The event violates a specific constraint that has an event trigger, but the trigger 
cannot solve the constraint violation. In this case, the event is refused, and its 
effect is not realised. The state of the model instance will not be changed.  
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Constraint triggers allow a constraint centred description of functionality, introducing 
both a specific event part and a number of constraint specific trigger parts. As such, 
the functionality dealing with constraint preservation can be defined at the level of the 
constraint to which it belongs. However, it is not compulsory to specify an event 
trigger for a constraint. The modeller is free to define an event trigger for constraint 
solving, or to refrain from defining a trigger. In the last case, the event will only be 
accepted when no constraint violations have occurred.  

Notice that constraint triggers do not question or weaken the validity of the model 
constraints. The fact that the model instance must comply with all constraints at each 
moment in time, remains an intrinsic principle. Also, the ‘all or nothing’ property for 
functionality remains valid, meaning that functionality is only accepted when all 
constraints are preserved, and refused when at least one constraint is violated. 
Constraint triggers allow the extension of the net effect of an event, in order to 
preserve the validity of the constraint. The invalid model instance that is obtained 
before the constraint trigger fires, is only an intermediate state that is used in the 
calculation of the ultimate state, and is comparable with the semicolon (‘;’) operator 
in Z [140]. This intermediate state will not be visible in the overall model instance 
transition. There exists no single moment in time on which the invalid model instance 
is reached. 

5.4.2.2 Addition Triggers versus Adaptation Triggers 

In order to solve constraint violations, different type of actions can be taken to resolve 
the situation. Typical actions that can solve a constraint violation, are (1) the 
destruction of objects that violate the constraint, (2) the creation of violation 
registration objects that record the violation, (3) the application of additional mutation 
events to adjust certain attribute values, (4) the replacement of certain participant 
objects in order to obtain a better fit, or (5) the refining of the event parameters. In 
general, constraint triggers can be classified in two categories:  

• In addition to the functionality of the event that caused the violation, a constraint 
trigger can superadd functionality in order to preserve the constraint validity. 
Such triggers are called addition triggers, since they add functionality to the 
original event. In order to preserve the validity of the constraint, addition triggers 
will extend the original functionality by, e.g., creating new objects, destroying 
existing objects, or changing object properties. Thus, addition triggers can only 
extend the original functionality by changing object properties that were not yet 
the subject of change by the original functionality, and cannot contradict the 
original functionality that was the cause of the invalid model instance. Therefore, 
constraint triggers therefore relax the boundaries of the frame axiom, since they 
add additional functionality to the event functionality before the frame axiom is 
applied. Whenever an addition trigger would revoke event behaviour, the trigger 
is considered invalid and the event will be refused. 

• Instead of using the functionality description that was defined by the event, the 
trigger can adjust or revoke certain functionality in order to obtain a valid state of 
the model instance, for instance, by change certain parameters of the event. Such 
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triggers are called adaptation triggers, since they adapt the functionality that was 
originally defined by the event. In order to preserve the validity of the constraint, 
addition triggers will change the stated functionality by, e.g., introducing 
mutation events to change certain attribute values or participant objects. The 
effect of an adaptation trigger is comparable with a multi-level effect definition 
using the full capabilities of the semicolon (‘;’) operator in Z [140]. The original 
functionality defines a provisional assistance model instance, whereupon the 
final model instance is defined through adjusting or changing certain values that 
are not in line with the stated model constraints. 

In order to point out the important difference between addition and adaptation trigger, 
the modeller must explicitly state whether it is allowed to adapt the originally 
specified event behaviour or not. The specification of the trigger must define whether 
it is an addition (default) or an adaptation trigger. The EROOS methodology provides 
both kinds of triggers, since it is sometimes necessary to adjust the functionality that 
has caused a constraint violation. For instance, consider the decrease of a certain 
deadline value that results into the definition of the deadline on a moment in the past. 
This will certainly violate a number of deadline constraints in the model. A modeller 
could specify that in such cases, the deadline must only be decreased to the next day 
instead of a moment in the past. But since the functionality description of the deadline 
already indicated that the deadline must be on that specific moment in the past, an 
addition trigger could not change the deadline attribute anymore. In such case, an 
adaptation trigger that adjusts the deadline to the next day, would be most 
appropriate. 

5.4.2.3 Multiple Trigger Violations 

It is possible that an event violates more than one constraint at the same time. If a 
number of constraints have a trigger specification attached, these triggers will be 
activated simultaneously. The effect clauses of all triggers are added to the effect 
clause of the original event that violated these constraints. When the total effect of the 
event and all triggers of the violated constraints solve the constraint violations, so that 
the newly obtained model instance is compliant with all defined model constraints, 
the event will be accepted and the unified effect of the event and the triggers will be 
realised. It is impossible to ignore a specific trigger of a violated constraint, even in 
the case where another trigger can solve both constraint violations at the same time. 
In fact, the four situations for an event occurrence can be restated as follows: 

• The event does not violate any constraint, in which case the event is allowed. 

• The event violates certain constraints without trigger specifications, in which 
case the event is refused. 

• The event violates certain constraints, and the union of all triggers for these 
violated constraints solves all constraints violations. In this case, the event is 
allowed, but will be extended with the total functionality defined in the triggers 
of the violated constraints.  
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• The event violates certain constraints, but the union of all violated constraints 
triggers does not solve all violations. In this case, the event is refused. 

5.4.2.4 Trigger Chains 

Constraint triggers that are activated when a constraint violation occurs, can at their 
turn cause a following constraint violation. This second constraint violation can at its 
turn trigger a second set of trigger event, that may eventually lead to a third violation, 
et cetera. Such trigger chain is allowed when it finally leads to a valid model instance 
without any contradictions between the functionality introduced by the triggers. In 
fact, when the model instance obtained after the evaluation of a certain trigger chain 
is a valid model instance, the original event plus all triggers form the total 
functionality that will be applied. However, when the chain of triggering (1) causes a 
contradiction with the original event or with previous triggers, (2) creates a recursive 
trigger loop, or (3) leads to a constraint violation for which no trigger has been 
defined, the original functionality and the functionality injected by the triggers will be 
refused. 

5.4.2.5 Event Triggers versus Time Triggers 

Constraints cannot only be violated due to an occurrence of an event. It is possible 
that constraints become violated in a model without any specific event occurrences. 
Certain constraint involving time, such as the ones having an expression in the form 
of ‘now ��upper limit’, can be violated by the progress of time. When the actual time 
exceeds the stated upper limit, the constraint will become violated without any further 
event occurrence. It is impossible to refuse the event that caused this constraint 
violation, since the source of the violation is the mere progress of time. It is unnatural 
and intolerable to refuse the progress of time in a conceptual model. This leads to a 
time freeze, which is a temporarily freezing of the time in order to preserve the 
specified constraints until another event resolves the erroneous situation. One can 
never prevent the progress of time in the universe of discourse. Therefore, a 
constraint that can give rise to a time freeze, is incorrect and, thus, forbidden in the 
EROOS methodology. 

Constraints that pose an upper limit restriction on the actual time, must always be 
extended with a trigger that can solve situations in which a time freeze can occur. It is 
not only obliged to add a so-called time trigger to these kind of constraints, but the 
specified trigger must be defined in such a manner that it can resolve possible 
constraint violations due to progress of time in all circumstances. When a time trigger 
is specified, it must be provable that a constraint violation by progress of time can 
always be resolved by the trigger, thereby preventing a time freeze. Since a time 
trigger defines an event that will occur when a constraint is violated due to the 
progress of time, it can be seen as an extension of the effect of the progress of time. 
Another way to view time triggers, is as a special kind of automatic event occurrence 
at a certain moment in time, since the time trigger will fire at the moment the 
constraint is going to be violated by the progress of time. 
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When specifying a trigger for a constraint, one can make a distinction, if needed, 
between a constraint violation by an event occurrence or by the progress of time. In 
fact, two kinds of triggers can be specified for a constraint. 

• An event trigger is only triggered when the constraint violation is caused by an 
event or another trigger. It will not be applied to solve a constraint violation due 
to the progress of time. 

• A time trigger is only triggered when the constraint violation is caused by the 
progress of time. It will not be applied to solve a constraint violation due to a 
direct or indirect event occurrence. 

It is possible to specify a single trigger that acts both as a time and event trigger, and 
can be used for each violation of any source whatsoever. It is also possible to merely 
specify a time trigger, thereby refusing changes caused by an event and that violate 
the constraint. Notice that it is impossible to merely specify an event trigger for a 
constraint that can lead to a time freeze. Given the example of the upper time limit, 
one can specify a different reaction on a constraint violation when it is caused 

• by changing the upper limit to a value less than the current time, for instance, 
refusing such change, 

• or by the progress of time that exceeds the upper limit, for instance, extending 
the upper limit with a certain period or destroying the object. 

When a time trigger causes a following constraint violation, this violation will be 
considered as an event triggered violation, since the source of the violation is not 
directly the progress of time, but the event that was triggered by the time trigger. 
Even in such cases, it must be provable that the number of consecutive violations 
ultimately resolves into a valid situation and does not lead to a time freeze. 

5.4.2.6 Time Triggers and Object Creation 

A typical analysis pattern using time triggers, is the creation of a specific object in 
order to objectify the occurrence of a constraint violation. Such cases occur often in 
the universe of discourse, in which violations must be recorded, fines must be given 
at certain moments, interventions must be started at a specific moment in time, et 
cetera. Such situations lead to an EROOS solution pattern as described in Figure 5.18. 
The activity, for which the duration is restricted for a certain limited period, will be 
given a deadline attribute indicating the expiry time for the activity. A constraint for 
each activity is specified, indicating that a violation object must exist when an activity 
exceeds its deadline. A time trigger attached to this constraint, creates a violation 
object at the moment the deadline is reached, expressing the fact that the validity 
period of the activity has expired. The constraint and trigger attached to the activity 
class are specified in Table 5.16. Often, an additional constraint will be attached to 
the violation class stating that a violation object may only exist when the validity 
period of the underlying activity actually has expired. 
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constraint in violation when deadline exceeded 

  top class ACTIVITY 

  context 

    ACTIVITY having attribute Deadline 

    being participant of VIOLATION 

  definition 

    for all activity in ACTIVITY 

      not participating in VIOLATION: 

       now ��activity�Deadline 

  time trigger 

    VIOLATION.create (activity) 

end constraint in violation when deadline exceeded 

Table 5.16: EROOS Constraint for a Time Trigger Creating Objects 

 

VIOLATION 
ACTIVITY 

in violation when 
deadline exceeded Deadline 

 

Figure 5.18: EROOS Analysis Pattern for a Time Trigger Creating Objects 

5.4.3 Extending EROOS Model Concepts with Trigger Specifications 

In EROOS, model constraints can be extended with a trigger specification clause in 
order to specify additional behaviour that can solve possible constraint violations. Not 
only first-class EROOS constraints can be extended with a trigger specification, but 
also integrated and implicit model constraints, since they also incorporate a restriction 
on the allowed model instances. The following sections presents how triggers are 
specified in the EROOS methodology. 

5.4.3.1 Trigger Specification for EROOS Constraints 

EROOS constraints can be extended with a trigger clause, specifying events that are 
added to the original event in case that the constraint is violated. Table 5.17 presents 
the specification of a trigger clause for a constraint, while Definition 5.12 provides its 
definition. 
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An EROOS constraint trigger is an event that is applied on a 
model instance at a certain moment in time whenever its 
associated EROOS constraint is not valid in the intermediate 
model instance. The ultimite model instance results from 
applying the triggered event on the invalid intermediate 
model instance, where all constraints are valid for the new 
model instance obtained by applying the constraint trigger. 
Whenever the newly obtained model instance do not comply with 
certain model constraints, the events that occurred are 
refused, and the original model instance that held when the 
event occurrence occurred, remains preserved. 

Given  

Model M; Event Universe EU; Model Instance MI; 

Constraint CT ³ Mct; Constraint Trigger ctt ³ EU; 

MIt+1
1 = t(MIt,Et+1

1) 

MIt+1
i+1 = t(MIt+1

i, Et+1
i+1) 

ctt ³ Et+1
i+1 ⇔ MIt+1

i ´ CTt+1 

MIt+1 = MIt+1
i | (" CT ³ Mct : MIt+1

i ³ CTt+1) ¾  

     (" j | 1 ��j < i : $ CT2 ³ Mct : MIt+1
j ´ CE2t+1) 

Definition 5.12: EROOS Constraint with Trigger 

<constraint script> =  

"constraint" <constraint name> 

  ( "top class" <TOP CLASS NAME> |  

  | "top classes" <TOP CLASS NAME> ("," <TOP CLASS NAME> )* ) 

  "context" ( <TOP CLASS NAME> <context clause> )+ 

  "definition" 

    ( "for all" <identifier> ( "," <identifier> )*  

      "in" <TOP CLASS NAME>  

      ["not participating in" <CLASS NAME> ("�"<CLASS NAME>)* 

        ( "," < CLASS NAME> ( "�"<CLASS NAME> )* )* ] ":" )+ 

      <logical clause> 

      <trigger specificaton> 

"end constraint" <constraint name> 
 

<trigger specificaton> = 

( [ "addition" | "adaption" ] "event trigger"  

    [<logical clause> "⇒ "|"default ⇒ "] <event expression> )* 

[ [ "addition" | "adaption" ] "time trigger"  

    <event expression> ] 

[["addition"|"adaption"]"time &" ["default"] "event trigger" 

    <event expression> ] 

Table 5.17: Trigger Specification for EROOS Constraints 
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A trigger can be identified as an addition trigger or an adaptation trigger. In addition, 
the different types of triggers that can be specified are the following:  

• A time trigger is triggered when the constraint violation is caused due to the 
progress of time. A time trigger can only be specified when no time & event 
trigger has been specified. As stated higher, the specification of a time trigger is 
obliged whenever the progress of time can violate a constraint, since a time 
freeze must at all times be avoided. 

• An event trigger is triggered when the constraint violation is caused due to the 
occurrence of an event or another trigger. An event trigger can be made 
conditionally, so that it only triggers when invalid model state meets a certain 
condition. When more than one overlapping condition has been met, the 
functionality of the triggers will be joined, in the same manner as triggers of 
multiple constraints violations are joined. It is possible to specify a default trigger 
that will only be used when none of the conditional triggers are fulfilled. 

• When a time & event trigger is specified, it will be used as a trigger to solve 
each violation of the constraint, irrespective of the source of the violation being 
an event or the progress of time. A time & event trigger can also be designated as 
default trigger, but only when no other default event trigger is been defined. 

5.4.3.2 Trigger Specification for Integrated Model Constraints 

In the same manner as triggers try to solve constraint violations for EROOS 
constraints, it is possible to attach triggers to integrated model constraints, in order to 
specify behaviour that can solve violations of such constraints. Constraints can be 
attached to the following integrated model constraints in the EROOS methodology: 

• Immutability for attributes, relation participants, and compounds. Whenever an 
immutable attribute, participant, part object, or whole object is being changed, an 
immutability adaptation trigger can be specified to restore the original situation. 
This trigger seems to be identically the same as the default behaviour when an 
immutability constraint is violated, since the events are refused and the model 
instance remains unchanged. However, such adaptation trigger can be very useful 
to preserve the effect of other events that occurred in conjunction with the 
forbidden mutation event. In contrast with the default behaviour that refuses all 
occurred events, the trigger only revokes the attribute change and allows all other 
event functionality. 

• Uniqueness for attributes. Whenever an object is created using a non-unique 
value for its attribute, the attribute uniqueness trigger can try to resolve the 
situation by selecting a (eventually default) value that is suitable for the newly 
created object. 

• Lower and/or upper bound restrictions for attributes. Whenever an attribute 
value is changed into a new value that lays outside the range of the allowed 
values, the attribute lower and/or upper bound trigger tries to resolve the situation 
by selecting a suitable value that lies inside the allowed range. 
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• Connectivity and multiplicity restriction for relations and compounds. Whenever 
a relation or compound violates its connectivity and multiplicity restrictions, the 
connectivity or multiplicity trigger tries to resolve the situation by destroying 
objects or changing object links. 

• Participation restriction for relations and compounds. Whenever a relation or 
compound violates its participation restrictions, the participation trigger tries to 
resolve the situation by destroying objects or changing object links.  

Triggers attached to integrated model constraints are usually event triggers. However, 
it is possible to specify a time trigger for an integrated constraint, for instance, in case 
of a lower bound restriction based on the current time. Triggers for integrated model 
constraints are specified as part of the model entity script, and refer to the integrated 
constraints for which they are applicable. The specification of integrated constraint 
triggers is presented in Table 5.18. 

 
<EROOS model entity> =  

"class" <CLASS NAME> 

  <model entity definition> 

   ( <trigger type> ":" <event expression> )* 

"end class" <CLASS NAME> 
 
<trigger type> = 

[ <reference> ] "immutability" | "uniqueness" | "bounds" |  

"lower bound" | "upper bound" | "connectivity" |  

"multiplicity" | "participation" | "permanent binding" |  

"existential dependency" | "mutual dependency" ] 

[ "addition" | "adaption" ]  

[ "event" | "time" | "time & event" ] "trigger" 

Table 5.18: Trigger Specification for Integrated and Implicit Constraints 

5.4.3.3 Trigger Specification for Implicit Model Constraints 

In addition to EROOS constraints and integrated model constraints, triggers can also 
be attached to implicit model constraints to solve potential violations. Such triggers 
are always event triggers. They are specified as part of the model entity script, as 
presented in Table 5.18, and refer to the implicit constraint on which they apply. 

• Permanent binding for attributes. Whenever an object is created without defining 
a specific value for one of its attributes, the attribute permanent binding trigger 
tries to resolve the situation by selecting a (eventually default) value that is 
suitable for the newly created object. In the same manner, an archive attribute 
can be set when an object is destroyed without providing a specific value for it. 
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• Existential dependency for relations. Whenever an object is created without 
determining a specific participant, the existential dependency trigger tries to 
resolve the situation by selecting a suitable object for the missing participant. 

• Mutual dependency for compounds. Whenever a whole is created without 
determining a specific part, or vice versa, the mutual dependency trigger tries to 
resolve the situation by selecting a suitable part, respectively whole. 

5.4.4 Techniques for Describing the Overall Model Behaviour 

Although an EROOS model fulfils the principle of uniqueness for the structural part 
of the model, the behavioural part can be described in several manners. There exist a 
variety in the granularity of the model behaviour descriptions. The model behaviour 
can be specified using large-scale events as presented in Figure 5.19.a, which create a 
rather centralised effect description, or using rather small-scale events as presented in 
Figure 5.19.b, which create a modular fine-grained effect description. The 
introduction of constraint triggers enables a new technique for describing the model 
behaviour as presented in Figure 5.19.c, consisting of a distribution of the overall 
effect of an event into a basic description of the event that is mandatory, and a 
number of optional trigger specifications attached to model constraints, and that fire 
whenever the event violates the constraints. 

 

a) Central Effect Description SUBJECT  
  CLASS !event 1 

effect a 
effect b 
effect c 

b) Modular Effect Description 
!event 1 

effect a 
event 2 

SUBJECT  
  CLASS 

!event 2 
effect b 
event 3 CLASS 2 

!event 3 
effect c 

CLASS 3 

c) Trigger-based Distributed 
    Effect Description !event 1 

effect a SUBJECT  
  CLASS 

Constraint e1 and e2 
Trigger: event 2 CLASS 2 

CLASS 3 
Constraint e2 and e3 
Trigger: event 3 

 

Figure 5.19: Techniques for Describing the Overall Model Behaviour 
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5.4.4.1 Central Effect Descriptions 

The technique of central effect descriptions consists of the introduction of a single 
event description for each event that can occur in the universe of discourse. This 
event description will fully describe the overall effect of the event on the model 
instance. The advantage of a central effect description technique is that the impact of 
an event onto the model instance is clearly and completely visible at a central place. 
By a mere examination of the effect description of the event, one can obtain fully 
insight in the changes that occur in a model instance when the event is executed, and 
the impact it will have on the existing situation. 

 
class BORROWING 

  context 

    having participant (SELECTION  

      having participants (  

        POSSESSION being participant of (RESERVED ITEM) 

          having participant (COPY  

            having participant (BOOK  

             being participant of (PRESENCE 

               being participant of (RESERVATION 

                 being participant of (RESERVED ITEM))))), 

        REGISTRATION being participant of (RESERVATION) 

          having participant (LIBRARY))) 

  general event 

    return book 

      effect 

        self.return 

        let possession = self�SELECTION�POSSESSION 

        let library = self�SELECTION�REGISTRATION�LIBRARY 

        let reservations= library�REGISTRATION�RESERVATION 

           ¬ possession�COPY�BOOK�PRESENCE�RESERVATION  

        if reservations ≠ empty set 
         then  

           let oldest = random one of {r in reservations | 

             not exists r2 in reservations:  

             r2�Creation Timestamp < r�Creation Timestamp} 

        RESERVED ITEM.create(oldest, possession) 

        oldest.destroy 

end class BORROWING 

Table 5.19: Central Effect Description of return book 
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As an example, consider the returning of a borrowed book for the example of the 
library system that was presented in Section 5.1.6 on page 149. Suppose that the 
library has set up a reservation system for its clients. When a book is returned, the 
event description must provide a full specification of all tasks that must be performed 
at the moment of returning the book. For instance, if there exists a reservation for that 
book, the book copy must be labelled as reserved. The central description of the 
return event can be found in Table 5.19. 

A drawback of central effect descriptions is that it is very complicated to develop 
them, since one must have a complete view on the model, including all its constraints. 
By specifying the effect description of the event, one must consider the consequences 
of each slightest change in the model, since a small change can violate a number of 
model constraints. The technique of central effect descriptions forces the modeller to 
provide a full description of the impact of the event on the model, describing the 
complete transition of the old into the new model instance, while preserving the 
validity of all implied, integrated, and EROOS constraints.  

A second drawback is that commonalities in the effect descriptions of events lead to 
duplication inside the model. When a number of events have identical parts within 
their effect descriptions, this functionality must be duplicated for each event. Such 
duplication creates overhead (1) in the understanding of the events, forcing the model 
reader to detect such commonalities on its own, and (2) in changing or correcting 
errors in the model descriptions, since the errors will multiply and must be adjusted 
inside each duplicated description. 

5.4.4.2 Modular Effect Descriptions 

The technique of modular effect descriptions resembles the way of specifying and 
decomposing methods in object-oriented programming. Each event that can occur in 
the universe of discourse, leads to the introduction of a representative event in the 
conceptual model. Instead of having a single description for the specification of the 
event, the specification is decomposed into additional events, creating a modular 
effect description for the original event. These additional events can consist of fully 
contained effect descriptions of their own, or can again be decomposed into a number 
of supportive events. 

We illustrate modular effect descriptions using the example of the book reservation 
for the library system, as described in the previous section. The specification of the 
return event, which uses an auxiliary event for the reservation creation, can be found 
in Table 5.19. Notice that the event ‘check reservations’ can be reused, e.g., when the 
library acquires a new printed copy of a book. 

The advantage of the modular effect description technique is that common 
functionality for events can be factored out into a separate event. When a good 
decomposition of an event description is made, split up in logical parts with suitable 
names, the complexity of effect descriptions can be largely reduced. Complex event 
descriptions can be decomposed into a number of more simple events that are easier 
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to describe and understand, while these event descriptions can at their turn be reused 
in order to compose more complex events. 

 
class BORROWING 

  context 

    having participant (SELECTION  

      having participant (POSSESSION  

          having event check reservations)) 

  general event 

    return book 

      effect 

        self.return 

        let possession = self�SELECTION�POSSESSION 

        possession.check reservations 

end class BORROWING 

 

class POSSESSION 

  context 

    being participant of (RESERVED ITEM) 

    having participants (  

      COPY having participant (BOOK  

          being participant of (PRESENCE 

            being participant of (RESERVATION 

              being participant of (RESERVED ITEM)))), 

      LIBRARY being participant of (REGISTRATION 

        being participant of (RESERVATION))) 

  general event 

    check reservations 

      effect 

        let reservations=  

          self�LIBRARY�REGISTRATION�RESERVATION 

          ¬ self�COPY�BOOK�PRESENCE�RESERVATION 

        if reservations ≠ empty set 
         then  

           let oldest = random one of {r in reservations | 

             not exists r2 in reservations:  

             r2�Creation Timestamp < r�Creation Timestamp} 

        RESERVED ITEM.create(oldest, self) 

        oldest.destroy 

end class POSSESSION 

Table 5.20: Modular Effect Description of return book 
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A second advantage is that change and error correction is facilitated, since analogous 
effect descriptions only occur at a single place in the model. This reduces the amount 
of corrections that must be made to a model, since the adjustments must only be made 
at a single point in the model. 

A drawback is that the impact of an event on the model instance is not easily 
assessed, since it is not contained in an all-embracing description. A model reader 
must compose the overall effect of an event on her or his own, by following an event 
trace from the top event to a number of auxiliary events. In order to comprehend the 
total impact of the top event onto a model instance, all auxiliary events must be 
comprehended. As already stated higher, this process can be facilitated by choosing 
appropriate names for the auxiliary events. 

A second and more important drawback is that, as in the case of central effect 
descriptions, it is quite complicated to develop modular effect descriptions due to the 
presence of model constraints that have to be preserved. On the one hand, the 
modeller must provide a full description of the impact of the event on the model 
through the specification of a number of auxiliary events. On the other hand, one 
must take care that the obtained new model instance complies with all implied, 
integrated, and EROOS constraints that are present in the model. As argued in the 
previous section, the modeller must have a complete view on the whole model in 
order to preserve the validity for all model constraints. 

5.4.4.3 Distributed Effect Descriptions using Triggers 

The introduction of constraint triggers in the EROOS methodology allows a modeller 
to include triggered functionality in the overall specification of events. This results in 
a distributed effect description for events, in which the basic event description can be 
augmented with small pieces of functionality that are specified in constraint triggers. 
These trigger specifications will be added when needed, according to the constraints 
that are violated by the basic event behaviour. Instead of having a full effect 
description in the event, at a single point as for central descriptions, or through the 
composition of multiple events as for modular descriptions, only the basic model 
change is defined directly in the event. As such, the overall effect on the model 
instance is obtained by combining the basic effect of the event with the effect of all 
constraint triggers that are activated.  

We illustrate distributed effect descriptions using the example of the book reservation 
for the library system, as described in the previous sections. The specification of the 
basic return event and the constraint trigger can be found in Table 5.19. 

The main advantage of the distributed effect description technique is the simplicity to 
develop effect descriptions, since one must no longer take care that the event 
description fully complies with all implied, integrated, and EROOS constraints that 
are present in the model. Every constraint violation can be dealt with in its attached 
constraint trigger. This allows that the basic event description only contains the core  
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class BORROWING 

  general event 

    return book 

      effect 

        self.return 

end class BORROWING 

 

constraint no free copy for a reservation 

  top classes RESERVATION, POSSESSION 

  context 

    RESERVATION being participant of (RESERVED ITEM) 

      having participants (  

        PRESENCE having participant (BOOK), 

        REGISTRATION having participant (LIBRARY)), 

    POSSESSION being participant of  

      (RESERVED ITEM , BORROWING) 

      having participant (COPY  

        having participant (BOOK)) 

  definition 

    for all r in RESERVATION: 

    for all p in POSSESSION not participating in  

        RESERVED ITEM, BORROWING: 

      r�PRESENCE�BOOK ≠ p�COPY�BOOK 
  addition event trigger 

    let reservations = { r2 in RESERVATION : 

      (r2�REGISTRATION�LIBRARY = r�REGISTRATION�LIBRARY) and 

      (r2�PRESENCE�BOOK = r�PRESENCE�BOOK) } 

    let older reservations = { r2 in reservations : 

      (r2�Creation Timestamp < r�Creation Timestamp) } 

    if older reservations = empty set  

       then let rr = random one of {r2 in reservations |  

             (r2�Creation Timestamp = r�Creation Timestamp) } 

            RESERVED ITEM.create(rr,p) 

            rr.destroy 

end constraint no free copy for a reservation 

Table 5.21: Distributed Effect Description of return book 

changes that have to occur in the model instance. The preservation of the model 
constraints can be delegated to the constraint triggers, which have more knowledge 
about the context and are better focussed to solve the constraint violation. The 
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modeller no longer needs a complete view on every detail of the entire model, since 
the preservation of the constraint validity does not solely belong to the event. 

The distributed effect description technique has the same advantages as the modular 
effect description technique, that is (1) offering the possibility of factoring out 
common functionality description parts into separate events, which allows 
decomposition and reuse of event descriptions, and (2) facilitating changes and error 
correction by reducing duplication inside event descriptions. 

The drawback of distributed effect descriptions is that, even more than in the case of 
the modular effect description technique, the impact of an event on the model 
instance is not easily assessed. The totality of the change caused by an event on the 
overall model instance, is not directly visible at a central place, but has to be 
composed using the basic event description and the constraint triggers of all relevant 
constraints. However, this process can be facilitated by offering tool support to (1) 
identify constraints that can be violated by the event, and (2) stating the impact of the 
associated triggers relevant for this event.  

5.4.5 Using Nondeterminism in Functionality Specifications 

During the specification of events, an analyst often has to interpret and to circumvent 
the model constraints in order to preserve their validity. For example, objects and 
values often have to be chosen based on the compliance of their properties with 
certain model constraints. This leads to a recurring pattern of (1) selecting the set of 
all potential objects, (2) restricting this set to those objects that can satisfy the stated 
model constraints when they are selected, and (3) making a random selection between 
these potential objects using a specific EROOS selection operator, namely ‘random 
one of’. This pattern can be observed in the specifications that are presented in Table 
5.19, Table 5.20, and Table 5.21. Such specification causes a duplication of constraint 
checking and resolving descriptions, since the constraints already express the required 
properties that the objects in the model must fulfil. Since the EROOS kernel only 
offers support for erratic nondeterminism, by which an arbitrary and random choice is 
made between all available elements, the modeller oneself must first create the set of 
eligible elements on which then a nondeterministic choice can be made. 

The EROOS universe offers a global angelic nondeterministic operator [139][157] 
‘selective one of’ that does not make a random choice between all possible elements, 
but restrict its choice to those elements that fulfil certain boundary condition, more 
precisely, those objects that comply with the desired properties as stated by the model 
constraints. This means that only those objects are selected that can lead to a model 
instance in which all model constraints are fulfilled. A random selection between all 
remaining candidate objects is only made at the final stage, when it is clear which 
valid model instances can be obtained. The elements that are taken into account while 
making the selective angelic nondeterministic choice are the following: 

• The model instance that was valid before the event occurred is the starting point 
for making a selective nondeterministic choice. 
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• The effects of the deterministic events that occur at the same time as the 
nondeterministic event are all taken into consideration. 

• In case that a nondeterministic choice can be made that leads to a possible model 
instance fulfilling all model constraints, taken into account all other 
nondeterministic choices that have to be made simultaneously, one of the 
solutions will be chosen at random. 

• If no nondeterministic choice can be made that leads to a possible model 
instance, every case in which a nondeterministic choice causes a violation of a 
constraint with attached trigger clause, is taken further into consideration. The 
functionality defined in the trigger clause is added to the basic event functionality 
and the specific choice that gave rise to this possible solution. Since different 
choices can possibly trigger different constraints, a number of possible model 
instances can be obtained that ultimately lead to a valid model instance. In such 
case, one of these valid model instances will be chosen at random. As explained 
in Section 5.4.2.4, it is possible that a further trigger chain is caused that 
ultimately leads to a valid model instance. 

• In case that no nondeterministic choice can be made that leads directly or 
indirectly to a valid model instance, the event is refused. 

 
constraint no free copy for a reservation 

  top classes RESERVATION, POSSESSION 

  context 

    RESERVATION being participant of (RESERVED ITEM) 

      having participant PRESENCE 

        having participant (BOOK), 

    POSSESSION being participant of  

      (RESERVED ITEM , BORROWING) 

      having participant (COPY  

        having participant (BOOK)) 

  definition 

    for all r in RESERVATION: 

    for all p in POSSESSION not participating in  

        RESERVED ITEM, BORROWING: 

      r�PRESENCE�BOOK ≠ p�COPY�BOOK 
  addition event trigger 

    let reservation = selective one of(RESERVATION) 

    RESERVED ITEM.create(reservation, 

        selective one of(POSSESSION)) 

    reservation.destroy 

end constraint no free copy for a reservation 

Table 5.22: Nondeterministic Distributed Effect Description of return book 
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The global angelic nondeterministic operator reduces a large number of 
overspecification for events and triggers, for which otherwise constraint avoidance 
specifications must be made by explicitly calculating the set of eligible elements. We 
illustrate non-deterministic distributed effect descriptions using the book reservation 
example for the library system, as described in the previous section. The specification 
of the constraint trigger can be found in Table 5.22. Notice that this constraint trigger 
supports on the presence of certain constraints, such as (1) the fact that the 
registration and possession for a reserved item must contain the same library and 
book, and (2) the fact that only the oldest reservation for a book can be involved in a 
reserved item. Bekaert [13] provides an elaboration of nondeterminism in EROOS. 

5.4.6 EROOS Constraint Triggers for the Library Example  

Given the example of the library system that was presented in Section 2.3, and the 
relation hierarchy that was defined in Section 5.1.6, we can specify a constraint 
trigger for the class of borrowing that automatically creates a fine object when the 
borrowing exceeds its deadline, as presented in Table 5.23. Notice that the deadline is 
defined by the value of the attribute Maximum Lending Period at the moment the 
borrowing was created. Since this constraint can be violated due to the progress of 
time, the trigger is formulated as a time trigger. 

 
constraint borrowing not exceeded  

  top class BORROWING 

  context 

    BORROWING being participant of (FINE) 

      having participant (ALLOWANCE  

        having participant (LIBRARY 

          having attribute Maximum Lending Period)) 

  definition 

    for all b in BORROWING not participating in FINE: 

      now - b�Creation Timestamp <= 

      self�ALLOWANCE�LIBRARY 

        �Maximum Lending Period@(b�Creation Timestamp) 

  addition time trigger 

    FINE.create(b) 

end class BORROWING 

Table 5.23: Time and Event Trigger for the Library Example 

5.4.7 Contributions, Related Work, and Reflections 

Our approach concerning constraint triggers is a novel and original contribution to 
conceptual modelling. The introduction of constraint triggers provides an elegant 
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description of the universe of discourse, in which a generic constraint solver can be 
attached to a constraint. The goal of a constraint trigger is to resolve constraint 
violations by injecting error handling behaviour into an event, or by firing an event 
due to the progress of time. This enables the specification of distributed effect 
descriptions for events, in which only the basic effect is specified for an event. Small 
additional pieces of functionality are specified in constraint triggers that are added to 
the basic event description according to the constraint violations caused by the event. 
This approach creates a separation between the description of the normal event 
handling and the exceptional event handling. The normal event handling is specified 
in the event, whereas the exceptional event handling is specified in a number of 
constraint triggers. Without constraint triggers, event descriptions contain a lot of 
duplicated constraint checking and avoidance specifications, in which possible 
constraint violations must be captured and resolved. Such approach leads to a lot of 
duplication overhead inside a model. Constraint triggers support separation of 
concerns, by clustering all functionality regarding the constraint handling in a single 
place. It can be used to introduce specific constraint related crosscutting behaviour 
into a model, through the extension of all events that can violate the constraint. 
Therefore, it can be considered as a kind of Aspect-Oriented Software Development 
(AOSD) [46] technique.  

The EROOS constraint trigger concept is somewhat comparable with ECAA rules in 
active databases, as presented in Section 2.2.4. It can be seen as a kind of adaptation 
and extension of ECAA rules for constraints. Other analysis methods, such as OOIE 
[96][97], BON [156], MOSES [64], OBA [125], and SOMA [58], have incorporated 
ECAA rules, while implementation extensions have been proposed to integrate 
ECAA rules in programming languages [85][86]. The main difference in our 
approach is that a constraint trigger must solve the constraint violation that triggered 
it. Since the goal of constraint triggers is the provision of a generic specification for 
solving constraint violations, the execution of a constraint trigger must ultimately lead 
to the preservation of the constraint validity. ECAA rules are merely injecting 
additional functionality based on certain events that occur, or additional conditions 
that are valid at a certain moment in time. They are not concerned about preserving 
certain conditions in a model, although the action could be specified in such manner 
that the firing condition will become invalid.  

Rumbaugh [127] proposes the technique of operation propagation, in which 
destruction propagation is used in order to automatically delete a number of 
associated objects from a model whenever an object is removed. The technique arose 
due to practical issues, since otherwise an explicit specification of the complete 
destruction event must be made, including the removal of a set of associated objects. 
However, it can be considered as a specific kind of constraint triggering mechanism. 
Especially, when the multiplicity of an association at the side of the removed object is 
larger than zero, there is an existential dependency from the connected object on the 
removed object. In this case, the destruction propagation can be seen as a trigger for 
the existential dependency constraint, which deletes all objects that are existentially 
dependent on the removed object.  
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An observation that can be made is that the approach of distributed effect descriptions 
using the constraint trigger concept conceals the impact of an event on the model 
instance. One has to compose the overall effect description oneself, by combining the 
basic event description with all trigger descriptions of those constraints that can be 
violated by the event. Therefore, tool support is appropriate in order to help 
identifying the constraints that can be violated by an event, and stating the impact of 
the associated triggers that are relevant for the event.  

5.5 Derived Groups and Dynamic Subdivision 

This section introduces the EROOS kernel analysis pattern that has identified the 
desirability of introducing derived groups. We present how dynamic specialisation 
can be simulated using constraint triggers and object slices, which perform automatic 
creation and destruction of derived groups. Hereafter, we present the concept of 
EROOS groups in order to obtain a better suitable modelling of dynamic 
specialisation and computable groups in the EROOS universe. Last, derived groups 
are applied on the running example of the library system. 

5.5.1 EROOS Analysis Pattern for Dynamic Specialisation 

As presented in Chapter 3, the EROOS kernel was founded on a number of key 
principles for conceptual modelling. Although the principle of No Redundancy states 
that every single item of information inside a model must have an added value of its 
own, it is often convenient to be able to extract derived information from a model. 
Derived information is information inside a model that can be deduced from other 
elements that are already contained in the model. Derived information can be 
modelled to a certain extent in the EROOS kernel using the concept of a query. Based 
on information that is contained inside a model instance, a query can calculate a result 
or a property for an object, or select a number of objects based on certain criteria. 
Derived attributes and derived specialisation hierarchies are forbidden in the EROOS 
kernel, but must instead be modelled using the query concept.  

Due to the principle of No Redundancy, the EROOS methodology does not support 
dynamic specialisation. Dynamic specialisation is the ability of making dynamic 
changing ‘is-a’ specialisation hierarchies, in which objects can dynamically move 
from one specialised class to another based on certain criteria. We refer to such 
dynamic object sets as groups in order to make a distinction with classes, which are 
defined in Section 4.6 as static object sets incorporating the constraint of 
immutability. Dynamic specialisation can be distinguished in two cases: 

• When the transfer of an object from one group to another is caused by an event 
noticeable in the universe of discourse, it should be modelled as a distinct class. 
These kinds of dynamic properties and object roles are captured in EROOS as 
first-class elements, instead of making them subgroups of a generalised class. For 
instance, a student cannot be modelled as a specialised class of person in 
EROOS, since it is a dynamically changing group. However, the fact that a 
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person becomes a student, can be modelled as a class on its own, incorporating a 
relationship between the person doing the enrolment and the educational institute 
accepting the person as a student. The fact that a person is a student or not, can 
be derived using a query for the person, evaluating whether the person is 
involved in any enrolments at a certain moment in time. Figure 5.20.a illustrates 
an EROOS kernel analysis pattern in which a dynamic property is represented as 
a refinement. The participant class can dynamically obtain and lose the property. 

• When the transfer of the object from one group to another is based on 
information that is already contained in the model, it should be modelled as a 
query instead. These kinds of derived properties are captured in EROOS as 
queries, since the information is already contained in the model. When 
information about the grouping is needed, it can be derived using a query that 
returns the fact whether the object has the property or not. Figure 5.20.b 
illustrates an EROOS kernel analysis pattern in which a class can only be refined 
using specific participant objects that fulfil a certain property, e.g., based on an 
attribute value. The group of potential participants is (1) expressed using the 
query ‘has property’, and (2) enforced using the constraint ‘property true’. 

 
 

has  
property 

REFINEMENT 
property 
true 

? 

CLASS 
DYNAMIC 
PROPERTY 

a) Dynamic Property as a refined class b) Dynamic Property as a query 

CLASS 

REFINEMENT 

Attribute  

 

Figure 5.20: Modelling Dynamic Specialisation using EROOS Queries 

Due to the introduction of constraint triggers in the EROOS universe, it is possible to 
realise a simulation of dynamic specialisation by using triggers for the automatic 
creation and destruction of derived groups. The dynamic specialisation is not 
performed on the core object, but on a changeable object slice that is connected to it. 
This object slice is necessary, since it is not possible to destroy and reconstruct the 
core object, e.g., due to relationship links in which the object already can be involved, 
and due to its Creation Timestamp that would be changed. Constraint triggers can be 
specified that automatically create the dynamic object slice when a certain condition 
is valid, and change this dynamic slice when the condition no longer is valid. This 
specific analysis pattern to realise dynamic specialisation in the EROOS universe, is 
presented in Figure 5.21 and Table 5.24. Although it is possible to specify dynamic 
specialisation using derived groups, it is not an appropriate specification since, it 
duplicates the derivation condition into a positive and negative expression, and 
introduces additional explicit object creation and destruction triggers. Therefore, 
EROOS offers an additional concept for modelling dynamic specialisation. 
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constraint property true 

  top class SLICE HAVING PROPERTY 

  context 

    SLICE HAVING PROPERTY  

      specialisation of (DYNAMIC PROPERTY SLICE 

       having specialisation (SLICE NOT HAVING PROPERTY) 

       having compound-whole (CLASS)) 

  definition 

    for all p in SLICE HAVING PROPERTY : 

       p->-- CLASS.has property 

  addition event trigger 

     p.destroy 

     SLICE NOT HAVING PROPERTY.create(p->-- CLASS) 

end constraint property true 

constraint property false 

  top class SLICE NOT HAVING PROPERTY 

  context 

    SLICE NOT HAVING PROPERTY  

      specialisation of (DYNAMIC PROPERTY SLICE  

        having specialisation (SLICE HAVING PROPERTY) 

        having compound-whole (CLASS)) 

  definition 

    for all n in SLICE NOT HAVING PROPERTY : 

       not(n->-- CLASS.has property) 

  addition event trigger 

     n.destroy 

     SLICE HAVING PROPERTY.create (n->-- CLASS) 

end constraint property false 

Table 5.24: EROOS Constraints for Simulating Dynamic Specialisation  

property 
false 

DYNAMIC 
PROPERTY 
SLICE 

property 
true SLICE HAVING 

PROPERTY 
SLICE NOT 
HAVING 
PROPERTY 

[1,1] 

has  
property 

REFINEMENT 

?

CLASS 

 

Figure 5.21: EROOS Analysis Pattern for Dynamic Specialisation 
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5.5.2 EROOS Groups and Dynamic Specialisation 

The concept of an EROOS group offers the possibility to model dynamic 
specialisation in a more convenient manner. Dynamic subdivisions of a class can be 
defined, which is automatically composed using a condition that is used as a selection 
criterion for the group. As such, objects remain statically attached to their native 
class, while they can dynamically (1) become part of a group, or (2) leave the group. 
The conditional rule that forms the group, serves as a filter on the class for selecting 
objects that must belong to the group. An EROOS group script is a dynamic 
specialisation of a single class. However, a group can also be defined as a subgroup 
of an already existing group, which enables to model a further dynamic subdivision 
within an existing subdivision. 

The syntax of an EROOS group script is given in Table 5.25. A group script is 
defined for a base class or group, and specifies a rule that dynamically and 
continuously selects objects from the base class or group in order to form the new 
group. As presented in Figure 5.22, an EROOS group is graphically represented in the 
form of a double-bordered rectangle that is connected to its base class or group, using 
an arrow from the base class or group to the new group. The definition of a group can 
be found in Definition 5.13. 

 
<group script> =  

"group" <GROUP NAME> 

  "base" [ <CLASS NAME> | <GROUP NAME> ] 

  "context" <context clause> 

  "definition" 

    "composed by" 

      <logical clause> 

   ( <trigger type> ":" <event expression> )* 

"end group" <GROUP NAME> 

Table 5.25: EROOS Group Script  

  

<GROUP 
   NAME> 

<CLASS  
   NAME> 

<GROUP 
   NAME> 

<GROUP  
   NAME> 

 

Figure 5.22: Graphical Representation of an EROOS Group 
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A group is a model entity defining, at each moment in time, 
an object population set. This set is a subset of the 
population set of the base class or the base group from which 
the group has been derived. The subset is dynamically, 
automatically and continuously created by selecting all 
objects of the base class or the base group that fulfil the 
selection rule defined by the group. 

Given  

Model M; Object Universe OU; Class C ³ Mcl; Group G ³ Mg 

Direct Group DG ³ Mg, Indirect Group IG ³ Mg 

DG: TIME � 3(OU) | " t ³ TIME: DGt ² Ct 

IG: TIME � 3(OU) | " t ³ TIME: IGt ² Gt 

Definition 5.13: EROOS Group 

The following considerations must be made regarding EROOS groups: 

• Although a group can be defined as a subgroup of an already existing group, it is 
forbidden to define mutually dependent groups. Two groups cannot be direct or 
indirect dependent on each other. 

• The archive that is associated to a group complies with the archive of the class of 
which the group is directly or indirectly a subset. The group archive does not 
contain objects that ceased to fulfil the group composition rule, but only contains 
dead objects that fulfil the group composition rule. However, since historical 
information concerning past model instances remains available in EROOS, and 
can be obtained using the time indication ‘@t’, it is possible to define a query 
that select all objects that once fulfilled the group condition but stopped doing so. 

• As presented in Figure 5.23, a group can be used as a participant in a relation 
definition. In fact, it is a representation of an underlying structure that was shown 
in Figure 5.20.b, in which the relation is directed to the base class of the group, 
having an additional constraint for the refined class that expresses the same 
condition as the one used to form the group. However, notice that objects are not 
statically connected to the group, but can dynamically become part of the group 
or can cease to be part of it. Therefore, when a model contains a relation to a 
group participant, the modeller must consider how the model should react when a 
participant object ceases to belong to the participant group. In fact, the same 
consideration has to be made in the underlying model that is presented in Figure 
5.20.b, since this model also raises a validity issue when the property of the 
participating object stops to be valid. Although not strictly necessary, it is 
advisable to define an existential dependency trigger for such relation in order to 
properly deal with property changes. 
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Figure 5.23: Using EROOS Groups for Dynamic Specialisation 

5.5.3 EROOS Groups for the Library Example 

Given the example of the library system that was presented in Section 2.3, and the 
relation hierarchy that was defined in Section 5.1.6, we can specify a dynamic group 
of overdue borrowings. An overdue borrowing can automatically be selected from the 
class of borrowings, based on the Creation Timestamp of the borrowing and the 
Maximum Lending Period of a library. Overdue borrowings must be connected to a 
fine, and a fine must also be connected to an overdue borrowing. Therefore a mutual 
dependency can be defined between an overdue borrowing and a fine, as presented in 
Figure 5.24. Since objects can automatically become part of the overdue borrowing 
group due to the progress of time, the time trigger presented in Table 5.26 must be 
formulated in order to preventing a time freeze. 

 
group OVERDUE BORROWING 

  base BORROWING 

  context 

      having participant (SELECTION 

       having participant (LIBRARY 

         having attribute Maximum Lending Period)) 

  definition 

    composed by 

      (if self in BORROWING† then self�Destruction Timestamp 

       else now) - self�Creation Timestamp 

      > self�SELECTION�LIBRARY 

        �Maximum Lending Period@(b�Creation Timestamp) 

    involved as compound-whole 

      immutable total OVERDUE BORROWING 

    having compound-part min 1 max 1 immutable FINE  

  mutual dependency addition time trigger 

    FINE.create(self) 

end group OVERDUE BORROWING 

Table 5.26: Time and Event Trigger for the Library Example 
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Figure 5.24: EROOS Groups for the Library System 

5.5.4 Contributions, Related Work, and Reflections 

Our approach concerning derived groups is a novel and original contribution to 
conceptual modelling. Derived groups capture more constraints directly in the model 
structure. Instead of specifying an explicit EROOS constraint for a relation, the 
relation can be directed to a specific group, which identifies the set of objects that can 
be a valid participant in the relation. Hereby, the EROOS constraint expression is 
transformed into a group composition rule. In addition, derived groups give a deeper 
insight in the potentials of a class, since it explicitly highlights in the model that the 
fact of belonging to a certain group, enables the participation in a number of relations.  

The EROOS group concept is somewhat comparable with dynamic inheritance and 
role modelling techniques. Dynamic inheritance refers to the ability to add, delete, or 
change parents from objects (or classes) at run-time. Dynamic inheritance has been 
introduced in different forms:  

• Nierstrasz [104] defines the concept of dynamic inheritance as a mechanism that 
permit objects to alter their behaviour in the course of normal interactions 
between objects. He distinguishes three forms of dynamic inheritance: (1) part 
inheritance, in which an object explicitly changes its behaviour by accepting new 
parts from other objects, (2) scope inheritance, in which the changes occur 
indirectly through changes inherited from the environment, and (3) dynamic 
subclassing, in which an object moves from one class to another at run-time. 
Certain programming languages, such as Smalltalk [56] and CLOS [80], provide 
scope inheritance in some form or another. Other languages, such as Self [147], 
provide dynamic part inheritance in the form of delegation. Mohindra [101] uses 
a dynamic subclassing mechanism to dynamically create new classes at run-time. 
These approaches differ from the dynamic specialisation that we propose. Instead 
of determining at run-time which inheritance structures we have to adapt, we 
want to statically determine the groups to which an object can belong at run-time.  

• Another approach related to dynamic inheritance is dynamic role modelling 
[121][166][165][145]. Role modelling allows an object to dynamically change its 
role in a model, thereby obtaining new functionality that is assigned to the role, 
and removing functionality that is no longer needed. We take a different 
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approach to modelling roles. Since roles are optional properties that an object can 
obtain, we use the base object as a participant in a role relationship. For instance, 
instead of modelling a student role for a person, we define a class of enrolments, 
refined with a person and an institute as its participants. Roles can be compared 
to EROOS groups. Based on the enrolments relation, we could define a student’s 
group for the class of persons, thereby selecting only those persons that are 
participating in an active enrolment. Although this seems to correspond to the 
student role of a person, the main difference is that EROOS groups are 
automatically composed based on the grouping rule, whereas roles must be given 
explicitly to and taken from an object. The allocation of roles is similar to the 
creation and destruction of the enrolment object, rather than to the formation of 
the EROOS group. 

• KISS [84] introduces role specialisations that can be acquired by an object based 
on associations in which the object participates. As such, a person that 
participates in a study association will automatically be part of the subgroup 
defined by the student role, while at the same time the person can also be part of 
other subgroup according to its other participations. However, dynamic 
specialisation in KISS is restricted to the participation property that can be 
derived from an existing association, and cannot be defined using a general 
composition rule as in EROOS.  

An observation that can be made is that derived groups offer an alternative manner 
for modelling constraints in an EROOS model. Modellers can choose between, e.g., 
using a constraint restricting a participant, and using a derived group as a participant. 
When constraints are transformed into group composition rules, the number of 
structural model elements, which is already high in comparison with other analysis 
methods, will even further increase. Therefore, the right balance must be found 
between structural elements, such as groups, and EROOS constraint specifications. 

5.6 Evaluation of the EROOS Universe 

Based on the core concepts offered by the EROOS kernel, we have presented a 
number of advanced concepts for performing conceptual modelling. These advanced 
concepts offer methodological support for recurring EROOS kernel analysis patterns, 
and provides a more practical methodology to the analyst. The EROOS universe 
offers a methodological approach of integrating model constraints in the modelling 
concepts and the model structure. Functionality is modelled in a distributed manner, 
by separating the basic specification of the event from exceptional constraint 
violation handling. Explicit attention is paid to the lifetime of an object without 
deciding when the object must be removed from the model, since historical 
information remains available in the model. 

Since the concepts of the EROOS universe were defined from the viewpoint of the 
analyst, they sometimes contradict to a certain extent with some of the key principles 
for conceptual modelling as defined in Chapter 3. We again evaluate each key 
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principle for conceptual modelling and describe the impact of the proposed 
extensions on achieving the principles. Since there is no direct impact of the proposed 
additional concepts on the Principles of Unambiguity, Completeness, Minimalism, 
Preciseness, No History, and Abstraction, we refer to their evaluation in Section 4.10. 
Therefore, we only discuss the impact of the EROOS universe on the Principles of 
Uniqueness, No Redundancy, and Model-Implied Constraints. 

5.6.1 Achieving Uniqueness 

The Principle of Uniqueness is maintained in the EROOS universe to a reasonably 
large extent. The impact of the proposed extensions is as follows: 

• Class archives offer an alternative way of modelling information that has a 
restricted lifetime. By introducing class archives, we explicitly force the modeller 
to reason about the duration of the validity of the modelled elements. Since class 
archives particularly reduce the number of classes contained in the model, as well 
as the number of constraints present to express dependencies, we consider it as 
an adequate concept for conceptual modelling. In order to comply with the 
Principle of Uniqueness, class archives are introduced for every EROOS class. 

• Mutability has a certain impact on achieving the Principle of Uniqueness. 
However, it is a concept that is well established in computer science, since 
variables are a common concept in programming. In an object-oriented approach, 
objects are considered to be entities that encapsulate an amount of changeable 
information. Although mutability is a natural concept for a modeller, it raises the 
question of how certain changes must be represented in a model, e.g., either as a 
distinct class or as an attribute mutation. This can often not be decided in an 
unambiguous manner. For example, consider the balance of a bank account. An 
analyst could model deposits and withdrawals as mutations of the balance 
attribute, or as first-class transaction objects. A modeller often base decisions on 
personal preferences or on a personal viewpoint of the universe of discourse. 

Mutability in EROOS is not concerned about optimisation of information, nor on 
deciding which information is needed for future retrieval. Since EROOS enables 
the retrieval of old information from past model instances, all information that 
once was present in a model can be accessed. Mutability in EROOS offers a 
dense view on a model, by hiding objects that represent information changes. By 
introducing mutability, the EROOS universe guides the modeller to use 
mutations when (1) no additional information is needed concerning the actual 
update, and (2) no specific constraints are imposed on the update. The EROOS 
universe impose the modeller to use object creation when (1) additional 
information is needed, such as the person who performed the update, or the 
actual moment on which the update occurred, or (2) specific constraints must be 
imposed on the update, such as an explicit authority for performing the update, or 
a strict increase in attribute values.  

• Compounds introduce a limited amount of variability. Whereas the EROOS 
kernel forces the analyst to model mutually dependent objects as a single object, 
the EROOS universe offers the ability to separate them into two distinct objects. 
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When the usage of compounds is restricted to the modelling of mutually 
dependent whole-part structures, it can clearly be distinguished from the 
approach in which the objects are merged into one. In fact, a mutual dependency 
is closer related to the information in the universe of discourse, since the whole 
object can be clearly distinguished from its first part. When compounds are used 
to model object slicing, splitting an object into several parts that are mutually 
dependent on each other, it is less obvious to provide clear guidelines for 
obtaining a unique model. Individual object-to-object mutual dependencies 
should be avoided as much as possible, and only used in cases when the lifecycle 
of the one object is different from the other object, e.g., an overall membership 
that is mutually dependent on yearly subscriptions. 

• Constraint triggers offer an alternative specification of reactive behaviour for 
constraint violations. As such, specifications in which all conditions regarding a 
constraint are explicitly checked in order to preserve its validity, can be avoided. 
Constraint triggers should be given preference over alternatives that duplicate 
constraint-checking specifications. Since EROOS propagates the usage of 
constraint triggers over explicit constraint checking specifications, their 
introduction does not have an impact on the Principle of Uniqueness 

• Derived groups offer an alternative manner for modelling constraints in an 
EROOS model. Since relations can use derived groups as a participant, a 
constraint restricting the participant in a certain manner can be transformed into a 
composition rule for the participating group. One could argue that an approach 
using derived groups is even preferable to constraints, since the constraint is 
implicitly captured in the model structure.37 In addition, derived groups give a 
deeper insight in the potentials of a class, since it explicitly highlights that the 
fact of belonging to a certain group, enables the participation in a number of 
relations. Due to these benefits, we relax the Principle of Uniqueness to a certain 
extent, and offer the modeller the choice between using constraints and derived 
groups. The modeller must consider whether it is beneficial to highlight the 
derived group in an explicit manner or not. 

5.6.2 Achieving No Redundancy 

The Principle of No Redundancy is maintained in the EROOS universe to a large 
extent. Only compounds and derived groups have a certain impact on it. 

• Compounds offer the ability of modelling mutually dependent objects. As stated 
in the evaluation of the Principle of No Redundancy for the EROOS there is a 
danger of duplication using mutual dependency. In the previous section, we 
already argued that individual object-to-object mutual dependencies should be 
restricted to the cases where the lifetimes of the two objects differ. Using this 
methodological rule, it is impossible to model duplicate objects, since a different 
lifetime reflects a difference in knowledge captured inside the model. 

                                                  
37 Actually, the constraint is not really implicitly captured, since it is moved to the group, and acts as a 
composition rule for that group. 



5.6. EVALUATION OF THE EROOS UNIVERSE 203 

 

• Derived groups offer a manner to model derived information. Therefore, the 
usage of derived groups in a model violates the principle of No Redundancy. Due 
to its benefits for the modeller, we relax the Principle of Uniqueness to a certain 
extent and offer the modeller the choice whether to use derived groups or not. 

5.6.3 Achieving Model-Implied Constraints 

The principle of Model-Implied Constraints is enforced in the EROOS universe 
through the introduction of class archives, compounds, and derived groups.  

• Class archives offer the possibility of implying archive related constraints 
directly by the relation definition. Existential dependency hierarchies can contain 
living as well as dead objects. As such, existential dependency can be used to 
model that a certain situation must have occurred before a specific can be 
created, e.g., a borrowing must have been returned before a fine can be 
calculated. In addition, constraints concerning lifetime dependencies do no 
longer have to be formulated explicitly, but can be expressed implicitly in the 
model structure using class archives as participants. This enlarges the set of 
constraints that are implied by the model structure. 

• EROOS compounds offer the ability to express mutual dependency directly in 
the model structure. The EROOS kernel only supports the expression of 
unidirectional existential dependency, so that mutually dependent objects must 
be merged into a single fused object. The EROOS universe enables to capture 
mutual dependency constraint in the model structure. 

• Derived groups enable to transform a large part of the explicit model constraints 
into constraints implied by the model structure. Instead of having to specify an 
explicit EROOS model constraint for a refined class, the relation can directly be 
targeted to the group of participant objects that fulfil the necessary conditions for 
participating in the relation. The derived group must of course be defined, 
thereby transforming the constraint into a group composition rule. Nevertheless, 
the dependency of the refined class on a specific subgroup of the participating 
class is implicitly captured in the model structure, and can be visualised in the 
model. As stated higher, this visualisation of the constraint gives a deeper insight 
in the potentials of a class, since it explicitly highlights that the fact of belonging 
to a certain group, enables the participation in a number of relations. 

5.6.4 Final Reflections 

The EROOS universe tries to obtain the right balance between adhering to the 
principles for conceptual modelling as defined in Chapter 3, and achieving a more 
practical approach for conceptual modelling, through the offering of advanced 
conceptual modelling concepts for recurring EROOS kernel analysis patterns. 
Although the EROOS universe concepts are adhering less to the stated key principles 
for conceptual modelling, in comparison with the EROOS kernel, the EROOS 
universe still addresses the conceptual modelling principles much better than UML 
and most analysis methods [114]. However, a number of issues could be raised. 
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• The concepts that are proposed by the EROOS universe could be too complex for 
customers, end users, and practitioners to understand. According to our 
experience in teaching EROOS through industrial workshops, a large number of 
people can learn rather quickly to comprehend the knowledge represented inside 
an EROOS model, and were able to judge the correctness of a representation of 
the universe of discourse. Higher educated people and people with a 
mathematical background, can easily learn to assess the EROOS methodology in 
an active manner. But it is likely that a number of persons involved in the 
software engineering process, will not easily be able to read and review EROOS 
conceptual models. Model-Driven Development (MDD) [50][83] techniques can 
help to transform an EROOS model into a form that is more easily understood by 
people not familiar with the EROOS methodology. It is possible to transform a 
model element into a number of statements in natural language that tries to 
formulate the precise meaning of the element in a more understandable manner. 
For example, the HOORA Analysis Tool (HAT) [70][71] is a modelling tool that 
uses model transformation techniques to generate textual documents from a 
UML model. The same approach could be applied to transform EROOS models. 

• The EROOS methodology forces the analyst to highlight certain information 
explicitly as objects. For instance, integer, Boolean and multi-valued attributes 
must be transformed into objects, which specifically model the individual 
elements that are concealed behind these attribute. As an example, it is 
impossible to model the fact that hundred seats are available in a concert hall 
without modelling every single seat as an object. This leads to the presence of a 
large number of objects in a model instance. We claim that it is necessary to 
highlight and make explicit all concealed information in a conceptual model in 
order to alert the analyst about these facts. Although an analyst would prefer to 
model certain elements in a different manner, one must be aware that conceptual 
modelling is not a form of art, in which the analyst tries to make a personal 
impression of the universe of discourse. Conceptual modelling is a discipline, in 
which a rigorous process must be followed to capture all knowledge from the 
universe of discourse into a conceptual model. Note that the conceptual model 
does not dictate the implementation structures. Based on an EROOS conceptual 
model, the architectural and design phase will determine the most optimal 
implementation structure for the software system. In the same manner, the design 
phase will determine which information concerning archived objects must be 
stored, and which default EROOS attributes must be implemented. 

• The concepts that are proposed by the EROOS universe, force the analyst to 
integrate statechart and activity diagrams into the class diagram, thereby 
transforming states into first-class objects. One could argue that statechart 
diagrams can be useful to model the possible states of an element. We claim that 
a single model approach for conceptual modelling (1) improves the consistency 
of the model, avoiding inconsistencies between information in the class model 
and the statechart model, and (2) highlights concealed information in a 
conceptual model by reifying object states into explicit state objects.  
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Chapter 6 Conclusions 

Conclusions 

In this chapter, we summarise the main contributions of this dissertation in the area of 
object-oriented conceptual modelling, and indicate possible directions for further 
research.  

6.1 Summary and Contributions 

In this dissertation, a constraint-centric approach towards object-oriented conceptual 
modelling is proposed. This is achieved by the usage of high-level constraint 
specifications as the core model structure for conceptual modelling. Our approach has 
converged into the EROOS methodology for conceptual modelling, of which two 
versions are proposed. A core version, the EROOS kernel, uses a constructional 
modelling approach in which information can only be added to a conceptual model 
instance. An extended version of the methodology, the EROOS universe, provides 
additional support for recurrent EROOS kernel analysis patterns through advanced 
and more practical concepts using the core version as the underlying base.  

The contributions of this dissertation can be situated on three levels: (1) advanced 
methodological concepts for achieving the key principles for conceptual modelling, 
(2) the definition of new structural concepts to express model constraints implicitly in 
the model structure, and (3) the introduction of constraints with supporting resolution 
mechanisms as a first-class model concept. 
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6.1.1 Advanced Methodological Concepts 

Concerning methodological concepts for conceptual modelling, we have made 
following contributions: 

• Taxonomy for model constraint formalisms in object-oriented analysis. We have 
developed a taxonomy for model constraints in object-oriented analysis, based on 
an evaluation and comparison of model constraint specification formalisms and 
notations. We defined 5 types of constraint specification types, and have argued 
the advantages and disadvantages of each approach. We have shown that 
formulating constraints as informal text or as operational restrictions is not a 
suitable approach for conceptual modelling. We propose to (1) enrich the 
conceptual model structure using existential dependency, thereby implying 
constraints by the model structure, (2) integrate constraints in specific model 
entities if they are closely related to each other, and (3) specify constraints that 
can spread out over several model entities as a first-class model concept. 

• Principles for conceptual modelling. We have defined the key principles for 
conceptual modelling that are of utmost importance during analysis for making 
suitable conceptual models. We have argued why these principles are important 
for conceptual modelling, and used them as evaluation and validation criteria for 
our own work. Although a number of principles and quality criteria for modelling 
can be found in literature, we claim to have a more elaborate set of principles, 
and a more precise definition of the principles. Based on our taxonomy for model 
constraint formalisms in object-oriented analysis, we have proposed the Principle 
of Model-Implied Constraint as a key principle for conceptual modelling. 

• Constructional conceptual model approach. In order to comply with the principle 
of uniqueness, we have developed a constructional model approach, in which 
model instances can only grow and information can only be added to a model. 
Our approach allows modellers to focus on which information from the universe 
of discourse to model, instead of how to model the information when it could 
become outdated. A modeller does no longer have to decide about whether the 
information must be kept inside a model or can be overridden, since the set of 
knowledge and facts inside an EROOS model can only be enlarged. 

• Availability of historical information. We have defined the concept of a class 
archive to express the fact that some items do not longer exist, or that some 
information has ceased to be valid. Although objects can be destroyed in an 
EROOS model, they do not vanish from the conceptual model. They still can be 
addressed to gather historical information regarding former attribute values and 
relation links. So the destruction of an object only reflects the fact that 
information represented by the object has ceased to exist in the universe of 
discourse. Issues regarding the need for an object in order to obtain certain 
information, or for performing certain tasks, should not be considered during 
conceptual modelling. Our approach allows modellers to focus on which 
information to model, instead of how to preserve the information. Since a 
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conceptual model does not only need to express the facts that occurred in the 
universe of discourse, but also when they occurred, we have provided a default 
creation and destruction timestamp for each object. The presence of these default 
attributes for all objects of every class enables the modeller to reason about the 
moments at which an object has come into existence and has ceased to exist. 
Since a modeller often has to reason about the time a certain event occurred, and 
about the life span of objects, the EROOS methodology automatically offers this 
kind of information for all objects. In our approach, the modeller does no longer 
have to decide whether such attributes are needed within a model, since they are 
always available. The decision on whether they have to be realised in the actual 
software system can be deferred to the design phase.  

• Formal notation for the semantics of queries and events. We have developed a 
formal specification of model events and queries in order to obtain a complete 
and precise description of the behaviour part of a model. As such, the conceptual 
model can be used for simulation, which leads to a better validation of the model 
by the customers, as well as for model transformation to more software focussed 
models at a lower abstraction level. Our work predates and is largely comparable 
with the Object Constraint Language (OCL). 

6.1.2 Model Constraints implied by the EROOS Model Structure 

Concerning the definition of new structural concepts, we proposed well-defined 
modelling concepts with a dedicated applicability context in order to express model 
constraints implicitly in the model structure. We have made following contributions: 

• The incorporation of model constraints in each methodological concept by 
definition. Contrary with UML that provides a large set of loosely defined 
concepts that are applicable in many situations, we have defined a small set of 
well-defined methodological concepts that incorporate important constraints by 
definition. The EROOS concepts incorporate a number of model-implied 
constraints, such as disjunctness, immutability, finiteness, uniqueness, permanent 
binding, existential dependency, abstractness, and partition disjunctness. This 
deliberately limits their usage to specific usage contexts, and forces the analyst to 
use adequate concepts in each situation. Our approach guides the analyst to the 
most optimal conceptual model, and reifies certain concealed elements from the 
universe of discourse into explicit objects in the conceptual model. 

• The usage of existential dependency as the key modelling criterion for 
constructing the conceptual model structure. A key contribution of the EROOS 
methodology is its hierarchical relational model structure. We have developed a 
model structure that is solely determined by existential dependency of 
information in the universe of discourse. Our approach leads to a hierarchical 
object dependency structure that gives a clear insight in which information is 
dependent on certain other information. It leads to a powerful model that implies 
a large number of model constraints directly in its model structure. Whereas 
UML offers the choice of using different kinds of associations, our approach 
always encapsulates a relation into a refined class. We propose three kinds of 
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relational concepts: (1) A unary relation captures a dependency on a single 
object, (2) a binary relation captures a dependency on two objects, which can be 
seen as the reification of a relation between two classes into a class of its own, 
and (3) a compound captures a mutual dependency between a non-empty whole 
and a number of dependent parts.  

• Explicit class archives. We have defined the concept of a class archive to express 
the fact that some items do not longer exist, or that some information has ceased 
to be valid. We have extended the relation concept in order to use class archives 
in existential dependency relationships. Our approach results in a powerful and 
high-level modelling concept, in which important dependency constraints can 
directly be implied by the model structure. All kinds of restrictions between the 
lifetime of a refined object and its participant object can be specified directly in 
the relation definition. 

6.1.3 Model Constraints as a First-Class Model Concept 

Concerning the introduction of constraints as a first-class model concept, we have 
made following contributions: 

• Model constraints as a first-class model concept. In addition to a large number of 
constraints that are directly implied by the EROOS model structure, we have 
developed a mechanism for specifying model constraints as a first-class model 
concept. Using a formal notation based on many-sorted first order logic, model 
constraints can be superimposed on a model in order to express rules and 
regulations from the universe of discourse. Our work predates and is largely 
comparable with the Object Constraint Language (OCL) for UML, which 
originated in 1995 within IBM. EROOS constraints enforce logical rules on a 
certain part of the conceptual model. Every event that occurs in a conceptual 
model, due to an occurrence in the universe of discourse, may only change the 
model instance in such a manner that it satisfies all constraints. The formalisation 
of model constraints in a conceptual model is a key necessity for a further usage 
of the conceptual model in the software engineering lifecycle. For instance, 
model transformations from a conceptual model into lower-level design models 
can only succeed when the conceptual model is fully formalised. In addition, we 
developed in EROOS a single and unique viewpoint from which a constraint 
must be formulated, namely the top classes in the relation hierarchy. This leads to 
standardised and uniform constraint specifications in a conceptual model.  

• Constraint trigger concept. We have proposed the constraint trigger concept in 
order to attach a generic constraint solver to a constraint. The goal of a constraint 
trigger is to resolve constraint violations by injecting error handling behaviour 
into an event, or by firing an event due to progress of time. This enables the 
specification of distributed effect descriptions for events, in which only the basic 
effect is specified for an event. Small additional pieces of functionality are 
specified in constraint triggers that will be added to the basic event description 
according to the constraint violations caused by the event. This approach creates 
a separation between the description of the normal event handling and the 
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exceptional event handling, since the normal event handling is specified in the 
event, whereas the exceptional event handling is specified in a number of 
constraint triggers. Without constraint triggers, event descriptions contain a lot of 
duplicated constraint checking and avoidance specifications, in which possible 
constraint violations must be captured and resolved. Constraint triggers support 
separation of concerns, by clustering all functionality regarding the constraint 
handling in a single place. It can be used to introduce specific constraint related 
crosscutting behaviour into a model, through the extension of all events that can 
violate the constraint. Therefore, it can be considered as a kind of Aspect-
Oriented Software Development (AOSD) technique. 

6.1.4 Value Added for Model-Driven Development 

EROOS brings added value to a Model-Driven Development (MDD) approach by the 
formalisation of conceptual modelling. This enables to advance the start of the MDD 
process towards the analysis phase, starting with a conceptual model of the universe 
of discourse. 

Model-Driven Development (MDD) is a framework for software development, which 
uses a rigorous development by translation approach to construct lower-level 
Platform-specific Models (PSM) based on higher-level Platform-Independent Models 
(PIM). The goal is to separate architectural and design-oriented issues from 
technology and implementation-oriented decisions using a layered model 
transformation structure. This allows to gradually introduce more detail and platform 
dependency into the lower-level development models. Such approach can ultimately 
result in a (semi-) automatic generation of the implementation code for the software 
system. MDD supports on formalised models that (1) can be used as an input for a 
model transformer, and (2) are produced as the outcome of a transformation step. 

Since most analysis methods produce models containing informal descriptions, these 
models are not usable in an MDD approach. Informal descriptions cannot be used as 
an input for model transformation, since it is extremely difficult to extract structured 
information from an informal model element. Models can only be used within an 
MDD approach when they contain their information in a formal notation that can be 
investigated, evaluated, and transformed into a different format. Since EROOS 
provides a full formalisation of all structural and behavioural elements of a 
conceptual model, it is highly suited as an input model notation for an MDD 
transformation. 

The transformation of conceptual models in a (semi-) automatic manner is beneficial 
to the areas of conceptual modelling as well as MDD.  

• Concerning conceptual modelling, it can help to capitalise the analysis results 
during consecutive software engineering phases. A conceptual model is not a 
mere description of the universe of discourse and the functional requirements, 
but can be uses as a profitable asset that serves as a base for the overall system 
development. In addition, MDD transformations can enable rapid prototyping 
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and produce model simulations in order to verify and validate the conceptual 
model. Moreover, abstract views on a conceptual model could be generated 
techniques to improve the communication with the clients and end users. As 
such, a detailed conceptual model can be translated into a suitable customer 
interaction model using MDD model transformation techniques. 

• Concerning MDD, a formal conceptual model enables to start the MDD process 
from the formalised conceptual model of the universe of discourse, instead of 
having to start from a platform-independent software model. This very first 
platform-independent software model could be generated by transforming the 
conceptual EROOS model. 

6.2 Validation 

We have validated the EROOS methodology on three levels:  

• In order to assess the capabilities of EROOS for conceptual modelling, we have 
performed a large number of case studies. In cooperation with other members of 
SOM research group, and a number of industrial partners, we have applied the 
EROOS methodology on a large number of case studies from different 
application domains. These case studies have been performed as research 
projects in cooperation with industrial partners, as Master of Science theses, 
often in cooperation with industry, and as student projects part of a Master’s 
course on object-oriented analysis (OGA). The studied domains include: 

− Workflow and administrative systems: management information system 
(thesis with E2S), trouble ticketing system (thesis with LUDIT-
KULeuvenNet), high school administration system (thesis with NVKSO), 
library system (thesis), sale by auction system (thesis), departmental 
database (thesis), boat rental system (thesis), car rental system (OGA), 
airline reservation and check-in system (OGA), and a telephone decree 
(OGA). 

− Planning and scheduling systems: electronic agenda system (thesis). 

− Process steering and control systems: air conditioning system (thesis with 
E2S and Daikin), cooking simulation and expert system (thesis with Alma), 
railway infrastructure control system (thesis with ‘De Leuvense modeltrein-
club’), elevator control system (thesis), and traffic light system (thesis). 

− Electronic and mechanical systems: flexible multiplexer (research project 
with Alcatel), Network Management System (thesis with Siemens), audio 
set usage specification (thesis with Philips), Internet Telephony System 
(thesis with Philips), radiological workstation (thesis with ‘UZ 
Gasthuisberg’), steel factory material flow (thesis with Sidmar), PABX 
telephone system (thesis), and physics measurement environment (thesis). 
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− Entertainment and visualisation systems: augmented reality man machine 
interface (thesis), graphical user interface capability modelling (thesis), 
adventure game (thesis), and ‘Magic: The Gathering’ card game (thesis). 

− Software systems: syntax oriented editor generator (thesis with E2S), 
software modelling case tool (thesis), programming environment for Logo 
(thesis), load balancing for multiprocessor systems (thesis), E-mail system 
(thesis), specification of EROOS in EROOS (thesis), and electronic agenda 
(OGA). 

The large variety of domains that have been modelled using EROOS, support our 
claim that the EROOS methodology is not only adequate for the description of 
information systems, but is actually suitable for the conceptual modelling of 
many domain types. 

Our findings concerning these case studies, are that (1) EROOS is suited to 
describe a wide variety of domain types, (2) the EROOS methodology helps to 
reveal hidden domain knowledge, (3) EROOS is a good vehicle to teach object-
orientation, in general, and conceptual modelling, in particular, (4) it requires a 
rather large effort and a precise approach and attitude to construct EROOS 
conceptual models, (5) MDD tool support is needed to capitalise on the 
conceptual modelling activity, and (6) people with a M.Sc. degree can be trained 
rather easily to acquire active EROOS modelling skills, while people with a 
B.Sc. degree often only manage to acquire passive EROOS modelling skills, 
which means that they succeed to understand, assess and review EROOS models 
but have difficulties in constructing them. 

• In order to assess the capabilities of EROOS in achieving the principle of 
uniqueness, we have compared and evaluated the use of EROOS in a Master’s 
course on object-oriented analysis (OGA - ‘objectgerichte analyse’, formerly 
OGO- ‘objectgericht ontwerp’). Our findings were that besides naming diversity, 
the three main causes of model differences are (1) the level of detail of the 
performed modelling, in which students had a different opinion on the relevance 
of certain facts from the universe of discourse, (2) personal knowledge of the 
universe of discourse, in which certain errors were introduced due to the inability 
to obtain a proper insight in the universe of discourse, and (3) errors that were 
made against the EROOS methodology, in which the students did not use the 
modelling concepts in a valid manner. 

• We have developed tool support for the EROOS methodology concerning 
modelling, simulation, and transformation, consisting of  

− a modelling tool that allows a modeller to construct EROOS models, and 
generate script specifications and model diagrams. This EROOS tool is 
actually developed by Bart Swennen of the SOM research group. 

− a generator for model simulations that automatically generates a C++ or a 
Java application with an accompanied generic user interface for an EROOS 
model, in order to support rapid prototyping and early model validation. The 
application contains automatically generated constraint checking code, 
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which enforces the model constraints by checking the resulting model 
instance after an event occurrence, and performing a rollback whenever a 
constraint is violated. This generator is developed in a number of successive 
Master’s theses. 

− a transformer of EROOS models to UML models, in which the EROOS 
hierarchical model structure is flattened into a UML model, comprising a 
number of classes and plain associations. This transformer is also developed 
in a Master’s thesis. 

6.3 Directions for Future Work 

The search for the perfect conceptual modelling methodology is far from over. To 
conclude this dissertation, we point out some possible directions for further research: 

• EROOS methodological improvements. Concerning the EROOS methodology, 
some issues could be further elaborated:  

− Support for distributed effect descriptions. The introduction of the constraint 
trigger concept enables the specification of a distributed effect description, 
in which the basic event functionality is separated from the constraint error 
handling functionality. However, a drawback of such distributed effect 
descriptions is that the impact of an event on the model instance is not easily 
assessed. The analyst has to compose the overall effect description oneself, 
by combining the basic event description with all constraint trigger 
descriptions of those constraints that can be violated by the event. 
Therefore, tool support is appropriate in order to help identifying the 
constraints that can be violated by an event, and stating the impact of the 
associated triggers that are relevant for the event.  

− Soft Constraints. EROOS constraints impose restrictions on a conceptual 
model that must be satisfied at all times. Soft constraints are constraints that 
have an attached level of preference or importance. As such, not all 
constraints must be satisfied at all times, but the goal is to reach the highest 
available satisfaction level. Further research could integrate the notion of 
soft constraint in the EROOS methodology.  

− Extensions to EROOS. Bekaert [13] suggests a number of improvements 
that could be made to EROOS, such as (1) triggered-only events, which are 
events that can only occur as a constraint trigger, (2) creation and 
destruction time constraints, which are constraints that only must be 
satisfied at the moment on which an object is created or destroyed, and (3) 
the introduction of temporal logic and artificial intelligence techniques.  

− An ontological mapping to the Bunge-Wand-Weber (BWW) reference 
model. The semantics of an EROOS conceptual model could be mapped to 
the Bunge-Wand-Weber (BWW) model [21][22][158][160][159], which is a 
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reference model for constructs in information systems modelling. Opdahl 
[114] presented such mapping for the Unified Modeling Language (UML).  

• Model-Driven Development Support from EROOS to UML. In contrast with the 
standardisation of UML by the Object Management Group (OMG), which forced 
most analysis methods to the usage of UML as their modelling notation, the 
Model Driven Development (MDD) approach supports the usage of models in 
several kinds of notations different from UML. By introducing model 
transformation techniques, MDD propagates to use the right model and notation 
at each level of abstraction. For instance, EROOS could be used as a conceptual 
modelling notation, whereupon the EROOS model can be transformed into a 
UML model that serves as a design notation. Such approach capitalises the 
analysis results obtained by the EROOS methodology into practical software-
oriented UML models. Although we have developed a prototype transformer 
from EROOS to UML, a suitable MDD transformation infrastructure demands 
additional advanced support, namely 

− providing suitable tool support for EROOS, including multi-user facilities 
and versioning support,  

− providing a MOF (Meta Object Facility) description of EROOS models,  

− studying and developing transformation patterns from EROOS to UML 
constructs,  

− realising a transformation environment in which software engineers can 
easily select a number of transformation patterns to generate a suitable 
UML model starting from a conceptual EROOS model.  

• Model transformations to abstract customer views. EROOS models can become 
very complex, which makes them difficult for customers and end users to 
comprehend. More abstract representations, either textual or graphical, could be 
made starting from the information contained in an EROOS model. In fact, it is 
possible to transform a model element into a number of statements in natural 
language, which could try to formulate the precise meaning of the EROOS model 
element in a more understandable manner. Such abstractions could be better 
suited as a customer interaction format during the model validation activities. 
MDD techniques could be developed to transform EROOS models into more 
abstract representations, and vice versa. 

• Realisation of a constraint-centric approach in UML. This dissertation focuses 
on the integration of constraints in the EROOS methodology. Although UML 
offers the Object Constraint Language (OCL) as a constraint specification 
formalism, it does not offer proper notational support for expressing integrated 
and applied constraints. A number of techniques that have been developed in 
EROOS could be transposed to UML in order to make UML better suitable for 
conceptual modelling, e.g., by defining an EROOS profile for UML. Since UML 
is the de facto common language for object-oriented modelling, through its 
standardisation by the OMG, the impact on bringing our results into practice will 
become much larger when they can be applied in a UML context. 





 

215 

Bibliography 

[1] Abrial, J.-R., The B-Book: Assigning Programs to Meanings. Cambridge 
University Press, 1996.  

[2] Aho, A.V., and Ullman, J.D., The Theory of Parsing, Translation and 
Compiling, Volume I: Parsing. Prentice-Hall, 1972. 

[3] Ambler, S.W., Agile Modeling: Effective Practices for eXtreme 
Programming and the Unified Process. Wiley, 2002. 

[4] Ambler, S.W., The Object Primer: Agile Model-Driven Development with 
UML2.0, Third Edition. Cambridge University Press, 2004. 

[5] Apt, K.R., Principles of Constraint Programming. University Press, 2003. 

[6] Arnold, P., Bodoff, S., Coleman, D., Gilchrist, H., and Hayes, F., An 
Evaluation of Five Object-oriented Development Methods. In: Wiener, 
R.S., editor, Journal of Object-Oriented Programming (JOOP) Special 
Issue on Analysis and Design, pages 107-121, 1991. 

[7] Atkinson, C., Bayer, J., Bunse, C., Kamsties, E., Laitenberger, O., Laqua, 
R., Muthig, D., Paech, B., Wüst, J., and Zettel, J., Component-based 
Product Line Engineering with UML. Addison-Wesley, 2002. 

[8] Bar-David, T., Formal Methods: The Elevator, A Rigorous and Friendly 
Introduction to Object Modeling. In: Report on Object Analysis and 
Design (ROAD), 1(1):10-16, 1994. 

[9] Barnes, J.G.P., Programming in Ada Plus an Overview of Ada 9X, Fourth 
Edition. Addison-Wesley, 1993. 

[10] Bass, L., Clements, P., and Kazman, R., Software Architecture in Practice, 
Second Edition. Addison-Wesley, 2003. 



216 BIBLIOGRAPHY 

[11] Beck, K., Beedle, M., van Bennekum, A., Cockburn, A., Cunningham, W., 
Fowler, M., Grenning, J., Highsmith, J., Hunt, A., Jeffries, R., Kern, J., 
Marick, B., Martin, R.C., Mellor, S., Schwaber, K., Sutherland, J., and 
Thomas, D.: Manifesto for Agile Software Development. The Agile 
Alliance, The Lodge at Snowbird Ski Resort, Utah, USA, 2001. 

[12] Beck, K., Test-Driven Development by Example. Addison-Wesley, 2003. 

[13] Bekaert, P., Behavioral Semantics for EROOS Conceptual Modeling: 
Separation of Concerns Through Nondeterminism. Ph.D. Dissertation, 
K.U.Leuven, Department of Computer Science, Leuven, Belgium, 2006. 

[14] Bistarelli, S., Frühwirth, T., Marte, M., and Rossi, F., Soft Concurrent 
Propagation and Solving in Constraint Handling Rules. In: Computational 
Intelligence, 20(2):287-307, 2004. 

[15] Booch, G., Object Oriented Analysis and Design with Applications, 
Second Edition. Benjamin-Cummings, 1994. 

[16] Booch, G., Object Oriented Design with Applications. Benjamin-
Cummings, 1991. 

[17] Booch, G., Object-Oriented Design. In: ACM SIGAda Ada Letters, 
1(3):64-76, 1982. 

[18] Borger, M., Baier, T., Wienberg, F., and Lamersdorf, W., Extreme 
Modeling. In: Succi, G., and Marchesi, M., editors, Extreme Programming 
Examined, Addison Wesley, pages 175-189, 2001. 

[19] Born, G., Process Management to Quality Improvement: The Way to 
Design, Document and Re-engineer Business Systems. Wiley, 1994. 

[20] Brooks Jr., F.P., No Silver Bullet: Essence and Accidents of Software 
Engineering. In: Computer 20(4):10-19, 1987. 

[21] Bunge, M., Treatise on Basic Philosophy, Volume 3: Ontology I: The 
Furniture of the World. Reidel, 1977. 

[22] Bunge, M., Treatise on Basic Philosophy, Volume 4: Ontology II: A 
World of Systems. Reidel, 1979. 

[23] Carmichael, A., editor, Object Development Methods. SIGS Books, 1994. 

[24] Chen, P.P., The Entity-Relationship Model: Toward a Unified View of 
Data. In: ACM Transactions on Database Systems, 1(1):9-36, 1976. 



BIBLIOGRAPHY 217 

 

[25] Chidamber, S.R., and Kemerer, C.F., A Metrics Suite for Object-Oriented 
Design. In: IEEE Transactions on Software Engineering, 18(11):943-956, 
1994. 

[26] Chidamber, S.R., and Kemerer, C.F., Towards a Metrics Suite for Object-
Oriented Design. In: Paepcke, A., editor, ACM Conference on Object 
Oriented Programming, Systems, Languages and Applications (OOPSLA 
’91), ACM SIGPLAN Notices, 26(11):197-211, 1991. 

[27] Chrissis, M.B., Konrad. M., and Shrum, S., CMMI: Guidelines for Process 
Integration and Product Improvement. Addison-Wesley, 2003. 

[28] Coad, P., and Yourdon, E., Object-Oriented Analysis, Second Edition. 
Yourdon Press, 1991. 

[29] Coad, P., and Yourdon, E., Object-Oriented Design. Yourdon Press, 1991. 

[30] Codd, E.F., A Relational Model of Data for Large Shared Data Banks. In: 
Communications of the ACM, 13(6):377-387, 1970. 

[31] Coleman, D., Arnold, P., Bodoff, S., Dollin, C., Gilchrist, H., Hayes, F., 
and Jeremaes, P., Object-Oriented Development: The FUSION Method. 
Prentice-Hall, 1994. 

[32] Cribbs, J., Moon, S., and Roe, C., An Evaluation of Object-Oriented and 
Design Methodologies. SIGS Books, 1992. 

[33] Dahl, O.-J., and Nygaard, K., SIMULA: An ALGOL-based Simulation 
Language. In: Communications of the ACM, 9(9):671-678, 1966. 

[34] de Champeaux, D., America, P., Coleman, D., Duke, R., Lea, D., and 
Leavens, G., Formal Techniques for OO Software Development 
(PANEL). In: Paepcke, A., editor, ACM Conference on Object Oriented 
Programming, Systems, Languages and Applications (OOPSLA ’91), 
ACM SIGPLAN Notices, 26(11):166-170, 1991. 

[35] de Champeaux, D., and Faure, P., A Comparative Study of Object-
Oriented Analysis Methods. In: Journal of Object-Oriented Programming 
(JOOP), 5(1):21-33, 1992. 

[36] Dechter, R., Constraint Processing. Morgan Kaufmann, 2003. 

[37] Demarco, T., Structured Analysis and System Specification. Prentice-Hall, 
1979. 

[38] Devos, F., Patterns and Anti-Patterns in Object-Oriented Analysis. Ph.D. 
Dissertation, K.U.Leuven, Department of Computer Science, Leuven, 
Belgium, 2004. 



218 BIBLIOGRAPHY 

[39] Dodani, M., Semantically Rich Object-Oriented Software Engineering 
Methodologies. In: Report on Object Analysis and Design (ROAD), 
1(1):17-21, 1994. 

[40] Downs, E., Clare, P., and Coe, I., Structured Systems Analysis and Design 
Method: Application and Context. Prentice Hall, 1987. 

[41] D’Souza, D, Rationalizing Object Models and Design, Part 1: Models 
versus Designs. In: Report on Object Analysis and Design (ROAD), 
1(1):22-27, 1994. 

[42] Elmasri, R., Weeldreyer, J., and Hevner, A., The Category Concept: An 
Extension to the Entity-Relationship Model. In: International Journal on 
Data and Knowledge Engineering, 1(1):75-116, 1985. 

[43] Embley, D.W., Kurtz, B.D., and Woodfield, S.N., Object-Oriented 
Systems Analysis. Yourdon Press, 1992. 

[44] Fenton, N.E., and Pfleeger, S.L., Software Metrics: A Rigorous & 
Practical Approach, Second Edition. PWS Publishing Company, 1997. 

[45] Fichman, R.G., and Kemerer, C.F., Object-Oriented and Conventional 
Analysis and Design Methods: Comparison and Critique. In: IEEE 
Computer, 25(10):22-39, 1992. 

[46] Filman, R.E., Elrad, T., Clarke, S., and Aksit, M., Aspect-Oriented 
Software Development. Addison-Wesley, 2005. 

[47] Firesmith, D.G., Object-Oriented Software Requirements Analysis and 
Logical Design: A Software Engineering Approach. Wiley, 1993. 

[48] Fowler, M., Analysis Patterns: Reusable Object Models. Addison-Wesley, 
1996. 

[49] Fowler, M., Cairns, T., and Thursz, M., Observations and Measurements. 
In: Report on Analysis and Design (ROAD), 2(3):20-37 1995. 

[50] Frankel, D.S., Model Driven Architecture: Applying MDA to Enterprise 
Computing. Wiley, 2003. 

[51] Freuder, E.C., and Wallace, R.J., Partial Constraint Satisfaction. In: 
Artificial Intelligence, 58(1-3):21-70, 1992. 

[52] Frühwirth, T., and Abdennadher, S., Essentials of Constraint 
Programming. Springer-Verlag, 2003. 

[53] Furey, T.R., Garlitz, J.L., and Kelleher, M.L., Applying Information 
Technology to Reengineering. In: Planning Review, 21(6):22-25, 1993. 



BIBLIOGRAPHY 219 

 

[54] Gane, C., and Sarson, T., Structured Systems Analysis: Tools and 
Techniques. Prentice-Hall, 1979. 

[55] Gilb, T., Software Metrics. Little, Brown, and Co., 1976. 

[56] Goldberg, A., and Robson, D., Smalltalk-80: The Language and its 
Implementation. Addison-Wesley, 1983. 

[57] Gosling, J., Joy, B., Steele, G., and Bracha, G., The Java Language 
Specification, Third Edition. Prentice Hall, 2005. 

[58] Graham, I, Migrating to Object Technology. Addison-Wesley, 1995. 

[59] Harel, D., and Politi, M., Modeling Reactive Systems with Statecharts: 
The Statemate Approach, McGraw-Hill, 1998. 

[60] Harel, D., On Visual Formalisms. In: Communications of the ACM, 
31(5):514-530, 1988. 

[61] Harel, D., StateCharts: A Visual Formalism for Complex Systems. In: 
Science of Computer Programming, 8(3): 231-274, 1987. 

[62] Hayes, F., and Coleman, D., Coherent Models for Object-Oriented 
Analysis. In: Paepcke, A., editor, ACM Conference on Object Oriented 
Programming, Systems, Languages and Applications (OOPSLA ’91), 
ACM SIGPLAN Notices, 26(11):171-183, 1991. 

[63] Hayes, I, editor, Specification Case Studies. Prentice-Hall, 1987. 

[64] Henderson-Sellers, B., and Edwards, J.M., Book Two of Object-Oriented 
Knowledge: The Working Object. Prentice-Hall, 1994. 

[65] Henderson-Sellers, B., Fung, M, and Yap, L.M., The Role of Business 
Rules and Quality in Methodologies. In: Report on Object Analysis and 
Design (ROAD), 2(4):10-17, 1995. 

[66] Hoeydalsvik, G.M., Object Analysis and Design: Description of Methods. 
Wiley, 1994. 

[67] Hunt, V.D., Process Mapping: How to Reengineer Your Business 
Processes. Wiley, 1996. 

[68] Hutt, A.T.F., editor, Object-Oriented Analysis and Design: Comparison of 
Methods. Wiley, 1994.  

[69] Hutt, A.T.F., editor, Object-Oriented Analysis and Design: Description of 
Methods. Wiley, 1994. 



220 BIBLIOGRAPHY 

[70] Huybrechts, M., and Pauwels, G., Agile MDA. Internal ITEA-AGILE 
Project Report, 2005. 

[71] Huybrechts, M., Rammeloo, S., and Van Baelen, S., Realizing Agility 
through Model Driven Architecture. In: AGILE Newsletter 2/2006, ITEA-
AGILE consortium, 2006. 

[72] Jackson, M.A., Principles of Program Design. Academic Press, 1975. 

[73] Jackson, M.A., System Development. Prentice-Hall, 1983. 

[74] Jacobson, I., Booch, G., and Rumbaugh, J., The Unified Software 
Development Process. Addison-Wesley, 1999. 

[75] Jacobson, I., Christerson, M., Jonsson, P., and Övergaard, G., Object-
Oriented Software Engineering: A Use Case Driven Approach. Addison-
Wesley, 1992. 

[76] Jacobson, I., Object Oriented Development in an Industrial Environment. 
In: Meyrowitz, N., editor, ACM Conference on Object Oriented 
Programming, Systems, Languages and Applications (OOPSLA ’87), 
ACM SIGPLAN Notices, 22(12):183-191, 1987. 

[77] Jacobson, I., The Object Advantage: Business Process Re-engineering 
with Object Technology. Addison-Wesley, 1995. 

[78] Johansson, H.J., McHugh, P., Pendlebury, A.J., and Wheeler, W.A., 
Business Process Reengineering: Break Point Strategies for Market 
Dominance. Wiley, 1993.  

[79] Jones, C.B., Systematic Software Development using VDM. Prentice-Hall, 
1986. 

[80] Keene, S., Object-oriented Programming in Common Lisp: A 
Programmer’s Guide to CLOS. Addison-Wesley, 1988. 

[81] Kendall, K.E., and Kendall, J.E., Systems Analysis & Design. Prentice 
Hall, 1988. 

[82] Khoshafian, S.N., and Copeland, G.P., Object Identity. In: Meyrowitz, N., 
editor, ACM Conference on Object Oriented Programming, Systems, 
Languages and Applications (OOPSLA ’86), ACM SIGPLAN Notices, 
21(11):406-416, 1986. 

[83] Kleppe, A., Warmer, J., and Bast, W., MDA Explained: The Model 
Driven Architecture: Practice and Promise. Addison-Wesley, 2003. 



BIBLIOGRAPHY 221 

 

[84] Kristen, G.J.H.M., Object Orientation: The KISS Method, From 
Information Architecture to Information System. Addison-Wesley, 1994. 

[85] Laffra, C., and van den Bos, J., Constraints in Concurrent Object-Oriented 
Environments. In: Agha, G., Hewitt, C., Wegner, P., and Yonezawa, A., 
Proceedings of the ECOOP-OOPSLA Workshop on Object-Based 
Concurrent Programming, ACM SIGPLAN OOPS Messenger, 2(2):64-67, 
1991. 

[86] Laffra, C., and van den Bos, J., Propagators and Concurrent Constraints. 
In: Agha, G., Hewitt, C., Wegner, P., and Yonezawa, A., editors, 
Proceedings of the ECOOP-OOPSLA Workshop on Object-Based 
Concurrent Programming, ACM SIGPLAN OOPS Messenger, 2(2):64-67, 
1991. 

[87] LaLonde, W., and Pugh, J., Smalltalk: Subclassing ≠ Subtyping ≠ Is-A. In: 
Journal of Object-Oriented Programming (JOOP), 3(5):57-62, 1991. 

[88] Larman, C., and Basili, V.R., Iterative and Incremental Development: A 
Brief History. In: IEEE Computer, 36(6):47-56, 2003. 

[89] Larman, C., Applying UML and Patterns: An Introduction to Object-
Oriented Analysis and Design and the Unified Process, Second Edition. 
Prentice-Hall, 2002. 

[90] Lewi, J., Steegmans, E., and Van Baelen, S., EROOS: Entity-Relationship 
Object-Oriented Specifications. K.U.Leuven, Department of Computer 
Science, CW Report 111, Leuven, Belgium, 1990. 

[91] Lewi, J., Steegmans, E., Dockx, J., Swennen, B., Van Baelen, S., and Van 
Riel, H., Object Oriented Software Development with EROOS: The 
Analysis Phase. K.U.Leuven, Department of Computer Science, CW 
Report 169, Leuven, Belgium, 1993. 

[92] Liskov, B., Data Abstraction and Hierarchy. In: ACM SIGPLAN Notices 
23(5):17-34, 1988. 

[93] Loomis, M., Shah, A., and Rumbaugh, J., An Object Modeling Technique 
for Conceptual Design. In: Bézivin, J., Hullot, J.-M., Cointe, P., and 
Lieberman, H., editors, ECOOP ’87 - European Conference on Object-
Oriented Programming, Lecture Notes in Computer Science (LNCS), Vol. 
276, Springer-Verlag, pages 192-202, 1987. 

[94] Ludewig, J., Models in Software Engineering. In: Software and Systems 
Modeling, 2(1):5-14, 2003. 

[95] Manzano, M., Extensions of First Order Logic. Cambridge University 
Press, 1996. 



222 BIBLIOGRAPHY 

[96] Martin, J., and Odell, J.J., Object-Oriented Analysis and Design. Prentice-
Hall, 1992. 

[97] Martin, J., and Odell, J.J., Object-Oriented Methods: A Foundation. 
Prentice-Hall, 1994. 

[98] Martin, R.C., Agile Software Development: Principles, Patterns, and 
Practices. Prentice-Hall, 2003. 

[99] Mellor, S.J., and Balcer, M.J., Executable UML: A Foundation for Model-
Driven Architecture. Addison-Wesley, 2002. 

[100] Meyer, B., Object-Oriented Software Construction. Prentice-Hall, 1988. 

[101] Mohindra, A, and Devarakonda, M.V., Dynamic Insertion of Object 
Services. In: Proceedings of the USENIX Conference on Object-Oriented 
Technologies (COOTS), USENIX, 1995. 

[102] Monarchi, D.E., and Puhr, G.I., A Research Typology for Object-Oriented 
Analysis and Design. In: Communications of the ACM, 35(9):35-47, 
1992. 

[103] Nerson, J.-M., Applying Object-Oriented Analysis and Design. In: 
Communications of the ACM, 35(9):63-74, 1992. 

[104] Nierstrasz, O., A Survey of Object-Oriented Concepts, Object-Oriented 
Concepts. In: Kim, W. and Lochovsky, F., editors, Databases and 
Applications, pages 3-21, ACM Press and Addison-Wesley, 1989. 

[105] Nijssen, G.M., A Gross Architecture for the Next Generation Database 
Management Systems. In: Nijssen, G.M., editor, Proceeding of the 1976 
IFIP Working Conference on Modelling in Data Base Management 
Systems, North-Holland Publishing, pages. 1-24, 1976. 

[106] Nijssen, G.M., Current Issues in Conceptual Schema Concepts. In: 
Nijssen, G.M., editor, Proceeding of the 1977 IFIP Working Conference 
on Modelling in Data Base Management Systems, North-Holland 
Publishing, pages 31-66, 1977. 

[107] Object Management Group, OMG Unified Modeling Language 
Specification, Version 1.3. OMG, 1999. 

[108] Object Management Group, UML 2.0 OCL Specification. OMG, 2003. 

[109] Object Management Group, Unified Modeling Language: Superstructure, 
Version 2.0. OMG, 2005. 



BIBLIOGRAPHY 223 

 

[110] Odell, J., and Fowler, M., Analysis and Design: From Analysis to Design 
Using Templates, Part I. In: Report on Analysis and Design (ROAD), 
1(6):19-23, 1995. 

[111] Odell, J., and Fowler, M., Analysis and Design: From Analysis to Design 
Using Templates, Part II. In: Report on Analysis and Design (ROAD), 
2(1):10-14, 1995. 

[112] Odell, J., and Fowler, M., Analysis and Design: From Analysis to Design 
Using Templates, Part III. In: Report on Analysis and Design (ROAD), 
2(3):7-10, 1995. 

[113] Odell, J.J., Specifying Requirements using Rules. In: Journal of Object-
Oriented Programming (JOOP), 6(2):20-24, 1993. 

[114] Opdahl, A.L., and Henderson-Sellers, B., Ontological Evaluation of the 
UML Using the Bung-Wand-Weber Model. In: Software and Systems 
Modeling, 1(1):43-67, 2002. 

[115] Page-Jones, M., Constantine, L., and Weiss, S., Modeling Object-Oriented 
Systems: The Uniform Object Notation. In: Computer Language, 
7(10):69-87, 1990. 

[116] Page-Jones, M., The Practical Guide to Structured System Design. 
Prentice-Hall, 1988. 

[117] Paton, N.W., Diaz, O., Williams. M.H., Campin, J., Dinn, A., and Jaime, 
A., Dimensions of Active Behavior. In Paton, N.W., and Williams. M.H., 
editors, Proceedings of the 1st International Workshop on Rules in 
Database Systems, Springer-Verlag, pages 40-57, 1994. 

[118] Pfleeger, S.L., Software Engineering: The Production of Quality Software, 
Second Edition. Macmillan, 1991. 

[119] Rational Software Corporation, UML Semantics, Version 1.0. Rational, 
1997. 

[120] Rational Software Corporation, Unified Modeling Language Notation 
Guide, Version 1.0. Rational, 1997. 

[121] Reenskaug, T., Wold, P., and Lehne, O.A., Working with Objects: The 
OORAM Software Engineering Method. Prentice-Hall, 1996. 

[122] Robertson, S., and Robertson, J., Mastering the Requirements Process, 
Second Edition. Addison-Wesley, 2006. 

[123] Robinson, K., and Berrisford, G., Object Oriented SSADM. Prentice-Hall, 
1994. 



224 BIBLIOGRAPHY 

[124] Rubin, K., and Goldberg, A., Object Behavior Analysis. In: 
Communications of the ACM, 35(9):48-62, 1992. 

[125] Rubin, K.S., McClaughry, P., and Pelligrini, D., Modeling Rules using 
Object Behavior Analysis and Design. In: Object Magazine 4(3):63-67, 
1994. 

[126] Rumbaugh, J., Blaha, M., Premerlani, W., Eddy, F., and Lorenson, W., 
Object-Oriented Modeling and Design. Prentice-Hall, 1991. 

[127] Rumbaugh, J., Controlling Propagation of Operations using Attributes on 
Relations. In: Meyrowitz, N., editor, ACM Conference on Object Oriented 
Programming, Systems, Languages and Applications (OOPSLA ’88), 
ACM SIGPLAN Notices, 23(11):285-296, 1988. 

[128] Rumbaugh, J., Jacobson, I., and Booch, G., The Unified Modeling 
Language Reference Manual, Second Edition. Addison-Wesley, 2005. 

[129] Rumbaugh, J., Relations as Semantic Constructs in an Object-Oriented 
Language. In: Meyrowitz, N., editor, ACM Conference on Object 
Oriented Programming, Systems, Languages and Applications (OOPSLA 
’87), ACM SIGPLAN Notices, 22(12):466-481, 1987. 

[130] Said, J., Pattern-Based Approach for Object-Oriented Software Design. 
Ph.D. Dissertation, K.U.Leuven, Department of Computer Science, 
Leuven, Belgium, 2003. 

[131] Schlaer, S., and Lang, N., Dependence between Attributes. In: Report on 
Analysis and Design (ROAD), 2(4):18-23, 1995. 

[132] Shlaer, S., and Mellor, S., A Deeper Look at the Transition from Analysis 
to Design. In: Journal of Object-Oriented Programming (JOOP), 5(9):16-
21, 1993. 

[133] Shlaer, S., and Mellor, S.J., Object Lifecycles: Modeling the World in 
States. Prentice-Hall, 1992. 

[134] Shlaer, S., and Mellor, S.J., Object-Oriented Systems Analysis: Modeling 
the World in Data. Prentice-Hall, 1988. 

[135] Shlaer, S., Methods and Architectures: Modeling Dynamic Behavior. In: 
Report on Object Analysis and Design (ROAD), 1(1):6-9, 1994. 

[136] Snoeck, M., and Dedene, G., Existence Dependency: The Key to Semantic 
Integrity between Structural and Behavioural Aspects of Object Types. In: 
IEEE Transactions on Software Engineering, 24(24):233-251, 1998. 



BIBLIOGRAPHY 225 

 

[137] Snoeck, M., Dedene, G., Verhelst, M., and Depuydt, A.-M., Object-
Oriented Enterprise Modelling with MERODE. Leuven University Press, 
1999. 

[138] Snoeck, M., On A Process Algebra Approach for the Construction and 
Analysis of M.E.R.O.DE.-based Conceptual Models. Ph.D. Dissertation, 
K.U.Leuven, Department of Computer Science, Leuven, Belgium, 1995. 

[139] Søndergaard, H., and Sestoft, P., Non-Determinism in Functional 
Languages. In: The Computer Journal, 35(5):514-523, 1992. 

[140] Spivey, J.M., The Z Notation: A Reference Manual. Prentice-Hall, 1989. 

[141] Starr, L., Executable UML: How to Build Class Models. Prentice-Hall, 
2002. 

[142] Steegmans, E., Lewi, J., D’Haese, M., Dockx, J., Jehoul, D., Swennen, B., 
Van Baelen, S., and Van Hirtum, P., EROOS Reference Manual. Version 
1.0. K.U.Leuven, Department of Computer Science, CW Report 208, 
Leuven, Belgium, 1995. 

[143] Steegmans, E., Lewi, J., D’Haese, M., Dockx, J., Jehoul, D., Swennen, B., 
Van Baelen, S., and Van Hirtum, P., EROOS Reference Manual. Version 
1.1. K.U.Leuven, Department of Computer Science, Leuven, Belgium, 
1996. 

[144] Stroustrup, B., The C++ Programming Language. Addison-Wesley, 1985. 

[145] 6XELHWD�� .��� -RGORZVNL�� $��� +DEHOD�� 3��� DQG� 3ORG]LH �� -��� &RQFHSWXDO�

Modeling of Business Applications with Dynamic Object Roles. In: 
Corchuelo, R., Ruiz-Cortés, A. and Wrembel, R., editors, Technologies 
Supporting Business Solutions, Advances in Computation: Theory and 
Practice (ACTP), pages 49-71, Nova Science Publishers, 2003. 

[146] Tasker, D., Object Facts: Sources, Derived, or a Combination of Both. . In: 
Report on Analysis and Design (ROAD), 2(1):41-45, 1995. 

[147] Ungar, D., Smith, R., Chambers, C., and Hölzle, U., Object, Message, and 
Performance: How They Coexist in Self. In: IEEE Computer, 25(10):53-
64, 1992. 

[148] Van Baelen, S., Enriching Constraints and Business Rules in Object-
Oriented Analysis with Models Trigger Specifications. In: Demeyer, S., 
and Bosch, J., editors, Proceedings of European Conference on Object 
Oriented Programming Workshop Reader (ECOOP’98), Lecture Notes in 
Computer Science (LNCS), Vol. 1543, Springer-Verlag, pages 197-199, 
1998. 



226 BIBLIOGRAPHY 

[149] Van Baelen, S., Gorinsek, J., and Wils, A., editors, The DESS 
Methodology. ITEA-DESS Project Report D.1, ITEA-DESS Consortium, 
2001. 

[150] Van Baelen, S., Lewi, J., and Steegmans, E., Abstraction Stratification in 
an Object-Oriented Development Method like EROOS. In: de 
Champeaux, D., editor, Workshop on Object-Oriented Software 
Development Process, Sixth European Conference on Object-Oriented 
Programming (ECOOP 1992), Utrecht, The Netherlands, 1992. 

[151] Van Baelen, S., Lewi, J., and Steegmans, E., Constraints in Object-
Oriented Analysis and Design. In: Magnusson, B., Meyer, B., Nerson, 
J.M., and Perrot, J.F., editors, Technology of Object-Oriented Languages 
and Systems TOOLS 13 (TOOLS Europe 1994), Prentice-Hall, pages 185-
199, 1994. 

[152] Van Baelen, S., Lewi, J., Steegmans, E., and Swennen, B., Constraints in 
Object-Oriented Analysis. In: Nishio, S., and Yonezawa, A., editors, 
Object Technologies for Advanced Software (ISOTAS), Lecture Notes in 
Computer Science (LNCS), Vol. 742, Springer-Verlag, pages 393-407, 
1993. 

[153] Van Baelen, S., Lewi, J., Steegmans, E., and Van Riel, H., EROOS: An 
Entity-Relationship based Object-Oriented Specification Method. In: 
Heeg, G., Magnusson, B., and Meyer, B., editors, Technology of Object-
Oriented Languages and Systems TOOLS 7 (TOOLS Europe 1992), 
Prentice-Hall, pages 103-117, 1992. 

[154] Van Baelen, S., Lewi, J., Steegmans, E., and Van Riel, H., EROOS: An 
Entity-Relationship based Object-Oriented Development Method. In: 
DECUS BELUX 1992 Symposium Proceedings, DECUS, pages 42-64, 
1992. 

[155] Van Gestel, E., MOOSE: A Framework uniting Data Base Modelling, 
Object-Orientation an Formal Specifications, Engineering Style. Ph.D. 
Dissertation, K.U.Leuven, Department of Computer Science, Leuven, 
Belgium, 1994. 

[156] Walden, K., and Nerson, J.-M., Seamless Object-Oriented Architecture. 
Prentice-Hall, 1994. 

[157] Walicki, M., and Meldal, S., Singular and Plural Nondeterministic 
Parameters. In: SIAM Journal on Computing, 26(4):991-1005, 1997. 

[158] Wand, Y., and Weber, R., An Ontological Model of an Information 
System. In: IEEE Transactions on Software Engineering, 16(11):1082-
1092, 1990. 



BIBLIOGRAPHY 227 

 

[159] Wand, Y., and Weber, R., On the Deep Structure of Information Systems. 
In: Information Systems Journal, 5(3):203-223, 1995. 

[160] Wand, Y., and Weber, R., On the Ontological Expressiveness of 
Information Systems Analysis and Design Grammars. In: Journal of 
Information Systems, 3(4):217-237, 1993. 

[161] Warmer, J., and Kleppe, A., The Object Constraint Language, Second 
Edition: Getting Your Models Ready For MDA. Addison-Wesley, 2003. 

[162] Wegner, P., Concepts and Paradigms of Object-Oriented Programming. 
In: ACM SIGPLAN OOPS Messenger, 1(1):7-87, 1990. 

[163] Widom, J., and Ceri, S., Active Database Systems. Morgan Kaufmann, 
1996. 

[164] Wieringa, R., A Survey of Structured and Object-Oriented Software 
Specification Methods and Techniques. In: ACM Computing Surveys 
(CSUR), 30(4):459-527, 1998. 

[165] Wieringa, R., de Jonge, W., and Spruit, P., Using Dynamic Classes and 
Role Classes to Model Object Migration. In: Theory and Practice of 
Object Systems (TAPOS), 1(1):61-83, 1995. 

[166] Wirfs-Brock, R., Stereotyping: A Technique for Characterizing Object and 
Their Interactions. In: Object Magazine, 3(4):50-53, 1993. 

[167] Wirfs-Brock, R., Wilkerson, B., and Wiener, L., Designing Object-
Oriented Software. Prentice Hall, 1990. 

[168] Wu, S.-I., Integrating Logic and Object-Oriented Programming. In: ACM 
SIGPLAN OOPS Messenger, 2(1):28-37, 1991. 

[169] Yourdon, E., and Constantine, L., Structured Design. Prentice-Hall, 1979. 

[170] Yourdon, E., Modern Structured Analysis. Yourdon Press, 1989. 

[171] Yuan, G., A Depth-First Process Model for Object-oriented Development 
with Improved OOA/OOD Notations. In: Report on Analysis and Design 
(ROAD), 2(1):23-37, 1995. 

[172] Yue, K., What Does It Mean to Say that a Specification is Complete?. In: 
Proceedings of the Fourth International Workshop on Software 
Specification and Design, 1987. 

[173] Zurcher, F.W., and Randell, B., Iterative Multi-Level Modeling: A 
Methodology for Computer System Design. In: Proceedings of the IFIP 
Congress, IEEE, pages 867-871, 1968. 





 

229 

List of Publications 

Edited Volumes 

1. Pikkarainen, M., Bozheva, T., and Van Baelen, S., editors, International 
Workshop on Agile: Experience, Standardization and Application in the 
Embedded Domain. Nemetschek, 141 pages, 2006. 

Book Chapters 

1. Berbers, Y., Rigole, P., Vandewoude, Y., and Van Baelen, S., CoConES: An 
Approach for Components and Contracts in Embedded Systems. In: Atkinson, 
C., Bunse, C., Gross, H.-G., and Peper, C., editors, Component-Based 
Software Development for Embedded Systems: An Overview of Current 
Research Trends, Lecture Notes in Computer Science (LNCS), Vol. 3778, 
Springer-Verlag, pages 209-231, 2005. 

Contributions at International Conferences, Published in 
Proceedings 

1. Van Beirendonck, H., Beaufays, J., Van Baelen, S., and De Vlaminck, K., 
Petri Nets for Modeling Dynamic Characteristics in HOOD. In: The 
Management of Large Software Projects in the Space Industry, Cépaduès-
Editions, pages 121-129, 1991. 

2. Van Baelen, S., Lewi, J., Steegmans, E., and Van Riel, H., EROOS: An 
Entity-Relationship based Object-Oriented Development Method. In: DECUS 
BELUX 1992 Symposium Proceedings, DECUS, pages 42-64, 1992. 

3. Van Baelen, S., Lewi, J., Steegmans, E., and Van Riel, H., EROOS: An 
Entity-Relationship based Object-Oriented Specification Method. In: Heeg, 
G., Magnusson, B., and Meyer, B., editors, Technology of Object-Oriented 
Languages and Systems TOOLS 7 (TOOLS Europe 1992), Prentice-Hall, 
pages 103-117, 1992. 

4. Van Baelen, S., Lewi, J., Steegmans, E., and Swennen, B., Constraints in 
Object-Oriented Analysis. In: Nishio, S., and Yonezawa, A., editors, Object 
Technologies for Advanced Software (ISOTAS), Lecture Notes in Computer 
Science (LNCS), Vol. 742, Springer-Verlag, pages 393-407, 1993. 



230 LIST OF PUBLICATIONS 

5. Van Baelen, S., Lewi, J., and Steegmans, E., Constraints in Object-Oriented 
Analysis and Design. In: Magnusson, B., Meyer, B., Nerson, J.-M., and 
Perrot, J.F., editors, Technology of Object-Oriented Languages and Systems 
TOOLS 13 (TOOLS Europe 1994), Prentice-Hall, pages 185-199, 1994. 

6. Van Baelen, S., Enriching Constraints and Business Rules in Object-Oriented 
Analysis with Models Trigger Specifications. In: Demeyer, S., and Bosch, J., 
editors, Proceedings of European Conference on Object Oriented 
Programming Workshop Reader (ECOOP’98), Lecture Notes in Computer 
Science (LNCS), Vol. 1543, Springer-Verlag, pages 197-199, 1998. 

7. Urting, D., Van Baelen, S., and Berbers, Y., Embedded Software using 
Components and Contracts. In: Gerard, S., Terrier, F., Selic, B., Damm, G., 
Yi, W., and Petterson, P., editors, ECOOP 2001 Workshop on Specification, 
Implementation and Validation of Object-Oriented Embedded Systems 
(SIVOES’2001), Budapest, Hungary, 2001. 

8. Barbaix, Y., Van Baelen, S., and De Vlaminck, K., Handling Time 
Constraints with Virtual Timers. In: Gerard, S., Terrier, F., Selic, B., Damm, 
G., Yi, W., and Petterson, P., editors, ECOOP 2001 Workshop on 
Specification, Implementation and Validation of Object-Oriented Embedded 
Systems (SIVOES’2001), Budapest, Hungary, 2001. 

9. Urting, D., Van Baelen, S., Holvoet, T., and Berbers, Y., Embedded Software 
Development: Components and Contracts. In: Gonzalez, T., editor, 
Proceedings of the IASTED International Conference on Parallel and 
Distributed Computing and Systems, ACTA Press, pages 685-690, 2001. 

10. Urting, D., Berbers, Y., Van Baelen, S., Holvoet, T., Vandewoude, Y., and 
Rigole, P., A Tool for Component Based Design of Embedded Software. In: 
Noble, J., and Potter, J., editors, Technology of Object-Oriented Languages 
and Systems TOOLS 40 (TOOLS Pacific 2002): Objects for Internet, Mobile 
and Embedded Applications, Conferences in Research and Practice in 
Information Technology, Vol. 10, Australian Computer Society, pages 159-
168, 2002. 

11. Gorinsek, J., Van Baelen, S., Berbers, Y., and De Vlaminck, K., EMPRESS: 
Component based Evolution for Embedded Systems. In: Kniesel, G., 
Costanza, P., and Dimitriev, M., editors, Workshop on Unanticipated 
Software Evolution (USE 2002), European Conference on Object-Oriented 
Programming (ECOOP 2002), Malaga, Spain, 2002. 

12. Van Baelen, S., Urting, D., and Berbers, Y., The SEESCOA Composer Tool: 
Using Contracts for Component Composition and Run-Time Monitoring. In: 
Gerard, S., Ober, I., Papadopoulos, G., Plouzeau, N., Rioux, L., Selic, B., and 
Weis, T., editors, UML 2002 Workshop on Component Based Software 



LIST OF PUBLICATIONS 231 

 

Engineering and Modeling Non-functional Aspects (SIVOES-MONA 2002), 
Dresden, Germany, 2002. 

13. Gorinsek, J., Van Baelen, S., Berbers, Y., and De Vlaminck, K., Managing 
Quality of Service during Evolution using Component Contracts. In: Kniesel, 
G., Costanza, P., and Fiadeiro, J.L., editors, ETAPS 2003 Second 
International Workshop on Unanticipated Software Evolution (USE 2003), 
Warsaw, Poland, pages 57-62, 2003. 

14. Wils, A., Gorinsek, J., Van Baelen, S., Berbers, Y., and De Vlaminck, K., 
Flexible Component Contracts for Local Resource Awareness. In: Bryce, C., 
and Czajkowski, G., editors, 9th Workshop on Mobile Object Systems: 
Resource-Aware Computation (MOS 2003), European Conference on Object-
Oriented Programming (ECOOP 2003), Darmstadt, Germany, 2003. 

15. Berbers, Y., Rigole, P., Van Baelen, S., and Vandewoude, Y., Components 
and Contracts in Software Development for Embedded Systems. In: De 
Backer, L., editor, Proceedings of the First European Conference on the Use 
of Modern Information and Communication Technologies, pages 219-226, 
2004. 

16. Pauty, J., Van Baelen, S., and Berbers, Y., Adapting Model-Driven 
Architecture to Ubiquitous Computing. In: Kortuem, G., editor, Workshop on 
Software Engineering Challenges for Ubiquitous Computing, Lancaster 
University, pages 42-43, 2006. 

17. Wils, A., and Van Baelen, S., Agility in the Avionics World. In: Pikkarainen, 
M., Bozheva, T., and Van Baelen, S., editors, International Workshop on 
Agile: Experience, Standardization and Application in the Embedded Domain, 
Nemetschek, 2006. 

18. Wils, A., and Van Baelen, S., Agility and Component-based Development. In: 
Pikkarainen, M., Bozheva, T., and Van Baelen, S., editors, International 
Workshop on Agile: Experience, Standardization and Application in the 
Embedded Domain, Nemetschek, 2006. 

19. Wils, A., Van Baelen, S., Holvoet, T., and De Vlaminck, K., Agility in the 
Avionics Software World. In: Abrahamsson, P., Marchesi, M., and Succi, G., 
editors, Extreme Programming and Agile Processes in Software Engineering 
(XP 2006), Lecture Notes in Computer Science (LNCS), Vol. 4044, pages 
123-132, 2006. 

20. Hovsepyan, A., Van Baelen, S., Vanhooff, B., Joosen, W., and Berbers, Y., 
Key Research Challenges for Successfully Applying MDD within Real-Time 
Embedded Software Development. In: Vassiliadis, S., Wong, S., and 
Hämäläinen, T., editors, Embedded Computer Systems: Architectures, 
Modeling, and Simulation (SAMOS VI), Lecture Notes in Computer Science 
(LNCS), Vol. 4017, pages 49-58, 2006. 



232 LIST OF PUBLICATIONS 

21. Vanhooff, B., Van Baelen, S., Hovsepyan, A., Joosen, W., and Berbers, Y., 
Towards a Transformation Chain Modeling Language. In: Vassiliadis, S., 
Wong, S., and Hämäläinen, T., editors, Embedded Computer Systems: 
Architectures, Modeling, and Simulation (SAMOS VI), Lecture Notes in 
Computer Science (LNCS), Vol. 4017, pages 39-48, 2006. 

Contributions at International Conferences, not Published or only as 
Abstract 

1. Van Baelen, S., Lewi, J., and Steegmans, E., Abstraction Stratification in an 
Object-Oriented Development Method like EROOS. In: de Champeaux, D., 
editor, Workshop on Object-Oriented Software Development Process, Sixth 
European Conference on Object-Oriented Programming (ECOOP 1992), 
Utrecht, The Netherlands, 1992. 

2. Van Baelen, S., Urting, D., Van Belle, W., Jockers, V., Holvoet, T., Berbers, 
Y., and De Vlaminck, K., Toward a Unified Terminology for Component-
based Development. In: Bosch, J., Szyperski, C., Weck, W., Fifth 
International Workshop on Component-Oriented Programming (WCOP 
2000), Fourteenth European Conference on Object-Oriented Programming 
(ECOOP 2000), Cannes, France, 2000. 

3. Van Baelen, S., and Van Genechten, H., DESS: Project and Methodology 
Overview. In: ITEA Software Engineering Session, Third ITEA Symposium, 
Amsterdam, The Netherlands, 2002. 

Contributions at National Conferences, Published in Proceedings 

1. Steegmans, E., Dockx, J., Swennen, B., and Van Baelen, S., Object Gericht 
Programmeren: Revolutie of Evolutie. In: Proceedings Object Gericht 
Programmeren, KVIV, pages 1-25, 1994. 

2. Steegmans, E., Dockx, J., Swennen, B., and Van Baelen, S., Het Object-
Gerichte Ontwikkelingsproces: Object-Gerichte Analyse. In: Proceedings 
Object-Gerichte Technologie, BIRA, pages 1-14, 1995. 

3. Steegmans, E., Dockx, J., Swennen, B., and Van Baelen, S., Het Object-
Gerichte Ontwikkelingsproces: Object-Gericht Ontwerp. In: Proceedings 
Object-gerichte Technologie, BIRA, pages 15-20, 1995. 

4. De Backer, S., De Vlaminck, K., Steegmans, E., and Van Baelen, S., Unified 
Modeling Language. In: Noë, C., and Baute, W., editors, Proceedings Unified 
Modeling Language (UML), KVIV, 1999. 

5. Van Baelen, S., Agile Development: What and How? In: Peeters, B., and 
Smets, S., editors, Proceedings Agile Development and Testing, KVIV, 2005. 



LIST OF PUBLICATIONS 233 

 

6. Van Baelen, S., Introduction to Agile Development. In: Peeters, B., editor, 
Proceedings Agile Development en Testing: Een Vernieuwde Kijk op 
Software Ontwikkeling, KVIV, pages 1-8, 2006. 

Technical Reports 

1. Lewi, J., Steegmans, E., and Van Baelen, S., EROOS: Entity-Relationship 
Object-Oriented Specifications. K.U.Leuven, Department of Computer 
Science, CW Report 111, Leuven, Belgium, 1990. 

2. Lewi, J., Steegmans, E., Dockx, J., Swennen, B., Van Baelen, S., and Van 
Riel, H., Object Oriented Software Development with EROOS: The Analysis 
Phase. K.U.Leuven, Department of Computer Science, CW Report 169, 
Leuven, Belgium, 1993. 

3. Steegmans, E., Lewi, J., D’Haese, M., Dockx, J., Jehoul, D., Swennen, B., 
Van Baelen, S., and Van Hirtum, P., EROOS Reference Manual, Version 1.0. 
K.U.Leuven, Department of Computer Science, CW Report 208, Leuven, 
Belgium, 1995. 

4. Steegmans, E., Lewi, J., D’Haese, M., Dockx, J., Jehoul, D., Swennen, B., 
Van Baelen, S., and Van Hirtum, P., EROOS Reference Manual, Version 1.1. 
K.U.Leuven, Department of Computer Science, Leuven, Belgium, 1996. 

5. Barbaix, Y., and Van Baelen S., editors, Methodology Document for 
Addressing Resource Constraints Problems in Embedded Systems. ITEA-
DESS Project Report D.1.3.1, ITEA-DESS Consortium, 2000. 

6. Van Baelen S., editor, Guidelines for Component-based Development. ITEA-
DESS Project Report D.1.4.3, ITEA-DESS Consortium, 2001. 

7. Barbaix, Y., Van Baelen S., and Wils, A., editors, Timing, Memory and other 
Resource Constraints. ITEA-DESS Project Report D.1.3.2, ITEA-DESS 
Consortium, 2001. 

8. Van Baelen S., editor, Definition of Components and Notation for 
Components. ITEA-DESS Project Report D.1.4.4, ITEA-DESS Consortium, 
2001. 

9. Van Baelen, S., Gorinsek, J., and Wils, A., editors, The DESS Methodology. 
ITEA-DESS Project Report D.1, ITEA-DESS Consortium, 2001. 

10. Van Baelen S., editor, Essentials and Requisites for the Management of 
Evolution: Evolution of Component Systems. ITEA-EMPRESS Project 
Report D1.2 part 2, ITEA-EMPRESS Consortium, 2003. 



234 LIST OF PUBLICATIONS 

11. Gross, H.-G., and Van Baelen, S., editors, Modeling and System Support for 
Design-Time Evolution. ITEA-EMPRESS Project Report D2.1-2.2, ITEA-
EMPRESS Consortium, 2003. 

12. Gerlach, J., and Van Baelen, S., editors, Run-time Evolution and Dynamic 
(Re)Configuration of Components: Model, Notation, Process and System 
Support. ITEA-EMPRESS Project Report D2.4-2.5, ITEA-EMPRESS 
Consortium, 2003. 

13. Bozheva, T., Hulkko, H., Ihme, T., Jartti, J., Salo, O., Van Baelen, S., and 
Wils, A., Agile in Embedded Software Development: State-of-the-Art Review 
in Literature and Practice. ITEA-AGILE Project Report D1, ITEA-AGILE 
Consortium, 2005. 

14. Van Baelen S., An Agile Approach on Model-Driven Architecture (MDA). In: 
Abrahamsson, P., and Dooms. K., editors, AGILE Newsletter 2/2005, ITEA-
AGILE Consortium, 2005. 

15. Wils, A., Van Baelen, S., and Rammeloo, S., Introducing Agility in the 
Avionics Software World. In: Abrahamsson, P., and Dooms. K., editors, 
AGILE Newsletter 1/2006, ITEA-AGILE Consortium, 2006. 

16. Wils, A., and Van Baelen, S., Architecture Centric Agility. In: Abrahamsson, 
P., and Dooms. K., editors, AGILE Newsletter 1/2006, ITEA-AGILE 
Consortium, 2006. 

17. Huybrechts, M., Rammeloo, S., and Van Baelen, S., Realizing Agility through 
Model Driven Architecture. In: Abrahamsson, P., and Dooms. K., editors, 
AGILE Newsletter 2/2006, ITEA-AGILE Consortium, 2006. 

18. Wils, A., and Van Baelen, S., Towards An Agile Avionics Process. ITEA-
AGILE Project Report D2.12, ITEA-AGILE Consortium, 2007. 

19. Wils, A., and Van Baelen, S., Agile Practices for Embedded Systems. ITEA-
AGILE Project Report D2.13, ITEA-AGILE Consortium, 2007. 

20. Wils, A., and Van Baelen, S., Software Architecture and eXtreme 
Programming. ITEA-AGILE Project Report D2.14, ITEA-AGILE 
Consortium, 2007. 

 



 

235 

Biography 

Stefan Van Baelen was born in Mol, Belgium, on August 7, 1967. He received a 
Bachelor of Science degree (‘Kandidaat Informatica’) in 1987, and a Master of 
Science degree (‘Licentiaat Informatica’) in Informatics in 1989 from the 
K.U.Leuven. He graduated magna cum lauda with the thesis ‘Development of an 
Environment for the Design of Systems using State Machines’ under the supervision 
of Prof. Dr. ir. Johan Lewi, and in cooperation with Alcatel Bell Antwerp, Belgium. 
The same year, he started to perform his civil service at the Department of Computer 
Science and became a member of the Software Development Methodology (SOM - 
‘Software Ontwikkelingsmethodologie’) research group. From 1991 until 1995, he 
obtained a doctoral research grant (‘aspirant NFWO’) from the Research Foundation 
of Flanders (‘FWO Vlaanderen’).  

In 1996, Stefan Van Baelen participated in a research project with Acunia (formerly 
SmartMove and Take Five) on defining a software architecture for a mobile 
computing platform (EWACS), in cooperation with the DistriNet (Distributed 
Systems and Computer Networks) research group. Afterwards, he joined the 
DistriNet research group, and participated in a large number of national and 
international research projects, including the IWT-STWW project on Software 
Engineering for Embedded Systems using a Component Oriented Approach 
(SEESCOA), in cooperation with the Free University of Brussels (VUB), the 
University of Ghent (UGent), and the University of Hasselt (UHasselt), the ITEA 
project on software on Development process for real-time Embedded Software 
Systems (DESS), the ITEA project on Evolution Management and Process for Real-
Time Embedded Software Systems (EMPRESS), the ITEA project on Agile Software 
Development of Embedded Systems (AGILE), the ongoing ITEA project on Model-
based Approach to Real-Time Embedded Systems development (MARTES), and the 
ongoing ITEA project on Support for Predictable Integration of Mission Critical 
Embedded Systems (SPICES). The ITEA-EMPRESS project was in cooperation with 
Jabil Circuit (formerly Philips Hasselt), while all mentioned ITEA projects were in 
cooperation with Barco and a large number of international partners including, 
amongst others, Airbus, Nokia, Philips, NXP, DaimlerChrysler, Siemens, Bosch, 
Bull, Thales, Telelogic, Telefónica, and France Télécom. For many of these projects, 
Stefan Van Baelen performed the tasks of local DistriNet research coordinator, 
European Task Leader, and European Work Package Leader. 

Stefan Van Baelen has served as an external referee for Communications of the ACM 
(Special Section on Flexible and Distributed Software Development Processes), and 
for the Dutch National Science Foundation.  





 

i 

Nederlandstalige samenvatting 

Een beperkingscentrale benadering 
voor objectgeoriënteerde 
conceptuele modellering 

Samenvatting 

Objectgeoriënteerde analyse, en meer bepaald conceptuele modellering, is een 
softwareontwikkelingsactiviteit die streeft naar het bestuderen, analyseren en 
vastleggen van het probleemdomein voor een systeem in ontwikkeling. Dit moet 
resulteren in een specificatie van een consistent en ondubbelzinnig model dat alle 
domeinkennis, feiten en regels beschrijft. Hierbij heeft elk element van het 
probleemdomein een transparante een-op-een overeenkomst met een entiteit uit het 
conceptueel model.  

In dit doctoraat stellen we een beperkingscentrale benadering voor 
objectgeoriënteerde conceptuele modellering voor, gebruik makende van hoogniveau 
beperkingsspecificaties als kernstructuur van het conceptueel model. Deze aanpak 
verrijkt de conceptuele modelstructuur op twee vlakken: enerzijds door de definitie 
van nieuwe structurele concepten om modelbeperkingen impliciet in de 
modelstructuur zelf uit te drukken, en anderzijds door de introductie van beperkingen 
met bijbehorende oplossingsmechanismen als een eersteklas modelconcept.  

Betreffende de definitie van structurele concepten, ontwikkelden we nieuwe 
concepten met een bijbehorende duidelijke toepasbaarheidscontext, om zo 
modelbeperkingen impliciet in de modelstructuur te kunnen uitdrukken. De integratie 
van modelbeperkingen in elk methodologisch concept, het gebruik van existentiële 
afhankelijkheid als het kerncriterium voor modellering, de introductie van expliciete 
klassenarchieven en de formele specificatie van modelgebeurtenissen (‘events’) en 
modelquery’s verrijken de expressieve kracht van een conceptuele modelstructuur.  

Betreffende de introductie van beperkingen als een eersteklas modelconcept, 
ontwikkelden we een mechanisme om modelbeperkingen te specificeren met behulp 
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van meersoortige eerste orde logica. Het concept beperkingsreactie (‘constraint 
trigger’) verbonden met een beperking, definieert een algemene beperkingsoplosser 
die beperkingsschendingen kan oplossen door bijkomend gedrag in een gebeurtenis te 
injecteren of door gebeurtenissen te laten starten door de vooruitgang van de tijd.  

Onze aanpak convergeerde in de EROOS methodiek waarvan twee versies worden 
voorgesteld. De basisversie, namelijk de EROOS kern, gebruikt een constructieve 
modelleeraanpak waarbij informatie enkel kan toegevoegd worden aan een 
conceptuele modelinstantiatie. De uitgebreide versie, namelijk het EROOS 
universum, biedt bijkomende ondersteuning aan voor terugkerende analysepatronen 
voor de EROOS kern door middel van geavanceerde en meer praktische concepten. 
Hierbij wordt de EROOS kern als onderliggende basis gebruikt.  

1 Inleiding 

Een van de belangrijkste uitdagingen voor softwareontwikkeling is om enerzijds een 
goed inzicht te krijgen in de noden en vereisten van het softwaresysteem dat gebouwd 
dient te worden, en anderzijds te kunnen omgaan met veranderende omstandigheden 
en vereisten tijdens het ontwikkelingsproces. Om een softwaresysteem te kunnen 
construeren dat voldoet aan de noden van de klanten en eindgebruikers moet een 
ontwikkelaar een duidelijk inzicht krijgen in alle kwesties betreffende het systeem en 
de omgeving waarin het moet opereren. Daarenboven zijn moderne softwaresystemen 
veel te complex om op een ad hoc wijze te construeren. Een duidelijke en 
ondubbelzinnig methodiek en notatie zijn noodzakelijk om kwalitatieve systemen te 
ontwikkelen die aan de noden en verwachtingen van de klanten voldoen. Om zowel 
de continue veranderende vereisten als de complexiteit van softwaresystemen te 
kunnen beheersen, zijn rigoureuze methoden, technieken en notaties nodig voor 
softwareontwikkeling om zo de vereisten op een optimale manier te modelleren en 
structureren.  

Objectgeoriënteerde analyse, en meer bepaald conceptuele modellering, is een 
sleutelelement om veranderende vereisten te beheersen, aangezien het ervoor zorgt 
dat de specificatie van deze vereisten op een consistente manier in de context van het 
probleemdomein kan gebeuren. Zodoende schept dit de mogelijkheid om een 
duidelijk zicht te krijgen op de impact van een veranderende vereiste op het 
softwaresysteem en de omgeving waarin het opereert.  

1.1 Problemen en vraagstukken betreffende objectgeoriënteerde 
analyse 

Een aantal problemen en vraagstukken betreffende objectgeoriënteerde analyse 
kunnen worden geïdentificeerd.  

• Modelleringsnotatie: Objectgeoriënteerde analyse heeft nood aan een beperkte 
set van krachtige concepten die specifiek gericht zijn naar het uitdrukken van 
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kennis en informatie uit het probleemdomein, en een bijbehorende notatie die 
deze kennis in een conceptueel model kan beschrijven. Hoewel een beperkte set 
van UML (Unified Modeling Language) concepten geschikt kunnen zijn voor 
analyse, zal het gebruik van UML de analist eerder naar een computationele dan 
naar een conceptuele zienswijze sturen. Hoewel UML mogelijkheden biedt om 
de notatie uit te breiden, is dit niet voldoende om UML in een geschikte 
analysenotatie te transformeren. 

• Modelconsistentie: Hoewel de meeste objectgeoriënteerde analysemethodieken 
een aantal regels bevatten om consistentie in een model te bekomen, wordt er 
maar beperkt aandacht besteed aan consistentie tussen modellen. 
Modelelementen worden gedefinieerd in een welbepaald model, waarna ze 
kunnen gebruikt worden in andere modellen. Dit creëert echter een 
specificatievolgorde tussen de modellen, en kan zelfs leiden tot wederzijdse 
afhankelijkheid. Daarenboven moeten modelveranderingen worden gepropageerd 
naar alle modellen die gebruik maken van de veranderde elementen. Een andere 
aanpak om modelconsistentie te bekomen kan bestaan uit het gebruik van een 
uniek model dat alle informatie van de verschillende modellen bevat. Een 
dergelijke aanpak geeft aanleiding tot grotere klassenmodellen, omdat alle 
informatie hierin moet vervat zijn. Maar aangezien consistentie enkel binnen één 
model moet worden verwezenlijkt, zullen de nadelen van consistentie over 
meerdere modellen vermeden worden. 

• Modelinformaliteit: Informele modellen geven aanleiding tot een groot aantal 
problemen, zoals modelfouten, onvolledigheden, tegenstrijdigheden en 
ambiguïteiten. Objectgeoriënteerde analyse heeft enerzijds nood aan een formele 
definitie van de concepten die gebruikt worden voor modellering, en anderzijds 
aan een formele beschrijving van de kennis die bevat zit in een conceptueel 
model. 

• Methodologische ondersteuning: Het is ontoereikend om de analist enkel een 
modelleringsnotatie aan te bieden zoals UML. Een analist heeft nood aan een 
methodiek, richtlijnen en een concrete leidraad voor het construeren van 
conceptuele modellen, het gebruik van de methodologische concepten, en de 
transformatie van de kennis in het probleemdomein naar analyse-entiteiten. Bij 
voorkeur moet dit resulteren in een ondubbelzinnig en uniek analysemodel, 
waarin geen ontwerp- en implementatieaspecten aan bod komen. 

• Analyseafbakening en verdere transitie: In veel objectgeoriënteerde 
methodieken is de grens tussen analyse, architectuur en ontwerp heel vaag. Vanaf 
de analysefase sluipen aspecten betreffende de softwarerealisatie in het model en 
veroorzaken zo een softwarematige vooringenomenheid ten opzichte van het 
probleemdomein. Daarenboven propageren een aantal methodieken een 
geleidelijke transitie van analyse naar ontwerp, zodat er geen breuk ontstaat 
tussen deze fasen. De analysefase moet echter gericht zijn op het 
probleemdomein, en moet daarom duidelijk gescheiden worden van latere 
softwaregerichte fasen. De transitie van een conceptueel model naar een 
softwarearchitectuur is bovendien vrij complex en niet evident, waardoor het niet 
kan beschouwd worden als een loutere modelverfijningsactiviteit. 



iv NEDERLANDSTALIGE SAMENVATTING 

Modelgedreven ontwikkelingstechnieken (MDD) kunnen hierbij wel op een 
nuttig manier helpen om de analyseresultaten op een adequate wijze te 
kapitaliseren door een (semi-) automatische transformatie van analysemodellen 
naar kleine of grote delen van een ontwerpmodel. 

1.2 Doelstellingen 

De doelstellingen van dit doctoraat zijn drieledig:  

• Definitie van de kernprincipes voor conceptuele modellering. De huidige 
objectgeoriënteerde analysemethodieken hebben een aantal gebreken aangaande 
de modelleringsnotatie, modelconsistentie, modelinformaliteit, methodologische 
ondersteuning en analyseafbakening. Op basis van deze identificatie is de eerste 
doelstelling van dit doctoraat om een aantal kernprincipes voor conceptuele 
modellering op te stellen die nodig zijn om een degelijke ondersteuning te bieden 
voor het modelleren van de kennis uit het probleemdomein. 

• Evaluatie en vergelijking van specificatieformalismen en notaties voor 
modelbeperkingen. Modelbeperkingen spelen een belangrijke rol in 
objectgeoriënteerde analyse. Er bestaan verscheidene specificatieformalismen om 
modelbeperkingen uit te drukken. Het gebruik van een bepaald formalisme kan 
een verschillende impact veroorzaken van de modelbeperking op het resulterende 
conceptueel model. Er worden zelfs verschillende alternatieve 
modelleerconcepten voor modelbeperkingen aangeboden binnen eenzelfde 
analysemethodiek. De tweede doelstelling van dit doctoraat is om 
specificatieformalismen voor modelbeperkingen te vergelijken, te evalueren, een 
taxonomie ervoor te ontwikkelen, en hun geschiktheid voor de representatie van 
kennis uit het probleemdomein te onderzoeken.  

• Ontwikkeling van een geschikte objectgeoriënteerde analysemethodiek en 
bijbehorende notatie voor conceptuele modellering. De huidige 
analysemethodieken en notaties, met inbegrip van UML, zijn niet geschikt om 
conceptuele modellen op een adequate manier te beschrijven. De derde 
doelstelling van dit doctoraat is een objectgeoriënteerde analysemethodiek en 
bijbehorende notatie voor conceptuele modellering te ontwikkelen die voldoet 
aan de geïdentificeerde kernprincipes voor conceptuele modellering. De 
methodiek moet bovendien een geschikt specificatieformalisme voor 
beperkingen aanbieden. Een dergelijke analysemethodiek is essentieel om 
kennis, eigenschappen en structuren van het probleemdomein in een geschikt 
formaat vast te leggen, en het voorziene softwaresysteem te positioneren in zijn 
reële omgeving. 

1.3 Bijdragen 

De belangrijkste bijdragen van dit doctoraat zijn:  

• Geavanceerde methodologische concepten om de kernprincipes van 
conceptuele modellering te bereiken. De geleverde bijdragen zijn (1) de 



NEDERLANDSTALIGE SAMENVATTING v 

 

definitie van de kernprincipes voor conceptueel modelleren die nodig zijn om een 
adequaat model van het probleemdomein te bekomen, (2) een taxonomie voor 
modelbeperkingsformalismen in objectgeoriënteerde analyse, (3) een 
constructionele aanpak voor conceptueel modelleren waarbij informatie enkel 
kan toegevoegd worden aan een modelinstantiatie, (4) een querymechanisme om 
historische informatie betreffende oude attribuutwaarden, objectverbanden en 
tijdstippen van objectcreatie en -destructie te bekomen, en (5) een formele notatie 
voor de semantiek van query’s en gebeurtenissen die voorafgaat aan en 
grotendeels vergelijkbaar is met de Object Constraint Language (OCL). 

• De definitie van nieuwe structurele concepten om modelbeperkingen 
impliciet in de modelstructuur zelf uit te drukken. De geleverde bijdragen zijn 
(1) de integratie van modelbeperkingen in de definitie van elk methodologisch 
concept, (2) het gebruik van existentiële afhankelijkheid als het kerncriterium 
voor het bepalen van het conceptueel model, wat resulteert in een hiërarchische 
relationele modelstructuur, en (3) de introductie van expliciete klassenarchieven 
die beperkingen op de kunnen uitdrukken. Deze concepten verrijken de 
expressieve kracht van de conceptuele modelstructuur. 

• De introductie van beperkingen met bijbehorende resolutiemechanismen als 
een eersteklas modelconcept. We stellen een mechanisme voor om 
modelbeperkingen te specificeren als eersteklas modelconcept, gebruik makende 
van een formele notatie die gebaseerd is op meersoortige eerste orde logica. Het 
mechanisme voor beperkingen gaat vooraf aan en is grotendeels vergelijkbaar 
met de Object Constraint Language (OCL). Daarenboven stellen we het concept 
van beperkingsreacties voor, welke een algemene oplosser voor 
beperkingsschendingen kan specificeren. Dit gebeurt door specifiek 
foutenbehandelingsgedrag te injecteren in een gebeurtenis, of door gebeurtenis 
op te starten op basis van de vooruitgang van de tijd. 

2 Een taxonomie voor modelbeperkingsformalismen in 
objectgeoriënteerde analyse 

Modelbeperkingen spelen een sleutelrol in objectgeoriënteerde analyse. Door middel 
van modelbeperkingen kunnen intrinsieke eigenschappen van het te modelleren 
systeem elegant worden beschreven. We categoriseerden de verschillende 
specificatieformalismen voor modelbeperkingen in een taxonomie, bestudeerden en 
vergeleken ze, en beschreven hun geschiktheid voor conceptuele modellering. Na 
vergelijking van verschillende benaderingen voor de specificatie van 
modelbeperkingen, zijn onze conclusies de volgende: 

• Modelbeperkingen kunnen worden gespecificeerd als informele tekst, waarbij de 
beperking in een natuurlijke taal als een informeel addendum bij de 
modelspecificatie wordt uitgedrukt. Dit is echter te informeel als resultaat van de 
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analysefase en geeft aanleiding tot menselijke interpretatiefouten gedurende 
latere ontwikkelingsfasen. 

• Modelbeperkingen kunnen worden gespecificeerd als operationele restricties, 
waarbij de modelbeperking wordt gerealiseerd door uitvoeringscontroles op de 
operaties. Dit is nuttig tijdens de ontwerpfase maar van een te laag niveau tijdens 
de analysefase. Een dergelijke aanpak is niet wenselijk, omdat het een grote 
kloof introduceert tussen het probleemdomein en het analysemodel. In plaats van 
te beschrijven welke regels er gelden in het probleemdomein, beschrijft het 
analysemodel hoe deze regels worden afgedwongen. Bovendien moeten 
beperkingen steeds worden geconverteerd vanuit hun conceptuele betekenis naar 
hun operationele implementatie, en vice versa. 

• Modelbeperkingen kunnen worden gespecificeerd als een eersteklas 
modelconcept, waarbij modelbeperkingen worden behandeld als bouwblokken 
van een analysemodel. Hierbij worden modelbeperkingen als onafhankelijke 
modelentiteiten behandeld, wat hun belangrijkheid op een gepaste manier 
benadrukt. In bepaalde gevallen zijn echter andere constructies geschikter. 
Allereerst worden beperkingen die nauw gerelateerd zijn aan bestaande 
modelentiteiten beter direct hierin geïntegreerd. Zodoende is er een duidelijke 
focus op dergelijke beperkingen tijdens de analyse. Daarnaast worden 
existentiële afhankelijkheid en andere structurele modelbeperkingen beter direct 
uitgedrukt in de modelstructuur in plaats van te worden gemodelleerd als 
afzonderlijke beperkingen. In plaats van de basisstructuur van het model te 
benadrukken, wordt de structuur verwaarloosd en verborgen in de 
gespecificeerde beperkingen. 

• Modelbeperkingen kunnen worden geïntegreerd in bestaande modelconcepten, 
waarbij een modelbeperking wordt gespecificeerd in de modelentiteit waarop de 
beperking betrekking heeft. Dit is mogelijk voor beperkingen die nauw 
verbonden zijn met een modelentiteit, zoals multipliciteit voor attributen en 
associatieuiteinden, beperkingen op het attribuutbereik, en algemene 
veranderingseigenschappen van attributen en associaties. Als beperkingen zich 
echter uitstrekken over verschillende modelentiteiten, is het niet aangewezen om 
ze te integreren in een bepaalde entiteit omdat dit leidt tot asymmetrie en 
willekeur in de specificatie van beperkingen. 

• Modelbeperkingen kunnen impliciet uitgedrukt worden in de modelstructuur, 
waarbij existentiële afhankelijkheid, verplichte attribuutwaarden en gereïficeerde 
objecttoestanden worden gebruikt om de modelstructuur te verrijken. Een 
hiërarchische associatiestructuur kan existentiële afhankelijkheidsbeperkingen 
impliciet in de modelstructuur uitdrukken. Dit limiteert het aantal bijkomende 
beperkingen, en benadrukt en incorporeert de logische structuur van het 
probleemdomein direct in het overeenkomstige analysemodel. 

UML biedt geen geschikte ondersteuning voor een gepaste specificatie van 
beperkingen in een analysemodel. De expressieve kracht van de UML modelstructuur 
moet worden verrijkt om zo geschikte conceptuele modellen te bekomen die de 
structuren van het probleemdomein rechtstreeks in de modelstructuur uitdrukken.  
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3 Kernprincipes voor conceptuele modellering 

Alvorens we de EROOS methodiek voorstellen, presenteren we eerst de 
kernprincipes voor conceptuele modellering die geleid hebben tot bepaalde 
methodologische beslissingen in EROOS. We geven in de volledige tekst argumenten 
waarom deze principes van het allergrootste belang zijn voor conceptuele modellering 
om zo de meest geschikte modellen te bekomen. 

• Het principe van uniciteit stelt dat elk feit van het probleemdomein moet 
resulteren in een uniek modelelement in het overeenkomstige conceptueel model. 
Er mag geen alternatief bestaan om feiten van het probleemdomein te 
modelleren, zodat we vermijden om verschillende conceptuele modellen te 
bekomen die enigszins equivalent zijn. In plaats daarvan moeten de door de 
methodiek aangeboden modelconcepten de analist leiden van het te modelleren 
probleemdomein naar het meest geschikte conceptueel model dat deze feiten 
representeert. 

• Het principe van geen overtolligheid stelt dat elk individueel informatie-
element, voorgesteld in een conceptueel model, een waarde op zich moet hebben. 
Het mag niet afleidbaar zijn van andere elementen in het conceptueel model. Elk 
feit van het probleemdomein moet direct gereflecteerd worden in het conceptueel 
model door een bepaalde modelentiteit, dat op zijn beurt terug getraceerd kan 
worden naar dit probleemdomein. 

• Het principe van geen ambiguïteit stelt dat elk element in het conceptueel 
model moet voortvloeien uit een feit van het probleemdomein. Twee 
verschillende situaties in een probleemdomein mogen niet resulteren in een 
éénzelfde element binnen een conceptueel model. 

• Het principe van volledigheid stelt dat alle relevante informatie van het 
probleemdomein moet gereflecteerd worden in het conceptueel model. Dit wil 
zeggen dat een conceptueel model onvolledig is als een aantal feiten niet 
expliciet beschreven zijn, maar enkel aanwezig zijn in het hoofd van de analist of 
domeinexpert. Dit kan leiden tot fouten, misverstanden, verwarring en arbitraire 
beslissingen tijdens latere fasen van het ontwikkelingsproces. Alhoewel het 
aanvaardbaar is dat bepaalde technische aspecten uit het oplossingsdomein niet 
voorgesteld worden in een conceptueel model, moet het probleemdomein in volle 
omvang worden gemodelleerd. 

• Het principe van minimalisme stelt dat enkel relevante informatie uit het 
probleemdomein mag voorgesteld worden in het conceptueel model. Het model 
mag geen irrelevante informatie bevatten die niet gerelateerd kan worden met het 
probleemdomein of de vereisten voor het softwaresysteem. Als modelinformatie 
niet afgeleid kan worden uit een relevant kennisfeit uit het probleemdomein, is 
het overbodig en moet het worden weggelaten. Een analist moet bewust zijn van 
de grenzen van het probleemdomein en mag niet proberen om onbelangrijke of 
ongerelateerde feiten te modelleren. 
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• Het principe van nauwkeurigheid stelt dat elk feit uit het probleemdomein op 
een formele wijze moet gemodelleerd worden met behulp van de concepten uit 
de ondersteunende analysemethodiek. Tekstuele elementen of aantekeningen in 
een natuurlijke taal mogen geen deel uitmaken van het conceptueel model zonder 
een overeenkomstige formele representatie in het model. 

• Het principe van geen historiek stelt dat het conceptueel model onafhankelijk 
moet zijn van de volgorde waarin de feiten uit het probleemdomein werden 
gemodelleerd. Het conceptueel model mag enkel afhankelijk zijn van de totale 
verzameling van informatie uit het probleemdomein dat gemodelleerd moet 
worden, en niet van de volgorde waarin deze informatie-elementen toegevoegd 
werden aan het model. Een conceptueel model moet een representatie zijn van 
een probleemdomein, en mag dus geen informatie bevatten betreffende de 
historiek van de constructie van het model. 

• Het principe van modelgeïmpliceerde beperkingen stelt dat beperkingen die 
resulteren uit wetten en reguleringen van het probleemdomein ook weerspiegeld 
moeten worden in de structuur van het conceptueel model. Dit betekent dat de 
concepten uit een analysemethodiek in staat moeten zijn om deze belangrijke 
beperkingen direct in de modelstructuur uit te drukken. Daarenboven moet 
informatie die existentieel afhankelijk is van andere basisinformatie, eveneens 
gereflecteerd worden in het conceptueel model. Een modelentiteit die een feit 
beschrijft dat afhangt van een ander basisfeit, moet ook in het model afhankelijk 
zijn van de representatie van dit basisfeit. 

• Het principe van abstractie stelt dat complexe informatie, voortvloeiend uit de 
intrinsieke complexiteit van het probleemdomein, gedetailleerd moet worden 
voorgesteld in het overeenkomstige conceptueel model. Een conceptueel model 
kan echter modeloverzichten geven in een meer abstracte vorm voor het 
welbehagen van de personen die het model moeten bestuderen. Het opstellen van 
abstracte modeloverzichten mag echter geen kernpunt zijn bij het conceptueel 
modelleren, aangezien het conceptueel model het probleemdomein gedetailleerd 
moet voorstellen. Maar ter bevordering van de interactie met de klanten en 
eindgebruikers, kan het wel nuttig zijn om modeloverzichten op te maken die een 
gecomprimeerde visie bieden op een mogelijkerwijs complex conceptueel model. 

4 Een methodologische kern voor conceptuele modellering 

De EROOS methodiek wenst de analist te begeleiden naar een uniek conceptueel 
model voor een bepaald probleemdomein. In het modelleringsproces spelen 
beperkingen een cruciale rol. Ten eerste introduceert EROOS het gebruik van 
existentiële afhankelijkheid als het hoofdcriterium om de modelstructuur te bepalen, 
waarbij modelbeperkingen impliciet in deze structuur worden uitgedrukt. Ten tweede 
werd de impact van modelbeperkingen op elk modelelement grondig bestudeerd, 
waarbij modelbeperkingen geïntegreerd worden in modelconcepten indien 
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aangewezen. Ten derde worden modelbeperkingen als een eersteklas modelconcept 
behandeld en verbonden met de betrokken modelelementen. 

We presenteren twee versies van de EROOS methodiek: een kernversie (‘EROOS 
kernel’), waarbij informatie enkel kan worden toegevoegd aan een conceptueel 
modelinstantiatie, en een uitgebreide versie (‘EROOS universe’), waarbij er 
bijkomende ondersteuning wordt geboden voor EROOS analysepatronen door middel 
van geavanceerde en meer praktische concepten, met de EROOS kernel als 
onderliggende basis. 

4.1 Klassen, objecten en statische classificatie 

Het EROOS klassenconcept is grotendeels vergelijkbaar met het klassenconcept in 
UML. Onze bijdragen in dit verband zijn: 

• De constructionele modelaanpak, waarbij modelinstantiaties enkel kunnen 
groeien door informatie toe te voegen aan een modelinstantiatie, is een cruciale 
eigenschap van de EROOS kernel om het principe van uniciteit te bereiken. 
Objecten kunnen niet vernietigd worden, maar in plaats daarvan moet de 
vernietiging van een object gereïficeerd worden in de creatie van een afzonderlijk 
object dat de vernietigingsgebeurtenis voorstelt. 

• De methodologische aanpak met ogenblikkelijke gebeurtenissen verplicht de 
analist om een gebeurtenis met een relevante duur te splitsen in twee 
modelgebeurtenissen. Deze aanpak stuurt de analist naar een uniek conceptueel 
model voor het probleemdomein. 

4.2 Attributen, domeinen, waarden en decoratie 

Het EROOS attribuutconcept is grotendeels vergelijkbaar met het attribuutconcept in 
UML. Onze bijdragen in dit verband zijn: 

• De constructionele modelaanpak die reeds hoger werd toegelicht. 
Attribuutwaarden kunnen niet veranderen, maar de verandering moet gereïficeerd 
worden in de creatie van een afzonderlijk object dat de veranderingsgebeurtenis 
voorstelt. Hierdoor kunnen analisten focussen op de informatie uit het te 
modelleren probleemdomein. Een analist moet niet beslissen over welke 
informatie in het model beschikbaar moet blijven en welke mag overschreven 
worden. De hoeveelheid kennis en feiten in een modelinstantiatie kan namelijk 
enkel vergroot worden. 

• Het standaardattribuut Creation Timestamp voor elk object van iedere klasse 
laat de analist toe om te redeneren over het moment waarop een object ontstaan 
is. Dit attribuut moet niet expliciet gemodelleerd worden, maar is automatisch 
beschikbaar voor elk object in EROOS. Een analist moet vaak redeneren over het 
tijdstip waarop een bepaalde gebeurtenis heeft plaatsgevonden, bijvoorbeeld om 
de volgorde van bepaalde gebeurtenissen te reconstrueren, om de ouderdom van 
een object te bepalen of om de duur van een bepaalde activiteit te berekenen. De 
analist moet dergelijke attributen niet langer modelleren, en hoeft zich ook niet af 
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te vragen of dergelijke attributen nodig zijn in het model. De EROOS methodiek 
voorziet deze informatie automatisch voor alle objecten. 

• Het verbod om Booleaanse en getalattributen te gebruiken in EROOS, het feit 
dat attribuutwaarden niet ongedefinieerd kunnen zijn en het verbod om 
afgeleide attributen te modelleren. Dit verplicht de analist om een aantal feiten 
in het model expliciet te modelleren met behulp van klassen, 
specialisatiehiërarchieën of query’s, in plaats van deze informatie compact als 
een attribuut voor te stellen. Een dergelijke integratie van impliciete 
modelbeperkingen in elk methodologisch concept geeft een welbepaalde 
semantiek aan elk modelconcept. Hierdoor het gebruik ervan wordt gelimiteerd 
tot een specifieke context en de analist gedwongen wordt om het meest geschikte 
concept in elke situatie te gebruiken. 

4.3 Relaties, verbanden en verfijning 

Het EROOS relatieconcept is enigszins vergelijkbaar met het associatieconcept in 
UML. Onze bijdragen in dit verband zijn: 

• Het systematische gebruik van existentiële afhankelijkheid als basiscriterium 
om de modelstructuur te bepalen, is een kernbijdrage van dit werk. Een 
dergelijke aanpak leidt tot een hiërarchische afhankelijkheidsstructuur voor 
objecten. Deze geeft een duidelijk inzicht in de afhankelijkheden tussen de 
informatie-elementen. Dit leidt tot een krachtig model dat een groot aantal 
modelbeperkingen direct in de modelstructuur impliceert. Relaties in EROOS 
zijn expliciet en op unieke wijze gemodelleerd, aangezien ze steeds ingekapseld 
worden in een verfijnde klasse. UML daarentegen biedt een aantal 
mogelijkheden aan om relaties te modelleren, zoals associations, association 
classes, qualified associations, aggregates, compositions, en een associatie 
gereïficeerd in een klasse. 

• De constructionele modelaanpak die reeds hoger werd toegelicht. 
Relatieparticipanten kunnen niet veranderen, maar de verandering van een 
relatieparticipant moet gereïficeerd worden in de creatie van een afzonderlijk 
object dat de veranderingsgebeurtenis voorstelt.  

4.4 EROOS beperkingen en restrictie 

Het EROOS beperkingsconcept is grotendeels vergelijkbaar met het invariantconcept 
in OCL. Onze bijdragen in dit verband zijn: 

• In aanvulling van een groot aantal beperkingen die geïmpliceerd worden door de 
EROOS modelstructuur, biedt EROOS de mogelijkheid aan om beperkingen als 
eersteklas modelconcept voor te stellen. Gebruik makende van een formele 
notatie, kunnen modelbeperkingen opgelegd worden om regels en regulaties van 
het probleemdomein uit te drukken. Ons werk dat voor het eerst gepubliceerd 
werd in 1993, is vergelijkbaar met OCL dat in 1995 binnen IBM werd 
ontwikkeld. 
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• In tegenstelling met OCL, legt EROOS een unieke manier voor de specificatie 
van EROOS beperkingen op. Dit wordt bereikt door (1) de verplichting om 
beperkingen te formuleren vanuit de top klasse(n) van de relatiehiërarchie, en (2) 
door de introductie van de ‘not participating’ clausule. Een unieke 
specificatiemanier voor beperkingen heeft als voordeel dat het voor duidelijke 
criteria zorgt bij de ontwikkeling van conceptuele modellen. Dit leidt tot een 
uniek gemeenschappelijk model voor alle analisten die betrokken zijn bij de 
ontwikkeling van een conceptueel model. EROOS verbiedt ook expliciet de 
specificatie van een EROOS beperking die logisch kan afgeleid worden van 
andere beperkingen die reeds aanwezig zijn in het conceptueel model. Zo kan de 
specificatie van beperkingen in een EROOS model begrensd worden tot de 
verzameling van relevante beperkingen en zal het weinig afgeleide beperkingen 
bevatten. 

• In tegenstelling met OCL, legt EROOS de analisten de verplichting op om 
indien mogelijk geïmpliceerde beperkingen te gebruiken. Het formalisme 
voor EROOS beperkingen is zo ontwikkeld dat het niet mogelijk is om 
geïmpliceerde beperkingen uit te drukken met behulp van het EROOS 
beperkingsconcept. Dit wordt bereikt door het verbod op het gebruik van de 
participatiequery (�) in de formulering van een EROOS beperking. 

4.5 Is-A specialisaties en statische onderverdeling 

Het EROOS specialisatieconcept is grotendeels vergelijkbaar met het generalisatie-
concept in UML. Onze bijdragen in dit verband zijn: 

• Het mechanisme om beperkingen binnen een specialisatie te verstrengen, is 
een kernbijdrage van dit werk. Een participantklasse van een relatie, die een 
existentiële afhankelijkheid uitdrukt van een verfijnd object op een participerend 
object, kan verstrengd worden. Bij een dergelijke verstrenging kan een 
participantklasse vervangen worden door een klasse die deze participantklasse 
via een aantal relaties en specialisaties direct of indirect bevat. Dit laat de analist 
toe om strengere afhankelijkheden voor een bepaald deel van de verfijnde klasse 
op te leggen. 

• De systematische aanpak voor een specialisatie, die partitiedisjunctie voor elke 
specialisatiehiërarchie, een strikte scheiding tussen abstracte generalisatieklassen 
en concrete eindklassen (‘leaf classes’) en een verbod op causale afhankelijkheid 
oplegt. Dit stuurt de analist naar een model met zuivere specialisatiestructuren en 
overzichtelijke meervoudige overervingsbomen. 

4.6 Queryòs en ornamentatie 

Het EROOS queryconcept is grotendeels vergelijkbaar met query operations in OCL. 
Onze bijdrage in dit verband is de formele notatie om de semantiek van query’s uit 
te drukken. Dit ondersteunt een complete en precieze beschrijving van het 
gedragsgedeelte van een model. Zo kan een conceptueel model gebruikt worden voor 
simulatie, wat tot een betere validatie van het model door de klant leidt, alsook voor 
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modeltransformatie naar een meer softwaregeoriënteerd model op een lager 
abstractieniveau. Ons werk is vergelijkbaar met OCL, dat op een later tijdstip werd 
ontwikkeld. 

4.7 Gebeurtenissen en verrijking 

Het EROOS gebeurtenisconcept is grotendeels vergelijkbaar met operaties in OCL. 
Onze bijdrage in dit verband is de formele notatie om de semantiek van 
gebeurtenissen uit te drukken laat een complete en precieze beschrijving van het 
gedragsgedeelte van een model toe en is vergelijkbaar met OCL. 

5 Geavanceerde concepten voor conceptuele modellering 

Alhoewel de concepten van de EROOS kern toereikend zijn om een model te 
construeren dat voldoet aan de kernprincipes voor conceptuele modellering, is het 
nuttig om geschiktere concepten ter beschikking te stellen voor de specificatie van 
veel voorkomende analysepatronen. Op basis van de identificatie van dergelijke 
analysepatronen, biedt het EROOS universum geavanceerde en praktischere 
concepten voor het modelleren van het probleemdomein. 

5.1 Klassenarchief en objectvernietiging 

Onze bijdragen in verband met het klassenarchiefconcept zijn: 

• Het concept klassenarchief is een origineel en vernieuwende bijdrage tot het 
domein van conceptuele modellering. Andere analysemethodieken bieden geen 
destructoren aan of beschouwen vernietigde objecten als nutteloos voor een 
model. De introductie van klassenarchieven en hun gebruik in existentiële 
afhankelijkheidsrelaties biedt een krachtig en hoogniveau modelleringsconcept 
waarbij belangrijke afhankelijkheidsbeperkingen impliciet in de modelstructuur 
worden uitgedrukt. Verschillende soorten beperkingen tussen de levensduur van 
een verfijnd object en zijn participantobject kunnen zo rechtstreeks in de 
relatiedefinitie worden gespecificeerd. 

• Het standaardattribuut Destruction Timestamp voor elk object van iedere 
klasse laat de analist toe om te redeneren over het moment waarop een object 
vernietigd is. Dit attribuut moet niet expliciet gemodelleerd worden, maar is 
automatisch beschikbaar voor elk object in EROOS. Hierdoor kunnen 
bijvoorbeeld query’s worden gedefinieerd die de gemiddelde levensduur van een 
object berekenen. De analist hoeft niet meer te beslissen of dergelijke attributen 
nodig zijn in het model aangezien de EROOS methodiek deze informatie 
automatisch voor alle objecten aanbiedt. 

• Objecten die vernietigd worden, verdwijnen niet uit het model maar zijn nog 
steeds raadpleegbaar om historische informatie te verkrijgen over voorbije 



NEDERLANDSTALIGE SAMENVATTING xiii 

 

gebeurtenissen, vroegere attribuutwaarden en oude relatieverbanden. De 
vernietiging van een object houdt enkel in dat het feit uit het probleemdomein 
opgehouden heeft te bestaan. Tijdens conceptuele modellering zijn kwesties 
betreffende de relevantie van informatie om bepaalde taken uit te voeren, niet aan 
de orde  

5.2 Mutabiliteit van attribuutwaarden en relatieparticipanten 

Het EROOS mutabiliteitsconcept is grotendeels vergelijkbaar met de {readOnly} 
property modifier in UML. Onze bijdrage in dit verband is de beschikbaarheid van 
oude informatie van attributen en relaties. Dit wordt mogelijk gemaakt door het 
feit dat het mutabiliteitsconcept gedefinieerd wordt bovenop het constructionele 
model van de EROOS kern. In tegenstelling tot andere analysemethodieken die 
attributen als variabelen beschouwen welke overschreven worden als een nieuwe 
waarde wordt gedefinieerd, biedt EROOS de mogelijkheid om te redeneren over 
vroegere modelinstantiaties. Dit kan door gebruik te maken van een tijdsindicatie 
voor attribuut-, verfijnings- en particatiequery’s. 

5.3 Composieten en wederzijdse afhankelijkheid 

Het EROOS composietconcept is enigszins vergelijkbaar met aggregatie en 
compositie in UML. Onze bijdragen in dit verband zijn: 

• De invoering van composieten geeft de analist een duidelijk omlijnd concept 
voor het modelleren van wederzijdse afhankelijkheid en geheel-deelstructuren, 
bestaande uit een niet leeg geheel en een aantal van afhankelijke delen. UML 
geeft een ambigue definitie voor aggregaten en composities die (1) geen 
wederzijdse afhankelijkheid impliceert en (2) niet duidelijk de verschillen 
aangeeft tussen associaties, aggregaten en composities. EROOS geeft een 
expliciete definitie van de verschillen tussen relaties die een unilaterale 
existentiële afhankelijkheid uitdrukken en composieten die een wederzijdse 
afhankelijkheid uitdrukken. 

• Een consequente toepassing van mutabiliteit, klassenarchieven en 
geïntegreerde beperkingen voor het composietconcept biedt een coherente 
methodologische aanpak voor conceptuele modellering. 

5.4 EROOS beperkingsreacties 

Onze aanpak betreffende beperkingsreacties is een origineel en vernieuwende 
bijdrage tot het domein van conceptuele modellering. De introductie van 
beperkingsreacties zorgt voor een elegante beschrijving van het probleemdomein, 
waarbij een algemene beperkingsoplosser aan een beperking kan gerelateerd worden. 
De beperkingsreacties kunnen beperkingsschendingen oplossen door specifiek 
foutenbehandelingsgedrag in een gebeurtenis te injecteren. Beperkingsreacties 
kunnen ook gebeurtenissen opstarten op basis van de vooruitgang van de tijd. Dit laat 
toe om gedistribueerde effectbeschrijvingen voor gebeurtenissen op te stellen, waarbij 
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allereerst het basiseffect van een gebeurtenis wordt gespecificeerd. De 
beperkingsreacties specificeren kleine bijkomende functionaliteitsbeschrijvingen die 
aan het effect van de gebeurtenis worden toegevoegd op basis van de beperkingen die 
geschonden worden door de gebeurtenis. Een dergelijke aanpak zorgt voor een 
scheiding van de specificatie van de normale functionaliteit voor de gebeurtenis en de 
exceptionele functionaliteit voor de foutenbehandeling. De normale functionaliteit 
wordt in de gebeurtenis zelf beschreven, terwijl de functionaliteit van de 
foutenbehandeling in een aantal beperkingsreacties wordt beschreven. Zonder het 
gebruik van beperkingsreacties bevat de specificatie van een gebeurtenis een groot 
deel gedupliceerde beschrijvingen. Deze gedupliceerde specificaties komen vooral 
van de foutenbehandeling en van de functionaliteit voor het bewaren van de 
geldigheid van beperkingen. Dit veroorzaakt een grote hoeveelheid aan duplicatie in 
een model. Beperkingsreacties ondersteunen een aanpak van scheiding van belangen 
(separation of concerns), door de centrale groepering van alle functionaliteit 
betreffende foutenbehandeling. Beperkingsreacties kunnen gebruikt worden om 
crosscutting behaviour betreffende beperkingen in een model te specificeren, 
waardoor alle gebeurtenissen worden uitgebreid met de functionaliteit om de 
geldigheid van de beperking te behouden. Het kan daarom aanzien worden als een 
techniek voor aspectgeoriënteerde softwareontwikkeling (AOSD). 

5.5 Afleidbare groepen en dynamische onderverdeling 

Onze aanpak betreffende afleidbare groepen is een originele en vernieuwende 
bijdrage tot het domein van conceptuele modellering. Afleidbare groepen kunnen 
meer beperkingen direct in de modelstructuur uitdrukken. In plaats van een expliciete 
EROOS beperking voor een relatie te specificeren, kan de relatie een specifieke 
objectengroep als participant bepalen. Deze groep identificeert de verzameling van 
objecten die als een geldige participant in de relatie kunnen optreden. Hierbij wordt 
de EROOS beperking getransformeerd naar een compositieregel voor een afleidbare 
groep. Daarenboven geven afleidbare groepen ook een dieper inzicht in het potentieel 
van een klasse. In het model wordt namelijk expliciet aangegeven dat een object in 
een aantal relaties kan participeren als het object tot een specifieke groep behoort. 

6 Conclusies 

In dit doctoraat hebben we een beperkingscentrale benadering voor 
objectgeoriënteerde conceptuele modellering voorgesteld, gebruik makende van 
hoogniveau beperkingsspecificaties als kernstructuur van het conceptueel model. 
Onze aanpak convergeerde in de EROOS methodiek waarvan twee versies werden 
voorgesteld. De basisversie, namelijk de EROOS kern, gebruikt een constructieve 
modelleeraanpak waarbij informatie enkel kan toegevoegd worden aan een 
conceptuele modelinstantiatie. De uitgebreide versie, namelijk het EROOS 
universum, biedt bijkomende ondersteuning aan voor terugkerende analysepatronen 
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van de EROOS kern door middel van geavanceerde en meer praktische concepten. 
Hierbij wordt de EROOS kern als onderliggende basis gebruikt. 

De bijdragen van dit doctoraat, die hierboven gedetailleerd werden beschreven, 
situeren zich op drie vlakken, namelijk (1) geavanceerde methodologische concepten 
om de kernprincipes van conceptuele modellering te bereiken, (2) de definitie van 
nieuwe structurele concepten om modelbeperkingen impliciet in de modelstructuur 
zelf uit te drukken, en (3) de introductie van beperkingen met bijbehorende 
resolutiemechanismen als een eersteklas modelconcept. 

6.1 Toegevoegde waarde voor modelgedreven ontwikkeling 

EROOS verleent toegevoegde waarde aan modelgedreven ontwikkeling (Model-
Driven Development - MDD) door de formalisering van conceptuele modellering. Dit 
laat toe het MDD proces te starten vanaf de analysefase, vertrekkende van het 
conceptueel model van het probleemdomein. 

MDD is een raamwerk voor softwareontwikkeling, waarbij een rigoureuze aanpak 
wordt gevolgd die steunt op ontwikkeling door transformatie. Op basis van 
hoogniveau platformonafhankelijke modellen (Platform-Independent Models - PIM) 
worden laagniveau platformspecifieke modellen (Platform-Specific Models - PSM) 
geconstrueerd. Het doel is om architecturale en ontwerpgeoriënteerde zaken te 
scheiden van technologische en implementatiegeoriënteerde beslissingen door middel 
van een gelaagde structuur van modeltransformaties. Dit laat toe om gradueel meer 
detail en platformafhankelijkheid in de laagniveau modellen te introduceren. Een 
dergelijke aanpak kan uiteindelijk leiden tot (semi-) automatische codegeneratie voor 
het softwaresysteem. MDD steunt op geformaliseerde modellen die (1) als 
invoermodel kunnen gebruikt worden voor een modeltransformator en (2) 
geproduceerd worden als het resultaat van een transformatiestap. 

Omdat uit de meeste analysemethodieken modellen voortvloeien die informele 
beschrijvingen bevatten, zijn deze modellen niet geschikt voor een MDD aanpak. 
Informele beschrijvingen kunnen niet gebruikt worden als invoer voor een 
modeltransformatie omdat het zeer moeilijk is om gestructureerde informatie uit een 
informeel element te extraheren. Modellen kunnen enkel gebruikt worden voor een 
MDD aanpak als de informatie in een formele notatie wordt uitgedrukt die 
onderzocht, geëvalueerd en getransformeerd kan worden naar een ander formaat. 
Omdat EROOS een volledige formalisering van de structurele en gedragselementen 
van een conceptueel model aanbiedt, is het geschikt als notatie voor de 
invoermodellen van een MDD transformatie. 

De transformatie van conceptuele modellen op een (semi-) automatische manier is 
zowel interessant voor het domein van conceptuele modellering als voor MDD. 

• Betreffende conceptuele modellering kan het helpen om de analyseresultaten in 
de volgende softwareontwikkelingsfasen te laten renderen. Een conceptueel 
model is niet louter een beschrijving van het probleemdomein en de functionele 
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vereisten, maar wordt ook als een waardevol bezit beschouwd dat als basis kan 
dienen voor de verdere systeemontwikkeling. Daarenboven maken MDD 
transformaties rapid prototyping en modelsimulaties mogelijk om zo de 
conceptuele modellen te verifiëren en valideren. Daarnaast kunnen abstracte 
visies op het conceptueel model gegenereerd worden om zo de communicatie 
met de klant en eindgebruiker te bevorderen.  

• Betreffende MDD laat een formeel conceptueel model toe om het MDD proces 
vanaf het probleemdomein te starten in plaats van vanaf een 
platformonafhankelijk softwaremodel. Dit softwaremodel kan dan door een 
transformatie van het conceptueel model worden bekomen. 

6.2 Validatie 

We hebben de EROOS methodiek op drie vlakken gevalideerd: 

• Om de mogelijkheden en de geschiktheid van EROOS voor conceptuele 
modellering te kunnen evalueren, hebben we een groot aantal gevalstudies 
uitgevoerd. In samenwerking met andere leden van de SOM onderzoeksgroep en 
verscheidene industriële partners, hebben we de EROOS methodiek toegepast op 
een aantal gevalstudies uit diverse applicatiedomeinen. Deze gevalstudies werden 
uitgevoerd in het kader van onderzoeksprojecten in samenwerking met de 
industrie, licentiaatsthesissen die meestal door een industriële partner werden 
begeleid en als studentenprojecten in een licentiaatscursus over 
objectgeoriënteerde analyse (OGA, vroeger OGO). De grote variëteit aan 
applicatiedomeinen toont aan dat EROOS een algemene methodiek is die kan 
toegepast worden op een groot aantal domeinen, en dus niet enkel geschikt is 
voor het modelleren van informatiesystemen.  

• Onze conclusies betreffende de gevalstudies zijn dat (1) EROOS geschikt is om 
een grote variëteit aan applicatiedomeinen te modelleren zoals hoger reeds 
vermeld, (2) de EROOS methodiek helpt om verborgen domeinkennis aan het 
licht te brengen, (3) EROOS een goed middel is om objectoriëntatie en 
conceptuele modellering aan te leren, (4) het een vrij grote inspanning en een 
nauwkeurige aanpak en attitude vraagt om conceptuele modellen in EROOS te 
construeren, (5) MDD toolondersteuning nodig is om het conceptueel modelleren 
ten volle te laten renderen en (6) personen met een opleiding van academisch 
niveau redelijk eenvoudig in staat zijn om de EROOS methodiek aan te leren. 
Personen met een opleiding van professioneel niveau daarentegen zijn vaak enkel 
in staat om passieve modelleringsvaardigheden verwerven. Dit betekent dat ze 
meestal wel in staat zijn om EROOS modellen te begrijpen en te evalueren, maar 
moeilijkheden ondervinden om dergelijke modellen zelf te construeren. 

• Om het principe van uniciteit te evalueren, hebben we het gebruik van EROOS in 
een licentiaatscursus over objectgeoriënteerde analyse (OGA, vroeger OGO) 
vergeleken en geëvalueerd. Onze bevindingen zijn dat er drie grote oorzaken van 
modelverschillen zijn, namelijk (1) het niveau van detail bij het modelleren, 
waarbij studenten een verschillende inschatting hadden van de relevantie van 
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bepaalde feiten uit het probleemdomein, (2) de persoonlijke kennis van het 
probleemdomein, waardoor fouten werden geïntroduceerd door het gebrek aan 
inzicht in het probleemdomein en (3) fouten die gemaakt werden tegen de regels 
van de EROOS methodiek, waardoor studenten bepaalde concepten op een 
incorrecte manier gebruikten. 

• We hebben toolondersteuning voor de EROOS methodiek ontwikkeld voor 
modellering, simulatie en transformatie, bestaande uit: 

− Een modelleertool dat toelaat om EROOS modellen te construeren en 
hieruit specificaties en modeldiagrammen te genereren. Deze EROOS tool 
is ontwikkeld door Bart Swennen van de SOM onderzoeksgroep. 

− Een generator voor modelsimulaties die automatisch een C++ of Java 
applicatie genereert met een bijbehorende generische gebruikersinterface 
voor een EROOS model. Dit ondersteunt rapid prototyping en de 
mogelijkheid tot vroege modelvalidatie. De applicatie bevat automatische 
gegenereerde code voor beperkingscontrole die de modelbeperkingen 
afdwingt door de resulterende modelinstantiatie te controleren na elke 
gebeurtenis. Indien de modelinstantiatie bepaalde beperkingen schendt, zal 
er deze geweigerd worden en de toestand die bestond voor de uitvoering van 
de gebeurtenis hersteld worden (rollback). Deze generator werd ontwikkeld 
in een aantal opeenvolgende licentiaatsthesissen. 

− Een transformator van EROOS naar UML modellen waarbij de 
hiërarchische EROOS modelstructuur afgevlakt wordt in het UML model 
door gebruik te maken van klassen en simpele associaties. Deze 
transformator werd ook ontwikkeld in een licentiaatsthesis. 

6.3 Verder onderzoek 

De zoektocht naar de perfecte conceptuele modelleringsmethodiek is verre van 
beëindigd. Enkele mogelijke richtingen voor verder onderzoek zijn (1) 
methodogische verbeteringen voor EROOS, zoals ondersteuning voor gedistribueerde 
effectbeschrijvingen, zachte beperkingen en EROOS uitbreidingen, (2) ondersteuning 
voor modelgedreven softwareontwikkeling van EROOS naar UML, (3) 
modeltransformaties naar abstracte visies op het conceptueel model om de 
communicatie met de klant en eindgebruiker te bevorderen, en (4) de realisatie van 
een beperkingscentrale benadering in UML. 

 



 

 

 


