
S KATHOLIEKE UNIVERSITEIT LEUVEN
FACULTEIT INGENIEURSWETENSCHAPPEN
DEPARTEMENT COMPUTERWETENSCHAPPEN
AFDELING INFORMATICA
Celestijnenlaan 200A — B-3001 Leuven

ALGEBRAIC AND LOGICAL STUDY

OF CONSTRUCTIVE PROCESSES

IN KNOWLEDGE REPRESENTATION

Jury :

Prof. Dr. ir. H. Van Brussel, voorzitter

Prof. Dr. M. Denecker, promotor

Prof. Dr. D. De Schreye, promotor

Prof. Dr. ir. M. Bruynooghe

Prof. Dr. J. Denef

Prof. Dr. M. Gelfond (Texas Tech University, VS)

Prof. Dr. T. Eiter (Technische Universität Wien, Oostenrijk)

Proefschrift voorgedragen tot

het behalen van het doctoraat

in de ingenieurswetenschappen

door

Joost VENNEKENS

U.D.C. 681.3∗I2

Mei 2007

c©Katholieke Universiteit Leuven – Faculteit Ingenieurswetenschappen
Arenbergkasteel, B-3001 Heverlee (Belgium)

Alle rechten voorbehouden. Niets uit deze uitgave mag worden vermenigvuldigd
en/of openbaar gemaakt worden door middel van druk, fotocopie, microfilm,
elektronisch of op welke andere wijze ook zonder voorafgaande schriftelijke toe-
stemming van de uitgever.

All rights reserved. No part of the publication may be reproduced in any form
by print, photoprint, microfilm or any other means without written permission
from the publisher.

D/2007/7515/49
ISBN 978-90-5682-815-8

Algebraic and Logical Study of Constructive Processes
in Knowledge Representation

Joost Vennekens

Abstract

Constructive processes play an important role in knowledge representation. Indeed,
there are many formal languages whose semantics can be characterized using fixpoint
criteria, that simulate, for instance, human thought processes or mathematical con-
struction principles. Such processes can be studied in an abstract, algebraic way. This
allows common properties of such languages to be examined in general, without com-
mitting to any particular syntax or semantics. In a first part of this thesis, we examine
two topics in this way: first, we look at modularity of theories and, second, we con-
sider certain transformations that extend the vocabulary of a theory to simplify some
of its formulas. In both cases, we find that single algebraic theorem about constructive
processes suffices to derive (partial) generalizations of a number of different existing
results for logic programs, autoepistemic logic, and default logic.

In a second part of the thesis we examine the link between constructive processes
and the concept of causality. We observe that causality has an inherent dynamic aspect,
i.e., that, in essence, causal information concerns the evolution of a domain over time.
Motivated by this observation, we construct a new representation language for causal
knowledge, whose semantics is defined explicitly in terms of constructive processes.
This is done in a probabilistic context, where the basic steps that make up the process
are allowed to have non-deterministic effects. We then show that a theory in this lan-
guage defines a unique probability distribution over the possible outcomes of such a
process. This result offers an appealing explanation for the usefulness of causal infor-
mation and links our explicitly dynamic approach to more static causal probabilistic
modelling languages, such as Bayesian networks. We also show that this language,
which we have constructed to be a natural formalization of a certain kind of causal
statements, is closely related to logic programming. This result demonstrates that, un-
der an appropriate formal semantics, a rule of a normal, a disjunctive or a certain kind
of probabilistic logic program can be interpreted as a description of a causal event.

Acknowledgments

Writing a PhD is an educational activity. It has taught me a lot, not least of all about
my own shortcomings. I have learned, for instance, that my writing has an unfortu-
nate tendency towards the unreadably dense, while my thoughts are often rushed and
imprecise, if not plainly false (I should never again be allowed within 20 feet of the
adverb “clearly”). If, despite these faults, I have managed to produce a Ph.D. that is
of any interest, this is largely due to the guidance I have received along the way. I
am especially grateful to my promoter Marc Denecker for his untiring persistence on
clarity and precision, without which this text would have undoubtedly been a lot less
read-worthy. Marc was always great at noticing flaws (in my writing, arguments, or
general character) long before anyone else, and also at continuing to remind me of
them long after everybody else had stopped caring. Moreover, many of the ideas inside
these covers have originated from him, or came up during one of the many interesting
coffee breaks we have shared together.

While Marc has had without a doubt the greatest influence on my work, I have
been fortunate enough to also benefit from the guidance of two other senior members
of the DTAI group. First, there was my promoter Danny De Schreye, who, together
with Sofie Verbaeten, oversaw my first steps into academia and originally introduced
me to the topic of probabilistic logic programming. Second, I also thank Maurice
Bruynooghe for being a very helpful coauthor, as well as a source of wisdom on a
variety of topics, ranging from the scientific over the financial to the practical.

I would also like to thank the other members of my jury, Michael Gelfond, Thomas
Eiter, Jan Denef, and the chairman Herman Van Brussel, for taking time out of their
busy schedule to read this work and attend my defense. I am particularly grateful to
Jan for agreeing to be part of my guidance committee at such a late stage in the Ph.D.
and would also like to thank Bart De Decker for having been his predecessor during
the first four years. Jan’s presence on my jury is especially fitting, since it were his two
courses on mathematical logic, more than any other, that have motivated me through
my years of study. I also owe Michael a special debt of gratitude for having me in his
research group at Texas Tech—and his home—for a very pleasant two months. Even
though we did not get around to any formal collaboration, I learned a lot from being
there. Also, quite a bit of the research in Chapter 4 was actually motivated by a couple
of off-hand remarks made during the very first kr-lab meeting I attended there.

Another flaw that Marc has on occasion spotted in me (he is really quite proficient)
is that of, as he phrased it, “intellectual laziness”. Honestly, he was just being kind,
since the qualification “intellectual” could easily be left out altogether. If, despite my

slothful tendencies, I have nevertheless managed to be in the office during somewhat
respectable working hours, this was probably in large part due to my desire to miss
neither the regular ten o’clock coffee break, nor the one at four. For creating such
a pleasant working environment, I am especially grateful to my office mates Stephen
Bond, the much acclaimed Author of Interactive Fiction, and ir. Maarten Mariën, whom
I gladly forgive for being better than I am at all things we ever did together; toÁlvaro
Cort́es-Calabuig, whom I was also very glad to have as a conference-going buddy over
the years; and to Anneleen Van Assche, who was already my office mate long before
Maarten and Stephen made it fashionable.

During the past few years, I have been fortunate enough to have had a number of
friends who were also in the process of obtaining their Ph.D., which means I always
had someone on hand with whom I could share the frustrations of academic life. In
particular, I would like to thank Pieter Bellens, Pieter Vermeulen, Wouter Castryck,
and Bert Wouters for their pleasant and uplifting company. Thanks for keeping me
rooted in reality, on the other hand, go to Kris Van Rompaye and Jeroen Deceuninck—
their stories about real life have always been a great inspiration for trying my best to
avoid it. Finally, I would also like to thank Pauwel De Dijn, Stefaan Neerinck, and
Stijn Adriaens for doing their part in keeping the country supplied of consumer goods
at, respectively, cheap, reasonable, and reasonably cheap prices.

To anyone who knows them, it will go without saying that, throughout these four
years and a half, my parents, Mieke Vermeulen and Eddy Vennekens, were always
there to help me in whatever way they could. Since even things that go without saying
should, I believe, on occasion be said, I would like to take this opportunity to say that
I am very grateful for their support. Dank jullie wel!

Finally, I would also like to thank Marijke Verbruggen: for having already been my
girl for many years, for soon also becoming my wife, and for—

well, she knows what for.

Joost Vennekens
Leuven, May 2007

I am not here in the happy position of a mineralogist who shows his au-
dience a rock-crystal: I cannot put a thought in the hands of my readers
with the request that they should examine it from all sides. Something in
itself not perceptible by sense, the thought is presented to the reader—and
I must be content with that—wrapped up in a perceptible linguistic form.
The pictorial aspect of language presents difficulties. The sensible always
breaks in and makes expressions pictorial and so improper. So one fights
against language, and I am compelled to occupy myself with language
although it is not my proper concern here.

– Gottlob Frege,Der Gedanke

Contents

1 Introduction 1
1.1 Structure of the text . 3

I Algebraic study of logics with fixpoint semantics 5

2 The approximation theory framework 7
2.1 Formal preliminaries . 7

2.1.1 Sets, functions, orders, lattices and operators7
2.1.2 Approximation theory . 8

2.2 Logic programming .10
2.2.1 ID-logic . 15

2.3 Autoepistemic logic .16
2.4 Default logic . 20

3 Modularity results 21
3.1 Introduction . 21
3.2 Stratification in approximation theory23

3.2.1 Product lattices .23
3.2.2 Operators on product lattices24
3.2.3 Approximations on product lattices28
3.2.4 Dependency relations .30
3.2.5 Recombinations .32

3.3 Application to logic programming33
3.3.1 The propositional case .33
3.3.2 General rule sets .37
3.3.3 Related work .43

3.4 Application to autoepistemic logic44
3.4.1 Related work .53

3.5 Application to default logic . 54
3.5.1 Related work .55

3.6 Conclusions .56

vii

viii

4 Predicate introduction 57
4.1 Introduction . 57
4.2 Predicate introduction in approximation theory59
4.3 Application to logic programming67

4.3.1 Applications and Related Work70
4.4 Application to autoepistemic logic74

4.4.1 Introduction to the problem75
4.4.2 Application of the algebraic results76
4.4.3 Discussion and related work83

4.5 Conclusion .84

II Constructive processes and causality 87

5 Causal probabilistic logic 89
5.1 Introduction . 89
5.2 A logic of causal probabilistic events92

5.2.1 Syntax . 92
5.2.2 Semantics .94

5.3 Modelling more complex processes in CP-logic99
5.4 CP-logic with negation .102
5.5 Discussion .105

5.5.1 The case of positive theories105
5.5.2 Uniqueness theorem regained106
5.5.3 Events can happen in the right order106
5.5.4 The representation of time in CP-logic109

5.6 The relation to Bayesian networks110
5.6.1 Bayesian networks in CP-logic110
5.6.2 Multiple causes for the same effect113
5.6.3 Cyclic causal relations .113

5.7 CP-logic and logic programs .114
5.7.1 Logic Programs with Annotated Disjunctions115
5.7.2 Equivalence to CP-logic .117
5.7.3 Discussion .117

5.8 Origins of CP-logic .119
5.9 Related work .120

5.9.1 Causal languages .120
5.9.2 Probabilistic languages .122

5.10 Conclusions and future work .128

6 Proofs of the theorems 131
6.1 Semantics is well-defined .131
6.2 CP-logic and LPADs are equivalent132
6.3 Stratified CP-theories are treated correctly136

7 Conclusions 139

List of Figures

2.1 Part of the latticeW{p,q}. 17

3.1 O is stratifiable ifx|�i determinesO(x)|�i. 24
3.2 The componentOu

i of O mapsa to O(x)|i, with x any extension of
u t a. 25

3.3 The components ofO can be used to construct, for instance,lfp(O). . 26
3.4 Given a dependency relation for an operatorO on⊗Li, we can stratify

O over⊗L′j . 31
3.5 The recombinationOx

J mapsy ∈ L|J toO(x t y)|J 32

4.1 B is a predicate extension ofA if Blfp(B(x y))(x y) = A(x y). 61

4.2 Monotonicity properties of̃DT ′ . 82
4.3 Semantics preserved by replacingKϕ by p. 83
4.4 Correspondences between logic programming and autoepistemic logic.84

5.1 A processT for Example 5.1 and its distributionπT 96
5.2 Two processes for Example 5.2. .97
5.3 A global process as a sequence of local processes.99
5.4 Initial segment of the intended model of Example 5.3.100
5.5 Two processes for Example 5.4. .102
5.6 A division into time slots. .107
5.7 An execution model for Example 5.7.109
5.8 Bayesian network for the sprinkler example.111
5.9 Process corresponding to the sprinkler Bayesian network.111
5.10 A Bayesian network for Example .114
5.11 Bayesian network for theangina-pneumonia causal loop. 115

ix

x LIST OF FIGURES

List of Symbols

(∆i)i∈I A partition of rule set∆, page 42

(Σi)i∈I Splitting for a propositional logic program, page 34

(Ati)i∈I A partition of set of domain atoms, page 42

[σ]D Equivalence class ofC-selection w.r.t.D ⊆ C, page 135

AtFP Set of domain atoms using pre-interpretationF and predicatesP, page 12

Bc The square ofWc
Σ, page 46

BΣ Square ofWΣ, page 17

CPB CP-logic translation of Bayesian networkB, page 112

B̃Σ′ Square ofW̃Σ′ , page 44

B̃c
Σ′ Square ofW̃c

Σ′ , page 46

B̃↓cΣ′ , B̃
↑c
Σ′ The square of, resp.,̃W↓cΣ′ andW̃↑cΣ′ , page 77

CA Partial stable operator of approximationA, page 9

E Mapping of nodes of aC-process to events inC, page 95

I Mapping of nodes of aΣ-process to interpretations, page 94

P Mapping of nodes of aΣ-process to probabilities, page 95

DT Immediate consequence operator for autoepistemic logic, page 18

Du
T Second element of the pair produced byDT , page 18

∆[ϕ/P] The result of replacingϕ by P in ∆, page 67

∆ A rule set, page 10

δ In the context of predicate introduction, the rule set defining the new pred-
icate, page 60

xi

xii LIST OF SYMBOLS

BF (ϕ) Base forϕ, page 38

BO(O1,O2)
A O-base for a formula, page 40

D̃T Stratifiable version ofDT , defined onB̃Σ′ , page 47

D̃T ′ The fixpoint extension corresponding toT ′, page 77

HI,(P,S)(ϕ) Truth value ofϕ in autoepistemic logic, page 18

IΣ Set of interpretations for propositional alphabetΣ (= 2Σ), page 17

κ In the context of CP-logic, a mapping from events to time points, page 102

κ In the context of autoepistemic logic, mapping from̃WΣ′ toWΣ, page 44

κ Mapping fromB̃Σ′ toBΣ, page 44

LF
P Set of all interpretations for predicatesP that extendF , page 14

λ A temporal assignment (or stratification) for a CP-theory, page 101

≤ A partial order on a setS; also the point-wise extension of≤ to S2; also
the product order of a product lattice, page 9

≤k The knowledge order, page 12

≤p The precision order, page 9

≤t The truth order, page 12

b·c, d·e . . . Various projection functions, page 59

ϕ〈P, S〉 Result of replacing modal literals by their truth value in(P, S), page 19

ϕ〈U, V 〉i Result of evaluating model literals in alphabet∪j≺iΣj in (U, V), page 50

GL∆ Gelfond-Lifschitz operator for rules set∆(= C↓∆), page 14

|=s A pair is a partial stable model of a rule set, page 15

|=w A pair is the well-founded model of a rule set, page 15

µC The instance based semantics for an LPAD, page 117

[Ti] Modally separated theory corresponding toTi, page 52

ν A four-valued or three-valued interpretation, page 12

νs Three-valued interpretation constructed in nodes of aC-process, page 104

Π A propositional logic program, page 33

πB Semantics of a Bayesian networkB, page 110

LIST OF SYMBOLS xiii

πC Probability distribution defined by CP-theoryC, page 98

� Order on the index set of a product, page 23

ψ In predicate introduction for autoepistemic logic, the least modal literal
containing the formulaKϕ that is to be replaced, page 76

T A probabilisticΣ-process, page 94

T |=X C T is an execution model ofC in X, page 95

f |A′ The restriction off : A→ B toA′ ⊆ A, page 7

R Mapping of nodes of aC-process to the set of events that have not yet
happened, page 131

 A dependency relation, page 30

 (O1,O2)
∆ Dependency relation for rule set∆ given pair of interpretations(O1, O2)

for Op(∆), page 40

 F
∆ Dependency relation for rule set∆ given pre-interpretationF , page 39

 ob
∆ Obvious dependency relation for rule set∆, page 38

 Π Obvious dependency relation forΠ, page 34

SC The set of all selections for CP-theoryC, page 116

Σ A first-order alphabet, page 10

σ, ρ, . . . Selections for a CP-theory, page 116

Σp,Σf ,Σo Predicate, function and object symbols of alphabetΣ, page 10

ΣB Logical vocabulary for Bayesian networkB, page 110

τ Isomorphism between four-valued interpretation and pairs of interpreta-
tions, page 12

T (O1,O2)
∆ Four-valued immediate consequence operator for a rule set, page 14

V3,V4 Three- or four-valued truth values, page 12

WΣ Set of possible worlds structures for propositional alphabetΣ (= 2IΣ),
page 17

Wc
Σ Set of consistent possible world structures (allQ 6= {}), page 46

W̃Σ′ Product lattice⊗i∈IWΣi
, page 44

W̃c
Σ′ Set of allQ̃, such that∀i Q(i) 6= {}, page 46

W̃↓cΣ′ , W̃
↑c
Σ′ The set of all(X

U) for which, resp.,U 6= {} andX 6= {}, page 77

xiv LIST OF SYMBOLS

At(ϕ) Atoms appearing in autoepistemic formulaϕ, page 16

AtO(ϕ) Objective atoms ofϕ, page 16

B(x y) For operatorB on (L1 × L2)2, the operatorλu, v.bB(x y
u v)c, page 60

B(u v) For operatorB on (L1 × L2)2, the operatorλx, y.dB(x y
u v)e, page 60

bodyAt(r) Ground atoms ‘in’ the body of a CP-event, page 93

body+
At(r) Ground atoms appearing positively ‘in’ the body ofr, page 106

body−At(r) Ground atoms appearing negatively ‘in’ the body ofr, page 106

Cσ An instance of an LPAD, page 116

C↑A, C↓A Upper and lower stable operators of approximationA, page 9

Cv Constant symbol for valuev of a node in a Bayesian network, page 110

Def(∆) Defined predicates in rule set∆, page 10

f t g The extension off : A→ B with g : C → D, page 7

F In predicate introduction for autoepistemic logic, the original formula, page 76

F,G, . . . Pre-interpretations for an alphabet, page 11

Fp In predicate introduction for AEL, the formula that defines the new atom
p, page 76

head∗(r) The set of(hi, αi) in head(r) extending with(∅, 1−
∑
αi), page 116

headAt(r) Ground atoms in the head of a CP-event, page 93

I A (well-founded) partially ordered set, used as index, page 23

I, J, . . . Interpretations for first-order alphabet, page 11

m Konolige transformation from default to autoepistemic logic, page 20

Mod(T) Classical models of propositional theoryT , page 19

O1, O2, . . . Interpretations for open predicates, page 14

Ou
i Component on leveli givenu of stratifiableO, page 25

Ox
J Recombination ofO, page 32

Op(∆) Open predicates in rule set∆, page 10

P, S, . . . Possible world structures, page 17

Pn Predicate symbol for noden of a Bayesian network, page 110

LIST OF SYMBOLS xv

TO
∆ Two-valued immediate consequence operator, page 14

tλ(r) The interval in which a CP-eventr should happen, page 101

U, V, . . . Interpretations of
⋃

j≺i Σj , page 35

u, v, . . . Elements ofL|≺i for product latticeL, page 24

U
(O1,O2)
∆ First element of the pair produced byT (O1,O2)

∆ , page 14

Vs Operator used to characterizeνs for a nodes in aC-process, page 132

Chapter 1

Introduction

The main focus of this text is on the role of constructive processes in knowledge repre-
sentation. In the area of non-monotonic reasoning, we find many logics whose seman-
tics can be defined in terms of fixpoint constructs that simulate, e.g., human thought
processes, actual physical processes, or even mathematical principles such as that of
definition by induction. Many salient properties of such processes can be elegantly de-
scribed in the framework ofapproximation theory(Denecker, Marek, and Truszczyński
2000). This is an algebraic fixpoint theory, which has been shown to capture in a nat-
ural way certain families of semantics for knowledge representation languages such
as logic programming, default logic, and autoepistemic logic. Approximation theory
provides an appealing setting in which to study properties of these languages. First, the
algebraic nature of the theory often allows general results to be proven in a clean, com-
pact, and elegant manner, which exposes the essence of the property without getting
bogged down in syntactical details. Second, by proving a single theorem in approx-
imation theory, one immediately obtains results for a number of different logics and,
typically, also for an entire family of semantics for these logics. As such, the tedious
task of reproving essentially the same property in slightly different circumstances can
be avoided. In a first part of this text, we study two important knowledge representation
properties in approximation theory.

The first topic is that ofcompositionalityor modularity, i.e., we address the ques-
tion of how to split a theory in such a way that the set of its components is, in some
sense, equivalent to the theory as a whole. This question is important for a variety
of theoretical and practical purposes. For instance, modularity results can be used to
speed up computational tasks, to reduce the problem of analyzing a theory to the easier
problem of analyzing its parts, or to show that updates of an existing knowledge base
do not affect certain already established properties. We study this topic at the abstract,
algebraic level of lattice operators in approximation theory and examine conditions un-
der which it is possible to split such an operator into a number of smaller operators,
while preserving certain of its fixpoints. We apply this result to logic programming,
default logic, and autoepistemic logic, showing that, in each of these cases, our results
extend existing theorems.

The second topic is that ofpredicate introduction, i.e., the common transformation

1

2 CHAPTER 1. INTRODUCTION

of introducing a new symbol to abbreviate some complex formula. One might do this,
for instance, to make a theory more readable and compact by singling out a subformula
that appears in a number of different locations, or to transform it into some useful
normal form. Once again, we study this topic at the level of approximation theory, by
examining conditions under which it is possible to extend a lattice operator to a larger
lattice, in such a way that certain of its fixpoints are preserved. We then show how this
result applies to autoepistemic logic and to logic programming, where it significantly
generalizes existing results, by also allowing the new symbols to be defined recursively.

In both of these cases, approximation theory will make it possible to define natu-
ral algebraic counterparts to the relevant logical concepts, which then allows concrete
results for different languages and different semantics to be derived in an easy and
uniform way. Recently, Truszczyński has performed a similar study of the concept of
strong equivalence in the setting of approximation theory (Truszczyński 2006). We see
here an emerging picture of approximation theory as a general, abstract framework for
the study of knowledge representation properties of logics with a fixpoint semantics.

The second part of this text concerns the role of causality in probabilistic mod-
elling. Here, too, constructive processes are important. Let us consider, for instance,
the statement “smoking causes cancer.” Intuitively, this means that the act of having
a cigarette will initiate some sequence of events within the human body and that this
process might eventually lead to the development of a cancer. One of our central obser-
vations is that whenever we make such a causal statement, we are, at least implicitly,
doing so in the context of the dynamic evolution of a domain. This motivates us to
view such statements as describing the causes and effects of anevent, of something
that happens. We also consider events that are non-deterministic, which allows us to
represent knowledge such as: “Smokingmightcause cancer and the probability of this
is 0.2.” We then develop the knowledge representation language ofCP-logic, in which
a domain can be modeled by a set of such statements.

Our analysis of the intuitive meaning of these statements leads in a natural way to a
formal semantics that is based on probabilistic processes. One of our key technical re-
sults is that, even though a single theory may generate any one of a number of different
possible probabilistic processes, all of these will induce precisely the same probability
distribution over their final states. This is an interesting property, because, typically, we
are not really interested in the actual details of the evolution of a domain, but simply
care about the probability of this leading to a certain result. For instance, we might
not be interested in if or when a person decides to smoke a cigarette, but only want to
know what the probability is of this person getting cancer. Our result shows that causal
information in the form of a set of CP-events suffices to know which possible outcomes
will occur with which probability.

Our study of causality in this explicitly dynamic context offers additional insight
into Pearl’s seminal work on this topic (Pearl 2000). We identify the concept of a CP-
event as a unit of causal information, that is more basic than the parents-child relation
underlying causal Bayesian networks. In this way, we get a more flexible and fine-
grained representation of causal events, which allows more straightforward, compact,
and elaboration tolerant models of causal knowledge. Moreover, we are able to support
and clarify Pearl’s claims on the robustness of causal knowledge and its importance for
achieving compact representations, by showing that it captures precisely those aspects

1.1. STRUCTURE OF THE TEXT 3

of the behaviour of a probabilistic process that are relevant for its final outcome, while
allowing irrelevant details to be ignored.

We also compare these causal probabilistic processes to the kind of the processes
that are used to define various fixpoint semantics for logic programs. To this end, we
define a probabilistic extension of logic programs, calledlogic programs with anno-
tated disjunctions, and prove that it is essentially equivalent to CP-logic. This result
makes explicit the connection between causal reasoning and logic programming that
has long been implicitly present in this field and shows that, under certain semantics,
a rule of a normal or disjunctive logic program can be interpreted as a description of a
causal event. Moreover, it also helps to clarify the position of our logic among related
work on probabilistic logic programming and offers a causal interpretation for, among
others, the independent choice logic (Poole 1997).

In summary, the main contributions of this text are as follows. First, we have shown
that the methodology of studying constructive processes in the algebraic framework of
approximation theory offers a viable way of deriving interesting properties of different
logics in a general and uniform way. Second, we have also shown that constructive
processes are important for a correct understanding of a certain kind of causal state-
ments, because they offer a natural way of formalizing the dynamic aspect inherent to
them.

1.1 Structure of the text

This text is structured as follows:

• Chapter 2 summarizes a number of concepts and results from work by Denecker,
Truszczýnsky and Marek on approximation theory.

• Chapter 3 investigates the topic of modularity in approximation theory and ap-
plies the resulting algebraic theorem to logic programs, autoepistemic logic and
default logic. Part of the work presented in this chapter was published in (Ven-
nekens, Gilis, and Denecker 2006; Vennekens, Gilis, and Denecker 2004b; Ven-
nekens, Gilis, and Denecker 2004a; Vennekens and Denecker 2005).

• Chapter 4 studies the topic of predicate introduction. Again, this is first done
at the abstract level of approximation theory and these algebraic results are then
applied to logic programming and autoepistemic logic. Part of the work pre-
sented in this chapter was published in (Wittocx, Vennekens, Mariën, Denecker,
and Bruynooghe 2006; Vennekens, Mariën, Wittocx, and Denecker 2007a; Ven-
nekens, Marïen, Wittocx, and Denecker 2007b).

• Chapter 5 starts the second part of this text, which studies the importance of
constructive processes for modelling causality. Concretely, in this chapter, we
develop the language of Causal Probabilistic logic (CP-logic). Part of this work
was published in (Vennekens, Denecker, and Bruynooghe 2006). We also relate
CP-logic to logic programming, by first defining a probabilistic extension of dis-
junctive logic programs and then proving that this is equivalent to CP-logic. Part
of this work was published in (Vennekens, Verbaeten, and Bruynooghe 2004).

4 CHAPTER 1. INTRODUCTION

• Chapter 6 contains the proofs of the results stated in Chapter 5.

• Finally, Chapter 7 presents our conclusions.

Part I

Algebraic study of logics with
fixpoint semantics

5

Chapter 2

The approximation theory
framework

Approximation theory is an algebraic fixpoint theory for arbitrary (non-monotone) op-
erators, that generalizes all main semantics of a number of non-monotonic logics. As
such, it allows properties of these different semantics for all of these logics to be stud-
ied in a uniform way. In this chapter, we will first summarize the mathematics behind
approximation theory and then show how logic programming, default logic and au-
toepistemic logic fit into this framework.

The material in this chapter is a summary of work by Denecker, Truszczyński and
Marek (Denecker, Marek, and Truszczyński 2000; Denecker, Marek, and Truszczyński
2004; Denecker, Marek, and Truszczyński 2003).

2.1 Formal preliminaries

In this section, we introduce the basic concepts used in approximation theory. Section
2.1.1 summarizes a number of well known definitions and results from lattice theory,
while Section 2.1.2 contains an overview of approximation theory itself.

2.1.1 Sets, functions, orders, lattices and operators

For a functionf : A→ B and a subsetA′ of A, we denote byf |A′ the restriction off
toA′, i.e.,f |A′ : A′ → B : a′ 7→ f(a′). If f, g are functionsf : A → B, g : C → D
and the domainsA andC are disjoint, we denote byf t g the function fromA ∪ C to
B∪D, such that for alla ∈ A, (f tg)(a) = f(a) and for allc ∈ C, (f tg)(c) = g(c).
We call such af t g anextensionof f .

A binary relationθ on a setS is well-foundedif it has no infinite descending chains,
i.e., if there exist no infinite sequences(xi)i∈N such that, for alli ∈ N, xiθxi−1 and
xi 6= xi−1. A binary relation≤ on a setS is apartial order if it is reflexive, transitive
and anti-symmetric. In this case, the pair〈S,≤〉 is called aposet. For a subsetR of
S, an elementm ∈ R is minimal if there is nom′ ∈ R, such thatm′ ≤ m. It can

7

8 CHAPTER 2. THE APPROXIMATION THEORY FRAMEWORK

be shown that a poset is well-founded iff every non-empty subset ofS has a minimal
element. A partial order onS is total if every two elementsx, y ∈ S are comparable,
i.e.,x ≤ y or x ≥ y. If ≤ is a total order, then it is well-founded iff each non-empty
subset ofS has a unique minimal element.

For each subsetR of S, an elementl of S, such thatl ≤ r for all r ∈ R is a lower
boundof R. An elementg in S such thatg is a lower bound ofR and for each other
lower boundl of R, l ≤ g, is called thegreatest lower bound, denotedglb(R), of R.
Similarly, an elementu such that for eachr ∈ R, u ≥ r is anupper boundof R and
if such an upper bound is less or equal to each other upper bound ofR, it is the least
upper boundlub(R) of R.

A pair 〈L,≤〉 is a lattice if ≤ is a partial order on the non-empty setL, such that
every two elementsx, y of L have a greatest lower boundglb({x, y}) and a least upper
boundlub({x, y}). A lattice 〈L,≤〉 is completeif each subsetL′ of L has a greatest
lower boundglb(L′) and least upper boundlub(L′). A complete lattice has a minimal
(or bottom) element⊥ and a maximal (ortop) element>. Often, we will not explicitly
mention the partial order≤ of a lattice〈L,≤〉 and simply speak of the latticeL.

An operatoris a functionO : L→ L from a latticeL to itself. An elementx ∈ L is
a prefixpointof O if x ≥ O(x), afixpoint if x = O(x) and apostfixpointif x ≤ O(x).
Such an operatorO is monotoneif for eachx, y ∈ L, such thatx ≤ y, O(x) ≤ O(y).
If O is a monotone operator on a complete lattice, then for every postfixpointy, there
exists a least element in the set of all prefixpointsx of O for whichx ≥ y. This least
prefixpoint greater thany of O is also the least fixpoint greater thany of O. Moreover,
it can be constructed by successively applyingO to y, i.e., as the least upper bound of
the sequence(On(y))n∈N. In particular, because⊥ is a trivial postfixpoint,O has a
least prefixpoint which is equal to its least fixpoint and which can be constructed by
successive application ofO to⊥.

2.1.2 Approximation theory

Approximation theory is a general fixpoint theory for arbitrary operators, which gener-
alizes ideas found in, among others, (Baral and Subrahmanian 1991), (Ginsberg 1988)
and (Fitting 1989). Our presentation of this theory is based on (Denecker, Marek,
and Truszczýnski 2000). However, we will introduce a slightly more general defini-
tion of approximation. For a comparison between approximation theory and related
approaches, we refer to (Denecker, Marek, and Truszczyński 2000) and (Denecker,
Marek, and Truszczýnski 2003).

Let 〈L,≤〉 be a lattice. An element(x, y) of the squareL2 of the domain of such
a lattice, can be seen as denoting a (possibly empty) interval[x, y] = {z ∈ L | x ≤
z ≤ y}. By reflexivity and transitivity of≤, the interval corresponding to a pair(x, y)
is non-empty iffx ≤ y. Such pairs are calledconsistent. By anti-symmetry of≤, an
interval of the form[x, x] contains precisely one element, namelyx itself. Elements
(x, x) of L2 are calledexact. The set of all exact elements ofL2 forms a natural
embedding ofL in L2.

The order≤ onL now induces two natural orders onL2:

• Theproduct order≤ is the point-wise extension of≤, i.e., for allx, y, x′, y′ ∈ L,

2.1. FORMAL PRELIMINARIES 9

(x, y) ≤ (x′, y′) iff x ≤ x′ andy ≤ y′;

• Theprecision order≤p is defined as: for allx, y, x′, y′ ∈ L, (x, y) ≤p (x′, y′)
iff x ≤ x′ andy′ ≤ y.

The precision order can be motivated by the correspondence between pairs(x, y) and
intervals [x, y]. Indeed, if (x, y) ≤p (x′, y′), then [x, y] ⊇ [x′, y′]. For our pur-
poses, the precision order will be the most important one. It can easily be shown that
both 〈L2,≤〉 and 〈L2,≤p〉 are also lattices, which are complete iff the original lat-
tice 〈L,≤〉 is complete. Together with its two lattice orders,L2 is called thebilattice
corresponding toL.

Approximation theory is based on the study of operators on bilatticesL2 which
are monotone w.r.t. the precision order≤p. Such operators are calledapproximations.
For an approximationA and elementsx, y of L, we denote byA1(x, y) andA2(x, y)
the unique elements ofL, for which A(x, y) = (A1(x, y), A2(x, y)). An approxi-
mationapproximatesan operatorO on L if for eachx ∈ L, A(x, x) containsO(x),
i.e.,A1(x, x) ≤ O(x) ≤ A2(x, x). An exactapproximation is one which maps exact
elements to exact elements, i.e.,A1(x, x) = A2(x, x) for all x ∈ L. Similarly, acon-
sistentapproximation maps consistent elements to consistent elements, i.e., ifx ≤ y
thenA1(x, y) ≤ A2(x, y). If an approximation is not consistent, it cannot approx-
imate any operator. Each exact approximation is also consistent and approximates a
unique operatorO onL, namely that which maps eachx ∈ L to A1(x, x) (which is
equal toA2(x, x)). An approximation issymmetricif for each pair(x, y) ∈ L2, if
A(x, y) = (x′, y′) thenA(y, x) = (y′, x′). Each symmetric approximation is also
exact.

For an approximationA onL2, the following two classes of operators onL can be
defined: for eachy ∈ L, the operatorA1(·, y) maps an elementx ∈ L to A1(x, y),
i.e.,A1(·, y) = λx.A1(x, y); for eachx ∈ L, the operatorA2(x, ·) maps an element
y ∈ L to A2(x, y), i.e.,A2(x, ·) = λy.A2(x, y). These operators are all monotone
and, therefore, they each have a unique least fixpoint. We define an operatorC↓A onL,
which maps eachy ∈ L to lfp(A1(·, y)) and, similarly, an operatorC↑A, which maps
eachx ∈ L to lfp(A2(x, ·)). C↓A is called thelower stable operatorof A, whileC↑A
is theupper stable operatorof A. Both these operators are anti-monotone. Combining
these two operators, the operatorCA onL2 maps each pair(x, y) to (C↓A(y), C↑A(x)).
This operator is called thepartial stable operatorof A. Because the lower and upper
partial stable operatorsC↓A andC↑A are anti-monotone, the partial stable operatorCA
is ≤p-monotone. Note that if an approximationA is symmetric, its lower and upper
partial stable operators will always be equal, i.e.,C↓A = C↑A.

An approximationA defines a number of different fixpoints: the least fixpoint of
an approximationA is called itsKripke-Kleene fixpoint, fixpoints of its partial stable
operatorCA arestable fixpointsand the least fixpoint ofCA is called thewell-founded
fixpointof A. As shown in (Denecker, Marek, and Truszczyński 2000) and (Denecker,
Marek, and Truszczýnski 2003), these fixpoints correspond to various semantics of
logic programming, autoepistemic logic and default logic.

Finally, it should be noted that the concept of an approximation as defined in (De-
necker, Marek, and Truszczyński 2000) corresponds to our definition of asymmetric

10 CHAPTER 2. THE APPROXIMATION THEORY FRAMEWORK

approximation.

2.2 Logic programming

In this section, we show how the formalism of logic programming and several of its
extensions fit into the approximation theory framework. Analphabetor vocabularyΣ
consists of a setΣo of object symbols, a setΣf of function symbols, and a setΣp of
predicate symbols. Note that we make no formal distinction between variables and
constants; both are simply called object symbols. There is no real difference here with
the standard definitions, apart from the fact that this allows us to also place assignments
of domain elements to “free variables” inside our interpretations, which means we do
not have to introduce separate objects for this. We will still use the term “variables” to
refer to those object symbols over which we quantify and call the other object symbols
“constants”. Predicate symbols start with a capital letter, function symbols are entirely
lowercase and for object symbols we adopt the notational convention that variables are
lowercase, whereas constants start with a capital.

As usual, aterm is inductively defined as either an object symbol or an expression
of the formF (t1, . . . , tn), whereF/n is a function symbol and all theti are terms. An
atomis of the formP (t1, . . . , tn), whereP/n is a predicate symbol and all theti are
terms. Afirst-order logic formulais inductively defined as:

• an atom is a formula;

• if ϕ is a formula then so is¬ϕ;

• if ϕ is a formula andx an object symbol, then∃x ϕ is a formula;

• if ϕ andψ are formulas, then so isϕ ∨ ψ.

As usual, a conjunctionϕ ∧ ψ is defined as an abbreviation for¬(¬ϕ ∨ ¬ψ) and∀x ϕ
abbreviates¬∃x ¬ϕ.

We will consider a quite general logic programming style language, which we call
rule sets. A rule set∆ consists of rules of the form:

∀x P (t)← ϕ.

Here,P is a predicate symbol,x a tuple of variables,t a tuple of terms, andϕ a first-
order logic formula. For a ruler of the above form, the atomP (t) is called theheadof
r, whileϕ is its body. We denote these two parts of a ruler as, respectively,head(r)
andbody(r). Predicates that appear in the head of a rule aredefined by∆; all other
predicates areopen. We denote the set of defined predicates byDef(∆) and that of all
open ones byOp(∆).

We now define a class of semantics for such rule sets. We interpret an alphabetΣ
by a Σ-structureor Σ-interpretation; such aΣ-interpretationI consists of a domain
dom(I), an interpretation of the object symbolsΣo of Σ by domain elements, an in-
terpretation of each function symbolF/n ∈ Σf by ann-ary function ondom(I), and
an interpretation of each predicate symbolP/n ∈ Σp by ann-ary relation ondom(I).

2.2. LOGIC PROGRAMMING 11

A pre-interpretationof Σ consists of a domain and an interpretation of the object and
function symbolsΣo ∪ Σf . If the alphabetΣ is clear from the context, we often omit
this from our notation. For any symbolσ ∈ Σ, we denote byσI the interpretation
of σ by I. Similarly, for a termt we denote the interpretation oft by tI and we also
extend this notation to tuplest of terms. For an interpretationI, an object symbolx,
and ad ∈ dom(I), we denote byI[x/d] the interpretation with the same domain asI,
that interpretsx by d and coincides withI on all other symbols. We also extend this
notation to tuplesx andd. We define an order≤ on Σ-interpretations as: for allI, J ,
I ≤ J iff I andJ share the same pre-interpretation and, for each predicateP ∈ Σp,
P I ⊆ P J .

In logic programming, the domain is often restricted to theHerbrand universe, i.e.,
the set of all ground terms that can be constructed using the constants and function
symbols in the alphabet. AHerbrand pre-interpretationis a pre-interpretation that has
the Herbrand universe as its domain and interprets each constant and function symbol
by itself. A Herbrand interpretationis an interpretation that extends some Herbrand
pre-interpretation.

Let us recall that the standard satisfaction relationI |= ϕ of first-order logic is
inductively defined as:

• I |= P (t) iff tI ∈ P I ;

• I |= ϕ ∨ ψ iff I |= ϕ or I |= ψ;

• I |= ¬ϕ iff I 6|= ϕ;

• I |= ∃x ϕ iff there exists ad ∈ dom(I) for which I |= ϕ[x/d].

From now on, for a formulaϕ(x) and a tupled of domain elements, we freely use
the more standard notationI |= ϕ[x/d] or I |= ϕ(d) instead ofI[x/d].

A feature of the stable and well-founded semantics for logic programs is that pos-
itive and negative occurrences of atoms in rule bodies are treated differently. The fol-
lowing truth evaluation function inpairsof interpretations captures this difference.

Definition 2.1. Let ϕ be a formula. LetI andJ be interpretations that extend the
same pre-interpretation. We now define when a formulaϕ is satisfied in the pair(I, J),
denoted(I, J) |= ϕ, by induction over the size ofϕ:

• (I, J) |= P (t) iff I |= P (t), i.e.,tI ∈ P I;

• (I, J) |= ¬ϕ iff (J, I) 6|= ϕ;

• (I, J) |= ϕ ∨ ψ iff (I, J) |= ϕ or (I, J) |= ψ;

• (I, J) |= ∃x ϕ iff there is ad ∈ dom(I), such that(I, J) |= ϕ[x/d].

Observe that evaluating the negation connective¬ switches the roles ofI andJ .
Because of this, positive occurrences of atoms are interpreted byI, while negative
occurrences are interpreted byJ . This satisfaction relation has a natural explanation
when we view a pair(I J) as an approximation, i.e., whenI is seen as a lower estimate
andJ as an upper estimate of some interpretationK. WhenI ≤ K ≤ J , the above

12 CHAPTER 2. THE APPROXIMATION THEORY FRAMEWORK

satisfaction relation underestimates the truth of positive occurrences of atoms—since
it usesI for this—and the truth of negative occurrences of atoms is overestimated—
here, it usesJ . It follows that(I, J) |= ϕ impliesK |= ϕ, i.e., if (I, J) |= ϕ, then
ϕ is certainly true in every approximated interpretation, while if(I, J) 6|= ϕ, thenϕ
is possibly false. Vice versa, if we consider(J, I) |= ϕ, then positively occurring
atoms are overestimated and negatively occurring ones are underestimated. Hence,
if (J, I) 6|= ϕ, thenϕ is certainly false in all approximated interpretations, while if
(J, I) |= ϕ, thenϕ is possibly true.

There is a strong duality between four-valued interpretations and pairs of two-
valued interpretations, and also between three-valued interpretations andconsistent
pairs (I, J) of two-valued interpretations. Let us introduce a setV3 of truth values
{t, f ,u}, called true, false and unknown. We also define a setV4 of truth values
{t, f ,u, i}, where the additional truth valuei is called inconsistent. We can define
onV4 aknowledge order≤k and atruth order≤t, as follows:

Knowledge order:

i

f

<k

@@��������
t

<k

^^>>>>>>>>

u
<k

__???????? <k

??��������

Truth order:

t

u

<t

@@��������
i

<t

^^========

f

<t

^^>>>>>>>> <t

@@��������

The structure〈V4,≤t,≤k〉 is a complete bilattice, whereasV3 is a complete lattice
with respect to the appropriate restriction of≤t, but is not even a lattice with respect to
the restriction of≤k, since it does not containlub≤k

(t, f) = >k = i.
Let us now first redefine our concept of a standard two-valued interpretation, in

such a way that it can easily be generalized to the three- or four-valued case. Let us
fix a pre-interpretationF . An interpretationI that extendsF now tells us, for each
predicateP/n and eachn-tuple of domain elementsd ∈ dom(F)n, whether or notd
belongs to the interpretationP I of this predicate. We call such a pair(P,d) a domain
atomand also write it asP (d). For a given set of predicatesP and a pre-interpretation
F , we denote the set of all domain atoms asAtFP. If F is a Herbrand pre-interpretation,
then this setAtFP of domain atoms is more commonly called theHerbrand base. Every
interpretationI that extends a pre-interpretationF now corresponds in a unique way
to a set of domain atoms or, equivalently, to a mappingν fromAtFΣp to the set of truth
valuesV2 = {t, f}, whereν(P (d)) = t means that the tupled belongs toP I and
ν(P (d)) = f means that it does not. We now define athree-valuedinterpretation as a
mappingν fromAtFΣp to V3 and afour-valued interpretationas a mapping fromAtFΣp

to V4.
As mentioned above, three-valued interpretations correspond to consistent pairs of

two-valued interpretations and four-valued interpretations correspond to arbitrary pairs.
Let us denote byτ the isomorphism that maps each four-valued interpretationν to the
pair (I, J), where:

• I is such thatd ∈ P I iff ν(P (d)) is eithert or i;

2.2. LOGIC PROGRAMMING 13

• J is such thatd ∈ P J iff ν(P (d)) is eithert or u.

It is now easy to see that the restriction ofτ to three-valued interpretations is indeed an
isomorphism with the set of all consistent pairs(I, J).

The truth and knowledge orders defined onV3 andV4 induce obvious correspond-
ing truth and knowledge orders on, respectively, three- and four-valued interpretations.
Indeed, we can defineν ≤t ν

′ iff for each domain atomP (d), ν(P (d)) ≤t ν
′(P (d)),

and similarly for≤k. Now, under the isomorphismτ , this truth order corresponds
to the product order≤ on pairs of interpretations, while this knowledge order corre-
sponds to the precision order≤p, that is, for allν andν′, with τ(ν) = (I, J) and
τ(ν′) = (I ′, J ′):

• ν ≤t ν
′ iff (I, J) ≤ (I ′, J ′) iff I ≤ I ′ andJ ≤ J ′;

• ν ≤k ν
′ iff (I, J) ≤p (I ′, J ′) iff I ≤ I ′ andJ ≥ J ′.

A three- or four-valued interpretationν can be extended to a mapping of all sen-
tencesϕ to, respectively,V3 or V4. This can be done in the following standard way.
Let us first define the inverse·−1 of the truth values inV4 as follows:

t−1 = f ; u−1 = u;

f−1 = t; i−1 = i.

Let ν be a three- or four-valued interpretation, which extends some pre-interpretation
F . We now inductively define the truth value of a formulaϕ according toν, denoted
byϕν , as:

• (P (t))ν = ν(P (tF));

• (¬ϕ)ν = (ϕν)−1;

• (ϕ ∨ ψ)ν = v, wherev is thelub≤t
of the truth valuesϕν andψν ;

• (∃x ϕ)ν = v, wherev is the lub≤t
of all truth values(ϕ[x/d])ν , for which

d ∈ dom(F).

These definitions correspond to Belnap’s four-valued logic (Belnap 1977).
We now have the following correspondence betweenϕν and the satisfaction rela-

tion |= that we defined above for pairs of interpretations. For consistent pairs, we get
that if τ(ν) = (I, J) then:

• ϕν = t iff (I, J) |= ϕ and(J, I) |= ϕ;

• ϕν = f iff (I, J) 6|= ϕ and(J, I) 6|= ϕ;

• ϕν = u iff (I, J) 6|= ϕ and(J, I) |= ϕ;

In the four-valued case, we also have:

• ϕν = i iff (I, J) |= ϕ and(J, I) 6|= ϕ;

14 CHAPTER 2. THE APPROXIMATION THEORY FRAMEWORK

We will sometimes also writeϕ(I,J) to denote the truth valueϕν , whereν is such
thatτ(ν) = (I, J).

For a set of predicatesP, we will denote byLF
P the class of all two-valued(Σo ∪

Σf ∪ P)-structures that extend some fixed pre-interpretationF . It is easy to see that
〈LF

P,≤〉 is a complete lattice. Given a pair of interpretations for the open predicates

(O1, O2) in (LF
Op(∆))

2, we now define an immediate consequence operatorT (O1,O2)
∆

on (LF
Def(∆))

2, i.e., on pairs of interpretations of the defined predicates. The defini-
tion below is an alternative formalization of the standard four-valued immediate con-
sequence operator (Fitting 2002). The idea behind this operator is that if we give it
a pair(I, J) approximating someI ≤ K ≤ J , it will produce a new, more precise
estimate(I ′, J ′), where the new underestimateI ′ will be constructed using the under-
estimates(I, J) |= body(r) of the truth of the bodies of rulesr ∈ ∆, whereas the new
overestimateJ ′ is made using the overestimates(J, I) |= body(r).

Definition 2.2. Let ∆ be a rule set andO1, O2 ∈ LF
Op(∆). We define a function

U
(O1,O2)
∆ from (LF

Def(∆))
2 toLF

Def(∆) as mapping each(I, J) to the interpretationI ′,

such that for eachP/n ∈ Def(∆) andd ∈ dom(F)n, d ∈ P I′ iff there exists a rule
(∀x P (t)← ϕ(x)) ∈ ∆ and anc ∈ dom(F)n, such that((O1∪ I), (O2∪J)) |= ϕ(c)
andtF [x/c] = d. We define the operatorT (O1,O2)

∆ on(LF
Def(∆))

2 asT (O1,O2)
∆ (I, J) =(

U
(O1,O2)
∆ (I, J), U (O2,O1)

∆ (J, I)
)
.

When a pair(O1, O2) approximates an interpretationO for the open predicates,
i.e.,O1 ≤ O ≤ O2, thenT (O1,O2)

∆ is an approximation of the well-known 2-valued
immediate consequence operatorTO

∆ , which can be defined asTO
∆ (I) = J , with

(J, J) = T (O,O)
∆ (I, I). BecauseT (O1,O2)

∆ is an approximation, it has a stable operator
CT (O1 O2)

∆
. Thewell-founded modelof ∆ given (O1, O2) is the least fixpoint of this

stable operator. Similarly, a pair(I, J) is apartial stable modelof ∆ given (O1, O2)
iff (I, J) is a fixpoint of this stable operator. An interpretationI for which (I, I) is a
partial stable model is called an (exact) stable model. Our language of rule sets sub-
sumes that of normal logic programs. In particular, a normal logic program does not
have any open predicates. In this case,T∆ is symmetric, which implies that its upper
and lower stable operator coincide. Moreover, it turns out that thisC↑T∆

= C↓T∆
is iden-

tical to the well-known Gelfond-Lifschitz operatorGL∆ (Gelfond and Lifschitz 1988).
For the sake of completeness, we can also define some less popular logic programming
semantics in terms of these operators. An interpretationI is asupported modelof ∆
givenO iff I is a fixpoint ofTO

∆ . If ∆ does not contain open predicates, then its sup-
ported models are known to coincide with the classical models of Clark’scompletion
(Clark 1978). TheKripke-Kleene model(Fitting 1985) of∆ under an interpretation
(O1, O2) for the open predicates is the pair(I, J) for which (I, J) is the least fixpoint
of T (O1,O2)

∆ .

A rule set∆ is monotoneif everyT (O1 O2)
∆ is a monotone operator w.r.t. the product

order≤. For such rule sets, the well-founded model of∆ given some(O1, O2) can be
shown to coincide with the Kripke-Kleene model of∆ under(O1, O2), which is also
the unique partial stable model for∆ given (O1, O2). A rule set∆ is positiveif no

2.2. LOGIC PROGRAMMING 15

defined predicate appears negatively in a rule body of∆. Such rule sets are always
monotone.

The following definition introduces some notation for the models of a rule set under
partial stable and well-founded semantics. For an interpretationI for alphabetΣ and
a subalphabetΣ′ ⊆ Σ, we write I|Σ′ to denote the restriction ofI to Σ′, i.e., I|Σ′
is theΣ′-interpretationI ′ such that, for allσ ∈ Σ′, σI = σI′ ; similarly, for a pair
(I, J) of Σ-interpretations, we write(I, J)|Σ′ to denote the pair ofΣ′-interpretations
(I|Σ′ , J |Σ′).

Definition 2.3. Let ∆ be a rule set,F a pre-interpretation. andI, J structures inLF
Σp ,

i.e., they interpret all predicates of∆. The pair(I, J) is a model of∆ under the well-
founded semantics, denoted(I, J) |=w ∆ iff (I, J)|Def(∆) is the well-founded model
of ∆ given (I, J)|Op(∆). Similarly, (I, J) is a model of∆ under the partial stable
model semantics, denoted(I, J) |=s ∆ iff (I, J)|Def(∆) is a partial stable model of∆
under(I, J)|Op(∆).

Using the above definitions, we can now characterize stable and well-founded se-
mantics of the following extensions of logic programming:

• Normal logic programming: the bodies of rules are restricted to conjunctions of
literals, there are no open predicates, and the pre-interpretationF is fixed to the
Herbrand pre-interpretation.

• Abductive logic programming: the same, except that open predicates are al-
lowed, which in this context are calledabduciblepredicates and whose inter-
pretation is arbitrary. LP-functions (Gelfond and Przymusinska 1996) are also
of this form.

• Deductive Databases, and its extension AFP (Van Gelder 1993): intensional
predicates are defined, extensional database predicates are open but interpreted
by the databaseO.

• ID-logic (Denecker and Ternovska 2004): rule sets are used to represent induc-
tive definitions.

All the results that we will prove for rule sets therefore apply to each of these for-
malisms. In the next chapters of this text, we will pay special attention to the language
of ID-logic. We therefore now explain this in a bit more detail.

2.2.1 ID-logic

ID-logic (Denecker and Ternovska 2004) is an extension of classical first-order logic
with a new construct for representing inductive definitions. Concretely, an inductive
definition is represented by a rule set, enclosed by curly brackets{}. An ID-logic for-
mulais a boolean combination of such inductive definitions and of first-order formulas.
For instance, the following formula states that the undirected graph represented by the

16 CHAPTER 2. THE APPROXIMATION THEORY FRAMEWORK

predicatesEdge/2 andNode/1 is connected:{
∀x, y Path(x, y)← Edge(x, y).
∀x, z Path(x, z)← ∃y Path(x, y) ∧ Path(y, z).

}
∧ ∀x, y Node(x) ∧Node(y)⇒ Path(x, y).

The semantics of ID-logic is defined by extending the usual inductive definition
of the satisfaction relation with an additional base case to cover the new inductive
definition primitive. Concretely, an inductive definition∆ will be interpreted according
to the well-founded semantics for rule sets, i.e., for an interpretationI and ID-logic
formulasϕ, we defineI |= ϕ as:

• For an atomP (t), I |= P (t) iff tI ∈ P I ;

• For a definition∆, I |= ∆ iff (I, I) |=w ∆;

• For a conjunctionI |= ψ ∧ ϕ, I |= ψ ∧ ϕ iff I |= ψ andI |= ϕ;

• And so on for the other connectives in the standard way.

We remark that, even though this definition uses the technical construct of the well-
founded semantics, which can be three-valued, the eventual models of a definition are
always two-valued. Given an interpretationO for the open predicates of a definition
∆, we call∆ total in O iff its well-founded model given(O,O) is exact, i.e., of the
form (I, I). Obviously, the above definition implies that wheneverI |= ∆, then∆ is
total in I|Op(∆).

2.3 Autoepistemic logic

In this section, we describe the syntax of autoepistemic logic and give a brief overview,
based on (Denecker, Marek, and Truszczyński 2003), of how a number of different
semantics for this logic can be defined using concepts from approximation theory.

Syntax and Semantics

LetL be the language of propositional logic based on a set of atomsΣ. Extending this
language with a modal operatorK, gives a languageLK of modal propositional logic.
An autoepistemic theory is a set of formulas in this languageLK . For such a formula
ϕ, the subset ofΣ containing all atoms which appear inϕ, is denoted byAt(ϕ); atoms
which appear inϕ at least once outside the scope of the modal operatorK are called
objectiveatoms ofϕ and the set of all objective atoms ofϕ is denoted byAtO(ϕ). A
modal literal is a formula of the formK(ψ), with ψ a formula. Ifϕ is a subformula
of ψ andϕ appears negatively inψ, we writeϕ ∈− ψ; if ϕ appears positively inψ,
we writeϕ ∈+ ψ. By theK-rank of an occurrence of a subformulaϕ in a formulaψ,
we mean the number of modal operators inψ, in whose scopeϕ occurs. As such, the
objective atoms ofψ are precisely those atoms that have an occurrence ofK-rank zero
in ψ.

2.3. AUTOEPISTEMIC LOGIC 17

{}

{{}}

55jjjjjjjjjjjjjjjjjj
{{p}}

<<zzzzzzzz
{{q}}

bbDDDDDDDD
{{p,q}}

iiTTTTTTTTTTTTTTTTT

{{},{p}}

99rrrrrrrrrr

OO

··· ··· {{q},{p,q}}

OOffLLLLLLLLLL

{{},{p},{q}}

OO

{{},{p},{p,q}}

eeLLLLLLLLLL
{{},{q},{p,q}}

99rrrrrrrrrr
{{p},{q},{p,q}}

OO

I{p,q}

bbDDDDDDDD

iiTTTTTTTTTTTTTTTT

<<zzzzzzzz

55jjjjjjjjjjjjjjjj

Figure 2.1: Part of the latticeW{p,q}.

To illustrate, consider the following example:

T = {ϕ1 = p ∨ ¬Kp ; ϕ2 = K(p ∨Kq) ∨ q}

The objective atomsAtO(ϕ2) of ϕ2 are{q}, while the atomsAt(ϕ2) are{p, q}. The
formulaK(p∨Kq) is a modal literal ofϕ2. We also have thatKp ∈− ϕ1 andp ∈+ ϕ2.
TheK-rank ofq in K(p ∨Kq) is 2, whereas theK-rank of the second occurrence of
p in ϕ1 is 1.

An interpretationor world is a subset of the alphabetΣ. The set of all interpre-
tations ofΣ is denoted byIΣ, i.e., IΣ = 2Σ. A possible world structureis a set
of interpretations, i.e. the set of all possible world structuresWΣ is defined as2IΣ .
Intuitively, a possible world structure sums up all “situations” which are possible. It
therefore makes sense to order these according to inverse set inclusion to get aknowl-
edge order≤, i.e. for two possible world structuresQ,Q′,Q ≤ Q′ iff Q ⊇ Q′. Indeed,
if a possible world structure containsmorepossibilities, it actually containslessknowl-
edge. Figure 2.1 shows part of the latticeWAt(T) for the above exampleT .

Following (Denecker, Marek, and Truszczyński 2003), we will define the semantics
of an autoepistemic theory by an operator on the bilatticeBΣ =W2

Σ. An element(P S)
of BΣ is known as abelief pairand is calledconsistentiff P ≤ S. In a consistent belief
pair(P S),P can be viewed as describing what mustcertainlybe known, i.e., as giving
an underestimate of what is known, whileS can be viewed as denoting what might
possiblybe known, i.e. as giving anoverestimate. Based on this intuition, there are two
ways of estimating the truth of modal formulas according to(P S). To conservatively
estimate the truth of a formulaϕ in a world I and a consistent belief pair(P, S), we
evaluate all positively occurring modal literalsKψ ∈+ ϕ in the possible world set
with the least knowledge, i.e., inP , and all negatively occurring modal literals in the
possible world set with the most knowledge, i.e., inS. Vice versa, to liberally estimate
the truth of a formulaϕ in I and(P, S), we evaluate positive modal literals inS and
negative modal literals inP . To formalize these intuitions, we define the following

18 CHAPTER 2. THE APPROXIMATION THEORY FRAMEWORK

truth assignment:

Definition 2.4. For each(P, S) ∈ BΣ, I ∈ IΣ and formulaϕ in alphabetΣ, we
inductively defineHI,(P,S)(ϕ) as:

• For each atomp,HI,(P,S)(p) = t iff p ∈ I;

• HI,(P,S)(ϕ1 ∧ ϕ2) = t, iff HI,(P,S)(ϕ1) = t andHI,(P,S)(ϕ2) = t;

• HI,(P,S)(ϕ1 ∨ ϕ2) = t, iff HI,(P,S)(ϕ1) = t orHI,(P,S)(ϕ2) = t;

• HI,(P,S)(¬ϕ) = ¬HI,(S,P)(ϕ);

• HI,(P,S)(Kϕ) = t iff HJ,(P,S)(ϕ) = t for all J ∈ P ;

This evaluation function has two important properties. First, if we consider an
exact belief pair, i.e., one of the form(Q,Q), thenHI,(Q,Q)(ϕ) corresponds to the
standardS5 evaluation (Meyer and van der Hoek 1995) ofϕ in the possible world
structureQ and worldI. Second, there is an exact sense in which this function can
be used to conservatively or liberally estimate the truth of a formulaϕ. A conser-
vative estimate can be achieved by consideringHI,(P,S)(ϕ). It can then be shown
that for any possible world structureQ, with P ≤ Q ≤ S, it is indeed the case that
HI,(P,S)(ϕ) ≤ HI,(Q,Q)(ϕ). Conversely, a liberal estimate consists ofHI,(S,P)(ϕ)
and, indeed, for any possible world structureQ, with P ≤ Q ≤ S, it is indeed the case
thatHI,(S,P)(ϕ) ≥ HI,(Q,Q)(ϕ).

We remark that the evaluationHI,(P,S)(Kϕ) of a modal literalKϕ depends only
on (P, S) and not onI. We will sometimes emphasize such properties by replacing the
irrelevant symbol by a dot, e.g., by writingH·,(P,S)(Kϕ). Similarly,HI,(P,S)(ϕ) of
an objective formulaϕ depends only onI and we also writeHI,(·,·)(ϕ) .

The conservative and liberal way of estimating the truth of a theory can now be used
to derive a new, more precise belief pair(P ′, S′) from an original pair(P, S). First,
we will focus on constructing the new overestimateS′. As S′ needs to overestimate
knowledge, it needs to contain as few interpretations as possible. This means thatS′

should consist of only those interpretations, which manage to satisfy the theory even if
the truth of its modal literals is conservatively estimated. So,S′ should contains those
interpretationsI for which, for allϕ in T , HI,(P,S)(ϕ) = t. Conversely, to construct
the new underestimateP ′, we need as many interpretations as possible. This means
thatP ′ should contain those interpretationsI which satisfy the theory, when liberally
evaluating its modal literals, i.e., for which, for allϕ in T ,HI,(S,P)(ϕ) = t.

These intuitions motivate the following definition of the operatorDT onBΣ:

DT (P, S) = (Du
T (S, P),Du

T (P, S))

with Du
T (P, S) = {I ∈ IΣ | ∀ϕ ∈ T : HI,(P,S)(ϕ) = t}.

It can be illuminating to reformulate this definition using more standard concepts
and notation. Given a pair(P, S) and a formulaϕ, it is obviously the case that, in any
evaluationHI,(P,S)(ϕ), all positivelyoccurring modal literalsKψ will be interpreted
asH·,(P,S)(Kψ), while all negativelyoccurring modal literalsKψ will be interpreted
asH·,(S,P)(Kψ). Let us denote byϕ〈P, S〉 the formulaϕ′ that is the result of filling

2.3. AUTOEPISTEMIC LOGIC 19

in these truth values, i.e., of replacing each top-level modal literal byt or f in the
appropriate way. Every suchϕ〈P, S〉 is of course simply a propositional formula. What
the functionDu

T now actually does is simply map a pair(P, S) to the setMod(T 〈P, S〉)
of all classical models of the propositional theoryT 〈P, S〉 = {ϕ〈P, S〉 | ϕ ∈ T}. So,
the operatorDT can be equivalently defined as:

DT (P, S) = (Mod(T 〈S, P 〉),Mod(T 〈P, S〉)).

It can be shown that every operatorDT is a symmetric approximation (Denecker,
Marek, and Truszczýnski 2003), which therefore approximates a unique operator on
WΣ, namely the operatorDT which maps eachQ toDu

T (Q,Q). This operatorDT is
precisely the operator considered in (Moore 1984). As shown in (Denecker, Marek,
and Truszczýnski 2003), these operators define a family of semantics for a theoryT :

• fixpoints ofDT areexpansionsof T (Moore 1984),

• fixpoints ofDT arepartial expansionsof T (Denecker, Marek, and Truszczynski
1998),

• the least fixpoint ofDT is theKripke-Kleene fixpointof T (Denecker, Marek,
and Truszczynski 1998),

• fixpoints ofC↓DT
areextensionsof T (Denecker, Marek, and Truszczyński 2003),

• fixpoints ofCDT
arepartial extensionsof T (Denecker, Marek, and Truszczyński

2003)

• the least fixpoint ofCDT
is thewell-founded modelof T (Denecker, Marek, and

Truszczýnski 2003).

These various dialects of autoepistemic logic differ in their treatment of “ungrounded”
expansions (Konolige 1988), i.e., expansions arising from cyclicities such asKp⇒ p.

Example 2.1.To illustrate these definitions, we will compute the Kripke-Kleene model
of our example theoryT = {p ∨ ¬Kp; K(p ∨Kq) ∨ q}. This computation starts at
the least precise element(I{p,q}, {}) of B{p,q}. We first construct the new underesti-
mateDu

T ({}, I{p,q}) = Mod(T 〈{}, I{p,q}〉). It is easy to see that, for the negatively
occurring modal literalKp,

H·,(I{p,q},{})(Kp) = f ,

and for the positively occurring modal literalK(p ∨Kq),

H·,({},I{p,q})(K(p ∨Kq)) = t.

Therefore,T 〈{}, I{p,q}〉 = {p∨¬f ; q∨ t} = {t} andDu
T ({}, I{p,q}) = I{p,q}. Now,

to compute the new overestimateDu
T (I{p,q}, {}) = Mod(T 〈I{p,q}, {}〉), we note that

H·,({},·)(Kp) = t,

20 CHAPTER 2. THE APPROXIMATION THEORY FRAMEWORK

and
H·,(I{p,q},·)(K(p ∨Kq)) = f .

Therefore,T 〈I{p,q}, {}〉 = {p ∨ ¬t; q ∨ f} = {p; q} andDu
T (I{p,q},{}) = {{p, q}}.

So,DT (I{p,q}, {}) = (I{p,q}, {{p, q}}).
To computeDu

T ({{p, q}}, I{p,q}), we note that it is still the case that:

H·,(I{p,q},·)(Kp) = f andH·,({{p,q}},·)(K(p ∨Kq)) = t.

So,Du
T ({{p, q}}, I{p,q}) = I{p,q}. Similarly, still bothH·,({{p,q}},·)(Kp) = t and

H·,(I{p,q},·)(K(p ∨ Kq)) = f . So,Du
T (I{p,q}, {{p, q}}) = {{p, q}}. Therefore,

(I{p,q}, {{p, q}}) is the least fixpoint ofDT , i.e., the Kripke-Kleene model ofT .

2.4 Default logic

LetL be the language of propositional logic for an alphabetΣ. A default d is a formula

α : β1, . . . , βn

γ

with α, β1, . . . , βn, γ formulas ofL. The formulaγ is called the consequencecons(d)
of d. A default theoryis a pair〈D,W 〉, withD a set of defaults andW a set of formulas
of L.

(Konolige 1987) suggested a transformationm from default logic to autoepistemic
logic, which was shown by (Denecker, Marek, and Truszczyński 2003) to capture the
semantics of default logic. For simplicity, we will ignore the original formulation of the
semantics of default logic and view this as being defined by the autoepistemic theory
m(〈D,W 〉).

Definition 2.5. Let 〈D,W 〉 be a default theory and letd = α:β1,...,βn

γ be a default in
D. Then

m(d) = (Kα ∧ ¬K¬β1 ∧ · · · ∧ ¬K¬βn ⇒ γ)

and
m(〈D,W 〉) = {m(d) | d ∈ D} ∪W.

A pair (P, S) of possible world structures is an expansion (Marek and Truszczyński
1989), a partial expansion (Denecker, Marek, and Truszczyński 2003), an extension
(Reiter 1980), a partial extension (Denecker, Marek, and Truszczyński 2003), the
Kripke-Kleene model (Denecker, Marek, and Truszczyński 2003) or the well-founded
model (Baral and Subrahmanian 1991) of a default theory〈D,W 〉 if it is, respectively,
an expansion, a partial expansion, an extension, a partial extension, the Kripke-Kleene
or the well-founded model ofm(D,W). The semantics of extensions is the most com-
mon.

Chapter 3

Modularity results

3.1 Introduction

An important aspect of human reasoning is that it is often incremental in nature. When
dealing with a complex domain, we tend to initially restrict ourselves to a small subset
of all relevant concepts. Once these “basic” concepts have been figured out, we then
build another, more “advanced”, layer of concepts on this knowledge. A quite illustra-
tive example of this can be found in most textbooks on computer networking. These
typically present a seven-layered model of the way in which computers communicate.
First, in the so-called physical layer, there is only talk of hardware and concepts such as
wires, cables and electronic pulses. Once these low-level issues have been dealt with,
the resulting knowledge becomes afixedbase, upon which a new layer, the data-link
layer, is built. This no longer considers wires and cables and so on, but rather talks
about packages of information travelling from one computer to another. Once again,
after the workings of this layer have been figured out, this information is “taken for
granted” and becomes part of the foundation upon which a new layer is built. This
process continues all the way up to a seventh layer, the application layer, and together
all of these layers describe the operation of the entire system.

In this chapter, we investigate a formal equivalent of this method. More specifically,
we address the question of whether a formal theory in some non-monotonic language
can be split into a number of differentlevelsor strata, such that the formal semantics
of the entire theory can be constructed by successively constructing the semantics of
the various strata. We will use the terms “stratification” and “splitting” interchange-
ably to denote a division into a number of different levels. This is a more general
use of both these terms, than in literature such as (Apt, Blair, and Walker 1988) and
(Gelfond 1987). Such stratifications are interesting from both a theoretical, knowledge
representational and a more practical point of view.

On the more theoretical side, stratification results provide crucial insight into the
semantics of a language, and hence in its use for knowledge representation. Indeed,
the human brain seems unsuited for holding large chunks of unstructured informa-
tion. When the complexity of a domain increases, we rely on our ability to understand

21

22 CHAPTER 3. MODULARITY RESULTS

and describe parts of the domain and construct a description of the whole domain by
composing the descriptions of its components. Large theories which cannot be under-
stood as somehow being a composition of components, simply cannot be understood
by humans. Stratification results are, therefore, important, especially in the context of
non-monotonic languages, where adding a new expression to a theory might affect the
meaning of what was already represented. Our results will present cases where adding
a new expression is guaranteednot to alter the meaning of the existing theory.

On the more practical side, computing models of a theory by incrementally con-
structing models of each of its levels might offer considerable computational gain.
Indeed, suppose that, normally, it takest(n) time to construct the model(s) of a the-
ory of sizen. If we were able to split such a theory into, say,m smaller theories of
equal sizen/m, we could use this stratification to compute the model(s) of the theory
in m · t(n/m) time. As model generation is typically quite hard, i.e.,t(n) is a large
function ofn, this could provide quite a substantial improvement. Of course, much
depends of the value ofm. Indeed, in the worst case, the theory would allow only the
trivial stratification in which the entire theory is a single level, i.e.,m = 1, which obvi-
ously does not lead to any gain. However, because, as argued above, human knowledge
tends to exhibit a more modular structure, we would expect real knowledge bases to be
rather well-behaved in this respect.

Because of these reasons, it is not surprising that stratifiability and related concepts,
such as Dix’s notion of modularity (Dix 1995), have already been intensively studied.
Indeed, splitting results have been proven for autoepistemic logic under the semantics
of expansions (Gelfond and Przymusinska 1992; Niemelä and Rintanen 1994) default
logic under the semantics of extensions (Turner 1996) and various kinds of logic pro-
grams under the stable model semantics (Lifschitz and Turner 1994; Erdoğan and Lif-
schitz 2004; Eiter, Gottlob, and Mannila 1997). In all of these works, stratification is
seen as a syntactical property of a theory in a certain language under a certain formal
semantics.

Here, we will take the different, more general approach of studying this topic at
the abstract level of approximation theory. Let us briefly sketch the method that we
will follow. Approximation theory defines a family of different kinds of fixpoints of
operators and shows that these correspond to a family of semantics for a number of
different logics. We will introduce the concept of astratifiable operatorand prove
that such operators can be split into a number of smallercomponent operators, in such
a way that the different kinds of fixpoints of the original operator can be constructed
by incrementally constructing the corresponding fixpoints of its component operators.
These algebraic results will then be used to derive concrete splitting results for logic
programming, autoepistemic logic and default logic. To do this, we will follow these
two steps:

• First, we determinesyntacticalconditions which suffice to ensure that every
operator corresponding to a theory, that satisfies these conditions, is in fact a
stratifiable operator. This tells us that the models of such a theory under vari-
ous semantics, i.e., the various kinds of fixpoints of the associated operator, can
be constructed by incrementally constructing the corresponding fixpoints of the
components of this operator.

3.2. STRATIFICATION IN APPROXIMATION THEORY 23

• Second, we also need to provide a precise, computable characterization of the
components of stratifiable operators. This will be done by presenting asyntacti-
cal method of deriving a number of smaller theories from the original theory and
showing that the components of the original operator are precisely the operators
associated with these new theories.

So, in other words, using the algebraic characterization of the semantics of a number
of different logics by approximation theory, our algebraic results show how splitting
can be done on a semantical level, and deriving concrete splitting results for a specific
logic simply boils down to determining which syntactical notions correspond to our
semantical splitting concepts.

3.2 Stratification in approximation theory

In this section, we develop a theory of stratifiable operators. We will, in section 3.2.2,
investigate operators on a special kind of lattice, namelyproduct lattices, which will
be introduced in section 3.2.1. In section 3.2.3, we then return to approximation the-
ory and discuss stratifiable approximations on product lattices. Finally, in Sections
3.2.4 and 3.2.5, we will introduce some additional concepts, which will be useful when
applying our abstract results to a concrete logic.

3.2.1 Product lattices

We begin by defining the notion of aproduct set, which is a generalization of the well-
known concept of Cartesian products.

Definition 3.1. Let I be a set, which we will call theindex setof the product, and for
eachi ∈ I, letSi be a set. Theproduct set⊗i∈ISi is the following set of functions:

⊗i∈ISi = {f | f : I →
⋃
i∈I

Si such that∀i ∈ I : f(i) ∈ Si}.

Intuitively, a product set⊗i∈ISi contains all ways of selecting one element from
each setSi. As such, if the index setI is a set withn elements, e.g. the set{1, . . . , n},
the product set⊗i∈ISi is simply (isomorphic to) the cartesian productS1 × · · · × Sn.

Definition 3.2. Let I be a set and for eachi ∈ I, let 〈Si,≤i〉 be a partially ordered set.
Theproduct order≤ on the set⊗i∈ISi is defined as, for allx, y ∈ ⊗i∈ISi :

x ≤ y iff ∀i ∈ I : x(i) ≤i y(i).

It is easy to see that if all the〈Si,≤i〉 are (complete) lattices, then〈⊗i∈ISi,≤〉 is
also a (complete) lattice. We therefore refer to〈⊗i∈ISi,≤〉 as theproduct latticeof
the latticesSi.

From now on, we will always assume a well-founded partial order� on the index
setI. This will allow us to use inductive arguments in dealing with elements of product
lattices. Most of our results, however, also hold for index sets with an arbitrary partial

24 CHAPTER 3. MODULARITY RESULTS

x|�i

O−→ y|�i

L0

...

Li

...

Ln

Figure 3.1:O is stratifiable ifx|�i determinesO(x)|�i.

order; if a certain proof depends on the well-foundedness ofI, we will always explicitly
mention this.

For an elementx of a product lattice⊗i∈ILi andi ∈ I, we abbreviatex|{j∈I|j�i}
byx|�i. We also use similar abbreviationsx|≺i, x|i andx|6�i. If i is a minimal element
of the well-founded setI, x|≺i is defined as the empty function. For each indexi, the
set{x|�i | x ∈ L}, ordered by the appropriate restriction≤|�i of the product order, is
also a lattice. Clearly, this sublattice ofL is isomorphic to the product lattice⊗j�iLi.
We denote this sublattice byL|�i and use a similar notationL|≺i for⊗j≺iLi. For each
elementx of a product latticeL and each indexi ∈ I, the extensionx|≺i t x|i of x|≺i

is clearly equal tox|�i. For ease of notation, we sometimes simply writex(i) instead
of x|i in such expressions, i.e., we identify an elementa of the ith latticeLi with the
function from{i} toLi which mapsi to a. Similarly,x|≺i t x(i) t x|6�i = x.

We will use the symbolsx, y to denote elements of an entire product latticeL; a, b
to denote elements of a single levelLi andu, v to denote elements ofL|≺i.

3.2.2 Operators on product lattices

We want to consider operators on a lattice that is split into a number of different levels
Li. Formally, let 〈I,�〉 be a well-founded index set and letL = ⊗i∈ILi be the
product lattice of lattices〈Li,≤i〉i∈I . We now want to look at those operatorsO onL
that respect this ordering of the components ofL. An operatorO onL will be called
stratifiable over the order�, if the value(O(x))(i) of O(x) in the ith stratum only
depends on valuesx(j) for which j � i. This concept is illustrated in Figure 3.1.

Definition 3.3. An operatorO on a product latticeL is stratifiableiff for all x, y ∈ L
andi ∈ I : if x|�i = y|�i thenO(x)|�i = O(y)|�i.

It is also possible to characterize stratifiability in a more constructive manner. The
following theorem shows that stratifiability of an operatorO on a product latticeL is

3.2. STRATIFICATION IN APPROXIMATION THEORY 25

u

a a

u

?

?

a O−→= =

Ou
i

b ba

u

?

?

L1

...

Li

...

Ln

Figure 3.2: The componentOu
i of O mapsa toO(x)|i, with x any extension ofut a.

equivalent to the existence of a family of operators on each latticeLi—one for eachu
in L|≺i—which mimics the behaviour ofO on this lattice.

Proposition 3.1. LetO be an operator on a product latticeL. O is stratifiable iff for
eachi ∈ I andu ∈ L|≺i there exists a unique operatorOu

i onLi, such that for all
x ∈ L:

If x|≺i = u then(O(x))(i) = Ou
i (x(i)).

Proof. To prove the implication from left to right, letO be a stratifiable operator,i ∈ I
andu ∈ L|≺i. We define the operatorOu

i onLi as

Ou
i : Li → Li : a 7→ (O(y))(i),

with y some element ofL extendingu t a. Because of the stratifiability ofO, this
operator is well-defined and it trivially satisfies the required condition.

To prove the other direction, suppose the right-hand side of the equivalence holds
and letx, x′ be elements ofL, such thatx|�i = x′|�i. Then for eachj � i:

(O(x))(j) = O
x|≺j

j (x(j)) = O
x′|≺j

j (x′(j)) = (O(x′))(j).

These operatorsOu
i will play an important role in our results. We will call them the

componentsof O. The construction of these components is illustrates in Figure 3.2.

Definition 3.4. LetO be a stratifiable operator on a product latticeL with index setI
and leti ∈ I andu ∈ L|≺i. ThecomponentOu

i of O on leveli givenu is the unique
operator onL|i that satisfies the property stated in Proposition 3.1 or, equivalently, that
maps eacha ∈ L|i toO(x)|i, wherex is any element ofL that extends bothu anda.

These components ofO can be used to construct the fixpoints of a stratifiable op-
erator in a bottom-up manner w.r.t. the well-founded order� on the index set.

26 CHAPTER 3. MODULARITY RESULTS

⊥ · · · lfp1 lfp1

⊥ · · · lfp2

⊥ · · · lfp3

lfp2

lfp1
O1−→ O1−→

O
lfp1
2−→

O
lfp1
2−→

O
lfp≤2
3−→

O
lfp≤2
3−→

L1

L2

L3

Figure 3.3: The components ofO can be used to construct, for instance,lfp(O).

Theorem 3.1. LetO be a stratifiable operator on a product latticeL. Then for each
x ∈ L:

x is a fixpoint ofO iff ∀i ∈ I : x(i) is a fixpoint ofOx|≺i

i .

Proof. Follows immediately from Proposition 3.1.

If O is a monotone operator on a complete lattice, we are often interested in itsleast
fixpoint. This can also be constructed by means of the least fixpoints of the components
of O. Figure 3.3 illustrates how this could be done. However, such a construction of
course requires each component to actually have a least fixpoint as well. We will
therefore first show that the components of a monotone operator are also monotone.

Proposition 3.2. Let O be a stratifiable operator on a product latticeL, which is
monotone w.r.t. the product order≤. Then for eachi ∈ I andu ∈ L|≺i, the component
Ou

i : Li → Li is monotone w.r.t. to the order≤i of theith latticeLi ofL.

Proof. Let i be an index inI, u an element ofL|≺i anda, b elements ofLi, such that
a ≤i b. Let x, y ∈ L, such thatx extendsu t a, y extendsu t b and for eachj 6� i,
x(j) = y(j). Because of the definition of≤, clearlyx ≤ y. Therefore, for allj ∈ I :

O
x|≺j

j (x(j)) = (O(x))(j) ≤j (O(y))(j) = O
y|≺j

j (y(j)).

Takingj = i, this now impliesOu
i (a) ≤i O

u
i (b).

Now, we can prove that the least fixpoints of the components of a monotone strat-
ifiable operator indeed form the least fixpoint of the operator itself. We will do this,
by first proving the following, slightly more general theorem, which we will be able to
reuse later on.

Proposition 3.3. LetO be a monotone operator on a complete product latticeL and
let for eachi ∈ I, u ∈ L|≺i, Pu

i be a monotone operator onLi (not necessarily a
component ofO), such that:

x is a fixpoint ofO iff ∀i ∈ I : x(i) is a fixpoint ofP x|≺i

i .

Then the following equivalence also holds:

x is the least fixpoint ofO iff ∀i ∈ I : x(i) is the least fixpoint ofP x|≺i

i .

3.2. STRATIFICATION IN APPROXIMATION THEORY 27

Proof. To prove the implication from left to right, letx be the least fixpoint ofO and let
i be an arbitrary index inI. We will show that for each fixpointa of P x|≺i

i , a ≥ x(i).
So, leta be such a fixpoint. We can inductively extendx|≺i t a to an elementy of L

by defining for allj 6� i, y(j) aslfp(P y|≺j

j). Because of the well-foundedness of�,
y is well defined. Furthermore,y is clearly also a fixpoint ofO. Thereforex ≤ y and,
by definition of the product order onL, x(i) ≤i y(i) = a.

To prove the other direction, letx be an element ofL, such that, for eachi ∈ I,
x(i) is the least fixpoint ofP x|≺i

i . Now, lety be the least fixpoint ofO. To prove that
x = y, it suffices to show that for eachi ∈ I, x|�i = y|�i. We will prove this by
by induction on the well-founded order� of I. If i is a minimal element ofI, the
proposition trivially holds. Now, leti be an index which is not the minimal element of
I and assume that for eachj ≺ i, x|�j = y|�j . It suffices to show thatx(i) = y(i).
Becausey is a fixpoint ofO, y(i) is fixpoint of P y|≺i

i . As the induction hypothesis

implies thatx|≺i = y|≺i, y(i) is a also fixpoint ofP x|≺i

i and thereforex(i) ≤ y(i).
However, becausex is also a fixpoint ofO and therefore must be greater than the least
fixpoint y of O, the definition of the product order onL implies thatx(i) ≥ y(i) as
well. Thereforex(i) = y(i).

It is worth noting that the condition that the order� on I should be well-founded
is necessary for this proposition to hold. Indeed, this can be demonstrated by the fol-
lowing example.

Example 3.1. LetL be the product lattice⊗i∈ZLi, with Z the integers ordered by their
usual, non-well-founded order and eachLi the lattice{0, 1} ordered by0 ≤ 1. LetO
be the operator that maps eachx ∈ L to the following elementy ∈ L:

y : Z→ {0, 1} :

{
i 7→0 if x(i− 1) = 0;
i 7→1 otherwize.

This O is monotone and, therefore, it has a least fixpoint, which turns out to be the
bottom element⊥ of L, which maps eachi ∈ Z to 0. Also,O is stratifiable over the
order≤ of Z. Its components can be characterized as follows. For everyi ∈ Z and
u ∈ L|<i, if u(i − 1) = 0, then the componentOu

i is the constant operator that maps
both0 and1 to 0; otherwizeOu

i is the constant operator that maps0 and1 to 1. We

now know that anx ∈ L is a fixpoint ofO iff for each i, x(i) is a fixpoint ofOx|<i

i .

However, it is not the case that if, for eachi, x(i) is the leastfixpoint of Ox|<i

i , then
alsox is the least fixpoint ofO. Indeed, for the element> that maps eachi to 1, each of
the operatorsO>|<i

i has>(i) = 1 as its least fixpoint, but nevertheless> is not equal
to the least fixpoint⊥ of O.

Together with Theorem 3.1 and Proposition 3.2, this Proposition 3.3 of course im-
plies that for each stratifiable operatorO on a product latticeL, an elementx ∈ L is
the least fixpoint ofO iff ∀i ∈ I, x(i) is the least fixpoint ofOx|≺i

i . In other words, the
least fixpoint of a stratifiable operator can also be incrementally constructed.

28 CHAPTER 3. MODULARITY RESULTS

3.2.3 Approximations on product lattices

In section 2.1.2, we introduced several concepts from approximation theory, pointing
out that we are mainly interested in studying Kripke-Kleene, stable and well-founded
fixpoints of approximations. Similar to our treatment of arbitrary operators in the
previous section, we will in this section investigate the relation between these vari-
ous fixpoints of an approximation and its components. In doing so, it will be conve-
nient to switch to an alternative representation of the bilatticeL2 of a product lattice
L = ⊗i∈ILi. Indeed, this bilattice is clearly isomorphic to the structure⊗i∈IL

2
i , i.e.,

to a product lattice of bilattices. From now on, we will not distinguish between these
two representations. More specifically, when viewingA as a stratifiable operator, it
will be convenient to consider its domain equal to⊗i∈IL

2
i , but when viewingA as an

approximation, the representation(⊗i∈ILi)2 is more natural.
Obviously, this isomorphism and the results of the previous section already provide

a way of constructing the Kripke-Kleene fixpoint of a stratifiable approximationA, by
means of its componentsAu

i . Also, it is clear that ifA is both exact and stratifiable,
then the unique operatorO approximated byA is stratifiable as well. Indeed, this is a
trivial consequence of the fact thatA(x, x) = (O(x), O(x)) for eachx ∈ L.

These results leave only the stable and well-founded fixpoints ofA to be investi-
gated. We will first examine the operatorsA1(·, y) andA2(x, ·), and then move on to
the lower and upper stable operatorsC↓A andC↑A, before finally getting to the partial
stable operatorCA itself.

Proposition 3.4. Let L be a product lattice and letA : L2 → L2 be a stratifiable
approximation. Then, for eachx, y ∈ L, the operatorsA1(·, y) andA2(x, ·) are also
stratifiable. Moreover, for eachi ∈ I andu ∈ L|≺i, the components of these operators
are:

(A1(·, y))u
i =(A(u,y|≺i)

i)1(·, y(i));

(A2(x, ·))u
i =(A(x|≺i,u)

i)2(x(i), ·).

Proof. Let x, y be elements ofL, i an element ofI. Then, becauseA is stratifiable,
(A(x, y))(i) = (A(x,y)|≺i

i)(x(i), y(i)). From this, the two equalities follow.

In the previous section, we showed that the components of a monotone operator are
monotone as well (Proposition 3.2). This result obviously implies that the components
Au

i of a stratifiable approximation are also approximations. Therefore, such a compo-
nentAu

i also has lower and upper stable operatorsC↓Au
i

andC↑Au
i
. It turns out that the

lower and upper stable operators of the components ofA characterize the components
of the lower and upper stable operators ofA.

Proposition 3.5. LetL be a product lattice and letA be a stratifiable approximation on
L2. Then the operatorsC↓A andC↑A are also stratifiable. Moreover, for eachx, y ∈ L,

x = C↓A(y) iff for eachi ∈ I, x(i) = C↓
A

(x,y)|≺i
i

(y(i));

y = C↑A(x) iff for eachi ∈ I, y(i) = C↑
A

(x,y)|≺i
i

(x(i)).

3.2. STRATIFICATION IN APPROXIMATION THEORY 29

Proof. Let x, y be elements ofL. By Proposition 3.4,x = C↓A(y) = lfp(A1(·, y)) iff
for eachi ∈ I:

x(i) = lfp
(
(A1(·, y))x|≺i

i

)
= lfp

(
(A(x,y)|≺i

i)1(·, y(i))
)

= C↓
A

(x,y)|≺i
i

(y(i)).

The proof of the second equivalence is analogous.

This proposition shows how, for eachx, y ∈ L, C↓A(y) andC↑A(x) can be con-
structed incrementally from the upper and lower stable operators corresponding to the
components ofA. This result also implies a similar property for the partial stable op-
eratorCA of an approximationA.

Proposition 3.6. Let L be a product lattice and letA : L2 → L2 be a stratifi-
able approximation. Then the operatorCA is also stratifiable. Moreover, for each
x, x′, y, y′ ∈ L, the following equivalence holds:

(x′, y′) = CA(x, y) iff ∀i ∈ I :

x′(i) =C↓

A
(x′,y)|≺i
i

(y(i));

y′(i) =C↑
A

(x,y′)|≺i
i

(x(i)).

Proof. The above equivalence follows immediately from Proposition 3.5. To prove
the stratifiability ofCA, let x1, y1, x2, y2 ∈ L, such that(x1, y1)|�i = (x2, y2)|�i.
Let (x′1, y

′
1) = CA(x1, y1) and(x′2, y

′
2) = CA(x2, y2). It suffices to show that∀j � i,

x′1(j) = x′2(j) andy′1(j) = y′2(j). We show this by induction over�. First, if j is min-
imal, it follows fromy1(j) = y2(j) andx1(j) = x2(j) thatC↓Aj

(y1(j)) = C↓Aj
(y2(j))

andC↑Aj
(x1(j)) = C↑Aj

(x2(j)). Second, ifj is not minimal, thenC↓
A

(x′1,y1)|≺j
j

(y1(j)) =

C↓
A

(x′2,y2)|≺j
j

(y2(j)) andC↑
A

(x1,y′1)|≺j
j

(x1(j)) = C↑
A

(x2,y′2)|≺j
j

(x2(j)), becausey1|�j =

y2|�j andx1|�j = x2|�j , while the induction hypothesis also states thatx′1|≺j =
x′2|≺j andy′1|≺j = y′2|≺j .

It should be noted that the components(CA)(u,v)
i of the partial stable operator of

a stratifiable approximationA are, in general, not equal to the partial stable opera-
torsC

A
(u,v)
i

of the components ofA. Indeed,(CA)(u,v)
i = ((C↓A)v

i , (C
↑
A)u

i)), whereas

C
A

(u,v)
i

= (C↓
A

(u,v)
i

, C↑
A

(u,v)
i

). Clearly, these two pairs are not necessarily equal, as

(C↓A)v
i ignores the argumentu, which does appear inC↓

A
(u,v)
i

. We can, however, char-

acterize the fixpoints ofCA, i.e., the partial stable fixpoints ofA, by means of the partial
stable fixpoints of the components ofA.

Theorem 3.2. Let L be a product lattice and letA : L2 → L2 be a stratifiable
approximation. Then for each element(x, y) ofL2:

(x, y) is a fixpoint ofCA iff ∀i ∈ I : (x, y)|i is a fixpoint ofC
A

(x,y)|≺i
i

.

Proof. Let x, y be elements ofL, such that(x, y) = CA(x, y). By Proposition 3.6, this
is equivalent to for eachi ∈ I, x = C↓

A
(x,y)|≺i
i

(y(i)) andy = C↑
A

(x,y)|≺i
i

(x(i)).

30 CHAPTER 3. MODULARITY RESULTS

By Proposition 3.3, this theorem has the following corollary:

Corollary 1. LetL be a product lattice and letA : L2 → L2 be a stratifiable approx-
imation. Then for each element(x, y) ofL2:

(x, y) = lfp(CA) iff ∀i ∈ I : (x, y)|i = lfp(C
A

(x,y)|≺i
i

).

Putting all of this together, the main results of this section can be summarized as
follows. If A is a stratifiable approximation on a product latticeL, then a pair(x, y)
is a fixpoint, Kripke-Kleene fixpoint, stable fixpoint, or well-founded fixpoint ofA
iff for each i ∈ I, (x, y)|i is, respectively, a fixpoint, Kripke-Kleene fixpoint, stable
fixpoint, or well-founded fixpoint of the componentA(x,y)|≺i

i of A. Moreover, ifA is
exact then an elementx ∈ L is a fixpoint of the unique operatorO approximated by
A iff for eachi ∈ I, (x(i), x(i)) is a fixpoint of the componentA(x,x)|≺i

i of A. These
characterizations give us a way of incrementally constructing each of these fixpoints.

3.2.4 Dependency relations

The previous sections have studied operators and approximations that are stratifiable
over some product lattice. Therefore, to apply these results to some particular operator
O : L → L, we first need to come up with an appropriate way of dividingL into a
number of different levelsLi. In this section, we develop a uniform way of doing this,
starting from a detailed analysis of the structure of the operator. As a starting point,
we will again assume thatL is isomorphic to some product lattice⊗i∈ILi. However,
now, we do not assume ana priori order on the index setI and we will also not work
towards stratifying the operatorO over this particular product lattice. Instead, the
product⊗i∈ILi is meant to capture some structure that is evident in the operatorO.
For instance, ifO operates on the lattice of all interpretations of some propositional
alphabet, then eachLi could be the interpretation of a single atom of this alphabet.
From this initial, fine-grained product⊗i∈ILi, we will now derive a different, coarser
product lattice⊗j∈JL

′
j , isomorphic to it, over which wecanstratifyO.

The main idea is to examine the internal structure ofO w.r.t. the component lattices
Li of L. For instance, what information aboutx is used byO to determine the value
(O(x))(i) of O(x) in a component latticeLi? Does such an(O(x))(i) depend on the
valuex(j) of x in eachLj? Or is there someJ ⊂ I, such that the restrictionx|J of x to
this J already completely determines what(O(x))(i) will be? The following concept
captures these basic dependencies expressed by an operator. For a binary relationθ on
a setS andy ∈ S, we write(θy) for {x ∈ S | xθy}.

Definition 3.5. LetO be an operator on a latticeL = ⊗i∈ILi. A binary relation on
I is adependency relationof O iff for all i ∈ I andx, y ∈ L, if x|(i) = y|(i), then
(O(x))(i) = (O(y))(i).

An operator can have many dependency relations. In fact, any superset of a depen-
dency relation is also a dependency relation. Therefore, smaller dependency relations
are more informative. However, an operator does not necessarily have a least depen-
dency relation. This can be shown by the following example.

3.2. STRATIFICATION IN APPROXIMATION THEORY 31

L1 L2 L3 L4 L5 L6 L7 L8

L′1 L′2 L′3

Figure 3.4: Given a dependency relation for an operatorO on⊗Li, we can stratifyO
over⊗L′j .

Example 3.2. We consider the product lattice⊗n∈NLn with eachLn = {0, 1}. LetO
be the operator on this lattice defined asO(x) = y, with for all n > 0, y(n) = 0 and
y(0) = 1 iff there existsn ∈ N such that for allm ≥ n, x(m) = 0. For eachn, let
 n be the binary relation consisting of the tuplesm n 0 for whichm ≥ n. Now,
each n is a dependency relation ofO. As such, a least dependency relation ⊥ of
O would have to be some subset of the intersection∩n∈N n of all these relations
 n. However,∩n∈N n= {}, so ⊥ would also have to be{}, but this is not a
dependency relation ofO.

Given a dependency relation for an operatorO on L = ⊗i∈ILi, we can now
proceed to restructureL into a different product lattice, such thatO is stratifiable with
respect to this new structure. For this, we need to consider the reflexive, transitive
closure of , which we will denote as≤ . The following definition is illustrated in
Figure 3.4.

Definition 3.6. Let O be an operator on a product lattice⊗i∈ILi. Let 〈J,�〉 be a
well-founded poset. A partition(Ij)j∈J of I respects iff for all i ∈ Ij andi′ ∈ Ij′ ,
if i ≤ i′, thenj � j′.

Let us remark that, for any such partition(Ij)j∈J , it must be the case that for every
(≤)-equivalence classı = {i′ ∈ I | i ≤ i′ andi′ ≤ i}, there exists a unique
j ∈ J such thatı ⊆ Ij . In fact, if we consider the setI of all such equivalence classes,
together with the obvious order� on I that is induced by≤ , then it is easy to see
that the partition(ı)ı∈I itself respects . Moreover, this will be the most fine-grained
of all such partitions. As such, a dependency relation directly provides a constructive
way of deriving the most detailed partition that respects it. It can also easily be seen
that the order� is well-founded iff is.

Clearly, for any partition(Ij)j∈J of I, the original productL = ⊗i∈ILi is isomor-
phic to⊗j∈J ⊗i∈Ij

Lj . We can therefore also viewO as an operator on the product
lattice⊗j∈JL

′
j , where eachL′j is ⊗i∈IjLj . It is now obvious that, on this product

lattice,O is stratifiable.

Proposition 3.7. LetO be an operator onL = ⊗i∈ILi and let be a dependency
relation of O. For all partitions (Ij)j∈J of I that respect , O is stratifiable on
⊗j∈JL|Ij

.

Therefore, if we want to stratify some operatorO on⊗i∈ILi, it suffices to find a

32 CHAPTER 3. MODULARITY RESULTS

x|0

x|1

x|3

y|2

y|4

y|2

x|1

x|0

x|3

y|4

O−→= =

= =

Ox
J (with J = {2, 4})

y′|2 y′|2

y′|4 y′|4

L|I\J

L|J

Figure 3.5: The recombinationOx
J mapsy ∈ L|J toO(x t y)|J .

well-founded dependency relation forO, as this will give us a way of constructing a
product lattice on which we can stratifyO.

3.2.5 Recombinations

While the main purpose of our stratification results is to break up a big operatorO into
smaller component operators, we will sometimes also be interested in putting some of
these components back together to form a new set of operators. We now make this
more precise. LetO be a stratifiable operator on a product lattice⊗i∈ILi. For a subset
J of I andx ∈ L|I\J , we denote byOx

J the operator onL|J which maps eachy ∈ L|J
to O(x t y)|J . Such operatorsOx

J are calledrecombinations ofO. This concept is
illustrated in Figure 3.5.

Our goal is now to show that, for each partitionJ of I, a stratifiable operatorO
can be split into the recombinationsOx

J , with J ∈ J . Let us remark that becauseO is
stratifiable, we of course already know that this must be the case for the trivial partition
({i})i∈I . We will prove the desired result by showing that a recombinationOx

J is also
stratifiable and can be split into the components ofO itself.

Proposition 3.8. LetO be a stratifiable operator. For eachJ ⊆ I andx ∈ L|I\J ,Ox
J

is stratifiable.

Proof. Let Ox
J be as above,i ∈ J , andy, y′ ∈ L|J , such thaty|�i = y′|�i. By

definition,Ox
J(y) = O(x t y)|J . Because(x t y)|�i = (x t y′)|�i, we have that, by

stratifiability ofO,

Ox
J(y)|�i = O(x t y)|{j∈J|j�i} = O(x t y′)|{j∈J|j�i} = Ox

J(y′)|�i.

3.3. APPLICATION TO LOGIC PROGRAMMING 33

Proposition 3.9. LetO be a stratifiable operator. For eachJ ⊆ I, x ∈ L|I\J , i ∈ J ,

andu ∈ L|{j∈J|j≺i}, the component(Ox
J)u

i ofOx
J is equal to the componentOut(x|≺i)

i

ofO.

Proof. Let (Ox
J)u

i be as above and lety ∈ Li. By definition, for anyz extendingu t y
to J , (Ox

J)u
i (y) = O(x t z)|i = (O(xtz)|≺i

i (z|i))|i = O
x|≺itu
i (y).

These two propositions now imply the wanted result.

Theorem 3.3. LetO be a stratifiable operator and letJ be a partition ofI. Then,
for eachx ∈ L, x is a fixpoint (the least fixpoint, a stable fixpoint, or the well-founded
fixpoint) ofO (assuming thatO is monotone or an approximation, where appropriate)
iff for eachJ ∈ J , x|J is a fixpoint (respectively, the least fixpoint, a stable fixpoint,

or the well-founded fixpoint) ofO
x|I\J

J .

Proof. We only show the correspondence between fixpoints; the proofs of the other
correspondences are similar. Letx be a fixpoint ofO. By Theorem 3.1, this is equiv-
alent to:∀i ∈ I, x|i is a fixpoint ofOx|≺i

i . BecauseJ partitionsI, this is equivalent

to ∀J ∈ J , ∀i ∈ J , x|i is a fixpoint ofOx|≺i

i . By Proposition 3.9, such a compo-

nentOx|≺i

i of O is equal to the component(Ox|I\J

J)x|{j∈J|j≺i}
i of the recombination

O
x|I\J

J . By Proposition 3.8 and Theorem 3.1,∀J ∈ J , ∀i ∈ J , x|i is a fixpoint

(Ox|I\J

J)x|{j∈J|j≺i}
i iff ∀J ∈ J , x|J is a fixpoint ofO

x|I\J

J .

3.3 Application to logic programming

In this section, we will apply our algebraic stratification results to logic programming.
We will first start by considering a simplified language and then show how these results
extend to the general rule sets considered in Section 2.2.

3.3.1 The propositional case

For this section, we consider propositional logic programs without open predicates. Let
Σ be a propositional alphabet, i.e., a set of propositional atoms, denoted asP,Q, . . . A
logic program in alphabetΣ is a set of rulesP ← ϕ, with P ∈ Σ andϕ a propositional
formula ofΣ. Because propositional logic programs are simply a special case of the
general rule sets considered in Section 2.2, we have already defined a number of dif-
ferent semantics for such programs. We recall that, for a rule set∆, these definitions
made use of the operatorT∆ on pairs of interpretations of the defined predicates of∆.
In our current setting, we therefore need to consider the set of all interpretations of the
alphabetΣ, which is simply isomorphic to power set2Σ of Σ. We denote the lattice
〈2Σ,⊆〉 asIΣ. We will use the symbolΠ to refer to propositional logic programs and
reserve the symbol∆ for the general case of arbitrary rule sets.

Our algebraic results made use of the concept of a dependency relation for an
operator on a product lattice. We recall that, for an operatorO on a product lattice
⊗i∈ILi, a binary relation on the index setI is called a dependency relation ofO iff

34 CHAPTER 3. MODULARITY RESULTS

it is the case that whenever, for somei ∈ I andx, x′ ∈ ⊗i∈ILi, x|(i) = x′|(i),
then (O(x))|i = (O(x′))|i. For logic programs, we are interested in the operator
TΠ on I2

Σ. Let us now take as an index setI the alphabetΣ itself. For each atom
P ∈ Σ, we then need a latticeLP . For this, we will use the lattice{t, f} of truth
values that can be assigned to this one atomP . It is now clear thatIΣ is isomorphic
to the product⊗P∈ΣLP . Given this isomorphism, we now see that a dependency rela-
tion for the operatorTΠ is a binary relation on the alphabetΣ, such that whenever,
for some atomP and pairs(I, J), (I ′, J ′) ∈ I2

Σ, (I, J)|(P) = (I ′, J ′)|(P), then
(TΠ(I, J))|P = (TΠ(I ′, J ′))|P .

We now consider a class of binary relations, which can be defined using only the
programΠ itself, such that every relation in this class is in fact a dependency relation
of the operatorTΠ. Intuitively, the idea behind this definition is that an atomP depends
on an atomQ if for some ruleP ← ϕ of Π,Q affects the truth ofϕ.

Definition 3.7. Let Π be a logic program in alphabetΣ. Let be a binary relation
on Σ. We call a dependency relation forΠ if the following condition is satisfied:
whenever two pairs of interpretations(I, J) and(I ′, J ′) coincide on all atomsQ ∈ Σ
for whichQ P , then for all rules ofΠ of the formP ← ϕ, (I, J) |= ϕ iff (I ′, J ′) |=
ϕ.

It follows immediately from the definition ofTΠ that any such dependency relation
for Π is indeed a dependency relation for this operator. As such, our results from
Section 3.2.4 show thatTΠ is stratifiable over any partition of its alphabet that respects
such a dependency relation.

Definition 3.8. LetΠ be a logic program in alphabetΣ and let〈I,�〉 be a well-founded
poset. A partition(Σi)i∈I of Σ is called asplitting of Π if it respects one of the
dependency relations ofΠ.

To illustrate this definition, we consider the following program:

E =

P ←¬Q,¬R.
Q←¬P,¬R.
S ←P,Q.

 .

We now construct a dependency relation for this. In general, for any programΠ,
there is an obvious way to construct one of its dependency relations.

Definition 3.9. Let Π be a logic program with alphabetΣ. Theobvious dependency
relation Π for Π is defined as, for allP,Q ∈ Σ:

Q Π P iff ∃r ∈ Π, such thatQ appears inbody(r) andP = head(r).

It can easily be seen that every obvious dependency relation Π is indeed a depen-
dency relation forΠ.

The obvious dependency relation of the exampleE is the following:

3.3. APPLICATION TO LOGIC PROGRAMMING 35

S

P

??�������� ++ Q

__???????
kk

R

??�������

__????????

Using this dependency relation, it can easily be seen that the following partition of
Σ is a splitting ofE: we use the totally ordered set{0, 1, 2} as index set and define
Σ0 = {R}, Σ1 = {P,Q} andΣ2 = {S}. Therefore, the operatorTE for this example
is stratifiable on the product latticeIΣ0 × IΣ1 × IΣ2 .

In general, if we have splitting(Σi)i∈I for a programΠ, then the operatorTΠ is
stratifiable on the product lattice⊗i∈IIΣi , which, by Theorem 3.2, implies that we can
split all of the operatorsTΠ, TΠ andGLΠ. In other words, it is possible to split logic
programs w.r.t. the supported model, Kripke-Kleene, stable model and well-founded
semantics. Moreover, the supported, Kripke-Kleene, stable and well-founded models
of Π can be computed from, respectively, the supported, Kripke-Kleene, stable and
well-founded models of the components of the operatorTΠ.

In order to be able to perform this construction in practice, however, we also need
a more constructive characterization of these components. We will now show how
to derive new logic programs from the original program, such that these components
correspond to an operator associated to these new programs. First, we will define the
restriction of a program to a subset of its alphabet.

Definition 3.10. Let Π be a logic program with a splitting(Σi)i∈I . For eachi ∈ I, the
programΠi consists of all clauses which have an atom fromΣi in their head.

In the case of our example, the programE is partitioned in{E0, E1, E2} with
E0 = {}, E1 = {P ← ¬Q,¬R;Q← ¬P,¬R} andE2 = {S ← P,Q}.

If Π has a splitting(Σi)i∈I , then any programΠi contains only atoms from
⋃

j�i Σj .
Given a pair(U, V) of interpretations of

⋃
j≺i Σj , we can therefore construct a pro-

gram containing only atoms fromΣi by replacing all other atoms by their truth-value
according to(U, V).

Definition 3.11. Let Π be a logic program with a splitting(Σi)i∈I . For eachi ∈ I and
(U, V) ∈ BΣ|≺i, we defineΠi〈U, V 〉 as the new logic programΠ′, which results from
replacing each literall whose atom is in

⋃
j≺i Σj by its truth value in(U, V), i.e., a

positive literalP is replaced byt if P ∈ U (and byf otherwise), whereas a negative
literal¬P is replaced byt if P 6∈ V (and byf otherwise),

It is now easy to see that the programs constructed in this way are now precisely
those which characterize the components of the operatorTΠ.

Theorem 3.4. Let Π be a logic program with a splitting(Σi)i∈I . For eachi ∈ I,
(U, V) ∈ BΣ|≺i and(A,B) ∈ BΣi

:

(TΠ)(U,V)
i (A,B) = (UΠi〈U,V 〉(A,B), UΠi〈V,U〉(B,A)).

36 CHAPTER 3. MODULARITY RESULTS

It is worth noting that this theorem implies that a component(TΠ)(U,V)
i is, in con-

trast to the operatorTΠ itself, not necessarily exact, i.e., we might need different pro-
grams for constructing the under- and overestimates.

As a side remark, let us recall that in Section 2.2, we considered an isomorphism
τ between pairs of two-valued interpretations and four-valued interpretations. This
isomorphism allows to also consider the operatorTΠ as an operator on four-valued
interpretations, i.e., we can identifyTΠ with the operatorτ−1 ◦ TΠ ◦ τ that maps each
four-valued interpretationν to ν′ for which ν′ = τ−1(TΠ(τ(ν))). In this setting, we
could also have formulated the above definition in the following equivalent way. For a
four-valued interpretationsν, we denote byΠi〈ν〉4 the result of replacing each literal
l whose atom is in

⋃
j≺i Σj by its four-valued truth valuelν . The component(TΠ)µ

i

is thenTΠi〈µ〉4 . So, instead of characterizing such a component using two programs
that contain two-valued truth-values, we can equivalently characterize it using a single
program that contains four-valued truth values.

We will call a pair (I, J) of interpretations thestratified well-founded modelof
Π with respect to a splitting(Σi)i∈I iff for each i ∈ I, (I, J)|i is the well-founded
fixpoint of the component(TΠ)(I,J)|≺i

i . Given the above remark, this is equivalent to
(I, J) = τ(ν), whereν is the four-valued interpretation such that, for eachi ∈ I, ν|i is
the well-founded model of the programΠi〈µ〉4, with µ = ν|≺j . Similarly, we say that
(I, J) is a stratified partial stable modelor thestratified Kripke-Kleene modelof Π
with respect to the splitting(Σi)i∈I iff for eachi ∈ I, (I, J)|i is, respectively, a stable
fixpoint or the least fixpoint of the component(TΠ)(I,J)|≺i

i . An interpretationI is a
stratified supported modelor stratified stable modelof Π with respect to the splitting
(Σi)i∈I iff for eachi ∈ I, I|i is a supported model or stable model ofΠ〈J, J〉, where
J is I|∪j≺iΣj .

Let us illustrate these definition by computing the stratified well-founded model of
our example programE.

Example 3.3. Recall that the programE is partitioned into the programs

E0 ={},
E1 ={P ← ¬Q,¬R;Q← ¬P,¬R},
E2 ={S ← P,Q}.

The well-founded model ofE0 is ({}, {}). Replacing the atomR in E1 by its truth-
value according to{} yields the new programE1〈{}, {}〉 = {P ← ¬Q ∧ t;Q ←
¬P ∧ t}. The well-founded model of this program is({}, {P,Q}). For the component
(TE)({},{P,Q})

2 , we need to consider both the programE′2 = E2〈{}, {P,Q}〉 = {} and

the programE′′2 = E2〈{P,Q}, {}〉 = {S}. The component(TE)({},{P,Q})
2 is now

(UE′
2
, UE′′

2
). The well-founded fixpoint of this component is({}, {S}). Therefore, the

stratified well-founded model ofE is:

({} ∪ {} ∪ {}, {} ∪ {P,Q} ∪ {S}) = ({}, {P,Q, S}).

Let us now summarize the results of this section. The fundamental concept is that
of a dependency relation for a logic programΠ. Given such a dependency relation,

3.3. APPLICATION TO LOGIC PROGRAMMING 37

we can construct a splitting(Σi)i∈I of the alphabet ofΠ. We can then consider a
stratified construction process, which proceeds along the well-founded order� on I
and, at each leveli ∈ I, constructs the model (under one of the semantics we consider)
of the component-operator of(TΠ)(U,V)

i on that level, using the programsΠi〈U, V 〉
andΠi〈V,U〉 (or, equivalently, the programΠi〈U, V 〉4 containing four-valued truth
values). The main result that we have proved in this section is that such a stratified
construction process produces precisely the model of the program under the semantics
in question. Formally, we can summarize this result as follows.

Theorem 3.5. Let Π be a propositional logic program with a splitting(Σi)i∈I . A
pair of interpretations(I, J) is the Kripke-Kleene model (respectively, a partial stable
model or the well-founded model) ofΠ iff (I, J) is the stratified Kripke-Kleene model
(respectively, a stratified partial stable model or the stratified well-founded model)
of Π with respect to(Σi)i∈I . Moreover, an interpretationI is a supported model
(respectively, exact stable model) ofΠ iff I is a stratified supported model (a stratified
exact stable model) ofΠ with respect to(Σi)i∈I .

3.3.2 General rule sets

We now discuss how the previous results for propositional logic programs can be ex-
tended to the more general rule sets defined in Section 2.2. In the previous section, we
started our analysis by showing that the latticeIΣ of interpretations for the proposi-
tional alphabetΣ is isomorphic to the product lattice⊗p∈ΣI{p}. In the context of a
rule set∆, we get the following setting.

LetF be a pre-interpretation for the alphabet of∆ and letO1, O2 be interpretations
of the open predicates of∆ that extendF , i.e.,O1, O2 ∈ LF

Op(∆). To study the operator

T (O1,O2)
∆ , we need to work in the latticeLF

Def(∆), which is isomorphic to all possible

ways of assigning eithert or f to every domain atomP (d) ∈ AtFDef(∆). So,LF
Def(∆)

is isomorphic to the product lattice⊗P (d)∈AtF
P
LP (d), where eachLP (d) is simply

{t, f}.
We can now define the concept of a dependency relation for a rule set.

Definition 3.12. Let ∆ be a rule set,F a pre-interpretation for the alphabet of this
rule set, andO1, O2 ∈ LF

Op(∆). A binary relation onAtFDef(∆) is a dependency
relation for∆ in (O1, O2) if for every domain atomP (d) and all pairs(I, J), (I ′, J ′) ∈
LF

Def(∆) such that(I, J)|(P (d)) = (I ′, J ′)|(P (d)), the following condition holds:
for every rule of the form∀x P (t) ← ϕ, if c is a tuple of domain elements, such that
t[x/c]F = d, then

ϕ[x/c](O1∪I,O2∪J) = ϕ[x/c](O1∪I′,O2∪J′).

Once again, it follows directly from the definition ofT (O1,O2)
∆ , that every such

dependency relation of a rule set∆ in (O1, O2) is also a dependency relation of this
operator. Let us now first discuss how such dependency relations can be constructed,
before turning our attention to the question of how to use them.

38 CHAPTER 3. MODULARITY RESULTS

Constructing dependency relations.

There is again on obvious way of construction a dependency relation for a rule set
∆. Namely, we can consider the relation ob

∆ , that is defined as:P (a) ob
∆ Q(c) iff

there exists a ruler ∈ ∆ such that the predicate symbolP appears inbody(r) andQ
appears inhead(r). However, it is clear that this dependency relation can be quite a bit
larger—and therefore less informative—than it actually needs to be. For instance, let
us consider the following example.

Example 3.4. The even and odd natural numbers can be defined by the following rule
set:

∆EvOd =

Even(0).

∀n Even(n+ 1)← Odd(n).
∀n Odd(n+ 1)← Even(n).

We consider this definition in the natural pre-interpretation with domainN. The

obvious dependency relation ob
∆ now consists of all pairsEven(n) ob

∆ Odd(m)
andOdd(n) ob

∆ Even(m), withm,n ∈ N.

We will now present a way of constructing a smaller, more fine-grained dependency
relation, which works on the level of individual domain atoms, instead of on the level of
entire predicates. We first introduce the concept of abasefor a formulaϕ. Intuitively,
a base forϕ is a setB of domain atoms, such that the truth value of all atoms inB
completely determines the truth value ofϕ.

Definition 3.13. Let ϕ be a formula andF a pre-interpretation for its alphabet. A set
of domain atomsB is abasefor ϕ in F iff for all pairs (I, J), (I ′, J ′) of interpretations
extendingF , if I|B = I ′|B andJ |B = J ′|B , thenϕ(I,J) = ϕ(I′,J ′).

Clearly, any superset of a base is also a base. The problem of finding a dependency
relation for a definition∆ can be reduced to that of finding bases for bodies of rules, as
shown by the following trivial proposition.

Proposition 3.10. Let ∆ be a definition and let be a binary relation onAtFDef(∆).
Suppose that for allI, J ∈ LF

Def(∆), for every rule∀x P (t)← ϕ in ∆ and every tuple

c, the set(P (t[x/c]F)) is a base forϕ[x/c] in F . Then is a dependency relation

of ∆ in any pair(O1, O2) ∈ (LF
Op(∆))

2
.

We now show how we can construct such a base for a formulaϕ.

Definition 3.14. Let ϕ be a formula andF a pre-interpretation for its alphabet. We
inductively define a baseBF (ϕ) as follows:

• For allP (t),BF (P (t)) = {P (tF)};

• for all (ϕ1 ∨ ϕ2),BF (ϕ1 ∨ ϕ2) = BF (ϕ1) ∪BF (ϕ2);

• for all (∃x ϕ),BF (∃x ϕ) =
⋃

d∈D BF (ϕ[x/d]);

• for all (¬ϕ): BF (¬ϕ) = BF (ϕ).

3.3. APPLICATION TO LOGIC PROGRAMMING 39

It can easily be seen that, for eachϕ,BF (ϕ) is indeed a base ofϕ in F . Using this
definition, we can now construct a more refined dependency relation for a rule set∆.

Definition 3.15. Let ∆ be a rule set andF a pre-interpretation for its alphabet. We
define the binary relation F

∆ onAtFDef(∆) as follows:P (a) F
∆ Q(c) iff ∆ contains

a rule∀x Q(t) ← ϕ for which there exists a tuplee such thatt[x/e]F = c and
P (a) ∈ BF (ϕ[x/e]).

For our example of even and odd numbers, this dependency relation now indeed
gives us the wanted results, i.e., we can conclude that for alln ∈ N, Even(n) F

∆

Odd(n+ 1) andOdd(n) F
∆ Even(n+ 1), and these are the only tuples that belong

to this dependency relation. However, while this dependency relation F
∆ gives us the

wanted result for this particular example, there are other cases in which it is still not as
small as we might like. Let us illustrate this by the following example.

Example 3.5. Consider a game between two players who each take turns, removing
either one or two stone(s) from a pile ofn stones, such that the player who makes the
last move wins. Given an appropriate interpretation for the open predicateMove/2,
the winning positions of this game can be defined by the following rule:

∀x Win(x)← ∃y Move(x, y) ∧ ¬Win(y).

Even if we were to apply our more refined definition to this example, we would still
not be able to discover anything, apart from that, for all movesm,n, Win(m) F

∆

Win(n). In order to be able to draw more useful conclusions in this case, we need
to take into account the fact thatMove is an open predicate, whose interpretation is
known beforehand. We first extend our notion of a base to also take into account open
predicates. The basic idea is to consider a setO of predicates—this will be the open
predicates of the definition—for which an interpretation(O1, O2) is already given.

Definition 3.16. Let ϕ be a formula in alphabetΣ, F a pre-interpretation forΣ and
(O1, O2) a pair of interpretations for some set of predicatesO ⊆ Σp. A set of domain
atomsB is aO-basefor ϕ in (O1, O2) iff for all pairs (I, J), (I ′, J ′) of interpretations
in LF

Σp\O, if I|B = I ′|B andJ |B = J ′|B , thenϕ(O1∪I,O2∪J) = ϕ(O1∪I′,O2∪J′).

Let us now extend our method for constructing a base to this new setting. Since
we now assume a fixed interpretation for the predicates inO, no more dependencies
will be generated by an atomP (a) with P ∈ O, or by any formulaϕ whose truth
value is already completely determined by assigning this particular interpretation to
the predicatesO. The following definition of a baseBO(O1,O2)

(ϕ) formalizes this. In a
number of places, it distinguishes between formulas whose base is empty and formulas
for which it is not. The idea is that the former kind of formulas are those whose truth
is already fully determined by the interpretation assigned toO. For such a formula
ϕ with an empty base, we writeϕ(O1,O2) as a shorthand for the statement that for all
I, J ∈ LF

Σp\O, ϕ(O1∪I,O2∪J) = t. Given the definition below, it will be an easy proof

by induction to show that, whenever the baseBO(O1,O2)
(ϕ) is empty, this last statement

is also equivalent toϕ(O1∪I,O2∪J) = t for somepair (I, J), i.e., it is indeed the case
thatI andJ do not matter.

40 CHAPTER 3. MODULARITY RESULTS

Definition 3.17. Let ϕ be a formula,O a set of predicates of the alphabet of this for-
mula and(O1, O2) a pair of interpretations inLF

O. We inductively defineBO(O1,O2)
(ϕ)

as follows:

• For allP (t), such thatP ∈ O,BO(O1,O2)
(P (t)) = {};

• for all otherP (t),BO(O1,O2)
(P (t)) = {P (tF)}.

• For all (ϕ1 ∨ ϕ2), such that, fori = 1 or i = 2, BO(O1,O2)
(ϕi) = {} and

ϕ
(O1,O2)
i = t: BO(O1,O2)

(ϕ1 ∨ ϕ2) = {};

• for all other(ϕ1 ∨ ϕ2): BO(O1,O2)
(ϕ1 ∨ ϕ2) = BO(O1,O2)

(ϕ1) ∪BO(O1,O2)
(ϕ2).

• For all(∃x ϕ), such that for somec ∈ D,BO(O1,O2)
(ϕ[x/c]) = {} andϕ[x/c](O1,O2) =

t: BO(O1,O2)
(∃x ϕ) = {};

• for all other(∃x ϕ): BO(O1,O2)
(∃x ϕ) =

⋃
d∈D BO(O1,O2)

(ϕ[x/d]).

• For all (¬ϕ): BO(O1,O2)
(¬ϕ) = BO(O2,O1)

(ϕ).

The following result is now obvious.

Proposition 3.11. Let ϕ be a formula,O a set of predicates of its alphabet and
O1, O2 ∈ LF

O. ThenBO(O1,O2)
(ϕ) is anO-base forϕ in (O1, O2).

We can now again use this result to construct a dependency relation for a rule set,
using the bases of its rule bodies.

Definition 3.18. Let ∆ be a definition,F a pre-interpretation, andO1, O2 ∈ LF
Op(∆).

We define the binary relation (O1,O2)
∆ on domain atoms as:P (a) (O1,O2)

∆ Q(c) iff
∆ contains a rule∀x Q(t)← ϕ for which there exists a tuplee such thatt[x/e]F = c
andP (a) ∈ BOp(∆)

(O1,O2)
(ϕ[x/e]).

It is easy to see that any such (O1,O2)
∆ is indeed a dependency relation of∆ in

(O1, O2).
Let us now consider again our ruler defining the winning moves of the stones-

game. We consider a pre-interpretationF with domain some subset[0, n] of N. LetO
interpret the open predicateMove/2 as dictated by our description of the game, i.e.,
MoveO contains all pairs(i, j) for which0 ≤ i, j ≤ n and eitherj = i−1 or j = i−2.
If we then consider the dependency relation (O,O)

{r} for this rule, we find that, indeed,

Win(j) (O,O)
∆ Win(i) iff j = i− 1 or j = i− 2.

3.3. APPLICATION TO LOGIC PROGRAMMING 41

Using dependency relations

In Section 3.3.1 on propositional logic programs, we showed that, given a dependency
relation for such a programΠ, we can construct a splitting(Σi)i∈I of its alphabet and
a corresponding partition(Πi)i∈I of Π, from which we can then construct the compo-
nents of the operatorTΠ by means of a syntactical transformation. The components of
T (O1,O2)

∆ can be constructed in a similar way. Rather than go through all the details of
this, we will only sketch how the previous construction process needs to be adapted.
In the case of general rule sets, a dependency relation gives us a splitting(Ati)i∈I

of the set of domain atomsAtFDef(∆). In order to construct corresponding rule sets
(∆i)i∈I , we first need to ground the rule set∆. This means that we might need to
extend the alphabet of the rule set in order to make sure that all domain elements are
referenced by some constant or ground term. After this has been done, we can con-
struct a grounding of our theory, by replacing variables by ground terms in all possible
ways. This grounding might be an infinite set of possibly infinitary formulas. However,
it is easy to switch to an infinitary extension of our formalism, in which this does not
pose a problem. From this grounding, we can then derive the component operators by
replacing ground atoms byt or f in the same way as for propositional logic programs.

Obviously, this process can only be performed in practice if the grounding of
the program is finite. However, the current generation of Answer Set Programming
model generators, such as SModels (Niemelä, Simons, and Syrjänen 2000) and DLV
(Dell’Armi, Faber, Ielpa, Koch, Leone, Perri, and Pfeifer 2001), as well as the ID-logic
model expansion system MIDL (Mariën, Mitra, Denecker, and Bruynooghe 2005), all
already require this property anyway. This means to the process described above is
applicable to any program that could serve as an input to one of these systems. More-
over, since all of these programs completely compute the grounding before starting the
model generation phase, it is possible to include an analysis of modularity properties
in between these two phases at minimal cost. This might be useful not only to provide
interesting feedback to the user about the structure of the program, but also because in-
formation about the modularity of a theory can be used to speed up model generation,
as already explained in Section 3.1.

Even when it is not practically feasible to construct the grounding of a program,
we might still be able draw some useful conclusions from our modularity results. The
following section presents an example of this, in the context of ID-logic.

Splitting definitions in ID-logic

In ID-logic, we can use dependency relations to split a big definition into a conjunction
of smaller definitions. Let us illustrate this by an example. We have already encoun-
tered the rule set∆EvOd that defines the even and odd natural numbers by mutual
recursion. In ID-logic, one could, however, also try to define these concepts in a differ-
ent way, using the following two definitions, one of which defines the conceptEven
in terms of an open predicateOdd, while the other definesOdd in terms of the an

42 CHAPTER 3. MODULARITY RESULTS

predicateEven:

∆Ev =

{
Even(0) .

∀n Even(n+ 1) ← Odd(n).

}
∆Od = {∀n Odd(n+ 1)← Even(n).}

Now, this raises the obvious question of whether the conjunction∆Ev ∧∆Od is equiv-
alent to the simultaneous definition∆EvOd of these two concepts by mutual recursion.

We can answer this question by using our algebraic results on recombinations,
which were presented in Section 3.2.5. Let us first recall that the semantics of ID-
logic states that an interpretationI is a model of a definition∆ iff I|Def(∆) is the

well-founded fixpoint of the operatorT (I,I)|Op(∆)

∆ . To ease notation, let us denote such

an operator of the formT (O,O)
∆ as simplyT O

∆ . We will now show that, for every struc-

ture I, the operatorsT I|Odd

∆Ev
andT I|Even

∆Od
of these two definitions are recombinations

of the operatorT∆EvOd
of the original definition∆. In general, we will partition a big

definition∆ into a set of smaller definitions{∆1, . . . ,∆n}, in such a way that, first, all
rules for the same predicate belong to the same∆j and, second, there is some splitting
(Ati)i∈I for ∆, such that all rules for atoms from the sameAti also belong to the same
∆j .

Definition 3.19. Let ∆ be a definition and let(Ati)i∈I be a splitting for∆. A partition
{∆1, . . . ,∆n} of ∆ respectsthe splitting(Ati)i∈I iff the following two conditions
hold:

• For all j, j′ ∈ 1..n, if j 6= j′, thenDef(∆j) ∩Def(∆j′) = {};

• For all i ∈ I andP (a), Q(c) ∈ Ati, there exists a1 ≤ j ≤ n, such that
P,Q ∈ Def(∆j).

We can now relate such a partition of∆ to recombinations of the operatorT O
∆ as

follows.

Proposition 3.12. Let ∆ be a definition and{∆1, . . . ,∆n} a partition of∆ that re-
spects some splitting(Ati)i∈I for ∆. For some1 ≤ j ≤ n, letO interpretOp(∆j) and
let J be the set of alli ∈ I for which there exists a domain atomP (a) ∈ Σi such that
P ∈ Def(∆j). ThenT O

∆j
is equal to the recombination(T O1

∆)O2
J , withO1 = O|Op(∆)

andO2 = O|Op(∆j)\Op(∆).

Proof. Let T O
∆j

andT O1
∆ be as above. Because the partition{∆1, . . . ,∆n} respects a

splitting for for∆, the operatorT O1
∆ now indeed has a recombination(T O1

∆)O2
J with J

andO2 as above. Moreover, the domain of this recombination is indeedLF
Def(∆j)

. It

now follows directly from the definitions of the two operators, thatT O
∆j

= (T O1
∆)O2

J iff
for all interpretationI, J of Def(∆j), the following two statements are equivalent:

• There exists a rule∀x P (t) ← ϕ in ∆j , for which there exists ac, such that
(O ∪ I,O ∪ J) |= ϕ[x/c].

3.3. APPLICATION TO LOGIC PROGRAMMING 43

• There exists a rule∀x P (t) ← ϕ in ∆, for which there exists ac, such that
(O1 ∪O2 ∪ I,O1 ∪O2 ∪ J) |= ϕ[x/c].

Because, for eachP ∈ Def(∆j), ∆j contains precisely all rules from∆ with predicate
P in their head, this is the case.

As a direct consequence of this proposition and Theorem 3.3, we now have the
following equivalence result.

Theorem 3.6. Let∆ be a definition,O an interpretation ofOp(∆) and{∆1, . . . ,∆n}
a partition of∆ that respects some splitting for∆. Then for each structureS extending
O:

S |= ∆ iff S |= ∆1 ∧ · · · ∧∆n.

So, for our example, it is indeed the case that the conjunction∆Ev ∧ ∆Od of the
two separate definitions ofEven andOdd is equivalent to the definition∆EvOd by
mutual recursion.

3.3.3 Related work

(Lifschitz and Turner 1994) proved a splitting theorem for propositional logic pro-
grams under the stable model semantics; similar results were independently obtained
by (Eiter, Gottlob, and Mannila 1997). These results were proven for programs with
a syntax that is not completely subsumed by ours. Concretely, they allow disjunction
in the head of clauses and the use of two kinds of negation (negation-as-failure and
classical negation). While our results could easily be extended to incorporate the two
negations, the extension to disjunction in the head is less straightforward. However, the
fact that the stable model semantics for disjunctive logic programs can also be charac-
terized as a fixpoint semantics (Leone, Rullo, and Scarcello 1995), seems to suggest
that our approach could be used to obtain similar results for this extended syntax as
well. Indeed, there has already been some work into extending approximation theory
to also capture the semantics of this kind of programs (Pelov and Truszczyński 2004),
which could be useful for this.

Even though our syntax is more restricted than that of Lifschitz et al. and of Eiter
et al., our results are, in some important respects, more general than theirs. Indeed,
first, our results apply not only to the stable semantics, but also to supported model,
Kripke-Kleene and well-founded semantics. Second, the rule sets we consider allow
arbitrary formulas in rule bodies, do not fix the domain to the Herbrand universe, and
allow open predicates. These features make our results also applicable to extensions
of logic programming, that are not covered by their results, such as abductive logic
programs or ID-logic. Among the results that we have proven for ID-logic, there is
a theorem that allows a definition to be split into any partition that respects a depen-
dency relation for this definition. In (Denecker and Ternovska 2004), we find a theorem
that corresponds to the restriction of this result to those cases where each∆j is total
givenO. Our theorem is strictly more general. Earlier work by (Verbaeten, Denecker,
and Schreye 2000) studies modularity of normal logic programs with open predicates

44 CHAPTER 3. MODULARITY RESULTS

under the well-founded semantics, by means of the theory ofjustifications. The syn-
tactical criteria they derive from their semantical analysis coincide with those we have
presented in this section.

In order to further motivate and explain the well-founded model semantics, (Przy-
musinski 1998) defined thedynamic stratificationof a program. The level of an atom
in this stratification is based on the number of iterations it takes the Gelfond-Lifschitz
operator to determine the truth-value of this atom.1 As such, this stratification precisely
mimics the computation of the well-founded model and is, therefore, the tightest pos-
sible stratification of a program under the well-founded semantics. However, as there
exist no syntactic criteria which can be used to determine whether a certain stratifica-
tion is the dynamic stratification of a program—in fact, the only way of deciding this is
by actually constructing the well-founded model of the program—this concept cannot
be used to perform the kind of static, upfront splitting which is our goal.

3.4 Application to autoepistemic logic

Applying our algebraic results to autoepistemic logic is somewhat less straightforward
than it was for logic programs. Let us first explain why this is the case. Let(Σi)i∈I be a
partition of the alphabetΣ, with 〈I,�〉 a well-founded index set. For an interpretation
X ∈ IΣ, we denote the intersectionX ∩ Σi by X|Σi

. For a possible world structure
Q, {X|Σi

| X ∈ Q} is denoted byQ|Σi
.

In Section 2.3, we defined the semantics of autoepistemic logic in terms of an oper-
ator on the bilatticeBΣ = W2

Σ. However, for our purpose of stratifying autoepistemic
theories, we are interested in the bilatticeB̃Σ of the product latticeW̃Σ = ⊗i∈IWΣi .
An element of this product lattice consists of a number of possible interpretations for

each levelΣi. As such, if we choose for eachΣi one of its interpretations, the union
of these chosen interpretations is an interpretation for the entire alphabetΣ. Therefore,
the set of all possible ways of choosing one interpretation for eachΣi determines a set
of possible interpretations forΣ, i.e., an element ofWΣ. More formally, we define:

κ : W̃Σ →WΣ : Q̃ 7→ {
⋃
i∈I

S(i) | S ∈ ⊗i∈IQ̃(i)}.

Similarly, B̃Σ can be mapped toBΣ by the functionκ, which maps each(P̃ , S̃) ∈ B̃Σ

to (κ(P̃), κ(S̃)).
This functionκ is, however, not an isomorphism. Indeed, unlikeWΣ, elements of

W̃Σ cannot express that an interpretation for a levelΣi is possible in combination with
a certain interpretation for another levelΣj , but not with a different interpretation for
Σj . For instance, if we split an alphabetΣ = {p, q} into Σ0 = {p} andΣ1 = {q},
the element{{p, q}, {}} ofWΣ is not inκ(W̃Σ), because it expresses that{p} is only
a possible interpretation forΣ0 whenΣ1 is interpreted by{q} and not whenΣ1 is
interpreted by{}. To make this more precise, we introduce the following concept of
a possible world structureQ beingdisconnectedw.r.t. a certain partition(Σi)i∈I of

1To be a bit more precise,p belongs to levelΣi iff i is the minimalj for whichGLj(⊥,>) = (I, J)
and eitherp ∈ I or p 6∈ J .

3.4. APPLICATION TO AUTOEPISTEMIC LOGIC 45

the alphabet. Intuitively, this is the case if, whenever an interpretationXi for Σi is
possible in combination with some interpretationYj for Σj , thenXi is also possible in
combination with every other interpretationY ′j for Σj appearing inQ.

Definition 3.20. A possible world structureQ ∈ WΣ is disconnectedw.r.t. a partition
(Σi)i∈I of its alphabet iff for all possible worldsX,Y ∈ Q and for eachi ∈ I,
(Y |Σi

∪
⋃

j 6=iX|Σj
) ∈ Q.

It is now obvious that we can now characterize the image ofκ of follows.

Proposition 3.13.Let(Σi)i∈I be a partition of an alphabetΣ and letW̃Σ be⊗i∈IWΣi
.

The image ofκ : W̃Σ →WΣ can be characterized as follows:

κ(W̃Σ) = {Q ∈ WΣ | Q is disconnected w.r.t.(Σi)i∈I}.

In order to achieve our goal of being able to incrementally construct the models of
a theory by means of the components of some operator onB̃Σ, we now need to restrict
our attention to a class of theories whose models are all disconnected. We will define
this class using a concept of a dependency relation for autoepistemic logic.

Definition 3.21. A dependency relation for an autoepistemic theoryT in alphabetΣ
is a binary relation on Σ that satisfies the following condition: for every formula
ϕ ∈ T and all atomsp, q such thatp ∈ AtO(ϕ) andq ∈ At(ϕ), q p.

To illustrate, let us consider the following example:

F = {p ∨ ¬Kp;K(p ∨ q) ∨ q}.

Clearly, the binary relation on the alphabet{p, q}, consisting of tuplesp p, p q
andq q, is a dependency relation forF .

We can now again use such a dependency relation to stratify the alphabet of a
theory.

Definition 3.22. Let T be an autoepistemic theory and〈I,�〉 a well-founded poset.
T is stratifiable with respect to a partition(Σi)i∈I of its alphabet iff there exists a
dependency relation for T , such that(Σi)i∈I respects , i.e., wheneverp ≤ q for
somep ∈ Σi andq ∈ Σj , theni � j.

It is easy to see that such a stratifiable theoryT can be split into a corresponding
partition (Ti)i∈I , such that for eachi ∈ I andϕ ∈ Ti: AtO(ϕ) ⊆ Σi andAt(ϕ) ⊆⋃

j�i Σj . For instance, our example theoryF is stratifiable w.r.t. the partitionΣ0 =
{p}, Σ1 = {q} of its alphabet{p, q} and the corresponding partition ofF is F0 =
{p ∨ ¬Kp}, F1 = {K(p ∨ q) ∨ q}.

Clearly, for a stratifiable theory, the evaluationH(P,S),X(ϕ) of a formulaϕ ∈ Ti

only depends on the value of(P, S) in strataj � i and that ofX in stratumi.

Proposition 3.14. LetT be a stratifiable autoepistemic theory. Leti ∈ I andϕ ∈ Ti.
Then for each(P, S), (P ′, S′) ∈ BΣ andX,X ′ ∈ IΣ, such thatX|Σi

= X ′|Σi
and

P |∪j�iΣj
= P ′|∪j�iΣj

andS|∪j�iΣj
= S′|∪j�iΣj

,H(P,S),X(ϕ) = H(P ′,S′),X′(ϕ).

46 CHAPTER 3. MODULARITY RESULTS

This proposition can now be used to show that only disconnected belief pairs are
relevant for the operatorDT .

Proposition 3.15. Let T be a stratifiable autoepistemic theory. Then eachDT (P, S)
is disconnected.

Proof. Let (P, S) ∈ BΣ andX,Y ∈ Du
T (P, S). By proposition 3.14, for eachZ ∈ IΣ,

such that, for somei ∈ I, Z|Σi
= X|Σi

and,∀j 6= i, Z|Σj
= Y |Σj

, Z ∈ Du
T (P, S).

ThereforeDu
T (P, S) andDT (P, S) are both disconnected.

This result suggests that the fact thatκ is not surjective should not pose any prob-
lems, because we can simply forget about possible world structures ofWΣ that do
not correspond to elements of our product latticeW̃Σ. However, there is another dif-
ference between the lattices̃WΣ andWΣ, that also needs to be taken into account.
Indeed, besides not being surjective,κ is also not injective. Concretely,̃WΣ contains
multiple “copies” of the empty set, that is, for anỹQ ∈ W̃Σ, as soon as for somei ∈ I,
Q̃(i) = {}, it is the case thatκ(Q̃) = {}.

Let us introduce some notation and terminology. We call a possible world structure
Q ∈ WΣ consistentif Q 6= {}; the set of all consistentQ is denoted byWc

Σ. A belief
pair (P, S) is called consistent if bothP andS are consistent; the set of all consistent
belief pairs is denotedBc

Σ. Similarly, aQ̃ ∈ W̃Σ is called consistent ifκ(Q̃) 6= {}
and the set of all consistent̃Q is denoted asW̃c

Σ. Finally, a belief pair(P̃ , S̃) ∈ B̃Σ

is called consistent if bothκ(P̃) 6= {} andκ(S̃) 6= {} and we denote the set of all
consistent pairs(P̃ , S̃) asB̃c

Σ.
We will often need to eliminate inconsistent possible world structures from our con-

siderations. Intuitively, the reason for this is that, when constructing a stratification, we
need every stratumi to be completely independent of all strataj for which j 6� i.
However, if an inconsistency occurs at levelj, then this could affect the way in which
a lower leveli is interpreted, because it will eliminateall possible worlds. Mathemati-
cally, this problem manifest itself by the fact that the equalityκ(Q̃)|�i = κ(Q̃|�i) only
holds for consistent possible world structuresQ̃.

We now summarize some obvious properties ofκ.

Proposition 3.16. The functionκ has the following properties.

1. κ is order preserving;

2. κ is an embedding of̃Wc
Σ intoWc

Σ and an isomorphism betweeñWc
Σ and the set

of all disconnected possible world structures inWc
Σ;

3. For all consistentQ̃, κ(Q̃|�i) = κ(Q̃)|�i.

Because of the differences between the latticesB̃Σ andBΣ outlined above, we can-
not directly stratify the operatorDT . Instead, we will define an intermediate operator
D̃T on B̃Σ, which is stratifiable by construction and whose consistent fixpoints are re-
lated to consistent fixpoints ofDT . We define this operator̃DT in such a way that, for
any belief pair(P̃ , S̃) ∈ B̃Σ, theith level ofD̃T (P̃ , S̃) will be constructed using only
the theoryTi and the restriction(P̃ , S̃)|�i of (P̃ , S̃).

3.4. APPLICATION TO AUTOEPISTEMIC LOGIC 47

Definition 3.23. Let T be a stratifiable autoepistemic theory. Let(P̃ , S̃) be inB̃Σ. We
defineD̃u

T (P̃ , S̃) = Q̃, with for eachi ∈ I:

Q̃(i) = {X ∈ IΣi | ∀ϕ ∈ Ti : Hκ(P̃ |�i,S̃|�i),X
(ϕ) = t}.

Furthermore,̃DT (P̃ , S̃) = (D̃u
T (S̃, P̃), D̃u

T (P̃ , S̃)) andD̃T (Q̃) = D̃u
T (Q̃, Q̃).

Observe that we could equivalently define theith level of D̃u
T (P̃ , S̃) as the set

Mod(Ti〈κ(P̃ |�i, S̃|�i)〉) of models of the propositional theoryTi〈κ(P̃ |�i, S̃|�i)〉.
Let us now first show that, like its counterpartDT , this operator is also an approxi-

mation.

Proposition 3.17. LetT be a stratifiable autoepistemic theory. ThenD̃T is an approx-
imation.

Proof. Let (P̃ , S̃), (P̃ ′, S̃′) ∈ B̃Σ, such that(P̃ , S̃) ≤p (P̃ ′, S̃′). By symmetry of
D̃T , it suffices to show that̃Du

T (P̃ , S̃) ≥k D̃u
T (P̃ ′, S̃′). Let i ∈ I. Becauseκ is

order-preserving,κ(P̃ |�i, S̃|�i) ≤p κ(P̃ ′|�i, S̃
′|�i). From (Denecker, Marek, and

Truszczýnski 2003), we know this implies that for eachϕ of Ti andX in IΣi
, we have

Hκ(P̃ |�i,S̃|�i),X
(ϕ) ≤t Hκ(P̃ ′|�i,S̃′|�i),X

(ϕ). Hence,D̃u
T (P̃ , S̃)(i) ⊆ D̃u

T (P̃ ′, S̃′)(i).

We can relate the consistent fixpoints ofD̃T to those ofDT , using the following
result.

Proposition 3.18. For all consistent(P̃ , S̃) ∈ B̃c
Σ, κ(D̃T (P̃ , S̃)) = DT (κ(P̃ , S̃)).

Proof. Let (P̃ , S̃) ∈ B̃c
Σ. By symmetry of the operators̃DT andDT , it suffices to show

thatκ(D̃u
T (P̃ , S̃)) = Du

T (κ(P̃ , S̃)). Because fori 6= j, the objective atoms ofTi and
Tj are disjoint, it is a trivial property of propositional logic thatMod(T 〈κ(P̃ , S̃)〉 con-
sists precisely of all worlds of the form∪iXi for whichXi ∈ Mod(Ti〈κ(P̃), κ(S̃)〉).
Now, let Q̃ be the element of̃BΣ that maps everyi ∈ I to Mod(Ti〈κ(P̃), κ(S̃)〉).
We then have thatκ(Q̃) = Du

T (κ(P̃), κ(S̃)). It therefore suffices to show that̃Q =
D̃u

T (P̃ , S̃), that is, that for alli ∈ I, Ti〈κ(P̃), κ(S̃)〉 = Ti〈κ(P̃ |�i), κ(S̃|�i)〉. Be-
causeTi contains only modal literals in the alphabet∪j�iΣj , we already have that
Ti〈κ(P̃), κ(S̃)〉 = Ti〈κ(P̃)|�i, κ(S̃)|�i〉. Because(P̃ , S̃) is consistent, we also have
that(κ(P̃)|�i, κ(S̃)|�i) = (κ(P̃ |�i), κ(S̃|�i)), which proves the result.

We already know thatκ is an isomorphism betweeñBc
Σ and its imageκ(B̃c

Σ), and
that all consistent fixpoints ofDT belong toκ(B̃c

Σ). Therefore, the above Proposition
3.18 now directly implies the following result.

Proposition 3.19. The set of allκ(P̃ , S̃) for which (P̃ , S̃) is a consistent fixpoint of
D̃T is equal to the set of all consistent fixpoints ofDT .

A similar correspondence also holds for the consistent stable fixpoints of these two
operators. Our proof of this depends on the following result.

Proposition 3.20. For all consistentS̃ ∈ W̃c
Σ, κ(C↓D̃T

(S̃)) = C↓DT
(κ(S̃)).

48 CHAPTER 3. MODULARITY RESULTS

Proof. Recall that the operatorC↓DT
is defined as mapping eachS to lfp(Du

T (·, S)) and,

similarly,C↓D̃T
maps each̃S to lfp(D̃u

T (·, S̃)). Let S̃ ∈ W̃c
Σ andS = κ(S̃). The values

C↓DT
(S) andC↓D̃T

(S̃) can be constructed as the limit of, respectively, the ascending

sequences(Qn)0≤n and(Q̃n)0≤n, defined as follows:Q0 is the bottom elementIΣ of
WΣ and for everyn > 0,Qn = Du

T (Qn−1, S); similarly, Q̃0 is the bottom element of
W̃Σ, that is, for alli ∈ I, Q̃0(i) = IΣi

, and for alln > 0, Q̃n = D̃u
T (Q̃n−1, S̃). It

suffices to show that, for alln ∈ N,Qn = κ(Q̃n).
We prove this by induction overn. For the base case, it is clear thatκ(Q̃0) = Q0.

Now, suppose that the equality holds forn. We have to show that applyingκ to
Q̃n+1 = D̃u

T (Q̃n, S̃) will yield Qn+1 = Du
T (Qn, S). By the induction hypothesis,

this last expression is equal toDu
T (κ(Q̃n), κ(S̃)). We distinguish two cases. First,

let us assume that̃Qn is consistent. By Proposition 3.18, it is then the case that
κ(D̃u

T (Q̃n, S̃)) = Du
T (κ(Q̃n, S̃)), which is precisely what needs to be proven. Sec-

ond, assume thatκ(Q̃n) = Qn = {}. BecausẽQn+1 ≥k Q̃n andκ is order-preserving,
κ(Q̃n+1) = {}. Moreover, because alsoQn+1 ≥k Qn = {}, we have thatQn+1 = {},
which means that, here too, we get the desired equalityκ(Q̃n+1) = Qn+1.

Together with the fact thatκ is an isomorphism betweeñBc
Σ and its imageκ(B̃c

Σ),
which contains all consistent elements in the image ofDT , this result now implies the
following correspondence between consistent stable fixpoints.

Proposition 3.21. The set of allκ(P̃ , S̃) for which(P̃ , S̃) is a consistent stable fixpoint
of D̃T is equal to the set of all consistent stable fixpoints ofDT .

We can now summarize the content of Propositions 3.19 and 3.21 as follows.

Theorem 3.7. LetT be a stratifiable theory. The set of allκ(P̃ , S̃) for which(P̃ , S̃) is
a consistent fixpoint (consistent stable fixpoint, respectively) ofD̃T is equal to the set
of all (P, S), for which(P, S) is a consistent fixpoint (consistent stable fixpoint) ofDT .

We now define a class of theories, for which (partial) expansions and (partial) ex-
tensions cannot be inconsistent.

Definition 3.24. An autoepistemic theoryT is permaconsistentif every propositional
theoryT ′ that can be constructed fromT by replacing all non-nested occurrences of
modal literals byt or f is consistent.

Observe that, contrary to what the above definition might suggest, we do not ac-
tually need to checkeveryassignment in order to determine whether a theory is per-
maconsistent. Indeed, it suffices to only consider the worst case assignment, in which
every positive occurrence of a modal literal is replaced byf and every negative oc-
currence is replaced byt. Moreover, we can also check permaconsistency for every
stratum separately, because, for a stratifiable theoryT , T is permaconsistent iff for
everyi ∈ I, Ti is permaconsistent.

Clearly, for a permaconsistent theoryT , every belief pair in the image ofDT or D̃T

is consistent and, therefore, all fixpoints or stable fixpoints of these operators must be
consistent as well. As such, Theorem 3.7 implies that the fixpoints and stable fixpoints

3.4. APPLICATION TO AUTOEPISTEMIC LOGIC 49

of DT andD̃T coincide, which of course implies that also the least fixpoint and well-
founded fixpoint of these two operators coincide. In summary, we obtain the following
result.

Theorem 3.8. Let T be a stratifiable and permaconsistent theory. The set of all
κ(P̃ , S̃) for which (P̃ , S̃) is a fixpoint, the Kripke-Kleene fixpoint, a stable fixpoint,
or the well-founded fixpoint of̃DT is equal to the set consisting of, respectively, all
fixpoints, the Kripke-Kleene fixpoint, all stable fixpoints, or the well-founded fixpoint
ofDT .

This property does not hold for theories that are not permaconsistent. We illustrate
this by the following example.

Example 3.6. Let T be the theory{Kp ⇐ p;¬K(p ∨ q)}. ThisT is stratifiable with
respect to the partitionΣ0 = {p}, Σ1 = {q}, with the corresponding partition ofT
beingT0 = {Kp ⇐ p} andT1 = {¬K(p ∨ q)}. However,T is not permaconsistent,
because, for instance,{t ⇐ p;¬t} is not consistent. The operatorDT now has as
its Kripke-Kleene fixpoint the pair({{p, q}}, {}), as can be seen from the following
computation:

(⊥k,>k)= (I{p,q} , {})
DT (⊥k,>k)= (Mod(T 〈{}, I{p,q}〉),Mod(T 〈I{p,q}, {}〉))

= (Mod(t⇐ p;¬f) , Mod(f ⇐ p;¬t))
= (I{p,q} , {})

The Kripke-Kleene fixpoint of̃DT can be constructed as follows:

(⊥̃, >̃)(0)= (I{p} , {})
(1)= (I{q} , {})

D̃T (⊥̃, >̃)(0)= (Mod(T0〈{}, I{p}〉) , Mod(T0〈I{p}, {}〉))
= (Mod(t⇐ p) , Mod(f ⇐ p))
= (I{p} , {{}})

(1)= (Mod(T1〈{}, I{p,q}〉) , Mod(T1〈I{p,q}, {}〉))
= (Mod(¬f) , Mod(¬t))
= (Iq , {})

D̃2
T (⊥̃, >̃)(0)= (Mod(T0〈{{}}, I{p}〉) , Mod(T0〈I{p}, {{}}〉))

= (Mod(f ⇐ p) , Mod(f ⇐ p))
= ({{}} , {{}})

(1)= (Mod(T1〈{}, Ip,q〉) , Mod(T1〈I{p,q}, {}〉))
= (I{q} , {})

D̃3
T (⊥̃, >̃)(0)= (Mod(T0〈{{}}, {{}}〉) , Mod(T0〈{{}}, {{}}〉))

= ({{}} , {{}})
(1)= (Mod(T1〈{}, {{}, {q}}〉),Mod(T1〈{{}, {q}}, {}〉))

= (I{q} , {})

So, we find that applyingκ to the Kripke-Kleene fixpoint of̃DT yields({{}, {q}}, {}),
which is not equal to the Kripke-Kleene fixpoint(I{p,q}, {}) of DT .

50 CHAPTER 3. MODULARITY RESULTS

Using the correspondences between consistent (stable) fixpoints ofD̃T andDT ,
we can now proceed to analyzeT by looking atD̃T and moreover, becausẽDT is by
construction stratifiable, we can do so by applying our algebraic stratification results to
this operator. Concretely, we can incrementally construct its (stable) fixpoints, using
its component operators. Of course, for this result to be useful, we also need to know
what these component operators actually are. It turns out that a component on leveli
corresponds to a theory, that can be constructed fromTi, by replacing certain formulas
by their truth value according to a belief pair(Ũ , Ṽ) ∈ B̃Σ|≺i. Before showing this for
all stratifiable theories, we first consider the following, more restricted class of theories.

Definition 3.25. A theoryT is modally separatedw.r.t. to a partition(Σi)i∈I of its
alphabet iff there exists a corresponding partition(Ti)i∈I of T , such that for eachi ∈ I
andϕ ∈ Ti

• AtO(ϕ) ⊆ Σi,

• for each modal subformulaKψ of ϕ, eitherAt(ψ) ⊆ Σi orAt(ψ) ⊆
⋃

j≺i Σj .

Clearly, all modally separated theories are stratifiable. The fact that each modal
subformula of a levelTi of a modally separated theoryT contains either only atoms
fromΣi or only atoms from a strictly lower level, makes it easy to construct the compo-
nents of itsD̃T -operator. Replacing all modal subformulas of a levelTi which contain
only atoms from a strictly lower levelj ≺ i, by their truth-value according to a belief
pair (Ũ , Ṽ) ∈ BΣ|≺i results in a “conservative theory”T c, while replacing these sub-
formulas by their truth-value according to(Ṽ , Ũ) yields a “liberal theory”T l. The pair

(Du
T l ,Du

T c) is then precisely the component(D̃T)(Ũ,Ṽ)
i of D̃T .

To make this more precise, we inductively define the following transformation
ϕ〈U, V 〉i of a formulaϕ ∈ Ti, given a belief pair(Ũ , Ṽ) ∈ B̃Σ|≺i:

• a〈Ũ , Ṽ 〉i = a for each atoma;

• (ϕ1 ∧ ϕ2)〈Ũ , Ṽ 〉i = ϕ1〈Ũ , Ṽ 〉i ∧ ϕ2〈Ũ , Ṽ 〉i;

• (ϕ1 ∨ ϕ2)〈Ũ , Ṽ 〉i = ϕ1〈Ũ , Ṽ 〉i ∨ ϕ2〈Ũ , Ṽ 〉i;

• (¬ϕ)〈Ũ , Ṽ 〉i = ¬(ϕ〈Ṽ , Ũ〉i);

• (Kϕ)〈Ũ , Ṽ 〉i =

{
Hκ(Ũ,Ṽ),·(Kϕ) if At(ϕ) ⊆

⋃
j≺i Σj ;

K(ϕ) if At(ϕ) ⊆ Σi.

Note that this transformationϕ〈Ũ , Ṽ 〉i is identical to the transformationϕ〈P, S〉
defined earlier, except for the fact that in this case, we only replace modal subformulas
with atoms from

⋃
j≺i Σj and leave modal subformulas with atoms fromΣi untouched.

Let us now consider a component(D̃T)(Ũ,Ṽ)
i of the D̃T -operator of a modally

separated theoryT . Such a component maps each(P̃i, S̃i) ∈ B̃Σi to D̃T (P̃ , S̃)|i,
where(P̃ , S̃) is any element of̃BΣ that coincides with(Ũ , Ṽ) on all levelsj ≺ i and
with (P̃i, S̃i) on leveli. As such, in the construction of a new belief pair(P̃ ′i , S̃

′
i), this

component will evaluate modal literals that appear inTi and whose atoms belong to

3.4. APPLICATION TO AUTOEPISTEMIC LOGIC 51

⋃
j≺i Σj , according to eitherκ((P̃ , S̃)|�i)|≺i or κ((S̃, P̃)|�i)|≺i. Now, if (P̃i, S̃i) is

consistent, thenκ((P̃ , S̃)|�i)|≺i = (Ũ , Ṽ) andκ((S̃, P̃)|�i)|≺i = (Ṽ , Ũ). It follows

that we can characterize the behaviour of a component(D̃T)(Ũ,Ṽ)
i on consistent belief

pairs as follows:

Proposition 3.22. Let T be a modally separated theory. Leti ∈ I and (Ũ , Ṽ) ∈
B̃Σ|≺i. For all consistent(P̃i, S̃i) ∈ B̃c

Σi
:

(D̃T)(Ũ,Ṽ)
i (P̃i, S̃i) = (Du

Ti〈Ṽ ,Ũ〉i
(S̃i, P̃i),Du

Ti〈Ũ,Ṽ 〉i
(P̃i, S̃i)).

Now, all that remains to be done is to characterize the components of stratifiable
theories which are not modally separated. It turns out that for each stratifiable theory
T , there exists a modally separated theoryT ′, which is equivalent toT with respect
to evaluation in disconnected possible world structures. To simplify the proof of this
statement, we recall that each formulaϕ can be written in an equivalent formϕ′ such
that each modal subformula ofϕ′ is of the formK(a1 ∨ · · · ∨ am), with eachai an
objective literal. This result is well-known forS5 semantics and can — using the same
transformation — be shown to also hold for all semantics considered here2.

Proposition 3.23. Let (P, S) be a disconnected element ofBΣ. Let i ∈ I, b1, . . . , bn
literals with atoms fromΣi andc1, . . . , cm literals with atoms from

⋃
j≺i Σj . Then

H(P,S),·(K(
∨

j=1..n

bj ∨
∨

j=1..m

cj)) = H(P,S),·(K(
∨

j=1..n

bj) ∨K(
∨

j=1..m

cj)).

Proof. By definition,

H(P,S),·(K(
∨

j=1..n

bj ∨
∨

j=1..m

cj)) = t

iff
∀X ∈ P : H(·,·),X(

∨
j=1..n

bj ∨
∨

j=1..m

cj) = t.

This is equivalent to∀X ∈ P ,H(·,·),X(
∨

j=1..n bj) = t orH(·,·),X(
∨

j=1..m cj) = t.
BecauseP is disconnected, it contains all possible combinationsX|∪j≺iΣj

∪ Y |Σi
∪

Z|∪j 6�iΣj
, withX,Y, Z ∈ P . Therefore the previous statement is in turn equivalent to

for eachX,Y ∈ P ,H(·,·),X|Σi
(
∨

j=1..n bj) = t orH(·,·),Y |∪j≺iΣj
(
∨

j=1..m cj), which
proves the result.

As previously discussed, given a levelTi of a stratifiable autoepistemic theoryT ,
we can construct an equivalent theoryT ′i in which every modal subformula is of the

2To show this, it suffices to show that each step of this transformation preserves the value of the evaluation
H(P,S),X(ϕ). For all steps corresponding to properties of (three-valued) propositional logic, this is trivial.
The step of transforming a formulaK(K(ϕ)) to K(ϕ) also trivially satisfies this requirement. All that
remains to be shown, therefore, is thatH(P,S),·(K(ϕ ∧ ψ)) = H(P,S),·(K(ϕ) ∧K(ψ)). By definition,
H(P,S),·(K(ϕ ∧ ψ)) = t iff ∀X ∈ P : H(P,S),X(ϕ) = t andH(P,S),X(ϕ) = t, which in turn is
equivalent to∀X ∈ P : H(P,S),X(K(ϕ)) = t and∀X ∈ P : H(P,S),X(K(ψ)) = t.

52 CHAPTER 3. MODULARITY RESULTS

form K(a1 ∨ · · · ∨ an), with theai objective literals. Using the above proposition,
we can further split every modal subformula of such aT ′i into a part containing only
symbols fromΣi and a part containing only symbols from

⋃
j≺i Σj , thus creating a

modally separated theoryT ′′i , which is equivalent toTi with respect to evaluation in
pairs of disconnected possible world structures. We will denote thisT ′′i as [Ti]. In
the case of our exampleF = {p ∨ ¬Kp; K(p ∨ q) ∨ q}, the modally separated
theory[F] = {p ∨ ¬Kp; K(p) ∨K(q) ∨ q} is equivalent toF with respect to evalu-
ation in disconnected belief pairs. Together with Proposition 3.22, the fact that for all
(P̃ , S̃) ∈ B̃Σ andX ∈ WΣ, Hκ(P̃ ,S̃),X(Ti) = Hκ(P̃ ,S̃),X([Ti]) implies the following

characterization of the component operators ofD̃T .

Proposition 3.24. Let i ∈ I and(Ũ , Ṽ) ∈ B̃Σ|≺i. For all consistent(P̃i, S̃i) ∈ B̃c
Σi

:

(D̃T)(Ũ,Ṽ)
i (P̃i, S̃i) = (Du

[Ti]〈Ṽ ,Ũ〉i
(S̃i, P̃i),Du

[Ti]〈Ũ,Ṽ 〉i
(P̃i, S̃i)).

Because we already know that we can construct consistent fixpoints of the operator
DT by incrementally constructing consistent fixpoints of the component operators of
D̃T , this result now provides the final piece of the puzzle, by showing how these com-
ponent operators can be derived from the theoryT . For i ∈ I and(Ũ , Ṽ) ∈ B̃Σ|≺i, let
us define that a belief pair(P̃i, S̃i) ∈ B̃Σi

is a stratified partial expansionof stratum

Ti given (Ũ , Ṽ) if it is a fixpoint of the component(D̃T)(Ũ,Ṽ)
i . A belief pair (P, S)

is now a consistent partial expansion ofT if and only if there exists a(P̃ , S̃), such
thatκ(P̃ , S̃) = (P, S) and, for eachi ∈ I, (P̃ , S̃)(i) is a consistent stratified partial
expansion ofTi given(P̃ , S̃)|≺i.

Note that ifŨ = Ṽ , then of course[Ti]〈Ṽ , Ũ〉 = [Ti]〈Ũ , Ṽ 〉, which means that,

on consistent belief pairs, the component(D̃T)(Ũ,Ṽ)
i coincides with the operator̃DT ′

for the theoryT ′ = [Ti]〈Ũ , Ṽ 〉i. As such, the stratified partial expansions ofTi given
some exact pair(Ũ , Ũ) are simply the partial expansions of the theory[Ti]〈Ũ , Ũ〉i.

Example 3.7. Let us illustrate this be means of the exampleF , which we previously
partitioned intoF0 = {p ∨ ¬Kp} and F1 = {K(p ∨ q) ∨ q}. The belief pair
({{}, {p}}, {{p}}) is a consistent partial expansion ofF0, as can be seen from the
following equations:

Mod(F0〈{{p}}, {{}, {p}}〉) = Mod(p ∨ ¬f) = {{}, {p}};
Mod(F0〈{{}, {p}}, {{p}}〉) = Mod(p ∨ ¬t) = {{p}}.

For the second level, we need to consider[F1] = {Kp ∨ Kq ∨ q} and use this to
construct two theoriesF l

1 andF c
1 , to be used in the construction of, respectively, the

underestimates and overestimates forΣ1, that is,F l
1 liberally estimates the truth ofKp,

while F c
1 estimates it conservatively:

F l
1 = [F1]〈{{p}}, {{}, {p}}〉1 = {t ∨Kq ∨ q};

F c
1 = [F1]〈{{}, {p}}, {{p}}〉1 = {f ∨Kq ∨ q}.

3.4. APPLICATION TO AUTOEPISTEMIC LOGIC 53

The above proposition now tells us that the component operator(D̃T)({{},{p}},{{p}})1

coincides with the operator(D̃u
F l

1
, D̃u

F c
1
) on consistent belief pairs. Therefore, this com-

ponent has a fixpoint({{}, {q}}, {{q}}), as can be seen from the following equations:

Mod(F l
1〈{{q}}, {{}, {q}}〉) = Mod(t ∨ t ∨ q) = {{}, {q}};

Mod(F c
1 〈{{}, {q}}〉, {{q}}) = Mod(f ∨ f ∨ q) = {{q}}.

Now, the set of allI ∪ J for which I ∈ {{}, {p}} and J ∈ {{}, {q}} is I{p,q},
while the set of allM ∪ N for whichM ∈ {{p}} andN ∈ {{q}} is the singleton
{{p, q}}. We therefore conclude that the belief pair(I{p,q}, {{p, q}}) is a consistent
partial expansion ofT .

So far, the above discussion has only considered partial expansions. We can of
course also look at other semantics. Let us define astratified partial extensionof Ti

given (Ũ , Ṽ) as a stable fixpoint of the component(D̃T)(Ũ,Ṽ)
i . We also introduce

the termstratified expansion(or stratified extension) to refer to aQ̃ ∈ W̃Σ for which
(Q̃, Q̃) is a stratified partial expansion (respectively, stratified partial extension).

Theorem 3.9.LetT be a stratifiable autoepistemic theory. A belief pair(P, S) ofBΣ is
a consistent partial expansion (respectively, consistent partial extension) ofT iff there
exists a(P̃ , S̃) ∈ B̃Σ, such thatκ(P̃ , S̃) = (P, S) and for all i ∈ I, (P̃ , S̃)(i) is a con-
sistent stratified partial expansion (consistent stratified partial extension) ofTi given
(P̃ , S̃)|≺i. A possible world structureQ ∈ WΣ is a consistent expansion (respectively,
consistent extension) ofT iff there exists aQ̃ ∈ W̃Σ, such thatκ(Q̃) = Q and for all
i ∈ I, Q̃(i) is a consistent expansion (consistent extension) ofTi〈(Q̃, Q̃)|≺i〉i.

For permaconsistent theories, we can draw stronger conclusions. Let us call the
least stratified partial expansion (respectively, least stratified partial extension) the
stratified Kripke-Kleene model(stratified well-founded model). We then have the fol-
lowing result.

Theorem 3.10. Let T be a stratifiable autoepistemic theory. IfT is also permacon-
sistent, then(P, S) is a partial expansion, partial extension, Kripke-Kleene model or
well-founded model ofT iff there exists a(P̃ , S̃) ∈ B̃Σ, such thatκ(P̃ , S̃) = (P, S)
and for all i ∈ I, (P̃ , S̃)(i) is, respectively, a stratified partial expansion, stratified
partial extension, stratified Kripke-Kleene model or stratified well-founded model of
Ti given(P̃ , S̃)|≺i. A possible world structureQ ∈ WΣ is an expansion (extension,
respectively) ofT iff there exists aQ̃ ∈ W̃Σ, such thatκ(Q̃) = Q and for all i ∈ I,
Q̃(i) is an expansion (extension) ofTi〈(Q̃, Q̃)|≺i〉i.

3.4.1 Related work

In (Gelfond and Przymusinska 1992) and (Niemelä and Rintanen 1994), it was shown
that certain permaconsistent and modally separated autoepistemic theories can be split
under the semantics of expansions. We have both extended these results to other se-
mantics for this logic and to a larger class of theories.

To give some intuition about the kind of theories our result can deal with, but pre-
vious work cannot, we will consider the following example (from (Etherington 1988)):

54 CHAPTER 3. MODULARITY RESULTS

Suppose we would like to express that we suspect a certain person of murder if we
know he had a motive and if it is possible that this person is a suspect and that he is
guilty. This naturally leads to following formula:

Kmotive ∧ ¬K(¬suspect ∨ ¬guilty)→ suspect.

This formula is not modally separated w.r.t. the partition

Σ0 = {guilty,motive},Σ1 = {suspect}

and, therefore, falls outside the scope of Gelfond et al.’s theorem. Our result, how-
ever, does cover this example and allows it to be split w.r.t. this partition. As we will
discuss in the next section on default logic, there exists an important class of default
expressions, calledsemi-normal defaults, which typically give rise to such statements.

3.5 Application to default logic

We recall that a default theory is a pair〈D,W 〉, whereW is a set of propositional
formulas andD is a set of defaults of the form:

α : β1, . . . , βn

γ

We defined the semantics of such a theory by a transformationm to autoepistemic
logic, which maps each defaultd of the above form to:

(Kα ∧ ¬K¬β1 ∧ · · · ∧ ¬K¬βn ⇒ γ).

The formulaγ is called the consequencecons(d) of d.
We begin by defining the concept of a dependency relation for a default theory.

Definition 3.26. Let 〈D,W 〉 be a default theory over an alphabetΣ. A binary relation
 onΣ is a dependency relation for this theory if it satisfies the following conditions:

• For each defaultd: if p is an atom appearing anywhere ind andq is an atom
appearing incons(d), thenp q;

• For eachw ∈W , if atomsp, q appear inw, thenp q.

Again, we can define a default theory〈D,W 〉 to be stratifiable with respect to a
partition (Σi)i∈I of its alphabet iff this partition respects a dependency relation for
〈D,W 〉. It can easily be seen that, for such a stratifiable theory, there must exist a
corresponding partition〈Di,Wi〉i∈I of 〈D,W 〉 such that:

• For each defaultd: if an atom ofcons(d) is in Σi, thend ∈ Di,

• For each defaultd: all atoms ofd are in
⋃

j�i Σj .

• For eachw ∈W , if w contains an atomp ∈ Σi, thenw ∈Wi.

3.5. APPLICATION TO DEFAULT LOGIC 55

It can now easily be seen that a dependency relation for a default theory is also a
dependency relation for the corresponding autoepistemic theory and that each levelTi

of m(D,W) is preciselym(Di,Wi).
By the results of the previous section, this now immediately implies the following

result.

Theorem 3.11. Let 〈D,W 〉 be a stratifiable default theory. A belief pair(P, S) is a
consistent partial expansion (respectively, consistent partial extension) of〈D,W 〉 iff
there exists a(P̃ , S̃) such thatκ(P̃ , S̃) = (P, S) and for eachi ∈ I, (P̃ , S̃)(i) is
a consistent stratified partial expansion (consistent stratified partial extension) of the
autoepistemic theorym(Di,Wi) given(P̃ , S̃)|≺i. A possible world structureQ is a
consistent expansion (respectively, consistent extension) of〈D,W 〉 if there exists aQ̃
such thatκ(Q̃) = Q and for eachi ∈ I, Q̃(i) is a consistent stratified expansion (con-
sistent stratified extension) of the autoepistemic theorym(Di,Wi) given(Q̃, Q̃)|≺i.

Consistent stratified partial expansions and consistent stratified partial extensions
of the autoepistemic theoryTi = m(Di,Wi) can be constructed using the component
theories[Ti]〈(S̃, P̃)|≺i〉i and[Ti]〈(P̃ , S̃)|≺i〉i. Because no such component theory can
contain a nested occurrence of a modal literal, standard transformations for proposi-
tional logic can be used to bring each of its formulas into the form:

¬(Kα1 ∧Kα2 ∧ · · · ∧Kαm) ∨Kβ1 ∨ · · · ∨Kβn ∨ γ,

where theαi, βj andγ are all propositional formulas. BecauseKα1 ∧ · · · ∧Kαm is
equivalent toK(α1 ∧ · · · ∧ αm), this suffices to show that each such formula can be
transformed back into a default. As such, it would be possible to reformulate the above
theorem entirely in terms of default logic.

We now investigate a specific class of theories, for which it is particularly useful to
restate our result in this manner. Let us call a default theory〈D,W 〉modally separated
if the autoepistemic theorym(D,W) is modally separated or, equivalently, if for every
default d ∈ Di of form (3.5), it is the case that no formulaϕ ∈ {α, β1, . . . , βn}
contains both an atomp ∈ Σi andq ∈

⋃
j≺i Σj . Given a stratum〈Di,Wi〉 of such a

theory and a belief pair(Ũ , Ṽ) ∈ B̃Σ|≺i, we defineDi〈Ũ , Ṽ 〉i as the set of defaultsd′

that result from replacing, in everyd ∈ Di, all formulasϕ ∈ {α, β1, . . . , βn} whose
atoms belong to alphabet

⋃
j≺i Σj , by their truth value according to(Ũ , Ṽ). Now,

we can characterize the autoepistemic component theory[Ti]〈Ũ , Ṽ 〉i as simply being
m(Di〈Ũ , Ṽ 〉i,Wi). Therefore, Theorem 3.11 implies that a possible world structure
P is a consistent extension of a stratifiable default theory〈D,W 〉 if and only if there
exists aP̃ such thatκ(P̃) = P and, for eachi ∈ I, P̃ (i) is a consistent extension of
the default theory〈Di〈(P̃ , P̃)|≺i〉i,Wi〉.

3.5.1 Related work

(Turner 1996) proved splitting theorems for default logic under the semantics of exten-
sions. We have extended these results to the semantics of partial extensions, (partial)
expansions and the Kripke-Kleene and well-founded semantics. Moreover, Turner’s

56 CHAPTER 3. MODULARITY RESULTS

results only apply to modally separated default theories. Our results therefore not only
generalize them to other semantics, but also to a larger class of theories.

A typical example of a default which is not modally separated but which can be split
using our results, is the example from (Etherington 1988) concerning murder suspects.
This can be formalized by the following default:

motive : suspect ∧ guilty
suspect

.

In the previous section, we already presented the autoepistemic formula resulting from
applying the Konolige transformation to this default and showed that it was not modally
stratified w.r.t. the partition:

Σ0 = {guilty,motive},Σ1 = {suspect}.

Therefore, Turner’s theorem does not apply in this case, but our results do.
Defaults such as these are typical examples of so-calledsemi-normal defaults, i.e.,

defaults of the form:
α : β
γ

whereβ impliesγ. This typically occurs because there is some formulaδ, such that
β = γ ∧ δ. In such cases, the Konolige transformation will contain a formulaK(¬γ ∨
¬δ) and such defaults can therefore only be modally separated w.r.t. stratifications in
which all atoms from bothγ andδ belong to the same stratum. Our results, however,
also allows stratifications in which (all or some) atoms fromδ belong to a strictly lower
stratum than the atoms fromγ.

3.6 Conclusions

Stratification is, both theoretically and practically, an important concept in knowledge
representation. We have studied this issue at a general, algebraic level by investigating
stratification of operators in the setting of approximation theory. This gave us a small
but useful set of theorems, which enabled us to easily and uniformly prove splitting re-
sults for all fixpoint semantics of logic programs, autoepistemic logic and default logic,
thus generalizing existing results. As such, the importance of the work presented in this
chapter is threefold. First, there are our concrete, applied results for logic programs,
autoepistemic logic and default logic themselves. Second, there is the general, alge-
braic framework for the study of stratification, which can be applied to every formalism
with a fixpoint semantics. Finally, on a more abstract level, our work also offers greater
insight into the principles underlying various existing stratification results, as we are
able to “look beyond” purely syntactical properties of a certain formalism.

Chapter 4

Predicate introduction

4.1 Introduction

In this chapter, we study the problem of “predicate introduction”. To introduce this
topic, let us consider logic programming. In this context, predicate introduction refers
to a transformation that introduces a new predicate in order to simplify the expres-
sions in the bodies of certain rules. To motivate our interest in this, we consider a
simplified version of a program that occurs in (Balduccini and Gelfond 2003). In this
paper, a logic program (under the stable model semantics) is constructed to capture
the meaning of theories in the action languageAL. In particular,static causal laws
of the following form are considered: “P is caused ifP1, . . . , PN ”. Here,P , P1,. . . ,
PN are propositional symbols. In its logic programming translation, such a causal
lawR is represented by the following set of facts:{Head(R,P), P rec(R, 1, P1), . . . ,
Prec(R,N, PN), NbOfPrec(R,N)}.

Now, the meaning inAL of such a law is that whenever all ofP1, . . . , PN hold,
then so mustP . Using the predicateHolds/1 to describe which propositions hold, this
can be captured by the following rule:

∀p Holds(p)← (∃r Head(r, p) ∧ ∀i∀q Prec(r, i, q)⇒ Holds(q)). (4.1)

This rule contains universal quantifiers in its body. Even though, as we have seen in
Section 2.2, it is possible to define both stable and well-founded semantics for such
programs, current model generation systems such asASSAT, SModels or DLV cannot
handle this kind of rules. Therefore, we would like to eliminate this quantifier. The
well-known Lloyd-Topor transformation (Lloyd and Topor 1984) suggests introducing
a new predicate,BodyNotSat/1, to represent the negation of the subformulaϕ =
(∀i∀q Prec(r, i, q)⇒ Holds(q)). Since¬ϕ = (∃i∃q Prec(r, i, q)∧¬Holds(q)), we
would then get:

∀p, r Holds(p)← Head(r, p) ∧ ¬BodyNotSat(r).
∀r, i, q BodyNotSat(r)← Prec(r, i, q) ∧ ¬Holds(q).

(4.2)

This transformation preserves equivalence under the (two-valued) completion seman-
tics (Lloyd and Topor 1984). However, for stable or well-founded semantics, this is not

57

58 CHAPTER 4. PREDICATE INTRODUCTION

the case. For instance, consider theAL theoryA = {P is caused ifQ; Q is caused if
P}. In the original translation (4.1), neitherP norQ holds; in the second version (4.2),
however, we obtain (ignoring theHead/2 andPrec/3 atoms for clarity):

Holds(P)← ¬BodyNotSat(R1).
BodyNotSat(R1)← ¬Holds(Q).

Holds(Q)← ¬BodyNotSat(R2).
BodyNotSat(R2)← ¬Holds(P).

(4.3)

Under the stable semantics, this program has two models:{Holds(P),Holds(Q)}
and {BodyNotSat(R1), BodyNotSat(R2)}. As such, even though it might look
reasonable at first, the Lloyd-Topor transformation does not preserve stable (or well-
founded) models in this case.

Predicate introduction under the well-founded semantics was considered by Van
Gelder (Van Gelder 1993). That paper, however, imposes strong restrictions on how
newly introduced predicates can be defined. In particular, recursive definitions of such
a new predicate are not allowed. However, the ability to introduce recursively defined
new predicates can be very useful; indeed, it is precisely in this way that (Balduccini
and Gelfond 2003) manages to eliminate the universal quantifier in (4.1).

Example 4.1 (Adapted from (Balduccini and Gelfond 2003)).In order to replace
the universally quantified subformula∀i∀q Prec(r, i, q) ⇒ Holds(q) of (4.1), we
introduce a new predicateAllPrecHold(r), resulting in:

∀r, p Holds(p)← Head(r, p) ∧AllPrecHold(r). (4.4)

This predicate is then defined in terms of another new predicate,AllFrom(r, i), that
means that the preconditionsi, i+1, . . . , n of a ruler with n preconditions are satisfied.
We then define this predicate by the following recursion:

∀r AllPrecHold(r)← AllFrom(r, 1).
∀r, n AllFrom(r, n)← ∃q Prec(r, n, q) ∧Holds(q) ∧AllFrom(r, n+ 1).
∀r, n AllFrom(r, n)← ∃q Prec(r, n, q) ∧Holds(q) ∧NbOfPrec(r, n).

(4.5)

In this chapter, we prove a generalization of Van Gelder’s result, that shows that
this translation is indeed equivalence preserving.

So far, we have motivated our interest in predicate introduction by looking at logic
programming. However, this same principle is if course also useful in other knowledge
representation languages. Again, the framework of approximation theory will allow
us to study the concept of predicate introduction in a general and uniform way, inde-
pendent of any specific logic. Concretely, we will, in this setting, define the abstract,
algebraic notion of afixpoint extensionof an operator, which captures predicate intro-
duction at the level of approximation theory. The central result of this chapter is then a
theorem that relates the fixpoints of such a fixpoint extension (which, intuitively, corre-
spond to models of the transformed theory) to those of the original operator it extends
(which correspond to models of the original theory).

4.2. PREDICATE INTRODUCTION IN APPROXIMATION THEORY 59

By instantiating this algebraic theorem to the case of logic programming, we will be
able to prove certain equivalences under the well-founded and stable model semantics,
which generalize the aforementioned result by Van Gelder (Van Gelder 1993), by also
allowing recursively defined new predicates. This has some interesting applications,
including a general way of eliminating universal quantifiers. As such, we offer an
alternative for the corresponding step from the Lloyd-Topor transformation, which is
only valid under completion semantics.

We also use the same theorem to prove a result for autoepistemic logic. Here, we
study transformations that introduce new propositions to reduce the nesting level of the
modal operatorK. For instance, in the formula

¬K(r ∨ ¬Ks)

theK operator is nested to depth 2. By introducing a new propositionp to replace
Ks, we can transform this formula to¬K(r ∨ ¬p), with nesting depth 1. The new
propositionp can then be ‘defined’ by the formulaKs ⇒ p. We will show that, on
an algebraic level, what happens in this case is precisely the same as what happens
when we perform predicate introduction in a logic program. As such, we will be able
to prove that this transformation is equivalence preserving under a number of different
semantics for autoepistemic logic.

Unlike Chapter 3, this chapter will not discuss the application of our algebraic result
to default logic. Indeed, as we also saw in 3.5, there is little to be learned from this,
due the very close relation between default logic and autoepistemic logic.

4.2 Predicate introduction in approximation theory

We want to study the following transformation. We start out with a rule set∆ in
some alphabetΣ and then introduce an additional alphabetσ of new symbols, e.g., the
two predicatesAllPrecHold andAllFrom from the example in the introduction, that
are defined by some additional rulesδ. We then use these new predicates to form a
new definition∆′ over alphabetΣ ∪ σ. In order to study such transformations in an
algebraic setting, we will assume two complete lattices〈L1,≤1〉 and〈L2,≤2〉. Here,
L1 can be thought of as consisting of the interpretations for the original alphabetΣ,
while L2 represents the interpretations for the additional new alphabetσ. We will
need to prove a result concerning the stable and well-founded models of∆′, which
means that we will need to work with pairs of interpretations ofΣ ∪ σ. As such, we
consider the square(L1 × L2)2 of the productL1 × L2, which, as we have seen, is
isomorphic to the productL2

1 × L2
2 of the squares of these lattices. We will denote

pairsP = ((x, y), (u, v)) of this latter Cartesian product as(x y
u v), where(x, y) ∈ L2

1

and (u, v) ∈ L2
2. For consistency with this matrix-like notation, we will also write

pairs(x, y) ∈ L2
1 as(x y) and pairs(x, u) in L1 × L2 as(x

u). We define the following
projection functions: by[P | we denote the pair(x

u), by |P] the pair(y
v), by dP e the pair

(x y), by bP c the pair(u v), by bP | the elementu, by dP | the elementx, by |P e the
elementy, and by|P c the elementv.

Now, we want to prove a relation between the stable and well-founded fixpoints
of the operatorT∆ of the original definition∆ and those of the new operatorT∆′ .

60 CHAPTER 4. PREDICATE INTRODUCTION

Algebraically, we consider an approximationA on the squareL2
1 of the original lattice

L1 and an approximationB on the extended latticeL2
1 × L2

2. We now impose some
conditions to ensure a correspondence between the stable fixpoints ofA andB.

The main idea behind these conditions is the following. By introducing a new
predicate into our original definition∆, we have added an additional “indirection”.
For instance, in the original version∆ of our example, we had the formula

∀i, q Prec(r, i, q)⇒ Holds(q),

that could be evaluated in order to check whether all preconditionsq of rule r were
satisfied. This could be done by theT∆-operator in a single step. In our new definition
∆′, however, every application ofT∆′ only checks whether a single precondition is
satisfied. Intuitively, to match the effect of a single application ofT∆ to some pair
(X,Y) of interpretations of the alphabet of∆, we have to iterateT∆′ long enough for
the truth assignments of(X,Y) to propagate throughout all of the new symbols of∆′.
Nevertheless, the end result of this iteration ofT∆′ should coincide with the result of
the single application ofT∆. We need some more notation to formalize this intuition.

Given the operatorB onL2
1 × L2

2 and a pair(x y) ∈ L2
1, we define the operator

B(x y) onL2
2 asλ(u v).

⌊
B(x y

u v)
⌋
. Conversely, given a pair(u v) ∈ L2

2, we define the

operatorB(u v) onL2
1 asλ(x y).

⌈
B(x y

u v)
⌉
. Intuitively, the idea is that one application

of the operatorB(x y) will correspond to the act of checking a single precondition
in our example. Now, an important property is that the rule setδ defining the new
predicates contains onlypositiverecursion, i.e.,δ is a monotone definition. In our
algebraic setting, this leads to a property calledpart-to-part monotonicity, which states
that each operatorB(x y) is monotone.

By itself, however, this form of monotonicity will not suffice. Intuitively, the
reason for this is that we should make sure that our transformation does not intro-
duce “too much” non-monotonicity. In the context of logic programming, this means
that we should not introduce an additional cycle over negation. Consider, for in-
stance, the singleton rule set{P ← ¬¬P}. The transformation of this rule set into
{P ← ¬N,N ← ¬P} (i.e., replacing¬P by a new atomN , defined asN ← ¬P)
would clearly not preserve stable or well-founded semantics. To avoid this case, we
need to make sure that we either replace a positively occurring formula, e.g., replace
P in {P ← ¬¬P}, or that our new atom depends only positively on the original
atoms. This last case would cover, for instance, the transformation of{P ← ¬P} into
{P ← ¬N,N ← P}. In our algebraic setting, we introduce two different ways of
strengthening the aforementioned part-to-part monotonicity. The first, called part-to-
whole monotonicity, states that both the new and the old predicates depend positively
on the new predicates; this covers, e.g., the replacement ofP in {P ← ¬¬P}. The
second is called whole-to-part monotonicity and states that the new predicates should
depend positively on both the new and the old predicates; this covers the transforma-
tion of {P ← ¬P} to {P ← ¬N,N ← P}. Note that none of these cases cover the
forbidden transformation from{P ← ¬¬P} to {P ← ¬N,N ← ¬P}. In summary,
we get the following algebraic definitions.

Definition 4.1. LetB be an approximation onL2
1 × L2

2.

4.2. PREDICATE INTRODUCTION IN APPROXIMATION THEORY 61

(x y) = (x y)

(⊥ >) · · · lfp

(x y) (x′ y′)

B(x y)

−→ B(x y)

−→ B(x y)

−→

Blfp−→

L′

L

A

Figure 4.1:B is a predicate extension ofA if Blfp(B(x y))(x y) = A(x y).

• B is part-to-part monotoneiff for each(x y) ∈ L2
1 and(u v) ≤ (u′ v′) ∈ L2

2,

bB(x y
u v)c ≤ bB(x y

u′ v′)c;

• B is part-to-whole monotoneiff for each(x y) ∈ L2
1 and(u v) ≤ (u′ v′) ∈ L2

2,

B(x y
u v) ≤ B(x y

u′ v′);

• B is whole-to-part monotoneiff for all (x y
u v) ≤ (x′ y′

u′ v′) ∈ L
2
1 × L2

2,⌊
B(x y

u v)
⌋
≤

⌊
B(x′ y′

u′ v′)
⌋
.

It is easy to see that both part-to-whole and whole-to-part monotonicity imply part-
to-part monotonicity. Therefore, if any of these three properties is satisfied, then every
operatorB(x y) will be monotone w.r.t. the product order≤ and, as such, have a≤-
least fixpointlfp(B(x y)). If we are extending a definition∆ with some new predicates,
defined by a monotone rule setδ, it is now precisely this least fixpoint that will tell us
what we can obtain by iteratively applying the rules ofδ. As explained above, once
this derivation using the rules ofδ has reached its limit, the operatorB should behave
asA does onL2

1. We formalize this in the following definition, which is illustrated in
Figure 4.1.

Definition 4.2 (Fixpoint extension). Let B be an approximation onL2
1 × L2

2 andA
an approximation onL2

1. B is afixpoint extensionof A iff it is part-to-part monotone
and, for allx, y ∈ L1,Blfp≤(B(x y))(x y) = A(x y).

Our goal is now to prove a correspondence between fixpoints of an approximation
A and a fixpoint extensionB of A. We begin by making the trivial observation that
any fixpoint(x y) of A can be extended to a fixpoint(x y

u v) of B, by choosingu andv
in an appropriate way.

62 CHAPTER 4. PREDICATE INTRODUCTION

Theorem 4.1. LetB be a fixpoint extension ofA. A pair (x y) ∈ L2
1 is a fixpoint ofA

iff (x y

lfp(B(x y))
) is a fixpoint ofB.

This theorem shows that we can find the fixpoints ofA by first constructing the
fixpoints ofB and then checking for which of these fixpoints(x y

u v) it is the case that

(u v) = lfp(B(x y)). The following example demonstrates that it is indeed necessary
to check this additional condition, because fixpoints ofB for which it does not hold
might not correspond to fixpoints ofA.

Example 4.2. Consider the following rule set:

∆ =

{
P ← Q.

Q← false.

}
.

Let us try to replaceQ in the first rule byR, defined by:

δ =

{
R← R.

R← Q.

}
.

The resulting rule set∆′ is then of course:

∆′ =

P ← R.

Q← false.

R← R.

R← Q.

 .

As will become clear in Section 4.3, where we discuss predicate introduction for
rule sets, the operatorT∆′ is a fixpoint extension of the operatorT∆. However,T∆′

has a fixpoint in whichP holds (namely, the pair({P,R}, {P,R})), while T∆ does
not. The reason for the discrepancy is, of course, the ruleR ← R in δ. This positive
recursion has the effect that—at least under completion semantics—R might become
true, even whenQ is false.

This example demonstrates that, given some fixpoint(x y
u v) of B, it is indeed nec-

essary to first check whether(u v) = lfp(B(x y)), before concluding that(x y) is a
fixpoint ofA. Of course, ifB happens to be such that, for some reason, we can always
be sure that this condition is satisfied, then we can safely ignore it. Indeed, in this case,
Theorem 4.1 tells us that the fixpointsfp(A) coincide precisely with the setdfp(B)e
of all restrictions toL1 of fixpoints ofB, which implies that alsolfp(A) = dlfp(B)e.
A sufficient condition for this is that every operatorB(x y) has only a single fixpoint;
indeed, since for each fixpoint(x y

u v) of B, (u v) is obviously a fixpoint ofB(x u), the

equality(u v) = lfp(B(x y)) then immediately follows. An interesting special case of
this is when everyB(x y) is a constant operator. In this case, we will call the operator
B part-to-part constant. In logic programming, we can get a part-to-part constant op-
erator by simply disallowing recursion in the rule set defining our new predicates. As

4.2. PREDICATE INTRODUCTION IN APPROXIMATION THEORY 63

such, this result directly applies to, for instance, any transformation where we replace a
subformulaϕ(x) of the body of some rule by a new atomP (x), which we then define
∀x P (x) ← ϕ(x). For such transformations, we will therefore get a correspondence
between the completion and Kripke-Kleene semantics.

So far, we have considered the relation between fixpoints ofA andB, and showed
that, in particular, every fixpoint ofA has a corresponding fixpoint ofB. We now turn
our attention to the stable fixpoints of these operators. We first prove that if a fixpoint
of A happens to be stable, then the corresponding fixpoint ofB will be stable as well.

Theorem 4.2. LetB be a fixpoint extension ofA. If (x y) is a fixpoint of the stable

operatorCA ofA, then(x y

lfp(B(x y))
) is a fixpoint of the stable operatorCB ofB.

To prove this theorem, we first study some more properties ofB and lfp(B(x y)).
The operatorsB(x y) are quite special, in the sense that they are both≤p and≤-
monotone. It can easily be shown that, in general, for any such operatorO on a lattice
L2, the first and second component ofO are completely independent.

Proposition 4.1. LetO be an operator on a latticeL2, such thatO is both≤-monotone
and≤p-monotone. For every(a b) ∈ L2, [O(a b)| = [O(a >)| and |O(a b)] =
|O(> b)].

Proof. Let a, b ∈ L. Because(a b) ≤ (a >), we have thatO(a b) ≤ O(a >) and,
specifically,[O(a b)| ≤ [O(a >)|. Because(a b) ≥p (a >), we have thatO(a b) ≥p

O(a >) and, specifically,[O(a b)| ≥ [O(a >)|. Therefore,[O(a b)| = [O(a >)|.
Similarly, from (a b) ≤ (> b) and (a b) ≤p (> b), it follows that, respectively,
|O(a b)] ≤ |O(> b)] and|O(a b)] ≥ |O(> b)], which proves the result.

Let us denote byB(x y)
1 andB(x y)

2 the operators onL2, that map, respectively,
anyu ∈ L2 to [B(x y)(u >)| and anyv ∈ L2 to |B(x y)(> v)], i.e., for allu ∈ L2,

B
(x y)
1 (u) = [B(x y)(u >)| = bB(x y

u >)| and, similarly, for allv ∈ L2 B
(x y)
2 (v) =

|B(x y)(> v)] = |B(x y
> v)c. Clearly, these two operators are monotone.

Because eachB(x y) is both≤-monotone (sinceB is part-to-part monotone) and
≤p-monotone (sinceB is an approximation), Proposition 4.1 now implies the following
result.

Proposition 4.2. LetB be part-to-part monotone. Then for allx, y ∈ L1 andu, v ∈
L2,

B(x y)(u v) = (B(x y)
1 (u) B(x y)

2 (v)).

It follows directly from this proposition thatlfp(B(x y)) = (lfp(B(x y)
1) lfp(B(x y)

2)).
We can now use this result to show that extending a pair(x y) ∈ L2

1 with lfp(B(x y))
preserves the precision order.

Proposition 4.3. LetB be part-to-part monotone. For allx, x′, y, y′ ∈ L1,

(x y) ≤p (x′ y′) iff (x y

lfp(B(x y))
) ≤p (x′ y′

lfp(B(x′ y′))
).

64 CHAPTER 4. PREDICATE INTRODUCTION

Proof. It is clear that the right hand side of this equivalence directly implies the left.
Let x, x′, y, y′ be as above and let(u v) = lfp(B(x y)) and(u′ v′) = lfp(B(x′ y′)). We
have to show that(u v) ≤p (u′ v′). We first show thatu ≤ u′. By Proposition 4.2,u =
lfp(B(x y)

1). Because this implies thatu is also the least prefixpoint ofB(x y)
1 , it now

suffices to show thatu′ is also a prefixpoint ofB(x y)
1 , i.e., thatu′ ≥ B

(x y)
1 (u′). Be-

cause(x′ y′

u′ >) ≥p (x y
u′ >), we have thatu′ =

⌊
B(x′ y′

u′ >)
∣∣ ≥ ⌊

B(x y
u′ >)

∣∣ = B
(x y)
1 (u′).

The fact thatv ≥ v′ can be shown in a similar way, by proving thatv is a prefixpoint

of the operatorB(x′ y′)
2 , of whichv′ is the least prefixpoint.

The stable operatorCB of an approximationB is defined in terms of its downward
and upward stable operatorsC↓B andC↑B . We show the following relation between

these operators and the operatorsB
(x y)
1 andB(x y)

2 .

Proposition 4.4. Let B be a part-to-part monotone approximation onL2
1 × L2

2. If

(x
u) = C↓B(y

v), thenu = lfp(B(x y)
1). If (y

v) = C↑B(x
u), thenv = lfp(B(x y)

2).

Proof. LetB be as above. We only prove the first implication; the proof of the second
one is analogous. Let(x

u) = C↓B(y
v) and letu′ = lfp(B(x y)

1). We will show thatu = u′.

We start by showing thatu′ ≤ u. By definition ofC↓B , (x
u) =

[
B(x y

u v)
∣∣. In particular,

u = B
(x y)
1 (u), i.e.,u is a fixpoint ofB(x y)

1 . Becauseu′ was chosen to be the least
fixpoint of this operator,u′ ≤ u.

Now, we prove that alsou ≤ u′. We do this by constructing an elementx′ ∈
L1, such that(x′

u′) is a prefixpoint of
[
B(· y
· v)

∣∣. Because(x
u) is the least such pre-

fixpoint, it will then follow that (x
u) ≤ (x′

u′) and, in particular,u ≤ u′. To con-

struct thisx′, we consider the operator
⌈
B(· y

u′ v)
∣∣ on L1 that maps everyz ∈ L1

to
⌈
B(z y

u′ v)
∣∣. BecauseB is ≤p-monotone, this is a monotone operator and, there-

fore, it must have a least fixpoint. Letx′ be this least fixpoint. Becauseu′ ≤ u,
(x y

u′ v) ≤p (x y
u v) and

⌈
B(x y

u′ v)
∣∣ ≤ ⌈

B(x y
u v)

∣∣ = x, i.e.,x is a prefixpoint of the op-

erator
⌈
B(· y

u′ v)
∣∣. Therefore,x′ ≤ x. Now, because(x′ y

u′ v) ≤p (x y
u′ v),

⌊
B(x′ y

u′ v)
∣∣ ≤⌊

B(x y
u′ v)

∣∣ = B
(x y)
1 (u′) = u′. Because, by construction,x′ =

⌈
B(x′ y

u′ v)
∣∣, we

have that
[
B(x′ y

u′ v)
∣∣ ≤ (x′

u′) and(x′

u′) is indeed a prefixpoint of
[
B(· y
· v)

∣∣. Therefore,

u ≤ u′.

We now have all the material needed to prove that a stable fixpoint ofA can be
extended to a stable fixpoint ofB.

Proof of Theorem 4.2.Let (x y) = CA(x y) and let(u v) be lfp(B(x y)). We have

to show that(x y
u v) is a fixpoint ofCB , i.e., that(x

u) = C↑B(y
v) and (y

v) = C↓B(x
u).

We only prove the first equality; the proof of the other one is analogous. Let(x′

u′)
be lfp(

[
B(· y
· v)

∣∣). We will show that(x′

u′) = (x
u). By Theorem 4.1, we have that

(x y
u v) is a fixpoint ofB, which implies that(x

u) is a fixpoint of
[
B(· y
· v)

∣∣. Therefore,

4.2. PREDICATE INTRODUCTION IN APPROXIMATION THEORY 65

(x′

u′) ≤ (x
u). We now show that also(x

u) ≤ (x′

u′). First, we prove thatx ≤ x′, by
showing thatx′ is a prefixpoint of the operator[A(· y)|, of whichx = C↓A(y) is the least
prefixpoint. If we let(u′′ v′′) = lfp(B(x′ y)), then, becauseB is a fixpoint extension

of A, dB(x′ y
u′′ v′′)e = A(x′ y). Moreover, because(x′

u′) is a fixpoint of [B(· y
· v), u′

is a fixpoint ofB(x′ y)
1 . Sinceu′′ is the least fixpoint of this operator,u′′ ≤ u′ and

therefore(x′ y
u′′ v′′) ≤p (x′ y

u′ v′′). By Proposition 4.3, the fact thatx′ ≤ x implies that

v′′ = |lfp(B(x′ y))] ≥ |lfp(B(x y))] = v. Consequently, we also have that(x′ y
u′ v′′) ≤p

(x′ y
u′ v) and, therefore, by≤p-monotonicity ofB:

[A(x′ y)| =
⌈
B(x′ y

u′′ v′′)
∣∣ ≤ ⌈

B(x′ y
u′ v′′)

∣∣ ≤ ⌈
B(x′ y

u′ v)
∣∣ = x′

Hence,x′ is a prefixpoint of[A(· y)| andx ≤ x′. Therefore,x = x′. Since(x′

u′) =
C↓B(y

v), Proposition 4.4 states thatu′ = lfp(B(x′ y)
1), which we now know to be identi-

cal to lfp(B(x y)
1) = u. We conclude that(x

u) = (x′

u′).

So far, we have shown that for every stable fixpoint(x y) of A, it must be the

case thatB has some stable fixpoint(x y
u v). We are of course also interested in the

converse question, i.e., in whether, for every stable fixpoint(x y
u v) of B, the pair(x y)

is a stable fixpoint ofA. In the beginning of this section, we already encountered an
example showing that this is not always the case: transforming{P ← ¬¬P} into
{P ← ¬N ;N ← ¬P} generates additional stable fixpoints, which do not correspond
to fixpoints of the original rule set. To exclude such cases, we requireB to be either
part-to-whole or whole-to-part monotone.

Theorem 4.3. LetB be a fixpoint extension ofA that is either part-to-whole or whole-
to-part monotone. If(x y

u v) is a fixpoint of the stable operatorCB , then(x y) is a

fixpoint of the stable operatorCA ofA and(u v) = lfp(B(x y)).

Our proof of this result will make use of the following property of whole-to-part
monotone operators.

Proposition 4.5. LetB be an approximation onL2
1×L2

2. If B is whole-to-part mono-

tone, then, for all(x y) ∈ L2
1, the operatorB(x y)

1 coincides withB(x >)
1 and the

operatorB(x y)
2 coincides withB(> y)

2 .

Proof. LetB and(x y) be as above. To prove thatB(x y)
1 = B

(x >)
1 , we observe that

(x y
u >) ≥p (x >

u >) and(x y
u >) ≤ (x >

u >). It now follows from the≤p-monotonicity

and whole-to-part monotonicity ofB, that bB(x y
u >)| = bB(x >

u >)|. The proof that

B
(x y)
2 = B

(> y)
2 is analogous.

We can now prove that part-to-whole or whole-to-part monotonicity indeed suffices
to ensure that whenever(x y

u v) is a stable fixpoint ofB, then(x y) is also a fixpoint of
A.

66 CHAPTER 4. PREDICATE INTRODUCTION

Proof of Theorem 4.3.Let B be a fixpoint extension ofA. We need to show that if
(x y

u v) is a fixpoint ofCB , then(x y) is a fixpoint ofCA and(u v) is lfp(B(x y)). By

definition,(x y
u v) is a fixpoint ofCB iff (x

u) = C↓B(y
v) and(y

v) = C↑B(x
u). By Proposition

4.4, if this is the case, thenu = lfp(B(x y)
1) and v = lfp(B(x y)

2). Therefore, by
Proposition 4.2,(u v) = lfp(B(x y)). What remains to be shown is thatx = C↓A(y) =
lfp([A(· y)|) andy = C↑A(x) = lfp(|A(x ·)]).

We will only prove the first equality; the proof of the second one is analogous.
Because[A(x y)| = dB(x y

u v)| = x, x is a fixpoint of[A(· y)|. Let us now assume that

there exists a fixpointx′ of this operator such thatx′ ≤ x. We will show thatx ≤ x′, by
constructing someu′ for which(x′

u′) is a prefixpoint of the operator
[
B(· y
· v)

∣∣, of which

(x
u) is the least fixpoint. Let(u′ v′) be lfp(B(x′ y)). Observe that, by construction,

we have that bothu′ = bB(x′ y
u′ v′) andx′ = [A(x′ y)|= dB(x′ y

u′ v′), that is,(x′

u′) =[
B(x′ y

u′ v′)
∣∣. We now need to distinguish between the case whereB is part-to-whole

monotone and the case whereB is whole-to-part monotone.

• SupposeB is whole-to-part monotone. By Proposition 4.5, we have that the

operatorsB(x y)
2 andB(x′ y)

2 both coincide withB(> y)
2 and, therefore, they must

have the same least fixpoint, i.e.,v = v′. Therefore,(x′

u′) =
[
B(x′ y

u′ v′)
∣∣ =[

B(x′ y
u′ v)

∣∣. Because(x
u) is the least fixpoint of

[
B(· y
· v)

∣∣, this implies that(x
u) ≤

(x′

u′) and, in particular,x ≤ x′.

• SupposeB is part-to-whole monotone. Because(x′ y) ≤p (x y), Proposition 4.3
implies that(u′ v′) ≤p (u v). In particular,v′ ≥ v. Because(u′ v′) ≥ (u′ v),
by part-to-whole monotonicity,(x′

u′) =
[
B(x′ y

u′ v′)
∣∣ ≥ [

B(x′ y
u′ v)

∣∣. Therefore

(x′

u′) is a prefixpoint of
[
B(· y
· v)

∣∣ and, because(x
u) is the least prefixpoint of this

operator,(x
u) ≤ (x′

u′) and, in particular,x ≤ x′.

Putting the above results together, we get the following theorem.

Theorem 4.4. LetB be a fixpoint extension ofA, such thatB is either part-to-whole
or whole-to-part monotone.(x y

u v) is a stable fixpoint ofB iff (x y) is a stable fixpoint

of A and (u v) = lfp(B(x y)). Moreover,(x y
u v) is the well-founded fixpoint ofB iff

(x y) is the well-founded fixpoint ofA and(u v) = lfp(B(x y)).

Proof. The correspondence between stable fixpoints follows from Theorems 4.2 and
4.3. By Proposition 4.3, this correspondence between stable fixpoints also implies the
correspondence between well-founded fixpoints, as these are simply the≤p-least stable
fixpoints.

4.3. APPLICATION TO LOGIC PROGRAMMING 67

4.3 Application to logic programming

In this section, we use the algebraic results of Section 4.2 to derive a concrete equiv-
alence theorem for rule sets. Recall that we are interested in transformations from
some original rule set∆ over an alphabetΣ into a new rule set∆′ over an alphabet
Σ′ = Σ ∪ σ. More concretely,∆′ is the result of replacing a subformulaϕ(x) of some
rule of∆ by a new predicateP (x) and adding a new rule setδ to ∆ to define this new
predicateP . We will assume thatDef(δ) contains no predicates that were already
in Σ. Note thatδ may also contain new open predicates, i.e., it is not necessarily the
case thatOp(δ) = Σp. It is obvious thatDef(∆′) = Def(∆) ∪ Def(δ). We will
denote the result of replacing (some fixed set of occurrences of)ϕ(x) in ∆ byP (x) as
∆[ϕ(x)/P (x)], i.e.,∆′ = ∆[ϕ(x)/P (x)] ∪ δ.

We will now use our algebraic results to prove the equivalence of∆′ and∆ under
a number of different semantics. Recall that these results relate the fixpoints of an ap-
proximationA on the square of some latticeL1 to those of an operatorB on the square
of a product latticeL1 × L2. In our case, we need to consider an pre-interpretationF
and an interpretationO′ extendingF to the open predicates of∆′. Our initial operator
A will be the operatorT O

∆ , withO = O′|Op(∆), on the square of the latticeLF
Def(∆) of

interpretations for the defined predicates of∆. The extended operatorB will then be
the operatorT O′

∆′ on the square of the latticeLF
Def(∆′) of interpretations forDef(∆′).

BecauseDef(∆′) = Def(∆) ∪Def(δ), this last lattice is isomorphic to the product
latticeLF

Def(∆) × L
F
Def(δ). Therefore, our lattices and operators are of the right form

for our results to be applied.
Our first task is now to show that, under suitable conditions,T O′

∆′ is a fixpoint
extension ofT O

∆ .

Theorem 4.5. Let ∆ be a rule set and let∆′ be the result∆[ϕ(x)/P (x)] ∪ δ of
replacing someϕ(x) in ∆ by a new predicateP (x) defined by someδ. LetO′ be in
LF

Op(∆′). Let C be the class of all structures that extendO′ to Σ′. If the following
conditions are satisfied:

1. δ is a monotone rule set and

2. for all I, J ∈ C such that(I J) |=s δ it holds that for all a ∈ dom(F),
P (a)(I J) = ϕ(a)(I J),

thenT O′

∆′ is a fixpoint extension ofT O
∆ , withO = O′|Op(∆).

Proof. Let us first observe that, because the rules of∆′ with a new predicate in their
head are precisely the rules ofδ, we have that, for any(I1 J1

I2 J2
) ∈ (LF

Def(∆)×L
F
Def(δ))

2:

bT O′
∆′ (

I1 J1
I2 J2

)c = (T O′
∆′)

(I1 J1)
(I2 J2) = T (O′∪I1 O′∪J1)

δ (I2 J2). (4.6)

Becauseδ is a monotone rule set, this shows thatT O′

∆′ is part-to-part monotone. Now,
let (I2 J2) be lfp((T O′

∆′)(I1 J1)). We now need to show that

(T O′

∆′)(I2 J2)(I1 J1) = T O
∆ (I1 J1).

68 CHAPTER 4. PREDICATE INTRODUCTION

Because none of the rules inδ have a predicate fromΣ in their head, these can safely
be ignored, i.e.,(T O′

∆′)(I2 J2)(I1 J1) = (T O′

∆′\δ)(I2 J2)(I1 J1). Now, ∆′ \ δ and∆ are
completely identical, apart from the fact that in some rule bodies of∆′ \ δ, the formula
ϕ(x) has been replaced byP (x). Therefore, it now suffices to show that, for all tuples
of domain elementsa ∈ dom(F)n, P (a)(I2 J2) = ϕ(a)(I1 J1). By equation (4.6),
we clearly have that(I2 J2) = lfp(T (I1 J1)

δ). Becauseδ is monotone, this implies that

(I1 J1
I2 J2

) |=s δ. Condition 2 of the theorem now gives us precisely the equality we need.

Note that, because we only consider monotone rule setsδ, we could have equiva-
lently formulate the second condition of this theorem using the well-founded instead
of the stable semantics, i.e., writing|=w instead of|=s.

To see that this result indeed applies to Example 4.1 from our introduction (Section
4.1), letδ be the rule set given in (4.5), i.e.,

δ =

∀r AllPrecHold(r)← AllFrom(r, 1).
∀r, n AllFrom(r, n)← ∃q Prec(r, n, q) ∧Holds(q) ∧AllFrom(r, n+ 1).
∀r, n AllFrom(r, n)← ∃q Prec(r, n, q) ∧Holds(q) ∧NbOfPrec(r, n).

 .

Clearly, thisδ is a positive rule set and, therefore, also monotone. Now, if we re-
strict our attention to those interpretationsO′ for Op(∆′) that actually correspond to
AL-rules1, then it is easy to see that for allr ∈ dom(O′), AllPrecHold(r)(I J) iff
ϕ(r)(I J). Hence, for such interpretationsO′, the second condition of Theorem 4.5 is
also satisfied, and, therefore, the immediate consequence operator of the extended rule
set is a fixpoint extension of the original operator.

Let us now look at some implications of Theorem 4.5. We first consider supported
model and Kripke-Kleene semantics. By Theorem 4.1, we have that, if the definition
δ is non-recursive, i.e., no new predicates appear in rule bodies, then the supported
models and Kripke-Kleene model of∆ coincide with, respectively, the restriction of
the supported models and Kripke-Kleene model of∆′ to the original alphabetΣ.

As we recall from Section 4.2, in order to also get a similar result for stable and
well-founded semantics, we need some monotonicity properties. To this end, we will
prove two results. The first result states that we get part-to-whole monotonicity if we
replace only positively occurring subformulas, i.e., if after the transformation, the new
predicates appear positively in the bodies of the original rules.

Theorem 4.6. Let ∆ be a rule set and let∆′ be the result∆[ϕ(x)/P (x)] ∪ δ of
replacing someϕ(x) in ∆ by a new predicateP (x) defined by some monotone rule set
δ. LetO′ be inLF

Op(∆′). If only positive occurrences ofϕ(x) are replaced, thenT O′

∆′

is part-to-whole monotone.

Proof. Let (I1 J1) be in(LF
Def(∆))

2 and let(I2 J2) and(I ′2 J
′
2) be in(LF

Def(δ))
2, such

that(I2 J2) ≤ (I ′2 J
′
2). As can be seen from the proof of Theorem 4.5, the fact thatδ

is monotone implies thatT O′

∆′ is part-to-part monotone. Therefore, it suffices to prove

1More specifically, for everyr there should be a uniquen such that(r, n) ∈ NbOfPrecO
′

and for
every1 ≤ i ≤ n there should be a uniqueq such that(r, i, q) ∈ PrecO′

.

4.3. APPLICATION TO LOGIC PROGRAMMING 69

that
⌈
T O′

∆′ (I1 J1
I2 J2

)
⌉
≤

⌈
T O′

∆′ (I1 J1
I′2 J′2

)
⌉
. Because the new predicateP (x) appears only

positively in the rules that define the old predicates, this is the case.

For the purpose of eliminating universal quantifiers, we are only interested in re-
placing positively occurring subformulas, because a negatively occurring universal
quantifier can of course simply be transformed into an existential one. Therefore, this
kind of monotonicity will suffice for that particular purpose. However, in other appli-
cations, the following monotonicity result might also be useful. It states that we get
whole-to-part monotonicity if the old predicates appear positively in the rules defining
the new predicates.

Theorem 4.7. Let ∆ be a rule set and let∆′ be the result∆[ϕ(x)/P (x)] ∪ δ of
replacing someϕ(x) in ∆ by a new predicateP (x) defined by someδ. LetO′ be in
LF

Op(∆′). If the rules ofδ contain only positive occurrences of atoms ofDef(∆), then

T O′

∆′ is whole-to-part monotone.

Proof. BecauseDef(∆′) = Def(δ) ∪ Def(∆) and δ is monotone, the condition
of this theorem implies thatδ is actually monotone in all of the predicatesDef(∆′).
Because the rules ofδ are the only rules of∆′ with a new predicate in their head, this
shows thatT O′

∆′ is whole-to-part monotone.

Put together, these two results tell us that the partial stable models and well-founded
model of∆ coincide with the restrictions of, respectively, the partial stable models and
well-founded model of∆′ to the original alphabetΣ, if the following conditions are
satisfied. First,δ should be a monotone definition and all of its partial stable models
should satisfy the four-valued equivalence between the new predicateP (x) and the
original formulaϕ(x) (Condition 2 of Theorem 4.5). Second, it should either be the
case that only positive occurrences of a formula are replaced, or thatδ contains only
positive occurrences of the original predicates.

Example 4.3. Let us consider, for instance, the following rule, representing an inertia
property:

∀p, t Holds(p, t+ 1)← Holds(p, t) ∧ ¬(∃a Occurs(a, t) ∧ Terminates(a, p)).

By our first monotonicity result (Theorem 4.6), we can replace the positively occur-
ring formula¬∃aOccurs(a, t)∧Terminates(a, p) by a new predicateUnclipped(p, t),
which gives us:

∀p, t Holds(p, t+ 1)← Holds(p, t) ∧ Unclipped(p, t).
∀p, t Unclipped(p, t)← ¬(∃a Occurs(a, t) ∧ Terminates(a, p)).

By the second monotonicity result (Theorem 4.7), on the other hand, we can replace
the formula∃a Occurs(a, t) ∧ Terminates(a, p) of the original inertia property—
a negatively occurring formula that does not contain negation—by a new predicate
Clipped(a, p) in the following way:

∀p, t Holds(p, t+ 1)← Holds(p, t) ∧ ¬Clipped(p, t).
∀p, t Clipped(p, t)← ∃a Occurs(a, t) ∧ Terminates(a, p).

70 CHAPTER 4. PREDICATE INTRODUCTION

The results of this section show that both of these transformations preserve partial
stable and well-founded models, and, since neither the rule forClipped norUnclipped
is recursive, also that they preserve supported and Kripke-Kleene models.

As a final remark in this section, it is useful to come back to this four-valued equiv-
alence betweenP (x) as defined byδ and the original formulaϕ(x), that is a condition
of Theorem 4.5. One might wonder whether this is really necessary, i.e., whether it
would suffice to check only the following two-valued equivalence:

For all I ∈ C such that(I I) |=s δ : ∀a ∈ Dn, I |= P (a) iff I |= ϕ(a). (4.7)

In general, this is not the case. For instance, consider an attempt to replace in∆ =
{R ← Q ∨ ¬Q; Q ← ¬Q} the formulaϕ = Q ∨ ¬Q by a new predicateP , defined
by a definitionδ = {P}. The above equivalence would then be satisfied and we
would also get both part-to-whole and whole-to-part monotonicity, but there still is no
correspondence between the models of∆ and∆′. Indeed, the well-founded model of
∆′ = {R← P ; P ; Q← ¬Q} is ({R,P} {R,P,Q}), while that of∆ is ({} {R,Q}).

The four-valued way of interpreting formulas is an integral part of both stable and
well-founded semantics. Therefore, it makes sense that, as the above example shows,
a four-valued equivalence is required in order to preserve either of these semantics. In
practice, however, this should not pose too much of a problem, since most common
transformations from classical logic, e.g. the De Morgan and distributivity laws, are
still equivalence preserving in the four-valued case.

4.3.1 Applications and Related Work

The kind of transformations that we have considered in this chapter have a long history
in logic programming. In this section, we will discuss some of this related work, while
also pointing out a number of interesting applications of our results.

Predicate extraction and∀-elimination

The following result is due to Van Gelder:

Theorem 4.8 (from (Van Gelder 1993)).Let ∆ be a rule set containing a ruler =
∀x P (t) ← ψ. Letϕ(y) be an existentially quantified conjunction of literals, and let
Q be a new predicate symbol. Ifϕ(y) is a positively occurring subformula ofψ, then
∆ is equivalent under the partial stable and well-founded semantics to the rule set∆′,
that results from replacingϕ(y) in r byQ(y) and adding the rule∀y Q(y) ← ϕ(y)
to ∆.

Because the rule setδ = {∀y Q(y) ← ϕ(y)} clearly satisfies the conditions of
Theorem 4.5, Van Gelder’s theorem follows directly from ours. This result provides a
theoretical justification for the common programming practice ofpredicate extraction:
replacing a subformula that occurs in multiple rules by a new predicate to make the pro-
gram more concise and more readable. In (Schrijvers and Serebrenik 2004), predicate
extraction is considered to be an importantrefactoringoperation (i.e., an equivalence
preserving transformation to improve maintainability) for logic programming.

4.3. APPLICATION TO LOGIC PROGRAMMING 71

Our result extends Van Gelder’s theorem by allowing the new predicateQ to be
defined by an additional rule setδ, instead of allowing only the definition{∀yQ(y)←
ϕ(y)}. In particular,recursivedefinitions ofQ are also allowed. This significantly
increases the applicability of the theorem. Indeed, as we already illustrated in the
introduction, this allows us to eliminate universal quantifiers. The general idea behind
this method is that we can replace a universal quantifier by a recursion over some total
order on the domain. Of course, this can only be done if the domain in question is
finite.

Definition 4.3 (Domain iterator). Let C be a set ofΣ-structures with domainD.
Let First/1, Next/2 andLast/1 be predicate symbols ofΣ. We will call the triple
〈First,Next, Last〉 adomain iteratorin C iff for each structureS ∈ C: the transitive
closure ofNextS is a total order onD and there exists elementsf, l ∈ D such that
FirstS = {f} andLastS = {l} and, for allx ∈ D \ {l} there exists a unique
y ∈ D \ {f} such that(x, y) ∈ NextS .

Given such a domain iteratorIt = 〈First,Next, Last〉, we can introduce the
following rule setδIt

ϕ to define a new predicateForall(x) as a replacement for some
positive occurrence of a formulaϕ(x) = ∀y ψ(x, y):

∀x, y Forall(x)← First(y) ∧ ψ(x, y) ∧AllFrom(x, y).
∀x, y AllFrom(x, y)← Next(y, y′) ∧ ψ(x, y′) ∧AllFrom(x, y′).
∀x, y AllFrom(x, y)← Last(y).

(4.8)

It is quite obvious that, for non-empty, finite domains, this transformation satisfies
the conditions of Theorems 4.5 and 4.6. Therefore, we directly get the following result.

Theorem 4.9 (∀ elimination). Let ∆ be a rule set andϕ(x) be a formula of the form
∀y ψ(x, y), that appears only positively in the bodies of rules of∆. For a set of
structuresC with finite domain, ifIt is a domain iterator, then∆[ϕ/Forall] ∪ δIt

ϕ is
equivalent to∆ under partial stable and well-founded semantics.

This theorem provides a way of eliminating universal quantifiers from rule bodies
under the stable and well-founded semantics. As we already pointed out in Section 4.1,
this offers an alternative to the corresponding step from the Lloyd-Topor transformation
(Lloyd and Topor 1984), which is valid only for the two-valued completion semantics
and not for stable or well-founded semantics.

In the above theorem, we assume a total order on the entire domain and this same
order can be used to eliminate all universally quantified formulas, that satisfy the
condition of the theorem. This is not precisely what happened in our motivating
example. Indeed, there, the universally quantified formulaϕ(x) was of the form:
∀y Ψ1(x,y) ⇒ Ψ2(x,y). Using the above theorem, we would replaceϕ(x) by a
recursion that says that the implicationΨ1(x) ⇒ Ψ2(x) must hold for every element
in the domain. However, in our original version of this example, we actually replaced
ϕ(x) by a recursion which says that for ally that satisfyΨ1(x,y) (i.e., for alli, q such
thatPrec(r, i, q)) the consequentΨ2(x,y) (i.e.,Holds(q)) is satisfied. This is a more
fine-grained approach, which we can also prove in general.

72 CHAPTER 4. PREDICATE INTRODUCTION

A restricted iteratorfor y of ψ1(x,y) in a structureI is a triple of predicates
〈First(x,y), Next(x,y,y′), Last(x,y)〉, such that for all tuplesd of elements of
the domainD of I, 〈First(d,y), Next(d,y,y′), Last(d,y)〉 is an iterator over{e ∈
Dn | I |= Ψ1(d, e)}. Given such a restricted iterator, we can define the following
replacementForall(x) for ϕ(x):

∀x,y Forall(x)← First(x,y) ∧Ψ2(x,y) ∧AllFrom(x,y).
∀x,y,y′ AllFrom(x,y)← Next(x,y,y′) ∧Ψ2(x,y′) ∧AllFrom(x,y′).
∀x,y AllFrom(x,y)← Last(x,y).

Again, Theorem 4.5 can be used to show that, if there is at least one tuple that satisfies
Ψ1, ϕ(x) can be replaced byForall(x).

The idea behind such a restricted iterator is very similar to that of abounded univer-
sal quantifier, i.e., one which quantifies only over a subset of the domain. There have
been a number of publications studying bounded quantifiers in the context of logic
programs. For instance, (Voronkov 1992) examines how such quantifiers can be added
to definite logic programs. The difference with our results presented above is that we
do not consider the addition of a new language construct, but instead show how the
bounded quantification effect can be achieved using a simple recursive definition of a
new predicate.

Above, we discussed a result by Van Gelder, shown here as Theorem 4.8, about
predicate extraction for positively appearing subformula. In (Van Gelder 1993), Van
Gelder also considered predicate extraction fornegativelyoccurring subformulas. His
results on this topic are, however, substantially different from our Theorem 4.7. Indeed,
we prove that, if∆′ is the result of performing predicate introduction on a rule set∆,
then, under certain conditions, the restriction of the well-founded model of∆′ to the
original alphabet coincides with the well-founded model of∆. Van Gelder’s results,
on the other hand, prove that inall cases certainpartsof the well-founded model of∆
and∆′ will be the same. This result is not implied by ours, nor vice versa. We have
actually found no results similar to our Theorem 4.7 in the literature.

Fold/unfold transformations and partial evaluation

There is a long tradition in logic programming of studying transformations that pre-
serve the semantics of a program (or parts of it), but make, for instance, its execution
more efficient. We refer to (Pettorossi and Proietti 1994) for an overview. Fold/unfold
transformations play an important role in this context. A lot of this work was originally
carried out for definite programs, but has later been extended to normal programs as
well. For instance, (Aravindan and Dung 1995) proves the correctness of fold/unfold
transformations for stable and well-founded semantics.

In the literature, there are a number of variants of folding, depending on which
predicates are allowed to be folded. In (Gardner and Shepherdson 1991; Maher 1993),
folding is defined approximately as follows. It is a transformation that takes two rules:

∀x H ←Body1 ∧Body2. (4.9)

∀x A←Body′. (4.10)

4.3. APPLICATION TO LOGIC PROGRAMMING 73

with Body1, Body2 andBody′ conjunctions of literals andA,H atoms, such that:

• There exists a substitutionθ such thatBody1 = Body′θ;

• For thisθ,Aθ unifies with no other head of a rule of the program.

It then transforms these into:

∀x H ←Aθ ∧Body2.
∀x A←Body′.

Let us assume also thatBody1 does not contain an atom that unifies withA and let
A = P (t). The fact thatAθ unifies with no other head of the program means that it
essentially acts as though it were an atom containing a new predicate. More precisely
put, if we were to perform a predicate introduction step using some new predicateQ
and replaceBody1 in (4.9) byQ(tθ) defined byδ = {(∀x Q(t) ← Body′)θ}, then it
is easy to see that the result of this will be equivalent to the result of the folding step.
If, however,Body1 itself already contains an atom that unifies withAθ, then it is no
longer possible to view this as a new atom and, consequently, the correspondence to
predicate introduction will be lost. In (Tamaki and Sato 1984; Seki 1993), a slightly
different kind of folding is considered, which cannot completely be seen as a solitary
transformation from one program into another; instead, folding is defined in the context
of a longer sequence of transitions between programs. As such, there is no direct
correspondence to predicate introduction in this case.

Unfolding is, roughly speaking, the inverse of folding. To be more precise, an
unfold transformation takes a normal logic programming rule of the form

∀x H ← A ∧Body. (4.11)

whereH andA are atoms andBody is a conjunction of literals, and transforms this as
follows. Let the following be all rules of the program whose head unifies withH:

∀x A1 ← Body1.

· · ·
∀x An ← Bodyn.

For eachi, let θi be the most general unifier ofA andAi. The rule (4.11) is then
transformed into

(∀x H ← Body1 ∧Body)θ1
· · ·

(∀x H ← Bodyn ∧Body)θn

For the relation between unfolding and predicate introduction, we note in a similar
way that if an unfolding step is performed on a predicate that appears nowhere inBody

74 CHAPTER 4. PREDICATE INTRODUCTION

or one of theBodyi’s, then this again acts as though it were a new predicate and the
unfolding transformation corresponds to the inverse of a predicate introduction step. In
(Dix 1995), theprinciple of partial evaluationwas introduced as a means of comparing
different semantics for logic programs. Essentially, a semantics satisfies this principle
if it is equivalence preserving for this restricted class of unfolding transformations.
Therefore, our theorem shows that the stable and well-founded model semantics both
satisfy this principle, which was first proven in (Dix 1995).

Our results go beyond this work on folding/unfolding in two main ways. First, we
have studied rule sets, that may contain arbitrary first-order formulas in the bodies and
may have open predicates. Second, and more importantly, fold/unfold transformations
only manipulate formulas that are already present in the program, whereas we allow
definitions for a new predicate to, for instance, contain recursion where originally there
was none. Both these aspects are crucial for our method of eliminating of universal
quantifiers.

A related class of program transformation techniques are those ofpartial evaluation
(Gallagher 1993). Essentially, an unfolding step is already a particular form of partial
evaluation, and even a very important one. In general, however, partial evaluation
is more than just unfolding, since it also considers transformations that can take into
account the fact that a certain part of the “input” has already been fixed, i.e., they are
only interested in preserving a particularpart of the semantics of a rule set. This is a
kind of equivalence that we have not considered.

More recently, there has been a lot of work in Answer Set programming on the topic
of strong equivalence. Two rule sets∆ and∆′ are called strongly equivalent iff for all
rule sets∆′′, it is the case that∆∪∆′′ and∆′∪∆′′ are equivalent, in the normal sense of
having the same stable models. Technically speaking, the transformations we consider
here do not even preserve normal equivalence, due to the fact that they introduce new
predicates. Indeed, our results only concern equivalence w.r.t. the original alphabetΣ
of a rule set. Even this equivalence, however, can be lost if we allow the introduction
of additional rules. For instance, our result shows that∆ = {P ← ¬Q;Q ← Q} is
equivalent to∆′ = {P ← R;R ← ¬Q;Q ← Q} w.r.t. the original alphabet{P,Q}.
However, if we now add to both∆ and∆′ the rule set∆′′ = {Q← ¬R;R← R}, we
see that the restrictions toΣ of the stable models of∆ ∪∆′′ and∆′ ∪∆′′ are not the
same. Indeed,∆′ ∪ ∆′′ has a stable model in whichP holds, whereas∆ ∪ ∆′′ does
not.

4.4 Application to autoepistemic logic

In this section, we use our algebraic results to study the problem of predicate introduc-
tion in autoepistemic logic. Concretely, the goal of the transformations we consider is
to eliminate nested modal operators by the introduction of a new propositional symbol.
We begin with an informal analysis of such transformations.

4.4. APPLICATION TO AUTOEPISTEMIC LOGIC 75

4.4.1 Introduction to the problem

As an example, let us consider the following formula:

t⇒ K(Kr ⇒ Ks).

This formula states that, under some conditiont, the reasoner knows that knowledge
aboutr implies knowledge abouts.

Now, suppose we introduce some propositionp, not belonging to the original al-
phabetΣ = {t, r, s} of this formula and that we would likep to mean “s is known”.
In general, we have a formulaF of a theoryT and want to replace a subformulaKϕ
(here,ϕ = s), that appears inside the scope of some other modal operator. We can
assume without loss of generality thatT = {F}, because every theory is equivalent to
the singleton theory consisting of the conjunction of its formulas. Letψ be the smallest
modal literal ofF that containsKϕ. In our example,ψ = K(Kr ⇒ Ks). LetF ′ be
the result of replacingKϕ by p, i.e., in this caseF ′ = (t⇒ K(Kr ⇒ p)). Intuitively,
what we want to do now is construct a formulaFp that defines the new atomp in such a
way that the models (under some semantics) of the original theoryT coincide with the
restrictions to the original alphabetΣ of the models of the new theoryT ′ = {F ′, Fp}.
We will now give some intuitions on how we should construct such anFp for the above
example.

Perhaps the most obvious candidate formula would beKs⇔ p, which abbreviates
(Ks⇒ p)∧ (Ks⇐ p). However, it turns out that this will not work. If we abbreviate
the set of all interpretationsI{t,r,s,p} for the alphabet ofT ′ asI, we see thatT ′ has a
partial expansion(I {}). Indeed, on the one hand,T ′〈{} I〉 = {t⇒ t; f ⇒ p; t⇐ p},
whose set of models isI, while, on the other hand,T ′〈I {}〉 contains both the for-
mula t ⇒ p and f ⇐ p and, as such, has no models. However, the correspond-
ing pair (I{r,t,s} {}) is not a partial expansion of the original formulaF , because
F 〈I{r,t,s} {}〉 = (t⇒ f), of which every interpretation in whicht is false is a model,
soMod(t⇒ f) 6= {}. We therefore need to look for a different formulaFp.

It is clear that, in order to ensure that we do get the result we want, it would suffice
to getψ = K(Kr ⇒ Ks) to be equivalent toψ′ = K(Kr ⇒ p). Now,ψ holds iff it is
the case that either there is a possible world in whichr is false or in all possible worlds,
s is true. The formulaψ′, on the other hand, holds iff it is the case that either there is
a possible world in whichr is false or in all possible worlds,p is true. As such, the
formulaFp should forcep to be known iff originallys was known. This suggests the
formulaKs ⇒ p. Indeed, if it was originally the case thatKs, then the only possible
world forpwill be {p}, but otherwise both{} and{p}will be possible andpwill not be
known. A similar line of reasoning applies whenever we want to replace a formulaKϕ
that appearspositivelywithin the scope of the smallest modal literalψ that contains it.

To illustrate the other case, let us now try to replaceKr in the above formulaF
by a new atomq. Once again, it suffices to ensure thatψ is equivalent to the formula
ψ′′ = K(q ⇒ Ks). Now,ψ′′ holds iff either in all possible worldsq is false or in all
possible worldss is true. As such, our formulaFq should, in this case, make sure that
q is known to be false whenever, originally,r was not known to be true. That is to say,
if there exists a world in whichr is false, thenq should be false in all worlds. This
suggests the formula¬Kr ⇒ ¬q, which is of course simply a rewriting ofKr ⇐ q.

76 CHAPTER 4. PREDICATE INTRODUCTION

Once again, a similar line of reasoning applies whenever we are trying to replace a
formulaKϕ that appearsnegativelywithin the scope of the smallest modal literalψ
that contains it.

Let us now formally define the problem that we want to consider.

Definition 4.4. Let T = {F} be an autoepistemic theory. We consider an occurrence
of a modal literalKϕ with K-rank at least1. Let p be a proposition that does not
belong to the alphabet ofT . The result ofintroducingp to replace (this occurrence
of) Kϕ is the theoryT ′ = {F ′, Fp}, whereF ′ is the result of replacing the selected
occurrence ofKϕ in F by p andFp is defined as follows, depending on howKϕ
appears inside the scope of the smallest modal literalψ that contains it:

• If Kϕ ∈+ ψ, thenFp = (Kϕ⇒ p);

• If Kϕ ∈− ψ, thenFp = (Kϕ⇐ p).

The question we we will study is when (and for which of the previously mentioned
semantics) the result of introducingp to replaceKϕ will be equivalent to the original
theory. The rest of this section will continue to use the notations introduced in the above
definition. We will also useΣ to denote the alphabet of the original theoryT andΣ′ to
denote the alphabetΣ∪{p} of T ′. By ψ′ we will denote the result of replacingKϕ by
p in ψ.

4.4.2 Application of the algebraic results

We now apply our algebraic theorems to the problem at hand. Recall that these relate
an approximationA on a latticeL2

1 to a fixpoint extensionB ofA, which is an operator
on a latticeL2

1 × L2
2. In the current case,L2

1 will be the latticeBΣ of pairs of possible
worlds structures for the original alphabetΣ andL2

2 will be the latticeB{p} of pairs
of possible world structures for the new alphabet{p}. Therefore, to play the role of
the fixpoint extensionB, we need an operator on the squareB̃Σ′ of the product lattice
W̃Σ′ = WΣ ×W{p}. Of course, this gives us the same problem as we encountered in
Section 3.4, namely that this lattice is not isomorphic to the latticeBΣ′ on whichDT ′

operates. Here, we will solve this problem in the same way, namely, by also defining
an intermediate operator̃DT ′ on B̃Σ′ .

Let us first recall that, in Section 3.4, we defined a functionκ from W̃Σ′ toWΣ′

that maps each pair(X
U) to {I ∪ J | I ∈ X andJ ∈ U}. We first observe that,

just as before, none of the possible world sets outside ofκ(W̃Σ′) are relevant for the
operatorDT ′ . Indeed, for any belief pair(P ′ S′) in the image of this operator, both
P ′ andS′ will be of the formMod(T ′〈P S〉) for some belief pair(P S). Now, every
T ′〈P S〉 is a—classical—propositional theory, which consists of a formulaF ′〈P S〉 in
alphabetΣ, and a formulaFp〈P S〉 in alphabet{p}. Because these two alphabets are
disjoint, it is an obvious property of propositional logic thatMod(T ′〈P S〉) consists
of all I ∪ J for which I is a model ofF ′〈P S〉 andJ is a model ofFp〈P S〉. In other

words, for any(P S),Mod(T ′〈P S〉) = κ(Mod(F ′〈P S〉)
Mod(Fp〈P S〉)). We therefore conclude that

DT ′(B̃Σ′) ⊆ κ(B̃Σ′).

4.4. APPLICATION TO AUTOEPISTEMIC LOGIC 77

We will now summarize some relevant properties ofκ. Recall that in Section 3.4,
we introduced the notatioñWc

Σ′ for the set of all consistent elements ofW̃Σ′ , that is,
all (X

U) for which bothX 6= {} andU 6= {} or, equivalently,κ(X
U) ∈ Wc

Σ′ . By W̃↓cΣ′

we denote the set of all(X
U) for whichU 6= {} andW̃↑cΣ′ denotes the set of all(X

U) for
whichX 6= {}. We use similar notations̃Bc

Σ′ , B̃
↓c
Σ′ andB̃↑cΣ′ for the squares of these

lattices.

Proposition 4.6. The functionκ has the following properties:

1. κ is injective on the subset̃Wc
Σ′ of its domain;

2. For all (X
U) ∈ W̃↓cΣ′ , κ(

X
U)|Σ = X and for all (X

U) ∈ W̃↑cΣ′ , κ(
X
U)|{p} = U ;

3. DT ′(B̃Σ′) ⊆ κ(B̃Σ′).

Let us now define an intermediate operatorD̃T ′ on B̃Σ′ , such that, on the one hand,
this D̃T ′ is a fixpoint extension of the operatorDT and, on the other hand, the fixpoints
and stable fixpoints of̃DT ′ correspond to those ofDT ′ .

Definition 4.5. We define the functioñDu
T from B̃Σ′ to W̃Σ′ as mapping every(X Y

U V)

to the pair(X′

U ′) for which:

• X ′ = Mod(F ′〈κ(X Y
U V)〉);

• U ′ = Mod(Fp〈X Y 〉)

We also definẽDT (X Y
U V) as(D̃u

T (Y X
V U) D̃u

T (X Y
U V)) andD̃T (X

U) asD̃u
T ′(X X

U U).

This operatorD̃T ′ differs fromDT ′ in two respects. First, in the construction of
a new belief pair for alphabetΣ, it considers only the formulaF ′, whereas, in the
construction of a new belief pair for{p}, it only considersFp. Second, a new belief
pair for {p} is constructed using only the original belief pair(X Y) for Σ, instead of

the entire belief pairκ(X Y
U V). Because of this, every operatorD̃(X Y)

T ′ = bD̃T ′(X Y
· ·)c

is actually constant. We now investigate how we can characterize the pair(U V) that
is the unique element in the image of someD̃(X Y)

T ′ .
First, let us observe that ifKϕ ∈+ ψ, we can determineMod(Fp〈X Y 〉) as fol-

lows:

Kϕ ∈+ ψ Kϕ〈Y X〉 = t Kϕ〈Y X〉 = f
Fp Kϕ⇒ p Kϕ⇒ p

Fp〈X Y 〉 t⇒ p f ⇒ p
Mod(Fp〈X Y 〉 {{p}} {{}, {p}}

ForKϕ ∈− ψ, the analogous table is as follows:

Kϕ ∈− ψ Kϕ〈X Y 〉 = t Kϕ〈X Y 〉 = f
Fp Kϕ⇐ p Kϕ⇐ p

Fp〈X Y 〉 t⇐ p f ⇐ p
Mod(Fp〈X Y 〉 {{}, {p}} {{}}

78 CHAPTER 4. PREDICATE INTRODUCTION

By definition, if (U V) is the unique element in the image of someD̃(X Y)
T ′ , then

U is Mod(Fp〈Y X〉) andV is Mod(Fp〈X Y 〉), so we can find the precise values of
these two possible world structures by means of the above tables. We remark that, in
particular, it is always the case that bothU 6= {} andV 6= {}, i.e.,D̃T ′(B̃Σ′) ⊆ B̃↓cΣ′ .

We are of course mainly interested in fixpoints ofD̃T ′ . Clearly, for every such
fixpoint (X Y

U V), it has to be the case that(U V) is the unique element in the image of

D̃(X Y)
T ′ . Let us denote bỹB∗Σ′ the set of all(X Y

U V) for which this last property holds.

It can easily be seen from the above discussion that, in every such element ofB̃∗Σ′ , the
values ofU andV are as follows.

Proposition 4.7. For all (X Y
U V) ∈ B̃∗Σ′ , the values ofU andV depend on the values

ofX andY , and on howKϕ appears inψ, as given by the following table:

Kϕ〈X Y 〉 Kϕ〈Y X〉
t f t f

Kϕ ∈+ ψ U = {{p}} U = {{}, {p}} V = {{p}} V = {{}, {p}}
Kϕ ∈− ψ V = {{}, {p}} V = {{}} U = {{}, {p}} U = {{}}

Relating fixpoints of D̃T ′ andDT ′

We now show that̃DT ′ andDT ′ have the same fixpoints. Because every fixpoint of
D̃T ′ must obviously belong to its image, it suffices to consider onlyB̃↓cΣ′ , i.e., the set

of all (X Y
U V) ∈ B̃Σ′ for whichU, V 6= {}. On this particular part of its domain, the

operatorD̃T ′ is related toDT ′ in the following way.

Proposition 4.8. For all (X Y
U V) ∈ B̃↓cΣ′ , κ(D̃T ′(X Y

U V)) = DT ′(κ(X Y
U V)).

Proof. Let (X Y
U V) ∈ B̃↓cΣ′ and let(P S) beκ(X Y

U V). As we already showed in the

discussion leading up to Proposition 4.6,Mod(T ′〈P S〉) = κ(Mod(F ′〈P S〉)
Mod(Fp〈P S〉)). There-

fore, it suffices to show thatFp〈P S〉 = Fp〈X Y 〉. BecauseU, V 6= {}, we have that
(P S)|Σ = (X Y), which proves the result.

From this proposition, the correspondence between fixpoints now follows.

Theorem 4.10. For all (P S) ∈ BΣ, (P S) is a fixpoint (respectively, the Kripke-

Kleene fixpoint) ofDT ′ iff there exists a(X Y
U V) ∈ B̃Σ′ such thatκ(X Y

U V) = (P S)

and(X Y
U V) is a fixpoint (the Kripke-Kleene fixpoint) of̃DT ′ .

Proof. Every fixpoint(X Y
U V) of D̃T ′ must belong toB̃↓cΣ′ and therefore it follows di-

rectly from Proposition 4.8 thatκ(X Y
U V) is a fixpoint ofDT ′ . To prove the other direc-

tion, we must show that for every fixpoint(P S) of DT ′ , there exists a fixpoint(X Y
U V)

of D̃T ′ such thatκ(X Y
U V) = (P S). Let (X Y) be(P S)|Σ. We now defineU as fol-

lows: if P = {}, then alsoX = {} and we defineU = Mod(Fp〈Y {}〉); otherwise, we

4.4. APPLICATION TO AUTOEPISTEMIC LOGIC 79

defineU = P |{p}. Similarly, we defineV as: ifS = {}, thenV = Mod(Fp〈X {}〉);
otherwiseV = S|{p}. We now show that this(X Y

U V) satisfies the desired properties.

First, we show thatκ(X Y
U V) = (P S), i.e., thatκ(X

U) = P andκ(Y
V) = S. If

P = {}, thenκ(X
U) = κ({}U) = {}. If P 6= {}, thenX = P |Σ andU = P |{p}. Because

(P S) belongs toDT ′(B̃Σ′) ⊆ κ(B̃Σ′) (Proposition 4.6), we have thatP ∈ κ(W̃Σ′).
It follows thatP = κ(P |Σ

P |{p}
) and, therefore,P = κ(X

U). A similar argument shows

that alsoS = κ(Y
V). Second, we show that(X Y

U V) is indeed a fixpoint ofD̃T ′ . Let

(X′ Y ′

U ′ V ′) beD̃T ′(X Y
U V). Because by constructionU, V 6= {}, Proposition 4.8 implies

that κ(X′ Y ′

U ′ V ′) = DT (κ(X Y
U V)) = κ(X Y

U V), that is,κ(X′

U ′) = κ(X
U) andκ(Y ′

V ′) =

κ(Y
V). We now show that this implies(X

U) = (X′

U ′). Because bothU,U ′ 6= {}, the
equalityκ(X′

U ′) = κ(X
U) implies thatX = X ′. Now, if X,X ′ 6= {}, then this equality

also impliesU = U ′. If, on the other hand,X = X ′ = {}, then by construction,
U = Mod(Fp〈Y {}〉) = U ′. We conclude that in both cases(X

U) = (X′

U ′). By a similar

argument it follows that also(Y
V) = (Y ′

V ′), so(X Y
U V) is indeed a fixpoint of̃DT ′ .

We now also examine the relation between stable fixpoints ofDT ′ and D̃T ′ . To
this end, we compare the lower stable operatorsC↓DT ′

andC↓D̃T ′
. It suffices to compare

only these two operators, because, due to the symmetry ofDT ′ and D̃T ′ , we have
thatC↑DT ′

= C↓DT ′
andC↑D̃T ′

= C↓D̃T ′
. Recall thatC↓DT ′

is defined as mapping each

S to lfp([DT (·, S)|) and, similarly,C↓D̃T ′
maps each(Y

V) to lfp([D̃T ′(· Y
· V)|) . By a

straightforward induction over the construction of these least fixpoints, Proposition 4.8
now implies the following result.

Proposition 4.9. For all (X
U) ∈ W↓cΣ , κ(C↓D̃T ′

(X
U)) = C↓DT ′

(κ(X
U)).

This proposition now implies the following correspondence between stable fix-
points ofDT ′ and D̃T ′ , in precisely the same way as Theorem 4.10 follows from
Proposition 4.8.

Theorem 4.11. For all (P S) ∈ BΣ, (P S) is a stable fixpoint (respectively, the well-

founded fixpoint) ofDT ′ iff there exists a(X Y
U V) ∈ B̃Σ′ such thatκ(X Y

U V) = (P S)

and(X Y
U V) is a stable fixpoint (the well-founded fixpoint) ofD̃T ′ .

Having shown thatD̃T ′ andDT ′ have the same (stable) fixpoints, we can now
proceed to relate the models ofT ′ (under the various semantics we consider) to those
of T , by using our algebraic theory of fixpoint extension to establish a correspondence
between (stable) fixpoints of̃DT ′ andDT .

D̃T ′ is a fixpoint extension ofDT

We now show that̃DT ′ is indeed a fixpoint extension ofDT . We first observe that,
becauseDT ′ is part-to-part constant, it is also part-to-part monotone. Therefore, all that

80 CHAPTER 4. PREDICATE INTRODUCTION

remains to be shown is that, for all(X Y
U V) with (U V) = lfp(D̃(X Y)

T ′), dD̃T ′(X Y
U V)e =

DT (X Y). Of course, in this case, the condition that(U V) = lfp(D̃(X Y)
T ′) is simply

equivalent to(U V) being the unique element in the image ofD̃(X Y)
T ′ , i.e., to(X Y

U V)

belonging toB̃∗Σ′ .

Proposition 4.10. D̃T ′ is a fixpoint extension ofDT .

Proof. We need to prove that for all(X Y
U V) ∈ B̃∗Σ′ , dD̃T ′(X Y

U V)e = DT (X Y).

By definition of these two operators, it suffices to show that, for all(X Y
U V) ∈ B̃∗Σ′ ,

F ′〈κ(X Y
U V)〉 = F 〈X Y 〉 andF ′〈κ(Y X

V U)〉 = F 〈Y X〉. Due to the symmetry of̃DT ′ ,

we have that(X Y
U V) ∈ B̃∗Σ′ iff (Y X

V U) ∈ B̃∗Σ′ . Therefore, it suffices to show that for

all (X Y
U V) ∈ B̃∗Σ′ , F ′〈κ(

X Y
U V)〉 = F 〈X Y 〉. Because the only difference betweenF ′

andF lies in the modal literalsψ′ andψ, it suffices to show that the way in whichψ′ is
evaluated inF ′〈κ(X Y

U V)〉 coincides with the way in whichψ is evaluated inF 〈X Y 〉.
The precise property that needs to be proven now depends on whetherψ ∈+ F or
ψ ∈− F , but by the same symmetry argument as above, we can cover both cases by
showing that for all(X Y

U V) ∈ B̃∗Σ′ , ψ′〈κ(
X Y
U V)〉 = ψ〈X Y 〉.

Let us first consider the modal literalψ′ and letρ′ be the formula for whichψ′ =
Kρ′. For any belief pair(P S), Kρ′〈P S〉 is equal to the minimum of all truth values

HI,(P S)(ρ′) for which I ∈ P . In the case of(P S) being equal toκ(X Y
U V) for some

(X Y
U V) ∈ B̃∗Σ′ , this is equal to the minimumm of allHI∪J,(P S)(ρ′) for which I ∈ X

andJ ∈ U . Moreover, because there is only one occurrence of the atomp in the
entire formulaρ′, there must exist a single “worst” truth valuev for p which gives
rise to this minimum; more formally put, for somev,m is equal to the minimum of all
HI∪J,(P S)(ρ′[p/v]) for whichI ∈ X andJ ∈ U . Indeed, on the one hand, ifp ∈+ ρ′,
thenv is the minimum of allHJ,(· ·)(p) with J ∈ U . On the other hand, ifp ∈− ρ′,
thenv is the maximum of allHJ,(· ·)(p) with J ∈ U . BecauseU, V 6= {} and the
formula ρ′[p/v] no longer containsp, we now have thatm is equal to the minimum
of all HI,(X Y)(ρ′[p/v]) for which I ∈ X. This is of course by definition equal to
H·,(X Y)(Kρ′[p/v]) = (ψ′[p/v])〈X Y 〉.

It now suffices to show that thisv is equal to the way in which the modal lit-
eralKϕ is evaluated during the construction ofψ〈X Y 〉, i.e., that alsoψ〈X Y 〉 =
(ψ[Kϕ/v])〈X Y 〉. If Kϕ ∈+ ψ, thenKϕ is evaluated in the belief pair(X Y), i.e., it
then suffices to show thatKϕ〈X Y 〉 = v = minJ∈U (HJ,(· ·)(p)). On the other hand,
if Kϕ ∈− ψ, thenKϕ is evaluated in the belief pair(Y X), i.e., it then suffices to
show thatKϕ〈Y X〉 = v = maxJ∈U (HJ,(· ·)(p)). It can now easily be checked from
Proposition 4.7 that in both cases the needed equality holds.

We now have that, on the one hand, the (stable) fixpoints ofDT ′ coincide with those
of D̃T ′ , while, on the other hand, the above proposition implies the correspondences
between (stable) fixpoints of̃DT ′ andDT , that were summarized in Section 4.2. This
now allows us to relate the models ofT ′ andT under various semantics.

4.4. APPLICATION TO AUTOEPISTEMIC LOGIC 81

Expansion, partial expansions and the Kripke-Kleene model

BecauseD̃T ′ is part-to-part constant, Theorem 4.1 implies a correspondence between
fixpoints ofD̃T ′ andDT . This gives the following result.

Theorem 4.12. A belief pair (P S) ∈ BΣ is a partial expansion (respectively, the
Kripke-Kleene model) ofT iff there exists a belief pair(P ′ S′) ∈ BΣ′ such that
(P ′ S′)|Σ = (P S) and (P ′ S′) is a partial expansion (the Kripke-Kleene model)
of T ′.

It is easy to see that for all(X Y
U V) ∈ B̃∗Σ′ , (X Y

U V) is exact iff (X Y) is exact.
Therefore, this correspondence between partial expansion also implies a correspon-
dence between expansions.

Theorem 4.13.A possible world structureP ∈ WΣ is an expansion ofT iff there exists
a possible world structureP ′ ∈ WΣ′ such thatP ′|Σ = P andP ′ is an expansion of
T ′.

Extensions, partial extensions and the well-founded model

As we recall from Section 4.2, to get a correspondence between the stable and well-
founded fixpoints of our operators, we need an additional monotonicity property. Con-
cretely, D̃T ′ needs to be either part-to-whole or whole-to-part monotone. We now
investigate when this is the case.

Proposition 4.11. If ψ ∈− F , thenD̃T ′ is part-to-whole monotone.

Proof. By symmetry of the operator̃DT ′ , it suffices to show that for all(X,Y) and

(U V) ≤ (U ′ V ′), D̃u
T ′(X Y

U V) ≤ D̃u
T ′(X Y

U ′ V ′). Furthermore, becausẽDT ′ is al-

ready know to be part-to-part monotone, it suffices to show thatMod(F ′〈κ(X Y
U V)〉) ⊇

Mod(F ′〈κ(X Y
U ′ V ′)〉). Becauseψ ∈− F , this will be the case ifψ′〈YV X

· 〉 ≤ ψ′〈YV ′
X
· 〉.

This now follows fromV ≤ V ′.

Proposition 4.12. If ψ ∈+ F , Kϕ ∈+ ψ andϕ is an objective formula, theñDT ′ is
whole-to-part monotone.

Proof. By symmetry ofD̃T ′ , it suffices to show that for all(X Y
U V) ≤ (X′ Y ′

U ′ V ′),

bD̃u
T ′(X Y

U V)c ≤ bD̃u
T ′(X′ Y ′

U ′ V ′)c. This is the case ifMod(Fp〈X Y 〉) ⊇Mod(Fp〈X ′ Y ′〉).
BecauseFp = (Kϕ ⇒ p), this will be the case if(Kϕ)〈Y X〉 ≤ (Kϕ)〈Y ′ X ′〉. Be-
causeϕ is objective,(Kϕ)〈Y X〉 depends only onY and(Kϕ)〈Y ′ X ′〉 depends only
onY ′. The fact thatY ≤ Y ′ now implies that(Kϕ)〈Y ·〉 ≤ (Kϕ)〈Y ′ ·〉.

A summary of the monotonicity properties of̃DT ′ can be found in Figure 4.2. By
Theorem 4.11, we now obtain the following result.

Theorem 4.14. If at least one of these conditions is satisfied:

• ψ ∈− F or

82 CHAPTER 4. PREDICATE INTRODUCTION

ψ ∈ F Kϕ ∈ ψ Fp part-to-part part-to-whole whole-to-part

+ + Kϕ⇒ p X × X∗

- + Kϕ⇒ p X X X∗

+ - Kϕ⇐ p X × ×
- - Kϕ⇐ p X X ×

(∗): Holds only ifϕ is objective.

Figure 4.2: Monotonicity properties of̃DT ′ .

• Kϕ ∈+ ψ andϕ is objective,

then a belief(P S) ∈ BΣ is a partial extension (respectively, the well-founded model)
of T iff there exists a belief pair(P ′ S′) ∈ BΣ′ such that(P ′ S′)|Σ = (P S) and
(P ′ S′) is a partial extension (the well-founded model) ofT ′. Moreover, under the
same condition, a possible world structureP ∈ WΣ is an extension ofT iff there exists
a possible world structureP ′ ∈ WΣ′ such thatP ′|Σ = P andP ′ is an extension ofT ′.

A final question that remains to be answered is what happens in the case where the
above theorem is not applicable, i.e., whenψ ∈+ F andKϕ ∈− ψ. It turns out that in
this case there is no correspondence. We demonstrate this by the following example.

Example 4.4. Let T be the theory{K¬Kq}. If we replaceKq by p, we getT ′ =
{K¬p;Kq ⇐ p}.

Let us first look at the well-founded model ofT . We start by applying the stable
operatorCDT

to the least precise pair(IΣ {}). To obtain a new underestimateP ′, we
constructC↓DT

({}) = lfp([DT (· {})|). We find thatC↓T ({}) = IΣ, because:

[DT (IΣ, {})| = Mod(T 〈{} IΣ〉) = Mod(t) = IΣ.

For the new overestimate, we have thatC↑DT
(IΣ) = IΣ, because:

|DT (IΣ, IΣ)] = Mod(T 〈IΣ IΣ〉) = Mod(t) = IΣ.

We therefore have thatCDT
(IΣ {}) = (IΣ IΣ). Moreover, since by symmetry ofDT ,

C↓DT
= C↑DT

, we now also see thatCDT
(IΣ IΣ) = (IΣ IΣ). Therefore, this belief pair

is the well-founded model ofT , which is also its unique stable model.
We now perform a similar construction forT ′. First,C↓DT ′

({}) = IΣ, because:

[DT ′(IΣ, {})| = Mod(T 〈{} IΣ〉) = Mod(t; t⇐ p) = IΣ.

Second,C↑DT ′
(IΣ) = {}, as can be seen from the following computation:

|DT ′(IΣ IΣ)] = Mod(f ; f ⇐ p) = {}
|DT ′(IΣ {})] = Mod(f ; f ⇐ p) = {}

4.4. APPLICATION TO AUTOEPISTEMIC LOGIC 83

ψ ∈ F Kϕ ∈ ψ Fp (part.) expansion K-K (part.) extension wfm

+ + Kϕ⇒ p X∗ X∗ X∗ X∗

- + Kϕ⇒ p X X X X
+ - Kϕ⇐ p X X × ×
- - Kϕ⇐ p X X X X

(∗): Holds only ifϕ is objective.

Figure 4.3: Semantics preserved by replacingKϕ by p.

Therefore, the well-founded model ofT ′ is (I{p,q} {}). The restriction of this to
the original alphabetΣ is (IΣ {}), which does not coincide with the well-founded
model ofT . Moreover, the partial stable models ofT ′ are(I{p,q} {}), ({} I{p,q}) and
({{q}, {}} {{q}, {}}), which do not correspond to those ofT either.

As a side note, we remark that if we were to ignore our analysis of Section 4.4.1
and takeFp to be the formulaKϕ ⇒ p instead ofKϕ ⇐ p, then we would not get a
correspondence either. Indeed, it can easily be checked that the well-founded model of
{K¬p;Kq ⇐ p} is also(IΣ {}).

The results of our analysis of predicate introduction for autoepistemic logic can
now be summarized by the table in Figure 4.3.

4.4.3 Discussion and related work

The nesting of modal operators is a source of computational complexity when eval-
uating autoepistemic theories in possible world structures, and therefore also when
constructing models of such theories. Moreover, it also obscures the relation between
this logic and other, related languages, such as logic programming and default logic.
Indeed, both the Konolige transformation (Konolige 1988) from default logic into au-
toepistemic logic and, for instance, the transformations of logic programming into au-
toepistemic logic considered in (Bonatti 1995) map into the fragment without nested
modal operators. In (Marek and Truszczyński 1991), a transformation is presented that,
at least under the semantics of expansions, can reduce any theory to an equivalent one
that does not have such nestings. This transformation preserves the original alphabet
of the theory, but might lead to an exponential blow-up in its size, since it uses the
standard propositional normalization technique of distributing disjunction over con-
junction. Our results on predicate introduction can be used to achieve the opposite
effect of avoiding such a blow-up, at the expense of an increase in the alphabet. A
simple algorithm that does this, would be the following. As long as there are formulas
of K-rank at least 2, select a formulaKϕ with maximumK-rank and replace this by
a new atom, in the way previously described. This algorithm reduces a theoryT to a
theoryT ′′ without nestedK operators, whose size is linear in the size of the original
theory. Our results show thatT ′ is equivalent toT on the original alphabet ofT under
the semantics of expansions, partial expansions, and Kripke-Kleene semantics. For the
semantics of (partial) extensions and the well-founded semantics, this result does not

84 CHAPTER 4. PREDICATE INTRODUCTION

Logic programming Autoepistemic logic Preserves
∆ ∆′ T T ′ stable fixpoints

{R← ¬R}

{
R← ¬P.
P ← R.

}
{KKr}

{
Kp

Kr ⇒ p

}
X

{R← ¬R}

{
R← P.

P ← ¬R.

}
{¬K¬Kr}

{
¬Kp

Kr ⇐ p

}
X

{R← R}

{
R← P.

P ← R.

}
{¬KKr}

{
¬Kp

Kr ⇒ p

}
X

{R← R}

{
R← ¬P.
P ← ¬R.

}
{K¬Kr}

{
Kp

Kr ⇐ p

}
×

Figure 4.4: Correspondences between logic programming and autoepistemic logic.

quite hold. Indeed, here, our results do not give us a way of getting rid of nestings
Kϕ ∈− ψ, whereψ ∈+ F . However, other nestings can still be eliminated.

Our analysis of the problem of predicate introduction in autoepistemic logic shows
that our algebraic theorems also allow meaningful and useful results to be derived for
this logic. Moreover, the algebraic concepts we have defined, i.e., those of fixpoint
extension and part-to-part, part-to-whole, and whole-to-part monotonicity, have also
proven to be useful analysis tools in this case. The use of these concepts reveals some
interesting similarities to predicate introduction for logic programming, which might
otherwise have gone unnoticed. Indeed, Figure 4.4 shows four cases of predicate in-
troduction, in which, at the algebraic level, what happens in logic programming is
precisely the same as what happens in autoepistemic logic. As such, the results of this
section provide convincing evidence for the fact that our algebraic theory of fixpoint
extensions is not only a convenient way of proving results for logic programming, but
is also more widely applicable abstraction of a general knowledge representation prin-
ciple.

4.5 Conclusion

In this chapter, we have developed a theory of fixpoint extension in the framework of
approximation theory and studied two applications of these results. First, we inves-
tigated transformations for a general class of logic programming variants, under the
supported model, Kripke-Kleene, stable, and well-founded model semantics. One of
our most interesting results here was a general way of eliminating universal quantifiers
from rule bodies under stable and well-founded semantics. Second, we also looked

4.5. CONCLUSION 85

at autoepistemic logic. Here, we studied a transformation to reduce the nesting depth
of the modal operatorK. We showed that, at the algebraic level, there are some re-
markable parallels between the effects of this transformation and what happens in the
case of logic programming. We were able to prove that this transformation preserves
equivalence under the semantics of (partial) expansions and Kripke-Kleene semantics.
Moreover, we also showed that, in a large number of cases, though not all, equiva-
lence is also preserved under the well-founded semantics and the semantics of (partial)
extensions.

In summary, we have demonstrated that our abstract concept of fixpoint exten-
sion can be used to analyze the problem of predicate introduction for different non-
monotonic logics and under different semantics. Moreover, this also exposes interest-
ing relations between otherwise seemingly unrelated transformations. Together with
the results of Chapter 3, this chapter therefore demonstrates that approximation theory
is indeed a useful framework, in which properties of different logics with a fixpoint
semantics can be studied in a clear, general and uniform way.

86 CHAPTER 4. PREDICATE INTRODUCTION

Part II

Constructive processes and
causality

87

Chapter 5

Causal probabilistic logic

5.1 Introduction

In this chapter, we study the relation between constructive processes and the concept
of causality. To motivate our interest in this topic, let us consider a causal statement of
the following form:

Pneumonia causes chest pain. (5.1)

As a starting point, we present an analysis of the intuitive meaning of this statement.
On the one hand, there is the rather obvious component that patients with pneumonia
also suffer from chest pain. On the other hand, there are also two more subtle aspects
of this statement.

• In essence, the causal statement isdynamicin nature, i.e., it refers to something
that might happen, to a kind of occurrence, to an activation of some mechanism
in the domain of discourse. In the case of statement (5.1), we are talking about
a biological process involving viruses, lung tissue, nerves, and impulses. Once
the patient has pneumonia, this mechanism is put into motion and eventually
produces the phenomenon of chest pain. Because such a process might take
some time to complete, this implies that if we were to observe pneumonianow,
then the accompanying chest pain might only manifest itselflater. This is in
contrast to, for instance, the statement “pneumonia implies chest pain”, which is
static in nature and refers to a single point in time; i.e., if we observe pneumonia
now, then the implied chest pain is also observed now. In what follows, we will
refer to such mechanisms, to these “things that might happen”, asevents.

• Saying that pneumonia causes chest pain also implies that chest pain is a prop-
erty thatneedsto be caused, i.e., the statement suggest that there exists somea
priori state of affairs and that, in this state, chest pain is absent. It is only if the
original state is affected in some way—for instance, if the mechanism by which
pneumonia causes chest pain is activated—that the initial state of this property
might change and the patient might suffer chest pain.

89

90 CHAPTER 5. CAUSAL PROBABILISTIC LOGIC

These observations suggest that if we have an exhaustive enumeration of all causal
statements that are relevant with respect to some particular (aspect of a) domain of
discourse, we could predict the final states in which this domain might end up by
considering which possible sequences of events might occur. For instance, let us look
at the following set of causal statements:

Pneumonia causes chest pain. (5.2)

Chest pain causes insomnia. (5.3)

Insomnia causes headache. (5.4)

Initially, the properties that might be caused (chest pain, insomnia, and headache) are
all in their original state of being absent. If the patient now has pneumonia, then the
event described by (5.2) will occur and cause chest pain, after which event (5.3) will
also occur, causing insomnia, which finally also causes (5.4), thus resulting in a patient
with a headache. On the other hand, for a patient without pneumonia, none of these
events will be caused, so—if the enumeration really is exhaustive—there will be no
headache.

Each of the causal statements we have considered so far describes an event whose
effect is known with certainty. In real life, few events have this property. For instance,
it is easy to image that the biological process underlying statement (5.1) (i.e., the virus
infecting the lung tissue, which causes an nerve impulse to brain, which leads to the
phenomenon of pain) might actually sometimes not result in the patient feeling chest
pain at all. To take into account such non-determinism, we say, for instance:

Pneumoniamightcause chest pain.

For another example, the following statement describes the possible effects of a risky
surgical procedure:

The surgery might cause the recovery of the patient, but it also might cause
his death.

In both these cases, it is natural to quantify the uncertainty by assigning a probability
to the possible outcome(s), such as:

Pneumonia causes chest pain with probability0.8.

or:

With probability 0.7, the surgery causes the recovery of the patient, but
with probability0.3, it causes his death.

Statements of this form will be our central topic. For obvious reasons, we will refer
to such a statement as acausal probabilistic event description, or also, somewhat less
accurately, as simply acausal probabilistic event, which we abbreviate asCP-event.

We will then consider a simple knowledge representation language, in which the
causal structure of a domain is represented by an enumeration of all relevant CP-events.
We call such a set of CP-events aCP-theoryand refer to the language of all CP-theories

5.1. INTRODUCTION 91

asCP-logic. As suggested by the above discussion, we will define the semantics of CP-
logic by means of certain probabilistic processes, which can be constructed by consid-
ering the ways in which the events described by a CP-theory could actually happen.
This generalizes in a rather straightforward way the process we described above in the
context of the deterministic causal statements (5.2), (5.3) and (5.4); only, instead of
each event having just a single effect, which results in a linear progression from an
initial state to a unique final state, we now get events that can have multiple effects,
which leads to a branching of possibilities, generating a tree-like progression from the
initial state to a number of possible final states. We will call the probabilistic processes
that can be generated by a given CP-theory itsexecution models.

In general, a CP-theory might have many execution models. Indeed, this is to be
expected, since, clearly, certain relevant information about the dynamic evolution of a
domain is not expressed in our language; in particular, a CP-theory does not incorporate
any temporal information, i.e., it does not specifywhena particular CP-event might
happen, how long such an event will last, or even the order in which events happen.
However, as we will show later, all execution models of a CP-theory generate precisely
the same probability distribution over their final states. This uniqueness result is an
interesting property, because, typically, we are not really interested in the actual details
of the evolution of a domain anyway, but only care about the probability of arriving
at a certain end result. Our result now shows that causal information, in the form of a
CP-theory, suffices to know which possible outcome will occur with which probability.
This offers an appealing explanation for why causality is such an important concept:
causal information is in essence a compact and robust way of specifying just enough
properties of the behaviour of a non-deterministic process to uniquely characterize the
probability distribution that it generates.

CP-logic is essentially a causal probabilistic modelling language. It mainly distin-
guishes itself from other such languages by its explicit focus on the dynamic nature
of causality—an aspect which is somewhat ignored in current literature. Indeed, let
us consider, for instance, Pearl’s influential work on causality (Pearl 2000). In this
approach, the causal structure of a domain is described by a causal Bayesian network,
i.e., a directed acyclic graph, in which every node corresponds to some random vari-
able. The intuitive reading of such a network is that the value of every node is causally
determined by the values of its parents in the graph. We can view such a network as
an abstract representation of a class of probabilistic processes, in which, whenever the
values of all parents of a node have been determined, an event occurs that propagates
these values to the node itself. Here, too, we can make the observation that, in general,
such a process is not not unique (because for any two nodes with no path between them,
the network does not specify which of the events associated to these nodes will happen
first), but that all these processes do generate the same distribution.

Now, for many domains, all of the relevant events might not fit directly into the rigid
structure that a Bayesian network imposes. This will be the case, for instance, when
more than one event is involved in determining the value of a single random variable,
or when the propagation of values does not always happen in the same direction. In
this sense, CP-logic extends Bayesian networks by allowing a more flexible and fine-
grained representation of causal events, in which such phenomena can be modeled in
a more direct and straightforward way. The uniqueness result described previously

92 CHAPTER 5. CAUSAL PROBABILISTIC LOGIC

shows that we can do this and still retain the property that every theory generates a
single probability distribution over possible final states of the domain.

In summary, this chapter presents the following contributions. We explore the dy-
namic nature of causality and develop a representation language for causal knowledge,
based on the construct of a causal probabilistic event. We prove that the information
contained in a set of CP-events suffices to be able to predict the end result of the evo-
lution of a domain. This study of causality extends and complements Pearl’s work on
this topic in a number of ways: we identify the concept of a CP-event as a unit of
causal information, that is more basic than the parents-child relation underlying causal
Bayesian networks. In this way, we get a more flexible and fine-grained representations
of causal events, which allows more straightforward, compact, and elaboration toler-
ant models of causal knowledge. Moreover, we are able to support and clarify Pearl’s
claims on the stability of causal information and its importance for achieving compact
representations, by showing that causal information captures precisely those aspects of
the behaviour of a probabilistic process that are relevant for its final outcome.

This chapter is structured as follows. In Section 5.2, we formally define an initial,
restricted version of CP-logic. In Section 5.3, we show how a certain kind of process
can be modeled in this basic language, which suggests a way of defining a more general
version of CP-logic. This will be done in Section 5.4. Section 5.5 then discussed the
resulting definitions in more detail. In Section 5.6, we investigate the precise relation
between CP-logic and Bayesian networks.

5.2 A logic of causal probabilistic events

In this section, we formally define the language of CP-logic. We assume that we have
a logical vocabularyΣ at our disposal, such that any particular state of our domain of
discourse corresponds to a Herbrand interpretation ofΣ, i.e., a set of ground atoms.
The restriction to Herbrand interpretations is made solely to ease notation; it is easy to
extend all our definitions and results to arbitrary domains. We will make the standard
distinction between properties that are endogenous (internal) to the process being mod-
eled and properties that are exogenous (external); the endogenous properties are those
which are affected by the process, while the exogenous properties simply describe the
context in which it is taking place. To this end, we split the predicates of our vocabulary
into a set of endogenous predicates and a set of exogenous ones.

5.2.1 Syntax

We want to describe the causes and effects of probabilistic events. A cause for an event
will be represented by a first-order sentenceϕ, i.e.,ϕ does not contain free variables.
To represent the effects of an event, we will assume that our vocabulary is constructed
in such a way that an event either does not affect the state of the domain at all, or causes
a single (property corresponding to a) ground atom with an endogenous predicate to
become true. ACP-eventis then a statement of the following form:

(p1 : α1) ∨ · · · ∨ (pn : αn)← ϕ, (5.5)

5.2. A LOGIC OF CAUSAL PROBABILISTIC EVENTS 93

whereϕ is a first order sentence, thepi are ground atoms with an endogenous predicate
and theαi are non-zero probabilities with

∑
αi ≤ 1. Such an expression is read as:

“Propertyϕ causes an event, whose effect is that at most one of the prop-
ertiespi becomes true, and for eachpi, the probability of it being caused
is αi.”

If an event has a deterministic effect, i.e., it always causes some atomp with proba-
bility 1, we also write simplyp← ϕ instead of(p : 1)← ϕ. We allow the precondition
ϕ to be absent, meaning that the CP-event always happens. In this case, the CP-event
is calledunconditionaland we omit the ‘←’-symbol as well.

A CP-theoryis a finite multiset of CP-events. Throughout this section, we will
restrict attention to CP-theories in which all sentencesϕ are positive formulas, i.e.,
they do not contain negation. Afterwards, Section 5.4 will examine how negation can
be added to CP-logic.

Example 5.1. We consider a medical example. Pneumonia might cause angina with
probability 0.2. Vice versa, angina might cause pneumonia with probability0.3. A
bacterial infection can cause either pneumonia (with probability0.4) or angina (with
probability0.1). We consider bacterial infection as exogenous.

(Angina : 0.2)← Pneumonia. (5.6)

(Pneumonia : 0.3)← Angina. (5.7)

(Pneumonia : 0.4) ∨ (Angina : 0.1)← Infection. (5.8)

We now define some notation to refer to different components of a CP-theory. The
headhead(r) of a rule r of form (5.5) is the set of all pairs(pi, αi) appearing in
the description of the effects of the event; the bodybody(r) of r is its precondition
ϕ. By headAt(r) we denote the set of all ground atomspi for which there exists
anαi such that(pi, αi) ∈ head(r). Similarly, by bodyAt(r) we will denote the set
of all ground atomsp which “appear”1 in body(r). For the above example, ifr is
the CP-event (5.8), thenhead(r) = {(Pneumonia, 0.4), (Angina, 0.1)}, headAt =
{Pneumonia,Angina}, body(r) = Infection andbodyAt(r) = {Infection}.

We will call a CP-eventE ← ϕ a rule if we want to emphasize that we are referring
to a syntactical construct. We also introduce the concept of anon-groundrule as a way
of concisely representing sets of CP-events with identical structure. Concretely, such a
non-ground rule is of the form:

∀x (A1 : α1) ∨ · · · ∨ (An : αn)← ϕ,

where the atomsAi and the formulaϕ now may contain free variables, taken from
the universally quantified tuple of variablesx. Such a non-ground rule is seen as an
abbreviation for the set of all rulesr[x/t] that result from replacing the variablesx
by a tuplet of ground terms in alphabetΣ. For instance, if we wanted to consider

1More formally, we usebodyAt(r) to denoteBF (body(r)), whereF is the Herbrand pre-interpretation
andBF (ϕ) is the base we defined in Definition 3.14 of Section 3.3.2.

94 CHAPTER 5. CAUSAL PROBABILISTIC LOGIC

multiple people in the above example, we might include constants{John,Mary} in
our vocabularyΣ and write the non-ground rule

∀x (Angina(x) : 0.2)← Pneumonia(x),

to abbreviate the two CP-events

(Angina(John) : 0.2)← Pneumonia(John).
(Angina(Mary) : 0.2)← Pneumonia(Mary).

Because CP-theories are finite, the use of such abbreviations only makes sense in the
context of a finite domain, i.e., when the vocabulary does not generate an infinite num-
ber of terms.

In our formal treatment of CP-logic, we will never consider non-ground rules, but
always assume that these have already been expanded into a finite set of regular CP-
events. When using such non-ground rules in examples, we will implicitly assume
that predicates, functions and constants have been appropriately typed, in such a way
as to avoid instantiations that are obviously not intended. In this way, we also allow
ourselves to use function symbols, without immediately creating an infinite grounding.

5.2.2 Semantics

This section defines the formal semantics of CP-logic. A CP-theory expresses cer-
tain knowledge about the dynamic evolution of a domain. To make this more formal,
we will assume that this evolution corresponds to a simple kind of probabilistic pro-
cess, similar to, e.g., the processes considered in (Halpern and Tuttle 1993). Con-
cretely, a process starts in some initial state and, through a sequence of possibly non-
deterministic events, it probabilistically progresses towards any of a number of possible
final states.

Our basic mathematical object will be that of a tree structure, in which the edges are
labeled with probabilities. Each node in this tree corresponds to a state of the domain,
with the root representing its initial state and the leaves its possible final states. For-
mally, we will assume a functionI that maps each nodes to a Herbrand interpretation
I(s), which represents the state of the domain to which this node corresponds.

Definition 5.1. Let Σ be a vocabulary. AprobabilisticΣ-processT is a pair〈T ; I〉,
such that:

• T is a tree structure, in which each edge is labeled with a probability, such that
for every non-leaf nodes, the probabilities of all edges leavings sum up to
precisely1;

• I is a mapping from nodes ofT to Herbrand interpretations ofΣ.

If we interpret the probability associated to an edge(s, s′) as the probability of
making a transition froms to s′ and assume that all these transitions are probabilis-
tically independent, then we can associate to each nodes the probabilityP(s) of a

5.2. A LOGIC OF CAUSAL PROBABILISTIC EVENTS 95

random walk in the tree, starting from its root, passing throughs. Indeed, for the root
⊥ of the tree,P(⊥) = 1 and for each other nodes, P(s) =

∏
i αi where theαi are

all the probabilities associated to edges on the path from the⊥ to s. Essentially, the
mappingP contains all the information that is present in the labeling of the edges and
vice versa. To ease notation, we will sometimes take the liberty of identifying a proba-
bilistic Σ-process〈T ; I〉 with the triple〈T ; I;P〉 and ignoring the labels on the edges
of T .

Each probabilisticΣ-process now induces an obvious probability distribution over
the states in which the domain described byΣ might end up.

Definition 5.2. LetΣ be a vocabulary andT = 〈T ; I;P〉 a probabilisticΣ-process. By
πT we denote the probability distribution that assigns to each Herbrand interpretation
I of Σ the probability

∑
s∈LT (I) P(s), whereLT (I) is the set of all leavess of T for

whichI(s) = I.

Like any probability distribution over interpretations, such aπT also defines a set
of possible worlds, namely that consisting of allI for which πT (I) > 0. If all the
probabilitiesP(s) are non-zero, then this is simply the set of allI(l) for which l is a
leaf ofT .

We now want to relate the transitions in such a probabilisticΣ-process to the events
described by a CP-theory.

Definition 5.3. Let Σ be a vocabulary,C a CP-theory in this vocabulary andT a
probabilisticΣ-process. Letr ∈ C be a CP-event of the form:

(p1 : α1) ∨ · · · ∨ (pn : αn)← ϕ.

We say thatr happensin a nodes of T if s hasn+ 1 childrens1, . . . , sn+1, such that:

• For all1 ≤ i ≤ n, I(si) = I(s) ∪ {pi} and the probability of edge(s, si) is αi;

• Forsn+1, I(sn+1) = I(s) and the probability of the edge(s, sn+1) is1−
∑

i αi.

For simplicity, we will omit edges labeled with a probability of zero; this does not
affect any of the following material.

This definition now allows us to link the transitions in a probabilisticΣ-processT
to the events of a CP-theoryC. Formally, we will consider a mappingE from each
nodes of T to an associated CP-eventr ∈ C. Because, in our terminology, an event is
something that happens at most once, the following definition will also consider, for a
nodes, the set of all events that have not yet happened ins, i.e., the set of allr ∈ C for
which there does not exist an ancestors′ of s such thatE(s′) = r. We will denote this
set asRE(s).

Definition 5.4 (Execution model–positive case).Let C be a positive CP-theory and
X an interpretation of the exogenous predicates. A probabilisticΣ-processT = 〈T ; I〉
is anexecution modelof C in contextX, writtenT |=X C, iff there exists a mapping
E from the non-leaf nodes ofT toC, such that:

• For the root⊥ of T , I(⊥) = X;

96 CHAPTER 5. CAUSAL PROBABILISTIC LOGIC

Notation:
I(s)α1

{{xx
x

αn

##G
GGE(s)

��
I(s1) ··· I(sn)

{Inf}
0.4

yyssssssssss
0.1

&&LLLLLLLLLLL

0.5

event (5.8)

��
{Inf, Pn}

0.2

xxppppppppppp

0.8

event (5.6)

��

{Inf}
0.5

{Inf,Ang}

0.3

event (5.7)

��

0.7

&&MMMMMMMMMMM

{Inf, Pn, Ang}
0.08

{Inf, Pn}
0.32

{Inf, Ang, Pn}
0.03

{Inf, Ang}
0.07

I {Inf, Pn,Ang} {Inf, Pn} {Inf,Ang} {Inf}
πT (I) 0.11 0.32 0.07 0.5

Figure 5.1: A processT for Example 5.1 and its distributionπT .

• In each non-leaf nodes, an eventE(s) ∈ RE(s) happens, such that its precondi-
tion is satisfied ins, i.e.,I(s) |= body(E(s));

• For each leafl of T , there are no eventsr ∈ RE(s) for whichI(l) |= body(r).

If there are no exogenous predicates, we simply writeT |= C.

Example 5.1 has one execution model for every specific contextX; the process for
X = {Infected} is depicted in Figure 5.1. In general, however, execution models are
not unique. Let us illustrate this by another example.

Example 5.2. John and Mary are each holding a rock. John will throw his rock at a
window. With probability0.5, Mary will also throw her rock at this window. With
probability 0.6, John’s rock will hit the window, causing it to break, whereas Mary
throwing her rock will cause the window to break with probability0.8.

(Break : 0.8)← Throws(Mary). (5.9)

(Break : 0.6)← Throws(John). (5.10)

(Throws(Mary) : 0.5). (5.11)

Throws(John). (5.12)

This example has a number of different execution models. Two of these are de-
picted in Figure 5.2. We observe that, even though in these two processes events hap-
pen in a different order, they produce precisely the same probability distribution. This
is a general property of positive CP-theories.

Theorem 5.1 (Uniqueness—positive case).LetC be a positive CP-theory. IfT1 and
T2 are both execution models ofC, thenπT1 = πT2 .

Proof. Proof of all the theorems in this chapter can be found in Chapter 6.

As Example 5.2 illustrates, the causal information expressed by a CP-theory typi-
cally does not suffice to completely characterize a single probabilistic process, i.e., a

5.2. A LOGIC OF CAUSAL PROBABILISTIC EVENTS 97

{}
0.5

wwooooooooooooo
event (5.11) 0.5

&&NNNNNNNNNNNNNN

{T (M)}
event (5.9)0.8

wwooooooooooo
0.2

''OOOOOOOOOOO
{}

1
event (5.12)

��
{T (M), B}

1
event (5.12)

��

{T (M)}

1
event (5.12)

��

{T (J)}

0.6
event (5.10)

��

0.4

##G
GG

GG
GG

GG

{T (M), B, T (J)}

0.6
event (5.10)

��

0.4

''OOOOOOOOOOO
{T (M), T (J)}

0.6
event (5.10)

��

0.4

&&NNNNNNNNNNN
{T (J), B} {T (J)}

{T (M), B, T (J)} {T (M), B, T (J)} {T (M), B, T (J)} {T (M), T (J)}
I {T (M), T (J), B} {T (M), T (J)} {T (J), B} {T (J)}

πT1(I) 0.46 0.04 0.3 0.2

(a)T1: Mary throws—Mary’s rock hits—John throws—John’s rock hits.

{}

1
event (5.12)

��
{T (J)}

0.5

wwooooooooooo
0.5

&&NNNNNNNNNNN
event (5.11)

{T (J), T (M)}
0.8

wwooooooooooo
0.2

''OOOOOOOOOOO
event (5.9)

{T (J)}

0.6
event (5.10)

��

0.4

##G
GG

GG
GG

GG

{T (J), T (M), B}

0.6
event (5.10)

��

0.4

''OOOOOOOOOOO
{T (J), T (M)}

0.6
event (5.10)

��

0.4

&&NNNNNNNNNNN
{T (J), B} {T (J)}

{T (M), T (J), B} {T (M), T (J), B} {T (M), T (J), B} {T (M), T (J)}
I {T (M), T (J), B} {T (M), T (J)} {T (J), B} {T (J)}

πT1(I) 0.46 0.04 0.3 0.2

(b) T2: John throws—Mary throws—Mary’s rock hits—John’s rock hits.

Figure 5.2: Two processes for Example 5.2.

98 CHAPTER 5. CAUSAL PROBABILISTIC LOGIC

CP-theory specifies some aspects of the behaviour of such a process, but not all. The
above theorem now tells us that, as long as we are only interested in the end result
of the process, all aspects that are not specified are actually irrelevant. This result is
important for two reasons.

First, this result also suggests an appealing explanation for why causality is such a
useful and important concept: causal information tells you just enough about the be-
haviour of a process to be able to predict its final outcome in every possible context,
while allowing irrelevant details to be ignored. As such, it offers a compact and ro-
bust representation of the class of probability distributions that can result from such a
process.

Second, in our construction of CP-logic, we have focused on the dynamic aspect
of causality, which has motivated us to define the semantics of this language in terms
of probabilistic processes. In this respect, CP-logic differs from the more common
approach of, e.g., Bayesian networks, in which causal information is viewed as a de-
scription of a probability distribution over possible states of a domain. The above
theorem relates these two views, because it allows us to not only view a CP-theory as
describing a class of processes, but also as defining a unique probability distribution.

Definition 5.5. LetC be a CP-theory andX an interpretation for the exogenous pred-
icates ofC. By πX

C , we denote the unique probability distributionπT , for which
πT |=X C. If there are no exogenous predicates, we simply writeπC .

A CP-theory can be viewed as mapping each interpretation for the exogenous pred-
icates to a probability distributions over interpretations of the endogenous predicates
or, to put it another way, as a conditional distribution over interpretations of the en-
dogenous predicates, given an interpretation for the exogenous predicates.

Definition 5.6. Let C be a CP-theory andπ a probability distribution over interpre-
tations of all the predicates ofC. π is a modelof C, denotedπ |= C iff for each
interpretationX of the exogenous predicates withπ(X) > 0 and each interpretationJ
of the endogenous predicates,π(J | X) = πX

C (J).

If a CP-theoryC has no exogenous predicates, then there is a uniqueπ for which
π |= C and this is, of course, simply the distributionπC .

Having defined this formal semantics for CP-logic, it is natural to ask how the
causal interpretation that we have informally attached to expressions in our language is
reflected in it. We see that every execution model of a CP-theory satisfies the following
four properties, which seem to be fundamental principles of causal reasoning.

• The principle ofuniversal causationstates that an endogenous property can only
be true if it has been caused by some event, i.e., all changes to the endogenous
state of the domain must happen as the consequence of an event.

• The principle ofsufficient causationstates that if an event has a cause, then it
must eventually occur.

• The principle ofno deus ex machina eventsstates that events do not happen
spontaneously, i.e., an event can only occur if there is a cause for this and, more-
over, events cannot cause themselves. This is a fundamental principle of causal
reasoning, that goes back as far as Aristotle.

5.3. MODELLING MORE COMPLEX PROCESSES IN CP-LOGIC 99

· · ·
Day 1 Day 2

Figure 5.3: A global process as a sequence of local processes.

• The principle ofindependent causationstates that every event affects the state of
the world in a probabilistically independent way, i.e., knowing the outcome of
one event does not give any information about the outcome of a different event.
This principle ensures the modularity and robustness of the representation.

We now turn our attention to the question of whether we can extend the above
definitions to the case where negation might appear in a CP-theory. However, this
extension only makes sense in light of a certain modelling methodology for CP-logic,
which we therefore first need to explain.

5.3 Modelling more complex processes in CP-logic

The kind of processes that we have been considering until now has been quite limited;
in particular, the concept oftimehas been completely absent from them. For instance,
when we spoke of “chest pain”, this was a general, time-less property and not, say, chest
pain at 9 a.m. on Monday morning. However, it is clear that being able to distinguish
between the truth of the same property at different time points is often desirable. The
following example illustrates this.

Example 5.3. A patient is admitted to hospital with pneumonia and stays there for
a number of days. At each day, the pneumonia might cause him to suffer chest pain
on that particular day with probability0.6. With probability 0.8, a patient who has
pneumonia on one day still has pneumonia the next day.

On the one hand, this example describes a progression through a sequence of days.
On the other hand, for each day, it also describes an event that takes place entirely
during this one particular day. In general, a process of this kind will look something
like Figure 5.3: the global structure of the process is a succession between different
time points and, at each particular time point, a local process might take place. In such
a process, we can, therefore, distinguish two different kinds of events:

• There are events which propagate from one time point to the next; these make up
the global structure of the process and are represented in Figure 5.3 by full-line
arrows;

• There are events which take place entirely within in a single time point; these
are part of some local process and are represented in Figure 5.3 by dotted-line
arrows.

This raises the obvious question of how these more complicated processes relate to
CP-logic. An important difference between modelling such processes and modelling

100 CHAPTER 5. CAUSAL PROBABILISTIC LOGIC

{}

1
E1

��

Events:
E1:(Pn(1):1).

E2:(Cp(1):0.6)←Pn(1).

E3:(Pn(2):0.8)←Pn(1).

E4:(Cp(2):0.6)←Pn(2).

E5:(Pn(3):0.8)←Pn(2).

· · ·
{Pn(1)}

0.6

uullllllllllllll
0.4

((QQQQQQQQQQQQ
E2

{Pn(1),Cp(1)}

0.8
E3

��

0.2

))SSSSSSSSSSSSSS {Pn(1)}

0.8
E3

��

0.2

''OOOOOOOOOOO

{Pn(1),Cp(1),Pn(2)}

0.6
E4

��

0.4

))SSSSSSSSSSSSSS {Pn(1),Cp(1)} {Pn(1),Pn(2)}

0.6
E4

��

0.4

''OOOOOOOOOOO {Pn(1)}

{Pn(1),Cp(1),Pn(2),Cp(2)} {Pn(1),Cp(1),Pn(2)} {Pn(1),Pn(2),Cp(2)} {Pn(1),Pn(2)}

··· ··· ··· ···

Figure 5.4: Initial segment of the intended model of Example 5.3.

the simpler processes of Section 5.2.2, is that we now need to distinguish between
the values of properties at different time points, i.e., we can no longer represent every
relevant property by a single ground atom, but instead we need a ground atom for
every pair of such a property and a time point. For instance, to describe Example 5.3,
we could construct an alphabet which has the following ground atoms:

• Referring to Day 1:{Pneumonia(1), Chestpain(1)};

• Referring to Day 2:{Pneumonia(2), Chestpain(2)};

• . . .

Of course, it might be equally possible to use some other representation, such as
Pneumonia(Succ(Firstday)) or Pneumonia2 instead ofPneumonia(2). With
the above alphabet, we can model Example 5.3 as follows:

Pneumonia(1). (5.13)

∀d (Pneumonia(d+ 1) : 0.8)← Pneumonia(d). (5.14)

∀d (Chestpain(d) : 0.6)← Pneumonia(d). (5.15)

Here, the CP-events described by (5.14) are of the kind that propagate from one time
point to a later time point, whereas (5.15) describes a class of “instantaneous” events,
taking place inside of a single time point.

According to the informal description of Example 5.3, the intended model is the
process shown in Figure 5.4. It can easily be seen that this is indeed an execution model

5.3. MODELLING MORE COMPLEX PROCESSES IN CP-LOGIC 101

of the above CP-theory. We remark that this theory also has other execution models,
which do not respect the proper ordering of time points, such as, e.g., the process
in which all events that are instantiations of (5.14) happen before the instantiations
of (5.15). However, since these “wrong” processes all generate the same probability
distribution as the intended process anyway, this is harmless.

We also observe that, here, the correspondence between the states of the execution
model and the actual states of the real world is less direct than it was in the examples of
Section 5.2.2. Indeed, now, a state of an execution model not only describes the current
state of the real world (as it did in Section 5.2.2), but also contains a trace of the entire
history of the real world until that point.

Let us now make the above discussion more formal. We assume that, when con-
structing the alphabetΣ, we had in mind some functionλ from the Herbrand base ofΣ
to an interval[0..n] ⊆ N, such that, in our desired interpretation of this alphabet, each
atomp refers to the state of some property at time pointλ(p). Typically, one would
construct such an alphabet by adding explicit temporal arguments to predicates, as is
done in, e.g., the event calculus or situation calculus. In the case of the above example,
we had in mind the followingλ:

• For each ground atomPneumonia(i), λ(Pneumonia(i)) = i;

• For each ground atomChestpain(i), λ(Chestpain(i)) = i.

If we now look again at the CP-events we wrote for this example, we observe that,
whenever there is an atom in the head of a CP-eventr that refers to the truth of some
property at timei and an atom in the body ofr that refers to the truth of some property
at timej, it is the case thati ≥ j. This is of course not a coincidence. Indeed, because,
in the real world, causes precede effects, it should be impossible that the cause-effect
propagation described by a CP-event goes backwards in time. We also remark that if
the equalityi = j holds, the event is instantaneous (w.r.t. this particular granularity of
time), i.e., it is one of those events that takes place entirely within a single time point.

Definition 5.7. Let Σ be a vocabulary. A mappingλ from ground atoms ofΣ to some
interval [0..n] ⊆ N is a temporal assignmentfor a CP-theoryC iff, for every r ∈ C, if
h ∈ headAt(r) andb ∈ bodyAt(r), thenλ(h) ≥ λ(b).

Such a temporal assignmentλ also contains information about when events might
happen. Concretely, if a CP-eventr happens at time pointi, then we would expecti
to lie somewhere between the maximum of allλ(b) for which b ∈ bodyAt(r), and the
minimum of allλ(h) for whichh ∈ headAt(r). For a ruler, we writetλ(r) to denote
this interval, i.e.,

tλ(r) = [max
b∈body(r)

λ(b), min
h∈headAt(r)

λ(h)].

Now, if we are constructing a CP-theory with a particular temporal assignmentλ in
mind, then the process we are trying to model should be such that every CP-eventr
that actually happens does so at some time pointκ(r) ∈ tλ(r). We remark that if an
eventr is instantaneous, then the intervaltλ(r) will consists of a single time point and
it is indeed clearly at this time point that the event should then happen.

A temporal assignmentλ therefore imposes the following constraint on which pro-
cesses can be considered reasonable.

102 CHAPTER 5. CAUSAL PROBABILISTIC LOGIC

{Pn}
0.95

����
��

��
�

0.05

 A
AA

AA
AA(5.17)

{Pn, Tr} {Pn}
0.3

~~}}
}}

}}
}

0.7
(5.16)

��
{Pn} {Pn,Dth}

(a) Sequence (5.17)–(5.16).

{Pn}

0.7
(5.16)

��

0.3

""F
FF

FF
FF

F

{Pn,Dth}
0.95

yyttttttttt
0.05

(5.17)

��

{Pn}

0.95
(5.17)

��

0.05

��>
>>

>>
>>

{Pn,Dth, Tr} {Pn,Dth} {Pn, Tr} {Pn}

(b) Sequence (5.16)–(5.17).

Figure 5.5: Two processes for Example 5.4.

Definition 5.8. LetC be a CP-theory with alphabetΣ andλ a temporal assignment for
C. A mappingκ from r to N respectsλ if for every CP-eventr, κ(r) ∈ tλ(r). For such
aκ, we say that aC-processT is aκ-process if events happen in the order imposed by
κ, i.e., if for all successorss′ of a nodes, κ(E(s′)) ≥ κ(E(s)). Finally, aC-processT
followsλ if there exists aκ that respectsλ and for whichT is aκ-process.

It can now be shown that for any CP-theoryC and any temporal assignmentλ for
C, C will have an execution model that followsλ.

Theorem 5.2. LetC be a CP-theory with a temporal assignmentλ. There exists an
execution modelT ofC, such thatT followsλ.

This result shows that if we construct a CP-theoryC with a particular temporal
assignment in mind, thenC will have an execution model in which the events happen
in precisely the order dictated by this temporal assignment. Therefore, the modelling
methodology that we have suggested in this section is indeed valid. In the case of
Example 5.3, the process shown in Figure 5.4 is an execution model that follows the
temporal assignmentλ specified above.

5.4 CP-logic with negation

So far, we have only considered positive formulas as preconditions to events. In this
section, we examine whether it is possible to relax this requirement. We first consider
a small example.

Example 5.4. Having pneumonia causes a patient to receive treatment with probability
0.95. Untreated pneumonia may cause death with probability0.7.

(Death : 0.7)← Pneumonia ∧ ¬Treatment. (5.16)

(Treatment : 0.95)← Pneumonia. (5.17)

Figure 5.5 shows two processes for this example that satisfy all the requirements
that we previously imposed for positive theories. It is obvious, however, that in this

5.4. CP-LOGIC WITH NEGATION 103

case the difference between these two processes does affect the final outcome, since the
probability of survival is much better in the first process. So, simply including nega-
tion in this naive way would give rise to ambiguities, causing our desirable uniqueness
property (Theorem 5.1) to be lost. At first sight, this might suggest that we should for-
get about negation altogether. However, it turns out that it is possible to do something
better.

The key idea is the distinction made earlier between two different kinds of events:
instantaneous events that take place entirely within a single time point and events that
propagate from one time point to a later one. Now, if negation appears in the description
of an event of the first kind, then this is truly ambiguous and there is no way of singling
out some intended interpretation. However, the situation is different when negation
appears in the description of the second kind of event. Indeed, let us assume, for
instance, that (5.16) is such an event. This means that ifTreatment is a property
whose truth gets decided at a certain point in time (for instance, when the patient is
first admitted to hospital), thenDeath is a property that describes the condition of
the patient at some strictly later time (for instance, after she has been in hospital for
a week). Under this interpretation, it is clear that patient cannot die before she has
had the chance to receive treatment. So, from our assumption, it directly follows that
whichever events make up the part of the process that determines whether the patient
receives treatment, should take place before event (5.16), i.e., in this case, process
5.5(a) is right and process 5.5(b) is wrong.

Our approach to including negation into CP-logic is now that we will simply ex-
clude the ambiguous case from consideration, i.e., we prohibit the use of negation in
instantaneous events. We can then strengthen the concept of an execution model, as we
first defined it for positive theories, in such a way that it produces the correct result for
the remaining theories. In other words, we will adapt our semantics in such a way that,
for instance, a CP-event of the form:

(P : 0.5)← ¬Q

will be interpreted as thoughQ is an atom that refers to some property at time point
i andP refers to some property at timej with j > i. Ultimately, it is then of course
the responsibility of the user to make sure that this interpretation corresponds to her
intentions. Essentially, this boils down to ensuring that the vocabulary is built using a
sufficiently fine-grained notion of time.

To formally extend our semantics in this way, we need some more mathematical
machinery. The basic idea is that, before we allow an event to happen, we should make
sure that our process has actually already progressed far enough along; to be more
concrete, if we have an eventr whose precondition contains some negative literal¬A
andA is an atom that might be caused at time pointi, thenr should, at the earliest,
happen at time pointi + 1. Of course, CP-logic does not explicitly incorporate any
information about time points, which makes it not completely obvious how we should
incorporate this idea into our semantics. However, we can nevertheless extract the
wanted information from a CP-theory, by considering whether the current truth value
of A is final or whether it is still subject to change. Indeed, if the process is currently
in a state whereA is false, but it is still possible that an event happens which causesA,

104 CHAPTER 5. CAUSAL PROBABILISTIC LOGIC

then we must be in some time pointj for whichj ≤ i and, therefore, it is still too early
for the eventr to happen.

Formalizing this idea requires us to take into account the possibility that, in some
particular state, the truth of a formula is still “in progress,” i.e., that it is still unknown
whether it will eventually hold or not. This brings us naturally to three valued logic,
where, as we already saw in Chapter 2, we have truth valuest (already certainly true),f
(already certainly false), andu (still unknown). Recall that a three-valued interpretation
ν is a mapping from the ground atoms of our vocabulary to the set of truth values
{t, f ,u}, which induces for each formulaϕ a truth valueϕν .

Now, if our probabilistic process is in a states, then the atoms of which we are
already sure that they are true are precisely those inI(s). To figure out which atoms
are still unknown, we need to look at which events might still happen, i.e., at those rules
r, for which body(r)ν 6= f . Whenever we find such a rule, we know that the atoms
in head(r) might all still be caused and, as such, they must be at least unknown. We
will now look at a derivation sequence, in which we start by assuming that everything
that is currently nott is f and then gradually build up the set of unknown atoms by
applying this principle. Formally, we consider a sequence(νi)0≤i≤n of three-valued
interpretations. Initially,ν0 assignsf to all atoms not inI(s). For eachi > 0, there
must be a ruler with body(r)νi 6= f , such that, for allp ∈ head(r) with νi(p) = f , it
is the case thatνi+1(p) = u, while for all other atomsp, νi+1(p) = νi(p). A sequence
that satisfies these properties is called ahypothetical derivation sequencein s. Such a
sequence isterminal if it cannot be extended. A crucial property is now that all such
sequences reach the same limit.

Theorem 5.3. Every terminal hypothetical derivation sequence reaches the same limit,
i.e., if (νi)0≤i≤n and(ν′i)0≤i≤m are such sequences, thenνn = ν′m.

For a states in a probabilistic process, we will denote this unique limit asνs. Such
a νs now provides us with an estimate of which atoms might still be caused, given
that we are already in states. We can now tell whether the part of the process that
determines the truth of a formulaϕ has already finished by looking atνs; indeed. we
can consider this process to be finished iffϕνs 6= u. We now extend the concept of an
execution model to arbitrary CP-theories as follows.

Definition 5.9. LetC be a CP-theory in alphabetΣ, T a probabilisticΣ-process, and
X an interpretation of the exogenous predicates ofC. T is anexecution modelof C in
contextX iff

• T satisfies the conditions of Definition 5.4 (execution model–positive case);

• For every nodes, (body(E(s))νs 6= u.

In the case of Example 5.4, this indeed gives us the result described above, i.e., the
process in Figure 5.5(a) is an execution model of the example, while the one in Figure
5.5(b) is not. Indeed, if we look at the root⊥ of this tree, withI(⊥) = {Pneumonia},
we see that we can construct the following terminal hypothetical derivation sequence:

• ν0 assignsf to Treatment andDeath;

5.5. DISCUSSION 105

• ν1 assignsu to Treatment;

• ν2 assignsu toDeath, because(¬Treatment ∧ Pneumonia)ν1 = u;

As such, the only event that can initially happen is the one by which the patient might
receive treatment. Afterwards, in every descendants of ⊥, νs(Treatment) will be
eithert of f . In the branch where it isf , the event by which the patient dies of untreated
pneumonia will subsequently happen.

In Section 5.2.2, we isolated a number of important principles from our definition of
the semantics of CP-logics. In a similar way, the extra condition that we have imposed
in this section can be formulated as follows.

• Theprinciple of temporal precedencestates that, whenever a propertyϕ might
cause an eventE, then the part of the process that is involved in determining the
truth ofϕ happensbeforethe eventE itself can happen.

Under the assumptions we have been making in this section—namely, that atoms are
linked to time points in such a way that negation only occurs in events where there is
a propagation from one time point to a later one—-this principle can be motivated by
the fundamental property of the physical world that a cause must always precede its
effects.

5.5 Discussion

We now check whether the way in which the previous section has extended the concept
of an execution model to cope with negation indeed satisfies the goals that we originally
stated.

5.5.1 The case of positive theories

First of all, we remark that, for positive CP-theories, the new definition (Def. 5.9)
simply coincides with the original one (Def. 5.4). Indeed, because, according to our
original definition, it must be the case thatI(s) |= E(s) for each non-leaf nodes, this
is an immediate consequence of the following trivial theorem.

Theorem 5.4. Let s be a node in a probabilisticΣ-process. For any positive formula
ϕ, if I(s) |= ϕ, thenνs(ϕ) = t.

Proof. Throughout a hypothetical derivation sequence, the truth of an atomp can only
increase; in particular, ifνi(p) = t, thenνi+1(p) = t. The theorem therefore follows
by induction from the fact that, by definition,I(s) |= ϕ impliesϕν0 = t.

We conclude that, for positive CP-theories, the new definition is simply equivalent
to the old one.

106 CHAPTER 5. CAUSAL PROBABILISTIC LOGIC

5.5.2 Uniqueness theorem regained

Second, the uniqueness theorem now indeed extends beyond positive theories.

Theorem 5.5 (Uniqueness—general case).Let C be a CP-theory andX an inter-
pretation of the exogenous predicates ofC. If T andT ′ are execution models ofC in
contextX, i.e.,T |=X C andT ′ |=X C, thenπT = πT ′ .

Proof of this theorem will again be provided in Chapter 6,

5.5.3 Events can happen in the right order

Third, we will now show that it is indeed the case that the intended models of a
theory—i.e., those processes in which the progression of time points happens in the
right order—satisfy the additional condition that we have imposed. To formalize our
assumption that negation does not appear in instantaneous events, we need to make a
distinction between those atoms from somebodyAt(r) that appear only in apositive
context and those which occur at least once in anegativecontext. The set of all
the latter atoms will be denoted asbody−At(r), whereas that of all the former ones is
body+

At(r)
2. Using this notation, we can now formalize our assumption as follows.

Definition 5.10. A CP-theoryC is stratifiedif there exists a mappingλ from its Her-
brand base toN, such that, for all ground atomsh andb:

• If there is CP-eventr with h ∈ headAt(r) andb ∈ body+
At(r), thenλ(h) ≥ λ(b);

• If there is CP-eventr with h ∈ headAt(r) andb ∈ body−At(r), thenλ(h) > λ(b);

We remark that, in particular, all positive theories are stratified, because, for such a
theory, we can simply assign the same number to all ground atoms. The following is
an example of a more complex stratified theory.

Example 5.5. We consider a time line divided into a number of different time slots,
as illustrated in Figure 5.6. In the first time slot, a client sends a request to a server. If
the server receives a request, then with probability0.5, he accepts it and sends a reply,
all within the same time slot as that in which he received the request. If the client has
sent a request and has not received a reply at the end of the time slot, he will repeat his
request. A message that is sent has a probability of0.8 of reaching the recipient in the

2Formally, we define, for all sentencesϕ, the setsAt+(ϕ) andAt−(ϕ) by simultaneous induction as:

• Forp(t) a ground atom,At−(p(t)) = {} andAt+(p(t)) = {p(t)};

• Forϕ◦ψ, with ◦ either∨ or∧,At+(ϕ◦ψ) = At+(ϕ)∪At+(ψ) andAt−(ϕ◦ψ) = At−(ϕ)∪
At−(ψ);

• For¬ϕ,At+(¬ϕ) = At−(ϕ) andAt−(¬ϕ) = At+(ϕ);

• For Θx ϕ, with Θ either∀ or ∃, At+(Θx ϕ) = ∪t∈HU (Σ)At
+(ϕ[x/t]) andAt−(Θx ϕ) =

∪t∈HU (Σ)At
−(ϕ[x/t]), whereHU (Σ) is the Herbrand universe.

We can then definebody−At(r) = At−(body(r)) andbody+At(r) = bodyAt(r) \ body−At(r).

5.5. DISCUSSION 107

Time slot 1 Time slot 2

Figure 5.6: A division into time slots.

same time slot as it was sent; with probability0.1, it reaches the recipient only in the
next slot; with the remaining probability of0.1, it will be lost.

(Send(Client,Req, Server, 1) : 0.7). (5.18)

∀t (Accept(t) : 0.5) ∨ (Reject(t) : 0.5)← Recvs(Server,Req, t). (5.19)

∀t Send(Server,Answer, Client, t)← Accept(t). (5.20)

∀t, s, r,m (Recvs(r,m, t) : 0.8)∨(Recvs(r,m, t+ 1) : 0.1)
← Send(s,m, r, t).

(5.21)

∀t Send(Client,Req, Server, t+ 1)← Send(Client,Req, Server, t)
∧ ¬Recvs(Client,Answer, t).

(5.22)

In this CP-theory, the events described by (5.18), (5.19) and (5.20) all take place
inside of a single time slot; the events described by (5.21) might either take place within
one time slot or constitute a propagation to a later time slot, depending on which of the
possible effects actually occurs; finally, the events described by (5.22) all propagate to
a later time slot. Because these last events are the only ones in which negation occurs,
this theory is indeed stratified with respect to the obvious functionλ that maps each
ground atom to the temporal argument appearing in it. Because the theory therefore
satisfies our assumption, we would expect our semantics to give the intended result.
The following theorem shows that this is indeed the case.

Theorem 5.6. LetC be a CP-theory which has a stratificationλ. Every probabilistic
Σ-process that followsλ and satisfies the original conditions of Definition 5.4 also sat-
isfies the additional condition imposed by Definition 5.9 and is, therefore, an execution
model ofC. Moreover, such a process always exists.

This theorem shows that if we construct a CP-theory with a given temporal assign-
ment in mind, and make sure that the assumption about the use of negation is satisfied,
then this theory will have an execution model in which the events happen in the in-
tended order.

We remark that non-stratified theories do not always have an execution model. Let
us illustrate this by the following example.

Example 5.6. A game is being played between two players, calledWhite andBlack.
If White does not win, this causesBlack to win and ifBlack does not win, this causes

108 CHAPTER 5. CAUSAL PROBABILISTIC LOGIC

White to win.

Win(White)← ¬Win(Black).
Win(Black)← ¬Win(White).

This CP-theory does not have an execution model. Indeed, for the root⊥ of any such
model, it would be the case thatI(⊥) = {}, which means that the bodies of both rules
are satisfied, so, by the principle of sufficient causation, one of these events should hap-
pen. However, it is also the case that(¬Win(White))ν⊥ = u = (¬Win(Black))ν⊥ ,
so neither event can happen.

If a CP-theory has no execution models, then this means that it either violates our
assumption about the use of negation, or simply represents an incorrect or incomplete
model of the domain in question. Indeed, it is clear that, for instance, the above example
does not suffice to describe a game that could be played in practice; obviously one of
the two players should win, but there is no way of deciding which.

Theories which have no execution models are obviously not of interest.

Definition 5.11. A CP-theoryC is valid in an interpretationX for its exogenous pred-
icates if it has at least one execution model in contextX. If C is valid in all contexts
X, we simply say thatC is valid.

Clearly, it is only if C is a valid CP-theory, that we can associate a probability
distributionπC to it.

This discussion raises the question of whether there are actuallyanyreasonable CP-
theories that are not stratified. To answer this question, we observe that the existence
of a stratification is a purely syntactical concept and there might be theories which are,
intuitively or semantically speaking, “stratified” in some sense, but not syntactically
so. For instance, we could consider the following example.

Example 5.7. We consider a rather trivial game, in which there is a stack of two ob-
jects. In every turn, a player may remove either one or two of these objects. The player
to take the last object wins. Let us assume that this game is played between two players
A andB, who both make random moves, and that these players flip a coin to decide
who goes first. We can model this game by the following (rather contrived) set of CP-
events, which essentially states that the player who starts gets a chance to win the game
(by taking both objects), but if he does not take this chance, then the other player will
win (by making the only available move of taking the last remaining object).

(Starts(A) : 0.5) ∨ (Starts(B) : 0.5). (5.23)

(Win(A) : 0.5)← Starts(A). (5.24)

(Win(B) : 0.5)← Starts(B). (5.25)

Win(A)← Starts(B) ∧ ¬Win(B). (5.26)

Win(B)← Starts(A) ∧ ¬Win(A). (5.27)

5.5. DISCUSSION 109

{}
0.5

xxqqqqqqqqqqqq
0.5

&&MMMMMMMMMMMM
event (5.23)

��{S(A)}
0.5

xxqqqqqqqqqq
0.5

event (5.24)

��

{S(B)}
0.5

xxqqqqqqqqqq
0.5

event (5.25)

��
{S(A),W (A)} {S(A)}

1
event(5.27)

��

{S(B),W (B)} {S(B)}

1
event(5.26)

��
{S(A),W (B)} {S(B),W (A)}

Figure 5.7: An execution model for Example 5.7.

Even though, technically speaking, this example is not stratified, it is clear that,
once it has been decided which player will start, the remaining game (i.e., the set of
rules in which the right player starts) does satisfy the assumption that all events con-
taining negation propagate from one time point (the first move) to a later time point
(the second move). Such examples, which do not admit a static, syntactical stratifica-
tion, but which do have this kind of dynamic, semantical “stratification”, can also be
handled by our semantics. Indeed, Figure 5.7 shows an execution model for the above
example.

5.5.4 The representation of time in CP-logic

In the preceding sections, we have encountered two quite different styles of knowledge
representation, namely that in which the vocabulary explicitly includes time and that
in which it does not. The first style is perhaps more typical of logic-based languages—
we have already mentioned situation and event calculus in this respect—whereas the
second kind seems to be more common for, e.g., Bayesian networks. Both styles are
useful and natural ways of thinking about causal events. It is therefore an interesting
feature of CP-logic that it allows both to be used, possibly even within the same theory,
i.e., it might be perfectly reasonable to make time explicit for only certain properties
or certain time points.

On the one hand, abstracting away time often leads to significantly smaller and
simpler representations. On the other hand, theories with explicit time also have certain
advantages: for instance, it might be easier to prove their correctness with respect
to a given specification or they might be more robust with respect to future changes.
The decision whether to make time explicit—and to what extent—is partly up to the
intuitions and taste of the knowledge engineer. There are, however, also some objective
indications that explicit time might be needed.

First of all, it might be the case that time already plays a significant role in the prob-
lem description itself. For instance, a person who has contracted a contagious disease
might infect a person they come into contact with, but only if the contact occursafter
the initial infection. If such properties are relevant to the situation being modeled, then

110 CHAPTER 5. CAUSAL PROBABILISTIC LOGIC

some form of temporal arguments will be necessary. Second, in a theory where time
is implicit (or not sufficiently fine-grained), negation might appear in instantaneous
events, which could yield undesirable results. By including explicit temporal argu-
ments (of an appropriate granularity), this problem can be solved. Third, the semantics
of CP-logic assumes that each ground atom represents a property that starts out being
false and might become true. Therefore, if it is necessary to handle properties whose
truth value might change more than once—for instance, some movable object might
start out at rest, then move for a while, but eventually halt again—then at least as much
temporal detail must be introduced as is needed to distinguish between the different
states of this property.

5.6 The relation to Bayesian networks

In this section, we investigate the relation between CP-logic and Bayesian networks.
Because CP-logic is meant to offer a more fine-grained and flexible representation
of causal events than Bayesian networks, we would expect our analysis to show the
following. First of all, if all the events in some domain happen to fit directly into
the structure imposed by a Bayesian network, then the representation of this domain
should be essentially the same in both formalisms. Second, if this is not the case, then
we would expect CP-logic to offer some representational advantages.

Before we begin, let us briefly recall the definition of a Bayesian network. Such a
network consists of a directed acyclic graph and a number of probability tables. Every
noden in the graph represents a random variable, which has some domaindom(n) of
possible values. A networkB defines a unique probability distributionπB over the set
of all possible assignmentsn1 = v1, . . . , nm = vm of values to all of these random
variables, with allvi ∈ dom(ni). First, thisπB must obey a probabilistic independence
assumption expressed by the graph, namely, that every noden is probabilistically in-
dependent of all of its non-descendants, given its parents. This allows the probability
πB(n1 = v1, . . . , nm = vm) of such an assignment of values to all random variables
to be rewritten as a product of conditional probabilities

∏
i πB(ni = vi | pa(ni) = v),

where eachpa(ni) is the tuple of all parents ofni in the graph. The probability tables
associated to the network now specify precisely all of these conditional probabilities
πB(ni = vi | pa(ni) = v). The second condition imposed onπB is then simply that all
of these conditional probabilities must match the corresponding entries in these tables.
It can be shown that this indeed suffices to uniquely characterize a single distribution.

5.6.1 Bayesian networks in CP-logic

As already explained in the introduction, a Bayesian network can also be seen as a
description of a class of probabilistic processes. We now first make this more precise.
To make it easier to compare to CP-logic later on, we will start by introducing a logical
vocabulary for describing a Bayesian network.

Definition 5.12. Let B be a Bayesian network. The vocabularyΣB consists of a
predicate symbolPn for each noden of B and a constantCv for each valuev in the
domain ofn.

5.6. THE RELATION TO BAYESIAN NETWORKS 111

�� ���� ��sprinkler
++WWW �� ���� ��wet grass�� ���� ��rain
33ggg

spr, rain spr,¬rain ¬spr, rain ¬spr,¬rain
wet 0.98 0.8 0.9 0

sprinkler 0.2 rain 0.4

Figure 5.8: Bayesian network for the sprinkler example.

{}
0.4

||yyyyyyyy
0.6

 A
AA

AA
AA

A

{Rain}
0.2

zzuuuuuuuuu
0.8

��

{}

0.2

��

0.8

&&MMMMMMMMMMMMM

{Sp,Rain}
0.98

yyrrrrrrrrrr
0.02

��

{Rain}

0.9

��

0.1

""E
EE

EE
EE

E
{Sp}

0.8

��

0.2

��?
??

??
??

{}

0

��
1

��3
33

33
3

{Sp,Rain,Wet} {Sp,Rain} {Rain,Wet} {Wet} {Sp,Wet} {Sp} {Wet} {}

Figure 5.9: Process corresponding to the sprinkler Bayesian network.

Now, we want to relate a Bayesian networkB to a class ofΣB-processes. In-
tuitively, we are interested in those processes, where the flow of events follows the
structure of the graph and every event propagates the values of the parents of a node to
this node itself. We illustrate this by the following famous example.

Example 5.8 (Sprinkler). The grass can be wet because it has rained or because the
sprinkler was on. The probability of the sprinkler causing the grass to be wet is0.8; the
probability of rain causing the grass to be wet is0.9. Thea priori probability of rain is
0.4 and that of the sprinkler having been on is0.2.

The Bayesian network formalization of this example can be seen in Figure 5.8.
Figure 5.9 shows a process that corresponds to this network. Here, we have exploited
the fact that all random variables of the Bayesian network are boolean, by representing
every random variable by a single atom, i.e., writing for instanceWet and¬Wet
instead ofWet(True) andWet(False). Formally, we define the following class of
processes for a Bayesian network.

Definition 5.13. Let B be a Bayesian network. AB-processis a probabilisticΣB-
processT for which there exists a mappingN from nodes ofT to nodes ofB, such that
the following conditions are satisfied. For every branch ofT ,N is one-to-one mapping
between the nodes on this branch and the nodes ofB, which is order preserving, in the

112 CHAPTER 5. CAUSAL PROBABILISTIC LOGIC

sense that, for alls, s′ on this branch, ifN (s) is an ancestor ofN (s′) inB, thensmust
be an ancestor ofs′ in T . If N (s) is a noden with domain{v1, . . . , vk} and parents
p1 . . . , pm in B, then the children ofs in T are nodess1, . . . , sk, for which:

• I(si) = I(s) ∪ {Pn(Cvi
)};

• P(si) = P(s)·α, whereα is the entry in the table forn, that gives the conditional
probability ofn = vi givenp1 = w1, . . . , pm = wm, where eachwi is the unique
value from the domain ofpi for whichPpi

(Cwi
) ∈ I(s).

It should be clear that every leafs of such aB-processT describes an assignment
of values to all nodes ofB, i.e., every noden is assigned the unique valuev for which
Pn(cv) ∈ I(s). Moreover, the probabilityP(s) of such a leaf is precisely the prod-
uct of all the appropriate entries in the various conditional probability distributions.
Therefore, the distributionπT coincides with the distribution defined by the network
of B.

We now construct a CP-theoryCPB , such that the execution models ofCPB will be
precisely allB-processes. We first illustrate this process by showing how the Bayesian
network in Figure 5.8 can be transformed into a CP-theory.

Example 5.8 (Sprinkler—cont’d). We can derive the following CP-theory from the
Bayesian network in Figure 5.8.

(Wet : 0.98)← Sprinkler ∧ Rain

(Wet : 0.8)← Sprinkler ∧ ¬Rain.
(Wet : 0.9)← ¬Sprinkler ∧ Rain.

(Wet : 0.0)← ¬Sprinkler ∧ ¬Rain.
(Sprinkler : 0.2).

(Rain : 0.1).

It should be obvious that the process in Figure 5.9 is an execution model of this theory
and, therefore, that this theory defines the same probability distribution as the Bayesian
network.

Again, this example exploits the fact that the random variables are all boolean, by
using the more readable representation ofWet and¬Wet than that ofWet(True) and
Wet(False).

It is now easy to see that the encoding used in the above example generalizes.
Concretely, for every noden with parentsp1, . . . , pm and domain{v1, . . . , vk}, we
should construct the set of all rules of the form:

(Pn(Cv1) : α1) ∨ · · · ∨ (Pn(Cvk
) : αk)← Pp1(Cw1) ∧ · · ·Ppm

(Cwm
),

where eachwi belongs to the domain ofpi and eachαj is the entry forn = vj , given
p1 = w1, . . . , pm = wm in the CPT forn. Let us denote the CP-theory thus constructed
by CPB . The following result is then obvious.

5.6. THE RELATION TO BAYESIAN NETWORKS 113

Theorem 5.7. LetB be a Bayesian network. EveryB-processT is an execution model
of the CP-theoryCPB , i.e.,T |= CPB . Therefore, the semantics ofB coincides with
the distributionπC .

This result shows that CP-logic offers a straightforward way of modelling the kind
of processes described by a Bayesian network. We will now compare these two for-
malisms with respect to processes that do not directly fit into the Bayesian network
structure. In the introduction, we already mentioned two reasons why this might hap-
pen: because multiple events are involved in determining the truth of a single property
or because events propagate values in opposite directions.

5.6.2 Multiple causes for the same effect

In a process corresponding to a Bayesian network, the value of each random variable
is determined by a single event. CP-logic, on the other hand, allows multiple events
to affect the same property. This leads to better representations for effects that have a
number of independent causes. Let us illustrate this by the following example.

Example 5.9. We consider a game of Russian roulette that is being played with two
guns, one in the player’s left hand and one in his right, each of which has a bullet in
one of its six chambers.

(Death : 1/6)← Pull trigger(Left gun).
(Death : 1/6)← Pull trigger(Right gun).

Figure 5.10 shows a Bayesian network for this example. The most obvious differ-
ence between these two representations concerns the independence between the two
different causes for death. In the CP-theory, this independence is expressed by the
structureof the theory, whereas in the Bayesian network, it is anumericalproperty of
the probabilities in the conditional probability table forDeath. Because of this, the
CP-theory is more elaboration tolerant, since adding or removing an additional cause
for Death simply corresponds to adding or removing a single CP-event. Moreover, its
representation is also more compact, requiring, in general, onlyn probabilities forn
independent causes, instead of the2n entries that are needed in a Bayesian network ta-
ble. Of course, these entries are nothing more than the result of applying anoisy-or3 to
the multiset of the probabilities with which each of the causes that are present actually
causes the effect.

5.6.3 Cyclic causal relations

A second reason why a real life process might not correspond directly to a Bayesian
network is because it may contain events that propagate values in opposite directions.
We already saw this in Example 5.1, where angina could cause pneumonia, but, vice

3Thenoisy-ormaps a multiset of probabilitiesαi to 1−
Q

i(1− αi).

114 CHAPTER 5. CAUSAL PROBABILISTIC LOGIC

�� ���� ��left
++VVVVVV �� ���� ��death�� ���� ��right

33hhhhh

left, right left, ¬right ¬left, right ¬left, ¬right
death 11/36 1/6 1/6 0
¬death 25/36 5/6 5/6 1

Figure 5.10: A Bayesian network for Example .

versa, pneumonia could also cause angina. In CP-logic, such causal loops do not re-
quire any special treatment. For instance, the loop formed by the two CP-events

(Angina : 0.2)← Pneumonia.

(Pneumonia : 0.3)← Angina.

behaves as follows:

• If the patient has neither angina nor pneumonia by an external cause (‘external’
here does not mean exogenous, but simply that this cause is not part of the causal
loop), then he will have neither;

• If the patient has angina by an external cause, then with probability0.3 he will
also have pneumonia;

• If the patient has pneumonia by an external cause, then with probability0.2 he
will also have angina;

• If the patient has both pneumonia and angina by an external cause, then he will
obviously have both.

In order to get the same behaviour in a Bayesian network, this would have to
be explicitly encoded. For instance, one could introduce new, artificial random vari-
ablesexternal(angina) andexternal(pneumonia) to represent the possibility that
angina andpneumonia result from an external cause and construct the Bayesian net-
work that is shown in Figure 5.11. In general, to encode a causal loop formed byn
properties, one would introducen additional nodes, i.e., all of then original properties
would have the samen artificial nodes as parents.

5.7 CP-logic and logic programs

In the preceding sections, we identified the concept of a causal probabilistic event as
a basic unit of causal information and defined a semantics for sets of such events in
terms of constructive processes. There are some obvious similarities between these
kind of processes and the kind of constructive processes that play a role in the various

5.7. CP-LOGIC AND LOGIC PROGRAMS 115

�� ���� ��external(angina) //

))SSSSSSSSSSSSSS
�� ���� ��angina

�� ���� ��external(pneumonia) //

55kkkkkkkkkkkkkk �� ���� ��pneumonia

e(a),e(p) e(a),¬e(p) ¬e(a),e(p) ¬e(a),¬e(p)
angina 1 1 0.2 0

e(a),e(p) e(a),¬e(p) ¬e(a),e(p) ¬e(a),¬e(p)
pneumonia 1 0.3 1 0

Figure 5.11: Bayesian network for theangina-pneumonia causal loop.

kinds of fixpoint semantics we encountered in Chapter 2. Moreover, there is also an
obvious similarity between the syntax of CP-logic and that of the rule sets we defined
in Chapter 2. We now investigate these similarities. Concretely, we will first define a
straightforward probabilistic extension of logic programs, calledLogic Programs with
Annotated Disjunctions, and then prove that this is essentially equivalent to CP-logic.

The connection between causal reasoning and logic programming has long been
implicitly present; we can refer in this respect to, for instance, formalizations of situa-
tion calculus in logic programming (Pinto and Reiter 1993; Van Belleghem, Denecker,
and De Schreye 1997). Here, we now make this relation explicit, by showing that the
language of CP-logic, that we have constructed directly from causal principles, corre-
sponds to existing logic programming concepts. In this respect, our work is similar to
that of (McCain and Turner 1996), who defined the language of causal theories, which
was then shown to be closely related to logic programming. However, as we will dis-
cuss later, McCain and Turner formalize somewhat different causal intuitions, which
leads to a correspondence to a different logic programming semantics. Our results from
this section will help to clarify the position of CP-logic among related work in the area
of probabilistic logic programming, such as Poole’s Independent Choice Logic (Poole
1997). Moreover, they provide additional insight into the role that causality plays in
such probabilistic logic programming languages, as well as in normal and disjunctive
logic programs.

5.7.1 Logic Programs with Annotated Disjunctions

In this section, we define the language ofLogic Programs with Annotated Disjunctions,
or LPADsfor short. This is a probabilistic extension of logic programming, which is
based on disjunctive logic programs. This is a natural choice, because disjunctions
themselves—and therefore also disjunctive logic programs—already represent a kind
of uncertainty. Indeed, to give just one example, we could use these to model indeter-
minate effects of actions. Consider, for instance, the following disjunctive rule:

Heads ∨ Tails← Toss.

116 CHAPTER 5. CAUSAL PROBABILISTIC LOGIC

This offers a quite intuitive representation of the fact that tossing a coin will result in
either heads or tails. Of course, this is not all we know. Indeed, a coin also has equal
probability of landing on heads or tails. The idea behind LPADs is now simply to
express this by annotating each of the disjuncts in the head with a probability, i.e., we
write:

(Heads : 0.5) ∨ (Tail : 0.5)← Toss.

Formally, an LPAD is a set of rules:

(h1 : α1) ∨ · · · ∨ (hn : αn)← ϕ, (5.28)

where thehi are ground atoms andϕ is a sentence. As such, LPADs are syntacti-
cally identical to CP-logic. However, we define their semantics quite differently. For
instance, the above example expresses that precisely one of the following logic pro-
gramming rules holds: eitherHeads ← Toss holds, i.e., if the coin is tossed this
will yield heads, or the ruleTails ← Toss holds, i.e., tossing the coin gives tails.
Each of these two rules has a probability of0.5 of being the actual instantiation of the
disjunctive rule.

More generally, every rule of form (5.28) represents a probability distribution over
the following set of logic programming rules:

{(hi ← ϕ) | 1 ≤ i ≤ n}.

From these distributions, a probability distribution over logic programs is then de-
rived. To formally define this distribution, we introduce the following concept of a
selection. We use the notationhead∗(r) to denote the set of pairshead(r) ∪ {(∅, 1 −∑

(h:α)∈head(r) α)}, where∅ represents the possibility that none of thehi’s are caused
by the ruler.

Definition 5.14 (C-selection). LetC be an LPAD. AC-selectionis a functionσ from
C to

⋃
r∈C head

∗(r), such that for allr ∈ C, σ(r) ∈ head∗(r). By σh(r) andσα(r)
we denote, respectively, the first and second element of the pairσ(r). The set of all
C-selections is denoted asSC .

The probabilityP (σ) of a selectionσ is now defined as
∏

r∈C σ
α(r). For a set

S ⊆ SC of selections, we define the probabilityP (S) as
∑

σ∈S P (σ). By Cσ we
denote the logic program that consists of all rulesσh(r) ← body(r) for which r ∈ C
andσh(r) 6= ∅. Such aCσ is called aninstanceof C. We will interpret these instances
by the well-founded model semantics. Recall that, in general, the well-founded model
wfm(P) of a programP is a pair(I, J) of interpretations, whereI contains all atoms
that are certainly true andJ contains all atoms that might possibly be true. IfI = J ,
then the well-founded model is called exact. Intuitively, ifwfm(P) is exact, then the
truth of all atoms can be decided, i.e., everything that is not false can be derived. In the
semantics of LPADs, we wanted to ensure that all uncertainty is expressed by means
of the annotated disjunctions. In other words, given a specific selection, there should
no longer be any uncertainty. We therefore impose the following criterion.

Definition 5.15 (Soundness).An LPADC is soundiff all instances ofC have an exact
well-founded model.

5.7. CP-LOGIC AND LOGIC PROGRAMS 117

For such LPADs, the following semantics can now be defined.

Definition 5.16 (Instance based semanticsµC). LetC be a sound LPAD. For an in-
terpretationI, we denote byW (I) the set of allC-selectionsσ for whichwfm(Cσ) =
(I, I). The instance based semanticsµC of C is the probability distribution on in-
terpretations, that assigns to eachI the probabilityP (W (I)) of this set of selections
W (I).

It is straightforward to extend this definition to allow for exogenous predicates as
well. Indeed, in Section 2.2, we have already seen how to define the well-founded
semantics for rule sets with open predicates, and this is basically all that is needed.
Concretely, given an interpretationX for a set of exogenous predicates, we can define
the instance based semanticsµX

C givenX as the distribution that assigns, to each inter-
pretationI of the endogenous predicates, the probability of the set of all selectionsσ
for which (I, I) is the well-founded models ofCσ given(X,X) (as defined in Section
2.2). Of course, this semantics is only defined for LPADs that are sound inX, meaning
that the well-founded model of eachCσ given(X,X) is two-valued.

5.7.2 Equivalence to CP-logic

Every CP-theory is syntactically also an LPAD and vice versa. The key result of this
section is now that the instance based semanticsµC for LPADs coincides with the
CP-logic semanticsπC defined in Section 5.2.

Theorem 5.8. LetC be a CP-theory that is valid inX. ThenC is also an LPAD that
is sound inX and, moreover,µX

C = πX
C .

We remark that it is not the case that every sound LPAD is also a valid CP-theory. In
other words, there are some sound LPADs that cannot be seen as a sensible description
of a set of causal probabilistic events.

Example 5.10. It is easy to see that the following CP-theory has no execution models.

(P : 0.5) ∨ (Q : 0.5)← R.

R← ¬P.
R← ¬Q.

However, each of its instances has an exact well-founded model: for{P ← R;R ←
¬P ;R ← ¬Q} this is{R,P} and for{Q ← R;R ← ¬P ;R ← ¬Q} this is{R,Q}.
It does not seem possible to interpret this CP-theory in a reasonable way as an enumer-
ation of all the relevant CP-events in some domain.

5.7.3 Discussion

The results of this section relate CP-logic to LPADs and, more generally speaking, to
the area of logic programming and its probabilistic extensions. As such, these results

118 CHAPTER 5. CAUSAL PROBABILISTIC LOGIC

help to position CP-logic among related work, such as Poole’s Independent Choice
Logic and McCain and Turner’s causal theories, which we will discuss in Section 5.9.1.
Moreover, they can also be seen as providing a valuable piece of knowledge represen-
tation methodology for these languages, as they clarify how causal information can be
modeled in these languages. To illustrate, we now discuss the relevance of our theorem
for some logic programming variants.

Disjunctive logic programs. In probabilistic modelling, it is often useful to consider
the qualitative structure of a theory separately from its probabilistic parameters. Indeed,
for instance, in machine learning, the problems of structure learning and parameter
learning are two very different tasks. If we consider only the structure of a CP-theory,
then, syntactically speaking, we end up with adisjunctive logic program, i.e., a set of
rules:

h1 ∨ · · · ∨ hn ← ϕ. (5.29)

We can also single out the qualitative information contained in the semanticsπC of
such a CP-theory. Indeed, as we have already seen, like any probability distribution
over interpretations,πC induces a possible world semantics, consisting of those in-
terpretationsI for which πC(I) > 0. Now, let us restrict our attention to only those
CP-theories in which, for every CP-eventr, the sum of the probabilitiesαi appearing
head(r) is precisely1 and, moreover, every suchαi > 0. It is easy to see that this set
of possible worlds is then independent of the precise values of theαi, i.e., the qualita-
tive aspects of the semantics of such a theory depend only on the qualitative aspects of
its syntactical form.

From the point of view of disjunctive logic programming, this set of possible worlds
therefore offers an alternative semantics for such a program. Under this semantics, the
intuitive reading of a rule of form (5.29) is: “ϕ causes a non-deterministic event, whose
effect is precisely one ofh1,. . . ,hn.” Clearly, this is a different informal reading than
in the standard stable model semantics for disjunctive programs (Przymusinski 1991).
Indeed, under our reading, a rule corresponds to a causal event, whereas, under the
stable model reading, it is supposed to describe an aspect of the reasoning behaviour of
a rational agent. Consider, for instance, the disjunctive program{p∨ q. p.}. To us, this
program describes a set of two non-deterministic events: One event causes eitherp or q
and another event always causesp. Formally, this leads to two possible worlds, namely
{p} and{p, q}. Under the stable model semantics, however, this program states that
an agent believes eitherp or q and the agents believesp. In this case, he has no reason
to believeq and the only stable model is{p}. So, clearly, CP-logic treats disjunction
in a fundamentally different way than the stable semantics. Interestingly, thepossible
model semantics(Sakama and Inoue 1994) for disjunctive programs is quite similar
to our treatment. Indeed, it consists of the stable models of instances of a program.
Because, as shown in Section 5.7.2, the semantics of CP-logic considers the well-
founded models of instances, these two semantics are very closely related. Indeed, for
a large class of programs, including all stratified ones, they coincide completely.

Normal logic programs. Let us consider a logic programP , consisting of a set of
rulesh ← ϕ, with h a ground atom andϕ a formula. Syntactically, such a program

5.8. ORIGINS OF CP-LOGIC 119

is also a deterministic CP-theory. Its semanticsπP assigns a probability of 1 to a sin-
gle interpretation and 0 to all other interpretations. Moreover, the results from Section
5.7.2 tell us that the interpretation with probability 1 will be precisely the well-founded
model ofP . As such, these results show that a logic program under the well-founded
semantics can be viewed as a description of deterministic causal information. Con-
cretely, we find that we can read a ruleh ← ϕ as: “ϕ causes a deterministic event,
whose effect ish.”

This observation makes explicit the connection between causal reasoning and logic
programming that has long been implicitly present in the field of logic programming,
as is witnessed, e.g., by the work on situation calculus in logic programming. As such,
it enhances the theoretical foundations behind the pragmatic use of logic programs to
represent causal events.

ID-logic. Because an inductive definition in ID-logic is represented by a logic pro-
gram under the well-founded semantics, our results show that finite definitions in ID-
logic are, both syntactically and semantically, identical to deterministic CP-theories.
It is interesting that an attempt to formalize the well-known mathematical principle of
definition by induction should yield the same formal language as our attempt to formal-
ize causal intuitions. One plausible explanation for this phenomenon is that perhaps the
appeal that inductive definitions hold for a mathematician stems from experience with
the causal laws that govern the behaviour of physical systems. Or to put it another way,
perhaps an inductive definition is nothing more than a description of a causal process,
that takes place not in the real world, but in the domain of mathematical objects.

5.8 Origins of CP-logic

The work on CP-logic grew actually out of research on probabilistic logic programming
and, in particular, the development of logic programs with annotated disjunctions. In
trying to clarify the intuitive meaning of expressions in this language, we often found it
useful—and sometimes even necessary—to refer to causality. For instance, the ability
to have multiple rules with the same atom in the head turned out to be quite convenient,
as illustrated by our formalization of the Russian roulette example:

(Death : 1/6)← Fire(Left gun).
(Death : 1/6)← Fire(Right gun).

This correctly represents the example and, moreover, it does so in a concise and ap-
pealing way. However, it is clearly not possible to say that, for instance, the first rule
should be read as: “If the left gun is fired, then the probability of death is 1/6.” (If the
probability of firing the right gun is non-zero, the statement is obviously false.) Exam-
ining the intuitions that had lead to this theory, we found that we actually thought of
this rule as representing only onepossible causefor death. So, we started to interpret
the ‘←’-connective of LPADs as a statement about causes and effects.

However, it was not clear that this interpretation was actually sanctioned in any way
by the formal semantics that we had constructed for this language, because this just

120 CHAPTER 5. CAUSAL PROBABILISTIC LOGIC

considered the well-founded semantics of certain probabilistically constructed logic
programs and, as such, did not seem to contain any features particularly related to
causality. We therefore decided to construct a different semantics—one that did ex-
plicitly formalize causal intuitions—to see how this would compare to our original
semantics.

Gradually, it became apparent that by constructing a causal interpretation for our
logic programming style constructs, we were actually also learning something about
the nature of causality itself. Namely, it became clear that, to a much larger extent
than common in the literature, our logic was focusing on a dynamic aspect of causality.
Indeed, the concept of an event, something which actuallyhappensat some point in
time, became central to not only our formal semantics, but also to our conception of
causality itself. We therefore realized that, instead of just defining an alternative, causal
semantics for some given probabilistic logic programming language, our work was
actually examining something that was inherently present in causality itself. This lead
to a final shift in focus, where we now constructed a logic from the ground up—both
in form and in meaning—based only on intuitions regarding causality. Our original
semantics for logic programs with annotated disjunctions still proved useful, however,
because it allowed us to relate our new causal language of CP-logic to existing logic
programming concepts, as we have seen in this section. In this way, we showed that
a causal interpretation of the ‘←’-connective not only makes sense in the context CP-
logic, but also for logic programs.

5.9 Related work

In this chapter, we discuss some research that is related to our work on CP-logic.
Roughly speaking, we can divide this into two different categories, namely, the re-
lated work that focuses mainly on formalizing causality and that which focuses mainly
on representing probabilistic knowledge.

5.9.1 Causal languages

Our work on CP-logic is primarily intended as a study of the dynamic nature of causal
information from a knowledge representation perspective. As such, it is closely related
to the work of Pearl. In Section 5.6, we have already compared CP-logic to Pearl’s
formal tool of Bayesian networks and showed that it offers certain representational
advantages through its more flexible and fine-grained representation of causal events.
We have, however, not yet discussed the fact that the focus of our study is somewhat
different from Pearl’s. Indeed, his work focuses on the behaviour of causal models
in the presence ofinterventions, i.e., outside manipulations that preempt the normal
behaviour of the system. This is a topic that is somewhat orthogonal to our work.
Indeed, while Pearl examines interventions in the formal context of structural models
(a generalization of Bayesian networks), it seems equally possible to do this in the
setting of CP-logic. In fact, this is actually a promising direction for future research.
Indeed, in CP-logic, one could consider interventions that preempt, add or replace just

5.9. RELATED WORK 121

a single CP-event. This allows more fine-grained manipulations of a causal model than
are possible using Bayesian networks or structural models.

Moreover, one of the interesting uses of interventions is the handling of counter-
factuals, which have been used by Halpern to define concepts such as “actual causes”
(Halpern and Pearl 2001a) and “explanations” (Halpern and Pearl 2001b). The explic-
itly dynamic processes of CP-logic offer an interesting setting in which to investigate
these concepts as well. Indeed, in any particular branch of an execution model of a
CP-theory every true atomp is caused by at least one CP-event, whose precondition
ϕ was satisfied at the time when this event happened. It now seems sensible to callϕ
an actual cause ofp. An interesting question is to what extent such a definition would
coincide with the notion of actual causation defined by Halpern.

Another attempt to formalize causal knowledge, which, like CP-logic, also has a
close relation to logic programming, are McCain and Turner’scausal theories(McCain
and Turner 1996). A causal theory is a set of rulesϕ ⇐ ψ, whereϕ andψ are propo-
sitional formulas. The semantics of such a theoryT is defined by a fixpoint criterion.
Concretely, an interpretationI is a model ofT if I is theuniqueclassical model of the
theoryT I that consists of allϕ, for which there is a ruleϕ⇐ ψ in T such thatI |= ψ.

In CP-logic, we assume that the domain is initially in a certain state, which then
changes through series of events. This naturally leads to the kind of constructive pro-
cesses that we have used to define the formal semantics of CP-logic. By contrast,
according to McCain and Turner’s fixpoint condition, a proposition can have any truth
value, as long as their exists some causal explanation for this truth value. This differ-
ence mainly manifests itself in two ways.

First, in CP-logic, every endogenous property has an initial truth value, which can
only change as the result of an event. As such, there is a fundamental asymmetry
between falsity and truth, since only one of them represents the “natural” state of the
property. For McCain & Turner, however, truth and falsity are completely symmetric
and both need to be causally explained. As such, if the theory is to have any models,
then, for every propositionQ, there must always be a cause for eitherQ or¬Q.

A second difference is that the constructive processes of CP-logic rule out any
unfounded causality, i.e., it cannot be the case that properties spontaneously cause
themselves. In McCain & Turner’s theories, this is allowed to happen. For instance, the
CP-theory{Q← Q} has{} as its model, whereas the causal theory{Q⇐ Q} has{Q}
as its model. As such, the direct representation of cyclic causal relations that is possible
in CP-logic (e.g., Example 5.1) cannot be done in causal theories; instead, one has to
use an encoding similar to the one needed in Bayesian networks (e.g., Figure 5.11). In
practice, the main advantage of McCain & Turner’s treatment of causal cycles seems
to be that it offers a way of introducing exogenous atoms into the language. Indeed,
by including bothQ ⇐ Q and¬Q ⇐ ¬Q, one can express thatQ can have any truth
value, without this requiring any further causal explanation. Of course, CP-logic has no
need for such a mechanism, since we make an explicit distinction between exogenous
and endogenous predicates. It is interesting to observe that, given the relation between
logic programming and causal theories proven in (McCain 1997), this difference can
actually be traced back to the difference between the well-founded and completion
semantics for logic programs.

122 CHAPTER 5. CAUSAL PROBABILISTIC LOGIC

5.9.2 Probabilistic languages

In this section, we compare CP-logic to a number of probabilistic logic programming
languages. Let us first and foremost point out that, in general, our main contribution to
this field does not consist of some original new formal language, but, rather, of a new
intuitive understanding of the “same old” mathematical objects. Indeed, whereas prob-
abilistic logic programming research typically takes some logic programming variant
as its starting point, we have begun from fundamental observations about the nature
of causality, without assuming anya priori relation to logic programs. Nevertheless,
our attempt to formalize intuitions about causal probabilistic events has lead to a for-
mal language that is remarkably close to probabilistic logic programming. On the one
hand, this demonstrates that probabilistic logic programming can be used to deal with
causality. On the other hand, it also allows such languages to be understood, motivated
and explained from the ground up, based only on the concept of causal probabilistic
events, without any reference to prior logic programming developments.

We will now discuss a number of probabilistic logic programming languages in
some more detail.

Independent Choice Logic

Independent Choice Logic (ICL)(Poole 1997) by Poole is a probabilistic extension of
abductive logic programming, that extends the earlier formalism ofProbabilistic Horn
Abduction(Poole 1993). An ICL theory consists of both a logical and a probabilistic
part. The logical part is an acyclic logic program. The probabilistic part consists of a
set of rules of the form (in CP-logic syntax):

(h1 : α1) ∨ · · · ∨ (hn : αn).

The atomshi in such clauses are calledabducibles. Each abducible may only appear
once in the probabilistic part of an ICL program; in the logical part of the program,
abducibles may only appear in the bodies of clauses.

Syntactically speaking, each ICL theory is also CP-theory. Moreover, the ICL se-
mantics of such a theory (as formulated in, e.g., (Poole 1997)) can easily be seen to
coincide with our instance based semantics for LPADs. As such, an ICL theory can be
seen as a CP-theory in which every CP-event is either deterministic or unconditional.

We can also translate certain LPADs to ICL in a straightforward way. Concretely,
this can be done for acyclic LPADs without exogenous predicates, for which the bodies
of all CP-events are conjunctions of literals. Such a CP-eventr of the form:

(h1 : α1) ∨ · · · ∨ (hn : αn)← ϕ

is then transformed into the set of rules:
h1 ← ϕ ∧ Choicer(1).
· · ·

hn ← ϕ ∧ Choicer(n).
(Choicer(1) : α1) ∨ · · · ∨ (Choicer(n) : αn).

5.9. RELATED WORK 123

The idea behind this transformation is that every selection of the original theoryC cor-
responds to precisely one selection of the translationC ′. More precisely, if we denote
by ChoiceRule(r) the last CP-event in the above translation of a ruler, then aC-
selectionσ corresponds to theC ′-selectionσ′, for which for allr ∈ C, σ(r) = (hi, αi)
iff σ′(ChoiceRule(r)) = (Choicer(i), αi). It is quite obvious that this one-to-one
correspondence preserves both the probabilities of selections and the (restrictions to
the original alphabet of the) well-founded models of the instances of selections. This
suffices to show that the probability distribution defined byC coincides with the (re-
striction to the original alphabet of) the probability distribution defined byC ′.

So, our result on the equivalence between LPADs and CP-logic shows that the two
parts of an ICL theory can be understood as, respectively, a set of unconditional prob-
abilistic events and a set of deterministic causal events. In this sense, our work offers
a causal interpretation for ICL. It is, in this respect, somewhat related to the work of
Finzi et al. on causality in ICL. In (Finzi and Lukasiewicz 2003), these authors present
a mapping of ICL into Pearl’s structural models and use this to derive a concept of ac-
tual causation for this logic, based on the work by Halpern (Halpern and Pearl 2001a).
This approach is, however, somewhat opposite to ours. Indeed, we view the event-
based structure of CP-logic as a more fine-grained model of causality. Transforming
a CP-theory into a structural model actually loses information, in the sense that it is
not possible to recover the original structure of the theory. From the point-of-view of
CP-logic, the approach of Finzi et al. would therefore not make much sense, since it
would attempt to define the concept of actual causation in a more fine-grained model
of causal information by means of a transition to a coarser one.

P-log

P-log (Baral, Gelfond, and Rushton 2004) is an extension of the language of Answer
Set Prolog with new constructs for representing probabilistic information. It is a sorted
logic, which allows for the definition ofattributes, which map tuples (of particular
sorts) into a value (of a particular sort). Two kinds of probabilistic statements are
considered. The first are calledrandom selection rulesand are of the form:

[r] random(A(t) : {x : P (x)})← ϕ.

Here,r is a name for the rule,P is an unary boolean attribute,A is an attribute witht
a vector of arguments of appropriate sorts, andϕ is a collection of so-called extended
literals4. The meaning of a statement of the above form is that, if the bodyϕ of the rule
is satisfied, the attributeA(t) will take on a value from the intersection of its domain
with the set of all termsx for which P (x) holds. The choice of which value will be
assigned to this attribute is random and, by default, all possible values are considered
equally likely. It is, however, possible to override such a default, using the second kind
of statements, calledprobabilistic atoms. These are of the form:

prr(A(t) = y |c ϕ) = α.

4An extended literal is either a classical literal or a classical literal preceded by the default negationnot,
where a classical literal is either an atomA(t) = t0 or the classical negation¬A(t) = t0 thereof.

124 CHAPTER 5. CAUSAL PROBABILISTIC LOGIC

Such a statement should be read as: Ifϕ holds, then the probability of attributeA(t)
taking on valuey due to the random selection process described by ruler is α.

The information expressed by a random selection rule and it associated probabilis-
tic atoms is somewhat similar to a CP-event, but stays closer to a Bayesian network
style representation. Indeed, it expresses that, under certain conditions, the value of a
certain attribute will be determined by some implicit random process, which produces
each of a number of possible outcomes with a certain probability. We see that, as in
Bayesian networks, there is no way of directly representing information about the ac-
tual events that might take place; instead, only information about the way in which
they eventually affect the value of some attribute (or random variable, in Bayesian
network terminology) can be incorporated. Therefore, representing the kind of phe-
nomena discussed in Section 5.6—namely, cyclic causal relations and effects with a
number of independent possible causes—requires the same kind of encoding in P-log
as in Bayesian networks.

A second interesting difference is that arandom-statements of P-log represent an
experiment in which a value is selected from adynamicset of alternatives, whereas,
in CP-logic the set of possible outcomes is specified statically. Consider, for instance,
a robot that leaves a room by selecting at random one of the doors that happens to be
open. In P-log, this can easily be written down as:

[r] random(Leave through : {x : Open door(x)}).

In CP-logic, such a concise representation is currently not possible.
Apart from probabilistic statements, a P-log program can also contain a set of reg-

ular Answer Set Prolog rules and a set of observations and actions. The difference
between observations and actions is the same as highlighted by (Pearl 2000), i.e., ob-
servations are supposed to have been generated by the causal processes described by
the theory, whereas actions explicitly interfere with the normal state of affairs and,
therefore, cannot and should not be explained by the theory. As such, the scope of
P-log is significantly broader than that of CP-logic and it is clearly a more full-blown
knowledge representation language than CP-logic, which is only aimed at expressing a
specific kind of causal knowledge.

First-order Versions of Bayesian networks

In this section, we discuss two approaches that aim at lifting the propositional formal-
ism of Bayesian networks to a first-order representation, namelyBayesian Logic Pro-
grams (BLPs)(Kersting and Raedt 2000) andRelational Bayesian Networks (RBNs)
(Jaeger 1997).

A Bayesian Logic Program or BLP consists of a set of definite clauses, using the
symbol “|” instead of “←”, i.e., clauses of the form

P (t0) | B1(t1), . . . , Bn(tn).

in which P and theBi’s are predicate symbols and thetj’s are tuples of terms. For
every predicate symbolP , there is a domaindom(P) of possible values. The meaning
of such a program is given by a Bayesian network, whose nodes consist of all the atoms

5.9. RELATED WORK 125

in the least Herbrand model of the program. The domain of a node for a ground atom
P (t) is dom(P). For every ground instantiationP (t0) | B1(t1), . . . , Bn(tn) of a
clause in the program, the network contains an edge from eachBi(ti) to P (t0), and
these are the only edges that exist.

To complete the definition of this Bayesian network, all the relevant conditional
probabilities also need to be defined. To this end, the user needs to specify, for each
clause in the program, a conditional probability table, which defines the conditional
probability of every value indom(P), given an assignment of values to the atoms in
the body of the clause. Now, let us first assume that every ground atom in the Bayesian
network is an instantiation of the head of precisely one clause in the program. In this
case, the tables for the clauses suffice to determine the conditional probability tables
of the network, because every node can then simply take its probability table from
this unique clause. However, in general, there might be many such clauses. To also
handle this case, the user needs to specify, for each predicate symbolP , a so-called
combination rule, which is a function that produces a single probability from a multiset
of probabilities. The conditional probability table for a ground atomP (t) can then be
constructed from the set of all clausesr, such thatP (t) is an instantiation ofhead(r),
by finding the appropriate entries in the tables for all such clausesr and then applying
the combination rule forP to the multiset of these values. According to the semantics
of Bayesian Logic Programs, this combination rule will always be applied, even when
there exists only a single suchr.

This completes the definition of BLPs as given in, e.g., (Kersting and Raedt 2000).
More recently, a number of issues with this formalism have lead to the development of
Logical Bayesian Networks (Fierens, Blockeel, Bruynooghe, and Ramon 2005). These
issues have also prompted the addition of so-called “logical atoms” to the original BLP
language (Kersting and Raedt 2007). Since this does not significantly affect any of the
comparisons made in this section, however, we will ignore this extension.

A Relational Bayesian Networkis a Bayesian network in which the nodes corre-
spond to predicate symbols and the domain of a node for a predicateP/n consists of
all possible interpretations of this predicate symbol in some fixed domainD, i.e., all
subsets ofDn. The conditional probability distribution associated to such a nodeP
is specified by aprobability formulaFp. For every tupled ∈ Dn, Fp(d) defines the
probability ofd belonging to the interpretation ofP in terms of probabilities of tuples
d′ belonging to the interpretation of a predicateP ′, whereP ′ is either a parent ofP in
the graph or even, under certain conditions,P itself. Such a probability formula can
contain a number of different operations on probabilities, including the application of
arbitrary combination rules. Such a Relation Bayesian Network can also be compiled
into a network that is similar to that generated by a BLP, i.e., one in which the nodes
correspond to domain atoms instead of predicate symbols. The main advantage of such
a compiled network is that it allows more efficient inference.

Again, the main difference between these two formalisms and CP-logic is that they
both stick to the Bayesian network style of modelling, in the sense that the actual
processes and events that determine the values of the random variables are entirely ab-
stracted away and only the resulting conditional probabilities are retained. However,
through the use of, respectively, combination rules and probability formulas, these can
be represented in a more structured manner than in a simple table. In this way, knowl-

126 CHAPTER 5. CAUSAL PROBABILISTIC LOGIC

edge about, for instance, the underlying causal events can be exploited to represent the
conditional probability distributions in a concise way. The most common example is
probably the use of thenoisy-orto handle an effect which has a number of independent
possible causes. For instance, let us consider the Russian roulette problem of Example
5.9. In a BLP, the relation between the guns firing and the player’s death could be
represented by the following clause:

Death | Fire(X).

F ire(x) = t Fire(x) = f
Death = t 1/6 0
Death = f 5/6 1

Combination rule forDeath : noisy-or

In Relational Bayesian Networks, this would be represented as follows:

FDeath = noisy-or({1/6 · Fire(x) | x})

Fire Death

As such, combination rules do allow some knowledge about the events underlying
the conditional probabilities to be incorporated into the model. However, this is of
course not the same as actually having a structured representation of the events them-
selves, as is offered by CP-logic. As a consequence of this, cyclic causal relations, such
as that of ourPneumonia-Angina example, still need the same kind of encoding as
in a Bayesian network.

Other approaches

In this section, we give a quick overview of some other related languages. An important
class of probabilistic logic programming formalisms are those following theKnowl-
edge Based Model Constructionapproach. Such formalisms allow the representation
of an entire “class” of propositional models, from which, for a specific query, an ap-
propriate model can then be constructed “at run-time”. This approach was initiated by
Breese (Breese 1992) and Bacchus (Bacchus 1993) and is followed by both Bayesian
Logic Programs and Relational Bayesian Networks. Other formalism in this class are
Probabilistic Knowledge Basesof Ngo and Haddawy (Ngo and Haddawy 1997) and
Probabilistic Relational Modelsof Getoor et al. (Getoor, Friedman, Koller, and Pfeffer
2001). From the point of view of comparison to CP-logic, both are very similar to
Bayesian Logic Programs (see, e.g., (Kersting and Raedt 2001) for a comparison).

The language used in theProgramming in Statistical Modellingsystem (PRISM)
(Sato and Kameya 1997) is very similar to Independent Choice Logic. Our comments
concerning the relation between CP-logic and Independent Choice Logic therefore
carry over to PRISM.

Like CP-logic,Many-Valued Disjunctive Logic Programs(Lukasiewicz 2001) are
also related to disjunctive logic programming. However, in this language, probabilities

5.9. RELATED WORK 127

are associated with disjunctive clauses as a whole. In this way, uncertainty of the
implication itself—and not, as is the case with LPADs or CP-logic, of the disjuncts in
the head—is expressed.

All the works mentioned so far use point probabilities. There are however also
a number of formalisms using probability intervals:Probabilistic Logic Programsof
Ng and Subrahmanian (Ng and Subrahmanian 1992), their extension toHybrid Proba-
bilistic Programsof Dekhtyar and Subrahmanian (Dekhtyar and Subrahmanian 2000)
andProbabilistic Deductive Databasesof Lakshmanan and Sadri (Lakshmanan and
Sadri 1994). Contrary to our approach, programs in these formalisms do not define
a single probability distribution, but rather asetof possible probability distributions,
which allows one to express a kind of “meta-uncertainty”, i.e., uncertainty about which
probability distribution is the “right” one. Moreover, the techniques used by these for-
malisms tend to have more in common with constraint logic programming than stan-
dard logic programming. The more recent formalism of CLP(BN) (Costa, Page, Qazi,
and Cussens 2003) belongs to this class.

We also want to mentionStochastic Logic Programsof Muggleton and Cussens
(Cussens 2000; Muggleton 2000), which is a probabilistic extension of Prolog. In
this formalism, probabilities are attached to the selection of clauses in Prolog’s SLD-
resolution algorithm, which basically results in a first-order version of stochastic con-
text free grammars. Because of this formalism’s strong ties to the procedural aspects
of Prolog, it appears to be quite different from CP-logic and indeed all of the other
formalisms mentioned here.

ProbLog (De Raedt, Kimmig, and Toivonen 2007) is a more recent probabilistic
extension of pure Prolog. Here, too, every clause is labeled with a probability. The
semantics of ProbLog is very similar to that of LPADs and, in fact, the semantics of a
groundProbLog program coincides completely with that of the corresponding LPAD.
More precisely put, a ProbLog rule of the form:

α : h← b1, . . . , bn,

whereh and thebi are ground atoms is entirely equivalent to the LPAD rule:

(h : α)← b1, . . . , bn.

For non-ground programs, however, there is a difference. The semantics of an LPAD
first grounds the entire program and then probabilistically selects instantiations of the
rules of this ground program. In ProbLog, on the other hand, selections directly pick
out rules of the original program. This means that, for instance, the following ProbLog-
rule:

0.8 : likes(X,Y)← likes(X,Z), likes(Z, Y),

specifies that, with probability0.8, thelikes-relation is entirely transitive, whereas the
corresponding LPAD-rule would mean that for allindividualsa, b andc, the fact thata
likes b andb likes c causesa to like c with probability0.8.

128 CHAPTER 5. CAUSAL PROBABILISTIC LOGIC

5.10 Conclusions and future work

The work presented in this chapter is primarily intended as a study of the nature of
causality. We have argued that causal statements have an inherent dynamic aspect,
which leads naturally to the notion of acausal probabilistic event descriptionas an
important unit of causal knowledge. The intuitive meaning of such statements strongly
suggests a formal semantics that is defined in terms of constructive probabilistic pro-
cesses. We have worked out this idea in the language of CP-logic. An important
theorem regarding this logic is that all execution models of a CP-theory generate the
same probability distribution over their final states. This shows that it is possible to
view CP-logic as a probabilistic modelling language, that refines Bayesian networks.

Our main contribution is that we have shown the syntax and semantics of our lan-
guage to follow naturally from an initial analysis of causal statements. Of course,
certain specific choices could be argued with—for instance, our representation of the
possible effects of an event is perhaps somewhat oversimplified and the immediate in-
tuitive appeal of our semantics is clearly less obvious for theories containing negation
than for positive theories. However, the basic structure of CP-logic and its semantics
are essentially already implied by the concept of a causal probabilistic event description
itself.

We have also shown that the formal semantics of CP-logic is closely related to logic
programming. Because of the way in which we have constructed our logic as a natural
formalization of causal statements, this shows that logic programming constructs can
be interpreted in a causal way. To be more concrete, we have shown that a normal
logic program under the well-founded semantics can be understood as a set of deter-
ministic causal statements, we have presented an alternative semantics for disjunctive
logic programs (similar to that of (Sakama and Inoue 1994)) under which these can be
interpreted as sets of non-deterministic causal events, and we have shown that a theory
in Poole’s independent choice logic (Poole 1997) can be understood as a combination
of deterministic causal events and unconditional probabilistic events.

The fact that CP-logic can be seen as a refinement of Bayesian networks, and is
as expressive as independent choice logic, suggests that it might be well suited for
modelling practical applications. Investigating this further would be especially inter-
esting, since it would also shed light on how the kind of causal knowledge we have
been studying actually appears in real application domains. To make CP-logic more
suitable for practical purposes, it could still be improved in a number of ways. To be
more concrete, we see the following opportunities for future research.

Refinement of CP-logic. The current language of CP-logic is restricted in a number
of ways. First, it only allows a finite number of causal probabilistic events. Let us
consider, for instance, a die that is rolled as long as it takes to obtain a six. Here,
there is no upper bound on the number of throws that might be needed and, therefore,
this example can currently not be represented in CP-logic. Second, CP-logic is also
limited in its representation of the effects of an event. For instance, it is not possible to
represent events whose range of possible outcomes is not completely fixed beforehand.
Third, CP-logic currently can only handle properties that are either fully present or fully

5.10. CONCLUSIONS AND FUTURE WORK 129

absent. As such, it cannot correctly represent causes which have only a contributory
effect, e.g., turning on a tap would not instantaneously cause a basin to be full, but only
contribute a certain amount per time unit.

Integration into a larger formalism. To correctly formalize a domain in CP-logic, a
user must exactly know the causes and effects of all relevant events that might happen.
For real domains of any significant size, this is an unrealistic assumption. Indeed,
typically, one will only have such detailed knowledge about certain parts of a domain.
So, in order to still be able to use CP-logic in such a setting, it would have to be
integrated with other forms of knowledge. There are some obvious candidates for this:
statements about the probabilities of certain properties, statements about probabilistic
independencies (such as those in Bayesian networks), and constraints on the possible
states of the domain. Integrating these different forms of knowledge without losing
conceptual clarity is one of the main challenges for future work regarding CP-logic,
and perhaps even for the area of uncertainty in artificial intelligence as a whole.

Inference. The most obvious inference task in the context of CP-logic is calculating
the probabilityπC(ϕ) of a formulaϕ. A straightforward way of doing this would be
to exploit the relation between CP-logic and (probabilistic) logic programming, such
that we perform these computations by reusing existing algorithms (e.g., the inference
algorithm of Poole’s independent choice logic (Poole 1997)) in an appropriate way. A
more advanced technique, using binary decision diagrams, is currently being studied
by Riguzzi [personal communication]. Another interesting inference task concerns
the construction of a theory in CP-logic. For probabilistic modelling languages in
general, it is typically not desirable that a user is forced to estimate or compute concrete
probability values herself; instead, it should be possible to automatically derive these
from a given data set. For CP-logic, there already exist algorithms that are able to do
this in certain restricted cases (Riguzzi 2004; Blockeel and Meert 2007). It would be
interesting to generalize these, in order to make them generally applicable. Besides
such learning of probabilistic parameters, it is also possible to learn the structure of
the theory itself. This too is an important topic, because if we are able to construct the
theory that best describes a given data set, we are in effect finding out which causal
mechanisms are most present in this data. Such information can be relevant for many
domains. For instance, when bio-informatics attempts to distinguish active from non-
active compounds, this is exactly the kind of information that is needed.

130 CHAPTER 5. CAUSAL PROBABILISTIC LOGIC

Chapter 6

Proofs of the theorems

In this chapter, we present proofs of the theorems that were stated in the previous
chapter. To ease notation, we will assume that there are no exogenous predicates. This
can be done without loss of generality, since all our results can simply be relativized
with respect to some fixed interpretation for these predicates.

6.1 Semantics is well-defined

We start by proving that the semantics of CP-logic—and in particular, the three-valued
interpretationνs used in the additional condition imposed by Definition 5.9 for han-
dling negation—is indeed well-defined. Since we definedνs as the unique limit of all
terminal hypothetical derivation sequences ofs, this requires us to show that all such
sequence indeed end up in the same limit.

As we recall from Section 2.2, there is a strong duality between three-valued in-
terpretations and pairs(I, J) of two-valued interpretations that are consistent, i.e., for
which I ≤ J . In that chapter, we also defined a corresponding isomorphismτ , that
maps eachν to the pair of interpretations(I, J), whereI contains all ground atomsp
for which ν(p) = t andJ contains all ground atomsp for which eitherν(p) = t or
ν(p) = u.

Let us consider a CP-theoryC and states in aC-process. We will denote byR(s)
the set of all CP-eventsr ∈ C that have not yet happened ins, i.e., for which there
is no ancestors′ of s with E(s′) = r′. Let (νi)0≤i≤n be a sequence of three-valued
interpretations. It follows directly from the correspondence to pairs of interpretations
that (νi)i is a hypothetical derivation sequence in the states iff the corresponding
sequence of pairs(Ii, Ji) = τ(νi) satisfies the following conditions:

• For all i, Ii = I(s);

• J0 = I0;

• for all i > 0, Ji = Ji−1 ∪ head(r), with r ∈ R(s) such that(J, I) |= body(r).

131

132 CHAPTER 6. PROOFS OF THE THEOREMS

In order to characterize the limit reached by such a sequence, we will define a new
operatorVs on interpretations, that maps each interpretationJ to J ∪ H, whereH is
the union of allheads(r) for which r ∈ R(s) and, withI = I(s), (J, I) |= body(r).
Clearly, this operator is monotone and has each interpretationJ as a postfixpoint. As
we recall from Section 2.1.1, this implies that, for each interpretationJ , Vs has a unique
least fixpoint greater thanJ . This property can now be used to characterize the limit of
a hypothetical derivation sequence.

Proposition 6.1. Let (νi)0≤i≤n be a terminal hypothetical derivation sequence for a
CP-theoryC and states in a C-process. Thenτ(νn) = (I, J), whereJ is the least
fixpoint greater thanI of the operatorVs.

Proof. For all i, let (I, Ji) be τ(νi). Let J be the least fixpoint greater thanI of Vs.
Because the sequence(νi)0≤i≤n is terminal, for all CP-eventsr ∈ R(s), if (Jn, I) |=
body(r) thenhead(r) ⊆ Jn. It follows thatJn is a fixpoint ofVs. Moreover,Jn is by
construction also greater thanI. Therefore,J ≤ Jn and it suffices to show that also
Jn ≤ J . We prove by induction that the inequalityJi ≤ J in fact holds for alli ∈ 0..n.
ForJ0 = I, this is trivial. Assume that, for somei > 0, Ji−1 ≤ J . There exists a CP-
eventr ∈ R(s) such thatJi = Ji−1 ∪ head(r) and(Ji−1, I) |= body(r). Because, by
the induction hypothesis,Ji−1 ≤ J , this implies that also(J, I) |= body(r). Therefore,
head(r) ∈ Vs(J) = J and we conclude thatJi ≤ J .

This result characterizes the limit of any terminal hypothetical derivation sequence
in a states in a way that depends only ons. As such, it shows that all such sequences
converge to a unique limitνs, namely, the least fixpoint greater thanI(s) of Vs. We
have now proven Theorem 5.3 and, therefore, our semantics is indeed well defined.

6.2 CP-logic and LPADs are equivalent

We now establish a link to logic programming, by relating this limitνs to the stable
operator of a logic programCs, defined as follows. For a CP-eventr ∈ C that has
already happened ins, i.e.,r 6∈ R(s), we denote byrs the singleton set of rules{h←
body(r)}, whereh is the atom that was the result of this event. For every other CP-
eventr, rs is the set of all rulesh← body(r), for whichh ∈ headAt(r). The program
Cs is now defined as∪r∈Cr

s. Recall that in Section 2.2, we defined the semantics of
a rule setP by means of a functionUP that maps each pair of interpretations(I, J) to
the set of all atomshead(r) for which (I, J) |= body(r).

In order to relate such a programCs to the operatorVs, we consider the subset
P ⊆ Cs that contains allrs for which r ∈ R(s). Let I beI(s). It is now easy to
see that for allJ , Vs(J) = J ∪ UP (J, I). Now, obviouslyUCs(J, I) = UP (J, I) ∪
UCs\P (J, I). Because the programCs \ P consists precisely of allrs for which r
has already happened ins, we have that, for allr ∈ Cs \ P , head(r) belongs toI.
Therefore, for anyJ , UCs\P (J, I) ≤ I. It follows that for allJ ≥ I:

Vs(J) = UP (J, I) ∪ J = UP (J, I) ∪ J ∪ UCs\P (J, I) = UCs(J, I) ∪ J.

6.2. CP-LOGIC AND LPADS ARE EQUIVALENT 133

We now use these observations to relateνs to the upper stable operatorC↑Cs ; recall that
this maps eachJ to lfp(UCs(·, J)) and is also equal to the lower stable operatorC↓Cs .
First, we do this only under the assumption that the pair(I, C↑Cs(I)) is consistent.

Proposition 6.2. Let(νi)0≤i≤n be a hypothetical derivation sequence for a CP-theory
C and states in an execution model ofC. Let I be I(s). If I ≤ C↑Cs(I), then
τ(νn) = (I, C↑Cs(I)).

Proof. By Proposition 6.1,τ(νn) = (I, J), with J the least fixpoint greater thanI
of Vs. Because for eachK ≥ I, Vs(K) = K ∪ UCs(K, I), any fixpoint ofUCs(·, I)
greater thanI is also a fixpoint ofVs. In particular, by the assumption thatI ≤ C↑Cs(I),
this holds for the least fixpointC↑Cs(I) of UCs(·, I). Therefore,J ≤ C↑Cs(I). As such,
it suffices to show that alsoJ ≥ C↑Cs(I). For anyK ≥ I, clearlyVs(K) ⊇ UCs(K, I).
It follows that the least fixpoint greater thanI of Vs must be greater than or equal to
the least fixpoint greater thanI of UCs(·, I), i.e., indeedJ ≥ C↑Cs(I).

We now show that for allI = I(s) it is indeed the case that(I, C↑Cs(I)) is consis-
tent, by proving the following, stronger result. Our formulation of this theorem uses
the concept ofprudence: for a programP , a pair(I, J) is P -prudentif I is less than
each prefixpoint ofUP (·, J), i.e., if for eachK, UP (K,J) ≤ K impliesI ≤ K.

Proposition 6.3. LetT be an execution model ofC. For each nodes, if I = I(s) and
J = C↑Cs(I), then the pair(I, J) is both consistent and prudent.

Proof. Let s0, . . . , sn be a branch ofT , with s0 the root ofT . For eachi, let Ii be
I(si) andJi beC↑Csi (Ii). We will prove by induction that for eachi, the pair(Ii, Ji)
is both consistent andCsi-prudent. Because for the roots0 of T , I0 = {}, the pair
(I0, J0) trivially satisfies this property. Leti ≥ 0 and assume that the property holds
for all j ≤ i. We construct(Ii+1, Ji+1) from (Ii, Ji) in two steps, showing that each
step preserves consistency and prudence.

First, we go from the pair(Ii, Ji) to (Ii+1, Ji). By construction, there exists an
r ∈ Csi+1 , such thatIi+1 = Ii ∪ {head(r)} andνsi

(body(r)) = t. By the induction
hypothesis and Proposition 6.2,τ(νsi

) = (Ii, Ji), so(Ii, Ji) |= body(r) and(Ji, Ii) |=
body(r). Let us now first show that this step preserves consistency, i.e., thatIi+1 ≤ Ji.
Because alreadyIi ≤ Ji, it suffices to show thathead(r) ∈ Ji. Becauser ∈ Csi

and (Ji, Ii) |= body(r), we have thathead(r) ∈ UCsi (Ji, Ii). BecauseJi is by
construction a fixpoint ofUCsi (·, Ii), this implies thathead(r) ∈ Ji. We now show
that this step also preserves prudence. LetI be such thatI ≥ UCsi+1 (I, Ji). We need
to show thatI ≥ Ii+1. Again, sinceIi+1 = Ii ∪ head(r) and I ≥ Ii, it suffices
to show thathead(r) ∈ I. Because(Ii, Ji) |= body(r) and I ≥ Ii, we have that
(I, Ji) |= body(r) and, therefore, it follows fromI ≥ UCsi+1 (I, Ji) thathead(r) ∈ I.

Second, we go from the pair(Ii+1, Ji) to (Ii+1, Ji+1). We first show that this step,
too, preserves consistency. Because(Ii+1, Ji) is consistent,(Ji+1, Ii+1) ≥p (Ji+1, Ji)
and:

Ji+1 = UCsi+1 (Ji+1, Ii+1) ≥ UCsi+1 (Ji+1, Ji).

Because(Ii+1, Ji) has already been shown to beCsi+1-prudent, this implies that in-
deedIi+1 ≤ Ji+1. We now show that this step also preserves prudence. LetI

134 CHAPTER 6. PROOFS OF THE THEOREMS

be such thatI ≥ UCsi+1 (I, Ji+1). We need to show thatI ≥ Ii+1. It suffices
to show thatI ≥ UCsi+1 (I, Ji), because then the result will follow directly from
theCsi+1-prudence of(Ii+1, Ji). BecauseIi+1 ≥ Ii and eachC↑P -operator is anti-
monotone,Ji+1 = C↑

Csi+1 (Ii+1) ≤ C↑
Csi+1 (Ii). Moreover, becauseCsi+1 ⊆ Csi ,

C↑
Csi+1 (Ii) ≤ C↑Csi (Ii) = Ji, soJi+1 ≤ Ji. BecauseUCsi+1 is anti-monotone in its

second argument, we now have thatUCsi+1 (I, Ji) ≤ UCsi+1 (I, Ji+1) and, since we
choseI ≥ UCsi+1 (I, J), we now indeed find thatI ≥ UCsi+1 (I, Ji).

Together, the above two propositions imply that, for each nodes of an execution
model,τ(νs) is the pair(I, J) for which I = I(s) andJ = C↑Cs(I). Let us now
consider a branchs0, . . . , sn of an execution model. Because for allj ≥ i, Ij ≥ Ii
and everyC↑Cs -operator is anti-monotone, the sequenceτ(νsi

)0≤i≤n = (Ii, Ji)0≤i≤n

is increasing with respect to the precision order. We now show that this increasingly
precise sequence converges to the well-founded model ofCsn , by showing that, on the
one hand, every pair(Ii, Ji) approximates the well-founded model, while, on the other
hand, the limit of this sequence is exact, i.e.,In = Jn.

Proposition 6.4. Let s be a node in an execution modelT of C. Let I = I(s) and
J = C↑Cs(I). For any leafl that descends froms, if (V,W) is the well-founded model
ofCl, then(I, J) ≤p (V,W).

Proof. Let s0, . . . , sn be the branch ofT that leads from its roots0 to the leafl = sn

and, for eachi, let Ii beI(si) andJi = C↑Csi (Ii). We now prove by induction that, for
eachi, (Ii, Ji) ≤p (V,W). It follows directly from the anti-monotonicity ofC↑

Cl that,

for any interpretationI, if J = C↑
Cl(I) andI ≤ V , then(I, J) ≤p (V,W). Because

I0 = {} ≤ V , this immediately implies the base case of our induction. Assume now
that (Ii, Ji) ≤p (V,W) and letr ∈ Cl be such thatIi+1 = Ii ∪ head(r). It suffices
to show thathead(r) ∈ V . Now, because(Ii, Ji) |= body(r), the induction hypothesis
implies that(V,W) |= body(r). Because by constructionV = UCl(V,W), indeed
head(r) ∈ V .

Proposition 6.5. Let l be a leaf of an execution model ofC. Then the pair(I(l), I(l))
is the well-founded model ofCl.

Proof. Let (V,W) be the well-founded model ofCl. It is well-known that this implies
thatV ≤ W . Now, if we let I beI(l) andJ beC↑

Cl(I), then Proposition 6.4 states
thatI ≤ V ≤ W ≤ J . We now show thatI = J . Becausel is a leaf, the principle of
sufficient causation implies that, for allr ∈ Cl such thatI |= body(r), head(r) ∈ I.
Therefore,I = UCl(I, I). BecauseJ is the least fixpoint ofUCl(·, I), this implies that
J ≤ I. By Proposition 6.3, alsoI ≤ J , soI = J . It follows thatI = V = W =
J .

Having established this relation to the well-founded semantics, we now proceed
to show that all execution models of a CP-theory indeed define the same probability
distribution and, moreover, that this coincides with the instance based semanticsµC .

The core concept used to define the instance based semantics is that of a selection.
Given an execution modelT of a CP-theoryC, we can associate to each leafl of T the

6.2. CP-LOGIC AND LPADS ARE EQUIVALENT 135

setSl of all thoseC-selectionsσ that extend the choices made in the branch leading
to l. More formally, if s0, . . . , sn is the branch leading tol (with s0 the root ofT and
sn = l), thenσ ∈ Sl iff for all i < n, I(si+1) = I(si) ∪ {σh(E(si))}. It is easy to
see that, withLT the set of all leaves ofT , (Sl)l∈LT is a partition of the setSC of all
selections. We now study some properties of these sets of selectionsSl. As a technical
tool, we first introduce the following notion of an equivalence class of a selection.

Definition 6.1. Let D be a subset of a CP-theoryC. Two selectionsσ, σ′ ∈ SC are
D-equivalent, denotedσ ≡D σ′, iff ∀r ∈ D, σ(r) = σ′(r). The equivalence class of
σ under≡D is denoted as[σ]D.

Clearly, any setSl is equal to the equivalence class[σ]H , whereσ ∈ Sl andH =
C \ R(l) is the set of all rules that have happened leading up tol, i.e., for allr ∈ C, r
belongs toH iff l has an ancestors for whichE(s) = r.

Proposition 6.6. For a CP-theoryC, let σ be aC-selection andD ⊆ C. Then
P ([σ]D) =

∏
r∈D σα(r).

Proof. We begin by making the following calculation:

P ([σ]D) =
∑

ρ∈[σ]D

P (ρ) =
∑

ρ∈[σ]D

∏
r∈C

ρα(r) (By definition)

=
∑

ρ∈[σ]D

∏
r∈D

ρα(r)
∏
r 6∈D

ρα(r)

=
∑

ρ∈[σ]D

∏
r∈D

σα(r)
∏
r 6∈D

ρα(r) (∀ρ ∈ [σ]D : if r ∈ D, thenρ(r) = σ(r))

=
(∏

r∈D

σα(r)
)(∑

ρ∈[σ]D

∏
r 6∈D

ρα(r)
)

(Distributivity)

We now show that this last sum
∑

ρ∈[σ]D

∏
r 6∈D ρα(r) is in fact equal to 1, which will

obviously prove the desired result. For any particular selectionσ andD ⊆ C, the
equivalence class[σ]D is isomorphic to the setSC\D of all selections for the subthe-
ory C \ D of C. Indeed, an isomorphism between these two sets is the function that
maps every(C \D)-selectionτ to the uniqueC-selectionρ for whichρ|D = σ|D and
ρ|C\D = τ . We therefore find that

∑
ρ∈[σ]D

∏
r 6∈D ρα(r) =

∑
τ∈SC\D

∏
r∈C\D τα(r) =∑

τ∈SC\D
P (τ). Because for every eventr in a CP-theory,

∑
(h,α)∈head∗(r) α = 1, it

is easy to see that, for any CP-theoryC ′, the sum of the probabilitiesP (σ′) over all
C ′-selectionsσ′ is always 1. In particular, this must be the case forC ′ = C \D, which
now proves the result.

As previously pointed out,Sl = [σ]H with σ ∈ Sl andH = C \ R(l). The
above proposition now shows thatP (Sl) =

∏
r∈H σα(r), which is of course equal to

the probabilityP(l) of the leafl itself. Having thus established thatP(l) = P (Sl),
we now just need to show that, for eachσ ∈ Sl, the well-founded model ofCσ is
(I(l), I(l)). Proposition 6.7 already shows that(I(l), I(l)) coincides with the well-
founded model ofCl. This is almost the result that we want, but not completely, since

136 CHAPTER 6. PROOFS OF THE THEOREMS

Cσ is not necessarily equal toCl. In particular, it might be the case thatCσ ⊂ Cl,
becauseCσ contains precisely one instantiation of each CP-event ofC, whereasCl

containsall possible instantiations of the CP-events that have not yet happened inl.
The missing piece of the puzzle is now provided by the following straightforward logic
programming result, that we state without proof.

Proposition 6.7. LetP andP ′ be logic programs, such thatP ⊆ P ′ andP ′ has an
exact well-founded model(I, I). If P contains all rulesr ∈ P ′ for whichI |= body(r),
then(I, I) is also the well-founded model ofP .

It is easy to see that, for any leafl of an execution model ofC and selectionσ ∈ Sl,
Cσ andCl satisfy the condition of this proposition. This now allows us to prove the
desired equivalence, which was previously stated as Theorem 5.8.

Theorem 6.1. LetT be an execution model of a CP-theoryC. For each interpretation
J ,

µC(J) = πT (J).

Proof. Let T , C andJ be as above. LetLT (J) be the set of all leavesl of T for
which I(l) = J . Then by definition,πT (J) =

∑
l∈LT (J) πT (l). The probability

µC(J), on the other hand, is defined as
∑

σ∈S(J) P (σ), whereS(J) is the set of all
selectionsσ for which WFM(Cσ) = (J, J). Now, every selectionσ belongs to
precisely oneSl, with l a leaf ofT . Moreover, it follows from Proposition 6.7 that
for all σ, WFM(Cσ) = (J, J) iff there is anl ∈ LT (J) such thatσ ∈ Sl. Therefore,
we can partitionS(J) into (Sl)l∈LT (J). By Proposition 6.6, we now have that:

µC(J) =
∑

σ∈S(J)

P (σ) =
∑

l∈LT (J)

∑
σ∈Sl

P (σ) =
∑

l∈LT (J)

P(l) = πT (J).

For any execution modelT of C, this theorem now characterizes the probability
distributionπT in a way that depends only onC and not onT itself. It follows that,
indeed, for all execution modelsT andT ′ of C, πT = πT ′ , which means that we have
now also proven Theorem 5.5 (and, therefore, Theorem 5.1 as well).

6.3 Stratified CP-theories are treated correctly

In this section, we will prove Theorem 5.6, which states that every stratified CP-theory
has an execution model which follows its stratification. Recall that a CP-theory is
stratified if there exists a mappingλ from its Herbrand base toN, such that for all
h ∈ headAt(r) and b ∈ body+

At(r), λ(h) ≥ λ(b) and for allh ∈ headAt(r) and
b ∈ body−At(r), λ(h) > λ(b). In order to prove this result, we will again introduce
a mappingκ from C to N. We choseκ to be such that it respectsλ and for allb ∈
body−At(r), κ(r) > λ(b). It can easily be seen that for any stratified theoryC, it is
always possible to find such aκ. Moreover, it is also always possible to construct aκ-
processT that satisfies all the original conditions of Definition 5.4 (execution model—
positive case). Indeed, this is simply a matter of executing in each nodes a CP-eventr

6.3. STRATIFIED CP-THEORIES ARE TREATED CORRECTLY 137

with minimalκ(r) among all CP-events whose body is satisfied ins. Indeed, for every
child s′ of s, it will then be the case that, for all rulesr′ with I(s′) |= body(r′), either
body(r′) was already satisfied ins or else the atom that was caused byr must belong
to bodyAt(r′). In both cases,κ(r′) ≥ κ(r).

Therefore, it now suffices to show that any such processT also satisfies the ad-
ditional condition imposed by Definition 5.9 (execution model—general case). Our
proof of this will need some intermediate results.

Let us first recall some properties of hypothetical derivation sequences. Such a se-
quence makes atoms that were initiallyf becomeu. This implies that such a sequence
is decreasing with respect to the knowledge order and increasing with respect to the
truth order. Moreover, for allνi in such a sequence, the truth valueνi(body(r)) must
therefore be related to whether or notI(s) |= body(r) in the following way:

• If νi(body(r)) = t, then alsoI(s) |= body(r);

• If νi(body(r)) = f , then alsoI(s) 6|= body(r);

• If νi(body(r)) = u, then there must be least atomp ∈ bodyAt(r) that wasf in
I(s) but isu in νi and, moreover:

– If I(s) |= body(r), thenp ∈ body−At(r);

– If I(s) 6|= body(r), thenp ∈ body+
At(r).

Now, letT be aκ-process that satisfies all the original conditions of Definition 5.4
(execution model—positive case). By definition, for all descendantss′ of s, κ(E(s′)) ≥
κ(E(s)). We now show that this implies that for every CP-eventr′ that could also have
happened ins, κ(r′) ≥ κ(E(s)).

Proposition 6.8. Let s be a node ofT , let r beE(s) and letr′ ∈ R(s) be a CP-event
for whichI(s) |= body(r′). Thenκ(r′) ≥ κ(r).

Proof. Let us assume towards contradiction that there exists a ruler′ ∈ R(s) such
that I(s) |= body(r′) andκ(r′) < κ(r). We first prove by induction that, for each
descendants′ of s, it must then still be the case thatI(s′) |= body(r′). The base case
s′ = s is trivial. For the induction step, we assume that the property already holds
for some descendants′′ of s and consider a childs′ of s′′. Let r′′ beE(s′′). By the
induction hypothesis,I(s′′) |= body(r′). Therefore, the only way in which it could be
possible thatI(s′) 6|= body(r′) is if r′′ causes some atomh ∈ headAt(r′′) that also
belongs tobody−At(r

′). However, this would imply thatκ(r′′) < κ(r′) < κ(r), which
contradicts the fact thatT follows κ. We conclude that for all descendantss′ of s,
body(r′) is indeed still satisfied inI(s′). In particular, this must be the case for every
leaf l that can be reached froms. Therefore,r′ must happen in some state betweens
andl. However, becauseT follows κ andκ(r′) < κ(r), this cannot be the case and we
have our contradiction.

For a nodes, there are only certain CP-eventsr for which it can be the case that
νs(body(r)) = u. Indeed, as we now show, this can only happen for thoser whose
levelκ(r) is at least as great as the level of the eventE(s) that actually happens ins.

138 CHAPTER 6. PROOFS OF THE THEOREMS

Proposition 6.9. Lets be a node ofT . For all CP-eventsr ∈ R(s), if κ(r) < κ(E(s)),
thenνs(body(r)) 6= u.

Proof. Let (νi)0≤i≤n be a hypothetical derivation sequence ins. We will show by
induction overi that the property in fact holds for allνi. Becauseν0 is still two-
valued, the base case is trivial. Let us now assume that the property holds fori −
1. We assume towards contradiction that there is a CP-eventr ∈ R(s), for which
κ(r) < κ(E(s)) andνi(body(r)) = u. By the induction hypothesis, it is the case that
νi−1(body(r)) 6= u. This implies that the transition fromνi−1 to νi must have used
somer′ ∈ R(s) for which headAt(r′) contains at least one atom that also appears
in bodyAt(r). Therefore,κ(r′) ≤ κ(r) < κ(E(s)). Moreover, it must also be the
case that, for thisr′, νi−1(body(r′)) is eithert or u. By this induction hypothesis, it
cannot beu, so it must byt. However, because a hypothetical derivation sequence
is decreasing with respect to the knowledge order, this implies thatI(s) |= body(r′).
By Proposition 6.8, we then have thatκ(r′) ≥ κ(E(s)), which contradictsκ(r′) <
κ(E(s)).

We are now ready to finish our proof of Theorem 5.6, by showing thatT must
indeed also satisfy the additional condition imposed by Definition 5.9 and is, therefore,
an execution model ofC.

Proposition 6.10. A κ-processT that already satisfies the original conditions of Def-
inition 5.4 must also satisfy the additional condition of Definition 5.9.

Proof. Let s be a node of aC-processT that followsκ and satisfies all principles
apart from temporal precedence. We need to show thatνs(body(E(s)) = t. Because a
hypothetical derivation sequence is decreasing with respect to the knowledge order, the
fact thatI(s) |= body(r) implies thatνs(body(E(s)) is eithert or u. Let us assume
towards contradiction that it isu. There must exists a CP-eventr′ whose head contains
at least one atom also appearing inbody−At(r) such thatνs(body(r′)) is eithert or u.
Because thenκ(r′) < κ(r), Proposition 6.9 implies thatνs(body(r′)) cannot beu,
so it must bet. However, this can only happen if alreadyI(s) |= body(r′), which
contradicts Proposition 6.8.

This concludes our proof of Theorem 5.6. Since this theorem clearly generalizes
Theorem 5.2, we have now proven all theorems stated in Chapter 5

Chapter 7

Conclusions

Our central topic has been the role of constructive processes in knowledge representa-
tion. In particular, we have investigated such processes in two distinct settings.

Algebraic study of logics with fixpoint semantics

In the first part of this text, we studied properties of constructive processes in the ab-
stract, algebraic setting of approximation theory. This allowed us to analyze some
important knowledge representation concepts in a general, syntax-independent way.
From such an algebraic analysis, we could then derive, in an easy and uniform way,
concrete results for various fixpoint semantics of a number of different languages. We
did this for two topics.

First, we examinedmodularity, by means of the algebraic concept of a stratifiable
approximation. We then used our algebraic results to (partly) generalize a number of
known splitting results for logic programs (Lifschitz and Turner 1994; Eiter, Gottlob,
and Mannila 1997), open logic programs (Verbaeten, Denecker, and Schreye 2000), ID-
logic (Denecker and Ternovska 2004), autoepistemic logic (Gelfond and Przymusinska
1992; Niemel̈a and Rintanen 1994), and default logic (Turner 1996).

Second, we also studied the topic ofpredicate introduction, by means of the al-
gebraic concept of fixpoint extension. In the case of logic programming, our results
significantly generalize an earlier result by Van Gelder (Van Gelder 1993), as well as a
result by (Dix and M̈uller 1994) and certain restricted forms of fold/unfold transforma-
tions (Aravindan and Dung 1995). In the case of autoepistemic logic, we presented a
transformation to reduce the nesting depth of the modal operator, which offers an alter-
native (avoiding a blowup in the size of the theory at the cost of enlarging the alphabet)
to the transformation presented in (Marek and Truszczyński 1991).

The main contribution of the work presented in this first part is that we have shown
approximation theory to be a viable way of studying properties of knowledge rep-
resentation languages with a fixpoint semantics in a general way, without commit-
ting to a single specific formalism. Indeed, for both topics we investigated, we have
demonstrated that different results, proven independently in the literature, can be de-

139

140 CHAPTER 7. CONCLUSIONS

rived from a single theorem in approximation theory, with relative ease. The work of
(Truszczýnski 2006) on algebraically characterizing strong and uniform equivalence
also fits into this strand of research. Along the way, we have also generalized existing
results for particular logics in several ways, as summarized in the preceding paragraphs.
Mostly, these were rather straightforward generalizations, such as extending an exist-
ing result to a more general syntax, a larger class of theories, or a different semantics.
Our most significant new applied result has been achieved in the context of predicate
introduction for logic programs, where our extension to recursively defined new predi-
cates allowed us to come up with a method of eliminating universal quantifiers in rule
bodies.

This work could still be extended in several ways. First, it could be examined if
and how other interesting languages fit into the framework of approximation theory.
In particular, within the field of answer set programming, the original language of
normal logic programs under the stable semantics has been significantly extended, as
in, e.g., (Lifschitz, Tang, and Turner 1999). Currently, these extensions fall outside
the scope of approximation theory and, therefore, none of our results apply to them.
Second, there are of course also other interesting knowledge representation properties
that could be investigated in the setting of approximation theory. For instance, the
topic of program specialization (Leuschel 1997) seems to be interesting in this respect.
Another interesting possibility is examining the fold/unfold transformations, that fall
outside the scope of our predicate introduction results.

Constructive processes and causality

In the second part of this text, we showed that constructive processes also play an
important role when dealing with causality. We started by considering the informal
meaning of causal statements such as “pneumonia causes cast pain” and showed that
this implicitly refers to a dynamic evolution, that can be described as a constructive
process. By considering also non-deterministic causal statements, such as “pneumo-
nia might cause chest pain”, where we quantify the uncertainty with probabilities, we
ended up with the probabilistic modelling language of CP-logic. As suggested by our
informal reading of such statements, we defined the semantics of theories in this lan-
guage by means of certain constructive probabilistic processes, called the execution
models of a theory. An important result was that all execution models of the same the-
ory generate precisely the same probability distribution over their possible final states.

An interesting property of CP-logic is that it allows causal events to be described in
quite a flexible and fine-grained way. As we have shown, this gives the language certain
representation advantages over Bayesian networks, e.g., when it comes to modelling ef-
fects with a number of independent possible causes or cyclic causal relations. We have
also related CP-logic to the field of logic programming, by first defining a probabilistic
extension of disjunctive logic programs, called logic programs with annotated disjunc-
tions, and then showing that this is equivalent to CP-logic. This result allows a new
and appealing informal interpretation of (probabilistic) logic programming constructs
in terms of causal events.

The main contribution of this work has been to develop a language whose syn-

141

tax and semantics follow naturally from properties that are inherent to a certain kind of
causal statement. As such, CP-logic has primarily served as a tool for analyzing the na-
ture of these statements and their role in probabilistic modelling. While we have shown
that it already has some interesting properties when compared to Bayesian networks,
future work could still make CP-logic more practically applicable; most notably, the
language itself could be extended in a number of obvious ways, it should be investi-
gated how CP-theories can be integrated with other forms of probabilistic knowledge,
and inference methods for CP-logic should be studied.

142 CHAPTER 7. CONCLUSIONS

Bibliography

Apt, K., H. Blair, and A. Walker (1988). Towards a theory of Declarative Knowl-
edge. In J. Minker (Ed.),Foundations of Deductive Databases and Logic Pro-
gramming, pp. 89–148. Morgan Kaufmann.

Aravindan, C. and P. M. Dung (1995). On the correctness of unfold/fold trans-
formation of normal and extended logic programs.Journal of Logic Program-
ming 24(3), 201–217.

Bacchus, F. (1993). Using first-order probability logic for the construction of
Bayesian networks. InProceedings of the Sixth Conference on Uncertainty in
Artificial Intelligence, UAI’93, pp. 219–226.

Balduccini, M. and M. Gelfond (2003). Diagnostic reasoning with A-Prolog.Theory
and Practice of Logic Programming (TPLP) 3(4-5), 425–461.

Baral, C., M. Gelfond, and N. Rushton (2004). Probabilistic reasoning with answer
sets. InProc. of the 7th International Conference on Logic Programming and
Nonmonotonic Reasoning (LPNMR-7), Volume 2923 ofLecture notes in artifi-
cal intelligence (LNAI), pp. 21–33. Springer-Verlag.

Baral, C. and V. Subrahmanian (1991). Duality between alternative semantics of
logic programs and nonmonotonic formalisms. In A. Nerode, W. Marek, and
V. Subrahmanian (Eds.),Intl. Workshop on Logic Programming and Nonmono-
tonic Reasoning, Washington DC., pp. 69–86. MIT Press.

Belnap, N. D. (1977). A useful four-valued logic. InModern uses of multiple-valued
logic, pp. 5–37. Reidel, Dordrecht, NL.

Blockeel, H. and W. Meert (2007). Two novel methods for learning logic programs
with annotated disjunctions. InProceedings of the 16th International Confer-
ence on Inductive Logic Programming, ILP’06, Lecture Notes in Computer Sci-
ence. to appear.

Bonatti, P. (1995). Autoepistemic logics as a unifying framework for the semantics
of logic programs.Journal of Logic Programming 22, 91–149.

Breese, J. (1992). Construction of belief and decision networks.Computational in-
telligence 8(4), 624–647.

Clark, K. L. (1978). Negation as failure. In H. Gallaire and J. Minker (Eds.),Logic
and Databases, pp. 293–322. Plenum Press.

143

144 BIBLIOGRAPHY

Costa, V. S., D. Page, M. Qazi, and J. Cussens (2003). CLP(BN): Constraint logic
programming for probabilistic knowledge. InProceedings of the Nineteenth An-
nual Conference on Uncertainty in Artificial Intelligence (UAI-2003), pp. 517–
524. Morgan Kaufmann.

Cussens, J. (2000). Stochastic logic programs: Sampling, inference and applica-
tions. InProceedings of the Sixteenth Annual Conference on Uncertainty in Ar-
tificial Intelligence, pp. 115–122. Morgan Kaufmann.

De Raedt, L., A. Kimmig, and H. Toivonen (2007). ProbLog: A probabilistic Prolog
and its application in link discovery. InProceedings of the 20th International
Joint Conference on Artificial Intelligence, IJCAI’07, pp. 2462–2467.

Dekhtyar, A. and V. Subrahmanian (2000). Hybrid probabilistic programs.Journal
of Logic Programming 43(3), 187–250.

Dell’Armi, T., W. Faber, G. Ielpa, C. Koch, N. Leone, S. Perri, and G. Pfeifer (2001).
System description: DLV. In T. Eiter, W. Faber, and M. Truszczyński (Eds.),
LPNMR, Volume 2173 ofLecture Notes in Computer Science, pp. 424–428.
Springer.

Denecker, M., V. Marek, and M. Truszczynski (1998). Fixpoint 3-valued semantics
for autoepistemic logic. InProceedings of the Fifteenth National Conference on
Artificial Intelligence, pp. 840–845. MIT Press / AAAI-Press.

Denecker, M., V. Marek, and M. Truszczyński (2000). Approximating operators,
stable operators, well-founded fixpoints and applications in non-monotonic rea-
soning. InLogic-based Artificial Intelligence, The Kluwer International Series
in Engineering and Computer Science, pp. 127–144. Kluwer Academic Publish-
ers, Boston.

Denecker, M., V. Marek, and M. Truszczyński (2003, January). Uniform semantic
treatment of default and autoepistemic logics.Artificial Intelligence 143(1), 79–
122.

Denecker, M., V. Marek, and M. Truszczyński (2004). Ultimate approximation and
its application in nonmonotonic knowledge representation systems.Information
and Computation 192(1), 84–121.

Denecker, M. and E. Ternovska (2004). A logic of non-monotone inductive defini-
tions and its modularity properties. In V. Lifschitz and I. Niemelä (Eds.),Seventh
International Conference on Logic Programming and Nonmonotonic Reason-
ing, LPNMR’04.

Dix, J. (1995). A classification theory of semantics of normal logic programs: II.
weak properties.Fundamenta Informaticae 22(3), 257–288.

Dix, J. and M. M̈uller (1994). Partial evaluation and relevance for approximations
of stable semantics. In Z. W. Ras and M. Zemankova (Eds.),ISMIS, Volume 869
of Lecture Notes in Computer Science, pp. 511–520. Springer.

Eiter, T., G. Gottlob, and H. Mannila (1997). Disjunctive datalog.ACM Transactions
on Database Systems (TODS) 22, 364–418.

BIBLIOGRAPHY 145

Erdŏgan, S. and V. Lifschitz (2004). Definitions in Answer Set Programming. In
Proc. Logic Programming and Non Monotonic Reasoning, LPNMR’04, Volume
2923 ofLNAI, pp. 185–197. Springer-Verlag.

Etherington, D. (1988).Reasoning with incomplete information. Research notes in
Artificial Intelligence. Morgan Kaufmann.

Fierens, D., H. Blockeel, M. Bruynooghe, and J. Ramon (2005). Logical Bayesian
networks and their relation to other probabilistic logical models. InProceedings
of the 15th International Conference on Inductive Logic Programming, ILP’05,
Volume 3625 ofLecture Notes in Computer Science, pp. 121–135. Springer.

Finzi, A. and T. Lukasiewicz (2003). Structure-based causes and explanations in the
independent choice logic. InProceedings of the 19h Conference on Uncertainty
in Artificial Intelligence, UAI’03.

Fitting, M. (1985). A Kripke-Kleene Semantics for Logic Programs.Journal of
Logic Programming 2(4), 295–312.

Fitting, M. (1989). Negation as refutation. InFourth Annual Symposium on Logic in
Computer Science (LICS’89), pp. 63–70. IEEE Press.

Fitting, M. (2002). Fixpoint semantics for logic programming - a survey.Theoretical
Computer Science 278, 25–51.

Gallagher, J. P. (1993, June). Specialisation of logic programs: A tutorial. InACM
Symposium on Partial Evaluation and Semantics-Based Program Manipulation
(PEPM ’93), pp. pages 88–98.

Gardner, P. and J. Shepherdson (1991). Unfold/fold transformations of logic pro-
grams. In J.-L. Lassez and G. Plotkin (Eds.),Computation logic: Essays in
honor of Alan Robinson. MIT Press.

Gelfond, M. (1987). On Stratified Autoepistemic Theories. InNational Conference
on Artificial Intelligence (AAAI’87), pp. 207–211. Morgan Kaufman.

Gelfond, M. and V. Lifschitz (1988). The stable model semantics for logic program-
ming. InInternational Joint Conference and Symposium on Logic Programming
(JICSLP’88), pp. 1070–1080. MIT Press.

Gelfond, M. and H. Przymusinska (1992). On consistency and completeness of au-
toepistemic theories.Fundamenta Informaticae 16(1), 59–92.

Gelfond, M. and H. Przymusinska (1996). Towards a theory of elaboration toler-
ance: Logic programming approach.Journal on Software and Knowledge Engi-
neering 6(1), 89–112.

Getoor, L., N. Friedman, D. Koller, and A. Pfeffer (2001). Learning probabilistic
relational models. In S. Dzeroski and N. Lavrac (Eds.),Relational Data Mining,
pp. 7–34. Springer-Verlag.

Ginsberg, M. (1988). Multivalued logics: A uniform approach to reasoning in arti-
ficial intelligence.Computational Intelligence 4, 265–316.

Halpern, J. and J. Pearl (2001a). Causes and explanations: A structural model ap-
proach – part I: Causes. InProceedings of the 17th Conference on Uncertainty
in Artificial Intelligence, UAI’01.

146 BIBLIOGRAPHY

Halpern, J. and J. Pearl (2001b). Causes and explanations: A structural model ap-
proach – part II: Explanations. InProceedings of the 17th Conference on Uncer-
tainty in Artificial Intelligence, UAI’01.

Halpern, J. and M. Tuttle (1993). Knowledge, probability, and adversaries.Journal
of the ACM 40, 917–960.

Jaeger, M. (1997). Relational Bayesian networks. InProceedings of the Thirteenth
Conference on Uncertainty in Artificial Intelligence (UAI-97).

Kersting, K. and L. D. Raedt (2000). Bayesian logic programs. In J. Cussens and
A. Frisch (Eds.),Proceedings of the Work-in-Progress Track at the 10th Inter-
national Conference on Inductive Logic Programming, pp. 138–155.

Kersting, K. and L. D. Raedt (2001). Bayesian logic programs. Technical Report
151, Institute for Computer Science, University of Freiburg, Germany.

Kersting, K. and L. D. Raedt (2007). Bayesian logic programming: Theory and
tool. In L. Getoor and B. Taskar (Eds.),An Introduction to Statistical Relational
Learning. MIT Press. To appear.

Konolige, K. (1987). On the relation between default and autoepistemic logic. In
M. L. Ginsberg (Ed.),Readings in Nonmonotonic Reasoning, pp. 195–226. Los
Altos, CA: Kaufmann.

Konolige, K. (1988). On the relation between default and autoepistemic logic.Arti-
ficial Intelligence 35, 343–382.

Lakshmanan, L. and F. Sadri (1994). Probabilistic deductive databases. In
M. Bruynooghe (Ed.),Proceedings of the International Symposium on Logic
Programming, ILPS’94, pp. 254–268. MIT Press.

Leone, N., P. Rullo, and F. Scarcello (1995). Declarative and fixpoints characteri-
zations of disjunctive stable models. InProceedings of the International Logic
Programming Symposium, ILPS’95, pp. 399–413. MIT Press.

Leuschel, M. (1997). Advanced techniques for logic program specialisation.AI
Communications 10(2), 127–128.

Lifschitz, V., L. R. Tang, and H. Turner (1999). Nested expressions in logic pro-
grams.Annals of Mathematics and Artificial Intelligence 25(3-4), 369–389.

Lifschitz, V. and H. Turner (1994). Splitting a logic program. In P. V. Hentenryck
(Ed.), International Conference on Logic Programming (ICLP’94), pp. 23–37.
MIT Press.

Lloyd, J. and R. Topor (1984). Making Prolog more expressive.Journal of Logic
Programming 1(3), 225–240.

Lukasiewicz, T. (2001). Fixpoint characterizations for many-valued disjunctive
logic programs. InProceedings of the 6th International Conference on Logic
Programming and Nonmonotonic Reasoning (LPNMR’01), Volume 2173 of
Lecture Notes in Artificial Intelligence, pp. 336–350. Springer-Verlag.

Maher, M. J. (1993). A transformation system for deductive database modules with
perfect model semantics.Theoretical Computer Science 110, 377–403.

BIBLIOGRAPHY 147

Marek, V. and M. Truszczýnski (1989). Stable semantics for logic programs and
default reasoning. In E. Lust and R. Overbeek (Eds.),Proceedings of the North
American Conference on Logic Programming and Non-monotonic Reasoning,
pp. 243–257.

Marek, V. and M. Truszczýnski (1991). Autoepistemic logic.Journal of the
ACM 38(3), 588–619.

Mariën, M., R. Mitra, M. Denecker, and M. Bruynooghe (2005). Satisfiability
checking for PC(ID). In G. Sutcliffe and A. Voronkov (Eds.),Proceedings of
the 12th International Conference on Logic for Programming, Artificial Inter-
national, and Reasoning, LPAR’05, Volume 3835 ofLecture Notes in Computer
Science, pp. 565–579. Springer.

McCain, N. (1997).Causality in Commonsense Reasoning about Actions. Ph. D.
thesis, University of Texas at Austin.

McCain, N. and H. Turner (1996). Causal theories of action and change. InPro-
ceedings of the Thirteenth National Conference on Artificial Intelligence and
the Eighth Innovative Applications of Artificial Intelligence Conference (13th
AAAI/8th IAAI), pp. 460–465. AAAI Press.

Meyer, J.-J. and W. van der Hoek (1995).Epistemic Logic for Computer Science
and Artificial Intelligence. Cambridge University Press.

Moore, R. (1984). Possible-world semantics for autoepistemic logic. InProc. of the
Non-Monotonic Reasoning Workshop, Mohonk, N.Y, pp. 344–354. AAAI Press.

Muggleton, S. (2000). Learning stochastic logic programs.Electronic Transactions
in Artificial Intelligence 5(041), 141–153.

Ng, R. and V. Subrahmanian (1992). Probabilistic logic programming.Information
and Computation 101(2), 150–201.

Ngo, L. and P. Haddawy (1997). Answering queries from context-sensitive proba-
bilistic knowledge bases.Theoretical Computer Science 171(1–2), 147–177.

Niemel̈a, I. and J. Rintanen (1994). On the impact of stratification on the complexity
of nonmonotonic reasoning.Journal of Applied Non-Classical Logics 4(2).

Niemel̈a, I., P. Simons, and T. Syrjänen (2000, April). Smodels: a system for answer
set programming. InProceedings of the 8th International Workshop on Non-
Monotonic Reasoning, NMR’00, Breckenridge, Colorado, USA.

Pearl, J. (2000).Causality: Models, Reasoning, and Inference. Cambridge Univer-
sity Press.

Pelov, N. and M. Truszczýnski (2004). Semantics of disjunctive programs with
monotone aggregates - an operator-based approach. In J. P. Delgrande and
T. Schaub (Eds.),Proceedings of the 10th International Workshop on Non-
Monotonic Reasoning, NMR’04, Whistler, Canada, June 6-8, 2004, Proceed-
ings, pp. 327–334.

Pettorossi, A. and M. Proietti (1994). Transformations of logic programs: Founda-
tions and techniques.Journal of Logic Programming 19, 20.

148 BIBLIOGRAPHY

Pinto, J. and R. Reiter (1993). Temporal reasoning in logic programming: A case
for the situation calculus. InProc. of the International Conference on Logic
Programming, pp. 203–221.

Poole, D. (1993). Probabilistic Horn abduction and Bayesian networks.Artificial
Intelligence 64 64(1), 81–129.

Poole, D. (1997). The Independent Choice Logic for modelling multiple agents un-
der uncertainty.Artificial Intelligence 94(1-2), 7–56.

Przymusinski, T. (1998). Every logic program has a natural stratification and an iter-
ated least fixed point model. InProceedings of the 8th Symposium on Principles
of Database Systems, PODS’98, pp. 11–21.

Przymusinski, T. C. (1991). Stable semantics for disjunctive programs.New Gener-
ation Computing 3/4, 401–424.

Reiter, R. (1980). A logic for default reasoning.Artificial Intelligence 13(1–2), 81–
132.

Riguzzi, F. (2004, September). Learning logic programs with annotated disjunc-
tions. In A. Srinivasan and R. King (Eds.),14th Internation Conference on In-
ductive Logic Programming (ILP2004), Porto, 6-8 September 2004, Heidelberg,
Germany, pp. 270–287. Springer Verlag.

Sakama, C. and K. Inoue (1994). An alternative approach to the semantics of dis-
junctive logic programs and deductive databases.Journal of automated reason-
ing 13(1), 145–172.

Sato, T. and Y. Kameya (1997). PRISM: A language for symbolic-statistical model-
ing. In Proceedings of the International Joint Conferences on Artificial Intelli-
gence, IJCAI’97, pp. 1330–1335.

Schrijvers, T. and A. Serebrenik (2004). Improving Prolog programs: Refactoring
for Prolog. In Logic Programming, 20th International Conference, ICLP’04,
Proceedings, Volume 3132 ofLecture Notes in Computer Science, pp. 58–72.

Seki, H. (1993). Unfold/fold transformation of logic programs for the well-founded
semantics.Journal of Logic Programming 6, 5–23.

Sneyers, J., J. Vennekens, and D. De Schreye (2006). Probabilistic-logical model-
ing of music. InPractical Aspects of Declarative Languages, 8th International
Symposium, PADL’06, Proceedings, Volume 3819 ofLNCS, pp. 60–72. Springer
Verlag.

Tamaki, H. and T. Sato (1984). Unfold/fold transformation of logic programs. In
Proceedings of the Second International Conference on Logic Programming,
ICLP’84, pp. 127–138.

Truszczýnski, M. (2006). Strong and uniform equivalence of nonmonotonic theo-
ries — an algebraic approach. InPrinciples of Knowledge Representation and
Reasoning, Proceedings of the Tenth International Conference, KR’06.

Turner, H. (1996). Splitting a default theory. InProc. Thirteenth National Confer-
ence on Artificial Intelligence and the Eighth Innovative Applications of Artifi-
cial Intelligence Conference, pp. 645–651. AAAI Press.

BIBLIOGRAPHY 149

Van Belleghem, K., M. Denecker, and D. De Schreye (1997). On the Relation be-
tween Situation Calculus and Event Calculus.Journal of Logic Programming,
special issue on Reasoning about Actions and Change 31(1-3), 3–37.

Van Gelder, A. (1993). The alternating fixpoint of logic programs with negation.
Journal of Computer and System Sciences 47(1), 185–221.

Vennekens, J. and M. Denecker (2005). An algebraic account of modularity in ID-
logic. In Logic Programming and Nonmonotonic Reasoning, LPNMR’05, Pro-
ceedings, Volume 3662 ofLecture Notes in Computer Science, pp. 291–303.
Springer Verlag.

Vennekens, J., M. Denecker, and M. Bruynooghe (2006). Representing causal in-
formation about a probabilistic process. InLogics in Artificial Intelligence, 10th
European Conference, JELIA’06, Proceedings, Volume 4160 ofLecture Notes
in Computer Science, pp. 452–464. Springer.

Vennekens, J., D. Gilis, and M. Denecker (2004a). Splitting an operator: An al-
gebraic modularity result and its application to auto-epistemic logic. InPro-
ceedings of the 10th International Workshop on Non-Monotonic Reasoning,
NMR’04, pp. 400–408.

Vennekens, J., D. Gilis, and M. Denecker (2004b). Splitting an operator: An al-
gebraic modularity result and its applications to logic programming. InLogic
Programming, 20th International Conference, ICLP’04, Proceedings, Volume
3132 ofLecture Notes in Computer Science, pp. 195–209. Springer.

Vennekens, J., D. Gilis, and M. Denecker (2006, October). Splitting an operator:
Algebraic modularity results for logics with fixpoints semantics.ACM Transac-
tions on Computational Logic (ACM TOCL) 7(4), 765–797.

Vennekens, J., M. Mariën, J. Wittocx, and M. Denecker (2007a). Predicate introduc-
tion for logics with a fixpoint semantics. part I: Logic programming. To appear
in Fundamentae Informaticae.

Vennekens, J., M. Mariën, J. Wittocx, and M. Denecker (2007b). Predicate introduc-
tion for logics with a fixpoint semantics. part II: Autoepistemic logic. To appear
in Fundamentae Informaticae.

Vennekens, J. and S. Verbaeten (2003). A general view on probabilistic logic pro-
gramming. InProceedings 15th Belgian-Dutch Conference on Artificial Intelli-
gence, pp. 299–306.

Vennekens, J., S. Verbaeten, and M. Bruynooghe (2004). Logic programs with an-
notated disjunctions. InLogic Programming, 20th International Conference,
ICLP’04, Proceedings, Volume 3132 ofLecture Notes in Computer Science,
pp. 431–445. Springer.

Verbaeten, S., M. Denecker, and D. D. Schreye (2000). Compositionality of normal
open logic programs.Journal of Logic Programming 41, 151–183.

Voronkov, A. (1992). Logic programming with bounded quantifiers. InProceedings
of the First Russian Conference on Logic Programming, RCLP’91, Volume 592
of LNAI, pp. 486–514. Springer-Verlag.

150 BIBLIOGRAPHY

Wittocx, J., J. Vennekens, M. Mariën, M. Denecker, and M. Bruynooghe (2006).
Predicate introduction under stable and well-founded semantics. InLogic Pro-
gramming, 22nd International Conference, ICLP’06, Seattle, WA, USA, August
17-20, 2006, Proceedings, Volume 4079 ofLecture Notes in Computer Science,
pp. 242–256. Springer.

Biography

Joost Vennekens was born on 27 September 1980 in Turnhout, Belgium. In 1998,
he graduated from high school at the V.S.L.S. Westerlo and went to study Informatics
(licentiaat informatica) at the K.U. Leuven, from which he graduatedmagna cum laude
on the 6th of July, 2002. Since then, he has been working as a PhD-student at the
research group DTAI of the Department of Computer Science at the K.U. Leuven, first
under the supervision of Prof. D. De Schreye and later also under that of Prof. M.
Denecker.

151

152 BIBLIOGRAPHY

Publication List

Articles in international reviewed journals

• J. Vennekens, D. Gilis, and M. Denecker, Splitting an operator: Algebraic mod-
ularity results for logics with fixpoints semantics, ACM Transactions on Com-
putational Logic 7 (4), pp. 765-797, October, 2006.

• J. Vennekens, M. Mariën, J. Wittocx, and M. Denecker, Predicate introduction
for logics with a fixpoint semantics. Part I: Logic programming, Fundamenta
Informaticae, 2007, to appear.

• J. Vennekens, M. Mariën, J. Wittocx, and M. Denecker, Predicate introduction
for logics with a fixpoint semantics. Part II: Autoepistemic logic, Fundamenta
Informaticae, 2007, to appear.

Contributions at international conferences,
published in Springer’s LNCS series

• J. Wittocx, J. Vennekens, M. Mariën, M. Denecker, and M. Bruynooghe, Predi-
cate introduction under stable and well-founded semantics, Logic Programming,
22nd International Conference, ICLP 2006, Seattle, WA, USA, August 17-20,
2006, Proceedings (Etalle, S. and Truszczynski, M., eds.), vol 4079, Lecture
Notes in Computer Science, pp. 242-256, 2006.

• J. Vennekens, M. Denecker, and M. Bruynooghe, Representing causal informa-
tion about a probabilistic process, Logics in Artificial Intelligence, 10th Euro-
pean Conference, JELIA 2006, Proceedings (Fisher, M. and van der Hoek, W.
and Konev, B. and Lisitsa, A., eds.), vol 4160, Lecture Notes in Computer Sci-
ence, pp. 452-464, 2006.

• J. Sneyers, J. Vennekens, and D. De Schreye, Probabilistic-logical modeling of
music, Practical Aspects of Declarative Languages, 8th International Sympo-
sium, PADL 2006, Proceedings (Van Hentenryck, P., ed.), vol 3819, Lecture
Notes in Computer Science, pp. 60-72, 2006.

153

154 BIBLIOGRAPHY

• J. Vennekens, and M. Denecker, An algebraic account of modularity in ID-logic,
Logic Programming and Nonmonotonic Reasoning, LPNMR 2005, Proceedings
(Baral, C. and Greco, G. and Leone, N. and Terracina, G., eds.), vol 3662, Lec-
ture Notes in Computer Science, pp. 291-303, 2005.

• J. Vennekens, S. Verbaeten, and M. Bruynooghe, Logic programs with annotated
disjunctions, Logic Programming, 20th International Conference, ICLP 2004,
Proceedings (Demoen, B. and Lifschitz, V., eds.), vol 3132, Lecture Notes in
Computer Science, pp. 431-445, 2004.

• J. Vennekens, D. Gilis, and M. Denecker, Splitting an operator: An algebraic
modularity result and its applications to logic programming, Logic Program-
ming, 20th International Conference, ICLP 2004, Proceedings (Lifschitz, V. and
Demoen, B., eds.), vol 3132, Lecture Notes in Computer Science, pp. 195-209,
2004.

Contributions at international conferences,
published elsewhere

• J. Vennekens, and M. Denecker, Analysing the structure of definitions in ID-
logic, Proceedings of the 11th International Workshop on Non-monotonic Rea-
soning (Dix, J. and Hunter, A., eds.), pp. 183-190, 2006.

• J. Vennekens, M. Denecker, and M. Bruynooghe, Extending the role of causality
in probabilistic modeling, Proceedings of the 11th International Workshop on
Non-monotonic Reasoning (Dix J. and Hunter, A., eds.), pp. 183-190, 2006.

• J. Vennekens, and M. Denecker, An algebraic account of modularity in ID-logic,
Answer Set Programming: Advances in Theory and Implementation (De Vos,
M. and Provetti, A., eds.), pp. 57-69, 2005.

• J. Vennekens, S. Verbaeten, and M. Bruynooghe, Logic programs with annotated
disjunctions, Proceedings of the 10th International Workshop on Non-Monotonic
Reasoning (Delgrande, J.P. and Schaub, T., eds.), pp. 409-415, 2004.

• J. Vennekens, D. Gilis, and M. Denecker, Splitting an operator: An algebraic
modularity result and its application to auto-epistemic logic, Proceedings of the
10th International Workshop on Non-Monotonic Reasoning (Delgrande, J.P. and
Schaub, T., eds.), pp. 400-408, 2004.

• J. Vennekens, and S. Verbaeten, A general view on probabilistic logic program-
ming, Proceedings of the 15th Belgian-Dutch Conference on Artificial Intelli-
gence (Heskes, T. and Lucas, P. and Vuurpijl, L. and Wiegerinck, W., eds.), pp.
299-306, 2003.

BIBLIOGRAPHY 155

Contributions at international conferences,
not published or only as abstract

• J. Vennekens, M. Denecker, and M. Bruynooghe, Representing causal informa-
tion about a probabilistic process, 18th Belgium-Netherlands Conference on Ar-
tificial Intelligence, BNAIC 2006, Namur, Belgium, October 5-6, 2006.

• J. Vennekens, and M. Denecker, An analysis of dependencies in ID-logic, Dagstuhl
seminar 05171: Nonmonotonic Reasoning, Answer Set Programming and Con-
straints, Schloss Dagstuhl, Wadern, Germany, April 25-29, 2005.

• J. Vennekens, S. Verbaeten, and M. Bruynooghe, Logic programs with anno-
tated disjunctions, 5th ”Freiburg, Leuven and Friends” Workshop on Machine
Learning, FLF-04, Hinterzarten, Germany, March 8-10, 2004.

Technical reports

• M. Denecker, and J. Vennekens, ID-logic in perspective, Department of Com-
puter Science, K.U.Leuven, Report CW 410, Leuven, Belgium, April, 2005.

• J. Vennekens, and S. Verbaeten, Logic programs with annotated disjunctions,
Department of Computer Science, K.U.Leuven, Report CW 368, Leuven, Bel-
gium, September, 2003.

