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Abstract

This thesis deals with the dense multi-view stereo probl&he inherent difficulties
which complicate the stereo-correspondence problem atesions. Also, we have to
consider the possibility that image pixels in different @ea, which are projections of
the same point in the scene, will have different colour valdee to non-Lambertian
effects or discretisation errors. To tackle these probleraspropose a generative
model based approach.

In this approach, the images are regarded as noisy measuieofi@n underlying
‘true’ image-function. Also, the image data is considenecbmplete, in the sense
that we do not know which pixels from a particular image areluded in the other
images. This formulation is equivalent to an inverse infeeeproblem, where the
goal is to estimate the factors that have generated the im@ages. More particular,
given a set of images from a scene, we consider the questiahwduld be the most
likely image that would have been observed from a particcdanera position.

To answer this question, we study a global and a local fortimna In a global
formulation all possible geometric realisations of a scmeconsidered and evaluated
to find the most plausible realisation. The local formulatiakes an initial geometric
realisation and refines it in a gradient decent manner.

Both formulations are intensely evaluated and their achged and disadvantages
are discussed. Finally, our proposed multi-view stereoritlyn combines both for-
mulations and its performance is illustrated on severdweald examples. We show
how the algorithm can generate realistic view interpolaiérom a virtual camera
viewpoint.






Notations

To enhance the readability of this thesis, some notatiodsyaming conventions used
throughout the text are shortly summarized here.

p vector

1 unit vector

p" specific entryk of vectorp
P matrix

I unit matrix

D,V functions

Moreover, the following symbols are used for the followindiges:

D probability density function
(7] parameter vector
b)) covariance matrix

X Markow Random Field (MRF)
2 i" node of the MRF lattice
z?  n'" state of theé'” node of the MRF lattice

y data/image
Yi it" data point / input image pixel
y¥  pixeli*" of thek'" inputimage

y ideal image
i i*" ideal image pixel

b(x) belief, probability, expected value &f

by belief, probability, expected value of';
(07 =b;(w; =n))

bi"  jointbelief, probability, expected value of andx7";
(b?jm = bU (.237 =N,T;= m))
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Chapter 1

Introduction

If ou uonntftbeief "iatfyourfryuelf(e.g( of doaralfeaagmigfcyrrb)’cf)hyyge anythba
onefadufosefmh,irum eixelliyyufk oaf-ayeslhdfk mbthgdéhefdbw myuee.
Wha'cflfflfuyd’t bblieffinftibfneB ryuelfeitibaW [I'ftaldafeotfyl g'ottornnesgftyflloyu
"hbfworeu wi'i h hos’ olfaathbafhabi’aha andf?rythtl fharid’eapaetabebfmydelg
anu )lhir tiby aae exac’l ftrue( phb pyid'fyf robost gth’lgjfisfthh’fone rhy xee?fa
phrhrbtricfryueefhlthoogh ’ibfea”er Is knyBd tofbbfBrgd

argmax logp(y |y*)} of Hampelet al. [42]
-

The stereo problem is one of the core problems in computanidiumans use
their two eyes to solve this problem and to obtain a threeedsional impression of
the world. Two processes seem to play an important role iresirty this. An early
‘bottom-up’ process during which base representationganerated from the visual
input. And, later in the visual stream, a ‘top-down’ proceeems to be responsable
for taking higher-level, prior knowledge into account. Tigason for the striking
performance of the human visual system is expected to bel loastne latter. Humans
use for instance shadows to h&iD scene interpretation [60] and have a strong prior
to choose the interpretation of the scene in which lightrsrifrem above. It has also
been shown that the bottom-up and the top-down processgadhiith each other.
An example for human depth perception is given in Bulthefal [15]. They show
that the top-down process can overrule slightly incorréete® stimuli, if the test
persons recognise the stimuli (in this case: a human, repred by dots in a so called
point-light figure).

When looking at the solutions to the stereo problem in compuision prior in-
formation does not play the same essential role yet. Priorthe3-D environment
are often introduced via a smoothness assumpii@nf a certain3-D point is part of
the scene this is with high probability also true for the surrding points. The use
of more advanced prior information is probably the most psimg future direction
for the improvement of stereo algorithms. Important for theorporation of prior

1



2 Chapter 1. Introduction

knowledge is thereciserelation between prior knowledge and data measurements.
How much evidence must be provided by the data (the inputés)dgefore the prior
knowledge can be overruled? The data might suggest a verplesmess plausible
depth interpretation. At which point do we accept this iptetation? The data could
show conflicts. Some data points agree on a certain deptipiatation, whereas oth-
ers don’t. Do we belief in this case in a consensus, and wharidmwee decide to
neglect data points as being untrustable? The decisionese thuestions depends
strongly on the mentioned prior-data relation.

The Bayesian framework offers the mathematical tool wharhlsines prior knowl-
edge and data evidence in a consistent way. In this thesispply ¢his powerful
framework to the multi-view stereo problem. The stereo frabwill be formulated
as an inverse inference problem, where the goal is to eithatfactors that have
generated the input images. The same philosdphypased on generative models, is
a good candidate to model the interaction of bottom-up apéitmvn processes in the
human vision systera.g Yuille and Kersten [127].

1.1 Three-dimensional image modelling

During the last few years more and more user-friendly sohgfor 3D modelling have
become available. Techniques have been developed [43ttmsauct static scenes
in 3-D from video or images as the only input. The strength oféhstsucture-from-
motion (SFM) techniques lies in the flexibility of the recorg, the wide variety of
scenes that can be reconstructed and the ease of textuaetmxir Three-dimensional
image modelling is usually divided into camera calibratowl dense stereo matching.

Camera calibration

The starting point for th8-dimensional modelling of images is the matching of fea-
tures €.g Harris corners) across all images. The resulting featareks are used
to calibrate the cameras [83, 77]. For wide-baseline stefieaiures are based on
local, viewpoint invariant regions [111, 72], SHIFT [70] 8JURF [5] descriptors.
Using high resolution images with a larger baseline ins@faddw resolution video

is a promising avenue f@-D reconstruction for a number of reasons. First of all,
modern digital cameras have very high resolutions and gralda of recording de-
tailed, high-quality imagery. Secondly, using a limitedamt of images speeds up
the reconstruction process considerably. Also, the wiakeline setting carries the
promise of more accurate reconstructions, because it gesdarger, hence more re-
liably measurable, disparities in the images. On the otl@dhthere is a price to
pay for these advantages. Inherent to the wide-baselitingét the problem of oc-
clusions. Not all parts of the scene, which are visible in dipaar image, are also
visible in the other images. Because of the large differemg&wpoint, we also have
to consider the possibility that image pixels in differentiges, which are projections
of the same point in the scene, will have different coloutieal
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Figure 1.1:Bundle adjustment: The position, orientation and lens parameters of the
cameras (bottom) as well as the location3sD points is optimised such that each

3-D point is projected to its corresponding feature tracklie images. Some of these

tracks are indicated in the top images.

Camera calibration based on a sparse set of feature trackglps the necessary
input to solve thedensestereo or multi-view stereo problem. First of all it provide
the 3-D position and orientation of the camera centre the external calibration) as
well as the camera matrix and the radial distortion of theexantensice. the internal
calibration). Secondly a set 8fD points is provided. Each of which corresponds
to matched feature track. All parameters (camera paramatet3-D points) are fi-
nally optimised such that abt-D points will project to their correspondirgD feature
positions in the images. This optimisation procedure isedabundle adjustment’.
The geometric relation between pairs of images is given byetfipolar geometry. It
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restricts the two dimensional correspondence space toiorendion.

Dense stereo

Given the camera calibration one can formulate the stereblgm in various ways.
For two images we are interested in finding all correspongingls, i.e. the pixel
coordinates which correspond to the projection of the sareaes point in the two
images. The correspondence search is restricted to thelapijme. Since correspon-
dence cannot be established for all pixels one could exteisdanhd include also the
detection of occluded pixels or outlier pixels. When deglivith multiple input im-
ages, in a multi-view stereo setting, we are interestedérctirrespondence and the
visibility between all images. The solution of this problenthe subject of this thesis.
We will make the following assumptions:

e The full calibration of the cameras is known. The input inggee corrected
for radial distortion.

e The scene is mainly static. If the scene contains dynamis paey will not be
modelled and treated as outliers.

e A rough bounding volume (for the global formulation in chexp8) or a sparse
set of3-D points (for the local formulation in chapter 4) are given.

e The scene is Lambertian. We allow a global colour transféionaof corre-
sponding pixels. Again, non-Lambertian parts of the sceifldo@ considered
as outliers.

1.2 Multi-view stereo taxonomy

Recently, Seitzt al. [99] compared and evaluated various multi-view sterem@-alg
rithms. This work can be seen as a general review in this reflseaea. It collects
most multi-view stereo approaches and builds a taxonomyngnitem. Similar to
this we will give a taxonomy, which is obviously stronglyatdd to Seitzt al. Fol-
lowing Seitzet al. the large amount of multi-view stereo algorithms can besifeed
according toscene representation, photo consistency measure, itisimibdel, shape
prior, reconstruction algorithmandinitialisation requirement Scene representation
is the most important criterion and we will discuss this gaty more detailed.

1.2.1 Scene representation

The geometry of a scene can be represented in various wagsma@jority of multi-
view stereo algorithms use voxels, level-sets, polygonhee®sr depth maps. These
four representations are graphically depicted in fig. (1oRXhe 2-dimensional case
with three cameras.

1This is not strictly necessary, but will speed up the deptimesion.
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Figure 1.2:Two-dimensional version of different scene representatits: A scene
(black curve) captured by three cameras can be representet\xel representa-
tion (top/ left), a level-set representation (top/ righa)triangle mesh representation
(bottom/ left) and by a depth-map representation (bottaghft}.

Voxel and level-set based representations def®arid. For voxel formulations
the scene is represented by an occupancy function definedeoy grid cell. This
function tells whether the grid cell is a valid point of theese (marked gray in the
top/ left image of fig. (1.2) or not (white cell in this figurelor level-sets the grid
function encodes the distance to the closest surface. Wstmlvalue is negative
for all grid cells inside an object (indicated by light gragl@ured cells in the top/
right image of fig. (1.2) and positive outside (dark colouceds in this figure). The
zero crossing of the level-set function represents theespeimts. Polygon meshes
represent a surface as a set of connected planar facetsngasahe scene is simple
enough, this representation is efficient for storing andiegimg. Therefore it is also
a common format used in computer graphicEhis representation is shown bottom/
left of fig. (1.2). The depth map representation stores tmtidealue for all pixels in
the input images as illustrated bottom/ right in fig. (1.2).

The major distinction between the four representationsbeamade according to
the integration spacg Representations, which are definedHD (voxel, level-sets
and triangle mesh) take3aD -point, -patch or volume, project this in the images and
measure the amount of mutual agreement between thesetpogecThen, the inte-

2For highly complex and large scenes a more efficient tecleniqurendering is based on splats [97],
i.e. unconnected points with radius, colour and surface nodinettion.
3Seitzet al discuss this distinction in the second categbey,the photo-consistency measure.
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gration is performed over tHeD volume or the3-D triangle mesh. As a consequence
a 3-D -point, -patch or volume element will have the same imgoce independent
on how much pixels it covers in the image space. Differentifthis, for depth-map
representations the integration domain is the image spealé i

Another distinction is theliscretisation Voxel and level-set representations use a
discretised-D grid. To obtain sufficient accuracy this volume includdsrge amount
of cells which might not straightforward fit the memory caippof the computer.
Therefore the minimal cell size will usually cover severixigts in the image space.
If an initial solution is already given, this problem can b&imised by the use of
an octree representation [44, 113]. In triangle mesh anthd®pp representations
the discretisation is less critical. They can st8¢® points or depth values as real
numbers which are discretised only by the machine precisidre discretisation is
a major issue when considering the scalability of the repreegion. Triangle mesh
and depth map representations can easily be scaled to megkisiages. Whereas
for level-set and voxel based representations it is moffecdif to achieve the same
accuracy.

If the application requires a complete model of the scenpthdemap representa-
tions have the disadvantage that one is still left with thebfgm of integrating the
depth maps of all input images into a singk mesh. Whereas for voxel, level-set
and triangle mesh representations both steps are intddgnatea single scheme.

Some multi-view stereo approaches are based on a two stepcane €.g Her-
nandezet al. [44], Goeseleet al. [41], Akbarzadetet al. [1]). In a first step a depth
map representation is used, where the depth value of eaehipiaften not assumed
to be spatially correlated or computed with less accuracg decond step these algo-
rithms switch the representation and compute the finaljapyasmooth solution in a
3-D based representation, with the depth maps a input.

In that sense most stereo algorithms are based on a depthapagsentation.
Examples are given by Szeliski [109], Kolmogoretval. [64], Pollefeyset al. [84],
Strecheet al. [107, 106, 103, 104], Gargallet al. [37], Hernandezt al. [44], Goe-
seleet al. [41], Akbarzadetlet al. [1] to name only a few. The last three authors also
investigate the depth map integration based @nlarepresentation. Also the large
number of two-view stereo algorithms are based on a depthrepapsentation, which
in this case simplifies to a representation by the dispaFitr. an overview of these
algorithms see Scharstein and Szeliski [98].

Different from these algorithms we can find algorithms wistdrt directly from a
3-D representation. Voxel representations are formulaiethétance by Kutulakost
al.Kutulakos00, Vogiatzist al. [113], Hornunget al. [47] and Traret al. [110]. Level-
set representations are proposed by Faugei@s[24], Ponst al. [85, 86], Soatto, Jin
and Yezzi[101, 52] and Duast al. [23]. Triangle mesh representations are considered
by Furukaweet al. [36].

The optimal choice of the representation depends largelherapplication. In
multi-view stereo applications for which many images, ttegtture an object from all
around, are available voxel, level-set or triangle meshasgmtations are the most nat-
ural choice. In these applications almost all scene poigwigible in many cameras
and itis possible to reconstruct the entire object withalgs. In these representations
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it is also very simple to incorporate visual hull informatg Typically the algorithms
which use this representation are evaluated on turntafleesees as in [99]. If only
a small number of images is given depth map representatiema@re suited. Typical
applications are the reconstruction of large scale outdoenes.

1.2.2 Photo-consistency measure

Seitz et al. [99] distinguishes photo-consistency measures amongessgace and
image space integration methods. This distinction is mel&ed to the scene rep-
resentation. Photo-consistency measures that are prieseniti-view stereo algo-
rithms include colour distance based on the constant brégistassumption (sum of
squared differences SSD), normalised cross correlati@) @ mutual information
(MI). Often the constant brightness assumption betweealpis embedded in a for-
mulation considering ebustfunction of their colour difference. This can be related
to generative model based formulations which are subjetiieofollowing chapters.
The underlying concept of the constant brightness is thenagson that the scene
behaves Lambertian. Stereo algorithms which are able tovd#ranon-Lambertian
surfaces exist. In the work of Soattd al. [101, 52] the3-D model, BRDF and the
light source direction is computed such that the differesfdde rendered-D model
with the input images is minimal.

The use of cross correlation as the consistency measureengdke constant
brightness assumption to allow for linear brightness ckangWhen using mutual
information a statistical relation is assumed and the ifpages could have different
modalities. Ponst al. formulated the multi-view stereo problem for various nhatg
criteria (SSD, NC, Ml)e.g [85, 86, 87]. A similar strategy has been used in our work
for the registration of two uncalibrated images [28, 33].

1.2.3 Visibility model

Visibility models are needed to compute the images in whicér&in3-D scene point,
voxel or pixel is visible. Those images can be used to estaliie correspondence by
minimising the matching criterion. Possible models areedamn geometric or pho-
tometric cues. Geometric visibility models take the cutsaiution of the scene ge-
ometry and check in which images3eD scene point, voxel or pixel is visible, given
this current solution. This approach results in the itgeatiwo-step estimation of
scene geometry and visibility. Photometric visibility nedglusually take the current
estimated scene geometry and define visible points by thgekspnatches that obey
the photo-consistency assumption. The result is, similahé geometric models, a
two-step estimation of scene geometry and visibility. lagter 3 we formulate a pho-
tometric model which integrates depth and visibility, stitdt the two-step estimation
is replaced by a global depth-visibility estimate. The rolevisibility in multi-view
stereo is a major part of this thesis and the related litegdtudiscussed in chapter 3
more detailed.
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1.2.4 Shape prior

The ability of humans to perceive depth from stereo is to gdaxtent based on
sophisticated shape priors. Yet, many stereo and mul-gigereo algorithms are
inferior to the human performance, because only simplepece used. Priors are es-
pecially important when the data provides insufficient infation to identify unique
matches across images. This can be a problem in untextugeshge3-D based rep-
resentations often seek a solution with a small overallas@rfarea. The use of this
prior has the tendency to smooth over points of high cureatiepth map repre-
sentations usually impose the constraint that neighbgyuixels have the same depth
value, which lead to a favour towards fronto-parallel pan&hape priors are dis-
cussed more detailed in secs. 3.6.1 and 4.3.2.

1.2.5 Initialisation requirements

The input to multi-view stereo algorithms are the images #&ir calibration,i.e.
the internal and external calibration parameters or thgption matrices. However,
depending on the algorithm, additional input informatierrequired to initialise the
reconstruction or to restrict the geometric extent of thgectbbeing reconstructed.
Many algorithms require only the rough bounding box of thggob This is necessary
for voxel or level-set methods to define the voxel grid on wtifee algorithm performs
the computation. For triangle mesh representations thialinnesh is built up from
this bounding box. Many of theseD based methods start from the more restricted
visual hull. Depth map based representations often requ@alepth range, which
can be computed from projecting the bounding box into thegienao be known.
This is needed for Markov Random Field (MRF) formulationséd up the possible
depth states of the random field. For PDE-based methods &isétal 3-D points is
needed. The initialisation is often easy to obtain. Thealiswll can often be used
in indoor applications. For outdoor scenes a successfuecacalibration provides
a set of initial3-D points, which are the result of bundle adjustment [83]eJéare
often sufficient to estimate the depth range for MRF methods provide initial3-D
points for PDE-based methods.

1.3 Main contribution

This thesis aims to give a more general view of the multi-vét@reo problem. Solu-
tions to the following relevant issues are given or will beadissed.

e Often, multi-view stereo algorithms start from postulgtam energy for which
sophisticated minimisation techniques are proposed. dPtatsistency mea-
sures, priors and parameters are defined and it is often eat lsbw their spe-
cific choice can be justified. Therefore it is often necessagyvaluate the qual-
ity of the results dependent on the introduced parametéis.ig done on given
ground truth data or by judging the parameters by visuafieation. The ques-
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tion is how these multi-view stereo formulations geneeals perform equally
well on substantially different input images.

The intention of this work is to formulate multi-view steralgorithms that are
to a large extent parameter independent. Also, we are siegten the inter-
pretation of the remaining parameters. To achieve this, geslerative models
for images are proposed, which explain the physical prooésapturing im-
ages of 8-D scene. Once the image generation process is specifiedsBalg
provides the mathematical tool to invert this process biyreging the involved
parameters. We will discuss the relation of existing stealgrithms to our
formulation and will specify the assumptions they make tfk@nmore, our for-
mulation covers the solution to the classical stereo pratde well as the area
of novel view generation in a single framework. All theseexsp are published
in [103, 104] and are successfully used by Gargetlal. [37].

e For the reconstruction of the scene3iD, the estimation of depth and visibil-
ity are closely related. If the scene geometry is known omeccenpute which
scene points are visible in which image. On the other handktiogv/ledge of
visibility is necessary to estimate the scene geomegrythe photo-consistency
criterion should be evaluated for visible pixels only. Thepth-visibility in-
terconnection is often separated and iterative solutioegpeoposed to update
scene geometry and visibility in turn. In this thesis we wille a global formu-
lation which treats both entities jointly. We will show this formulation is
able to deal with substantial occlusions. This work has lpedatished in [104].

e Multi-view stereo algorithms are mostly evaluated on smeiakk images. Many
existing approaches do not scale to large size imaggs< 6 mega pixel). Our
formulation can be used with large size images, the algorithm can run on
current computers with acceptable computational speednemadory resources.

1.4 Outline of this thesis

This thesis is organised as follows. In chapter 2 we discag®8an inference tech-
nigues, based on generative models. These models are thetanhior the stereo
formulations later on. The reason of this chapter is alsortwide the relation of
generative model based formulations to the area of robusstifration. We will
demonstrate this on a simple line fitting example. Later oruse this result to dis-
cuss the connection between our multi-view stereo forrauriand other algorithms,
for which robust M-estimation plays an important role. Irapter 3 we present and
evaluate a global approach to the multi-view stereo probléva call this approach
global because all possible depth and visibility realtsaiof the scene are consid-
ered. In a similar fashion chapter 4 presents a local approakich optimises an
initial depth and visibility. We evaluate both formulat®on the same data sets and
compare their performance on ground truth data as well agahnoutdoor scenes.
Chapter 5 shows results for two main applicatioine, the building of3-D models
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from images and the generation of novel views of a capturedescFinally, general
conclusions and suggestions for future work are presenteldapter 6.



Chapter 2

Generative models and robust
M-estimation

f 0o oonnt teeie tiat oor r oel me.sm o doaral eaaoass is cersilstse an thea one
ado ose mhcirom eixelli o k oa -a eslhd k meth ds for the dew mvdeagc | f o dtt
eelie In tie new r oel eitieaw ft takes a eot f stottornnessa tloe woreo witi h host of
aathea haeitaha and pr thtl harol idteapaetaeee m dels dmoti aae exactl troem

phe p idt roeost sthtlstiss is thht one rh xeep a phrhretriee blthoosh tie eatter Is
kn wd to ee wr ds.

argmax logp(y |y*)p(y*)} of Hampelet al. [42]
-

In this chapter we relate the particular generative modethkvis used in this
thesis to robust M-estimation. Firstly, we give a small aalwction of (non-robust)
generative models and Bayesian inference in general (skég. Rext, we discuss
the problem of outliers and how they can be suppressed in astdB-estimation
framework (sec. 2.2). Further, we introduce the generativeel based formulation
(sec. 2.3) and discuss the relation to robust M-estimati@ec. 2.4.

2.1 Bayesian parameter estimation

In the 18th century Thomas Bayes developed a computatippabach to reason on
plausible explanations of data. The invention of computethe 20th century made
it possible to apply this work in real life applications. Thkealuation of realistic
Bayesian models became computationally feasible. Apptembmputer vision, this
framework regards images as noisy measurements of an yimdeideal image rep-
resentation. This could be for instance an image which whale been observed in
the absence of noise. Generative models describe how thessunements (our input
images) are generated from this representation. A gewenatbdel will depend on a

11
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set of parameters and includes possibly also latent vasaflhe first task in solving
computer vision problems is to analyse the measurememgattd to define the un-
derlying generative model (process). The second and ofimplex task is to invert
the generative model by estimating the parameters (or togiditional distribution)

and the latent variables. Bayes’ rule provides the mathieaiabol to achieve this. To

Y p(6,y)=p(yl6)p(6)
p(6]y,)
’, Z}?(Gm

Figure 2.1:Bayesian inference:

put this more formally we caly ={y; ...y~ } the N measurements ar@tithe model
parameters. The generative model is defined by specipying@), i.e. the likelihood
of the measurement given the value of the parameter. Thepidtion with the
parameter priop(@) leads to the joint probability distribution(y, €) = p(y |0)p(0).

So far we have specified all properties which represent oowledge of the mea-
surement setting. First, this is the prigi@), which might be known from intuition or
from past experience. In the latter, if training data is Elde, the prior distribution
can be estimated. Secondly we have analysed how the measueeane generated.
When given a particular set of measuremantswe can solve the inference problem
by analysing the sectiop(@ | y) of the joint distributionp(y, 8) as it is shown in
fig. (2.1). We have formulated the geometric interpretatibBayes’s rule:

2(0y) = p(y[0)p(6) 2.1)
p(y)
wherep(y) = [ p(y |0)p(6)dd is the normalisation.
The result can be either the probability distributiof® | y) of the parameteé
itself, leading to a fully probabilistic formulation, oréhmaximum a posteriori prob-
ability (MAP) estimate of the parameters:

Oriap = argema>{ log p(y|60)p(0)} - (2.2)

If the prior p(@) is not known,i.e. it is uniformly distributed over the range @
eg. (2.2) is the maximum likelihood (ML) estimator:

01 = arggma>{ logp(y|6)} (2.3)
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Example: line fitting

Consider the simple problem of fitting the slopef a line through data pointg;,
as shown in fig. (2.2). The data pointsare measured at timg and the generative

50

40
35
30 2
25 <

20 *

15
10 >

Figure 2.2:Least square fitting: For Gaussian noise, the ML estimate of the data is
given by the least square fit.

model for this problem can be formulated'by
Yi < at; + €, (2.4)

wheree is the noise, which is characterised by the distributien f (v;; at;, o) with
meanat; and variance. The model parameteésare in this example the slope of the
line and the noise parametée. 6 = {a, c}. The probability of observing a specific
data pointy; is given by:

p(yi|0) = f(yi;ati,0) . (2.5)

It is easy to see that the ML estimate for the line slafge given by the least square
fit over @ = a, if the noise distributiory (y;; at;, o%) is assumed to be Gaussian:

O = argma{logf(yi;ati,az)} (2.6)
0

argmin ti —ui)?. 2.7
9 Zj(a Vi) (2.7)

Example: optical flow

An example of a generative model for the estimation of imagéon is studied by
Weiss and Fleet [119]. This model is, as we will see later arg part of our pro-
posed generative model. In this, the pixglof the input imagey are assumed to be
generated from an ideal imagé by:

Yi(us) y: +e€, (28)

1We assume here for simplicity thatis exactly known.
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wheree is again the image noise and where the image motion is captwehe
mappingi(u;) < 4. In the most general case; has two degrees of freedom and is
called optical flow field. The parameters for this generatiazel include the image
noise, the ideal imagg* and the optical flow field,;. Weiss and Fleet assume in this
model that the image motion does not result in occluded piral pixels iny which
have no counterpart ip*. However, occlusion and outliers play an important role in
stereo and especially wide-baseline stereo. We will noaudis how to handle them.

2.2 Robust M-estimation

Often the nature of the noise process is unknown or the measntsy; are con-
taminated by random outliers. Therefore, in the eightiegtjsdicians started to take
another path. The idea was to develop techniques which wmaifdobust’ to these
uncertainties and which would not necessarily explain thgreven more advanced
models. This new branch adbust statisticsvas pioneered by the work of Huber [48],
Rousseeuw [95] and Hampet al. [42]. In the book of Hampedt al. which was pub-
lished in 1986, one can find the following dispute, which r@8enicely the scientific
debate between Bayesian thinking and the new branch of retaiistics.

..”If you don't belief that your modelg.g, of normal errors) is correct, choose
another one and use maximum likelihood— or Bayesian— mettoodhe new model”
What, if | don’t belief in the new model either? It takes a lbstubbornness to flood
the world with a host of rather arbitrary and probably hardhterpretable models
and claim they are exactly true. The point of robust statssis that one may keep a
parametric model although the latter is known to be wrong.
Frank R. Hampegét al. [42], p. 403

In robust M-estimation, the essential idea is to replacetregratic error function
in eg. (2.6) by something which is less sensitive to outlidfere particular, in a gen-
erative model based formulation, under a Gaussian noiseg®on the ML estimate
is given by the minimum of w.r.t. the squared residuals

0 =argmind 72 . 2.9
9 Z (2.9)

In a robust formulation the quadratic dependence of thereiigreplaced by the
p-function, called M-estimatér This is a positive, symmetric function with a unique
minimum at zero, which is chosen to be less increasing thadmgtic. The aim is to
find the parameters such that:

6 =argminy _ p(r;) . (2.10)
6 i

2M’ is synonym for maximum likelihood estimator. Note, theime robust estimation methods do not
compute the ML estimate. RANSAC for instance computes thatisa based on a minimal set of data
points.
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To quantify the effect of an infinitesimal change of a datuntfenparameter estimate,
we consider its derivative(r) = dp(r)/0r, which is calledinfluence functiofd2].
The value|y)(r)| increases with increasing values|ef, and for a certain class of M-
estimators, the so-calleddescendindg/-estimators, the influence function descends
again wherjr| reaches a critical valuég. from this point on the parameter estimate
will be more and more unaffected by the corresponding datataoOne important
issue in robust statistics is the choice of thunction. Table 2.1 gives some popular
examples.

domain p(r) U(r) b(r)
Tukey's | [rl<1 | S(1-(1=(22)") [ r(1=(2*)" | (1-(2)})°
biweight | |r| > 1 z 0
Lorentzian| R log (1+(£)?) E=eL: EReIE
Truncated| |r| <T r? r 1
quadratic | |r| > T T2 0 0
Laplacian | R, 7 # 0 [ 7] sign(r) ‘T—}M

Table 2.1:Robust M-estimators: Thep, ¢» andb -functions.

Re-weighted least square optimisation

The solution of eq. (2.10) can be obtained by using a two stepegure, which is
called ‘reweighted least square optimisation’. In the fitsip the weight; for every
data pointy; is computed. The second step solves the weighted leastespradriem:

parameter estimation:

6 = argminy_, bir? . (2.11)
o

The weights are given by the influence functipfr) = 9p(r)/0r. Their value is [42]:

weight estimation: b = L) (2.12)

Both steps are iterated until convergence. Fig. (2.3) shbasesult of a line fit with
outliers using the least square and the Laplace (L1 norimpatir as well as the final
estimate of the weights.

An important example of robust estimation for the estimatid image motion
can be found in various papers by Blagtal. (e.g [9]) and more recently by Brihet
al. [12].

Having in mind the excellent results of robust estimatioseiems contradictory
to go a step ‘backwards’ and use again generative modelsritoufate the multi-
view stereo problem. Nevertheless, in the last three yeaesi®, Fransens and Van
Gool investigated generative models for a wide range of lprab in computer vi-
sion. Starting with a generative model based approach éoest(Strecha, Fransens
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Figure 2.3:Robust fitting: Least square fit (left) of a line with outliers and the fit
using the robust Laplacian (middle). The final value of théghs b, for all data
pointsy; is shown right.

and Van Gool [103]) we investigated the use of similar moéleishe case of super-
resolution [29], optical flow [102], image registration B0 multi-view stereo [104]
and face recognition [31]. In all these investigations waldgresent good results
obtained from a consistent formulation.

As a final investigation of these generative models we makatiportant connec-
tion to robust estimation in Fransens, Strecha and Van G2l From the theoretical
point of view this is probably the most important result of gint work.

Coming back to the mentioned dispute of statisticians indighties we were
able to make the link between a generative model based agpeoal robust esti-
mation framework. Moreover a robust M-estimator has beeivel which follows
directly from a generative model with outliers and whichirsitar in shape to other
M-estimators (as for instance shown in table (2.1)). Thithéssubject of the next
section.

2.3 Robust generative models

In order to deal with outliers we extend the generative madet]. (2.8). This model,
which we will call the inlier process, is one part of our fin@ngrative model. It is
responsible for the generation of all data points, exceptHe outliers. A second,
outlier process, is responsible for generating all othe¢a gints,i.e. the outliers.

This process will be modelled as a random generator, saghfiam an unknown
distribution, characterised by a probability density ftime (PDF)g. This PDF can be
a histogram or a uniform distribution. The generative mddethe outlier process is
written as:

Yi—g. (2.13)

Further, we introduce a hidden varialde= {z; ...z }, which will distinguish both
processes for each data poipti.e. x; = 1 if the data pointy; is generated by the
inlier process and; = 0 if the data pointy; is generated by the outlier process. Then
the probability of observing a specific data paoint conditioned on the unknowrts
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and the state of the hidden varialslgis given by:

S B

We call this modefobust generative modesince the parameter estimate will be ro-
bust to outliers. The ML estimate is given by:

§ML = argema{logp(yIB)}

= argema>{ logZp(y, x|0) } . (2.15)

The sum over all possible configurationf the random field becomes quickly in-
tractable. The solution of eq. (2.15) can by obtained by tkgeEtation Maximisation
(EM) algorithm. The main problem with eq. (2.14) is the latan of a usually big
sum. The key idea of EM is to optimise a lower bouni, §) which instead contains
a sum of logarithms. We can trivially rewrite the argumenrgdn (2.15):

log > ply,x|6) = loga y’x|0) (2.16)

whereb(x) is an arbitrary trial distribution over the space of hiddeniablesx. By
using Jensen’s inequality, the argumentin eq. (2.15) istded by:

logZp (v,x|0) > Zb # —F(b,0). (2.17)

The lower bound is also called variational free energy aneljisal to the negative
Kullback-Leibler divergence (appendix B). Its minimisatiis achieved by EM in two
steps. Using the current estimateof the parameterg, the E-step computégx) as
a minimiser of the variational free energy. In the M-stepa set of paramete@'+!

is found by again minimising’(b, 8). Both steps are iterated until convergence.

Example: line fitting

We will now derive the update equations for the line fittinglgiem as described in
sections 2.1 and 2.2 using the generative model with inler @utlier process. For
this specific model we make the following assumptions:

e The outliers as shown in fig. (2.3) are not correlates they appear randomly
at every timef;.

e The outlier distribution is uniformi,e. every outlier appears with the same prob-
ability C'=1/50 in the data rang@ . . . 50].

e The noise distribution is Gaussidity;; y*, o) = N (r;, 0, 02) with r; =y; — at;.
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e There isno prior preference on the data points to be generated by tlez ol
outlier process.

Here, we choose the most general assumptions, which, wiogmgpat the data in
fig (2.3), could be further refinédWith these assumptions we can write the probabil-
ities for observing data poingg by the inlier and outlier model as:

p(yi|zi=1,0) = N(r;;0,07)
p(yi|x;=0,0) = C (2.18)

The random fieldck has two states such that we can write the problem in termsef on
state only. The other state is given by the normalisatiomitimm, i.e.:

bl‘(fl,‘l‘:].) =1- bl(l’lZO) . (219)

To simplify the notation we further call; = b;(x; = 1). Then the variational free
energy in eq. (2.17) is given by:

F(b,6) = Z <bi log J\/’(bi + (1= by)log * Cbi> : (2.20)

Ti, 07 02)

3

where we used the assumption that the random fekinot correlated and the data
points are independent and identically distributeel, >° — .. By setting the
derivative with respect t@; in this equation to zero, we obtain the E-step update
equation for the weights;:

Ti, 7(72
E-step: bi = o) (2.21)

This shows a very intuitive result. The weight which is related to the expected
value of the random field state (z; = 1), is given by the normalised probability of
a data point being generated by the inlier model. The nosatidin is obviously the
sum of the probabilities that the data point is generatedhligriand outlier model. It
is further interesting to notice that in this case the loweurd is tight and Jensen’s
inequality in eq. (2.17) is turned into an equality.

In the M-step the parametefisare updated according to:

6 = arg min£'(b, 6)
o

argmin—>» " b;log N'(r;,0,07) . (2.22)
e i

M-step: a =argmind_, b;r?
a (2.23)

o =argminy_, bi(% +logov2m)

3In the remainder of this thesis we will discuss these refimgmeFor now we keep it as simple as
possible.
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2.4 Robust generative models & robust M-estimation

The reweighted least square optimisation for robust esitmand the EM algorithm
have similarities. Consider the M-step of the line fittinglplem as given by eq. (2.23)
for the line paramete@=a only:

6 = argmind b2 . 2.24
9 Z (2.24)

This part of the M-step is identical to eq. (2.11), which ddéses the parameter esti-
mation step of the re-weighted least square optimisati@ms@er now the definition
of the weights, for both approaches. They are given by the E-step in eq. 2021
the robust generative model. For the robust M-estimatienathights are computed
by eq. (2.12). To relate EM and re-weighted least squaremgdtion, we have to find
the M-estimatop(r), which would be solved by the re-weighted least square dptim
sation given by the E-step in eq. (2.21) and the M-step in284). This M-estimator
turns out to be [32]:

_N(ri:0.0%) ) . (2.25)

plr) = (5)2 +2log (f(r;O,UQ) +C

The form of this M-estimator is shown in fig. (2.4) togethettwiukey’s M-estimator.
Both p-functions have a plateau for large values|«df which is the reason for the
robustness of the M-estimators. Large valueg-pWill have no influence on the pa-
rameter estimation. This behaviour is also shown by theenfte function) (bottom
in fig. 2.4). Its value goes to zero in this domaie, lim |, ¥(r)=0.

By connecting robust M-estimation and robust generativéets) we showed that:
robust M-estimation can be interpreted as a special casealfust generative model
based formulation. More particular, robust estimation asdadl on a specific form
of an M-estimator. Its parametric form as well as the paransetire fixed during
optimisation. Robust generative models specify the pat@gerferm of the inlier and
outlier model. The parameters of these models are part dfgtimisation. If these
parameter are ignore@,g by putting a strong prior on a specific parameter, both
approaches become similar. Table 2.2 shows the similarigyriutshell.

Starting from a generative model for the robust estimatiggacameters has mainly
two advantages. It allows firstly, to include additionalgprknowledge. For instance,
in computer vision we often deal with outliers which are &t correlated. This
knowledge can be incorporated in such a formulation. A lageerimental compar-
ison between robust M-estimation and robust generativeetsdd the presence of
spatially correlated outliers has been done by Franseals[32]. These results show
indeed a significant improvement. The second advantage isdtimation of the in-
lier and outlier distributions. This leads to an automatechmnism to extract outliers
embedded in a varying noise environment.

The main result of this chaptdre., the relation of robust M-estimation with ro-
bust generative models, is the basis to relate our multirgiiereo approach to other
formulations. This relation will be discussed in sectiorsl32 and 4.5.3.
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Figure 2.4:M-estimators: p and+ function for the Tukey (left) and our generative
model based M-estimator (right).
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robust M-estimation robust generative
models
parameters 0=a 0 ={a,o}
optimise@ | argmin}_; p(r;) arg Lna)dog 2 p(y|x=x',0)
free
energy S bir? S b logW—l—(l—bi)log%
F(0,b)
weight computation: E-step:
E-Step b — P (r;) b — N(T,;,O,az)
LTy * 7 N(r;,0,02)+C
parameter update: M-step:
M-step argminy_, b;r? argmaxy_; b; log N (r;,0,02)
2] ]

Table 2.2:Robust M-estimation versus robust generative modelfor the line fitting
problem.
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Global formulation

f f od oonnt telief that ooor model me.g. of dorral errorss &rest, choose an ther
one and ose maximor likelelyod - or Ba esein - methods forémerdodel. What, ef f
oon't belief in the new model either? It takes a e t of stotti@ss t f lood the world
with a host of hather hatithary and pr thtly hardef innergreet models and cliir they
are exactly trde. pht p int of mobost stanestiss is that ongkeap a pararetric
modee hethough the lanner is kn wn to te wrong.

argmax logp(y |y*)p(y*)} of Hampelet al. [42] with
-

p(y*)oc IT iy, v5)
ijeli+1]

In this chapter we propose the first, global formulation. sT¢en be used as an
initialisation of the local formulation which is the subjexf chapter 4.

3.1 Introduction

The development of this multi-view stereo approach is nyantonsequence of con-
sidering two important issues. These diigthe modelling and the spatial correlation
of outliers andii) the interconnection of depth and outlier estimation.

The occlusion problem is often viewed from a geometric pectpe only. How-
ever, more generally, it can be described as an outlier pnobOutliers can be divided
into three types, examples of each of which are present i3 f&3:

e Geometric occlusionshave their origin in thé-D structure of the scene. Most
algorithms, when dealing with occlusions, concentratehisity/pe.

e Accidental objectsare objects, like pedestrians or cars, whose relativeitmtat
in the scene changes while the images are captured. Theexscaof this type
cannot be geometrically described by the movement of thecani geometric
modelling would only be possible by either a segmentatiothefscene into

23
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multiple multi-view stereo probleme,g, one for the background and one for
each moving object [79] (applicable for rigid objects onlgy by tracking the
object by a motion model. Both models require the continoiftiye object over
the cameras, which will not be assumed here.

e Other Violations are violations of the functional dependence of correspond-
ing pixels,e.g violations of the constant brightness assumption. Examate
specular reflections or discretisation errors.

In the presented approach, outliers will explicitely be et and are also referred
to as ‘invisible’ pixels.

The detection of outliers and the estimation of depth angly coupled. When
viewed separately, these introduce a notorious 'chickeregiy’ problem: the knowl-
edge of depth is needed to compute outliers, and outliersiatidentified to compute
a reliable depth. When dealing with many outliers, as fotainse in wide baseline
situations or in scenes with many accidental objects, a awedmodelling will have
advantages or might even be necessary. In their recomnmendat future work,
Kanget al. [57] pointed to exactly this combined modelling, when teaggest:“ One
possible direction for future work would be to take the vildi{pbased optimisation
formulation and to try to devise an algorithm that directlinmmises this function.”
The function they refer to is an energy function of deatid visibilities, which will
be formulated here by defining all possible configurationdegthand visibility as
states of a Markov Random Field (MRF).

Another important point when dealing with outliers is thagy will often appear
over extended areas in the image. Outliers are spatiallgleded and modelling this
improves the result for many vision problems [32]. In ounjailepth-visibility mod-
elling the coherence of outliers together with the cohesaiclepth is straightforward
included. These features form a big advantage over prewouls, where the spatial
correlation of occlusions is often ignored and where depth\asibility are handled
separately.

The MRF formulation described in this chapter does not megaigood initiali-
sation. However, the disadvantage lies in the discretisaif depth. The MRF for-
mulation could therefore be used to provide the necessérglisation for the local
approach described in chapter 4, in which depth is treateccasitinuous value.

The main ideas of this chapter have been published in [10¥hdHition to that
work, the model is extended to allow global colour changasthermore, a sparse
implementation is formulated here, which makes it possiblapply the method to
larger image sizes.

This chapter is organised as follows. After discussing joev work (sec. 3.2)
and describing the problem statement (sec. 3.3), the égislenmulation of the MRF
states is given in section 3.4. This forms the key to the jointlelling of depth and
outliers. The generative image generation model and tlog prodel are discussed
in section 3.5 and 3.6. We continue with the MAP estimati@t(8.7) and its EM
solution (sec. 3.8). We discuss two common approximatiomsthe mean field and
the Bethe approximation. Both will be compared in the experital section 3.10,
after discussing implementation issues. Finally we shaulte on real scenes.
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3.2 Previous work

In this section, the discussion on previous work focuses &FMormulations and
especially on outlier detection in multi-view stereo. A mgeneral review is provided
in section 1.2.

Previous work on outliers in multi-view stereo can be didd®o three categories:

e Explicit geometrical computationsare performed by tracing the lines of sight
from the current depth solution to the input images and yif if there exist
crossings with this solution. Examples are methods using81R8, 56], level-
sets [24, 54, 86], voxel colouring [66] and graph cuts [1143, 4

e Consistency checksare used to detect outliers. Thereby, depth is computed
w.r.t. each input image and outliers are identified by incsinacies in the ex-
tracted depth maps [35, 96, 38, 51, 37]. Similar consisterimgcks are also
used in the computation of optical flow as for instance in [81,02].

e Photometric cuesare widely used. For example, robust kernel methods [50]
use a matching kernel which diminishes the influence of eugixels. Often,
pixel matches below a certain threshold [131, 58, 56, 64iarered alltogether.
Such athreshold disappears in generative model basedlttioms as proposed
by Strecheet al. [103]. An extension of this work also incorporates geoiunetr
cues [37]. Whereas the first category focuses on geometlosions, the sec-
ond and third category can handle all types of outliers.

All of the above algorithms separate the computation offdept visibility. How-
ever, this separation introduces the earlier mentionedtkeim and egg’ problem.
Many algorithms therefore estimate both in turn, which i®asonable approach if
the amount of occlusions or outliers is small. For exampl&anget al. [58, 56], the
starting pointis the estimation of depth under the asswnphiat everything s visible.
Next, visibilities are estimated and depth is re-compukeeping the best-matching
depths from the previous solution fixed. This procedurecisated and progressively
more points are added to the solution.

The spatial correlation of outliers, which we also propasexploit here, has been
modelled as an independent contribution by &aal [51] using geometric cues.

3.3 Problem statement

We are givenk imagesy”, k € [1, ..., K], which are taken with a set of cameras of
which we know the internal and external calibrations. Eaunhge consists of a set
of pixel values over a rectangular lattice and will be dedatsy” = {y¥}, wherei
indexes the nodes of the lattice. The objective is to comihegelepth of the scene in
such a way that the information of all images contributed&ofinal solution. Depth
is computed w.r.t. a particular camera. This could be ond@tameras from which
the input images are taken, but it could equally well hérual camera representing
a view point not available in the set of input images. The @ihptical) noise-free
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image that can be observed from this camera is referred teeddegalimage and will

be denoted ag* = {y;}. The multi-view stereo problem now consists of computing
those depth values which map the pixgl=f the ideal image onto similarly coloured
pixelsy% in all input imagesand the visibilities that indicate for which input images
this mapping can be establishkd

3.4 Markov Random Field states

Associated with the ideal image* is a hidden Markov Random Field (MREK) =
{z;}. Again, the index labels the nodes of the MRF lattice, which coincide with
the pixel centres of the ideal image. This random field represthe unobservable
state of each node. Traditionally, the state of a node cporags to its depth-value.
Suppose depth is discretised intblevels, then each element is defined to be a
binary randomi-vector,i.e., z; = [z} ... 27 ...z 5], of which exactly one element is
1 and all others ar@. The index of this element indicates the depth-valuef the
pixel.

In this work, the state of a pixel is considered to be a contlinaof its depth
value and its visibility configuration. The visibility cogfiration specifies in which of
the K input images the'” pixel is visible. In principle, the total number of visilifi
configurations i2%. However, certain configurations, in which the pixel is bisi
in less than a pre-defined number of images, might be negfedtet S denote the
number of visibility configurations under consideratiorddat s be an index over
these configurations. Then th# configuration of the!” pixel can be represented by
a binary K -vectorv; = [vs! ... vfk ... v#K], in which each element signals whether
or not the pixel is visible in the respective image. As an epd@nconsider the case
of three images’*, k = 1,2,3. There are8 possible visibility configurations; for
every pixely;! in the ideal image. These configurations are shown in talilel8 this

L (ol of o of o) of o] o |
yir]1 1 1 1 0 0 0 0
y2|l1 1 0 0 1 1 0 0
y>l1 0 1 0o 1 0 1 0

Table 3.1:Visibility configurations: All possible visibility configurations for three
images.

table, the visibility configuration?, for instance, represents the situation in which
pixeli is visible in imagey' andy? but not in imagey>.

The state of a pixel is a combination of its discrete depthitmdsibility config-
uration, and the number of possible stated/is= RS. The state of theé'" pixel is

1Given the camera calibrations and the depth, it is easy tqpaterthe toy; corresponding location in
the other images (see appendix A)

2For instance, if a pixel is only visible in only one image, thea-liklihood disappears and the state is
only defined by the correlation with its neighbours.
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therefore represented by the binav-vectorz; = [z} ...z ... 2], of which ex-

(2

actly one elementis one. In this thesis, we used two diffaretations to describe the
stater;. These are:

1. Superscriptsn, n are used to indicate the!” or n'* entry 2™ or 2 of the
vectorz;, regardless the meaning (depth or visibility configuratimftihat entry.

2. Double superscripts are used to indicate a specific depthviaibility configu-
ration:

(a) Superscripts andp are used for the or p'" depth state

(b) Superscripts andq are used for the or ¢*" visibility configuration

The stater]® is the one with deptid” and visibility configuration®.

[1,1,1]
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Figure 3.1:Example of the MRF states:Possible states for a nodg, when consid-
ering 10 depth states and visibility configurations ir3 images.

The conversion between single and double indexing is giyen b- (r — 1)S+s.
An example forM = 40 statesj.e., R = 10 depth states and = 4 visibility
configurations for three images, is shown in fig 3.1.
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Histogram distribution

b

Figure 3.2:Image generation: Top: Image formation for the inlier process. The
pixels ofy!2:34 are generated by adding noise to the geometric and photdnetr
warp ofy*. The geometric warp is restricted to thie possible depth values of the
random field. Bottom: Image formation for the outlier modall pixels ofy!:2:34
which are not visible iny* are generated by sampling a histogram distribution. Note
that in this case the ideal image' coincides with the first input image'.

3.5 Generative imaging model

We take a generative model based approach for solving thig-wielv stereo problem.
In this, the inputimages are considered to be generatedlHreine of two processes:

e Inlier process:This process generates the pixgfiswhich are visible iny* and
which obey the constant brightness assumption up to a gtatbalir transfor-
mationC (py,), which can be different for each input imagé.

e Outlier processThis process generates all other pixels.
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Both processes are schematically drawn in fig. 3.2.
The inlier process is modelled as:

Yoy =C 7 (PM) oy +e, (3.1)

wheree is image noise which is assumed to be normally distributetl mero mean
and covarianc&. C~!(p*) models the global colour transformatiobetween the

kth input imagey” and the ideal imagg*, i.e., it transforms the colour of thg' to

the colour of the corresponding observed pixel in Meinput image depending on
the parameter vectgs*. Since the input images are captured from different camera
positions, the pixel will map, depending on the depth and the camera parameaters, t
pixel position:’(r).

The outlier process is modelled as a random generator, segigim & unknown
distributions characterised by probability density fuoes (PDFs)g*. These PDFs
are approximated as histograms and are parametrised bistbgram entrieh” 4.

We are now in a position to describe the probabilistic modehbre detail. Let
f(.;u, ) denote a normal PDF with meanand covarianc&, and letg(.; h*) be
the outlier distribution associated with t#é"* image. Furthermore, let’* be the
element of the state vectat which is1 and Ietyf,(r) be the pixel in thek*" image
onto whichy is mapped. The mappin{(r) — i depends on the depiti associated
with the depth state of z7*. Then the probability of observingf;, conditioned on
the unknown#® = {y*, ¥, h* p*} and the state of the MRk is given by:

K | fe@) oyl D) i vt =1
p(y”””x’e)_{g(yi’?m;h’“) fook_g (- G2

The inlier model is selected whet* = 1, i.e., when the pixel (being in stater’* = 1)
is visible in the K input image. In that case, the geometric mapping depends.on
And the outlier model is valid if;* =0.

3.6 Prior models
3.6.1 Gibbs MRF-prior

The MRFx represents the unobservable state of each pixel in the idegey™,
where the state of a pixel is a combination of its discretetdapd its visibility con-
figuration. The prior distributiop(x) is a Gibbs distribution which factorises over
the cliques of the graph. LéY; represent d-neighbourhood of th&” node,i.e., N;

is the set of indices of the nodes directly above, below,datt right of thei*” node.
The Gibbs prior is given by:

p(X) = %H H L/Jij(xi,xj) s (33)

i jEN;

3In order to simplify the notation further on, the colour wérmation is defined here by the inverse
transformationC ! (p”*)

4If the histogram would have only one bin, the outlier processates measurements according to a
uniform distribution. In this case the outlier process vdbatssumed to be known.
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where Z is a normalisation constant (the ‘partition function’) angd (z;,z;) is a
positive valued function that returns the probability obtmodes and; being in state
x; andz;. As such, it embodies the prior beliefs about the random §gldothness.

For the parameterisation of the random field as given in $e4),(the interaction
potential should consider both the depths and the vigihdlitnfigurations of neigh-
bouring nodes. Suppose nodés in thers*" state and has discrete deptfi and
visibility configurationv?. Furthermore, suppose noglés in thepg!” state and has
discrete deptld}’ and visibility configuration;;?. The distance;; (r, p) between two
depth labels, p of neighbouring nodesand; is defined by thd.1 norm:

[r—p]
D;i(r,p) = —— . 3.4
i(r,p) R (3.4)
The norm is scaled by the total number of depth laliete be invariant to the depth
resolution. Since the discrete depth valdésare sampled uniformly on an inverse
depth scale, this choice leads to a smooth disparity, rétla@ra smooth depth.
The distanceD;; (s, ¢) between two visibility configurations ¢ is defined as the
number of dissimilar entries of’ andv;?, ie.:
K sk qk
ot —od* |
D;; — M .

k=1

Furthermore we introduce a const@htvhich accounts for non-smooth cliques inter-
actions. The interaction potential has the following form:

Yij(a;®, 2) = exp (—oaDyj(r,p) — 0, Dij(s,q)) + C', (3.6)

wherec,; ando,, model the width of the depth and visibility distributionshéh filled
with all possible combinationg-, s} and{p, ¢}, ¢; («}*, «%*) forms a matrix, which
is called interaction, compatibility or correlation matrFig. 3.3 shows two examples
of the interactionyy ; (z9°, qu) for four visibility states as in fig. 3.1. One can see
the exponential decay of the interaction between sttend the states with the same
visibility configuration but different depths?0 (peaks every four states in both plots).
The right figure shows a different interaction between statiethe same depth but
different visibility configurations:?° andz??. In the left figure, this interaction is the
same for all visibility configurations. This will realise correlated visibilities, since
this particular prior does not care which visibility configtion contributes to a certain
depth state.

The prior distribution in eq. (3.3) has multiple maxima, atnioccur when all
nodes share the same staqy the state of a certain depth. This implies a preference
for fronto parallel depth planes in the image. To model gdmir curved surfaces, one
has to consider the interaction of at least three nodes osumethe slant from a local
compatibility matrix [69].

The specific form of the interaction matrix can be derivedfiagenerative model
(similar to (3.2)) of depth and visibility under a Laplaciaaise distribution and with
outlier probabilityC [32]. It has also strong similarities to the interactiondibg Jian

et al. [50].
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Figure 3.3:MRF Prior: The unnormalised interaction magnitudéjm for the first
statex} with all other states]" is shown for the case of four visibility configurations
as in example fig. 3.1. The situation with uncorrelated Vigjbconfigurations is
shown left §; = 10,0, = 0,C = 0.1) and the correlated case on the right (=
10,0,=10,C'=0.1)

Anisotropic correlations can be introduced by defining thieriaction potential
ed. (3.6) locally for each Iinl{xfs,qu}, which would be very memory expensive.
Therefore, we model anisotropic correlations by defining tateraction potentials:
one for continuous and one for discontinuous links. Theed#fice between both
potentials is the value af, which is set taC' = C; or C' = C for the two cases. See

section 3.10.4 for more details.

3.6.2 Parameter priors

Often, it is possible to formulate inference problems withjariors on parameters. In
this case, one would implicitly assume a uniform prior ovese. This point of view
is justified by the large amount of observed data which isnofteailable and which
would then overrule the prior to a large extent.

However, prior knowledge on the parameters has advantdgmssider the case
of the inference problem given by the generative model if&@&). Imagine further
a MRF solution of a constant depthand without any outliers. This solution would
have the maximal support by the MRF Gibbs prior describeténprevious section.
What would be the consequence for the parametér&? The ideal image™ is
in this case the average of all input images, transformedbyptanar homography
related tad, and the image noise will be large. This solution could, dejieg on the
observed data, have a high probability if there would be ir pn the expected noise
level. By putting priors on such parameters, this solutidihbve made less probable,
e.g, by assuming that the image noise is small or that the ideadje should be close
to the input image which shares the ideal image camera positi ~ y'.

Parameter priors can be introduced in various ways. Thefgpelass of conju-
gate priors has the advantage that their functional forngisvalent to the form of
the likelihood, which is at the same time their definitiong($@elmanet al. [39] for
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more information). To achieve this, one can introduce gamwledge by considering
additional fake observations that reflect the prior bellefwt the parameters. Lét
andy ={y1 ...y~ } denote the parameters antlobserved data points, respectively.
Let furthery; = {yn+1...ynm} be the additional fake observations. Then one can
write the joint PDFp(y, 0) as

M
py1---yn,0) ~p(@)p(y|0) = prZIG Hp(yi|9)~ 3.7)

Indeed, the joint distribution over prior and likelihoodds/en by the form of the
likelihood alone. If the introduced fake data satisfigs=yny.1=...=yax, One can
specify the amount of fake data by the fractiof the observed data:

p(y1 -y, 0) ~ p(yo|0)” Hp (yi10) . (3.8)

For the multi-view stereo problem, a prior on the parametetgd be introduced by
adding extra measurements consisting of the input ingdg@&his possibility can only
be used when the reconstructiomist made w.r.t. to a pure virtual camera. Remember,
in this casey; coincides with the ideal image camera position and has nmgé& or
photometric transformation with the ideal image. Simitaeg. (3.2), one can define
the prior to be:

Py 2) = (Y59, %) - (3.9)
The impact on the MAP estimate can be far-reaching. Obwpttstre will be more
evidence that the ideal image is similar to the input imagg!. Furthermore, one
would expect a decrease of the estimated image noise, sim@measurements exist
which are close tg'' and, because of the first result, also closg'toA small value of
¥ then again will have an impact on the outlier estimation: engixels will be made
invisible.

In conclusion, the conjugate prior in the form of eq. (3.9 tiee advantage that the
corresponding MAP formulation is equivalent to the ML saut(with the additional
fake data). On the other hand, the value of the relative inflag,, might have a
strong impact and should be adjusted with care. We will estalthe impact of, on
the solution in section 3.10.3.

3.7 MAP-estimation

We are now facing the hard problem of estimating the unknowantjties. Letd =
{y*, X, h* p*} denote all parameters, and jet= {y*} denote all input data. The
MAP estimate of the unknowns is given by:

Orap = argema>{ log p(y |0)p(6) }

= argmax log > ply|x,0)p(x)p(0) } (3.10)
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where the random field is assumed to be independent frémNote, that we consider
p(0) to be a conjugate prior.e. the MAP estimate can be written as an ML estimate
by adding the fake measurements to the likelihpgg | ) and settingp(6) = 1.
Conditioned on the state of the hidden variabte¢he data-likelihood factorises as a
product over all individual pixel likelihoods:

I TIrwE =:.0)
7 k
[TIIIIpGe a0y (3.11)

ik

Q

p(y[x,6)

In the product ovem, only the factor for which:]* =1 survives. Notice that the data-
likelihood factorisation is only approximately correcgdause in general pixelg in
the ideal image will not map onto integral positions in thetihimages/*. Depending
on the relative positions and orientations of the camehés will lead to over usage
or under usage of the pixelg’. Each binary index:" corresponds to a particular
discrete depth valué;” and visibility configuration? = [vf! ... vs% ... v:K]. Based
on these visibility values, the pixel-likelihood in the highand side of eq. (3.11) can
be further expanded as:

1—v3F

i

ot 07,0 = [FCw obinr. D] [otins] T @)

We have now specified all terms of the data-likelihgdg | x,0). However,
the sum)__ in the right hand side of eq. (3.10) ranges over all possibleigu-
rations of the random fielet. Even for modest sized images, the total number of
configurations ok is huge: hence, direct optimisation of the log-likelihosdhfeasi-
ble. The Expectation-Maximisation (EM) algorithm offers@ution to this problem,
essentially by replacing the logarithm of a large sum by tkgeetation of the log-
likelihood.

3.8 EM-algorithm

It was shown by Neal and Hinton [75] that the EM algorithm [L8}nh be viewed
in terms of the minimisation of the ‘variational free enérgy similar as a lower
bound maximisation [75, 73, 18]. The key idea is to constatcial distributionb(x)
and minimise the Kullback-Leibler divergence (variatibfinee energy, negative lower
bound) betweeh(x) andp(y, x|0). More details are given in appendices B and C.
The EM algorithm is known to be sensitive to the initialisati The reason lies
in the possible presence of local minima in the likelihooddiion. To overcome this
problem Ueda and Nakano [112] proposed the deterministiealing EM algorithm
(DAEM) which performs EM iterations at a series of temperest’. Starting from a
high, initial value the temperature is decreased after EAtistep until its final value.
The solution of this algorithm is much less dependent on iit@lisation, as long
as the starting temperature is chosen high enough, suclotztminima disappear.
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Unlike simulated annealing [62, 40] where a stochasticcdea performed on the
likelihood function, the DAEM algorithm performs a detemstic optimisation at
each temperature.

Taking the temperature into account, the variational fresgy is given b¥:

_ b(x)
F(b(x),0) = sz: b(x) log oy x|V (3.13)
Starting from an initial parameter gue@@, the EM algorithm generates a sequence
of parameter estimate®®) and distribution estimategx)®) by alternating the fol-
lowing two steps:

E-step Setb(x)® to thatb(x) which minimisesF'(b(x), 8*)).
M-step Set§(*+1) to that which minimisesF (b(x)®, )

These steps are incorporated into a temperature annealiegne when the DAEM
algorithm is applied. All equations are therefore givenhwigmperaturd’. Often,
however, this is not done and the temperature is assumeddodyénstead.

3.8.1 E-step

On the(t + 1)*" iteration, the conditional expectation of the completeliglihood
w.r.t. the posteriop(x | y, )/ is computed in the E-step. Two approximations
are considered: the mean field and the Bethe approximate&mapendix C for more
details.

Mean Field approximation

In the mean field approximatiop(x|y, 8(*)) is approximated by a distributidr{x)
which fully factorises over the nodes of the lattice:

b(x) = Hbi(l'i) : (3.14)

whereb;(z;) is a distribution over thél/ possible states; of the i" node. It is
specified by anV/-vector of one-node belief@? ... b ... bM], in which b is the
probability that nodé is in statem, i.e.,

Let ¢]7" denote the value of the interactian; (z;, «;) when nodes and; are in
them!" andn'” state, respectively. Then the mean field free endtgy- is, up to a

5This form is used in physics and has the correct dimension.
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constant, given by:

Fyr = —Zzzbi”‘logp(yff'lxinﬁ)
i k. m
XY sty

i jEN; m,n

+TY > b log b (3.16)

The first two terms of; » correspond to the expected value of the log-likelihood
(the so-called Q-function), and the last term is the negativtropy ofx underb(x)
multiplied by the temperature T.

In the E-step, the free energy is minimised w.r.t. the distion b(x), where
we use the current estimat@§’) for 8. This is achieved by setting the derivatives
OFyr /ObT to zero, and leads to the update equations:

m 1 n 1 2)
b « exp (? Z ij' log Yumn + T Zlogp(yf; |2;,00) — 1) . (317
JEN; n k

After these updates, the beliefs are renormalised as tb thefinormalisation condi-
tion)" b7 =1.

Bethe approximation

Alternatively, in the Bethe approximatiop(x |y, (")) is approximated by a distribu-
tion b(x) which factorises as follows [124]:

Hij bij (i, x5)
" o

Here,n; is the number of neighbouring nodes. Angl(x;, =) is the joint distribution
over the states of neighbouring nodes. It is specified bylé\/ -matrix of two-node
beliefsb;;", which specify the probability that nodes in statern and nodej is in
staten:

(3.18)

b:?n = bij(xi =m,r; = TL) . (319)
The Bethe approximation states that the free energy, asctidarof the one-node and
two-node beliefs, can be approximated by the following @egendix C.3 for more

details):
Fp o~ =Y % b"logp(y) |}, 0)
[ kE m
=2 2 D it loguyy”

i jEN; m,n

T3 (g~ 1) b log b
+TY NS bt log b (3.20)

i jEN; m,n
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Again, the first two terms aof 5 correspond to the expected value of the log-likelihood,
and the last two terms specify the negative entropy(gj. The Bethe free energy is
exact for graphs without loops as shown in appendix C.3. Faplgs with loops,
considered here, it is an approximation of the true freeg@nédfdowever, it has been
experimentally shown to be a good one [118, 120].

The most popular algorithm to estimate the margibgls;) andb;; (x;, z;) is the
belief propagation algorithm, introduced by Pearl [80] mihimises the Bethe free
energy w.r.th; andb;; as shown by Yedidiat al. [124, 45].

Atthe end of the E-step, for each naidee can compute the depth and visibility
VE w.rt. thek!™ image by their expected values:

D = Y bd;
VE = > bk (3.21)
The actual depth and visibility of a pixel is thus not binary.

3.8.2 M-step

The M-step is the same for both free energy approximatioesaiise the parameters
only appear in the identical terms &f,;» and Fz, i.e. those which correspond to
the expected value of the log-likelihood. The free enefgis optimised w.r.t. the
parameter® by setting each parametérto the appropriate root of the derivative
equation:

aF/ag =0.
The update equations for the ideal image, the noise covaiand the colour trans-
formations are:

. > VC(pY) oyl
o SV
s _ ik Vi CE) oyr —y)(CP*) oy —yi)”
iy Vi
C")Y ViEwH)" = Y Vi )", (3.22)

where V¥ are the expected visibilities computed according to e@1(3. The result
for the ideal image;” and the noise valu& are compatible to our intuition. They
are computed by a weighted average of the input images foidéad image, and
the weighted average of all covariances for the noise. Theucdransformations
C* can be obtained by solving the last equation in (3.22) in #ast square sense.
Furthermore, the histogram entries of the outlier distitns ¢(.; h*) are updated as
follows. Suppose the colour space is discretised ftbins,i.e., h* = {hF},b €
[1...B]. The minimisation o w.r.t. the histogram entrigg’ results in:

hi o > (L=VE)du(yh) (3.23)

(2
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whered, (y%) is an indicator function which evaluates tdf the pixel value falls in
the b*" bin and evaluates to otherwise. The histogram is normalised such that all
entries sum to the inverse bin volume:

B
b= _— 3.24
zb: b= 2564 (3.24)

where d is the dimensionality of;, i.e. d = 1, 3 for gray and colour images respec-
tively. If the bins are not discretised3(= 256%) this sum is one. In the other limit
(B = 1) the outlier distribution becomes uniform (hence indegendny’) with
1/256¢ as the probability of a pixel being invisible. To put it diféatly, h* is a his-
togram of thek'" input image, where the datg, are weighted by their probability
of being not visible. The E and M-step are alternated unélrétlative change of the
parameterg falls below a pre-specified threshold.

3.9 Implementation

3.9.1 Choice of the MRF-states

The number of MRF states can be very large especially wheg usany images with
high resolution. The algorithm has therefore practicaitiwions which are set by the
memory and speed capacity of the computing equipment. Tcore this problem
a sparse implementation is introduced in section (3.9.2weVer, prior knowledge
about the scene can be used to neglect impossible or vekelynditates.

li'(d")—i (&)

g

A\

Figure 3.4:Number of depth states: The number of depth state can be computed
such that the depth discretisation corresponds to matcWitiya x pixel precision.
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Depth states

The minimal and maximal depth value w.r.t. the referenceeraris usually approxi-
mately known from the sparse set3D points which are provided by the calibration
pipeline [82]. The distribution of depth valug®', which are related to the depth states
2™, is assumed to have the fortid™. More depth values will be considered close
to the camera and less further away. This sampling is apmatiiely equivalent to a
uniform sampling of the disparities. Suppose we want to muaiith pixel precision,
then we can choose the number of depth states such that pgasipn is achieved,
i.e. when the distance betweéitd™) andi’(d™*!) is less that one (see fig. 3.4). We
compute the number of depth states such that the mean dsptbtiiation of the cen-
tral pixel corresponds to a distangé(d™) — i/(d™*1) | of a times one pixel in the
worst camera. In all experiments we choose 2.

Visibility configurations

In the presented experiments, not all possible visibilagfigurations are considered,
since some of them are very unlikely to be present in the dasmsider the case of
three images’” in which there are8 possible visibility configurations? for every
pixel y! in the ideal image. These configurations are shown in tab®).(Bepending

| [od of o of Tof ] o) o] of |
yir]1 1 1 1 0 0 0 0
y2[1 1 0 0o 1 1 0 0
y>[1 0 1 0 1 0 1 0

Table 3.2:Possible visibility configurations for three images.

on the application, we can distinguish between two scesalfibe first scenario is the
most general one. The reference camera is one of the inpetrearand there might be
independently moving objects in the scene or the referemoera is a virtual camera.
These two situations imply that one cannot assume thatxalgy; from the ideal
image are simultaneously visible in one of the input imagfesTo be able to assign
a meaningful depth and colour to an ideal image pixelit must be visible in at
least two images. Therefore, we only consider the visjbdibnfigurations given by
s =1{1,2,3,5}. By using these configurations, it is possible to removepedeently
moving objects from the scene and still compute a depth \atltizese outlier pixels.

In the second scenario, the reference camera is one of tnedameras, say!,
and if there are independently moving objects in the sceeg dne not visible from
the reference camera. In this particular case, all pixglare by definition visible in
y! (the geometrical transformation betweghandy' is the identity transformation),
which puts stronger constraints on the possible soluti®hs.possible visibility con-
figurationsv; are given bys = {1, 2, 3,4}. In this case, we are now able to explicitly
identify the regions for which no depth estimation is pokes{b=4).
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3.9.2 Sparsification

This section will discuss sparse approximations to therélyn described so far. It
can be seen as an attempt to formulate a practical algonitimich can be applied to
large images with many depth states.

Mean Field update

The mean field update equation (3.17) involves the commutally expensive multi-
plication of the log interaction matrixg ¢ with the neighbouring beliefls;. Because
of the special structure dbg 1 one can sparsify this matrix multiplication to speed
up the computation. Depending on the parametgrs,, andC' a different amount
of entries inlog ¢ will have approximatively the same value. One can theredmre
proximatelog ¢» as a sum of a sparse mattix; ¢» and a constant matrix with entries
c
log ) ~ log v + I . (3.25)

After subtracting-I from log ¢, one could keep only those elementddg +, which
are larger than a fraction of its maximal value. In all expents,10~° is used for
that fraction.

By using this, théog mean field update equation (4.15) becomes:

logb}" %( > b l0gd e >0 Db+ logp(yl |4, 01)) -1

JEN: 7 JEN; n k
1 7 Tmn . A
- f( > D bilogd +Zlogp(yf,|xi,0<t>)), (3.26)
JEN; n k

where in the last line the normalisation conditidn, b} = 1 was used and where
all additional constants dissappear because of the finatalation ofb;. Note that
the matrix product includes only the summation over thetegssparse entries of
10g ¢TIL7L.

After each EM iteration, the beliets themselves are also sparsifiee,, all ele-
ments are neglected which are smaller than a fracfioof the maximal value. As a
consequence, a speed improvement is achieved for the mé&hogateand for the
M-step, since for the latter only likelihoods have to be coteg that are currently
active. The quality of the results and the computational assa function off, will
be evaluated in section (3.10.1).

Bethe update

For the Bethe approximation the belief propagation alparif80] is used. Similar to
the mean field case, the compatibility matrixas well as the beliefs; are sparsified.
Furthermore, all messages;_.; which point to node have the same sparsification
asb;. The message update becomes:

my" =™ [ mi (3.27)
1#i
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with the temperature corrected terms:
G — C+Z( mn)
o = Hp B 0T (3.28)
Here,c is the truncation value af.

3.9.3 EM, initialisation and cooling schedule

15 20

iteration

Figure 3.5:Cooling schedule:Temperature decreasing for different parametgys

The EM algorithm is initialised with the following value§) a large noise mag-
nitude with a diagonal covariance matxwhose values are = 100, (ii) all colour
transformations are set to the identity transformat{oin, and the expected values of
the MRFb; are equal and normalised. For the ideal image we distingugsiveen
two cases: For a virtual camera or if the reference imageatmsbutliers we compute

p(yk |z, 6(=9)) with a value ofy; that is given by the mean of those input images
wh|ch are described as visible by the statand which are interpolated and the depth
value related to stater. In the other case (the reference image is one of the input
cameras and has no outliers) the ideal image is set to therefeimagey* =y')),

With this initialisation, the E-step is performed first. Tbenvergence for the E-
step is assumed to be reached when the mean change of & b§liis smaller than
1076

Beginning with their maximal valué& = Ty, the temperature is decreased after
each EM-iteratiom until the end valu€’, is reached at iteration,,. The form of this
decrease depends on the paraméfeasnd follows the form:

T

T(n) = m7

(3.29)
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wheren = 0...n, is the index of the EM iteration and where the constars
chosen such th&(n,,) = T.. Fig. 3.5 shows the temperature decrease ffora- 10
to T, = 0.1 for 20 iterations and for differerif,;. The whole algorithm is graphically

setl' = T

until convergence:
E-step: mean field eq. (3.26) or Bethe eq. (3.27)

M-Step eq. (3.22)

decreas€é’ eq. (3.29)
(sparsify)

Table 3.3:Outline of the algorithm.

depicted in fig. 3.3.

3.10 Experiments

First, the cooling schedule is evaluated on synthetic gidwith data. In a second
part the mean field and the Bethe approximation will be coexgbéor different MRF
Gibbs prior models on synthetic and real ground truth scelRieslly, results on real
scenes are presented.

The synthetic ground truth evaluation is performed udid@rtificial test sets of
four multi-view stereo images. The test sets are generabed & random sample of
the face model used in Fransens, Strecha and Van Gool [39hwpitanar background.
This 3-D scene is observed by four cameras. Their position andtatien in space is
randomly sampled around a value from which the face can berebd. Furthermore,
a random colour transformation has been applied to eachemBgch sequence has
further been corrupted with random Gaussian noise. Figsi8@/s an example of the
above generative model for one test set. In the right-mottexfe images one can see
the behaviour of the image generation when the colour toamsiftion or the image
noise lead to colour values outside the valid RGB range-=ef|0 . . . 255]: The colour
values are assigned to be modakb, i.e., ¢ «— ¢ mod255. This rather unnatural
process leads to the spots in the background. These shodket&éeted as outliers by
the algorithm, because it works with an unlimited colourgan

For all experiments, the first image camera position is usetha ideal image
camera position (leftimage in fig. 3.6). Seven visibilitynigurations are considered,
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Figure 3.6:Synthetic ground truth sequence:One of thel 0 evaluation sets is shown.

i.e., pixels are assumed to be visible in at least two images endlaays visible in
y! (the image which coincides with the ideal imag®. The amount of depth states
varies dependent on the camera configuration and lies betiee 43...53. The
image size i950 x 200 pixel?.

Influence of colour transformation

Figures 3.7 and 3.8 show the results for the scene in fig. 3th, amd without the
estimation of the colour transformati@zi* for each image. The images in fig. 3.7
show the results with colour transformation update. Depih\sibilities are nicely
estimated. Note the spots in the background of the righttimpsit image in fig. 3.6.
These spots are indeed assigned to be outliers, as can béngbentop-right visi-
bility map of fig 3.7. The bottom row of those images shows theal image (left
image). The three right images are the input images (thgte inages in fig (3.6).
These images have been warped to the reference image bydheetye (depth de-
pendent) transformation. Furthermore their colour vahese been photometrically
transformed by the estimated colour transformation. Tretgrhetric warp displays
visually a good estimation of the colour transformation.

The result for the model without colour transformationsrisggnted by the images
in the fig. 3.8. In this case, the fourth input image has egslnho influence on the
depth estimation. Almost all pixels have been turned inttiens and the depth is
found by input images, which are more similar in terms ofithelour transformation.
Given a generative model without colour transformatioesthresults represent the
most likely solution.

3.10.1 Cooling schedule

The last experiment shows the importance of estimatingucatansformations which
can be present (for instance by cameras with automaticlapeathd/ or shutter time
adjustment) in the images. Local minima of the likelihooddtion are especially
problematic in these situations. Therefore, a deterniréstnealing schedule is used.
The dependence of the solution on the starting temperang ¢he form of their de-
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algorithm | 7, T. T; nn, | oq oy C fs
Bethe 100 0.5 35 20100 1 10719 | 10~10

Figure 3.7:Importance of the colour transformation: Results of the example in
fig. 3.6 when a colour transformation is estimated. Both ltssare shown in eight
images. These are: the expected value of depth (top-ledtysibility (top-right im-
ages), the ideal image (bottom-left) and the geometricatly photometrically trans-
formed input images (red pixels are outliers; green pixats pixels for which the
geometric transformation falls outside the image).

crease is evaluated in this section. Fig. 3.9 and fig. 3.1® she typical evolution for
the expected values of the MRF (depth and visibility as if8@1)) and the value of
the parameterss, C(p*)) during temperature annealing.

Starting from uniform belief$; the first EM iterations at high temperature (left
column in fig. 3.9) lead to a fuzzy depth map. Almost all visipiexpectations are
undecided about their value (indicated by gray colour \@lu®nly some real occlu-
sions already have a lower expected value. Because of thg tlepth estimate and
the wrong estimate of the colour transformation, the nasegh. In this temperature
regime, the ideal image contains artefacts from the spdtsediourth input image.

During the next iterations, all parameters (the n@sand the colour transforma-
tions for each target image'2 as shown in fig. 3.10) and the MRF expectations
evolve slowly to the global solution. This example showsglly that the EM algo-
rithm, which is traditionally strongly dependent on thdialisation, can be made less
dependent by the deterministic annealing technique used he

We continue with the quantitative evaluation on the whost set.
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algorithm | 7y, T. T; nn, | o4 0y C fs
Bethe 100 0.5 35 201|100 1 10710 | 10710

Figure 3.8:Importance of the colour transformation: Results of the example in
fig. 3.6 when a colour transformation st estimated. Both results are shown in
eight images. These are: the expected value of depth (fopated visibility (top-
rightimages), the ideal image (bottom-left) and the geoicedty and photometrically
transformed input images (red pixels are outliers; greetefs are pixels for which the
geometric transformation falls outside the image).

Start temperature and decay rate

Fig. 3.11 shows the quantitative results for the whole testa different start tem-
peratured’s and three different decay rat@g, both for the mean field and the Bethe
approximation. The quality is, similar to Scharsteiral [98], measured by the per-
centage of correspondences from the reference image targéttimages for which
the displacement (disparity) error falls below one pixéiisivalue is evaluated for all
correspondences which can be established (bearing in nozidsions).

As a global trend, one can recognise a plateau at high giadmperaturd’; ~
{10...} as long as the decay velocity is Idly; > 2. The quality of the results
gets worse by lowerin@’;. The behaviour is similar for both, the Bethe and mean
field approximation. This result suggests a sufficient hightsemperatur€ei(; > 10)
together with a slow coolindi(; > 2). Furthermore, one can appreciate the impor-
tance of the deterministic temperarture annealing EM (DABbheme compared to
the classical EM. The starting temperaturelpf= 1 (which would be the realisation
of EM) does not give the optimal results. The initialisatiespecially of the colour
transformation, is in this case not good enough to find théajloptimum of the
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algorithm | 7, T. T; n, | o4 o0y C fs
Bethe 100 05 2 201|100 1 1019 ] 10°10

Figure 3.9: Evolution of the solution during EM cooling: The expected
values of depth (top row), the visibility with respect to tlieree non-
reference imagesy?3* (three middle rows) and ideal image (bottom row)
for EM iteration {1,3,6,9,12,15,18} and corresponding temperaturéf =
{100, 32.97,9.96, 4.09, 2.01,1.12,0.67} for the scene in fig. 3.6. The result after the
last iteration €0) with 7" = 0.5 is shown in fig. 3.7.

posterior distribution.

Influence of the end temperature

For this experiment, the start temperatlie = 100 and the decay raté; = 3.5
has been fixed and the influence on the end temperdtuieevaluated. The results
are shown in fig. 3.12. From the theoretical point of view, ameild expect an in-
crease in performance by lowering the temperature untitthieal temperaturei,e.
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Figure 3.10:Evolution of the parameters during EM cooling: top/left: image noise
¥, top/right: entropysS, bottom/left: colour scale, bottom/right: colour offs€olour
scalepf and offsep® are shown for the transformation from the reference imagglto
three target images. Horizontal lines indicate therebydhmund truth. The images in
fig. 3.9 have been evaluated.

the temperature where the system shows a phase transitiba gtate of order (see
appendix C.1 for more explanation and a temperature sironlaf our prior model).
When this critical temperature is reached, the solutiomagen and the results are
expected to build an error plateau.

The plots in fig. 3.12 show the expected behaviour in the reghperature phase.
However, a small increase of the error in the low tempergibese for both the mean
field and the Bethe approximation can be observed. The rdastis is twofold. In
the low temperature phase the likelihood and the prior isghaeaked about a single
state. This means that the beliéfsvill also be peaked about a single staté and that
the expected values of the depth and visibility are veryectoghe depth and visibility
values, when estimated from the state of maximal probgbilibis behaviour shows
to some extent the limitations of MRF stereo approachesy @ksume that the state
of a pixel can be described bydiscretiseddepth valued;,. Obviously, depth is a
continuouwalue for which the generative model as defined in chaptembie suited.
MRF approaches therefore lead to discretisation errores@ban be minimised when
the temperature decrease is stopped just below the ctiéicglerature and when the
depth is extracted by the expected value, rather than by thénmum value of the
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Figure 3.11:Evaluation of start temperature and temperature decreasePercent-
age of pixels with a disparity error larger than one for ditfat start temperatures
and three temperature decay coefficiefijs= {0.5, 2.0, 3.5}, for the Bethe approxi-
mation (left) and the mean field approximation (right).
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Figure 3.12:Evaluation of the end temperature: Percentage of pixels with a dispar-
ity error larger than one for different end temperaturEs for the Bethe approxima-
tion (left) and the mean field approximation (righf);(= 100, T; = 3.5).

MRF states. Note that this is the reason why graph cuts [Elless suited, since they
only compute the maximum value of the MRF states.

Influence of the sparsification threshold

After each EM-iteration the expected valugx;) of the MRFz; is computed. All
statesn of z; for whichb?* is smaller tharf,max(b") are neglected from all further
computations. Fig. 3.13 shows the quality of the solutiod #re corresponding ex-
ecution time as a function of the threshgld Up to f, = 1076 the results remain
similar, but the execution time is almost halved at this poiime right plot also shows
that the Bethe approximation is about three times slower the mean field update.



48 Chapter 3. Global formulation

30 = ‘ ‘ ; 700 ‘ ‘ ‘
- 257 3 o0 Jf Jf Jf %
A 2 |
5 207 mean field —+— 2 500 % >1< %
5 i Bethe —x— i 400 - %
z =}
£ S 300 1
glo%HHHH}E oo PR f
A £ S
sk kR RO x A S 100 | mean field —+— oo
0 0 Bethe —x— ‘
-20 15 10 -5 20 -15 -10 5
Sparsificatiorog,, fs Sparsificatioriog, fs

Figure 3.13:Evaluation of the sparsification: Percentage of pixels with a disparity
error larger than one for different values of the sparsifioatthresholdf, is shown
left. In the right plot, the corresponding execution timesgec) for the Bethe ap-
proximation and the mean field approximatichi (= 100, T, = 3.5, T, = 0.1) are
given.

3.10.2 Mean Field versus Bethe approximation
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Figure 3.14:Mean field/ Bethe comparison: Percentage of pixels with a disparity
error larger than one (left) and larger than two pixels (rigtior mean field and Bethe
approximation as a function aof; (T, = 100, T; = 3.5, T. = 0.1, C = 10719,
o, = 1).

Figures 3.14, 3.15, 3.16 and 3.17 evaluate the quality oflteth and visibility
estimation for the mean field and Bethe approximation as etimmof different MRF
Gibbs prior models. These prior models are specified by theevaf o4, o, andC'in
eg. (3.6). Since the exact form of the prior model is oftenkmatwn, this section can
also be seen as an evaluation of the parametric prior modgicamd truth data.

In addition to the last figures, the quality of the depth eatenwill be measured
by the median of the disparity errors. Similar to the presiooeasure (percentage
of pixels with a disparity error smaller than one), all cependences are evaluated
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exceptthose that are occluded. The median error measovesdt) evaluate the results
more precisely. Gross outliers, that can appear at the itnagkers, have no influence
on the error criterion as it would be for the average errortii@rmore, the error in the
visibility estimation is reported. This measure is complde the percentage of pixels
with wrong visibilities in all images.
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Figure 3.15:Mean field/ Bethe comparison: Median disparity error (left) and the
relative fraction of wrong assigned visibilities (rightyfmean field and Bethe approx-
imation as a function of; (T, = 100, T; = 3.5,7, = 0.1,C = 10719, 5, = 1).

Figure 3.14 evaluates the relative amount of pixels withspatiity error of one
(two) pixels as a function of;. The Bethe approximation shows a clear advantage
over the mean field approximation, with a minimum error of @ppmate5% (2%).
Two other insightful results can be read off the figures. thirfor weak correlations
(small o), the difference between Bethe and mean field approximadidess pro-
nounced. In fact, it is easy to see that mean field and Beth@xzippation are equiva-
lentforo, = 0, i.e., uncorrelated MRF states with; (z7*, 2%) = C. Secondly, with
increasing correlation strength, the difference of botpragimations increases. At
a certain point, the mean field approximation eventuallyesbetter than the Bethe
approximation. At this point, the prior model is obviouslyomg,i.e., the correlation
is so strong that the prior demands a too smooth solution.niden field approxima-
tion is not able to handle these strong correlations andatdohow this prior model.
This leads ‘by accident’ to better results. The relativedg [performance of the mean
field approximation with increasing correlation strengttaiso indicated by the shift
of the error minimum to higher correlations. As a result, oae state that for weakly
coupled inference problems, the mean field approximatiahtmiot be a bad choice,
especially when taking the computational speedup intowatco

This interpretation is also justified by the median errolgation in fig. 3.15. The
difference in the visibility error (fig. 3.15 right) is lessstinctive but shows neverthe-
less a small advantage of the Bethe approximation and a mimjmwhich coincides
with the depth error minimum.

Fig. 3.16 presents the evaluation of the error wat,t. The value otr,, determines
the correlation strength of different visibility configti@s. Settingo, = 0 will
realise a spatial correlation for which the joint probapitif two pixels is independent
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Figure 3.16:Mean field/ Bethe comparison: The median displacement error (left)
and visibility error (right) for mean field and Bethe apprmation as a function aof,.
(Ty =100,T; = 3.5,T. = 0.1, C = 10~'°, o4 = 100).

on the visibility configuration. Large, give more supportto neighbouring pixels with
the same visibility configuration.

It can be seen in the left figure that the correlation of vigibiconfigurations
does not increase the performance of the depth estimatiem wbmpared to uncor-
related visibility configurations,, = 0. The visibility error on the other hand shows
a small advantage neat, = 1. The explanation for this behaviour lies in the strong
influence of the likelihood. When looking at the images in 8% one can notice
the nicely textured background which makes it relativelgyea disjoin a good match
from an outlier purely based on the data likelihood. Thus dbrrelation of visibilities
will not have a very strong influence on the depth estimatiorthe cones sequence
(sec. 3.10.4), we will see a more outspoken relation betweeelated visibility con-
figurations and the depth estimation performance.
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Figure 3.17:Mean field/ Bethe comparison: The median displacement error (left)
and visibility error (right) for mean field and Bethe approxation as a function of’
(T, =100,T; =3.5,T. = 0.1, 04 = 100, o, = 1).

Finally, fig. 3.17 shows the evaluation w.r.t. the valugfvhich reflects the like-
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lihood of an outlier from the correlated depths-visibiliigsumption. A large value of
C will therefore globally downweight the correlation of nblgpuring nodes. While
this is a good mechanism for discontinuities, it is not fa¥ thajority of links. When
defining a global interaction matrix for all links, one wowdgpect a value of” be-
tween the optimal value for continuous and discontinuonissli The experiments
show that this value is approximativefy~ 108,

As a global result of these synthetic experiments, one ede atclear advantage of
the Bethe approximation over the mean field approximatideims of the accuracy
in the depth estimation. The difference w.r.t. to the vigiperror is less obvious.

3.10.3 Prior on parameters
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Figure 3.18:Influence on parameter prior: The median displacement error (left)
and visibility error (right) for mean field and Bethe apprmation as a function of
the magnitude of the parameter prigr(7s = 100, Ty = 3.5, T, = 0.1, o4 = 100,
o, =1,C =10710),

Fig. 3.18 shows the results for a different value of the nedsamount of fake data,
which is introduced to set a prior on the parametgrsandX (see section 3.6.2).
The accuracy of the depth estimation increases by usingtitiswith the best value
of aboutf, ~ 1.0. If this prior is too strong, the performance of the depth #rel
visibility estimation decreases. The reason for this behans the underestimation
of 3, which at the same time produces a larger amount of outliers.

3.10.4 Real image evaluation

This evaluation is an example of anisotropic MRF modellidgisotropic interactions
are realised by defining the interaction matrix locally. E@articular, we define two
interaction matrices by eq. (3.6): one which models disooities and one for the
continuous areas. The difference of both matrices lies enatlitlier probabilityC'.
C = Cy is used for all links for which the endpoints fall into difeart mean shift
colour segments [16], and = C for the remaining cliques, witty > Cs.
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Figure 3.19:Cones sequenceDepth (left) and visibility error (right) as a function of
o4 (Ts=20,T,=2,T.=0.1,0,=30, Cs=10"1%, Cy =107, f,=10"1°, f,=1).
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Figure 3.20:Cones sequenceDepth (left) and visibility error (right) as a function of
oy (Ts=20,Ty=2,T.=0.1,0,="700, Cs=10"10, C, =107, f,=10"19, f,=1).

For the evaluation the ‘cones’ sequence from the Middlebtateo evaluation set
[98] is used. We use three images with visibility configuratis = 1, 2, 3.

Figs. 3.19 and 3.20 show the depth and visibility errors. d@epth error is the
percentage of pixels with a disparity error larger thaevaluated for all visible pix-
els (equivalent to [98]). Similarly, the visibility errosithe percentage of wrongly
detected occlusions. Again, the advantage of the Betheogjppation can be no-
ticed. Fig. 3.20 shows a clear correlation between the deptr and the strength of
the visibility correlationo,,. We notice that the correlation of visibilities is not only
helpful for a better detection of these (see visibility errofig. 3.20), but is helps
also to increase the performance of the depth estimatior célse of uncorrelated
visibility configurations ¢, = 0) is inferior to the best value of, ~ 20, both for
estimation depth and visibility. This result tallies withat in [32]. Fig. 3.21 shows
this visually by comparing the depth and visibility maps f@th approximations and
for two different parameter settings. One (the two left imsigfor correlated visibili-
ties{o4 = 700, 0, = 30} and one (the two right images) for uncorrelated visibiitie
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{04 = 700,0, = 0}. Notice the contribution of correlated visibilities in tepth and
the visibility maps for the Bethe (top row) and the mean figdgraximation (bottom
row).

e
‘ }"g ‘,'A, . N
’ \;'3“.«51

-

oq = 1700,0, = 30 oq="700,0,=0
depth error visibility error| depth errof visibility error
Bethe 1.78 4.61 2.11 12.21
Mean field 2.95 4.93 3.67 10.79

Figure 3.21:The contribution of correlated visibility configurations: The left im-
ages show the results of correlated visibilitieg & 700, o, = 30) and the rightimages
the uncorrelated caser(; = 700, o, = 0). The Bethe approximation is shown in the
top row and the mean field approximation in the bottom row. &indath the images,
the table gives the numerical values for the four experisent

3.10.5 Outdoor scene reconstructions

The algorithm has been tested on several challenging oustemes, characterised
by multiple depth occlusions, independently moving olgeartd complicated scene
geometry. The original images are of six&2 x 2048 and have been downscaled
to a size of768 x 512. The parameters for all experiments are the same and shown
together with the computation time below the figures.

The first example shows a scene which is contaminated by peaess The three
input images are shown in the top row of fig. 3.22. The camesitipo of the ideal
image was chosen to be the left of these images. Notice thatajes are contam-
inated with independently moving objects. Also, the refieeeimage contains pixels
(e.g, woman in white) which have no support in any other imagell, 8te results
in fig. 3.22 shows that our algorithm could assign a meanirggflour (top/left) and
depth (bottom/right) to those outlier pixels. The threeg@son the right in the bot-
tom row of fig. 3.22 show the visibility estimates. The Betppr@ximation of the free
energy was used, and four visibility configuratiariss = 1, 2, 3, 5 were considered.
The number of depth states for this scen&is- 180.

The depth estimation at the bottom of the ideal imggés rather poor. The lack of
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Figure 3.22Brussels city hall sceneThe three input images are the three right-most
images shown in the top row. The camera position of the ilmagey* was chosen

to be the left of these images. The visibility estimatededltoy* are in the bottom
row. The top-left image shows the estimated ideal imggand the estimated depth
is shown in the bottom-left image.

texture and the fact that the epipole lies within all targeages is the reason for this.
However, the ideal image looks visually convincing and thineated depth, visibility
and ideal image constitute a solution which makes the inpagies very likely.

For the second experiment we used three images contairengeimper statue in
the heart of Dresden. These images are shown in the top rog. & #4. The camera
position of the ideal image was chosen to be the middle imBgeause the reference
camera does not contain independently moving objects, e aamsider the four
visibility configurationsv®, s = 1,2,3,4 in table 3.2. On the bottom, the extracted
depth and visibilities are shown. We used the Bethe appratkm with R = 264
depth states. One can appreciate the accurate detectidirttoiea types of outliers.
Geometric occlusion, pedestrians and the specularitiggeiwindows are detected.

In the last experiment we used three images of the ‘Leuvgreill scene’ [103].
These images are shown in the top row of fig. 3.24. The camesitiggoof the ideal
image was chosen to be the top middle image. Because thig sts not con-
tain independently moving objects, we only consider the fasibility configurations



3.11. Conclusion 55

Ts T Ta ng Od Oy Cs Cyq fs fp time
20 0.1 2 30200 20 107 10=° | 107® 1.0 | 440sec

Figure 3.23:Semper statue sceneThe input images are shown in the top row. The
middle image is chosen as the reference view. The depth mapefoeference view
(middle) and outlier maps for the two other images are showithe bottom row.
Notice that not only geometrical occlusions but also thegsétans (top left image)
are detected.

v, s = 1,2,3,4in table 3.2. In the bottom row, the extracted depth and Vi#s
are shown. We used the Bethe approximation ite- 396 depth states. This exper-
iments also shows excellent depth and visibility estimalég datasets (images, cali-
bration and3-D points) are available at www.esat.kuleuven-bestrecha/testimages.

Note that the same prior modébg, 0., Cq, Cs} has been used for these three
scenes.

3.11 Conclusion

3.11.1 Summary

In this chapter, an approach to multi-view stereo has beesepited, which can also
deal with scenes contaminated by accidental objects asgs Bi22 and 3.23. A
novel view is computed, which is most likely given the inpugiges. To compute this
novel image, we take possible configurations of degpth visibilities into account.
This approach results in the natural elimination of accidierbjects which cannot be
explained by the majority of input images.

In the E-step of the EM algorithm, two approximations of theefenergy have
been compaired: the mean field and Bethe approximation.nMiémg the latter en-
ergy can be achieved by belief propagation. The quality ¢f approximations have
been evaluated on the basis of ground truth data. This shat/éar the stereo prob-
lem, the Bethe approximation has clear advantages overdhae field approximation.
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Figure 3.24:Leuven city hall scene: The three input images are shown in the top
row. The camera position of ideal imagé was chosen to be the middle image. The
depth map for the reference view (middle) and outlier map$he two other images
are shown in the bottom row.

For small MRF correlations, the difference of both apprcediions is less outspoken.
In these cases, the mean field approximation might still beca ghoice, especially
because of the speed and memory advantages.

The results also show that the method scores well on the Eldaly stereo eval-
uation (see Strecha, Fransens and Van Gool [103]). Cuyraht algorithm is at
the fourth position when performance is measured at theesighrecision (0.5 pixels
disparity error) for all visible pixels.

The presented approach to detect outliers is purely basgzhotometric cues.
Therefore, it can cope with independently moving objecsswall as geometric oc-
clusions. For example, photometric cues are necessaryalondid scenes like the
one shown in fig. 3.22. However, when the scene contains lartgextured regions,
photometric cues could fail to detect an occlusion. It reragiossible that the occlu-
sion can be explained by assigning a wrong depth, if thisigdess/a consistent match
in all images. Combining photometric and geometric cuexjmeeted to further in-
crease the robustness of outlier detection. However, valsgshotometric occlusion
cues can easily be used to formulate and minimise dapdtocclusion jointly, this is
more difficult when adding geometric cues. To be more foriihéd,easy to compute
the likelihood of a pixel having depthi” and being visible in thé&*" image-based
on photometric cues. To compute the same likelihood by taggometric cues into
account one would have to consider all terms which are iatéesl by projecting the
3-D point (which corresponds to depiti in pixel 1) to the k' image. This would
lead to a formulation where the state of a pixelis correlated to many more pixels
than only on its four neighours. A tracktable integratiopbbtometric and geometric
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cues is currently only possible when deptid occlusion are treated separately as for
instance in [51, 58].

An extensive validation of the temperature annealing seh@@AEM) is pre-
sented. This showed that the temperature annealing vesgitie EM algorithm has
advantages over the classical EM formulation. Especiallgtereo settings with a
(strong) colour change the DAEM approach is able to find tlodagl optimum even
without a good initialisation. The dependence of the sotutin the specific form of
the parametric prior model is reasonable, such that, faaite, all real experiments
could be performed with the same parameters.

The computation time depends largely on the scene itselftendumber of evalu-
ated states. If the scene contains many ambiguéigdarge un-textured regions with
a uniform data-likelihood, the algorithm will be slower. tims case the sparsification
described in section 3.9.2 will be less efficient. In the ottase|.e. if a pixel has a
clearly peaked data-likelihood distribution, many statésbe victims of the sparsi-
fication already at an early stage of the optimisation. Amabigs can be diminished
by taking more images into account, which on the other haadidéo more visibility
states. An optimum in terms of the computation time will deghen both factors.

MRF formulations, as presented in this chapter, work wetinewithout an initial
estimate on the depth. However, applying MRF methods tcelartages is more
difficult because of their large memory and speed requirésnemhese have been
diminished to some extent by a sparse implementation. Imé&xe chapter, a local
PDE based approach is presented, which overcomes thesatilims, but which will
need a good initialisation. These might be provided by the-Migproach presented
here.

3.11.2 Relation to other formulations

Many MRF formulations to stereo assume the inlier distidouto be known. Usually
this distribution has a mean valuewf, i.e. the colour value of a pixel in the reference
image, and a specific known varianeeq [58, 63]). For stereo formulations that use a
robust matching criterion the parameters of the M-estim@tdunction) are also sup-
posed to be knowre(g [64, 50, 51, 131, 64]). We have shown in chapter 2 that robust
M-estimation can be related to a generative model basedilatimn. More particular,
one could justify the parameter choice of the M-estimatoseélfing large priors on
the corresponding inlier and outlier distributions. Tha&xelation to our generative
models is, however, difficult to make. For many energy bate@s formulationsit is
not clear how their underlying generative model could bengefi

It is further interesting to notice, that most multi-vienesto formulations use
y! as the mean of the inlier distribution. This can be seen asngua large prior
(fp — ooin eq. 3.7) on the ideal imagg*, however, we have seen in sec. 3.10.3
(fig. 3.18) that this does not lead to the optimal result.
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Local formulation

[If oo donnt teeief that oour model (e.g. of norral erroisgiarect, choose an ther
one and ose raxiror likelih on - or Bayesian - methods for teevmodel. What, if |
oonnt belief in the new model either? It takes a eot of st ttess to flood the world

with a host of rather iatithary and pr tatly hardey interpagéée models ano seier they
are exactly true. The p int of rotost statestiss is that ong kegep a pararetric model
hethough the eatter is known to ee wrong.

argmax logp(y |y*)p(y*)} of Hampelet al. [42] with
-

ply)oc  IT iy, u5)
ijeli+1,2]

In the previous chapter, a MRF formulation for the multiwistereo problem
has been presented. The states of the random field did indiept® and visibility.
This approach can be seen aglabal approach in the sense that the probabilities of
all possible depth and visibility realisation are consatkr It can therefore be used
without initial (depth) knowledge of the scene. This foratidn has, however two
disadvantages:

e The model assumes that the scene can be described by a nundizaretised
depth values. Obviously, depth is a continuous properthefscene and MRF
formulations do not account for that.

e To achieve sufficient accuracy, the number of states grows laege and it
becomes difficult to remain fast and memory efficient.

We showed in the previous chapter that a sparse implementatipossible, which
solved the second problem to some extent. The first problenore serious, and we
will therefore discuss in this chapter a generative modeMuich depth is continuous.
This leads to a local approach, in which a depth map itedstesolves through PDE-
based non-linear diffusion.

59



60 Chapter 4. Local formulation

4.1 Introduction

4.1.1 Previous work

PDE-based approaches for the stereo problem can be divittethio general formu-
lations.

e Global PDE formulations are similar to MRF formulations in that they also
define the energy globally in&D space. Often implicit functions are defined
in this space and regularisation is based on neighbouridggints (voxels).

e Local PDE formulations are often image-based. Usually an energy is defined
in the2D image domain and the regularisation is based on neightmppnkels.

The fundamental difference between global PDE-basedisnkiand MRF formula-
tions is the normalisation. Every node in a MRF formulatisrconsidered to be in
exactly onestate,e.g, a certain depth staté, or the state “occluded”. For this rea-
son, the expected values of the MRF states need to be noeshaler each node. In
PDE-based global formulations, this is not the case. Uguall energy is minimised
such that the images are brought into correspondence andattsmess condition is
fulfilled. The far most prominent members3D-based PDE solutions use level-sets,
which have been introduced by Setian and Osher[78]. Fiwst-get formulations for
the multi-view stereo problem have been presented by Dedthl. and Faugerast
al. [20, 21, 24, 25]. Further research considered for instaeffecient implementa-
tions, using narrow band level-sets or GPU-based impleatient [67]; the extension
to the case of non-Lambertian surfaces, formulated betat [54, 53]; the incorpo-
ration of additional constrains, which can be based on Visuis [44] and/ or calibra-
tion points [68] and the use of cross correlation or mutu@rimation as the similarity
measure as formulated by Pagtsal. [86]. The advantage of these methods lies in the
integration of all images into one single optimisation soke The discretisation of
the 3-D space into voxels can be seen as a disadvantage.

Local, PDE-based formulations have their origin in the wieé&l of optical flow
computation, where the correspondence between pairs gieisna parameterised by
a 2-D flow vector for each pixel. When the scene is rigid and elgipgeometry is
known, the two degrees of freedom for each pixel reduce todegeee and the dis-
parity can be estimated instead. This approach is for iestatudied by Devenast
al. [22], Proesmanst al. [90], Robertet al [93], Alvarezet al. [3] and Slesarevat
al. [100]. When the full calibration is provided and more thewo images are given,
depth is the natural parameter that brings all images inte@spondence with the tar-
get image. This multi-view stereo extension of the stereblem has been proposed
by Robert and Deriche [93] and applied to real images by B&et al. [106]. A
probabilistic formulation of the latter work is given in [2D And a further extension
to the estimation of multiple depth maps has been propose8dgalloet al. [37].
All these2-D methods use a reference image or a virtual image [103]easphce on
which depth is computed.

To the class of local PDE formulations, one can also counhots which use a
triangle mesh that brings all images into correspondenteze& and visual hull con-
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straints are often combined for steering the mesh to an gmeirgmum. Examples
are, for instance, Furukaved al. [36] or Neumanret al. [76]. We call all these meth-
ods local since the depth/disparity is iteratively updated gradient decent manner
starting from some initialisation.

Most PDE based formulations start by defining an energy wisichinimised by
various optimisation schemes. Several parameters agelinted, which account for
instance for noise variations, the smoothness of the solufior breaking the smooth-
ness condition in some areas and for the visibility reagpniris the aim of this work
to formulate an algorithm for which many of those parametiésappear. Generative
models for multi-view stereo as proposed by Strecha, Fremaad Van Gool [103]
and extended by Gargallo and Sturm [37] are the key to achiese Our particular
generative model will lead to an EM algorithm in which a IoR&8IE-based solution for
the depth plays a major role. Discontinuities of the dep¢hraodelled by anisotropic
diffusion, for which we next succinctly review the relatednk.

4.1.2 Discontinuity preserving diffusion

For many problems in computer vision, regularisation isuneggl to overcome their
ill-posedness. Often a smoothness constraint is addethdi@ance, for the computa-
tion of optical flow. A large amount of work has been done tarfolate smoothness
constraints, which can be locally broken. These conssdedd to the wide field
of inhomogeneous and anisotropic diffusion filtering. Frarprobabilistic point of
view, the smoothness constraint can be formulated by a praatel for which locally
smooth solutions are very likely. Local deviations of theosithness are consequently
outliers from this prior model. We can find various ways to mlodutliers in the
literature.

One class of approaches introduce additional parametdachweplicitly detect
outliers. The advantage of these is that they can put fudhestrains on the resulting
outliers mapse.g, continuity. Often these methods lead to coupled systamsich
the parameter- and outlier maps interact with each othema®eand Geman [40] for
instance proposed the additional use of a so-called linegss This process estimates
additional edge or outlier labels which are used to brealstheothness assumption
locally. The Mumford Shah approach [74] is a continuous ieer®f such a line
process. Other examples are proposed by Proesetanig90, 89] in the context of
optical flow computation and image enhancement.

Another class of approaches was pioneered by Blake andriZiasg[10]. They
showed that the above-mentioned line process [40] can iménatied by using robust
estimators. This approach leads in this context to rewedjletast square optimisation
problems, where the weights play the role of the outlierssringhe previous class
of methods. Also, the Perona-Malik model [81] can be intetga in this context.
Some popular examples are given by Rangarajaa. [91] in the context of image
segmentation and by Bla@k al. [8] and Broxet al. [12] for the estimation of optical
flow.

Formulations based on a line process as well as formulatf@tsliminate this
process based on robust estimators implement inhomogsmeoulinear diffusion.
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The diffusivity is defined as a function of the pixel coordesmand the resulting reg-
ulariser will change at each iteration to take care of theatgd diffusivity. Different
with respect to this is the regularisation based on the &tra¢ensor. The prior model
does thereby assume only directional smoothness. Appligettdepth regularisation,
this means that anisotropic diffusion is realised. If thag®a contains a high intensity
gradient, the depth is assumed to be smooth orthogonal ireistion only. In uni-
form intensity areas, all directions are equally importamd the smoothing is locally
isotropic. If the diffusion tensor is based on the refereintage, the regularisation
term can be computed once and used in every iteration. Soamepes in the context
of optical flow estimation are given by Jahne [49] and Alzeeeal. [4, 3], where the
last is also applied to the estimation of disparity. Thegeadso non-linear anisotropic
diffusion approaches, where the structure tensor is maldifiethe current solution,
e.g, for the estimation of optical flow by Brogt al. [13]. A more detailed view of
diffusion methods is given by Weickeet al. [116]. For our depth regularisation, we
will consider only anisotropic regularisation schemesiasiussed in sec.4.3.2.

This chapter has a similar structure as the previous oneldrge extent it can be
read without the knowledge of the previous chapter. Needgts, it is the intention
to relate both approaches to each other, stress the diffiesemd show the conceptual
similarities. We first provide the generative model in se2. 4'he prior section 4.3
will get much attention because of the essential differeidbe depth prior w.r.t. the
MRF depth prior. The MAP formulation in sec. 4.4 and the EMusioh in sec. 4.5
are similar to those in the previous chapter but with the ifigegenerative and prior
model. Finally, we provide experiments in section 4.6, whadlows us to judge the
advantages and disadvantages of both approaches on thelaensets.

4.2 Generative imaging model

As for the global formulation in the last chapter, we startdefining the generative
model that specifies the way our input images are supposezgererated. Although
the local generative imaging model seems similar to the a®eribed in the last
section 3.5, there is one important difference. The ddpthof a pixel: in y* is
notassumed to be discretised into the depth ledelsNevertheless, there are many
similarities. Also, the input images are considered to beegated by either one of
two processes:

e Theinlier process(fig 4.1) generates the pixel¢ which are visible iny* and
which obey the constant brightness assumption up to a gtatbalir transfor-
mationC},, which can be different for each input image.

e Theoutlier proceswill generate all other pixels.
The inlier process is modelled as:
Yoy =C 10" oyl e, (4.1)

wheree is the image noise, which is also assumed to be normallyitaliséd with zero
mean and covariancg. Again, C~!(p*) models the global colour transformation
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Figure 4.1:Image generation: Image formation for the inlier process (top). The
pixels ofy!234 are generated by adding noise to the geometric and photdenetr
warp ofy*.

between thé:'" input imagey” and the ideal imagg*. The depth-dependent map-
pingi’'(D;) < i is different to eq. (3.1). It is now dependent on twntinuouslepth
D; and will be a part of the model parameté&sRemember, for the global formu-
lation, depth has (together with the visibility) been ipeted as a hidden MRF. As
such we considered possilulescretedepth-visibility realisations of the scene. For the
following local formulation, only the visibility configuteons are modelled as a MRF
and the depth parameter is subject to a PDE-based miniomisati

The outlier process is modelled as a random generator, gggrfpbm the un-
known distributiong. This is identical to the global formulation. Both, the érliand
outlier process are selected by a hidden MBRvhich includes the visibility config-
urationsv?,s = 1...S as states. Identical to the previous chapter (sec. 3.5) eac
visibility configurationv; describes one configuration of the individual image visibil
ities vk,

Again, f(.; u, ¥) denote a normal PDF with meanand covarianc& andg(.; h*)
is the outlier distribution associated with th& image. Similar to the global formu-
lation, letz$ be the state which ig, and Ietyf/(Di) be the pixel in thek!” image
onto whichy; is mapped. Then the probability of observigly, conditioned on the
unknownsd = {D, y*, =, h* p,} and the state of the MRE;, is given by:

(4.2)

K3

k f(C(p*)o yff(p,.)? yi, X)) if wk =
i (D 0,X = i ) 3
p(y; (DL)| ) { g(yf}(pi);hk) if wk =0

The inlier model is selected wheri* =1, i.e. when the pixef (being in state:§ =1)
is visible in the K" input image.
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4.3 Priors

4.3.1 Visibility prior

The MRFx represents the unobservable visibility state of each jpixtble ideal image
y*. A Gibbs prior models the interaction of neighbouring Vil configurations,
similar to sec. 3.6.1:

p(X) = %H H 1/Jij($i,$j) 5 (43)

i JEN;

where;;(x;, z;) depends on the distanée;; (s, q) between two visibility configu-
rations, defined in eq. (3.5 (z;, x;) and is given by:

¢7J(If,$;1) = eXp(_O'vDij(37Q)) + C . (44)

This interaction is the most general formulation. It pr@sdhe possibility that out-
liers from different images can interact with each other. réparticular, it is for

instance possible to increase the probability of a pideting visible in one image if
a neighbouring pixel is also visible emotherimage.

A simpler model demanding less time and memory, would be gece those
interactions and consider only the inter image spatiabiligr interactions. In this
case, a MRK” is introduced for every imagg® and describes the two possible states
(inlier and outlier). The spatial correlation is modelladthe Ising model, described
in appendix C.2.1. This model has also been used by Fraesah$31] and De Smet
et al. [17] to model spatially correlated outliers.

If one would further simplify the model and neglect also ggdanteractions, the
visibilities can be estimated in closed form. The Bayesineste for a pixeli be-
ing visible in imagek p(z¥ =10, y¥) leads to the uncorrelated visibility case (see
app. C.2.1) and is given by:

Dk — f(C(pk) © yf,(Di);y;*, 3) (4.5)
CHCPY) oY D)+ 9WEp,) '

Fig. 4.2 shows this uncorrelated case graphically. For tpements in this chapter,
we will use the first (fully correlated) prior model. The sadomodel, with spatial
correlations of the visibilities only, is applied when falze images are considered in
chapter 5.

4.3.2 Depth prior

The prior on the depth parameter is divided into two partse Qart is defined on
every pixel iny*, i.e., a smoothness prior, and one part incorporates the spetreé s
initial 3-D points that is provided by the calibration procedure.
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A4

Figure 4.2:Uncorrelated visibilities: The probability ofy; being visible in thekt"
image is proportional to its value under the Gauss-curvéd(beft arrow),i.e., the
distribution f (C(p*) o yf,(Di);y;‘, ¥)). The probability ofy; being invisible in the
k" image is proportional to the value under the histogramdbasématorg(yf/(m))
(thin, right arrow).

Smoothness depth prior

The formulation of appropriate depth priors is probablyrinest interesting issue for
the stereo problem. Currently, priors are defined only lgdal making smooth depth
configurations more likely. Obviously, it would be of greaeuo define priors over
more extended image patches or even to model primitive shapeors based on
image patches have been introduced by Roth and Black [9fEicantext of optical

flow computation. In this work it was suggested to use leamettiple experts as
an optical flow prior. These experts correspond to likelyfigamations of the optical

flow field on a patch of pixels. For the two view stereo problesirailar idea was

recently evaluated by Kongt al. [65].

The disadvantage with these more informed priors is thedrier representative
training data, which is often not available. We therefoteeta much simpler prior
model, which assumes that the prior belief in the deg) can be parameterised by
an exponential density distribution of the form:

p(D) = %exp (—W) , (4.6)

where); is a parameter which controls the width of the distributiand (X, D) is

a regulariser. This regulariser is driven by the functivn From such a regulariser,
we expect that it reflects our prior belief that the world iseegially simplej.e., for a
locally smooth solutiorD in the neighbourhood of a particular pointts value should
approach zero, making such a solution very likely. Vicesaglarge depth fluctuations
should result in large values for the regulariser, makirghsolutions less likely. Fur-
thermore, the regulariser should be able to break the ab@rgiomed smoothness
assumption: if the value ot’ suggests a depth discontinuity, a large depth disconti-
nuity at7 should not be made a-priori unlikely. Such regulariserscaramonly used

in the PDE-community, where they serveaassotropicor inhomogeneous diffusion
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operatorsfor the computation of optical flow or edge-preserving imageothing.
Weickertet al. [117] presented a taxonomy of different diffusion opersitdccord-
ing to that, diffusion operators are distinguished betwisetropic and anisotropic
operators and both categories are further classified aiogpra.X'. We only consider
anisotropic operators, and discuss possible realisabbA’s

Anisotropy diffusion operators can be written as:

R(X,D)=VDIT(VX)VD, (4.7)
whereT (VX) is the diffusion tensor defined by:

1

T'VX) = ———
V) VX |+ 202

(VXLVXLT + ,,21) . (4.8)

The diffusion tensor is @ x 2 matrix, wherev controls the degree of anisotropy,
V& is the vector perpendicular 88X andI is the identity matrix. For — oo the
diffusion tensor is equal to the scaled identity maffi®%/ X') =0.51. In this case)(D)

is independent on the directidnD and isotropic diffusion is realised. If, on the other
hand,r ~| VX| the prior probability ofD might still be high whervD is parallel to
VX. Forinstance ift is the reference image, a large valud &D | will be allowed

if VX is parallel toVD, which is exactly the desired anisotropic behaviour.

Having defined the parametric form of the prior, we are nowhia position to
describe the possible realisationtf The best feature fot’ is the depth itself. Using
X =D to regularise the depth corresponds to flow-driven reggdion schemes in
the context of optical flow [117, 13]. Thereby every depthfa@urationD which is
directionally smooth will obtain a high prior probabilignother widely used feature
to construct the diffusion tensor is the reference or idealge. All depth configura-
tions which are smooth perpendicular to the image gradieattion are assumed to
be likely. This approach is justified by the observation thegith discontinuities often
fall together with high image gradients. Both sources ofaimopy have advantages
and disadvantages and we will therefore also consider aic@atiin of both. The ma-
trix VXL VA+LT is computed as a weighted sum over the individual featuresthe
weight of each feature we use the Mahalanobis distancestetata diagonal Gauss
distribution of all derivative vector&;. We continue the discussion with an evaluation
of prior distributions, which are extracted from groundhrdata.

Ground truth evaluation of the depth prior

Figure 4.3 shows the distribution for differefiton the synthetic data used in section
3.10. More particularly, we first computed the valugift’, D) for every pixel using
the ground truth values fd? andy*. Secondly a histogram was built ovB( X', D).
The result is the ideal distributiop (D) for this particular dataset, which we will
use to illustrate the goodness of the assumed parametdc distributionp(D) in
eg. (4.6).

The left plotin fig. 4.3 compares the probability distrilmutsp* (D) for the isotropic
casel’ = T'(0.5I) with the depth based anisotropic c&dse= T'(VD). About99.5%
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Figure 4.3:Prior distribution: The distributionp* (D) for different diffusion tensors
T(VX) is shown as a function d¥(X, D) for the synthetic data set in fig. 3.6.

of the pixels have a valuB(X', D) which is smaller tha.1, i.e. for almost all pix-
elsD; is smooth. The difference lies in the modelling of non-srhaidépth values:
whereas the anisotropic distribution does not contain npéxsis with a larger value
of R(X,D), this cannot be said about the isotropic case. One can trerebn-
clude that the parametric form p{D) as given by eq. (4.6) and in combination with
eq. (4.8) is well suited for the depth based anisotropicleeger?” = T'(VD) but not
for an isotropic regulariser.

The right plot in fig. 4.3 shows a close-up for three distiiius: one, which
was already plotted in the left ploite. based on the depth = T(VD), and two
anisotropic regularisers based on the ideal imAge: T'(Vy*) and on the combi-
nation of bothT" = T'(VD, Vy*). These plots show an exponential fall-off for all
distributions. We can see that large values &D | are nicely modelled by these
distributions. For the image-based regularisation schehie also shows that depth
gradients coincide with intensity gradients in our test set

Fig. 4.4 shows the colour-coded magnitude of the diffus@rsor entries for the
three anisotropic diffusion tensors. One can see only adifigrence between the
image-based and the combined image-depth diffusion tefi$us difference is visi-
ble at the borders of the face, mainly where the intensitgigra between fore- and
background is less strong.

The above considerations can be seen as a justification éaretatively simple
form of the depth prior in eq. (4.6). There exist, of coursansnmore advanced regu-
larisation schemes which can deal with outliers from theaimeess assumption (see
sec. 4.1.2). These are not considered here. We believeetpalarisation should be
seen in a Bayesian context where training should play amgabele in formulating
prior models. This however is beyond the scope of this thesiswe restrict ourself
to formulate the probabilistic framework in which one copldg in more advanced
prior models easily.
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Figure 4.4: Anisotropic behaviour: The images show the colour coded magnitude
of the diffusion tensor entries. The diagonal elements amed/green and the off-
diagonal element is coded in blue. From left to right one cae the: image-based
diffusion tensofl’ = T'(Vy*), the combined” = T'(Vy*, VD) and the depth based
diffusion tensofl’ = T'(VD).

Scale invariance

The regularisation of the depth is strongly dependent orstiaée. We can consider
two different kinds of scales. First, there is the scale guity of uncalibrated "struc-
ture and motion”. Two calibrations of the scene, which diffg the Euclidean scale,
will lead to two different prior distribution®(D). And second, there is the scale,
which is introduced by defining the problem on different pyic levels. To account
for these scale dependencies, we will treat the width of tier listribution As in
eg. (4.6) as part of the MAP estimation problem. By doing e, formulation is
made invariant to both kinds of scale changes.

The width A, also indicates the strength of the pridr, is the well known factor
that weights the contribution of the smoothness term redath the matching term.
This factor is present in all energy formulations that reguegularisation. By taking
As @s an unknown parameter, we loose control over the relatighting. Therefore,
we introduce an additional parameserThis parameter reflects the uncertainty of the
depth prior and will have to be set by hand. The likelihoodriistion in eq. (4.2)
will therefore be replaced with:

P 0|0, %) — p(Yfi (1,10, %) - (4.9)

Ideally, the value of\ will be one, independent of the Euclidean scale of the recon-
struction and also of the pyramid level which is consideledhe experimental sec-
tion of this chapter, we will evaluate the dependency onphimmeter.
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Calibration points depth prior

The second part of the depth prior relates the depth estiafatertain pixels to the
already known value. Initigd-D points, which are provided by self-calibration [82],
will project to the ideal image ™. For the closest pixel, the depthg; is therefore
approximately known. We model the depth prior for these oty a Gaussian dis-

tribution: "
Hexp< (D; — gl)) . (4.10)

Whenever an initiaB-D point is projected, the closest pixel will have a non-zero
weight W;. This weight is related to the certainty of this particutdp point. All
other values o¥V; are zerd-. The parameteX. is used to globally weight the relative
influence of the initiaB.D points.

The overall depth prior is now based on the product of the teyatld prior distri-
butions in eq. (4.6) and eq. (4.10).

4.4 MAP estimation

Let & = {D,y*, =, h* p* ).} denote all parameters, and let= {y*} denote all
input data. The maximum a-posteriori probability (MAP)iestte of the unknown@
is given by:

Oriap = arggma>{ log Y p(y|x.0)p(x)p(6) } . (4.11)

Conditioned on the state of the hidden variak)ehe data-likelihood factorised as a
product over all individual pixel likelihoods:

p(y|x,0) HHHp (yi |25, 0)™ (4.12)

In the product oves only the factor for which:; = 1 survives. This product includes

in this formulation, different from the global formulatipanly contributions related

to the possible visibility configurationsg. the stater; corresponds to a particular
visibility configurationv® which are shown for three images in table 3.1. Based on
these visibility values, the pixel-likelihood in the righénd side of eq. (4.12) can be
further expanded as:

sk

bty @13)

v

Pyl |27, 8) = [F(C (") o vhivi, D))

This pixel-likelihood is given by the inlier distributiorfi the visibility configuration
v® describes the situation for which the pixel is visible in #ié image,i.e. v¥* =1
and the pixel-likelihood is given by the outlier distribaotiif v° describes the situation
for which the pixel is not visible in the’k image,i.e. v** =0. We have now specified

1We use hinary values faw);, since the calibration proceedure we use does not provittines.
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all terms of the data-likelihoog(y | x, @) and the prior on the MRF in eq. (4.3). The
sum}__ in the right hand side of eq. (4.11) ranges over all possiblgigurations

of the random fielck and one can use here, similarly to the global approach, the EM
algorithm to deal with this problem.

4.5 EM algorithm

Given the specific form of the prior in egs. (4.6) and (4.10) #re data likelihood in
egs. (4.13) and (4.9), we can construct the free energyasimtb the previous chapter
3.8.1 and as explained in appendix C. By applying the meaoh dighbroximation, we
get:

Furp =~ =AY > > blogp(yf|ay",6)
7 kE m
+%SZR(&,D¢)+%C;W1(Di—Qi)2

XX s

i jEN;m,n

+TY > b logh" . (4.14)

The difference with respect to the mean field free energy tierglobal approach
in eq. (3.16) is provided by the additional terms relatedh® depth prior and the
definition of the MRF states, which include here only thehilgy configurations.

451 E-step

On the(t + 1)*" iteration, the conditional expectation of the complete likglihood
w.r.t. the posteriop(x | y, 8®)1/T is computed in the E-step. The update equation
for the expected valugd' of the MRF field states is similar to eq. (3.17) given by:

b7 — exp (% > b7 log P + %Zlogp(yf/ | 2,00 — 1) . (4.15)
JEN; n k

Again, the visibilities for each image are computed by thpeeted value over the
node belief$™:

VE o= > bt (4.16)

S

45.2 M-step

At the M-step, the intent is to compute values fathat minimise eq. (4.14), given the
current estimates of the visibiliti@g'. This is achieved by setting the paramette
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the appropriate root of the derivative equation,
OFyr(0)/00=0. (4.17)
For the image related parametgfsand, the update equations are:

S VECP)oykip,

* k
k
)Y VE(C®") o ylip,y — ¥ (CP") o yfip,) — yi)"
¥ : 4.19
- STV (449
k 1
the colour transformatiop” is given by solving the linear system:
ZV yz(D) yz(D) ZV y; 317(17) ) (4.20)
and the scale by:
1
~ Z | R(X,D) | (4.21)

To arrive at these closed-form expressions, we ignoredfteete of these variables
on the regularisation term. This is admissible because thiéuence on the depth
regulariserR(y*, D) is small compared to their influence on the matching tekn.
is only indirectly related taR(y*, D) by way of computation of the visibility maps,
which have an effect o(y*, D) via the computation of. The imagey; has an
effect onR(y*, D) via its gradient, which is used to define a quadratic norm en th
depth gradient (4.7). Changes gf will therefore only exert a minor influence on
R(y*, D).

However, for the update of the depth mé&pwe are not so lucky, becauge
strongly influences both the matching and the regularisaéom. To minimisey,
w.r.t. D, we solve the corresponding diffusion equation. This camlédved from
ed. (4.14) by using the Euler-Lagrange equation and is diyen

oD

= div(T(VX)VD)
N /\kaa vk — y))Tai”(C(pk)y%—y’*)
- %W(D—g), (4.22)

C

wherey%, is the colour value of the'R input image interpolated at the current depth
valueD. For the solution of 4.22 we use a symmetric Gauss-Seidehseli88]. Other
solution schemes based on multi grid methods would also bsilple. Examples for
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these are studied by Brulat al. [14] applied to the computation of optical flow. The
existence and uniques of this parabolic equation has notfresed, However, for the
case of two-view stereo, when disparity is considered, tisgtence and uniques of the
solution to eq. (4.22) has been proved by Alvaetal. [3]. Details on our solution
are given in appendix D. The whole algorithm is graphicaépidted in table 4.1.

Initialisation: b; = uni form, y* = y!

¥ is diagonal, with entries =100

for all initial 3-D pointsD; = G;

all other depths are initialised y; = maz(G;)
Loop over pyramids:

until convergence:

M-step

compute diffusion tensor

until convergence:

computeD by solving the diffusion equation (4.22

computey™ by eq. (4.18)

computeX by eq. (4.19)

compute); by eq. (4.21)

compute everp” by solving eq. (4.20)
E-Step

Estimate visibilitiesV* by eq.(4.16)

and using the mean field update eq. (4.15)

~—

Table 4.1:Outline of the local algorithm.

45.3 Relation to other PDE based formulations

Consider the diffusion equation (4.22) for the case thaittbal image camera position
to be place ay! and without the energy term which penalises deviation® ébrm

the sparse initialisation\( — o0). With these assumptions we can relate eq. (4.22)
to the PDE-based stereo formulations by Proesnedred. [90], Robertet al. [93],
Alvarezet al. [3] and Slesarevat al. [100]. Eq. (4.22) simplifies to:

oD _ . ROy —C(PY)yp) " E " (y —C(P*)yp)
E_dlv(T(VX)VD)—Mzk:V D - D/ (4.23)

What can we read off from this diffusion equation:
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e The smoothness term and the matching term are globally wezidiy the image
noise, i.e. if a large noise magnitude is presentin the images, the 8§mess
term will become more important. This is an advisable meigmaysince in the
presence of noise the depth will be relatively more smoothwifi not try to
match the (noisy) pixels compleately.

e The matching term is weighted by the visibilitie®. if a pixel has a high con-
fidence of being an outlier w.r.t. thé’kimage ¥ ~ 0) its importance to the
matching term is decreased. To find the depth value of a gikelnhean that
only the visible pixels are considered.

e The smoothness and the matching term are locally weightettidyisibility
confidence. If the visibilities of a pixels w.r.t. allimage§~1,k =1... K is
large we have a strong data confidence and the smoothneskstiesa impor-
tant. In the other extream case where a pixel is detectedag &e outlier w.r.t.
to all inputimages’* =0,k = 1... K only the smoothness term survives and
depth is driven by the local neighbourhood.

e The relative importance of the image bands is globally wiidlby the inverse
covariance matrixz—!. For instance for images where each image band is
measured by a different sensor, with possible differerd dahge, the relative
importance is adjusted automatically.

e The generative model tells to compare the ideal imageith all input images
y* and not the input reference imagé.

This formulation is different from Proesmaestal. [90], Robertet al. [93], Alvarezet

al. [3] and Slesarevat al. [100] in that more than two images are used to estimate the
depth of the reference camera. Furthermore our above nmexdtEutomatic weighting
mechanisms are not present this work [90, 93, 3, 10€]the image noise is kept
fixed and incorporated in the value df Also the local visibility related weightg?

are often set to one for all pixels. In [100] a robust estioratcheme is used for
which the weightsV* are the result of a reweighted least square optimisation wit
a fixed M-estimator. We have discussed the relation of ouniation with robust
estimation in chapter 2.

4.6 Experiments

The experiments in this section are in close relation to ttpeemental section in
the previous chapter 3.10. We want to evaluate the localomgpras a function of
the parameters and the source of anisotr@pylt is further the intention to compare
the results of the local and the global approach. We wantéssthowever, that this
comparison is somewhat inaccurate, since the local appreses initiaB-D points to
hold on to.
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Figure 4.5:Evaluation of \: Median disparity error (left) and visibility error right as
a function ofA (¢ = 3.2, o, = 4).

0.65 14
5 . | | T(D) —— |
SR =S I = £
g* . (y)»%‘%< E 12
T ETAT I M T
§ osasf % 1 Z w0y ok ok k%
S 04 % i %% ﬁg % 7l

035 ™~ : : 8

0.01 0.1 1 0.01 0.1 1
A A

Figure 4.6:Evaluation of A: Median disparity error (left) and visibility error right as
a function ofA (u = 3.2, o, = 4) when the parameters are initialised with the global
approach.

4.6.1 Ground truth evaluation

The synthetic ground truth evaluation is performed usirggsamel 0 artificial test
sets as in section 3.10 of which one example is shown in fig.F06 one percent of
the pixels (equally spread in the image), the ground trugitdg; in eq. (4.10) is used
as prior. Only for those pixels ig/; =1.

In the first experiment, we evaluate the performance as diumof the relative
weight \ of data-likelihood and prior. Fig. 4.5 shows the median rearad the visi-
bility error for the three regularisers. All regulariserform better than the global
approach, which has a median depth error06.6 (see fig. 3.15). The regulariser,
which is based on the ideal imag&(Vy*)), gives the best result. The two other
regularisers perform similarly. This behaviour can onlyelzplained by the local na-
ture of the diffusion approach. The bad initialisationZofeads to a wrong estimate
of the diffusion tensord’ (VD) andT' (Vy*, VD), which then again prevents global
convergence. To validate this statement, a second expatrinas set-up. In this the
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parameterd, X, p* and V* have been initialised by the value obtained from the
global approach The results of this experiment are shown in fig. 4.6. Indesith, a
better initialisation of the parameters, the regularibased on the depth perform bet-
ter than the image-based regulariser. With initialisatioa disparity-error decreases
even further.

The value ofA which gives the best results lies in the rarige < A <« 1. This
result compensates for the overestimation of the unknoales¢g in eq. (4.6). The
parametric form of our prior distribution does not expljdihke outliers into account
and the value oA, will therefore be larger than it should be.

In the next experiment, we evaluate the three regularisatbemes with respect
to v, the strength of the anisotropy. Figure 4.7 shows the e$oiftthe median dis-
parity error and the visibility error when we do not initiei with the global approach.

Here, we see the convergence of all three regularisers togéeserror-value for
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Figure 4.7:Evaluation of v: Median disparity error (left) and visibility error right as
a function ofv (A = 0.32, 0, = 4).

v — oo. This limit implements isotropic diffusion. The best reguser is again
image-based and has an optimal valueret 1. By initialising the parameters with
the global approach, the depth based regularisers perfionitady or even better,
which is shown in fig. 4.8. Also, the optimal value feiis smaller compared to the
results without initialisation. Both experiments show eragain the advantage of a
good initialisation. To be consistent with the experiméntthe global approach,
fig. 4.9 shows the result with respect to the visibility ctaten strengthr,,. We can
recognise only a minor influence, which is similar to the glodpproach due to a
strong data-likelihood in the occluded areas.

4.6.2 Outdoor scene reconstructions

The outdoor experiments are preformed on the same datassettha previous chap-
ter. Allimages are processed only up to a sizga¥ x 512 pixels to be comparable to

2The Bethe approximation was used with = 100, Ty = 3.5, Te = 0.1, o4 = 100, ¢, = 1 and
C=10"10.
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Figure 4.8:Evaluation of v: Median disparity error (left) and visibility error right as
a function ofv (A = 0.32, o, = 4) when the parameters are initialised with the global
approach.
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Figure 4.9:Evaluation of o,,: Median disparity error (left) and visibility error right
as a function o, (A = 0.32, v = 3.2).

the global approach. The difference is the use of the intdibration points as prior
knowledge.

We used the image-based regularisafios T'(y*) for all sequences and show the
results obtained from the same set of parameters. As a glewat we can state that
the depth and visibility estimates are almost comparabtbeéaesults of the global
approach. The weak point is the depth and visibility estiomahear depth discon-
tinuities. In these areas, the global approach has cleamtalyes, especially when
initial 3-D are missing nearby. The Leuven city hall scene in fig. 4Hds this most
clearly. There, the left part of the reference image doeshage many initial3-D
points and the depth and visibility estimation is rather po@mpared to the global
approach (shown in fig. 3.24). Also, the discontinuitiesuabthe statue in fig. 4.11
are less sharp compared to fig. 3.23.

Another important problem is the presence of wrong iniitiion points. Since
the local approach needs these points, it is difficult tamtistish good initial points
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from bad points.

The local approach is abo times faster than the global approach. The speed
can be increased further by a factorob when the correlation of different visibilities
VF are neglected or when the Ising model (appendix C.2.1) id tmethe visibility
within images (as discussed in sec. 4.3.1).

4.7 Conclusion

A multi-view stereo algorithm was presented for the estiomabf depth and out-
liers. The problem has been addressed from a probabilietitt pf view. One of
the advantages of such an analysis is that it makes the iirgdisumptions underly-
ing a particular algorithm explicit. In our approach, theimassumptions are domi-
nant diffuse reflection and i.i.d. pixel colour distributgd A smoothness regulariser
was introduced to give shape to our prior beliefs about thedvd he key result of

T, T, Ty | o, C A nr.initial 3-D points | time
20 0.1 2 [200 1079 0.8 1333 34sec

Figure 4.10Brussels city hall sceneThe three inputimages are the three right-most
images shown in the top row. The camera position of the Vintnagey* was chosen

to be the left of these images, which shows the in@l points as red dots. The
visibility estimates related tg* are in the bottom row. The top-left image shows the
estimated ideal imagg* and the estimated depth is shown in the bottom-left image.
Similar to the global approach in fig. 3.22, the image siZe6i8 x 512.
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Figure 4.11:Semper statue sceneThe input images are shown in the top row. The
middle image is chosen as the reference view. This imagessthennitial 3-D points

in red. The depth map for the reference view (middle) andesuthaps for the two
other images are shown in the bottom row. The correspondinglt for the global
approach is shown in fig. 3.23.

this probabilistic formulation is that energy minimisatjovhich is the cornerstone
of PDE-based methods, is strongly related to MAP-estimatiore specifically, in
terms of our notation, the typical energy-functional is asal case of eq. (4.23), in
whichy* is defined to be the reference image, and where colour tranatmns and
noise are supposed to have unit strength.

In this work, images are modeled as noisy measurements dbareiansformed
unknown irradiance or ’'true’ image function. This has thpemcipal advantages.
First of all, it brings about an automatic balancing betwesatching and smooth-
ness. In early stages of the optimisatidn is still large), more emphasis is put on
regularisation, whereas in the convergence stagee@ches the true image noise), the
matching term will gain importance. This is the major restdim the probabilistic
formulation of the problem. Also, we formulated the probliewariant to scale. Only
the parametric form of the depth prior is fixed. The width o thrior distribution,
which is related to the scale, is part of the optimisatiorcpture.

Secondly, because the true image is a learned model of im@gkaince, we are
able to leave the input camera positions, which in turn alag/ito compute view inter-
polations as shown in chapter 5.2. Finally, the resultinglehintegrates all available
image information, and can as such be used as a texture m#peftinal3-D recon-
struction.

A strong emphasis was put on the computation of visibilitye Visibility of a par-
ticular pixel is modeled as a correlated mixture problemgsi MRF. The expectancy
of the outliers is sequentially updated in the EM algorithm.
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Figure 4.121 euven cityhall scene:The three input images are shown in the top row.
The camera position of ideal image was chosen to be the middle image, which also
shows the initiaB-D points. The depth map for the reference view (middle) arlico
maps for the two other images are shown in the bottom row. dhegponding result
for the global approach is shown in fig. 3.24.

The PDE-based, local approach described in this chaptelsrmamsistent initial
3-D points for convergence. If these are provided, the lopakeach is much faster
and yields competitive results when compared to the glopaiaach. However, near
depth discontinuities, we find a clear advantage of the glaaroach. The local ap-
proach has, on the other hand, advantages in continuous iggpons. The reason for
this can be found in the undiscretised depth formulatiom.a=good performance on
large images, the local approach is a good candidate, wkiesr @ good initialisation
is provided by the global approach (as will be shown in secsid) or more effort is
put in a possibly probabilistic formulation of self-calition [27], which is expected
to lead to more and especially more accurate ini8l points.
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Chapter 5

Applications

If oo don't belief that oo r model (e.g. of norare errors) isrEet, ch ose an ther one
and use maximum likelih on - or Bayesian - methods for the nedeemWhat, if |
ontt belief in the new model either? It takes a e t of st ttossrte eooo the world
with a host of rather irtetrary and protatey hardey interfatee models ano seaia
they are exactly true. The p int of rot st statestiss is th&t wmay keep a parametric
model hethoose the tatter is known to be wrong.

argmax logp(y |y*)p(y*)} of Hampelet al. [42] with
-

p(y )  II iy v5)
ijeli+1,2,3]

In the last two chapters we proposed two multi-view stergmfdations. They
have been compared on small resolution images. In this eheyat give some exam-
ples of depth reconstructions at full resolution as wellraage reconstructions for
virtual cameras.

5.1 Depth reconstruction

For the depth reconstruction at high resolution we combireeadvantages of the
global and the local approach. The global approach, whiatkswaell on small im-
ages, where it finds more easily a global optimum, is used asitzdisation for the
local approach. This is used to compute the reconstructicthe full resolution im-
ages.

The results of the local approach represeiii reconstructions of the raw depth
mapsD as given by the solution of eq. (4.22F. no median filter has been applied to
the depth map. We show the reconstruction for all piyeishich are visible in at least
two imagesij.e. >, VF >=2in eq. (4.16). Furthermore we skt = 0 in eq. (4.22),
which realises anisotropic diffusion without taking théiad 3-D points into account.
This is possible since we use a relatively good initialwatdy the global approach.

81
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Figure 5.1:Church scene:Three input images (top row). Depth and visibility for the
global approach (middle row), which is used as initialigatito the local approach
(bottom row).

The renderings are not based on triangle meshes. We use aeffioient way
to render these large models which can include more ¢haillion 3-D points. It is
based on QSplats as proposed for the Digital Michelangal@Brby Rusinkiewicz
and Levoyet al [97]. In QSplat all3-D points, their colour, normal direction and
radius are rendered as ellipses.

Church Scene

Three inputimages of a church are used with a resoluti@h @ x 1944 square pixels.
They are shown in the top row of fig. 5.1. The global formulaticas computed up to

a resolution 0648 x 486 square pixels using the same parameters as in the outdoor
experiments from chapter 8,9, as in fig. 3.23. The depth map and the visibility of
this initialisation is shown in the middle row of fig. 5.1. Timput to the local approach

is the depth, the visibility, the image noise and the coloamsformation as computed

by the global approach. We used the same parameters fordhlegjoproach as in the
outdoor experiments in chapter 4 as for instance given irdfifl. One exception is

the value of the smoothness related parametekghich was set to\ = 0.01. This
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Figure 5.2:Church scene:Textured and un-textured rendering of the raw depth maps
(as shown in fig. 5.1. The top row shows the complete moddiéaglbbal (left) and
the local (right) approach. The two bottom rows show zoonesdiering of these
models, for the global approach (two left images) and thellapproach (four right
images)

tunable parameter, which accounts for the uncertaintyerdepth prior, is decreased
to obtain a more smooth, visual appealing reconstruction.

In fig. 5.2 we show textured and un-textured rendering foigibeal initialisation
as well as for the local refinement. The discretisation ofjeth values in the global
formulation is visible in the three left images of this figufige reconstruction at full
resolution is shown in the top/ rightimage. The un-textiagevell as the correspond-
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ing textured renderings of zoomed details are visible infthe right figures in the
middle and bottom row. The computation time was 198 second< &9 seconds for
the global and local approach, respectively.

Leuven city hall scene

Figure 5.3: Leuven cityhall scene: Textured and un-textured renderings from the
images shown in fig. 3.24. The full model and a small detail@flobal initialisation.

In this experiment the same images as in figs.(3.24, 4.12)sw@. The renderings
for the global initialisation are computed with the depthpivafig. 3.24 for all pixels
which are visible in at least to images (visibility maps in 824). These are shown in
fig. 5.3, where the full model (top) and a detail (bottom) ispiiyed. The images are
processed up to68 x 512 square pixels for which69 seconds are needed to evaluate
268 depth states. Given this solution the local approach fiidkseconds to estimate
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Figure 5.4:Leuven city hall scene: Details of textured and un-textured renderings
from the images shown in fig. 4.12.

depth and visibility up to the full resolution 8072 x 2048 square pixels. Figs. 5.5
and 5.5 shows the rendering of the depth map.

For the global approach one can recognise the discretiggith tkvels in the3-
D reconstruction (best shown in the un-textured zoomedeng bottom/left of
fig. 5.3), although the number @68 depth states is large The result of the local
approach displays a smooth reconstruction which displagsdetails not present in
the global reconstruction. Agaixy was set to\ = 0.01 and the other parameters are
identical to fig. 4.12.

INote, that the famous Tsukuba sequence [98] has a grouhdafretdepth states.
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Semper statue scene

Similar to the Leuven city hall scene we used the solutiorhefglobal approach (as
in fig. 3.23) for the renderings in the top row of fig. 5.6. Ur® x 512 square pixels
the global approach tool04 seconds foR40 depth states. Given this result the local
approach took54 seconds to estimate depth and visibility up to the full resoh of
3072 x 2048 square pixels. The renderings of the depth map are showe abtitom

in fig. 5.6 and the parameters are identical to the last exysari.
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Figure 5.5:Leuven city hall scene:Textured and un-textured renderings from the im-
ages shown in fig. 4.12. The full model (top) and small detditee local refinement.
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Figure 5.6:Semper statue sceneTextured and un-textured renderings of the exper-
iment shown in fig. 3.23: global initialisation in the top ramd the local refinement
in the bottom row.
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5.2 Virtual camera reconstructions

Figure 5.7:Cologne cathedral sceneThe seven input images are shown in the top
row. Initial 3-D points and camera positions seen from two view points emelered
in the bottom row.

Often we are not interested in tReD model of the scene, but only want to view the
scene from a new, virtual view point. One possible solut®toirender the computed
3-D model from this virtual camera position. This has beeneadomthe previous
section in the renderings of fig. 5.2, 5.5, 5.6. By using tipisraach it is not possible
to assign a colour value to all pixels. These are the pixelswhich the ray from
the camera centre through the pixel does not intersed-ihenodel. As a result one
could see holes in th&-D model as black pixels. Even if the depth maps from all
cameras are integrated, which is itself a non-trivial peahblthere might still be pixels
with an undefined colour value.

A better solution is obtained by the generative model bappdoach as given in
chapter 3 and 4. Remember, we solved the multi-view stereblgm by computing
the most likely image ™ that would have been observed from a given camera position,
given all inputimages. This problem is independent on timeera position and could
also be applied to a position not included in the set of inpnteras.

The advantage of this approach has several aspects. Fattwe only compute
what is actually needed. Secondly, difficult areas for cotimgudepth become trivial.
For instance in areas of uniform texture (as a uniform skiyg difficult to compute
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the depth because all possible depth values will projecixd@pwhich have the same
colour. Obviously, at these position, the ideal imagevill have this colour.

Two experiments are performed. The first uses seven imagbe @athedral in
cologne as shown in the top row of fig. 5.7. The two images abtiteom of this
figure show two renderings of the initiadD points as well as the position of the input
cameras (large pyramids). The position of the virtual camés indicated by small
pyramids. Note that some of these virtual camera positioa$aa away from the set
of input cameras. The ideal imagé as computed by the local approach is shown in
fig. 5.8 for some of the virtual cameras.

In the second experiment five input images are used whiclcalstin accidental
objects. These are shown in the left column of fig. 5.9. Oneseara bus (top image),
a car (bottom image) and pedestrians. In the reconstrigctbhe virtual camera
positions (shown in the two columns middle and right) theseas disappeatr,e.
they have no support in the majority of images and are remasexitliers.
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Figure 5.8:Cologne cathedral sceneThe ideal image/* for some virtual camera
positions which are shown as small pyramids in fig. 5.7.
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Figure 5.9:Leuven church scene:The five input images are shown left. These im-
ages are contaminated by a bus, a car and several pedestriahe images in the
middle and right column show the computed ideal imggesing the local approach
computed for ten different virtual camera positions.
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Conclusions

If you don’t belief that your model (e.g. of normal errorskimrect, choose another

one and use maximum likelihood - or Bayesian - methods fangliemodel. What, if

| don’t belief in the new model either? It takes a lot of stulrineess to flood the

world with a host of rather arbitrary and probably hardly erpretable models and

claim they are exactly true. The point of robust statistscthiat one may keep a
parametric model although the latter is known to be wrong.

y*,i.e. Hampelet al. [42], p. 403

6.1 Summary

In this thesis we used a generative model based approachvi® the multi-view
stereo problem. In relation to the above quote by Hamapal. [42], we showed that
our particular model can be reinterpreted in the contexbbéist statistics. Moreover,
we could derive a robust M-estimator, which corresponds sorglified version of
our particular generative model. This means that, ‘maxintiketihood - or Bayesian

- methods’ (Hampegt al. [42]) can also be robust if the generative model expligitel
takes outliers into account. If this is done, additionabpkinowledge can be used to
further enhance the performance and to be robust to oudlighe same time.

The main part of this thesis was on the evaluation of two gativermodels for the
multi-view stereo problem. These models gave rise to a ¢fooaulation in which
possible depth and visibility configurations of the sceree rapdeled as states of a
Markov random field. A second, local formulation, takes atidhdepth estimate and
evolves it such that the input images are brought into cpaedence. The results of
the global formulation show that a good solution is estidateen for scenes with
many outliers and depth discontinuities. This solutionbtamed without depth and
visibility initialisation. We showed for example furthéhat depth estimation is even
possible w.r.t. a reference camera which is contaminatédowitliers (fig.3.22). How-

93



94 Chapter 6. Conclusions

ever, the global formulation cannot be applied to largedsia@ages, since the number
of depth states is too large to fit the memory and time comggai current computers.
In this case, the local formulation has clear advantagegttDis not assumed to be
discretised and a very accurate depth estimate can be cethpitie price, for this is
the need for a rough depth initialisation. Once this is givbe local formulation is
able to deal with large images, fast and memory efficient. ddmbination of both,
global and local, leads to accurate depth estimates fot inpages that could possibly
be larger thar mega pixel. Multi-view stereo in this domain is often notdise in
other formulations.

Another focus of this thesis was on the parameter depenaénuogti-view stereo.
We showed that the proposed multi-view stereo formulatioagplicable to a wide
range of scenes. To make this possible we formulated thdeyrods an inverse infer-
ence problem, for which those model parameters are estimtitat have generated
the input images. More particular, the width of the inliestdbution (noise) and the
outlier distribution are estimated. As a result we obtaimm@riulation which is in-
variant to image noise variations and which decides auticaiit when a particular
pixel is marked as outlier. We showed further that the reingitunable parameters
are related to the uncertainty in the prior distributionr @ global formulation this
is reflected byo, and o, in eq. (3.6), which does fix the strength of the depth and
the visibility correlations. In the local formulation weve), i.e. the width of the
prior distribution. If training data would be available seeprior distributions could be
estimated and the formulation is completely parameter free

Our generative model based multi-view stereo formulat®nat restricted to a
depth and visibility reconstruction w.r.t. a camera whiglmicluded in the set of input
images. We have shown, that the formulation can also beeapaivirtual camera po-
sitions, thereby estimating the most likely image that wichdve been observed from
a virtual viewpoint, given the set of input images. In fattisipossible to compute
reconstructions w.r.t. non-perspective camera moaets,f a orthographic camera
model is used, the ideal imagecorresponds to the most likely ortho image.

6.2 Suggestions for further research

The study of the multi-view stereo problem in a Bayesian #ark, as we did here,
brought much insight in the problem. We are now in the pasiteostudy more ad-
vanced priors for the depth and visibility estimation. Tii#i probably lead to a step
forward in the quality of the reconstructions. One pos#ibib more advanced priors
has already been proposed in the context of optical flow esim. Rothet al. [94]
studied the distribution of optical flow fields on labeled gnd truth data and used it
to build optical flow priors. This first step in a probably grog direction showed
already a significant improvement. The question of more ackd prior information
is also strongly coupled to the interpretation of the scefiee final goal in multi-
view stereo reseach is not only the estimation of accudddemodels but also the
interpretation, understanding and simplifycation of thesdels.

A further very interesting question is the performance @atbn of multi-view
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stereo compared to laser scan data. Laser scan systemsrarglgwsed to measure
large outdoor scenes BD. These system are very expensive and the measurement
process is very time consuming. It would be interesting tiogthe possibility of us-

ing high resolution digital cameras to obtain three-dinemal outdoor models. First
experiments in this direction [108] show that the spatiabtetion of high resolution
cameras is comparable with the resolution of laser scammgst Another question
that we did not touch in this thesis is the accuracy of the caroalibration. This is

not only important for the comparison with laser scan systdmt it is also interest-

ing to study the performance of our algorithm with respedeuiations from the true
camera calibration.

We did not pay much attention to the efficiency of our impletagan. Our main
goal was to test the feasibility of the approach. Howeverpiany applications, pro-
cessing speed is an important issue. The possibilitieshare to address these. First
of all the processing on GPU will bring much profit. For the Ierpentation of the
PDE-based depth estimation in chapter 4 multi-grid impletagons have shown to
perform order of magnitudes faster [14].
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Appendix A

Depth parameterisation

Given the external (rotatioR,, and translatiort,,) as well as the internal calibration
matrices (camera matriX,,) for V views (» = 1..N) the relaxation of corresponding
2-D pointsZ in the image plane is given by the depth.34D point denoted byX is
projected to the cameraby:

Mt = K,[RT|-RTt,]X (A.1)

It follows for corresponding image poitts”? = (z1,y:,1)” andih = (22,2, 1)T
and for acoordinate system that is attached to the first cam{@a = 1, t; = 0)
that:

A2 —h Tyrr—1=h 1 T
.7 — K,RIK '#"— — K, RTt A2
Dl(xl) 2 2fbg Iy A Dl(xl) 2 g L2 ( )

The stereo correspondence is divided into a component #pendis on the rotation
and pixel coordinate (according to the homography= KgRgKfl) and a depth
dependent part that scales with the amount of translatibmdss the cameras. The
corresponding pointy on the epipolar line in a second image as a function of the
depthD, (Z4) is given by:

HI[1]ay 41 K>[1R]t>
. H[Q].’f? D1(1) K2 [Q]Rgtg

H[3]7} — 5y Ka[3RSt

(A.3)

H[i] is the 3-vector for thé'" row of the homographiA and similarly forK,[i]. This
equation leads to a parameterisation where for a given pixel imagei, we can
determine the corresponding points in all other images lopling the depthD; (%)

of that pixel.

Lwe will use in the following the superscriptto indicate homogenous coordinates
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In the general case where the first camera is not attacheé @widbal coordinate
system, the correspondence between camanaj is given by:

Hj;[1] 27 L1 Ti;[1]
’ Hy[3)7) — 55Tyl

(A.4)

with Hij = KJR;TRlK;l andTij = KjR;r(ti — tj).
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EM algorithm

B.1 Classical formulation

Let 6 denote all unknowns and letandy denote the Potts MRF and all input data,
respectively. Our aim is to compute the maximum likelihobL] solution of the
parameterg, given by:

O = argema>{ logp(y|0) }
= argema>{ logZp(y,xW) }. (B.1)

Notice that the sur} __ in equation (B.1) ranges over all possible configurations of
the hidden variableg. Even for modest sized images, this is a huge number, which
makes direct optimisation of eq. (B.1) infeasible. The peobcan be made tractable
by using the expectation maximisation (EM) algorithm [1S}arting from an initial
guess(6(®, it produces a sequence of estima@8), ¢ = 1,2...} by alternating the
following two steps:

E-step Compute the distributiob over the range o
such thab® (x) = p(x |y, 8¢D).
M-step  Setf(+ to thed that maximise®, [log p(y, x| 0)].

Here,E,[.] denotes the expectation of the argument udej. The M-step can thus
be seen as a maximum likelihood estimation for which theevalix is known by its
distributiond(x). The key idea, and the way to prevent the computation of tigela
sum in eq. B.1, is to chood€x) close to the true distributiop(x | y, ) but at the
same time less complex and hence, easier to compute. Afténgha specific choice
for b(x) deduced from different approximations, the Kullback-Leildivergence

_ b(x)
Dicr(pllb) = Z b(ax) log s (8.2)
between both distributions is minimised in the E-step.
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B.2 Lower bound formulation

A more insightful explanation of EM is in terms of lower boundhximisation [75,
73, 18]. Thereby, the E-step can be interpreted as constguetocal lower bound on
the posterior. The M-step optimises this bound with resfzettte paramete®. One

can trivially rewrite the argumentin eq. (B.1):

,x o
10g2p(y,x|0 loga y | ) (B.3)
and use Jensen’s inequality to construct the lower bounbdeargumentin eq. (B.1):
6
10g2py,x|0 >Zb % (B.4)

The EM algorithm is exact if the trial distributidr{x) is not restricted to a specified
class of distributions. Maximising the lower bound in eq.4Bwith respect td(x)
results inb(x) = p(x | y, @) which, when resubstituted, turns the inequality into an
equality. The lower bound is tight and touches the objedtinetion:

Py.x|0) 203 x10)
2 Mealos =Heg= = D plxly.)los o)

p(x|y,0)p(y|60)
zx:p(XIy, 6)log” ooy 8]

= Y p(x|y,0)logp(y|6)

= logp(y|@) . (B.5)

On the other hand, if the space of possible realisationé:dfis restricted, the bound
will not be tight. This situation is actually applied to desith the infeasibility of
eq. (B.1).

The negative lower bound is equal to the Kullback-Leiblgedjence. It is also re-
lated to the concept of free energy [75](b(x), 8) of statistical physics (see eq. C.5).
The terms variational free energy or Gibbs free energy a® @ded in the computer
vision literature [124]. More details on this relation arigem later in appendix C.
Thus, maximising the lower bound is equivalent to miningsthe variational free
energy, which is the aim of the E-step.

The M-step is archived by setting the derivative of the \ael free energy
F(b(x), 0) with respect tdd to zero. The EM algorithm can be summarised as fol-
lows:

E-step Setb®)(x) to thatb which minimisesF(b(x), 0)).
M-step  Setf*+1) to thatd which minimisesF(b®) (x), 0)
As shown by Dempstegt al. [19], each EM iteration increases the true log likelihood

or leaved it unchanged. The EM algorithm will therefore cenge to a local maxi-
mum. Given the above free energy formulation, which will lsedi throughout the
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thesis, one has to make proper parameterisations of thelistabution b(x), which
we discuss in appendix C.
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Appendix C

Free energy approximations

The goal of this section is to construct the variational feergy defined by the neg-
ative lower bound or similarly by the Kullback-Leibler digeence. This is done by
defining the trial distributiorb(x) such that the resulting variational free energy is
computationally tractable and accurate (appendix B).

The classic approximation is to assuhig) to be a fully factorisable distribution
over the nodes. This assumption is equivalent to the meahdpgroximation known
in physics for a long time. The machine learning and comptigéon community use
this to solve various problemie., in graphical models [59], stereo vision [129] and
image restoration [130], to name only a few.

More recently, the Bethe approximation (introduced by teen®an physicist Hans
Albrecht Bethe in 1935 [7]) and the more general Kikuchi apgmation (introduced
by the Japanese physicist Ryoichi Kikuchi [61]), gainedam@nce, also in the com-
pute vision community (see Yedidia, Freeman and Weiss [123, 124, 125] for a
theoretical view, and [50, 51, 26, 121] for applications).

After relating these concepts to physics and more partilyula statistical ther-
modynamics, two trial distributions will be considereddahe relation to the mean
field and Bethe approximation will be made.

C.1 Relation to statistical thermodynamics

Using Bayes' rule, the distributiom(y, x| 8) is written as a product of data-likelihood
and prior:

p(x,y[0) ~p(y|x,0)p(x) , (C.1)

where the normalisation is neglected and where the assomigtimade that the ran-
dom fieldx is independent fron®. The prior reflects the smoothness properties of
the random field and is therefore a distribution over the sagen the neighbour-
hood; = N (i) of each node:;; e.g, N (i) could be the four neighbourhood system
(as shown in fig. C.1). If the data-likelihood factorises ditioned on the state of the
hidden variables over the individual nodes;, one can write the joint probability
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distribution similarly to [123, 126] as:

1
pxy|0)=— [ iws ) [] i u.0), (C.2)
71L€>1\j(7) 7
wherey;; (x;, ;) is the link interaction related to(x), ®(z;, v;, @) the data-likelihood
term andZ the normalisation constant or partition function. Notegttthe node in-
terconnection termsg;; (z;, z;) in eq. (C.2) are undirected links. Therefore, they are
only counted once for each node p&it j} with ¢ > j. A graphical representation

BN N I
LY BEDY
o8 o o
oo o o

Figure C.1:Boltzmann machine Observable and hidden nodes are gray and white
circles, respectively. The lines between the hidden n¢de$ represent the prior
interactiony;; (z;, ;). The lines between hidden and observable represent the data
likelihood®(z;,y;,0) asin eq. (C.2).

of eq. (C.2) with a four neighbourhood system, also know at&zB@mnn machine, is
depicted in fig. C.1. The joint probability distribution im.e(C.2) is similar to the
description of interacting particle systems in statistjgaysics €.g the Ising model
describes particles with two states (spin up/down) whitéract spatially). The distri-
bution of these systems are described by an enErgiyd the temperatufe dependent
exponentiabxp(— 1 E(x,y, 8)), i.e. the Boltzmann distribution. The difference be-
tween the formulation in statistical physics and the joirahability distribution in
eg. (C.2) is the temperature. We will include the tempegaiinithe joint probability
distribution by makeing the replacement:

p(x,y]0) — p(x.y|0)T = %ew (—%E(X7Y70)> ; (C.3)

The joint probability distribution in eq. (C.2) is now comfo with Bolzmann’s law
and the corresponding energy is up to a constant given by:

E(x,y,0) = —logp(x,y|0) . (C.49)
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The interpretation of the inference problem in terms of gderature-dependent Boltz-
mann distribution has two advantages: Firstly, this allowdo specify the peakness
of the joint probability distribution. Clearly, fof' — 0 the joint probability distri-
bution allows only one configuration of the random figldi.e., the one which has
the highest probability(x,y |0). ForT — oo, one achieves a randomly distributed
random fieldx. This is in correspondence with our physical intuition. Asetond,
the formulation with a temperature allows us to design stabhvergence schemes by
temperature annealing [62, 112].

Given the temperature dependent joint probability distidn as defined in eq. (C.3),
the variational free energy is defined by the negative loveenl (B.4:

,x|60 T
F(b(x),0) —sz: b(x) log %

x)
D b(X)E(x,0) + T > b(x)logh(x) + Tlog Z  (C.5)

= U(b(x)) — TS(b(x)) + Tlog Z . (C.6)

The first term in eq. (C.5) represents the expected valueeoétiergyl (b(x)), fol-
lowed by the negative entrop§(b(x)) expectation and the Helmholtz free energy
T'log Z. The variational free energy is minimal féf(b(x)) = T'S(b(x)), and is at
this point equal to the Helmholtz free enerfjyog Z.

What has been done so far is in close relation to statistiogdips. There, macro-
scopic properties like energy or entropy (thermodynamieaiables) are computed
by the ensemble average of the local statistical partiahpgnties (micro-canonical
ensemble).

One other important thermodynamical variable is the hepacity C, defined as
the temperature derivative éf. A large value ofC signals a change in the state
of order of a system. It can therefore be used to determineritieal temperature,
which can be seen as the largest temperature, where theofdlse becomes peaked
around a single value.

C.1.1 Example

As an example, the behaviour for a model, which consistseMRF prior as defined
in sec. 3.6.1, is illustrated. If' goes to infinity the prior is uniform (the probability
of observing a specific configuration is random) andffor- 0 the prior is strongly
peaked around its most probable value(s).

Fig. C.2 shows samples from the prior distributjgix)'/” as defined by egs. (3.6)
and (3.3) for different temperatur&s The random field for this simulation includes
R = 20 depth states and two visibility states. The interactionrixas defined in
eg. (3.6) withw=1 andC'=0.

For a high temperaturd (= 5), the distributions for the depth and visibility are
random (left of fig. C.2) and the ener@yhas its maximal value. By lowering the tem-
perature, the energy decreases slowly as shown in fig. C.38.cAttain temperature,
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Figure C.2: MRF Gibbs Prior: Samples of the prior distribution in eq. (3.3) for
different temperature® = {5, 0.56,0.00001} (from left to right). The top row shows

a realisation of the depth statek. . . dog in gray values. And the bottom row shows
the visibility states.

the energy changes strongly. This point, indicated by aelaegk in the first deriva-
tive of the energy (heat capacity), indicates a phase tiansiln this experiment, it
appeared nedf = 0.5 and a corresponding configuration of the random fielthn
be seen in the middle column of figure C.2. Note that this shtharh was performed
without on the prior model in eq. (3.3) only (without datkelihood).

C.2 Mean field approximation

In the specific case of the mean field approximatig,) is chosen as a fully fac-
toriseable distribution over the nodesof the lattice (see fig. C.4):

b(x) = Hbi(xi) : (€.7)

whereb;(x;) is the variational parameter (often called belief) thatrespnts the ex-
pected value of the node. Throughout the thesis, the belief of an individual state
bi(z; = m) will sometimes be shortly denoted b§*. The beliefs are positive and
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x10*

3.5r - = -energy
—— heat capacity

energy

temperature T

Figure C.3: Temperature dependence: of the energyE = —logp(x) (dashed
line) and the heat capacit§E /9T (solid line) for the prior distributiorp(x)*/7 in

PP
P P
P P o
P P P P

Figure C.4:Mean field approximation: In the mean field approximation, the trial
distribution is assumed to factorise over the nodes of tlitc&a The result is, in
contrast to fig.C.1, that the links between the hidden nodesat considered.

normalised over each note

M
D bi(zi) =Y br=1. (C.8)

m=1

IHere the sund_ . denotes the sum over the states of nagdépixel 7). This notation is identical to
Yedidiaet al, e.g [124].
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The variational free energy of the distribution in eq. (C&)bject to the mean
field approximation, follows directly from the above fagtation and is given by:

Farr(b(x) = >0 D bilwi)b () log s (wi, ;) (C.9)
) JELI;’J() Ti, T

ZZbi ;) log ®; (i, yi, 0) (C.10)

+ TZZZ) x;) logbi(z;) + Tlog Z . (C.11)

T

The first two terms represent the energy, followed by the tiegyantropy and the free
energy.

Proof. The proof is trivial in the case of the mean field approxinmaticHowever,
the transition from a sum over all possible random field caméigons) _ to a sum
over local configurations is essential. It is the step to mialkeinference problem
computationally tractable and the reason to apply the me&hdpproximation. The
proof is given for the entropy term eq. (C.12) (in the deiivafl’ = 1 is assumed):

Zb % = Zb )log b(x (C.12)
- Zb Ylog p(x|y,0) — (C.13)
- Zb Ylog p(x) + log Z . (C.14)

The other terms follow the same idea. Using the factorisdisigibution in eq. (C.7)
the entropy eq. (C.12) has the form:

—S = b(x)logb(x ZHb logHb
) ZHb Zlogb x;) .

Consider a specific term that dependslogb;(x;). This term is multiplied by the
sum over all configurations of the factorisable distribntsnich that the value af; is
fixed. One can therefore bririg(z; ) in front and after this rearrangement one gets:

—S = ZZb ;) log bi(x;) (Z 110 xj) : (C.15)

x/x; JFI

The sum over the remaining configurations is one because afdimalisation condi-
tion Za:i bz(.ﬁ?) =1:

ZHbj(xJ Zb 1) Zb x2) ZbNa:N—l

x/x; JFi 171 maF#i my#i



121

such that

> H bi(z;) log H bi(z:) = Z > bila}") log bi(«7") (C.16)

The proof of the second term in eq. (C.13) is equivalent. Rerthird term in
eq. (C.14), a similar strategy can be used. Here one alsolasisider thalog p(x;)
depends on the local neighbourhatid).

O

The assumption of a factorisable trial distributigix) eq. (C.7) leads to the vari-
ational free energy/r (b(x), @) which is indeed given by the sum of local expec-
tationsb, (x;). The mean field update equation (E-step) is then given bingette
derivative of F; »(b(x), ) with respect td; (z;) to zero:

OFyvr(bi(zi) o o
o) jgv:(i) ; bj(z;)logij(wi, x;)
+ log®;(x,yi,0) — T(logbi(z;) — 1) . (C.17)

Note, the sum over the neighbou¥g) for node: is not restricted ta > j. These
terms appear from the derivative with respedi{g;).

1
bi(z; —exp( ZZb (x)log i (xs, z5) + ?logq)i(xi,yiﬁ)—i—l

(C.18)
For the M-step, the derivative is taken with resped tteading to:
810g<I> (24, 9:0)
0= ;Zb ) — 0 (C.19)

C.2.1 Ising model

The mean field approximation has been given for the Potts matiere the number
of statesr; is m > 2. For the special case of the Ising modet= 2, the interaction is
given by a diagonal interaction matrix:

tij = ( g 3 ) : (C.20)

Because of the normalisation condition, only the expectdde/for one staté; (z1 =
1) has to be evaluated. For = 2, and by using the normalisatidn(x; = 2) =
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Figure C.5:Boltzmann machine in Bethe approximation: In the Bethe approxi-
mation, the trial distribution contains the marginals oktbne-nodé;(x;) and the
two-node belief$;;(x;, z;), the latter indicated by ellipses. The resultis, in contras
to fig.C.1, that the links between the hidden nodes are sutestibyb;; (z;, ;).

(1—0b;(x;=1)), itis easy to see that the free energy in eq. (C.9) can be iSietphnd
written in terms ob; = b;(x; =1) only:

Fur®bx),0) ~ — 25 bibjlogJ (C.21)
i JEN®
‘1%'(337::17%:1,9)
— i1 22

+ T bilogh; + (1 —b;)log(1—b;).  (C.23)

The derivative with respect tg leads to the mean field update equation for the Ising
model:

-1
1 1 (I)z(a%:]-ayl:]-ve)
bi=11 —— bl — =1 C.24
( +exp< sz: jlog ] — Og@ﬁ(m:Z,yi:?,H))) (C.24)
For J =0, the beliefs can be computed in closed form:

b; = (C.25)

C.3 Bethe approximation

The derivation of the Bethe free energy is similar to the nfedd case (allthough, as
it will be discussed later, additional approximations agedted if the graph has loops).
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In the Bethe approximation, the trial distributiéfx) is formulated as a distribution
not only over the one-nodg(z;) but also over the two-node belidis (z;, ;) (see
fig. C.5). The one-node beliebs(x;) describe the probability for a node being in state
x; = m. The two-node beliefs;; (z;, z;) describes the joint probability of nodend

j being in stater; =m, z; =n. By this construction it follows that both beliefs should
obey the following constraints [124]:

sz(xz) = Z bij(l‘i,l‘j) =1 (C27)

All belief entries should be positive (C.26) and normaliggdeach node (C.27). The
last constraint (C.28) is the marginalisation. The Bethgraximation assumes the
trial distributionb(x) to be [124]

IL;; bij (@i, ;)
[ L bi ()=t

Heren; is the amount of two-node beliefs connected to the node indéxthe ex-
ample of the Boltzmann machine in fig. C.5, the values are: 4 for all non bound-
ary nodes andi; = 3 andn; = 2 for the boundary and corner nodes, respectively.
One can show that the form of this distribution follows fromngerting a loopless
undirected graph as for instance given by eq. (C.2) intouhetjon tree representa-
tion [115, 92]. The averadge energy in eq. (C.6) when contpwith the exact joint
likelihood p(x,y | @) will be exact for the Bethe approximation [124]. The Bethe
approximation is related to the approximation of the entroply. For graphs without
loops, the entropy is given by:

Zb( log b(x Z Z bij(zi, ;) logbij (s, z5)

ij Xi,Tj

- Y (n —IZb ) log b () . (C.30)

7

b(x) = (C.29)

Proof. By using eq. (C.30) with the replacement of the trial digttibn eq. (C.29),
the negative entropy can be written as:

5= 3" b(x) log b(x Z H“ b” x:fcjl gwa zi2;) (C.31)

H1 bl x“x n,
ZHJb Jx mjl gHb z;)" 1. (C.32)

One has to show that all terms that dependay®;;(z;, z;) in eq. (C.31) and that
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depend orog b;(x;) in eq. (C.32) fulfil the following relation:

Hl bz x“ar)
Z j ) n _Jl lo gbij(xi,xj) = Z bij(xi,wj)logbij(xi,xj) (C33)

TiyTj

bu T, T
Z%ﬂb o m_l)( i = Dlogbi(x;) = (n; — 1) Y bi(x;) logb;(x;).  (C.34)

X

These relations can be proven by induction. Starting fromb@saph containing only
one link, all other links will be added, such that the graphas loopless.

Let the trivial subgraph be described biz;), b(x;), b;;(z;, z;). Each node has
one neighboui,e., n; = n; = 1. And the egs. (C.33) and (C.34) are trivially true. To
add more links by preserving the loopless property of thelyra linkb;x (x;, xx) can
only be added from an existing nodeto anew nodez;. By doing so the sum over
all configurations will include the configurations of the neadex;,. Furthermore the
nodex; gets one additional neighbour — n; + 1. By adding the link eq. (C.33)
changesto:

bij (@i, x5)bik (24, Tk
Z bij(xi,xj)logbij(xi,xj) — Z J( j) ( ) logbij(xi,wj)

Ti, T Tixj T b7($7)
= Z bij(xi,xj)logbij(xi,xj) s (C35)

where in the last line the consistency condition eq. (C.283% wsed. In the same
fashion, all other links can be added and eq. (C.33) is proven

In a similar fashion eq. (C.34) can be proven.

Z sz(xq,,x])logbl(fﬁl) N Z bl](xhxj)blk(xlalk) logbl‘(fﬁl‘)

TiTj Ti,Zj,Th

> i) log bi(xs). (C.36)

Again, the consistency condition eq. (C.28) is used; b;;(xi, z;) = bi(z;) and
Zk bm(x“xk) = b7($7) O

If the graph has loops, the factorisatiorb¢k) as in eq. (C.29) does not lead to the
exact entropy in eq. (C.30). The Bethe approximation, h@neassumes that (C.30)
is still approximatly true.

Using eq. (C.5) together with the Bethe approximation, déwgational free energy
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is given by:
Fpb(x),0)= — > > > bila ;) log (i, ;) (C.37)
P IENG) wiag
- Zzb ;) log ®i(xi,vi, 0) (C.38)
— TZZ Z bij(xi, z;)log bij(x;, x;) (C.39)

+ Ty (n —1Zb ) logbi(x;) + Tlog Z . (C.40)

The EM-algorithm proceeds by iterating the following stelpsthe E-Step, the Bethe
free energy is minimised w.r.b; andb;; by belief propagation [80]. In the M-Step,
the parameters are updated. This is achieved by settingpaaamete# to the appro-
priate root of the derivative equation:

OFp/08 =0 .

The updates of the parameters are the same for both freeyeaqgugoximations, be-
cause they only influence the data-likelihood term&in(C.10) andF'z (C.38).
These terms are identical.

Even though the Bethe approximation has many concerns frenheoretical
point of view, discussed in [71], it has been shown to be a gamatoximation in
practice [118, 120].

It is mainly due to the work of Yedidia, Freeman and Weiss [1223, 124, 125]
that the connection is made between the Bethe and Kikuchidnergy approxima-
tions with popular message passing algorithms. More paaticthey showed [122]
that the fixed points of belief propagation [80] correspamthie stationary points of
the Bethe free energy in the case of loopless graphical modéle same has been
proven more recently by Heskes [45] for models with loopshedalgorithms which
minimise the Bethe free energy are studied in [128, 46, 114]

Inference problems in the form of ML estimates in eq. (B.1)jrothe form of
computing marginal distributions from free energy appneadiions are also the subject
of intensive research in machine learning community [55,734 6].



126 APPENDIX D.



Appendix D

Nonlinear depth diffusion

The depth D) dependent parts of the free energy, given by eq. (4.14), are
Fyr[D] = =) > > blogp(yl|a]".0)
i k. m
1 T 1 )
+5 Xi:(vm) T(VX)VD; + X ;Wi(pi ~G)?. (D.1)

The first term in this equation is the so called ‘matching terime second is the
smoothness term, weighted by the paramatewhich is related to the width of the
depth-prior distribution. The third term relates the deptho G;, e.g, to a sparse set
of initial depth points, which will be switched on By; # 0. Our goal is to minimise
the free energy in eq. (D.1) with respect® The minimisation procedure we use
here is an assimilated version of Alvaretzal. [4], where a similar minimisation with
respect to the optical flow has been considered.

We can rewrite the depth dependent part of the matching tereefch pixel using
the expected values for the visibility* in eq. (3.21) and the Gaussian inlier distribu-
tion eq. (4.13):

DO bt logp(yl |, 0) = = > VEmE) S ml (D.2)
k m k

where the assumption is made that the outlier distribudndependent ob.* Fur-
thermore, we have introduced the colour difference of tealitmage with the colour
transformed:*" input imagem?":

mf =y; — C(P*)yl . (D.3)

The value ofD; will be split into a current estimat®? and a small residudb?, such
that: D; = DY + DI. By taking the Taylor expansion of eq. (D.3) and using the

1if the outlier distribution is modelled as a constant, thiswanption is true. However, when modelled
by a histrogram, the outlier distribution depends@nsince the histrograrh* is filled with the colours of
yfw). This dependence can expected to be small and will be ignored
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particular form of the depth dependent mapping i’ (D;) eq. (A.4) this leads to:

8yk/ oy O1F (i
k _ % k k (D7) () 0 )2
m; =y — C(p*) (%/(D?) + =5 oD, (Di = DY)+ 0 ((D})*) ] . (D.4)

By using this result in eq. (D.1) the associated Euler-Lagesequation lead to:

ldiv(T(VX)VD) +)° v’“(m’“)Tz—laﬂk + iW(D—g) =0 (D.5)
A - oD A\ ' '

This equation can be interpreted as the equilibrium st@afe/pt = 0) of a depth
diffusion process. With being the temporal step size, we get:

= div(T(VX)VD) + 1> vk(mk)Tz*%—"g + %W(D—g) (D.6)
k) C

DD

Equation (D.6) is the realisation of an implicit discretiea scheme. This has the
advantage that the temporal time stepan be chosen larger than it could be for the
corresponding explicit schenieThis of course leads to an faster convergence.

The solution of eq. (D.6) can be computed in matrix form:

AD = b (D.7)

and solved using Gauss-Seidel iterations. Ther&hyg split into diagonaD, upper
diagonalU and lower diagonadl. part as:

A = D-L-U, (D.8)
and the system
(D-L)D: = UD’+b
D-U)D = LD*+b (D.9)

is solved using the forward-backward substitution [88]thWi

o DUb o) ALK (i)

k_
¢’ =C(P)—; o (D.10)
the matrixA and the vectob are given by:
A = 1—7)\%:Vk (ck)TZ_lck—%TW—TA (D.11)

C

b = DAY VF () B (v - C(pN)yho +D°) — %ﬂ/\/g :
k

2The theoretical value in 2 dimensionsris< 0.25 for the explicit scheme.



129

Here, A represents the divergence term @A\VX)VD). Itis the only matrix in
eg. (D.11) with off diagonal elements. Furthermaheis a very sparse witk nonzero
elements for each row and the computation is identical to [4]

In our previous work [106, 103], we implemented the thirdrtén eq. (D.1) by
an anisotropic time diffusion scheme. There, the paramelers been set to a small
value for all pixels for which initial3BD points are available. Once the defithis
initialised with these points, they will only move slowlydmise of the smait value.

In this way, the corresponding energy term (third term in2d.) can be neglected
and a similar result is obtained. However, the formulatioespnted here has the
advantage that the uncertainty of the init.laD points could be consistently taken
into account (by adjusting the value af)V; accordingly). Although, we use only
initial 3-D points without uncertainties, this would be possible &atls to a more

consistent formulation.
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