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Abstract

This study emerges from a real-world cargo securing application to ensure safer road trans-
portation and falls into the category of container loading problems with practical constraints.
The literature has lacked e�cient methods for the secure loading of items with non-identical
dimensions, weights and rotations into containers while ensuring that the securing e�orts nec-
essary are minimal when also taking into account multi-drop and axle weight constraints. This
paper puts forward a new way of ensuring cargo stability that gives rise to a novel combina-
torial optimization problem, which is a generalization of the two-dimensional rectangular strip
packing problem with orthogonal rotations. We formally demonstrate the intractability of the
problem and provide a mixed integer programming formulation. The formulation is based on
a discretization of the packing polyhedron, enabling us to model a range of complicated and
practical constraints. A group of practical constraints tends to be large in number and makes
it di�cult to solve the formulation in a reasonable amount of time. In order to overcome this
di�culty, we develop an exact algorithmic framework. This framework initially solves certain
relaxations of the problem to obtain strong lower bounds before subsequently embedding those
lower bounds into a branch-and-cut algorithm. The experimental study serves three purposes:
(i) evaluating the performance of the algorithmic framework and the mathematical formulation
to assess the merits of the two methods, (ii) identifying the characteristics of hard problem
instances and (iii) extracting insights regarding challenges in cargo securing to help managers
and practitioners in decision making.
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1 Introduction

The Mobility and Transport department of the European Commission reports that up to 25% of
truck accidents are related to poorly secured cargo (Commision, 2021). Improperly loaded cargo
may fall out of the container or trailer. It may also a�ect a vehicle's balance and its braking ability,
which may result in the vehicle tipping over and endangering the safety of not only the truck
driver but also other road users. Therefore, the proper loading and securing of cargo is crucial in
freight logistics. Minimum requirements for cargo loading in road transport for the European Union
(EU) member states is provided by EU directive 2014/47. Nevertheless, following these guidelines
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with precision is not always possible by human practitioners unless they are also provided with
an external recommendation computed by an automated tool. Human operators utilize only a
subset of guidelines in combination with their experience and intuition (trial and error) to ensure
cargo security. This often results in loading schemes that violate the limitations detailed in the
aforementioned EU directive.

The focus of this study is on a speci�c application commonly encountered by logistics practi-
tioners in Europe whose activities are regulated by the EU directive. Consider a vehicle container
to transport a given set of pallets to a given set of customers. Each pallet is associated with a single
customer, while multiple pallets might be destined for the same customer. Pallets must be loaded
into the rectangular-shaped container at a depot location by taking into account the predetermined
visit order to the customers. Pallets also have rectangular shapes which might be of di�erent di-
mensions, and the load weight of pallets might also vary even among the pallets associated with the
same customer. All pallets must �t onto the container surface without being stacked on top of each
other. It is possible to rotate pallets 90 degrees around a vertical axis and hence place each pallet
in two di�erent orientations.

For operational reasons, pallets can only be unloaded at the dedicated customer location and
cannot be moved at any other customer location. The major reason is to avoid confusion regarding
responsibility for safety during the rest of the journey. Additional reasons involve one or more of
the following:

� Extra movements would burden operators with additional unproductive workload.

� Customers do not provide space for unloading anything other than their own cargo.

� Customers authorize only a limited amount of parking time for the delivery vehicles.

Unloading is performed from the rear container door (no side unloading) with only a linear movement
of each pallet. This is a conservative assumption, but it is essential since heavy pallets are unloaded
by using large electric devices that are not �exible enough to reach behind other pallets. Thus,
the position of pallets inside the container must be decided at the depot in such a way that no
additional handling of any pallet will be necessary. In the remainder of the paper, we refer to these
restrictions as the multi-drop constraints.

While taking into account the aforementioned loading constraints, one should also make sure
that the loading scheme is safe for road transportation. More speci�cally, that the weight limits on
the vehicle axles are not exceeded and that the pallets are properly secured so they do not move
inside the container when the vehicle is in motion. For proper cargo securing, several methods
can be used in combination. In the speci�c application that we consider, pallets are secured by
utilizing air cushions and rigid blocking bars. The goal is to ensure a safe feasible loading scheme
that requires a minimum amount of securing time and materials. We refer to this problem as the
Cargo Securing Problem with Multi-Drop and Axle Weight constraints (CSP-MD-AW).

The CSP-MD-AW consists of several components related to the rectangular two-dimensional
strip packing problem (2D-SPP) and the two-dimensional container loading problem (2D-CLP).
The most recent bibliometric overview on the 2D-SPP by Neuenfeldt et al. (2021) reveals that
real-world practical constraints are not su�ciently addressed in the 2D-SPP academic literature.
One of the main reasons identi�ed by Neuenfeldt et al. (2021) for this trend of neglecting practical
constraints is the di�culty of representing them in heuristics and mathematical models. A similar
observation is made by Bortfeldt and Wäscher (2013) for the container loading problem (CLP)
literature. This paper advances an attempt to overcome this challenge and provide useful methods
and insights both for industrial managers and practitioners as well as academic researchers.

2



The CSP-MD-AW accommodates several practical constraints that are challenging to represent
in a mathematical programming formulation. The e�cient two-dimensional loading and packing
methods in the literature cannot be utilized for solving the CSP-MD-AW as they are not compatible
with axle weight and securing constraints. Due to axle weight limits, it is particularly di�cult to
make decisions concerning pallet positions and it may be inevitable to leave an unpredictable amount
of space between pallets. The center of gravity and e�ective weights on the axles must be calculated
to determine feasible pallet positions and secure pallets not only at the depot but also at each
customer location. In order to overcome this challenge, we utilize a discretization of the container
surface. This discretization facilitates the accommodation of these challenging practical constraints
in a mixed integer programming (MIP) formulation. We anticipate that this modeling framework
can easily accommodate some other potential real-world problem variants, which will be brie�y
mentioned throughout this paper. The main drawback of this discretization is that the number of
variables and especially the multi-drop constraints can be too large for certain problem instances.
Therefore, we develop an exact algorithmic framework which iteratively solves the relaxations of
the CSP-MD-AW to obtain strong lower bounds. These bounds help reduce the size of the MIP
to be solved by a branch-and-cut procedure which activates multi-drop constraints only if they are
violated.

The key contributions of this paper are as follows:

(i) A novel container loading problem that emerges from real-world practice and safety regulations
in Europe for freight transportation is introduced. Its relation with other published work is
indicated and NP-Hardness is proven.

(ii) A mixed integer programming formulation based on container surface discretization is pro-
vided.

(iii) An exact algorithmic framework to solve the MIP formulation e�ectively is proposed.

(iv) Several managerial insights as well as future research directions are discussed.

Section 2 of this paper provides a detailed problem description and a proof of complexity.
Section 3 highlights the di�erences between the CSP-MD-AW and the problems studied prior to
this paper and evaluates the suitability of the existing methods. This is followed by a mathematical
programming formulation for the CSP-MD-AW in Section 4. In order to solve this formulation
in a reasonable time frame, Section 5 introduces an algorithmic framework. Section 6 presents
an analysis through visualizations of solutions instead of numerical results and provides insights
obtained from the computational study conducted. Section 7 concludes the paper and outlines
several future research directions.

2 Notation and problem description

An ordered set T = {i1, i2, . . . it} of customers must be served by a vehicle departing from a depot
node `0'. More speci�cally, a set Pi of rectangular pallets must be delivered to each customer i ∈ T .
In doing so, one must obey certain loading and cargo safety restrictions. For each customer i ∈ T ,
the pallets in Pi are not necessarily identical either in size or weight (see Figure 1). Parameter wp

denotes the weight of the cargo placed on each pallet p ∈ P =
⋃

i∈T Pi (including the weight of the
pallet itself), which is homogeneously distributed. The customer associated with pallet p ∈ P is
denoted by c(p) and c(p) = i for each p ∈ Pi.
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Figure 1: Pallet and container parameters.

Pallet positioning constraints: Pallets may not be stacked on top of each other, they cannot
overlap and all the pallets must lie entirely inside the container, which is the part of the vehicle to
load pallets. It is possible to position an arbitrary pallet in two di�erent orientations:

L-ways: The long edge of the pallet is parallel to the side walls of the container.

S-ways: The short edge of the pallet is parallel to the side walls of the container.

Multi-drop constraints: The placement of cargo inside a container should take into account the
order in which customers are visited to ensure that the pallets of one customer are not blocked by
those of another who will be visited later in the route. Figure 2a illustrates the top view of a sample
loading scheme that violates multi-drop restrictions for a given customer route T = {c4, c3, c2, c1}.
In this �gure and in the remainder of the paper, we assume that the unloading of pallets is performed
from the rear door (right-hand side in top view) of a container. In Figure 2a, pallet p1 of customer
c1 blocks several pallets associated with other customers (p3 and p4 of c2, p19 and p17 of c3 and p10
of c4). Swapping the positions of p1 and p10 leads to a loading scheme that respects the multi-drop
restrictions, as depicted in Figure 2b.
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(a) Multi-drop constraints are violated.
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(b) Multi-drop constraints are respected.

Figure 2: Overhead views of sample loading schemes for T = {c4, c3, c2, c1}.

Securing: To avoid sliding and tilting, each empty space between pallets and between pallets
and the front and side walls of the container must be �lled using air cushions. These materials are
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often not reusable and costly. Moreover, �lling each empty space requires a non-negligible amount
of time and should therefore be avoided as much as possible. The securing from the rear is done
with a blocking bar. Blocking bars are mounted horizontally between the side walls of the container.
They typically block the closest pallet(s) to the rear door of the container as illustrated in Figure 3.
The goal is to pack the load behind the bar as densely as possible. This is considered advantageous
for two reasons: (i) the densely loaded pallets better support each other and potentially little or no
securing is needed and (ii) pallets are more evenly distributed along the two sides of the container
and this potentially better balances the weight across the wheels which is safer.

Figure 3: Securing pallets with a blocking bar and in�atable cushions. After unloading pallets, the bar is
moved closer towards the front wall and any empty spaces behind the bar are �lled with cushions.

After unloading pallets at a customer location, the empty spaces created (if any) must be �lled
with cushions and the blocking bar must be moved closer to the front wall (if possible), as illustrated
in Figure 3. In practice, securing pallets is undesirable not only at the depot, but also at customer
locations. Therefore, it is not su�cient to simply minimize the empty space and securing costs
only at the depot. The initial loading scheme should be determined while bearing in mind the
necessary securing e�orts at customer locations. However, quantifying the required securing e�orts
precisely with a mathematical equation is not straightforward. In an attempt to approximate this
with manageable computational e�orts, we minimize the total distance of the blocking bar from the
front wall throughout the entire vehicle trip. This objective function can formally be expressed as
follows. Suppose ϑi is the distance of the blocking bar to the front wall before departing from node
i ∈ T 0 = {0} ∪ T = {0, i1, i2, . . . it}. The objective function is then min

ϑ∈X

∑
i∈T 0\{it}

ϑi where X is the
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feasible domain of vector ϑ.
Axle weight constraints: In addition to securing pallets, the distribution of the weight inside the

container plays a crucial role in safe road transportation. We consider a semi-trailer supported at
the coupling and center of the rear axles, as illustrated in Figure 4. Axle weight restrictions require
weights f1 and f2 e�ective on the indicated axles to be no greater than the legal limits F 1 and F 2,
respectively.

Figure 4: Weights f1 and f2 on the axles of the vehicle given a load with weight Wj is placed such that
the center of load gravity is CGL

j meters away from the front wall.

The following list of parameters fully describes the CSP-MD-AW.

D1 is the distance from the front of the container to the coupling.

D2 is the distance between the coupling and the center of the axles.

F 1 and F 2 are the maximum weights allowed on the coupling and the center of the axles,
respectively.

T is the ordered set of customer nodes to visit. T 0 = {0} ∪ T = {0, i1, . . . , }.

Pi is the set of pallets to be delivered to customer i ∈ T and P =
⋃
i∈T

Pi.

c(p) ∈ T is the customer of pallet p ∈ P , i.e., p ∈ Pc(p).

wp is the weight of pallet p ∈ P .

T fol
i is the ordered set of successors of node i ∈ T 0 (nodes to be visited after i).

P fol
i =

⋃
j∈T fol

i

Pj is the set of pallets delivered to the successors of i ∈ T 0 (successor pallets).

Wi =
∑

p∈P fol
i

wp is the total weight in the container when departing from node i ∈ T 0.

lV S and lV L are the short and long edge lengths of the container, respectively.

lSp and lLp are the lengths of the short and long edges of pallet p ∈ P , respectively.

Before proceeding with the problem formulation, we prove in Proposition 2.1 that the CSP-MD-
AW is an NP-Hard problem.

Proposition 2.1. The CSP-MD-AW is NP-Hard.

Proof. The CSP-MD-AW reduces to the Two-Dimensional Strip Packing Problem with Rotations

when |T | = 1 and lV L = F 1 = F 2 = ∞. The Two-Dimensional Strip Packing Problem with

Rotations is already known to be NP-Hard (Iori et al., 2021). Hence the CSP-MD-AW is NP-
Hard.
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3 Related work

As mentioned in the introduction, some of the practical constraints present in the CSP-MD-AW
relate to the 2D-SPP and 2D-CLP. This section positions the CSP-MD-AW with respect to these two
problem categories. Only the most closely related papers considering the two-dimensional packing or
loading problems are reviewed. We foresee that the methods focused on higher-dimension problems
would be unnecessarily complicated for the CSP-MD-AW given that even the 2D problems with
practical constraints lack e�cient methods. Any loading scheme violating the multi-drop constraints
is unacceptable for the CSP-MD-AW and methods that fail to enforce them do not guarantee a
feasible CSP-MD-AW solution. Thus, we restrict the review to those strictly enforcing the multi-
drop constraints. For readers interested in broader reviews on the 2D-SPP and CLP, we refer to
Neuenfeldt et al. (2021) and Bortfeldt and Wäscher (2013), respectively.

Neuenfeldt et al. (2021) identify 27 papers that consider practical constraints in the 2D-SPP.
Multi-drop constraints are addressed in �ve of these (Da Silveira et al., 2013, 2014; De Queiroz and
Miyazawa, 2013, 2014; Wei et al., 2019). Among those, only De Queiroz and Miyazawa (2013, 2014)
consider weight distribution (load balance) and load bearing constraints. The 2D-SPP variants
studied by De Queiroz and Miyazawa (2013, 2014) consider a bin with length L and in�nite height
and a �nite set of items with predetermined length, height and orientation. Thus, the bin is �lled
with rectangular items from the top. The objective is to minimize the height required to pack
all the items. The load balance constraints require that the center of gravity is always within a
predetermined rectangular area, referred to as envelope. This approach is also frequently adopted in
early CLP studies. Ramos et al. (2018) indicate that this envelope no longer possesses a rectangular
shape if vehicle speci�cations are taken into account.

Realistic load balance methods based on axle weight restrictions appear in several recent CLP
studies (Alonso et al., 2019, 2017, 2020; Lim et al., 2013; Liu et al., 2017). However, these papers do
not consider multi-drop constraints. Silva et al. (2018) address the multi-drop load balance recovery
problem, which is not a CLP variant but closely related to the CLP. Given a cargo arrangement
and a complete route, their algorithm minimizes the number of items to be rearranged to ensure
load balance during the entire route.

Multi-drop constraints are more often addressed in vehicle routing problems (VRPs) with load-
ing constraints, which can be considered extensions of the CLP. In combined routing-and-loading
problems the packing component is usually a decision problem, which is equivalent to the orthogonal
packing problem (Baker et al., 1980). Côté et al. (2014) provide an exact approach for handling
the multi-drop constraints within the two-dimensional variant of this decision problem. Heuristic
approaches are also available for tackling these NP-Complete decision problems. Yet the review by
Pollaris et al. (2015) indicates the lack of integrated methods for solving the VRP with multi-drop
and axle weight constraints. In a follow-up study, Pollaris et al. (2016) address a VRP variant with
loading restrictions including multi-drop and axle weight constraints (VRP-MD-AW). The container
surface is divided into two rows and several columns (depending on the container length) where each
cell accommodates at most one pallet. Customer pallets have identical dimensions and they have to
be placed in the same speci�ed orientation. Pallets are placed alternately on the left and right rows
without any gap between two adjacent pallets. Pallets of a customer have identical weights and
cannot be aligned in a single row. The load weights on the two axles are limited by both a maxi-
mum and a minimum value while the multi-drop restrictions must be respected. The minimum axle
weight restrictions are not present in the CSP-MD-AW because the real-world application inspiring
the CSP-MD-AW does not consider such limits. Since the remaining loading restrictions in the
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VRP-MD-AW reduce to a very restrictive special case of the CSP-MD-AW, the method provided
by Pollaris et al. (2016) cannot be utilized for solving the CSP-MD-AW. A recent variant of the
VRP-MD-AW which allows split deliveries has been studied by Alonso et al. (2022). As in the
VRP-MD-AW, no empty spaces between pallets are allowed. However, empty space between the
front wall and the pallets of the �nal customer is permitted.

Neither Pollaris et al. (2016) nor Alonso et al. (2022) quantify (and minimize) the additional
securing e�orts needed at intermediate customer points.

Although enforcing no empty space between pallets can be an e�ective method for ensuring
cargo stability, it is not always possible to obtain such loading schemes for a given sequence. This is
often the case when di�erent pallet dimensions are considered. Therefore, within a VRP framework,
such restrictions may lead to longer or additional vehicle routes which incur higher costs. In fact,
the loading schemes created by the methods of Pollaris et al. (2016) and Alonso et al. (2022) may
require securing of a pallet after every customer visit if a pallet is not supported by another pallet
from one side. Pollaris et al. (2016) and Alonso et al. (2022) do not penalize or forbid such schemes
although in reality such insu�ciently supported pallets may slide and negatively a�ect the vehicle
stability.

An attempt to model a generalization of the VRP-MD-AW where pallets may have general
properties as in the CSP-MD-AW (nonidentical dimensions and weights with a possibility of 90
degrees rotation) was made by Çal�k et al. (2019). However, securing restrictions were not addressed
and the proposed model was not validated with computational experiments. In fact, the multi-
drop constraints in the proposed model by Çal�k et al. (2019) prevent blocking if the pallets must
be positioned in one dimension, but may lead to blocking loading schemes if the pallets of non-
immediate successors are allowed to be placed in adjacent rows. Although multi-drop restrictions
are more commonly considered in recent VRP studies (Gandra et al., 2021; Ferreira et al., 2021),
axle weight constraints remain rarely addressed (Krebs and Ehmke, 2021).
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Figure 5: A loading scheme with
∑

ϑ = 20m for T = {c4, c3, c2, c1}. Load weight limit on the coupling,
which is 12.8t, is exceeded all the way from the depot until unloading the pallets of c2.

4 An integer programming formulation for the CSP-MD-AW

The objective of the CSP-MD-AW is to �nd a feasible and secure loading scheme. It is di�cult
to intuitively predict a �nite set of potential points or a speci�c region of the container surface for
placing each pallet or the pallets of a customer that guarantee an optimal solution. For example,
consider the set of pallets and customers as in Figure 2a. Let the weight of the pallets associated
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with customers c1 and c4 be all equal to 2.4t and the weight of those associated with customers c2
and c3 be all equal to 0.5t. Intuitively, one might think that loading customer pallets as depicted
in Figure 2b would be the best loading scheme. However, Figure 5 demonstrates how that loading
scheme violates the axle weight restrictions. A feasible loading scheme is instead visualized in Figure
6.
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Figure 6: Best feasible solution provided by the solver with
∑

ϑ = 22m for T = {c4, c3, c2, c1}.

In order to overcome this di�culty, we employ a grid discretization of the container surface, as is
commonly done for solving irregular packing problems as well as some strip packing problems with
practical constraints (Toledo et al., 2013; De Queiroz and Miyazawa, 2014). As depicted in Figure 7,
we divide the container surface into identical grid squares with edge length lG. We prefer this form

Figure 7: The container surface divided into identical grid squares visualized on the �rst quadrant of a
two-dimensional Cartesian coordinate system.

of grid discretization over normal patterns and useful numbers (de Almeida Cunha et al., 2020) as
we foresee that those alternative forms of discretization may be too restrictive in the presence of
axle weight restrictions.

We choose two adjacent bottom corners of each pallet as potential reference points, one of which
is to be located on the prede�ned reference point (the bottom left corner) of a grid square. All
pallets must be positioned on distinct grid squares by respecting the aforementioned constraints.
Note that smaller lG values lead to a larger number of grid squares and a larger solution space for
pallet positions. While larger lG values shrink this solution space, they might lead to lower quality
solutions or even infeasibilities if lG is too large. Therefore, the selected lG value plays a crucial
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role in �nding the right balance between solution quality and computational e�ciency. We propose
to set lG equal to the greatest common divisor of the edge lengths of the pallets and the container.
This value is su�ciently small to enable a loading scheme with no empty space between pallets.

What follows is a list of parameters resulting from the grid structure.

The container surface (see Figure 7):

L-axis and S-axis correspond to the long and short edges of the container surface, respectively.

nCol = ⌈lV L/lG⌉ is the number of grid square columns (squares along the L-axis).

nRow = ⌈lV S/lG⌉ is the number of grid square rows (squares along the S-axis).

Grid squares (see Figure 7):

G is the set of (identical) grid squares on the container surface.

lG is the edge length of each grid square.

(RL
g ,R

S
g ) is the reference point of grid square g ∈ G where RL

g and RS
g are its coordinate values

on the L-axis and S-axis, respectively.

(CL
g ,C

S
g ) is the center point of grid square g ∈ G.

rowg and colg are the row and column indices of g ∈ G, respectively.

Pallets (recall Figure 1):

np is the number of grid squares which pallet p has to occupy (np = ⌈lLp /lG⌉ ∗ ⌈lSp /lG⌉).

wG
p is the weight of pallet p ∈ P per grid square (wG

p = wp/np).

The remainder of this section presents the MIP formulation. The constraints and objective
function are �rst grouped into separate subsections, before �nally bringing everything together as
a whole.

Decision variables and additional notation are introduced as needed. We begin with the pallet
positioning decisions and constraints.

4.1 Pallet positioning constraints

The pallet positioning constraints we utilize can be considered a generalization of the packing
constraints by Beasley (1985) so that the two orientations of the pallets can be taken into account
in the model. We de�ne two sets of binary variables to select the position of pallets on the container
surface. These variables also determine pallet orientations. Figure 8 illustrates L-ways and S-ways

pallet positioning with these variables.

yLpg = 1 if p ∈ P is positioned L-ways on the reference point of grid square g ∈ G, 0 otherwise.

ySpg = 1 if p ∈ P is positioned S-ways on the reference point of grid square g ∈ G, 0 otherwise.

Parameters AL
pg and AS

pg depicted in Figure 8 denote the rectangular areas on the container
surface covered by pallet p when p is (hypothetically) positioned L-ways and S-ways on grid square
g, respectively. Formally,

AL
pg = {h ∈ G : RS

g ≤ RS
h ≤ RS

g + lSp , R
L
g ≤ RL

h ≤ RL
g + lLp } and
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Figure 8: Illustration of L-ways and S-ways pallet positioning using yL and yS variables.

AS
pg = {h ∈ G : RS

g ≤ RS
h ≤ RS

g + lLp , R
L
g ≤ RL

h ≤ RL
g + lSp }.

If lG < lSp or lG < lLp as in Figure 9, not every grid square will be eligible to accommodate the

reference points of p. For each pallet p, GL
p and GS

p denote the set of potential grid squares, on
which p can be positioned L-ways and S-ways, respectively. Formally,

GL
p = {g ∈ G : RS

g + lSp ≤ lV S , RL
g + lLp ≤ lV L} and

GS
p = {g ∈ G : RS

g + lLp ≤ lV S , RL
g + lSp ≤ lV L}.

Figure 9: Feasible sets of grid squares to position a pallet L-ways (left) and S-ways (right).

De�ning an auxiliary variable xpg as in Constraints (2) makes it easier to follow the details of
the MIP formulation. Note that such equality constraints and variables are typically eliminated
during the presolve phase of IP solvers. Therefore, replacing all x variables by the right-hand side
of Constraints (2) results in a more e�cient implementation. Now we are ready to present the pallet
positioning constraints: ∑

g∈GS
s

ySpg +
∑
g∈GL

s

yLpg = 1, ∀p ∈ P (1)

xpg =
∑

h∈GS
p :

g∈AS
ph

ySph +
∑

h∈GL
p :

g∈AL
ph

yLph, ∀p ∈ P, g ∈ G (2)

∑
p∈P

xpg ≤ 1, ∀g ∈ G (3)

yLpg ∈ {0, 1}, ∀p ∈ P, g ∈ GL
p (4)

ySpg ∈ {0, 1}, ∀p ∈ P, g ∈ GS
p (5)

11



Constraints (1) assign each pallet to exactly one grid square to accommodate either the L-ways or
S-ways reference point of that pallet (but not both). Therefore, the orientation of pallets is also
determined by these constraints. Clearly, each pallet p with a chosen reference point occupies a
rectangular area (RA) of grid squares. By Constraints (1) and (2), for any grid square g falling in
RA, the corresponding xpg variable takes a value equal to one whereas xpg = 0 for any g that remains
outside RA. In other words, xpg indicates whether g is occupied by pallet p or not. Constraints (3)
prevent any grid square from being occupied by multiple pallets. Constraints (4) and (5) are binary
restrictions for the pallet positioning variables.

4.2 Objective function and securing constraints

In accordance with the notation introduced in Section 2, decision variable ϑi ≥ 0 denotes the
distance of the blocking bar from the front wall when departing from node i ∈ T 0 \ {it}. The CSP-
MD-AW minimizes the sum of these distance values, which is formally expressed as

∑
i∈T 0\{it} ϑi.

By Constraints (6), ϑi is enforced to be greater than or equal to the L-axis value of the furthest
point occupied by the successor pallets of i.

ϑi ≥
∑
g∈GS

s

ySpg(R
L
g + lSp ) +

∑
g∈GL

s

yLpg(R
L
g + lLp ), ∀i ∈ T 0 \ {it}, p ∈ P fol

i (6)

ϑi ≥ 0, ∀i ∈ T 0 \ {it} (7)

4.3 Multi-drop constraints

In order to formulate the multi-drop constraints, this section introduces the following corridor

parameters for each p ∈ P and g ∈ G pair. Given that the L-ways reference point of pallet p is
placed on g, CORL

pg de�nes a rectangular corridor with a width of l
S
p starting from g and proceeding

towards the rear of the container as depicted in Figure 10. A similar corridor CORS
pg is de�ned for

the placement of the S-ways reference point of p on g. Formally,

CORL
pg = {h ∈ G : RS

g ≤ RS
h ≤ RS

g + lSp , R
L
g ≤ RL

h} and

CORS
pg = {h ∈ G : RS

g ≤ RS
h ≤ RS

g + lLp , R
L
g ≤ RL

h}.

Figure 10: The corridors towards the rear door for given pallet positions.

Multi-drop constraints (8) and (9) employ the following idea: once a reference point is chosen
for a pallet, the corridor towards the back of the container must not be occupied by any successor

12



pallet. Recall that P fol
i denotes the set of pallets delivered to the successors of i ∈ T 0 (successor

pallets) and c(p) ∈ T ⊂ T 0 denotes the customer associated with pallet p.∑
h≥g:

h∈CORL
pg

∑
p1∈P fol

c(p)

xp1h ≤
∑

p1∈P fol
c(p)

np1(1− yLpg), ∀p ∈ P, g ∈ GL
p (8)

∑
h≥g:

h∈CORS
pg

∑
p1∈P fol

c(p)

xp1h ≤
∑

p1∈P fol
c(p)

np1(1− ySpg), ∀p ∈ P, g ∈ GS
p (9)

These constraints can be further strengthened by disaggregating them for each successor pallet
or for each grid square in the corridors. We provide several disaggregated versions of the multi-
drop constraints in A. Constraints (8) and (9) are fewer in number compared to the disaggregated
constraints, but they are also weaker (the polyhedron of the linear programming relaxation contains
more fractional solutions). On one hand, the disaggregated constraints exhaust the model as there
can be an excessive number of them for certain instances. On the other hand, they may help closing
the dual gap in fewer iterations during the branch-and-bound procedure.

4.4 Axle weight constraints

This section introduces a group of constraints that ensures that the total weight e�ective on each
axle of the vehicle is within the corresponding safety limit at every segment of the delivery route.
Suppose f1

i and f2
i are intermediary decision variables that denote the load weights e�ective on the

coupling and the centre of axles when departing from node i ∈ T 0, respectively. Constraints (10)
and (11) limit the load weights on the two axles with the prede�ned values.

f1
i ≤ F 1 ∀i ∈ T 0 (10)

f2
i ≤ F 2 ∀i ∈ T 0 (11)

In order to precisely compute the values of f1
i and f2

i , we de�ne an additional intermediary variable
CGL

i that denotes the center of gravity on the L-axis when departing from node i ∈ T 0. Recall
from Figure 4 in Section 2 that Equations (12) and (13) provide the values of f1

i and f2
i .

f2
i =

(CGL
i −D1)

D2
Wi ∀i ∈ T 0 (12)

f1
i = Wi − f2

i ∀i ∈ T 0 (13)

Thanks to our discretization method, we can easily compute CGL
i with linear equation (14).

CGL
i =

∑
g∈G

CL
g

∑
p∈P fol

i

wG
p xgp

Wi
∀i ∈ T 0 (14)

We eliminate intermediary decision variables CGL
i , f

1
i and f2

i by means of several mathematical
manipulations and �nally express the axle weight constraints as in (15) and (16).∑

g∈G
CL
g

∑
p∈P fol

i

wG
p xpg −D1Wi ≤ F 2D2, ∀i ∈ T 0 (15)

WiD2 −
∑
g∈G

CL
g

∑
p∈P fol

i

wG
p xpg −D1Wi ≤ F 1D2, ∀i ∈ T 0 (16)
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4.5 The MIP formulation

Given all constraints and the objective function detailed in Sections 4.1-4.4, the CSP-MD-AW can
�nally be formulated as a mixed integer program as follows:

FP min
∑

i∈T 0\{it}

ϑi (17)

s.t. (1)− (9), (15), (16)

5 Algorithmic framework

During our preliminary experiments, we observed that the formulation tends to have a large number
of multi-drop constraints which makes it di�cult to solve in one go using commercial solvers. Even
building the model takes several minutes for instances with a relatively large number of customers
and pallets with nonidentical dimensions. Therefore, we develop a branch-and-cut framework where
the multi-drop constraints are only activated when they are violated. In order to further reduce the
size of the mathematical model, we implement a few preprocessing procedures. These procedures
aim to reduce the number of variables and obtain strong lower bounds to accelerate the branch-
and-cut procedure. Section 5.1 explains the details of these preprocessing components.

5.1 Preprocessing procedures

The preprocessing stage starts by setting lG = GCD, which is the greatest common divisor of pallet
dimensions in the given instance. This is followed by the creation and computation of grid structure-
related parameters introduced in Section 4, elimination of infeasible pallet-position combinations
and computation of trivial lower bounds.

5.1.1 Eliminating infeasible pallet-position combinations

This procedure reduces the number of variables and constraints by eliminating pallet-position com-
binations that do not leave enough space for the successor pallets unless the multi-drop constraints
are violated. Suppose pallet p is positioned L-ways on grid square g. Clearly, no pallets in P fol

c(p)

can be positioned in CORL
pg. Let G

L
pg = {g1 ∈ G \ CORL

pg}. This procedure eliminates g from GL
p

if the total area of G
L
pg is smaller than the total bottom area of all pallets in P fol

c(p). Similarly, g is

removed from GS
p if G

S
pg = {g1 ∈ G \ CORS

pg} cannot accommodate all the pallets in P fol
c(p).

5.1.2 Trivial lower bounds

Let us denote the optimal objective value of FP as z. One can obtain a lower bound, say ϑ0
i , on

the ϑi value by calculating the total bottom area of all pallets to be delivered to the successors of
i ∈ T 0 \ {it}. Clearly, z0 =

∑
i∈T 0\{it} ϑ

0
i is a lower bound for z. Let ϑ0 denote the vector of ϑ0

i for

i ∈ T 0 \ {it}, Algorithm 1 provides pseudocode of the procedure for obtaining z0 and ϑ0.
Once these lower bounds are obtained, we utilize them within our formulation by including the

following inequalities (18) and (Eq(z)). We label Constraints (Eq(z)) as a function of z where
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Algorithm 1 Trivial lower bounds

1: z0 = 0;ϑ0 = 0;
2: for i ∈ T 0 \ {it} do
3: totalArea = 0;
4: for p ∈ P fol

i do
5: totalArea = totalArea+ lSp × lLp ;

6: ϑ0
i =

⌈ totalArea/lV S

lG

⌉
× lG;

7: z0 = z0 + ϑ0
i ;

8: return z0, ϑ0;

z is an input for the RHS. For instance, (Eq(500)) corresponds to
∑

i∈T 0\{it}
ϑi ≥ 500. Note that

Constraints (18) dominate Constraints (7) and hence can replace them.

ϑi ≥ ϑ0
i , ∀i ∈ T 0 \ {it} (18)∑

i∈T 0\{it}

ϑi ≥ z. (Eq(z))

In order to ease the presentation of the algorithmic procedures throughout the remainder of the
paper, we introduce the following notation. Let A be any mathematical programming formulation
with XA being its feasible region, then A(z) corresponds to the same formulation with the restricted
feasible region XA∩(18)∩(Eq(z)). With this notation clari�ed, Section 5.2 introduces two problem
relaxations to obtain potentially improved lower bounds.

5.2 Problem relaxations for improved lower bounds

We �rst present a formulation (RP1) for Relaxation 1 where both axle weight and multi-drop
constraints are excluded (CSP). This formulation utilizes the trivial lower bound z0 and variable
bound vector ϑ0. We denote the optimal value obtained from Relaxation 1 as z1.

RP1(z0) min (17)

s.t. (1)− (6), (18)∑
i∈T 0\{it}

ϑi ≥ z0

Secondly, RP2 is a formulation for Relaxation 2 where only multi-drop constraints are excluded
(CSP-AW). Relaxation 1 is also a relaxation of Relaxation 2. Thus, z1 is a lower bound for the
optimal value of Relaxation 2. We denote the optimal value obtained from Relaxation 2 as z2.

RP2(z1) min (17)

s.t. (1)− (6), (15), (16), (18)∑
i∈T 0\{it}

ϑi ≥ z1

Clearly, z0 ≤ z1 ≤ z2 ≤ z.
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5.3 Solving FP via a branch-and-cut procedure

As mentioned earlier, FP becomes too large for commercial solvers due to the multi-drop con-
straints. In this section, we describe a branch-and-cut procedure to solve FP. This procedure can
be utilized for solving any model with multi-drop constraints by initially excluding them and adding
these constraints on the �y only if violated. Therefore, in Algorithm 2, we present generic pseu-
docode for solving an arbitrary given model A(y, ϑ) by employing such a branch-and-cut procedure
BC[A(y, ϑ)]. The algorithm works using a traditional branch-and-bound. For each integer node of
the branch-and-bound tree, the algorithm checks if the multi-drop constraints (8) are violated (line
4). If they are, Constraints (8) are added to the model (line 5). Afterwards, the algorithm checks if
Constraints (9) are violated (line 6). If they are, Constraints (9) are added to the model (line 7).

Algorithm 2 Branch-and-cut procedure BC[A(y, ϑ)]

1: Start a traditional branch-and-bound (B&B) for A(y, ϑ);
2: for each integer feasible B&B node (y, ϑ) do
3: for p ∈ P, g ∈ GL

p do

4: if
∑
h≥g:

h∈CORL
pg

∑
p1∈P fol

c(p)

xp1g ≥
∑

p1∈P fol
c(p)

np1
(1− yLpg) then

5: add
∑
h≥g:

h∈CORL
pg

∑
p1∈P fol

c(p)

xp1g ≤
∑

p1∈P fol
c(p)

np1
(1− yLph);

6: if
∑
h≥g:

h∈CORS
pg

∑
p1∈P fol

c(p)

xp1g ≥
∑

p1∈P fol
c(p)

np1
(1− ySpg) then

7: add
∑
h≥g:

h∈CORS
pg

∑
p1∈P fol

c(p)

xp1g ≤
∑

p1∈P fol
c(p)

np1
(1− ySph);

8: return z∗, (y∗, ϑ∗);

5.4 General algorithmic framework

The general algorithmic framework that we develop consists of three main steps following the prepro-
cessing procedures which were detailed in Section 5.1. Step 1 solves Relaxation 1 model RFP1(z0)
that provides lower bound z1 and solution (y1, ϑ1). If this solution violates any axle weight or multi-
drop constraint, then the algorithm proceeds to Step 2; otherwise, the algorithm terminates since
(y1, ϑ1) is an optimal solution for the CSP-MD-AW. Step 2 solves Relaxation 2 model RFP2(z1)
that provides lower bound z2 and solution (y2, ϑ2). If this solution violates any multi-drop con-
straints, then the algorithm proceeds to Step 3. In the case of no violation, the algorithm terminates
and returns (y2, ϑ2) as an optimal solution for the CSP-MD-AW. Step 3 solves FP (z2) using the
branch-and-cut procedure detailed in Section 5.3, which at termination provides an optimal solution
for the CSP-MD-AW. Algorithm 3 presents pseudocode of the general algorithmic framework.
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Algorithm 3 General algorithmic framework

1: Step 0: Preprocessing procedure;
2: Variable elimination;
3: Trivial lower bound → z0;
4: Step 1: Solve relaxation RFP1(z0) → z1, (y1, ϑ1);
5: if (y1, ϑ1) violates (8),(9),(15), or (16) then
6: Go to Step 2;
7: else
8: (y∗, ϑ∗) ← (y1, ϑ1);
9: z∗ ← z1;
10: Go to Step 4;

11: Step 2: Solve relaxation RFP2(z1) → z2, (y2, ϑ2);
12: if (y2, ϑ2) violates (8) or(9) then
13: Go to Step 3;
14: else
15: (y∗, ϑ∗) ← (y2, ϑ2);
16: z∗ ← z2;
17: Go to Step 4;

18: Step 3: Solve FP (z2) via BC[FP (z2)] → z∗, (y∗, ϑ∗);
19: Step 4: Return z∗, (y∗, ϑ∗);

6 Computational study

We implemented the MIP and the algorithm in a Java environment where we call IBM ILOG
CPLEX 12.8 to solve the mathematical models. Experiments were run on a server with 2 × Intel®
Xeon® E5-2660 v3 processor @2.6GHz, 20 cores and 160GB RAM. For each mathematical model,
CPLEX is terminated if proven optimality is not reached within one hour.

Figure 11: Container dimensions utilized in the experiments.

We conducted experiments for a single vehicle type with two axles and the container dimensions
indicated in Figure 11. Instances contain three standard European pallet sizes: 0.8m × 1.2m,
1m× 1.2m and 0.8m× 0.6m. Pallet weights are randomly generated and have values ranging from
50kg to 2.4t (max 1.2t for the smallest pallet type). We also generated a few arti�cial instances with
very heavy pallets, which in reality may not be considered a safe pallet load, but can provide useful
theoretical insights. The minimum grid square dimension lG we utilized in the experiments is equal
to 0.2m (the greatest common divisor of pallet dimensions). This enables us to round down the
container surface dimensions to 2.4m and 9m which are originally 2.45m and 9.12m. The methods
are valid for any container dimension of the same vehicle type.

The number of pallets |P | per instance ranges from 7 to 40 while the number of customers |T |
ranges from 2 to 10. Depending on whether the considered pallets have identical sizes and weights
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or not, instances can be classi�ed into �ve categories as detailed in Table 1. We further categorize
instances based on average weight per unit pallet area ω =

∑
p∈P wp/(

∑
p∈P lSp × lLp ), as indicated

in Table 2.

Table 1: Instance categories based on identical or nonidentical size and weight.

Among all pallets Among the same customer pallets

Category size size weight

III Identical Identical Identical
IIN Identical Identical Non-identical
NNN Non-identical Non-identical Non-identical
NII Non-identical Identical Identical
NIN Non-identical Identical Non-identical

Table 2: Instance categories based on average weight per unit pallet area.

Weight category Average weight per unit pallet area (ω)

L (low) ω < 1000kg/m2

M (medium) 1000kg/m2 ≤ ω < 1300kg/m2

H (high) 1300kg/m2 ≤ ω

The instance �les are available online at doi:10.17632/4zhjc3sj8d.1. The �rst line of each instance
�le includes the following information: the number of pallets |P | and the number of customers |T |.
This line is followed by |P | lines, each of which is dedicated to a pallet and contains the pallet
index p, customer c(p), dimensions lLp , l

S
p and weight wp. Further details of instance categories

are provided in B where each instance is analyzed in terms of average pallet weight, area and the
number of each pallet type.

6.1 Methodological and computational insights for the theoretical problem

In order to provide a brief overview of the computational performance of our algorithm, Tables
3-5 summarize the average solving times and the number of instances for which Steps 2 and 3 of
Algorithm 3 were activated. In these tables, the �rst column indicates the instance category and
�le ID that includes information concerning the number of pallets and customers as well as pallet
dimension and weight categories. When there are multiple instances of the same category with
di�erent pallet-customer con�gurations, this is indicated by including an additional number at the
end of the Category-ID (for example IIN-P20C4H and IIN-P20C4H2). Columns 2 and 3 contain
the number of pallets and customers in the corresponding instance �le. Column `# T ' gives the
number of distinct customer sequences for which the corresponding customer-pallet con�guration
has been investigated. Columns `t1avg(s)', `t

2
avg(s)' and `t3avg(s)' provide the average solving time (in

seconds) for RFP1 (including preprocessing procedures), RFP2 and BC, respectively, while tavg(s)
is the average total solving time over all considered customer sequences. As RFP2 and BC steps
are only activated when needed, columns `# RFP2' and `# BC' report the number of sequences
for which RFP2 and BC steps were activated, respectively. It is also important to note that t2avg(s)
and t3avg(s) are calculated only over those instances where RFP2 and BC steps were employed,
respectively. For example, if BC is activated only for one instance out of 120 and its BC time is
3600, then t3avg(s) = 3600 and not 3600/120 = 30.

Table 3 summarizes the results obtained for 978 instances with up to 24 pallets and 5 customers.
Relaxation RFP2 and BC were needed for 552 and 353 instances, respectively. The average solving
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Table 3: Average computing time over all sequences for each step of Algorithm 3.

Category-ID |P | |T | # T t1avg(s) # RFP2 t2avg(s) # BC t3avg(s) tavg(s)

NIN-P7C3M 7 3 6 0.44 0 0 0.44
NII-P7C3M 7 3 6 0.50 0 0 0.50
NNN-P7C3M 7 3 6 0.67 0 0 0.67
NNN-P10C4L 10 4 24 1.95 1 23.99 0 2.95
NNN-P10C4M 10 4 24 1.86 1 23.99 0 2.85
NNN-P12C3M 12 3 6 32.73 0 0 32.73
NNN-P12C3H 12 3 6 1.37 6 21.97 3 3604.70 1825.69
NNN-P12C3H2 12 3 6 27.63 6 21.97 1 3.12 50.12
III-P14C2H 14 2 2 0.73 2 1.13 1 3602.78 1803.24
NNN-P14C2L 14 2 2 3.06 0 0 3.06
NNN-P14C3L 14 3 6 6.50 0 0 6.50
NNN-P14C4L 14 4 24 10.45 7 21.95 4 16.85
NNN-P14C5L 14 5 120 19.95 38 24.41 13 1226.82 160.58
NNN-P14C5M 14 5 120 9.95 65 24.95 34 1561.75 465.96
NNN-P16C2M 16 2 2 14.16 0 0 14.16
NNN-P16C3M 16 3 6 9.35 0 0 9.35
NNN-P16C4M 16 4 24 27.31 5 22.57 1 1356.61 88.53
NNN-P18C4M 18 4 24 47.48 0 0 47.48
NNN-P18C5M 18 5 120 39.51 105 114.14 77 2416.86 1690.21
III-P20C2H 20 2 2 0.75 2 14.50 2 3600.13 3615.37
III-P20C4H* 20 4 4 0.53 4 21.65 4 2701.67 2723.85
IIN-P20C4H 20 4 24 0.36 13 23.82 8 3562.91 1200.90
IIN-P20C4H2 20 4 24 0.38 20 23.78 15 3600.39 2270.44
IIN-P22C5H* 22 5 22 1.11 22 23.36 22 2951.27 2975.74
NNN-P23C3M 23 3 6 105.56 3 21.97 2 1930.41 760.02
NNN-P23C5M 23 5 120 115.83 104 24.80 81 2695.88 1957.05
NNN-P24C2H 24 2 2 24.53 2 14.50 1 3600.00 1839.03
NNN-P24C5M 24 5 120 16.46 52 24.95 22 1208.75 248.87
NNN-P24C5H 24 5 120 16.01 94 25.04 62 3439.06 1812.47

Total 978 552 353
Average 18.52 25.97 2533.13 883.64
*The batch process of experiments was halted once a feasible solution was not found for a sequence.

times for RFP1 (including the preprocessing) and RFP2 are both under 26 seconds, which indicates
that the models are solved very fast without the multi-drop constraints for these instances. Although
the addition of multi-drop and axle weight constraints in combination makes the problem more
di�cult to solve, the overall average solving time (including all algorithmic steps) is 884 seconds
(∼15 minutes). Note that we ran experiments for all sequence permutations of each category in
a separate batch. For a few instance categories the batch process was halted when no feasible
solution was found for a sequence, with no experiments run for the remaining sequences. Although
we did not visualize all of these solutions, our implementation creates a readily-executable �le for
the solution obtained at each step of Algorithm 3, which can be provided upon request. These �les
then can be complied to visualize the solutions.

In order to observe the performance of Algorithm 3 for instances with a greater number of pallets,
we created instances with 30 and 40 pallets and 5 customers with two con�gurations per category.
Note that the container we consider cannot accommodate more than 44 of the 0.8× 0.6 pallets and
no more than 40 pallets if at least two are of a larger size category. Table 4 summarizes the results
for these larger instances. We observe that the average solving times for RP1 and especially for RP2
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are much much longer than those for the instances in Table 3 in Table 3, which were associated with
fewer pallets. The BC solving times are also quite long, which was already observed for many of
the instance categories in Table 3. Tables 3 and 4 are in fact good indicators of how the axle weight
and multi-drop constraints increase the complexity of the problem. The last group of instance

Table 4: Instances with 30 and 40 pallets.

Category-ID |P | |T | # T t1avg(s) # RFP2 t2avg(s) # BC t3avg(s) tavg(s)

NNN-P30C5H 30 5 120 105.21 53 1061.07 36 3494.69 1622.26
NNN-P30C5H2 30 5 120 92.61 86 1275.92 55 2943.42 2356.08
NNN-P40C5H* 40 5 61 186.64 42 1232.37 26 3345.33 2461.04
NNN-P40C5H2* 40 5 3 274.07 3 1902.74 3 3600.14 5776.95

Total 304 184 120
Average 164.63 1368.03 3345.89 3054.08
*The batch process of experiments for all sequence permutations is halted once a feasible solution is not found for a sequence.

categories we considered contain 10 customers and 16 to 40 pallets. We test these instance categories
for a single sequence {c1, c2, . . . , c10} since testing the complete permutation would involve millions
of sequences. Although it is di�cult to draw general conclusions, we observe that Algorithm 3 could
not �nd a feasible solution for two of the nine instances within the time limit. The computation
times for RP2 are again longer than the average value reported in Table 3.

Table 5: Instances with 10 customers.

Category-ID |P | |T | # T t1avg(s) # RFP2 t2avg(s) # BC t3avg(s) tavg(s)

NNN-P16C10M 16 10 1 9.89 0 0 9.89
NNN-P18C10M 18 10 1 31.61 0 0 31.61
IIN-P20C10H 20 10 1 0.3 0 0 0.30
IIN-P22C10H 22 10 1 0.92 1 40.69 1 3600.00** 3641.61
NNN-P24C10H 24 10 1 51.08 1 89.76 1 612.41 753.25
NNN-P30C10H 30 10 1 40.75 1 117.33 0 158.08
NNN-P30C10H2 30 10 1 316.07 1 408.60 0 724.67
NNN-P40C10H 40 10 1 127.06 1 775.10 0 902.16
NNN-P40C10H2 40 10 1 145.99 1 3600.28** 3600.00** 7346.27

Total 9 6 3
Average 80.41 838.63 2604.14 1507.54
**No feasible solution is found.

While Algorithm 3 was unable to converge to proven optimality or �nd a feasible solution for
some instances, one may question the performance of the mixed integer programming formulation
FP as a one-shot method. We therefore solved a large subset of the instance categories using FP
and compared the solving times in Table 6. While Algorithm 3 outperforms FP for a large majority
of the categories, FP is competitive for a few. For category III-P20C4H, none of the methods could
�nd a feasible solution for sequence {c3, c2, c1, c4} and FP was unable to �nd a feasible solution
for one more instance. FP is not able to �nd any feasible solution for instances NNN-P30C10H,
NNN-P40C10H and NNN-P40C10H2 and it cannot �nd an optimal solution for NNN-P30C10H2
within the time limit.
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Table 6: Computational comparison of FP and Algorithm 3.

Category-ID |P | |T | # T t1avg(s) # RFP2 t2avg(s) # BC t3avg(s) tavg(s) tMIP
avg (s)

NIN-P7C3M 7 3 6 0.44 0 0 0.44 38.98
NII-P7C3M 7 3 6 0.50 0 0 0.50 31.89
NNN-P7C3M 7 3 6 0.67 0 0 0.67 31.97
NNN-P10C4L 10 4 24 1.95 1 23.99 0 2.95 133.42
NNN-P10C4M 10 4 24 1.86 1 23.99 0 2.85 128.43
NNN-P12C3M 12 3 6 32.73 0 0 32.73 311.46
NNN-P12C3H 12 3 6 1.37 6 21.97 3 3604.70 1825.69 2544.01
NNN-P12C3H2 12 3 6 27.63 6 21.97 1 3.12 50.12 660.47
III-P14C2H 14 2 2 0.73 2 1.13 1 3602.78 1803.24 1802.39
NNN-P14C2L 14 2 2 3.06 0 0 3.06 251.51
NNN-P14C3L 14 3 6 6.50 0 0 6.50 639.60
NNN-P14C4L 14 4 24 10.45 7 21.95 4 16.85 923.00
NNN-P14C5L 14 5 120 19.95 38 24.41 13 1226.82 160.58 1776.05
NNN-P14C5M 14 5 120 9.95 65 24.95 34 1561.75 465.96 1342.35
NNN-P16C2M 16 2 2 14.16 0 0 14.16 730.16
NNN-P16C3M 16 3 6 9.35 0 0 9.35 942.28
NNN-P16C4M 16 4 24 27.31 5 22.57 1 1356.61 88.53 2137.29
NNN-P18C4M 18 4 24 47.48 0 0 47.48 3456.81
NNN-P18C5M 18 5 120 39.51 105 114.14 77 2416.86 1690.21 3415.49**
III-P20C2H 20 2 2 0.75 2 14.50 2 3600.13 3615.37 3601.46
III-P20C4H 20 4 4 0.53 4 21.65 4 2701.67 2723.85 3600.00**
IIN-P20C4H 20 4 24 0.36 13 23.82 8 3562.91 1200.90 1083.80
NNN-P23C3M 23 3 6 105.56 3 21.97 2 1930.41 760.02 3320.76
NNN-P24C2H 24 2 2 24.53 2 14.50 1 3600.00 1839.03 2207.26

Total 572 260 151
Average 16.14 26.50 681.71 1462.95
**No feasible solution found within the time limit for some sequences.

We compare the performance of FP and algorithm on four speci�c instances in more detail in
Table 7, for which both methods terminate prematurely (before proven optimality) due to the limit.
FP provides better feasible solutions, whereas Algorithm 3 provides better lower bounds thanks to
the RP2 solution.

Table 7: Lower and upper bound comparison of FP and Algorithm 3 for a selection of instances.

Category-ID |P | |T | T BC LB BC UB MIP LB MIP UB

III-P20C2H 20 2 {c2, c1} 1440.00 1680 1356.71 1560
III-P20C2H 20 2 {c1, c2} 1280.00 1640 1252.14 1360
IIN-P20C4H2 20 4 {c3, c2, c1, c4} 2160.00 2440 2073.54 2200
IIN-P20C4H2 20 4 {c3, c2, c4, c1} 2160.00 2640 2083.01 2280

The following list summarizes our observations regarding the computational performance of
Algorithm 3 and FP :

� Instances with low weights where the axle weight constraints are not binding can be solved in
a few seconds using our algorithm. More speci�cally, among the instances considered, those
from the low- or medium-weight category with up to 16 pallets and 3 customers could be solved
in less than 8 seconds on average. Instances from the H category can prove computationally
challenging, even with 12 pallets and 3 customers or 14 pallets and 2 customers.

� Another factor that increases the computational di�culty in solving the problems is the num-
ber of customers. We observe this most clearly for the NNN-P14-L and NNN-P16-M instances,
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but also for the NNN-P18-M and NNN-P23-M instances.

� When all the pallets have identical dimensions, Algorithm 3 struggles in converging to prove
optimality. This is due to very high symmetry regarding the positioning of pallets, which
leads to a high number of solutions that violate multi-drop constraints while trying to satisfy
the axle weight constraints. Note that without the axle weight constraints, a solution that
satis�es the multi-drop constraints is often obtained relatively quickly.

� Instances with a larger number of pallets are not always more challenging than those with
fewer pallets. However, on average they do indeed require more computational e�ort.

� Solving times may di�er signi�cantly for di�erent customer sequences, even those sharing
identical pallet-customer con�gurations. Algorithm 3 may not �nd a feasible solution for some
sequences whereas for others an optimal solution can be obtained rather quickly. If the pallets
of each customer can be perfectly packed independently without any empty spaces between
pallets and walls (front and side-walls) or between pallets themselves, the problem is likely
to be solved very quickly if the given sequence permits such perfect packing schemes without
violating the axle weight restrictions. If not, the algorithm may spend a large amount of
time eliminating all the solutions violating multi-drop constraints while satisfying axle weight
constraints with a packing scheme without any empty space between pallets. Therefore, the
customer sequence plays a very important role.

� The trivial lower bounds on ϑi variables are often helpful in obtaining solutions which respect
multi-drop constraints without actually activating these constraints.

� Many solutions obtained in Step 1 of Algorithm 3 respect the multi-drop constraints even if
they violate the axle weight constraints.

� FP may be a good alternative to obtain higher quality solutions when the BC terminates pre-
maturely. In such cases, one could also consider switching to FP as an additional framework
step by utilizing the bounds obtained from the BC.

� We also implemented Algorithm 3 by using the strengthened multi-drop constraints introduced
in A. We did not observe a variant whose computational performance dominates the one with
Constraints (8) and (9).

6.2 Managerial insights for the practical problem

We provide a meticulous analysis of problem features based on a careful selection of solution char-
acteristics. The visualizations are restricted to a reasonable number to avoid a lengthy paper, yet
su�cient to demonstrate all important �ndings.

6.2.1 Impact of the axle weight constraints

The purpose of this section is to analyze through examples how axle weight constraints may signif-
icantly impact the solutions. Section 4 provided an example where axle weight restrictions would
lead to an optimal solution (Figure 6) whose objective value is strictly worse than the optimal value
when axle weight restrictions are ignored (Figure 5). The solution depicted in Figure 6 required
�lling the empty space left behind the bar after unloading the pallets of c2, whereas this was not
the case in Figure 5.

Figure 12 compares two loading schemes with the same objective value for another problem
instance with 4 customers. Each customer is associated with 5 pallets of the same size but di�erent

22



p9 (c4)
1.4t

p10 (c4)
1.8t

p11 (c4)

1.4t

p12 (c4)

1.6t

p13 (c4)
1.8t

p7 (c3)

1.5t

p8 (c3)
1.5t

p16 (c3)
0.4t

p17 (c3)

0.5t

p19 (c3)
0.85t

p2 (c2)
0.8t

p3 (c2)

1t

p4 (c2)
1.3t

p5 (c2)

1.5t

p6 (c2)
0.7t

p0 (c1)

1.4t

p1 (c1)

2t
p14 (c1)

1.9t

p15 (c1)
1.6t

p18 (c1)
1.45t

ϑ0 =8mϑ4 =6mϑ3 =4mϑ2 =2m

bars
axles
CGL

f1
0=12.21t f2

0=14.19t
f1
4=12.98t f2

4=5.42t
f1
3=11.66t f2

3=1.99t
f1
2=8.36t f2

2=-0.01t

(a) A loading scheme violating the axle weight constraints.
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(b) An alternative and optimal loading scheme respecting the axle weight constraints.

Figure 12: IIN-P20C4H2, T = {c4, c3, c2, c1}.

weights. Figure 12a illustrates an optimal loading scheme which ignores the axle weight restrictions.
The customers must be served in the order T = {c4, c3, c2, c1}. In this loading scheme, the axle
weight limits are exceeded when travelling from customer c4 to customer c2 and hence this is not
a feasible solution for the CSP-MD-AW. For the same problem instance, an alternative loading
scheme given in Figure 12b respects the axle weight limits throughout the entire trip. Given that it
also respects the multi-drop constraints, this loading scheme is optimal for the CSP-MD-AW. Note
that for a particular i ∈ T , the ϑi value is identical in Figures 12a and 12b. Although the intuitive
placement of blocking bars is optimal for this instance, the arrangement of pallets behind the bar
plays a crucial role. A complete enumeration of such di�erent arrangements would lead to a large
number of distinct loading schemes, hence would be impractical.

Another example where the axle weight constraints lead to an optimal solution which is unin-
tuitive for human practitioners can be observed in Figure 13. If one would ignore the axle weight
limits, an optimal solution would look like Figure 13a. Such a loading scheme would not require any
cushions and securing could be performed using blocking bars only. This type of loading scheme
can consequently be considered an `ideal ' one in practice. However, it is not always possible to
�nd an `ideal ' loading scheme, especially due to the multi-drop and axle weight constraints. In
fact, the solution in Figure 13a violates the axle weight limits and must be prevented in reality.
The optimal solution given by CPLEX respecting the axle weight constraints is depicted in Figure
13b. However, since this solution requires in�ating several cushions, it is unlikely to be employed by
the practitioners. Therefore, it may be necessary to further look for alternative optimal or feasible
solutions.

6.2.2 Impact of the multi-drop constraints

The multi-drop constraints help minimize the additional movements of pallets at customer nodes.
We now investigate the impact of ignoring the multi-drop constraints.

Recall the optimal loading schemes which respect the multi-drop constraints while also taking
into account axle weight restrictions (Figure 13a) and when ignoring them (Figure 13b). When
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(a) An optimal loading scheme with
∑

ϑ = 17.4m when the axle weight restrictions are ignored.
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(b) An optimal loading scheme with
∑

ϑ = 21.6m when axle weight restrictions are enforced.
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(c) The best solution provided by CPLEX when multi-drop constraints are ignored.

Figure 13: NNN-P24C5H, T = {c5, c3, c4, c2, c1}.

the axle weight restrictions are enforced without the multi-drop constraints, we obtain the loading
scheme depicted in Figure 13c. Although this is a loading scheme with fewer empty spaces to be
�lled, it is infeasible since pallets p0, p2, p3 and p4 must be unloaded and reloaded at customer c2
in order to be able to unload pallets p5 and p6.

Figures 14a and 14b depict the optimal loading schemes for another instance when the multi-
drop constraints are respected and ignored, respectively. In Figure 14a, the pallets of each customer
are aligned on one side (either right or left) and empty spaces are needed between pallets in order
to respect the axle weight limit in combination with the multi-drop constraints. Given the need for
cushions, this would not be considered an ideal loading scheme in practice. The solution in Figure
14b packs pallets at the depot without the need for cushions, while also ensuring axle weight limits
are not violated. However, it will be necessary to unload and reload six pallets (p0, p1, p3, p10, p12,
p13) at customer c3 in order to unload pallet p7. It will then also be necessary to �ll the empty
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space of p7 with a cushion. All these operations require undesirable amounts of time and e�ort at
customer locations.
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(a) An optimal loading scheme.
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(b) An optimal loading scheme when the multi-drop constraints are ignored.

Figure 14: III-P20C4H, T = {c3, c2, c4, c1}.

6.2.3 Impact of customer sequence (the order of visits)

In this section, we provide examples where di�erent customer sequences lead to signi�cantly di�erent
solutions for the same set of customer pallets. We begin with Figures 15a and 15b, which illustrate
optimal loading schemes for two problem instances whose parameters are identical except for the
customer sequence. For the �rst instance with T = {c1, c2}, Figure 15a is an optimal `ideal ' loading
scheme. However, for the instance with T = {c2, c1} , it is not possible to come up with such an
`ideal' solution due to the axle weight restrictions. It is necessary to leave certain empty spaces to
be �lled with cushions behind the blocking bar. These two �gures should motivate managers to take
into account the importance of customer visit orders, which are often given as input for the loading
problems (this is also the case for the CSP-AW-MD). The order of customer visits is usually based
on the total traveling distance (or time). For this particular set of customers, the total traveling
distances of T 1 = {0, c1, c2, 0} and T 2 = {0, c2, c1, 0} would be identical if the underlying distance
network was undirected. In the absence of any other criterion to prioritize the two orders, a wise
managerial decision would be to employ T 1 and not T 2.

We observe a similar situation with the instances regarding Figures 13a and 13b. Recall the
optimal solution for T = {c5, c3, c4, c2, c1} in Figure 13b. If the visit order to these customers would
be reversed as T = {c1, c2, c4, c3, c5}, an optimal loading scheme would look like Figure 16, which
would again be an `ideal ' solution that does not require any cushions. Note that no ideal loading
scheme exists for T = {c5, c3, c4, c2, c1} because the axle weight limits are crucial for safety.

In Figure 17, we observe how the solutions change when the visit order of only two consecutive
customers (c5 and c1) are swapped. Although both orders would enable geometrically `ideal' loading
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(a) An optimal loading scheme for T = {c1, c2}.
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(b) An optimal loading scheme for T = {c2, c1}.

Figure 15: NNN-P24C2H.

schemes, as depicted in Figures 17a and 17c, the scheme in Figure 17a violates the axle weight
restrictions. The best feasible solution we obtain from CPLEX is depicted in Figure 17b, which is
clearly inferior to the scheme in Figure 17c.
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Figure 16: NNN-P24C5H, T = {c1, c2, c4, c3, c5}: An optimal loading scheme.
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(a) T = {c2, c4, c5, c1, c3}: An optimal loading scheme when the axle weight restrictions are ignored.
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(b) T = {c2, c4, c5, c1, c3}: The best feasible solution provided by CPLEX.
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(c) T = {c2, c4, c1, c5, c3}: An optimal solution.

Figure 17: NNN-P40C5H, T = {c2, c4, c5, c1, c3} and T = {c2, c4, c1, c5, c3}.

6.2.4 Impact of rotation

Another managerial decision concerns the rotation of pallets. In many cases, pallets can only be
loaded in a �xed orientation. One practical and methodological advantage of this restriction is
that the number of feasible loading schemes can be considerably smaller and that even complete
enumeration could be possible, especially for instances with identical pallet size 1.2m × 0.8m and
low pallet weights.

Consider the same instance as the one associated with Figures 5 and 6. This time we allow pallets
to be positioned only S-ways. If we deactivate the axle weight restrictions, an optimal solution is
depicted in Figure 18a. When the axle weight constraints are enforced, the best solution we obtain
from the solver is depicted in Figure 18b. The loading schemes in Figures 18a and 18b are inferior
to the ones in Figures 5 and 6, respectively, not only in terms of theoretical objective value, but also
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from a practical handling perspective since they will feature additional empty spaces which must
be �lled at customer locations.
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(a) An optimal loading scheme with
∑

ϑ = 20.8m when axle weight restrictions are ignored.
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(b) The best CPLEX solution with
∑

ϑ = 22.4m when axle weight restrictions are respected.

Figure 18: III-P20C4H, T = {c4, c3, c2, c1} with S-ways placement of pallets only.

Recall the optimal loading scheme in Figure 16, which could be achieved thanks to the rotation
of small pallets. Such an `ideal' loading scheme would not be possible if the rotation of small pallets
was restricted. Figures 19a and 19b are the optimal schemes when the small pallets can only be
placed S-ways and L-ways, respectively. Due to the resulting empty spaces, both of these schemes
are less desirable from a practical perspective.

6.2.5 Critical analysis on the mathematical objective function

The objective function of the cargo securing problem introduced in this paper can be formulated with
di�erent mathematical equations. The challenge is to come up with ones that are computationally
light and as realistic as possible. The mathematical objective function we chose in this paper
satis�es these requirements to a large extent. We need only |T | continuous decision variables and
O(|T |× |P |) constraints to express the physical securing objective with the positioning, multi-drop,
axle weight constraints and variables at hand. For certain instances, there exist several alternative
optimal solutions that provide equal values for Equation (17). The solver provides us with a single
optimal solution. It is likely that there are other alternative solutions that would be preferable in
practice compared to the one provided by the solver.

One potential approach to overcome this drawback could be to develop a postprocessing proce-
dure. Given an optimal solution by the solver, this procedure could arrange the pallets in accordance
with the practical preferences. This could also be supported with an interactive visualization with
which the human planners can rearrange the pallets and see whether the axle weight limits are
respected.

Determining the best objective function for minimizing the securing cost still remains a big chal-
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(a) An optimal loading scheme with only S-ways placement of small pallets.
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(b) An optimal loading scheme with only L-ways placement of small pallets.

Figure 19: NNN-P24C5H, T = {c1, c2, c4, c3, c5}.

lenge, also due to the lack of su�cient physical testing to see how and under what conditions pallets
support each other. For example, in Figure 19a, the empty space between pallets p11, p12, p13 and
p23 will most likely not require a cushion. This type of speci�cations should be clearly documented
in manuals. However, we should note that including every speci�cation prior to optimization is
likely to lead to an unsolvable mathematical model. Hence, some of them may be kept for the
postprocessing procedure.

The following is a list of important practical and managerial �ndings of our experimental study:

� Making wise decisions regarding customer sequences is critical in reducing securing e�orts and
costs.

� Axle weight and multi-drop restrictions in combination or individually may lead to undesirable
empty spaces in containers which in turn bring additional costs to the system.

� Theoretically, the case with �xed orientations cannot lead to strictly better solutions. How-
ever, Algorithm 3 may terminate prematurely at a sub-optimal solution when solving the
general problem within a short time limit. In such cases, it is sometimes possible to obtain
better solutions from the problem with �xed orientations. Thus, solving the case with �xed
orientations may be worth the computational e�ort if the general problem solution does not
have the required quality.

� For some instances, the optimal (or the best) solution provided by the solver can further
be processed with very simple intuitive moves to obtain alternative solutions that are more
preferable in practice. Therefore, a postprocessing algorithm may prove useful.

� We observe that utilizing a di�erent mathematical objective function sometimes leads to
solutions that are more preferable in practice (for example Figure 14a vs minimizing ϑ0 instead

29



of
∑

ϑ). Therefore, there is room for further investigation on modeling suitable mathematical
objective functions.

7 Conclusions and future research directions

Secure cargo loading is a crucial concern in freight transportation. The dynamic and static stability
of the cargo has been indicated as an essential research matter that must be tackled. Nevertheless,
the literature previously lacked e�cient methods to minimize securing e�orts in the presence of
multi-drop and axle weight constraints when loading pallets of non-identical size and weight with
rotations. This paper introduced an e�cient way of ensuring secure loading schemes using blocking
bars and in�ating cushions. The additional challenge of respecting the axle weight limitations and
multi-drop restrictions encouraged us to develop a mixed integer programming formulation based
on a grid-square discretization of the container surface. The large number of multi-drop constraints
resulting from this discretization led us to develop a decomposition framework.

The algorithmic framework decomposes the original problem (CSP-MD-AW) into smaller prob-
lems (relaxations) and obtains valuable information (lower bounds) by solving these smaller prob-
lems in order to eventually obtain an optimal solution for the CSP-MD-AW. Note that it is also
possible to obtain quick upper bounds by increasing the grid square dimensions and/or partially
�xing certain decisions such as rotation of the pallets. This information can then be used to further
reduce the solution space for the CSP-MD-AW by eliminating unnecessary grid squares towards
the rear of the container. However, due to di�culty of mathematically de�ning the best securing
strategy, a theoretically better solution with the selected objective function may not always lead to
loading scheme deemed preferable by human practitioners. This indicates the need for additional
physical testing to be conducted in order to determine the best securing practices.

Another functionality of the algorithmic framework presented in this paper is the number of
relaxations solved prior to the branch-and-cut procedure. The framework consists of three main
steps. It is possible to reduce the number of steps to two or one and employ a single branch-
and-cut procedure that activates both axle weight and multi-drop constraints as they are violated.
Moreover, considering the fact that the MIP formulation provided better upper bounds for some
challenging instances, an additional step to solve the MIP when the branch-and-cut procedure
terminates prematurely may be incorporated. In our preliminary experiments, we observed a slight
performance improvement with the current framework. However, it is worthwhile investigating the
potential of di�erent algorithm variants with comprehensive experiments in the future.

We showed that the CSP-MD-AW is a generalization of the two-dimensional strip packing prob-
lem with rotations (2D-SPP-R). Even the special case where no axle weight restrictions are consid-
ered remains a generalization of the 2D-SPP-R. We foresee that this special case may be of high
relevance to the cutting and packing literature. The framework we provide can be readily utilized
for solving this special case, but it is worth investigating other potential methods that can work
more e�ciently in the absence of the axle weight restrictions.

The managerial insights obtained in this study should direct the future research towards inte-
grated problem variants where the customer sequence also represents a decision that must be made.
An intermediate variant could require solving the problem both with the given and the reverse se-
quence and then select the more convenient solution. A more general but more challenging variant
could involve quantifying the securing costs in comparison to the fuel cost of the sequence, before
solving an integrated traveling salesperson problem where the objective is to minimize the total
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traveling and securing cost. The CSP-MD-AW is de�ned over a setting where customer pallets are
already allocated to individual containers. It is also relevant to consider pallet-container allocation
as part of the integrated decisions that must be made. Together with the sequence decisions, this
extension would require solving a vehicle routing problem where the objective is to minimize the
total fuel and securing cost as well as vehicle purchasing/leasing and personnel hiring cost when
relevant, which di�ers from common practice where the loading sub-problem is treated as a feasi-
bility problem rather than an optimization problem. The methods we provide in this paper can
be readily incorporated into an iterative algorithm that solves the CSP-MD-AW for the selected
vehicle routes at each iteration. It would also be possible to solve the CSP-MD-AW in parallel for
di�erent vehicle routes with identical or non-identical containers.
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A Strengthened multi-drop constraints

We construct strengthened versions of Constraints (8) and (9) by disaggregating them for each
successor pallet as in Constraints 19 and 20, respectively. Note that np1 can be replaced by
min{np1 , |CORL

pg|} andmin{np1 , |CORS
pg|} in Constraints 19 and 20, respectively. These constraints

can be further strengthened to Constraints 21 and 22.∑
h≥g:h∈CORL

pg

xp1h ≤ np1(1− yLpg), ∀p ∈ P, p1 ∈ P fol
c(p), g ∈ GL

p (19)

∑
h≥g:h∈CORS

pg

xp1h ≤ np1(1− ySpg), ∀p ∈ P, p1 ∈ P fol
c(p), g ∈ GS

p (20)

∑
h∈G:AL

p1h
∩CORL

pg ̸=∅

yLp1h +
∑

h∈G:AS
p1h

∩CORL
pg ̸=∅

ySp1h ≤ 1− yLpg, ∀p ∈ P, p1 ∈ P fol
c(p), g ∈ GL

p (21)

∑
h∈G:AL

p1h
∩CORS

pg ̸=∅

yLp1h +
∑

h∈G:AS
p1h

∩CORS
pg ̸=∅

ySp1h ≤ 1− ySpg, ∀p ∈ P, p1 ∈ P fol
c(p), g ∈ GS

p (22)

Another disaggregation of Constraints (8) and (9) can be done for each grid square in the corridor
resulting in Constraints 19 and 20, respectively.∑

p1∈P fol
c(p)

xp1h ≤ 1− yLpg, ∀p ∈ P, g ∈ GL
p , h ≥ g : h ∈ CORL

pg (23)

∑
p1∈P fol

c(p)

xp1h ≤ 1− ySpg, ∀p ∈ P, g ∈ GS
p , h ≥ g : h ∈ CORS

pg (24)

In order to further strengthen the introduced multi-drop constraints, the term (1− yLpg) on the

right-hand side (RHS) of Constraints (8), (19), (21) and (23) can be replaced by (1−
∑

h≤g:rowg=rowh
(yLph+
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ySph)). The term (1 − ySpg) on the RHS of Constraints (9), (20), (22) and (24) can be replaced by

(1−
∑

h≤g:rowg=rowh
ySph). The intuition behind these replacements is illustrated in Figure 20. For

a particular pallet p, CORS
p13 is a subset of CORS

p1 and CORS
p5. Therefore, no successor pallet

would be allowed in CORS
p13 if ySp13 = 1, ySp1 = 1 or ySp15 = 1. Given that at most one of these

variables can be equal to one, Constraints (26) are valid and stronger than Constraints (9) and
(20). Similarly, CORL

p13 is a subset of CORL
p1 and CORS

p5. Therefore, no successor pallet would be

allowed in CORL
p13 if y

L
p13 = 1, yLp1 = 1 or ySp15 = 1. Hence, Constraints (25) are valid and stronger

than Constraints (8) and (19).

Figure 20: Illustration of the intuition behind Constraints (26) and (25).

∑
h≥g:h∈CORL

pg

xp1h ≤ np1(1−
∑

h≤g:rowg=rowh

(yLph + ySph)), ∀p ∈ P, p1 ∈ P fol
c(p), g ∈ GL

p (25)

∑
h≥g:h∈CORS

pg

xp1h ≤ np1(1−
∑

h≤g:rowg=rowh

ySph), ∀p ∈ P, p1 ∈ P fol
c(p), g ∈ GS

p (26)

As a comparison, the following aggregations of (21) and (22) are stronger than the multi-drop
constraints (7) introduced by De Queiroz and Miyazawa (2013):∑
p1∈P fol

c(p)

(
∑
h∈G:

AL
p1h

∩CORL
pg ̸=∅

yLp1h +
∑
h∈G:

AS
p1h

∩CORL
pg ̸=∅

ySp1h) ≤ |P fol
c(p)|(1−

∑
h≤g:

rowg=rowh

(yLph + ySph)), ∀p ∈ P, g ∈ GL
p

(27)∑
p1∈P fol

c(p)

(
∑
h∈G:

AL
p1h

∩CORS
pg ̸=∅

yLp1h +
∑
h∈G:

AS
p1h

∩CORS
pg ̸=∅

ySp1h) ≤ |P fol
c(p)|(1−

∑
h≤g:

rowg=rowh

ySph), ∀p ∈ P, g ∈ GS
p

(28)

B Detailed instance properties

The quantity of 0.8m × 1.2m, 1m × 1.2m and 0.8m × 0.6m pallets are denoted by #1, #2 and
#3, respectively. Moreover, |P | = mini∈T |Pi|, |P | = maxi∈T |Pi|, Atot =

∑
p∈P lSp × lLp , Aav =∑

p∈P lSp × lLp /|P |, Wtot =
∑

p∈P wp, Wav =
∑

p∈P wp/|P |, w = minp∈P wp, w = maxp∈P wp.
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Table 8: Detailed instance properties

Category-ID |P | |P | |P | #1 #2 #3 Atot Aav |T | Wtot Wav w w ω

NIN-P7C3M 7 2 3 5 2 0 7.20 1.03 3 8935 1276.43 1175 1401 1240.97
NII-P7C3M 7 2 3 5 2 0 7.20 1.03 3 10300 1471.43 500 2400 1430.56
NNN-P7C3M 7 2 3 5 2 0 7.20 1.03 3 8935 1276.43 1175 1401 1240.97
NNN-P10C4L 10 1 5 6 4 0 10.56 1.06 4 6827 682.70 50 1175 646.50
NNN-P10C4M 10 1 5 6 4 0 10.56 1.06 4 12871 1287.10 1102 1401 1218.84
NNN-P12C3M 12 1 7 4 7 1 12.72 1.06 3 14535 1211.25 415 1401 1142.69
NNN-P12C3H 12 2 7 3 0 9 7.20 0.60 3 18700 1558.33 400 5000 2597.22
NNN-P12C3H2 12 1 7 4 7 1 12.72 1.06 3 18820 1568.33 1000 1700 1479.56
III-P14C2H 14 7 7 14 0 0 13.44 0.96 2 20300 1450 500 2400 1510.42
NNN-P14C2L 14 7 7 6 5 3 13.20 0.94 2 5448 389.14 60 1360 412.73
NNN-P14C3L 14 4 5 6 5 3 13.20 0.94 3 5448 389.14 60 1360 412.73
NNN-P14C4L 14 2 5 6 5 3 13.20 0.94 4 5448 389.14 60 1360 412.73
NNN-P14C5L 14 1 4 6 5 3 13.20 0.94 5 5448 389.14 60 1360 412.73
NNN-P14C5M 14 1 5 6 5 3 13.20 0.94 5 14448 1032.00 60 1401 1094.55
NNN-P16C2M 16 8 8 8 7 1 16.56 1.04 2 19447 1215.44 415 1401 1174.34
NNN-P16C3M 16 4 7 8 7 1 16.56 1.04 3 19447 1215.44 415 1401 1174.34
NNN-P16C4M 16 1 7 8 7 1 16.56 1.04 4 19447 1215.44 415 1401 1174.34
NNN-P18C4M 18 1 7 9 8 1 18.72 1.04 4 20628 1213.41 415 1401 1101.92
NNN-P18C5M 18 2 5 8 5 5 16.08 0.89 5 17827 1048.65 60 1401 1108.64
III-P20C2H 20 10 10 20 0 0 19.20 0.96 2 29000 1450.00 500 2400 1510.42
III-P20C4H 20 5 5 20 0 0 19.20 0.96 4 29000 1450.00 500 2400 1510.42
IIN-P20C4H2 20 5 5 20 0 0 19.20 0.96 4 26400 1320.00 400 2000 1375.00
IIN-P20C4H3 20 5 5 20 0 0 19.20 0.96 4 29300 1465.00 400 2000 1526.04
IIN-P22C5H 22 2 5 22 0 0 21.12 0.96 5 31200 1418.18 1200 1500 1477.27
NNN-P23C3M 23 5 9 8 5 10 18.48 0.80 3 20549 893.43 60 1401 1111.96
NNN-P23C5M 23 4 5 8 5 10 18.48 0.80 5 20549 893.43 60 1401 1111.96
NNN-P24C2H 24 11 13 4 0 20 13.44 0.56 2 20762 865.08 400 2400 1544.79
NNN-P24C5M 24 4 6 4 0 20 13.44 0.56 5 14970 623.75 60 1402 1113.84
NNN-P24C5H 24 3 6 4 0 20 13.44 0.56 5 20762 865.08 400 2400 1544.79
NNN-P16C10M 16 1 2 8 7 1 16.56 1.04 10 19447 1215.44 415 1401 1174.34
NNN-P18C10M 18 1 2 9 8 1 18.72 1.04 10 20628 1213.41 415 1401 1101.92
IIN-P20C10H 20 2 2 20 0 0 19.20 0.96 10 26400 1320.00 400 2000 1375.00
IIN-P22C10H 22 2 4 22 0 0 21.12 0.96 10 31200 1418.18 1200 1500 1477.27
NNN-P24C10H 24 2 3 4 0 20 13.44 0.56 10 20762 865.08 400 2400 1544.79
NNN-P30C5H 30 6 6 10 0 20 19.20 0.64 5 26160 872 400 2400 1362.50
NNN-P30C5H2 30 3 10 10 0 20 19.20 0.64 5 26160 872 400 2400 1362.50
NNN-P30C10H 30 3 3 10 0 20 19.20 0.64 10 26160 872 400 2400 1362.50
NNN-P30C10H2 30 2 5 10 0 20 19.20 0.64 10 26160 872 400 2400 1362.50
NNN-P40C5H 40 4 4 2 0 38 20.16 0.50 10 28775 719.375 400 1200 1427.33
NNN-P40C5H2 40 4 4 2 2 36 21.60 0.54 10 28775 719.375 400 1200 1332.18
NNN-P40C10H 40 4 4 2 0 38 20.16 0.50 10 28775 719.375 400 1200 1427.33
NNN-P40C10H2 40 4 4 2 2 36 21.60 0.54 10 28775 719.375 400 1200 1332.18
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