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Abstract: Salivary gland tumors are a heterogeneous group of tumors originating from the major and
minor salivary glands. The pleomorphic adenoma (PA), which is the most common subtype, is a
benign lesion showing a remarkable morphologic diversity and that, upon recurrence or malignant
transformation, can cause significant clinical problems. Cytogenetic studies of >500 PAs have revealed
a complex and recurrent pattern of chromosome rearrangements. In this review, we discuss the
specificity and frequency of these rearrangements and their molecular/clinical consequences. The
genomic hallmark of PA is translocations with breakpoints in 8q12 and 12q13-15 resulting in gene
fusions involving the transcription factor genes PLAG1 and HMGA2. Until recently, the association
between these two oncogenic drivers was obscure. Studies of the Silver–Russel syndrome, a growth
retardation condition infrequently caused by mutations in IGF2/HMGA2/PLAG1, have provided new
clues to the understanding of the molecular pathogenesis of PA. These studies have demonstrated that
HMGA2 is an upstream regulator of PLAG1 and that HMGA2 regulates the expression of IGF2 via
PLAG1. This provides a novel explanation for the 8q12/12q13-15 aberrations in PA and identifies IGF2
as a major oncogenic driver and therapeutic target in PA. These studies have important diagnostic
and therapeutic implications for patients with PA.

Keywords: pleomorphic adenoma; chromosome translocation; chromosome 8q12; chromosome
12q13-15; gene fusion; PLAG1; HMGA2; IGF2; diagnostic biomarker; therapeutic target
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1. Introduction

Salivary gland tumors are a large and heterogeneous group of neoplasms originating
from the major salivary glands (the parotid, submandibular, and sublingual glands) as well
as from the numerous minor salivary glands in the oral mucosa and upper aerodigestive
tract. The diversity of histologic subtypes originating from these glands is remarkable
and there are more than 30 known histological subtypes of benign and malignant salivary
gland tumors of which the pleomorphic adenoma (PA) is the most common [1,2]. Mucoepi-
dermoid carcinomas and adenoid cystic carcinomas are the two most common malignant
salivary gland tumors.

PA is a benign rather slow-growing epithelial tumor of which approximately three-
quarters are located in the parotid gland. They can occur in all age groups but most often
in the 5th and 6th decades and with a slight female predominance [3,4]. The etiology is
unknown but there is a reported association to radiation exposure [5,6]. PAs are usually
encapsulated and are recognized for their morphological diversity [7]. They are composed
of ductal epithelial and myoepithelial cells growing in a variety of patterns in a stroma that
is often mucoid, myxoid, hyalinized, or chondroid. Some tumors may be predominantly
cellular with only scanty stroma. Mitotic figures are rare. PA frequently shows metaplastic
changes, of which squamous metaplasia is the most common. Oncocytic and sebaceous
metaplasia are other frequent metaplastic changes that can confuse in the diagnostic work
up [8]. Because of the broad morphological spectrum of PAs, they may sometimes mimic
malignancy and show morphological/architectural overlap with for example adenoid
cystic carcinoma and polymorphous adenocarcinoma [8].

PAs may undergo malignant transformation to carcinoma-ex-PA (CXPA). The risk
of malignant transformation is greater in long-standing or recurrent tumors and occurs
in about 12% of recurrent PAs [9]. CXPA is usually a high-grade tumor with rapid and
aggressive growth and frequent recurrences and metastases. The carcinoma component
can be of any type, most often salivary duct carcinoma (SDC), myoepithelial carcinoma
(MECA), or adenocarcinoma NOS.

PA was the first benign epithelial tumor in which characteristic chromosome translo-
cations and gene fusions were identified [10–15]. Recurrent t(3;8)(p21;q12) and t(9;12)
(p23-24;q14-15) translocations were shown to be early cytogenetic events [16]. Subse-
quent molecular cloning of the translocation breakpoints in these and other translocations
in PA revealed that they consistently result in gene fusions. The prime molecular tar-
gets of these translocations are the transcription factor genes PLAG1 (Pleomorphic Ade-
noma Gene 1; located in 8q12) and HMGA2 (High Mobility Group AT-Hook 2; located in
12q14-15) [11–13,17–19]. Notably, the early cytogenetic and molecular genetic studies of
translocations in PA during the 80s and 90s paved the way for the discovery of a diagnosti-
cally relevant gene fusion network in PA as well as in several other subtypes of salivary
gland tumors [18,20,21]. The aim of this paper is to review the comprehensive literature on
chromosome translocations/rearrangements and gene fusions in PA and to discuss their
molecular consequences and clinical significance.

2. The Cytogenetic Landscape of PA
2.1. Overview of the Chromosomal Pattern in PA

PA is cytogenetically the best-studied benign epithelial neoplasm. Studies by in particular
two groups have revealed a consistent pattern of chromosome translocations/rearrangements
in about 70% of the cases [10,14,16,19,22–36]. The remaining 30% have shown normal kary-
otypes without visible chromosome rearrangements (Figure 1). Detailed analysis of high-
resolution banded chromosomes have failed to detect cytogenetic alterations in these PAs.
However, molecular analyses have unequivocally demonstrated that they have submicro-
scopic changes, including inversions, small insertions, or deletions resulting in gene fusions
(see below) [13,19,37,38].
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and their frequencies in PA.

The Mitelman Database of Chromosome Aberrations and Gene Fusions in Cancer contains
cytogenetic data from 354 salivary gland PAs with abnormal karyotype [36]. Since tu-
mors with normal karyotypes (≈30%) are not included in the database, the total number
of PAs that have been cytogenetically characterized is more than 500 [10,14,16,19,22–35].
PAs with an abnormal karyotype form four major subgroups: (i) tumors with translo-
cations/rearrangements involving chromosome 8q12 (≈39%), (ii) tumors with transloca-
tions/rearrangements involving chromosome 12q13-15 (≈12%), (iii) tumors with complete
or partial trisomy 8 (≈2%), and (iv) tumors with non-recurrent clonal aberrations without
involvement of 8q12 or 12q13-15 (≈17%) (Figure 1).

The t(3;8)(p21;q12) translocation is the most common aberration in the 8q12 subgroup
(≈47%), followed by t(8;9)(q12;p22-24) or the related ins(9;8)(p23;q11q12) (≈10%), t(5;8)
(p13-15;q12) (≈4%), t(6;8)(p21-22;q12) (≈3%), t(8;10)(q12;q22-23) (≈2%), and t(8;15)(q12;q26)
(≈2%). There is also a variety of 8q12 variant translocations with other less frequent
translocation partners.

The t(9;12)(p21-23;q13-15) and the related ins(9;12)(p23:q14q15) or ins(12;9)(q15;p24p22)
(≈16%) are the most common aberrations in the 12q13-15 subgroup, followed by t(3;12)
(p12-14;q14-15) (≈5%), t(6;12)(q21-23;q14-15) (≈5%), inv(12)(p11-13q13-14) (≈5%), and inv(12)
(q13-15q23-24) (≈5%). Similar to the 8q12 subgroup, there are also several different 12q13-15
variant translocations with other less frequent translocation partners.

Trisomy 8 forms the smallest subgroup of PAs. In 65% of these cases, +8 is seen
as the sole aberration. In the remaining cases, it is seen together with other aberrations,
in particular 12q13-15 rearrangements. In addition to trisomy 8, there are also several
cases reported with partial gain of one to four copies of chromosome 8 in the form of ring
chromosomes r(8)(p12q12) (see below) [39]. Complete or partial trisomy 8 is the only major
numerical aberration found in PA.

The fourth major subgroup of PAs consists of tumors with non-recurrent clonal aberra-
tions without the involvement of 8q12 or 12q13-15. This is a heterogeneous group of tumors
some of which have a single translocation as the sole deviation whereas others have more
complex karyotypes with both structural and numerical aberrations. The molecular pathogen-
esis of these tumors remains to be elucidated. However, previous studies have indicated that
at least some of these cases have cryptic rearrangements involving 8q12 [38].
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2.2. Double Minute Chromosomes and Homogeneously Staining Regions

A subset of PAs with 12q13-15 aberrations, in particular those with del(12)(q13q15), show
cytogenetic evidence of gene amplification in the form of double minute chromosomes (dmin)
and homogeneously staining regions (hsr) [35,40–42]. Detailed molecular characterization
of these aberrations have shown that the prime targets of the amplifications are the HMGA2
and MDM2 genes [42]. Other less frequently co-amplified genes are WIF1, TSPAN31, CDK4,
and GLI1. Notably, in several cases a cryptic HMGA2::WIF1 fusion gene was highly amplified
and overexpressed [42]. Previous studies have also suggested that PAs with amplification of
MDM2 and possibly also other driver genes in 12q have an increased risk of malignant trans-
formation [42–44]. However, this hypothesis needs to be confirmed by studies of additional
cases of CXPA and by in vitro transformation experiments.

2.3. Ring Chromosomes and Dicentric Chromosomes

Breakage-fusion-bridge (BFB) cycles [45,46] is a mechanism that generates chromo-
some variability and mitotically unstable chromosome aberrations such as ring chromo-
somes and dicentric chromosomes [47]. Ring chromosomes have been found in ≈8% of
karyotypically aberrant PAs [24,26,35,36,39,48]. The most common rings are derived from
chromosomes 8 and 5, in that order of frequency. The rings may vary in both size and
number in a given tumor. Notably, we have previously shown that the r(8)(p12q12.1)
consists of a pericentromeric segment with recurrent breakpoints in FGFR1 in 8p12 and
PLAG1 in 8q12.1 with amplification and overexpression of an FGFR1::PLAG1 gene fusion
(Figure 2) [39]. Importantly, this fusion has also been shown to be enriched 15-fold in
myoepithelial carcinoma-ex-PA (MECAXPA) compared to PA, suggesting that amplifica-
tion and overexpression of the FGFR1::PLAG1 fusion may be a potential biomarker for
malignant transformation of PA [49].
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Figure 2. Ring chromosome 8 in PA. Schematic illustration of the formation of the ring chromosome
r(8)(p12q12.1) and the resulting FGR1::PLAG1 gene fusion in which exon 1 of FGR1 (green) is fused
to exon 2 of PLAG1 (blue).

Rings derived from other chromosomes have so far not resulted in gene fusions, but
instead losses of segments of for example 8p, 5p, 5q, and/or 6q [39], indicating the presence
of putative tumor suppressor genes in these regions. Dicentric chromosomes are rarer than
rings and are seen in only 1.5% of cytogenetically abnormal PAs. The majority of these
involve chromosome 8 with breakpoints in 8q12.
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2.4. Polyclonal Aberrations in Radiation-Associated PAs

Cytogenetic studies on radiation-associated PAs are rare. To the best of our knowledge,
there are only two such cases reported in which PA developed in patients previously
treated with radiotherapy for tuberculous lymphadenitis in the neck [5,50]. Both cases
were cytogenetically polyclonal with a variety of mainly unique structural aberrations,
but without involvement of the PA-specific breakpoints 8q12 and 12q13-15. Subsequent
molecular analyses revealed that both tumors had activation of PLAG1 and HMGA2 and
one of the cases had a cryptic CTNNB1::PLAG1 fusion [6]. Studies of these two unique cases
demonstrate that polyclonal, radiation-associated PAs develop as a result of very similar
basic molecular mechanisms as sporadic PAs with monoclonal karyotypes.

3. The Gene Fusion Landscape of PA
3.1. The Transcription Factor Gene PLAG1 Is the Target of Translocations and Rearrangements of
8q12 in PA

PA was the first benign epithelial tumor in which a tumor type-specific transloca-
tion was shown to result in a gene fusion. Positional cloning of the breakpoints in the
t(3;8)(p21;q12) translocation revealed that it generates a fusion between the PLAG1 gene
in 8q12 and CTNNB1 gene in 3p21 [11] (Figure 3, upper panel). The PLAG1 oncogene
encodes a developmentally regulated transcription factor that is highly expressed in vari-
ous fetal tissues, but whose expression is low or absent in adult tissues, including normal
salivary gland [11,37]. PLAG1 has seven canonical C2H2 zinc finger domains in the
N-terminal part of the protein and a serine-rich transcriptional activation domain in its
C-terminal part [11,51]. The PLAG1 oncoprotein is involved in the regulation of crucial
cellular processes such as transcriptional regulation, growth control, cell proliferation,
and apoptosis [52,53]. Its fundamental role in growth control is further emphasized by
studies of knockout mice showing that the pre- and postnatal growth of Plag1−/− mice is
significantly retarded [54]. The finding that the growth factor IGF2 is a major downstream
target of PLAG1 [55] also agrees with this finding. PLAG1 binds the IGF2 P3 promoter and
aberrantly activates its expression in PAs overexpressing PLAG1 [55]. Other known PLAG1
targets are BCL2, CDKN1C, CRABP2, CYTL1, EFNB1, SMARCD3, and TSPAN4 [53].
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CTNNB1 is the most common fusion partner gene to PLAG1 in PA. CTNNB1 encodes
β-catenin, a ubiquitously expressed protein involved in the regulation of cell–cell adhesion,
cell proliferation, and differentiation. β-catenin acts as an intracellular signal transducer
in the Wnt signaling pathway and is inhibited by the tumor suppressor protein APC [56].
CTNNB1 is mutated in a variety of solid tumors [56,57].

The t(3;8) translocation in PA results in promoter swapping between PLAG1 and
CTNNB1 leading to activation of PLAG1 expression [11] (Figure 3, upper panel). The
CTNNB1::PLAG1 fusion was the first example of promoter swapping in solid tumors.
The breakpoints in PLAG1 and CTNNB1 occur in the non-coding regions of both genes,
leading to exchange of regulatory control elements with the coding sequences preserved.
Subsequent studies of other translocations have confirmed that ectopic overexpression
of a normal PLAG1 oncoprotein due to promoter swapping is a recurrent theme in PA.
Thus, also the t(8;9)/ins(9;8) and t(5;8), which are the second and third most common
aberrations in the 8q12 subgroup of PAs, result in exchange of regulatory sequences between
PLAG1 and the NFIB and LIFR genes, respectively [17,37]. Notably, NFIB is also a fusion
partner of HMGA2 in PA and of MYB in salivary gland adenoid cystic carcinomas (see
below) [13,37,58,59].

To date, we and others have identified a network of PLAG1 fusions in PA involving
at least 11 additional fusion partner genes, including CHCHD7, FGFR1, TCEA1, NCALD,
FBXO32, NTF3, ACTA2, DSTN, C1orf116, GEM, and BOC [38,39,60–62] (Figure 4A and
Supplementary Table S1).
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Figure 4. Gene fusion network in PA. (A) PLAG1 and its 14 known fusion partner genes. (B) HMGA2
and its seven known fusion partner genes.

It should be emphasized that several of these fusions, including e.g., CHCHD7::PLAG1
and TCEA1::PLAG1, are cryptic fusions generated by intrachromosomal rearrangements [38].
For example, CHCHD7 and PLAG1 are located head-to-head only 500 bp apart and due
to a paracentric inversion PLAG1 is activated by promoter swapping. The common de-
nominator for all fusion partners is that they are either ubiquitously expressed or highly
expressed in normal salivary gland. Importantly, the fusions are generated both by cy-
togenetically visible translocations/aberrations and cryptic intra- and interchromosomal
rearrangements [38]. The latter are often, but not exclusively, found in PAs with an appar-
ently normal karyotype [19]. The diversity of chromosome 8q12 aberrations in PA suggest
that additional PLAG1 fusion partners are likely to be found.

In summary, the 8q12 translocations/aberrations in PA result in ectopic activation of
PLAG1 expression due to promoter swapping with a variety of different, mostly ubiqui-
tously expressed, fusion partner genes. The oncogenic activity of PLAG1 is partly due to
activation of IGF2-signaling, suggesting that the IGF2-pathway is a potential therapeutic
target in PA.
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3.2. HMGA2 Is the Target Gene of Translocations and Rearrangements of 12q13-15 in PA

Parallel to the discovery of the PLAG1 gene as the target of the 8q12 aberrations in
PA [11] we could demonstrate by positional cloning that the target of the 12q13-15 rear-
rangements in PA was the HMGA2 gene (previously known as HMGIC) [12,13]. HMGA2 is
a member of the non-histone high-mobility group (HMG) protein gene family and encodes
an architectural transcription factor [63–66]. HMG-proteins are essential components of en-
hanceosomes and are involved in the regulation of gene transcription, recombination, and
chromatin structure. The HMGA2 protein has three AT-hook DNA-binding domains in its
N-terminus, a spacer domain, and an acidic C-terminus. Examples of known down-stream
targets of HMGA2 are PLAG1 and the cell cycle regulator CCNA1 [67,68].

Detailed genomic analyses of the 3p and 12q breakpoints in a PA with a complex
karyotype, including an ins(3;12)(p14.2;q14q15), revealed an HMGA2-fusion linking the
first three exons (encoding the DNA-binding domains) of HMGA2 to the two last coding
exons of the FHIT gene in 3p14.2 [12]. The deduced HMGA2::FHIT fusion protein consists
of the N-terminal part of HMGA2, including the three DNA-binding domains, fused to the
C-terminal part of FHIT which encodes the last 31 amino acids of the protein. Subsequent
molecular analysis of a PA with an ins(9;12) confirmed that also this rearrangement involves
HMGA2 and results in a fusion of the 3′-part of the gene linked to the last coding exon of the
NFIB gene which only encodes five amino acids [13]. Notably, it was also shown that a PA
with an apparently normal karyotype had a cryptic ins(9;12) generating an HMGA2::NFIB
fusion. Later studies confirmed that also the t(9;12)(p21-23;q13-15), which together with
the ins(9;12) variant are the most common aberrations in the 12q13-15 subgroup of PAs,
result in HMGA2::NFIB gene fusions [37] (Figure 3, lower panel). Notably, NFIB is so far
the only fusion partner gene that is shared between PLAG1 and HMGA2. NFIB is also
a fusion partner to the MYB oncogene in adenoid cystic carcinoma [58,69]. In addition
to being highly expressed in normal salivary gland, NFIB also contains several super-
enhancers in the 5′- and 3′-parts of the gene and its flanking sequences [37,70], suggesting
that enhancer-hijacking events may also contribute to the activation of PLAG1 and HMGA2
in PAs [37].

In addition to NFIB and FHIT, there are at least five additional known fusion part-
ner genes to HMGA2 in PA, including FTO, HELB, TMTC2, RPSAP52, and WIF1 [71–74]
(Figure 4B and Supplementary Table S1). Available data indicate that the latter, together
with NFIB, are the two most common fusion partners [37,42,72,74]. WIF1 is located only
0.7 Mb centromeric to HMGA2 and the HMGA2::WIF1 fusion is thus generated by a cryptic
intrachromosomal rearrangement [42]. Previous studies have shown that the HMGA2::WIF1
fusion is also amplified together with several other closely linked genes in 12q. Interest-
ingly, Agaimy and co-workers recently suggested that PAs with HMGA2::WIF1 fusions are
characterized by a prominent trabecular and canalicular adenoma-like morphology [72].
The molecular mechanism by which the fusions activate HMGA2 is only partly known. In
addition to enhancer-hijacking, it has been suggested that binding sites for negatively regu-
lating microRNAs in the 3′-UTR of HMGA2 are lost in the fusions that may contribute to
activation of the gene [18,75]. However, additional studies are needed to fully understand
the mechanisms by which HMGA2 is activated in PA.

4. The 8q12 and 12q13-15 Rearrangements in PA Activate the
HMGA2-PLAG1-IGF2 Pathway

As discussed in this review, the genomic hallmarks of PA are translocations/
rearrangements, with consistent breakpoints in 8q12 and 12q13-15, leading to gene fu-
sions with the oncogenic drivers PLAG1 and HMGA2. However, the molecular association
between these two seemingly different aberrations have been unclear. There is now con-
vincing evidence to suggest that HMGA2 is an upstream regulator of PLAG1 expression and
that HMGA2 regulates the expression of IGF2 via PLAG1 in a PLAG1-independent man-
ner [68,76]. This new information emanates mainly from recent studies of the Silver–Russell
syndrome (SRS) [76], a condition characterized by pre- and postnatal growth retardation
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associated with IGF2-deficiency [77,78]. Notably, it was recently shown that a subset of
SRSs is caused by mutations in HMGA2 or in the HMGA2 regulated gene PLAG1 [76,79,80].
Inactivation of either of these genes leads to downregulation of IGF2 and a growth re-
tardation phenotype. We now propose that activation of HMGA2 or PLAG1 expression
due to chromosome 12q13-15 and 8q12 rearrangements in PA result in upregulation of
IGF2 expression and tumorigenesis. This conclusion is also supported by previous studies
showing co-expression of HMGA2 and PLAG1 in PAs with 12q13-15 rearrangements [19,68].
Taken together, these studies for the first time provide a common explanation for the 8q12
and 12q13-15 aberrations in PA and identifies IGF2 as a major oncogenic driver in PA.

5. Clinical Significance of Genomic Alterations in PA

Recurrent PAs may pose a significant clinical problem [81–83]. With current man-
agement of parotid PAs, the recurrence rate is around 3% [3,83]. Little, if anything, is
known about the genomic profile of recurrent PAs. Preliminary cytogenetic analysis of
19 recurrent PAs have shown a similar distribution of 8q12, 12q13-15, and non-recurrent
clonal aberrations as in primary non-recurrent tumors after more than 20 years follow-up
(unpublished data). Similar observations were made also from an unpublished smaller
series of cytogenetically analyzed primary PAs that recurred after 6–36 years. Taken to-
gether, these preliminary studies demonstrate that recurrent PAs are genetically stable even
after long growth periods in vivo and that they do not deviate from the general pattern of
chromosome aberrations in PA.

Malignant transformation of PA may occur in up to 10% of the cases and is increased
in recurrent tumors and in tumors with long growth periods in vivo [1]. Studies of the
cytogenetic and gene fusion landscape of CXPA is very limited. CXPAs show the PA specific
PLAG1- or HMGA2-fusions as well as a number of other both recurrent and non-recurrent
aberrations [42,43,60,84,85]. Previous studies have suggested that PAs with amplification
of genes in 12q13-21, including MDM2, HMGA2 or an HMGA2-fusion, have an increased
risk of malignant transformation [42–44]. In addition, amplification and overexpression
of the FGFR1::PLAG1 fusion has been suggested as a potential biomarker for malignant
transformation of PA [49].

PAs are characterized by histopathological diversity and there are several other benign
and malignant salivary gland tumors that can mimic PA (reviewed in [8]). There is thus a
need for diagnostically useful molecular markers to help distinguish PA from its mimics.
Importantly, previous studies have shown that aberrations of 8q12 and 12q13-15 involv-
ing PLAG1 and HMGA2 are specific to PA and CXPA (cf. above) among salivary gland
tumors [18,27,84,86–89]. Aberrations of these genes may be detected by FISH, RT-PCR,
immunohistochemistry (IHC), and other molecular techniques such as for example RT-PCR
and next generation sequencing. For routine histopathological purposes, FISH and IHC are
perhaps most useful and there are several studies showing that PLAG1 IHC is a sensitive
marker for PA and CXPA (cf. above).

Today the mainstay treatment of PA is surgery. However, surgery in the parotid and
other regions of the head and neck is not uncomplicated with risk of damage to the facial
nerve and a number of other complications. Therefore, especially in the recurrent setting
with substantial risk for the VIIth nerve, non-surgical treatments are needed, and the recent
discovery that the 8q12 and 12q13-15 aberrations lead to activation of the HMGA2-PLAG1-
IGF2 pathway opens up new avenues for future medical treatment of PAs with for example
IGF2-inhibitors.

6. Conclusions

The genomic hallmark of PA is translocations with consistent breakpoints in 8q12
and 12q13-15 resulting in gene fusions involving the transcription factor genes PLAG1 and
HMGA2. PLAG1 is activated by promoter swapping/enhancer hijacking whereas HMGA2
is activated by gene truncation/enhancer hijacking. Importantly, recent studies have shown
that HMGA2 is an upstream regulator of PLAG1 expression and that HMGA2 regulates



Biomedicines 2022, 10, 1970 9 of 13

the expression of IGF2 via PLAG1. This provides a novel explanation for the 8q12 and
12q13-15 aberrations in PA and identifies IGF2 as a major oncogenic driver and therapeutic
target in PA. Taken together, these studies have important diagnostic and possible future
therapeutic implications for patients with PA.

Supplementary Materials: The following supporting information can be downloaded at: https:
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