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Is precision dosing worth the effort?

An overwhelming number of medicinal products are marketed with the same fixed

dose for every patient. This is suboptimal. Each patient has distinctly different

pharmacokinetics and pharmacodynamics, and should therefore receive an

individualized dose. We can even precisely calculate this dose by observing the

individual response and adapting based on a non-linear mixed effects statistical

model. Unfortunately, this requires a lot of effort: the medical practitioner should

sample blood, assay drug concentration, and use specialized computer software to

calculate the individual dose.

Is this worth the effort? For all drugs, or for some?

In this doctoral research, we simulate the impact of precision dosing on virtual 
patients. We showed that precision dosing of infliximab will not help to reduce costs 
in the induction treatment of ulcerative colitis. For tacrolimus, an immunosuppressor 
used to mitigate rejectin in kidney transplant patients, we showed that precision 
dosing will lead to safe and effective tacrolimus blood concentrations faster and 
more often. It was only a small step to go from virtual patients to real patients in 
clinic, through the development of a bedside dose recommendation app. A 
prospective clinical trial shows promising interim results.

We hope this approach may be used to evaluate precision dosing of other drugs, and

effectively develop solutions where precision dosing is worth the effort.

cover.pdf 1 26-Aug-22 21:58:17



KU Leuven 
Biomedical Sciences Group 
Faculty of Pharmaceutical Sciences 
Department of Pharmaceutical and Pharmacological Sciences 
Drug Delivery and Disposition 

Computer-assisted dosing 
recommendation framework, feasibility 
study and proof of concept 
implementation for tacrolimus 

Ruben FAELENS 

Promoter: Prof. dr. Pieter Annaert 
Co-promoter: Prof. Dr. Dirk Kuypers 

dr. Daniel Röshammar 
Chair:  Prof. dr. Isabelle Huys 
Jury members: Prof. Dr. Minne Casteels 

Prof. dr. Geert Verbeke 
dr. Philippe Jacqmin 
Prof. dr. Sebastian Wicha 

Leuven, September 7th 2022

Dissertation presented in 
partial fulfilment of the 
requirements for the degree 
of Doctor in Pharmaceutical 
Sciences 





Word of thanks 

This project has been a long and arduous journey in many aspects. 
Pharmacometrics and precision dosing is an interesting field with 
applications close to patients. It is also encumbered by business interests, 
legislative concerns, politics, and deep-rooted convictions. 

I wish to thank my first promotor Dr. Thomas Bouillon. He believed in my 
previous experience, and was able to leverage and challenge this experience 
to create a working and stable software in (comparatively) little time. He 
further managed to identify pressing needs in the hospital and on-board key 
players in the project. Prof. Apr. Pieter Annaert supported the project from 
the beginning, and I am truly grateful he continued the promotorship in the 
last years of my PhD. Pieter not only taught me how to work efficiently, he 
also stressed the importance of work-life balance, ensuring a durable career 
in the face of adversity. My colleagues at the department of Drug Delivery and 
Disposition offered an interesting change of perspective. Thank you Neel, 
Pieter, Nina, Julia and Miao-Chan for being warm colleagues, including me on 
projects, and accepting me in the group. Thank you Matthias for sharing your 
insights in why tacrolimus is such a variable compound. I also connected with 
fellow students at Clinical Pharmacology (researching the impact and cost of 
medicines), who offered yet another view on drug development. The team of 
Erwin Dreesen, Ann Gils, Paul Declerk, Zhigang Wang, Wannee Kantasiripitak 
and Isabel Spriet were a valuable sparring partner. Thank you. I further want 
to thank the Physics department of KULeuven, as they provided me with 
rewarding teaching opportunities within my competence level. 

This project was only possible with the greater support of all people and 
departments it touched. Thank you Prof. Dr. Dirk Kuypers and team for the 
clinical drive to make this project a reality. Thank you Maxine for hitting the 
ground running and picking up the monitoring and support tasks for the 
clinical study. I leave the project in your capable hands. Thank you to the 
Biostats department for supporting the clinical trial. Thank you Dr. Van Hove 
for diligently assembling the valuable datasets that brought us this far. Thank 
you Bart, Egon and Thomas for the technical support from the KWS side. I 
also want to thank the wider research team at the university, and prof. 
Myriam Baes specifically, for their support in ensuring continued funding. In 



this respect, I thank the FWO for believing in this project and sharing our 
vision. 

Pharmacometrics is a special community. It connects people from different 
disciplines. This collaborative, open, supporting spirit was created by 
amazingly passionate individuals, too many to list them all here. I especially 
want to thank my ex-colleagues at Exprimo -Philippe Jacqmin, Per Olsson and 
Justin Wilkins in particular- for believing in my potential and spending 
countless hours to teach me. I am humbled by their support. Thank you to all 
of the members of the EU Mon4Strat consortium, in particular prof. Paul 
Tulkens, prof. Dr. Jean Chastre and the colleagues at UCL Liège for not 
dismissing my youthful enthousiasm but nurturing it. You supported my first 
exploration of precision dosing of meropenem and allowed me to grasp the 
broader context and real-life challenges. The Mon4strat project was a great 
first step, and I am proud to have been a part of it. 

When I joined the pharmacometrics community, I was warmly welcomed. 
Independent of affiliation, we strive to support and develop new talent. The 
awesome students Louis Sandra and Mirthe Vincken allowed this learning 
cycle to continue; thank you for allowing me to teach you. As R. Heinlein said: 
“When one teaches, two learn.”. A warm thanks to all participants of the 
DDMoRe project, as they showed how difficult software development can be 
in the pharmacometrics space. 

Thank you to Daniel Röshammar, my ex-manager and co-promotor, for all 
your hard work in guiding me towards growth as a pharmacometrician. You 
both supported me as a consultant at Exprimo, and in my search for career 
growth as a PhD student. Thank you Nicolas and Quentin for keeping the 
warm contact independent of our employers, and for sharing my passion on 
this project and the domain of MIPD. 

Thank you to all my friends and family. You brought me perspective and 
support, even when I had very little to offer apart from a head full of 
problems. You offered a safe haven openly and freely. Thank you. I am 
looking forward to fulfilling my role as a godfather of Thijs and Jonas with a 
little more focus. 

In theory, a PhD project requires full and dedicated focus. In practice, this is 
often challenged, and for the better. The building project of a full street with 
33 houses consumed a part of my time and brainpower; I am grateful for the 
life lessons it brought. Thank you everyone who supported our struggle. 



Midst all work-related challenges, my wife Astrid and children Linde and 
Warre were always my first priority. Their infinite kindness to offer a place in 
their heart -even for a stressed and grumpy dad- makes me smile and tear up. 
Even when big dreams turned out difficult, our beautiful family is my dream 
come true.  

During my childhood, scientific inquiry was supported and cheered on. My 
dear parents, thank you for inspiring me to aim high, both professionally and 
personally. Thank you Femke and Wouter for always listening to my worries 
and to tolerate my big-brotherly advice. Uncle Charles, thank you for 
instilling a passion for science in me; I hope to carry on the torch.

Thank you all.





 

i 

Table of Contents 

Table of Contents ......................................................................................................................... i 
Glossary .......................................................................................................................................... v 
Popular Summary ...................................................................................................................... ix 
Populairwetenschappelijke samenvatting ...................................................................... xi 
Summary .................................................................................................................................... xiii 
Beknopte samenvatting ......................................................................................................... xv 
Chapter 1 Introduction to pharmacometrics and precision dosing ................... 1 

1.1. The road to safe and effective drugs ............................................................... 1 
1.2. Modeling ..................................................................................................................... 4 
1.3. Model-informed drug development ................................................................ 8 
1.4. Precision dosing: we are not there yet ........................................................ 10 

Chapter 2 Nonlinear mixed effects modeling and precision dosing ................ 19 
2.1. Non-linear structural models .......................................................................... 19 
2.2. Fitting non-linear models ................................................................................. 22 
2.3. Mixed effect models: prior distributions .................................................... 26 
2.4. Mixed effect models: estimating distributions ........................................ 28 
2.5. Covariate models .................................................................................................. 31 
2.6. Precision dosing.................................................................................................... 32 

Chapter 3 Objectives ........................................................................................................... 35 
3.1. Simulate MIPD: general framework ............................................................. 35 
3.2. Simulate MIPD for infliximab induction therapy in ulcerative colitis 
patients ................................................................................................................................... 35 
3.3. Simulate MIPD for tacrolimus in de novo kidney transplant 
recipients early post-transplant ................................................................................... 36 
3.4. Build a tacrolimus MIPD software tool ....................................................... 37 
3.5. Transpose this approach to other compounds ........................................ 38 



 

ii 

Chapter 4 Methods for MIPD ........................................................................................... 39 
4.1. Goodness of fit evaluation ................................................................................ 39 
4.2. Covariate selection .............................................................................................. 41 
4.3. Residual error models and MPC/MIPD ....................................................... 44 
4.4. Target selection .................................................................................................... 47 
4.5. Population simulation for predicting MIPD .............................................. 50 

Chapter 5 Tdmore - a framework for model-informed precision dosing ..... 53 
5.1. Introduction ........................................................................................................... 54 
5.2. The road to MIPD ................................................................................................. 57 
5.3. Mathematical engine .......................................................................................... 58 
5.4. Methods: a priori simulation ........................................................................... 65 
5.5. User interface ........................................................................................................ 71 
5.6. Stable and robust software .............................................................................. 72 
5.7. Tacrolimus application ...................................................................................... 75 
5.8. Legal challenges .................................................................................................... 81 
5.9. Conclusion ............................................................................................................... 85 

Chapter 6 Predicting infliximab MIPD for ulcerative colitis patients ............. 87 
6.1. Abstract .................................................................................................................... 88 
6.2. Introduction ........................................................................................................... 88 
6.3. Materials and Methods ...................................................................................... 91 
6.4. Results ...................................................................................................................... 94 
6.5. Discussion .............................................................................................................100 

Chapter 7 Quantifying the impact of MIPD on endpoints: a test-case for 
tacrolimus  ...............................................................................................................................105 

7.1. Abstract ..................................................................................................................106 
7.2. Introduction .........................................................................................................106 
7.3. Methods..................................................................................................................109 
7.4. Results ....................................................................................................................120 
7.5. Discussion .............................................................................................................126 

Chapter 8 Tacrolimus MIPD trial simulation ..........................................................133 



 

iii 

8.1. Abstract ................................................................................................................. 133 
8.2. Introduction ........................................................................................................ 134 
8.3. Simulation objectives ...................................................................................... 137 
8.4. Methods ................................................................................................................. 137 
8.5. Results ................................................................................................................... 139 
8.6. Conclusion ............................................................................................................ 155 

Chapter 9 Is tacrolimus precision dosing under azole co-medication worth 
it?  .............................................................................................................................. 157 

9.1. Abstract ................................................................................................................. 158 
9.2. Introduction ........................................................................................................ 158 
9.3. Methods ................................................................................................................. 160 
9.4. Results ................................................................................................................... 162 
9.5. Discussion ............................................................................................................ 167 
9.6. Supplementary Materials: dosing histogram ........................................ 170 

Chapter 10 Discussion ................................................................................................... 171 
10.1. Evaluation of objectives ............................................................................. 171 
10.2. Model building ............................................................................................... 174 
10.3. Simulation ....................................................................................................... 177 
10.4. Implementation............................................................................................. 178 
10.5. Key points ........................................................................................................ 181 

Scientific acknowledgements .......................................................................................... 183 
Personal contribution ......................................................................................................... 185 
Conflict of interest ................................................................................................................ 186 
Curriculum Vitae and publication list .......................................................................... 187 
References ............................................................................................................................... 191 
Appendix .................................................................................................................................. 207 
 

 

 



 

iv 

Included only in the digital PDF version 

Appendix A Jury comments on January 2022 manuscript .................................... 1 
A.1. Introduction .............................................................................................................. 1 
A.2. Sebastian Wicha ....................................................................................................... 1 
A.3. Geert Verbeke ........................................................................................................... 6 
A.4. Philippe Jacqmin ...................................................................................................... 7 
A.5. Minne Casteels ......................................................................................................... 8 

Appendix B Supplementary Materials for Infliximab Chapter ......................... 10 
B.1. Figures and Tables ............................................................................................... 10 
B.2. NONMEM code of the adapted population pharmacokinetic model ....
  ..................................................................................................................................... 14 
B.3. NONMEM code of the adapted exposure-response model ................. 17 
B.4. tdmore R code for the sensitivity analysis ................................................ 19 
B.5. tdmore R code for the simulations ............................................................... 19 

Appendix C Precision dosing trials in public trial registries ............................. 21 
Appendix D Tacrolimus MIPD trial simulation: full source code ..................... 27 

D.1. Clinical trial simulation ..................................................................................... 27 



 

v 

Glossary 

2LL  2-log likelihood 
AB  Adams-bashforth 
ADME  Absorption, 
Distribution, Metabolization 
and Excretion 
ALT  Alanine 
Aminotransferase 
API  Application programmer 
interface 
ATI  Antibodies to infliximab 
AUC  Area under the curve 
BDF  Backwards differential 
formula 
BFGS  Broyden-Fletcher-
Goldfarb-Shanno algorithm 
BSD  Berkeley Software 
Distribution 
BSV  Between-subject 
variability 
CAUC  Cumulative AUC 
CCT  Concentration-
controlled trial 
CE  Conformité Européenne 
CF  Cystic fibrosis 
CI  Confidence interval 
CI  Continuous integration 
CL  Clearance 
CRP  C-reactive Protein 
CSV  Comma-seperated values 
CSV  Computer systems 
validation 
CU  Clinical utility 
CV%  Coefficient of variation 
CWRES  Conditionally-
weighted residual 
CYP  Cytochrome P450 

DDI  Drug-drug interaction 
DV  Dependent variable 
EBE  Empirical Bayesian 
Estimation 
ECDF  Empirical cumulative 
distribution function 
EHR  Electronic health record 
EMA/EMEA  European 
Medicines Agency 
EUPL  EU Public License 
FDA  Federal Drug Agency 
FFM  Fat-free mass 
FIH  First in human 
FO  First-Order estimation 
FOCE  First-Order Conditional 
estimation 
FOCEI  First-Order 
Conditional estimation with 
interaction 
GDPR  General Data 
Protection Regulation 
GLS  General linear system 
GNU  GNU's Not Unix 
GoF  Goodness of Fit 
GPL  GNU General Public 
License 
HIPAA  Health insurance 
portability and accountability 
act 
HTML  Hypertext markup 
language 
IBD  Inflammatory bowel 
disease 
IIV  Inter-individual variability 
IM  Intramuscular 
IOV  Inter-occasion variability 



 

vi 

IPRED  Individual predicted 
value 
IQ  Installation qualification 
IQR  Inter-quartile range 
ISoP  International Society of 
Pharmacometrics 
IT  Information Technology 
IV  Intravenous 
IWRES  Individual weighted 
residual 
JSON  JavaScript Object 
Notation 
KA  Absorption rate 
KS-test  Kolmogorov-Smirnov 
test 
KWS  Klinisch werkstation 
LC-MS/MS  Liquid 
chromatography-mass 
spectrometry 
LOCF  Last Observation Carry 
Forward 
LSODA  Livermore Solver for 
Ordinary Differential 
equations with Automatic 
stiff/non-stiff selection 
MAP  Maximum a posteriori 
estimate 
MCMC  Markov chain monte 
carlo 
MDE  Minimal detectable 
effect 
MID3  Model-informed drug 
discovery and development 
MIDD  Model-informed drug 
development 
MIPD  Model-informed 
precision dosing 
MIT  Massachusetts Institute 
of Technology 
MMF  Mycophenolate Mofetil 
MMRM  Mixed model repeated 

measures 
MPC/MIPD  Model-predictive 
control for MIPD 
MPPE  Mean percentage 
prediction error 
MSE  Mean squared error 
NLME  Nonlinear mixed 
effects 
NOCB  Next Observation 
Carry Backward 
NONMEM  Nonlinear Mixed 
Effects Modeling program 
NPAG  Non-parametric 
adaptive grid 
NPDE  Normalized prediction 
distribution error 
ODE  Ordinary differential 
equations 
OFV  Objective function value 
OQ  Operational qualification 
PBPK  Physiology-based 
Pharmacokinetics 
pcVPC  prediction-corrected 
visual predictive check 
PD  Pharmacodynamics 
pEI  Probability of Endoscopic 
Improvement 
PI  Prediction interval 
PK  Pharmacokinetics 
popPK/PD  Population 
pharmacokinetics/pharmacod
ynamics 
PoSS  Probability of Study 
Success 
PPI  Proton pump inhibitor 
PQ  Performance qualification 
PRED  Population-predicted 
value 
PsN  Perl speaks nonmem 
PTA  Probability of Target 
Attainment 



 

vii 

QALY  Quality-adjusted life 
years 
R  R statistical programming 
language 
RCT  Randomized controlled 
trial 
RE  Residual error 
RIZIV  Rijksinstituut voor 
ziekte- en 
invaliditeitsverzekering 
RK  Runge-kutta 
RMSE  Root mean squared 
error 
RSE  Relative standard error 
RxODE  R package for 
simulation of ordinary 
differential equations 
SAEM  Stochastic 
approximation and 
expectation maximization 
SaMD  Software as a Medical 
Device 
SC  Subcutaneous 
SCM  Stepwise covariate 

modeling 
SDE  Stochastic differential 
equations 
SLD  Sum of largest tumor 
diameter 
SoC  Standard of care 
T50  Time of 50% of effect 
TAC  Tacrolimus 
TCI  Target concentration 
intervention 
TDM  Therapeutic drug 
monitoring 
TNFalpha  Tumor necrosis 
factor alpha 
TTE  Time To Event 
TVx  Typical value of x 
UC  Ulcerative Colitis 
UZ Leuven  Universitair 
Ziekenhuis Leuven 
V  Distribution volume 
VPC  Visual predictive check 
WSV  Within-subject 
variability 
 



 

viii 



 

ix 

Popular Summary 

  Everyone is different. Some people are small, others are large. We all need 
different amounts of food. We can handle different pain levels. While 
everyone is different, most common medicines use the same dose for 
everyone. In theory, individualizing the dose for every patient should work 
better. As an example, we do this for the painkiller paracetamol in children: 
we give 15mg for every kg of body weight. 

For some medicines, individualizing the dose is more difficult. Some patients 
may need 10 times more medicine than others, and there is no way of 
knowing this up front. For those medicines, we start with a standard dose, 
and then measure what happens to the patient. If the dose was too high or 
too low, we can adapt and try again, until we eventually find the right dose 
for that patient. Using a computer is the most accurate way to calculate the 
optimal dose. We call this model-informed precision dosing. We only do this 
for medicines where finding the right dose is really important. For most 
medicines, the benefit does not outweigh the extra costs and effort involved. 

In this PhD thesis, we predicted how well a computer can find the right dose 
by running computer simulations. We did this for two medicines: infliximab 
and tacrolimus. Infliximab is given to patients with a disease where the 
immune system attacks the bowels. This can cause bloody diarrhea and 
malnutrition. Infliximab suppresses a small part of the overactive immune 
system that causes this disease. It is an expensive medicine however, and 
scientists believed that individualizing the dose could treat more people with 
the same amount of medicine. We predicted what would happen, and found 
that individualizing the dose actually uses more medicine per patient, 
without more people getting better. 

The second medicine is tacrolimus. Patients who receive a new kidney from a 
donor need this drug to suppress their immune system, because the body 
wants to attack the foreign donor kidney. Tacrolimus is toxic to kidneys in 
high amounts, but too low amounts will not suppress the immune system 
enough and will also cause damage. Doctors measure the amount of 
tacrolimus in a patient’s blood every day, and use this to adapt the dose. We 
predicted whether a computer could adapt the dose better. We found that the 
computer did this better and faster. We also predicted that you could prove 
this in a clinical trial with 200 patients. We built software to adapt the dose 



 

x 

for real patients, and this software is used in the university hospital of 
Leuven. 

We also looked at what happens when tacrolimus and 
voriconazole/posaconazole are used together. Voriconazole and 
posaconazole are medicines that help kill germs. They are given to patients 
with transplanted organs. These patients need help from medicines, because 
their immune system is suppressed. Because tacrolimus and 
voriconazole/posaconazole are both removed from the body by the liver, 
they are both removed more slowly when these medicines are given 
together. We should then give less tacrolimus every day: doctors need to 
adapt the dose. We found that doctors should divide the tacrolimus dose by 
3. We also found that this is different per patient, but there is no way of 
knowing this up front. Computers will not help. 

We built software to make these predictions, and we called it tdmore. We 
made it easy to adapt, so other scientists can also predict if the computer can 
help dose other medicines. Unfortunately, we could not share the software 
that was designed for doctors, because the european union medical device 
law forbids sharing this without (expensive) validation tests. 

This work has improved our knowledge about model-informed precision 
dosing. We built software to predict the effect of precision dosing, and 
showed how to calculate if precision dosing will benefit patients. If not, this is 
a strong argument for using the same dose for everyone. If yes, scientists can 
easily build precision dosing software for use in real patients.
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Populairwetenschappelijke 
samenvatting 

  Iedereen is anders. Sommige mensen zijn groot, anderen zijn klein. Dik, dun, 
een veelvraat of een kleine eter, kleinzerig of ongevoelig. Hoewel iedereen 
verschilt, gebruiken we meestal dezelfde dosis van een geneesmiddel voor 
iedereen. In theorie zou het individualiseren van de dosis beter moeten 
werken. We doen dit al voor kinderen: voor de pijnstiller paracetamol geven 
we bijvoorbeeld 15mg per kg lichaamsgewicht. 

Voor sommige geneesmiddelen is dat individualiseren moeilijk. Sommige 
patienten hebben 10 keer meer nodig dan anderen, en er is geen enkele 
manier om dit op voorhand te bepalen. Voor deze geneesmiddelen beginnen 
we vaak met dezelfde dosis voor iedereen. We meten bij de patiënt en passen 
de dosis steeds aan tot het goed is. Een computer moet dit in principe het 
meest nauwkeurig kunnen voorspellen met wiskundige formules. Dit 
noemen we model-informed precision dosing. Het is enkel de moeite om dit te 
doen voor geneesmiddelen waar de juiste dosis heel belangrijk is. In de 
meeste andere gevallen weegt het voordeel niet op tegen de extra moeite en 
kosten. 

In dit doctoraat voorspellen we hoe goed een computer de juiste dosis kan 
vinden. Dit doen we aan de hand van computersimulaties op virtuele 
patiënten. We deden dit voor twee geneesmiddelen: infliximab en tacrolimus. 
Infliximab wordt gebruikt om patiënten met prikkelbaar darmsyndroom te 
behandelen. In deze patiënten valt het immuunsysteem de darmen aan, en dit 
kan voor bloederige stoelgang en ondervoeding zorgen. Infliximab 
onderdrukt een kleine schakel in het overactieve immuunsysteem en kan zo 
de symptomen verbeteren. Infliximab is duur, en dokters dachten dat je met 
precisiedosering het geneesmiddel efficienter gebruikt. Zo kan je patiënten 
beter behandelen met hetzelfde geld. Wij voorspelden wat er zou gebeuren, 
en vonden dat precisiedosering eigenlijk meer geneesmiddel gebruikt per 
patiënt, zonder dat de patiënt hier beter van wordt. 

We onderzochten ook het geneesmiddel tacrolimus. Nier-patiënten die een 
donor-orgaan krijgen getransplanteerd hebben dit medicijn nodig om hun 
immuunsysteem te onderdrukken. Het lichaam wil immers de 
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lichaamsvreemde donornier aanvallen. Om goed te werken, moet er 
voldoende tacrolimus gegeven worden, maar het geneesmiddel is ook giftig 
voor de nieren in te hoge dosissen. Dokters meten daarom dagelijks de 
concentratie tacrolimus in het bloed, en passen de dosis naargelang aan. We 
voorspelden dat een computer dit beter en sneller kan doen. We toonden ook 
aan dat een klinische studie dit kan bewijzen met 200 patiënten. Daarom 
bouwden we ook software om de dosis voor echte patiënten aan te passen. 
Deze software wordt momenteel gebruikt in het universitair ziekenhuis van 
Leuven. 

We keken ook wat er gebeurt als tacrolimus en voriconazole/posaconazole 
samen toegediend worden. Voriconazole en posaconazole zijn twee 
geneesmiddelen die schimmels doden. Omdat transplantatiepatiënten een 
onderdrukt immuunsysteem hebben, hebben zij deze geneesmiddelen nodig 
om schimmelinfecties te voorkomen en te behandelen. Beide geneesmiddelen 
worden door de lever afgebroken, en deze afbraak gebeurt dus trager als 
beide samen worden toegediend. Gezien de afbraak trager verloopt, moeten 
we dus ook minder tacrolimus geven. We vonden dat dokters de dosis 
tacrolimus moeten delen door 3 wanneer ze met voriconazole of 
posaconazole starten. We vonden ook dat de optimale dosisaanpassing 
verschilt per patiënt, maar er is geen enkele manier om dit op voorhand te 
meten. Model-informed precision dosing zal hier dus niet helpen. 

De software die we bouwden om deze voorspellingen te doen, heet tdmore. 
We maakten de software gratis en vrij beschikbaar. We maakten het ook 
makkelijk voor andere onderzoekers om andere geneesmiddelen te 
evalueren. Jammer genoeg konden we de dokter-software niet delen, omdat 
de Europese Unie dure officiële testen verplicht. 

Dit onderzoek heeft onze kennis over model-informed precision dosing 
verbetert. We bouwden software om het effect van precision dosing te 
voorspellen, en toonden hoe je dit kan vertalen naar een voordeel voor 
patiënten. Onderzoekers kunnen eenvoudig evalueren of precisiedosering de 
moeite waard is. Zo ja, dan kan ook relatief eenvoudig software gebouwd 
worden zodat dokters ook de dosis in echte patiënten kunnen aanpassen. 
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Summary 

  An overwhelming number of medicinal products are marketed with the 
same fixed dose for every patient. Adapting the dose for each patient should 
result in superior efficacy and safety, at least in theory. The gold standard of 
dosing individualization is model-informed precision dosing (MIPD). An 
extensive dataset of many patients is used to identify a population 
pharmacokinetic/pharmacodynamic model (popPK/PD). This is composed of 
a mathematical model predicting outcomes (drug concentration, biomarkers, 
or clinical outcome) over time, the variability of parameters for that model 
between individuals, and any predictive covariates for these individually 
variable parameters. By then using observations of an individual patient, the 
model parameter values for that individual patient can be estimated. These 
parameter values are subsequently used to accurately predict future 
outcomes for a candidate dose, and select the most optimal future dose: 
model-informed precision dosing. 

This thesis aims to pave the road towards MIPD by exploring two key 
aspects. First, we show how to predict the effect of precision dosing in silico. 
Similar to how model-informed drug development has rationalized the drug 
development process, quantifying the effect of MIPD allows us to make well-
informed choices, optimize investment into high-value opportunities for 
clinical improvement, develop better models, design better dosing strategies, 
and design better trials to show benefit. Second, we simplify building MIPD 
software tools through reusable software. Such a reusable software 
framework and accompanying scientific methodology reduces MIPD 
implementation time and cost. To show these goals are achieved, we apply 
this methodology to clinical use cases: infliximab induction therapy for 
ulcerative colitis patients, and tacrolimus immunosuppressive therapy for 
kidney transplant recipients. 

We first developed the tdmore software package, integrating 
pharmacometric models with individual parameter estimation and future 
dose optimization. The mathematical routines are accompanied by debugging 
tools, likelihood profile visualization, and population simulation. This 
software package and simulation methodology was applied to investigate 
precision dosing of infliximab induction therapy in ulcerative colitis. In silico, 
a gradual reduction in outcome variability was predicted when moving from 
fixed dosing to covariate-based MIPD and concentration-based MIPD. 
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Surprisingly, average mean dose per patient was predicted to increase, 
without an associated improvement to mean outcome. This important 
negative case-study predicted that precision dosing, contrary to popular 
belief, may not be appropriate for infliximab induction therapy, at least in the 
proposed implementation. This software and simulation methodology was 
also applied to tacrolimus dosing for kidney transplant recipients. We 
showed how early simulation of predictive performance can inform modeling 
decisions, leading us to discard covariates in favor of the base model, as well 
as implementing a new estimation technique to account for parameter drift. 
Population simulation of MIPD showed a clinically relevant improvement in 
probability of target attainment, speed of target attainment and -for patients 
not in target- distance to target window. Clinical trial simulation informed 
the clinical team to expand enrollment from 100 to 200 patients, reducing the 
probability of an expensive but ultimately inconclusive clinical study. Both 
use cases demonstrate the overarching goal of rational MIPD development. 
Based on these simulations, a precision dosing tool was developed. First, 
general-purpose user interface components were developed. These were 
combined with an automated exchange of patient data with the electronic 
patient record database, and extensive business rules for automated 
conversion of clinical data to pharmacometric data. This system is 
undergoing clinical trial testing at Leuven University Hospitals since April 
2021. 

In conclusion, this thesis has advanced the domain of MIPD. To the best of 
our knowledge, this is the first scientific work proposing a clear roadmap to 
perform informed development of MIPD: we showed how to develop a model 
fit-for-purpose, how to simulate whether MIPD would outperform standard 
of care, and which clinical trial can demonstrate this. From an engineering 
point of view, we greatly simplified the transformation from pharmacometric 
model to precision dosing tool. Finally, we showed clinical results: our work 
allowed future infliximab MIPD efforts to refocus their aims, and showed 
improved tacrolimus target attainment in silico. We developed a tacrolimus 
precision dosing tool in a cost-effective manner, and designed a prospective 
randomized clinical trial which is currently ongoing at University Hospitals 
Leuven. 
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Beknopte samenvatting 

Een overweldigend aantal geneesmiddelen wordt op de markt gebracht met 
dezelfde dosis voor elke patiënt. In theorie zou het individualiseren van de 
dosis moeten resulteren in een betere werkzaamheid en minder 
bijwerkingen. De gouden standaard voor dit individualiseren is model-
informed precision dosing (MIPD). Een dataset verzameld bij veel patiënten 
wordt gebruikt om een populatie farmacokinetisch/farmacodynamisch 
model (popPK/PD) te bouwen. Dit bestaat uit een wiskundig model dat de 
uitkomsten (drugsconcentratie, biomarkers of klinische uitkomst) in de tijd 
voorspelt, een statistisch model dat de variabiliteit van model-parameters 
tussen individuen beschrijft, en eventuele voorspellende covariaten voor 
deze individueel variabele parameters. Door vervolgens uitkomsten bij een 
individuele patiënt te meten, kunnen de modelparameterwaarden voor die 
patiënt worden geschat. Deze parameterwaarden worden vervolgens 
gebruikt om toekomstige uitkomsten voor een kandidaatdosis nauwkeurig te 
voorspellen en de meest optimale toekomstige dosis te selecteren: model-
informed precision dosing. 

Dit proefschrift wil de weg naar MIPD effenen door twee belangrijke 
aspecten te onderzoeken. Eerst laten we zien hoe het effect van 
precisiedosering in silico kan worden voorspeld. Net zoals 
modelgeïnformeerde medicijnontwikkeling het ontwikkelingsproces heeft 
verbeterd, laat het voorspellen van MIPD ons toe om beter geïnformeerde 
keuzes te maken, te investeren in gebieden waar MIPD wel degelijk tot 
verbetering zal leiden, om betere modellen te ontwikkelen, betere 
doseringsstrategieën te ontwerpen, en om betere studies te ontwerpen die 
dit voordeel aantonen. Om het bouwen van MIPD-softwaretools te 
vereenvoudigen, ontwikkelden we herbruikbare software. Een dergelijk 
herbruikbaar softwareraamwerk en bijbehorende wetenschappelijke 
methodologie vermindert de implementatietijd en -kosten van MIPD. Om aan 
te tonen dat deze doelen worden bereikt, passen we deze methodologie toe op 
klinische usecases: de opstart van infliximab-therapie voor patiënten met 
colitis ulcerosa, en tacrolimus immunosuppressieve therapie voor 
niertransplantatiepatiënten. 

We hebben eerst het tdmore-softwarepakket ontwikkeld, waarin 
farmacometrische modellen worden geïntegreerd met routines voor 
individuele parameterschatting en toekomstige dosisoptimalisatie. Die 
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wiskundige routines worden vergezeld van grafische weergave van de 
waarschijnlijkheidscurve, en routines voor populatiesimulatie. Dit 
softwarepakket en deze simulatiemethodologie werden toegepast op 
infliximab-inductietherapie bij colitis ulcerosa. Er werd een vermindering 
van de variabiliteit in het klinisch resultaat aangetoond indien men van een 
vaste dosering naar covariabele-gebaseerde MIPD of concentratie-
gebaseerde MIPD overschakelt. Verrassend genoeg nam de gemiddelde dosis 
per patiënt toe, zonder verbetering in het globaal klinisch resultaat. Deze 
belangrijke negatieve casus toonde aan dat een precisiedosering, in 
tegenstelling tot wat vaak wordt gedacht, mogelijk niet geschikt is voor 
infliximab-inductietherapie, althans in de voorgestelde modaliteit. We 
onderzochten ook de dosering van tacrolimus voor 
niertransplantatiepatiënten. We toonden aan hoe het kwantificeren van 
voorspellend vermogen van een model tot betere modelleringsbeslissingen 
leidt. Zo konden we covariaten verwerpen en een eenvoudig model 
behouden. Ook implementeerden we een nieuwe parameter-
schattingstechniek om rekening te houden met tijdgebonden variabiliteit. 
Populatiesimulatie van MIPD toonde een klinisch relevante verbetering aan. 
Meer bepaald verhoogde de kans om concentraties in het therapeutisch 
venster te hebben, werd het therapeutisch venster sneller bereikt, en -voor 
patiënten die buiten het therapeutisch venster lagen- verkleinde de afstand 
tot het venster. Simulatie van de klinische studie gaf indicatie om rekrutering 
van 100 naar 200 patiënten op te trekken, waardoor een goedkopere maar 
nutteloze klinische studie werd vermeden. Beide use cases tonen het 
overkoepelende doel van rationele MIPD-ontwikkeling aan. Op basis van 
voorgaande simulaties werd een precisiedoseringstool voor tacrolimus 
ontwikkeld. Eerst werden generieke gebruikersinterfacecomponenten 
gebouwd, die werden gecombineerd met een geautomatiseerde uitwisseling 
van patiëntgegevens met de elektronische patiëntendossierdatabase en 
uitgebreide bedrijfsregels voor geautomatiseerde conversie van klinische 
gegevens naar farmacometrische gegevens. Dit systeem wordt sinds april 
2021 klinisch getest in UZ Leuven. 

We kunnen besluiten dat dit proefschrift heeft bijgedragen tot het domein 
van MIPD. Vanuit wetenschappelijk oogpunt is dit het eerste werk dat een 
duidelijke roadmap heeft opgesteld om een rationele ontwikkeling van MIPD 
uit te voeren: hoe kunnen we een model ontwikkelen dat geschikt is voor het 
doel, hoe simuleren we of MIPD beter zou presteren dan de standaardzorg, 
en welke klinische proef kan dit helder aantonen? Vanuit technisch oogpunt 
vereenvoudigden we de omzetting van farmacometrisch model naar 
nauwkeurig doseerinstrument. Ten slotte lieten we klinische resultaten zien: 
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toekomstige infliximab MIPD-inspanningen zullen op relevante doelen 
focussen, en MIPD verbeterde tacrolimus-dosering in silico. We 
ontwikkelden software voor precision dosing van tacrolimus op een 
kostenefficiënte manier, en ontwierpen een klinische studie die momenteel 
loopt in UZ Leuven.
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Chapter 1 Introduction to 
pharmacometrics and precision 
dosing 

“Daddy, why do you eat more than me?” — Linde Faelens 

At dinner, my daughter asked a fundamental question. The answer seems 
straightforward: “I am bigger, so I need more energy to get through the day.” 
Why then does over 90%1 of drug labels recommend a single dosing regimen 
for the adult population? 

In this chapter, we will introduce the concept, history and need for precision 
dosing from both a theoretical and practical point of view. Finally, we will 
scrutinize the state-of-the-art in the scientific domain investigated by this 
PhD thesis and formulate clear goals and scientific questions to be answered. 

1.1. The road to safe and effective drugs 
Fundamental biological research tries to describe biological processes in the 
human body, some of which are involved in a certain disease. When such a 
process is identified, any substep in that process is a potential target for 
interaction or modification, potentially treating the disease. Molecules are 
designed and tested for interaction with that target, and for unwanted off-
target interactions. The goal of this drug discovery process is to find a 
molecule that has high target engagement, while limiting off-target 
engagement. 

This can be quantified into an 𝐸𝐸𝐸𝐸50 metric; the concentration at which a 50% 
effect is measured at the target site. Unwanted engagement can also be 
quantified into an 𝐸𝐸𝐸𝐸50. The ratio of wanted to unwanted engagement is an 
indication for the margin of safety for the drug. Of course, a drug should not 

 

1 Wang et al., “A Systematic Assessment of US Food and Drug Administration 
Dosing Recommendations For Drug Development Programs Amenable to 
Response-Guided Titration”. 
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only have high on-target engagement and low off-target engagement. Many 
other factors play a role: stability, ease of manufacture, cost of manufacture, 
reproducibility of manufacture, ease of administration, and favorable 
pharmacokinetic (ADME) profile. 

One important side note is that side effects may also arise from on-target 
engagement. As an example, a defect in the MAP/ERK pathway will lead to 
uncontrolled cell growth and kinase inhibitors (e.g. sorafenib)2 inhibit this 
pathway to combat cancer. However, the MAPK pathway mechanism for cell 
growth is present throughout the body and inhibiting this pathway will 
typically lead to side effects in organs with rapid cellular turnover, resulting 
in hair loss, skin rash, and bleeding gums. Therefore, an additional challenge 
in drug design may be to deliver the drug to the site of action, and limit 
exposure in other areas of the body. 

Once a viable drug molecule, administration route and dosage formulation 
have been identified (see also Figure 1), the drug needs to be brought to 
clinical use. As a first step, preclinical research uses in vitro and animal 
testing to investigate safety and efficacy. Cultured cell lines are exposed to 
the drug in vitro, quantifying a spectrum of the toxicity endpoints. These 
range from simple cytotoxic effects to functional endpoints and -omics-based 
readouts. Proof of drug mechanism may also be shown, although a simple 
system may not be relevant to show effect in humans. Animal models are 
used because they more closely relate to humans, allowing more complex 
toxicity or efficacy interactions to be studied. 

 

2 Wilhelm et al., “Discovery and Development of Sorafenib”. 
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Figure 1: Overview illustration of the stages in drug discovery and 
development. 

The drug is then brought to humans. Classically, clinical research starts with 
Phase I, in which healthy volunteers are exposed to the drug to investigate 
what the maximum permissible exposure can be. These first-in-human trials 
start at very low doses, to maximize safety in case of unforeseen side-effects.3 
In phase II, patients are exposed to the drug, proving the drug has efficacy at 
a relatively safe dose level. In some cases, multiple phase II trials are used to 
refine dosing for patients. Finally, in phase III, the drug is tested in a large 
patient population, identifying rare side effects and further refining dosing. 
When sufficient evidence is collected to show the drug, when used as 
described by the label, is safe and effective, regulators may approve access to 
the market for the candidate drug. Post-market research may be performed 
to further optimize dosing regimen, or to investigate using the drug in special 

 

3 Bégaud, “The Rennes Disaster”. 
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populations, such as pediatric populations. A plan to investigate appropriate 
pediatric dosing is often a requirement to gain market access. 

A recurrent question throughout clinical research is the dose. How can we 
find an answer in the most cost-effective way to answer this question, 
without simply testing several dosing schedules? 

1.2. Modeling 
Modeling provides crucial information to aid in dose selection. Conceptually, 
we model longitudinal data using two distinct processes: pharmacokinetics 
(PK, what the body does to the drug) and pharmacodynamics (PD, what the 
drug does to the body). In PK, we describe how the drug is absorbed, 
distributed, metabolized and excreted. In PD, we describe how drug 
concentrations affect biological processes within the body. PK and PD are 
modeled in a similar way, assuming a system of well-mixed compartments 
and transport between these compartments. Pharmacometrics models are 
composed of three components: structural model, statistical model, and 
covariates model. 

Two complementary approaches exist to develop the structural model: 
physiologically-based modeling and empiric modeling. Physiologically-based 
modeling (PBPK, see Figure 2) uses fundamental research to model the body 
bottom-up: the body is a system of many different compartments, each 
corresponding to a specific organ or site in the body. Blood flows between 
these compartments, allowing the exchange of drug. At specific organs, the 
drug may be metabolized or excreted. This system of ordinary differential 
equations requires many fundamental parameters: typical blood flow to each 
organ, exchange rates, binding affinity, etc. These parameters are identified 
through system-specific knowledge of the body, physicochemical properties 
of the drug, and other (typically) in vitro or animal experiments. They are 
difficult to identify in humans, as individual organ concentrations are 
typically difficult to measure. Each parameter has meaning, allowing these 
models to predict other circumstances than what was originally studied. A 
key application is translational modeling from animal to human. These 
models are used to provide ball-park predictions and are a good way of 
predicting drug-drug interactions, first-in-human doses, or minimally 
effective exposures. 
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Figure 2: In PBPK models, every physiologically relevant organ is a separate 
compartment with associated size (volume) and blood perfusion rate. 

This is contrasted with empiric modeling (illustrated in Figure 3), where 
human experimental data in the form of concentration-time profiles is fitted 
to a parsimonious model. This statistical principle of parsimony, dictating 
that the model should be as simple as possible, results in good descriptions of 
the data with models consisting of a limited number of parameters. These 
models are often a better fit for the data collected during clinical 
development, but typically only allow interpolation. Some in-between 
approaches exist, where semi-mechanistic modeling allows parsimonious 
models with parameters that still relate to physical reality. 
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Figure 3: Concentration-time curves for 12 patients receiving theophylline 
(example dataset). A fast oral absorption and linear clearance is apparent, with 
no discernible distribution phase. An empiric model would therefore consist of a 

central compartment and an oral absorption process. 

No model is perfect. The difference between model prediction and the 
observed values is called residual error. Some residual variability may be an 
uncircumventible reality in the form of e.g. assay error, dosing error, and 
other variability that we cannot predict. However, residual error may also be 
the result of model misspecification. Residual error should generally be as 
low as possible, ideally equal to the (a priori known) measurement error. A 
key insight to improve pharmacometric models is to recognize there is 
structure in the data being modeled: observations are grouped together 
based on the individual patient they relate to. By introducing this mixed effect 
structure in the form of a statistical model, we can allow different parameters 
to be assigned to different individuals. This matches reality: different people 
absorb, distribute, and eliminate drugs differently, leading to different PK for 
the same dose. People will also respond differently to similar drug exposures, 
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and where an exposure may be safe in some individuals, it may be toxic in 
others. Nobody is average, we all differ. 

Several numerical algorithms exist to estimate these parameter’s typical 
value and inter-individual variability, optimizing the fit to a given clinical 
dataset. These algorithms all focus on finding the typical parameter 𝛩𝛩, inter-
individual variability 𝛺𝛺 and residual error 𝛴𝛴 with optimal overall likelihood 
to predict the observed data. The model fit is evaluated using Goodness of Fit 
techniques. This theoretical basis and its implications on model-informed 
precision dosing is explored in detail in 0 of this thesis. 

Predictive power can be further optimized by identifying covariate effects. As 
an example, body size will typically bias drug clearance, with larger patients 
having a higher clearance. Adapting the typical clearance based on 
bodyweight will explain some of the previously unexplained between-subject 
variability and may refine and improve the fit for non-normally distributed 
covariates. 

Whether a model fits the data well can be evaluated through several 
diagnostic tools. The current gold standard is a Visual Predictive Check. In 
this exercise, parameters are resampled using monte carlo sampling several 
times for every individual subject. The resulting simulated dataset of 
(typically) 1000 samples per subject shows an overview of all possible 
outcomes for the presented clinical trial. The model is deemed a good fit if the 
confidence interval for simulated median, upper and lower quantiles matches 
the observed median and outer quantiles. A well-fitting model already 
provides interesting information: identified PK parameters such as clearance 
may inform steady-state dosing, and the model can quantify between-
compound differences. 

Pharmacometric models become truly useful once they are used to answer 
new questions during clinical development. Through simulation, we can 
explore new scenarios and inform decision making. Deterministic 
simulations can show how a typical patient would respond to a given dosing 
regimen. In stochastic simulations, we generate a large virtual population of 
patients using monte carlo sampling. We may administer a candidate dosing 
regimen to these patients and explore exposure and response distributions. 
This is used regularly in industry to identify candidate dosing regimen to be 
tested in prospective trials. During regulatory approval, it may also be used 
to explore whether dosing should be adapted based on relevant covariates. 
Population simulation may also be used to inform an initial dose for use in 
the pediatric population. Finally, it can be used to explore what-if scenarios, 
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e.g. at what level of anti-drug antibody occurrence would a candidate 
biosimilar lose bio-equivalence to the originator. 

Further refinement is possible through clinical trial simulation. In this case, 
we sample only a limited number of patients and simulate realistic 
constraints: only a limited number of observations may be taken, patients 
drop out, and statistical analysis on simulated trial data is performed as if it 
were a real trial. This exercise is repeated many times to find the statistical 
distribution of clinical trial endpoints. This may be used to optimize clinical 
trial design. This further improves efficiency during clinical development. 
Over the past 20 years, these principles have been widely embraced by 
industry. FDA has released guidelines for Model-Informed Drug Discovery 
and Development (MID3) and actively encourages the use of modeling at 
every step of development. Pharmacometrics has improved efficiency of 
clinical trials and in some cases has even made clinical trials superfluous. 

1.3. Model-informed drug development 
Originally, dose finding closely followed clinical drug development. Phase I 
testing explored the maximum tolerable dose, Phase II aimed to demonstrate 
a drug effect at this maximum dose, and Phase III refined subgroups as 
required. This research strategy is appropriate for drugs where toxic 
exposure occurs at much higher levels than required for efficacy. We describe 
this as the therapeutic window. When a drug at dose X induces toxic side-
effects in some patients, while other patients show lack of efficacy, dosing 
this drug is challenging. For a large number of these drug candidates, drug 
development was terminated early. Some compounds may instead be dose-
individualized by titration.  Many antipsychotic drugs are uptitrated for 
effect. Anticoagulants such as warfarin are uptitrated based on blood clotting 
tests. For many drugs though, dosing individualization is neither practical 
nor feasible. These drugs, while potentially promising, never made it past 
Phase II. 

Fortunately, model-informed drug development (MIDD) has improved 
decision making during clinical development. Translational modeling has 
enabled description of compounds from pre-clinical data, informing a safe 
FIH dose. The phase I data can then be used to inform a PK model, and 
potentially even a PD model describing effect on disease-related biomarkers. 
This is used to inform the phase II dosing regimen, already optimizing for 
maximal clinical utility, with separate dosing candidates if required. 
Confirmatory phase III trials allow the inclusion of covariates into these 
models. This allows us to explore whether dose adaptation in subgroups is 
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required for optimal exposure. MIDD has enabled industry to find practical 
dosing regimen for population subgroups when required. 

But what about the individual patient? MIDD does not match the original 
vision of pharmacometrics: optimize dosing for individual patients. Non-
linear mixed effects models were originally introduced by Sheiner and Beal4 
in the late 70’s. By using an iterative algorithm, they managed to identify both 
typical parameter values and the associated between-subject variability in 
the population. This was used to estimate individual parameters for new 
patients using only limited concentration samples, allowing accurate 
predictions of the future concentration-time profile and thereby identifying 
the optimal safe and effective individual patient dose. Is pharmacometrics 
nothing more than a tool to identify fixed dosing, with outliers fallen by the 
wayside? 

Holford and Buclin5 proposed a quantitative method for analyzing the 
necessity of personalized dosing. In this approach, PK exposure and 
associated PD outcomes for a given candidate dose are simulated. If a large 
portion of the PD outcome distribution is safe and effective, a fixed dosing is 
appropriate. If the variability is too large, it may be reduced by adapting the 
dose based on covariates (moving between-population variability from the 
endpoint into the different individual doses). Further adaptation is possible 
by administering a dose and measuring outcomes. These allow to identify the 
individual patient PK/PD parameters, allowing dose adaptation. A simple 
alternative may be to uptitrate-to-effect, or downtitrate-for-safety. This is 
regularly done, especially for over-the-counter drugs. 

While useful, the drivers for precision dosing are more complex than only 
this theoretical approach. There are both scientific, logistic, and practical 
challenges for precision dosing. The following chapter will further refine 
these challenges. 

 

4 Sheiner et al., “Forecasting Individual Pharmacokinetics”. 

5 “Safe and Effective Variability—A Criterion for Dose Individualization”. 
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1.4. Precision dosing: we are not there yet 

1.4.1. The hype of precision medicine: what is precision 
dosing? 

Precision medicine or personalized medicine is an umbrella term which 
covers many topics. In this short section, we provide an overview of these 
topics, and position model-informed precision dosing in this space. 

A first domain is the development and production/synthesis of compounds 
specifically targeted to individual patients or groups of patients. There is a 
gradient from can work for anyone to specifically designed for only patient X. It 
is obvious that compounds targeting common disease pathways -effecting 
millions of humans- can hardly be called “precision medicine”. In contrast, a 
chemotherapy drug like erdafitinib6 may only be administered to combat 
FGFR-mutated cancer cells, requiring a biopsy for confirmation of 
susceptibility. Going further, some drugs are grown to specifically target the 
DNA of a single patient. Such is the case for recombinant adeno-associated 
virus gene therapy (e.g. Zolgensma, Luxturna, Glybera).7 The development of 
these types of ‘personalized medicine’ or ‘targeted therapy’ is not what we 
will focus on in this work. 

Another approach within this umbrella term is ‘personalized healthcare,’8 the 
use of smart apps and devices to track patient behavior in realtime and 
suggest healthcare options. A prime example of its use during drug 
development is the tracking of Parkinson’s Disease severity using a 
smartwatch9. This field is still in its infancy, and the connection to population 
pharmacokinetic/pharmacodynamic modeling remains unclear. At the same 

 

6 Dosne et al., “Erdafitinib’s Effect on Serum Phosphate Justifies Its 
Pharmacodynamically Guided Dosing in Patients with Cancer”. 

7 Keeler and Flotte, “Recombinant Adeno-Associated Virus Gene Therapy in 
Light of Luxturna (and Zolgensma and Glybera)”. 

8 Andreu-Perez et al., “From Wearable Sensors to Smart Implants-–Toward 
Pervasive and Personalized Healthcare”. 

9 Powers et al., “Smartwatch Inertial Sensors Continuously Monitor Real-
World Motor Fluctuations in Parkinson’s Disease”. 
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time however, smartphones, smartwatches and other wearable technology 
(e.g. insulin pumps!) are an ideal platform to deploy model-informed 
precision dosing software in close proximity to patients and physicians. 

Looking at statistical techniques in this space, the term personalized medicine 
is also used to describe a method identifying the optimal diagnosis/disease 
for an individual. For many diseases, plenty of treatment options are 
available. While selecting the optimal treatment for an individual patient was 
historically a task for physicians, statistical techniques use causal inference10 
to predict treatment benefit and risk based on covariates available at the 
time of decision. 

“Personalized medicine is the ability to use an individual’s genetic make-up and 
life experiences to diagnose and treat disease. […] If the response to treatment 
is a unique characteristic of the individual that cannot be predicted a priori, then 
true personalized medicine has little practical utility in medicine or biomedical 
research.” - Yazdani et al, 2015 

Let us focus precisely on the situation where the response for a candidate 
treatment cannot be predicted a priori. Linking back to Holford and Buclin11, 
we know MIPD focuses on cases where unexplained inter-individual 
variability is so large that dose adaptation based on ongoing response is 
needed. MIPD employs the up-to-now a posteriori exposure and/or response 
to a treatment to optimize this ongoing treatment. 

Both personalized medicine and MIPD are complementary. MIPD can be 
considered as an optimization technique to increase benefit-risk ratio, akin to 
the switch from skin patch to chewing gum for medicinal nicotine delivery. 
The overall benefit-risk ratio for a treatment using MIPD may be described 
either through a clinical trial, or through simulation of MIPD for a given 
patient. As such, MIPD provides causal inference techniques for personalized 
medicine with a (more) stable response to treatment that can be better 
predicted a priori. 

 

10 Yazdani and Boerwinkle, “Causal Inference in the Age of Decision 
Medicine”. 

11 “Safe and Effective Variability—A Criterion for Dose Individualization”. 
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1.4.2. Scientific challenges 

Precision dosing faces several scientific challenges, which are rooted in the 
transition from population prediction to individual prediction. Population 
modeling is well studied, and we know how to build and validate models that 
fit the data, and that make realistic predictions. This fundamental 
methodological research is missing for MIPD. 

A first area of active research focuses on how population models can be used 
for precision dosing. The research group at UHamburg12 explored the 
prediction accuracy and precision of existing population models. They found 
large differences between model predictions, showing that evaluating a 
model is required before an existing model is used for precision dosing. 
Hughes and Keizer13 at InsightRx have explored downweighing the 
importance of population priors, as these may not be appropriate for the 
current patient. Flattened Priors increase the measured inter-individual 
variability and thereby allow individual parameters that are more divergent 
from the original population, in favor of a closer model fit to the observed 
patient data. 

The idea of flattened priors is related to an idea from 10 years ago: non-
parameteric modeling. In the introductory paper from Neely et al,14 the 
group argue that forcing inter-individual variability to fit a particular 
distribution will always entail compromise and error. Instead, non-
parametric modeling uses an adaptive grid to characterize the likelihood of 
individual patient parameters. While the basic premise is different, both 
Keizer and Neely argued the same thing: log-normal inter-individual 
variability as estimated by NLME should not be taken as scripture, but rather 
be flexibly interpreted. 

 

12 Broeker, “Towards Precision Dosing of Vancomycin”. 

13 “A Hybrid Machine Learning/Pharmacokinetic Approach Outperforms 
Maximum a Posteriori Bayesian Estimation by Selectively Flattening Model 
Priors”. 

14 Neely et al., “Accurate Detection of Outliers and Subpopulations With 
Pmetrics, a Nonparametric and Parametric Pharmacometric Modeling and 
Simulation Package for R”. 
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A second area focuses on unexplained parameter drift. We define parameter 
drift as any occurrence where a parameter changes at a specific timepoint in 
an unexplained but non-random way. Clinical examples are plentiful: the 
patient recovers from surgery and is no longer bedridden, the patient 
receives co-medication with a drug-drug interaction, the patient gets an 
unrelated severe infection resulting in increased cardiac output, etc. Some of 
these occurrences are investigated during drug development. Multi-arm PK 
studies comparing fasted and fed administration of oral drugs are commonly 
performed during Phase I. Common co-medication causing DDIs are also 
investigated, although this is often limited to a qualitative description. In 
some cases though, these effects can be incorporated in the model. To 
optimize dosing of meropenem in a 19-month old female, Saito et al.15 used a 
pharmacokinetics model where clearance depended on renal dialysis flow 
rate. 

Lacking an explanatory covariate though, these transient variations are 
either described by residual error, or by parameters varying randomly 
between occasions (inter-occasion variability). Both types of variability are 
random, while the above description is anything but random. Abrantes et 
al.16 recommended to determine the next dose by discarding IOV estimates, 
however this was based on simulated data, not clinical data with non-
memoryless variability. Karlsson, Beal, and Sheiner17 showed a residual error 
model with autocorrelation may be more appropriate to model this data. 
However, this approach simplifies parameter drift into residual error. A 
pragmatic solution is offered by Keizer et al.18 by adding increased weight to 
more recent observations. 

Theoretically, stochastic differential equations (SDE) may be the most 
appropriate method to model unexplained parameter drift. This allows 
parameters to drift randomly over time, implemented as Brownian motion. 

 

15 “Meropenem Pharmacokinetics During Extracorporeal Membrane 
Oxygenation and Continuous Haemodialysis”. 

16 “Handling Inter-occasion Variability in Model-based Therapeutic Drug 
Monitoring”. 

17 “Three New Residual Error Models for Population PK/PD Analyses”. 

18 “Model-Informed Precision Dosing at the Bedside”. 
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Leander et al.19 demonstrated SDE allows to distinguish between residual 
error and model dynamics. Estimation of SDE models has only recently been 
implemented in NLME estimation software, and modeling methodology has 
not yet been firmly established. To the best of our knowledge, SDE has not 
been applied to precision dosing yet. 

1.4.3. Industry challenges 
This section was based in part on the work by Peck20 and Lesko21 

Over the last 10 years, a steady movement to model-based “Learn and 
confirm” has taken place in clinical drug development. Whereas regulators 
were satisfied with a Phase 3 trial showing clinical superiority over either 
placebo or standard of care in the past, they are now demanding proof that 
the drug is administered in the most optimal way for all patients22. In an ISoP 
position statement23 from 2018, exposure-response modeling and 
individualized dosing were considered key components of any submission 
dossier. 

Why then were 86%24 of FDA-approved drugs between 2013 and 2017 
marketed on a fixed dose schedule? Logic dictates this is either because drugs 
requiring dose individualization are rare, or because these drugs never make 
it to market. Wang et al found that only 64% (76 of 119) of approved drugs 
were amenable to response-guided titration, although potentially more drugs 
are amenable to therapeutic drug monitoring. Of these 76, FDA 

 

19 “Mixed Effects Modeling Using Stochastic Differential Equations”. 

20 “Precision Dosing”. 

21 “Perspective on Model-informed Drug Development”. 

22 Zhang et al., “Exposure–Response Assessment in Pediatric Drug 
Development Studies Submitted to the US Food and Drug Administration”. 

23 Maloney et al., “Comment from International Society of Pharmacometrics 
on Exposure-Response Analysis in Drug Development and Regulatory 
Decision Making; Request for Comments (Docket No. FDA-2018-N-0791)”. 

24 Wang et al., “A Systematic Assessment of US Food and Drug Administration 
Dosing Recommendations For Drug Development Programs Amenable to 
Response-Guided Titration”. 
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recommended efficacy trials evaluating individualized dosing for 35 
compounds, with only 11 compounds finally having individualized dosing 
regimen in the label. Wang et al. argue the systematic review shows FDA-
sponsor interactions are more likely to enable individualized dosing 
strategies in labeling, yet only a mere 11 of 76 drugs finally included dose 
individualization instructions in the label. 

Dosing individualization is rarely developed by industry, especially when 
fixed dosing may also allow market access. This is not surprising, as industry 
challenges are plenty. For a new compound requiring dose individualization, 
a validated accompanying assay is needed. Any computer program for dosing 
individualization is considered as a medical device, requiring European CE 
approval or FDA Software as a Medical Device 510(k) notification. Market 
access and logistical distribution of the drug becomes much more complex. 

Would industry not benefit from dose individualization leading to a far 
superior treatment? Unfortunately, this superiority is far from certain, and 
this uncertainty destroys all incentive to overcome the aforementioned 
roadblocks. There has been little research into predicting the performance or 
outcomes of precision dosing. Buclin et al.25 outlined how to decide on the 
usefulness of precision dosing, but failed to capture the great investment risk 
of showing value in clinical trials. A company would need solid evidence of 
the value and market potential of a compound requiring precision dosing. 

Such efforts are rare however, and most clinical trials into precision dosing 
are sponsored by academic centers on approved drugs. A search of public 
trial registries was performed (full results in Appendix Appendix C). We 
searched for trials including ‘precision dosing’ or ‘computer dosing’ in the 
intervention, yielding 42 trials. Only clinical trials where dosing was adapted 
using a computer algorithm were retained, this yielded 33 trials. None were 
industry-sponsored. All associated publications were reviewed for a 
description of a priori statistical power. Of the 7 studies with published 
protocols, two admitted to no formal power calculation at all. The other 
studies either applied a guesstimate, or used endpoints from historic control. 
In a single trial (without published protocol), Hughes et al.26 characterized 

 

25 “The Steps to Therapeutic Drug Monitoring”. 

26 “Bayesian Clinical Decision Support-Guided Versus Clinician-Guided 
Vancomycin Dosing in Attainment of Targeted Pharmacokinetic Parameters 
in a Paediatric Population”. 
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outcomes for vancomycin MIPD using a placebo historic control and 
simulated MIPD arm. This unique exercise was performed in collaboration 
with InsightRx, a developer of MIPD software. 

In summary, we found no industry-sponsored clinical trials investigating 
MIPD. Academic trials investigate MIPD using enrollment sizes based on 
guesstimates. Quantitative power calculation is feasible but remains under-
used, and as such does not reduce uncertainty in industry development of 
compounds requiring MIPD, in light of the other challenges MIPD poses. 

Regulators attempt to tip the scales. Whereas demonstrating a population 
benefit seemed sufficient in the past, requirements for evidence of optimal 
dosing in each individual patient are rising. Healthcare payers have 
suggested value-based pricing to force industry in developing treatments 
that are used more optimally. Recent years have also seen updates to 
software medical device regulations, making the pathway clearer at least -but 
often not more accessible per se. 

1.4.4. Clinical challenges 

Finally, precision dosing is not easy to bring into clinical practice. Even if we 
assume a validated assay, a pharmacometric model, and appropriate dosing 
optimization software are available, then administering a fixed dose is still 
preferable in terms of physician workload. 

First, a large amount of patient data is required as compared to fixed or 
bodyweight-based dosing. An accurate dosing history, observation history 
and covariate overview are required by the software. Either they are entered 
manually -a daunting task for drugs administered daily-, or they are collected 
from an EHR. The latter case requires software development, as even 
standardized systems for data transfer are often not suited for the transfer of 
pharmacometric data. These EHR data require transformation to be suited as 
input for pharmacometric models, and this requires business knowledge. 

Software deployment is tricky. These are safety-critical systems and should 
work reliably. As this is patient data, the General Data Protection Regulations 
(GDPR, EU regulations) and Health Insurance Portability and Accountability 
Act (HIPAA, US regulations) apply. It is unfeasible to fully anonymize 
pharmacometric data. The data should therefore not leave the hospital zone 
of control. Computer servers should be hosted internally and be well 
protected. 
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Third, any precision dosing approach should work seamlessly within the 
established clinical workflow. Precision dosing should only increase 
workload if a clear associated benefit is present. Each hospital service will 
have different workflows, and careful change management and software 
adaptation is needed. Physicians may not be convinced of the value, and 
indeed evidence of true clinical value is often missing for precision dosing 
approaches, showing only improvement in PK exposures as clinical trial 
enrollment numbers to show clinical improvement is unfeasible.
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Chapter 2 Nonlinear mixed effects 
modeling and precision dosing 

This chapter details the theoretical foundation used to perform MIPD. It 
serves as a mathematical, numerical and practical introduction, summarizing 
all background information in a single book chapter. Readers experienced 
with NLME and MIPD are invited to gloss over this chapter. 

For a more in-depth view, we refer to the work of Hedaya on clinical 
pharmacokinetics,27 and the comprehensive introduction to NONMEM 
modeling by Owen and Kelly.28 For more advanced users, the excellent 
tutorials29 by J. Bauer provide a comprehensive starting point for newer 
estimation techniques such as MCMC, SAEM and mu-referencing. 

2.1. Non-linear structural models 
Mathematical equations Models essentially translate basic assumptions about 
biology into mathematical equations. In the case of pharmacokinetics or 
pharmacodynamics models, we assume a system of interconnected well-
mixed compartments. Compartments are represented by an amount, usually 
of a drug or other biologically relevant biomarker. PBPK models have 
compartments that match actual organs, and transfer rates between 
compartments are calculated from experimental observations or mechanistic 
models. Empirical models simplify these systems into the minimal number of 
parameters required, dependent on the shape of the curve the model is 
fitting. Compartments, parameters and transfer rates do not necessarily 
match biological processes one-to-one. 

 

27 Hedaya, Basic Pharmacokinetics. 

28 Owen and Fiedler-Kelly, Introduction to Population 
Pharmacokinetic/Pharmacodynamic Analysis with Nonlinear Mixed Effects 
Models. 

29 Bauer, “NONMEM Tutorial Part I”; Bauer, “NONMEM Tutorial Part II”. 
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An example of a simple 1-compartment system with intravenous (IV) 
administration and linear clearance is given below: 

𝑑𝑑𝑑𝑑1
𝑑𝑑𝑑𝑑

= −𝐾𝐾𝐾𝐾 × 𝑑𝑑1 

𝑑𝑑1(𝑑𝑑 = 0) = 𝐷𝐷 

𝐸𝐸𝐶𝐶𝐶𝐶𝐸𝐸 =
𝑑𝑑1
𝑉𝑉1

 

The amount of drug 𝑑𝑑1 in the central compartment 1 is set to the dose 𝐷𝐷 at 
time 0. It then evolves over time, diminishing by 𝐾𝐾𝐾𝐾 ∗ 𝑑𝑑1 per hour. 𝐾𝐾𝐾𝐾 is the 
elimination rate constant. As biological systems frequently describe 
elimination as a volume flow, this may also be restated using the clearance 
𝐸𝐸𝐶𝐶 as −𝐾𝐾𝐾𝐾 × 𝑑𝑑1 = −𝐸𝐸𝐶𝐶 × 𝐴𝐴1

𝑉𝑉1
 . 

Numerical solving Systems of differential equations can be solved 
numerically, and many different methods exist. Below, we give the basic 
mathematical principle behind these methods and why they work. The 
methods most frequently used are Runge-Kutta (RK) solvers, Adams-
Bashforth (AB) solvers, and backward differentiation formula (BDF) solvers. 
In RK solvers, the ordinary differential equation system is approximated by a 
straight line to calculate all values for a time 𝑑𝑑𝑖𝑖+1 = 𝑑𝑑𝑖𝑖 + ℎ, with ℎ the chosen 
step-size. When the differential equation is given as 𝑑𝑑𝑑𝑑

𝑑𝑑𝑑𝑑
= 𝑓𝑓(𝑑𝑑, 𝑦𝑦), 1st order RK 

(denoted as RK1) is as simple as 

𝑦𝑦𝑖𝑖+1 = 𝑦𝑦𝑖𝑖 + ℎ ∗ 𝑓𝑓(𝑑𝑑𝑖𝑖,𝑦𝑦𝑖𝑖) 

In other words, the function is approximated by a line, with the slope given 
by the (known) derivative function. We should pause for a brief moment to 
introduce some key concepts of numerical methods. The work required by 
the above method is small, as only one evaluation of 𝑓𝑓( ) is required. The 
work required to calculate 𝑦𝑦(𝑑𝑑) is directly related to the stepsize. A higher 
stepsize allows to advance faster, yet increases numerical error dramatically. 
To reduce error, one could either take smaller (but more) steps, or perform 
more accurate steps. Accuracy can be improved by doing more work each 
step. 

2nd-order RK uses RK1 to calculate a temporary value 𝑘𝑘1, which is the value 
of the function at half the step-size ℎ. It then uses the derivative at the point 
as derivative for the full step ℎ. 
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𝑘𝑘1 = 𝑦𝑦𝑖𝑖 +
ℎ
2
∗ 𝑓𝑓(𝑑𝑑𝑖𝑖,𝑦𝑦𝑖𝑖) 

𝑦𝑦𝑖𝑖+1 = 𝑦𝑦𝑖𝑖 + ℎ ∗ 𝑓𝑓 �𝑑𝑑𝑖𝑖 +
ℎ
2

,𝑘𝑘1� 

Higher-order RK methods iterate on this principle further by adding 
additional intermediate points. RK methods are usually implemented as 
tandem 𝑝𝑝 and 𝑝𝑝 − 1-order methods. This allows an estimate of the 
integration error. We can adapt the step-size automatically to ensure this 
error remains below a given maximum value. Adams-Bashforth methods are 
similar to RK methods, but use a polynomial to approximate the target 
function over the past N points. This results in a higher computational cost 
per step, gaining increased accuracy per step. 

Some ODE systems are highly sensitive to small changes in initial value. We 
call these stiff systems. If a small error is introduced, this error is 
compounded and can lead to highly different outcomes. Although RK and AB 
methods are fast, they generally perform badly for stiff systems. In this case, 
BDF methods can be used. Instead of directly calculating the next value 𝑦𝑦𝑖𝑖+1, 
they solve the equation 𝑝𝑝′(𝑑𝑑𝑖𝑖+1) = 𝑓𝑓(𝑑𝑑𝑖𝑖+1,𝑦𝑦𝑖𝑖+1), with 𝑝𝑝( ) the polynomial fit 
through the last 𝐶𝐶 calculated points. BDF methods are computationally more 
expensive, but much more stable. To solve both stiff and non-stiff systems, 
Hindmarsh and Petzold30 developed the LSODA solver. This solver switches 
between stiff and non-stiff methods automatically, and is therefore an ideal 
candidate for solving user-specified ODE systems without requiring 
numerical insight into stiffness. 

Numerical solving of ODE systems works well, but requires a lot of 
calculation. Fortunately, closed-form algebraic solutions can be derived for 
simple ODE systems. They are implemented in most pharmacometrics 
software, resulting in a massive computational speed boost. 

Application to pharmacometrics Pharmacometrics models are written as 
algebraic equations, or as systems of differential equations. The choice of an 
appropriate solver and numerical precision is important to keep calculation 

 

30 “LSODA, Ordinary Differential Equation Solver for Stiff or Non-Stiff 
System”. 
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times low. An example of simulation of individual profiles is provided in 
Figure 4 

 

Figure 4: Concentration-time profile prediction using non-linear model with 
parameters KA=1.7, V=0.6 and CL=0.05. 

2.2. Fitting non-linear models 
Mathematical equations The solution to the ODE system can be written as 
𝑓𝑓(𝑑𝑑𝑖𝑖,𝑋𝑋) = 𝑌𝑌𝑖𝑖 , with 𝑋𝑋 the individual pharmacometric parameters and 𝑌𝑌𝑖𝑖  the 
predicted values in a patient at times 𝑑𝑑𝑖𝑖. To fit this model to patient 
measurements 𝐷𝐷𝑉𝑉 (Dependent Variable), we introduce a residual error term 
𝜖𝜖. 

𝐷𝐷𝑉𝑉𝑖𝑖 = 𝑌𝑌𝑖𝑖 + 𝜖𝜖𝑖𝑖 

𝜖𝜖𝑖𝑖 ∼ 𝒩𝒩(0,𝜎𝜎) 
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𝜖𝜖 is centered around 0 with standard deviation 𝜎𝜎. We must now find the most 
likely set of parameter values 𝑋𝑋, given the observed values 𝐷𝐷𝑉𝑉𝑖𝑖. This 
likelihood 𝑝𝑝(𝑋𝑋|𝐷𝐷𝑉𝑉) cannot be directly calculated, but we can apply Bayes rule 
to transform this. 

𝑝𝑝(𝑋𝑋|𝐷𝐷𝑉𝑉) =
𝑝𝑝(𝐷𝐷𝑉𝑉|𝑋𝑋)𝑝𝑝(𝑋𝑋)

𝑝𝑝(𝐷𝐷𝑉𝑉)   (1) 

As the demoninator 𝑝𝑝(𝐷𝐷𝑉𝑉) does not depend on 𝑋𝑋, it can be dropped. There is 
no prior distribution for 𝑝𝑝(𝑋𝑋), so this can be dropped as well. 

𝑝𝑝(𝑋𝑋|𝐷𝐷𝑉𝑉) ∼ 𝑝𝑝(𝐷𝐷𝑉𝑉|𝑋𝑋) 

The likelihood of all 𝑛𝑛 datapoints 𝐷𝐷𝑉𝑉 being predicted by parameter values 𝑋𝑋 
is then given by 

𝑝𝑝(𝐷𝐷𝑉𝑉|𝑋𝑋) = �𝑝𝑝
𝑛𝑛

𝑖𝑖

(𝐷𝐷𝑉𝑉𝑖𝑖|𝑋𝑋) = �𝛷𝛷
𝑛𝑛

𝑖𝑖

(𝐷𝐷𝑉𝑉𝑖𝑖 − 𝑌𝑌𝑖𝑖,𝜎𝜎) 

We can find the maximum probability using numerical optimization. In 
practice, the 2-log-likelihood is used. This is easier to calculate, and the 
maximum of both functions occurs at the same parameter value 𝑋𝑋. 

2 ∗ 𝑙𝑙𝑙𝑙𝑙𝑙�𝑝𝑝(𝑋𝑋|𝑌𝑌)� = 2 ∗ 𝑙𝑙𝑙𝑙𝑙𝑙��𝛷𝛷
𝑛𝑛

𝑖𝑖

(𝐷𝐷𝑉𝑉𝑖𝑖 − 𝑌𝑌𝑖𝑖,𝜎𝜎)� 

= 2 ∗�𝑙𝑙
𝑛𝑛

𝑖𝑖

𝑙𝑙𝑙𝑙�𝛷𝛷(𝐷𝐷𝑉𝑉𝑖𝑖 − 𝑌𝑌𝑖𝑖,𝜎𝜎)� 

= 2 ∗�𝑙𝑙
𝑛𝑛

𝑖𝑖

𝑙𝑙𝑙𝑙 �
1

𝜎𝜎√2𝜋𝜋
𝐾𝐾−

1
2�
𝐷𝐷𝑉𝑉𝑖𝑖−𝑌𝑌𝑖𝑖

𝜎𝜎 �
2

� 

= −��
𝐷𝐷𝑉𝑉𝑖𝑖 − 𝑌𝑌𝑖𝑖

𝜎𝜎
�
2𝑛𝑛

𝑖𝑖

− 2 ∗�𝑙𝑙
𝑛𝑛

𝑖𝑖

𝑙𝑙𝑙𝑙�𝜎𝜎√2𝜋𝜋� 

= −��
𝐷𝐷𝑉𝑉𝑖𝑖 − 𝑌𝑌𝑖𝑖

𝜎𝜎
�
2𝑛𝑛

𝑖𝑖

− 2𝑛𝑛 ⋅ 𝑙𝑙𝑙𝑙𝑙𝑙�𝜎𝜎√2𝜋𝜋� 
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As the last term is not dependent on the datapoints, it can be omitted.31 
Minimizing this function -a straightforward weighted least squares problem- 
allows us to find parameter values that fit 𝑓𝑓(𝑑𝑑𝑖𝑖 ,𝑋𝑋) = 𝑌𝑌𝑖𝑖  as close to 𝐷𝐷𝑉𝑉𝑖𝑖 as 
possible. 

Numerical solutions Finding the optimal set of parameter values is performed 
using numerical optimization algorithms. In this section, we will discuss two 
general approaches: gradient/hessian-based approaches, and the Nelder-
Mead method32. Finding the minimum of a function is intuitively parallel to 
finding the lowest point on a surface. 

Generally speaking, the minimum of a function 𝑓𝑓(𝑋𝑋) is the set of parameter 
values 𝑋𝑋� for which the first derivative 𝑓𝑓′( ) (also called the gradient) is 0, 
and the second derivative 𝑓𝑓″( ) (also called the hessian) is positive. 
Gradient-based methods calculate the gradient and move the estimate for 𝑋𝑋� 
in the direction of the gradient. This is similar to a kangaroo searching the 
bottom of the valley by jumping in the steepest direction downward. The size 
of each jump depends on the curvature, with long hops more appropriate for 
flatter surfaces. A relatively modern33 version is the Broyden–Fletcher–
Goldfarb–Shannon (BFGS) algorithm34. The algorithm uses only gradient 
calculations, but gradually approximates the hessian at each step. This 
algorithm works best when an equation for 𝑓𝑓′( ) is available. The gradient 
can be approximated by 𝑓𝑓′(𝑋𝑋) = 𝑓𝑓(𝑋𝑋+𝜖𝜖/2)−𝑓𝑓(𝑋𝑋−𝜖𝜖/2)

𝜖𝜖
, this is known as the finite 

differences method. Such a method requires high precision on 𝑓𝑓( ), so this 
is costly to evaluate, especially when 𝑓𝑓( ) is the result of ODE integration. 

Alternatively, we can rely on only function evaluations. The Nelder-Mead 
method35 forms an n+1-simplex when searching in n-dimensional space 
(e.g. a triangle when searching in 2-dimensional space). Each step, we 

 

31 Pinheiro and Bates, “Approximations to the Log-Likelihood Function in the 
Nonlinear Mixed-Effects Model”. 

32 Bultheel, Inleiding Tot de Numerieke Wiskunde. 

33 Sir Isaac Newton developed a method for numerical optimization in the 
17th century. 

34 Zhu et al., “Algorithm 778”. 

35 Nelder and Mead, “A Simplex Method for Function Minimization”. 



NONLINEAR MIXED EFFECTS MODELING AND PRECISION DOSING 

25 

intuitively let the triangle tumble down the surface until it lies flat. At that 
point, we know the minimum is contained within the simplex. We can shrink 
the simplex so it can further tumble towards the lowest point. This method is 
cheaper per iteration, as it needs to evaluate 𝑓𝑓( ) less. However, it 
converges slower to the desired minimum. This is a heuristic method; there 
is no guarantee that the method converges or will find the optimal value, 
especially in the case of irregular log-likelihood surfaces. 

Application to pharmacometrics When fitting a model, we use numerical 
optimization techniques to find the most likely parameter values. A model 
expressed using algebraic equations is easier to fit, as the gradient and 
hessian can be directly calculated. Models using ODE systems benefit from 
heuristic optimization approaches such as Nelder-Mead, however these may 
not converge in the case of irregular log-likelihood surfaces. This is the case 
when e.g. an absorption lag-time is used in the model. An example of a non-
linear model fit is provided in Figure 5. 

 

Figure 5: Concentration-time profile prediction using non-linear model with 
parameters fitted by non-linear least squares. 
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2.3. Mixed effect models: prior distributions 
Mathematical concept As discussed previously in 0, pharmacometric data has 
a unique structure: observed data can be grouped per patient. We add inter-
individual_variability36 (IIV) : each pharmacometric parameter is different 
per patient. 

𝑋𝑋 = 𝜃𝜃 ∗ 𝐾𝐾𝜂𝜂 

𝜂𝜂 ∼ 𝒩𝒩(0,𝜔𝜔) 

Mathematical equations In the equations below, we will use 𝛩𝛩,𝛺𝛺,𝛴𝛴 whenever 
possible to represent the full matrices with correlation, instead of 𝜃𝜃,𝜔𝜔,𝜎𝜎 that 
are used when assuming independent distributions. Looking at equation (1) 
again for only patient 𝑗𝑗, we now have a prior distribution for parameters 𝑋𝑋𝑗𝑗: 

𝑝𝑝�𝑋𝑋𝑗𝑗|𝐷𝐷𝑉𝑉𝑗𝑗� =
𝑝𝑝�𝐷𝐷𝑉𝑉𝑗𝑗|𝑋𝑋𝑗𝑗�𝑝𝑝�𝑋𝑋𝑗𝑗�

𝑝𝑝�𝐷𝐷𝑉𝑉𝑗𝑗�
∼ 𝑝𝑝�𝑋𝑋𝑗𝑗�𝑝𝑝�𝐷𝐷𝑉𝑉𝑗𝑗|𝑋𝑋𝑗𝑗�

∼ 𝛷𝛷�𝜂𝜂𝑗𝑗 ,𝛺𝛺� × �𝛷𝛷
𝑛𝑛

𝑖𝑖

�𝐷𝐷𝑉𝑉𝑖𝑖,𝑗𝑗 − 𝑌𝑌𝑖𝑖,𝑗𝑗,𝛴𝛴�

 

The above equation shows the marginal_likelihood for an individual 𝜂𝜂𝑗𝑗 of 
patient 𝑗𝑗. Finding this estimate is called Empirical Bayesian Estimation (EBE). 
Intuitively, it is composed of two parts: the likelihood of encountering such a 
patient in the population, and the likelihood of observing these values in such 
a patient. The most likely parameters can be easily found using the same 
optimization algorithms from section 2.2. We can transform the above 
equation using 2-log-likelihood, assuming independent distributions for 
inter-individual variability. This is known as the Maximum A Posteriori 
(MAP) estimate. 

2𝐶𝐶𝐶𝐶 = −∑�
𝐷𝐷𝑉𝑉𝑖𝑖,𝑗𝑗 − 𝑌𝑌𝑖𝑖,𝑗𝑗

𝜎𝜎
�
2

− 2𝑛𝑛 ∗ 𝑙𝑙𝑙𝑙𝑙𝑙�𝜎𝜎√2𝜋𝜋� − ∑�
𝜂𝜂𝑗𝑗
𝜔𝜔
�
2

 

Looking at 2LL for the most likely individual parameters 𝜂𝜂𝚥𝚥�  (also called the 
mode), the shape of the loglikelihood function determines how certain we are 

 

36 Also called between-subject variability (BSV) 
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about these parameters. The standard error on individual parameter 
estimates 𝜂𝜂𝚥𝚥�  is called 𝜙𝜙𝑗𝑗. Intuitively, the more pointy the curve, the more 
precise our estimate. Formally, the observed fisher information matrix 𝐶𝐶𝑂𝑂𝑂𝑂𝑂𝑂 
determines parameter uncertainty using the following equation: 

𝜙𝜙𝑗𝑗2 = 𝑣𝑣𝑣𝑣𝑣𝑣(�̂�𝜂) = 𝐶𝐶𝑂𝑂𝑂𝑂𝑂𝑂−1 = {−𝐻𝐻𝐾𝐾𝐻𝐻𝐻𝐻}−1 

 

In some cases, the hessian cannot be evaluated. The marginal likelihood can 
then be sampled from directly using markov chain monte carlo methods 
(MCMC) such as Metropolis-Hastings sampling37. 

Whether EBE estimation uncertainty is relevant, is highly dependent on the 
application. In many cases, clinicians are interested in the optimal dose to hit 
a certain target AUC or trough concentration. Aim for the center, and shoot. 

 

37 Hastings, “Monte Carlo Sampling Methods Using Markov Chains and Their 
Applications”. 
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When multiple targets are applied, it is appropriate to explore the full 
parameter uncertainty range for a candidate dosing regimen. Consider the 
example in Figure 6, where the full concentration range should be within the 
therapeutic window. While both dosing regimen are in target, parameter 
uncertainty shows a high probability of exceeding the target window for the 
30mg dosing. 

 

Figure 6: For this hypothetical drug, the therapeutic window is between 1 and 
5. Without uncertainty, a single dose of 30mg would be appropriate. When 
considering uncertainty, the 20-10mg regimen has a higher probability of 

concentrations in the therapeutic window. 

2.4. Mixed effect models: estimating 
distributions 

Equation for population The previous section assumes we know the 
population values 𝜃𝜃 and 𝜔𝜔. To find the a priori likelihood for population 
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parameters 𝜃𝜃 and 𝜔𝜔, we can evaluate the marginal likelihood across all 
possible individual 𝜂𝜂𝑗𝑗 values for all patients 𝑗𝑗. 

𝑝𝑝�𝑋𝑋𝑗𝑗|𝐷𝐷𝑉𝑉𝑗𝑗� ∼ 𝛷𝛷�𝜂𝜂𝑗𝑗,𝛺𝛺� × �𝛷𝛷
𝑛𝑛

𝑖𝑖

(𝐷𝐷𝑉𝑉𝑖𝑖 − 𝑌𝑌𝑖𝑖,𝛴𝛴)

𝑝𝑝(𝛩𝛩,𝛺𝛺|𝐷𝐷𝑉𝑉) ∼� �� 𝛷𝛷
∞

𝜂𝜂𝑗𝑗=−∞
�𝜂𝜂𝑗𝑗,𝛺𝛺� × �𝛷𝛷

𝑖𝑖

�𝐷𝐷𝑉𝑉𝑖𝑖,𝑗𝑗 − 𝑌𝑌𝑖𝑖,𝑗𝑗,𝛴𝛴�𝑑𝑑𝜂𝜂�
𝑗𝑗

 

Numerical solving As compared to the previous section, the main challenge in 
population model fitting is to solve the integral across all values. We will 
discuss two approaches: the laplacian approximation, and the SAEM 
algorithm. 

The first approach simplifies the integral through a laplacian 
approximation38 around the mode 𝜂𝜂𝚥𝚥� . Intuitively, we approximate the 
marginal likelihood by a normal distribution. 

∫ 𝑝𝑝�𝜂𝜂𝑗𝑗|𝐷𝐷𝑉𝑉𝑖𝑖,𝑗𝑗�𝑑𝑑𝜂𝜂𝑗𝑗 ≈ ∫ 𝛷𝛷�𝜂𝜂𝑗𝑗 ,𝛺𝛺� × 𝛷𝛷�𝜂𝜂𝑗𝑗 − 𝜂𝜂𝚥𝚥� ,𝜙𝜙𝑗𝑗�𝑑𝑑𝜂𝜂𝑗𝑗  

As 𝜂𝜂𝚥𝚥�  is conditional on the estimate for 𝛩𝛩,𝛺𝛺, an iterative process is still 
required, yet the individual steps are greatly simplified. Further 
simplifications result in the FOCEI, FOCE and FO methods. They are not 
further discussed here, we refer to the work by Wang39 for more details. 

A second approach is the Stochastic Approximation and Expectation 
Maximization algorithm40. In this algorithm, the marginal likelihood is not 
approximated. Instead, the algorithm uses metropolis-hastings sampling to 
draw candidate 𝜂𝜂𝑗𝑗 from the marginal distribution for a given 𝛩𝛩,𝛺𝛺, and uses 
the mean of these candidate 𝜂𝜂 to update the population parameters. At each 
iteration, candidate 𝜂𝜂𝑗𝑗 are replaced with a probability dependent on the 
marginal likelihood. This process iterates towards the optimal population 
values. 

 

38 Gelman, Bayesian Data Analysis. 

39 “Derivation of Various NONMEM Estimation Methods”. 

40 Kuhn and Lavielle, “Maximum Likelihood Estimation in Nonlinear Mixed 
Effects Models”. 
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Application to pharmacometrics Non-linear mixed effects models describe 
observed values through both residual error and inter-individual variability. 
Fitting NLME models is computationally expensive, so numerical algorithms 
are required. In Figure 7, a single individual fit is shown. Figure 8 shows all 
individual fits, as well as corresponding population predictions. 

 

Figure 7: Theophylline time-concentration data for a single individual. The line 
shows the individual fit of a non-linear mixed effects model, with inter-

individual variability estimated through the optimr non-linear optimization 
function. 
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Figure 8: Individual concentration-time plots of non-linear mixed effects model 
fitted to theophylline dataset (12 patients). Population prediction (blue) and 

individual prediction (red), datapoints (light blue). 

2.5. Covariate models 
In NLME models, unexplained inter-individual variability can be reduced by 
introducing covariates. These may explain certain variation to parameter 
values, thereby reducing unexplained IIV. In the below example, we adapt the 
equations for clearance and distribution volume to include bodyweight, using 
allometric scaling theory.41 

 

41 Holford and Anderson, “Allometric Size”. 
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𝑉𝑉 = 𝜃𝜃𝑉𝑉 ∗ 𝐾𝐾𝜂𝜂𝑉𝑉 ∗ (𝐵𝐵𝐵𝐵/70)1

𝐸𝐸𝐶𝐶 = 𝜃𝜃𝐶𝐶𝐶𝐶 ∗ 𝐾𝐾𝜂𝜂𝐶𝐶𝐶𝐶 ∗ (𝐵𝐵𝐵𝐵/70)
3
4

 

We assume the covariate is well known and has a direct influence on 
individual parameters. An alternative method of incorporating parameters is 
joint modeling. We treat covariates on an equal footing with other observed 
values. The model predicts covariate values with inter-individual variability, 
and a residual error model applies to covariate observations just as with drug 
concentration observations. 

2.6. Precision dosing 
We previously established the EBE algorithm can be used to estimate 
individual patient parameters. We can use these parameters to predict for 
future doses. Precision dosing now constitutes of finding the appropriate 
future dose to hit a certain target. In its simplest form, this algorithm can be 
formulated as follows: 

 Step 1: Estimation 

   �̂�𝜂 = argmax 𝑝𝑝(𝜂𝜂|𝑌𝑌) 

      = argmax 𝑝𝑝(𝜂𝜂|𝑝𝑝𝑣𝑣𝑝𝑝𝑙𝑙𝑣𝑣) ⋅ 𝑝𝑝�𝑌𝑌|𝑓𝑓(𝜂𝜂)� 

 Step 2: Optimization 

   Apply root finding on 𝑙𝑙(𝐷𝐷′) = 𝑓𝑓��̂�𝜂, 𝑑𝑑𝑑𝑑𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑑𝑑 ,𝐷𝐷′� − 𝐸𝐸𝑑𝑑𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑑𝑑 

 Step 3: Confidence interval 

   Sample individual 𝜂𝜂 distribution using OFIM-derived 

variance or MCMC 

   Calculate 𝐸𝐸𝑝𝑝𝑡𝑡𝑡𝑡𝑑𝑑 = 𝑓𝑓(𝜂𝜂,𝐷𝐷′) distribution 

An EBE estimation is first performed on all observed data. The estimate �̂�𝜂 
maximizes the marginal likelihood, i.e. the likelihood of encountering this 𝜂𝜂 in 
the population, and encountering the observed values in the model 
prediction 𝑓𝑓(𝜂𝜂). This estimate is then used to find the optimal dose 𝐷𝐷′ that is 
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predicted to hit the target concentration 𝐸𝐸𝑑𝑑𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑑𝑑 at time 𝑑𝑑𝑑𝑑𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑑𝑑. In practice, 
the second equation is solved by searching the root of function 
𝑓𝑓��̂�𝜂, 𝑑𝑑𝑑𝑑𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑑𝑑,𝐷𝐷′� − 𝐸𝐸𝑑𝑑𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑑𝑑, i.e. the dose 𝐷𝐷′ for which 𝑓𝑓��̂�𝜂, 𝑑𝑑𝑑𝑑𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑑𝑑,𝐷𝐷′� −
𝐸𝐸𝑑𝑑𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑑𝑑 = 0. Finally, the resulting concentration using the optimal dose 𝐷𝐷′ can 
be predicted for the full individual 𝜂𝜂 distribution. This shows which 
concentration range can be expected with the currently recommended dose. 

Three aspects may make this more complex: the search domain, the 
objective, and the presence of uncertainty. The search domain represents all 
possibilities for clinical intervention: dose, infusion time, formulation, dosing 
interval, dose suspension time. Some of these may be continuous (e.g. infused 
dose), while others may be discrete options (e.g. formulation, or number of 
1mg capsules to administer). 𝐶𝐶 continuous search options result in an 𝐶𝐶-
dimensional search space, while 𝑂𝑂 discrete options lead to 𝑂𝑂 parallel search 
spaces. The objective can become more complex as well. In its simplest form, 
we target a given exposure that is correlated with efficacy and safety. 
However, multiple targets may exist: at least 𝑋𝑋 exposure, at the lowest dose, 
preferring the regimen from the label, and preferring no administrations 
between 22:00 and 06:00. Finally, uncertainty may need to be incorporated. 
If the individual probability of target attainment is too low, different dosing 
modalities may need to be explored (e.g. suggest continuous infusion instead 
of intermittent injection to reduce risk of toxic exposures), or more frequent 
observations may be recommended. 

While flexible precision dosing may seem enticing, results need to be 
effectively communicated to clinicians. The solution for a steady-state target 
𝑓𝑓𝑆𝑆𝑆𝑆(𝐷𝐷,𝑇𝑇𝑝𝑝𝑛𝑛𝑓𝑓,𝑇𝑇𝑣𝑣𝑇𝑇) = 𝑇𝑇𝑑𝑑𝑇𝑇𝑇𝑇𝐸𝐸𝑇𝑇 in a 3-dimensional search space for dose 𝐷𝐷, 
infusion time 𝑇𝑇𝑂𝑂𝑛𝑛𝑓𝑓, and dosing interval 𝑇𝑇𝑣𝑣𝑇𝑇, including parameter 
uncertainty, is a fuzzy 2-dimensional surface. This is difficult to communicate 
to clinicians. Depending on the problem, precision dosing can therefore 
either take the form of a single dosing recommendation, or of a decision 
support tool allowing free exploration of possible solutions. 
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Chapter 3 Objectives 

3.1. Simulate MIPD: general framework 
Objective 1 

Develop software and methodology to quantify model predictive 
performance, simulate outcomes applying MIPD to a virtual patient 
population, and simulate clinical trials including MIPD 

Currently, mathematical software in pharmacometrics falls in two major 
categories: modeling tools and simulation tools. Modeling tools allow the 
estimation of statistical distributions of parameters, given a clinical dataset. 
Simulation tools use monte carlo sampling on these parameter distributions 
to construct a virtual population and simulate outcomes for new treatment 
regimen. Simulating precision dosing requires both individual parameter 
estimation, as well as simulation of future new treatment regimen. No 
flexible software currently exists to do these tasks programmatically. 

We aim to explore how such a tool may be created, and postulate this tool 
will improve model building, population simulation and clinical trial 
simulation for MIPD. 

3.2. Simulate MIPD for infliximab induction 
therapy in ulcerative colitis patients 

Objective 2 

By performing an in silico population simulation of infliximab 
precision dosing, the improvement on PD outcomes can be quantified. 

Infliximab is an anti-TNF𝛼𝛼 inhibitor used in the treatment of ulcerative 
colitis. Unfortunately, therapeutic failure is a common occurrence, with as 
many as 40% of patients not responding. The drug is well tolerated, but drug 
cost makes achieving high exposure using high fixed doses prohibitively 
expensive. Based on an early drug concentration sample, underexposure to 
the drug may be avoided through dose increases. MIPD allows rational dose 
adaptation, ideally using this expensive biological drug more efficiently than 
administering a fixed one-size-fits-all dose. This was already demonstrated in 
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prospective trials for maintenance therapy by Negoescu et al.42 Application of 
the techniques previously developed will allow us to quantify whether this 
promise hold up in silico for induction therapy, before an actual trial is 
conducted. 

3.3. Simulate MIPD for tacrolimus in de novo 
kidney transplant recipients early post-
transplant 

Objective 3 

By quantifying the improvement MIPD brings to tacrolimus target 
attainment, the clinical benefit vs required effort can be evaluated. A 
targeted clinical trial to show this clinical benefit can be efficiently 
designed. 

Tacrolimus is an immunosuppressor used after solid organ transplant. 
Sufficient exposure is needed to limit organ rejection, while high exposure is 
nephrotoxic. This limited therapeutic window is further complicated by high 
PK inter-individual variability, with individual maintenance doses ranging 
from 3mg to 30mg per day to achieve the same target exposure. Therapeutic 
drug monitoring is required by the label to adapt the dose. The challenges of 
linking concentration target deviation to dose adjustment have been widely 
discussed,43 and can be mitigated using a population PK model. 

A retrospective dataset of 315 patients is available. Daily tacrolimus trough 
samples were routinely collected during the first 14 days post transplant. We 
will develop a population PK model to fit this data, ensuring the model is fit 
for use in MIPD. This model can then be used to predict the improvement 
between standard of care (SoC) and MIPD in the population. Finally, these 
predictions can then be used to design a clinical trial having appropriate 
power to detect this improvement. 

 

42 “Proactive Vs Reactive Therapeutic Drug Monitoring of Infliximab in 
Crohn’s Disease”. 

43 Wallemacq et al., “Opportunities to Optimize Tacrolimus Therapy in Solid 
Organ Transplantation”; Brunet et al., “Therapeutic Drug Monitoring of 
Tacrolimus-Personalized Therapy”. 
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3.4. Build a tacrolimus MIPD software tool 
Objective 4 

If MIPD is predicted to deliver a clinically significant benefit to 
patients, a software tool will bring this technology in the hands of 
physicians. 

MIPD for immunosuppressive drugs in solid organ transplant has been 
available since 1994,44 at ever-increasing precision and ease of use.45 Early 
on, clinicians filled out a form, faxed it to the clinical pharmacology 
department, and waited for dosing advice. Data was manually transcribed in 
digital format and dosing advice was computed using specialized FORTRAN 
programs, or (later) standard modeling tools. Software technology has 
evolved since, but having only a clinician in the loop remains a major 
challenge. 

We envision an application with an easy-to-learn user interface, allowing 
physicians to enter patient covariates, treatment history and observed 
measures. The physician receives immediate feedback on the entered data, 
with the application showing the population typical prediction, the 
individually estimated prediction, and the prediction when implementing the 
dosing recommendation. 

To optimize the physician workload, we further envision a connection with 
the electronic patient health records (EHR). The application should 
automatically receive EHR data, transform it appropriately and return a 
dosing recommendation to the EHR application. This should result in 
minimal disruption to the clinical workflow, increasing the tool adoption and 
limiting marginal costs. 

  

 

44 Anderson et al., “Evaluation of a Bayesian Approach to the Pharmacokinetic 
Interpretation of Cyclosporin Concentrations in Renal Allograft Recipients”. 

45 Woillard et al., “Tacrolimus Exposure Prediction Using Machine Learning”. 
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3.5. Transpose this approach to other 
compounds 

Objective 5 

The design of the software and approach should allow easy extension 
to other compounds. 

Throughout the project, all methods and software are developed with 
extension to other compounds and disease areas in mind. By making this 
generic, we aim to build a platform for precision dosing of many compounds. 
This unmet need should attract other academic groups, increasing the 
number of developers/users. Such a critical mass46 can then support an open, 
stable alternative to commercial efforts. Not only does this include publishing 
the software and methods, but also ensuring training and documentation is 
available.

 

46 “Open source projects die because of an inability to acquire a critical mass 
of users”, from ‘Open Source Software Development as a Special Type of 
Academic Research’, by Nikolai Bezroukov 
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Chapter 4 Methods for MIPD 

This chapter explores how the classical modeling & simulation approach 
used in drug development should be adapted for MIPD development in five 
key areas: goodness of fit evaluation, covariate selection, residual error 
model evaluation, target selection, and population simulation. In 0, these 
methods are implemented. The clinical use cases in Chapter 1, Chapter 1, 
Chapter 7 and Chapter 1 use these methods to predict MIPD performance. 

4.1. Goodness of fit evaluation 
Evaluating whether a population model fits a clinical dataset is a well-studied 
problem. We evaluate whether the model predicts the observed values (DV 
vs PRED), whether residual errors are heteroscedastic and have no bias 
(IWRES vs TIME, CWRES vs TIME), and whether individual estimates reflect 
a normal distribution (NPDE for 𝜂𝜂 distributions). We even verify whether a 
monte carlo simulation based on the model generates the same summary 
statistics as the clinical dataset (Visual Predictive Check and Numerical 
Predictive Check). However, what matters for precision dosing? 

A model is useful for precision dosing if it accurately predicts future 
outcomes, with concentration target attainment most often used as a 
surrogate outcome. An exercise known as prospective evaluation47 is 
required. We predict each observed value 𝑝𝑝 + 1 using an EBE fit on all 
previous observed values 1 to 𝑝𝑝. Relevant summary statistics in the form of 
mean percentage prediction error (MPPE) and root mean squared error 
(RMSE) show bias and imprecision respectively. The full distribution of 
prediction errors can also be analyzed. This is not routinely done; existing 
literature models should be re-evaluated for their fitness for precision 
dosing. 

 

47 The technique was first implemented in the Perl-speaks-NONMEM tool 
suite, and the developers called it ‘proseval’. In my humble opinion, the name 
is poorly chosen, as it can be confused with a ‘prospective clinical trial’. We 
would propose ‘individual predictive performance evaluation’ as a more 
appropriate term. 
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The equations below show how predictive performance can be evaluated 
through prospective evaluation. 𝑓𝑓(𝑑𝑑, 𝜂𝜂) reflects the model prediction at time 𝑑𝑑 
for individual parameters 𝜂𝜂. 

𝑂𝑂𝐼𝐼𝑇𝑇𝐸𝐸𝐷𝐷1 = 𝑓𝑓(𝑑𝑑1, 0)
for 𝑝𝑝 from 1 to 𝑛𝑛:
 �̂�𝜂𝑖𝑖 = 𝐸𝐸𝐵𝐵𝐸𝐸(𝐶𝐶𝑂𝑂𝐻𝐻𝐾𝐾𝑣𝑣𝑣𝑣𝐾𝐾𝑑𝑑1 𝑑𝑑𝑡𝑡 𝑖𝑖)
 𝑂𝑂𝐼𝐼𝑇𝑇𝐸𝐸𝐷𝐷𝑖𝑖+1 = 𝑓𝑓(𝑑𝑑𝑖𝑖+1, �̂�𝜂𝑖𝑖)
𝐸𝐸𝑣𝑣𝑣𝑣𝑖𝑖 = 𝐶𝐶𝑂𝑂𝐻𝐻𝐾𝐾𝑣𝑣𝑣𝑣𝐾𝐾𝑑𝑑𝑖𝑖 − 𝑂𝑂𝐼𝐼𝑇𝑇𝐸𝐸𝐷𝐷𝑖𝑖

𝑂𝑂𝐼𝐼𝐼𝐼𝐸𝐸 =
1
𝑛𝑛
�

𝐸𝐸𝑣𝑣𝑣𝑣𝑖𝑖
𝐶𝐶𝑂𝑂𝐻𝐻𝐾𝐾𝑣𝑣𝑣𝑣𝐾𝐾𝑑𝑑𝑖𝑖𝑖𝑖

𝑇𝑇𝑂𝑂𝑅𝑅𝐸𝐸 = �
1
𝑛𝑛
�𝐸𝐸𝑣𝑣𝑣𝑣𝑖𝑖2
𝑖𝑖

 

Better yet, the relative residual error 𝑂𝑂𝑂𝑂𝑂𝑂𝑡𝑡𝑡𝑡𝑂𝑂𝑡𝑡𝑑𝑑𝑖𝑖−𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐷𝐷𝑖𝑖
𝑂𝑂𝑂𝑂𝑂𝑂𝑡𝑡𝑡𝑡𝑂𝑂𝑡𝑡𝑑𝑑𝑖𝑖

 can be directly related 
to error in predicted dose, and subsequently error in resulting concentration 
after dose adaptation. If we consider the case of a 1-compartment model with 
a single dose, then the trough concentration 𝐸𝐸𝐶𝐶𝐶𝐶𝐸𝐸 equals 𝐸𝐸𝐶𝐶𝐶𝐶𝐸𝐸 = 𝐷𝐷/𝑉𝑉 ∗
𝐾𝐾−𝑘𝑘∗𝜏𝜏. 

When we estimate individual pharmacokinetic parameters 𝑉𝑉 and 𝑘𝑘, an error 
is introduced: 𝑉𝑉′ = 𝑉𝑉 + 𝜖𝜖 and 𝑘𝑘′ = 𝑘𝑘 + 𝜖𝜖. These parameters are used to 
predict the trough concentration 𝑂𝑂𝐼𝐼𝑇𝑇𝐸𝐸𝐷𝐷 = 𝐷𝐷/𝑉𝑉′ ∗ 𝐾𝐾−𝑘𝑘′∗𝜏𝜏. Applying this 
equation to find the recommended dose 𝐷𝐷𝑡𝑡𝑡𝑡𝑟𝑟 to reach a target trough 
concentration 𝑇𝑇𝑇𝑇𝑇𝑇 yields 𝑇𝑇𝑇𝑇𝑇𝑇 = 𝐷𝐷𝑡𝑡𝑡𝑡𝑟𝑟/𝑉𝑉′ ∗ 𝐾𝐾−𝑘𝑘′∗𝜏𝜏 . Applying this dose will 
actually result in a concentration of 𝐸𝐸𝑡𝑡𝑡𝑡𝑂𝑂 = 𝐷𝐷𝑡𝑡𝑡𝑡𝑟𝑟/𝑉𝑉 ∗ 𝐾𝐾−𝑘𝑘∗𝜏𝜏. Using these 
equations, the prediction error 𝐼𝐼𝐸𝐸% on the next trough concentration can be 
rewritten as follows: 

𝐼𝐼𝐸𝐸% =
𝑂𝑂𝐼𝐼𝑇𝑇𝐸𝐸𝐷𝐷 − 𝐸𝐸𝐶𝐶𝐶𝐶𝐸𝐸

𝐸𝐸𝐶𝐶𝐶𝐶𝐸𝐸
 

=
𝐷𝐷 ∗ 𝐾𝐾−𝑘𝑘′𝜏𝜏/𝑉𝑉′ − 𝐷𝐷 ∗ 𝐾𝐾−𝑘𝑘𝜏𝜏/𝑉𝑉

𝐷𝐷 ∗ 𝐾𝐾−𝑘𝑘𝜏𝜏/𝑉𝑉
 

=
𝐾𝐾−𝑘𝑘′𝜏𝜏/𝑉𝑉′ − 𝐾𝐾−𝑘𝑘𝜏𝜏/𝑉𝑉

𝐾𝐾−𝑘𝑘𝜏𝜏/𝑉𝑉
 

=
𝐷𝐷𝑡𝑡𝑡𝑡𝑟𝑟 ∗ 𝐾𝐾−𝑘𝑘′𝜏𝜏/𝑉𝑉′ − 𝐷𝐷𝑡𝑡𝑡𝑡𝑟𝑟 ∗ 𝐾𝐾−𝑘𝑘𝜏𝜏/𝑉𝑉

𝐷𝐷𝑡𝑡𝑡𝑡𝑟𝑟 ∗ 𝐾𝐾−𝑘𝑘𝜏𝜏/𝑉𝑉
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=
𝑇𝑇𝑇𝑇𝑇𝑇 − 𝐸𝐸𝑡𝑡𝑡𝑡𝑂𝑂

𝐸𝐸𝑡𝑡𝑡𝑡𝑂𝑂
 

In this example, the prediction error on the next concentration 𝐼𝐼𝐸𝐸% is equal 
to the concentration deviation from target after applying MIPD. The 
probability of target attainment for a given therapeutic window can thus be 
related to the prediction error. Assuming a target window between 𝑣𝑣 and 𝑂𝑂, a 
target of 𝑇𝑇𝑇𝑇𝑇𝑇 = 𝑡𝑡+𝑂𝑂

2
 maps to a prediction error between 𝑇𝑇𝑇𝑇𝑇𝑇−𝑂𝑂

𝑂𝑂
 and 𝑇𝑇𝑇𝑇𝑇𝑇−𝑡𝑡

𝑡𝑡
. 

This can be used as an evaluation of probability of target attainment after 
applying MIPD, and can thus be used to compare model performance. 

For reference, 𝐼𝐼𝐸𝐸% can also be translated to 𝐸𝐸𝑡𝑡𝑡𝑡𝑂𝑂 = 𝑇𝑇𝑇𝑇𝑇𝑇
1+𝐼𝐼𝐼𝐼%

. The theoretical 
upper limit for probability of target attainment (assuming perfect individual 
parameter estimation) can be determined by the residual error, based on the 
probability that 𝒩𝒩(0,𝜎𝜎) is within the target of �𝑇𝑇𝑇𝑇𝑇𝑇−𝑂𝑂

𝑂𝑂
, 𝑇𝑇𝑇𝑇𝑇𝑇−𝑡𝑡

𝑡𝑡
�. 

4.2. Covariate selection 
McDougall et al.48 disruptively stated that the population model does not 
really matter for precision dosing. To make this point, they used a reference 
model and five intentionally misspecified models for voriconazole, and 
performed precision dosing with each model on a simulated dataset. Their 
results showed that, when sufficient concentration samples are available, 
only severe structural model misfit -e.g. removing a non-linear clearance 
route- resulted in different predicted doses. This is also illustrated in Figure 
9. 

 

48 “The Impact of Model-Misspecification on Model Based Personalised 
Dosing”. 
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Figure 9: EBE fit (dotted line) and population prediction (median as solid line, 
90% prediction interval area) for a patient with 45kg bodyweight. The purple 

model incorporates allometric scaling for weight (predicting typical higher 
concentrations for a patient weighing 45kg), while the orange model has no 
covariates. The estimated individual fit on 4 measured concentrations (blue 

points) is the same for both models. 

𝑝𝑝�𝑋𝑋𝑗𝑗|𝐷𝐷𝑉𝑉𝑗𝑗� ∼ 𝛷𝛷�𝜂𝜂𝑗𝑗 ,𝛺𝛺� × �𝛷𝛷
𝑛𝑛

𝑖𝑖

�𝐷𝐷𝑉𝑉𝑖𝑖,𝑗𝑗 − 𝑌𝑌𝑖𝑖,𝑗𝑗,𝛴𝛴� 

A more nuanced view is to state that precision dosing has two separate 
phases. If we look at the equation for marginal likelihood above, it is 
composed of the population prior and the likelihood of observed values. If no 
observed values are available, the most likely estimate is the population 
prior; the patient is most likely a typical patient. The uncertainty on this 
estimate is as large as the population inter-individual variability 𝜔𝜔. 
Therefore, when no observed values are available, individual precision 
dosing is equivalent to population fixed dosing. Any covariates that may help 
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to reduce unexplained IIV will also reduce 𝜂𝜂 uncertainty, and improve dosing 
accuracy. 

As more observed values become available, e.g. by measuring blood 
concentration after the first dose, the likelihood of observed values becomes 
more important when determining �̂�𝜂. Uncertainty shrinks, in line with the 
model residual error (𝜎𝜎𝜂𝜂� ∼

𝜎𝜎
√𝑛𝑛

). McDougall et al. used a very rich sampling to 
demonstrate their point, while in reality there is a gradual change from prior 
estimate to posterior estimate as more information reflective of the 
individual becomes available. Without sufficient information, the EBE 
estimate �̂�𝜂 will always regress to the typical prior value. 

Some argue that the estimated prior distribution hinders accurate predictive 
power. It may be appropriate to include uncertainty on priors, leading to a 
hierarchical bayesian estimation. Such estimation software exists in other 
domains, but has not yet been applied to pharmacometrics problems. Hughes 
and Keizer49 showed that artificially inflating 𝜔𝜔, a technique called flattened 
priors, also increases predictive performance. Neely et al.50 argue that the use 
of a normal or lognormal prior for parameters is inappropriate altogether. 
They showed that the population distributions could be characterized by a 
non-parametric adaptive grid (NPAG) instead. Instead of defined statistical 
distributions with parameters (𝜃𝜃,𝜔𝜔), NPAG is a set of support points and 
associated weights approximating any probability distribution. As this 
method does not assume distribution shape, it can fit irregular distributions 
(e.g. bimodal) much better. NPAG should in theory be more appropriate for 
precision dosing, but has not been widely adopted. 

A further pitfall in covariate search is to include time-varying covariates. 
Indeed, these may strongly explain between-occasion variability in 
parameters, improving population fit. However, this is of limited use in 
precision dosing, as the future time course of this covariate is not available. It 
is more appropriate to consider these covariates as measures -similar to drug 

 

49 “A Hybrid Machine Learning/Pharmacokinetic Approach Outperforms 
Maximum a Posteriori Bayesian Estimation by Selectively Flattening Model 
Priors”. 

50 “Accurate Detection of Outliers and Subpopulations With Pmetrics, a 
Nonparametric and Parametric Pharmacometric Modeling and Simulation 
Package for R”. 
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concentrations- in a joint model instead. Special care must be taken with 
covariates whose time course may be influenced by patient disease state, and 
these effects must be included in the model for appropriate dose simulation. 
Developing such a complex model may not be feasible; the base model 
without covariates and increased IIV may be more appropriately used 
instead. 

4.3. Residual error models and MPC/MIPD 
The key for EBE estimation is the balance between population prior and 
fitting the observed values. The latter is determined by both the nonlinear 
relationship between parameters and prediction, and by the residual error 
model. In other words, a difference between predicted value and observed 
value can be explained either by residual error 𝜖𝜖, or by a change to 𝜂𝜂. There is 
an essential difference: a change to 𝜂𝜂 will influence future predictions and 
therefore the recommended dose. 

Whereas population modeling often considers the residual error model an 
afterthought, it is essential in precision dosing. Alihodzic et al.51 showed that 
errors in recorded sampling time or dosing time lead to severe model 
mispredictions. It is worthwhile to refine residual error models to only 
incorporate assay error, and incorporate different errors (such as dosing 
timing error) instead. Unfortunately, this area is frought with numerical 
issues in estimating such models. 

Another overlooked area is time dependence of residual error. In clinical 
reality, recent observations are more predictive of the immediate future. We 
discussed existing solutions in 1.4.2, yet we propose an alternative here: 
autocorrelation. 

The existence of time-dependent residual error can be formally tested in a 
dataset using autocorrelation. Autocorrelation 𝜌𝜌𝑘𝑘 is the correlation between 
a series and the same series shifted by 𝑘𝑘 places, with 𝑘𝑘 an integer value. 
𝐸𝐸[𝜌𝜌𝑘𝑘] describes the expected (mean) autocorrelation, with 𝐸𝐸[𝜌𝜌1] the mean 
autocorrelation for consecutive values, 𝐸𝐸[𝜌𝜌2] the mean autocorrelation for 
values two days apart, etc. 

 

51 “Impact of Inaccurate Documentation of Sampling and Infusion Time in 
Model-Informed Precision Dosing”. 
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In a classical empirical bayesian estimation (EBE), autocorrelation of the 
residual error (RE) for a given patient is driven in three ways. Firstly, assay 
error is assumed to be random, driving residual error autocorrelation of 
consecutive observations to 𝐸𝐸[𝜌𝜌1] = 0. Secondly, parameter regression to the 
mean results in a consistent residual error with 𝐸𝐸[𝜌𝜌𝑘𝑘] > 0 for large values of 
𝑘𝑘. Thirdly, model misspecification results in a consistent residual error of 
𝐸𝐸[𝜌𝜌𝑘𝑘] > 0 for small values of 𝑘𝑘; i.e. the model under- or overpredicts for a 
limited number of consecutive observations. By calculating the mean 
autocorrelation of the residual error for values 𝑘𝑘 = 1. .𝑛𝑛, the amount and 
type of RE autocorrelation can be identified. A high autocorrelation that 
decreases for higher values of 𝑘𝑘 points to model misspecification. 

 

Figure 10: In the above example, we estimate the future concentration (+ 
symbol) for a patient with 3 blood samples (dots) who has just experienced 

renal failure. Drug clearance is almost non-existant, and restarts only gradually 
after day 2. Estimation using the EBE method (orange) fails to capture this 

aspect, assuming stable parameter values for clearance (CL) and volume (V1). 
The MPC method (purple) allows drifting estimates, assuming the previous 

estimated clearance will remain valid tomorrow. This also slightly 
overestimates concentrations, but the effect is much less dramatic. 
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We developed an alternative way to integrate time dependence of residual 
error however (illustrated in Figure 10). Intuitively, the individual parameter 
estimate �̂�𝜂 on day 𝑝𝑝 can be considered a population prior for day 𝑝𝑝 + 1. A 
pragmatic way to adapt the model can then be implemented. Just as with a 
model including inter-occasion variability (IOV), we allow individual 
parameters to change every occasion. However, parameters move from their 
previous value, rather than from a mean IIV estimate as with classical EBE. 

𝑋𝑋1 = 𝜃𝜃𝑋𝑋 ∗ 𝐾𝐾𝜂𝜂𝑋𝑋,1

𝑋𝑋2 = 𝜃𝜃𝑋𝑋 ∗ 𝐾𝐾𝜂𝜂𝑋𝑋,1+𝜂𝜂𝑋𝑋,2

. . .
𝑋𝑋𝑖𝑖 = 𝜃𝜃𝑋𝑋 ∗ 𝐾𝐾𝜂𝜂𝑋𝑋,1+𝜂𝜂𝑋𝑋,2+...+𝜂𝜂𝑋𝑋,𝑖𝑖

 

When estimating an individual fit, only 𝜂𝜂𝑖𝑖  for the current day 𝑝𝑝 is estimated, 
with all past 𝜂𝜂 fixed. If no information is available on day 𝑝𝑝 + 1, then 𝜂𝜂𝑖𝑖+1 will 
be estimated at 0 and the estimate will be equal to day 𝑝𝑝. For pragmatic 
reasons, the original estimate of 𝜔𝜔 is used as a cost function when estimating 
each 𝜂𝜂𝑖𝑖 . 

It should be noted that MPC/MIPD, even though founded in pragmatism, is 
formally related to classical EBE. The technique approximates the individual 
objective function 𝐶𝐶𝑂𝑂𝑉𝑉(𝜂𝜂) by a new prior distribution around the mode of 
the previous estimate 𝜂𝜂′�  on observations 1. . 𝑝𝑝 − 1: 

𝐶𝐶𝑂𝑂𝑉𝑉(𝜂𝜂) = 𝐶𝐶𝑂𝑂𝑉𝑉𝑝𝑝𝑡𝑡𝑝𝑝(𝜂𝜂|𝛩𝛩,𝛺𝛺) + �𝐶𝐶
0..𝑖𝑖

𝑂𝑂𝑉𝑉𝑝𝑝𝑡𝑡𝑡𝑡𝑑𝑑(𝑓𝑓(𝜂𝜂)|𝑌𝑌,𝛴𝛴) 

𝐶𝐶𝑂𝑂𝑉𝑉 = 𝐶𝐶𝑂𝑂𝑉𝑉𝑝𝑝𝑡𝑡𝑝𝑝(𝜂𝜂|𝛩𝛩,𝛺𝛺) + � 𝐶𝐶
0..𝑖𝑖−1

𝑂𝑂𝑉𝑉𝑝𝑝𝑡𝑡𝑡𝑡𝑑𝑑(𝑓𝑓(𝜂𝜂)|𝑌𝑌,𝛴𝛴) + 𝐶𝐶𝑂𝑂𝑉𝑉𝑝𝑝𝑡𝑡𝑡𝑡𝑑𝑑(𝑓𝑓(𝜂𝜂)|𝑌𝑌𝑖𝑖 ,𝛴𝛴) 

𝐶𝐶𝑂𝑂𝑉𝑉 ≊ 𝐶𝐶𝑂𝑂𝑉𝑉𝑝𝑝𝑡𝑡𝑝𝑝 �𝜂𝜂|𝜂𝜂′� , 𝐻𝐻𝐾𝐾�𝜂𝜂′��� + 𝐶𝐶𝑂𝑂𝑉𝑉𝑝𝑝𝑡𝑡𝑡𝑡𝑑𝑑(𝑓𝑓(𝜂𝜂)|𝑌𝑌𝑖𝑖 ,𝛴𝛴) 

In the above equation, we have approximated the objective function for an 
EBE of observations 1. . 𝑝𝑝 − 1 by a new individual prior around the mode 𝜂𝜂′� . 
The 𝛺𝛺 for this prior should be equal to the asymptotic standard error of the 
previous estimate, as this would approximate EBE as closely as possible. In 
this case however, we chose to keep the larger population IIV 𝛺𝛺 instead, 
allowing the estimate to drift between occasions: 

𝐶𝐶𝑂𝑂𝑉𝑉𝑀𝑀𝐼𝐼𝐶𝐶𝑀𝑀𝐼𝐼𝐼𝐼𝐷𝐷 = 𝐶𝐶𝑂𝑂𝑉𝑉𝑝𝑝𝑡𝑡𝑝𝑝�𝜂𝜂|𝜂𝜂′� ,𝛺𝛺� + 𝐶𝐶𝑂𝑂𝑉𝑉𝑝𝑝𝑡𝑡𝑡𝑡𝑑𝑑(𝑓𝑓(𝜂𝜂)|𝑌𝑌𝑖𝑖,𝜃𝜃,𝛴𝛴) 
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4.4. Target selection 
When dosing a drug, we aim for optimal safety and efficacy. Through empiric 
studies, we relate acceptable safety and efficacy to an acceptable 
concentration range. When a one-dose-fits-all approach fails to put all 
patients in this acceptable range, therapeutic drug monitoring may be 
performed. Being outside of the target range is bad, and results in a dose 
adaptation. 

This method is not appropriate. It is a simplification, performed for 
pragmatic reasons. Holford, Ma, and Metz52 argued that we should 
discontinue the use of a therapeutic window for dosing decisions. There is no 
range of optimal exposure, there is just a single optimal exposure associated 
with optimal outcomes. Although intrinsic variability in clinical outcome may 
be far greater than the difference in average outcomes across the therapeutic 
window, thwarting the identification of this optimal exposure, this is 
ultimately irrelevant. The principle stands: doses should be adapted to target 
optimal exposure. 

The work done by Holford et al is important, yet only proposes a small 
incremental step. Precision dosing should target optimal safety and efficacy, 
which is subject to high inter-individual PD variability for a given target 
exposure. Ideally, we may measure relevant biomarkers directly related to 
safety and efficacy. These are then related to a clinical utility score. We 
reformulate the precision dosing problem as follows: find the optimal dose 
that maximizes individual clinical utility. Let us look at an example. 

f() = { 
  KA = TV_KA 
  CL = TV_CL * exp(ETA_CL) 
  V = TV_V * exp(ETA_V) 
  d/dt(A0) = -KA*A0 
  d/dt(A1) = KA*A0 - CL/V*A1 
  CONC = A1 / V 
   
  EC50 = TV_EC50 * exp(ETA_EC50) 
  Kin = TV_Kin * exp(ETA_Kin) 
  Kout = TV_Kout * CONC / (EC50 + CONC) 

 

52 “TDM Is Dead. Long Live TCI!” 
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  d/dt(SLD) = Kin - Kout * SLD 
   
  EC502 = TV_EC502 * exp(ETA_EC502) 
  Kin2 = TV_Kin2 * exp(ETA_Kin2) * CONC / (EC502 + CONC) 
  Kout2 = TV_Kout2 
  d/dt(ALT) = Kin2 - Kout2 * ALT 
   
  CU = W1 * (1/SLD) - W2 * (ALT > 150) 
} 

An example model of a chemotherapy drug incorporates four interlinked 
submodels. A first model predicts drug concentrations using a 1-
compartment model with oral absorption. IIV is applied on 𝐸𝐸𝐶𝐶 and 𝑉𝑉. A 
second model predicts the sum of largest tumor diameters (reflecting current 
cancer burden) by an indirect response model. Drug concentrations increase 
tumor cell death, modeled as a drug effect on 𝐾𝐾𝑙𝑙𝑇𝑇𝑑𝑑. A third model predicts 
ALT liver enzymes, with drug concentrations causing an increased 
production of ALT. Finally, a fourth model predicts clinical utility 𝐸𝐸𝐶𝐶 by both 
𝑅𝑅𝐶𝐶𝐷𝐷 and 𝑑𝑑𝐶𝐶𝑇𝑇 levels. These surrogate markers are weighed using 𝐵𝐵1 = 10 
and 𝐵𝐵2 = 0.1 (respectively), and weights can be determined by physicians 
or even patients according to individual preference. 
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Figure 11: Population typical prediction (blue line) and prediction interval 
(blue area) for ALT, drug concentration, sum of largest tumor diameter (SLD) 
and clinical utility (CU) at the administered dose of 1mg. The measured ALT, 

concentration and sum of largest diameter (red points) inform the EBE fit (red 
line). If 1mg is continued, SLD is predicted to decrease only slowly, ALT will 

remain low, and CU is poor. Adapting to 3mg (purple line) is predicted to result 
in increased efficacy (low SLD), acceptable liver toxicity (low ALT), and better 

overall clinical utility (CU). 

When performing empirical bayesian estimation to determine individual 
variability on these interlinked models (𝜂𝜂𝐶𝐶𝐶𝐶, 𝜂𝜂𝑉𝑉, 𝜂𝜂𝐼𝐼𝐶𝐶50, 𝜂𝜂𝐾𝐾𝑖𝑖𝑛𝑛, 𝜂𝜂𝐼𝐼𝐶𝐶50,2, and 
𝜂𝜂𝐾𝐾𝑖𝑖𝑛𝑛,2), all available measurements can be used: concentration 
measurements in blood, sum of largest tumour diameter from CT scans, or 
ALT levels in blood. This principle is demonstrated in Figure 11. Future dose 
recommendations can be made targeting optimal predicted clinical utility. As 
stated in the Introduction chapter, a slow transition to this model is already 
ongoing, with increasing pressure from regulators to explore patient 
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exposure-response of compounds, rather than simply establishing empiric 
“good” one-size-fits-all dosing. 

4.5. Population simulation for predicting MIPD 

 

Figure 12: Animation of how MIPD is simulated on retrospective data for a 
single patient. The algorithm alternates between three steps (shown in top left). 

It first simulates (“MEASURED”) the next concentration using the full fit 
(lightblue line) and the proposed dosing regimen, resulting in a black dot. It 
then fits this concentration (“FITTED”). The black line shows the computer 

prediction for tomorrow. The algorithm now adapts future doses so all 
predicted trough concentrations hit the target (“ADAPTED”, target window in 
green). It then advances the current time (black vertical line) and performs a 

new iteration. Red markings on X axis show the time of true observations, blue 
crosses show the predicted concentrations using the currently proposed 

treatment regimen. The black points show the simulated concentrations for 
precision dosing. Available online at http://bit.ly/3t7pl00 

http://bit.ly/3t7pl00
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In section 2.6, we derived a relationship between prediction error and 
concentration error after precision dosing. This relationship does not hold 
for more complex precision dosing, such as discussed in section 4.4. In these 
cases, simulation is required. 

 INITIALIZATION: 
    observed = [] 
    regimen = [ Loading Dose, Future Planned Doses] 
    eta_true = monte carlo sample from population prior 
 FOR EACH SAMPLING TIMEPOINT t_i: 
  SIMULATE Y_i^'≔ f(eta_true,t_i ) + epsilon 
    add (t_i,Y_i) to observed 
    ESTIMATE eta using MPC/MIPD 
    OPTIMIZE the treatment regimen using eta 

In the above algorithm, we perform an iterative loop of 
simulate/estimate/optimize (see also Figure 12) for a hypothetical patient. 
We first simulate a future concentration using the true parameters 𝜂𝜂𝑑𝑑𝑡𝑡𝑡𝑡𝑡𝑡, the 
current treatment regimen, and a sampled residual error 𝜖𝜖. This simulated 
concentration is used to estimate 𝜂𝜂. This approach works well to explore 
non-linear properties of precision dosing, such as model fitness for precision 
dosing, or blood sampling scheme performance. 

Alternatively, we can use a retrospective dataset for this simulation. 𝜂𝜂𝑑𝑑𝑡𝑡𝑡𝑡𝑡𝑡 is 
then equal to the posthoc estimate on all real observed data for that patient. 
Instead of sampling 𝜖𝜖, it can be reused from the posthoc estimate as well. 
Assuming the model predicts concentration on adapted doses appropriately 
(i.e. the model interpolates different doses correctly), resulting 
concentrations will be more realistic, as the residual error is reused. Fewer 
assumptions are required in this approach.
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Chapter 5 Tdmore - a framework 
for model-informed precision 
dosing 

In this chapter, we describe the design and functionality of the tdmore 
software, a flexible and adaptable framework for model evaluation, 
performance prediction, and bedside execution of precision dosing. This 
work was funded by FWO TBM grant T003117N (OCT-2017 to OCT-2020). 
Part of the software is available from github.com/tdmore-dev/tdmore, and 
has been reproduced below in simplified form. 

Loosely based on: 
Ruben Faelens, Nicolas Luyckx, Quentin Leirens, Dirk Kuypers, Pieter 
Annaert (2020). Building model-informed precision dosing software using R: 
blueprint for a state-of-the-art development process. Presented at PAGE 2021 
conference as a scientific poster 
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5.1. Introduction 
The proof of the pudding is in the eating, but you cannot recoup the eggs and 
milk from a bad pudding. 

Software for precision dosing is not new. A study by Kantasiripitak et al.53 
identified 28 software tools for MIPD, with the aim of benchmarking these 
tools for use in a clinical setting. 11 tools were not actively maintained, and 2 
tools did not use a Bayesian approach. One tool did not include a user 
interface, 2 tools only supported one drug, and 2 software providers declined 
participation. This yielded 10 software tools that were benchmarked on 
evaluation criteria “related to (i) user-friendliness and utilization, (ii) user 
support, (iii) computational aspects, (iv) population models, (v) quality and 
validation, (vi) output generation, (vii) privacy and data security, and (viii) 
cost”. This study focused on the use of software tools by clinicians. Tools 
generally performed well, with scores ranging from 7.2 ± 2.1 to 8.5 ± 1.8 
(out of max 10 points). We can conclude that software tools for precision 
dosing by clinicians is a well-served market segment. 

We revisited the broader selection of 15 Bayesian tools with active 
maintenance, and evaluated these based on the aforementioned objectives 
(see Chapter 1). Criteria can be grouped in 3 categories. First, we evaluated 
adaptability for pharmacometricians: how easy can a pharmacometrician 
define their own PKPD model, associated PKPD targets and search domain? 
Second, we evaluated user interface flexibility: how easy can the interface be 
adapted to fit within an existing clinical workflow? Third, we evaluated 
simulation capabilities: can the tool be used to predict MIPD performance? 

 

53 “Software Tools for Model-Informed Precision Dosing”. 
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Table 1: Evaluation of MIPD software on adaptability, flexibility and 
simulation. 

Name Custom 
model 

Custom 
target 
function 

Custom 
workflow 

Developm
ent support Simulation Source 

code 

TDM for RU No* No* No* Sparse No* 
Yes, under 
GPL2/GPL
3 

DosOptU No No No Unknown No No 

myPKFitP No No No N/A No No 

iDoseC No No No+ N/A No No 

RxKineticsC 
Custom 
parameter
s 

No No N/A No No 

AutoKineticsU No+ No+ N/A N/A No No 

BestDoseU Yes Yes No Unknown Yes No 

DoseMeRxC No+ No+ No+ N/A No+ No 

ID-ODSC No No No N/A No No 

InsightRx NovaC No+ No+ No+ N/A No+ No 

MwPharm++C Yes Yes No N/A No No 

NextDoseC/U No No No N/A No No 

PrecisePKC No No No+ N/A No No 

TDMxU 
Custom 
parameter
s 

No No N/A No No 

TucuxiC No No No N/A No No 

U: Developed by university, C: Commercially developed, P: Developed by pharma industry 

*: As the source code is available, this can be implemented by the user. 

+: By manufacturer, at their discretion 

Results are shown in Table 1. Only one software tool made the source code 
available. 4 manufacturers advertised their willingness to adapt the software 
to an existing clinical workflow. 2 manufacturers offered simulation services 
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to predict MIPD performance, and one more manufacturer offered the 
mathematical engine to allow users to perform MIPD performance 
predictions. While these 15 software tools scored well for use by physicians, 
there is clearly an unmet need in adaptability, custom development, and 
simulation. 

Further demonstrating this unmet need is the approach InsightRx proposes54 
to implement MIPD. Rather than selling a commercial off-the-shelf software 
with little user support, the company proposes a multi-step process. First, the 
proposed PK/PD model is qualified for predictive performance on the 
institution’s own retrospective data. Next, the company allows integration of 
their MIPD software into EHR systems, simplifying the clinical workflow. 
Finally, they offer a data dashboard for hospital administrators to analyze 
MIPD performance, measured as “% of patients achieving therapeutic range, 
time to therapeutic range, and time within therapeutic range”. 

The evidence-based process outlined above is certainly appropriate for drugs 
with established MIPD benefits, and a posteriori evaluation and continuous 
learning of MIPD implementation is commendable. However, we stress that 
this happens after the initial investment into MIPD software, based on 
prior belief that MIPD brings benefits. This is not appropriate for new 
drugs, where such evidence is lacking. 

Furthermore, while this approach has a solid scientific base, the company 
aims to leverage this as a competitive advantage to increase profits, carefully 
protecting its intellectual property. Based on this approach, InsightRx raised 
a total investment of $12.8M. Competitor DoseMe also offers tailored 
solutions, and raised $3.1M total. Once a hospital has decided to work with a 
commercial MIPD company, they are locked in55 to that customized solution. 
A comfortable position for commercial companies aiming to rake in license 
fees for years to come, yet a less fortunate position for the spending of public 
health funds. A growing voice56 suggest open-source medical devices as an 

 

54 Based on publicly available marketing material, as described on 
https://www.insight-rx.com/, consulted 17-NOV-2021 

55 Ven, Verelst, and Mannaert, “Should You Adopt Open Source Software?” 

56 Ahluwalia et al., “Towards Open Source Medical Devices”; Winter et al., 
“Open Source Medical Devices for Innovation, Education and Global Health”. 

https://www.insight-rx.com/
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alternative to promote sustainable growth and innovation, while 
democratizing access to these technologies. 

In summary, commercial efforts focus on user-friendly software for 
physicians, with little support to incorporate custom models, predict MIPD 
performance before implementation, or adapt software to specific clinical 
workflows, except as a means to increase customer retention. The tdmore 
software aims to fill this unmet need by providing an open-source framework 
for precision dosing, and accompanying roadmap for MIPD evaluation and 
implementation. 

5.2. The road to MIPD 
Conceptually, precision dosing is founded on three basic elements. The first is 
a relevant target: a goal for the intervention. Ideally, we target optimal 
clinical outcome. Often, the target is a drug exposure or biomarker that has 
been empirically shown to correlate with favorable clinical outcomes. This 
correlation is demonstrated during drug development and further refined 
during clinical use. The second element is a way to relate the intervention to 
this target by way of a population PK/PD model. This model predicts an 
interval of possible outcomes in the population for any given intervention. 
For many drugs, a single dosing regimen can be found where this interval is 
sufficiently narrow that all patients will reach favorable outcomes: safe and 
effective drug dosing. For drugs with a narrow therapeutic interval however, 
all possible dosing regimen result in a too wide prediction interval: effective 
but toxic for some, safe but ineffective for others. Here, we introduce the 
third element: an individual measurement -drug concentration, biomarker, 
or effect- that allows to reduce the individual patient’s prediction interval 
and identify a safe and effective dosing regimen. 

A roadmap towards MIPD lies in applying these three elements in a 
structured way: 

1. Through characterization of drug exposure-response, determine a target 
that is associated with favorable clinical outcomes. 

2. Build a population pharmacometric model that relates intervention to the 
target. 

3. Simulate whether a safe and effective fixed dosing exists. 
4. Ensure the population model is appropriate for precision dosing, adapt if 

necessary. 
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5. Simulate how incorporating covariates or individual measurements 
reduces variability and improves outcomes. Decide whether this 
improvement is clinically meaningful. 

6. Optionally, use these simulation results to design a clinical trial. 
7. Build a precision dosing software useable by physicians 
8. Integrate this software in a clinical workflow with minimal disruption. 

The tdmore framework was built to support this roadmap. A first package 
tdmore was designed to define the pharmacometric model, perform 
empirical bayesian estimation and dose adaptation. This mathematical 
engine can be applied to an individual patient, supporting the real-life 
application of MIPD. The framework also allows to use a retrospective 
dataset or virtual simulated population. We can characterize model 
predictive performance, as well as dose adaptation performance. 

If these simulated results show MIPD is worthwhile, the model can be easily 
incorporated in a software tool useable by physicians. To this end, the 
shinytdmore framework was constructed. It is a collection of user interface 
elements that can be assembled into a user interface. The inherent flexibility 
allows a developer to adapt to any clinical workflow, including or removing 
visual elements as required. 

This roadmap was followed in the development of precision dosing for 
tacrolimus in kidney transplant recipients. The finalized software tool was 
composed of the mathematical engine, assembled user interface components, 
and appropriate pharmacometric model. The package was complemented by 
a method for the electronic health record (EHR) system to push data and 
relay back dosing recommendations. 

5.3. Mathematical engine 
At its core, the mathematical engine predicts a structural model. The model 
can be specified either as an RxODE57 model, an algebraic function, a 

 

57 Fidler et al., RxODE. 
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deSolve58-compatible function, or included in an nlmixr59 model. tdmore 
includes a model_predict() function that translates dosing regimen and 
inter-individual parameters into the appropriate call for each model and 
returns predictions in a standard format. 

m1 <- RxODE::RxODE(" 
Ka=0.8 
CL = 0.3 * (WT/70)^0.75 * exp(ECL) 
V = 3 * (WT/70) * exp(EV) 
Ke = CL / V 
d/dt(A0) = -Ka*A0 
d/dt(A1) = Ka*A0 -Ke*A1 
CONC = A1/V 
") 
prediction <- tdmore:::model_predict( 
  m1,  
  times=seq(0, 12),  
  regimen=tibble(TIME=0, AMT=30), 
  parameters=c(ECL=0.2, EV=0.1), 
  covariates=c(WT=60) 
) 

This is then passed to a tdmore() function and supplemented with the 
statistical model: inter-individual variability, inter-occasion variability (if 
applicable), and the residual error model. Alternatively, this information can 
be read directly from an nlmixr population model. Several error models are 
provided, and the user may optionally provide their own function to calculate 
log-likelihood. Metadata can also be added that aid in plotting, dose finding, 
or constructing the user interface. 

model <- m1 %>% 
  tdmore(omega=c(ECL=0.6, EV=0.4), 
         res_var=list(errorModel("CONC", prop=0.1))) %>% 
  metadata(formulation("HardCaps", unit="mg", dosing_interva
l=8,  
                default_value=10, round_function=round)) %>% 

 

58 Soetaert, Petzoldt, and Setzer, “Solving Differential Equations in r”. 

59 Fidler et al., “Nonlinear Mixed-Effects Model Development and Simulation 
Using Nlmixr and Related R Open-Source Packages”. 
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  metadata(formulation("ExtendedRelease", unit="mg", dosing_
interval=24,  
                default_value=50, round_function=round)) %>% 
  metadata(covariate("WT", "Weight", "kg", min=40, max=120)) 
%>% 
  metadata(output("CONC", "Concentration", "mg/L")) %>% 
  metadata(target(min=3.5, max=4)) 

This model can then be used for empirical bayesian estimation. To this effect, 
the marginal likelihood function was implemented in tdmore as pop_ll() 
and pred_ll(). As this function is called frequently, the Cholesky60 
decomposition of the omega matrix is used for increased computational 
speed. 

pop_ll <- function(par, model) { 
  pdf <- mvnfast::dmvn(X = par, mu = 0, sigma = model$omega, 
            log = TRUE, isChol = TRUE) 
  sum(pdf) 
} 
pred_ll <- function(par, model, observed, regimen, covariate
s) { 
  ipred <- stats::predict(model, newdata=observed, regimen, 
par, covariates) 
  ll <- 0 
  for(var in model$res_var) 
    ll <- ll + var$ll(ipred[[var$var]], observed[[var$var]]) 
  ll 
} 
ll <- function(...) { 
  pop_ll(...) + pred_ll(...) 
} 

The log likelihood function can be used to explore the log-likelihood profile in 
an interactive way through a shiny61 gadget. It is also used to find the 
maximum a posteriori estimate through the estimate() function. Note that 

 

60 Tanabe and Sagae, “An Exact Cholesky Decomposition and the Generalized 
Inverse of the Variance–Covariance Matrix of the Multinomial Distribution, 
with Applications”. 

61 The Shiny framework allows R developers to easily build user interfaces. 
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a model_prepare() call is used to allow the structural model to set up 
caching, transform datastructures and perform all other work that can be 
done in advance. Subsequent calls to ll() (and thus model_predict()) will 
only entail modified eta estimates, and should be calculated as efficiently as 
possible. 

For estimation of individual parameters through numerical optimization of 
marginal likelihood, the optimr package offers several possible algorithms. 
This flexibility is important for models with irregularly shaped log-likelihood 
profiles, such as when estimating inter-individual variability on absorption 
lag time. It can also use different starting points to ensure local maxima are 
avoided. All of this functionality is made available in tdmore for added 
robustness. 

estimate <- function(model, observed, regimen, covariates, .
..) { 
  model_prepare(model, observed, regimen, covariates) 
  ofv <- function(par) { 
    -2 * ll(par, model, observed, regimen, covariates) 
  } 
  res <- optimr::optim(ofv, init=0, hessian=TRUE, ...) 
  varcov <- solve(res$hessian / 2) 
   
  tdmorefit(model, observed, regimen, covariates, res$par, v
arcov) 
} 

Once a tdmorefit object is obtained, this can then be used to make future 
individual predictions. The function samples uncertainty from the variance-
covariance matrix. As the hessian is not always positive semidefinite, 
markov-chain monte carlo sampling62 on the marginal log likelihood is 
available as an alternative. A convenient plot() function is available, 
showing population prediction and individual prediction, as well as 
debugging functions to show the log-likelihood profile. 

observed <- data.frame(TIME=c(7, 9), CONC=c(3.4, 14.1) ) 
regimen <- data.frame(TIME=c(0,8,16), AMT=15) 
covariates <- c(WT=65) 
fit <- tdmore:::estimate(model, observed, regimen, covariate

 

62 Martin, Quinn, and Park, “MCMCpack”. 
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s) 
plot(fit, newdata=seq(0, 24, by=0.1)) 

 

Figure 13: Concentration-time curve of typical value prediction (blue line) and 
EBE fit (red line and 90% confidence interval area) on observed points (grey 

points). 
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Figure 14: Contour plot of log-likelihood for combinations of 𝜂𝜂𝑉𝑉 and 𝜂𝜂𝐶𝐶𝐶𝐶. The 
plot visualizes uncertainty and correlation between the individual estimates. 

Finally, a findDose() function is used to optimize the dosing regimen. This 
uses a root finding function to identify what dose should be used on a given 
row of the treatment regimen to hit a pre-defined target perfectly, meaning 
𝑑𝑑𝑣𝑣𝑣𝑣𝑙𝑙𝐾𝐾𝑑𝑑 − 𝑝𝑝𝑣𝑣𝐾𝐾𝑑𝑑𝑝𝑝𝑝𝑝𝑑𝑑𝑝𝑝𝑙𝑙𝑛𝑛 = 0. The findDoses() function extends on this to 
optimize multiple doses piece by piece, selecting the appropriate target per 
administration. Trough times can be detected automatically based on time of 
treatment + dosing interval, substituting this for actual planned treatments if 
appropriate. This finally results in a plot of individual dosing 
recommendation, showing population prediction (blue), individual fit with 
current regimen (red) and individual fit with recommended regimen (green). 
Measures used for fitting are represented as points, and the target 
concentration is represented as a target reticle. 

findDose <- function(fit, doseRows, interval=c(0,9999), targ
et) { 
  rootFunction <- function(AMT) { 
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    newRegimen <- fit$regimen 
    newRegimen$AMT[doseRows] <- AMT 
    pred <- predict(fit, newdata=target, regimen=newRegimen) 
    pred - target 
  } 
  runUniroot(rootFunction, interval) 
} 

recommendation <- findDose(fit, doseRows=3, target=data.fram
e(TIME=24, CONC=8)) 
print(recommendation) 

## Recommendation:  
## A dose of ` 49.28681 ` will hit the requested target of 
##  TIME CONC 
##    24    8 

plot(fit) + autolayer(recommendation) + coord_cartesian(xlim
=c(0, 25)) 
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Figure 15: Concentration-time curve of typical value prediction (blue line), 
EBE fit (red line and 90% confidence interval area) on observed points (grey 

points), and prediction for recommended dose (green line and 90% confidence 
interval, dosing target as grey target reticule). 

5.4. Methods: a priori simulation 

5.4.1. Simulation dataset 

To predict MIPD performance, tdmore is designed around a step-wise 
evaluation of model and dose adaptation rules. First, a simulation dataset 
needs to be created. Ideally, a retrospective dataset representing Standard of 
Care is used. Based on a general patient assessment, physicians may 
sometimes adapt doses, and this in cerebro dose adaptation is difficult to 
replicate in silico. Lacking such a dataset, we may still simulate through 
monte carlo sampling from an a priori distribution. To do this, the 
as.population() function is used to provide a tdmore fit without any 
observations, yielding the typical values as estimate and a priori inter-
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individual variability as parameter uncertainty. We can predict from this fit, 
yielding a population simulation. We sample with uncertainty 
(se.fit=TRUE), keeping all samples rather than summarizing (level=NA). 
Afterwards, the model.frame() function is used to add sampled residual 
error. 

N <- 64 #for performance reasons 
regimen <- data.frame(TIME=0, AMT=15, II=8, ADDL=8) 
covariates <- c(WT=70) 
pop <- as.population(model, regimen=regimen, covariates=cova
riates) 
simulated <- predict(pop, newdata=c(7,10,15,48), se.fit=TRUE
, mc.maxpts=N, level=NA)  
simulatedRe <- simulated %>% 
  tdmore:::model.frame.tdmore(model, ., se=TRUE, level=NA) 
trueParameters <- simulatedRe %>% rename(ID=sample) %>% grou
p_by(ID) %>%  
  summarize( 
    fit = list(tdmore:::tdmorefit(model, 
        regimen=regimen, 
        covariates=covariates, 
        res=c(ECL=ECL[1],EV=EV[1]))) 
  ) 
observed <-  simulatedRe %>% 
  filter(TIME %in% c(7,10,15)) %>% 
  transmute(ID=sample, TIME, CONC) 
db <- dataTibble(object=model, regimen=regimen,  
                 observed=observed, covariates=covariates) 

In this example, we use the previously defined model to simulate a dosing 
regimen of 15mg every 8h, with observations at 7h, 10h, 15h and 48h after 
the first dose. 

5.4.2. Posthoc 

As a first evaluation step, a fit on all available data is performed. This is 
known as a posthoc fit. This exercise is performed as part of standard 
population modeling. We will therefore not discuss it further here. 

posthocfit <- posthoc(db) 
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5.4.3. Prospective evaluation 

To evaluate predictive performance, a prospective evaluation is performed 
(see 4.1 for more details). The resulting graph shows the prediction using 0 
(solid line, typical value prediction), 1 (dotted line), 2 (striped line) and 3 
observations. 

prosevalfit <- proseval(db) 

 

Figure 16: Predicted concentration-time curves for an EBE fit (line shapes, 
cf. figure legend) using 0, 1, 2 or 3 observations (points) for 4 virtual patients 

(seperate panels). 

As described previously, prospective evaluation results can directly translate 
into MIPD accuracy, and are therefore highly relevant. In this case, we can 
simulate how accuracy to predict steady-state trough (represented by the 
observation at 48h post-start) may improve with more observations. 
Predictive performance to predict concentration at 48h post treatment 
initiation is shown in the figure below, as box-plots of relative prediction 
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error versus number of observations. Boxplots show median (line), inter-
quartile range (box), 1.5 times inter-quartile range (whiskers, roughly 
corresponding to 95% prediction interval) and outliers beyond whiskers. 
Only sampling at 7h, 10h and 15h post-initiation is predicted to reduce the 
95% PI to acceptable ranges. 

 

Figure 17: Relative prediction error of concentration at 48h (boxplots) for 64 
simulated patients when using 0, 1, 2 or 3 observations in the EBE fit. A low 

prediction error leads to more accurate dosing recommendations. 

5.4.4. Dose simulation 

Finally, we can predict how MIPD may adapt dosing (see 4.5 for more 
details). The doseSimulation() routine takes care of the three defined 
steps in iteration: simulate, estimate and optimize. To simulate the next 
measured concentration under a modified treatment regimen, we use the 
individual parameters originally sampled. If a retrospective dataset is used, 
we may use the most likely parameters as calculated by the posthoc fit. 
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Residual error is added, either sampled (in case of a virtual population) or 
reused from the posthoc fit (in case of a retrospective dataset). To estimate, 
the standard routines from tdmore are used. To optimize, a custom function 
is provided. 

In this example, we investigate two dose adaptation methods. Both methods 
simply measure at two different timepoints, and optimize the treatment 
regimen to target a trough between 3.5 and 4 mg/L. Method A measures at 
7h and 10h after the first dose, method B measures 7h and 15h after the first 
dose. We evaluate target attainment at 48h after start of treatment. 

regimen <- data.frame(TIME=seq(0, 47, by=8), AMT=15, FORM="H
ardCaps") 
simulationDb <- trueParameters %>% 
  filter(ID <= 32) %>% #for performance 
  select(ID, fit) %>% 
  mutate(regimen=list(regimen), 
         covariates=list(covariates), 
         object=list(model)) 
 
 
measureAtSpecificTimes <- function(fit, regimen, truth) { 
  now <- max(c(0,fit$observed$TIME)) 
  regimen$FIX <- !(regimen$TIME > now) 
  rec <- findDoses(fit, regimen=regimen) 
  i <- which( measureTimes > now)[1] 
  nextTime <- measureTimes[i] 
  list(nextTime=nextTime, regimen=rec$regimen) 
} 
 
measureTimes <- c(7,10) 
result1 <- simulationDb %>% 
  doseSimulation(optimize=measureAtSpecificTimes) %>%  
  mutate(method="A. At 7h and 10h") 
measureTimes <- c(7,15) 
result2 <- simulationDb %>% 
  doseSimulation(optimize=measureAtSpecificTimes) %>%  
  mutate(method="B. At 7h and 15h") 
result <- bind_rows(result1, result2) 
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Figure 18: Predicted steady-state trough concentration after dose adaptation 
for sampling strategy A (x axis) and sampling strategy B (y axis) for 32 

simulated patients. Patients close to the identity line (grey) have similar benefit 
in both sampling strategies. Patients in green box (but not purple) benefit more 

from strategy B, patients in purple box (but not green) benefit more from 
strategy A. 

A graphical comparison of predicted steady-state trough samples is shown in 
the figure above, comparing dose adaptation method A (x axis) to B (y axis) 
in the same patient, represented as individual points. The target range of 3.5 
to 4 mg/L is shown as green and purple rectangles. Many patients are close 
to the identity line; methods A and B show similar results in these patients. 
However, method B severely under- and overdoses some patients, while 
method A puts these patients in target. Therefore, method A can be regarded 
as superior. 
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5.5. User interface 

 

Figure 19: Shinytdmore standard interface showing (on the left) input tables 
for doses, measures, covariates, current time and target, and (on the right) 

typical value plot and dosing history. 

The shinytdmore R package was designed as self-contained user interface 
(UI) elements, a data model, and a reference Shiny application. The data 
model contains the treatment regimen, patient covariates, observed values, 
current time and target information. Time is represented as absolute 
calendar times (datetime), rather than numeric time since first dose. 

All user interface elements are implemented as Shiny modules. The 
handsontable for editable tables was amended with editable datetime 
columns. A horizontal border was added as a visual element to distinguish 
past events from future events. This was further refined into a dosing 
regimen table, observations table, and covariates table. These tables are 
automatically generated based on the model metadata. 
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These elements were then assembled into larger functional blocks. The main 
predictionTab contains several collapsible tables on the left side for data 
input: dosing regimen, covariates, measures, and target. On the right, three 
views are available: population prediction, individual prediction, and dose 
recommendation. The population prediction plot allows a physician to 
visually inspect the dosing regimen and measured concentrations. Any typing 
errors, e.g. 150mg instead of 15mg, should be immediately apparent. The 
second view allows to see the individual fit. The third view shows the 
recommended dosing regimen and predicted concentrations. 

This is complemented by the reportTab, allowing the user to download a 
report of all input data, model, and resulting dosing recommendation. The 
aboutTab displays all relevant version information, and the modelTab 
allows the physician to try alternate models. 

For plots, the plotly interactive library is used. This allows to update 
plotted curves through animations, improving user experience. Plots also 
feature tooltips, zooming, panning and dynamic axis labels. 

In a standard shiny application, any change in input values result in a 
recalculation of all output values, which blocks the user interface. Ideally, this 
recalculation is delayed until the user is done editing. This so-called 
debouncing63 was implemented for all costly calculations, such as the 
estimation of an individual fit or dosing recommendation. Furthermore, 
additional logic was added to reduce calculation further: changing future 
doses does not require recalculation of the individual parameters. 

For maintainability, custom javascript was kept to a minimum. This ensures 
the application can be kept up-to-date with new versions of shiny, 
handsontable or plotly with minimal effort. Package users or maintainers 
only require knowledge of R and Shiny, not of HTML or Javascript. 

5.6. Stable and robust software 
First, software should be maintainable. tdmore has been designed as 
modular software adhering to current software design patterns. Each 
function has a single responsibility. The software is well-documented: out of 
5289 lines of code, only 2269 (43%) are effective code. 1430 lines (27%) are 

 

63 https://shiny.rstudio.com/reference/shiny/1.0.4/debounce.html 

https://shiny.rstudio.com/reference/shiny/1.0.4/debounce.html
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documentation, with the remainder being structural lines (whitespace or 
delimiters). 

Documentation is further extended through the use of vignettes: examples of 
how to use the software. All code in a vignette is executed and results are 
included automatically in the documentation, either as plots or as 
screenshots of the user interface. This documentation is then made available 
on a public website64. 

In medical device software, stability is essential. At minimum, software 
should perform as intended. Automated testing was used to ensure this: a set 
of calculations is performed automatically and compared to a previously 
validated reference set. For 2269 effective lines of source code in tdmore, 
2550 lines of tests were written, totaling 303 tests. These tests cover 85.46% 
of all code. Numerical imprecision of structural equation solving or numerical 
optimization was taken into account to reduce the number of false positives. 
Plotting functionality was also tested using the vdiffr package, which 
standardizes plot generation independent of the operating system, available 
fonts or screen size. This allows comparison of plots generated on a Linux 
server with the reference set generated on a Windows(TM) desktop machine. 
Interactive interfaces such as shinytdmore elements were tested using the 
automated web browser phantomjs. The application behavior and output 
was tested automatically by verifying either full HTML output, or specific 
interface elements. Formal computer systems validation (CSV), as described 
by US FDA, comprises installation qualification (IQ), operational qualification 
(OQ) and performance qualification (PQ). For the latter, execution time of 
tdmore calculations is compared to the execution time of a reference 
benchmark (execution of Escoufier’s method on a 60x60 matrix), with a pre-
defined allowed ratio. 

This automated testing suite is executed automatically at every change in the 
source code, by a continuous integration server, using all latest versions of 
packages. Therefore, issues caused by an incompatibility between a new R 
version and tdmore are also detected automatically. In case of failure, the 
developers are notified through e-mail. As the tdmore framework may also 
be used in medical device software, a stable version of the software is also 
maintained. In this software version, a fixed version of dependent packages 

 

64 https://tdmore-dev.github.io/tdmore/dev/ 

https://tdmore-dev.github.io/tdmore/dev/
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and R base system is used through the renv system. This stable version is 
also tested automatically at every source code change. 

For easy deployment, a Docker65 image is also created automatically, tested, 
and published on a cloud repository. This allows fast, automated deployment 
of any tdmore-based application on cloud servers. 

 

65 Docker is a software platform that simplifies the process of building, 
running, managing and distributing applications. It does this by virtualizing 
the operating system of the computer on which it is installed and running. – 
Docker documentation 
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5.7. Tacrolimus application 

5.7.1. Connection to EHR 

 

Figure 20: The timeline shows all data imported from the EHR in a compact 
overview 

To allow import of clinical data, a web Application Programmers Interface 
(API) was built using the plumber package. This allows the electronic health 
record (EHR) system to directly send data to the precision dosing application. 
The application parses this data and transforms it to a dataset fit for 
estimation and dose adaptation. This data consists of patient information 
(year of birth, sex), transplant information (transplant type, transplant date), 
current request (time and id), all known patient bodyweights, blood values 
(hematocrit and tacrolimus levels), and planned, validated and executed 
doses. The input is transformed into pharmacometric data compatible with 
tdmore, precision dosing is performed, and resulting dose recommendations 
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are returned to the EHR system. All input and output is stored in a database 
to allow future consultation by physicians through the web application. 

In computer science, the “garbage in garbage out” principle states that flawed 
input data produces nonsense output. To distinguish between computation 
errors and data input errors in the case of erroneous dosing advice, a 
graphical visualization was made for all input data. This complemented the 
existing shinytdmore elements that allow introspection into the dosing 
advice. 

5.7.2. Clinical workflow 

To minimize this projects impact on the hospital, we aimed to fit within the 
current clinical workflow. For de novo kidney transplant recipients, blood is 
sampled in the morning before first administration, after which the first dose 
of tacrolimus is administered. The tacrolimus concentration in the blood 
sample is determined at the central lab. These results are made available in 
the EHR around noon. During rounds in the afternoon, the dose for each 
patient is adapted according to tacrolimus whole blood levels and (possibly) 
other factors. 
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Figure 21: Screenshot of EHR interface with post-it showing ‘Berekende 
suggestie: 3mg’. A hyperlink to the MIPD web application is displayed, allowing 

doctors to request more detailed information. 

To integrate MIPD into this workflow, we decided to present dosing advice as 
a “post-it” in the EHR system. This existing functionality required no 
adaptation to the EHR user interface. Only the EHR backend was adapted to 
allow the creation of post-its by the MIPD system. 

A smooth automation was a fiendishly difficult task to achieve. The process is 
shown below in pseudo-code. Either a dosing advice (possibly with 
warnings) is returned to the EHR, or an error explaining why dosing advice 
cannot be provided. As a side-effect, e-mails are sent to the clinical team 
informing them of any issues. To limit the risk of notification overload, only 
relevant errors result in an email, e.g. a patient in the control arm will not 
generate any dosing advice, but this does not concern the clinical team. 

In = receive() 
json_validate(In) 
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if(In.study != "1234"): stop("Not in study") 
storeInDatabase(In) 
 
if(In.arm == "Control"): stop("Control arm") 
if(In.arm not "Control" or "Intervention"): stop("Invalid ar
m") 
Events = toEventList(In) 
if(Events.trigger != "tacSample") stop("Not TAC trigger") 
fixEvents(Events) 
checkEvents(Events) 
 
tdmoreIn = transformToTdmore(Events) 
fit = estimate(tdmoreIn) 
recommendation = findDoses(fit) 
 
adaptInput(In, recommendation) 
 
finally: 
  if any error or warning is relevant: 
    emailClinicalTeam() 

The input is first validated using a JSON Validation schema66. We verify the 
patient is enrolled in the study, as no data may be stored from patients 
without informed consent. The study arm is verified, as this is a free-text 
field; using the wrong word (only “intervention” or “control” are allowed) 
results in an email to the clinical team. If the patient is in the intervention 
arm, the data input is transformed to a list of events (Time, EventInfo). 
To limit the number of updates, dosing advice is only provided upon 
receiving a tacrolimus blood sample value, not when e.g. a new bodyweight is 
measured. This list is then further adapted based on the following business 
rules: 

• Blood samples are registered in the EHR at their intended collection time 
(08:00 AM), not their actual collection time. In reality, blood is always 
sampled before administration of tacrolimus. If the EHR states tacrolimus 
was administered at e.g. 07:30, the blood sample collection time is then 
also adapted to 07:20 (10 minutes before administration). 

 

66 https://json-schema.org/ 

https://json-schema.org/
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• Any blood sample times in the future are moved to the current time. 

• Drug administrations other than tacrolimus are discarded. 

• A previous prescription of “0mg” is considered administered, even if no 
administration was recorded. 

• Any duplicate lab values or administrations are discarded 

• The MIPD tool assumes prescriptions for the following day can be 
adapted. Prescriptions in the next 3 hours are left untouched. 
Prescriptions validated after the last lab measurement are left 
untouched; they are assumed “overridden” by the physician. 

This list of events is then checked for any errors or inconsistencies. This step 
may result in a critical error -no dose advice is given- when giving automated 
dosing advice, but is de-escalated to a regular warning when performing 
dosing advice via the interactive web application. 

• The transplant date should be known, and less than 14 days ago. 

• There are no measurements/transplants/drug administrations in the 
future 

• All past prescriptions were administered. 

• Administrations without a corresponding prescription result in a 
warning. 

• All tacrolimus administrations and prescriptions are the hard caps 
prograft or advagraf formulation. No IV or oral suspension is allowed. 

• All lab values (hematocrit, tacrolimus whole blood level) have the right 
units. 

• If tacrolimus was measured, a tacrolimus administration should precede 
it. 

• Past prescriptions are compared to past dose recommendations. Any 
dose recommendation not followed results in a warning for the clinical 
team. 
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The above list was carefully crafted during 6 months of dry run. During that 
period, the software received information from the EHR and returned dosing 
advice. The dosing advice was never recorded in the EHR and never shown to 
physicians, but was analyzed by the study team for any inconsistencies. 
Thanks to this dry run period, most data errors could be detected, debugged 
and mitigated. 

Now that the input data is correct, it is transformed to tdmore format. An 
individual fit is estimated, and this is used to adapt the treatment regimen. 
Finally, this recommendation is transformed back to the EHR format and 
returned as a result. It is amended with a unique hyperlink allowing access to 
the interactive web application. As a final step, any warnings or errors are 
sent to the clinical team via e-mail. 

On average, about 50 requests were sent by the EHR to the MIPD application. 
Each request is stored in the database. A specific website was created that 
displays an overview of all requests to the clinical team. Personal information 
(transplant date, patient year of birth, patient sex) is shown to allow easy 
tracking of a specific patient across all requests. 

An additional advantage of close integration with the EHR is in user 
authentication and authorization. The API endpoint can be restricted with a 
single pre-shared key included in the request header, and access to the 
management interface is only required for the study team. Access to the web 
application by physicians is instead managed by the EHR. The EHR manages 
user authentication, and whether a user is authorized to see the file of a 
specific patient. As long as the user can access the “More info” hyperlink in 
the EHR interface, the user is authorized to access the MIPD application for 
that patient. 

5.7.3. Continuous deployment in the cloud 

The tacrolimus application was deployed to the Google Cloud Platform. To 
support this, a webhook to a private git repository was set up. This triggers a 
Docker build each time the source code is modified, or when the supporting 
framework (shinytdmore, tdmore) is modified. The build process 
automatically runs smoke tests and updates a Kubernetes cluster definition 
to migrate to the new image. Upgrades result in 0 downtime, as the new 
version is started alongside the old version. Requests are routed to the new 
version, and the old version is stopped when all currently calculating dose 
recommendations have finished. To the best of our knowledge, this is the first 
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time continuous deployment has been documented for software where 
medical device regulations apply. 

5.8. Legal challenges 

5.8.1. Open-sourcing 

Originally, the project aimed to publish an open-source framework, enabling 
other researchers to easily evaluate MIPD and build precision dosing 
software. As an added requirement, licensing of any precision dosing 
software built upon tdmore should remain flexible, and even allow for 
commercial distribution. 

The intellectual property of tdmore is fully owned by the University of 
Leuven. This allows the university to distribute the software under any 
license it deems fit. The code for simulation was distributed under the Afero 
GPLv3 license, a copy-left license. Any developer distributing software 
including tdmore is therefore obliged to allow users to download the source 
code as well, even if it only allows access to a web application built using 
tdmore. This answers a growing concern about closed-source medical 
devices, allowing public review and accountability of software with a 
potential far-reaching (deadly) impact. As the sole owner, the university also 
has the option to dual-license the software to potential commercially 
interested parties in a more permissive license. 

A subset of the code was published on Github. Any user can fork the code and 
adapt their own version. To merge these improvements back into the official 
tdmore version, developers are required to transfer copyright of these 
improvements to the University of Leuven. This allows incorporation of these 
changes into any future closed-source dual-licensed versions. 

To ensure the software can indeed be dual-licensed, a review of all 
dependent packages and their license terms was performed. All packages 
with MIT or BSD-style licenses can be included without restriction, as long as 
appropriate credit is given. For the plotly package, an older version was 
used whose license still allowed commercial use. However, many other 
dependent packages use the GNU Public License v2/v3, including base R 
itself. In principle, all code that links to GPL-covered software should also be 
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published under a GPL-compatible license (i.e. as open-source). However, 
this is the subject of much debate.67 

Whether or not they classify as one or two programs, or wether or not your 
package is a modified work of the dependencies is very much subject to 
interpretation and of the level of interactions between the packages. - Colin Fay, 
2019 

While the R Core Team is of the opinion that merely using R packages does 
not constitute “one program”, and have publicly stated68 they will not legally 
pursue any closed-sourced aggregate work, this is not a definitive stop to 
legal liability. RStudio has undertaken efforts to move many of their packages 
to MIT licenses instead, enabling commercial use without legal risk. In 
practice, tdmore heavily depends only on packages by RStudio, and only 
sporadically on other packages. No dependent packages are used that 
prohibit commercial use. 

5.8.2. Patents 

The distribution of tdmore under the Afero GPLv3 also requires shielding 
users from credible software patent threats. The methods used in tdmore 
may be construed to infringe upon the patent “System and method for 
providing patient-specific dosing as a function of mathematical models 
updated to account for an observed patient response”, granted to Diane R 
Mould and Bayesient LLC by the US Patent Office in 2014. However, the 
validity of this patent is questionable. The US patent office grants claims 
without a reasonable search for prior art, and relies on competitors to 
challenge patents. In contrast, the European Patent Office performs a diligent 
search for prior art before granting a patent. The relevant patent application 
#EP290438869 was submitted in April ’14, and was denied in April ’15 as the 
claims lacked novelty. The claims were amended one week later. In May 

 

67 See https://thinkr-open.github.io/licensing-r/rlicense.html (consulted 19-
NOV-21) for more details. 

68 https://cran.r-project.org/doc/FAQ/R-FAQ.html#Can-I-use-R-for-
commercial-purposes_003f, consulted 19-NOV-21 

69 
https://register.epo.org/application?number=EP13843939&lng=en&tab=do
clist, consulted 19-NOV-2021 

https://thinkr-open.github.io/licensing-r/rlicense.html
https://cran.r-project.org/doc/FAQ/R-FAQ.html#Can-I-use-R-for-commercial-purposes_003f
https://cran.r-project.org/doc/FAQ/R-FAQ.html#Can-I-use-R-for-commercial-purposes_003f
https://register.epo.org/application?number=EP13843939&lng=en&tab=doclist
https://register.epo.org/application?number=EP13843939&lng=en&tab=doclist
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2016, European search opinion reconfirmed the lack of novelty. Over the 
course of 5 years since, the patent claim was amended an additional 5 times 
(December ’16, October ’17, September ’19, November ’19, and August ’20). It 
appears the applicant aims to keep the claim open as long as possible, with 
no substantial progress to addressing the lack of novelty. We concluded that 
this patent is not a credible threat, and therefore a (user-transferable) patent 
license is not required to distribute the software. 

5.8.3. Medical device legislation 

tdmore is a framework for building precision dosing software. By providing 
individual predictions, this software is considered a Software Medical Device 
under both FDA and EMA guidances. For distribution in Europe, a medical 
device or medical device parts should have a CE approval. The requirements 
for CE validation are fundamentally incompatible with non-profit free-of-
charge distribution. Among others, a liability structure, software helpdesk 
and safety follow-up is required. This requires continuous funding. 

Could we simply distribute the software as-is, without warranty of any kind? 
In the US, this is indeed possible. However, Belgian and European law 
stipulate that a distributor cannot fully disclaim liability. The GPL clause 
disclaims all liability “to the extent permitted by law”, and the EU specifically 
created the EU Public License to make this liability more precise: 

Article 8 - Disclaimer of liability: Except in the cases of willful misconduct or 
damages directly caused to natural persons, the Licensor will in no event be 
liable […] - EUPL v1.1 

Purposefully distributing a medical device without CE approval may indeed 
be regarded as willful misconduct, and liability directly caused to natural 
persons cannot be excluded. In the United States, software can be distributed 
without warranty of any kind. Consider the Open Artificial Pancreas System, 
an open-source software that measures blood sugar levels and drives an 
insulin pump. As users implement this system at their own risk, 
developers/distributors of the code have little to fear. There is much 
resistance to these systems however, with 91% of health care providers not 



CHAPTER 5  

84 

supporting the use of Do It Yourself systems for the administration of insulin 
in Type 1 diabetes.70 

Their (FDA) responsibility is to regulate products on the commercial market and 
help safeguard the public. OpenAPS is NOT a commercial product and is not sold 
or distributed in anyway. Individuals who build an OpenAPS are essentially doing 
an (n=1) experiment, which they have a right to do to/by themselves. That is not 
a regulated activity by the FDA. – OpenAPS.org public website 

The lack of possibility to distribute software as-is in Europe is an 
insurmountable hurdle. When distributing open-source software, the 
European distributor is exposed to legal liability when this software is used 
for precision dosing by individuals. To accomplish our goals maximally 
within the confines of the current regulations, all functionality for individual 
fitting, prediction, or dose recommendation was made inaccessible. All 
documentation discussing this functionality was also removed. The software 
can only be used to perform research on MIPD performance, be it through 
retrospective datasets or fully virtual populations. Extensive documentation 
describing how to perform individual prediction and dose recommendation 
was permanently deleted from the source code repository. Of course, the 
code for individual predictions remains an integral and required part of the 
software, but accessing it is a conscious decision on part of the user. Both 
shinytdmore and the tacrolimus reference software tool could not be 
made available publicly. 

5.8.4. General Data Protection Regulation (GDPR) 

The implemented tacrolimus software as used in the clinical study was 
considered a medical device under evaluation, and therefore did not require 
a CE label. However, GDPR and data privacy regulations still applied to this 
clinical study. Usually, this is resolved by anonymizing all personally 
identifiable information. Patient data cannot be anonymized in this 
application though; the transplant date is a required covariate for the popPK 
model, as shown by in silico studies. Fortunately, the application could be 
hosted in the hospital IT infrastructure on Google Cloud Platform. The data 
never left the auspices of the hospital, thereby resolving the problem from a 
GDPR standpoint. Worryingly, this issue is generally ignored by commercial 

 

70 Kesavadev et al., “The Do-It-Yourself Artificial Pancreas”; Dickson et al., 
“#WeAreNotWaiting DIY Artificial Pancreas Systems and Challenges for the 
Law”. 
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vendors of MIPD software, who ask physicians to input patient data on 
remote servers. 

5.9. Conclusion 
tdmore is a software package that supports research, development and 
implementation of MIPD. It is a flexible tool for research, yet is also robust 
and well-tested to the quality required for medical device software. We have 
demonstrated a smooth transition from research to implementation for 
tacrolimus dosing in de novo kidney transplant recipients. Although the 
software is not fully available due to legal challenges, we hope this cost-
effective roadmap can be applied to other compounds in the future. 
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Chapter 6 Predicting infliximab 
MIPD for ulcerative colitis patients 

This chapter is based on: 

• Erwin Dreesen, Ruben Faelens, Gert Van Assche, Marc Ferrante, Séverine 
Vermeire, Ann Gils, and Thomas Bouillon. Optimising infliximab 
induction dosing for patients with ulcerative colitis. (2019) British 
journal of clinical pharmacology 

• Faelens, Ruben, Ruben Faelens, Thomas Bouillon, Erwin Dreesen, Gert 
Van Assche, Marc Ferrante, Severine Vermeire, Ann Gils (2018), “Benefits 
of TDM in clinical management: a test case in infliximab for ulcerative 
colitis.” presented at PAGE 2018 conference as a scientific poster 

• Faelens Ruben, Zhigang Wang, Thomas Bouillon, Paul Declerck, Marc 
Ferrante, Séverine Vermeire, and Erwin Dreesen (2021). Model-informed 
precision dosing during infliximab induction therapy reduces variability 
in exposure and endoscopic improvement between patients. 
Pharmaceutics, special issue “Model-Informed Precision Dosing”., October 
2021. 

It plays an important part in the overarching thesis for three reasons. First, 
this is a population simulation. It shows how a virtual population can be used 
to compare outcomes for dosing strategies. Second, the model used is a 
PK/PD model. While model-informed precision dosing largely focuses on 
probability of PK target attainment, a PK/PD model allows us to directly 
evaluate relevant clinical outcomes instead. Finally, this study is important 
because it is a negative result. Through simulation, we showed the candidate 
dosing strategy would not improve clinical outcomes, thereby avoiding an 
expensive clinical study. 
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6.1. Abstract 
Model-informed precision dosing (MIPD) may be a solution to therapeutic 
failure of infliximab for patients with ulcerative colitis (UC), as 
underexposure could be avoided, and probability of endoscopic 
improvement (pEI; Mayo endoscopic subscore ≤ 1) could be optimized. To 
investigate in silico whether this claim has merit, four induction dosing 
regimens were simulated: 5 mg/kg (label dosing), 10 mg/kg, covariate-based 
MIPD (fat-free mass, corticosteroid use, and presence of extensive colitis at 
baseline) and concentration-based MIPD (based on the trough concentration 
at day 14). Covariate- and concentration-based MIPD were chosen to target 
the same median area under the infliximab concentration-time curve up to 
endoscopy at day 84 (𝑑𝑑𝐶𝐶𝐸𝐸𝑑𝑑84) as was predicted from 10 mg/kg dosing. 
Dosing at 5 mg/kg resulted in a mean±standard deviation pEI of 61.2% ±
55.7%. Increasing the dose to 10 mg/kg was predicted to improve pEI to 
68.6% ± 65.1%. Covariate-based MIPD reduced variability in exposure and 
pEI (68.7% ± 65.1%). Concentration-based MIPD decreased variability 
further (69.3% ± 66%) but did so at an increased average dose of 2298mg 
per patient, as compared to 2181mg for 10 mg/kg dosing. Mean pEI 
remained unchanged between 10 mg/kg dosing and MIPD since the same 
median 𝑑𝑑𝐶𝐶𝐸𝐸𝑑𝑑84 was targeted. In conclusion, quantitative simulations predict 
MIPD will reduce variability in exposure and pEI between patients with UC 
during infliximab induction therapy. 

6.2. Introduction 
Infliximab is a monoclonal antibody that binds and neutralizes the functional 
activity of tumor necrosis factor-alpha (TNFα). Based on the results of the 
landmark Active Ulcerative Colitis Trials (ACT) 1 and 2, infliximab was 
approved for inducing and maintaining remission in patients with moderate-
to-severe ulcerative colitis (UC).71 In these studies, endoscopic improvement 
(defined as Mayo endoscopic subscore ≤ 1) was achieved in about 60% of 
patients after administration of three infliximab infusions (5 mg/kg body 
weight, at weeks 0, 2, and 6; endoscopy at week 8). In post-marketing 
studies, endoscopic improvement rates were lower (e.g. 47% in Brandse et 

 

71 Rutgeerts et al., “Infliximab for Induction and Maintenance Therapy for 
Ulcerative Colitis”. 
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al.72), making unpredictable outcomes of infliximab induction therapy a 
challenge73. 

Dose finding in ACT 1 and 2 failed to show consistent benefit of 10 mg/kg 
dosing over 5 mg/kg dosing.74 However, higher infliximab serum 
concentrations during induction therapy were found to correlate with short-
term endoscopic improvement, as well as long-term relapse-free, and 
colectomy-free survival.75 To date, the infliximab exposure-response 
relationship in patients with UC has been well-established.76 Consequently, it 
has been hypothesized that targeting infliximab to a predefined “optimal” 
exposure has the potential to improve the response rate and identify primary 
non-responders (defined as non-response despite optimal infliximab 

 

72 Brandse et al., “Pharmacokinetic Features and Presence of Antidrug 
Antibodies Associate With Response to Infliximab Induction Therapy in 
Patients With Moderate to Severe Ulcerative Colitis”. 

73 Brandse et al.; Balzola et al., “Trough serum infliximab: A predictive factor 
of clinical outcome for infliximab treatment in acute ulcerative colitis: 
Commentary”; Papamichael et al., “Infliximab Concentration Thresholds 
During Induction Therapy Are Associated With Short-term Mucosal Healing 
in Patients With Ulcerative Colitis”; Farkas et al., “Efficacy of infliximab 
biosimilar CT-P13 induction therapy on mucosal healing in ulcerative colitis”. 

74 Rutgeerts et al., “Infliximab for Induction and Maintenance Therapy for 
Ulcerative Colitis”. 

75 Adedokun et al., “Association Between Serum Concentration of Infliximab 
and Efficacy in Adult Patients With Ulcerative Colitis”. 

76 Papamichael et al., “Infliximab Concentration Thresholds During Induction 
Therapy Are Associated With Short-term Mucosal Healing in Patients With 
Ulcerative Colitis”; Arias et al., “A Panel to Predict Long-Term Outcome of 
Infliximab Therapy for Patients With Ulcerative Colitis”; Kobayashi et al., 
“First trough level of infliximab at week 2 predicts future outcomes of 
induction therapy in ulcerative colitis—results from a multicenter 
prospective randomized controlled trial and its post hoc analysis”; Vande 
Casteele et al., “Infliximab Exposure-Response Relationship and Thresholds 
Associated With Endoscopic Healing in Patients With Ulcerative Colitis”. 
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exposure)77. To date, most therapeutic drug monitoring (TDM) studies of 
infliximab focus on maintenance therapy, whereas induction therapy is 
relatively unexplored. Moreover, the utility of TDM of infliximab in patients 
with UC remains controversial because of poor evidence from prospective 
TDM studies.78 One potential reason for the weak evidence can be the use of 
inefficient TDM algorithms (analogous flowcharts and decision trees) in 
these TDM studies79. Therefore, model-informed precision dosing (MIPD), a 
more efficient and precise dose optimization strategy as compared to 
analogous TDM, has been suggested as a way out of the dilemma.80 

MIPD can be implemented through either a priori or a posteriori dose 
optimization, both utilizing a population pharmacokinetic (popPK) model 
that serves as a prior. A priori dose optimization is done by involving 
patient’s covariates/characteristics that explain between- and within-subject 
variability, while a posteriori dose optimization (Bayesian forecasting) is 

 

77 Brandse et al., “Pharmacokinetic Features and Presence of Antidrug 
Antibodies Associate With Response to Infliximab Induction Therapy in 
Patients With Moderate to Severe Ulcerative Colitis”; Vande Casteele et al., 
“American Gastroenterological Association Institute Technical Review on the 
Role of Therapeutic Drug Monitoring in the Management of Inflammatory 
Bowel Diseases”; Magro et al., “Third European Evidence-Based Consensus 
on Diagnosis and Management of Ulcerative Colitis. Part 1”. 

78 Vande Casteele et al., “Trough Concentrations of Infliximab Guide Dosing 
for Patients With Inflammatory Bowel Disease”; Vande Casteele et al., 
“American Gastroenterological Association Institute Technical Review on the 
Role of Therapeutic Drug Monitoring in the Management of Inflammatory 
Bowel Diseases”; Mitrev et al., “Review article: consensus statements on 
therapeutic drug monitoring of anti-tumour necrosis factor therapy in 
inflammatory bowel diseases”; Syversen et al., “Effect of Therapeutic Drug 
Monitoring Vs Standard Therapy During Infliximab Induction on Disease 
Remission in Patients With Chronic Immune-Mediated Inflammatory 
Diseases”. 

79 Wang and Dreesen, “Therapeutic Drug Monitoring of Anti-Tumor Necrosis 
Factor Agents”. 

80 Keizer et al., “Model-Informed Precision Dosing at the Bedside”; Wang and 
Dreesen, “Therapeutic Drug Monitoring of Anti-Tumor Necrosis Factor 
Agents”. 
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based on previous infliximab serum concentration measurements.81 Through 
these two approaches, the MIPD software tool can recommend a dose that 
facilitates attainment of the therapeutic target exposure. Patient covariates 
such as C-reactive protein (CRP), serum albumin, antibodies to infliximab 
(ATI), body weight or fat-free mass, and fecal calprotectin have previously 
been identified in popPK modeling studies.82 

In a previous popPK and exposure-response modeling analysis, we identified 
the relation between the cumulative area under the infliximab concentration-
time curve up to endoscopy at day 84 (𝑑𝑑𝐶𝐶𝐸𝐸𝑑𝑑84) and the probability of 
endoscopic improvement at day 84.83 Based on these results, we suggested 
that increased exposures would result in better clinical outcomes. We further 
suggested that any increased drug consumption may be offset through the 
use of MIPD. In the present work, we investigated these claims further by 
performing population simulations of these different dosing scenarios and 
comparing exposures, probability of endoscopic improvement, and average 
drug consumption. 

6.3. Materials and Methods 

6.3.1. Population Pharmacokinetic and Exposure-
Response Models 

A previously published one-compartment popPK model with interindividual 
and interoccasion variability was used to simulate infliximab exposure.84 
This model was built on a total of 583 samples from 204 patients with UC, 

 

81 Vermeire et al., “How, When, and for Whom Should We Perform 
Therapeutic Drug Monitoring?” 

82 Vande Casteele et al., “Infliximab Exposure-Response Relationship and 
Thresholds Associated With Endoscopic Healing in Patients With Ulcerative 
Colitis”; Dreesen et al., “Optimising Infliximab Induction Dosing for Patients 
with Ulcerative Colitis,” 2019. 

83 Dreesen et al., “Optimising Infliximab Induction Dosing for Patients with 
Ulcerative Colitis,” 2019. 

84 Dreesen et al., “Optimising infliximab induction dosing for patients with 
ulcerative colitis,” 2019. 
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and included C-reactive protein (CRP), serum albumin, and fat-free mass 
(FFM) as time-varying covariates, and Mayo endoscopic subscore, presence 
of extensive colitis, and corticosteroid use as baseline covariates. 

Even though dose proportionality applies, when administering a higher dose 
of infliximab (cf. 6.3.3 Dosing Scenarios), a more positive disease evolution is 
expected, thereby influencing the time-course of CRP and serum albumin, 
both acute phase proteins, and possibly fat-free mass as well. Since the 
original dataset used for popPK model building did not include patients on 
higher infliximab doses (cf. 6.3.2 Virtual Population), and to avoid bias in the 
scenarios with higher dosing, we chose to re-estimate the model without 
these covariates. In theory, this should increase the unexplained 
interoccasion variability and residual error instead. 

The logistic regression exposure-response model was adapted as well. The 
model was built on a subset of 159 patients and fitted the original data well.85 
However, this model predicted an ever-increasing probability of endoscopic 
improvement with increasing infliximab exposure. This could not be 
reconciled with the current line of thinking for infliximab treatment in UC, 
which assumes the existence of intrinsic non-responders.86 The model was 
adapted to introduce maximum transition probabilities 𝐸𝐸𝑚𝑚𝑡𝑡𝑚𝑚,3→2 and 
𝐸𝐸𝑚𝑚𝑡𝑡𝑚𝑚,2→1/0 for transitioning from a severe disease state (Mayo endoscopic 
subscore 3) to a moderate disease state (Mayo endoscopic subscore 2) and 
from a moderate disease state to endoscopic improvement (Mayo endoscopic 
subscore 1 or 0), respectively. Likelihood profiling was performed to identify 
the confidence bound for these parameters.87 These 𝐸𝐸𝑚𝑚𝑡𝑡𝑚𝑚 parameters were 
varied across a wide range of values and the associated 𝑑𝑑𝐶𝐶𝐸𝐸50s (i.e., the 
infliximab exposures required to achieve half-maximal transition 
probabilities) were estimated, yielding a log-likelihood (LL) estimate for each 
parameter set. Estimates with 𝛥𝛥2𝐶𝐶𝐶𝐶 = 3.84 showed the lower 95% 
confidence bound for the exposure-response model. These parameter 
estimates were then used for subsequent simulations. 

 

85 Dreesen et al. 

86 Ben-Horin, Kopylov, and Chowers, “Optimizing Anti-TNF Treatments in 
Inflammatory Bowel Disease”. 

87 Sheiner, “Analysis of Pharmacokinetic Data Using Parametric Models. III. 
Hypothesis Tests and Confidence Intervals”. 
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6.3.2. Virtual Population 

To construct the virtual population for the dosing simulations, the original 
clinical dataset was used.88 Only patients with a baseline Mayo endoscopic 
subscore of 2 or 3 were included, resulting in a source dataset of 194 
patients. This dataset was expanded through Monte Carlo sampling of 
interindividual variability (200 samples per individual patient), yielding a 
total of 38,800 virtual patients. Baseline covariates were collected in a study 
conducted in accordance with the principles of good clinical practice and the 
Declaration of Helsinki. All patients provided written informed consent prior 
to participation in the Ethics Committee-approved IBD Biobank 
[B322201213950/S53684], whereby patients’ characteristics and samples 
were collected prospectively on a series of predefined time points. 

6.3.3. Dosing Scenarios 

Four distinct dosing scenarios were evaluated. First, a standard dosing 
regimen of 5 mg/kg at days 0, 14, and 42 was applied to all virtual patients. 
Based on the exposure-response analysis of the original dataset, there was 
support for a higher dose.89 Therefore, 10 mg/kg was evaluated as a second 
dosing scenario. 

We aimed for covariate-based and concentration-based MIPD to result in the 
same mean predicted probability of endoscopic improvement as in the 10 
mg/kg dosing scenario. Therefore, MIPD scenarios were designed to target 
the same median 𝑑𝑑𝐶𝐶𝐸𝐸𝑑𝑑84 as was predicted from the 10 mg/kg dosing 
scenario. The third dosing scenario was purely based on the covariates (a 
priori MIPD). The popPK model was used to determine the covariate-based 
dose required to hit the exposure target associated with the predefined 
probability of endoscopic improvement. 

Finally, Bayesian forecasting (a posteriori MIPD) was evaluated as a fourth 
dosing scenario. The sampled interindividual variability was used to simulate 
the trough concentration on day 14 resulting from the covariate-based first 
dose. Residual error was sampled and added to this concentration. This 

 

88 Arias et al., “A Panel to Predict Long-Term Outcome of Infliximab Therapy 
for Patients With Ulcerative Colitis”. 

89 Dreesen et al., “Optimising infliximab induction dosing for patients with 
ulcerative colitis,” 2019. 



CHAPTER 6  

94 

simulated concentration was subsequently used to perform an empirical 
Bayesian estimation of the patient’s individual PK parameters. These 
individual estimates were then used to adapt the subsequent doses at days 
14 and 42. Both doses were adapted to the same value, predicted to result in 
an 𝑑𝑑𝐶𝐶𝐸𝐸𝑑𝑑84 exposure metric resulting in the target probability of endoscopic 
improvement. 

6.3.4. Evaluation of Dosing Scenarios 

The mean dose per patient and resulting exposures (𝑑𝑑𝐶𝐶𝐸𝐸𝑑𝑑84) in each 
scenario were evaluated graphically as density plots. To quantify efficacy, the 
mean probability of endoscopic improvement was evaluated, as this reflects 
the expected fraction of patients attaining endoscopic improvement. 
Additionally, the mean overall dose per patient was evaluated. Finally, a 
robustness analysis was performed to determine whether our conclusions 
hold for other 𝐸𝐸𝑚𝑚𝑡𝑡𝑚𝑚 parameter values. 

6.3.5. Software 

The adapted popPK and exposure-response models were estimated using 
NONMEM (version 7.4.3; Icon Development Solutions, Gaithersburg, 
Maryland, USA). Simulation of the dosing scenarios was performed using R 
(version 4.0.2; R Foundation for Statistical Computing, R Core Team, Vienna, 
Austria) with RxODE90 and tdmore. The tdmore R package was developed at 
KU Leuven to perform simulation and evaluation of MIPD. It is available as 
open-source at github.com/tdmore-dev/tdmore. The NONMEM code and 
tdmore R code are provided in the Supplementary File. 

6.4. Results 

6.4.1. Population Pharmacokinetic and Exposure-
Response models 

The popPK model was adapted to include only covariates at baseline. As 
expected, the interindividual variability on the elimination rate constant and 
the proportional residual error increased (Table 9). A visual predictive check 
of the updated popPK model is available in Figure 47. 

 

90 Fidler et al., RxODE. 
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Likelihood profiling of the exposure-response model showed a wide range of 
probable 𝐸𝐸𝑚𝑚𝑡𝑡𝑚𝑚,3→2-𝐸𝐸𝑚𝑚𝑡𝑡𝑚𝑚,2→1,0 pairs. In Figure 48, the likelihood profile is 
shown for different parameter combinations. The 𝛥𝛥2𝐶𝐶𝐶𝐶 = 3.84 contour line 
in red shows parameter combinations limits for 𝐸𝐸𝑚𝑚𝑡𝑡𝑚𝑚,3→2-𝐸𝐸𝑚𝑚𝑡𝑡𝑚𝑚,2→1,0 of either 
92.6%/100% or 100%/78.4%. Figure 22 shows the simulated PD model at 
parameter estimates with associated 𝛥𝛥2𝐶𝐶𝐶𝐶 = 3.84. Based on this plot, 
𝐸𝐸𝑚𝑚𝑡𝑡𝑚𝑚,2→1,0 = 78.4%-𝐸𝐸𝑚𝑚𝑡𝑡𝑚𝑚,3→2 = 100% was selected for further simulations, 
as the most “pessimistic” scenario. The remainder of possible parameter 
values were explored in the sensitivity analysis. 

6.4.2. Dosing Simulations: Exposure and Efficacy 

Simulation results are summarized in Table 2 and will be presented hereafter 
as median [95% prediction interval] for exposure (𝑑𝑑𝐶𝐶𝐸𝐸𝑑𝑑84) and mean 
±standard deviation for probability of endoscopic improvement. As exposure 
and efficacy targets differ depending on the baseline endoscopic disease 
severity, results are reported for baseline Mayo endoscopic subscores of 2 
(moderate disease severity; reported first) and 3 (high disease severity; 
reported second) separately. Exposures, mean doses and associated 
probabilities of endoscopic improvement are shown in Figure 23 and Figure 
24. 
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Figure 22: Exposure-response dataset (bars), binned per cumulative area 
under the curve (AUC) at day 84 and categorized according to Mayo endoscopic 

subscore at day 84, and corresponding simulated exposure-response models 
(lines representing the fraction of patients achieving a Mayo endoscopic 

subscore ≤ 1 [lower line] and ≤ 2 [upper line]). The original exposure-response 
model of Dreesen et al. is shown as a black dotted line. Colored lines represent 
models at 𝛥𝛥2𝐶𝐶𝐶𝐶 = 3.84 with different 𝐸𝐸𝑚𝑚𝑡𝑡𝑚𝑚,2→1/0 values. All presented models 
fit the exposure-response dataset equally well (at 𝛼𝛼 = 0.05) but have different 

predictions outside the observed exposure range. 
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Figure 23: (a) Density plots of exposure in each of the four dosing scenarios, 
per baseline Mayo endoscopic subscore. Vertical lines show median exposure 

per scenario. (b) Density plots of the mean doses in each of the four dosing 
scenarios, per baseline Mayo endoscopic subscore. Vertical lines show overall 

mean dose per scenario. (c) Density plots of the individual probability of 
endoscopic improvement in each of the four dosing scenarios, per baseline 

Mayo endoscopic subscore. Vertical lines show overall mean pEI per scenario. 
CAUC, cumulative area under the curve; MIPD, model-informed precision 

dosing; pEI, probability of endoscopic improvement. 
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Figure 24: Predicted median exposure, mean probability of endoscopic 
improvement and 90% prediction interval in each scenario, per baseline Mayo 

endoscopic subscore. Black lines show model-predicted response. CAUC, 
cumulative area under the curve; MIPD, model-informed precision dosing. 

The 5 mg/kg dosing scenario resulted in an 𝑑𝑑𝐶𝐶𝐸𝐸𝑑𝑑84 of 2455 [1215-4805] 
mg×day/L and 1979 [953-3990] mg×day/L, for baseline Mayo endoscopic 
subscore 2 and 3, respectively. This resulted in a predicted probability of 
endoscopic improvement of 61.2% ± 5.5% and 50.3% ± 8.4%. By increasing 
the dose to 10 mg/kg, exposure doubled to 4910 [2431-9609] mg×day/L and 
3958 [1906-7981] mg×day/L. Probabilities of endoscopic improvement also 
increased to 68.6% ± 3.6% and 61.6% ± 6%. 

Adapting the dose based on relevant covariates allowed more precise dosing, 
as between-population-variability can be taken into account. As can be seen 
in Figure 23a, covariate-based MIPD resulted in the same median exposure 
as 10 mg/kg dosing, at a reduced variability (4895 [2661-8522] mg×day/L 
and 3933 [2123-7045] mg×day/L, for baseline Mayo endoscopic subscore 2 
and 3, respectively). Dose adaptation based on the trough concentration 
measured at day 14 (Bayesian forecasting) further reduced this variability 
(5095 [3683-6879] mg×day/L and 4125 [3056-5431] mg×day/L). 
Probability of endoscopic improvement followed a similar pattern, with 
similar mean probabilities across 10 mg/kg dosing, covariate-based MIPD, 
and concentration-based MIPD. 
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Table 2: Summary of the simulation results 

  𝑑𝑑𝐶𝐶𝐸𝐸𝑑𝑑84(𝑚𝑚𝑙𝑙/𝐶𝐶 ∗ 𝑑𝑑𝑣𝑣𝑦𝑦) 𝑝𝑝𝐸𝐸𝑂𝑂(%) 𝐸𝐸𝑇𝑇𝑚𝑚𝑇𝑇𝑙𝑙𝑣𝑣𝑑𝑑𝑝𝑝𝑣𝑣𝐾𝐾𝑑𝑑𝑙𝑙𝐻𝐻𝐾𝐾(𝑚𝑚𝑙𝑙) 

Baseline Mayo endoscopic subscore Dosing scenario median [90%PI] mean ±sd mean ±sd 

2 

5 mg/kg 2,455 [1215-4805] 61.2 ±5.51 1,090 ±196 
10 mg/kg 4,910 [2431-9609] 68.6 ±3.6 2,181 ±393 
Covariate-based MIPD 4,895 [2661-8522] 68.7 ±3.08 2,166 ±443 
Concentration-based MIPD 5,095 [3683-6879] 69.3 ±1.67 2,298 ±613 

3 

5 mg/kg 1,979 [953-3990] 50.3 ±8.36 1,078 ±214 
10 mg/kg 3,958 [1906-7981] 61.6 ±6.05 2,155 ±428 
Covariate-based MIPD 3,933 [2123-7045] 61.7 ±5.06 2,137 ±417 
Concentration-based MIPD 4,125 [3056-5431] 62.8 ±2.51 2,287 ±643 

Combined 
(2:3, 49%:51%) 

5 mg/kg 2,210 [1049-4448] 55.7 ±8.96 1,084 ±205 
10 mg/kg 4,419 [2098-8895] 65.1 ±6.11 2,168 ±411 
Covariate-based MIPD 4,372 [2302-7940] 65.1 ±5.46 2,151 ±431 
Concentration-based MIPD 4,561 [3209-6516] 66.0 ±3.91 2,293 ±628 

The systematically lower exposure at a baseline Mayo endoscopic subscore of 3 (severely active ulcerative colitis), as compared to a 
baseline Mayo endoscopic subscore of 2 (moderately active ulcerative colitis), may mechanistically be explained by a higher target 
load (target-mediated drug disposition) and protein-losing enteropathy (fecal drug loss). AUCd84, the area under the infliximab 
concentration-time curve from baseline up to endoscopy at day 84 (week 12); MIPD, model-informed precision dosing; pEI, probability 
of endoscopic improvement; PI, prediction interval; q, quantile; sd, standard deviation. 
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6.4.3. Dosing Simulations: Drug Consumption 

Looking at the average infliximab dose used per patient (see also Figure 
23b), 5 mg/kg dosing resulted in 1090 mg per patient, and 10 mg/kg dosing 
doubled the dose usage to 2181 mg per patient. Covariate-based MIPD used 
an average of 2166 mg per patient. Concentration-based MIPD used at 
average 2298 mg per patient. 

6.4.4. Sensitivity Analysis 

The analysis presented above assumed an 𝐸𝐸𝑚𝑚𝑡𝑡𝑚𝑚 plateau of 78% for the 
probability of transitioning from a Mayo endoscopic subscore of 2 (moderate 
disease severity) to a Mayo endoscopic subscore of 0 or 1 (endoscopic 
improvement). This plateau benefited MIPD, as overexposed patients were 
dose-reduced without significantly reducing probability of endoscopic 
improvement, while underexposed patients were dose-increased, thereby 
significantly increasing probability of endoscopic improvement. 

Repeating our simulation study with higher values for 𝐸𝐸𝑚𝑚𝑡𝑡𝑚𝑚,2→1,0 decreased 
this benefit, further favoring 10 mg/kg dosing, as is illustrated in Figure 22. 
Other parameter combinations at 𝛥𝛥2𝐶𝐶𝐶𝐶 = 3.84, as well as for the base model 
(𝛥𝛥2𝐶𝐶𝐶𝐶 = 0), consistently showed less favorable results for MIPD. 

At 𝐸𝐸𝑚𝑚𝑡𝑡𝑚𝑚,3→2/𝐸𝐸𝑚𝑚𝑡𝑡𝑚𝑚,2→1,0 of 92.6%/100%, the probability of endoscopic 
improvement for 10 mg/kg dosing was 77.1% [62.7%-86.5%] and 65% 
[48.1%-76.7%], for baseline Mayo endoscopic subscore 2 and 3, respectively, 
at an average drug consumption of 2181 mg per patient. Bayesian forecasting 
resulted in a probability of endoscopic improvement of 77.6% [71.7%-
82.3%] and 65.8% [59.4%-70.9%], for baseline Mayo endoscopic subscore 2 
and 3, at an average drug consumption of 2301 mg per patient. 

6.5. Discussion 
In this study, we compared four possible dosing scenarios for infliximab 
induction therapy in patients with UC: 5 mg/kg weight-based dosing (label 
dosing), and three dosing strategies with increased exposure: 10 mg/kg 
weight-based dosing, covariate-based MIPD, and concentration-based MIPD, 
all with unchanged timing of the infusions (day 0, 14, and 42). The 10 mg/kg 
dosing scenario was predicted to significantly improve endoscopic outcomes 
as compared to 5 mg/kg dosing. By design, MIPD (based on either covariates 
or the day 14 trough concentration) resulted in the same median exposure 
(𝑑𝑑𝐶𝐶𝐸𝐸𝑑𝑑84) and, consequently, the same mean probability of endoscopic 
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improvement as observed in the 10 mg/kg dosing scenario. MIPD was 
predicted to successfully adapt individual patient doses, reducing the 
interindividual variability in infliximab exposure and with it the probability 
of endoscopic improvement, thereby providing “more equal” chances of 
endoscopic remission to all patients. Surprisingly, it did so at a higher 
average drug consumption per patient. Underexposed patients indeed 
received a relative dose increase, while overexposed patients received a 
relative dose decrease. However, this is a non-zero sum, as e.g., 10 mg×2+10 
mg×0.5 > 10 mg+10 mg. Therefore, our simulation study showed improved 
outcomes under 10 mg/kg dosing as compared to 5 mg/kg dosing and 
showed additional benefit of MIPD over 10 mg/kg for reducing variability in 
exposure and efficacy between patients, however, at a higher direct drug 
cost. Performing MIPD may thus require a willingness to “pay for equality” 
amongst patients.91 Consequently, we may consider shifting focus from 
outcome rates at the population level (the traditional industry perspective) 
to outcome chances at the individual patient level. It is at the individual 
patient level that MIPD may show value. Since the majority of patients attain 
the target under empirical dosing, it is important that future MIPD studies 
are restricted to vulnerable populations, such as patients with acute severe 
ulcerative colitis.92 

The simulations described in this work were based on a previously 
established popPK model and exposure-response model of infliximab.93 
These models described the relation between the infliximab dose and 
exposure, and the 𝑑𝑑𝐶𝐶𝐸𝐸𝑑𝑑84 and the probability of endoscopic improvement at 
day 84, respectively. The models were established on a dataset of 204 
patients with moderate-to-severe UC. Since the majority of the infliximab 
doses in the original cohort were 5 mg/kg (approximately 90%), and only 
about 10% of the doses were 10 mg/kg, it should be noted that the exposure-
response model was built on a relatively limited range of exposures. The 
exposures simulated in the present work exceed this range. However, this 
weakness was mitigated by a thorough analysis of exposure-response model 

 

91 Dreesen, “New Tools for Therapeutic Drug Monitoring”. 

92 Battat et al., “Baseline Clearance of Infliximab Is Associated With 
Requirement for Colectomy in Patients With Acute Severe Ulcerative Colitis”. 

93 Dreesen et al., “Optimising infliximab induction dosing for patients with 
ulcerative colitis,” 2019. 
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parameter confidence intervals and likelihood profiling, and a sensitivity 
analysis. Our findings hold throughout the full range of probable model 
parameter values. 

The exposure-response model assumes a causal effect between exposure and 
response. Previous clinical studies have indeed found a correlation between 
low trough concentrations and primary nonresponse to anti-TNFα therapy.94 
However, the causality assumed in our exposure-response model was never 
established in clinical studies. In light of this, time-varying disease-related 
covariates may instead be simulated in a joint model, avoiding potential 
underestimation of exposure at higher doses and reduced disease severity. 
Further research is needed to definitively establish whether non-response at 
low trough concentrations is due to mechanistic failure (pharmacodynamic 
[PD] failure) or underexposure (PK failure), as others have attempted to 
model this distinction.95 Underexposure can be resolved through dose 
increase, while the mechanistic failure suggests switching to a different drug 
with another mechanism of action. A more fine-grained model of continuous 
endpoints may distinguish between PK and PD failure. 

High exposure to infliximab may pose safety concerns. The 10 mg/kg dosing 
may result in very high exposures, which were predicted in the present study 
to be beneficial to patients. In reality, these highly exposed patients may 
present with adverse drug reactions such as infections, especially in the 
elderly, and MIPD may benefit these patients by reducing toxicity.96 

 

94 Ding, Hart, and De Cruz, “Systematic Review”. 

95 Dreesen et al., “Modelling of the Relationship Between Infliximab Exposure, 
Faecal Calprotectin and Endoscopic Remission in Patients with Crohn’s 
Disease”; Brekkan et al., “A Population Pharmacokinetic-Pharmacodynamic 
Model of Pegfilgrastim”. 

96 Kantasiripitak et al., “The Effect of Aging on Infliximab Exposure and 
Response in Patients with Inflammatory Bowel Diseases”; Bejan-Angoulvant 
et al., “Brief Report”; Landemaine et al., “Cumulative Exposure to Infliximab, 
But Not Trough Concentrations, Correlates With Rate of Infection”. 
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Our findings seemingly contradict the pivotal ACT 1 and 2 trials,97 which 
showed no significant difference between 5 mg/kg and 10 mg/kg in 
endoscopic improvement rates on day 56 of therapy. Nevertheless, in the 
post-hoc PK-PD analysis of ACT 1 and 2, the exposure-response relationship 
has been established.98 It would be worthwhile to repeat the presented 
modeling and simulation exercise including the data from these pivotal trials. 
Notwithstanding these results, clinical trials are currently underway 
evaluating an intensified induction regimen of 10 mg/kg.99 

MIPD of infliximab has been implemented in clinical practice mainly in 
tertiary care centers, but even there, the confidence in MIPD is crumbling as 
the results of the landmark TAXIT, TAILORIX, and NOR-DRUM trials do not 
live up to expectations.100 Our research showed that in silico simulations are 
a low-cost alternative to these clinical studies. Nevertheless, the translation 
of findings from a virtual trial into the real world may be challenged by noise 
due to for example sampling and measurement errors, rounding of doses and 
dosing intervals, etc.101 

MIPD is classically used to improve probability of target attainment, with the 
target window defined by efficacy and toxicity. In this context, efficacy is 

 

97 Rutgeerts et al., “Infliximab for Induction and Maintenance Therapy for 
Ulcerative Colitis”. 

98 Adedokun et al., “Association Between Serum Concentration of Infliximab 
and Efficacy in Adult Patients With Ulcerative Colitis”. 

99 Austin Health and University of Melbourne, “Optimising Infliximab 
Induction Therapy for Acute Severe Ulcerative Colitis (PREDICT-UC)”. 

100 Vande Casteele et al., “Trough Concentrations of Infliximab Guide Dosing 
for Patients With Inflammatory Bowel Disease”; Syversen et al., “Effect of 
Therapeutic Drug Monitoring Vs Standard Therapy During Infliximab 
Induction on Disease Remission in Patients With Chronic Immune-Mediated 
Inflammatory Diseases”; D’Haens et al., “Increasing Infliximab Dose Based on 
Symptoms, Biomarkers, and Serum Drug Concentrations Does Not Increase 
Clinical, Endoscopic, and Corticosteroid-Free Remission in Patients With 
Active Luminal Crohn’s Disease”. 

101 Alihodzic et al., “Impact of Inaccurate Documentation of Sampling and 
Infusion Time in Model-Informed Precision Dosing”. 
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ever-increasing with higher exposures, while a dose increase is largely 
limited by cost rather than toxicity. It may be interesting to quantify the 
effect of infliximab as quality-adjusted life years (QALY) instead, allowing a 
direct comparison to increased cost and a straightforward optimization of 
QALY/cost. 

In summary, we performed simulations to illustrate and predict the impact of 
three dosing strategies for increasing infliximab exposure during induction 
therapy as compared to 5 mg/kg weight-based label dosing, thereby 
improving the probability of endoscopic improvement. The use of 10 mg/kg 
dosing was indeed predicted to improve the probability of endoscopic 
improvement to 68.6% at an average drug consumption of 2181 mg per 
patient during induction therapy. Individualized dose adaptation could 
maintain the same mean probability of endoscopic improvement while 
reducing variability between individual patients. Although MIPD showed 
benefit for reducing variability in exposure and efficacy between patients, 
this comes at a higher direct drug cost as compared to 10 mg/kg weight-
based dosing.
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Chapter 7 Quantifying the impact 
of MIPD on endpoints: a test-case 
for tacrolimus 

This chapter is based on: 
Faelens Ruben, Nicolas Luyckx, Dirk Kuypers, Thomas Bouillon, and Pieter 
Annaert (2021). Predicting model-informed precision dosing: a test-case in 
tacrolimus dose adaptation for kidney transplant recipients. CPT: 
Pharmacometrics and Systems Pharmacology, submitted May 2021, accepted 
December 2021. 

All description of clinical trial simulation were moved to Chapter 1, where 
these simulations are discussed in detail. 

This work quantifies how MIPD improves PTA in tacrolimus. This 
demonstrates the key argument of this thesis work: investment into MIPD 
should only be performed after demonstrating the benefit in silico. This work 
further demonstrates our insights into the fine details of developing models 
for precision dosing. It shows how models can be evaluated and improved, 
how model selection should be performed for MIPD, and how the estimation 
method may be improved to incorporate parameter drift. 
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7.1. Abstract 
Before investing resources into the development of a precision dosing 
(MIPD) tool for tacrolimus, the performance of the tool was evaluated in 
silico. A retrospective dataset of 315 de novo kidney transplant recipients 
was first used to identify a 1-compartment pharmacokinetic (PK) model with 
time-dependent clearance. MIPD performance was subsequently evaluated 
by calculating error to predict future concentrations, which is directly related 
to dosing precision and probability of target attainment (PTA). 

Based on the identified model residual error, the theoretical upper limit was 
45% PTA for a target of 13.5ng/mL and an acceptable range of 12 to 15 
ng/mL. Using empirical Bayesian estimation, this limit was reached on day 5 
post-transplant and beyond. By incorporating correlated within-patient 
variability when predicting future individual concentrations, PTA improved 
beyond the theoretical upper limit. This yielded a Bayesian feedback dosing 
algorithm accurately predicting future trough concentrations and adapting 
each dose to reach a target concentration. 

Simulated concentration-time profiles were then used to quantify MIPD-
based improvement on three endpoints: average PTA increased from 28% to 
39%, median time to 3 concentrations in target decreased from 10 days to 7 
days, and mean log-squared distance to target decreased from 0.080 to 0.055. 
A study of 200 patients was predicted to have sufficient power to 
demonstrate these nuanced PK endpoints reliably. 

These simulations supported our decision to develop a precision dosing tool 
for tacrolimus and test it in a prospective trial. 

7.2. Introduction 
Optimal dosage of drugs with a narrow therapeutic index is an active area of 
research. These drugs display high pharmacokinetic (PK) or 
pharmacodynamic (PD) variability, exceeding the safe and effective 
variability102 and therefore require individual dose adaptation. Covariate-
based dose adaptation may be attempted first, as e.g. patient bodyweight can 
be easily measured. In case of large unexplained variability however, regular 

 

102 Holford and Buclin, “Safe and Effective Variability—A Criterion for Dose 
Individualization”. 
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follow-up of the patient is needed to adapt the dose. In its simplest form, the 
drug is titrated until efficacy and safety is reached for the patient. Typically, 
drug concentration is used as a quantitative surrogate, aiming for an 
exposure previously established as having sufficient efficacy and acceptable 
safety. 

One such drug requiring blood concentration monitoring is tacrolimus. At 
sufficiently high concentrations, tacrolimus acts as an immunosuppressor 
reducing the risk of graft rejection in solid organ transplant recipients.103 
High tacrolimus concentrations are strongly associated with a higher rate of 
drug-induced side effects however, including acute kidney injury.104 The 
acceptable range depends on transplanted organ, immunological risk, adjunct 
immunosuppressive therapies, and may be further adapted to physician 
discretion.105 

The required doses to achieve concentrations at a given target are highly 
variable between patients. Tacrolimus exhibits a high inter-individual PK 
variability,106 with some studies reporting a 10-fold range in individual 
clearance.107 To achieve safe and effective drug concentrations, regular 
follow-up of tacrolimus concentrations is therefore recommended. 

However, translating an observed drug concentration into the required dose 
adaptation is not trivial. In theory, model-informed precision dosing (MIPD) 
can provide accurate dosing recommendations, yielding a high target 

 

103 Vincenti et al., “A Long-Term Comparison of Tacrolimus (Fk506) and 
Cyclosporine in Kidney Transplantation”. 

104 Miano et al., “Early Tacrolimus Concentrations After Lung Transplant Are 
Predicted by Combined Clinical and Genetic Factors and Associated With 
Acute Kidney Injury”. 

105 Brunet et al., “Therapeutic Drug Monitoring of Tacrolimus-Personalized 
Therapy”; Wallemacq et al., “Opportunities to Optimize Tacrolimus Therapy 
in Solid Organ Transplantation”. 

106 Vanhove, Annaert, and Kuypers, “Clinical Determinants of Calcineurin 
Inhibitor Disposition”. 

107 Brooks et al., “Population Pharmacokinetic Modelling and Bayesian 
Estimation of Tacrolimus Exposure”. 
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concentration achievement.  Many software packages offer dose adaptation 
of tacrolimus,108 although only a single study has prospectively investigated 
whether MIPD improves this probability of target attainment (PTA).109 
Størset et al managed to demonstrate MIPD increases PTA, as compared to 
standard of care. Unfortunately, no improvement early post-transplant could 
be shown. The study may have been underpowered to show this, as only 80 
patients were recruited. Enrollment was based on convenience, rather than a 
power calculation. 

To evaluate the performance of MIPD, some in silico methods are available. 
Classical Goodness of Fit (GoF) metrics such as mean prediction error or root 
mean squared prediction error (RMSE%) show how well a model can fit 
existing data. Recently, prospective evaluation was proposed to evaluate 
these metrics on future concentrations, based on only the concentration 
samples collected up to that point.110 Unfortunately, none of these metrics 
directly translate into the expected individual PK, PD or clinical outcomes 
when using MIPD. 

Simulated data are preferred over GoF metrics for two reasons. Firstly, 
predicted individual data can be condensed to clinical benefit (e.g. avoidance 
of rejection), and this benefit is weighed against the implementation cost. 
Should pharmacogenetic information be included, how many additional 
blood samples are needed, and should MIPD even be implemented at all? 
Quantifying the potential clinical benefit is key in justifying investment into 
MIPD. 

Second, simulated data help to design a prospective clinical trial comparing 
MIPD to standard of care. Without an in silico prediction of study endpoint, 
the only recourse is either to select the study sample size based on available 

 

108 Woillard et al., “Population Pharmacokinetics and Bayesian Estimators for 
Refined Dose Adjustment of a New Tacrolimus Formulation in Kidney and 
Liver Transplant Patients”. 

109 Størset et al., “Improved Tacrolimus Target Concentration Achievement 
Using Computerized Dosing in Renal Transplant Recipients-a Prospective, 
Randomized Study”. 

110 Lindbom, Pihlgren, and Jonsson, “PsN-Toolkit—A Collection of Computer 
Intensive Statistical Methods for Non-Linear Mixed Effect Modeling Using 
NONMEM”. 
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resources (as large as we can), or on vague assumptions (we estimate X% 
improvement in PTA). Neither method is a solid way to design a clinical 
study, leading to inconclusive results. Even if there may be a theoretical and 
worthwhile benefit to MIPD, it may not be possible to demonstrate this effect 
in a reasonably funded clinical study. PTA predictions allow informed and 
realistic clinical study design. 

This work shows how the impact of a Bayesian feedback MIPD tool 
optimizing PK outcomes can be predicted in tacrolimus dosing of renal 
transplant recipients the first 14 days post-transplant. These predictions are 
first used to evaluate whether the proposed MIPD achieves a sufficiently high 
improvement in the population, and indeed is a worthwhile investment. It is 
then used to design a sufficiently powered clinical trial to show this benefit. 
The developed simulation software is available as open source. We anticipate 
that this approach can be applied to many other drugs where the benefit or 
optimal modalities of implementing MIPD is uncertain. 

7.3. Methods 

7.3.1. Source data 

A retrospective study111 of 315 kidney allograft recipients transplanted 
between 2004 and 2014 was repurposed for this work. For an in-depth 
description, we refer to the work by Vanhove et al. The dataset consisted of 
trough concentrations measured on days 0 to 14 post transplantation under 
standard of care, i.e. leading to a dose adaptation by experienced transplant 
physicians targeting trough concentrations between 12 and 15 ng/mL. 
Extensive data management was required to prepare this dataset for 
modeling (described in Supplementary Materials). Missing covariates were 
imputed as the population median. 

7.3.2. Model development 

Based on literature review, a 1-compartment model with oral absorption was 
selected as appropriate starting point for this sparse dataset. Following the 

 

111 Vanhove et al., “Pretransplant 4β-Hydroxycholesterol Does Not Predict 
Tacrolimus Exposure or Dose Requirements During the First Days After 
Kidney Transplantation”. 
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approach from other studies,112 the absorption rate constant (ka) was fixed 
to 4.5ℎ−1,113 as it cannot be reliably estimated from trough data alone. A 2-
compartment model and addition of lag time were investigated as possible 
improvements. The use of a hematocrit-standardized model114 was 
investigated including concentration-dependent binding of tacrolimus to 
erythrocytes. The whole-blood concentration 𝐸𝐸𝑤𝑤𝑂𝑂 is related to hematocrit-
standardized concentration 𝐸𝐸𝑂𝑂𝑑𝑑𝑑𝑑 through a concentration-dependent 
proportionality factor 𝑇𝑇, with 𝐸𝐸𝑂𝑂𝑑𝑑𝑑𝑑𝑚𝑚𝑡𝑡𝑚𝑚 reflecting the maximum binding 
capacity, and 𝐸𝐸𝑂𝑂𝑑𝑑𝑑𝑑50 the concentration associated with half maximum binding. 

𝐸𝐸𝑤𝑤𝑂𝑂 ≈ 𝐸𝐸𝑂𝑂 = 𝐸𝐸𝑂𝑂𝑑𝑑𝑑𝑑 ∗ 𝑇𝑇 ∗
𝐻𝐻𝑝𝑝𝑑𝑑
45%

  (2) 

𝑇𝑇 = 𝐸𝐸𝑂𝑂𝑑𝑑𝑑𝑑𝑚𝑚𝑡𝑡𝑚𝑚 ∗
𝐸𝐸𝑂𝑂𝑑𝑑𝑑𝑑

𝐸𝐸𝑂𝑂𝑑𝑑𝑑𝑑 + 𝐸𝐸𝑂𝑂𝑑𝑑𝑑𝑑50
  (3) 

As precision dosing targeting 𝐸𝐸𝑤𝑤𝑂𝑂 depends on future hematocrit values, a 
joint model was used predicting both tacrolimus whole-blood concentration 
and hematocrit. The time course of hematocrit was modeled using a sigmoid 
model. IIV was applied to all parameters. 

𝐻𝐻𝑝𝑝𝑑𝑑 = 𝐵𝐵𝑣𝑣𝐻𝐻𝐾𝐾𝑙𝑙𝑝𝑝𝑛𝑛𝐾𝐾𝐻𝐻𝑟𝑟𝑑𝑑 − 𝐸𝐸𝑂𝑂𝑣𝑣𝑥𝑥𝐻𝐻𝑟𝑟𝑑𝑑 ∗
𝑑𝑑

𝑑𝑑 + 𝐸𝐸50𝐻𝐻𝑟𝑟𝑑𝑑
  (4) 

Random effects were modeled using lognormal inter-individual variability 
(IIV). Exploratory graphical analysis pointed to a potential increase in 
clearance over time. This was estimated using inter-occasion variability 
(IOV) and investigated for correlation with available covariates and time 

 

112 Antignac et al., “Population Pharmacokinetics and Bioavailability of 
Tacrolimus in Kidney Transplant Patients”; Velickovic-Radovanovic et al., 
“Population Pharmacokinetics of Tacrolimus in Kidney Transplant Patients”; 
Han et al., “Prediction of the Tacrolimus Population Pharmacokinetic 
Parameters According to Cyp3a5 Genotype and Clinical Factors Using 
NONMEM in Adult Kidney Transplant Recipients”. 

113 Jusko et al., “Pharmacokinetics of Tacrolimus in Liver Transplant 
Patients*”. 

114 Størset et al., “Importance of Hematocrit for a Tacrolimus Target 
Concentration Strategy”. 
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since transplant. The effect of time was modeled as either an exponential (Eq. 
(5)) or sigmoidal (Eq. (6)) function, with 𝑇𝑇50 the time at which 50% of 
maximum clearance was reached. 

𝐸𝐸𝐶𝐶/𝑂𝑂 = 𝐸𝐸𝐶𝐶0/𝑂𝑂 ∗ �1− 𝐾𝐾
𝑙𝑙𝑛𝑛(0.5)
𝑇𝑇50 𝑑𝑑�  (5) 

𝐸𝐸𝐶𝐶/𝑂𝑂 = 𝐸𝐸𝐶𝐶0/𝑂𝑂 ∗
𝑑𝑑

𝑇𝑇50 + 𝑑𝑑
  (6) 

Covariates were selected using a stepwise covariate search, including 
covariates that improved the OFV by 3.84 or more (𝑝𝑝 < 0.05) in the forward 
step, and eliminating covariates resulting in less than 7.88 increase in OFV 
(𝑝𝑝 > 0.005). Continuous covariates (age, weight) were included as a power-
model (Eq. (7)). Discrete covariates were included as an x-fold change (Eq. 
(8)). Last observation carry forward (LOCF) was used to interpolate time-
varying covariates. 

𝑋𝑋 = 𝜃𝜃𝑋𝑋 ∗ 𝐾𝐾𝜂𝜂𝑋𝑋 ∗ (𝐸𝐸𝐶𝐶𝑉𝑉/𝜇𝜇𝐶𝐶𝑂𝑂𝑉𝑉)𝛽𝛽𝑋𝑋,𝐶𝐶𝐶𝐶𝑉𝑉  (7) 

𝑋𝑋 = 𝜃𝜃𝑋𝑋 ∗ 𝐾𝐾𝜂𝜂𝑋𝑋 ∗ �𝛽𝛽𝑋𝑋,𝐶𝐶𝑂𝑂𝑉𝑉�
𝐶𝐶𝑂𝑂𝑉𝑉  (8) 

Only covariates available in routine clinical practice were considered for 
covariate building. This was therefore limited to age, bodyweight, hematocrit 
and formulation. Notably, CYP3A5 genotype was excluded from covariate 
search, as it is not routinely measured in clinical practice. 

7.3.3. Model evaluation 

Models were evaluated using the likelihood ratio test, with a 𝛥𝛥𝐶𝐶𝑂𝑂𝑉𝑉 of −3.84 
or more justifying the addition of a new parameter at p<0.05. An evaluation 
of prediction-corrected visual predictive check (pcVPC), goodness of fit plots, 
and biological plausibility of parameters was also performed, rejecting 
models with qualitatively poor results. Prediction-corrected VPCs were 
generated from 500 simulated subsets of the original data. This was used to 
identify the appropriate model structure, covariates, inter-individual 
variability and residual error model. 

Models with good population fit were further evaluated on fitness for use in 
Bayesian feedback for MIPD. To this end, prospective evaluation with 
Bayesian feedback was used to evaluate predictive performance. Prediction 
error for observation 𝑛𝑛 + 1 was calculated from an individual parameter 
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estimate on observations 1. .𝑛𝑛. Only cases with 𝑛𝑛 and 𝑛𝑛 + 1 on consecutive 
days were included. 

𝐼𝐼𝐸𝐸% =
𝑂𝑂𝐼𝐼𝑇𝑇𝐸𝐸𝐷𝐷 − 𝐸𝐸𝐶𝐶𝐶𝐶𝐸𝐸

𝐸𝐸𝐶𝐶𝐶𝐶𝐸𝐸
  (9) 

Prediction error 𝐼𝐼𝐸𝐸% is based on the model prediction 𝑂𝑂𝐼𝐼𝑇𝑇𝐸𝐸𝐷𝐷 and the actual 
measured concentration 𝐸𝐸𝐶𝐶𝐶𝐶𝐸𝐸. It was used to characterize predictive 
performance of candidate models as root mean squared error (RMSE), and 
models were compared using a t-test on (𝐼𝐼𝐸𝐸%)2. This is especially relevant 
to assess fitness for use in MIPD, as prediction error 𝐼𝐼𝐸𝐸% is directly related 
to the error in the resulting concentration 𝐸𝐸𝑡𝑡𝑡𝑡𝑂𝑂 after applying the 
recommended MIPD dose targeting 𝐸𝐸𝑑𝑑𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑑𝑑. The intermediate steps are 
available in Supplementary Material. 

𝐼𝐼𝐸𝐸% =
𝐸𝐸𝑑𝑑𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑑𝑑 − 𝐸𝐸𝑡𝑡𝑡𝑡𝑂𝑂

𝐸𝐸𝑡𝑡𝑡𝑡𝑂𝑂
  (10) 

Based on equation (10), an allowed 𝐸𝐸𝑡𝑡𝑡𝑡𝑂𝑂 between 12 and 15 𝑛𝑛𝑙𝑙/𝑚𝑚𝐶𝐶, and 
𝐸𝐸𝑑𝑑𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑑𝑑 of 13.5 𝑛𝑛𝑙𝑙/𝑚𝑚𝐶𝐶 resulted in an allowed 𝐼𝐼𝐸𝐸% between [−10%, 12.5%]. 
This was used to derive a theoretical upper limit for MIPD PTA. We assumed 
an unlimited number of concentrations, allowing to identify individual 
parameters but not predict future within-subject variability. 

lim
𝑛𝑛−>∞

𝐼𝐼𝑇𝑇𝑑𝑑 = 𝑝𝑝⟨𝒩𝒩(0,𝜎𝜎2) ∈ [−10%, 12.5%]⟩ 

To allow comparison, standard dosing by physicians was also characterized 
in the form of 𝐼𝐼𝐸𝐸%, by assuming physicians prescribed a dose that they think 
will hit the target. In other words, the in cerebro modeling of the physician 
predicts a trough concentration of 13.5ng/mL at the dose they prescribed. 
The 𝐼𝐼𝐸𝐸% for physicians was therefore calculated as 

𝐼𝐼𝐸𝐸% =
13.5− 𝐸𝐸𝐶𝐶𝐶𝐶𝐸𝐸

𝐸𝐸𝐶𝐶𝐶𝐶𝐸𝐸
  (11) 

7.3.4. Bayesian feedback and model-predictive control 

Tacrolimus exhibits high PK variability, not only between patients but also 
within a single subject. This variability can be described by the residual error 
model or through inter-occasion variability, depending on whether rich 
individual data is available. To the best of our knowledge, all models 
previously used to describe tacrolimus pharmacokinetics assume a random 
variability. This variability is not entirely random however, and previous 
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studies have reported a correlation of the error between subsequent 
occasions115. This seems intuitive: an increased clearance on day N should 
indeed carry over to the following day N+1. This was quantified in the dataset 
by calculating the autocorrelation of the residual error from a standard 
bayesian fit. For a detailed discussion, please see Supplementary Material. 

To integrate this correlation between subsequent occasions, we opted to use 
a pragmatic approach, inspired by similar closed loop control systems in 
anesthesia.116 On day 1, regular empirical bayesian estimation (EBE) with a 
priori estimates 𝛩𝛩 and inter-individual variability 𝛺𝛺 is used to estimate the 
most likely individual parameters 𝜂𝜂. On day 𝑝𝑝, the individual parameter 
estimates from day 𝑝𝑝 − 1 are used as a priori estimates (𝛩𝛩′ = 𝜂𝜂), while the 
same inter-individual variability 𝛺𝛺 is retained. This approach is reminiscent 
of model-predictive bioreactor control in chemical engineering and was 
therefore dubbed model-predictive control MIPD (MPC/MIPD). The 
predictive performance of this method was compared to classical EBE using 
the prediction error 𝐼𝐼𝐸𝐸% described previously. 

 

115 Størset et al., “Improved Prediction of Tacrolimus Concentrations Early 
After Kidney Transplantation Using Theory-Based Pharmacokinetic 
Modelling”. 

116 Krieger and Pistikopoulos, “Model Predictive Control of Anesthesia Under 
Uncertainty”. 
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Figure 25: (A) Observations 1 to i were used to calculate fit 𝑓𝑓(𝜂𝜂) (solid green 
line). This was then used to find dose D_rec that makes 𝑓𝑓�𝐷𝐷𝑡𝑡𝑡𝑡𝑟𝑟 , 𝑑𝑑𝑗𝑗+1� = 𝐸𝐸𝑑𝑑𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑑𝑑 
(dotted green line). (B) All observations 1:n were used to calculate fit 𝑓𝑓�𝜂𝜂𝑡𝑡𝑡𝑡𝑖𝑖𝑡𝑡� 

(solid purple line). This was then used to find 𝑓𝑓�𝜂𝜂𝑡𝑡𝑡𝑡𝑖𝑖𝑡𝑡 ,𝐷𝐷𝑡𝑡𝑡𝑡𝑟𝑟 , 𝑑𝑑𝑖𝑖+1� (dotted purple 
line). The final result 𝑌𝑌′𝑖𝑖+1 is calculated by adding the original residual error 𝜖𝜖 

on top. 

7.3.5. Dosing algorithm and simulation strategy 

Once a method for predicting future concentrations was established, we 
could search the dose required to optimize resulting concentrations. The 
dosing algorithm is described by the following pseudo-code, with 𝑌𝑌𝑖𝑖  the 
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measured concentration, 𝑑𝑑𝑖𝑖 the associated sample time, 𝜂𝜂 the individual 
parameter estimates, 𝐷𝐷𝑗𝑗 the dose at administration 𝑗𝑗, 𝑑𝑑𝑗𝑗 the associated dosing 
time, 𝑑𝑑𝑗𝑗+1 the time of the subsequent dose, 𝑓𝑓�𝜂𝜂, 𝑑𝑑𝑗𝑗+1,𝐷𝐷𝑗𝑗� the function to 
predict a concentration at time 𝑑𝑑𝑗𝑗+1 as a result of all doses up to and including 
dose 𝑗𝑗, and 𝐸𝐸𝑑𝑑𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑑𝑑 the target concentration: 

 INITIALIZATION: 

   observed = [] 

   regimen = [ Loading Dose, Future Planned Doses] 

 WHEN A NEW CONCENTRATION (𝑑𝑑𝑖𝑖 ,𝑌𝑌𝑖𝑖) BECOMES AVAILABLE: 

   add (𝑑𝑑𝑖𝑖,𝑌𝑌𝑖𝑖) to observed 

   update regimen from the patient EHR system 

   fit 𝜂𝜂 using MPC/MIPD 

   FOR all future doses at time 𝑑𝑑𝑗𝑗: 

     use a root finding algorithm to find dose 𝐷𝐷𝑡𝑡𝑡𝑡𝑟𝑟,𝑗𝑗 

     such that: 

        𝑓𝑓�𝜂𝜂,𝐷𝐷𝑡𝑡𝑡𝑡𝑟𝑟,𝑗𝑗, 𝑑𝑑𝑗𝑗+1� = 𝐸𝐸𝑑𝑑𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑑𝑑 

     and adapt the regimen: 𝐷𝐷𝑗𝑗 = 𝐷𝐷𝑡𝑡𝑡𝑡𝑟𝑟,𝑗𝑗 

   if simulating: 

   determine the next observed concentration 

     𝑌𝑌𝑖𝑖+1′ ≔ 𝑓𝑓�𝜂𝜂𝑡𝑡𝑡𝑡𝑖𝑖𝑡𝑡 , 𝑑𝑑𝑖𝑖+1�+ 𝜖𝜖 

The dosing algorithm was designed to execute as new concentration samples 
become available, regardless of whether that sample is within the acceptable 
range. The full dosing history and concentrations at each iteration were used 
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to fit individual parameters 𝜂𝜂, after which the PK model 𝑓𝑓�𝜂𝜂,𝐷𝐷𝑡𝑡𝑡𝑡𝑟𝑟,𝑗𝑗 , 𝑑𝑑𝑗𝑗+1� was 
used to predict future trough concentrations. For each future administration, 
the dose was adapted such that the trough concentration was equal to the 
target concentration 𝐸𝐸𝑑𝑑𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑑𝑑 of 13.5ng/mL. This is visualized in Figure 25a. 

We made sure computer dosing would require minimal changes to the 
current clinical workflow at UZ Leuven. Therefore, the loading dose was not 
adapted. Only dosing amounts were adapted. Planned dosing times and 
formulations (Advagraf® or Prograft®) were retained from the source 
dataset. Doses of 0mg were not recorded in the source dataset, therefore a 
dummy dose of 0mg was added at 08:00 if Advagraf® was previously 
administered, or 08:00 and 20:00 if Prograft® was previously administered. 
To ensure fair comparison with physician-based dosing, only doses 6 hours 
after a concentration sample were considered for adaptation, as 
concentrations were generally only available in practice 3 hours post-
sampling and adapting a dose close to administration time was not deemed 
practical. Doses were rounded to 0.5mg. 

To simulate the resulting concentrations 𝑌𝑌′ after applying MIPD, the 
following procedure was used (visualized in Figure 1b). As we cannot go back 
in time and administer the recommended dose 𝐷𝐷𝑡𝑡𝑡𝑡𝑟𝑟 to the actual patient, we 
used the best prediction available: we simulated using a fitted 𝜂𝜂𝑡𝑡𝑡𝑡𝑖𝑖𝑡𝑡 on all 
observed concentrations for this patient in the historic dataset 𝑓𝑓�𝜂𝜂𝑡𝑡𝑡𝑡𝑖𝑖𝑡𝑡 , 𝑑𝑑𝑖𝑖+1� 
and re-applied the original residual error 𝜖𝜖. 

𝑌𝑌′𝑖𝑖+1 = 𝑓𝑓�𝜂𝜂𝑡𝑡𝑡𝑡𝑖𝑖𝑡𝑡 , 𝑑𝑑𝑖𝑖+1� + 𝜖𝜖𝑖𝑖+1  (12) 

This exercise was performed on all 315 patients for all available trough 
samples. Missing concentration samples were reused as missing data. This 
resulted in two parallel datasets: a first dataset of dose and resulting 
concentration per patient per day as originally performed in reality by 
physicians in standard of care, and a second hypothetical dataset where the 
dose was calculated through MIPD. Both arms could then be compared 
graphically and using statistical methods. 

In collaboration with physicians, an improvement by MIPD was qualitatively 
defined as: more patients with trough concentrations in the target window of 
12 to 15 ng/mL, faster target attainment, and smaller deviations from target. 
This was quantitatively defined as (i) higher individual probability of target 
attainment, (ii) faster attainment of 1, 2, 3, … cumulative days in target, and 
(iii) smaller overall distance to target on each day, defined in equation (13) 
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𝐸𝐸 > 15 ⇒ 𝐷𝐷2 = (log𝐸𝐸 − log15)2  (13) 

𝐸𝐸 < 12 ⇒ 𝐷𝐷2 = (log𝐸𝐸 − log12)2 

𝐸𝐸 ∈ [12,15] ⇒ 𝐷𝐷2 = 0 

7.3.6. Statistical methods and power calculation 

Based on the above population simulations, a good description of PK 
outcome for N=315 individuals was available. This allowed defining 
statistical tests to quantify the effects in the population. Furthermore, a 
power calculation was performed to consider what effect size could be 
significantly proven in a trial. 

Dose adaptation performance was expected to be time dependent. Any closed 
loop system requires some samples to reach the target, and overshoot, 
undershoot or ‘lucky hits’ are to be expected. The proposed statistical 
analysis accounted for these effects. 

1. Improvement on individual PTA was evaluated as a Welch’s t-test. A 
relative improvement of +33% was deemed clinically relevant. 

2. Speed of target attainment was evaluated as a time-to-event process with 
non-proportional hazards. A one-sided Mantel-Haenszel log-rank test on 
TTE >3 concentrations in target was used. A minimum relative 
improvement of +33% fraction of patients reaching target on day 7 was 
deemed clinically relevant. Power for this test was calculated based on 
required difference in relative hazard ratio and the expected events over 
the accrual period of 14 days. (see Supplementary Materials for more 
details) 

3. We expected squared log-distance to target to decrease over time. Ideally, 
a mixed model repeated measurements (MMRM) model detects a 
significant reduction of squared log-distance due to MIPD. Power for this 
test was not calculated, as no established method for power analysis of 
MMRM models with non-normal outcomes is available as of yet. 

Based on the simulation, accurate estimates of the distribution of these 
statistics were available. These were subsequently used to determine 
required sampled size to detect clinically relevant effect. 

7.3.7. Clinical trial simulation 

Finally, the candidate trial with N=200 patients at 2:1 allocation was 
evaluated as a clinical trial simulation. Standard of care was not simulated, 
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but rather sampled without replacement from the available N=315 profiles in 
the retrospective dataset. The MIPD arm was similarly sampled from the 
profiles in the simulation previously performed. Dropout and missing data 
were considered as represented realistically in the retrospective dataset. 
This was repeated 1000 times to characterize the distribution of possible 
clinical trial outcomes and evaluate Probability of Study Success (PoSS). 

7.3.8. Software 

Monolix 2019117 was used to perform modeling, using the SAEM algorithm 
complemented with importance resampling to determine -2 log-likelihood. R 
version 3.5.2 was used for all data management and simulation tasks, using 
tdmore version 1.1.118 Tdmore is under active development and can be freely 
downloaded. 

 

 

117 “Monolix Version 2019r1”. 

118 Faelens, Luyckx, and Quentin Leirens, “Tdmore”. 
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Table 3: Parameter estimates for hematocrit-standardized, base and full 
model. 

Parameter Joint model 
(OFV=1594.6*) RSE Base model 

(OFV=19669.68) RSE Full model 
(OFV=19560.72) RSE 

Typical values       

Ka [/h] 4.5 fix 4.5 fix 4.5 fix 

V [L] 562 2.9% 767 3.2% 760 3.1% 

CL0 [L/h] 17.8 2.5% 27.6 2.6% 27.2 2.5% 

T50 [h] 19.5 6.7% 26.4 5.6% 25.7 6.3% 

Hct baseline [%] 0.467 0.49%     

Hct Emax [%] 0.188 0.71%     

Hct T50 [h] 1.23 20%     

Covariate effects  

Haematocrit on CL     -0.461 0.33% 

Weight on CL     0.571 NaN% 

Weight on V     0.536 0.21% 

Inter-individual variability  

V 57.4% 4.8% 62.8% 4.9% 60.6% 5% 

CL0 53.8% 4.2% 55.7% 4.2% 52.9% 4.3% 

T50 136% 6.9% 117% 6.2% 123% 6.8% 

Hct baseline 7.56% 4.4%     

Hct Emax 5.7% 11%     

Hct T50 710% 7.8%     

corr V,CL0 0.715 4.6% 0.671 5.5% 0.68 5.5% 

corr 
HctT50,HctBaseline -0.69 8.2%     

corr 
T50,HctBaseline -0.375 17%     

corr T50,HctT50 0.5 15%     

Residual error       

Proportional 0.183 1.3% 0.187 1.3% 0.185 1.3% 

Inter-individual CV% was calculated as exp(omega)-1. Relative standard error (RSE) 
was determined through importance resampling. RSE for the effect of bodyweight on CL 
could not be determined numerically. *: includes hematocrit observations 
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7.4. Results 

7.4.1. Model building 

Base model Key model parameter estimates are available in Table 3. Relevant 
diagnostic plots are available in Supplementary Material. A 1-compartment 
model with oral absorption showed considerable time-dependent bias on 
individual weighted residual (IWRES) vs time plots, overpredicting early 
(before day 4) concentrations and underpredicting late concentrations (days 
7 and later). Inclusion of hematocrit-normalized concentration improved the 
fit (𝛥𝛥𝐶𝐶𝑂𝑂𝑉𝑉 = −356.83), but did not reduce time-dependent bias. 
Concentration-dependent binding was removed without any notable impact 
(𝛥𝛥𝐶𝐶𝑂𝑂𝑉𝑉 = 0.14). Estimation of IOV on clearance further showed a time-
dependent trend, which was most appropriately modeled through Eq. (5), 
yielding a T50 of 38.7h and 𝛥𝛥𝐶𝐶𝑂𝑂𝑉𝑉 = −1875. The pcVPC showed acceptable 
fit on median; the outer prediction interval improved by adding IIV on T50 
(𝜔𝜔𝑇𝑇50 = 125𝐸𝐸𝑉𝑉%, 𝛥𝛥𝐶𝐶𝑂𝑂𝑉𝑉 = −522) and correlation between 𝜂𝜂𝑉𝑉 and 𝜂𝜂𝐶𝐶𝐶𝐶 (𝜌𝜌 =
0.681,𝛥𝛥𝐶𝐶𝑂𝑂𝑉𝑉 = −145.57). Additive residual error was subsequently removed 
without impact to OFV or fit. The model did not further improve through 
absorption lag time or a 2-compartment disposition. 

Predictive performance Prospective evaluation showed high prediction error 
(RMSE of 0.361) due to bias introduced by using LOCF for hematocrit. Joint 
modeling of tacrolimus and hematocrit through Eq. (4) retained good 
population fit and greatly improved predictive performance (RMSE of 0.307, 
p-value 0.004). By moving from 3 to 6 estimated individual parameters, 
simulation time increased 40-fold. For further simulations, the hematocrit-
standardized model was removed. This increased OFV by 213 points but did 
not significantly decrease predictive performance (RMSE of 0.325, p=0.172). 

Covariate search Stepwise covariate modeling (SCM) is described in Table S1. 
As significant covariates, we identified hematocrit on clearance (𝛥𝛥𝐶𝐶𝑂𝑂𝑉𝑉 =
−79.65), bodyweight on clearance (𝛥𝛥𝐶𝐶𝑂𝑂𝑉𝑉 = −13.48) and age on clearance 
(𝛥𝛥𝐶𝐶𝑂𝑂𝑉𝑉 = −10.04). 

  



 

 

 

Figure 26: Relative prediction error (A) and predicted concentrations (B) median and 50% prediction interval for physician 
(blue), base (green), and full (orange) model, using EBE (solid line) and MPC (dotted line). The target window is represented as 
green area. Probability of target attainment is shown for the relative prediction error (C) and predicted concentration (D). The 

theoretical limit is derived from the model residual error. 
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Figure 27: Physician dose adaptation (left) versus computer dose adaptation 
(right). The observed concentration (x-axis) results in a dose change (y-axis). 

The grey line shows the theoretical dose adaptation when following the rule of 
three in steady-state. 

7.4.2. Model-predictive control 

Autocorrelation of the base model residual error was 𝐸𝐸[𝜌𝜌𝑘𝑘] = 0.52, 0.37, 
0.24, 0.16, 0.13, 0.12, 0.10, and 0.12 for k-values of 1 (autocorrelation 
between subsequent observations) to 8 (autocorrelation between 
observations 8 days apart). This points to correlated consecutive residual 
errors. Predictive performance of MPC/MIPD is shown in Figure 26A. 
Compared to EBE, MPC/MIPD shows a significant improvement in predictive 
performance. This applies to both base and full model. Using these results, 
the base model with MPC/MIPD estimation was selected as the optimal 
approach, at RMSE of 0.304 (p=0.432 versus hematocrit-standardized model, 
p=0.148 versus base model with EBE estimation). 

Based on the identified residual error, the theoretical upper limit for target 
attainment is 45.2%. Physician performance averaged 25% PTA, with clear 
underdosing visible in Figure 26B. For bayesian estimation, PTA (Figure 
26C) approached the theoretical upper limit on six out of fourteen days, 
while MPC/MIPD exceeded this limit. There is no apparent bias visible in 
Figure 26A, as mean prediction error is close to 0. The full model did not 
outperform the base model. We opted to use the base model in further 
simulations, as collecting covariates was not worth the increased clinical 
workload. 
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Figure 28: Proportion of patients with at least X concentrations in target, per 
day. Computer (solid line, bold font) vs physician (dotted line, normal font). 

7.4.3. Simulation of model-informed precision dosing 

The base model was used with MPC/MIPD to simulate dose adaptation and 
resulting concentrations. The dose adaptations performed by physicians and 
MIPD are compared in Figure 27. While physicians adapted conservatively, 
MIPD applied a temporary overcorrection of the dose in order to reach target 
concentration as fast as possible. Figure 26 shows a summary of 
concentration per day. MIPD resulted in a large PTA, as well as overall 
concentrations closer to the target window. Per-patient PTA was at 39% ±
15.8% for MIPD (mean ± standard deviation), while physician PTA was at 
28% ± 16.1%. Time-to-event curves for ‘X observations in the target 
window’ are shown in Figure 28. The difference for reaching “>1 day in 
target” is quite small, with only a one-day delay between arms on average. 
This delay grows larger, with “>3 days in target” being reached for 50% of 
the population on day 8 for the intervention arm, while only at day 10 for the 
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control arm. On day 7, 48.2% ± 5.5% reached >3 days in target for MIPD, 
while only 27.5% ± 3.51% reached this for the physician arm. Finally, the KS-
test identified a significant reduction in squared log-distance to target 
window for every day. Log-squared distance to target was normally 
distributed after Box-cox transformation, allowing the application of an 
MMRM analysis. This identified a significant treatment effect, yet only at a 
relative improvement of -13%. Squared log-distance to target window 
decreased from 0.080 ± 0.202 to 0.055 ± 0.191 (mean ± standard deviation). 

 

Figure 29: Minimum detectable effect size for difference in PTA (A) and 
difference in speed of reaching 3 concentrations in target (B). Horizontal lines 

show the true effect and minimum clinically relevant effect 

7.4.4. Power calculation 

Based on the above estimates, study power and minimum detectable effect 
sizes are presented in Figure 29. The candidate trial of N=200 will reliably 
detect a PTA improvement at p<0.01. The clinically relevant PTA can be 
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detected at p<0.01 with N=145 patients. An improvement on TTE less than 
+50% may not be reliably detected by a trial with N=200 patients, yet the 
true effect will be detected even at p<0.01. On log-squared distance to target, 
the population simulation showed a true effect size below the clinically 
relevant limit. 

 

Figure 30: Power to detect an improvement in “time to reach >X 
concentrations in target” (X=1 to 5) after 7, 8, 9 or 10 days, using Mantel-

Haenszel test. PoSS: probability of study success. 

7.4.5. Clinical trial simulation 

Study power to detect these three aforementioned endpoints was simulated 
using a bootstrap of 1000 random trials of 200 patients each. It was trivial to 
show an improvement in average PTA per patient, with a 100% probability 
of study success (PoSS) at 𝑝𝑝 < 0.01. The average expected effect size was 
11.3% [8% - 14%], with per-trial 95% lower confidence limit of 7.5% [4% - 
10.5%]. Study power for the TTE test is shown in 30. PoSS depended on the 
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day and the endpoint both arms were compared at. It was decided to 
evaluate “3-days-in-target” at day 8 post-transplant, which yielded a PoSS of 
90% at 𝑝𝑝 < 0.01. Looking at squared-log-distance-to-target, even the 
sensitive KS-test could only identify an improvement on days 3, 7, 8 and 10 
post-transplant. Only at these days was PoSS > 80% for 𝑝𝑝 < 0.01. Using 
MMRM analysis, an overall improvement could be reliably shown, although 
per-day effects could only be reliably shown on days 6, 7, 8 and 11 at 𝑝𝑝 <
0.05. 

7.5. Discussion 
To the best of our knowledge, this is the first example of predicting a clinical 
trial outcome comparing model-informed precision dosing to standard of 
care, and the use of this prediction to optimize a future planned prospective 
clinical trial. To achieve this, a population PK model was first built and 
evaluated for goodness of fit on the target population. A pragmatic approach 
was presented to incorporate unexplained variability in individual 
parameters. The full simulation code was implemented in a reusable R 
package. Finally, the predicted results were analyzed to describe the 
statistical power of a candidate clinical trial design, allowing optimization of 
said trial design. 

Overall, the population PK model is in reasonable agreement with literature. 
Describing tacrolimus PK by a 1-compartment model with oral absorption is 
common in the absence of rich concentration-time profiles.119 Independent 
groups identified similar time-dependent clearance early post-transplant.120. 
Others identified a time-dependent increase over several weeks post-
transplant121, which is likely a different effect altogether. Parameter 

 

119 Campagne, Mager, and Tornatore, “Population Pharmacokinetics of 
Tacrolimus in Transplant Recipients”. 

120 Antignac et al., “Population Pharmacokinetics and Bioavailability of 
Tacrolimus in Kidney Transplant Patients”; Han et al., “Population 
Pharmacokinetic-Pharmacogenetic Model of Tacrolimus in the Early Period 
After Kidney Transplantation”; Zuo et al., “Effects of Cyp3a4 and Cyp3a5 
Polymorphisms on Tacrolimus Pharmacokinetics in Chinese Adult Renal 
Transplant Recipients”. 

121 Han et al., “Prediction of the Tacrolimus Population Pharmacokinetic 
Parameters According to Cyp3a5 Genotype and Clinical Factors Using 
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estimates are broadly in agreement with results from similar studies focusing 
on the first 14 days post transplant122.  Identified covariates are also in 
agreement with previous studies123, although some identified a large 
difference in bioavailability between Prograft® and Advagraf® formulations. 
The identified power factor 𝛽𝛽𝐶𝐶𝐶𝐶,𝑊𝑊𝑇𝑇 of 0.348 results in a 77% and 122% 
adjustment of clearance for the lightest and heaviest patients (33.5kg and 
125kg respectively) in the study, which in light of inter-individual variability 
of +- 55.7% explains the minimal difference between base and full model 
predictive performance.   The identified IIV is high, which we attribute to the 
poor PK stability of patients early post-transplant. This agrees with other 
studies focusing on the same study period.124 

Notably, the inclusion of hematocrit at first resulted in poor predictive 
performance. When the full profile of a time-varying covariate is not available 
during prospective evaluation, significant bias may be introduced. Joint 
modeling of both drug concentration and covariate is required to overcome 
this limitation. This markedly increased computation times. While model 
simplification resulted in a penalty to OFV, predictive performance was not 
significantly impacted. Notably, applying MPC/MIPD again resulted in low 

 

NONMEM in Adult Kidney Transplant Recipients”; Størset et al., “Improved 
Prediction of Tacrolimus Concentrations Early After Kidney Transplantation 
Using Theory-Based Pharmacokinetic Modelling”; Bergmann et al., 
“Population Pharmacokinetics of Tacrolimus in Adult Kidney Transplant 
Patients”; Golubović et al., “Total Plasma Protein Effect on Tacrolimus 
Elimination in Kidney Transplant Patients – Population Pharmacokinetic 
Approach”. 

122 Antignac et al., “Population Pharmacokinetics and Bioavailability of 
Tacrolimus in Kidney Transplant Patients”. 

123 Campagne, Mager, and Tornatore, “Population Pharmacokinetics of 
Tacrolimus in Transplant Recipients”. 

124 Antignac et al., “Population Pharmacokinetics and Bioavailability of 
Tacrolimus in Kidney Transplant Patients”; Staatz and Tett, “Clinical 
Pharmacokinetics and Pharmacodynamics of Tacrolimus in Solid Organ 
Transplantation”; Musuamba et al., “Statistical Tools for Dose 
Individualization of Mycophenolic Acid and Tacrolimus Co-Administered 
During the First Month After Renal Transplantation”. 
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RMSE, rivaling the more complex model with more covariates, at feasible 
calculation times. 

McDougall et al125 extensively explored the impact of model misspecification 
on precision dosing. They demonstrated that only severe model 
misspecification significantly impacts model-based precision dosing 
performance. This reasoning also applies to covariate models; covariates 
difficult to collect can be omitted without impact to model predictive 
performance. This further exemplifies the necessity to include prospective 
evaluation in the diagnostic toolset when developing models for precision 
dosing. 

Tacrolimus PK has typically been described by a 2-compartment model when 
rich data are used126. In this case however, the use of 2-compartment kinetics 
would not result in different results. The typical distribution phase is < 12ℎ, 
and therefore no information on the distribution phase is present in daily 
trough concentrations, even with multiple dosing. There is an ongoing debate 
on appropriate PK targets for tacrolimus, with some evidence pointing to 
AUC as a superior metric127. Our trough dataset cannot be used to accurately 
predict AUC128. With rich data and an appropriate model, the presented 
approach may be applied to evaluate the accuracy (and improvement over 
standard of care) when using 1, 2, or more blood samples per day. 

CYP3A5 genotype is missing from our current model, as it was not generally 
measured in transplant patients at UZ Leuven hospital. It is worthwhile to 
evaluate the inclusion of this covariate, and to quantify the potential 
improvement in MIPD dosing accuracy. If this covariate is not available, a 
mixture model could be used to estimate individual CYP3A5 expression 

 

125 McDougall et al., “The Impact of Model-Misspecification on Model Based 
Personalised Dosing”. 

126 Brooks et al., “Population Pharmacokinetic Modelling and Bayesian 
Estimation of Tacrolimus Exposure”. 

127 Brunet et al., “Therapeutic Drug Monitoring of Tacrolimus-Personalized 
Therapy”. 

128 Op den Buijsch et al., “Evaluation of Limited Sampling Strategies for 
Tacrolimus”. 
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probability. However, due to the low number of CYP3A5 expressors in the 
target population, we expect the impact to be low and transient. 

In this work, we argue that classical goodness of fit evaluation is not 
appropriate when building a model for MIPD. Even though the full model is a 
significantly better description of the data as compared to the base model, 
this did not result in a significant improvement to predictive performance or 
PTA. Clinically, it is preferable to omit covariates that are cumbersome to 
measure, if they do not improve predictive performance significantly. In 
general, we argue that predictive performance assessment is a key step when 
building MIPD models. 

However, contrary to the well-studied classical goodness of fit evaluation, it 
is unclear how a model with poor predictive performance can be improved. 
As a first step, we suggest to include predictive performance evaluation in 
model building software. The Perl-Speaks-Nonmem suite recently added the 
proseval tool, but lacks clear standard graphs to represent this data. 

The MPC/MIPD method merits further discussion. Correlated residual errors 
in tacrolimus models were previously identified by Størset et al,129 who 
reported that bioavailability varied less between subsequent occasions. 
Correlated inter-occasion variability, which could otherwise be classified as 
‘parameter drift’, has not been studied in detail. Pragmatic solutions include 
down-weighing older concentration samples or arbitrarily increasing 𝜔𝜔 
during estimation. The novel idea of adapting the estimation method rather 
than the model resulted in a significant improvement to predictive 
performance in this dataset. 

The predicted outcome, in the form of predicted tacrolimus trough 
concentrations for the MIPD arm, differs from the estimated model predictive 
performance for three reasons. Firstly, an accurate prediction does not 
necessarily imply a future concentration in target. We can use the first dose 
recommendation as an example: the loading dose is too high in 170 out of 
315 patients, and using the first trough concentration at 08:00 on day 1, the 
computer recommends a 0mg evening dose. The computer predicts this dose 
will still result in too high concentrations the following morning. Secondly, 
the opportunity to adapt the dose may be far into the future, challenging the 

 

129 Størset et al., “Improved Prediction of Tacrolimus Concentrations Early 
After Kidney Transplantation Using Theory-Based Pharmacokinetic 
Modelling”. 
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predictive performance of the model under high within-patient variability. 
When the dose adaptation is performed at 12:00, the Prograft® 
administrations of 20:00 evening and 08:00 the following morning can be 
adapted, with the latest trough therefore at 20:00 the next day. For Advagraf 
however, only the dose at 08:00 the following morning can be adapted, with 
trough at 08:00 two days into the future. This increases prediction error and 
therefore reduced probability of target attainment. Finally, the prediction 
error does not directly translate to an error in resulting concentration after 
MIPD for non-steady state. This highlights the importance of using PK models 
for dose adaptation: dose adaptation tables using dose-normalized 
concentration fail to capture the highly variable and non-steady-state nature 
of the first 2 weeks post transplant.  

Figure 27 shows a computer algorithm performs aggressive dose adaptation, 
in stark contrast to conservative dose adaptation by physicians, who seem to 
be more cautious in this respect. We offer three explanations for this 
behavior. Firstly, in cerebro modeling assumes steady state, and therefore 
cannot correctly relate a wildly varying dosing history and concentrations to 
the required dose adaptation. Secondly, it is difficult for humans to capture 
pharmacokinetic dose-linearity. If the concentration is 50% below target, the 
dose should be doubled. Instead, we see slow uptitration by absolute steps, 
rather than e.g. doubling or halving the dose, contrary to current research 
advising against tacrolimus underexposure.130 Finally, we identified time-
dependent clearance during the first week post transplant. Even when 
gradually increasing the dose, doctors are chasing a moving goalpost. MIPD 
does not suffer from any of these shortcomings. 

In contrast, MIPD even employs a corrective dose to ensure the target trough 
concentration is reached as soon as possible. It remains unclear whether this 
practice is beneficial in real life. Firstly, there is an ongoing discussion on the 
validity of trough concentration as a PK target.131 Targeting AUC may be 

 

130 Brunet et al., “Therapeutic Drug Monitoring of Tacrolimus-Personalized 
Therapy”. 

131 Bouamar et al., “Tacrolimus Predose Concentrations Do Not Predict the 
Risk of Acute Rejection After Renal Transplantation”. 
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more appropriate.132 A recent study by Miano et al133 identified a PK/PD 
association for safety. A 54% increase in acute kidney injury was identified 
per 5ng/mL increase in average tacrolimus trough concentrations over the 
previous 3 days. A similar association for efficacy could not be identified. 
Adding clinical utility (CU), a model integrating PK/PD/CU could focus on 
true benefit for patients, rather than improvement on surrogate endpoints 
with only weak association to clinical benefit. 

In this work, we demonstrated clearly that simulated MIPD concentrations 
can serve to refine the definition of trial endpoints. This allowed us to explore 
beyond mere “improvement in average PTA” and evaluate endpoints such as 
“speed of target attainment” and “distance to target window”. It was not 
possible to detect an improvement consistently on each separate day, even 
using advanced statistical techniques such as Mixed Model Repeated 
Measurements (MMRM).  Only a consistent effect across all days could be 
shown reliably. All things considered, the proposed techniques dig deeper 
into MIPD performance than evaluating odds-ratios of PTA. As of yet, the 
relevance of the presented surrogate endpoints and their relevance to clinical 
outcome is based on empiric evidence only. It is unfortunate that no PK/PD 
model predicting clinical outcomes has been identified. Such a model could 
serve to replace a naïve therapeutic drug monitoring approach targeting a 
therapeutic window, and instead directly find the appropriate dose to target 
a desired PD effect reaching optimum efficacy and toxicity. This model may 
also serve to design a concentration-controlled trial quantifying the clinical 
impact of MIPD. 

A randomized controlled trial is always comparative in nature. Therefore, the 
presented results cannot easily be translated to other hospitals, as the 
standard of care differs widely between hospitals. As an example, steroid 
concomitant therapy was identified to influence tacrolimus PK,134 but 

 

132 Kuypers et al., “Clinical Efficacy and Toxicity Profile of Tacrolimus and 
Mycophenolic Acid in Relation to Combined Long-Term Pharmacokinetics in 
de Novo Renal Allograft Recipients”. 

133 Miano et al., “Early Tacrolimus Concentrations After Lung Transplant Are 
Predicted by Combined Clinical and Genetic Factors and Associated With 
Acute Kidney Injury”. 

134 Press et al., “Explaining Variability in Tacrolimus Pharmacokinetics to 
Optimize Early Exposure in Adult Kidney Transplant Recipients”; Antignac et 
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different treatments of high-dose steroids are in use at different hospitals. 
Furthermore, there is no clear evidence that retrospective data will be 
similar to standard of care performance in a comparative trial. Standards 
may have improved with increased experience, and a clinical trial setting 
may invite physicians to more carefully perform dose adaptation to achieve 
the target window. 

In conclusion, this work offers new insights into the use of simulation to 
predict and optimize MIPD for tacrolimus dose adaptation. We have shown 
the validity of predictive performance as a tool for model selection. 
MPC/MIPD was proposed as a method to incorporate unexplained but 
autocorrelated inter-occasion variability. Retrospective data was used to 
fully simulate a hypothetical MIPD arm, which was then used to 
quantitatively analyze the improvement the technique offers. Finally, the 
simulated data was used to calculate trial power and optimize said trial. The 
simulation software was implemented as an open-source R package, allowing 
to repeat this exercise with any model. By making this software available, we 
hope quantitative predictions on MIPD become within reach, allowing to 
identify where this technology can benefit clinical care the most. 

 

al., “Population Pharmacokinetics and Bioavailability of Tacrolimus in Kidney 
Transplant Patients”; Velickovic-Radovanovic et al., “Population 
Pharmacokinetics of Tacrolimus in Kidney Transplant Patients”. 
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Chapter 8 Tacrolimus MIPD trial 
simulation 

This chapter explores the clinical trial design of a future tacrolimus MIPD 
trial in more detail. It was a key report in the design of the prospective trial 
entitled “Integrated Model-based Medication Dosing Assist App(lication) in 
Klinisch Werk Station (KWS). Proof-of-Concept Validation Study: Tacrolimus in 
Kidney Transplantation” and its accompanying statistical analysis plan. 

8.1. Abstract 
Introduction The aim of this in silico study was to predict how model-
informed precision dosing (MIPD) impacts target attainment of tacrolimus in 
de novo kidney transplant patients in the first 14 days post-transplant, as 
compared to standard of care (SoC) where physicians perform dose 
adaptation without the use of a computer or statistical model. This difference 
was evaluated in the population, while the statistical power to detect such a 
difference was also evaluated for the planned study of N=200 patients. 

Methods To represent SoC, a retrospective dataset of 315 patients was 
evaluated. To represent MIPD, these 315 patients were dose-adapted in silico 
using a computer algorithm. We evaluated the difference between MIPD and 
Standard of Care on four aspects: time until a patient has a first trough 
sample in the target window, per-patient target attainment, proportion of 
concentrations in target per day, and squared log-distance between trough 
concentration and target window. Overall effect size was predicted through 
population simulation, and probability of study success (PoSS) was estimated 
through bootstrap. 

Results 

• Difference in time to first-sample-in-target was a feasible endpoint. 
Population simulations show a +8% improvement after 1 day, and +15% 
after 2 days. A Mantel-Haenszel test showed MIPD superiority in a 
simulated clinical trial, with PoSS at 87.2% for p<0.05, and 62.8% for 
p<0.01. For time to multiple concentrations in target, PoSS was even 
higher. 
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• Per-patient target attainment was a feasible endpoint. Average per-
patient target attainment increased from 28% to 39%. A t-test was 
shown to detect MIPD superiority in the clinical trial, with PoSS at 100% 
for p<0.01. 

• A difference in proportion of samples in-target per day was not a feasible 
endpoint. Although population simulation predicted +11.8% more 
samples in target for MIPD -ranging per day from +5% (day 4) to +20% 
(day 7)- a proportions test could only reliably (+80% PoSS) detect this on 
day 7 and 11. 

• A difference in overall squared distance from target window was a 
feasible endpoint. A generalized least squares model with fixed effects 
per day, per arm, and interaction day/arm described the data well. A 
significant improvement for MIPD in all days except days 4 and 5 was 
observed. An overall difference could be reliably detected at p<0.01. Per-
day, this difference could only be reliably detected (+80% PoSS) on day 6 
to 8, and day 11 at p<0.05. 

• Squared distance from target window per day was not a feasible 
endpoint. Population simulation showed a significant decrease on all 
days for MIPD, although the difference is small on days 4 and 5. In the 
clinical trial, a Kolmogorov-Smirnov test at p<0.05 could only reliably 
(+80% PoSS) detect this difference on day 3 and days 7 through 11. 

Conclusion Faster time-to-target, higher per-patient target attainment and 
lower overall squared distance from target window were all predicted to be 
detectable at a high probability, indicating they may be used as a primary 
endpoint. Unfortunately, none of the analysis methods studied were 
predicted to detect a higher proportion in target per day or lower distance 
from target window per day on the first days post-transplant. 

8.2. Introduction 
This chapter details the simulations performed in preparation of the clinical 
trial Dose adaptation of tacrolimus for de novo kidney transplant recipients in 
the first 14 days post-transplant, scheduled between end of 2019 and end of 
2022. 

Tacrolimus is an immuno-suppressor that is used to reduce the risk of graft 
rejection after solid organ transplant. As with many drugs, it has reduced 
efficacy at low concentrations, but is potentially toxic at high doses. For 
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tacrolimus, a trough concentration between 10-15 ng/mL is targeted during 
the first 3 months post transplant.135 

Unfortunately, tacrolimus pharmacokinetics are widely variable in the 
population. A standard dose of 5 mg/day may result in subtherapeutic 
concentrations of 2 ng/mL for some, and toxic concentrations of 30 ng/mL in 
others. To ensure tacrolimus concentrations stay within the therapeutic 
window, therapeutic drug monitoring is used. At UZ Leuven, newly 
transplanted patients undergo daily blood sampling in the morning. The 
central lab analyzes these samples through LC-MS/MS and reports 
tacrolimus concentrations to nephrologists by noon. During rounds, the dose 
is adapted accordingly. 

Historically collected data from previous studies136 was analyzed to quantify 
dose adaptation accuracy and precision. Based on N=315 patients, the 
fraction of patients in the target are summarized in Table 4 below. There is 
only a small number of patients in the target window. There is very few 
alarming under-dosing (below 5 ng/mL), but at least 1 in 10 patients is 
overdosed. 

 

135 Wallemacq et al., “Opportunities to Optimize Tacrolimus Therapy in Solid 
Organ Transplantation”. 

136 Vanhove et al., “Pretransplant 4β-Hydroxycholesterol Does Not Predict 
Tacrolimus Exposure or Dose Requirements During the First Days After 
Kidney Transplantation”. 
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Table 4: Overview of target attainment (in %) in N=315 patients transplanted 
at UZ Leuven between 2004 and 2014 

Day after transplant <5 05-12 12-15 15-20 >20 

1 8.5 38.2 16.3 14.7 22.2 

2 0.6 21.5 16.7 28.9 32.2 

3 0.3 23.0 22.4 33.9 20.4 

4 0.3 31.6 29.4 29.7 9.0 

5 0.3 40.0 33.2 22.3 4.2 

6 0.0 47.1 34.4 15.6 2.9 

7 0.3 54.0 31.8 11.3 2.6 

8 1.3 56.2 31.4 11.0 0.0 

9 1.0 59.1 30.9 8.6 0.3 

10 1.1 61.8 28.1 8.2 0.7 

11 0.0 64.0 27.6 7.5 0.8 

12 0.0 63.8 27.1 9.0 0.0 

13 0.0 60.7 29.5 7.7 2.2 

14 0.6 58.3 30.7 9.8 0.6 

By using a population pharmacokinetic model, concentration-time profiles 
can be predicted for individual patients. Based on only a few concentration 
samples, an accurate profile for the patient can be constructed, predicting 
future concentrations for a given regimen. This can then be used to find the 
ideal dosing regimen to hit a given target concentration at a future point in 
time. 

Using retrospective data, such a population PK model was constructed for UZ 
Leuven patients. A dose adaptation software was implemented that uses this 
model. The software automatically receives patient data from the Electronic 
Patient Record system in use at UZ Leuven (Klinisch WerkStation / KWS) and 
can automatically adapt future prescribed doses. 
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It is our aim to investigate through simulations whether such a computer 
system can improve target attainment of tacrolimus concentrations in patients 
receiving de novo kidney transplantation. 

8.3. Simulation objectives 
To assess whether the use of a computer system to adapt daily tacrolimus 
doses… 

1) Increases speed of target attainment. It is our hypothesis that a 
computer system would result in a faster attainment of target. 

2) Improves overall target attainment. It is our hypothesis that a 
computer system would show increase the amount of trough samples 
in target overall. 

3) Improves average target attainment per patient. It is our hypothesis 
that a computer system will quickly identify outlier patients and dose 
adapt them accordingly, while physicians adapt more slowly. 

4) Improves target attainment per day. It is our hypothesis that a 
computer system will increase the number of patients in target for all 
days. 

This evaluation will first be performed on the population level. To represent 
current standard of care, historic data will be used. To represent model-
informed precision dosing results, an iterative cycle of fit-adapt-measure will 
be performed using the historic data. 

In a second step, a random sample of 200 patients will be drawn from the 
population. This is repeated 10,000 times to obtain a sample of possible trial 
outcomes. These trial outcomes are all tested for significant results, which 
yields an estimate of statistical power. 

8.4. Methods 
For a detailed description of how the simulated concentration-time profiles 
were generated, we refer to Chapter 7. 

8.4.1. Population analysis 

630 patient profiles are available: 315 physician-adapted true concentration-
time profiles, and 315 computer-adapted simulated concentration-time 
profiles. This is referred to as “the population”. Only 139 patients were 
observed for the full 14 days. For analyses where the time profile of a single 
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patient is important, this reduced subset was used. We assumed missing data 
was caused by non-informative dropout, so this does not introduce any bias 
in our results. 

The difference between computer and physician dosing was analysed on 
three aspects: speed of target attainment per patient, average target 
attainment per patient, and overall target attainment per day. A graphical 
exploration was performed on the population first. We show the raw data as 
concentration-time profiles and as a scatter plot of concentration vs dose 
adaptation. 

We then performed testing of the difference between physician and 
computer for the three aspects mentioned previously. Speed of target 
attainment per patient is shown as a Kaplan-Meier plot, and the p-value 
calculated using a Mantel-Haenszel test. Additionally, survival curves to reach 
two/three/four/… concentrations in target were plotted. Subsequently, we 
analysed ratio of days in target per patient. The normal, gamma, beta and 
logistic distributions were used to fit the data, and the most appropriate 
distribution was carried forward to quantify the difference between 
treatment arms. Finally, we show the proportion of patients in target per day. 
A proportions test was used to assert whether this distribution was different 
between arms. 

As an alternative to dichotomizing concentrations into ‘in target’ vs ‘out of 
target’, squared distance to target window was used. To ensure findings can 
be translated to other target windows, data were first log-transformed. The 
empirical cumulative distribution function (ECDF) per day was then 
compared between physician and computer using a Kolmogorov-Smirnov 
test. 

if 𝐸𝐸 < 12: 𝑅𝑅𝑆𝑆𝑇𝑇𝑣𝑣𝑣𝑣𝐾𝐾𝑑𝑑𝐷𝐷𝑝𝑝𝐻𝐻𝑑𝑑𝑣𝑣𝑛𝑛𝑝𝑝𝐾𝐾 = �𝑙𝑙𝑙𝑙𝑙𝑙(𝐸𝐸) − 𝑙𝑙𝑙𝑙𝑙𝑙(12)�2 

if 𝐸𝐸 in [12,15]:𝑅𝑅𝑆𝑆𝑇𝑇𝑣𝑣𝑣𝑣𝐾𝐾𝑑𝑑𝐷𝐷𝑝𝑝𝐻𝐻𝑑𝑑𝑣𝑣𝑛𝑛𝑝𝑝𝐾𝐾 = 0 

if 𝐸𝐸 > 15:𝑅𝑅𝑆𝑆𝑇𝑇𝑣𝑣𝑣𝑣𝐾𝐾𝑑𝑑𝐷𝐷𝑝𝑝𝐻𝐻𝑑𝑑𝑣𝑣𝑛𝑛𝑝𝑝𝐾𝐾 = �𝑙𝑙𝑙𝑙𝑙𝑙(𝐸𝐸) − 𝑙𝑙𝑙𝑙𝑙𝑙(15)�2 

To avoid multiple testing, a generalized least squares model with within-
patient correlation structure was used to fit the data. Different residual error 
variances were estimated for different days. To ensure normal data, data was 
first shifted by the mean (to avoid any ‘0’ being present) and then box-cox 
transformed. A base model with only a fixed effect per day was fitted, and 
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subsequently amended with a single treatment effect, and with a treatment 
effect per day. 

8.4.2. Statistical power of a clinical trial 

To predict statistical power, the bootstrap method was used. 10,000 random 
trials were sampled by drawing 67 random patients from the physician-
treated patients in the population, and 133 patients from the computer-
treated patients in the population. Each trial was then analysed for difference 
between both arms, and p-value reported, using the following tests: 

• TTE analysis using Mantel-Haenszel test 

• Treatment effect on ratio of days in target per patient 

• Proportion-test per day 

• Significance of treatment effect in linear model on squared distance to 
target window 

The resulting distribution of p-values is then graphically shown in an ECDF 
curve, representing study power to detect an effect at p < X. 

8.5. Results 

8.5.1. Graphical exploration 

Looking at trough concentrations in Figure 31, we observed a clear 
difference between physician and computer dosing. While physician-based 
dosing had median concentrations below the therapeutic window, computer-
based dosing median concentrations were consistently in the therapeutic 
window, and close to the target of 13.5 ng/mL. The IQR was consistently 
smaller when using computer dosing. 



CHAPTER 8  

140 

 

Figure 31: Trough concentrations with computer (red) or physician (blue) 
dosing. Therapeutic window shown in green. 

This can be explained by looking at dose adaptation in Figure 32. Physicians 
generally underreact: concentrations between 5 and 12 ng/mL do not result 
in a high enough dose increase; concentrations between 15 and 20 ng/mL do 
not result in a high enough dose decrease. The computer seemingly 
overreacts: low concentrations result in high dose increases; high 
concentrations result in severe dose decreases. This is intended behaviour, as 
more pronounced dose adaptations are required to reach steady-state more 
quickly. The variability in computer dose adaptations for a given 
concentration shows the computer takes previous concentrations into 
account, as well as non-steady-state. 
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Figure 32: Physician dose adaptation (left) versus computer dose adaptation 
(right). The observed concentration (x-axis) results in a dose change on the 

subsequent day (y-axis). Assuming steady state, concentrations in target (green 
area, 12-15 ng/mL) should not induce a dose adaptation; lower concentrations 
require higher doses, higher concentrations require lower doses. The grey line 

shows the theoretical dose adaptation when following the rule of three. 

8.5.2. Time-to-event analysis 

Looking at time-to-event in Figure 33 and Figure 34, computer dosing 
significantly reduced time to reach target. After 1 dose adaptation, there is 
8% more patients who reached target at least once. After 2 dose adaptations, 
this difference rises to 15%, a significant improvement over physician dosing. 
Median time-to-event decreased from day 4 to day 3. 

This observation was maintained when evaluating time-to-2-samples-in-
target, time-to-3-samples-in-target, etc. Computer dosing consistently 
reduced median event times: 1 day earlier for 1- and 2-samples-in-target, 3 
days earlier for 3-samples-in-target. Less than 50% of patients had 4 or more 
samples in target with physician dosing, while computer dosing ended 
allowed more than 50% of patients to have 6 or more samples in target. 
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Figure 33: Time-to-event Kaplan-Meier plot showing how quickly a patient 
reaches at least 1 concentration in target 
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Figure 34: Time to event curves to reach 1, 2, 3, … concentrations in target. 
Computer (solid line, bold font) vs physician (dotted line, normal font). 

8.5.3. Time-to-event analysis: statistical power 

Overall probability of success (Figure 35) was predicted as 87.2% (at 
p<0.05) and 62.8% (at p<0.01) for time to reach 1 concentration in target. 
PoSS for time to reach 2, 3, 4, … concentrations in target was predicted even 
higher. PoSS decreased for time to reach 7, 8 or 9 concentrations in target, 
because few patients are predicted to reach this state. 
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Figure 35: Power to detect a significant improvement in time to reach 1, 2, 3, … 
concentrations in target on day X. 

A cox proportional hazards model was also used to fit survival data. The 
model predicts different hazards depending on whether computer or 
physician dosing is used. 

𝜆𝜆(𝑑𝑑) = 𝜆𝜆0(𝑑𝑑) × 𝐾𝐾𝛽𝛽∗𝐼𝐼ℎ𝑑𝑑𝑂𝑂𝑖𝑖𝑟𝑟𝑖𝑖𝑡𝑡𝑛𝑛 

𝐾𝐾𝛽𝛽 was estimated at 0.4742, meaning hazards are about half as low in the 
Physician arm. Schoenfeld residuals represent the difference between 
expected covariate distribution at a given time, and the actual covariate 
distribution. If the proportional-hazard model holds, these residuals should 
be constant over time: survival is as predicted by the model. Power did not 
improve however. The afore-mentioned Mantel-Haenszel test was still more 
robust. 
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8.5.4. Target attainment per patient 

The computer increased the average ratio of days in target per patient 
(Figure 36). The normal distribution fitted these data best, based on both 
Kolmogorov-Smirnov and Anderson-Darling statistics. We therefore used a t-
test to compare both arms. The difference was highly significant. 

 

Figure 36: Ratio of trough samples in target, per patient. On average, 39% of 
samples are in target for the computer arm, versus 28% for the physician arm. 

8.5.5. Target attainment per patient: statistical power 

All simulated trials showed a significant effect (Figure 37). Expected 
observed effect size was +11.3% [+8%, +14.6% 95%CI]. 
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Figure 37: Estimate of difference in average per-patient target attainment for 
1,000 random trials. 

8.5.6. Correlation between in target today and in target 
yesterday 

There was a high correlation between being in target yesterday and being in 
target today. This correlation was highest in the physician arm. Indeed, there 
is a high probability of staying in target in the physician arm. Correlation is a 
false metric for performance. A good dose adaptation strategy ensures a high 
between-day correlation when in target, but a low between-day correlation 
when out of target. 

As an approximation, a discrete markovian process was considered. Please 
note that this is a simplification, as this process can hardly be called 
markovian. Base transition probabilities in the population are shown in Table 
5 below. 
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Table 5: Transition probabilities 

Physician Today Out of target Today In target 

Yesterday Out of target 0.765 0.235 

Yesterday In target 0.577 0.423 

Computer   

Yesterday Out 0.605 0.395 

Yesterday In 0.550 0.450 

We fitted a discrete markov chain to each individual and plotted the 
estimated transition probabilities in Figure 38. 

 

Figure 38: Density plots of individual transition probabilities, per arm 
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The computer was predicted to only slightly improve the probability of 
staying in target (bottom right). The major change is in the bottom left of the 
figure: the computer increases the probability of getting into the target. 
Because the effect is only small, no power analysis was performed. 

8.5.7. Proportion of trough samples in target 

The amount of trough samples in target was analyzed and compared through 
a proportions test in Table 6. There was a significant difference on days 2, 3, 
6, 7, 8, 10, 11 and 12 when adjusting for multiple testing using Bonferroni 
correction (p < 0.05 / 14 -> p < 3.5e-3). 
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Table 6: Number of samples in target per day for Physician and Computer 
dosing. P-value to reject H0 (no effect) determined through t-test. 

Day N Physician Computer Increase p.value 

1 306 48 46 -0.7% 5e-01 

2 311 48 84 +12% 3e-04 

3 313 68 111 +14% 1e-04 

4 310 95 110 +4.8% 1e-01 

5 310 112 134 +7.1% 4e-02 

6 308 113 149 +12% 2e-03 

7 302 94 154 +20% 5e-07 

8 299 89 129 +13% 5e-04 

9 291 91 120 +10% 8e-03 

10 267 70 109 +15% 2e-04 

11 239 68 112 +18% 2e-05 

12 210 55 89 +16% 3e-04 

13 183 58 86 +15% 2e-03 

14 163 47 71 +15% 4e-03 

8.5.8. Proportion of trough samples in target: statistical 
power 

When performing this test on a randomly sampled clinical trial however, 
there was almost never a significant difference (see Figure 39 below). Only 
for day 7 and 11 was a PoSS of more than 80% predicted at p<0.05. 
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Figure 39: Power to detect a difference in proportion of trough samples in 
target per day. 

8.5.9. Squared distance to log-transformed target 
window and target attainment per day 

When using the squared distance to log-transformed target window, 
significant differences for all days were observed (Figure 40 below). 
Statistical significance was determined by using a Kolmogorov-Smirnov test. 
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Figure 40: Difference between computer and physician in squared log-distance 
to target window, using KS-test 

8.5.10. Squared distance to log-transformed target 
window per day: statistical power 

Statistical power for the KS test per day is shown in figure 41. Only on day 3 
and days 7 to 11 was a PoSS higher than 80% predicted for p<0.05. 
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Figure 41: Power for KS-test of squared distance per day. 

8.5.11. Squared distance to log-transformed target 
window and linear model over all days 

As expected, many concentrations were in the target window, and squared 
distance therefore showed a frequent number of ‘0’. This was shifted by the 
mean of the data to ensure a box-cox transform could be performed. The 
optimal lambda parameter was found as -1.86. Data was still far from normal, 
owing to a large amount of 0 in the original dataset (KS-statistic 0.22, AD-
statistic 630). 

A linear model was fitted to the transformed squared distance. The model 
building process is detailed below: 

1) No clear algebraic relation could be found linking DAY to the 
outcome. DAY was therefore treated as a categorical variable. 

2) Treatment effect was added as a single fixed effect. 
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3) Variance of squared distance is different between days. A variance 
structure allowing 14 different variances was used. 

4) Squared distance is correlated between days for a given individual. A 
general correlation structure was used allowing for within-individual 
correlation between days. 

5) A per-day treatment effect was added, as the difference between 
computer and physician clearly differs between days. 

This resulted in the following model, shown below as R code: 

gls(SquaredDeviation ~ Arm*DAY,  
              # observations are correlated between days 
              # within an individual, but uncorrelated 
              # between different individuals 
              corr = corSymm(form= ~ index | ID),  
              # allow a different variance per day 
              weights=varIdent(form = ~ 1 | DAY) 
) 

The model identified a significant treatment effect in the population (see 
Figure 42). Lsmeans were calculated to predict both average and per-day 
treatment effect. This showed a significant treatment effect in the population, 
with per-day treatment effect significant at p<0.05, except for days 4, 5 and 
13, with p=0.15, 0.26 and 0.078 respectively. 
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Figure 42: Effect size predicted by GLS in the population. Bars show 95% 
confidence interval. 

8.5.12. Squared distance to log-transformed target 
window: statistical power 

Only 100 random trials were simulated, due to long runtimes. Statistical 
power to detect an average difference between arms was high: all trials 
showed p-values lower than 0.01. However, a per-day treatment effect was 
predicted to only reliably show at p<0.05 on days 6, 7, 8 and 11 (see Figure 
43). 
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Figure 43: Power to detect an improvement in overall (left) or per-day (right) 
squared distance to target window. 

8.6. Conclusion 
In this study, we predicted how model-informed precision dosing improves 
tacrolimus target attainment in de novo kidney transplant patients in the 
first 14 days post-transplant. Specifically, the following four aspects were 
evaluated: time to target attainment, target attainment per patient, target 
attainment per day, and squared distance to target. 

On a population level, model-informed precision dosing is predicted to 
improve all of these aspects significantly. After 1 dose adaptation, 8% more 
patients have reached the target. After a second dose adaptation, this 
increases to 15%. Per-patient target attainment increased from 28% to 39%. 
On all days, a higher proportion of samples is in target. Finally, a linear model 
predicts significantly lower squared distance from target. In conclusion, 
MIPD improves target attainment on all aspects. 
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Unfortunately, this does not mean we can show this effect in a study with a 
limited number of patients. An overall faster time-to-target can be reliably 
shown. This also applies to higher per-patient target attainment. Overall, an 
increase in target attainment can be shown, although this can only be reliably 
detected on day 6, 7, 8 and 11. 

It should be noted that we used retrospective data as a representation of the 
control arm in a head-to-head study. Physicians may work more carefully 
than normal practice, resulting in increased target attainment. However, 
computer dose adaptation may likewise improve, thanks to improved data 
collection and reduced data error. 

Our results are a blueprint for the study protocol of a randomized clinical 
trial comparing physician to MIPD dosing. This enables clinicians to take an 
informed decision about the clinical endpoint and expected results. 
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Chapter 9 Is tacrolimus precision 
dosing under azole co-medication 
worth it? 

This chapter is based on the master thesis work of Mirthe Vincken, under 
daily guidance by Ruben Faelens and promoted by Pieter Annaert. R.F. wrote 
the text and supervised execution, M.V. executed the research, P.A. provided 
feedback and review of the thesis text. Dirk Kuypers provided the clinical and 
PK dataset and the proposal for the study. 
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9.1. Abstract 
Introduction Tacrolimus is often co-administered with posaconazole or 
voriconazole anti-fungal agents, as immunosuppressed patients are 
particularly vulnerable for fungal infections. As both tacrolimus and -azoles 
are metabolized by CYP450, tacrolimus clearance decreases. This 
necessitates a tacrolimus dose adaptation. Unfortunately, such adaptation is 
not routinely performed nor recommended. Doctors rely on reactive TDM to 
eventually reach safe and effective tacrolimus concentrations. This study 
uses modeling of a retrospective dataset in lung and kidney transplant 
recipients to formulate proactive tacrolimus dose adaptation advice on start 
of -azole therapy. 

Results A dataset of 122 patients was available: 91 lung transplant recipients 
and 31 kidney transplant recipients. A 2-compartment disposition with oral 
absorption described the tacrolimus concentration profiles well. Azole co-
administration was estimated to reduce tacrolimus clearance 3-fold, with IIV 
of 55.5% CV% identified on this DDI effect. 

Conclusion Based on these modeling results, we recommend that physicians 
proactively reduce the tacrolimus dose 3-fold when initiating -azole co-
treatment. Due to the high remaining IIV on the DDI effect, reactive TDM is 
still recommended after -azole initiation to fine tune the dose. 

9.2. Introduction 
Tacrolimus is used to reduce risk of organ rejection in solid organ transplant 
recipients. This drug is a calcineurin inhibitor and thus inhibits a key step in 
the immune response, protecting the transplanted organ.137 Tacrolimus 
therapy is not straightforward, as the wide inter-individual pharmacokinetic 
variability (IIV) and narrow therapeutic window requires regular patient 
follow-up in the form of concentration-based dose adaptation. Daily doses to 
reach effective and safe concentrations vary between 3mg and 30mg138. 
Further complicating this challenge are drug-drug interactions. Tacrolimus is 

 

137 Vincenti et al., “A Long-Term Comparison of Tacrolimus (Fk506) and 
Cyclosporine in Kidney Transplantation”. 

138 Staatz and Tett, “Clinical Pharmacokinetics and Pharmacodynamics of 
Tacrolimus in Solid Organ Transplantation”. 
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metabolized by CYP450 enzymes, primarily CYP3A5 and CYP3A4. Even if 
TDM manages to adapt the dose to varying inter-patient CYP450 activity, 
concomitant drug influencing these enzymes -either as inhibitor/substrate or 
inducer- may result in unsafe or ineffective tacrolimus concentrations139. 

One such drug class is azole antifungal agents, such as voriconazole and 
posaconazole. Fungal infections are common in immunosuppressed 
patients.140 Invasive aspergillosis, the most common infection-causing 
pathogen, occurs in as much as 15% of solid organ transplants, and mortality 
rates are approx 22%. In lung transplant, mortality rises as high as 67-82%. 
As such, antifungal agents are essential as prophylaxis, with even higher 
doses required for treatment. Most azoles are notorious for their potential to 
inhibit CYP3A4. Therefore, they pose a major drug-drug interaction with 
tacrolimus, with dose-normalized concentration observed to increase 4-fold 
with voriconazole co-therapy, and 3-fold with posaconazole co-therapy141. To 
correct for this, tacrolimus doses should be proactively reduced. 

However, as reported by Vanhove et al,142 proactive dose adaptation is not 
commonly performed, nor is it performed in the same manner in all patients. 
Although the optimal individual dose is eventually identified through 
concentration-based dose adaptation, an optimal initial dose adaptation 
would ensure improved tacrolimus safety during the first days post azole 
initiation. 

Vanhove et al also showed high variability in the effect size of drug-drug 
interaction. Mean dose-normalized concentration ratio with versus without 
azole co-therapy ranged from 186% to 796% (5th percentile and 95th 
percentile). This beckons the question whether this variability may be 
predicted, either through covariates or through correlation with 
concentration measurements pre-initiation of azole. The presented work 

 

139 Zhang et al., “Effect of Voriconazole and Other Azole Antifungal Agents on 
Cyp3a Activity and Metabolism of Tacrolimus in Human Liver Microsomes”. 

140 Kabir, Maertens, and Kuypers, “Fungal Infections in Solid Organ 
Transplantation”. 

141 Vanhove et al., “Determinants of the Magnitude of Interaction Between 
Tacrolimus and Voriconazole/Posaconazole in Solid Organ Recipients”. 

142 Vanhove et al. 
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uses population PK (popPK) non-linear mixed effects modeling on a 
retrospective dataset to answer these questions and identify the optimal 
dose adaptation strategy. 

9.3. Methods 

9.3.1. Source dataset 

A retrospective dataset collected by Vanhove et al (2017) was used. Collected 
patient data ranged from 2007 to 2015. This multicenter study consisted of 
both lung and kidney organ transplant recipients. Azoles were administered 
both as prophylaxis early post-transplant (<90 days), or as treatment for a 
suspected fungal infection. For more details, we refer to the publication by 
Vanhove et al. 

Tacrolimus concentrations were observed at the following timepoints: at 
least three timepoints prior to azole initiation, all available timepoints during 
azole treatment, and 7, 14, 30 and 90 days post azole discontinuation. 

9.3.2. Modeling 

A 2-compartment disposition with oral absorption was used to describe the 
data. As only sparse data was available, several parameters were fixed to 
values from literature.143 Absorption rate 𝐾𝐾𝑡𝑡, intercompartmental clearance 
𝑄𝑄 and peripheral comparment volume 𝑉𝑉2 were fixed at 0.53ℎ−1, 70𝐶𝐶/ℎ and 
1300𝐶𝐶 respectively. Clearance 𝐸𝐸𝐶𝐶 and central compartment volume 𝑉𝑉1 were 
estimated. 

Presence of antifungals was modified as an ON/OFF modifier on clearance 
using the following formula, with 𝛽𝛽𝑡𝑡𝑎𝑎𝑡𝑡𝑙𝑙𝑡𝑡,𝐶𝐶𝐶𝐶 the covariate effect and 
𝑑𝑑𝐴𝐴𝑙𝑙𝑙𝑙𝐾𝐾𝐼𝐼𝑣𝑣𝐾𝐾𝐻𝐻𝐾𝐾𝑛𝑛𝑑𝑑 at value 0, 1, and 0 before, during and after azole treatment 
respectively: 

𝐸𝐸𝐶𝐶 = 𝐸𝐸𝐶𝐶𝑂𝑂𝑡𝑡𝑂𝑂𝑡𝑡 × 𝐾𝐾𝛽𝛽𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎,𝐶𝐶𝐶𝐶×𝐴𝐴𝑎𝑎𝑡𝑡𝑙𝑙𝑡𝑡𝐼𝐼𝑡𝑡𝑡𝑡𝑂𝑂𝑡𝑡𝑛𝑛𝑑𝑑 

 

143 Musuamba et al., “A Simultaneous D-Optimal Designed Study for 
Population Pharmacokinetic Analyses of Mycophenolic Acid and Tacrolimus 
Early After Renal Transplantation”. 
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Inter-individual variability was estimated on 𝐸𝐸𝐶𝐶 and 𝑉𝑉1, with correlation. 
Inter-individual variability was also estimated on 𝛽𝛽𝑡𝑡𝑎𝑎𝑡𝑡𝑙𝑙𝑡𝑡,𝐶𝐶𝐶𝐶. A combined 
additive and proportional residual error model was used. 

Model fit was evaluated through prediction-corrected VPC, as well as 
standard GoF metrics such as longitudinal individual weighted residual plots 
and log-likelihood. A stepwise covariate search was performed on a subset of 
clinically relevant covariates. Covariates leading to a statistically significant 
model were included. 

9.3.3. Simulation 

To characterize DDI-related dose adaptation performance, we focused on 
𝛽𝛽𝑡𝑡𝑎𝑎𝑡𝑡𝑙𝑙𝑡𝑡,𝐶𝐶𝐶𝐶. This allowed us to ignore all tacrolimus PK variability unrelated to 
DDI. The individual posthoc estimates 𝐸𝐸𝐶𝐶𝑡𝑡𝑡𝑡𝑓𝑓  and 𝑉𝑉1𝑡𝑡𝑡𝑡𝑓𝑓 from the final popPK 
model on all available data were considered as reference values. As 
prediction strategy, standard of care (SoC), model-informed fixed effect, 
model-informed covariate-based effect and model-informed concentration-
based effect were evaluated. The mean squared relative error was compared 
for each adaptation strategy. 

The relative error in clearance prediction post-azole initiation can be directly 
related to error in steady-state concentration. If we assume a trough 
concentration of 10 ng/mL pre-initiation, the concentration post-initiation 
𝐸𝐸𝑝𝑝𝑡𝑡𝑂𝑂𝑑𝑑 is as follows: 

𝐸𝐸𝑝𝑝𝑡𝑡𝑂𝑂𝑑𝑑 = 10 ×
𝐸𝐸𝐶𝐶𝑝𝑝𝑡𝑡𝑡𝑡𝑑𝑑
𝐸𝐸𝐶𝐶𝑡𝑡𝑡𝑡𝑓𝑓

 

A reclassification table was created to show how SoC compared to new dose 
adaptation strategies. Patients were divided in 5 categories: no efficacy 
(<5ng/mL), at risk for efficacy, in target (8-12ng/mL), at risk for toxicity, and 
toxicity (>15ng/mL). 

9.3.4. Software 

All statistical analysis was performed using R 4.0.4. Non-linear mixed effects 
modeling was performed using Monolix 2019. 
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9.4. Results 

9.4.1. Source dataset 

126 patients were available for inclusion. Exploratory data analysis identified 
four patients who received azole therapy prior to transplantation; these were 
excluded. Two implausible measurements were also excluded. 

The final dataset consisted of 122 patients: 91 lung transplant recipients, 
with 25 patients suffering from cystic fibrosis (CF), and 31 kidney transplant 
recipients. 24 lung transplant patients received posaconazole, all other 
patients received voriconazole. 

Tacrolimus trough concentrations (regular and dose-normalized) are 
presented in figure 44. The figure shows insufficient dose adaptation post-
azole initiation, with tacrolimus concentrations rising above 15 ng/mL for a 
quarter of patients. Only after a considerable period are doses adapted to 
reach safe concentrations. Underexposure is apparent at azole 
discontinuation, as the dose is not proactively adapted to correct for renewed 
tacrolimus clearance. Dose-normalized concentrations clearly show the 
reduced tacrolimus clearance during comedication with azoles. As doses 
were continuously adapted, dose-normalized concentration is not steady 
state. Therefore, it is not a perfect surrogate for clearance, explaining the 
high variability between days. 
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Figure 44: Tacrolimus concentration (a) and dose-normalized concentration 
(b) before (dark blue), during (light blue) and after (dark blue) azole therapy. 
Boxplot shows median (center line), 25th and 75th percentiles (edges of box), 

data range (whiskers). Outliers further than 1.5 times inter-quartile range are 
plotted as points. 
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9.4.2. Modeling 

The base model had acceptable fit with low residual errors. Clearance and 
central compartment volume were estimated at 20.6𝐶𝐶/ℎ and 2820𝐶𝐶 
respectively. The azole effect on clearance was estimated at 0.319, meaning 
clearance was at 31.9% of base clearance during azole comedication. IIV was 
estimated high, at 98.6% and 192% for clearance and central compartment 
volume respectively. Parameter estimates are summarized in Table 7. 

This model was further improved by inclusion of CYP3A5 effect on clearance 
(18.8 L/h for expressors, 13.2 L/h for non-expressors), IIV on the azole effect 
(55.5%), and correlation between IIV of V1 and CL (-0.442). This reduced 
2log-likelihood by 70.4 points. 

No correlation could be found between tacrolimus disposition IIV and azole 
effect size IIV. There was no statistical evidence for an azole effect size linked 
to azole concentrations. Further covariate search focused only on azole effect 
IIV. The following covariates were tried: age, proton-pump inhibitor 
comedication, bodyweight, CYP2C19*2 genotype, CYP2C19*17 genotype, 
CYP3A5*3 genotype and transplantation type. Only PPI resulted in a 
statistically significant improvement. 
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Table 7: Parameter estimates of the base and final population 
pharmacokinetic model. 

Parameter Base model 
(OFV=8636.12) RSE Final model 

(OFV=8565.72) RSE 

Typical values     

Ka [/h] 0.53 fix 0.53 fix 

CL [L/h] 20.6 9.4% 18.8 9.3% 

V [L] 2820 25% 988 34% 

Q [L/h] 70 fix 70 fix 

V2 [L] 1300 fix 1300 fix 

Covariate effects     

Azole on CL 0.319 0.81% 0.325 6.2% 

CYP3A5 on CL   0.703 36% 

Inter-individual 
variability     

CL 168% 6.9% 146% 7.4% 

V1 585% 11% 1150% 10% 

Azole on CL   55.5% 11% 

corr V1,CL   -0.442 22% 

Residual error     

Additive [L/h] 0.284 7% 0.261 7.8% 

Proportional 0.138 5.9% 0.134 5.9% 

Inter-individual CV% was calculated as sqrt(exp(omega^2)-1). Relative 
standard error (RSE) was determined through importance resampling. 
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9.4.3. Simulation 

Based on the retrospective dataset, standard of care dose adaptation was 
determined to be a 50% dose reduction. This resulted in a MSE of 0.468. The 
model identified a typical 𝛽𝛽𝑡𝑡𝑎𝑎𝑡𝑡𝑙𝑙𝑡𝑡,𝐶𝐶𝐶𝐶 of 0.319. For ease of clinical 
implementation, this was rounded to 0.33 (divide dose by 3). This resulted in 
a far lower MSE of 0.099, indicating it is a superior dose adaptation. A dose 
reduction dependent on PPI comedication (0.318 in presence of PPI, 0.408 
without) further reduced MSE to 0.0734. More details are available in Table 
8. Relating this to clinical impact, Figure 45 shows clear superior 
performance for dividing the dose by 3. 

Table 8: Calculated mean squared error for different prediction models. P-
value shown for a t-test proving difference of means with the base model in 

bold-font. 

 MSE p.value 

PPI covariate effect 0.047 0.019 

CYP2C19_17 covariate effect 0.060 0.155 

PPI and Age covariate effect 0.064 0.306 

CYP3A5 covariate effect 0.069 0.513 

Age covariate effect 0.070 0.535 

BW covariate effect 0.075 0.786 

Tx covariate effect 0.079 0.985 

No covariate effect 0.080 NA 

CYP2C19_2 covariate effect 0.080 0.963 
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Figure 45: Outcome comparison between dosing strategies, as simulated 
trough concentration post-initiation. Lines show empirical cumulative 

distribution function for the recommended strategy, the currently performed 
dose adaptations, and the optimal PPI covariate model. Target window in 

green, edges of toxicity and efficacy as vertical dotted lines. 

9.5. Discussion 
This work establishes a clear recommendation for tacrolimus dose 
adaptation post-azole initiation. The tacrolimus dose should largely be 
divided by 3. More precisely, the dose should be adapted to 31.8% with PPI 
co-medication, or to 40.8% without PPI. 

The identified pharmacometric model is in line with literature. Parameter 
estimates for tacrolimus disposition broadly match tacrolimus models for 
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kidney and lung transplant.144 It should be noted that cystic fibrosis (CF) 
tends to cause malabsorption, and thus results in a decreased tacrolimus bio-
availability (47% slower absorption and 63% less bio-availability).145 CF did 
not seem a significant covariate in this dataset, which is partly explained by 
the lack of rich data, and partly by the presence of pancreatic enzyme 
replacement therapy mitigating this effect. 

A very large inter-individual variability of 1150% was identified on V1, with 
typical value of V1 dropping about 3-fold between base and final model. All 
patients in this dataset are at tacrolimus steady-state. Steady-state trough 
concentrations yield little information to accurately estimate distribution 
volumes. This is also reflected in the high IIV correlation between 𝑉𝑉1 and 𝐸𝐸𝐶𝐶 
of -0.442. 

The identified optimal dose adaptation matches those by Chheda, Tarleton, 
and Eidem146, who studied tacrolimus and voriconazole in heart transplant 
recipients. They reported an average 180% increase in dose-normalized 
concentrations in the voriconazole arm, resulting in 67% lower dose 
requirement. 

It should be noted that our physicians adapt doses widely. We did not find 
any correlation with patient covariates to explain this variation. A histogram 
of dose adaptation is available in Supplementary Materials. We hypothesize 
some of the variability is caused by ongoing dose adaptations early post-
transplant as fungal infection prophylaxis is initiated in parallel. A high 
number (20%) of patients received no dose adaptation whatsoever. We 
strongly recommend the implementation of a straightforward and consistent 
dose adaptation strategy “divide by 3” rather than more complex systems, to 
maximize chances of adoption by physicians. 

 

144 Brooks et al., “Population Pharmacokinetic Modelling and Bayesian 
Estimation of Tacrolimus Exposure”. 

145 Monchaud et al., “Population Pharmacokinetic Modelling and Design of a 
Bayesian Estimator for Therapeutic Drug Monitoring of Tacrolimus in Lung 
Transplantation”. 

146 “Targeted Aspergillus Prophylaxis With Voriconazole in Heart Transplant 
Patients”. 
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We also found that IIV on the azole effect remained high. Therefore, reactive 
concentration-based dose adaptation remains necessary. Remarkably, when 
average daily dose with azole comedication was compared to the dose pre-
azole, an average of 0.3574 was found. This closely matches the model-
predicted azole effect, and indeed shows that concentration-based dose 
adaptation also refines the dose appropriately, albeit slower than our 
suggested strategy. 

Whether this dose recommendation may affect clinically meaningful 
improvements is an open discussion. The relevance of PK targets and their 
translation to clinical outcomes is still an area of active research. Miano et 
al.147 demonstrated high tacrolimus exposure is associated with higher acute 
kidney injury risk, yet could not show increased cellular rejection risk at low 
exposures. More research is needed to elucidate tacrolimus exposure-
response in lung transplant. Furthermore, we have not studied azole PK in 
this work. A reduction in tacrolimus dose may also impact azole disposition, 
resulting in increased availability of CYP enzymes, higher azole clearance and 
lower exposure. 

Finally, this work focused on azole initiation. Perhaps even more important is 
the azole discontinuation, as patients are usually sent home with fewer 
opportunities for tacrolimus concentration-based dose adaptation. We did 
not show any correlation between azole concentration and magnitude of DDI 
effect, as these were clinically relevant concentrations at or above efficacy. 
During washout, a concentration-dependent DDI may appear. Azoles bind 
strongly to P450 enzymes, blocking the catalytic cycle (suicide inhibition).148 
The DDI we observed may be purely dependent on binding rates of azole to 
P450, and endogenous production of P450 enzymes. At lower concentrations, 
competitive binding may be present instead. An estimate of azole washout, 
azole concentration-dependent DDI effect, and associated tacrolimus dose 
increase scheme should prevent tacrolimus underexposure for recently 
transplanted patients. 

In conclusion, this work presents clear evidence for an increased tacrolimus 
dose reduction “divide by 3” when initiating azole treatment. We urge 

 

147 “Early Tacrolimus Concentrations After Lung Transplant Are Predicted by 
Combined Clinical and Genetic Factors and Associated With Acute Kidney 
Injury”. 

148 Balding et al., “How Do Azoles Inhibit Cytochrome P450 Enzymes?” 
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transplant doctors to implement this in practice, and evaluate its impact on 
tacrolimus target attainment and clinical outcomes. 

9.6. Supplementary Materials: dosing histogram 

 

Figure 46: Tacrolimus dose adaptation post azole initiation as performed by 
physicians from 2007 to 2015. In 19 of 97 patients, no proactive dose 

adaptation is performed. 
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Chapter 10 Discussion 

In this chapter, we evaluate whether the overarching goals described in 
Chapter 1 were achieved. We summarize strengths and weaknesses of the 
employed approach, and formulate recommendations and opportunities for 
future research. 

10.1. Evaluation of objectives 

10.1.1. Simulate MIPD: general framework 
Objective 1 – Achieved 

Develop software and methodology to quantify model predictive 
performance, simulate outcomes applying MIPD to a virtual patient 
population, and simulate clinical trials including MIPD 

A flexible framework was developed to support development of precision 
dosing during model development, population simulation, clinical trial 
design, and software implementation. The framework was sufficiently 
generic to allow application in different compounds (tacrolimus and 
infliximab) and different dosing targets (trough concentration target window 
for tacrolimus, optimal probability of endoscopic improvement for 
infliximab). The open-source nature allows developing previously 
unexplored functionality, such as dosing interval adaptation. 

10.1.2. Simulate MIPD for infliximab induction 
therapy in ulcerative colitis patients 

Objective 2 – Achieved 

By performing an in silico population simulation of infliximab 
precision dosing, the improvement on PD outcomes can be quantified. 

We have presented a structured roadmap for precision dosing development, 
accompanied by use cases demonstrating the value of each intermediary 
step. Early identification of MIPD potential in model development was 
applied for proactive dose adaptation of tacrolimus at initiation of 
posaconazole or voriconazole treatment in Chapter 1. The model identified 
an optimal mean proactive tacrolimus dose adaptation, but IIV of this effect 
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could not be linked to any measure before initiation, thereby precluding 
model-based proactive dose adaptation. Model refinement through 
predictive performance evaluation showed that complex models for 
tacrolimus PK did not outperform simpler models using MPC/MIPD (Chapter 
7). Population simulation of precision dosing showed precision dosing of 
infliximab induction therapy fell short of expectations (Chapter 1). No 
detectable149 benefit was predicted, while costs increased. Finally, simulation 
of clinical trial design identified the risk of an inconclusive trial on tacrolimus 
MIPD, thereby providing evidence to double the enrollment to 200 patients, 
improving predicted probability of study success. 

10.1.3. Simulate MIPD for tacrolimus in de novo 
kidney transplant recipients early post-transplant 

Objective 3 – Partial success 

By quantifying the improvement MIPD brings to tacrolimus target 
attainment, the clinical benefit vs required effort can be evaluated. A 
targeted clinical trial to show this clinical benefit can be efficiently 
designed. 

We have demonstrated the capability to relate precision dosing directly to 
clinical benefit in the infliximab usecase (under assumptions), and further 
provided a theoretical example optimizing for individual clinical utility in 
Chapter 2. 

For tacrolimus, while a clear impact on surrogate endpoints was 
demonstrated, no impact on clinical benefit could be shown. The correlation 
between exposure and clinical benefit remains poorly defined for this 
therapeutic area. To this day, different hospitals use different target ranges. 
While current retrospective studies try to relate widely varying PK to 
differing clinical outcomes, this discounts individual variability in PD, which 
may explain why no universal PK target could yet be identified. A 
concentration-controlled trial could serve to characterize PD variability and 
unravel the seemingly variable exposure-response relationship of tacrolimus. 
We clearly demonstrated this type of trial is feasible through the use of MIPD. 

 

149 For a dichotomous YES/NO endpoint, only the mean outcome can be 
observed in a clinical trial: “X% of patients were cured”. Mean outcomes did 
not improve with infliximab MIPD. 
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10.1.4. Build a tacrolimus MIPD software tool 
Objective 4 – Achieved 

If MIPD is predicted to deliver a clinically significant benefit to 
patients, a software tool will bring this technology in the hands of 
physicians. 

It was surprisingly easy to leverage the software framework to build a 
precision dosing tool. Practically implementing this tool allowed us to 
discover two surprising pitfalls. Any software tool will always require 
coordination with the clinical workflow; needing change at either (or both) 
ends. We have demonstrated an open-source framework enables adapting 
the software tool itself, minimally disrupting established clinical practices. 
Second, developing a medical device was met with severe legal concerns. 
Before 2017, medical device software was largely exempt from regulations as 
long as the final dosing decision rested with a human physician. With EU 
regulations 2017/745 (Medical Devices) and 2017/746 (In-Vitro 
Diagnostics) entering into vigor, software medical devices are severely 
restricted, rendering open-source development all but impossible. 

10.1.5. Transpose this approach to other 
compounds 

Objective 5 – Failed to demonstrate 

The design of the software and approach should allow easy extension 
to other compounds. 

The software was designed to be flexible and easily allow application to other 
compounds. This flexibility was demonstrated by implementing two 
usecases: tacrolimus dose adaptation for kidney transplant recipients, and 
infliximab dose adaptation for ulcerative colitis induction therapy. 

However, these usecases were implemented by the same group who 
developed the framework. The inherent flexibility would be much more 
convincing in a collaboration with external parties. Unfortunately, custom 
license agreements were needed to share the full framework with other 
parties. Although there was demonstrated interest150, parties failed to follow 

 

150 An industry pharmacometrics group wanted to use the user interface to 
educate the clinical team in Phase I on dose escalation. A UK-based academic 
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through, hindered by the additional legal burden to set up a custom license 
agreement. Collaboration was made impractical by legal risks, hurting our 
ability to demonstrate software flexibility. 

Even within the University of Leuven, adoption was difficult, despite 
organizing workshops and tutorials. We identified three potential reasons. 
Without a large userbase supporting the open-source version, maintenance is 
not guaranteed. Second, the use of opensource software was deemed a risk 
for potential future commercialisation of MIPD software, even when many 
counterexamples exist151. Finally, the “Not Invented Here” syndrome may 
hurt adoption by research groups, who -as identified by-152 may be reluctant 
to share process knowledge, may prefer internal knowledge rather than 
dependence on external factors, may be reluctant to set up external 
collaborations, or may feel threatened by competition. Should all 
stakeholders be willing, we are certain the full publication of our successful 
proof of concept software on tacrolimus -in active use at the hospital- could 
nevertheless make a dent in this domain, serving as a blueprint easily 
adapted by others for different compounds. 

Notwithstanding the above, further development of the tacrolimus precision 
dosing software is planned, extending into other solid organ transplants. This 
demonstrates incorporation of other models, even if no extension to other 
compounds is planned as of yet. 

10.2. Model building 
We have shown throughout this work that model building for precision 
dosing shows distinct differences from population modeling. As theorized in 
section 4.1, the predictive power of a model is key. This is apparent in each 
presented case study. For tacrolimus PK, a hematocrit-standardized model 

 

group wanted to use the software to build MIPD software for the pediatric 
ward of a hospital. A New-Zealand-based group expressed interest to review 
the software, and use this to improve their own software product. 

151 Nagy, Yassin, and Bhattacherjee, “Organizational Adoption of Open Source 
Software”. 

152 Grosse Kathoefer and Leker, “Knowledge Transfer in Academia”. 
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showed a better fit153, but introduced bias if individual future hematocrit was 
not jointly modeled and predicted. Even then, a simpler model using 
MPC/MIPD showed superior predictive performance, even when population 
fit was worse. An already established model may need to be re-evaluated for 
use in MIPD. To predict MIPD performance for infliximab, exposure-
associated covariates that could not be jointly modeled were removed, 
increasing IIV. Future studies may focus on jointly modeling continuous PD 
endpoints, thereby increasing MIPD accuracy and potentially reversing our 
findings. 

We proposed to investigate autocorrelation as an extra GoF diagnostic. This 
allowed us to identify an opportunity for improvement in tacrolimus PK, 
developing MPC/MIPD as a pragmatic solution. The method was defined 
through pragmatism, and can certainly be refined in future research. 
Specifically, the tuning parameter for the inter-individual variability in future 
occasions should be further investigated. Different strategies should be 
compared, using either (a) the a priori IIV 𝜔𝜔, (b) the parameter imprecision 
𝜙𝜙, or (c) a combination of both, possibly influenced using identified auto-
correlation. 

As shown by McDougall et al.154, model misspecification will generally not 
impact MIPD performance. While a pharmacometrician focuses on improving 
population fit, predictive performance -what actually matters for MIPD- falls 
by the wayside. A diagnostic toolset to investigate predictive performance, 
and a modeling process that leads to high predictive performance, is urgently 
needed. 

In targeting optimal target attainment, or striving for optimal target 
concentration,155 we fail to address the elephant in the room. PK is only an 
intermediary step, and we should target optimal clinical utility instead. 
Unfortunately, the exposure-response relationship was not fully 
characterized during drug development for many compounds on the market 
to date. The litmus test for drugs to gain market access should be more strict: 

 

153 As defined by an improved log-likelihood, and a better visual predictive 
check. 

154 “The Impact of Model-Misspecification on Model Based Personalised 
Dosing”. 

155 Holford, Ma, and Metz, “TDM Is Dead. Long Live TCI!” 
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ISoP recommends industry should demonstrate a positive benefit-risk in 
every individual patient, not just on summary statistics. For now, this is left 
largely to academic efforts (as shown in section 1.4.3), who need to start 
from scratch, as clinical trial results from drug development are generally not 
available, even if this is a legal requirement156157. 

Tacrolimus still lacks a formally established exposure-response association 
for efficacy and safety, even though it was approved by FDA for use in liver 
transplant patients more than 25 years ago. Different centers use different 
PK target ranges, even discussing whether trough or AUC sampling is more 
appropriate. Some even consider whole-blood sampling inappropriate, 
advocating sampling at the transplanted organ instead. Furthermore, the 
effect is confounded by other immunosuppressive drugs such as 
prednisolone and mycophenolate mofetil (MMF), which are co-administered 
to ensure sufficient immunosuppression during potential tacrolimus 
underexposure, and are discontinued when stable tacrolimus exposure is 
reached some time after transplant. As MIPD is predicted to increase 
probability of target attainment, this may allow reduced prednisolone or 
mycophenolic acid doses, and even allow identification of the tacrolimus 
exposure-response relationship in patients. 

In general, investigating exposure-response is complicated by multiple levels 
of inter-patient and within-patient variability on both PK and PD. This may 
be more efficiently investigated through the use of concentration-controlled 
trials (CCT), targeting specific exposures rather than dose levels158. A search 
on clinicaltrials.gov for the term “concentration controlled” yielded 37 
results, of which 32 were in immunosuppressive treatment for transplant 
patients. It seems there is little incentive to perform a CCT during drug 
development if not strictly necessary, and regulators are wary to make 
market access even more difficult. Although we claim to use model-informed 

 

156 Overall, trial results are not reported in 1 out of every 4 studies. Only 
summary statistics are reported; raw data is rarely available and protected 
by both intellectual property and data privacy. 

157 Goldacre et al., “Compliance with Requirement to Report Results on the 
EU Clinical Trials Register”. 

158 Sanathanan and Peck, “The Randomized Concentration-Controlled Trial”. 
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drug development, trials with fixed dose groups are easier to execute, even if 
they yield less powerful results. 

10.3. Simulation 
Many authors have theorized and written viewpoints, commentaries and 
reviews159 exclaiming their disappointment at the poor use of model-
informed precision dosing, shouting ever louder for roadblocks to be lifted. 
Through simulation, we offer a much-needed perspective to counter this 
enthousiasm that is founded in theory but not reflected in clinical practice. 

Roadblocks to precision dosing will not be lifted on fervour alone. We have 
identified roadblocks160, yet strong arguments are required to justify 
investment into additional bio-analysis assays, better models for individual 
exposure-response, and userfriendly software adapted to fit the clinical 
workflow with minimal disruption. Through simulation, we have 
demonstrated that precision dosing of infliximab induction therapy does not 
justify this investment. In strong contrast, we demonstrated that tacrolimus 
MIPD not only improves target attainment, but also provides faster target 
attainment and reduces outliers. We have demonstrated simulations can 
inform investment decisions, removing roadblocks where it matters. 

Wright et al rightfully louded the work of colleagues publishing the 
encouraging clinical trial results of PK-guided paclitaxel dosing. However, for 
every published positive study, 4 negative studies are left unpublished.161 As 
demonstrated in section 1.4.3, the design of these trials leaves much to be 
desired. Statistical power is based on guesswork, further assuming normality 
in non-normal-distributed endpoints. For tacrolimus, we generated a 

 

159 Scheetz et al., “The Case for Precision Dosing”; Darwich et al., “Why Has 
Model-Informed Precision Dosing Not Yet Become Common Clinical 
Reality?”; Polasek, Shakib, and Rostami-Hodjegan, “Precision Dosing in 
Clinical Medicine”; Polasek et al., “Toward Dynamic Prescribing Information”; 
Maxfield and Zineh, “Precision Dosing”; Wright, Martin, and Cremers, 
“Spotlight Commentary”; Peck, “Precision Dosing”. 

160 Darwich et al., “Why Has Model-Informed Precision Dosing Not Yet 
Become Common Clinical Reality?” 

161 Hopewell et al., “Publication Bias in Clinical Trials Due to Statistical 
Significance or Direction of Trial Results”. 
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hypothetical in silico dataset for the MIPD arm, allowing targeted clinical trial 
design. 

By providing a clear blueprint and supporting tool, and demonstrating this 
approach on several usecases, we have made simulation of MIPD more 
accessible. Where ardour and zeal failed to leverage the required additional 
investment in precision dosing, simulation can provide the rational 
arguments for MIPD implementation. 

10.4. Implementation 
Demonstrating clearly that tacrolimus MIPD was worth the investment, a 
software tool for precision dosing was implemented. By its open-source 
nature, this software tool managed to integrate almost seamlessly with 
current clinical workflow. 

Three caveats became painfully apparent in this approach. To implement 
precision dosing in an existing clinical practice, both software tool and 
physician workflow have to be in sync. With commercial software, the 
physician is generally required to adapt. This hinders adoption. Optionally, 
the hospital may pay the software vendor to adapt or integrate the software. 
With open-source software, any commercial developer may adapt existing 
software to fit a specific clinical workflow. For precision dosing, the skillset 
required in these developers is very specific however, so this route may not 
always be feasible. 

A second major roadblock is the legal climate surrounding medical devices. 
While an update of medical device legislation was urgently needed to provide 
a legal framework for mobile apps, smart watches, measuring scales, 
smoothie makers, exercise bikes, and many other gadgets, this legislation 
created a veritable maze for an open-source precision dosing framework. 
Ironically, the power of open-source development has long since been 
recognized in software development. More recently, the open-source model 
was used to develop ventilators or face masks to combat the COVID-19 
pandemic162. Industry and regulators frown upon these initiatives however, 

 

162 Frazer, Shard, and Herdman, “Involvement of the Open-Source 
Community in Combating the Worldwide COVID-19 Pandemic”; Pearce, “A 
Review of Open Source Ventilators for COVID-19 and Future Pandemics”. 
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either silently tolerating their use, or only approving use when no other 
alternatives are available163. 

Finally, there is the issue of cost. In most countries, precision dosing is not 
considered a reimbursable cost. Belgian nomenclature of health care actions 
does not provide any way to register this activity. Why would a physician or 
pharmacist provide this extra service, at considerable personal investment in 
both education and software tools, if the potential benefit for patients is not 
recognized by the health care payer? Moreover, any deviation from the label, 
even if founded in established science, is considered off-label use. The 
reimbursement of Remicade® (infliximab) for the treatment of ulcerative 
colitis is governed by K.B. 01.02.2018 - IV - 3960000 in Belgium, which 
prescribes an induction regimen of 5mg/kg at week 0, 2, and 6. Even when a 
growing body of scientific evidence justifies dose escalation, health care 
payers may not follow suit, potentially exploding costs for individual patients 
exhibiting unfortunate pharmacokinetics (e.g. high distribution volume or 
high drug clearance). 

This situation may be solved at three points during market access. One way is 
to raise the bar for market access -as suggested by ISoP164-, requiring 
manufacturers to investigate precision dosing. Fixed dosing would only be 
accepted if precision dosing is demonstrated to not markedly improve 
outcomes. Alternatively, drugs could be approved at a candidate exposure, 
accompanied by a suggested posology to attain this exposure165. Doctors 
should be free to deviate from suggested dosing if evidence is available to 
support this. Finally, health care payers may negotiate value-based pricing166, 

 

163 https://www.gov.uk/government/publications/medical-devices-given-
exceptional-use-authorisations-during-the-covid-19-pandemic, consulted 23-
DEC-2021 

164 Maloney et al., “Comment from International Society of Pharmacometrics 
on Exposure-Response Analysis in Drug Development and Regulatory 
Decision Making; Request for Comments (Docket No. FDA-2018-N-0791)”. 

165 Michael Neely, “Are We Really Going to Buy Into Individualized Dosing?”, 
FDA workshop on Precision Dosing 2019, available at 
https://www.fda.gov/media/130406/download 

166 Garrison and Towse, “Value-Based Pricing and Reimbursement in 
Personalised Healthcare”. 

https://www.gov.uk/government/publications/medical-devices-given-exceptional-use-authorisations-during-the-covid-19-pandemic
https://www.gov.uk/government/publications/medical-devices-given-exceptional-use-authorisations-during-the-covid-19-pandemic
https://www.fda.gov/media/130406/download
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forcing manufacturers and health care providers to collaborate in achieving 
optimal exposure and outcomes, possibly at individualized doses. 

Regulators should consider the use of value-based pricing to incentivise 
optimal dosing and optimal exposure-efficacy-safety for every individual 
patient. Market access is currently based on a selected (generally, one-dose-
fits-all) posology that was demonstrated in drug development to have 
acceptable efficacy/safety in the general population. The manufacturer then 
establishes a set price per dose with the health care payer. This is generally a 
country government, who sets guidelines for compensation of the drug to 
health care providers. Zooming in on infliximab (Remicade® by Johnson & 
Johnson) in Belgium (see also Chapter 1), a single vial costs €375 167, of 
which €320 is paid by the health care payer RIZIV in Belgium. Currently, 
even if our model recommends a dose increase to 10mg/kg, this would cost 
patients an additional €1,200 for induction therapy. 

Adapting and maintaining a software tool incurs a development cost as well. 
This should not be an insurmountable barrier, as we can leverage previous 
experience introducing software at general practitioners in Belgium168. 
Overall health benefits (and reduction in medicine reimbursement costs) 
should be relatively easy to demonstrate in a health economic study. Further 
collecting real-world evidence169 in a continuous feedback loop170 should 
serve to further improve predictive models and further refine dose 
adaptation. 

  

 

167 RIZIV CTGRM database, consulted on 23-DEC-21 

168 Van der Stighelen et al., “ICT-Tools En Gebruik van EMD Door de 
Huisarts”. 

169 Radawski et al., “The Utility of Real-world Evidence for Benefit-risk 
Assessment, Communication, and Evaluation of Pharmaceuticals”. 

170 Ribba et al., “Model-informed Artificial Intelligence”. 
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10.5. Key points 
Rational development of model-informed precision dosing is urgently 
needed. We demonstrated a simulation approach can lead to better models, 
evidence for precision dosing benefit, and better clinical trials. A software 
framework allows flexible implementation of precision dosing software 
adapted to physician workflow. This paves the road toward precision dosing, 
allowing rational investment supported by quantitative predictions.
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Appendix 

The following appendices were provided in the digital copy of this PhD thesis. 
They are omitted from the paper copy for environmental reasons. 

• A summary of PhD jury comments, and the changes made in the PhD 
thesis to address these. 

• Supplementary materials to the chapter on infliximab MIPD simulations 

• A list of all precision dosing trials identified in clinicaltrials.gov. 

• Code listing for statistical analysis of a tacrolimus MIPD trial. 
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Appendix A Jury comments on January 
2022 manuscript 

A.1. Introduction 
I want to thank all reviewers for their time and effort to review the thesis manuscript. All 
comments were addressed, and any changes to the manuscript are summarized in the 
corresponding reply. 

A.2. Sebastian Wicha 

A.2.1. General Remarks 

The thesis submitted by Ruben Faelens deals with the use of pharmacometric approaches to 
generate precision dosing tools. The first two introductory chapters provide sufficient 
details to the reader to understand the basic concepts behind pharmacometrics and 
precision dosing. Chapter 3 clearly defines the objectives of the thesis, and chapter 4 
outlines common methods in pharmacometrics and model-informed precision dosing. 

The core results of thesis are described in chapters 5 to 9. Thereby, the results described in 
chapter 5 describe a true innovation, i.e. a versatile R package to facilitate common 
processes in model-informed precision dosing. The chapter comprehensively describes the 
development and structure of the R package and includes illustrative examples. 

Chapter 6 describes a simulation study the potential value of model-informed precision 
dosing in infliximab in patients with ulcerative colitis. It was found that model-informed 
precision dosing using measured drug exposure led to the lowest variability in exposure and 
associated disease scores, but might require higher overall drug amounts to achieve this 
aim. 

Chapter 7 and 8 describe the development of a population pharmacokinetic model for 
tacrolimus in de novo kidney transplant patients. Similarly as in chapter 6, a simulation 
study was utilized to evaluate the potential value of individualized dosing approaches in this 
cohort. In particular, the study focused on sample size calculations to plan a potential 
clinical trail being adequately powered to demonstrate the advantages identified in the 
simulations study in the clinical setting. 

Chapter 9 evaluates dosing strategies of tacrolimus under azole exposure which is frequent 
in the clinical setting to prevent or treat fungal infections early after transplantation. First a 
population pharmacokinetic model that successfully quantified the impact of azole therapy 
on the clearance was developed. The model was subsequently used to develop an adjusted 
dosing regimen which suggests to use approx. one third of the commonly used dose of 
tacrolimus in presence of azole co-therapy. 

Chapter 10 provides a comprehensive discussion of the chapters of the thesis in relation to 
the previously defined objectives. 

Overall, the thesis is very well written and pleasant to read. The results presented advance 
the knowledge in the field of pharmacometrics and model-informed precision dosing. In 
particular the developed software packages represents a remarkable piece of work. The 
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performed in silico clinical trials represent excellent examples on how to use modelling and 
simulations to plan clinical trials to evaluate the potential benefits of individualized dosing 
approaches. It is a minor shortcoming of the thesis that some of the figures are not well 
formatted (e.g. axis labels missing) or not adequately described. Also, some sections are 
lacking references to back up some statements made with literature. Nonetheless, I 
recommend to accept the present thesis with minor revisions. 

A.2.2. Major comments 

Nil 

A.2.3. Minor comments 

A.2.3.1. Summary 

• Spelling mistake: immunosuppressor Spelling mistake corrected. 

• The description of the infliximab simulation study sounds a bit like a real clinical study 
was conducted. Suggest to rephrase to avoid misunderstandings. Rephrased. 

• Just be careful with priority claims on “this is the first work establishing a clear 
roadmap”. Not necessary, but can be dangerous as it is difficult to know everything that 
has been done so far… Added the qualifier “to the best of our knowledge”. 

A.2.3.2. Introduction: The road to safe and effective drugs 

• Remove ‘molar’ from EC50 description Removed. 

• Reference missing to support mechanism of action for kinase inhibitors. Reference 
added. 

A.2.3.3. Introduction: modeling 

• The ‘modeling’ section does not contain any references. References to the appropriate 
tutorial papers and books were added. 

• Figure 2 on PBPK modeling looks blurry Figure aspect ratio adapted to look less blurry. 

• Empiric modeling is described as using a limited number of ‘compartments’; could also 
be phrased as a limited number of ‘parameters’. Agreed. As an example, the Friberg 
turnover model uses a large number of compartments, but only a single parameter 
describing turnover rate. 

• Description of VPC contains a distorted phrasing: “every subject individual between-
subject variability” Phrasing adapted. 

A.2.3.4. Introduction: MIDD 

• “killed early” is colloquial language Language adapted. 

• Suggest to substitute “psychopharmica” with “antipsychotic drugs”. Suggestion applied. 

• Suggest to substitute “blood thinners” with “anticoagulants”. Suggestion applied. 
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• The referencing style is unconventional. When authors are referenced in the text, they 
are not included in the footnote? The referencing style used is the Chicago 17th manual 
of style shortened footnote format. The style is documented at 
https://www.chicagomanualofstyle.org/tools_citationguide.html. We have adapted the 
style to ensure no duplicate (empty) footnotes will be generated upon citing the same 
article twice on a single page. 

A.2.3.5. Introduction: We are not there yet 

• Wrong reference used for UHamburg research describing prediction accuracy. Alihodzic 
et al described the impact of inaccurate sampling. We apologize for this error. Reference 
adapted. 

A.2.3.6. NLME as a foundation for precision dosing 

• ‘expensive’ -> ‘Computationally more expensive’ Agreed. 

• I understand this [the plots in this chapter] is conceptual, but you may want to add units 
to the axes and parameters. We agree the current plots seem sloppily labelled. The axes 
for all plots in this chapter were labelled better. 

• The description of omitting’2nlog’ from the OFV is a bit vague. 

To keep the focus of this chapter on numerical methods, this sentence was simplified. An 
appropriate reference (Pinheiro 1994) was added for readers wanting the in-depth 
explanation on 2LL and OFV approximations. 

• Methods: Precision Dosing section; why is the algorithm for precision dosing given in 
code instead of as a mathematical equation? 

There is a certain grey area between ‘equations’ and ‘algorithms’. In its current form, we 
agree with the suggestion to format as an equation. Rather than adapting the formatting, we 
instead adapted the content to describe the EBE-based precision dosing algorithm, as was 
our original intent. 

A.2.3.7. Methods for MIPD 

• Figure 8 is missing the units in the axis labels. Even if this is a conceptual figure, 
imaginary units were added. 

• Avoid using the abbreviation ‘MPC/MIPD’ in the title ‘Residual error models and 
MPC/MIPD’ The abbreviation in the title was retained. We agree abbreviations in titles 
are to be avoided, yet ‘model-predictive control for model-informed precision dosing’ is 
too long as a title, and only using ‘model-predictive control’ could lead to confusion with 
model-predictive control algorithms in chemical process control. 

• Figure 9 is missing X and Y axis. X and Y axis for longitudinal plot (Time / 
Concentration) and parameter plots (Time / %change from typical value) added. 

• Figure 10: What dose was used for which line? Not sure this (the performed dose 
adaptation) is self-evident… Might need a bit more context. 

https://www.chicagomanualofstyle.org/tools_citationguide.html
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The caption was adapted to: Population typical prediction (blue line) and prediction interval 
(blue area) for ALT, drug concentration, sum of largest tumor diameter (SLD) and clinical 
utility (CU) at the administered dose of 1mg. The measured ALT, concentration and sum of 
largest diameter (red points) inform the EBE fit (red line). If 1mg is continued, SLD is predicted 
to decrease only slowly, ALT will remain low, and CU is poor. Adapting to 3mg (purple line) is 
predicted to result in increased efficacy (low SLD), acceptable liver toxicity (low ALT), and 
better overall clinical utility (CU). 

A.2.3.8. Tdmore 

• Change ‘NwPharm’ to ‘MwPharm’ Changed. 

• Figure caption and units are missing for multiple figures 

The following captions were added: 

Concentration-time curve of typical value prediction (blue line), EBE fit (red line and 90% 
confidence interval area) on observed points (grey points), and prediction for recommended dose 
(green line and 90% confidence interval, dosing target as grey target reticule) as generated by the 
code sample above. 

Predicted concentration-time curves for an EBE fit (line shapes, cf. figure legend) using 0, 1, 2 or 3 
observations (points) for 4 virtual patients (separate panels). 

This chapter was built in R package vignette style. The code should match 1:1 with the 
displayed figures. As adding labels would not serve the intended goal of explaining the code, 
axis units were purposefully omitted. 

A.2.3.9. Infliximab 

• Dosing should be formulated as ‘5 mg’, not ‘5mg’ (mind the space). Adapted in-text. 

• When referring to tables, this is marked as ‘Table Table X’. Resolved in automated 
generation code. 

• NA is reported instead of numbers. This unfortunate coding error was resolved. 

A.2.3.10. Quantifying MIPD 

• Suggest to change the title to be more precise: Rather: Quantifying the impact of MIPD 
on…. Or? 

Agreed. This was changed to ‘Quantifying the impact of MIPD on endpoints’ 

• Figure 19: the colors of facet A are not explained in the caption. 

The colors of facet A were corrected to align with the other figures. 

• “MPC/MIPD exceeded this [the theoretical] limit”: Is this truly correctly stated? In the 
plot in Figure 19, the dotted line (i.e. EBE) exceeds this limit, not MPC/MIPD… 

There is indeed an error in the visual representation; the dotted line is MPC/MIPD. This was 
corrected in the figure caption. 

• Figure 19 and Figure 20 are referred in the text far from where they are shown. 
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We chose to move all figures close together, so it is easier to find them. 

• Faulty reference ‘ref(fig:tacrolimusPaperTte_all_targets)’ 

Reference was corrected. 

A.2.3.11. Tacrolimus MIPD trial simulation 

• Change ‘exercise’ to ‘study’ Agreed. 

• Reword the study aim to be more neutral: “improves” -> ‘has an impact’, ‘faster time’ -> 
‘difference in time’, etc, both in Methods and Results. Agreed. 

• Always use spaces between number and unit. This was corrected throughout the text. 

• Figures are not always referred or discussed in the main text. 

• Figure 25 is not easy to digest, and requires more explanation. Agreed. More details 
were added. 

• In conclusion, change the word ‘exercise’ to ‘study’. 

A.2.3.12. Tacrolimus-azole DDI 

• No abstract is provided 

• References missing throughout the introduction, particularly on the link CNI -> immune 
response, variation of daily doses from 3 to 30mg, CYP450 DDI impacting efficacy/safety 
of tacrolimus. 

• Some footnotes are empty. This is an unfortunate result of the citation style, with 
recurring citations resulting in empty footnotes. This was resolved manually in the final 
imprimatur version. 

• Results section, reference to figure missing. 

• Suggest to replace ‘underdosing’ to ‘underexposure’ This was rephrased to suggest both 
occurs; underexposure is a direct result of the failure to proactively increase the dose at 
azole discontinuation. 

• Model parameter tables: Instead of exp(omega)-1, I guess you mean 
sqrt(exp(omega^2)-1)? Agreed. 

• Figure 38 (ecdf plot) is not discussed in the main text. The plot was incorporated in the 
main text. 
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A.3. Geert Verbeke 

A.3.1. General Remarks 

The manuscript is a solid piece of work in which the candidate shows to know the scientific 
literature very well. The added value of the work is not so much on the development of new 
methodology but much more on the implementation of existing models and techniques in 
accessible software routines, the usefulness of which has been illustrated extensively in two 
case studies. I have no doubt that this work will be applicable in many other contexts in the 
future. The candidate is first author on two publications (one published, one accepted) in 
the peer-reviewed literature, and served as co-author on several other publications. 

A.3.2. Major comments 

• There is a lot of syntax in the body of various chapters. This hampers readability of the 
text while not really adding to the understanding of the methodology applied. I therefore 
recommend moving a lot of the syntax to supplementary material sections, except for 
Chapter 5, which focuses entirely on the development of the tdmore framework. 

We understand that code spread throughout the manuscript may not aid in understanding 
the methodology applied. This code is targeted towards software engineers wanting to 
implement the described methods. To meet the needs of both target audiences, we have 
removed five code sections in chapter “Nonlinear mixed effects modeling”, and two more in 
chapter “Methods for MIPD”. 

• The topic of this thesis is on precision dosing, which is a particular example of precision 
medicine or personalized medicine. Yet I failed to find a link to the extensive literature 
on personalized medicine, which often is based on models for causal inference. Why was 
a different approach followed here, in comparison to the many other contexts where 
personalized medicine is applied? 

Precision medicine or personalized medicine is an umbrella term which covers many topics. 
Some of these are entirely unrelated even to statistics. Antibody-drug conjugates seek and 
bind specific (cancer) cell receptors and deliver toxins directly to the cancer cell, minimizing 
systemic exposure and chemotherapy-related systemic adverse effects. These types of 
‘personalized medicine’ are not discussed in the thesis. 

We thank the reviewer for pointing us to the wide body of research on causal inference for 
personalized medicine. The key difference between personalized medicine and precision 
dosing is well described by Yazdani and Boerwinkle (2015). “Personalized medicine is the 
ability to use an individual’s genetic make-up and life experiences to diagnose and treat 
disease. […] If the response to treatment is a unique characteristic of the individual that 
cannot be predicted a priori, then true personalized medicine has little practical utility in 
medicine or biomedical research.” Precisely this situation is where MIPD should be applied. 
The technique employs the up-to-now a posteriori exposure and/or response to a treatment 
to optimize this ongoing treatment. 

We do see exciting opportunities for cross-fertilization of both techniques. Classical 
interpretation would consider MIPD as just another treatment optimization technique with 
increased benefit-risk ratio, akin to the switch from skin patch to chewing gum for medicinal 
nicotine delivery. However, trying a treatment lets you learn about a patient. Whereas 
traditional causal inference models may include covariates such as “unresponsive to 
treatment A” in source data, the use of MIPD can increase our knowledge of an individual 
patient in a more fundamental way. Identified individual pharmacokinetic and 
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pharmacodynamic parameters correlate across formulation, within-class treatment 
alternatives, or even across mechanisms. Across-treatment MIPD-supported switching has 
been poorly studied, but could yield promising results. This should reduce a priori 
uncertainty of individual response for these treatment alternatives, thereby improving 
precision of personalized medicine predictions. 

The manuscript text has been adapted to include these new insights. 

• The text contains many abbreviations. A list of the most used ones would help the 
readability (maybe replacing the less useful lists of tables and figures). 

A glossary was added. 

• There are still many figures without a label and a caption (see, e.g., p.42, p.71, p.73, p.75, 
p.76, p.77, p.79). 

Labels and captions were added for most figures, even for figures using imaginary 
compounds. 

• Chapter 8 would benefit from more detailed information about the (statistical) 
methodology applied. The current text does not allow a methodologist with access to the 
data to fully reproduce the results reported. 

Reproducibility is a key aspect of medicine research. A plethora of research indicates severe 
problems in reproducing results, either because source data is unavailable, or because 
methods could not be reproduced. Unfortunately, it is difficult to definitively resolve this 
comment without indication of what aspects are missing from the text. 

To ensure reproducibility for Chapter “Quantifying MIPD: a test-case for tacrolimus”, the full 
source code was published online as Supplementary Materials. This included code to 
reproduce the source dataset from simulation, thereby respecting data confidentiality and 
GDPR. We have applied this to Chapter 8, adding the full analysis source code in attachment 
to the manuscript. This should allow reproduction of all figures and analyses. We trust this 
resolves the concern voiced by the reviewer. 

A.3.3. Minor comments 

• P.26 typo: ‘Chapter Chapter 4’ → ‘Chapter 4’ 

• P.54 typo: ‘illustrated in 8’ → ‘illustrated in Figure 8’ 

These errors in typesetting were corrected in the final version. 

A.4. Philippe Jacqmin 

A.4.1. General Remarks 

The thesis manuscript meets the quantitative and qualitative requirement for a PhD degree. 
The manuscript is clear and well organized. The objectives and accomplishments are well 
and fairly described. The challenges, principles, methods, results and discussions are 
didactically presented without jeopardizing the complexities. 

The manuscript find its originality in: 
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• the development of the MPC/MIPD method addressing individual time-dependent 
variability. 

• the development of the Tdmore software. 

• the automatic connection with HER system. 

• the in silico evaluation of data analysis methods (EBE vs MPC/MIPD) in the context of 
TDM. 

• the in silico evaluation (infliximab) and optimization (tacrolimus) of MIPD study 
designs. 

• The revised dose adaptation / recommendation of tacrolimus under azole co-
medication. 

A.4.2. Major comments 

A.4.2.1. Positive comment 

The EBE method applied to therapeutic drug monitoring was introduced and implemented 
in software in the 80’s. However, if this method can reasonably address the inter-subject 
variability, without modifications, it cannot appropriately address significant time-
dependent intra-individual variability observed in some conditions such as after organ 
transplantation. The MCP/MIPD method developed during this PhD offers a plausible 
solution to this issue. It has been evaluated and validated to some extents during this PhD. It 
provides a new perspective to clinical pharmacologists and clinicians who apply MIPD. 
Further fine-tuning (e.g. implementation of d-optimality) and validation (e.g. with other 
drugs) will probably make it standard. 

A.4.2.2. Negative comment 

None 

A.4.3. Minor comments 

• The entire manuscript should be double checked for Figure and Table numbers and for 
legend and references in the text. 

The manuscript was double checked and adapted accordingly. 

• Some values are missing at several places in the text (e.g. NA in 6.4.3 and 6.4.4). 

This error stemmed from generating these numbers directly from simulated data, while the 
data could not be found in the right path. This error was corrected. 

A.5. Minne Casteels 

A.5.1. General Remarks 

Comprehensive work, also critically indicating the pitfalls of regulations… 

A.5.2. Major comments 

none 
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A.5.3. Minor comments 

• Add “Abbreviations” section 

A Glossary section was added. 

• Minor editing in text 

Suggested edits in the manuscript text were fully incorporated. 
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Appendix B Supplementary Materials for 
Infliximab Chapter 

B.1. Figures and Tables 
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Table 9: Parameter estimates of the original and adapted population pharmacokinetic 
models. 

Parameter 
Original model 

(OFV=2696) 
Adapted model 

(OFV=2784) 

Estimate (RSE) (%) Estimate (RSE) (%) 

Typical values     

Elimination rate constant (/d)     

 baseline Mayo endoscopic 
subscore 1 (/d) 0.0521 -11 0.0422 -14 

 baseline Mayo endoscopic 
subscore 2 (/d) 0.0543 -3.6 0.0463 -3.8 

 baseline Mayo endoscopic 
subscore 3 (/d) 0.0667 -8.1 0.0570 -5 

 albumine -0.8080 -39   

 C-reactive proteine 0.0859 -25   

Volume of distribution (L) 6.3400 -3.2 6.9700 -5 

 fat-free mass 0.5440 -29 0.5170 -39 

 Corticosteroids1 1.3300 -6.9 1.3000 -7.7 

 Extensive colitis1 1.2300 -1.9E-2 1.2500 -6.9 

Interindividual variability2     

Elimination rate constant (CV%) 29.8000 -7.8 33.4000 -5.7 

Volume of distribution (CV%) 26.5000 -20 23.6000 -41 

Interoccasion variability     

Elimination rate constant (CV%) 18.7000 -17 6.7000 -100 

Residual variability     

Proportional residual error (CV%) 19.2000 -9.4 32.9000 -5.8 

Additive residual error (mg/L) 0.3000 FIX 0.3000 FIX 

1 The corticosteroid and extensive colitis effects were modelled as a fold change compared with the 
reference of no corticosteroids and no extensive colitis, respectively.2 Inter-individual CV% was calculated 
as sqrt(exp(omega)-1). CV, coefficient of variation; OFV, objective function value; RSE: relative standard 
error. 
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Figure 47: Prediction-corrected visual predictive check of the original population 
pharmacokinetic model (a) and the adapted population pharmacokinetic model (b). The solid 

line connects the observed median prediction-corrected infliximab serum concentrations 
(mg/L) per bin. The dashed lines connect the 5th and 95th percentiles of the prediction-

corrected observations. Shaded areas indicate the 95% confidence interval of the median and 
5th and 95th percentiles of the simulated values. The observed prediction-corrected infliximab 

concentrations are represented by black open circles. 
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Table 10: Overview of simulation results from sensitivity analysis 

𝐸𝐸𝑚𝑚𝑡𝑡𝑚𝑚,2→10(%) Exposure (mg/L*day) pEI (%) Cumulative dose (mg) 

  q05 median mean q95 sd q05 median mean q95 sd q05 median mean q95 sd 

78% 

5 mg/kg 1,049 2,210 2,409 4,448 1,082 38.8 57.2 55.7 67.8 8.96 780 1,080 1,084 1,440 205 

10 mg/kg 2,098 4,419 4,817 8,895 2,165 53.3 66.3 65.1 72.7 6.11 1,560 2,160 2,168 2,880 411 

Covariate-based MIPD 2,302 4,372 4,654 7,940 1,763 54.8 66.1 65.1 72.2 5.46 1,516 2,135 2,151 2,951 431 

Concentration-based MIPD 3,209 4,561 4,666 6,516 1,016 59.8 66.3 66.0 71.2 3.91 1,420 2,213 2,293 3,423 628 

80% 

5mg/kg 1,044 2,212 2,411 4,468 1,090 38.3 57.3 55.8 68.5 9.31 780 1,080 1,084 1,440 205 

10mg/kg 2,088 4,423 4,821 8,935 2,180 53.3 67.0 65.7 73.9 6.45 1,560 2,160 2,168 2,880 411 

Covariate-based 2,282 4,382 4,650 7,936 1,770 54.8 66.8 65.8 73.3 5.79 1,513 2,133 2,149 2,948 430 

TDM on d14 3,193 4,563 4,657 6,502 1,015 60.1 67.0 66.7 72.2 4.13 1,420 2,210 2,289 3,418 625 

100% 

5mg/kg 1,052 2,204 2,402 4,418 1,075 34.7 56.1 55.4 73.9 12.00 780 1,080 1,084 1,440 205 

10mg/kg 2,105 4,407 4,805 8,836 2,150 52.0 71.0 70.0 84.7 10.10 1,560 2,160 2,168 2,880 411 

Covariate-based 2,297 4,371 4,641 7,898 1,759 53.9 70.7 70.1 83.5 9.16 1,515 2,133 2,150 2,947 430 

TDM on d14 3,202 4,556 4,657 6,499 1,016 60.9 71.0 71.4 81.4 6.95 1,420 2,211 2,293 3,424 625 
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Figure 48: Log-likelihood surface for the exposure-response model. The 
maximum transition probabilities 𝐸𝐸𝑚𝑚𝑡𝑡𝑚𝑚,2→3 and 𝐸𝐸𝑚𝑚𝑡𝑡𝑚𝑚,2→1/0 were fixed while 
associated AUC50 values (infliximab exposure metrics associated with a half-

maximum transition probability) were estimated. The top right point at 100%–
100% represents the original exposure-response model as reported by Dreesen 

et al. All models top right of the red contour line have a 𝛥𝛥2𝐶𝐶𝐶𝐶 below 3.84. 

B.2. NONMEM code of the adapted population 
pharmacokinetic model 

$PROBLEM    PopPK analysis of infliximab Induction therapy 
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$INPUT      ID TIME DV MDV EVID AMT RATE OCC EXTCOL MPRE CRP 
ALB CS WT HT SEX 
            ; EXTCOL: Extensive colitis 
            ; MPRE:   Mayo endoscopic score pre-induction 
            ; CRP:    C-reactive protein 
            ; ALB:    Albumin 
            ; CS:     Corticosteroids 
            ; WT:     Body weight 
            ; HT:     Body height 
            ; SEX:    Sex (female 0, male 1) 
 
$DATA       PKCOV.csv IGNORE=@ IGNORE(DV .EQ. 0.15) ; exclud
e the BLQ data 
 
$SUBROUTINE ADVAN6 TRANS1 TOL=6 
 
$MODEL      COMP=(CENTRAL,DEFDOS,DEFOBS) COMP=(CUMAUC) 
 
$PK BMI=WT/(HT**2) 
    IF (SEX.EQ.1) THEN 
                        FFM= (9.27*1000*WT)/((6.68*1000)+(21
6*BMI)) ;male 
                  ELSE 
                        FFM= (9.27*1000*WT)/((8.78*1000)+(24
4*BMI)) ;female 
                  ENDIF 
 
FLAG1=0 
FLAG2=0 
FLAG3=0 
FLAG4=0 
 
IF (OCC .EQ. 1) FLAG1=1 
IF (OCC .EQ. 2) FLAG2=1 
IF (OCC .EQ. 3) FLAG3=1 
IF (OCC .EQ. 4) FLAG4=1 
 
MPRE1=0 
MPRE2=0 
MPRE3=0 
MPRE4=0 
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IF (MPRE.EQ.-99) MPRE1=1 
IF (MPRE.EQ.1)   MPRE2=1 
IF (MPRE.EQ.2)   MPRE3=1 
IF (MPRE.EQ.3)   MPRE4=1 
 
TVK = (MPRE1*THETA(4) + MPRE2*THETA(3) + MPRE3*THETA(2) + MP
RE4*THETA(1)) 
TVV = THETA(6) *(THETA(5)**CS) *((FFM/52)**THETA(7)) *(THETA
(8)**EXTCOL) 
 
K   = TVK * EXP(ETA(1) +FLAG1*ETA(3)+FLAG2*ETA(4)+FLAG3*ETA(
5)+FLAG4*ETA(6)) 
V   = TVV * EXP(ETA(2)) 
 
CL = V*K 
S1 = V 
 
$DES DADT(1) =  -K*A(1) 
     DADT(2) =  A(1)/S1 
     CAUC = A(2) ; cumulative AUC 
 
$ERROR IPRED = F 
       IRES  = DV-IPRED 
       Y     = IPRED*(1+ERR(1))+ERR(2) 
       IWRES = IRES/(SQRT(IPRED**2*SIGMA(1,1)+SIGMA(2,2))) 
 
$THETA (0, 0.057)  ; KE MPRE3 
       (0, 0.0463) ; KE MPRE2 
       (0, 0.0422) ; KE MPRE1 
       (0, 0.617)  ; KE MPRE-99 
       (1.3)       ; CS on V 
       (6.97)      ; TVV 
       (0.517)     ; FFM on V 
       (1.25)      ; EXTCOL on V 
  
$OMEGA 0.106.      ;ETA(1) 
       0.5         ;ETA(2) 
$OMEGA BLOCK(1) 0.054 ;IOV 
$OMEGA BLOCK(1) SAME 
$OMEGA BLOCK(1) SAME 
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$OMEGA BLOCK(1) SAME 
 
$SIGMA 0.103 
       0.09 FIX 
 
$ESTIMATION MAXEVAL=9999 NOABORT PRINT=1 NSIG=2 METHOD=1 INT
ER LAPLACE 
$COVARIANCE 
 
$TABLE ID DV TIME MDV EVID PRED IPRED RES WRES CWRES IWRES K 
CL V ONEHEADER NOPRINT NOAPPEND FILE=PKCOV.sdtab 
$TABLE ID K CL V ETA(1) ETA(2) ETA(3) ETA(4) ETA(5) ETA(6) F
IRSTONLY NOAPPEND NOPRINT FILE=PKCOV.patab 
$TABLE ID EXTCOL MPRE CS SEX ONEHEADER NOPRINT FILE=PKCOV.ca
tab 
$TABLE ID CRP ALB WT HT ONEHEADER NOPRINT FILE=PKCOV.cotab  

B.3. NONMEM code of the adapted exposure-
response model 

$PROBLEM MPRE==2,3, CAUC drives change 
 
$INPUT ID DV C14 CAUC14 MPRE MPST CDOS CAUC TIPD 
       ; TIPD: Time to PD assessment (post-induction endosco
py) 
 
$DATA PKPD.csv IGNORE=@ IGNORE(MPRE.EQ.1) IGNORE(TIPD.LE.30) 
IGNORE(TIPD.GE.132) 
 
$PRED PKMETRIC = CAUC 
      EMAX1=1/(1+exp(-THETA(6))) 
      EMAX2=1/(1+exp(-THETA(7))) 
 
; transition 3 -> 2 
X5032  = THETA(1) + ETA(1) 
SL32   = THETA(2) 
DF32   = (PKMETRIC/X5032)**SL32 
D32    = EMAX1*DF32/(1+DF32) 
 
; transition 2 -> 10 
X50210 = THETA(3) 
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SL210  = THETA(4) 
DF210  = (PKMETRIC/X50210)**SL210 
D210   = EMAX2*DF210/(1+DF210) 
 
; fraction of patients at 3 and 2 before treatment 
P3B    = THETA(5) 
P2B    = 1 - THETA(5) 
 
FP33   = (1 - D32) 
FP32   = D32 * (1 - D210) 
FP310  = D32 * D210 
 
FP23   = (1 - D32) 
FP22   = (1 - D210 - (1 - D32)) 
FP210  = D210 
 
FCHK1  = FP33+FP32+FP310+FP23+FP22+FP210-1 ; -1 compensates 
for 2 initial states 
 
; fractions in respective bins 
IF (DV.EQ.32)              Y=P3B *FP32    ; 3 -> 2 
IF (DV.EQ.31.OR.DV.EQ.30)  Y=P3B *FP310   ; 3 -> <2 
IF (DV.EQ.33)              Y=P3B *FP33    ; 3 -> 3 
IF (DV.EQ.23)              Y=P2B *FP32    ; 2 -> 3 
IF (DV.LT.22)              Y=P2B *FP210   ; 2 -> <2 
IF (DV.EQ.22)              Y=P2B *FP22    ; 2 -> 2 
 
FX3   = P3B*FP33 + P2B*FP23 
FXN3  = 1-FX3 
 
FX2   = P3B*FP32 + P2B*FP22 
FXN2  = 1-FX2 
 
FX10  = P3B*FP310 + P2B*FP210 
FXN10 = 1-FX10 
 
$THETA (0, 295, 1000)   ; X5032 
       1 FIX            ; SL32 
       (0, 1380, 10000) ; X50210 
       1 FIX            ; SL210 
       (0, 0.516, 1)    ; prob at 3 
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       <<REPLACE_DURING_LIKELIHOODPROFILING>> ; EMAX1 
       <<REPLACE_DURING_LIKELIHOODPROFILING>> ; EMAX2 
 
$OMEGA 0 FIX 
 
$ESTIMATION MAX=9990 SIGDIG=3 METH=1 LIKE LAPLACE NUMERICAL 
NOABORT 
$COVARIANCE  

B.4. tdmore R code for the sensitivity analysis 
This file is available online. 

B.5. tdmore R code for the simulations 
This file is available online. 

  





 

21 
 

Appendix C Precision dosing trials in public trial registries 

Table 11: European and US clinical trials register result for intervention ‘Precision dosing OR computer dosing’. 
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Trial ID Start 
date Title Sponsor/Collaborators Funded by Publications 

available? 
Protocol 
available? Description of stats 

NCT00
654797 09-2007 

Improving Blood Glucose Control With a 
Computerized Decision Support Tool: 
Phase 2 

Intermountain Health Care, Inc. Other no no  

NCT00
655460 02-2006 

Improving Blood Glucose Control With a 
Computerized Decision Support Tool: 
Phase 1 

Intermountain Health Care, Inc. Other|NIH no no  

NCT00
733148 07-2004 Correlation Between the Interstitial and 

Arterial Glucose in Post Surgery Patients Medical University of Graz Other yes no  

NCT00
872079 09-2008 Personalized Warfarin Dosing by 

Genomics and Computational Intelligence 

US Department of Veterans 
Affairs|VA Office of Research and 
Development 

Other|NIH no no  

NCT00
993200 08-2009 

Personalized Medicine Interface Tool 
(PerMIT): Warfarin: A Trial Comparing 
Usual Care Warfarin Initiation to PerMIT 
Pharmacogenetic Guided Warfarin 
Therapy 

Robert Pendleton|University of 
Louisville|University of Utah U.S. Fed no no  

NCT01
024452 11-2009 

Randomized Comparison of Warfarin 
Dosing Quality Between the Hamilton 
Nomogram and a Commercial Computer 
System 

Population Health Research 
Institute Other yes no  

NCT01
100723 03-2010 Trial to Optimize Mineral Outcomes in 

Dialysis Patients University of Colorado, Denver Other yes yes 
a formal power 
calculation was not 
performed 
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Trial ID Start 
date Title Sponsor/Collaborators Funded by Publications 

available? 
Protocol 
available? Description of stats 

NCT01
363193 07-2011 

Safety and Efficacy of Lean Body Weight-
based IV Heparin Dosing in 
Obese/Morbidly Obese Patients 

Nazareth Hospital Other no no  

NCT01
419873 08-2008 

Study of a Model-based Approach to 
Blood Glucose Control in Very-low-
birthweight Neonates 

Christchurch Women's Hospital Other yes no  

NCT01
629251 04-2011 

Closing the Loop for 36 Hours in 
Adolescents With Type 1 Diabetes: 
Evaluation of Reduced Meal Bolusing 

University of 
Cambridge|Cambridge University 
Hospitals NHS Foundation Trust 

Other|Indust
ry yes yes based on 

guesstimate 

NCT01
762059 01-2013 

Outpatient Automated Blood Glucose 
Control With a Bi-hormonal Bionic 
Endocrine Pancreas 

Massachusetts General 
Hospital|Boston University Other yes no  

NCT01
886365 10-2011 Computerized Tight Glycemic Control in 

Cardiac Surgery 

UniversitÃ¤tsklinikum Hamburg-
Eppendorf|B. Braun Melsungen 
AG 

Other yes no  

NCT01
932034 09-2012 

Prospective Study to Optimize 
Vancomycin Dosing in Children and 
Adults Using Computer Software 

Children's Hospital Los 
Angeles|National Institute of 
General Medical Sciences 
(NIGMS) 

Other yes yes 

based on estimate 
from historic 
control, and 
minimally relevant 
effect size 

NCT02
010320 01-2014 Computer Guided Doing of Tacrolimus in 

Renal Transplantation 

University of Oslo School of 
Pharmacy|Rikshospitalet 
University Hospital 

Other yes yes 
no formal power 
calculation was 
performed 
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Trial ID Start 
date Title Sponsor/Collaborators Funded by Publications 

available? 
Protocol 
available? Description of stats 

NCT02
267408 11-2014 

Randomized Controlled Feasibility Trial of 
the Fearon Algorithm to Improve 
Management of Unstable Warfarin 

McMaster University|Epitome 
Pharmaceuticals Other no no  

NCT02
392364 04-2015 Variable Interval Versus Set Interval 

Aflibercept for DME 

California Retina 
Consultants|Regeneron 
Pharmaceuticals 

Other no no  

NCT02
453776 05-2015 Precision Dosing of Infliximab Versus 

Conventional Dosing of Infliximab 

Academisch Medisch Centrum - 
Universiteit van Amsterdam (AMC-
UvA) 

Other yes yes 

intervention group 
based on estimate 
from other study; 
placebo group 
based on 
guesstimate 

NCT02
624037 01-2015 Precision IFX: Using a Dashboard to 

Individualize Infliximab Dosage 
Icahn School of Medicine at Mount 
Sinai|Prometheus Laboratories Other yes no  

NCT03
078491 03-2017 Technological Advances in Glucose 

Management in Older Adults 

Joslin Diabetes Center|Beth Israel 
Deaconess Medical Center|Boston 
Children's Hospital|RTI 
International 

Other yes no  

NCT03
302754 10-2017 Precision Dosing of Alemtuzumab Children's Hospital Medical 

Center, Cincinnati 
Other|Indust
ry no no  

NCT03
527238 09-2018 

Optimizing Immunosuppression Drug 
Dosing Via Phenotypic Precision 
Medicine 

University of Florida|National 
Institute of Diabetes and Digestive 
and Kidney Diseases (NIDDK) 

Other no no  



 

25 
 

Trial ID Start 
date Title Sponsor/Collaborators Funded by Publications 

available? 
Protocol 
available? Description of stats 

NCT03
633656 02-2019 Iron Dosing Pilot Study Using Model 

Predictive Control University of Louisville Other no no  

NCT03
789591 01-2019 Hydroxyurea Optimization Through 

Precision Study 

Children's Hospital Medical 
Center, Cincinnati|Doris Duke 
Charitable Foundation 

Other|NIH yes yes based on estimate 
from other studies 

NCT03
800875 02-2019 

Insulin-plus-pramlintide Closed-loop 
Strategy to Regulate Glucose Levels 
Without Carbohydrate Counting 

McGill University|Diabetes Canada Other yes yes based on a 
guesstimate 

NCT03
885830 06-2019 Precision Dosing of Tyrosine Kinase 

Inhibitors in CML Patients 
UNC Lineberger Comprehensive 
Cancer Center Other no no  

NCT03
962400 01-2022 Reinforcement Learning for Warfarin 

Dosing University of Louisville Other no no  

NCT04
340752 01-2021 

Optimal Dosing of IC-Green for 
Visualization of Rotator Cuff Vascularity 
Using Advanced Imaging Modality 
Arthroscopy 

NYU Langone Health Other no no  

NCT04
380311 05-2020 Precision Guided Tacrolimus Dosing in 

Pediatric Heart Transplant 
University of Utah|National Heart, 
Lung, and Blood Institute (NHLBI) Other yes no  

NCT04
666948 12-2020 Precision Dosing of Vancomycin in 

Critically Ill Children 

University Hospital, Ghent|Belgium 
Health Care Knowledge 
Centre|Ghent University, Belgium 

Other|NIH no no  

NCT04
822532 06-2021 Precision Dosing of Busulfan in Children 

Undergoing HSCT University Hospital, Geneva Other|Indust
ry yes no  
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Trial ID Start 
date Title Sponsor/Collaborators Funded by Publications 

available? 
Protocol 
available? Description of stats 

NCT04
911270 12-2021 Clinical Decision Support Tool for 

Vancomycin Dosing in Children 

University of Maryland, 
Baltimore|Center for Translational 
Medicine at the School of 
Pharmacy|Eunice Kennedy 
Shriver National Institute of Child 
Health and Human Development 
(NICHD) 

Other yes no  

NCT04
974099 10-2021 

Personalized Infliximab Induction Strategy 
With Model-informed Dosing in Patients 
With Crohn's Disease 

Children's Hospital Medical 
Center, Cincinnati|Crohn's and 
Colitis Foundation 

Other no no  

NCT04
982172 09-2021 

Model-informed Dose De-escalation of 
Infliximab in Patients With Inflammatory 
Bowel Diseases 

Universitaire Ziekenhuizen 
Leuven|KU Leuven 

Other|Indust
ry no no  
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Appendix D Tacrolimus MIPD trial 
simulation: full source code 

This chapter contains the full source code for simulation of the proposed 
clinical trial comparing standard of care to computer-guided dosing for 
tacrolimus in de novo kidney transplant recipients for the first 14 days 
following transplant. 

D.1. Clinical trial simulation 
First, we load the relevant simulation files. We refer to the Supplementary 
Material of our tacrolimus MIPD simulation (available online at CPT:PSP) for 
generating these files. 

We also define some utility functions for saving and loading results. We 
augment some simulation results, e.g. adding gaussian blur to clinical results, 
or adding calculated concentrations for proseval simulation results. 

## AUthor: Ruben Faelens, 2020-08-15 
modelName <- "baseOral_mpc" 
TROUGH_DELTA <- 0.01 
 
# setup ----------------------------------------------------
--------------- 
library(renv) 
library(tidyverse) 
library(tdmore) 
Sys.setenv(PATH=paste(pkgbuild:::rtools_path(),Sys.getenv("P
ATH"), sep=";")) 
 
if(basename(here::here()) == "TacrolimusSimulations") { 
  here <- function(...) { 
    file.path(here::here(), "SimulationForPaper", ...) 
  } 
} else { 
  here <- here::here 
} 
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dhere <- function(...) { file.path(here(), modelName, ...)} 
ggsave <- function(filename, plot=last_plot(), ...) { 
  filename <- dhere(filename) 
  ggplot2::ggsave(filename=filename, plot=plot, ...) 
  saveRDS(plot, file=paste0(filename, ".RDs")) 
} 
 
# Load all files -------------------------------------------
--------------- 
scenarioA <- "scenarioA.RDs" %>% dhere() %>% readRDS 
 
 
physician <- "posthoc.RDs" %>% dhere() %>% readRDS() 
physicianConc <- physician %>% unnest(observed) %>%  
  mutate(Cwb=Cwb + rnorm(n(), sd=0.001)) %>%  #counter roudi
ng to '12' and '15' exactly by adding gaussian blur 
  mutate(Arm="Physician") 
 
proseval <- "proseval.RDs" %>% dhere() %>% readRDS() 
prosevalConc <- proseval %>% 
  unnest(c(observed, ipred), names_sep=".") %>% 
  group_by(ID, OBS) %>% 
  mutate( 
    INCLUDED=row_number() <= OBS, 
    TARGET = (row_number() == OBS[1]+1), 
    TARGET2 = (row_number() == OBS[1]+2), 
    DAY = floor(observed.TIME / 24), 
    DAYFit = ifelse(OBS==0, NA, DAY[OBS]), 
    TIME=observed.TIME, 
    CwbRatioComputer = ipred.Cwb / observed.Cwb, 
    CwbRatioPhysician = 13.5 / observed.Cwb, 
    Cwb= 1/CwbRatioComputer * 13.5 #ERROR * TARGET 
  ) 
prosevalConc24h <- prosevalConc %>% filter(DAY-DAYFit == 1) 
%>% mutate(Arm="Computer-PE24h") 
prosevalConc48h <- prosevalConc %>% filter(DAY-DAYFit == 2) 
%>% mutate(Arm="Computer-PE48h") 
 
scenarioAConc <- scenarioA %>%  
  group_by(ID) %>% 
  filter(row_number() == n()-1) %>% unnest(next_observed) %>
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%  #this is the final result 
  select(ID, TIME, Cwb) %>% ungroup() %>% 
  mutate(Arm="Computer") 
 
db <- bind_rows( 
  physicianConc, 
  scenarioAConc 
) %>% select(ID, TIME, Cwb, Arm) %>% mutate( 
  Arm=factor(Arm), 
  DAY = floor(TIME/24) 
) 

We then define a trial simulation framework. A clinical trial result is obtained 
by bootstrapping from the virtual dataset. A statistical test is provided for 
every trial. 

# Trial sampling framework ---------------------------------
--------------- 
Ntrial <- 1000 
Nsubjects <- 200 
NPhys <- round(Nsubjects / 3) 
NComp <- round(Nsubjects / 3 * 2) 
sampleSet <- db %>% filter(Arm=="Physician") %>% 
  group_by(Arm, ID) %>% summarize(n=n()) %>%  
  filter(n >= 13) %>% #we want at least 13 of 14 days availa
ble 
  pull(ID) 
 
sampleTrial <- function(test, perDay=FALSE, ...) { 
  #sample IDs from sampleSet 
  IDPhys <- sample(sampleSet, size=NPhys, replace=F) 
  IDComp <- sample(sampleSet, size=NComp, replace=F) 
  db <- bind_rows( 
    db %>% filter(Arm == "Physician" & ID %in% IDPhys) %>% m
utate(ID = ID + 1000), 
    db %>% filter(Arm == "Computer" & ID %in% IDComp) %>% mu
tate(ID = ID + 2000) 
  ) 
  if(perDay) 
    db <- group_by(db, DAY) 
  db %>% do( test(.data, ...) ) 
} 
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First, an empirical cumulative distribution is provided to understand the 
simulated data target attainment. 

# Plot population ECDF -------------------------------------
--------------- 
scale_fixed <- function(x=scale_color_discrete, values=c(1, 
2), n=max(values, na.rm=TRUE), ...) { 
  scale <- x() 
  discrete_scale(aesthetics=scale$aesthetics, 
                 scale_name=scale$scale_name, 
                 palette=function(...) { 
                   f <- x()$palette 
                   val = f(n=n) 
                   val[values] 
                 }, 
                 ... 
  ) 
} 
methodScales <- list( 
  scale_fixed(x=scale_color_discrete, n=3, values=c(1, 3)), 
  scale_fixed(x=scale_linetype_discrete, values=c(1, 1)), 
  aes(color=Arm, linetype=Arm) 
) 
 
ggplot(db, aes(x=DAY, y=Cwb)) + 
  geom_hline(yintercept=13.5, linetype=2) + 
  annotate("rect", xmin=-Inf, xmax=Inf, ymin=12, ymax=15, fi
ll="green", alpha=0.2) + 
  geom_boxplot(aes(group=interaction(Arm,DAY), color=Arm), p
osition=position_dodge(width=0.8), width=0.7) + 
  scale_y_log10() + 
  labs(x="Time post transplant (days)", y="Concentration (ng
/mL)", color="") + 
  theme(legend.position="bottom") + 
  methodScales 
ggsave("computer_vs_physician_boxplot.png") 
 
last_plot() + geom_text(aes(label=ID, color=Arm), data=. %>% 
filter(Arm != "Physician", Cwb > 30)) 
ggsave("computer_outliers.png") 
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q05 <- function(x){quantile(x, 0.05)} 
q95 <- function(x){quantile(x, 0.95)} 
ggplot(db, aes(x=DAY, y=Cwb, color=Arm, linetype=Arm)) + 
  stat_summary(fun=median, fun.min=q05, fun.max=q95,  
               position=position_dodge(width=0.6)) + 
  stat_summary(geom="errorbar", fun=median, fun.min=q05, fun
.max=q95,  
               position=position_dodge(width=0.6), show.lege
nd = F) + 
  geom_hline(yintercept=13.5, linetype=2) + 
  annotate("rect", xmin=-Inf, xmax=Inf, ymin=12, ymax=15, fi
ll="green", alpha=0.2) + 
  #geom_boxplot(aes(group=interaction(Arm,DAY), color=Arm), 
position=position_dodge(width=0.8), width=0.7) + 
  scale_y_log10() + 
  labs(x="Time post transplant (days)", y="Concentration (ng
/mL)", color="") + 
  theme(legend.position="bottom") + 
  methodScales 
ggsave("computer_vs_physician_bars.png") 

Below, probability of target attainment (PTA) is evaluated. First, the overall 
simulated PTA in the virtual population is evaluated, after which a clinical 
trial simulation evaluates PoSS. 

# Determine population PTA ---------------------------------
------------------- 
sumstat <- db %>%  
  group_by(DAY, Arm) %>%  
  summarize( 
    n=n(), 
    under=sum(Cwb < 12) / n(), 
    pta=sum(Cwb > 12 & Cwb < 15)/n(), 
    above=sum(Cwb > 15 ) / n() 
  ) 
ptaLimit <- pnorm(c(12-13.5, 15-13.5)/13.5, mean=0, sd=0.187
) %>% diff() 
ggplot(sumstat, aes(x=DAY, y=pta)) +  
  geom_line(aes(color=Arm, linetype=Arm)) +  
  geom_hline(yintercept=ptaLimit) + 
  annotate("text", x=-Inf, y=ptaLimit, hjust=-0.1, vjust=-0.
5, label="Theoretical limit") + 
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  scale_y_continuous(labels=scales::percent) + 
  methodScales 
ggsave("computer_vs_physician_pta.png", width=12, height=8) 
 
 
# Power calculation on PTA ---------------------------------
------------------- 
library(MESS) 
 
sumstat <- db %>%  
  group_by(ID, Arm) %>%  
  summarize( 
    n=n(), 
    under=sum(Cwb < 12) / n(), 
    pta=sum(Cwb > 12 & Cwb < 15)/n(), 
    above=sum(Cwb > 15 ) / n() 
  ) 
 
ggplot(sumstat, aes(x=pta)) + geom_histogram() + 
  facet_wrap(~Arm) 
ptaPopStat <- sumstat %>% group_by(Arm) %>% summarize(m=mean
(pta), s=sd(pta)) 
 
# <fct>          <dbl> <dbl> 
#   1 Computer 0.379 0.158 
# 2 Physician      0.276 0.161 
 
N = seq(10, 500) 
pow <- function(N,power, pValue) { 
  MESS::power_t_test(n=N/3,  
       sd=ptaPopStat$s[ptaPopStat$Arm=="Physician"],  
       power=power, 
       sig.level = pValue, 
       ratio=2,  
       sd.ratio=ptaPopStat$s[ptaPopStat$Arm=="Computer"]/pta
PopStat$s[ptaPopStat$Arm=="Physician"],  
       #delta=abs(diff(ptaPopStat$m)), 
       alternative="one.sided") 
} 
powerResult <- tidyr::crossing(N=seq(10, 500), powerValue=c(
0.6, 0.8, 0.9), pValue=c(0.01, 0.05)) %>% 
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  rowwise() %>% 
  mutate(res= 
           list( 
             unlist(pow(N, powerValue, pValue)) 
           ) 
  ) %>% tidyr::unnest_wider(res) 
powerResult %>% filter(powerValue==0.8 & pValue == 0.01) %>% 
arrange(abs(as.numeric(delta)-0.276*0.33)) 
 
ggplot(powerResult, aes(y=as.numeric(delta), x=as.numeric(n1
)+as.numeric(n2))) + 
  geom_hline(yintercept=0.276*0.33, linetype=2) + 
  geom_line(aes(color=factor(powerValue), linetype=factor(pV
alue))) + 
  coord_cartesian(xlim=c(0, 200), ylim=c(0, 0.2)) + geom_hli
ne(yintercept=0.379-0.276) + 
  labs(y="Minimum detectable effect", x="Minimum sample size
", color="Power", linetype="Significance level") + 
  scale_color_discrete(labels=function(x){paste0(as.numeric(
x)*100, "%")}) + 
  scale_y_continuous(labels=function(y){paste0("+", as.numer
ic(y)*100, "%")}) + 
  annotate(x=-Inf, y=0.276*0.33, "label", label="Clinically 
relevant effect", hjust=0) + 
  annotate(x=-Inf, y=0.379-0.276, "label", label="True effec
t", hjust=0) 
ggsave("pta_power_mde.png", width=12, height=8) 

The code below evaluates the time-to-event endpoint. As with PTA, the 
virtual population is evaluated first, after which PoSS is evaluated. 

The survfit function creates Kaplan-Meier curves, and the survdiff() 
function is used to compare two survival curves using a Mantel-Haenszel test. 
There are two ‘parameters’ to choose when defining the endpoint: minimal 
number of days in target (we chose ≥ 3) and day on which to evaluate (we 
chose day 7). Alternatively, overall difference in survival up to day X can be 
detected; we evaluated day 7, 8, 9 and 10. The key function is 
trial.tte.test. 

# Population TTE analysis ----------------------------------
-------------------------- 
library(survival) 
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dataSetSurv <- db %>%  
  mutate(ID = ID + 100000*as.numeric(Arm) ) %>% 
  group_by(ID, Arm) %>% 
  mutate(INTARGET = between(Cwb, 12, 15), CUMTARGET=cumsum(I
NTARGET)) %>% 
  summarize(TTT = DAY[min(which(CUMTARGET == 3))], #3 days i
n target 
            MAXTIME = n()) %>% 
  ungroup() %>% 
  mutate(SURV = ifelse(is.finite(TTT), 1, 0), #censored, or 
event occurred? 
         TTT=ifelse(is.finite(TTT), TTT, MAXTIME )) %>% 
  as.data.frame() 
survdiff(Surv(TTT, SURV) ~ Arm, data=dataSetSurv) 
fit1 <- survival::survfit(Surv(TTT, SURV) ~ Arm, data=dataSe
tSurv) 
mySum <- summary(fit1) 
print(mySum) 
 
broom::tidy(fit1) %>% 
  arrange(time) %>%  
  filter(time == 7) %>%  
  mutate_at(vars(estimate, conf.high, conf.low), ~1-.x) 
 
 
# Power calculations ---------------------------------------
--------------- 
## See https://shariq-mohammed.github.io/files/cbsa2019/2-po
wer-and-sample-size.html#3_two-arm_study 
hazardValues <- broom::tidy(fit1) %>% 
  arrange(time) 
# difference in hazard ratio is pPlacebo = pTreatment^DELTA 
==> 
#     log(pOld) / log(pTreatment) =  
TwoArmDeaths = function(Delta, p, alpha, pwr){ 
  z.alpha = qnorm(alpha, lower.tail=F) 
  z.beta = qnorm(1-pwr, lower.tail=F) 
  num = (z.alpha + z.beta)^2 
  denom = p*(1-p)*(log(Delta))^2 
  dd = num/denom 
  dd 
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} 
 
fun <- function(relReduction, power, alpha) { 
  dHR <- log(0.725) / log(1 - (1-0.725)*(1+relReduction)) 
  nEvents <- TwoArmDeaths(Delta=dHR, p=0.66, alpha=alpha, pw
r=power) 
  nAvgEvents <- sum(hazardValues$n.event) / 315 / 2 
  #nAvgEvents <- sum(hazardValues$n.event[hazardValues$time 
<= 7]) / 315 / 2 
  nPatients <- nEvents / nAvgEvents 
  nPatients 
} 
powerResult <- tidyr::crossing(relReduction=seq(0, 1, by=0.0
1), powerValue=c(0.6, 0.8, 0.9), pValue=c(0.01, 0.05)) %>% 
  rowwise() %>% 
  mutate(N=fun(relReduction, powerValue, pValue)) 
 
ggplot(powerResult, aes(y=as.numeric(relReduction), x=N)) + 
  geom_hline(yintercept=0.482/0.275 -1, linetype=2) + 
  geom_hline(yintercept=0.33) + 
  geom_line(aes(color=factor(powerValue), linetype=factor(pV
alue))) + 
  coord_cartesian(xlim=c(0, 800), ylim=c(0, 1)) + 
  labs(y="Minimum detectable effect", x="Minimum sample size
", color="Power", linetype="Significance level") + 
  scale_color_discrete(labels=function(x){paste0(as.numeric(
x)*100, "%")}) + 
  scale_y_continuous(labels=function(y){paste0("+", as.numer
ic(y)*100, "%")}) + 
  annotate(x=-Inf, y=0.33, "label", label="Clinically releva
nt effect", hjust=0) + 
  annotate(x=-Inf, y=0.482/0.275-1, "label", label="True eff
ect", hjust=0) 
ggsave("tte_power_mde.png", width=12, height=8) 
 
 
library(survminer) 
z1 <- survminer::ggsurvplot(fit1, data=dataSetSurv, fun=func
tion(x){ 
  haz <- x 
  haz[1] <- 0 
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  for(i in seq(2, length(x))) { 
    if(x[i] > x[i-1]) { 
      haz[i] <- 0 
      next 
    } 
    drop <- x[i-1] - x[i] 
    haz[i] <- drop / x[i-1] 
  } 
  haz 
}) %++% 
  labs(y="probability of event") %++% 
  scale_x_continuous(breaks=seq(0, 15)) %++% 
  scale_y_continuous(breaks=seq(0, 1, by=0.2)) %++% 
  theme(panel.grid.major = element_line(), panel.grid.minor.
y=element_line(colour="grey87")) 
ggsave("tte.marginal.prob.png") 
 
z1 <- survminer::ggsurvplot(fit1, 
                            data=dataSetSurv,  
                            conf.int = TRUE,  
                            pval = TRUE,  
                            fun="event",  
                            surv.median.line = "hv") 
z1 %++%  
  scale_x_continuous(breaks=seq(0, 15)) %++% 
  scale_y_continuous(breaks=seq(0, 1, by=0.2)) %++% 
  theme(panel.grid.major = element_line(), panel.grid.minor.
y=element_line(colour="grey87")) 
ggsave("tte_population.png") 
 
positions <- db %>% full_join( 
  expand_grid(Arm=unique(db$Arm), DAY=unique(db$DAY), ID=uni
que(db$ID)) 
) %>% mutate(INTARGET = !is.na(Cwb) & between(Cwb, 12, 15)) 
%>% 
  group_by(ID, Arm) %>% arrange(ID, Arm, DAY) %>% 
  mutate(CUMTARGET = cumsum(INTARGET) + 1) %>% 
  group_by(Arm, DAY, CUMTARGET) %>% summarize(N = n()) %>%  
  bind_rows( 
    tibble(DAY=0, Arm=unique(db$Arm), CUMTARGET=1, N=315), 
    ., 
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    filter(., DAY==14) %>% mutate(DAY = 15) #repeat day 15 
  ) %>% 
  group_by(Arm, DAY) %>%  
  mutate(CUMN = cumsum(N), 
      position=1 - CUMN / 315) 
 
 
ttePlot <- ggplot(positions, aes(x=DAY-0.5, y=position, colo
r=factor(CUMTARGET))) + 
  geom_step(aes(linetype=Arm)) + 
  ggrepel::geom_label_repel(data=function(x) { 
      crossings <- x %>% filter(Arm == "Computer" & position 
> 0.5) %>%  
        group_by(CUMTARGET) %>% filter(row_number()==1) %>% 
select(CUMTARGET, DAY) 
      left_join(crossings, x) #show the days where there is 
a crossing 
    }, 
                   aes(x=DAY, y=position, label=CUMTARGET,  
                                    fontface=ifelse(Arm=="Ph
ysician", 1, 4)), direction = "y", 
                   min.segment.length = 0) + 
  #geom_point(data=labels, aes(x=DAY+0.5, y=position)) + 
  labs(x="Days post transplant", y="Prop of patients with X 
concentrations in target", linetype="") + 
  scale_x_continuous(breaks=seq(0, 15)) + 
  scale_y_continuous(breaks=seq(0, 1, by=0.2), labels=scales
::percent) + 
  theme(legend.position="bottom", panel.grid.minor.x = eleme
nt_blank()) + 
  scale_fixed(x=scale_color_discrete, n=3, values=rep(1:3, l
ength.out=20), guide=F) 
ggsave("tte_all_targets.png", plot=ttePlot) 
 
# TTE analysis: 9 random trials ----------------------------
----------------------------- 
plots <- lapply(1:9, function(x){ result <- sampleTrial(func
tion(db){ 
  dataSetSurv <- db %>% mutate(Arm = factor(Arm)) %>%  
    group_by(ID, Arm) %>% 
    mutate(INTARGET = between(Cwb, 12, 15), CUMTARGET=cumsum
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(INTARGET)) %>% 
    summarize(TTT = DAY[min(which(CUMTARGET == 1))], 
              MAXTIME = n()) %>% 
    mutate(SURV = ifelse(is.finite(TTT), 1, 0), #censored, o
r event occurred? 
           TTT=ifelse(is.finite(TTT), TTT, MAXTIME )) 
  s1 <- survival::Surv(time=dataSetSurv$TTT, event=dataSetSu
rv$SURV) 
  diff1 <- survdiff(s1 ~ Arm, data=dataSetSurv) 
  df <- (sum(1 * (diff1$exp > 0))) - 1 
  p.value = pchisq(diff1$chisq, df, lower.tail = FALSE) 
   
  fit1 <- survival::survfit(Surv(TTT, SURV) ~ Arm, data=data
SetSurv) 
  z1 <- survminer::ggsurvplot(fit1, conf.int = TRUE, pval = 
FALSE, fun="event", surv.median.line = "hv") %++% 
    annotate("text", x=5, y=0.25, label=paste0("p: ", format
.pval(p.value, 1)) ) 
  #z1 <- z1 %++%  
  #scale_y_continuous(breaks=seq(0, 1, by=0.2)) %++% 
  #    theme(panel.grid.major = element_line(), panel.grid.m
inor.y=element_line(colour="grey87")) 
  tibble(plot=list(z1)) 
}) 
result$plot[[1]] 
}) 
library(gridExtra) 
plots_built <- lapply(plots, survminer:::.build_ggsurvplot) 
gridExtra::arrangeGrob(grobs=plots_built, nrow=3, ncol=3) %>
% 
  ggsave("tte_9trials.png", ., width=16, height=16) 
 
# TTE analysis: study power --------------------------------
--------------- 
trial.tte.test <- function(db, howMuch=1, cutOff=7) { 
  dataSetSurv <- db %>%  
    group_by(ID, Arm) %>% 
    filter(DAY <= cutOff) %>% 
    mutate(INTARGET = between(Cwb, 12, 15), CUMTARGET=cumsum
(INTARGET)) %>% 
    summarize(TTT = DAY[min(which(CUMTARGET == howMuch))], 



 

39 
 

              MAXTIME = n()) %>% 
    mutate(SURV = ifelse(is.finite(TTT), 1, 0), #censored, o
r event occurred? 
           TTT=ifelse(is.finite(TTT), TTT, MAXTIME )) 
  s1 <- survival::Surv(time=dataSetSurv$TTT, event=dataSetSu
rv$SURV) 
  diff1 <- survdiff(s1 ~ Arm, data=dataSetSurv) 
  df <- (sum(1 * (diff1$exp > 0))) - 1 
  p.value = pchisq(diff1$chisq, df, lower.tail = FALSE) 
   
  ## Calculate difference per day   
  fit1 <- survival::survfit(s1 ~ Arm, data=dataSetSurv) 
  fit1df <- broom::tidy(fit1) %>% group_by(time) %>% group_m
odify(function(x, ...){ 
    Physician <- x %>% filter(strata=="Arm=Physician") 
    Computer <- x %>% filter(strata=="Arm=Computer") 
    p.value = pnorm(Computer$estimate, mean=Physician$estima
te, sd=sqrt(Physician$std.error^2 + Computer$std.error^2)) 
    tibble(p.value=p.value) 
  }) 
  ### Is the survival on day 3 HIGHER for physician than for 
computer 
  ### I.e. is the lowest confidence interval for Physician s
till higher than computer median 
  ### If so, computer puts patients on target faster on day 
3 
   
  tibble(p.value=p.value, p.value.per.day=list(fit1df) ) 
} 
 
#trial.tte.test(db, howMuch=3) 
#debugonce(trial.tte.test) 
#sampleTrial(trial.tte.test, howMuch = 3) 
 
p <- progress::progress_bar$new(total=10*1000*4) 
trial.tte.result <- tidyr::crossing(trial=1:1000, howMuch=1:
10, cutOff=7:10) %>% group_by(trial, howMuch, cutOff) %>% gr
oup_modify(function(x, keys){ 
  p$tick()$print() 
  sampleTrial(trial.tte.test, howMuch = keys$howMuch, cutOff
=keys$cutOff) 
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}) %>% ungroup() 
saveRDS(trial.tte.result, dhere("trial.tte.result.RDs")) 
trial.tte.result <- readRDS(dhere("trial.tte.result.RDs")) 
 
ggplot(filter(trial.tte.result, howMuch <= 5), aes(x=p.value
)) +  
  geom_hline(yintercept=0.8, linetype=2) + 
  stat_ecdf(aes(color=factor(howMuch))) +  
  coord_cartesian(xlim=c(0, 0.05)) + 
  ggrepel::geom_label_repel(data = . %>% group_by(howMuch, c
utOff) %>% summarize(PoSS=mean(p.value<0.02)),  
                            aes(x=0.02, y=PoSS, label=howMuc
h, color=factor(howMuch))) + 
  labs(x="p-value", y="PoSS") +  
  scale_y_continuous(breaks=seq(0, 1, by=0.2), labels=scales
::percent) + 
  scale_color_discrete(guide=F) + 
  facet_wrap(~cutOff, labeller=function(var) { 
    var$cutOff <- paste("Day:",var$cutOff) 
    var 
  }) 
ggsave("tte_pvalue.png") 
 
trial.tte.result %>% group_by(howMuch, cutOff) %>% summarize
( 
  PoSS_0.01 = mean(p.value < 0.01), 
  PoSS_0.05 = mean(p.value < 0.05) 
) %>% filter(howMuch==3) 
 
ggplot(trial.tte.result %>% select(-p.value) %>% unnest(p.va
lue.per.day) %>% filter(time==7), aes(x=p.value)) +  
  stat_ecdf(aes(color=factor(howMuch))) +  
  coord_cartesian(xlim=c(0, 0.05)) + 
  ggrepel::geom_label_repel(data = . %>% group_by(howMuch) %
>% summarize(PoSS=mean(p.value<0.005)),  
                            aes(x=0.005, y=PoSS, label=howMu
ch, color=factor(howMuch))) + 
  labs(x="p-value", y="PoSS") +  
  scale_y_continuous(breaks=seq(0, 1, by=0.2)) + 
  scale_color_discrete(guide=F) 
ggsave("tte_pvalue_on_day7.png") 
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trial.tte.result %>% group_by(howMuch) %>% summarize(PoSS_0.
01 = mean(p.value < 0.01), PoSS_0.05 = mean(p.value < 0.05) 
) 
 
trial.tte.result %>% dplyr::select(-p.value) %>% unnest(p.va
lue.per.day) %>% 
  filter(between(time, 2, 13)) %>% 
  ggplot(aes(x=p.value, color=factor(time))) +  
  stat_ecdf() + coord_cartesian(xlim=c(0, 0.05)) + 
  facet_wrap(~time, labeller=label_both) + 
  scale_color_discrete(guide=F) + 
  labs(x="p-value", y="PoSS") +  
  scale_y_continuous(breaks=seq(0, 1, by=0.2)) + 
  facet_wrap(~howMuch) 
ggsave("tte_pvalue_per_time.png") 

Below, a Cox proportional hazards model is used instead. As the dataset does 
not have a single hazard ratio, this was not retained. 

# TTE Analysis through coxph survival model ----------------
--------------- 
dataSetSurv <- db %>% group_by(ID, Arm) %>% 
  filter(DAY <= 7) %>% 
  mutate(INTARGET = between(Cwb, 12, 15), CUMTARGET=cumsum(I
NTARGET)) %>% 
  summarize(TTT = DAY[min(which(CUMTARGET == 1))], 
            MAXTIME = n()) %>% 
  ungroup() %>% 
  mutate(SURV = ifelse(is.finite(TTT), 1, 0), #censored, or 
event occurred? 
         TTT=ifelse(is.finite(TTT), TTT, MAXTIME )) 
fit2 <- coxph(Surv(TTT, SURV) ~ Arm, data=dataSetSurv) 
 
survminer::ggadjustedcurves(fit2, data=as.data.frame(dataSet
Surv), method="conditional", variable="Arm", fun="event") 
 
## Test if coxph fits 
summary(fit2) 
if( any( summary(fit2)$logtest['pvalue'] > 0.05 ) ) stop("Co
x proportional-hazards model does not fit!") 
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## Test for deviation of proportional-hazards assumption 
zph <- cox.zph(fit2) 
print(zph) 
if(any( zph$table[,"p"]  < 0.05 )) stop("Cox proportional-ha
zards model does not apply!") 
ggcoxzph(zph) 
 
ggcoxdiagnostics(fit2, type="schoenfeld", ox.scale="time") 
ggsave("coxph.schoenfeld.png") 
 
p.value <- broom::tidy(fit2)$p.value 
fit2Fit <- survfit(fit2, newdata=distinct(dataSetSurv, Arm) 
%>% as.data.frame) 
summary(fit2Fit) 
broom::tidy(fit2Fit) %>% tidyr::pivot_longer(estimate.1:conf
.low.2) %>% 
  mutate( 
    i = as.numeric(stringr::str_extract(name, "\\d+$")), 
    name = substr(name, 1, nchar(name)-2), 
    Arm = levels(dataSetSurv$Arm)[i], 
    strata = paste0("Arm=", Arm) 
  ) %>% select(-i) %>% 
  pivot_wider() 
 
# TTE Analysis through coxph count model: NOT APPROPRIATE --
------------------------------- 
 
## Analysis through a count model is not appropriate 
## This assumes counts are fully at random 
## Therefore, the number of patients with a count = 2 would 
be: 
##    hazard_day1 * hazard_day2 
## This is not appropriate 
dataSetSurv <- db %>% 
  mutate(ID = ID + 100000*as.numeric(Arm) ) %>% 
  group_by(ID, Arm) %>% 
  filter(n() >= 14) %>% 
  mutate(INTARGET = between(Cwb, 12, 15)) %>% 
  mutate(time=DAY, #starting time for interval 
         time2=ifelse(row_number() == n(), DAY+1, lead(DAY))
, #end time for interval 
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         event=INTARGET) %>% 
  ungroup() %>% 
  as.data.frame() 
s1 <- with(dataSetSurv, Surv(time, time2, event, type="count
ing", origin=0) ) 
fit1 <- survfit(Surv(time, time2, event, type="counting", or
igin=0) ~ Arm, data=dataSetSurv) 
summary(fit1) 
print(fit1) 
 
fit2 <- coxph(Surv(time, time2, event, type="counting") ~ Ar
m, data=dataSetSurv) 
 
foo <- distinct(dataSetSurv, time, Arm) %>% mutate(time2=tim
e+1, event=TRUE) 
foo$PRED <- predict(fit2, newdata=foo, type="expected") 
print(foo) 
ggplot(foo, aes(x=time, y=PRED)) + 
  geom_step(aes(color=Arm, linetype="Predicted")) + 
  geom_step(data= dataSetSurv %>% group_by(Arm, time) %>% su
mmarize(PRED=mean(event)), aes(color=Arm, linetype="Observed
")) + 
  labs(y="Events during that period") 
 
foo <- distinct(dataSetSurv, time, Arm) %>% mutate(time2=tim
e+1, event=TRUE) 
foo$PRED <- predict(fit2, newdata=foo, type="expected") 
print(foo) 
ggplot(foo, aes(x=time, y=PRED)) + 
  geom_step(data=. %>% group_by(time) %>% summarize(PRED=mea
n(c(PRED[1]))), aes(linetype="Predicted")) + 
  geom_step(data= dataSetSurv %>% group_by(time) %>% summari
ze(PRED=mean(event)), aes(linetype="Observed")) + 
  labs(y="Events during that period") 
 
# TTE Coxph: power analysis --------------------------------
--------------- 
trial.coxph.test <- function(db, howMuch=1) { 
  dataSetSurv <- db %>% group_by(ID, Arm) %>% 
    filter(DAY <= 7) %>% 
    mutate(INTARGET = between(Cwb, 12, 15), CUMTARGET=cumsum
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(INTARGET)) %>% 
    summarize(TTT = DAY[min(which(CUMTARGET == howMuch))], 
              MAXTIME = n()) %>% 
    ungroup() %>% 
    mutate(SURV = ifelse(is.finite(TTT), 1, 0), #censored, o
r event occurred? 
           TTT=ifelse(is.finite(TTT), TTT, MAXTIME )) 
   
  fit2 <- coxph(Surv(TTT, SURV) ~ Arm, data=dataSetSurv) 
  #if( any( summary(fit2)$logtest['pvalue'] > 0.05 ) ) brows
er()# stop("Cox proportional-hazards model does not fit!") 
  #if(any( cox.zph(fit2)$table[,"p"]  < 0.05 )) browser() #s
top("Cox proportional-hazards model does not apply!") 
   
  p.value <- tryCatch({ 
    broom::tidy(fit2)$p.value 
  }, error=function(e){1}) 
  fit2Fit <- survfit(fit2, newdata=distinct(dataSetSurv, Arm
) %>% as.data.frame) 
   
  fitdf <- tryCatch({ 
    broom::tidy(fit2Fit) %>% tidyr::pivot_longer(estimate.1:
conf.low.2) %>% 
      mutate( 
        i = as.numeric(stringr::str_extract(name, "\\d+$")), 
        name = substr(name, 1, nchar(name)-2), 
        Arm = levels(dataSetSurv$Arm)[i], 
        strata = paste0("Arm=", Arm) 
      ) %>% select(-i) %>% 
      pivot_wider() 
  }, error=function(e){tibble()}) 
  fit1df <- fitdf %>% group_by(time) %>% group_modify(functi
on(x, ...){ 
    Physician <- x %>% filter(strata=="Arm=Physician") 
    Computer <- x %>% filter(strata=="Arm=Computer") 
    p.value = pnorm(Computer$estimate, mean=Physician$estima
te, sd=sqrt(Physician$std.error^2 + Computer$std.error^2)) 
    tibble(p.value=p.value) 
  }) 
   
  tibble(p.value=p.value, p.value.per.day=list(fit1df) ) 
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} 
trial.coxph.test(db) 
p <- progress_estimated(1000*10) 
trial.coxph.result <- tidyr::crossing(trial=1:1000, howMuch=
1:10) %>% group_by(trial, howMuch) %>% group_modify(function
(x, keys){ 
  p$tick()$print() 
  sampleTrial(trial.coxph.test, howMuch = keys$howMuch) 
}) 
ggplot(trial.coxph.result, aes(x=p.value)) +  
  stat_ecdf(aes(color=factor(howMuch))) +  
  coord_cartesian(xlim=c(0, 0.05)) + 
  ggrepel::geom_label_repel(data = . %>% group_by(howMuch) %
>% summarize(PoSS=mean(p.value<0.005)),  
                            aes(x=0.005, y=PoSS, label=howMu
ch, color=factor(howMuch))) + 
  labs(x="p-value", y="PoSS") +  
  scale_y_continuous(breaks=seq(0, 1, by=0.2)) + 
  scale_color_discrete(guide=F) 
ggsave("coxph_tte_pvalue.png") 
 
ggplot(trial.coxph.result, aes(x=p.value)) +  
  stat_ecdf(aes(color=factor(howMuch), linetype="CoxPH")) +  
  stat_ecdf(data=trial.tte.result, aes(color=factor(howMuch)
, linetype="TTE")) +  
  coord_cartesian(xlim=c(0, 0.05)) + 
  ggrepel::geom_label_repel(data = . %>% group_by(howMuch) %
>% summarize(PoSS=mean(p.value<0.005)),  
                            aes(x=0.005, y=PoSS, label=howMu
ch, color=factor(howMuch))) + 
  labs(x="p-value", y="PoSS") +  
  scale_y_continuous(breaks=seq(0, 1, by=0.2)) + 
  labs(linetype="") + theme(legend.position="bottom") + 
  scale_color_discrete(guide=F) + 
  geom_vline(xintercept=c(0.01, 0.05), linetype=2, alpha=0.2
) 
ggsave("coxph_vs_tte_pvalue.png") 
 
trial.coxph.result %>% group_by(howMuch) %>% summarize(PoSS_
0.01 = mean(p.value < 0.01), PoSS_0.05 = mean(p.value < 0.05
) ) 
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trial.coxph.result %>% dplyr::select(-p.value) %>% unnest(p.
value.per.day) %>% 
  filter(between(time, 2, 13)) %>% filter(between(howMuch, 1
, 6)) %>% 
  ggplot(aes(x=p.value, color=factor(time))) +  
  stat_ecdf() + coord_cartesian(xlim=c(0, 0.05)) + 
  facet_wrap(~time, labeller=label_both) + 
  scale_color_discrete() + 
  labs(x="p-value", y="PoSS") +  
  scale_y_continuous(breaks=seq(0, 1, by=0.2)) + 
  facet_wrap(~howMuch, labeller=label_both) + 
  labs(title="Ability to show difference  in 'X concentratio
n in target'") 
ggsave("coxph_tte_pvalue_per_time.png") 

The below code analyzes whether a markov chain model would be 
appropriate. 

# Correlation between attainment yesterday and today -------
--------------- 
foo <- db %>% mutate(INTARGET = between(Cwb, 12, 15)) %>% gr
oup_by(ID, Arm) %>% mutate(YESTERDAY = lag(INTARGET)) %>% 
  filter(!is.na(YESTERDAY)) 
 
## IF you were in target, is there a high probability that y
ou are in target today? 
library(markovchain) 
trial.mc.test <- function(db) { 
  sequence <- db %>% mutate(INTARGET=between(Cwb, 12, 15)) %
>% pull(INTARGET) 
  sequenceMatr <- createSequenceMatrix(sequence, sanitize = 
FALSE) 
  mcFitMLE <- markovchainFit(data = sequence) 
  wider <- . %>% as.data.frame() %>% 
    as_tibble(rownames="from") %>% pivot_longer(-from, names
_to="to") %>% 
    mutate_at(vars(from, to), as.logical) 
  mcFitMLE$estimate@transitionMatrix  %>% wider 
  #mcFitMLE$standardError %>% wider 
  #mcFitMLE$lowerEndpointMatrix 
  #mcFitMLE$upperEndpointMatrix 
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} 
result <- db %>% group_by(ID, Arm) %>% filter(n() >= 13) %>% 
group_modify(function(x, keys){trial.mc.test(x)} ) 
result %>% ungroup() %>% mutate_at(vars(Arm),forcats::fct_re
v) %>% ggplot(aes(x=Arm, y=value)) + 
  geom_boxplot() + 
  facet_grid(to~from, labeller=label_both) 
ggsave("transition_probabilities_boxplot.png") 
 
result %>% ungroup() %>% mutate_at(vars(Arm),forcats::fct_re
v) %>% ggplot(aes(x=value)) + 
  geom_density(aes(color=Arm)) + 
  geom_vline(data=. %>% group_by(Arm, from, to) %>% summariz
e(mean=mean(value)), aes(xintercept=mean, color=Arm)) + 
  geom_text(data=. %>% distinct(from, to) %>% mutate(label=c
ase_when( 
    from & to ~ "Stay in target", 
    from & !to ~ "Drop out of target", 
    !from & to ~ "Get in target", 
    !from & !to ~ "Stay out of target" 
  )), aes(label=label, x=0, y=Inf), hjust=0, vjust=1) + 
  facet_grid(to~from) + 
  theme(strip.background = element_blank(), 
        strip.text = element_blank()) + 
  theme(legend.position="bottom") + 
  labs(x="transition probability") 
ggsave("transition_probabilities_markovChain.png") 
 
foo %>% mutate_all(as.numeric) %>% group_by(YESTERDAY, Arm) 
%>% group_modify(function(x, keys){ 
  tibble(pNo = mean(!x$INTARGET), pYes = mean(x$INTARGET) ) 
   
  #test <- cor.test(~ INTARGET + YESTERDAY, data=x) 
  #broom::tidy(test) 
  #tibble(test=list( test ) ) 
}) 
cor(foo$INTARGET, foo$YESTERDAY) 

The below evaluates target attainment per individual patient. 

# Target attainment as ratio per patient -------------------
---------------------- 
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count <- db %>% group_by(ID, Arm) %>% 
  mutate(INTARGET = between(Cwb, 12, 15)) %>% 
  summarize(INTARGET = sum(INTARGET), RATIO=sum(INTARGET) / 
n() ) 
descdist(count$RATIO[count$Arm=="Physician"]) 
fitdist(count$RATIO, "beta", method="mme") 
fw <- lapply(c("norm", "gamma", "beta", "logis"), function(x
){ 
  cat(x, "\n") 
  fitdist(count$RATIO[count$Arm=="Computer"], x, method="mme
") 
} ) 
fw <- c(fw, lapply(c("norm", "logis"), function(x){ 
  cat(x, "\n") 
  fitdist(count$RATIO[count$Arm=="Computer"], x, method="mle
") 
} )) 
denscomp(fw) 
qqcomp(fw) 
cdfcomp(fw) 
ppcomp(fw) 
gofstat(fw) 
 
# Ratio of trough samples per patient: power analysis ------
------------------------------- 
trial.t.test <- function(db, includeDb=FALSE) { 
  test1db <- db %>% group_by(ID, Arm) %>% 
    mutate(INTARGET = between(Cwb, 12, 15)) %>% 
    summarize(INTARGET = sum(INTARGET), RATIO=sum(INTARGET) 
/ n() ) 
  test1 <- t.test(RATIO ~ Arm, data=test1db, alternative="gr
eater") 
  res <- tibble(p.value=test1$p.value, estimate=diff(test1$e
stimate), lower.ci=test1$conf.int[1], test=list(test1)) 
  if(includeDb) 
    res$db <- list(test1db) 
  res 
} 
 
z1 <- db %>% group_by(ID, Arm) %>% 
  mutate(INTARGET = between(Cwb, 12, 15)) %>% 
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  summarize(INTARGET = sum(INTARGET), RATIO=sum(INTARGET) / 
n() ) %>% 
  ggplot(aes(x=RATIO)) + 
  geom_histogram(aes(fill=Arm), bins=14) + 
  facet_grid(Arm~.) +  
  geom_vline(aes(xintercept=MEAN), data=. %>% group_by(Arm) 
%>% summarize(MEAN=mean(RATIO)) ) + 
  geom_text(aes(x=MEAN, label=paste0(round(100*MEAN), "%"), 
y=0),  
            angle=90, hjust=-0.2, vjust=-0.2, size=8, data=. 
%>% group_by(Arm) %>% summarize(MEAN=mean(RATIO)) ) + 
  labs(x="Ratio of trough samples in target, per patient") + 
  scale_x_continuous(breaks=seq(0, 1, by=0.2), labels=scales
::percent) + 
  scale_fill_discrete(guide=F) + 
  coord_cartesian(xlim=c(0, 1)) 
test <- trial.t.test(db) 
pText <- paste0("p ", format.pval(test$test[[1]]$p.value), "
\n", round(test$estimate*100, 1), "% [", round(100*test$lowe
r.ci,1), "%, Inf]") 
z2 <- z1 + geom_text(data=tibble(Arm="Physician"),  
                label=pText, x=0, y=Inf, vjust=1, hjust=0 ) 
ggsave("samples_in_target_per_patient.png", z1) 
 
 
# 9 trials -------------------------------------------------
--------------- 
result <- purrr::map(1:9, function(i){ 
  test <- sampleTrial(trial.t.test, includeDb=TRUE) 
   
  pText <- paste0("p ", format.pval(test$test[[1]]$p.value), 
"\n", round(test$estimate*100, 1), "% [", round(100*test$low
er.ci,1), "%, Inf]") 
  z1 %+% test$db + geom_text(data=tibble(Arm="Physician"),  
                        label=pText, x=0, y=Inf, vjust=1, hj
ust=0 ) 
}) 
lapply(seq_along(result), function(i) { 
  ggsave(paste0("samples_in_target_per_patient_", i, ".png")
, result[[i]], width=4, height=3) 
}) 
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#cowplot::plot_grid(plotlist=result, nrow=3) 
 
 
# 1000 trials ----------------------------------------------
--------------- 
 
 
result <- tibble(trial=1:1000) %>% group_by(trial) %>% group
_modify(function(...){ 
  sampleTrial(trial.t.test) 
}) 
result %>% ungroup() %>% arrange(lower.ci) %>% mutate(i=row_
number()) %>% 
  ggplot(aes(y=1 - i/max(i))) + 
  geom_point(aes(x=-estimate, shape="estimate")) +  
  geom_point(aes(x=lower.ci, shape="lower 95% CI")) +  
  labs(x="Difference in average per-patient target attainmen
t", y="PoSS") +  
  geom_vline(xintercept=0) + 
  scale_y_continuous(breaks=seq(0, 1, by=0.2), labels=scales
::percent) + 
  scale_x_continuous(labels=scales::percent) + 
  labs(shape="") + theme(legend.position="bottom") 
ggsave("per_patient_increase.png") 
saveRDS(result, dhere("per_patient_increase_data.RDs")) 
mean(result$p.value < 0.01) 
mean(result$p.value < 0.05) 
 
mean( result$estimate ) 

The code below evaluates the proportion of trough samples in target per day. 

# Proportion of trough samples in target -------------------
--------------- 
foo <- db %>%  
  mutate(Arm = factor(Arm, levels=c("Physician", "Computer")
, labels=c("Physician", "Computer"))) %>% 
  group_by(DAY, Arm) %>% 
  mutate(INTARGET = between(Cwb, 12, 15)) %>% 
  summarize(X=sum(INTARGET), N=n()) 
foo %>% group_by(DAY) %>% 
  group_modify(function(x, ...){ 
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    test1 <- prop.test(x=x$X, n=x$N, alternative="less") 
    x <- x %>% spread(key=Arm, value=X) %>% mutate(Increase=
(Computer-Physician)/N) %>% 
      mutate(Increase = paste0( round(Increase*100, 1), "%") 
) 
    x$p.value = format.pval(test1$p.value, digits=1L) 
    x 
  }) %>% 
  kableExtra::kable() %>% 
  kableExtra::save_kable(file = "tmp.html") 
 
rstudioapi::viewer("tmp.html") 
 
 
# Proportion of trough samples in target: power analysis ---
--------------- 
trial.prop.test <- function(db) { 
  test1db <- db %>% group_by(Arm) %>% 
    mutate(INTARGET = between(Cwb, 12, 15)) %>% 
    summarize(INTARGET = sum(INTARGET), RATIO=sum(INTARGET) 
/ n(), N=n() ) 
  test1 <- prop.test(x=test1db$INTARGET, n=test1db$N, altern
ative="greater") 
  tibble(p.value=test1$p.value, estimate=diff(test1$estimate
), lower.ci=test1$conf.int[1], test=list(test1)) 
} 
result <- tibble(trial=1:1000) %>% group_by(trial) %>% group
_modify(function(...){ 
  sampleTrial(trial.prop.test, perDay=TRUE) 
}) 
result %>% filter(between(DAY, 2, 13)) %>% 
  ggplot(aes(x=p.value)) + 
  geom_vline(xintercept=c(0.01, 0.05), linetype=2) + 
  stat_ecdf(pad=F) + 
  scale_y_continuous(breaks=seq(0, 1, by=0.2)) + 
  scale_x_continuous(breaks=seq(0, 0.05, by=0.01), labels=c(
"", 0.01, "", "", "", 0.05), minor_breaks=c()) + 
  coord_cartesian(xlim=c(0, 0.05)) + 
  facet_wrap(~DAY, labeller=label_both) + 
  labs(x="p value", y="PoSS") 
ggsave("prop.test.trials.png") 



 

52 
 

 
result %>% filter(between(DAY, 2, 13)) %>% 
  group_by(DAY) %>% arrange(lower.ci) %>% mutate(i = row_num
ber()) %>% 
  ggplot(aes(x=-estimate, y=i)) + 
  geom_point(aes(shape="estimate")) +  
  geom_vline(xintercept=0) + 
  scale_x_continuous(labels=scales::percent) + 
  geom_point(aes(shape="95% lower CI", x=lower.ci)) + 
  facet_wrap(~DAY) 
ggsave("prop.test.trials.outcomes.png") 

The code below evaluates the squared deviation endpoint. A KS-test is 
employed to detect any differences to the overall statistical distribution. 

# Squared deviation ----------------------------------------
--------------- 
db <- db %>% mutate(SquaredDeviation = case_when( 
  Cwb < 12 ~ (log(Cwb)-log(12))^2, 
  Cwb > 15 ~ (log(Cwb)-log(15))^2, 
  between(Cwb, 12, 15) ~ 0 
)) 
 
db %>% group_by(Arm) %>% summarize(m = mean(SquaredDeviation
), sd=sd(SquaredDeviation)) 
 
db %>%  
  filter(between(DAY, 2, 13)) %>% 
  ggplot(aes(x=SquaredDeviation)) + 
  stat_ecdf(aes(color=Arm, linetype=Arm), pad = FALSE) + 
  facet_wrap(~DAY) + 
  geom_text(x=0.2, y=0.5, aes(label=paste0("p: ",format.pval
(p.value, digits=1))),  
            data=function(x){ 
              x %>% group_by(DAY) %>% group_modify(function(
x, ...){ 
                test1 <- ks.test(x$SquaredDeviation[x$Arm=="
Physician"], x$SquaredDeviation[x$Arm != "Physician"]) 
                tibble(p.value=test1$p.value) 
              }) 
            })+ 
  coord_cartesian(xlim=c(0, 0.3)) + 
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  labs(x="Squared distance to log-transformed target window"
, y="ECDF", color="", linetype="") + 
  theme(legend.position="bottom") 
ggsave("ks-test-population.png") 
 
 
 
# KS-test trial power --------------------------------------
--------------- 
trial.ks.test <- function(x) { 
  test1 <- ks.test(x$SquaredDeviation[x$Arm=="Physician"], x
$SquaredDeviation[x$Arm != "Physician"]) 
  tibble(p.value=test1$p.value) 
} 
result <- tibble(trial=1:1000) %>% group_by(trial) %>% group
_modify(function(...){ 
  sampleTrial(trial.ks.test, perDay=TRUE) 
}) 
result %>% filter(between(DAY, 2, 13)) %>% 
  ggplot(aes(x=p.value)) + 
  geom_vline(xintercept=c(0.01, 0.05), linetype=2) + 
  stat_ecdf(pad=F) + 
  scale_y_continuous(breaks=seq(0, 1, by=0.2)) + 
  scale_x_continuous(breaks=seq(0, 0.05, by=0.01), labels=c(
"", 0.01, "", "", "", 0.05), minor_breaks=c()) + 
  coord_cartesian(xlim=c(0, 0.05)) + 
  facet_wrap(~DAY, labeller=label_both) + 
  labs(x="p value", y="PoSS") 
ggsave("ks.test.trials.png") 
 
result %>% group_by(DAY) %>% summarize(PoSS = mean(p.value < 
0.05)) %>% mutate(OK = PoSS > 0.80) 
result %>% group_by(DAY) %>% summarize(PoSS = mean(p.value < 
0.01)) %>% mutate(OK = PoSS > 0.80) 

The code below determines the minimum detectable effect size, assuming a 
normal distribution for PTA. 

# use simple stats analysis --------------------------------
--------------- 
 
# Stats trial power ----------------------------------------
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--------------- 
library(MESS) 
db %>% group_by(Arm, DAY) %>% summarize(m=mean(SquaredDeviat
ion), s=sd(SquaredDeviation)) 
db %>% group_by(Arm) %>% summarize(m=mean(SquaredDeviation), 
s=sd(SquaredDeviation)) 
 
ggplot(db, aes(x=SquaredDeviation)) + geom_histogram() + 
  facet_wrap(~Arm) 
ptaPopStat <- sumstat %>% group_by(Arm) %>% summarize(m=mean
(pta), s=sd(pta)) 
 
 
 
# <fct>          <dbl> <dbl> 
#   1 Computer 0.379 0.158 
# 2 Physician      0.276 0.161 
 
N = seq(10, 500) 
pow <- function(N,power, pValue) { 
  MESS::power_t_test(n=N/3,  
                     sd=ptaPopStat$s[ptaPopStat$Arm=="Physic
ian"],  
                     power=power, 
                     sig.level = pValue, 
                     ratio=2,  
                     sd.ratio=ptaPopStat$s[ptaPopStat$Arm=="
Computer"]/ptaPopStat$s[ptaPopStat$Arm=="Physician"],  
                     #delta=abs(diff(ptaPopStat$m)), 
                     alternative="one.sided") 
} 
powerResult <- tidyr::crossing(N=seq(10, 500), powerValue=c(
0.6, 0.8, 0.9), pValue=c(0.01, 0.05)) %>% 
  rowwise() %>% 
  mutate(res= 
           list( 
             unlist(pow(N, powerValue, pValue)) 
           ) 
  ) %>% tidyr::unnest_wider(res) 
powerResult %>% filter(powerValue==0.8 & pValue == 0.01) %>% 
arrange(abs(as.numeric(delta)-0.276*0.33)) 
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ggplot(powerResult, aes(y=as.numeric(delta), x=as.numeric(n1
)+as.numeric(n2))) + 
  geom_hline(yintercept=0.276*0.33, linetype=2) + 
  geom_line(aes(color=factor(powerValue), linetype=factor(pV
alue))) + 
  coord_cartesian(xlim=c(0, 200), ylim=c(0, 0.2)) + geom_hli
ne(yintercept=0.379-0.276) + 
  labs(y="Minimum detectable effect", x="Minimum sample size
", color="Power", linetype="Significance level") + 
  scale_color_discrete(labels=function(x){paste0(as.numeric(
x)*100, "%")}) + 
  scale_y_continuous(labels=function(y){paste0("+", as.numer
ic(y)*100, "%")}) + 
  annotate(x=-Inf, y=0.276*0.33, "label", label="Clinically 
relevant effect", hjust=0) + 
  annotate(x=-Inf, y=0.379-0.276, "label", label="True effec
t", hjust=0) 
ggsave("pta_mde.png") 

To further analyze/improve the statistical analysis on SquaredDeviation, the 
use of a mmrm model was explored. A boxcox transformation is used to 
normalize the data. 

# Fit linear model: power analysis -------------------------
--------------- 
db <- db %>% 
  mutate(Shifted_SquaredDeviation = SquaredDeviation) 
#mutate(Shifted_SquaredDeviation = SquaredDeviation + mean(S
quaredDeviation)) 
 
ggplot(db, aes(x=Shifted_SquaredDeviation)) + geom_density() 
+ coord_cartesian(xlim=c(0, 1)) 
boxcoxDf <- db %>% 
  filter(SquaredDeviation != 0) %>% 
  MASS::boxcox(Shifted_SquaredDeviation ~ Arm + DAY + Arm*DA
Y, data=., lambda=seq(-3, 1, length.out=1000)) 
lambda <- boxcoxDf$x[ which.max(boxcoxDf$y) ] 
 
 
data <- db %>% 
  mutate(T_SquaredDeviation = (Shifted_SquaredDeviation ^ la
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mbda - 1)/lambda) %>% 
  filter(DAY != 1) 
data %>%  
  filter(SquaredDeviation != 0) %>% 
  ggplot(aes(sample=T_SquaredDeviation)) +  
  geom_qq() + 
  geom_qq_line() 
ggsave("T_SquaredDeviation_qq.png") 
fitdistrplus::fitdist(data$T_SquaredDeviation, "norm") %>% 
  fitdistrplus::gofstat() 
 
library(nlme) 
data$ID <- data$ID + 10000*as.numeric(data$Arm) 
data$ID <- as.numeric( factor(data$ID) ) 
data$DAY  <- factor(data$DAY) 
data$index  <-as.numeric(data$DAY) 
fit.cs <- nlme::gls(T_SquaredDeviation ~ Arm * DAY, data = d
ata, 
              #observations are correlated between days with
in an individual, but uncorrelated between different individ
uals 
              corr = corSymm(form= ~ index | ID),  
              # allow a different variance per day 
              weights=varIdent(form = ~ 1 | DAY), 
              verbose=TRUE, 
              control = glsControl(msVerbose=TRUE)) 
saveRDS(fit.cs, dhere("mmrm_pop.RDs")) 
fit.cs <- readRDS(dhere("mmrm_pop.RDs")) 
 
lsmeans <- lsmeans::lsmeans(fit.cs, ~Arm) 
 
lsmeans <- lsmeans::lsmeans(fit.cs, ~Arm | DAY) 
lsmeans %>% 
  broom::tidy(conf.int=TRUE) %>% 
  ggplot(aes(x=factor(as.numeric(DAY)), y=estimate, color=Ar
m, fill=Arm)) + 
  geom_pointrange(aes(ymin=conf.low, ymax=conf.high), positi
on=position_dodge(width=0.5)) 
 
fit.cs 
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relative <- lsmeans %>% 
  broom::tidy(conf.int=TRUE) 
 
lsm.diff <- emmeans::contrast( lsmeans , ratios=TRUE) 
lsm.diff %>% 
  broom::tidy() %>% 
  filter(contrast == first(contrast) ) %>% 
  ggplot(aes(x=factor(as.numeric(DAY)))) + 
  geom_pointrange(aes(y=estimate, ymin=estimate-1.96*std.err
or, ymax=estimate+1.96*std.error)) + 
  geom_hline(yintercept=0) + 
  labs(x="Day") + 
  scale_y_continuous(name="Relative contrast ratio (%)", lab
els=scales::percent) 
ggsave("gls.effect.size.png") 
 
 
# Stats power test -----------------------------------------
--------------- 
fit.cs2 <- nlme::gls(T_SquaredDeviation ~ Arm + 0,  
                    data = data, 
                    corr = corSymm(form= ~ index | ID),  
                    weights=varIdent(form = ~ 1 | DAY), 
                    verbose=TRUE, 
                    control = glsControl(msVerbose=TRUE)) 
lsmeans2 <- lsmeans::lsmeans(fit.cs2, ~Arm) 
relative2 <- lsmeans2 %>% 
  broom::tidy(conf.int=TRUE) 
ggplot(relative2, aes(x=Arm, y=-1*estimate, fill=Arm)) + 
  geom_col() + 
  geom_errorbar(aes(ymin=-1*conf.low, ymax=-1*conf.high)) 
 
relative2 %>% select(-Arm) %>% summarize_all( .funs=function
(x){ 
  x[1]/x[2] 
  }) 
 
relative2 %>% select(-statistic, -p.value, -df) %>% 
  tidyr::pivot_wider(names_from=Arm, values_from=c(estimate, 
conf.low, conf.high)) %>% 
  mutate() 
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lsm.diff <- pairs( lsmeans ) 
lsm.diff %>% 
  broom::tidy() %>% 
  mutate(estimate = -estimate) %>% 
  ggplot(aes(x=DAY)) + 
  geom_pointrange(aes(y=estimate, ymin=estimate-1.96*std.err
or, ymax=estimate+1.96*std.error)) + 
  geom_hline(yintercept=0) + 
  labs(x="Day") + 
  scale_y_continuous() 
 
 
 
# summary(fmOrth.corSym)$tTable 
summary(fit.cs2)$tTable 
 
# C <- corMatrix(fmOrth.corSym$modelStruct$corStruct)[[1]] 
# sigmaa <- fmOrth.corSym$sigma *  
#   coef(fmOrth.corSym$modelStruct$varStruct, unconstrained 
= FALSE)['14'] 
# ra <- seq(1,0.80,length=nrow(C)) 
# power.mmrm(N=100, Ra = C, ra = ra, sigmaa = sigmaa, power 
= 0.80) 
 
 
Ra <- corMatrix(fit.cs2$modelStruct$corStruct)[[1]] 
sigmaa <- fit.cs2$sigma *  
  coef(fit.cs2$modelStruct$varStruct, unconstrained = FALSE)
['14'] 
ra <- seq(1,0.75,length=nrow(Ra)) 
 
fun <- function(N, power, sig.level) { 
  longpower::power.mmrm(N=N, Ra = Ra, ra = ra, sig.level=sig
.level, sigmaa = sigmaa, power = power, lambda=2, alternativ
e="one.sided") 
} 
powerResult <- tidyr::crossing(N=seq(10, 800, by=10), powerV
alue=c(0.6, 0.8, 0.9), pValue=c(0.01, 0.05)) %>% 
  rowwise() %>% 
  mutate(delta=list(unlist(fun(N, powerValue, pValue)))) %>% 
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  tidyr::unnest_wider(delta) %>% 
  mutate(delta = as.numeric(delta)/3.477445) 
 
ggplot(powerResult, aes(y=as.numeric(delta), x=N)) + 
  geom_hline(yintercept=0.5, linetype=2) + 
  geom_hline(yintercept=(3.926175-3.477445) / 3.477445) + 
  geom_line(aes(color=factor(powerValue), linetype=factor(pV
alue))) + 
  coord_cartesian(xlim=c(0, 800), ylim=c(0, 0.6)) + 
  labs(y="Minimum detectable effect (relative)", x="Minimum 
sample size", color="Power", linetype="Significance level") 
+ 
  scale_color_discrete(labels=function(x){paste0(as.numeric(
x)*100, "%")}) + 
  scale_y_continuous(labels=function(y){paste0("+", as.numer
ic(y)*100, "%")}) + 
  annotate(x=-Inf, y=0.5, "label", label="Clinically relevan
t effect", hjust=0) + 
  annotate(x=-Inf, y=(3.926175-3.477445)/3.477445, "label", 
label="True effect", hjust=0) + 
  geom_blank() 
ggsave("power_mmrm.png", width=12, height=8) 

This test was also explored for PoSS. Note that the below code takes a very 
long time to run. 

library(lsmeans) 
trial.gls.test <- function(db, verbose=TRUE) { 
  data <- db %>% 
    mutate(T_SquaredDeviation = (Shifted_SquaredDeviation ^ 
lambda - 1)/lambda) %>% 
    filter(DAY != 1) 
  data$ID <- data$ID + 10000*as.numeric(data$Arm) 
  data$ID <- as.numeric( factor(data$ID) ) 
  data$DAY  <- factor(data$DAY) 
  data$index  <-as.numeric(data$DAY) 
  fit.cs <- gls(T_SquaredDeviation ~ Arm*DAY, data = data, 
                #observations are correlated between days wi
thin an individual, but uncorrelated between different indiv
iduals 
                corr = corSymm(form= ~ index | ID),  
                # allow a different variance per day 



 

60 
 

                weights=varIdent(form = ~ 1 | DAY), 
                verbose=verbose, 
                control = glsControl(msVerbose=verbose)) 
  simpleDiff <- pairs( lsmeans(fit.cs, ~Arm, data=data ) ) 
  lsm.diff <- pairs( lsmeans(fit.cs, ~Arm | DAY, data=data) 
) 
  tibble(overall=list(broom::tidy(simpleDiff)), per.day=list
(broom::tidy(lsm.diff)) ) 
} 
 
sampleTrial(trial.gls.test, verbose=FALSE) 
 
library(nlme) 
library(lsmeans) 
set.seed(1234) 
result <- tibble(trial=1:200) %>% group_by(trial) %>% group_
modify(function(x, keys){ 
  file <- dhere(paste0("gls-",keys$trial, ".RDs")) 
  cat("===================", keys$trial, "\n") 
  if(!file.exists(file)) { 
    foo <- sampleTrial(trial.gls.test, verbose=FALSE) 
    saveRDS(foo, file) 
  } else { 
    foo <- readRDS(file) 
  } 
  foo 
}) 
 
saveRDS(result, dhere("resultGLS.RDs")) 
result <- readRDS(dhere("resultGLS.RDs")) 
 
result %>% unnest(overall) %>% 
  ggplot(aes(x=p.value)) + 
  geom_vline(xintercept=c(0.01, 0.05), linetype=2) + 
  stat_ecdf(pad=F) + 
  scale_y_continuous(breaks=seq(0, 1, by=0.2)) + 
  scale_x_continuous(breaks=seq(0, 0.05, by=0.01), labels=c(
"", 0.01, "", "", "", 0.05), minor_breaks=c()) + 
  coord_cartesian(xlim=c(0, 0.05)) + 
  labs(x="p value", y="PoSS") 
ggsave("gls.overall.png") 
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result %>% unnest(per.day) %>% mutate_at(vars(DAY), as.numer
ic) %>% filter(between(DAY, 2, 13)) %>% 
  ggplot(aes(x=p.value)) + 
  geom_vline(xintercept=c(0.01, 0.05), linetype=2) + 
  stat_ecdf(pad=F) + 
  scale_y_continuous(breaks=seq(0, 1, by=0.2)) + 
  scale_x_continuous(breaks=seq(0, 0.05, by=0.01), labels=c(
"", 0.01, "", "", "", 0.05), minor_breaks=c()) + 
  coord_cartesian(xlim=c(0, 0.05)) + 
  facet_wrap(~DAY, labeller=label_both) + 
  labs(x="p value", y="PoSS") 
ggsave("gls.per.day.png") 
 
result %>% unnest(per.day) %>% mutate_at(vars(DAY), as.numer
ic) %>% group_by(DAY) %>% summarize(PoSS = mean(p.value < 0.
05)) %>% 
  mutate(OK=PoSS > 0.80) 
 
result %>% unnest(per.day) %>% group_by(DAY) %>% summarize(P
oSS = mean(p.value < 0.01)) %>% 
  mutate(OK=PoSS > 0.80) 
 
# Fit linear model to this data ----------------------------
--------------- 
 
ggplot(data, aes(sample=T_SquaredDeviation)) + 
  stat_qq() + 
  stat_qq_line() 
 
data$ID <- data$ID + 1000*as.numeric(data$Arm) 
data$DAY  <- factor(data$DAY) 
data$index  <-as.numeric(data$DAY) 
library(nlme) 
data %>% 
  filter(Arm == "Physician") %>% 
  ggplot(aes(x=DAY, y=SquaredDeviation)) +  
  geom_boxplot(aes(color=Arm)) + 
  geom_smooth(aes(x=as.numeric(DAY))) + 
  coord_cartesian(ylim=c(0, 0.2)) 
fit1 <- gls(SquaredDeviation ~ Arm + DAY, data=data) 
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plot(fit1, form=resid(., type = "p") ~ as.numeric(DAY) | Arm
) 
 
fit.cs <- gls(SquaredDeviation ~ Arm + DAY, data = data, 
              #observations are correlated between days with
in an individual, but uncorrelated between different individ
uals 
              corr = corSymm(form= ~ index | ID),  
              # allow a different variance per day 
              weights=varIdent(form = ~ 1 | DAY), 
              verbose=TRUE, 
              control = glsControl(msVerbose=TRUE)) 
confint(fit.cs) 
fit.cs 
summary(fit.cs) 
plot(fit.cs) 
data %>% mutate(IPRED = fitted(fit.cs)) %>% 
  ggplot(aes(x=DAY, y=SquaredDeviation)) +  
  geom_boxplot() + 
  geom_line(aes(y=IPRED, color=Arm, group=ID)) + 
  coord_cartesian(ylim=c(0, 0.5)) 
 
plot(fit.cs, form=fitted(.) ~ SquaredDeviation | Arm, ) 
 
confint(fit.cs) 
qqnorm(fit.cs) 
 
confint(fit.cs) 
fitted <- data %>% distinct(Arm, DAY, index) 
fitted$T_SquaredDeviation <- predict(fit.cs, newdata=fitted) 
ggplot(data, aes(x=DAY, y=T_SquaredDeviation, color=Arm))+ 
  geom_boxplot() + 
  #geom_smooth(aes(x=as.numeric(DAY))) + 
  geom_point(data=fitted, size=2, shape=3, position=position
_dodge(width=1)) 
 
 
 
lsm.diff <- lsmeans(fit.cs, pairwise~Arm*DAY, data=data) 
lsmstats <- summary(lsm.diff$lsmeans, level=0.9) 
ggplot(lsmstats, aes(x=DAY, color=Arm, fill=Arm)) + 
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  #geom_pointrange(aes(y=lsmean, ymin=lower.CL, ymax=upper.C
L), 
  #                position=position_dodge(width=0.6)) + 
  geom_boxplot(data=data, aes(y=T_SquaredDeviation), fill=NA
) + 
  geom_ribbon(aes(x=as.numeric(DAY), ymin=lower.CL, ymax=upp
er.CL), alpha=0.2)+ 
  geom_line(aes(x=as.numeric(DAY), y=lsmean)) + 
  labs(x="MMRM estimate for SquaredDeviation", 
       caption="estimate is still box-cox transformed") 
ggsave("mmrm_estimated_effect.png") 

The below code is provided for completeness and reproducibility. It was used 
to analyze why the computer performs poorly on Day 2. It was also used to 
generate interactive plots. 

ggplot(db, aes(x=Cwb)) + 
  geom_vline(xintercept=13.5, linetype=2) + 
  stat_ecdf(aes(color=Arm)) + 
  coord_cartesian(xlim=c(5, 20)) + 
  labs(x="Concentration (ng/mL)", y="ECDF") + 
  facet_wrap(~DAY) 
ggsave("allsim_ecdf.png") 
 
## Why is 24h-prediction too positive for day 2? 
## Because the computer KNOWS that it cannot reach the targe
t concentration! 
scenarioA %>% group_by(ID) %>% filter(row_number() == 2) %>% 
  do({ predict(.data$iterationFit[[1]], regimen=.data$next_r
egimen[[1]], newdata=.data$next_observed[[1]]) }) %>% 
  filter(row_number() == 2) %>% 
  ggplot(aes(x=Cwb)) + geom_histogram() + 
  geom_vline(xintercept=13.5, linetype=2) + 
  labs(x="Concentration (ng/mL)") + ggtitle("Day 2 computer-
predicted concentration after adaptation on day 1") 
ggsave("scenarioA_day2_computerFit.png") 
# Who is too low?? Some cases where the first  
scenarioA %>% group_by(ID) %>% filter(row_number() == 2) %>% 
  do({ predict(.data$iterationFit[[1]], regimen=.data$next_r
egimen[[1]], newdata=.data$next_observed[[1]]) }) %>% 
  filter(row_number() == 2) %>% 
  filter(Cwb < 10) %>% View 
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db %>% mutate(CONCCat = cut(Cwb, c(0, 5, 12, 15, 20, Inf)) ) 
%>% 
  mutate(CONCCat = forcats::fct_rev(CONCCat)) %>% 
  filter(Arm %in% c("Physician", "Computer")) %>% mutate(Arm 
= factor(Arm)) %>% 
  mutate(Arm = forcats::fct_rev(Arm)) %>%  
  ggplot(aes(x=DAY+as.numeric(Arm)/3 - 0.5 )) + 
  geom_bar(aes(fill=CONCCat, color=Arm), width=1/3) + 
  scale_x_continuous(breaks=seq(0, 14)) + 
  scale_color_manual(values=c(NA, "black")) 
 
 
# Graphical analysis per patient ---------------------------
--------------- 
 
## Every row is comparison between arms 
db %>% 
  filter(Arm %in% c("Physician", "Computer")) %>% 
  mutate(Arm = factor(as.character(Arm))) %>% #record in num
eric 
  #filter(Arm %in% c("Physician")) %>% 
  filter(between(DAY, 1, 14)) %>% 
  mutate(CONCCat = cut(Cwb, c(0, 5, 12, 15, 20, Inf)) ) %>% 
  mutate_at(vars(CONCCat), forcats::fct_rev) %>% 
  mutate_at(vars(CONCCat), forcats::fct_explicit_na) %>%  
  filter(ID <= 50) %>% 
  ggplot(aes(x=factor(DAY), y=ID+as.numeric(Arm)/2-0.5)) + 
  geom_tile(aes(fill=CONCCat, alpha=CONCCat, color=Arm), lin
etype=3) + 
  geom_hline(aes(yintercept=ID-0.25)) + 
  #geom_point(data=. %>% filter(Cycle != max(Cycle)), aes(co
lor=DDelta), position=position_nudge(x=0.5)) + 
  scale_fill_manual(values = c("blue", "lightblue", "green", 
"yellow", "purple", "grey")) + 
  scale_alpha_manual(values = c(0.2, 0.4, 1, 0.4, 0.2, 0.1)) 
+ 
  labs(x="Day", y="Subject ID", fill="Tac (ng/mL)", 
       color="Arm", alpha="Tac (ng/mL)", 
       title="Concentration data for 100 first subjects", 
       subtitle="Ordered based on concentration at day 7") + 
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  scale_color_manual(values=c(`Computer`="black", `Physician
`=NA), guide=F) 
 
db %>% filter(Arm == "Physician") %>% 
  mutate(CONCCat = cut(Cwb, c(0, 5, 12, 15, 20, Inf)) ) %>% 
  mutate_at(vars(CONCCat), forcats::fct_explicit_na) %>% 
  group_by(DAY, CONCCat) %>% 
  summarize(n=n()) %>% 
  group_by(DAY) %>% mutate(pta = round(100* n/sum(n), digits
=1)) %>% 
  select(-n) %>% 
  mutate_all(function(x){ifelse(is.na(x), 0, x)}) %>% 
  spread(key=CONCCat, value=pta) %>% 
  kableExtra::kable() 
 
 
 
kableExtra::save_kable("tmp.html") 
rstudioapi::viewer("tmp.html") 
 
### Comparison between arms using facet 
db %>% 
  filter(Arm %in% c("Physician", "Computer")) %>% 
  mutate(Arm = factor(as.character(Arm))) %>% #record in num
eric 
  #filter(Arm %in% c("Physician")) %>% 
  filter(between(DAY, 1, 14)) %>% 
  mutate(CONCCat = cut(Cwb, c(0, 5, 12, 15, 20, Inf)) ) %>% 
  mutate_at(vars(CONCCat), forcats::fct_rev) %>% 
  mutate_at(vars(CONCCat), forcats::fct_explicit_na) %>%  
  filter(ID <= 100) %>% 
  ggplot(aes(x=factor(DAY), y=ID)) + 
  geom_tile(aes(fill=CONCCat, alpha=CONCCat)) + 
  #geom_point(data=. %>% filter(Cycle != max(Cycle)), aes(co
lor=DDelta), position=position_nudge(x=0.5)) + 
  scale_fill_manual(values = c("blue", "lightblue", "green", 
"yellow", "purple", "grey")) + 
  scale_alpha_manual(values = c(0.2, 0.4, 1, 0.4, 0.2, 0.1)) 
+ 
  labs(x="Day", y="Subject ID", fill="Tac (ng/mL)", 
       color="Arm", alpha="Tac (ng/mL)", 
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       title="Concentration data for 100 first subjects", 
       subtitle="Ordered based on concentration at day 7") + 
  theme_minimal() + 
  facet_grid(~Arm) 
ggsave("comparison_individual.png") 
 
# For research seminar: plots ------------------------------
--------------- 
ggplot(db %>% filter(Arm %in% c("Physician", "Computer") & D
AY==2), aes(x=(Cwb-13.5)^2)) + 
  stat_ecdf(aes(color=Arm)) + 
  coord_cartesian(xlim=c(0, 100)) 
ggsave("ks.test.315.day2.png") 
 
ks.test( 
  db %>% filter(Arm %in% c("Physician") & DAY==2) %>% mutate
(x=(Cwb-13.5)^2) %>% pull(x), 
  db %>% filter(Arm %in% c("Computer") & DAY==2) %>% mutate(
x=(Cwb-13.5)^2) %>% pull(x) 
) 
 
# Which statistical test should we use? --------------------
--------------- 
 
### Search for appropriate lambda parameter per day 
boxcoxDf <- db %>%  
  mutate(SquaredDeviation = (Cwb-13.5)^2) %>% 
  MASS::boxcox(SquaredDeviation ~ Arm + DAY + Arm*DAY, data=
., lambda=seq(0, 0.3, length.out=100)) 
lambda <- boxcoxDf$x[ which.max(boxcoxDf$y) ] 
 
foo <- db %>% 
  mutate(SquaredDeviation = (Cwb-13.5)^2) %>% 
  mutate(T_SquaredDeviation = (SquaredDeviation ^ lambda - 1
)/lambda) 
 
dataSetPhysician <- foo %>% filter(Arm == "Physician") %>% g
roup_by(DAY) 
dataSetComputer <- foo %>% filter(Arm == "Computer") %>% gro
up_by(DAY) 
Ntrial <- 1000 
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NPhys <- 67 
NComp <- 200-67 
 
 
### Sample per day, KS-test 
test1 <- function(x) { 
  x %>% group_by(trial) %>% group_modify(function(x, ...){ 
    ks1 <- ks.test(x$SquaredDeviation[x$Arm=="Physician"], 
                   x$SquaredDeviation[x$Arm=="Computer"], 
                   alternative="less") 
    tibble(p.value=ks1$p.value) 
  }) 
} 
tibble(trial=1:12) %>% rowwise() %>% do({ 
  data <- bind_rows( 
    dataSetPhysician %>% do({ sample_n(.data, size=NPhys) })
, 
    dataSetComputer  %>% do({ sample_n(.data, size=NComp) }) 
  ) 
  data$trial <- .data$trial 
  data 
}) %>% filter(DAY == 4) %>% 
  ggplot(aes(x=SquaredDeviation)) + 
  stat_ecdf(aes(color=Arm)) + 
  coord_cartesian(xlim=c(0, 120)) + 
  theme_minimal() + theme(legend.position="bottom") + 
  geom_point(data=findSegmentDf, aes(x=x0, y=y0)) + 
  geom_point(data=findSegmentDf, aes(x=x0, y=y1)) + 
  geom_segment(data=findSegmentDf, aes(x=x0, y=y0, xend=x0, 
yend=y1)) + 
  geom_label(data=test1, aes(x=50, y=0.50, label=paste0("p="
,round(p.value, 3)), fill=p.value<0.05)) + 
  scale_fill_manual(values=c(`FALSE`="white", `TRUE`="green"
), guide=F) + 
  facet_wrap(~trial, labeller=label_both)  + 
  labs(x="(CONC-13.5)^2", y="ECDF") 
ggsave("12_trials_ks.test_day4.png", width=16, height=9) 
simTrials1 <- tibble(trial=1:Ntrial) %>% rowwise() %>% do({ 
  data <- bind_rows( 
    dataSetPhysician %>% do({ sample_n(.data, size=NPhys) })
, 
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    dataSetComputer  %>% do({ sample_n(.data, size=NComp) }) 
  ) 
  data$trial <- .data$trial 
  data %>% group_by(DAY) %>% do({ test1(.data) }) 
}) 
 
ggplot(simTrials1 %>% filter(between(DAY, 2, 13)), aes(x=p.v
alue)) + 
  stat_ecdf(color="red") + 
  coord_cartesian(xlim=c(0, 0.05))+ 
  facet_wrap(~DAY) + 
  labs(x="p-value", y="power") + 
  scale_y_continuous(labels=scales::percent, breaks=seq(0, 1
, by=0.2)) + 
  geom_hline(yintercept=0.8) + 
  scale_x_continuous(breaks=seq(0, 0.05, by=0.01)) + 
  theme_minimal() + 
  theme(axis.text.x = element_text(angle = 45, hjust = 1)) + 
  theme(panel.grid.minor = element_blank()) 
ggsave("ks.test.power.png", width=16, height=9) 
 
# Make two random samples 
findSegmentDf <- function(data) { 
  data %>% group_by(trial) %>% group_modify(function(x, ...) 
{ 
    findSegment(x$SquaredDeviation, x$Arm) 
  }) 
} 
findSegment <- function(value, valueArms) { 
  arms <- unique(valueArms) 
  sample1 <- value[valueArms==arms[1]] 
  sample2 <- value[valueArms==arms[2]] 
  cdf1 <- ecdf(sample1)  
  cdf2 <- ecdf(sample2)  
  minMax <- seq(min(sample1, sample2), max(sample1, sample2)
, length.out=length(sample1))  
  x0 <- minMax[which( abs(cdf1(minMax) - cdf2(minMax)) == ma
x(abs(cdf1(minMax) - cdf2(minMax))) )]  
  y0 <- cdf1(x0)  
  y1 <- cdf2(x0) 
  data.frame(x0=x0, y0=y0, y1=y1) 
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} 
 
 
ggplot(dat, aes(x = KSD, group = group, colour = group, line
type=group))+ 
  stat_ecdf(size=1) + 
  xlab("mm") + 
  ylab("Cumulitive Distibution") + 
  geom_segment(data=findSegment, aes(x = x0, y = y0, xend = 
x0, yend = y1), 
               linetype = "dashed", color = "red") + 
  geom_point(data=findSegment, aes(x = x0 , y= y0), color="r
ed", size=1) + 
  geom_point(aes(x = x0 , y= y1), color="red", size=1) + 
  ggtitle("K-S Test: Sample 1 / Sample 2") 
 
 
### Sample per day, t-test 
test2 <- function(x) { 
  ks1 <- t.test(x$T_SquaredDeviation[x$Arm=="Physician"], x$
T_SquaredDeviation[x$Arm=="Computer"] ) 
  tibble(p.value=ks1$p.value) 
} 
simTrials2 <- tibble(trial=1:Ntrial) %>% rowwise() %>% do({ 
  data <- bind_rows( 
    dataSetPhysician %>% do({ sample_n(.data, size=NPhys) })
, 
    dataSetComputer  %>% do({ sample_n(.data, size=NComp) }) 
  ) 
  data %>% group_by(DAY) %>% do({ test2(.data) }) 
}) 
bind_rows( 
  simTrials1 %>% mutate(Method="ks.test"), 
  simTrials2 %>% mutate(Method="t.test") 
) %>% 
  ggplot(aes(x=p.value)) + 
  geom_hline(yintercept=0.80) + 
  stat_ecdf(aes(color=Method)) + 
  facet_wrap(~ DAY) + 
  coord_cartesian(xlim=c(0, 0.05)) 
ggsave("proseval-power-ks.test_vs_t.test_pvaluesEcdf.png", w
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idth=16, height=9) 
 
## MMRM power test 
## See https://stats.idre.ucla.edu/r/seminars/repeated-measu
res-analysis-with-r/ 
## https://www.r-bloggers.com/mixed-models-exercise-2-repeat
ed-measurements/ 
##  
foo <- db %>% 
  mutate(SquaredDeviation = (Cwb-13.5)^2) %>% 
  mutate(T_SquaredDeviation = (SquaredDeviation ^ lambda - 1
)/lambda) 
 
IDSampleSet <- foo %>% filter(Arm == "Physician") %>% group_
by(ID) %>% filter(n() >= 13) %>% distinct(ID) %>% unlist 
Ntrial <- 10000 
NPhys <- 67 
NComp <- 200-67 
library(nlme) 
library(lsmeans) 
### First try this on a single trial 
PhysSet <- tibble(ID=sample(IDSampleSet, NPhys, replace=FALS
E)) 
CompSet <- tibble(ID=sample(IDSampleSet, NComp, replace=FALS
E)) 
data <- bind_rows( 
  PhysSet %>% left_join(foo %>% filter(Arm=="Physician"), by
="ID"), 
  CompSet %>% left_join(foo %>% filter(Arm=="Computer"), by=
"ID") 
) 
data$ID <- data$ID + 1000*as.numeric(data$Arm) 
data$DAY  <- factor(data$DAY) 
data$index  <-as.numeric(data$DAY) 
fit.cs <- gls(T_SquaredDeviation ~ Arm * DAY, data = data, 
              corr = corSymm(form= ~ index | ID), 
              weights=varIdent(form = ~ 1 | DAY), 
              verbose=TRUE, 
              control = glsControl(msVerbose=TRUE)) 
lsm.diff <- lsmeans(fit.cs, pairwise~Arm*DAY, data=data) 
lsmstats <- summary(lsm.diff$lsmeans, level=0.9) 
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ggplot(lsmstats, aes(x=DAY, color=Arm, fill=Arm)) + 
  geom_pointrange(aes(y=lsmean, ymin=lower.CL, ymax=upper.CL
), 
                  position=position_dodge(width=0.6)) + 
  labs(x="MMRM estimate for SquaredDeviation", 
       caption="estimate is still box-cox transformed") 
ggsave("mmrm_estimated_effect.png") 
 
mmrm <- function(data) { ## simple MMRM test 
  cat(".") 
  data$ID <- data$ID + 1000*as.numeric(data$Arm) 
  data$DAY  <- factor(data$DAY) 
  data$index  <-as.numeric(data$DAY) 
  fit.H1 <- gls(T_SquaredDeviation ~ Arm * DAY, data = data, 
                corr = corSymm(form= ~ index | ID), 
                weights=varIdent(form = ~ 1 | DAY), 
                verbose = T, 
                control = glsControl(msVerbose=TRUE)) 
  anova.H1 <- anova(fit.H1) 
  p.value <- anova.H1["Arm", "p-value"] 
  tibble(p.value=p.value) 
} 
 
mmrm <- function(data) { 
  cat(".") 
   
  data$ID <- data$ID + 1000*as.numeric(data$Arm) 
  data$DAY  <- factor(data$DAY) 
  data$index  <-as.numeric(data$DAY) 
  cat("Fitting H0 model...\n") 
  fit.H0 <- gls(T_SquaredDeviation ~ DAY, data = data, 
                corr = corSymm(form= ~ index | ID), 
                weights=varIdent(form = ~ 1 | DAY), 
                verbose = T, 
                control = glsControl(msVerbose=TRUE), 
                method="ML") #allows to compare both methods 
  cat("Fitting H1 model...\n") 
  fit.H1 <- gls(T_SquaredDeviation ~ Arm * DAY, data = data, 
                corr = corSymm(form= ~ index | ID), 
                weights=varIdent(form = ~ 1 | DAY), 
                verbose = T, 
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                control = glsControl(msVerbose=TRUE), 
                method="ML") #allows to compare both methods 
  fit.anova <- anova(fit.H0, fit.H1) 
  p.value <- fit.anova["fit.H1", "p-value"] 
   
  #anova.H1 <- anova(fit.H1) 
  #p.value <- anova.H1["Arm", "p-value"] 
  tibble(p.value=p.value) 
} 
 
 
simTrials3 <- tibble(trial=1:100) %>% rowwise() %>% do({ 
  PhysSet <- tibble(ID=sample(IDSampleSet, NPhys, replace=FA
LSE)) 
  CompSet <- tibble(ID=sample(IDSampleSet, NComp, replace=FA
LSE)) 
  data <- bind_rows( 
    PhysSet %>% left_join(foo %>% filter(Arm=="Physician"), 
by="ID"), 
    CompSet %>% left_join(foo %>% filter(Arm=="Computer"), b
y="ID") 
  ) #ID should be unique! 
  mmrm(data) 
}) 
saveRDS(simTrials3, dhere("simMmrm.RDs")) 
simTrials3 %>% ggplot(aes(x=p.value)) + 
  geom_hline(yintercept=0.8) + 
  stat_ecdf(color='red') + 
  coord_cartesian(xlim=c(0, 0.05)) 
ggsave("mmrm_power.png") 
 
 
# Which DTarget should we use? -----------------------------
--------------- 
 
dbTarget <- bind_rows( 
  db %>% mutate(trans="log", distance="target"), 
  db %>% mutate(trans="identity", distance="target"), 
  db %>% mutate(trans="log", distance="window"), 
  db %>% mutate(trans="identity", distance="window") 
) %>%  
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  filter(Arm %in% c("Physician", "Computer")) %>% 
  group_by(trans, distance) %>% 
  mutate( 
    target = ifelse(distance=="target", 13.5,  
                    ifelse(Cwb > 15, 15, ifelse(Cwb < 12, 12
, Cwb)) #distance to window 
    ), 
    targetTrans = do.call(trans[[1]], list(target)), 
    CwbTrans = do.call(trans[[1]], list(Cwb)), 
    SquaredDeviation = (targetTrans - CwbTrans)^2, 
    type=paste(trans, distance, sep="/") 
  )  
 
ggplot(dbTarget, aes(x=SquaredDeviation)) +  
  stat_ecdf(aes(color=Arm)) + 
  labs(color="") + 
  facet_grid(distance ~ trans, scales="free_x", shrink=TRUE) 
ggsave("which_transformation.png") 
 
dbTargetSum <- dbTarget %>% group_by(type, DAY) %>% 
  do({ 
    x <- .data 
    ks1 <- ks.test(x$SquaredDeviation[x$Arm=="Physician"], 
                   x$SquaredDeviation[x$Arm!="Physician"] 
    ) 
    tibble( p.value = ks1$p.value) 
  }) 
 
view_kable <- function(x, ...){ 
  tab <- paste(capture.output(knitr::kable(x, ...)), collaps
e = '\n') 
  tf <- tempfile(fileext = ".html") 
  writeLines(tab, tf) 
  rstudioapi::viewer(tf) 
} 
dbTarget %>% group_by(type, DAY) %>% 
  do({ 
    x <- .data 
    ks1 <- ks.test(x$SquaredDeviation[x$Arm=="Physician"], 
                   x$SquaredDeviation[x$Arm!="Physician"] 
    ) 
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    tibble( p.value = ks1$p.value) 
  }) %>% 
  ungroup() %>% 
  spread(key=type, value=p.value) %>% 
  view_kable() 
 
 
 
 
 
 
 
 
# Interactive graphs ---------------------------------------
--------------- 
library(gganimate) 
theme_set(theme_minimal()) 
z1 <- proseval %>% 
  filter(ID==1) %>% 
  ggplot(aes(x=TIME)) + 
  geom_line(data=. %>% ungroup() %>% mutate(ipred=map(fit, ~
predict(.x, newdata=0:400))) %>% unnest(ipred), aes(y=Cwb), 
alpha=0.5) + 
  geom_point(data=. %>% unnest(ipred), aes(y=Cwb, group=1L)) 
+ 
  geom_point(data=. %>% unnest(observed) %>% group_by(ID, OB
S) %>% 
               mutate( 
                 INCLUDED=row_number() <= OBS, 
                 TARGET = (row_number() == OBS[1]+1) 
               ), aes(y=Cwb, color=INCLUDED, group=1L)) + 
  scale_x_continuous(breaks=seq(0, 14*24, by=24), labels=seq
(0, 14)) + 
  theme(legend.position="bottom") + 
  theme(panel.grid.minor = element_blank()) + 
  labs(x="Time post transplant (days)", y="Tac concentration 
(ng/mL)", color="Included in fit") + 
  transition_states( 
    OBS, 
    transition_length = 1, 
    state_length = 3 
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  ) + 
  enter_fade() +  
  exit_shrink() + 
  ease_aes('sine-in-out') + 
  ggtitle("Iteration #{closest_state}") 
 
z1 %>% 
  animate(duration = 30, fps=5, width=480, height=480) 
anim_save("subject-1.gif") 
 
z2 <- proseval %>% 
  filter(ID==1) %>% 
  ungroup() %>% 
  mutate(data=pmap(list(object, ipred, observed), ~residuals
(..1, ..2, ..3, weighted=TRUE))) %>% 
  unnest(data) %>%  
  mutate(lastObs = TIME[ifelse(OBS==0, NA, OBS)] ) %>% 
  ggplot(aes(x=TIME, y=Cwb)) + 
  #geom_vline(aes(xintercept=lastObs)) + 
  geom_point(aes(color=TIME <= lastObs, group=1L)) + 
  geom_smooth(se=F) + 
  scale_x_continuous(breaks=seq(0, 14*24, by=24), labels=seq
(0, 14)) + 
  theme(legend.position="bottom") + 
  theme(panel.grid.minor = element_blank()) + 
  labs(x="Time post transplant (days)", y="Prediction error 
IWRES", color="Included in fit") + 
  transition_states( 
    OBS, 
    transition_length = 1, 
    state_length = 2 
  ) + 
  enter_fade() +  
  exit_shrink() + 
  ease_aes('sine-in-out') + 
  ggtitle("Iteration #{closest_state}") 
z2 %>% 
  animate(duration = 30, fps=5) 
anim_save("subject-1-IWRES.gif") 
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gg_color_hue <- function(n) { 
  hues = seq(15, 375, length = n + 1) 
  hcl(h = hues, l = 65, c = 100)[1:n] 
} 
 
 
proseval %>% 
  filter(ID==1) %>% 
  unnest(c(ipred,observed), names_sep=".") %>% group_by(ID, 
OBS) %>% 
  mutate( 
    INCLUDED=row_number() <= OBS, 
    TARGET = (row_number() == OBS[1]+1) 
  ) %>% filter(TARGET) %>% 
  ggplot(aes(x=ipred.TIME)) + 
  geom_point(aes(y=ipred.Cwb, color="Predicted")) + 
  geom_point(aes(y=observed.Cwb, color="Observed")) + 
  labs(color="") + 
  scale_x_continuous(breaks=seq(0, 14*24, by=24), labels=seq
(0, 14)) + 
  theme(legend.position="bottom") + 
  theme(panel.grid.minor = element_blank()) + 
  labs(x="Time post transplant (days)", y="Tac concentration 
(ng/mL)") + 
  scale_color_manual(values=c(gg_color_hue(2)[1], "black")) 
ggsave("subject_1_pe24h_conc.png") 
 
proseval %>% 
  filter(ID==1) %>% 
  unnest(c(ipred,observed), names_sep=".") %>% group_by(ID, 
OBS) %>% 
  mutate( 
    INCLUDED=row_number() <= OBS, 
    TARGET = (row_number() == OBS[1]+1) 
  ) %>% filter(TARGET) %>% 
  ggplot(aes(x=ipred.TIME)) + 
  annotate("rect", fill="green", xmin=-Inf, xmax=Inf, ymin=1
2, ymax=15, alpha=0.1) + 
  geom_point(aes(y=observed.Cwb / ipred.Cwb * 13.5, color="C
omputer")) + 
  labs(color="") + 
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  scale_x_continuous(breaks=seq(0, 14*24, by=24), labels=seq
(0, 14)) + 
  scale_y_continuous(breaks=c(5, 10, 12, 15, 20)) + 
  theme(legend.position="bottom") + 
  theme(panel.grid.minor = element_blank()) + 
  labs(x="Time post transplant (days)", y="Concentration (ng
/mL)") 
ggsave("subject_1_pe24h_conc_peTarget_1.png") 
last_plot() + geom_point(aes(y=observed.Cwb, color="Physicia
n")) 
ggsave("subject_1_pe24h_conc_peTarget_2.png") 
 
 
proseval %>% 
  unnest(c(ipred,observed), names_sep=".") %>% group_by(ID, 
OBS) %>% 
  mutate( 
    INCLUDED=row_number() <= OBS, 
    TARGET = (row_number() == OBS[1]+1) 
  ) %>% filter(TARGET) %>%  
  mutate(Computer=observed.Cwb / ipred.Cwb * 13.5, Physician
=observed.Cwb) %>% 
  gather(key=Arm, value=Cwb, Computer, Physician) %>% 
  mutate(DAY = floor(ipred.TIME/24)) %>% filter(DAY <= 12) %
>% 
  ggplot(aes(x=ipred.TIME)) + 
  annotate("rect", ymin=-Inf, ymax=Inf, xmin=12, xmax=15, fi
ll="green", alpha=0.2) + 
  stat_ecdf(aes(x=Cwb, color=Arm)) + 
  # geom_rug(data=.  %>% filter(MDV==0) %>% group_by(DAY) %>
% do(enframe(quantile(.data$CONC, probs=c(0.05, 0.50, 0.95))
)) %>% 
  # mutate(q = case_when(name == "5%" ~ 0.05, 
  #                      name == "50%" ~  0.50, 
  #                      name == "95%" ~  0.95) 
  # ), aes(x=value, linetype=name), length=unit(0.1, "npc")) 
+ 
  coord_cartesian(xlim=c(5, 20)) + 
  labs(y="ECDF(x)", x="tac whole-blood concentration (ng/mL)
") + 
  facet_wrap(~DAY, labeller=label_both) + 



 

78 
 

  scale_linetype_manual(values=c(2, 1, 2)) + 
  theme(legend.position="bottom") + labs(linetype="Quantile"
, color="") 
ggsave("proseval_ecdf.png") 
 
 
 
 
db %>% filter(DAY <= 12) %>% 
  ggplot(aes(x=TIME)) + 
  annotate("rect", ymin=-Inf, ymax=Inf, xmin=12, xmax=15, fi
ll="green", alpha=0.2) + 
  stat_ecdf(aes(x=Cwb, color=Arm)) + 
  # geom_rug(data=.  %>% filter(MDV==0) %>% group_by(DAY) %>
% do(enframe(quantile(.data$CONC, probs=c(0.05, 0.50, 0.95))
)) %>% 
  # mutate(q = case_when(name == "5%" ~ 0.05, 
  #                      name == "50%" ~  0.50, 
  #                      name == "95%" ~  0.95) 
  # ), aes(x=value, linetype=name), length=unit(0.1, "npc")) 
+ 
  coord_cartesian(xlim=c(5, 20)) + 
  geom_text(data=. %>% group_by(DAY, Arm) %>% summarize(pta=
mean(between(Cwb, 12, 15))) %>% 
              mutate(ptaString = paste0(round(pta*100, 0), "
%")), 
            aes(x=5, label=ptaString, y=0.1, color=Arm), pos
ition=position_fill(), hjust=0, size=4) + 
  labs(y="ECDF(x)", x="tac whole-blood concentration (ng/mL)
") + 
  facet_wrap(~DAY, labeller=label_both) + 
  scale_linetype_manual(values=c(2, 1, 2)) + 
  theme(legend.position="bottom") + labs(linetype="Quantile"
, color="") 
ggsave("proseval_ecdf_all.png") 
 
last_plot() %+% (db %>% filter(DAY <= 12 & Arm != "Physician
")) 
ggsave("proseval_ecdf_computers.png") 
last_plot() %+% (db %>% filter(DAY <= 12 & Arm %in% c("Physi
cian", "Computer"))) 
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ggsave("proseval_ecdf_adapt_v_physician.png") 
 
 
 
 
# doseChanges ----------------------------------------------
--------------- 
db2 <- ("../../../../../Tacrolimus/") %>% 
  file.path("3.Analysis Data/PostTransplant_VanHove2017BJCP_
KWS.Rds") %>% 
  readRDS()  %>% mutate_if(is.numeric, unclass) #remove have
n-related issues 
manualEcdf <- db2 %>% filter(EVID==0 & MDV==0) %>% 
  group_by(DAY) %>% 
  arrange(CONC) %>% mutate(i=1:n()) 
db2Doses <- db2 %>% filter(EVID!=0 & MDVReason==0) %>% 
  mutate(Cycle=floor((TATx+12) / 24 ) ) %>%  # Cycle 1 is fr
om Day0 12:00 to Day1 12:00. The next cycle is determined ba
sed on measure Day1 08:00. 
  full_join( 
    tidyr::crossing(Cycle=as.numeric(0:15)) # fill in the ga
ps 
  ) %>% 
  group_by(ID, Cycle) %>% summarize(DDose=sum(AMT, na.rm=TRU
E)) %>% 
  group_by(ID) %>% mutate( 
    DDoseTomorrow = lead(DDose), 
    DDelta = ifelse(DDoseTomorrow==0 & DDose==0, 1.0, DDoseT
omorrow / DDose) 
  ) %>% 
  full_join(manualEcdf, by=c("ID", Cycle="DAY")) %>% 
  group_by(ID) %>% mutate( CONCTomorrow = lead(CONC) ) 
compDoses <- scenarioA %>% group_by(ID) %>% filter(row_numbe
r() == n()) %>% unnest(regimen) %>% 
  mutate(Cycle=floor((TIME+12) / 24 ) ) %>%  # Cycle 1 is fr
om Day0 12:00 to Day1 12:00. The next cycle is determined ba
sed on measure Day1 08:00. 
  full_join( 
    tidyr::crossing(Cycle=as.numeric(0:15)) # fill in the ga
ps 
  ) %>% 
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  group_by(ID, Cycle) %>% summarize(DDose=sum(AMT, na.rm=TRU
E)) %>% 
  group_by(ID) %>% mutate( 
    DDoseTomorrow = lead(DDose), 
    DDelta = ifelse(DDoseTomorrow==0 & DDose==0, 1.0, DDoseT
omorrow / DDose) 
  ) %>% 
  full_join(db %>% filter(Arm=="Computer"), by=c("ID", Cycle
="DAY")) %>% 
  mutate(CONC=Cwb) %>% 
  group_by(ID) %>% mutate( CONCTomorrow = lead(CONC) ) 
 
 
scale_color_breaks <- function(..., breaks=c(), colours=c()) 
{ 
  values = breaks 
  w = max(breaks) - min(breaks) 
  expand = 0.10 * w 
   
  scale_color_gradientn(colours=colours, breaks=breaks, resc
aler=function(x, from, to) { 
    y <- cut(x, c(-Inf, breaks, Inf) ) 
    width <- 1 / ( length(breaks) + 1 ) # width of a single 
bin 
    z <- (as.numeric(y)-1) * width + width/2 #pick the middl
e of the bin 
    z 
  }, limits=c(min(breaks)-expand, max(breaks)+expand ), oob=
scales::squish, ...) 
} 
 
compDoses %>% 
  filter(between(Cycle, 2, 13)) %>% 
  filter(!is.na(DDelta)) %>% 
  ggplot(aes(x=CONC, y=DDelta)) + 
  annotate("rect", xmin=12, xmax=15, ymin=-Inf, ymax=Inf, fi
ll="green", alpha=0.2) + 
  geom_hline(yintercept=1, linetype=2) + 
  geom_vline(xintercept=c(5, 12, 15, 20), linetype=2) + 
  #geom_point(aes(color=CONCTomorrow, size=ifelse(between(CO
NCTomorrow, 5, 20) | is.na(CONCTomorrow), 1, 2))) + 
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  #scale_size_identity() + 
  geom_point() + 
  #geom_smooth(data=. %>% filter(), se=F) + 
  scale_y_continuous(breaks=c(0.33, 0.5, 1, 2, 3), labels=c(
"/3", "/2", "no change", "x2", "x3"), minor_breaks=c()) + 
  coord_trans(y="log10", limx=c(3, 30), limy=c(0.2, 3)) + 
  scale_x_continuous(breaks=c(5, 12, 15, 20, 30)) + 
  stat_function(fun = function(CONC) {(13.5 / CONC)}, color=
"grey", size=2) + 
  #coord_cartesian(xlim=c(3, 25), ylim=c(0.2, 5)) + #, clip=
"off" 
  scale_color_breaks(breaks=c(5, 12, 15, 20), colours=c("blu
e", "cyan", "grey", "orange", "red"), na.value="pink" ) + 
  #annotate(geom="text", x=5, y=1, label="decrease", hjust=1
.5, vjust=-1, color="grey", angle=90, size=4) + 
  #annotate(geom="text", x=5, y=1, label="increase", hjust=-
0.5, vjust=-1, color="grey", angle=90, size=4) + 
  theme_minimal() + 
  #geom_smooth(data=db2Doses, se=F) + 
  theme(panel.grid.minor.x = element_blank()) + 
  labs(x="Concentration (ng/mL)", y="Dose change", 
       color="Resulting concentration (ng/mL)", 
       title="Computer dose adaptations", 
       #subtitle="Physician dose adaptations shown as smooth
", 
       shape="Absolute dose size (mg)") + 
  theme(legend.position="none") 
ggsave("computer_doseChanges.png", width=6, height=6) 
 
last_plot() %+% db2Doses + 
  labs(title="Physician dose adaptations") 
ggsave("physician_doseChanges.png", width=6, height=6) 
 
 
# interactive dose adapta ----------------------------------
--------------- 
library(gganimate); library(png); library(RCurl); library(gr
id); library(jpeg) 
img1 = readPNG(getURLContent('http://cdn2.iconfinder.com/dat
a/icons/animals/48/Turtle.png')) 
img2 = readPNG(getURLContent('http://cdn2.iconfinder.com/dat
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a/icons/animals/48/Elephant.png')) 
img3 = readPNG(getURLContent('http://cdn2.iconfinder.com/dat
a/icons/animals/48/Hippopotamus.png')) 
imgADAPT = jpeg::readJPEG('ADAPT.jpg') 
imgFIT = jpeg::readJPEG('FIT.jpg') 
imgMEASURE = jpeg::readJPEG('MEASURE.jpg') 
 
myRaster <- function(raster, data=ggplot2:::dummy_data(), 
                     xmin=-Inf, 
                     xmax=Inf, 
                     ymin=-Inf, 
                     ymax=Inf, 
                     interpolate=TRUE) { 
  raster <- grDevices::as.raster(raster) 
   
  layer(data = data, mapping = NULL, stat = StatIdentity,  
        position = PositionIdentity, geom = GeomRasterAnn, i
nherit.aes = FALSE,  
        params = list(raster = raster, xmin = xmin, xmax = x
max,  
                      ymin = ymin, ymax = ymax, interpolate 
= interpolate)) 
} 
ggplot(mtcars %>% mutate(FOO = cut(mpg, breaks=4)), aes(mpg, 
wt)) + 
  myRaster(img1, data=. %>% filter(as.numeric(FOO)%%2 == 0), 
xmin=10, xmax=15, ymin=4, ymax=5) + 
  geom_point(aes(group=1)) + 
  transition_states(FOO) + 
  enter_fade() + 
  exit_shrink() + 
  ease_aes('sine-in-out') + 
  ggtitle("State {closest_state}") 
 
foo <- scenarioA %>% filter(ID==1) 
foo$target[1] <- list(numeric()) 
foo$next_observed[sapply(foo$next_observed, is.null)] <- lis
t(tibble()) 
#### For the animation, there are 3 states 
#### Step 1 (FITTED): What the computer thinks will happen i
n the future 
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#### ADAPT THE DOSE 
#### Step 2 (ADAPTED): What the computer thinks will happen 
in the future 
#### ACTUALLY MEASURE 
#### State 3 (REAL): What actually happened, while still sho
wing the previous fit 
#### FIT THE OBSERVATION 
z1conc <- foo %>% mutate(OBS=row_number()) %>% 
  uncount(3) %>% 
  mutate(STATE = factor(row_number() %% 3, 
                        levels=c(1,2,0), 
                        labels=c("FITTED", "ADAPTED", "REAL"
)) 
  ) %>% 
  mutate(frame = row_number()) %>% 
  filter(frame >= 4) %>% 
  filter(frame < max(frame)-1) %>% ## remove last two frame 
(REAL) 
  ggplot(aes(x=TIME)) + 
  theme_minimal() + 
  geom_hline(yintercept=13.5, linetype=2)+ 
  annotate("rect", fill="green", xmin=-Inf, xmax=Inf, ymin=1
2, ymax=15, alpha=0.1) + 
  geom_rug(data=. %>% unnest(regimen), sides="b", color="red
") + 
  geom_point(data=. %>% unnest(observed) %>% filter(TIME < n
ow), aes(y=Cwb)) + 
  geom_vline(data=. %>% unnest(next_observed) %>% filter(TIM
E > now), aes(xintercept=TIME), alpha=0.2) + #show all futur
e observation times 
  geom_point(data=. %>% filter(STATE=="REAL") %>% unnest(nex
t_observed), aes(y=Cwb)) + 
  geom_line(data=. %>% group_by(STATE, frame) %>% group_modi
fy(function(x, keys){ 
    fit <- x$fit[[1]] 
    regimen <- if(keys$STATE=="FITTED"){ x$regimen[[1]]} els
e {x$next_regimen[[1]]} 
    predict(fit, newdata=seq(0, 15*24), regimen=regimen) 
  }), aes(y=Cwb), alpha=0.3, color="blue") + 
  geom_line(data=. %>% group_by(STATE, frame) %>% group_modi
fy(function(x, keys){ 
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    fit <- x$iterationFit[[1]] 
    regimen <- if(keys$STATE=="FITTED"){ x$regimen[[1]]} els
e {x$next_regimen[[1]]} 
    predict(fit, newdata=seq(0, 15*24), regimen=regimen) 
  }), aes(y=Cwb)) + 
  geom_vline(aes(xintercept=now)) + 
  geom_point(data=. %>% rowwise() %>% mutate(real_obs=list(f
it$observed)) %>% unnest(real_obs), aes(y=Cwb), 
             shape=3, alpha=1, color="blue") + 
  scale_x_continuous(breaks=seq(0, 14*24, by=24), labels=seq
(0, 14)) + 
  coord_cartesian(xlim=c(0, 15*24)) + 
  theme(panel.grid.major=element_blank(), 
        panel.grid.minor=element_blank()) + 
  labs(x="Time post transplant (days)", y="Concentration (ng
/mL)") + 
  myRaster(imgFIT, data=. %>% filter(STATE=="FITTED"), xmin=
0, xmax=50, ymin=30, ymax=40) + 
  myRaster(imgADAPT, data=. %>% filter(STATE=="ADAPTED"), xm
in=0, xmax=50, ymin=30, ymax=40) + 
  myRaster(imgMEASURE, data=. %>% filter(STATE=="REAL"), xmi
n=0, xmax=50, ymin=30, ymax=40) + 
  geom_text(aes(x=0, y=40, label=factor(STATE, labels=c("FIT
TED", "ADAPTED", "MEASURED")), group=0, hjust=0, vjust=0)) 
#z1conc 
lapply(1:10, function(i) { 
  zTmp <- z1conc + ggforce::facet_wrap_paginate(~frame, nrow
=1, ncol=1, page=i) + theme(strip.text=element_blank()) 
  ggsave(paste0("scenarioA-subject-conc-frame",i,".png"), pl
ot=zTmp, width=16, height=9) 
}) 
z2conc <- z1conc +  
  transition_states(frame, transition_length=1, state_length
=3) + 
  enter_fade() + 
  exit_shrink() + 
  ease_aes('sine-in-out') 
# z2conc 
z2conc_gif <- animate(z2conc, fps=30, duration=60, renderer 
= gifski_renderer(loop=FALSE)) 
anim_save(paste0("scenarioA-subject", foo$ID[1],"-conc.gif")
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) 
 
 
z1regimen <- foo %>% mutate(OBS=row_number()) %>% 
  uncount(3) %>% 
  mutate(STATE = factor(row_number() %% 3, 
                        levels=c(1,2,0), 
                        labels=c("FITTED", "ADAPTED", "REAL"
)) 
  ) %>% 
  mutate(frame = row_number()) %>% 
  filter(frame >= 4) %>% 
  filter(frame < max(frame)-1) %>% ## remove last two frames 
(ADAPT, REAL) 
  ggplot(aes(x=TIME)) + 
  theme_minimal() + 
  geom_col(data=. %>% group_by(STATE, frame) %>% group_modif
y(function(x, keys){ 
    regimen <- if(keys$STATE=="FITTED"){ x$regimen[[1]]} els
e {x$next_regimen[[1]]} 
    regimen 
  }), aes(y=AMT)) + 
  geom_point(data=. %>% rowwise() %>% mutate(regimen=list(fi
t$regimen)) %>% unnest(regimen),  
             aes(y=AMT), shape=3, alpha=0.5, color="blue") + 
  geom_vline(aes(xintercept=now)) + 
  scale_x_continuous(breaks=seq(0, 15*24, by=48)) + 
  coord_cartesian(xlim=c(0, 15*24)) + 
  labs(x="Time (h)", y="Dose (mg)") 
 
z1regimen + facet_wrap(~frame) 
z2regimen <- z1regimen +  
  transition_states(frame, transition_length=1, state_length
=3) + 
  enter_fade() + 
  exit_shrink() + 
  ease_aes('sine-in-out') 
z2regimen_gif <- animate(z2regimen, fps=30, duration=60, ren
derer = gifski_renderer(loop=FALSE)) 
anim_save(paste0("scenarioA-subject", foo$ID[1],"-regimen.gi
f")) 
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rm(foo) 
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