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Abstract—We present two double recursive block Macaulay
matrix algorithms to solve multiparameter eigenvalue problems
(MEPs). In earlier work, we have developed a non-recursive ap-
proach that finds the solutions of an MEP via a multidimensional
realization problem in the null space of the block Macaulay
matrix constructed from the coefficient matrices of that MEP.
However, this approach requires an iterative increase of the
degree of the block Macaulay matrix: in order to determine
whether the null space contains all the (affine) solutions of the
MEP, we need to compute a basis matrix of the null space for
every degree and check its dimension or rank structure. In this
letter, we employ a recursive/sparse technique to compute a basis
matrix of the null space of the block Macaulay matrix and
a recursive technique to perform the necessary rank checks.
We provide two system identification examples to show our
improvements in computation time and memory usage.

Index Terms—Numerical algorithms, identification.

I. INTRODUCTION

WHEN identifying linear time-invariant systems or solv-
ing partial differential equations via the method of

separation of variables, one can encounter multiparameter
eigenvalue problems (MEPs) [1], [2], [3]. In contrast to stan-
dard eigenvalue problems (SEPs) and polynomial eigenvalue
problems (PEPs), which are well-understood and for which
many efficient algorithms exist [4], techniques to solve MEPs
are much less abundant in the literature [5].

We have introduced in earlier work the block Macaulay
matrix to solve MEPs via a multidimensional realization
problem in its structured null space [1], [2], [5]. Although the
block Macaulay matrix approach creates an elegant, unifying
framework to solve SEPs, PEPs, and (polynomial) MEPs, it
suffers from a computational burden: before constructing a
multidimensional realization problem that yields the solutions
of the MEP, we have to make sure that the structured null space
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contains all the (affine) solutions. This requires two alternating
steps: we need (i) to iteratively increase the degree of the block
Macaulay matrix and construct a numerical basis matrix of its
null space and (ii) to check whether we can retrieve all the
affine solutions from that basis matrix. When the solution set
is zero-dimensional, we can monitor the dimension of the basis
matrix (as is the case in [5]). However, when the MEP has a
positive-dimensional solution set at infinity, the dimension of
the basis matrix does not stabilize and we need to check its
rank structure to determine if we can solve the MEP with that
basis matrix (otherwise we need to increase the degree again).

In this letter, we employ two different recursive1 techniques
in order to tackle MEPs that appear, for example, in a system
identification context. Our contribution is three-fold:

• we present two double recursive algorithms to solve
MEPs more efficiently,

• we show how to deflate positive-dimensional solution sets
at infinity (a difficulty that arises sometimes in system
identification problems),

• and we discuss how to exploit the shift polynomials that
appear in the multidimensional realization problems.

Although the key ingredients of the two double recursive
algorithms have already been discussed in [6], we bring them
now together by recognizing that a basis matrix of the null
space of the block Macaulay matrix is a block row matrix: we
use (i) a recursive/sparse technique to construct a numerical
basis matrix and we apply (ii) a recursive technique to check
the rank structure of that basis matrix. In particular, the
sparse adaptation is very useful, because it avoids the explicit
construction of a large block Macaulay matrix. We solve two
system identification examples with a positive-dimensional
solution set at infinity to demonstrate our contribution.

The remainder of this letter proceeds as follows: In Sec-
tion II, we define (rectangular) MEPs and give three examples.
Next, in Section III, we construct the block Macaulay matrix
and show how a multidimensional realization problem in its
null space yields the (affine) solutions of that MEP. After-
wards, we develop in Section IV two double recursive algo-
rithms, which are illustrated in Section V. Finally, we conclude
this letter and discuss future research ideas in Section VI.

1We do not use recursive in its strict computer science meaning, but to
denote an algorithm that performs the same steps on different input values.



II. MULTIPARAMETER EIGENVALUE PROBLEMS

While a standard eigenvalue problem (SEP) contains only
single eigenvalues λ, a multiparameter eigenvalue problem
(MEP) has eigentuples λ = (λ1, . . . , λn) of multiple eigenval-
ues. Several manifestations of MEPs appear in the literature,
but in this letter we focus solely on rectangular MEPs (see [5]
for a more elaborate overview):

Definition 1: Given coefficient matrices Aω ∈ Rk×l (with
k ≥ l + n − 1), the multiparameter eigenvalue problem
M (λ1, . . . , λn) z = 0 consists in finding all n-tuples λ =
(λ1, . . . , λn) ∈ Cn and corresponding vectors z ∈ Cl×1\{0},
so that

M (λ1, . . . , λn) z =

∑
{ω}

Aωλ
ω

 z = 0, (1)

where the summation runs over all the multi-indices ω =
(ω1, . . . , ωn) of the monomials λω =

∏n
i=1 λ

ωi
i and co-

efficient matrices Aω = A(ω1,...,ωn). The n-tuples λ =
(λ1, . . . , λn) and (non-zero) vectors z are the eigentuples and
eigenvectors of the MEP, respectively.

The size condition on the coefficient matrices is a necessary
(but not a sufficient) condition to have a zero-dimensional
solution set: there are k equations and one non-triviality
constraint on z (e.g., ‖z‖2 = 1) in l+n unknowns (l elements
in the eigenvectors and n eigenvalues), hence k + 1 ≥ l + n.
The matrix M (λ1, . . . , λn) is a multivariate polynomial in
the eigenvalues λ1, . . . , λn with matrix coefficients Aω .

Example 1: Our first example is the MEP that arises from
the least-squares realization problem: given a data sequence
y0, . . . , yN−1 (y ∈ RN×1), find the adapted data sequence
ŷ0, . . . , ŷN−1 so that the misfit ‖y − ŷ‖22 is minimized and
ŷ ∈ RN×1 is the output of a model of pre-specified or-
der n [2]:

ŷk = CAkx0, (2)

where x0 ∈ Rn×1 is the initial state, A ∈ Rn×n is the system
matrix, and C ∈ R1×n is the output vector. In [2], it has
been shown how this identification problem corresponds to
a quadratic MEP, with the number of eigenvalues equal to
n. When we consider a model of order n = 2, we obtain a
quadratic two-parameter eigenvalue problem

M (λ1, λ2) z =
(
A00 +A10λ1 +A01λ2+

A20λ
2
1 +A11λ1λ2 +A02λ

2
2

)
z = 0,

(3)

with the coefficient matrices Aω ∈ R(3N−4)×(3N−5) as
described in [2]. The integer multi-index ω = (ω1, ω2) ∈
N2 labels the powers of the eigenvalues in the monomial
λω1
1 λω2

2 and indexes the associated coefficient matrices Aω =
A(ω1,ω2). The total degree of a monomial is equal to the sum
of its powers, denoted by |ω| = ω1 + ω2. Hence, an integer
multi-index ω = (0, 2) labels the monomial λ22 (with total
degree 2) and indexes the associated coefficient matrix A02.

Example 2: Secondly, we consider the globally optimal
least-squares ARMA model identification problem. The sta-
tionary points of the related optimization problem are the
solutions of an MEP [1]. A first-order ARMA(1, 1) model
combines a regression of the observed output variable yk ∈ R

on its own lagged value yk−1 with a linear combination of
unobserved, latent inputs ek and ek−1 ∈ R [1]:

yk + αyk−1 = ek + γek−1, (4)

where the weighting factors α and γ are the model parameters
of this ARMA model. When we consider a given series of
N output samples y ∈ RN×1, the quadratic two-parameter
eigenvalue problem

M (α, γ) z =
(
A00 +A10α+A01γ +A02γ

2
)
z = 0, (5)

with the coefficient matrices Aω ∈ R(3N−1)×(3N−2) as
described in [1], yields the stationary points.

Example 3: The method of separation of variables applied to
some PDEs also leads to MEPs [3]. For example, the solution
of the three-dimensional Helmholtz equation ∇u + k2u = 0
in ellipsoidal coordinates leads to three wave equations, which
can be translated via spectral collocation into a linear three-
parameter eigenvalue problem [3]:

M (λ, µ, η) z =
(
A000 +A100λ

+A010µ+A001η
)
z = 0.

(6)

The eigenvalues λ and µ are separation constants, while the
eigenvalues η are related to the wave numbers k. We do not
elaborate on the construction of the 2N3 × N3 coefficient
matrices Aω (when using N collocation points), but we refer
to [3] for the classical square problem setting and to [5] for
the translation into a rectangular MEP.

III. NON-RECURSIVE APPROACH

In this section, we sketch the non-recursive null space based
block Macaulay matrix approach to solve MEPs (see [5] for
a more detailed exposition and an alternative column space
based approach). After an intuitive construction of the block
Macaulay matrix (Section III-A), we show that its structured
null space yields the (affine) solutions of the MEP (Sec-
tion III-B). Moreover, we explain how to select a useful shift
polynomial (Section III-C) and how to deflate the solutions (or
positive-dimensional solution set) at infinity (Section III-D).

A. Block Macaulay matrix

The MEP M (λ1, . . . , λn) z = 0 in (1) constitutes
the so-called seed equation of its corresponding block
Macaulay matrix [5]. We can generate “new” matrix equations{∏n

i=1 λ
di
i

}
M (λ1, . . . , λn) z = 0 by multiplying the MEP

by different monomials
∏n
i=1 λ

di
i of increasing total degree

dR =
∑n
i=1 di, and we stack the coefficient matrices of

these “new” matrix equations as the block rows of the block
Macaulay matrix Md, where the degree d is equal to the total
degree of the highest monomial in all the matrix equations.
A rigorous definition of the block Macaulay matrix can be
found in [5], while we restrict ourselves in this letter to a
more intuitive construction.

Example 4: If we revisit the quadratic MEP in (5),(
A00 +A10α+A01γ +A02γ

2
)
z = 0, (7)





z αz γz α2z αγz γ2z α3z α2γz αγ2z γ3z α4z

1 A00 A10 A01 0 0 A02 0 0 0 0 0 · · ·
α 0 A00 0 A10 A01 0 0 0 A02 0 0 · · ·
γ 0 0 A00 0 A10 A01 0 0 0 A02 0 · · ·
α2 0 0 0 A00 0 0 A10 A01 0 0 0 · · ·
αγ 0 0 0 0 A00 0 0 A10 A01 0 0 · · ·

...
...

...
...

...
...

...
...

...
...

...
. . .


the labels of the ordered block columns

(correspond to the associated monomials and
eigenvectors in vd)

the monomials of the multiplications that generate
the “new” matrix equations

Fig. 1. The block Macaulay matrix Md of the quadratic two-parameter eigenvalue problem in Example 4. The coefficient matrices of the seed equation, i.e.,
the generating MEP, are indicated in blue. Vertical lines denote the different degree blocks.

and we multiply this seed equation by monomials of total
degree dR = 1, then we obtain two “new” matrix equations:

α
(
A00 +A10α+A01γ +A02γ

2
)
z = 0

γ
(
A00 +A10α+A01γ +A02γ

2
)
z = 0.

(8)

The corresponding block Macaulay matrix M3 has degree
d = 3 (highest total degree of the MEP is 2 and dR = 1). We
can continue this process with monomials of increasing total
degree dR, i.e.,

α, γ︸︷︷︸
dR=1

, α2, αγ, γ2︸ ︷︷ ︸
dR=2

, α3, α2γ, . . .︸ ︷︷ ︸
dR≥3

(9)

and organize the coefficient matrices in a block Macaulay
matrix Md as in Fig. 1. The actual structure of the block
Macaulay matrix depends on the chosen multivariate mono-
mial ordering [5].

Consequently, we can rewrite the MEP and “new” matrix
equations as a matrix-vector product of a block Macaulay
matrix Md ∈ Rpd×qd (which contains the stacked coefficient
matrices) and a vector vd ∈ Cqd×1 (which contains the
associated monomials and eigenvectors), i.e.,

Md



z
zλ1

...
zλn
zλ21

...


︸ ︷︷ ︸

vd

= 0. (10)

The vector vd is a vector in the (right) null space of Md

and has a special block multivariate Vandermonde structure,
because of the monomial ordering of the block columns of
the block Macaulay matrix2. We need to increase the degree
d of the block Macaulay matrix Md until the structure of its
null space allows us to retrieve all the (affine) solutions of the
MEP: the degree d needs to be large enough (see below).

B. Affine solutions in the structured null space
Initially, we consider an MEP that only has ma simple and

affine solutions (i.e., all solutions have algebraic multiplic-
ity equal to one and are non-infinite). When we iteratively

2Note that we make a distinction between blocks and degree blocks in
this letter. A block gathers all the rows or columns that correspond to one
monomial (e.g., all the rows that belong to λ21), while a degree block contains
all the blocks that correspond to monomials of the same total degree (e.g., all
the rows that belong to λ21, λ1λ2, and λ22).

increase the degree d of the block Macaulay matrix Md,
we notice that the dimension of the null space grows until
it reaches the number of affine solutions ma (at d = d∗,
by definition), and it remains the same for larger degrees
(d ≥ d∗). Every solution of the MEP corresponds to one block
multivariate Vandermonde vector vd|(j) (j = 1, . . . ,ma) in
the null space and, together, these basis vectors span the entire
null space of Md. They naturally form the block multivariate
Vandermonde basis matrix V d ∈ Cqd×ma of degree d. As
explained thoroughly in [5], the (affine) null space of the block
Macaulay matrix has a special structure:

Proposition 1: The (affine) null space of the block Macaulay
matrix is block multi-shift-invariant, which means that if
we select a block row of a basis matrix of the null space
and shift (or multiply) this block row by a polynomial in the
eigenvalues, then we obtain another block row of that basis
matrix (when it can accommodate the shift polynomial).

The degree d is large enough when the basis matrix can
accommodate the shift polynomial: when we shift the rth
degree block of a basis matrix by a shift polynomial of degree
dg , the degree of the basis matrix must be at least r+dg > d∗.

When we consider a shift polynomial g (λ1, . . . , λn), this
multiplicative shift property corresponds mathematically to

SgV d︸ ︷︷ ︸
after shift

= S1V d︸ ︷︷ ︸
before shift

Dg, (11)

where the diagonal matrix Dg ∈ Cma×ma contains the
evaluations of g (λ1, . . . , λn) in the different solutions of the
MEP. In order for this expression to contain all ma affine
solutions, the matrix S1V d has to be non-singular (the shifted
block rows need to contain ma linearly independent rows).
The matrix Sg ∈ Rs×qd , on the other hand, simply selects the
block rows obtained after the multiplicative shift.

Example 5: To clarify, we consider a two-parameter eigen-
value problem and shift (or multiply) the first two degree
blocks (r ≤ 1) with g (λ1, λ2) = 2λ1 + 3λ2 (so, dg = 1
and d ≥ 2 = 1 + 1 to accommodate the shift polynomial): z

zλ1
zλ2

  2zλ1 + 3zλ2
2zλ21 + 3zλ1λ2
2zλ1λ2 + 3zλ22

.
2λ1 + 3λ2

The shift results in three combinations of block rows of V d.
The corresponding row selection/combination matrices are

S1 =

I l×l 0 0 0 0 0
0 I l×l 0 0 0 0
0 0 I l×l 0 0 0

 (12)



and

Sg =

0 2I l×l 3I l×l 0 0 0
0 0 0 2I l×l 3I l×l 0
0 0 0 0 2I l×l 3I l×l

 , (13)

with I l×l ∈ Nl×l the identity matrix.
In practice, we do not know the block multivariate Van-

dermonde basis V d in advance, since it is constructed from
the unknown solutions of the MEP. Therefore, we work with a
numerical basis matrix Zd ∈ Cqd×ma of Md instead. A linear
transformation exists between these basis matrices, namely
V d = ZdT , with T ∈ Cma×ma a non-singular transformation
matrix, which transforms (11) into a solvable rectangular GEP,

(SgZd)T = (S1Zd)TDg, (14)

where T contains the eigenvectors and Dg the eigenvalues of
the matrix pencil (SgZd,S1Zd). We can then use the matrix
of eigenvectors T to retrieve V d via V d = ZdT . From V d

and/or Dg , we find the (affine) solutions of the MEP.
Influence of multiplicity larger than one: Affine and isolated

solutions can have a multiplicity larger than one. This poses
no problem to the above-described approach (see [5]).

C. About special shift polynomials in applications

One question still remains unanswered: “How do we choose
the shift polynomial(s)?” Since the block multivariate Van-
dermonde matrix is ill-conditioned, shifting with each of
the eigenvalues λi provides a reliable way of obtaining the
different eigenvalues of the MEP through the matrices Dλi

(see [5]). Furthermore, in some applications, selecting a special
shift polynomial may yield an additional benefit. Since the
eigenvalues of (14) correspond with the evaluations of the shift
polynomial in the different solutions, we can use this GEP
to evaluate a polynomial, for example, the objective function
of the underlying optimization problem or an additional con-
straint on the eigenvalues. A shift polynomial of high degree
dg , however, implies using a higher degree d.

Example 6: When solving (6), we search for the solution
with the smallest wave number k [3]. If we shift with
g (λ, µ, η) = k, then methods like the inverse power method
converge automatically to the smallest evaluation of that shift
polynomial; hence, give us the “optimal” solution.

D. Solutions at infinity/positive-dimensional solution set

Due to the singularity of some higher degree coefficient
matrices, MEPs can also have solutions at infinity. Moreover,
the MEPs that arise in system identification problems (like Ex-
amples 1 and 2) sometimes even have a positive-dimensional
solution set at infinity, which means that the total number of
solutions is infinite (remember that the condition on the size
of the coefficient matrices is only a necessary condition). In
that case, the nullity nd of the block Macaulay matrix Md

no longer stabilizes at the number of affine solutions ma, but
keeps increasing when we increase the degree d (see Fig. 2).

The solutions of an MEP give rise to linearly independent
rows in the (numerical) basis matrix Zd of the null space
of Md (see [5]). When we monitor the linearly independent

m
a

d = 3 d∗ = 4 d = 5 d = 6

Z3

Z4

ga
p

Z5compressed basis matrix
W 11 of the null space

ga
p

Z6

nu
lli

ty
n
d

Fig. 2. The nullity of the null space of the block Macaulay matrix Md

grows as its degree d increases. However, at a certain degree d = d∗ (in
this example d∗ = 4), the affine zone of the basis matrix stabilizes. From
that degree on, some linearly independent rows of the basis matrix Zd of
the null space (related to the affine solutions – indicated by dashed lines)
stabilize, while the other linearly independent rows (related to the solutions
at infinity – also indicated by dashed lines) move to higher degree blocks, and
a gap emerges that separates these two types of linearly independent rows.
The influence of the (infinitely many) solutions at infinity can then be deflated
via a column compression [5].

Algorithm 1 Non-recursive null space based approach

1: while gap is smaller than dg degree blocks do
2: Construct the block Macaulay matrix Md and com-

pute a numerical basis matrix Zd of its null space.
3: Check the rank structure of Zd to determine if a gap

exists of dg degree blocks.
4: end while
5: Use Algorithm 2 to compute the solutions of the MEP.

rows in Zd (checked row-wise from top to bottom – see
Fig. 2), we find at least one additional linearly independent
row per degree block (as long as degree d ≤ d∗). The
linearly independent rows that correspond to the standard
monomials associated with the affine solutions stabilize at their
respective positions from a certain degree d∗ on. The linearly
independent rows that correspond to the standard monomials
associated with the solutions at infinity, on the other hand, keep
moving to higher degree blocks when we further increase the
degree d > d∗. When the solution set at infinity is positive-
dimensional, more linearly independent rows keep appearing
in the higher degree blocks (see Fig. 2). A gap zone in the
rows of Zd without any additional linearly independent rows
emerges (at d = d∗). Similar to the affine case, the degree d
is large enough when the basis matrix can accommodate the
shift polynomial, which means now that the gap zone must be
able to accommodate the shift polynomial (a shift polynomial
of degree dg requires a gap zone of dg degree blocks), so that
we can deflate the (infinitely many) solutions at infinity via
a column compression [5]. We simply replace Zd in (14) by
the compressed basis matrix W 11.

Algorithm 1 gives an overview of the different steps to
compute the (affine) solutions of an MEP via the non-recursive
null space based approach, which uses Algorithm 2 to retrieve
the solutions from a basis matrixZd when the degree d is large
enough. In order to determine whether d is large enough in the
case of a positive-dimensional solution set at infinity, we need



Algorithm 2 Solve MEP from a large enough basis matrix

1: Use a column compression to obtain the compressed
numerical basis matrix W 11 of the null space [5].

2: For a user-defined shift polynomial g (λ1, . . . , λn), solve
the rectangular GEP

(SgW 11)T = (S1W 11)TDg,

where S1, Sg , T , and Dg are defined as in (14).
3: Retrieve the solutions from the block multivariate Vander-

monde basis V d =W 11T and/or Dg .

Algorithm 3 Double recursive null space based approach

1: while gap is smaller than dg degree blocks do
2: Update the block Macaulay matrix Md from Md−1

and compute a numerical basis matrix Zd from Zd−1
(avoid construction of Md in the sparse adaptation).

3: Recursively check the rank structure of Zd to deter-
mine if a gap exists of dg degree blocks.

4: end while
5: Use Algorithm 2 to compute the solutions of the MEP.

to check the rank structure (i.e., the linearly independent rows)
of the basis matrix to verify if it contains a gap zone of dg
degree blocks. The fact that the required degree d∗+dg is not
known in advance (and can no longer be verified by monitoring
the nullity) is the main difficulty of the non-recursive null
space based approach. By means of two recursive techniques,
we try to ease this computational burden in Section IV.

IV. DOUBLE RECURSIVE APPROACH

Instead of re-computing Zd for every degree, we can use
a recursive technique to compute Zd based on Zd−1 (Sec-
tion IV-A). Furthermore, we can also check the rank structure
via a recursive technique (Section IV-B). We combine these
two techniques in a double recursive block Macaulay matrix
algorithm and propose a sparse adaptation (Section IV-C). For
more details, we refer the interested reader to [6].

A. Recursive computation of a null space basis matrix

Consider a block Macaulay matrix Md−1 ∈ Rpd−1×qd−1

and a numerical basis matrix Zd−1 ∈ Cqd−1×nd−1 of its null
space. Obviously, Md−1Zd−1 = 0, and we can append the
block Macaulay matrix with td zero columns at the end (with
Itd×td ∈ Ntd×td the identity matrix):[

Md−1 0
] [Zd−1 0

0 Itd×td

]
= 0. (15)

If we now consider the block Macaulay matrix Md ∈ Rpd×qd ,
then we know that there exists a matrix with orthonormal
columns V d ∈ C(nd−1+td)×nd , such that we can compute a
numerical basis matrix of Md as[

M1
d−1 M2

d−1 0
0 Xd Y d

]
︸ ︷︷ ︸

Md

Z1
d−1 0

Z2
d−1 0
0 Itd×td


︸ ︷︷ ︸

Nd

V d = 0, (16)

where we have split the block Macaulay matrix Md−1 into
M1

d−1 ∈ Rpd−1×(qd−1−sd) (part with only zeros below) and
M2

d−1 ∈ Rpd−1×sd (part with Xd below). The matrices
Xd ∈ Rmd×sd and Y d ∈ Rmd×td correspond to the “new”
block rows of Md. We can rewrite (16), after partitioning V d

according to the columns of Nd, as[
Md−1Zd−1 0

XdZ
2
d−1 Y d

] [
V 1
d

V 2
d

]
= 0. (17)

Hence, we find the matrix V d as a numerical basis matrix of
the null space of W d,[

XdZ
2
d−1 Y d

]︸ ︷︷ ︸
W d

V d = 0, (18)

and we combine Nd and V d into Zd ∈ Cqd×nd :

Zd =

[
Zd−1V

1
d

V 2
d

]
. (19)

B. Recursive check of the rank structure
The numerical basis matrix Zd of the null space consists of

a series of degree blocks, which we need to consider iteratively
in order to identify a gap zone of dg degree blocks. We can
interpret Zd for every degree d as a block row matrix Rd ∈
Cqd×nd with growing blocks:

Zd := Rd =


B0

B1

...
Bd

 =

[
Rd−1
Bd

]
, (20)

where the basis matrix Zd consists of d + 1 blocks Bi ∈
Cvi×nd (i = 0, . . . , d) with a different number of rows vi for
every i. Consider a block row matrix Ri−1 ∈ Cqi−1×nd and
a numerical basis matrix U i−1 ∈ Cnd×wi−1 of its null space,
such that

Ri−1U i−1 = 0. (21)

When we append a new block Bi to obtain Ri, we know
that there exists a matrix with orthonormal columns V i ∈
Cwi−1×wi , such that[

Ri−1
Bi

]
︸ ︷︷ ︸

Ri

U i−1V i =

[
0

BiU i−1

]
V i = 0, (22)

because of (21). The matrix V i, on the one hand, corresponds
to a numerical basis matrix of the null space of the matrix
BiU i−1 ∈ Cvi×wi−1 . The matrix product U i = U i−1V i =∏i
j=0 V j ∈ Cnd×wi , on the other hand, is a numerical

basis matrix of the null space of the block row matrix Ri.
By monitoring the change of wi for subsequent i, we can
recursively reveal the rank structure of Zd (for a particular
degree d). When nd −wi remains the same for dg block row
matrices, we have a gap zone of dg degree blocks. We need
to apply this recursive technique for every degree d, since the
structure of Zd−1 does not contain any useful information
about the structure of Zd, but we are able to retrieve the rank
structure more efficiently than by re-computing the rank for
every Ri. Note that we compute a basis matrix U i, while we
only need to track the rank/nullity of Ri.



C. Two double recursive algorithms
Algorithm 3 combines both recursive techniques into a

double recursive null space based approach. However, it still
stores for every degree the block Macaulay matrix, while
this matrix contains in every block row the same coefficient
matrices and many zeros. We have proposed in [6] a sparse
adaptation to avoid the explicit construction of the block
Macaulay matrix in Algorithm 3, which constructs a numerical
basis matrix Zd in every iteration based only on Zd−1 and
the coefficient matrices of the MEP.

V. NUMERICAL EXAMPLES

We now revisit Examples 1 and 2 in order to illustrate the
two double recursive algorithms3.

A. Least-squares realization problem
We consider the MEP in Example 1 constructed from a

series of N = 6 random data points y, which results in
14×13 coefficient matrices Aω . This problem has a positive-
dimensional solution set at infinity, so we need to compute a
basis matrix of the null space for every degree and check its
rank structure. A block Macaulay matrix of degree d = 24 has
a gap zone that can accommodate the shift and allows us to
deflate the positive-dimensional solution set at infinity via a
column compression. Table I compares the computation time
and maximum residual error of the different combinations of
standard/recursive/sparse techniques. The recursive-recursive
and sparse-recursive algorithm are much faster than the
standard-standard algorithm (non-recursive approach), while
resulting in more or less the same residual errors4. In this
example, we shift with g (λ1, λ2) = λ21 + λ22 (dg = 2).
Since the eigenvalues of (14) are the evaluations of the shift
polynomial in the different solutions, we can use MATLAB’s
eigs to only obtain the eigentuple with the smallest 2-norm5.

B. ARMA model identification problem
Next, we solve the ARMA model identification problem in

Example 2 applied to a series of N = 8 random data points
y. The MEP consists of 23 × 22 coefficient matrices Aω .
Table II contains similar results as the previous example4: the
recursive-recursive and sparse-recursive algorithm are 435 and
725 times faster than the standard-standard algorithm, respec-
tively. The sparse-recursive algorithm, in particular, requires
much less memory than the other algorithms. In this example,
the full construction of a 20769 × 21780 block Macaulay
matrix (d = 43) takes 3.62GB, while the sparse adaptation
only retains the coefficient matrices (24.28 kB).

3Since Example 3 has a zero-dimensional solution set, we can check
whether the degree d is large enough by monitoring the dimension of the
null space. This example does not require a double recursive approach.

4We ran all our computations on a MacBook Pro with M1 CPU (2020)
working at 3.2GHz and calculated the residual error of a solution by
substituting the computed solution in the MEP and computing the norm of
the residual vector.

5Ideally, we would like to shift with the objective function of the underlying
optimization problem. However, due to the high degree of this objective
function, the computational cost of constructing a large gap zone is not worth
the benefit of a special shift function. Alternatively, we could also incorporate
the objective function in the MEP as an additional eigenvalue and shift with
this new eigenvalue [2].

TABLE I
RESULTS OF THE DIFFERENT COMBINATIONS OF TECHNIQUES TO SOLVE

THE LEAST-SQUARES REALIZATION PROBLEM (SECTION V-A).

Combination Computation time Maximum residual error

standard-standard 106.68 s 6.54× 10−14

standard-recursive 94.76 s 6.54× 10−14

recursive-standard 17.21 s 1.41× 10−14

recursive-recursive 2.62 s 1.41× 10−14

sparse-recursive 2.30 s 7.15× 10−14

TABLE II
RESULTS OF THE DIFFERENT COMBINATIONS OF TECHNIQUES TO SOLVE

THE ARMA MODEL IDENTIFICATION PROBLEM (SECTION V-B).

Combination Computation time Maximum residual error

standard-standard 31 223.95 s 5.16× 10−14

standard-recursive 27 951.57 s 5.16× 10−14

recursive-standard 323.00 s 1.24× 10−12

recursive-recursive 69.41 s 1.24× 10−12

sparse-recursive 41.74 s 1.48× 10−13

VI. CONCLUSION AND FUTURE WORK

In this letter, we combined two existing recursive techniques
into a double recursive algorithm (and its sparse adaptation) to
solve MEPs via the null space of the block Macaulay matrix.
By exploiting structure and sparsity, we obtained impressive
reductions in computation time and memory usage compared
to the existing non-recursive approach, while keeping more
or less the same accuracy. In one of our numerical examples,
we observed a factor 725 improvement in computation time
compared to the non-recursive approach and noticed that the
sparse implementation avoids the construction of a 20769 ×
21780 block Macaulay matrix.

In future work, we want to translate these recursive and
sparse techniques to the complementary column space based
approach [5]. Furthermore, we currently investigate how to
replace the second recursive technique by more efficient pro-
cedures to reveal the rank structure (e.g., URV-algorithms [7]).
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