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Abstract

This thesis deals with the dense multi-view stereo problem.The inherent difficulties
which complicate the stereo-correspondence problem are occlusions. Also, we have to
consider the possibility that image pixels in different images, which are projections of
the same point in the scene, will have different colour values due to non-Lambertian
effects or discretisation errors. To tackle these problemswe propose a generative
model based approach.

In this approach, the images are regarded as noisy measurements of an underlying
‘true’ image-function. Also, the image data is considered incomplete, in the sense
that we do not know which pixels from a particular image are occluded in the other
images. This formulation is equivalent to an inverse inference problem, where the
goal is to estimate the factors that have generated the inputimages. More particular,
given a set of images from a scene, we consider the question what would be the most
likely image that would have been observed from a particularcamera position.

To answer this question, we study a global and a local formulation. In a global
formulation all possible geometric realisations of a sceneare considered and evaluated
to find the most plausible realisation. The local formulation takes an initial geometric
realisation and refines it in a gradient decent manner.

Both formulations are intensely evaluated and their advantages and disadvantages
are discussed. Finally, our proposed multi-view stereo algorithm combines both for-
mulations and its performance is illustrated on several real-world examples. We show
how the algorithm can generate realistic view interpolations from a virtual camera
viewpoint.
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Notations

To enhance the readability of this thesis, some notations and naming conventions used
throughout the text are shortly summarized here.

p vector
1 unit vector
pk specific entryk of vectorp
P matrix
I unit matrix
D,V functions

Moreover, the following symbols are used for the following entities:

p probability density function
θ parameter vector
Σ covariance matrix

x Markow Random Field (MRF)
xi ith node of the MRF lattice
xni nth state of theith node of the MRF lattice

y data/image
yi ith data point / input image pixel
yki pixel ith of thekth input image

y∗ ideal image
y∗i ith ideal image pixel

b(x) belief, probability, expected value ofx
bni belief, probability, expected value ofxni ;

(bni =bi(xi=n))
bnmij joint belief, probability, expected value ofxni andxmj ;

(bnmij =bij(xi=n, xj=m))
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Chapter 1

Introduction

If ou uonntftbeief ’iatfyourfryuelf(e.g( of doaralfeaaoags igfcyrrb)’cf)hyyge anythba
onefadufosefmh,irum eixelliyyufk oaf-ayeslhdfk mbthydsfIorf ’hefdbw myuee.

Wha’cflffIfuyd’t bbliefflnftibfneB ryuelfeitibaW I’ftakbs afeotfyI g’ottornnesgftyfIloyu
’hbfworeu wi’i h hos’ oIfaathbafhabi’aha andf?rythtl fharul id’eapaetabebfmydelg
anu )lhir tiby aae exac’l ftrue( phb pyid’fyf robost gth’ls’i)gfisfthh’fone rhy xee?fa

phrhrbtricfryueefhlthoogh ’ibfea”er ls knyBd tofbbfBrydg.

arg max
y∗

{
log p(y |y∗)

}
of Hampelet al. [42]

The stereo problem is one of the core problems in computer vision. Humans use
their two eyes to solve this problem and to obtain a three-dimensional impression of
the world. Two processes seem to play an important role in achieving this. An early
‘bottom-up’ process during which base representations aregenerated from the visual
input. And, later in the visual stream, a ‘top-down’ processseems to be responsable
for taking higher-level, prior knowledge into account. Thereason for the striking
performance of the human visual system is expected to be based on the latter. Humans
use for instance shadows to help3-D scene interpretation [60] and have a strong prior
to choose the interpretation of the scene in which light enters from above. It has also
been shown that the bottom-up and the top-down processes interact with each other.
An example for human depth perception is given in Bülthoffet al. [15]. They show
that the top-down process can overrule slightly incorrect stereo stimuli, if the test
persons recognise the stimuli (in this case: a human, represented by dots in a so called
point-light figure).

When looking at the solutions to the stereo problem in computer vision prior in-
formation does not play the same essential role yet. Priors on the3-D environment
are often introduced via a smoothness assumption,i.e. if a certain3-D point is part of
the scene this is with high probability also true for the surrounding points. The use
of more advanced prior information is probably the most promising future direction
for the improvement of stereo algorithms. Important for theincorporation of prior

1



2 Chapter 1. Introduction

knowledge is thepreciserelation between prior knowledge and data measurements.
How much evidence must be provided by the data (the input images) before the prior
knowledge can be overruled? The data might suggest a very complex, less plausible
depth interpretation. At which point do we accept this interpretation? The data could
show conflicts. Some data points agree on a certain depth interpretation, whereas oth-
ers don’t. Do we belief in this case in a consensus, and when would we decide to
neglect data points as being untrustable? The decision on these questions depends
strongly on the mentioned prior-data relation.

The Bayesian framework offers the mathematical tool which combines prior knowl-
edge and data evidence in a consistent way. In this thesis we apply this powerful
framework to the multi-view stereo problem. The stereo problem will be formulated
as an inverse inference problem, where the goal is to estimate the factors that have
generated the input images. The same philosophy,i.e. based on generative models, is
a good candidate to model the interaction of bottom-up and top-down processes in the
human vision systeme.g. Yuille and Kersten [127].

1.1 Three-dimensional image modelling

During the last few years more and more user-friendly solutions for 3D modelling have
become available. Techniques have been developed [43] to reconstruct static scenes
in 3-D from video or images as the only input. The strength of these structure-from-
motion (SFM) techniques lies in the flexibility of the recording, the wide variety of
scenes that can be reconstructed and the ease of texture extraction. Three-dimensional
image modelling is usually divided into camera calibrationand dense stereo matching.

Camera calibration

The starting point for the3-dimensional modelling of images is the matching of fea-
tures (e.g. Harris corners) across all images. The resulting feature tracks are used
to calibrate the cameras [83, 77]. For wide-baseline stereo, features are based on
local, viewpoint invariant regions [111, 72], SHIFT [70] orSURF [5] descriptors.
Using high resolution images with a larger baseline insteadof low resolution video
is a promising avenue for3-D reconstruction for a number of reasons. First of all,
modern digital cameras have very high resolutions and are capable of recording de-
tailed, high-quality imagery. Secondly, using a limited amount of images speeds up
the reconstruction process considerably. Also, the wide-baseline setting carries the
promise of more accurate reconstructions, because it generates larger, hence more re-
liably measurable, disparities in the images. On the other hand, there is a price to
pay for these advantages. Inherent to the wide-baseline setting is the problem of oc-
clusions. Not all parts of the scene, which are visible in a particular image, are also
visible in the other images. Because of the large differencein viewpoint, we also have
to consider the possibility that image pixels in different images, which are projections
of the same point in the scene, will have different colour values.



1.1. Three-dimensional image modelling 3

Figure 1.1:Bundle adjustment: The position, orientation and lens parameters of the
cameras (bottom) as well as the location of3-D points is optimised such that each
3-D point is projected to its corresponding feature track in the images. Some of these
tracks are indicated in the top images.

Camera calibration based on a sparse set of feature tracks provides the necessary
input to solve thedensestereo or multi-view stereo problem. First of all it provides
the3-D position and orientation of the camera centre (i.e. the external calibration) as
well as the camera matrix and the radial distortion of the camera lens (i.e. the internal
calibration). Secondly a set of3-D points is provided. Each of which corresponds
to matched feature track. All parameters (camera parameters and3-D points) are fi-
nally optimised such that all3-D points will project to their corresponding2-D feature
positions in the images. This optimisation procedure is called ‘bundle adjustment’.
The geometric relation between pairs of images is given by the epipolar geometry. It
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restricts the two dimensional correspondence space to one dimension.

Dense stereo

Given the camera calibration one can formulate the stereo problem in various ways.
For two images we are interested in finding all correspondingpixels, i.e. the pixel
coordinates which correspond to the projection of the same scene point in the two
images. The correspondence search is restricted to the epipolar line. Since correspon-
dence cannot be established for all pixels one could extend this and include also the
detection of occluded pixels or outlier pixels. When dealing with multiple input im-
ages, in a multi-view stereo setting, we are interested in the correspondence and the
visibility between all images. The solution of this problemis the subject of this thesis.
We will make the following assumptions:

• The full calibration of the cameras is known. The input images are corrected
for radial distortion1.

• The scene is mainly static. If the scene contains dynamic parts they will not be
modelled and treated as outliers.

• A rough bounding volume (for the global formulation in chapter 3) or a sparse
set of3-D points (for the local formulation in chapter 4) are given.

• The scene is Lambertian. We allow a global colour transformation of corre-
sponding pixels. Again, non-Lambertian parts of the scene will be considered
as outliers.

1.2 Multi-view stereo taxonomy

Recently, Seitzet al. [99] compared and evaluated various multi-view stereo algo-
rithms. This work can be seen as a general review in this research area. It collects
most multi-view stereo approaches and builds a taxonomy among them. Similar to
this we will give a taxonomy, which is obviously strongly related to Seitzet al. Fol-
lowing Seitzet al. the large amount of multi-view stereo algorithms can be classified
according to:scene representation, photo consistency measure, visibility model, shape
prior, reconstruction algorithm,and initialisation requirement. Scene representation
is the most important criterion and we will discuss this category more detailed.

1.2.1 Scene representation

The geometry of a scene can be represented in various ways. The majority of multi-
view stereo algorithms use voxels, level-sets, polygon meshes or depth maps. These
four representations are graphically depicted in fig. (1.2)for the2-dimensional case
with three cameras.

1This is not strictly necessary, but will speed up the depth estimation.
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Figure 1.2:Two-dimensional version of different scene representations: A scene
(black curve) captured by three cameras can be represented by a voxel representa-
tion (top/ left), a level-set representation (top/ right),a triangle mesh representation
(bottom/ left) and by a depth-map representation (bottom/ right).

Voxel and level-set based representations define a3-D grid. For voxel formulations
the scene is represented by an occupancy function defined on every grid cell. This
function tells whether the grid cell is a valid point of the scene (marked gray in the
top/ left image of fig. (1.2) or not (white cell in this figure).For level-sets the grid
function encodes the distance to the closest surface. Usually its value is negative
for all grid cells inside an object (indicated by light gray coloured cells in the top/
right image of fig. (1.2) and positive outside (dark colouredcells in this figure). The
zero crossing of the level-set function represents the scene points. Polygon meshes
represent a surface as a set of connected planar facets. As long as the scene is simple
enough, this representation is efficient for storing and rendering. Therefore it is also
a common format used in computer graphics2. This representation is shown bottom/
left of fig. (1.2). The depth map representation stores the depth value for all pixels in
the input images as illustrated bottom/ right in fig. (1.2).

The major distinction between the four representations canbe made according to
the integration space3. Representations, which are defined in3-D (voxel, level-sets
and triangle mesh) take a3-D -point, -patch or volume, project this in the images and
measure the amount of mutual agreement between these projections. Then, the inte-

2For highly complex and large scenes a more efficient technique for rendering is based on splats [97],
i.e. unconnected points with radius, colour and surface normaldirection.

3Seitzet al. discuss this distinction in the second category,i.e. the photo-consistency measure.
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gration is performed over the3-D volume or the3-D triangle mesh. As a consequence
a 3-D -point, -patch or volume element will have the same importance independent
on how much pixels it covers in the image space. Different from this, for depth-map
representations the integration domain is the image space itself.

Another distinction is thediscretisation. Voxel and level-set representations use a
discretised3-D grid. To obtain sufficient accuracy this volume includes alarge amount
of cells which might not straightforward fit the memory capacity of the computer.
Therefore the minimal cell size will usually cover several pixels in the image space.
If an initial solution is already given, this problem can be minimised by the use of
an octree representation [44, 113]. In triangle mesh and depth map representations
the discretisation is less critical. They can store3-D points or depth values as real
numbers which are discretised only by the machine precision. The discretisation is
a major issue when considering the scalability of the representation. Triangle mesh
and depth map representations can easily be scaled to huge sized images. Whereas
for level-set and voxel based representations it is more difficult to achieve the same
accuracy.

If the application requires a complete model of the scene, depth map representa-
tions have the disadvantage that one is still left with the problem of integrating the
depth maps of all input images into a single3-D mesh. Whereas for voxel, level-set
and triangle mesh representations both steps are integrated into a single scheme.

Some multi-view stereo approaches are based on a two step procedure (e.g. Her-
nandezet al. [44], Goeseleet al. [41], Akbarzadehet al. [1]). In a first step a depth
map representation is used, where the depth value of each pixel is often not assumed
to be spatially correlated or computed with less accuracy. In a second step these algo-
rithms switch the representation and compute the final, spatially smooth solution in a
3-D based representation, with the depth maps a input.

In that sense most stereo algorithms are based on a depth map representation.
Examples are given by Szeliski [109], Kolmogorovet al. [64], Pollefeyset al. [84],
Strechaet al. [107, 106, 103, 104], Gargalloet al. [37], Hernandezet al. [44], Goe-
seleet al. [41], Akbarzadehet al. [1] to name only a few. The last three authors also
investigate the depth map integration based on a3-D representation. Also the large
number of two-view stereo algorithms are based on a depth maprepresentation, which
in this case simplifies to a representation by the disparity.For an overview of these
algorithms see Scharstein and Szeliski [98].

Different from these algorithms we can find algorithms whichstart directly from a
3-D representation. Voxel representations are formulated for instance by Kutulakoset
al.Kutulakos00, Vogiatziset al. [113], Hornunget al. [47] and Tranet al. [110]. Level-
set representations are proposed by Faugeraset al. [24], Ponset al. [85, 86], Soatto, Jin
and Yezzi [101, 52] and Duanet al. [23]. Triangle mesh representations are considered
by Furukawaet al. [36].

The optimal choice of the representation depends largely onthe application. In
multi-view stereo applications for which many images, thatcapture an object from all
around, are available voxel, level-set or triangle mesh representations are the most nat-
ural choice. In these applications almost all scene points are visible in many cameras
and it is possible to reconstruct the entire object without holes. In these representations
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it is also very simple to incorporate visual hull informations. Typically the algorithms
which use this representation are evaluated on turntable sequences as in [99]. If only
a small number of images is given depth map representations are more suited. Typical
applications are the reconstruction of large scale outdoorscenes.

1.2.2 Photo-consistency measure

Seitz et al. [99] distinguishes photo-consistency measures among scene space and
image space integration methods. This distinction is more related to the scene rep-
resentation. Photo-consistency measures that are presentin multi-view stereo algo-
rithms include colour distance based on the constant brightness assumption (sum of
squared differences SSD), normalised cross correlation (NC) or mutual information
(MI). Often the constant brightness assumption between pixels is embedded in a for-
mulation considering arobustfunction of their colour difference. This can be related
to generative model based formulations which are subject ofthe following chapters.
The underlying concept of the constant brightness is the assumption that the scene
behaves Lambertian. Stereo algorithms which are able to deal with non-Lambertian
surfaces exist. In the work of Soattoet al. [101, 52] the3-D model, BRDF and the
light source direction is computed such that the differenceof the rendered3-D model
with the input images is minimal.

The use of cross correlation as the consistency measure weakens the constant
brightness assumption to allow for linear brightness changes. When using mutual
information a statistical relation is assumed and the inputimages could have different
modalities. Ponset al. formulated the multi-view stereo problem for various matching
criteria (SSD, NC, MI),e.g. [85, 86, 87]. A similar strategy has been used in our work
for the registration of two uncalibrated images [28, 33].

1.2.3 Visibility model

Visibility models are needed to compute the images in which acertain3-D scene point,
voxel or pixel is visible. Those images can be used to establish the correspondence by
minimising the matching criterion. Possible models are based on geometric or pho-
tometric cues. Geometric visibility models take the current solution of the scene ge-
ometry and check in which images a3-D scene point, voxel or pixel is visible, given
this current solution. This approach results in the iterative, two-step estimation of
scene geometry and visibility. Photometric visibility models usually take the current
estimated scene geometry and define visible points by those pixels matches that obey
the photo-consistency assumption. The result is, similar to the geometric models, a
two-step estimation of scene geometry and visibility. In chapter 3 we formulate a pho-
tometric model which integrates depth and visibility, suchthat the two-step estimation
is replaced by a global depth-visibility estimate. The roleof visibility in multi-view
stereo is a major part of this thesis and the related literature is discussed in chapter 3
more detailed.
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1.2.4 Shape prior

The ability of humans to perceive depth from stereo is to a large extent based on
sophisticated shape priors. Yet, many stereo and multi-view stereo algorithms are
inferior to the human performance, because only simple priors are used. Priors are es-
pecially important when the data provides insufficient information to identify unique
matches across images. This can be a problem in untextured regions.3-D based rep-
resentations often seek a solution with a small overall surface area. The use of this
prior has the tendency to smooth over points of high curvature. Depth map repre-
sentations usually impose the constraint that neighbouring pixels have the same depth
value, which lead to a favour towards fronto-parallel planes. Shape priors are dis-
cussed more detailed in secs. 3.6.1 and 4.3.2.

1.2.5 Initialisation requirements

The input to multi-view stereo algorithms are the images andtheir calibration,i.e.
the internal and external calibration parameters or the projection matrices. However,
depending on the algorithm, additional input information is required to initialise the
reconstruction or to restrict the geometric extent of the object being reconstructed.
Many algorithms require only the rough bounding box of the object. This is necessary
for voxel or level-set methods to define the voxel grid on which the algorithm performs
the computation. For triangle mesh representations the initial mesh is built up from
this bounding box. Many of these3-D based methods start from the more restricted
visual hull. Depth map based representations often requirethe depth range, which
can be computed from projecting the bounding box into the image, to be known.
This is needed for Markov Random Field (MRF) formulations toset up the possible
depth states of the random field. For PDE-based methods a set of initial 3-D points is
needed. The initialisation is often easy to obtain. The visual hull can often be used
in indoor applications. For outdoor scenes a successful camera calibration provides
a set of initial3-D points, which are the result of bundle adjustment [83]. These are
often sufficient to estimate the depth range for MRF methods or to provide initial3-D
points for PDE-based methods.

1.3 Main contribution

This thesis aims to give a more general view of the multi-viewstereo problem. Solu-
tions to the following relevant issues are given or will be discussed.

• Often, multi-view stereo algorithms start from postulating an energy for which
sophisticated minimisation techniques are proposed. Photo-consistency mea-
sures, priors and parameters are defined and it is often not clear how their spe-
cific choice can be justified. Therefore it is often necessaryto evaluate the qual-
ity of the results dependent on the introduced parameters. This is done on given
ground truth data or by judging the parameters by visual verification. The ques-



1.4. Outline of this thesis 9

tion is how these multi-view stereo formulations generalise to perform equally
well on substantially different input images.

The intention of this work is to formulate multi-view stereoalgorithms that are
to a large extent parameter independent. Also, we are interested in the inter-
pretation of the remaining parameters. To achieve this goal, generative models
for images are proposed, which explain the physical processof capturing im-
ages of a3-D scene. Once the image generation process is specified, Bayes rule
provides the mathematical tool to invert this process by estimating the involved
parameters. We will discuss the relation of existing stereoalgorithms to our
formulation and will specify the assumptions they make. Furthermore, our for-
mulation covers the solution to the classical stereo problem as well as the area
of novel view generation in a single framework. All these aspects are published
in [103, 104] and are successfully used by Gargalloet al. [37].

• For the reconstruction of the scene in3-D, the estimation of depth and visibil-
ity are closely related. If the scene geometry is known one can compute which
scene points are visible in which image. On the other hand theknowledge of
visibility is necessary to estimate the scene geometry,i.e. the photo-consistency
criterion should be evaluated for visible pixels only. The depth-visibility in-
terconnection is often separated and iterative solutions are proposed to update
scene geometry and visibility in turn. In this thesis we willgive a global formu-
lation which treats both entities jointly. We will show thatthis formulation is
able to deal with substantial occlusions. This work has beenpublished in [104].

• Multi-view stereo algorithms are mostly evaluated on smallsize images. Many
existing approaches do not scale to large size images (e.g.∼ 6 mega pixel). Our
formulation can be used with large size images,i.e. the algorithm can run on
current computers with acceptable computational speed andmemory resources.

1.4 Outline of this thesis

This thesis is organised as follows. In chapter 2 we discuss Bayesian inference tech-
niques, based on generative models. These models are the main tool for the stereo
formulations later on. The reason of this chapter is also to provide the relation of
generative model based formulations to the area of robust M-estimation. We will
demonstrate this on a simple line fitting example. Later on weuse this result to dis-
cuss the connection between our multi-view stereo formulation and other algorithms,
for which robust M-estimation plays an important role. In chapter 3 we present and
evaluate a global approach to the multi-view stereo problem. We call this approach
global because all possible depth and visibility realisations of the scene are consid-
ered. In a similar fashion chapter 4 presents a local approach, which optimises an
initial depth and visibility. We evaluate both formulations on the same data sets and
compare their performance on ground truth data as well as on real outdoor scenes.
Chapter 5 shows results for two main applications,i.e. the building of3-D models
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from images and the generation of novel views of a captured scene. Finally, general
conclusions and suggestions for future work are presented in chapter 6.



Chapter 2

Generative models and robust
M-estimation

f oo oonnt teeie tiat oor r oel me.sm o doaral eaaoass is c rrestc sh se an thea one
ado ose mhcirom eixelli o k oa -a eslhd k meth ds for the dew m oee. whatc l f o dtt
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phe p idt roeost sthtlstiss is thht one rh xeep a phrhretric r oee hlthoosh tie eatter ls

kn wd to ee wr ds.

arg max
y∗

{
log p(y |y∗)p(y∗)

}
of Hampelet al. [42]

In this chapter we relate the particular generative model which is used in this
thesis to robust M-estimation. Firstly, we give a small introduction of (non-robust)
generative models and Bayesian inference in general (sec. 2.1). Next, we discuss
the problem of outliers and how they can be suppressed in a robust M-estimation
framework (sec. 2.2). Further, we introduce the generativemodel based formulation
(sec. 2.3) and discuss the relation to robust M-estimation in sec. 2.4.

2.1 Bayesian parameter estimation

In the 18th century Thomas Bayes developed a computational approach to reason on
plausible explanations of data. The invention of computersin the 20th century made
it possible to apply this work in real life applications. Theevaluation of realistic
Bayesian models became computationally feasible. Appliedto computer vision, this
framework regards images as noisy measurements of an underlying ideal image rep-
resentation. This could be for instance an image which wouldhave been observed in
the absence of noise. Generative models describe how these measurements (our input
images) are generated from this representation. A generative model will depend on a

11
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set of parameters and includes possibly also latent variables. The first task in solving
computer vision problems is to analyse the measurement setting and to define the un-
derlying generative model (process). The second and often complex task is to invert
the generative model by estimating the parameters (or theirconditional distribution)
and the latent variables. Bayes’ rule provides the mathematical tool to achieve this. To

Figure 2.1:Bayesian inference:

put this more formally we cally={y1 . . . yN} theN measurements andθ the model
parameters. The generative model is defined by specifyingp(y |θ), i.e. the likelihood
of the measurement given the value of the parameter. The multiplication with the
parameter priorp(θ) leads to the joint probability distributionp(y,θ) = p(y |θ)p(θ).

So far we have specified all properties which represent our knowledge of the mea-
surement setting. First, this is the priorp(θ), which might be known from intuition or
from past experience. In the latter, if training data is available, the prior distribution
can be estimated. Secondly we have analysed how the measurements are generated.
When given a particular set of measurementsyd, we can solve the inference problem
by analysing the sectionp(θ | y) of the joint distributionp(y,θ) as it is shown in
fig. (2.1). We have formulated the geometric interpretationof Bayes’s rule:

p(θ |y) =
p(y |θ)p(θ)

p(y)
(2.1)

wherep(y) =
∫
p(y |θ)p(θ)dθ is the normalisation.

The result can be either the probability distributionp(θ | y) of the parameterθ
itself, leading to a fully probabilistic formulation, or the maximum a posteriori prob-
ability (MAP) estimate of the parameters:

θ̂MAP = arg max
θ

{
log p(y |θ)p(θ)

}
. (2.2)

If the prior p(θ) is not known,i.e. it is uniformly distributed over the range ofθ,
eq. (2.2) is the maximum likelihood (ML) estimator:

θ̂ML = arg max
θ

{
log p(y |θ)

}
. (2.3)
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Example: line fitting

Consider the simple problem of fitting the slopea of a line through data pointsyi,
as shown in fig. (2.2). The data pointsyi are measured at timeti and the generative
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Figure 2.2:Least square fitting: For Gaussian noise, the ML estimate of the data is
given by the least square fit.

model for this problem can be formulated by1:

yi ← ati + ǫ , (2.4)

whereǫ is the noise, which is characterised by the distributionǫ ∼ f(yi; ati, σ
2) with

meanati and varianceσ2. The model parametersθ are in this example the slope of the
line and the noise parameter,i.e. θ = {a, σ}. The probability of observing a specific
data pointyi is given by:

p(yi |θ) = f(yi; ati, σ) . (2.5)

It is easy to see that the ML estimate for the line slopea is given by the least square
fit overθ=a, if the noise distributionf(yi; ati, σ

2) is assumed to be Gaussian:

θ̂ML = arg max
θ

{
log f(yi; ati, σ

2)
}

(2.6)

= arg min
θ

∑

i

(ati − yi)2 . (2.7)

Example: optical flow

An example of a generative model for the estimation of image motion is studied by
Weiss and Fleet [119]. This model is, as we will see later on, one part of our pro-
posed generative model. In this, the pixelsyi of the input imagey are assumed to be
generated from an ideal imagey∗ by:

yi(ui) ← y∗i + ǫ , (2.8)

1We assume here for simplicity thatti is exactly known.
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whereǫ is again the image noise and where the image motion is captured by the
mappingi(ui) ← i. In the most general case,ui has two degrees of freedom and is
called optical flow field. The parameters for this generativemodel include the image
noise, the ideal imagey∗ and the optical flow fieldui. Weiss and Fleet assume in this
model that the image motion does not result in occluded pixels,e.g. pixels iny which
have no counterpart iny∗. However, occlusion and outliers play an important role in
stereo and especially wide-baseline stereo. We will now discuss how to handle them.

2.2 Robust M-estimation

Often the nature of the noise process is unknown or the measurementsyi are con-
taminated by random outliers. Therefore, in the eighties, statisticians started to take
another path. The idea was to develop techniques which wouldbe ‘robust’ to these
uncertainties and which would not necessarily explain themby even more advanced
models. This new branch ofrobust statisticswas pioneered by the work of Huber [48],
Rousseeuw [95] and Hampelet al. [42]. In the book of Hampelet al. which was pub-
lished in 1986, one can find the following dispute, which reflects nicely the scientific
debate between Bayesian thinking and the new branch of robust statistics.

...”If you don’t belief that your model (e.g., of normal errors) is correct, choose
another one and use maximum likelihood– or Bayesian– methods for the new model.”
What, if I don’t belief in the new model either? It takes a lot of stubbornness to flood

the world with a host of rather arbitrary and probably hardlyinterpretable models
and claim they are exactly true. The point of robust statistics is that one may keep a

parametric model although the latter is known to be wrong.
Frank R. Hampelet al. [42], p. 403

In robust M-estimation, the essential idea is to replace thequadratic error function
in eq. (2.6) by something which is less sensitive to outliers. More particular, in a gen-
erative model based formulation, under a Gaussian noise assumption the ML estimate
is given by the minimum ofθ w.r.t. the squared residualsri:

θ̂ = arg min
θ

∑

i

r2i . (2.9)

In a robust formulation the quadratic dependence of the errors is replaced by the
ρ-function, called M-estimator2. This is a positive, symmetric function with a unique
minimum at zero, which is chosen to be less increasing than quadratic. The aim is to
find the parameters such that:

θ̂ = arg min
θ

∑

i

ρ(ri) . (2.10)

2‘M’ is synonym for maximum likelihood estimator. Note, thatsome robust estimation methods do not
compute the ML estimate. RANSAC for instance computes the solution based on a minimal set of data
points.
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To quantify the effect of an infinitesimal change of a datum onthe parameter estimate,
we consider its derivativeψ(r) = ∂ρ(r)/∂r, which is calledinfluence function[42].
The value|ψ(r)| increases with increasing values of|r|, and for a certain class of M-
estimators, the so-calledredescendingM-estimators, the influence function descends
again when|r| reaches a critical value,i.e. from this point on the parameter estimate
will be more and more unaffected by the corresponding data points. One important
issue in robust statistics is the choice of theρ-function. Table 2.1 gives some popular
examples.

domain ρ(r) ψ(r) b(r)

Tukey’s |r| ≤ 1 c2

6

(
1−
(
1−( rc )

2
)3)

r
(
1−( rc )

2
)2 (

1−( rc )
2
)2

biweight |r| > 1 1
6 0

Lorentzian R
c2

2 log
(
1+( rc )

2
)

r
1+( r

c
)2

1
1+( r

c
)2

Truncated |r| ≤ T r2 r 1
quadratic |r| > T T 2 0 0
Laplacian R, r 6= 0 | r | sign(r) 1

|r+ǫ|

Table 2.1:Robust M-estimators: Theρ, ψ andb -functions.

Re-weighted least square optimisation

The solution of eq. (2.10) can be obtained by using a two step procedure, which is
called ‘reweighted least square optimisation’. In the firststep the weightbi for every
data pointyi is computed. The second step solves the weighted least square problem:

parameter estimation: θ̂ = arg min
θ

∑
i bir

2
i . (2.11)

The weights are given by the influence functionψ(r)=∂ρ(r)/∂r. Their value is [42]:

weight estimation: bi = ψ(ri)
ri

. (2.12)

Both steps are iterated until convergence. Fig. (2.3) showsthe result of a line fit with
outliers using the least square and the Laplace (L1 norm) estimator as well as the final
estimate of the weightsbi.

An important example of robust estimation for the estimation of image motion
can be found in various papers by Blacket al. (e.g. [9]) and more recently by Brühnet
al. [12].

Having in mind the excellent results of robust estimation itseems contradictory
to go a step ‘backwards’ and use again generative models to formulate the multi-
view stereo problem. Nevertheless, in the last three years Strecha, Fransens and Van
Gool investigated generative models for a wide range of problems in computer vi-
sion. Starting with a generative model based approach for stereo (Strecha, Fransens
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Figure 2.3:Robust fitting: Least square fit (left) of a line with outliers and the fit
using the robust Laplacian (middle). The final value of the weights bi for all data
pointsyi is shown right.

and Van Gool [103]) we investigated the use of similar modelsfor the case of super-
resolution [29], optical flow [102], image registration [105], multi-view stereo [104]
and face recognition [31]. In all these investigations we could present good results
obtained from a consistent formulation.

As a final investigation of these generative models we make the important connec-
tion to robust estimation in Fransens, Strecha and Van Gool [32]. From the theoretical
point of view this is probably the most important result of our joint work.

Coming back to the mentioned dispute of statisticians in theeighties we were
able to make the link between a generative model based approach and robust esti-
mation framework. Moreover a robust M-estimator has been derived which follows
directly from a generative model with outliers and which is similar in shape to other
M-estimators (as for instance shown in table (2.1)). This isthe subject of the next
section.

2.3 Robust generative models

In order to deal with outliers we extend the generative modelin eq. (2.8). This model,
which we will call the inlier process, is one part of our final generative model. It is
responsible for the generation of all data points, except for the outliers. A second,
outlier process, is responsible for generating all other data points,i.e. the outliers.
This process will be modelled as a random generator, sampling from an unknown
distribution, characterised by a probability density function (PDF)g. This PDF can be
a histogram or a uniform distribution. The generative modelfor the outlier process is
written as:

yi ← g . (2.13)

Further, we introduce a hidden variablex= {x1 . . . xN}, which will distinguish both
processes for each data pointyi, i.e. x1 = 1 if the data pointyi is generated by the
inlier process andx1 = 0 if the data pointyi is generated by the outlier process. Then
the probability of observing a specific data pointyi, conditioned on the unknownsθ
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and the state of the hidden variablex, is given by:

p(yi|x,θ) =

{
f(yi; y

∗, σ) if xi = 1
g(yi) if xi = 0

}
. (2.14)

We call this modelrobust generative model, since the parameter estimate will be ro-
bust to outliers. The ML estimate is given by:

θ̂ML = arg max
θ

{
log p(y |θ)

}

= arg max
θ

{
log
∑

x

p(y,x |θ)
}
. (2.15)

The sum over all possible configurationsx of the random field becomes quickly in-
tractable. The solution of eq. (2.15) can by obtained by the Expectation Maximisation
(EM) algorithm. The main problem with eq. (2.14) is the logarithm of a usually big
sum. The key idea of EM is to optimise a lower boundF (b,θ) which instead contains
a sum of logarithms. We can trivially rewrite the argument ineq. (2.15):

log
∑

x

p(y,x |θ) = log
∑

x

b(x)
p(y,x |θ)

b(x)
, (2.16)

whereb(x) is an arbitrary trial distribution over the space of hidden variablesx. By
using Jensen’s inequality, the argument in eq. (2.15) is bounded by:

log
∑

x

p(y,x |θ) ≥
∑

x

b(x) log
p(y,x |θ)

b(x)
= −F (b,θ) . (2.17)

The lower bound is also called variational free energy and isequal to the negative
Kullback-Leibler divergence (appendix B). Its minimisation is achieved by EM in two
steps. Using the current estimateθt of the parametersθ, the E-step computesb(x) as
a minimiser of the variational free energy. In the M-step a new set of parametersθt+1

is found by again minimisingF (b,θ). Both steps are iterated until convergence.

Example: line fitting

We will now derive the update equations for the line fitting problem as described in
sections 2.1 and 2.2 using the generative model with inlier and outlier process. For
this specific model we make the following assumptions:

• The outliers as shown in fig. (2.3) are not correlated,i.e. they appear randomly
at every timeti.

• The outlier distribution is uniform,i.e. every outlier appears with the same prob-
ability C=1/50 in the data range[0 . . . 50].

• The noise distribution is Gaussianf(yi; y
∗, σ)=N(ri, 0, σ

2) with ri=yi−ati.
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• There isno prior preference on the data points to be generated by the inlier or
outlier process.

Here, we choose the most general assumptions, which, when looking at the data in
fig (2.3), could be further refined3. With these assumptions we can write the probabil-
ities for observing data pointsyi by the inlier and outlier model as:

p(yi |xi=1,θ) = N(ri; 0, σ
2)

p(yi |xi=0,θ) = C (2.18)

The random fieldx has two states such that we can write the problem in terms of one
state only. The other state is given by the normalisation condition, i.e.:

bi(xi=1) = 1− bi(xi=0) . (2.19)

To simplify the notation we further callbi = bi(xi = 1). Then the variational free
energy in eq. (2.17) is given by:

F (b,θ) =
∑

i

(
bi log

bi
N (ri, 0, σ2)

+ (1− bi) log
1− bi
C

)
, (2.20)

where we used the assumption that the random fieldx is not correlated and the data
points are independent and identically distributed,i.e.

∑
x →

∑
i. By setting the

derivative with respect tobi in this equation to zero, we obtain the E-step update
equation for the weightsbi:

E-step: bi = N (ri,0,σ
2)

N (ri,0,σ2)+C
(2.21)

This shows a very intuitive result. The weightbi, which is related to the expected
value of the random field statexi(xi = 1), is given by the normalised probability of
a data point being generated by the inlier model. The normalisation is obviously the
sum of the probabilities that the data point is generated by inlier and outlier model. It
is further interesting to notice that in this case the lower bound is tight and Jensen’s
inequality in eq. (2.17) is turned into an equality.

In the M-step the parametersθ are updated according to:

θ̂ = arg min
θ

F (b,θ)

= arg min
θ

−
∑

i

bi logN (ri, 0, σ
2) . (2.22)

M-step: a = arg min
a

∑
i bir

2
i

σ = arg min
σ

∑
i bi(

r2i
2σ2 + log σ

√
2π)

(2.23)

3In the remainder of this thesis we will discuss these refinements. For now we keep it as simple as
possible.
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2.4 Robust generative models & robust M-estimation

The reweighted least square optimisation for robust estimation and the EM algorithm
have similarities. Consider the M-step of the line fitting problem as given by eq. (2.23)
for the line parametersθ=a only:

θ̂ = arg min
θ

∑

i

bir
2 . (2.24)

This part of the M-step is identical to eq. (2.11), which describes the parameter esti-
mation step of the re-weighted least square optimisation. Consider now the definition
of the weightsbi for both approaches. They are given by the E-step in eq. (2.21) for
the robust generative model. For the robust M-estimation the weights are computed
by eq. (2.12). To relate EM and re-weighted least square optimisation, we have to find
the M-estimatorρ(r), which would be solved by the re-weighted least square optimi-
sation given by the E-step in eq. (2.21) and the M-step in eq. (2.24). This M-estimator
turns out to be [32]:

ρ(r) =
( r
σ

)2

+ 2 log
( N (ri; 0, σ

2)

f(r; 0, σ2) + C

)
. (2.25)

The form of this M-estimator is shown in fig. (2.4) together with Tukey’s M-estimator.
Both ρ-functions have a plateau for large values of|r|, which is the reason for the
robustness of the M-estimators. Large values of|r| will have no influence on the pa-
rameter estimation. This behaviour is also shown by the influence functionψ (bottom
in fig. 2.4). Its value goes to zero in this domain,i.e. lim|r|→∞ Ψ(r)=0.

By connecting robust M-estimation and robust generative models, we showed that:
robust M-estimation can be interpreted as a special case of arobust generative model
based formulation. More particular, robust estimation is based on a specific form
of an M-estimator. Its parametric form as well as the parameters are fixed during
optimisation. Robust generative models specify the parametric form of the inlier and
outlier model. The parameters of these models are part of theoptimisation. If these
parameter are ignored,e.g. by putting a strong prior on a specific parameter, both
approaches become similar. Table 2.2 shows the similarity in a nutshell.

Starting from a generative model for the robust estimation of parameters has mainly
two advantages. It allows firstly, to include additional prior knowledge. For instance,
in computer vision we often deal with outliers which are spatially correlated. This
knowledge can be incorporated in such a formulation. A largeexperimental compar-
ison between robust M-estimation and robust generative models in the presence of
spatially correlated outliers has been done by Fransenset al. [32]. These results show
indeed a significant improvement. The second advantage is the estimation of the in-
lier and outlier distributions. This leads to an automatic mechanism to extract outliers
embedded in a varying noise environment.

The main result of this chapter,i.e., the relation of robust M-estimation with ro-
bust generative models, is the basis to relate our multi-view stereo approach to other
formulations. This relation will be discussed in sections 3.11.2 and 4.5.3.
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Figure 2.4:M-estimators: ρ andψ function for the Tukey (left) and our generative
model based M-estimator (right).
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robust M-estimation
robust generative

models

parameters θ = a θ = {a, σ}

optimiseθ arg min
a

∑
i ρ(ri) arg max

a,σ
log
∑
x′

p(y |x=x′,θ)

free
energy
F (θ, bi)

∑
i bir

2
i

∑
i bi log bi

N (ri,0,σ2) +(1−bi) log 1−bi

C

E-step
weight computation:

bi = ψ(ri)
ri

E-step:

bi = N (ri,0,σ
2)

N (ri,0,σ2)+C

M-step
parameter update:
arg min

θ

∑
i bir

2
i

M-step:
arg max

θ

∑
i bi logN (ri, 0, σ

2)

Table 2.2:Robust M-estimation versus robust generative modelsfor the line fitting
problem.
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Chapter 3

Global formulation

f f od oonnt telief that ooor model me.g. of dorral errorss is carest, choose an ther
one and ose maximor likelelyod - or Ba esein - methods for the dew model. What, ef f

oon’t belief in the new model either? It takes a e t of stottorndess t f lood the world
with a host of hather hatithary and pr thtly hardef innerpretheet models and cliir they

are exactly trde. pht p int of mobost stanestiss is that one may keep a pararetric
modee hethough the lanner is kn wn to te wrong.

arg max
y∗

{
log p(y |y∗)p(y∗)

}
of Hampelet al. [42] with

p(y∗)∝ ∏
ij∈[i±1]

ψij(y
∗
i , y

∗
j )

In this chapter we propose the first, global formulation. This can be used as an
initialisation of the local formulation which is the subject of chapter 4.

3.1 Introduction

The development of this multi-view stereo approach is mainly a consequence of con-
sidering two important issues. These are:(i) the modelling and the spatial correlation
of outliers and(ii) the interconnection of depth and outlier estimation.

The occlusion problem is often viewed from a geometric perspective only. How-
ever, more generally, it can be described as an outlier problem. Outliers can be divided
into three types, examples of each of which are present in fig.3.23:

• Geometric occlusionshave their origin in the3-D structure of the scene. Most
algorithms, when dealing with occlusions, concentrate on this type.

• Accidental objectsare objects, like pedestrians or cars, whose relative location
in the scene changes while the images are captured. The occurrence of this type
cannot be geometrically described by the movement of the camera. A geometric
modelling would only be possible by either a segmentation ofthe scene into

23
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multiple multi-view stereo problems,e.g., one for the background and one for
each moving object [79] (applicable for rigid objects only), or by tracking the
object by a motion model. Both models require the continuityof the object over
the cameras, which will not be assumed here.

• Other Violations are violations of the functional dependence of correspond-
ing pixels,e.g. violations of the constant brightness assumption. Examples are
specular reflections or discretisation errors.

In the presented approach, outliers will explicitely be modelled and are also referred
to as ‘invisible’ pixels.

The detection of outliers and the estimation of depth are strongly coupled. When
viewed separately, these introduce a notorious ’chicken and egg’ problem: the knowl-
edge of depth is needed to compute outliers, and outliers must be identified to compute
a reliable depth. When dealing with many outliers, as for instance in wide baseline
situations or in scenes with many accidental objects, a combined modelling will have
advantages or might even be necessary. In their recommendation for future work,
Kanget al. [57] pointed to exactly this combined modelling, when theysuggest:“ One
possible direction for future work would be to take the visibility-based optimisation
formulation and to try to devise an algorithm that directly minimises this function.”
The function they refer to is an energy function of depthand visibilities, which will
be formulated here by defining all possible configurations ofdepthandvisibility as
states of a Markov Random Field (MRF).

Another important point when dealing with outliers is that they will often appear
over extended areas in the image. Outliers are spatially correlated and modelling this
improves the result for many vision problems [32]. In our joint depth-visibility mod-
elling the coherence of outliers together with the coherence of depth is straightforward
included. These features form a big advantage over previouswork, where the spatial
correlation of occlusions is often ignored and where depth and visibility are handled
separately.

The MRF formulation described in this chapter does not require a good initiali-
sation. However, the disadvantage lies in the discretisation of depth. The MRF for-
mulation could therefore be used to provide the necessary initialisation for the local
approach described in chapter 4, in which depth is treated asa continuous value.

The main ideas of this chapter have been published in [104]. In addition to that
work, the model is extended to allow global colour changes. Furthermore, a sparse
implementation is formulated here, which makes it possibleto apply the method to
larger image sizes.

This chapter is organised as follows. After discussing previous work (sec. 3.2)
and describing the problem statement (sec. 3.3), the essential formulation of the MRF
states is given in section 3.4. This forms the key to the jointmodelling of depth and
outliers. The generative image generation model and the prior model are discussed
in section 3.5 and 3.6. We continue with the MAP estimation (sec. 3.7) and its EM
solution (sec. 3.8). We discuss two common approximations,i.e., the mean field and
the Bethe approximation. Both will be compared in the experimental section 3.10,
after discussing implementation issues. Finally we show results on real scenes.
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3.2 Previous work

In this section, the discussion on previous work focuses on MRF formulations and
especially on outlier detection in multi-view stereo. A more general review is provided
in section 1.2.

Previous work on outliers in multi-view stereo can be divided into three categories:

• Explicit geometrical computationsare performed by tracing the lines of sight
from the current depth solution to the input images and verifying if there exist
crossings with this solution. Examples are methods using MRFs [58, 56], level-
sets [24, 54, 86], voxel colouring [66] and graph cuts [113, 47].

• Consistency checksare used to detect outliers. Thereby, depth is computed
w.r.t. each input image and outliers are identified by inconsistencies in the ex-
tracted depth maps [35, 96, 38, 51, 37]. Similar consistencychecks are also
used in the computation of optical flow as for instance in [90,2, 102].

• Photometric cuesare widely used. For example, robust kernel methods [50]
use a matching kernel which diminishes the influence of outlier pixels. Often,
pixel matches below a certain threshold [131, 58, 56, 64] areignored alltogether.
Such a threshold disappears in generative model based formulations as proposed
by Strechaet al. [103]. An extension of this work also incorporates geometric
cues [37]. Whereas the first category focuses on geometric occlusions, the sec-
ond and third category can handle all types of outliers.

All of the above algorithms separate the computation of depth and visibility. How-
ever, this separation introduces the earlier mentioned ‘chicken and egg’ problem.
Many algorithms therefore estimate both in turn, which is a reasonable approach if
the amount of occlusions or outliers is small. For example, in Kanget al. [58, 56], the
starting point is the estimation of depth under the assumption that everything is visible.
Next, visibilities are estimated and depth is re-computed,keeping the best-matching
depths from the previous solution fixed. This procedure is iterated and progressively
more points are added to the solution.

The spatial correlation of outliers, which we also propose to exploit here, has been
modelled as an independent contribution by Jianet al. [51] using geometric cues.

3.3 Problem statement

We are givenK imagesyk, k ∈ [1, ...,K], which are taken with a set of cameras of
which we know the internal and external calibrations. Each image consists of a set
of pixel values over a rectangular lattice and will be denoted asyk = {yki }, wherei
indexes the nodes of the lattice. The objective is to computethe depth of the scene in
such a way that the information of all images contributes to the final solution. Depth
is computed w.r.t. a particular camera. This could be one of the cameras from which
the input images are taken, but it could equally well be avirtual camera representing
a view point not available in the set of input images. The (hypothetical) noise-free
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image that can be observed from this camera is referred to as the ideal image and will
be denoted asy∗ = {y∗i }. The multi-view stereo problem now consists of computing
those depth values which map the pixelsy∗i of the ideal image onto similarly coloured
pixelsyki′ in all input imagesand the visibilities that indicate for which input images
this mapping can be established1.

3.4 Markov Random Field states

Associated with the ideal imagey∗ is a hidden Markov Random Field (MRF)x =
{xi}. Again, the indexi labels the nodes of the MRF lattice, which coincide with
the pixel centres of the ideal image. This random field represents the unobservable
state of each node. Traditionally, the state of a node corresponds to its depth-value.
Suppose depth is discretised intoR levels, then each elementxi is defined to be a
binary randomR-vector,i.e., xi = [x1

i . . . x
r
i . . . x

R
i ], of which exactly one element is

1 and all others are0. The index of this element indicates the depth-valuedr of the
pixel.

In this work, the state of a pixel is considered to be a combination of its depth
value and its visibility configuration. The visibility configuration specifies in which of
theK input images theith pixel is visible. In principle, the total number of visibility
configurations is2K . However, certain configurations, in which the pixel is visible
in less than a pre-defined number of images, might be neglected2. Let S denote the
number of visibility configurations under consideration and let s be an index over
these configurations. Then thesth configuration of theith pixel can be represented by
a binaryK-vectorvsi = [vs1i . . . vski . . . vsKi ], in which each element signals whether
or not the pixel is visible in the respective image. As an example, consider the case
of three imagesyk, k = 1, 2, 3. There are8 possible visibility configurationsvsi for
every pixely∗i in the ideal image. These configurations are shown in table 3.1. In this

v1
i v2

i v3
i v4

i v5
i v6

i v7
i v8

i

y1 1 1 1 1 0 0 0 0
y2 1 1 0 0 1 1 0 0
y3 1 0 1 0 1 0 1 0

Table 3.1:Visibility configurations: All possible visibility configurations for three
images.

table, the visibility configurationv2
i , for instance, represents the situation in which

pixel i is visible in imagey1 andy2 but not in imagey3.
The state of a pixel is a combination of its discrete depth andits visibility config-

uration, and the number of possible states isM = RS. The state of theith pixel is

1Given the camera calibrations and the depth, it is easy to compute the toy∗

i
corresponding location in

the other images (see appendix A)
2For instance, if a pixel is only visible in only one image, thedata-liklihood disappears and the state is

only defined by the correlation with its neighbours.
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therefore represented by the binaryM -vectorxi = [x1
i . . . x

m
i . . . x

M
i ], of which ex-

actly one element is one. In this thesis, we used two different notations to describe the
statexi. These are:

1. Superscriptsm,n are used to indicate themth or nth entryxmi or xni of the
vectorxi, regardless the meaning (depth or visibility configuration) of that entry.

2. Double superscripts are used to indicate a specific depth and visibility configu-
ration:

(a) Superscriptsr andp are used for therth or pth depth state

(b) Superscriptss andq are used for thesth or qth visibility configuration

The statexrsi is the one with depthdr and visibility configurationvs.

Figure 3.1:Example of the MRF states:Possible states for a nodexi, when consid-
ering10 depth states and4 visibility configurations in3 images.

The conversion between single and double indexing is given by m=(r − 1)S+s.
An example forM = 40 states,i.e., R = 10 depth states andS = 4 visibility

configurations for three images, is shown in fig 3.1.
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Figure 3.2: Image generation: Top: Image formation for the inlier process. The
pixels ofy1,2,3,4 are generated by adding noise to the geometric and photometric
warp ofy∗. The geometric warp is restricted to theR possible depth values of the
random field. Bottom: Image formation for the outlier model.All pixels ofy1,2,3,4

which are not visible iny∗ are generated by sampling a histogram distribution. Note
that in this case the ideal imagey∗ coincides with the first input imagey1.

3.5 Generative imaging model

We take a generative model based approach for solving the multi-view stereo problem.
In this, the input images are considered to be generated by either one of two processes:

• Inlier process:This process generates the pixelsyki which are visible iny∗ and
which obey the constant brightness assumption up to a globalcolour transfor-
mationC(pk), which can be different for each input imageyk.

• Outlier process:This process generates all other pixels.
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Both processes are schematically drawn in fig. 3.2.
The inlier process is modelled as:

yki′(r) = C−1(pk) ◦ y∗i + ǫ , (3.1)

whereǫ is image noise which is assumed to be normally distributed with zero mean
and covarianceΣ. C−1(pk) models the global colour transformation3 between the
kth input imageyk and the ideal imagey∗, i.e., it transforms the colour of they∗i to
the colour of the corresponding observed pixel in thekth input image depending on
the parameter vectorpk. Since the input images are captured from different camera
positions, the pixeli will map, depending on the depth and the camera parameters, to
pixel positioni′(r).

The outlier process is modelled as a random generator, sampling fromK unknown
distributions characterised by probability density functions (PDFs)gk. These PDFs
are approximated as histograms and are parametrised by the histogram entrieshk 4.

We are now in a position to describe the probabilistic model in more detail. Let
f(.; µ,Σ) denote a normal PDF with meanµ and covarianceΣ, and letg(.;hk) be
the outlier distribution associated with thekth image. Furthermore, letxrsi be the
element of the state vectorxi which is1 and letyki′(r) be the pixel in thekth image
onto whichy∗i is mapped. The mappingi′(r)→ i depends on the depthdr associated
with the depth stater of xrsi . Then the probability of observingyki′ , conditioned on
the unknownsθ={y∗,Σ,hk,pk} and the state of the MRFx is given by:

p(yki′(r)|x,θ) =

{
f(C(pk) ◦ yki′(r); y∗i ,Σ) if vski = 1

g(yki′(r);h
k) if vski = 0

}
. (3.2)

The inlier model is selected whenvski =1, i.e., when the pixeli (being in statexrsi =1)
is visible in the kth input image. In that case, the geometric mapping depends ondr.
And the outlier model is valid ifvski =0.

3.6 Prior models

3.6.1 Gibbs MRF-prior

The MRFx represents the unobservable state of each pixel in the idealimagey∗,
where the state of a pixel is a combination of its discrete depth and its visibility con-
figuration. The prior distributionp(x) is a Gibbs distribution which factorises over
the cliques of the graph. LetNi represent a4-neighbourhood of theith node,i.e.,Ni
is the set of indices of the nodes directly above, below, leftand right of theith node.
The Gibbs prior is given by:

p(x) =
1

Z

∏

i

∏

j∈Ni

ψij(xi, xj) , (3.3)

3In order to simplify the notation further on, the colour transformation is defined here by the inverse
transformationC−1(pk)

4If the histogram would have only one bin, the outlier processcreates measurements according to a
uniform distribution. In this case the outlier process would assumed to be known.
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whereZ is a normalisation constant (the ‘partition function’) andψij(xi, xj) is a
positive valued function that returns the probability of two nodesi andj being in state
xi andxj . As such, it embodies the prior beliefs about the random fieldsmoothness.

For the parameterisation of the random field as given in sec. (3.4), the interaction
potential should consider both the depths and the visibility configurations of neigh-
bouring nodes. Suppose nodei is in the rsth state and has discrete depthd ri and
visibility configurationvsi . Furthermore, suppose nodej is in thepqth state and has
discrete depthd pj and visibility configurationvqj . The distanceDij(r, p) between two
depth labelsr, p of neighbouring nodesi andj is defined by theL1 norm:

Dij(r, p) =
|r − p |
R

. (3.4)

The norm is scaled by the total number of depth labelsR to be invariant to the depth
resolution. Since the discrete depth valuesd r are sampled uniformly on an inverse
depth scale, this choice leads to a smooth disparity, ratherthan a smooth depth.

The distanceDij(s, q) between two visibility configurationss, q is defined as the
number of dissimilar entries ofvsi andvqj , i.e.:

Dij(s, q) =

K∑

k=1

| vski − vqkj |
K

. (3.5)

Furthermore we introduce a constantC which accounts for non-smooth cliques inter-
actions. The interaction potential has the following form:

ψij(x
rs
i , x

pq
j ) = exp (−σdDij(r, p)− σvDij(s, q)) + C , (3.6)

whereσd andσv model the width of the depth and visibility distributions. When filled
with all possible combinations{r, s} and{p, q}, ψij(xrsi , xpqj ) forms a matrix, which
is called interaction, compatibility or correlation matrix. Fig. 3.3 shows two examples
of the interactionψ0,j(x

00
i , x

pq
j ) for four visibility states as in fig. 3.1. One can see

the exponential decay of the interaction between statex00
i and the states with the same

visibility configuration but different depthsxp0j (peaks every four states in both plots).
The right figure shows a different interaction between states of the same depth but
different visibility configurationsx00

i andx0q
j . In the left figure, this interaction is the

same for all visibility configurations. This will realise uncorrelated visibilities, since
this particular prior does not care which visibility configuration contributes to a certain
depth state.

The prior distribution in eq. (3.3) has multiple maxima, which occur when all
nodes share the same state,e.g. the state of a certain depth. This implies a preference
for fronto parallel depth planes in the image. To model slanted or curved surfaces, one
has to consider the interaction of at least three nodes or measure the slant from a local
compatibility matrix [69].

The specific form of the interaction matrix can be derived from a generative model
(similar to (3.2)) of depth and visibility under a Laplaciannoise distribution and with
outlier probabilityC [32]. It has also strong similarities to the interaction used by Jian
et al. [50].
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Figure 3.3:MRF Prior: The unnormalised interaction magnitudeψ1m
ij for the first

statex1
i with all other statesxmj is shown for the case of four visibility configurations

as in example fig. 3.1. The situation with uncorrelated visibility configurations is
shown left (σd = 10, σv = 0, C = 0.1) and the correlated case on the right (σd =
10, σv=10, C=0.1)

Anisotropic correlations can be introduced by defining the interaction potential
eq. (3.6) locally for each link{xrsi , xpqj }, which would be very memory expensive.
Therefore, we model anisotropic correlations by defining two interaction potentials:
one for continuous and one for discontinuous links. The difference between both
potentials is the value ofC, which is set toC =Cd orC=Cs for the two cases. See
section 3.10.4 for more details.

3.6.2 Parameter priors

Often, it is possible to formulate inference problems without priors on parameters. In
this case, one would implicitly assume a uniform prior over these. This point of view
is justified by the large amount of observed data which is often available and which
would then overrule the prior to a large extent.

However, prior knowledge on the parameters has advantages.Consider the case
of the inference problem given by the generative model in eq.(3.2). Imagine further
a MRF solution of a constant depthd and without any outliers. This solution would
have the maximal support by the MRF Gibbs prior described in the previous section.
What would be the consequence for the parametersy∗,Σ? The ideal imagey∗ is
in this case the average of all input images, transformed by the planar homography
related tod, and the image noise will be large. This solution could, depending on the
observed data, have a high probability if there would be no prior on the expected noise
level. By putting priors on such parameters, this solution will be made less probable,
e.g., by assuming that the image noise is small or that the ideal image should be close
to the input image which shares the ideal image camera positiony∗ ∼ y1.

Parameter priors can be introduced in various ways. The specific class of conju-
gate priors has the advantage that their functional form is equivalent to the form of
the likelihood, which is at the same time their definition (see Gelmanet al. [39] for
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more information). To achieve this, one can introduce priorknowledge by considering
additional fake observations that reflect the prior belief about the parameters. Letθ

andy= {y1 . . . yN} denote the parameters andN observed data points, respectively.
Let furtheryf = {yN+1 . . . yM} be the additional fake observations. Then one can
write the joint PDFp(y,θ) as:

p(y1 . . . yN ,θ) ∼ p(θ)p(y |θ) = p(θ)

N∏

i

p(yi |θ) =

M∏

i

p(yi |θ) . (3.7)

Indeed, the joint distribution over prior and likelihood isgiven by the form of the
likelihood alone. If the introduced fake data satisfiesy0 = yN+1 = . . .= yM , one can
specify the amount of fake data by the fractionfp of the observed data:

p(y1 . . . yN ,θ) ∼ p(y0 |θ)fpN
N∏

i

p(yi |θ) . (3.8)

For the multi-view stereo problem, a prior on the parameterscould be introduced by
adding extra measurements consisting of the input imagey1. This possibility can only
be used when the reconstruction isnotmade w.r.t. to a pure virtual camera. Remember,
in this casey1 coincides with the ideal image camera position and has no geometric or
photometric transformation with the ideal image. Similar to eq. (3.2), one can define
the prior to be:

p(y∗i ,Σ) = f(y1
i ; y

∗
i ,Σ) . (3.9)

The impact on the MAP estimate can be far-reaching. Obviously, there will be more
evidence that the ideal imagey∗ is similar to the input imagey1. Furthermore, one
would expect a decrease of the estimated image noise, since more measurements exist
which are close toy1 and, because of the first result, also close toy∗. A small value of
Σ then again will have an impact on the outlier estimation: more pixels will be made
invisible.

In conclusion, the conjugate prior in the form of eq. (3.9) has the advantage that the
corresponding MAP formulation is equivalent to the ML solution (with the additional
fake data). On the other hand, the value of the relative influencefp might have a
strong impact and should be adjusted with care. We will evaluate the impact offp on
the solution in section 3.10.3.

3.7 MAP-estimation

We are now facing the hard problem of estimating the unknown quantities. Letθ =
{y∗,Σ,hk,pk} denote all parameters, and lety = {yk} denote all input data. The
MAP estimate of the unknowns is given by:

θ̂MAP = arg max
θ

{
log p(y |θ)p(θ)

}

= arg max
θ

{
log
∑

x

p(y |x,θ) p(x) p(θ)
}
, (3.10)
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where the random fieldx is assumed to be independent fromθ. Note, that we consider
p(θ) to be a conjugate prior,i.e. the MAP estimate can be written as an ML estimate
by adding the fake measurements to the likelihoodp(y | θ) and settingp(θ) = 1.
Conditioned on the state of the hidden variablesx, the data-likelihood factorises as a
product over all individual pixel likelihoods:

p(y |x,θ) ≈
∏

i

∏

k

p(yki′ |xi,θ)

=
∏

i

∏

k

∏

m

p(yki′ |xmi ,θ)x
m
i . (3.11)

In the product overm, only the factor for whichxmi =1 survives. Notice that the data-
likelihood factorisation is only approximately correct, because in general pixelsy∗i in
the ideal image will not map onto integral positions in the input imagesyk. Depending
on the relative positions and orientations of the cameras, this will lead to over usage
or under usage of the pixelsyki . Each binary indexxmi corresponds to a particular
discrete depth valued ri and visibility configurationvsi = [vs1i . . . vski . . . vsKi ]. Based
on these visibility values, the pixel-likelihood in the right hand side of eq. (3.11) can
be further expanded as:

p(yki′ |xmi ,θ)=
[
f(C(pk) ◦ yki′ ; y∗i ,Σ)

]vsk
i
[
g(yki′ ;h

k)
]1−vsk

i

. (3.12)

We have now specified all terms of the data-likelihoodp(y | x,θ). However,
the sum

∑
x in the right hand side of eq. (3.10) ranges over all possible configu-

rations of the random fieldx. Even for modest sized images, the total number of
configurations ofx is huge: hence, direct optimisation of the log-likelihood is infeasi-
ble. The Expectation-Maximisation (EM) algorithm offers asolution to this problem,
essentially by replacing the logarithm of a large sum by the expectation of the log-
likelihood.

3.8 EM-algorithm

It was shown by Neal and Hinton [75] that the EM algorithm [19]can be viewed
in terms of the minimisation of the ‘variational free energy’ or similar as a lower
bound maximisation [75, 73, 18]. The key idea is to constructa trial distributionb(x)
and minimise the Kullback-Leibler divergence (variational free energy, negative lower
bound) betweenb(x) andp(y,x |θ). More details are given in appendices B and C.

The EM algorithm is known to be sensitive to the initialisation. The reason lies
in the possible presence of local minima in the likelihood function. To overcome this
problem Ueda and Nakano [112] proposed the deterministic annealing EM algorithm
(DAEM) which performs EM iterations at a series of temperaturesT . Starting from a
high, initial value the temperature is decreased after eachEM step until its final value.
The solution of this algorithm is much less dependent on the initialisation, as long
as the starting temperature is chosen high enough, such thatlocal minima disappear.
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Unlike simulated annealing [62, 40] where a stochastic search is performed on the
likelihood function, the DAEM algorithm performs a deterministic optimisation at
each temperature.

Taking the temperature into account, the variational free energy is given by5:

F (b(x),θ) = T
∑

x

b(x) log
b(x)

p(y,x |θ)1/T
. (3.13)

Starting from an initial parameter guessθ̂(0), the EM algorithm generates a sequence
of parameter estimateŝθ(t) and distribution estimatesb(x)(t) by alternating the fol-
lowing two steps:

E-step Setb(x)(t) to thatb(x) which minimisesF (b(x), θ̂(t)).
M-step Setθ̂(t+1) to thatθ which minimisesF (b(x)(t),θ)

These steps are incorporated into a temperature annealing scheme when the DAEM
algorithm is applied. All equations are therefore given with temperatureT . Often,
however, this is not done and the temperature is assumed to beone, instead.

3.8.1 E-step

On the(t + 1)th iteration, the conditional expectation of the complete log-likelihood
w.r.t. the posteriorp(x | y,θ(t))1/T is computed in the E-step. Two approximations
are considered: the mean field and the Bethe approximation. See appendix C for more
details.

Mean Field approximation

In the mean field approximation,p(x |y, θ̂(t)) is approximated by a distributionb(x)
which fully factorises over the nodes of the lattice:

b(x) =
∏

i

bi(xi) , (3.14)

wherebi(xi) is a distribution over theM possible statesxi of the ith node. It is
specified by anM -vector of one-node beliefs[b1i . . . b

m
i . . . b

M
i ], in which bmi is the

probability that nodei is in statem, i.e.,

bmi = bi(xi = m) . (3.15)

Let ψmnij denote the value of the interactionψij(xi, xj) when nodesi andj are in
themth andnth state, respectively. Then the mean field free energyFMF is, up to a

5This form is used in physics and has the correct dimension.
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constant, given by:

FMF ≈ −
∑

i

∑

k

∑

m

bmi log p(yki′ |xmi ,θ)

−
∑

i

∑

j∈Ni

∑

m,n

bmi b
n
j logψmnij

+T
∑

i

∑

m

bmi log bmi . (3.16)

The first two terms ofFMF correspond to the expected value of the log-likelihood
(the so-called Q-function), and the last term is the negative entropy ofx underb(x)
multiplied by the temperature T.

In the E-step, the free energy is minimised w.r.t. the distribution b(x), where
we use the current estimateŝθ(t) for θ. This is achieved by setting the derivatives
∂FMF /∂b

m
i to zero, and leads to the update equations:

bmi ← exp
( 1

T

∑

j∈Ni

∑

n

bnj logψmn +
1

T

∑

k

log p(yki′ |xi, θ̂(t))− 1
)
. (3.17)

After these updates, the beliefs are renormalised as to fulfil the normalisation condi-
tion

∑
m b

m
i =1.

Bethe approximation

Alternatively, in the Bethe approximation,p(x |y, θ̂(t)) is approximated by a distribu-
tion b(x) which factorises as follows [124]:

b(x) =

∏
ij bij(xi, xj)∏
i bi(xi)

ni−1
. (3.18)

Here,ni is the number of neighbouring nodes. Andbij(xi, xj) is the joint distribution
over the states of neighbouring nodes. It is specified by theM×M -matrix of two-node
beliefsbmnij , which specify the probability that nodei is in statem and nodej is in
staten:

bmnij = bij(xi = m,xj = n) . (3.19)

The Bethe approximation states that the free energy, as a function of the one-node and
two-node beliefs, can be approximated by the following (seeappendix C.3 for more
details):

FB ≈ −
∑

i

∑

k

∑

m

bmi log p(yki′ |xmi ,θ)

−
∑

i

∑

j∈Ni

∑

m,n

bmnij logψmnij

+T
∑

i

(qi − 1)
∑

m

bmi log bmi

+T
∑

i

∑

j∈Ni

∑

m,n

bmnij log bmnij . (3.20)
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Again, the first two terms ofFB correspond to the expected value of the log-likelihood,
and the last two terms specify the negative entropy ofb(x). The Bethe free energy is
exact for graphs without loops as shown in appendix C.3. For graphs with loops,
considered here, it is an approximation of the true free energy. However, it has been
experimentally shown to be a good one [118, 120].

The most popular algorithm to estimate the marginalsbi(xi) andbij(xi, xj) is the
belief propagation algorithm, introduced by Pearl [80]. Itminimises the Bethe free
energy w.r.t.bi andbij as shown by Yedidiaet al. [124, 45].

At the end of the E-step, for each nodeiwe can compute the depthDi and visibility
Vki w.r.t. thekth image by their expected values:

Di =
∑

rs

brsi d
r
i

Vki =
∑

rs

brsi v
sk
i . (3.21)

The actual depth and visibility of a pixel is thus not binary.

3.8.2 M-step

The M-step is the same for both free energy approximations, because the parameters
only appear in the identical terms ofFMF andFB, i.e. those which correspond to
the expected value of the log-likelihood. The free energyF is optimised w.r.t. the
parametersθ by setting each parameterθ to the appropriate root of the derivative
equation:

∂F/∂θ = 0 .

The update equations for the ideal image, the noise covariance and the colour trans-
formations are:

y∗i =

∑
k V

k
i C(pk) ◦ yki′∑

k V
k
i

Σ =

∑
i

∑
k V

k
i (C(pk) ◦ yki′ − y∗i )(C(pk) ◦ yki′ − y∗i )T∑

i

∑
k V

k
i

C(pk)
∑
Vki yki′(yki′)T =

∑

i

Vki y∗i (yki′)
T , (3.22)

whereVki are the expected visibilities computed according to eq. (3.21). The result
for the ideal imagey∗i and the noise valueΣ are compatible to our intuition. They
are computed by a weighted average of the input images for theideal image, and
the weighted average of all covariances for the noise. The colour transformations
Ck can be obtained by solving the last equation in (3.22) in the least square sense.
Furthermore, the histogram entries of the outlier distributionsg(.;hk) are updated as
follows. Suppose the colour space is discretised intoB bins, i.e., hk = {hkb}, b ∈
[1. . .B]. The minimisation ofF w.r.t. the histogram entrieshkb results in:

hkb ∝
∑

i

(1− Vki ) δb(y
k
i′) , (3.23)
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whereδb(yki′) is an indicator function which evaluates to1 if the pixel value falls in
the bth bin and evaluates to0 otherwise. The histogram is normalised such that all
entries sum to the inverse bin volume:

∑

b

hkb =
B

256d
, (3.24)

where d is the dimensionality ofyki′ , i.e. d= 1, 3 for gray and colour images respec-
tively. If the bins are not discretised (B = 256d) this sum is one. In the other limit
(B = 1) the outlier distribution becomes uniform (hence independent onyki′ ) with
1/256d as the probability of a pixel being invisible. To put it differently,hk is a his-
togram of thekth input image, where the datayki′ are weighted by their probability
of being not visible. The E and M-step are alternated until the relative change of the
parametersθ falls below a pre-specified threshold.

3.9 Implementation

3.9.1 Choice of the MRF-states

The number of MRF states can be very large especially when using many images with
high resolution. The algorithm has therefore practical limitations which are set by the
memory and speed capacity of the computing equipment. To overcome this problem
a sparse implementation is introduced in section (3.9.2). However, prior knowledge
about the scene can be used to neglect impossible or very unlikely states.

Figure 3.4:Number of depth states: The number of depth state can be computed
such that the depth discretisation corresponds to matchingwith α× pixel precision.
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Depth states

The minimal and maximal depth value w.r.t. the reference camera is usually approxi-
mately known from the sparse set of3-D points which are provided by the calibration
pipeline [82]. The distribution of depth valuesdm, which are related to the depth states
xm, is assumed to have the form1/dm. More depth values will be considered close
to the camera and less further away. This sampling is approximatively equivalent to a
uniform sampling of the disparities. Suppose we want to match with pixel precision,
then we can choose the number of depth states such that pixel precision is achieved,
i.e. when the distance betweeni′(dm) andi′(dm+1) is less that one (see fig. 3.4). We
compute the number of depth states such that the mean depth discretisation of the cen-
tral pixel corresponds to a distance| i′(dm) − i′(dm+1) | of α times one pixel in the
worst camera. In all experiments we chooseα=2.

Visibility configurations

In the presented experiments, not all possible visibility configurations are considered,
since some of them are very unlikely to be present in the data.Consider the case of
three imagesyk in which there are8 possible visibility configurationsvsi for every
pixel y∗i in the ideal image. These configurations are shown in table (3.2). Depending

v1
i v2

i v3
i v4

i v5
i v6

i v7
i v8

i

y1 1 1 1 1 0 0 0 0
y2 1 1 0 0 1 1 0 0
y3 1 0 1 0 1 0 1 0

Table 3.2:Possible visibility configurations for three images.

on the application, we can distinguish between two scenarios. The first scenario is the
most general one. The reference camera is one of the input cameras and there might be
independently moving objects in the scene or the reference camera is a virtual camera.
These two situations imply that one cannot assume that all pixelsy∗i from the ideal
image are simultaneously visible in one of the input imagesyk. To be able to assign
a meaningful depth and colour to an ideal image pixely∗i , it must be visible in at
least two images. Therefore, we only consider the visibility configurations given by
s = {1, 2, 3, 5}. By using these configurations, it is possible to remove independently
moving objects from the scene and still compute a depth valueat these outlier pixels.

In the second scenario, the reference camera is one of the input cameras, sayy1,
and if there are independently moving objects in the scene they are not visible from
the reference camera. In this particular case, all pixelsy∗i are by definition visible in
y1 (the geometrical transformation betweeny∗ andy1 is the identity transformation),
which puts stronger constraints on the possible solutions.The possible visibility con-
figurationsvsi are given bys = {1, 2, 3, 4}. In this case, we are now able to explicitly
identify the regions for which no depth estimation is possible (s=4).
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3.9.2 Sparsification

This section will discuss sparse approximations to the algorithm described so far. It
can be seen as an attempt to formulate a practical algorithm,which can be applied to
large images with many depth states.

Mean Field update

The mean field update equation (3.17) involves the computationally expensive multi-
plication of the log interaction matrixlogψ with the neighbouring beliefsbj . Because
of the special structure oflogψ one can sparsify this matrix multiplication to speed
up the computation. Depending on the parametersσd, σv andC a different amount
of entries inlogψ will have approximatively the same value. One can thereforeap-
proximatelogψ as a sum of a sparse matrixlog ψ̃ and a constant matrix with entries
c:

logψ ≈ log ψ̃ + cI . (3.25)

After subtractingcI from logψ, one could keep only those elements inlog ψ̃, which
are larger than a fraction of its maximal value. In all experiments,10−6 is used for
that fraction.

By using this, thelog mean field update equation (4.15) becomes:

log bmi ← 1

T

( ∑

j∈Ni

∑

ñ

bñj log ψ̃mñ + c
∑

j∈Ni

∑

n

bnj +
∑

k

log p(yki′ |xi, θ̂(t))
)
−1

← 1

T

( ∑

j∈Ni

∑

ñ

bñj log ψ̃mñ+
∑

k

log p(yki′ |xi, θ̂(t))
)
, (3.26)

where in the last line the normalisation condition
∑
n b

n
j = 1 was used and where

all additional constants dissappear because of the final normalisation ofbi. Note that
the matrix product includes only the summation over the existing sparse entries̃n of
log ψ̃mñ.

After each EM iteration, the beliefsbi themselves are also sparsified,i.e., all ele-
ments are neglected which are smaller than a fractionfs of the maximal value. As a
consequence, a speed improvement is achieved for the mean field updateand for the
M-step, since for the latter only likelihoods have to be computed that are currently
active. The quality of the results and the computational cost as a function offs will
be evaluated in section (3.10.1).

Bethe update

For the Bethe approximation the belief propagation algorithm [80] is used. Similar to
the mean field case, the compatibility matrixψ as well as the beliefsbi are sparsified.
Furthermore, all messagesmj→i which point to nodei have the same sparsification
asbi. The message update becomes:

mm̃
i→j←φm̃ñφm̃i

∏

l 6=i

mm̃
j→l , (3.27)
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with the temperature corrected terms:

φm̃ñ = c+
∑

ñ

(
ψ̃m̃ñ

)1/T

φm̃i =
∏

k

p(ykm̃j′ |xm̃j , θ̂(t))1/T . (3.28)

Here,c is the truncation value ofψ.

3.9.3 EM, initialisation and cooling schedule
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Figure 3.5:Cooling schedule:Temperature decreasing for different parametersTd.

The EM algorithm is initialised with the following values:(i) a large noise mag-
nitude with a diagonal covariance matrixΣ whose values areσ= 100, (ii) all colour
transformations are set to the identity transformation,(iii) and the expected values of
the MRFbi are equal and normalised. For the ideal image we distinguishbetween
two cases: For a virtual camera or if the reference image contains outliers we compute
p(yki′ |xmi , θ̂(t=0)) with a value ofy∗i that is given by the mean of those input images
which are described as visible by the statem and which are interpolated and the depth
value related to statem. In the other case (the reference image is one of the input
cameras and has no outliers) the ideal image is set to the reference image (y∗=y1)),

With this initialisation, the E-step is performed first. Theconvergence for the E-
step is assumed to be reached when the mean change of all beliefs bmi is smaller than
10−6.

Beginning with their maximal valueT = Ts, the temperature is decreased after
each EM-iterationn until the end valueTe is reached at iterationnn. The form of this
decrease depends on the parameterTd and follows the form:

T (n) =
Ts

(an+ 1)Td
, (3.29)
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wheren = 0 . . . nn is the index of the EM iteration and where the constanta is
chosen such thatT (nn) = Te. Fig. 3.5 shows the temperature decrease fromTs = 10
to Te = 0.1 for 20 iterations and for differentTd. The whole algorithm is graphically

setT = Ts

until convergence:
E-step: mean field eq. (3.26) or Bethe eq. (3.27)

M-Step eq. (3.22)

decreaseT eq. (3.29)
(sparsify)

Table 3.3:Outline of the algorithm.

depicted in fig. 3.3.

3.10 Experiments

First, the cooling schedule is evaluated on synthetic ground truth data. In a second
part the mean field and the Bethe approximation will be compared for different MRF
Gibbs prior models on synthetic and real ground truth scenes. Finally, results on real
scenes are presented.

The synthetic ground truth evaluation is performed using10 artificial test sets of
four multi-view stereo images. The test sets are generated from a random sample of
the face model used in Fransens, Strecha and Van Gool [30] with a planar background.
This3-D scene is observed by four cameras. Their position and orientation in space is
randomly sampled around a value from which the face can be observed. Furthermore,
a random colour transformation has been applied to each image. Each sequence has
further been corrupted with random Gaussian noise. Fig. 3.6shows an example of the
above generative model for one test set. In the right-most ofthese images one can see
the behaviour of the image generation when the colour transformation or the image
noise lead to colour values outside the valid RGB range ofc = [0 . . . 255]: The colour
values are assigned to be modulo255, i.e., c ← c mod 255. This rather unnatural
process leads to the spots in the background. These should bedetected as outliers by
the algorithm, because it works with an unlimited colour range.

For all experiments, the first image camera position is used as the ideal image
camera position (left image in fig. 3.6). Seven visibility configurations are considered,
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Figure 3.6:Synthetic ground truth sequence:One of the10 evaluation sets is shown.

i.e., pixels are assumed to be visible in at least two images and are always visible in
y1 (the image which coincides with the ideal imagey∗). The amount of depth states
varies dependent on the camera configuration and lies between K = 43 . . . 53. The
image size is150× 200 pixel2.

Influence of colour transformation

Figures 3.7 and 3.8 show the results for the scene in fig. 3.6, with and without the
estimation of the colour transformationCk for each image. The images in fig. 3.7
show the results with colour transformation update. Depth and visibilities are nicely
estimated. Note the spots in the background of the right-most input image in fig. 3.6.
These spots are indeed assigned to be outliers, as can be seenin the top-right visi-
bility map of fig 3.7. The bottom row of those images shows the ideal image (left
image). The three right images are the input images (three right images in fig (3.6).
These images have been warped to the reference image by the geometric (depth de-
pendent) transformation. Furthermore their colour valueshave been photometrically
transformed by the estimated colour transformation. The photometric warp displays
visually a good estimation of the colour transformation.

The result for the model without colour transformations is presented by the images
in the fig. 3.8. In this case, the fourth input image has essentially no influence on the
depth estimation. Almost all pixels have been turned into outliers and the depth is
found by input images, which are more similar in terms of their colour transformation.
Given a generative model without colour transformation, these results represent the
most likely solution.

3.10.1 Cooling schedule

The last experiment shows the importance of estimating colour transformations which
can be present (for instance by cameras with automatic aperture and/ or shutter time
adjustment) in the images. Local minima of the likelihood function are especially
problematic in these situations. Therefore, a deterministic annealing schedule is used.
The dependence of the solution on the starting temperature and the form of their de-
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algorithm Ts Te Td nn σd σv C fs
Bethe 100 0.5 3.5 20 100 1 10−10 10−10

Figure 3.7: Importance of the colour transformation: Results of the example in
fig. 3.6 when a colour transformation is estimated. Both results are shown in eight
images. These are: the expected value of depth (top-left) and visibility (top-right im-
ages), the ideal image (bottom-left) and the geometricallyand photometrically trans-
formed input images (red pixels are outliers; green pixels are pixels for which the
geometric transformation falls outside the image).

crease is evaluated in this section. Fig. 3.9 and fig. 3.10 show the typical evolution for
the expected values of the MRF (depth and visibility as in eq.(3.21)) and the value of
the parameters (Σ, C(pk)) during temperature annealing.

Starting from uniform beliefsbi the first EM iterations at high temperature (left
column in fig. 3.9) lead to a fuzzy depth map. Almost all visibility expectations are
undecided about their value (indicated by gray colour values). Only some real occlu-
sions already have a lower expected value. Because of the fuzzy depth estimate and
the wrong estimate of the colour transformation, the noise is high. In this temperature
regime, the ideal image contains artefacts from the spots ofthe fourth input image.

During the next iterations, all parameters (the noiseΣ and the colour transforma-
tions for each target imagep1,2,3 as shown in fig. 3.10) and the MRF expectations
evolve slowly to the global solution. This example shows visually that the EM algo-
rithm, which is traditionally strongly dependent on the initialisation, can be made less
dependent by the deterministic annealing technique used here.

We continue with the quantitative evaluation on the whole test set.
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algorithm Ts Te Td nn σd σv C fs
Bethe 100 0.5 3.5 20 100 1 10−10 10−10

Figure 3.8: Importance of the colour transformation: Results of the example in
fig. 3.6 when a colour transformation isnot estimated. Both results are shown in
eight images. These are: the expected value of depth (top-left) and visibility (top-
right images), the ideal image (bottom-left) and the geometrically and photometrically
transformed input images (red pixels are outliers; green pixels are pixels for which the
geometric transformation falls outside the image).

Start temperature and decay rate

Fig. 3.11 shows the quantitative results for the whole test set for different start tem-
peraturesTs and three different decay ratesTd, both for the mean field and the Bethe
approximation. The quality is, similar to Scharsteinet al. [98], measured by the per-
centage of correspondences from the reference image to all target images for which
the displacement (disparity) error falls below one pixel. This value is evaluated for all
correspondences which can be established (bearing in mind occlusions).

As a global trend, one can recognise a plateau at high starting temperatureTs ∼
{10 . . .∞} as long as the decay velocity is lowTd ≥ 2. The quality of the results
gets worse by loweringTs. The behaviour is similar for both, the Bethe and mean
field approximation. This result suggests a sufficient high start temperature (Ts ≥ 10)
together with a slow cooling (Td ≥ 2). Furthermore, one can appreciate the impor-
tance of the deterministic temperarture annealing EM (DAEM) scheme compared to
the classical EM. The starting temperature ofTs= 1 (which would be the realisation
of EM) does not give the optimal results. The initialisation, especially of the colour
transformation, is in this case not good enough to find the global optimum of the
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algorithm Ts Te Td nn σd σv C fs
Bethe 100 0.5 2 20 100 1 10−10 10−10

Figure 3.9: Evolution of the solution during EM cooling: The expected
values of depth (top row), the visibility with respect to thethree non-
reference imagesy2,3,4 (three middle rows) and ideal image (bottom row)
for EM iteration {1, 3, 6, 9, 12, 15, 18} and corresponding temperaturesT =
{100, 32.97, 9.96, 4.09, 2.01, 1.12, 0.67} for the scene in fig. 3.6. The result after the
last iteration (20) with T = 0.5 is shown in fig. 3.7.

posterior distribution.

Influence of the end temperature

For this experiment, the start temperatureTs = 100 and the decay rateTd = 3.5
has been fixed and the influence on the end temperatureTe is evaluated. The results
are shown in fig. 3.12. From the theoretical point of view, onewould expect an in-
crease in performance by lowering the temperature until thecritical temperature,i.e.
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Figure 3.10:Evolution of the parameters during EM cooling: top/left: image noise
Σ, top/right: entropyS, bottom/left: colour scale, bottom/right: colour offset.Colour
scalepk0 and offsetpk1 are shown for the transformation from the reference image toall
three target images. Horizontal lines indicate thereby theground truth. The images in
fig. 3.9 have been evaluated.

the temperature where the system shows a phase transition inthe state of order (see
appendix C.1 for more explanation and a temperature simulation of our prior model).
When this critical temperature is reached, the solution is frozen and the results are
expected to build an error plateau.

The plots in fig. 3.12 show the expected behaviour in the high temperature phase.
However, a small increase of the error in the low temperaturephase for both the mean
field and the Bethe approximation can be observed. The reasonfor this is twofold. In
the low temperature phase the likelihood and the prior is sharply peaked about a single
state. This means that the beliefsbi will also be peaked about a single statexrs and that
the expected values of the depth and visibility are very close to the depth and visibility
values, when estimated from the state of maximal probability. This behaviour shows
to some extent the limitations of MRF stereo approaches. They assume that the state
of a pixel can be described by adiscretiseddepth valuedk. Obviously, depth is a
continuousvalue for which the generative model as defined in chapter 4 ismore suited.
MRF approaches therefore lead to discretisation errors. These can be minimised when
the temperature decrease is stopped just below the criticaltemperature and when the
depth is extracted by the expected value, rather than by the maximum value of the
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Figure 3.11:Evaluation of start temperature and temperature decrease:Percent-
age of pixels with a disparity error larger than one for different start temperaturesTs
and three temperature decay coefficientsTd = {0.5, 2.0, 3.5}, for the Bethe approxi-
mation (left) and the mean field approximation (right).
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Figure 3.12:Evaluation of the end temperature:Percentage of pixels with a dispar-
ity error larger than one for different end temperaturesTe, for the Bethe approxima-
tion (left) and the mean field approximation (right) (Ts = 100, Td = 3.5).

MRF states. Note that this is the reason why graph cuts [11] are less suited, since they
only compute the maximum value of the MRF states.

Influence of the sparsification threshold

After each EM-iteration the expected valuebi(xi) of the MRFxi is computed. All
statesm of xi for whichbmi is smaller thanfsmax(bmi ) are neglected from all further
computations. Fig. 3.13 shows the quality of the solution and the corresponding ex-
ecution time as a function of the thresholdfs. Up to fs = 10−6 the results remain
similar, but the execution time is almost halved at this point. The right plot also shows
that the Bethe approximation is about three times slower than the mean field update.
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Figure 3.13:Evaluation of the sparsification: Percentage of pixels with a disparity
error larger than one for different values of the sparsification thresholdfs is shown
left. In the right plot, the corresponding execution times (in sec) for the Bethe ap-
proximation and the mean field approximation (Ts = 100, Td = 3.5, Te = 0.1) are
given.

3.10.2 Mean Field versus Bethe approximation
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Figure 3.14:Mean field/ Bethe comparison:Percentage of pixels with a disparity
error larger than one (left) and larger than two pixels (right) for mean field and Bethe
approximation as a function ofσd (Ts = 100, Td = 3.5, Te = 0.1, C = 10−10,
σv = 1).

Figures 3.14, 3.15, 3.16 and 3.17 evaluate the quality of thedepth and visibility
estimation for the mean field and Bethe approximation as a function of different MRF
Gibbs prior models. These prior models are specified by the value ofσd, σv andC in
eq. (3.6). Since the exact form of the prior model is often notknown, this section can
also be seen as an evaluation of the parametric prior model onground truth data.

In addition to the last figures, the quality of the depth estimate will be measured
by the median of the disparity errors. Similar to the previous measure (percentage
of pixels with a disparity error smaller than one), all correspondences are evaluated
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except those that are occluded. The median error measure allows to evaluate the results
more precisely. Gross outliers, that can appear at the imageborders, have no influence
on the error criterion as it would be for the average error. Furthermore, the error in the
visibility estimation is reported. This measure is computed as the percentage of pixels
with wrong visibilities in all images.
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Figure 3.15:Mean field/ Bethe comparison:Median disparity error (left) and the
relative fraction of wrong assigned visibilities (right) for mean field and Bethe approx-
imation as a function ofσd (Ts = 100, Td = 3.5, Te = 0.1, C = 10−10, σv = 1).

Figure 3.14 evaluates the relative amount of pixels with a disparity error of one
(two) pixels as a function ofσd. The Bethe approximation shows a clear advantage
over the mean field approximation, with a minimum error of approximate5% (2%).
Two other insightful results can be read off the figures. Firstly, for weak correlations
(smallσd), the difference between Bethe and mean field approximationis less pro-
nounced. In fact, it is easy to see that mean field and Bethe approximation are equiva-
lent forσd = 0, i.e., uncorrelated MRF states withψij(xrsi , x

pq
j ) = C. Secondly, with

increasing correlation strength, the difference of both approximations increases. At
a certain point, the mean field approximation eventually scores better than the Bethe
approximation. At this point, the prior model is obviously wrong,i.e., the correlation
is so strong that the prior demands a too smooth solution. Themean field approxima-
tion is not able to handle these strong correlations and cannot follow this prior model.
This leads ‘by accident’ to better results. The relatively bad performance of the mean
field approximation with increasing correlation strength is also indicated by the shift
of the error minimum to higher correlations. As a result, onecan state that for weakly
coupled inference problems, the mean field approximation might not be a bad choice,
especially when taking the computational speedup into account.

This interpretation is also justified by the median error evaluation in fig. 3.15. The
difference in the visibility error (fig. 3.15 right) is less distinctive but shows neverthe-
less a small advantage of the Bethe approximation and a minimum, which coincides
with the depth error minimum.

Fig. 3.16 presents the evaluation of the error w.r.t.σv. The value ofσv determines
the correlation strength of different visibility configurations. Settingσv = 0 will
realise a spatial correlation for which the joint probability of two pixels is independent
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Figure 3.16:Mean field/ Bethe comparison:The median displacement error (left)
and visibility error (right) for mean field and Bethe approximation as a function ofσv.
(Ts = 100, Td = 3.5, Te = 0.1,C = 10−10, σd = 100).

on the visibility configuration. Largeσv give more support to neighbouring pixels with
the same visibility configuration.

It can be seen in the left figure that the correlation of visibility configurations
does not increase the performance of the depth estimation when compared to uncor-
related visibility configurationsσv = 0. The visibility error on the other hand shows
a small advantage nearσv = 1. The explanation for this behaviour lies in the strong
influence of the likelihood. When looking at the images in fig.3.6 one can notice
the nicely textured background which makes it relatively easy to disjoin a good match
from an outlier purely based on the data likelihood. Thus, the correlation of visibilities
will not have a very strong influence on the depth estimation.In the cones sequence
(sec. 3.10.4), we will see a more outspoken relation betweencorrelated visibility con-
figurations and the depth estimation performance.
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Figure 3.17:Mean field/ Bethe comparison:The median displacement error (left)
and visibility error (right) for mean field and Bethe approximation as a function ofC
(Ts = 100, Td = 3.5, Te = 0.1, σd = 100, σv = 1).

Finally, fig. 3.17 shows the evaluation w.r.t. the value ofC, which reflects the like-
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lihood of an outlier from the correlated depths-visibilityassumption. A large value of
C will therefore globally downweight the correlation of neighbouring nodes. While
this is a good mechanism for discontinuities, it is not for the majority of links. When
defining a global interaction matrix for all links, one wouldexpect a value ofC be-
tween the optimal value for continuous and discontinuous links. The experiments
show that this value is approximativelyC≈10−8.

As a global result of these synthetic experiments, one can state a clear advantage of
the Bethe approximation over the mean field approximation interms of the accuracy
in the depth estimation. The difference w.r.t. to the visibility error is less obvious.

3.10.3 Prior on parameters
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Figure 3.18:Influence on parameter prior: The median displacement error (left)
and visibility error (right) for mean field and Bethe approximation as a function of
the magnitude of the parameter priorf (Ts = 100, Td = 3.5, Te = 0.1, σd = 100,
σv = 1, C = 10−10).

Fig. 3.18 shows the results for a different value of the relative amount of fake data,
which is introduced to set a prior on the parametersy∗ andΣ (see section 3.6.2).
The accuracy of the depth estimation increases by using thisprior with the best value
of aboutfp ≈ 1.0. If this prior is too strong, the performance of the depth andthe
visibility estimation decreases. The reason for this behaviour is the underestimation
of Σ, which at the same time produces a larger amount of outliers.

3.10.4 Real image evaluation

This evaluation is an example of anisotropic MRF modelling.Anisotropic interactions
are realised by defining the interaction matrix locally. More particular, we define two
interaction matrices by eq. (3.6): one which models discontinuities and one for the
continuous areas. The difference of both matrices lies in the outlier probabilityC.
C = Cd is used for all links for which the endpoints fall into different mean shift
colour segments [16], andC=Cs for the remaining cliques, withCd≥Cs.
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Figure 3.19:Cones sequence:Depth (left) and visibility error (right) as a function of
σd (Ts=20, Td=2, Te=0.1, σv=30, Cs=10−10, Cd=10−5, fs=10−10, fp=1).
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Figure 3.20:Cones sequence:Depth (left) and visibility error (right) as a function of
σv (Ts=20, Td=2, Te=0.1, σd=700,Cs=10−10, Cs=10−5, fs=10−10, fp=1).

For the evaluation the ‘cones’ sequence from the Middleburystereo evaluation set
[98] is used. We use three images with visibility configurationss = 1, 2, 3.

Figs. 3.19 and 3.20 show the depth and visibility errors. Thedepth error is the
percentage of pixels with a disparity error larger than1, evaluated for all visible pix-
els (equivalent to [98]). Similarly, the visibility error is the percentage of wrongly
detected occlusions. Again, the advantage of the Bethe approximation can be no-
ticed. Fig. 3.20 shows a clear correlation between the deptherror and the strength of
the visibility correlationσv. We notice that the correlation of visibilities is not only
helpful for a better detection of these (see visibility error in fig. 3.20), but is helps
also to increase the performance of the depth estimation. The case of uncorrelated
visibility configurations (σv = 0) is inferior to the best value ofσv ≈ 20, both for
estimation depth and visibility. This result tallies with that in [32]. Fig. 3.21 shows
this visually by comparing the depth and visibility maps forboth approximations and
for two different parameter settings. One (the two left images) for correlated visibili-
ties{σd = 700, σv = 30} and one (the two right images) for uncorrelated visibilities
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{σd = 700, σv = 0}. Notice the contribution of correlated visibilities in thedepth and
the visibility maps for the Bethe (top row) and the mean field approximation (bottom
row).

σd = 700, σv = 30 σd = 700, σv = 0
depth error visibility error depth error visibility error

Bethe 1.78 4.61 2.11 12.21
Mean field 2.95 4.93 3.67 10.79

Figure 3.21:The contribution of correlated visibility configurations: The left im-
ages show the results of correlated visibilities (σd=700, σv=30) and the right images
the uncorrelated case (σd = 700, σv = 0). The Bethe approximation is shown in the
top row and the mean field approximation in the bottom row. Underneath the images,
the table gives the numerical values for the four experiments.

3.10.5 Outdoor scene reconstructions

The algorithm has been tested on several challenging outdoor scenes, characterised
by multiple depth occlusions, independently moving objects and complicated scene
geometry. The original images are of size3072 × 2048 and have been downscaled
to a size of768 × 512. The parameters for all experiments are the same and shown
together with the computation time below the figures.

The first example shows a scene which is contaminated by pedestrians. The three
input images are shown in the top row of fig. 3.22. The camera position of the ideal
image was chosen to be the left of these images. Notice that all images are contam-
inated with independently moving objects. Also, the reference image contains pixels
(e.g., woman in white) which have no support in any other image. Still, the results
in fig. 3.22 shows that our algorithm could assign a meaningful colour (top/left) and
depth (bottom/right) to those outlier pixels. The three images on the right in the bot-
tom row of fig. 3.22 show the visibility estimates. The Bethe approximation of the free
energy was used, and four visibility configurationsvs, s = 1, 2, 3, 5 were considered.
The number of depth states for this scene isR = 180.

The depth estimation at the bottom of the ideal imagey∗ is rather poor. The lack of
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Ts Te Td nn σd σv Cs Cd fs fp time
20 0.1 2 30 200 20 10−10 10−5 10−8 1.0 396 sec

Figure 3.22:Brussels city hall scene:The three input images are the three right-most
images shown in the top row. The camera position of the virtual imagey∗ was chosen
to be the left of these images. The visibility estimates related toy∗ are in the bottom
row. The top-left image shows the estimated ideal imagey∗ and the estimated depth
is shown in the bottom-left image.

texture and the fact that the epipole lies within all target images is the reason for this.
However, the ideal image looks visually convincing and the estimated depth, visibility
and ideal image constitute a solution which makes the input images very likely.

For the second experiment we used three images containing the Semper statue in
the heart of Dresden. These images are shown in the top row of fig. 3.24. The camera
position of the ideal image was chosen to be the middle image.Because the reference
camera does not contain independently moving objects, we only consider the four
visibility configurationsvs, s = 1, 2, 3, 4 in table 3.2. On the bottom, the extracted
depth and visibilities are shown. We used the Bethe approximation withR = 264
depth states. One can appreciate the accurate detection of all three types of outliers.
Geometric occlusion, pedestrians and the specularities inthe windows are detected.

In the last experiment we used three images of the ‘Leuven city hall scene’ [103].
These images are shown in the top row of fig. 3.24. The camera position of the ideal
image was chosen to be the top middle image. Because this scene does not con-
tain independently moving objects, we only consider the four visibility configurations
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Ts Te Td nn σd σv Cs Cd fs fp time
20 0.1 2 30 200 20 10−10 10−5 10−8 1.0 440 sec

Figure 3.23:Semper statue scene:The input images are shown in the top row. The
middle image is chosen as the reference view. The depth map for the reference view
(middle) and outlier maps for the two other images are shown in the bottom row.
Notice that not only geometrical occlusions but also the pedestrians (top left image)
are detected.

vs, s = 1, 2, 3, 4 in table 3.2. In the bottom row, the extracted depth and visibilities
are shown. We used the Bethe approximation withR = 396 depth states. This exper-
iments also shows excellent depth and visibility estimates. The datasets (images, cali-
bration and3-D points) are available at www.esat.kuleuven.be/∼cstrecha/testimages.

Note that the same prior model{σd, σv, Cd, Cs} has been used for these three
scenes.

3.11 Conclusion

3.11.1 Summary

In this chapter, an approach to multi-view stereo has been presented, which can also
deal with scenes contaminated by accidental objects as in Figs. 3.22 and 3.23. A
novel view is computed, which is most likely given the input images. To compute this
novel image, we take possible configurations of depthand visibilities into account.
This approach results in the natural elimination of accidental objects which cannot be
explained by the majority of input images.

In the E-step of the EM algorithm, two approximations of the free energy have
been compaired: the mean field and Bethe approximation. Minimising the latter en-
ergy can be achieved by belief propagation. The quality of both approximations have
been evaluated on the basis of ground truth data. This shows that for the stereo prob-
lem, the Bethe approximation has clear advantages over the mean field approximation.
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Ts Te Td nn σd σv Cs Cd fs fp time
20 0.1 2 30 200 20 10−10 10−5 10−8 1.0 469 sec

Figure 3.24:Leuven city hall scene: The three input images are shown in the top
row. The camera position of ideal imagey∗ was chosen to be the middle image. The
depth map for the reference view (middle) and outlier maps for the two other images
are shown in the bottom row.

For small MRF correlations, the difference of both approximations is less outspoken.
In these cases, the mean field approximation might still be a good choice, especially
because of the speed and memory advantages.

The results also show that the method scores well on the Middlebury stereo eval-
uation (see Strecha, Fransens and Van Gool [103]). Currently, the algorithm is at
the fourth position when performance is measured at the highest precision (0.5 pixels
disparity error) for all visible pixels.

The presented approach to detect outliers is purely based onphotometric cues.
Therefore, it can cope with independently moving objects, as well as geometric oc-
clusions. For example, photometric cues are necessary to deal with scenes like the
one shown in fig. 3.22. However, when the scene contains largeuntextured regions,
photometric cues could fail to detect an occlusion. It remains possible that the occlu-
sion can be explained by assigning a wrong depth, if this provides a consistent match
in all images. Combining photometric and geometric cues is expected to further in-
crease the robustness of outlier detection. However, whereas photometric occlusion
cues can easily be used to formulate and minimise depthandocclusion jointly, this is
more difficult when adding geometric cues. To be more formal,it is easy to compute
the likelihood of a pixeli having depthdr and being visible in thekth image-based
on photometric cues. To compute the same likelihood by taking geometric cues into
account one would have to consider all terms which are intersected by projecting the
3-D point (which corresponds to depthdr in pixel i) to thekth image. This would
lead to a formulation where the state of a pixelxi is correlated to many more pixels
than only on its four neighours. A tracktable integration ofphotometric and geometric



3.11. Conclusion 57

cues is currently only possible when depthandocclusion are treated separately as for
instance in [51, 58].

An extensive validation of the temperature annealing scheme (DAEM) is pre-
sented. This showed that the temperature annealing versionof the EM algorithm has
advantages over the classical EM formulation. Especially in stereo settings with a
(strong) colour change the DAEM approach is able to find the global optimum even
without a good initialisation. The dependence of the solution on the specific form of
the parametric prior model is reasonable, such that, for instance, all real experiments
could be performed with the same parameters.

The computation time depends largely on the scene itself andthe number of evalu-
ated states. If the scene contains many ambiguities,e.g. large un-textured regions with
a uniform data-likelihood, the algorithm will be slower. Inthis case the sparsification
described in section 3.9.2 will be less efficient. In the other case,i.e. if a pixel has a
clearly peaked data-likelihood distribution, many stateswill be victims of the sparsi-
fication already at an early stage of the optimisation. Ambiguities can be diminished
by taking more images into account, which on the other hand leads to more visibility
states. An optimum in terms of the computation time will depend on both factors.

MRF formulations, as presented in this chapter, work well even without an initial
estimate on the depth. However, applying MRF methods to large images is more
difficult because of their large memory and speed requirements. These have been
diminished to some extent by a sparse implementation. In thenext chapter, a local
PDE based approach is presented, which overcomes these limitations, but which will
need a good initialisation. These might be provided by the MRF approach presented
here.

3.11.2 Relation to other formulations

Many MRF formulations to stereo assume the inlier distribution to be known. Usually
this distribution has a mean value ofy1

i , i.e. the colour value of a pixel in the reference
image, and a specific known variance (e.g. [58, 63]). For stereo formulations that use a
robust matching criterion the parameters of the M-estimator (ρ-function) are also sup-
posed to be known (e.g. [64, 50, 51, 131, 64]). We have shown in chapter 2 that robust
M-estimation can be related to a generative model based formulation. More particular,
one could justify the parameter choice of the M-estimator bysetting large priors on
the corresponding inlier and outlier distributions. The exact relation to our generative
models is, however, difficult to make. For many energy based stereo formulations it is
not clear how their underlying generative model could be defined.

It is further interesting to notice, that most multi-view stereo formulations use
y1 as the mean of the inlier distribution. This can be seen as putting a large prior
(fp → ∞ in eq. 3.7) on the ideal imagey∗, however, we have seen in sec. 3.10.3
(fig. 3.18) that this does not lead to the optimal result.
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Local formulation
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arg max
y∗

{
log p(y |y∗)p(y∗)

}
of Hampelet al. [42] with

p(y∗)∝ ∏
ij∈[i±1,2]

ψij(y
∗
i , y

∗
j )

In the previous chapter, a MRF formulation for the multi-view stereo problem
has been presented. The states of the random field did includedepth and visibility.
This approach can be seen as aglobal approach in the sense that the probabilities of
all possible depth and visibility realisation are considered. It can therefore be used
without initial (depth) knowledge of the scene. This formulation has, however two
disadvantages:

• The model assumes that the scene can be described by a number of discretised
depth values. Obviously, depth is a continuous property of the scene and MRF
formulations do not account for that.

• To achieve sufficient accuracy, the number of states grows very large and it
becomes difficult to remain fast and memory efficient.

We showed in the previous chapter that a sparse implementation is possible, which
solved the second problem to some extent. The first problem ismore serious, and we
will therefore discuss in this chapter a generative model for which depth is continuous.
This leads to a local approach, in which a depth map iteratively evolves through PDE-
based non-linear diffusion.

59
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4.1 Introduction

4.1.1 Previous work

PDE-based approaches for the stereo problem can be divided into two general formu-
lations.

• Global PDE formulations are similar to MRF formulations in that they also
define the energy globally in a3-D space. Often implicit functions are defined
in this space and regularisation is based on neighbouring grid points (voxels).

• Local PDE formulations are often image-based. Usually an energy is defined
in the2D image domain and the regularisation is based on neighbouring pixels.

The fundamental difference between global PDE-based solutions and MRF formula-
tions is the normalisation. Every node in a MRF formulation is considered to be in
exactly onestate,e.g., a certain depth statedk or the state “occluded”. For this rea-
son, the expected values of the MRF states need to be normalised over each node. In
PDE-based global formulations, this is not the case. Usually, an energy is minimised
such that the images are brought into correspondence and a smoothness condition is
fulfilled. The far most prominent members of3-D-based PDE solutions use level-sets,
which have been introduced by Setian and Osher[78]. First level-set formulations for
the multi-view stereo problem have been presented by Deriche et al. and Faugeraset
al. [20, 21, 24, 25]. Further research considered for instance: efficient implementa-
tions, using narrow band level-sets or GPU-based implementations [67]; the extension
to the case of non-Lambertian surfaces, formulated by Jinet al. [54, 53]; the incorpo-
ration of additional constrains, which can be based on visual hulls [44] and/ or calibra-
tion points [68] and the use of cross correlation or mutual information as the similarity
measure as formulated by Ponset al. [86]. The advantage of these methods lies in the
integration of all images into one single optimisation scheme. The discretisation of
the3-D space into voxels can be seen as a disadvantage.

Local, PDE-based formulations have their origin in the widefield of optical flow
computation, where the correspondence between pairs of images is parameterised by
a 2-D flow vector for each pixel. When the scene is rigid and epipolar geometry is
known, the two degrees of freedom for each pixel reduce to onedegree and the dis-
parity can be estimated instead. This approach is for instance studied by Devenayet
al. [22], Proesmanset al. [90], Robertet al. [93], Alvarezet al. [3] and Slesarevaet
al. [100]. When the full calibration is provided and more than two images are given,
depth is the natural parameter that brings all images into correspondence with the tar-
get image. This multi-view stereo extension of the stereo problem has been proposed
by Robert and Deriche [93] and applied to real images by Strecha et al. [106]. A
probabilistic formulation of the latter work is given in [103]. And a further extension
to the estimation of multiple depth maps has been proposed byGargalloet al. [37].
All these2-D methods use a reference image or a virtual image [103] as the space on
which depth is computed.

To the class of local PDE formulations, one can also count methods which use a
triangle mesh that brings all images into correspondence. Stereo and visual hull con-
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straints are often combined for steering the mesh to an energy minimum. Examples
are, for instance, Furukawaet al. [36] or Neumannet al. [76]. We call all these meth-
ods local since the depth/disparity is iteratively updatedin a gradient decent manner
starting from some initialisation.

Most PDE based formulations start by defining an energy whichis minimised by
various optimisation schemes. Several parameters are introduced, which account for
instance for noise variations, the smoothness of the solution, for breaking the smooth-
ness condition in some areas and for the visibility reasoning. It is the aim of this work
to formulate an algorithm for which many of those parametersdisappear. Generative
models for multi-view stereo as proposed by Strecha, Fransens and Van Gool [103]
and extended by Gargallo and Sturm [37] are the key to achievethis. Our particular
generative model will lead to an EM algorithm in which a localPDE-based solution for
the depth plays a major role. Discontinuities of the depth are modelled by anisotropic
diffusion, for which we next succinctly review the related work.

4.1.2 Discontinuity preserving diffusion

For many problems in computer vision, regularisation is required to overcome their
ill-posedness. Often a smoothness constraint is added, forinstance, for the computa-
tion of optical flow. A large amount of work has been done to formulate smoothness
constraints, which can be locally broken. These constraints lead to the wide field
of inhomogeneous and anisotropic diffusion filtering. Froma probabilistic point of
view, the smoothness constraint can be formulated by a priormodel for which locally
smooth solutions are very likely. Local deviations of the smoothness are consequently
outliers from this prior model. We can find various ways to model outliers in the
literature.

One class of approaches introduce additional parameters which explicitly detect
outliers. The advantage of these is that they can put furtherconstrains on the resulting
outliers maps,e.g., continuity. Often these methods lead to coupled systems in which
the parameter- and outlier maps interact with each other. Geman and Geman [40] for
instance proposed the additional use of a so-called line process. This process estimates
additional edge or outlier labels which are used to break thesmoothness assumption
locally. The Mumford Shah approach [74] is a continuous version of such a line
process. Other examples are proposed by Proesmanset al. [90, 89] in the context of
optical flow computation and image enhancement.

Another class of approaches was pioneered by Blake and Zisserman [10]. They
showed that the above-mentioned line process [40] can be eliminated by using robust
estimators. This approach leads in this context to reweighted least square optimisation
problems, where the weights play the role of the outliers maps in the previous class
of methods. Also, the Perona-Malik model [81] can be interpreted in this context.
Some popular examples are given by Rangarajanet al. [91] in the context of image
segmentation and by Blacket al. [8] and Broxet al. [12] for the estimation of optical
flow.

Formulations based on a line process as well as formulationsthat eliminate this
process based on robust estimators implement inhomogeneous non-linear diffusion.
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The diffusivity is defined as a function of the pixel coordinates and the resulting reg-
ulariser will change at each iteration to take care of the updated diffusivity. Different
with respect to this is the regularisation based on the structure tensor. The prior model
does thereby assume only directional smoothness. Applied to the depth regularisation,
this means that anisotropic diffusion is realised. If the image contains a high intensity
gradient, the depth is assumed to be smooth orthogonal to hisdirection only. In uni-
form intensity areas, all directions are equally importantand the smoothing is locally
isotropic. If the diffusion tensor is based on the referenceimage, the regularisation
term can be computed once and used in every iteration. Some examples in the context
of optical flow estimation are given by Jähne [49] and Alvarez et al. [4, 3], where the
last is also applied to the estimation of disparity. There are also non-linear anisotropic
diffusion approaches, where the structure tensor is modified by the current solution,
e.g., for the estimation of optical flow by Broxet al. [13]. A more detailed view of
diffusion methods is given by Weickertet al. [116]. For our depth regularisation, we
will consider only anisotropic regularisation schemes as discussed in sec.4.3.2.

This chapter has a similar structure as the previous one. To alarge extent it can be
read without the knowledge of the previous chapter. Nevertheless, it is the intention
to relate both approaches to each other, stress the differences and show the conceptual
similarities. We first provide the generative model in sec. 4.2. The prior section 4.3
will get much attention because of the essential differenceof the depth prior w.r.t. the
MRF depth prior. The MAP formulation in sec. 4.4 and the EM solution in sec. 4.5
are similar to those in the previous chapter but with the specific generative and prior
model. Finally, we provide experiments in section 4.6, which allows us to judge the
advantages and disadvantages of both approaches on the samedata sets.

4.2 Generative imaging model

As for the global formulation in the last chapter, we start bydefining the generative
model that specifies the way our input images are supposed to be generated. Although
the local generative imaging model seems similar to the one described in the last
section 3.5, there is one important difference. The depthDi of a pixel i in y∗ is
not assumed to be discretised into the depth levelsdr. Nevertheless, there are many
similarities. Also, the input images are considered to be generated by either one of
two processes:

• The inlier process(fig 4.1) generates the pixelsyki which are visible iny∗ and
which obey the constant brightness assumption up to a globalcolour transfor-
mationCk, which can be different for each input imageyk.

• Theoutlier processwill generate all other pixels.

The inlier process is modelled as:

yki′(Di)
= C−1(pk) ◦ y∗i + ǫ , (4.1)

whereǫ is the image noise, which is also assumed to be normally distributed with zero
mean and covarianceΣ. Again, C−1(pk) models the global colour transformation



4.2. Generative imaging model 63

Figure 4.1: Image generation: Image formation for the inlier process (top). The
pixels ofy1,2,3,4 are generated by adding noise to the geometric and photometric
warp ofy∗.

between thekth input imageyk and the ideal imagey∗. The depth-dependent map-
ping i′(Di)↔ i is different to eq. (3.1). It is now dependent on thecontinuousdepth
Di and will be a part of the model parametersθ. Remember, for the global formu-
lation, depth has (together with the visibility) been interpreted as a hidden MRF. As
such we considered possiblediscretedepth-visibility realisations of the scene. For the
following local formulation, only the visibility configurations are modelled as a MRF
and the depth parameter is subject to a PDE-based minimisation.

The outlier process is modelled as a random generator, sampling from the un-
known distributiong. This is identical to the global formulation. Both, the inlier and
outlier process are selected by a hidden MRFx, which includes the visibility config-
urationsvsi , s = 1 . . . S as states. Identical to the previous chapter (sec. 3.5), each
visibility configurationvsi describes one configuration of the individual image visibil-
itiesvski .

Again,f(.; µ,Σ) denote a normal PDF with meanµ and covarianceΣ andg(.;hk)
is the outlier distribution associated with thekth image. Similar to the global formu-
lation, letxsi be the state which is1, and letyki′(Di)

be the pixel in thekth image

onto whichy∗i is mapped. Then the probability of observingyki′ , conditioned on the
unknownsθ={D,y∗,Σ,hk,pk} and the state of the MRFxi, is given by:

p(yki′(Di)
|θ,x) =

{
f(C(pk) ◦ yki′(Di)

; y∗i ,Σ) if vski = 1

g(yki′(Di)
;hk) if vski = 0

}
. (4.2)

The inlier model is selected whenvski =1, i.e. when the pixeli (being in statexsi =1)
is visible in the kth input image.
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4.3 Priors

4.3.1 Visibility prior

The MRFx represents the unobservable visibility state of each pixelin the ideal image
y∗. A Gibbs prior models the interaction of neighbouring visibility configurations,
similar to sec. 3.6.1:

p(x) =
1

Z

∏

i

∏

j∈Ni

ψij(xi, xj) , (4.3)

whereψij(xi, xj) depends on the distanceDij(s, q) between two visibility configu-
rations, defined in eq. (3.5).ψij(xi, xj) and is given by:

ψij(x
s
i , x

q
j) = exp (−σvDij(s, q)) + C . (4.4)

This interaction is the most general formulation. It provides the possibility that out-
liers from different images can interact with each other. More particular, it is for
instance possible to increase the probability of a pixeli being visible in one image if
a neighbouring pixel is also visible inanotherimage.

A simpler model demanding less time and memory, would be to neglect those
interactions and consider only the inter image spatial visibility interactions. In this
case, a MRFxk is introduced for every imageyk and describes the two possible states
(inlier and outlier). The spatial correlation is modelled by the Ising model, described
in appendix C.2.1. This model has also been used by Fransenset al. [31] and De Smet
et al. [17] to model spatially correlated outliers.

If one would further simplify the model and neglect also spatial interactions, the
visibilities can be estimated in closed form. The Bayes’ estimate for a pixeli be-
ing visible in imagek p(xki =1 |θ, yki ) leads to the uncorrelated visibility case (see
app. C.2.1) and is given by:

Vki =
f(C(pk) ◦ yki′(Di)

; y∗i ,Σ)

f(C(pk) ◦ yki′(Di)
; y∗i ,Σ) + g(yki′(Di)

)
. (4.5)

Fig. 4.2 shows this uncorrelated case graphically. For the experiments in this chapter,
we will use the first (fully correlated) prior model. The second model, with spatial
correlations of the visibilities only, is applied when fullsize images are considered in
chapter 5.

4.3.2 Depth prior

The prior on the depth parameter is divided into two parts. One part is defined on
every pixel iny∗, i.e., a smoothness prior, and one part incorporates the sparse set of
initial 3-D points that is provided by the calibration procedure.
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Figure 4.2:Uncorrelated visibilities: The probability ofy∗i being visible in thekth

image is proportional to its value under the Gauss-curve (bold, left arrow), i.e., the
distributionf(C(pk) ◦ yki′(Di)

; y∗i ,Σ). The probability ofy∗i being invisible in the

kth image is proportional to the value under the histogram-based estimatorg(yki′(Di)
)

(thin, right arrow).

Smoothness depth prior

The formulation of appropriate depth priors is probably themost interesting issue for
the stereo problem. Currently, priors are defined only locally by making smooth depth
configurations more likely. Obviously, it would be of great use to define priors over
more extended image patches or even to model primitive shapes. Priors based on
image patches have been introduced by Roth and Black [94] in the context of optical
flow computation. In this work it was suggested to use learnedmultiple experts as
an optical flow prior. These experts correspond to likely configurations of the optical
flow field on a patch of pixels. For the two view stereo problem asimilar idea was
recently evaluated by Konget al. [65].

The disadvantage with these more informed priors is their need for representative
training data, which is often not available. We therefore take a much simpler prior
model, which assumes that the prior belief in the depthp(D) can be parameterised by
an exponential density distribution of the form:

p(D) =
1

Z
exp

(
−|R(X ,D) |

λs

)
, (4.6)

whereλs is a parameter which controls the width of the distribution,andR(X ,D) is
a regulariser. This regulariser is driven by the functionX . From such a regulariser,
we expect that it reflects our prior belief that the world is essentially simple,i.e., for a
locally smooth solutionD in the neighbourhood of a particular pointi, its value should
approach zero, making such a solution very likely. Vice-versa, large depth fluctuations
should result in large values for the regulariser, making such solutions less likely. Fur-
thermore, the regulariser should be able to break the above mentioned smoothness
assumption: if the value ofX suggests a depth discontinuity, a large depth disconti-
nuity ati should not be made a-priori unlikely. Such regularisers arecommonly used
in the PDE-community, where they serve asanisotropicor inhomogeneous diffusion
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operatorsfor the computation of optical flow or edge-preserving imagesmoothing.
Weickertet al. [117] presented a taxonomy of different diffusion operators. Accord-
ing to that, diffusion operators are distinguished betweenisotropic and anisotropic
operators and both categories are further classified according toX . We only consider
anisotropic operators, and discuss possible realisationsof X .

Anisotropy diffusion operators can be written as:

R(X ,D) = ∇DTT (∇X )∇D , (4.7)

whereT (∇X ) is the diffusion tensor defined by:

T (∇X ) =
1

|∇X |2 + 2ν2

(
∇X⊥∇X⊥T + ν2I

)
. (4.8)

The diffusion tensor is a2 × 2 matrix, whereν controls the degree of anisotropy,
∇X⊥ is the vector perpendicular to∇X andI is the identity matrix. Forν →∞ the
diffusion tensor is equal to the scaled identity matrixT (∇X )=0.5I. In this casep(D)
is independent on the direction∇D and isotropic diffusion is realised. If, on the other
hand,ν ≈|∇X | the prior probability ofD might still be high when∇D is parallel to
∇X . For instance ifX is the reference image, a large value of| ∇D | will be allowed
if ∇X is parallel to∇D, which is exactly the desired anisotropic behaviour.

Having defined the parametric form of the prior, we are now in the position to
describe the possible realisation ofX . The best feature forX is the depth itself. Using
X = D to regularise the depth corresponds to flow-driven regularisation schemes in
the context of optical flow [117, 13]. Thereby every depth configurationD which is
directionally smooth will obtain a high prior probability.Another widely used feature
to construct the diffusion tensor is the reference or ideal image. All depth configura-
tions which are smooth perpendicular to the image gradient direction are assumed to
be likely. This approach is justified by the observation thatdepth discontinuities often
fall together with high image gradients. Both sources of anisotropy have advantages
and disadvantages and we will therefore also consider a combination of both. The ma-
trix ∇X⊥∇X⊥T is computed as a weighted sum over the individual features. For the
weight of each feature we use the Mahalanobis distance related to a diagonal Gauss
distribution of all derivative vectorsXi. We continue the discussion with an evaluation
of prior distributions, which are extracted from ground truth data.

Ground truth evaluation of the depth prior

Figure 4.3 shows the distribution for differentX on the synthetic data used in section
3.10. More particularly, we first computed the value ofR(X ,D) for every pixel using
the ground truth values forD andy∗. Secondly a histogram was built overR(X ,D).
The result is the ideal distributionp∗(D) for this particular dataset, which we will
use to illustrate the goodness of the assumed parametric prior distributionp(D) in
eq. (4.6).

The left plot in fig. 4.3 compares the probability distributionsp∗(D) for the isotropic
caseT = T (0.5I) with the depth based anisotropic caseT = T (∇D). About99.5%
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Figure 4.3:Prior distribution: The distributionp∗(D) for different diffusion tensors
T (∇X ) is shown as a function ofR(X ,D) for the synthetic data set in fig. 3.6.

of the pixels have a valueR(X ,D) which is smaller than0.1, i.e. for almost all pix-
elsDi is smooth. The difference lies in the modelling of non-smooth depth values:
whereas the anisotropic distribution does not contain manypixels with a larger value
of R(X ,D), this cannot be said about the isotropic case. One can therefore con-
clude that the parametric form ofp(D) as given by eq. (4.6) and in combination with
eq. (4.8) is well suited for the depth based anisotropic regulariserT = T (∇D) but not
for an isotropic regulariser.

The right plot in fig. 4.3 shows a close-up for three distributions: one, which
was already plotted in the left plot,i.e. based on the depthT = T (∇D), and two
anisotropic regularisers based on the ideal imageT = T (∇y∗) and on the combi-
nation of bothT = T (∇D,∇y∗). These plots show an exponential fall-off for all
distributions. We can see that large values of| ∇D | are nicely modelled by these
distributions. For the image-based regularisation scheme, this also shows that depth
gradients coincide with intensity gradients in our test set.

Fig. 4.4 shows the colour-coded magnitude of the diffusion tensor entries for the
three anisotropic diffusion tensors. One can see only a tinydifference between the
image-based and the combined image-depth diffusion tensor. This difference is visi-
ble at the borders of the face, mainly where the intensity gradient between fore- and
background is less strong.

The above considerations can be seen as a justification for the relatively simple
form of the depth prior in eq. (4.6). There exist, of course, many more advanced regu-
larisation schemes which can deal with outliers from the smoothness assumption (see
sec. 4.1.2). These are not considered here. We believe that regularisation should be
seen in a Bayesian context where training should play an essential role in formulating
prior models. This however is beyond the scope of this thesisand we restrict ourself
to formulate the probabilistic framework in which one couldplug in more advanced
prior models easily.
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Figure 4.4:Anisotropic behaviour: The images show the colour coded magnitude
of the diffusion tensor entries. The diagonal elements are in red/green and the off-
diagonal element is coded in blue. From left to right one can see the: image-based
diffusion tensorT = T (∇y∗), the combinedT = T (∇y∗,∇D) and the depth based
diffusion tensorT = T (∇D).

Scale invariance

The regularisation of the depth is strongly dependent on thescale. We can consider
two different kinds of scales. First, there is the scale ambiguity of uncalibrated ”struc-
ture and motion”. Two calibrations of the scene, which differ by the Euclidean scale,
will lead to two different prior distributionsp(D). And second, there is the scale,
which is introduced by defining the problem on different pyramid levels. To account
for these scale dependencies, we will treat the width of the prior distributionλs in
eq. (4.6) as part of the MAP estimation problem. By doing so, the formulation is
made invariant to both kinds of scale changes.

The widthλs also indicates the strength of the prior.λs is the well known factor
that weights the contribution of the smoothness term relative to the matching term.
This factor is present in all energy formulations that require regularisation. By taking
λs as an unknown parameter, we loose control over the relative weighting. Therefore,
we introduce an additional parameterλ. This parameter reflects the uncertainty of the
depth prior and will have to be set by hand. The likelihood distribution in eq. (4.2)
will therefore be replaced with:

p(yki′(Di)
|θ,x)λ ← p(yki′(Di)

|θ,x) . (4.9)

Ideally, the value ofλ will be one, independent of the Euclidean scale of the recon-
struction and also of the pyramid level which is considered.In the experimental sec-
tion of this chapter, we will evaluate the dependency on thisparameter.
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Calibration points depth prior

The second part of the depth prior relates the depth estimateof certain pixels to the
already known value. Initial3-D points, which are provided by self-calibration [82],
will project to the ideal imagey∗. For the closest pixeli, the depthGi is therefore
approximately known. We model the depth prior for these points by a Gaussian dis-
tribution:

p(D) =
1

Z

∏

i

exp

(
− 1

λc
(Di − Gi)2

)Wi

. (4.10)

Whenever an initial3-D point is projected, the closest pixel will have a non-zero
weightWi. This weight is related to the certainty of this particular3D point. All
other values ofWi are zero.1. The parameterλc is used to globally weight the relative
influence of the initial3D points.

The overall depth prior is now based on the product of the two depth prior distri-
butions in eq. (4.6) and eq. (4.10).

4.4 MAP estimation

Let θ = {D,y∗,Σ,hk,pk, λs} denote all parameters, and lety = {yk} denote all
input data. The maximum a-posteriori probability (MAP) estimate of the unknownsθ
is given by:

θ̂MAP = arg max
θ

{
log
∑

x

p(y |x,θ) p(x) p(θ)
}
, (4.11)

Conditioned on the state of the hidden variablex, the data-likelihood factorised as a
product over all individual pixel likelihoods:

p(y |x,θ) ≈
∏

i

∏

k

∏

s

p(yki′ |xsi ,θ)x
s
i . (4.12)

In the product overs only the factor for whichxsi = 1 survives. This product includes
in this formulation, different from the global formulation, only contributions related
to the possible visibility configurations,i.e. the statexsi corresponds to a particular
visibility configurationvs which are shown for three images in table 3.1. Based on
these visibility values, the pixel-likelihood in the righthand side of eq. (4.12) can be
further expanded as:

p(yki′ |xmi ,θ) =
[
f(C(pk) ◦ yki′ ; y∗i ,Σ)

]vsk[
g(yki′ ;h

k)
]1−vsk

. (4.13)

This pixel-likelihood is given by the inlier distribution if the visibility configuration
vs describes the situation for which the pixel is visible in thekth image,i.e. vsk = 1
and the pixel-likelihood is given by the outlier distribution if vs describes the situation
for which the pixel is not visible in the kth image,i.e. vsk=0. We have now specified

1We use binary values forWi, since the calibration proceedure we use does not provide certainties.
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all terms of the data-likelihoodp(y |x,θ) and the prior on the MRF in eq. (4.3). The
sum

∑
x in the right hand side of eq. (4.11) ranges over all possible configurations

of the random fieldx and one can use here, similarly to the global approach, the EM
algorithm to deal with this problem.

4.5 EM algorithm

Given the specific form of the prior in eqs. (4.6) and (4.10) and the data likelihood in
eqs. (4.13) and (4.9), we can construct the free energy similarly to the previous chapter
3.8.1 and as explained in appendix C. By applying the mean field approximation, we
get:

FMF ≈ −λ
∑

i

∑

k

∑

m

bmi log p(yki′ |xmi ,θ)

+
1

λs

∑

i

R(Xi,Di) +
1

λc

∑

i

Wi(Di − Gi)2

−
∑

i

∑

j∈Ni

∑

m,n

bmi b
n
j logψmnij

+T
∑

i

∑

m

bmi log bmi . (4.14)

The difference with respect to the mean field free energy for the global approach
in eq. (3.16) is provided by the additional terms related to the depth prior and the
definition of the MRF states, which include here only the visibility configurations.

4.5.1 E-step

On the(t + 1)th iteration, the conditional expectation of the complete log-likelihood
w.r.t. the posteriorp(x | y,θ(t))1/T is computed in the E-step. The update equation
for the expected valuesbni of the MRF field states is similar to eq. (3.17) given by:

bmi ← exp
( 1

T

∑

j∈Ni

∑

n

bnj logψmn +
1

T

∑

k

log p(yki′ |xi, θ̂(t))− 1
)
. (4.15)

Again, the visibilities for each image are computed by the expected value over the
node beliefsbmi :

Vki =
∑

s

bsiv
sk
i . (4.16)

4.5.2 M-step

At the M-step, the intent is to compute values forθ that minimise eq. (4.14), given the
current estimates of the visibilitiesVki . This is achieved by setting the parametersθ to
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the appropriate root of the derivative equation,

∂FMF (θ)/∂θ = 0 . (4.17)

For the image related parametersy∗i andΣ, the update equations are:

y∗i ←

∑
k

Vki C(pk) ◦ yki(Di)

∑
k

Vki
, (4.18)

Σ←

∑
k

∑
i

Vki
(
C(pk) ◦ yki(Di)

− y∗i
)(

C(pk) ◦ yki(Di)
− y∗i )T

∑
k

∑
i

Vki
, (4.19)

the colour transformationpk is given by solving the linear system:

C(pk)
∑

i

Vki yki(Di)
(yki(Di)

)T =
∑

i

Vki y∗i (yki(Di)
)T , (4.20)

and the scale by:

λ−1
s =

1

N

∑

i

| R(X ,D) | (4.21)

To arrive at these closed-form expressions, we ignored the effects of these variables
on the regularisation term. This is admissible because their influence on the depth
regulariserR(y∗,D) is small compared to their influence on the matching term.Σ

is only indirectly related toR(y∗,D) by way of computation of the visibility maps,
which have an effect onR(y∗,D) via the computation ofy∗i . The imagey∗i has an
effect onR(y∗,D) via its gradient, which is used to define a quadratic norm on the
depth gradient (4.7). Changes ofy∗i will therefore only exert a minor influence on
R(y∗,D).

However, for the update of the depth mapD we are not so lucky, becauseD
strongly influences both the matching and the regularisation term. To minimiseFMF

w.r.t. D, we solve the corresponding diffusion equation. This can bederived from
eq. (4.14) by using the Euler-Lagrange equation and is givenby:

∂D
∂t

= div(T (∇X )∇D)

+ λ
∑

k

Vk ∂(C(pk)ykD−y∗))TΣ−1(C(pk)ykD−y∗)

∂D

− 2

λc
W(D−G) , (4.22)

whereykD is the colour value of the kth input image interpolated at the current depth
valueD. For the solution of 4.22 we use a symmetric Gauss-Seidel scheme [88]. Other
solution schemes based on multi grid methods would also be possible. Examples for
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these are studied by Bruhnet al. [14] applied to the computation of optical flow. The
existence and uniques of this parabolic equation has not been proved, However, for the
case of two-view stereo, when disparity is considered, the existence and uniques of the
solution to eq. (4.22) has been proved by Alvarezet al. [3]. Details on our solution
are given in appendix D. The whole algorithm is graphically depicted in table 4.1.

Initialisation:bi=uniform, y∗ = y1

Σ is diagonal, with entriesσ=100
for all initial 3-D pointsDi = Gi
all other depths are initialised byDi = max(Gi)
Loop over pyramids:

until convergence:

M-step
compute diffusion tensor
until convergence:

computeD by solving the diffusion equation (4.22)
computey∗ by eq. (4.18)
computeΣ by eq. (4.19)
computeλs by eq. (4.21)
compute everypk by solving eq. (4.20)

E-Step
Estimate visibilitiesVk by eq.(4.16)
and using the mean field update eq. (4.15)

Table 4.1:Outline of the local algorithm.

4.5.3 Relation to other PDE based formulations

Consider the diffusion equation (4.22) for the case that theideal image camera position
to be place aty1 and without the energy term which penalises deviations ofD form
the sparse initialisation (λc→∞). With these assumptions we can relate eq. (4.22)
to the PDE-based stereo formulations by Proesmanset al. [90], Robertet al. [93],
Alvarezet al. [3] and Slesarevaet al. [100]. Eq. (4.22) simplifies to:

∂D
∂t

=div(T (∇X )∇D)+λ
∑

k

Vk ∂(y∗−C(pk)ykD)TΣ−1(y∗−C(pk)ykD)

∂D .(4.23)

What can we read off from this diffusion equation:
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• The smoothness term and the matching term are globally weighted by the image
noiseΣ, i.e. if a large noise magnitude is present in the images, the smoothness
term will become more important. This is an advisable mechanism, since in the
presence of noise the depth will be relatively more smooth and will not try to
match the (noisy) pixels compleately.

• The matching term is weighted by the visibilities,i.e. if a pixel has a high con-
fidence of being an outlier w.r.t. the kth image (Vki ≈ 0) its importance to the
matching term is decreased. To find the depth value of a pixel this mean that
only the visible pixels are considered.

• The smoothness and the matching term are locally weighted bythe visibility
confidence. If the visibilities of a pixels w.r.t. all imagesVki ≈1, k = 1 . . .K is
large we have a strong data confidence and the smoothness termis less impor-
tant. In the other extream case where a pixel is detected as being an outlier w.r.t.
to all input imagesVki =0, k = 1 . . .K only the smoothness term survives and
depth is driven by the local neighbourhood.

• The relative importance of the image bands is globally weighted by the inverse
covariance matrixΣ−1. For instance for images where each image band is
measured by a different sensor, with possible different data range, the relative
importance is adjusted automatically.

• The generative model tells to compare the ideal imagey∗ with all input images
yk and not the input reference imagey1.

This formulation is different from Proesmanset al. [90], Robertet al. [93], Alvarezet
al. [3] and Slesarevaet al. [100] in that more than two images are used to estimate the
depth of the reference camera. Furthermore our above mentioned automatic weighting
mechanisms are not present this work [90, 93, 3, 100],i.e. the image noise is kept
fixed and incorporated in the value ofλ. Also the local visibility related weightsVki
are often set to one for all pixels. In [100] a robust estimation scheme is used for
which the weightsVki are the result of a reweighted least square optimisation with
a fixed M-estimator. We have discussed the relation of our formulation with robust
estimation in chapter 2.

4.6 Experiments

The experiments in this section are in close relation to the experimental section in
the previous chapter 3.10. We want to evaluate the local approach as a function of
the parameters and the source of anisotropyX . It is further the intention to compare
the results of the local and the global approach. We want to stress, however, that this
comparison is somewhat inaccurate, since the local approach uses initial3-D points to
hold on to.
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Figure 4.5:Evaluation of λ: Median disparity error (left) and visibility error right as
a function ofλ (µ = 3.2, σv = 4).
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Figure 4.6:Evaluation of λ: Median disparity error (left) and visibility error right as
a function ofλ (µ = 3.2, σv = 4) when the parameters are initialised with the global
approach.

4.6.1 Ground truth evaluation

The synthetic ground truth evaluation is performed using the same10 artificial test
sets as in section 3.10 of which one example is shown in fig. 3.6. For one percent of
the pixels (equally spread in the image), the ground truth depthGi in eq. (4.10) is used
as prior. Only for those pixels isWi=1.

In the first experiment, we evaluate the performance as a function of the relative
weightλ of data-likelihood and prior. Fig. 4.5 shows the median error and the visi-
bility error for the three regularisers. All regularisers perform better than the global
approach, which has a median depth error of≈ 0.6 (see fig. 3.15). The regulariser,
which is based on the ideal image (T (∇y∗)), gives the best result. The two other
regularisers perform similarly. This behaviour can only beexplained by the local na-
ture of the diffusion approach. The bad initialisation ofD leads to a wrong estimate
of the diffusion tensorsT (∇D) andT (∇y∗,∇D), which then again prevents global
convergence. To validate this statement, a second experiment was set-up. In this the
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parametersD, Σ,pk andVk have been initialised by the value obtained from the
global approach2. The results of this experiment are shown in fig. 4.6. Indeed,with a
better initialisation of the parameters, the regularisersbased on the depth perform bet-
ter than the image-based regulariser. With initialisationthe disparity-error decreases
even further.

The value ofλ which gives the best results lies in the range0.1 ≤ λ ≪ 1. This
result compensates for the overestimation of the unknown scaleλs in eq. (4.6). The
parametric form of our prior distribution does not explictly take outliers into account
and the value ofλs will therefore be larger than it should be.

In the next experiment, we evaluate the three regularisation schemes with respect
to ν, the strength of the anisotropy. Figure 4.7 shows the results for the median dis-
parity error and the visibility error when we do not initialise with the global approach.

Here, we see the convergence of all three regularisers to a single error-value for
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Figure 4.7:Evaluation of ν: Median disparity error (left) and visibility error right as
a function ofν (λ = 0.32, σv = 4).

ν → ∞. This limit implements isotropic diffusion. The best regulariser is again
image-based and has an optimal value ofν ≈ 1. By initialising the parameters with
the global approach, the depth based regularisers perform similarly or even better,
which is shown in fig. 4.8. Also, the optimal value forν is smaller compared to the
results without initialisation. Both experiments show once again the advantage of a
good initialisation. To be consistent with the experimentsin the global approach,
fig. 4.9 shows the result with respect to the visibility correlation strengthσv. We can
recognise only a minor influence, which is similar to the global approach due to a
strong data-likelihood in the occluded areas.

4.6.2 Outdoor scene reconstructions

The outdoor experiments are preformed on the same data sets as in the previous chap-
ter. All images are processed only up to a size of768×512 pixels to be comparable to

2The Bethe approximation was used withTs = 100, Td = 3.5, Te = 0.1, σd = 100, σv = 1 and
C =10−10.
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Figure 4.8:Evaluation of ν: Median disparity error (left) and visibility error right as
a function ofν (λ = 0.32, σv = 4) when the parameters are initialised with the global
approach.
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Figure 4.9:Evaluation of σv: Median disparity error (left) and visibility error right
as a function ofσv (λ = 0.32, ν = 3.2).

the global approach. The difference is the use of the initialcalibration points as prior
knowledge.

We used the image-based regularisationT = T (y∗) for all sequences and show the
results obtained from the same set of parameters. As a globalresult we can state that
the depth and visibility estimates are almost comparable tothe results of the global
approach. The weak point is the depth and visibility estimation near depth discon-
tinuities. In these areas, the global approach has clear advantages, especially when
initial 3-D are missing nearby. The Leuven city hall scene in fig. 4.12 shows this most
clearly. There, the left part of the reference image does nothave many initial3-D
points and the depth and visibility estimation is rather poor compared to the global
approach (shown in fig. 3.24). Also, the discontinuities around the statue in fig. 4.11
are less sharp compared to fig. 3.23.

Another important problem is the presence of wrong initialisation points. Since
the local approach needs these points, it is difficult to distinguish good initial points



4.7. Conclusion 77

from bad points.
The local approach is about10 times faster than the global approach. The speed

can be increased further by a factor of≈ 5 when the correlation of different visibilities
Vk are neglected or when the Ising model (appendix C.2.1) is used for the visibility
within images (as discussed in sec. 4.3.1).

4.7 Conclusion

A multi-view stereo algorithm was presented for the estimation of depth and out-
liers. The problem has been addressed from a probabilistic point of view. One of
the advantages of such an analysis is that it makes the implicit assumptions underly-
ing a particular algorithm explicit. In our approach, the main assumptions are domi-
nant diffuse reflection and i.i.d. pixel colour distributions. A smoothness regulariser
was introduced to give shape to our prior beliefs about the world. The key result of

Ts Te Td σv C λ nr. initial 3-D points time
20 0.1 2 200 10−10 0.8 1333 34sec

Figure 4.10:Brussels city hall scene:The three input images are the three right-most
images shown in the top row. The camera position of the virtual imagey∗ was chosen
to be the left of these images, which shows the initial3-D points as red dots. The
visibility estimates related toy∗ are in the bottom row. The top-left image shows the
estimated ideal imagey∗ and the estimated depth is shown in the bottom-left image.
Similar to the global approach in fig. 3.22, the image size is768× 512.
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Ts Te Td σv C λ nr. initial 3-D points time
20 0.1 2 200 10−10 0.8 2694 59sec

Figure 4.11:Semper statue scene:The input images are shown in the top row. The
middle image is chosen as the reference view. This image shows the initial3-D points
in red. The depth map for the reference view (middle) and outlier maps for the two
other images are shown in the bottom row. The corresponding result for the global
approach is shown in fig. 3.23.

this probabilistic formulation is that energy minimisation, which is the cornerstone
of PDE-based methods, is strongly related to MAP-estimation. More specifically, in
terms of our notation, the typical energy-functional is a special case of eq. (4.23), in
whichy∗ is defined to be the reference image, and where colour transformations and
noise are supposed to have unit strength.

In this work, images are modeled as noisy measurements of a colour-transformed
unknown irradiance or ’true’ image function. This has threeprincipal advantages.
First of all, it brings about an automatic balancing betweenmatching and smooth-
ness. In early stages of the optimisation (Σ is still large), more emphasis is put on
regularisation, whereas in the convergence stage (Σ reaches the true image noise), the
matching term will gain importance. This is the major resultfrom the probabilistic
formulation of the problem. Also, we formulated the probleminvariant to scale. Only
the parametric form of the depth prior is fixed. The width of the prior distribution,
which is related to the scale, is part of the optimisation procedure.

Secondly, because the true image is a learned model of image irradiance, we are
able to leave the input camera positions, which in turn allows us to compute view inter-
polations as shown in chapter 5.2. Finally, the resulting model integrates all available
image information, and can as such be used as a texture map forthe final3-D recon-
struction.

A strong emphasis was put on the computation of visibility. The visibility of a par-
ticular pixel is modeled as a correlated mixture problem using a MRF. The expectancy
of the outliers is sequentially updated in the EM algorithm.
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Ts Te Td σv C λ nr. initial 3-D points time
20 0.1 2 200 10−10 0.8 1008 62sec

Figure 4.12:Leuven cityhall scene:The three input images are shown in the top row.
The camera position of ideal imagey∗ was chosen to be the middle image, which also
shows the initial3-D points. The depth map for the reference view (middle) and outlier
maps for the two other images are shown in the bottom row. The corresponding result
for the global approach is shown in fig. 3.24.

The PDE-based, local approach described in this chapter needs consistent initial
3-D points for convergence. If these are provided, the local approach is much faster
and yields competitive results when compared to the global approach. However, near
depth discontinuities, we find a clear advantage of the global approach. The local ap-
proach has, on the other hand, advantages in continuous depth regions. The reason for
this can be found in the undiscretised depth formulation. For a good performance on
large images, the local approach is a good candidate, when either a good initialisation
is provided by the global approach (as will be shown in section 5.1) or more effort is
put in a possibly probabilistic formulation of self-calibration [27], which is expected
to lead to more and especially more accurate initial3-D points.
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Chapter 5

Applications

If oo don’t belief that oo r model (e.g. of norare errors) is correct, ch ose an ther one
and use maximum likelih on - or Bayesian - methods for the new model. What, if I
ontt belief in the new model either? It takes a e t of st ttornness to eooo the world
with a host of rather irtetrary and protatey hardey interpretatee models ano seaia

they are exactly true. The p int of rot st statestiss is that one may keep a parametric
model hethoose the tatter is known to be wrong.

arg max
y∗

{
log p(y |y∗)p(y∗)

}
of Hampelet al. [42] with

p(y∗)∝ ∏
ij∈[i±1,2,3]

ψij(y
∗
i , y

∗
j )

In the last two chapters we proposed two multi-view stereo formulations. They
have been compared on small resolution images. In this chapter we give some exam-
ples of depth reconstructions at full resolution as well as image reconstructions for
virtual cameras.

5.1 Depth reconstruction

For the depth reconstruction at high resolution we combine the advantages of the
global and the local approach. The global approach, which works well on small im-
ages, where it finds more easily a global optimum, is used as aninitialisation for the
local approach. This is used to compute the reconstruction on the full resolution im-
ages.

The results of the local approach represent3-D reconstructions of the raw depth
mapsD as given by the solution of eq. (4.22),i.e. no median filter has been applied to
the depth map. We show the reconstruction for all pixelsyi which are visible in at least
two images,i.e.

∑
k Vki >= 2 in eq. (4.16). Furthermore we setλc = 0 in eq. (4.22),

which realises anisotropic diffusion without taking the initial 3-D points into account.
This is possible since we use a relatively good initialisation by the global approach.
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Figure 5.1:Church scene:Three input images (top row). Depth and visibility for the
global approach (middle row), which is used as initialisation to the local approach
(bottom row).

The renderings are not based on triangle meshes. We use a moreefficient way
to render these large models which can include more than6 million 3-D points. It is
based on QSplats as proposed for the Digital Michelangelo Project by Rusinkiewicz
and Levoyet al. [97]. In QSplat all3-D points, their colour, normal direction and
radius are rendered as ellipses.

Church Scene

Three input images of a church are used with a resolution of2592×1944 square pixels.
They are shown in the top row of fig. 5.1. The global formulation was computed up to
a resolution of648 × 486 square pixels using the same parameters as in the outdoor
experiments from chapter 3,e.g., as in fig. 3.23. The depth map and the visibility of
this initialisation is shown in the middle row of fig. 5.1. Theinput to the local approach
is the depth, the visibility, the image noise and the colour transformation as computed
by the global approach. We used the same parameters for the local approach as in the
outdoor experiments in chapter 4 as for instance given in fig.4.11. One exception is
the value of the smoothness related parametersλ, which was set toλ = 0.01. This
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Figure 5.2:Church scene:Textured and un-textured rendering of the raw depth maps
(as shown in fig. 5.1. The top row shows the complete model for the global (left) and
the local (right) approach. The two bottom rows show zoomed rendering of these
models, for the global approach (two left images) and the local approach (four right
images)

tunable parameter, which accounts for the uncertainty in the depth prior, is decreased
to obtain a more smooth, visual appealing reconstruction.

In fig. 5.2 we show textured and un-textured rendering for theglobal initialisation
as well as for the local refinement. The discretisation of thedepth values in the global
formulation is visible in the three left images of this figure. The reconstruction at full
resolution is shown in the top/ right image. The un-texturedas well as the correspond-
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ing textured renderings of zoomed details are visible in thefour right figures in the
middle and bottom row. The computation time was 198 seconds and 159 seconds for
the global and local approach, respectively.

Leuven city hall scene

Figure 5.3: Leuven cityhall scene: Textured and un-textured renderings from the
images shown in fig. 3.24. The full model and a small detail of the global initialisation.

In this experiment the same images as in figs.(3.24, 4.12) areused. The renderings
for the global initialisation are computed with the depth map in fig. 3.24 for all pixels
which are visible in at least to images (visibility maps in fig. 3.24). These are shown in
fig. 5.3, where the full model (top) and a detail (bottom) is displayed. The images are
processed up to768×512 square pixels for which469 seconds are needed to evaluate
268 depth states. Given this solution the local approach took264 seconds to estimate
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Figure 5.4:Leuven city hall scene:Details of textured and un-textured renderings
from the images shown in fig. 4.12.

depth and visibility up to the full resolution of3072 × 2048 square pixels. Figs. 5.5
and 5.5 shows the rendering of the depth map.

For the global approach one can recognise the discretised depth levels in the3-
D reconstruction (best shown in the un-textured zoomed rendering bottom/left of
fig. 5.3), although the number of268 depth states is large1. The result of the local
approach displays a smooth reconstruction which displays fine details not present in
the global reconstruction. Againλ, was set toλ = 0.01 and the other parameters are
identical to fig. 4.12.

1Note, that the famous Tsukuba sequence [98] has a ground truth of 8 depth states.
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Semper statue scene

Similar to the Leuven city hall scene we used the solution of the global approach (as
in fig. 3.23) for the renderings in the top row of fig. 5.6. Up to768×512 square pixels
the global approach took404 seconds for240 depth states. Given this result the local
approach took454 seconds to estimate depth and visibility up to the full resolution of
3072× 2048 square pixels. The renderings of the depth map are shown at the bottom
in fig. 5.6 and the parameters are identical to the last experiment.
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Figure 5.5:Leuven city hall scene:Textured and un-textured renderings from the im-
ages shown in fig. 4.12. The full model (top) and small detailsof the local refinement.
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Figure 5.6:Semper statue scene:Textured and un-textured renderings of the exper-
iment shown in fig. 3.23: global initialisation in the top rowand the local refinement
in the bottom row.
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5.2 Virtual camera reconstructions

Figure 5.7:Cologne cathedral scene:The seven input images are shown in the top
row. Initial 3-D points and camera positions seen from two view points are rendered
in the bottom row.

Often we are not interested in the3-D model of the scene, but only want to view the
scene from a new, virtual view point. One possible solution is to render the computed
3-D model from this virtual camera position. This has been done in the previous
section in the renderings of fig. 5.2, 5.5, 5.6. By using this approach it is not possible
to assign a colour value to all pixels. These are the pixels, for which the ray from
the camera centre through the pixel does not intersect the3-D model. As a result one
could see holes in the3-D model as black pixels. Even if the depth maps from all
cameras are integrated, which is itself a non-trivial problem, there might still be pixels
with an undefined colour value.

A better solution is obtained by the generative model based approach as given in
chapter 3 and 4. Remember, we solved the multi-view stereo problem by computing
the most likely imagey∗ that would have been observed from a given camera position,
given all input images. This problem is independent on the camera position and could
also be applied to a position not included in the set of input cameras.

The advantage of this approach has several aspects. First ofall, we only compute
what is actually needed. Secondly, difficult areas for computing depth become trivial.
For instance in areas of uniform texture (as a uniform sky) itis difficult to compute
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the depth because all possible depth values will project to pixels which have the same
colour. Obviously, at these position, the ideal imagey∗i will have this colour.

Two experiments are performed. The first uses seven images ofthe Cathedral in
cologne as shown in the top row of fig. 5.7. The two images at thebottom of this
figure show two renderings of the initial3-D points as well as the position of the input
cameras (large pyramids). The position of the virtual cameras is indicated by small
pyramids. Note that some of these virtual camera positions are far away from the set
of input cameras. The ideal imagey∗ as computed by the local approach is shown in
fig. 5.8 for some of the virtual cameras.

In the second experiment five input images are used which alsocontain accidental
objects. These are shown in the left column of fig. 5.9. One cansee a bus (top image),
a car (bottom image) and pedestrians. In the reconstructions of the virtual camera
positions (shown in the two columns middle and right) these objects disappear,i.e.
they have no support in the majority of images and are removedas outliers.
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Figure 5.8:Cologne cathedral scene:The ideal imagey∗ for some virtual camera
positions which are shown as small pyramids in fig. 5.7.
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Figure 5.9:Leuven church scene:The five input images are shown left. These im-
ages are contaminated by a bus, a car and several pedestrians. The images in the
middle and right column show the computed ideal imagey∗ using the local approach
computed for ten different virtual camera positions.



Chapter 6

Conclusions

If you don’t belief that your model (e.g. of normal errors) iscorrect, choose another
one and use maximum likelihood - or Bayesian - methods for thenew model. What, if

I don’t belief in the new model either? It takes a lot of stubbornness to flood the
world with a host of rather arbitrary and probably hardly interpretable models and

claim they are exactly true. The point of robust statistics is that one may keep a
parametric model although the latter is known to be wrong.

y∗, i.e. Hampelet al. [42], p. 403

6.1 Summary

In this thesis we used a generative model based approach to solve the multi-view
stereo problem. In relation to the above quote by Hampelet al. [42], we showed that
our particular model can be reinterpreted in the context of robust statistics. Moreover,
we could derive a robust M-estimator, which corresponds to asimplified version of
our particular generative model. This means that, ‘maximumlikelihood - or Bayesian
- methods’ (Hampelet al. [42]) can also be robust if the generative model explicitely
takes outliers into account. If this is done, additional prior knowledge can be used to
further enhance the performance and to be robust to outliersat the same time.

The main part of this thesis was on the evaluation of two generative models for the
multi-view stereo problem. These models gave rise to a global formulation in which
possible depth and visibility configurations of the scene are modeled as states of a
Markov random field. A second, local formulation, takes an initial depth estimate and
evolves it such that the input images are brought into correspondence. The results of
the global formulation show that a good solution is estimated even for scenes with
many outliers and depth discontinuities. This solution is obtained without depth and
visibility initialisation. We showed for example further,that depth estimation is even
possible w.r.t. a reference camera which is contaminated with outliers (fig.3.22). How-
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ever, the global formulation cannot be applied to large sized images, since the number
of depth states is too large to fit the memory and time constraints of current computers.
In this case, the local formulation has clear advantages. Depth is not assumed to be
discretised and a very accurate depth estimate can be computed. The price, for this is
the need for a rough depth initialisation. Once this is given, the local formulation is
able to deal with large images, fast and memory efficient. Thecombination of both,
global and local, leads to accurate depth estimates for input images that could possibly
be larger than6 mega pixel. Multi-view stereo in this domain is often not feasible in
other formulations.

Another focus of this thesis was on the parameter dependenceof multi-view stereo.
We showed that the proposed multi-view stereo formulation is applicable to a wide
range of scenes. To make this possible we formulated the problem as an inverse infer-
ence problem, for which those model parameters are estimated, that have generated
the input images. More particular, the width of the inlier distribution (noise) and the
outlier distribution are estimated. As a result we obtain a formulation which is in-
variant to image noise variations and which decides automatically when a particular
pixel is marked as outlier. We showed further that the remaining tunable parameters
are related to the uncertainty in the prior distribution. For the global formulation this
is reflected byσd andσv in eq. (3.6), which does fix the strength of the depth and
the visibility correlations. In the local formulation we have λ, i.e. the width of the
prior distribution. If training data would be available these prior distributions could be
estimated and the formulation is completely parameter free.

Our generative model based multi-view stereo formulation is not restricted to a
depth and visibility reconstruction w.r.t. a camera which is included in the set of input
images. We have shown, that the formulation can also be applied to virtual camera po-
sitions, thereby estimating the most likely image that would have been observed from
a virtual viewpoint, given the set of input images. In fact, it is possible to compute
reconstructions w.r.t. non-perspective camera models,e.g. if a orthographic camera
model is used, the ideal imagey corresponds to the most likely ortho image.

6.2 Suggestions for further research

The study of the multi-view stereo problem in a Bayesian framework, as we did here,
brought much insight in the problem. We are now in the position to study more ad-
vanced priors for the depth and visibility estimation. Thiswill probably lead to a step
forward in the quality of the reconstructions. One possibility to more advanced priors
has already been proposed in the context of optical flow estimation. Rothet al. [94]
studied the distribution of optical flow fields on labeled ground truth data and used it
to build optical flow priors. This first step in a probably growing direction showed
already a significant improvement. The question of more advanced prior information
is also strongly coupled to the interpretation of the scene.The final goal in multi-
view stereo reseach is not only the estimation of accurate3-D models but also the
interpretation, understanding and simplifycation of these models.

A further very interesting question is the performance evaluation of multi-view
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stereo compared to laser scan data. Laser scan systems are currently used to measure
large outdoor scenes in3-D. These system are very expensive and the measurement
process is very time consuming. It would be interesting to study the possibility of us-
ing high resolution digital cameras to obtain three-dimensional outdoor models. First
experiments in this direction [108] show that the spatial resolution of high resolution
cameras is comparable with the resolution of laser scan systems. Another question
that we did not touch in this thesis is the accuracy of the camera calibration. This is
not only important for the comparison with laser scan systems, but it is also interest-
ing to study the performance of our algorithm with respect todeviations from the true
camera calibration.

We did not pay much attention to the efficiency of our implementation. Our main
goal was to test the feasibility of the approach. However, for many applications, pro-
cessing speed is an important issue. The possibilities are there to address these. First
of all the processing on GPU will bring much profit. For the implementation of the
PDE-based depth estimation in chapter 4 multi-grid implementations have shown to
perform order of magnitudes faster [14].
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[3] A LVAREZ , L., DERICHE, R., SÁNCHEZ, J., AND WEICKERT, J. Dense dis-
parity map estimation respecting image derivatives: A PDE and scale-space
based approach.Journal of Visual Communication and Image Representation
13, 1/2 (2002), 3–21.

[4] A LVAREZ , L., WEICKERT, J.,AND SÁNCHEZ, J. Reliable estimation of dense
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Appendix A

Depth parameterisation

Given the external (rotationRn and translationtn) as well as the internal calibration
matrices (camera matrixKn) forN views (n = 1..N ) the relaxation of corresponding
2-D points~x in the image plane is given by the depth. A3-D point denoted byX is
projected to the cameran by:

λn~x
h
n = Kn[R

T
n | −RT

ntn]X (A.1)

It follows for corresponding image points1 ~xh1 = (x1, y1, 1)T and~xh2 = (x2, y2, 1)T

and for acoordinate system that is attached to the first camera(R1 = 1 , t1 = 0)
that:

λ2

D1(~x1)
~xh2 = K2R

T
2 K−1

1 ~xh1 −
1

D1(~x1)
K2 RT

2 t2 (A.2)

The stereo correspondence is divided into a component that depends on the rotation
and pixel coordinate (according to the homographyH = K2R

T
2 K−1

1 ) and a depth
dependent part that scales with the amount of translation between the cameras. The
corresponding point~x2 on the epipolar line in a second image as a function of the
depthD1(~x1) is given by:

~x2 =

(
H[1]~xh1
H[2]~xh1

)
+ 1

D1(~x1)

(
K2[1]RT

2 t2

K2[2]RT
2 t2

)

H[3]~xh1 − 1
D1(~x1)

K2[3]RT
2 t2

(A.3)

H[i] is the 3-vector for theith row of the homographyH and similarly forK2[i]. This
equation leads to a parameterisation where for a given pixel~xi in imagei, we can
determine the corresponding points in all other images by knowing the depthDi(~xi)
of that pixel.

1we will use in the following the superscripth to indicate homogenous coordinates
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In the general case where the first camera is not attached to the global coordinate
system, the correspondence between camerai andj is given by:

~xj =

(
Hij[1]~xhi
Hij[2]~xhi

)
+ 1

Di(~xi)

(
Tij [1]
Tij [2]

)

Hij[3]~xhi − 1
Di(~xi)

Tij [3]
, (A.4)

with Hij = KjR
T
j RiK

−1
i andTij = KjR

T
j (ti − tj).



Appendix B

EM algorithm

B.1 Classical formulation

Let θ denote all unknowns and letx andy denote the Potts MRF and all input data,
respectively. Our aim is to compute the maximum likelihood (ML) solution of the
parametersθ, given by:

θ̂ML = arg max
θ

{
log p(y |θ)

}

= arg max
θ

{
log
∑

x

p(y,x |θ)
}
. (B.1)

Notice that the sum
∑

x in equation (B.1) ranges over all possible configurations of
the hidden variablesx. Even for modest sized images, this is a huge number, which
makes direct optimisation of eq. (B.1) infeasible. The problem can be made tractable
by using the expectation maximisation (EM) algorithm [19].Starting from an initial
guess{θ̂(0), it produces a sequence of estimates{θ̂(t), t = 1, 2 . . .} by alternating the
following two steps:

E-step Compute the distributionb(t) over the range ofx
such thatb(t)(x) = p(x |y, θ̂(t−1)).

M-step Setθ̂(t+1) to theθ that maximisesEb(t) [log p(y,x |θ)].

Here,Eb[.] denotes the expectation of the argument underb(x). The M-step can thus
be seen as a maximum likelihood estimation for which the value ofx is known by its
distributionb(x). The key idea, and the way to prevent the computation of the large
sum in eq. B.1, is to chooseb(x) close to the true distributionp(x | y,θ) but at the
same time less complex and hence, easier to compute. After making a specific choice
for b(x) deduced from different approximations, the Kullback-Leibler divergence

DKL(p||b) =
∑

x

b(x) log
b(x)

p(x)
(B.2)

between both distributions is minimised in the E-step.
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B.2 Lower bound formulation

A more insightful explanation of EM is in terms of lower boundmaximisation [75,
73, 18]. Thereby, the E-step can be interpreted as constructing a local lower bound on
the posterior. The M-step optimises this bound with respectto the parametersθ. One
can trivially rewrite the argument in eq. (B.1):

log
∑

x

p(y,x |θ) = log
∑

x

b(x)
p(y,x |θ)

b(x)
, (B.3)

and use Jensen’s inequality to construct the lower bound on the argument in eq. (B.1):

log
∑

x

p(y,x |θ) ≥
∑

x

b(x) log
p(y,x |θ)

b(x)
. (B.4)

The EM algorithm is exact if the trial distributionb(x) is not restricted to a specified
class of distributions. Maximising the lower bound in eq. (B.4) with respect tob(x)
results inb(x) = p(x | y,θ) which, when resubstituted, turns the inequality into an
equality. The lower bound is tight and touches the objectivefunction:

∑

x

b(x) log
p(y,x |θ)

b(x)
=

∑

x

p(x |y,θ) log
p(y,x |θ)

p(x |y,θ)

=
∑

x

p(x |y,θ) log
p(x |y,θ)p(y |θ)

p(x |y,θ)

=
∑

x

p(x |y,θ) log p(y |θ)

= log p(y |θ) . (B.5)

On the other hand, if the space of possible realisations ofb(x) is restricted, the bound
will not be tight. This situation is actually applied to dealwith the infeasibility of
eq. (B.1).

The negative lower bound is equal to the Kullback-Leibler divergence. It is also re-
lated to the concept of free energy [75],F (b(x),θ) of statistical physics (see eq. C.5).
The terms variational free energy or Gibbs free energy are also used in the computer
vision literature [124]. More details on this relation are given later in appendix C.
Thus, maximising the lower bound is equivalent to minimising the variational free
energy, which is the aim of the E-step.

The M-step is archived by setting the derivative of the variational free energy
F (b(x),θ) with respect toθ to zero. The EM algorithm can be summarised as fol-
lows:

E-step Setb(t)(x) to thatb which minimisesF (b(x), θ̂(t)).
M-step Setθ̂(t+1) to thatθ which minimisesF (b(t)(x),θ)

As shown by Dempsteret al. [19], each EM iteration increases the true log likelihood
or leaved it unchanged. The EM algorithm will therefore converge to a local maxi-
mum. Given the above free energy formulation, which will be used throughout the
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thesis, one has to make proper parameterisations of the trial distributionb(x), which
we discuss in appendix C.
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Appendix C

Free energy approximations

The goal of this section is to construct the variational freeenergy defined by the neg-
ative lower bound or similarly by the Kullback-Leibler divergence. This is done by
defining the trial distributionb(x) such that the resulting variational free energy is
computationally tractable and accurate (appendix B).

The classic approximation is to assumeb(x) to be a fully factorisable distribution
over the nodes. This assumption is equivalent to the mean field approximation known
in physics for a long time. The machine learning and computervision community use
this to solve various problems,i.e., in graphical models [59], stereo vision [129] and
image restoration [130], to name only a few.

More recently, the Bethe approximation (introduced by the German physicist Hans
Albrecht Bethe in 1935 [7]) and the more general Kikuchi approximation (introduced
by the Japanese physicist Ryoichi Kikuchi [61]), gained importance, also in the com-
pute vision community (see Yedidia, Freeman and Weiss [122,123, 124, 125] for a
theoretical view, and [50, 51, 26, 121] for applications).

After relating these concepts to physics and more particularly to statistical ther-
modynamics, two trial distributions will be considered, and the relation to the mean
field and Bethe approximation will be made.

C.1 Relation to statistical thermodynamics

Using Bayes’ rule, the distributionp(y,x |θ) is written as a product of data-likelihood
and prior:

p(x,y |θ) ∼ p(y |x,θ)p(x) , (C.1)

where the normalisation is neglected and where the assumption is made that the ran-
dom fieldx is independent fromθ. The prior reflects the smoothness properties of
the random field and is therefore a distribution over the nodes xj in the neighbour-
hoodj =N(i) of each nodexi; e.g., N(i) could be the four neighbourhood system
(as shown in fig. C.1). If the data-likelihood factorises conditioned on the state of the
hidden variablesx over the individual nodesxi, one can write the joint probability
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distribution similarly to [123, 126] as:

p(x,y |θ) =
1

Z

∏

i,j∈N(i)
i>j

ψij(xi, xj)
∏

i

Φi(xi, yi,θ) , (C.2)

whereψij(xi, xj) is the link interaction related top(x), Φ(xi, yi,θ) the data-likelihood
term andZ the normalisation constant or partition function. Note, that the node in-
terconnection termsψij(xi, xj) in eq. (C.2) are undirected links. Therefore, they are
only counted once for each node pair{i, j} with i > j. A graphical representation

Figure C.1:Boltzmann machine: Observable and hidden nodes are gray and white
circles, respectively. The lines between the hidden nodes(i, j) represent the prior
interactionψij(xi, xj). The lines between hidden and observable represent the data-
likelihoodΦ(xi, yi,θ) as in eq. (C.2).

of eq. (C.2) with a four neighbourhood system, also know as Boltzmann machine, is
depicted in fig. C.1. The joint probability distribution in eq. (C.2) is similar to the
description of interacting particle systems in statistical physics (e.g. the Ising model
describes particles with two states (spin up/down) which interact spatially). The distri-
bution of these systems are described by an energyE and the temperatureT dependent
exponentialexp(− 1

T E(x,y,θ)), i.e. the Boltzmann distribution. The difference be-
tween the formulation in statistical physics and the joint probability distribution in
eq. (C.2) is the temperature. We will include the temperature in the joint probability
distribution by makeing the replacement:

p(x,y |θ)→ p(x,y |θ)
1
T =

1

Z(T )
exp

(
− 1

T
E(x,y,θ)

)
, (C.3)

The joint probability distribution in eq. (C.2) is now conform with Bolzmann’s law
and the corresponding energy is up to a constant given by:

E(x,y,θ) = − log p(x,y |θ) . (C.4)
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The interpretation of the inference problem in terms of a temperature-dependentBoltz-
mann distribution has two advantages: Firstly, this allowsus to specify the peakness
of the joint probability distribution. Clearly, forT → 0 the joint probability distri-
bution allows only one configuration of the random fieldx, i.e., the one which has
the highest probabilityp(x,y |θ). ForT → ∞, one achieves a randomly distributed
random fieldx. This is in correspondence with our physical intuition. Andsecond,
the formulation with a temperature allows us to design stable convergence schemes by
temperature annealing [62, 112].

Given the temperature dependent joint probability distribution as defined in eq. (C.3),
the variational free energy is defined by the negative lower bound (B.4:

F (b(x),θ) = −T
∑

x

b(x) log
p(y,x |θ)

1
T

b(x)

=
∑

x

b(x)E(x,θ) + T
∑

x

b(x) log b(x) + T logZ (C.5)

= U(b(x))− TS(b(x)) + T logZ . (C.6)

The first term in eq. (C.5) represents the expected value of the energyU(b(x)), fol-
lowed by the negative entropyS(b(x)) expectation and the Helmholtz free energy
T logZ. The variational free energy is minimal forU(b(x)) = TS(b(x)), and is at
this point equal to the Helmholtz free energyT logZ.

What has been done so far is in close relation to statistical physics. There, macro-
scopic properties like energy or entropy (thermodynamicalvariables) are computed
by the ensemble average of the local statistical particle properties (micro-canonical
ensemble).

One other important thermodynamical variable is the heat capacityC, defined as
the temperature derivative ofU . A large value ofC signals a change in the state
of order of a system. It can therefore be used to determine thecritical temperature,
which can be seen as the largest temperature, where the valueof b(x) becomes peaked
around a single value.

C.1.1 Example

As an example, the behaviour for a model, which consists of the MRF prior as defined
in sec. 3.6.1, is illustrated. IfT goes to infinity the prior is uniform (the probability
of observing a specific configuration is random) and forT → 0 the prior is strongly
peaked around its most probable value(s).

Fig. C.2 shows samples from the prior distributionp(x)1/T as defined by eqs. (3.6)
and (3.3) for different temperaturesT . The random field for this simulation includes
R = 20 depth states and two visibility states. The interaction matrix as defined in
eq. (3.6) withw=1 andC=0.

For a high temperature (T = 5), the distributions for the depth and visibility are
random (left of fig. C.2) and the energyE has its maximal value. By lowering the tem-
perature, the energy decreases slowly as shown in fig. C.3. Ata certain temperature,
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Figure C.2: MRF Gibbs Prior: Samples of the prior distribution in eq. (3.3) for
different temperaturesT = {5, 0.56, 0.00001} (from left to right). The top row shows
a realisation of the depth statesdi . . . d20 in gray values. And the bottom row shows
the visibility states.

the energy changes strongly. This point, indicated by a large peak in the first deriva-
tive of the energy (heat capacity), indicates a phase transition. In this experiment, it
appeared nearT = 0.5 and a corresponding configuration of the random fieldx can
be seen in the middle column of figure C.2. Note that this simulation was performed
without on the prior model in eq. (3.3) only (without data-likelihood).

C.2 Mean field approximation

In the specific case of the mean field approximation,b(x) is chosen as a fully fac-
toriseable distribution over the nodesxi of the lattice (see fig. C.4):

b(x) =
∏

i

bi(xi) , (C.7)

wherebi(xi) is the variational parameter (often called belief) that represents the ex-
pected value of the nodexi. Throughout the thesis, the belief of an individual state
bi(xi = m) will sometimes be shortly denoted bybmi . The beliefs are positive and



119

0 1 2 3 4 5
−0.5

0

0.5

1

1.5

2

2.5

3

3.5

4
x 10

4

temperature T

en
er

gy

 

 

energy

heat capacity

Figure C.3: Temperature dependence: of the energyE = − log p(x) (dashed
line) and the heat capacity∂E/∂T (solid line) for the prior distributionp(x)1/T in
eq. (3.3).

Figure C.4:Mean field approximation: In the mean field approximation, the trial
distribution is assumed to factorise over the nodes of the lattice. The result is, in
contrast to fig.C.1, that the links between the hidden nodes are not considered.

normalised over each node1:

0 ≤ bi(xi) ∀xi
∑

xi

bi(xi) =

M∑

m=1

bmi = 1 . (C.8)

1Here the sum
P

xi
denotes the sum over the states of nodexi (pixel i). This notation is identical to

Yedidiaet al., e.g. [124].
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The variational free energy of the distribution in eq. (C.2), subject to the mean
field approximation, follows directly from the above factorisation and is given by:

FMF (b(x),θ) = −
∑

i

∑

j∈N(i)
i>j

∑

xi,xj

bi(xi)bj(xj) logψij(xi, xj) (C.9)

−
∑

i

∑

xi

bi(xi) log Φi(xi, yi,θ) (C.10)

+ T
∑

i

∑

xi

bi(xi) log bi(xi) + T logZ . (C.11)

The first two terms represent the energy, followed by the negative entropy and the free
energy.

Proof. The proof is trivial in the case of the mean field approximation. However,
the transition from a sum over all possible random field configurations

∑
x to a sum

over local configurations is essential. It is the step to makethe inference problem
computationally tractable and the reason to apply the mean field approximation. The
proof is given for the entropy term eq. (C.12) (in the derivationT = 1 is assumed):

∑

x

b(x) log
b(x)

p(y,x |θ)
=

∑

x

b(x) log b(x) (C.12)

−
∑

x

b(x) log p(x |y,θ) − (C.13)

−
∑

x

b(x) log p(x) + logZ . (C.14)

The other terms follow the same idea. Using the factorisabledistribution in eq. (C.7)
the entropy eq. (C.12) has the form:

−S =
∑

x

b(x) log b(x) =
∑

x

∏

i

bi(xi) log
∏

i

bi(xi)

=
∑

x

∏

i

bi(xi)
∑

i

log bi(xi) .

Consider a specific term that depends onlog bi(xi). This term is multiplied by the
sum over all configurations of the factorisable distribution such that the value ofxi is
fixed. One can therefore bringbi(xi) in front and after this rearrangement one gets:

−S =
∑

i

∑

xi

bi(xi) log bi(xi)




∑

x/xi

∏

j 6=i

bj(xj)



 . (C.15)

The sum over the remaining configurations is one because of the normalisation condi-
tion

∑
xi
bi(xi) = 1:
∑

x/xi

∏

j 6=i

bj(xj) =
∑

x1 6=i

bi(x1)
∑

m2 6=i

bi(x2) . . .
∑

mN 6=i

bN(xN ) = 1,
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such that ∑

x

∏

i

bi(xi) log
∏

i

bi(xi) =
∑

i

∑

m

bi(x
m
i ) log bi(x

m
i ) (C.16)

The proof of the second term in eq. (C.13) is equivalent. For the third term in
eq. (C.14), a similar strategy can be used. Here one also has to consider thatlog p(xi)
depends on the local neighbourhoodN(i).

The assumption of a factorisable trial distributionb(x) eq. (C.7) leads to the vari-
ational free energyFMF (b(x),θ) which is indeed given by the sum of local expec-
tationsbi(xi). The mean field update equation (E-step) is then given by setting the
derivative ofFMF (b(x),θ) with respect tobi(xi) to zero:

∂FMF (bi(xi))

∂bi(xi)
=

∑

j∈N(i)

∑

xj

bj(xj) logψij(xi, xj)

+ log Φi(xi, yi,θ)− T (log bi(xi)− 1) . (C.17)

Note, the sum over the neighboursN(i) for nodei is not restricted toi > j. These
terms appear from the derivative with respect tobN(i).

bi(xi) = exp



 1

T

∑

j

∑

xj

bj(xj) logψij(xi, xj) +
1

T
log Φi(xi, yi,θ) + 1





(C.18)

For the M-step, the derivative is taken with respect toθ, leading to:

θ =
∑

i

∑

xi

bi(xi)
∂ log Φi(xi, yiθ)

∂θ
(C.19)

C.2.1 Ising model

The mean field approximation has been given for the Potts model, where the number
of statesxi ism ≥ 2. For the special case of the Ising modelm=2, the interaction is
given by a diagonal interaction matrix:

ψij =

(
J 0
0 J

)
. (C.20)

Because of the normalisation condition, only the expected value for one statebi(x1 =
1) has to be evaluated. Form = 2, and by using the normalisationbi(xi = 2) =
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Figure C.5: Boltzmann machine in Bethe approximation: In the Bethe approxi-
mation, the trial distribution contains the marginals of the one-nodebi(xi) and the
two-node beliefsbij(xi, xj), the latter indicated by ellipses. The result is, in contrast
to fig.C.1, that the links between the hidden nodes are substituted bybij(xi, xj).

(1− bi(xi=1)), it is easy to see that the free energy in eq. (C.9) can be simplified and
written in terms ofbi = bi(xi=1) only:

FMF (b(x),θ) ≈ − 2
∑

i

∑

j∈N(i)
i>j

bibj log J (C.21)

−
∑

i

bi log
Φi(xi=1, yi=1,θ)

Φi(xi=2, yi=2,θ)
(C.22)

+ T
∑

i

bi log bi + (1− bi) log(1− bi) . (C.23)

The derivative with respect tobi leads to the mean field update equation for the Ising
model:

bi =



1 + exp



− 1

T

∑

j

bj log J − 1

T
log

Φi(xi=1, yi=1,θ)

Φi(xi=2, yi=2,θ)








−1

(C.24)

ForJ=0, the beliefs can be computed in closed form:

bi =
Φi(xi=1, yi=1,θ)

Φi(xi=1, yi=1,θ) + Φi(xi=2, yi=2,θ)
. (C.25)

C.3 Bethe approximation

The derivation of the Bethe free energy is similar to the meanfield case (allthough, as
it will be discussed later, additional approximations are needed if the graph has loops).
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In the Bethe approximation, the trial distributionb(x) is formulated as a distribution
not only over the one-nodebi(xi) but also over the two-node beliefsbij(xi, xj) (see
fig. C.5). The one-node beliefsbi(xi) describe the probability for a node being in state
xi = m. The two-node beliefsbij(xi, xj) describes the joint probability of nodei and
j being in statexi=m,xj=n. By this construction it follows that both beliefs should
obey the following constraints [124]:

0 ≤ bi(xi) ≤ 1 0 ≤ bij(xi, xj) ≤ 1 (C.26)
∑

xi

bi(xi) =
∑

xi,xj

bij(xi, xj) = 1 (C.27)

bi(xi) =
∑

xj

bij(xi, xj) . (C.28)

All belief entries should be positive (C.26) and normalisedfor each node (C.27). The
last constraint (C.28) is the marginalisation. The Bethe approximation assumes the
trial distributionb(x) to be [124]

b(x) =

∏
ij bij(xi, xj)∏
i bi(xi)

ni−1
. (C.29)

Hereni is the amount of two-node beliefs connected to the node indexi. In the ex-
ample of the Boltzmann machine in fig. C.5, the values are:ni=4 for all non bound-
ary nodes andni = 3 andni = 2 for the boundary and corner nodes, respectively.
One can show that the form of this distribution follows from converting a loopless
undirected graph as for instance given by eq. (C.2) into the junction tree representa-
tion [115, 92]. The averadge energy in eq. (C.6) when computed with the exact joint
likelihood p(x,y | θ) will be exact for the Bethe approximation [124]. The Bethe
approximation is related to the approximation of the entropy only. For graphs without
loops, the entropy is given by:

∑

x

b(x) log b(x) =
∑

ij

∑

xi,xj

bij(xi, xj) log bij(xi, xj)

−
∑

i

(ni − 1)
∑

xi

bi(xi) log bi(xi) . (C.30)

Proof. By using eq. (C.30) with the replacement of the trial distribution eq. (C.29),
the negative entropy can be written as:

−S =
∑

x

b(x) log b(x) =
∑

x

∏
ij bij(xi, xj)∏
i bi(xi)

ni−1
log
∏

ij

bij(xi, xj) (C.31)

−
∑

x

∏
ij bij(xi, xj)∏
i bi(xi)

ni−1
log
∏

i

bi(xi)
ni−1 . (C.32)

One has to show that all terms that depend onlog bij(xi, xj) in eq. (C.31) and that
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depend onlog bi(xi) in eq. (C.32) fulfil the following relation:

∑

x

∏
ij bij(xi, xj)∏
i bi(xi)

ni−1
log bij(xi, xj) =

∑

xi,xj

bij(xi, xj) log bij(xi, xj) (C.33)

∑

x

∏
ij bij(xi, xj)∏
i bi(xi)

ni−1
(ni − 1) log bi(xi) = (ni − 1)

∑

xi

bi(xi) log bi(xi). (C.34)

These relations can be proven by induction. Starting from a subgraph containing only
one link, all other links will be added, such that the graph remains loopless.

Let the trivial subgraph be described byb(xi), b(xj), bij(xi, xj). Each node has
one neighbour,i.e.,ni = nj = 1. And the eqs. (C.33) and (C.34) are trivially true. To
add more links by preserving the loopless property of the graph, a linkbik(xi, xk) can
only be added from an existing nodexi to anew nodexk. By doing so the sum over
all configurations will include the configurations of the newnodexk. Furthermore the
nodexi gets one additional neighbourni → ni + 1. By adding the link eq. (C.33)
changes to:

∑

xi,xj

bij(xi, xj) log bij(xi, xj) →
∑

xi,xj ,xk

bij(xi, xj)bik(xi, xk)

bi(xi)
log bij(xi, xj)

=
∑

xi,xj

bij(xi, xj) log bij(xi, xj) , (C.35)

where in the last line the consistency condition eq. (C.28) was used. In the same
fashion, all other links can be added and eq. (C.33) is proven.

In a similar fashion eq. (C.34) can be proven.

∑

xi,xj

bij(xi, xj) log bi(xi) →
∑

xi,xj ,xk

bij(xi, xj)bik(xi, xk)

bi(xi)
log bi(xi)

=
∑

xi

bi(xi) log bi(xi). (C.36)

Again, the consistency condition eq. (C.28) is used:
∑
j bij(xi, xj) = bi(xi) and∑

k bik(xi, xk) = bi(xi).

If the graph has loops, the factorisation ofb(x) as in eq. (C.29) does not lead to the
exact entropy in eq. (C.30). The Bethe approximation, however, assumes that (C.30)
is still approximatly true.

Using eq. (C.5) together with the Bethe approximation, the variational free energy
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is given by:

FB(b(x),θ) = −
∑

i

∑

j∈N(i)
i>j

∑

xi,xj

bij(xi, xj) logψij(xi, xj) (C.37)

−
∑

i

∑

xi

bi(xi) log Φi(xi, yi,θ) (C.38)

− T
∑

i

∑

j

∑

xi,xj

bij(xi, xj) log bij(xi, xj) (C.39)

+ T
∑

i

(ni − 1)
∑

xi

bi(xi) log bi(xi) + T logZ . (C.40)

The EM-algorithm proceeds by iterating the following steps. In the E-Step, the Bethe
free energy is minimised w.r.t.bi andbij by belief propagation [80]. In the M-Step,
the parameters are updated. This is achieved by setting eachparameterθ to the appro-
priate root of the derivative equation:

∂FB/∂θ = 0 .

The updates of the parameters are the same for both free energy approximations, be-
cause they only influence the data-likelihood terms inFMF (C.10) andFB (C.38).
These terms are identical.

Even though the Bethe approximation has many concerns from the theoretical
point of view, discussed in [71], it has been shown to be a goodapproximation in
practice [118, 120].

It is mainly due to the work of Yedidia, Freeman and Weiss [122, 123, 124, 125]
that the connection is made between the Bethe and Kikuchi free energy approxima-
tions with popular message passing algorithms. More particular, they showed [122]
that the fixed points of belief propagation [80] correspond to the stationary points of
the Bethe free energy in the case of loopless graphical models. The same has been
proven more recently by Heskes [45] for models with loops. Other algorithms which
minimise the Bethe free energy are studied in [128, 46, 114]

Inference problems in the form of ML estimates in eq. (B.1) orin the form of
computing marginal distributions from free energy approximations are also the subject
of intensive research in machine learning community [55, 34, 71, 6].
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Appendix D

Nonlinear depth diffusion

The depth (D) dependent parts of the free energy, given by eq. (4.14), are:

FMF [D] = −
∑

i

∑

k

∑

m

bmi log p(yki′ |xmi ,θ)

+
1

λ

∑

i

(∇Di)TT (∇X)∇Di +
1

λc

∑

i

Wi(Di − Gi)2 . (D.1)

The first term in this equation is the so called ‘matching term’, the second is the
smoothness term, weighted by the parameterλ, which is related to the width of the
depth-prior distribution. The third term relates the depthDi to Gi, e.g., to a sparse set
of initial depth points, which will be switched on byWi 6= 0. Our goal is to minimise
the free energy in eq. (D.1) with respect toD. The minimisation procedure we use
here is an assimilated version of Alvarezet al. [4], where a similar minimisation with
respect to the optical flow has been considered.

We can rewrite the depth dependent part of the matching term for each pixel using
the expected values for the visibilityVk in eq. (3.21) and the Gaussian inlier distribu-
tion eq. (4.13):

∑

k

∑

m

bmi log p(yki′ |xmi ,θ) = −
∑

k

Vk(mk
i )
TΣ−1mk

i , (D.2)

where the assumption is made that the outlier distribution is independent ofD.1 Fur-
thermore, we have introduced the colour difference of the ideal image with the colour
transformedkth input imagemk

i :

mk
i = y∗i −C(pk)yki′ . (D.3)

The value ofDi will be split into a current estimateD0
i and a small residualDri , such

that: Di = D0
i + Dri . By taking the Taylor expansion of eq. (D.3) and using the

1If the outlier distribution is modelled as a constant, this assumption is true. However, when modelled
by a histrogram, the outlier distribution depends onD, since the histrogramhk is filled with the colours of
yk

i(D)
. This dependence can expected to be small and will be ignored.
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particular form of the depth dependent mappingi→ i′(Di) eq. (A.4) this leads to:

mk
i = y∗i −C(pk)

(
yki′(D0

i
) +

∂yk
i′(D0

i
)

∂i′
∂lk(i′)

∂Di
(Di −D0

i ) +O
(
(Dri )2

)
)
. (D.4)

By using this result in eq. (D.1) the associated Euler-Lagrange equation lead to:

1

λ
div(T (∇X)∇D) +

∑

k

Vk(mk)TΣ−1 ∂m
k

∂D +
1

λc
W(D−G) = 0 . (D.5)

This equation can be interpreted as the equilibrium state (∂D/∂t = 0) of a depth
diffusion process. Withτ being the temporal step size, we get:

D−D0

τ
= div(T (∇X)∇D) + λ

∑

k

Vk(mk)TΣ−1 ∂m
k

∂D +
λ

λc
W(D−G) (D.6)

Equation (D.6) is the realisation of an implicit discretisation scheme. This has the
advantage that the temporal time stepτ can be chosen larger than it could be for the
corresponding explicit scheme.2 This of course leads to an faster convergence.

The solution of eq. (D.6) can be computed in matrix form:

AD = b (D.7)

and solved using Gauss-Seidel iterations. TherebyA is split into diagonalD, upper
diagonalU and lower diagonalL part as:

A = D− L−U , (D.8)

and the system

(D− L)D 1
2 = UD0 + b

(D−U)D = LD 1
2 + b (D.9)

is solved using the forward-backward substitution [88]. With

ck = C(pk)
∂yk

i′(D0
i
)

∂i′
∂lk(i′)

∂Dri
, (D.10)

the matrixA and the vectorb are given by:

A = 1−τλ
∑

k

V k
(
ck
)T

Σ−1ck− λ

λc
τW−τÃ (D.11)

b = D0−τλ
∑

k

V k
(
ck
)T

Σ−1
(
y∗−C(pk)ykD0+ckD0

)
− λ

λc
τWG .

2The theoretical value in 2 dimensions isτ ≤ 0.25 for the explicit scheme.
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Here, Ã represents the divergence term div(T (∇X)∇D). It is the only matrix in
eq. (D.11) with off diagonal elements. Furthermore,Ã is a very sparse with8 nonzero
elements for each row and the computation is identical to [4].

In our previous work [106, 103], we implemented the third term in eq. (D.1) by
an anisotropic time diffusion scheme. There, the parameterτ has been set to a small
value for all pixels for which initial3D points are available. Once the depthD is
initialised with these points, they will only move slowly because of the smallτ value.
In this way, the corresponding energy term (third term in eq.D.1) can be neglected
and a similar result is obtained. However, the formulation presented here has the
advantage that the uncertainty of the initial3-D points could be consistently taken
into account (by adjusting the value ofλcWi accordingly). Although, we use only
initial 3-D points without uncertainties, this would be possible andleads to a more
consistent formulation.
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