
European Journal of Operational Research 298 (2022) 401–412

Contents lists available at ScienceDirect

European Journal of Operational Research

journal homepage: www.elsevier.com/locate/ejor

Invited Review

Deep reinforcement learning for inventory control: A roadmap

Robert N. Boute

a , b , ∗, Joren Gijsbrechts c , Willem van Jaarsveld

d , Nathalie Vanvuchelen

a

a Faculty of Economics and Business, KU Leuven, Belgium

b Vlerick Business School, Belgium

c Universidade Católica Portuguesa, Portugal
d Eindhoven University of Technology, the Netherlands

a r t i c l e i n f o

Article history:

Received 16 May 2020

Accepted 6 July 2021

Available online 16 July 2021

Keywords:

Inventory management

Machine learning

Reinforcement learning

Neural networks

a b s t r a c t

Deep reinforcement learning (DRL) has shown great potential for sequential decision-making, including

early developments in inventory control. Yet, the abundance of choices that come with designing a DRL

algorithm, combined with the intense computational effort to tune and evaluate each choice, may hamper

their application in practice. This paper describes the key design choices of DRL algorithms to facilitate

their implementation in inventory control. We also shed light on possible future research avenues that

may elevate the current state-of-the-art of DRL applications for inventory control and broaden their scope

by leveraging and improving on the structural policy insights within inventory research. Our discussion

and roadmap may also spur future research in other domains within operations management.

© 2021 The Author(s). Published by Elsevier B.V.

This is an open access article under the CC BY-NC-ND license

(http://creativecommons.org/licenses/by-nc-nd/4.0/)

1

f

a

t

s

e

T

r

i

b

f

o

H

t

w

t

r

a

a

a

L

i

m

m

i

e

e

m

b

d

b

D

n

p

b

D

m

e

a

b

s

h

0

(

. Introduction

Reinforcement learning (RL) is an area of machine learning that

ocuses on sequential decision-making. It determines how to take

ctions in an environment to maximize some notion of cumula-

ive reward. RL algorithms prescribe what to do; this differs from

upervised and unsupervised learning, two other well-known ar-

as of machine learning, that focus on description or prediction.

he introduction of multi-layer perceptrons (MLPs), nowadays also

eferred to as deep neural networks, in supervised machine learn-

ng, has led to substantial performance improvements. A notable

reakthrough was the impressive win in 2012 of a student team

rom the University of Toronto using neural networks in the visual

bject recognition competition ImageNet (Krizhevsky, Sutskever, &

inton, 2012), such that the following year all top finalists used the

hen-novel deep learning approach (Gershgorn, 2018). Neural net-

orks are now well-established in (deep) supervised learning, yet

heir inclusion in RL, known as deep reinforcement learning (DRL),

emains notably harder. Garychl (2018) provides some successful

pplications of DRL in different fields, such as robotics, gaming,

nd traffic light control, despite several obstacles in the practical

pplication of DRL (Dulac-Arnold, Mankowitz, & Hester, 2019).
∗ Corresponding author at: Vlerick Business School, Vlamingenstraat 83, BE-30 0 0

euven, Belgium.

E-mail address: robert.boute@vlerick.com (R.N. Boute).

t

n

t

o

ttps://doi.org/10.1016/j.ejor.2021.07.016

377-2217/© 2021 The Author(s). Published by Elsevier B.V. This is an open access article

 http://creativecommons.org/licenses/by-nc-nd/4.0/)
One such application, at the heart of operations management, is

nventory control, where replenishment actions must be taken to

inimize costs. Despite decades of research, the optimal policy to

any inventory control problems remains unknown. Their analytic

ntractability simply renders it impossible to derive closed-form

xpressions of the optimal policy structure and related param-

ters. Instead, numerical approaches, e.g., dynamic programming

ethods such as value or policy iteration (Puterman, 1994), may

e used to solve small (discretized) settings to optimality. As the

imensions of the problem grow, however, these techniques also

ecome numerically intractable, even for moderate-size problems.

RL can be used to develop near-optimal policies that are hard, if

ot impossible, to be obtained using conventional approaches, es-

ecially when little is known about the focal problem.

This paper provides a roadmap on how inventory control may

enefit from DRL. The two main constituents of DRL are Markov

ecision Processes (MDPs) and neural networks: MDPs are the

odel/language in which the problems solved with DRL must be

xpressed; neural networks are used both to express and to find

pproximate solutions to those problems. Section 2 introduces

oth. In Section 3 we provide an overview of the different de-

ign choices to set up a DRL algorithm for inventory control. Al-

hough DRL algorithms are publicly available off-the-shelf, the sig-

ificant effort required to choose the correct design may prevent

heir widespread application in practice. We focus on those aspects

f DRL which we believe to be most relevant for inventory control
 under the CC BY-NC-ND license

https://doi.org/10.1016/j.ejor.2021.07.016
http://www.ScienceDirect.com
http://www.elsevier.com/locate/ejor
http://crossmark.crossref.org/dialog/?doi=10.1016/j.ejor.2021.07.016&domain=pdf
http://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:robert.boute@vlerick.com
https://doi.org/10.1016/j.ejor.2021.07.016
http://creativecommons.org/licenses/by-nc-nd/4.0/

R.N. Boute, J. Gijsbrechts, W. van Jaarsveld et al. European Journal of Operational Research 298 (2022) 401–412

a

r

2

u

i

t

o

2

w

o

t

π
a

a

t

s

n

h

π
o

s

v

w

a

t

p

T

t

1

v

q

s

q

T

I

v

∀

f

π

e

g

t

I

a

c

s

o

o

d

s

m

c

g

a

n

l

u

nd where we see most potential for future research. These future

esearch avenues are further explored in Section 4 .

. Markov decision problems and neural networks

MDPs are widely used in many research domains, and partic-

larly deep-rooted in the operations community. We give a brief

ntroduction here, mainly to introduce notation and terminology

hat will be used throughout the paper; for in-depth discussions

n MDPs we refer to Bertsekas (1987) and Puterman (1994) .

.1. Markov decision processes to optimize inventory control

At each time step t the MDP can be described by its state s ∈ S ,

ith S the set of states. An action a is then chosen from a set

f feasible actions A . A deterministic policy maps states to ac-

ions, such that it prescribes which action to take in each state:

: S → A . A stochastic policy 1 prescribes the probability of each

ction in each state: π : A × S → [0 , 1] , where π(a | s) is the prob-

bility of taking action a in state s . That is, if a ∼ π(·| s) then a is

he random action taken by π in s . When taking action a in state

 , the probability to transition to state s ′ is denoted P (s ′ | s, a) . De-

ote c(s, a) the expected cost when taking action a from state s .

The expectation of the total discounted cost over an infinite

orizon, when starting in state s and thereafter following policy

is captured by the state-value function v π (s) . This value function

f state s can be recursively related to the value functions of the

tates s ′ that may be reached from state s :

π (s) =

∑

a

π(a | s)
(

c(s, a) + γ
∑

s ′
P (s ′ | s, a) v π (s ′)

)

, ∀ s ∈ S,

(1)

ith 0 < γ ≤ 1 the discount factor. We tacitly assume a discrete

ction and transition space in our notation but note that replacing

he summation with integrals provides us the continuous counter-

art. In Section 3.5 , we discuss the use of continuous action spaces.

he cost-minimizing state-value functions v ∗(s) can readily be ob-

ained by solving the famed Bellman optimality equations (Bellman,

954):

∗(s) = min

a

{

c(s, a) + γ
∑

s ′
P (s ′ | s, a) v ∗(s ′)

}

, ∀ s ∈ S. (2)

Related to the value functions, the action-value functions

π (s, a) define the future expected costs of taking action a in state

 and thereafter reverting to policy π :

π (s, a) = c(s, a) + γ
∑

s ′
P (s ′ | s, a) ∑

a ′
π(a ′ | s ′) q π (s ′ , a ′) ,

∀ s ∈ S, ∀ a ∈ A . (3)

he value and action-value functions only differ in the first action.

n a similar way to the optimal state-values, the optimal action-

alues q ∗(s, a) satisfy: q ∗(s, a) = c(s, a) + γ
∑

s ′ P (s ′ | s, a) v ∗(s ′) ,
 s ∈ S, ∀ a ∈ A .

The optimal policy π ∗ directly follows from the optimal value

unctions v ∗(s) or action values q ∗(s, a) :

∗(a | s) > 0 → a ∈ argmin

a

{

c(s, a) + γ
∑

s ′
P (s ′ | s, a) v ∗(s ′)

}

,

∀ s ∈ S, ∀ a ∈ A ,
1 For many MDPs, deterministic policies are optimal. We will use the more gen-

ral notation of the stochastic policy, as they prove to be a crucial element in policy

radient methods (which we discuss later in more detail). Note that if a single ac-

ion a is proposed per state and π(a | s) = 1 , we obtain a deterministic policy.

402
→ a ∈ argmin

a
q ∗(s, a) , ∀ s ∈ S, ∀ a ∈ A . (4)

n many problems, only one action will be cost-minimal leading to

 deterministic policy. In rare cases, actions might be equivalently

ost-efficient (i.e., the argmin of q ∗(s, a) contains multiple actions)

uch that the optimal policy may be stochastic. DRL algorithms will

ften develop stochastic policies as this may encourage exploration

f new actions and facilitates gradient-based training. We further

iscuss this in Section 3.3 (Exploration versus exploitation).

Depending on the problem complexity, the optimal policy can

ometimes be analytically characterized. For other cases, approxi-

ative analysis and/or heuristic arguments are used to identify a

lass of policies, and analytic approaches may be deployed to find

ood policy parameters within that class. Apart from these exact

nd approximative analytic approaches, MDPs can also be solved

umerically exact or approximate. This yields four partially over-

apping approaches to analyze and optimize inventory problems

sing MDPs:

1. Analytical and Exact: For relatively simple problems, the op-

timality Eq. (2) serve as a starting point for analytical charac-

terization of optimal policies. In those cases the structure of

the optimal policy is deeply entangled with the structure of the

value function. For periodic-review inventory models with pos-

itive lead times and full backordering, for instance, the seminal

work of Karlin & Scarf (1958) proves that the value function is

convex such that the optimal policy structure satisfies a base-

stock policy. Apart from giving insight into the optimal policy

structure, these analytical results may also facilitate characteri-

zation of the optimal policy parameters: the optimal base-stock

levels for full backordering systems can be expressed in closed

form using newsvendor fractiles under certain conditions (see

for instance Veinott, 1966).

2. Analytical and Approximate: For some MDPs, the optimal poli-

cies have a complex form that is analytically intractable. To de-

rive some analytic insights, it is common to impose a certain

class of policies that approximate the optimal policy. E.g., for

assemble-to-order inventory systems it is common to assume

base-stock policies even though the optimal policy is not a

base-stock policy, yet elegant insights have been derived under

this assumption (e.g. Lu & Song, 2005). Similarly, some classes

of policies can be shown to be asymptotically optimal, such as

constant order policies for the intractable lost sales problem

with long lead times (Goldberg, Katz-Rogozhnikov, Lu, Sharma,

& Squillante, 2016).

3. Numerical and Exact: Clean analytic characterizations of op-

timal solutions to (2) can only be obtained for specific prob-

lems under specific assumptions. When relaxing assumptions,

these characterizations are at best partial , and finding optimal

policies from (2) involves the use of general-purpose exact nu-

merical methods such as policy iteration. The optimal policy for

inventory models with lost sales and arbitrary lead times, for

instance, does not have a simple form, but it can be obtained

numerically for small problems with short lead times and lim-

ited demand support. The optimal policies then serve as a use-

ful benchmark for heuristic policies. In case they can also be

directly applied to business problems, they can be very use-

ful, regardless of what is known about their structure (see e.g.

Martagan, Krishnamurthy, Leland, & Maravelias, 2018). When

these exact numerical techniques are not scalable to larger

problem instances, as is the case for many inventory control

problems, we have to resort to approximate methods.

4. Numerical and Approximate: Most practical problems formu-

lated as MDPs cannot be solved using exact methods because

they have too many states, actions or transitions. For exam-

ple, the state space for lost sales inventory systems grows ex-

R.N. Boute, J. Gijsbrechts, W. van Jaarsveld et al. European Journal of Operational Research 298 (2022) 401–412

m

a

a

e

t

t

m

o

B

b

w

m

r

c

h

i

r

t

p

c

o

i

i

s

o

d

m

t

q

a

m

d

b

i

t

(

c

t

f

i

k

a

b

h

s

l

o

c

v

v

n

S

c

2

R

N
t

c

p

l

(

θ

f

w

l

p

ψ

T

ψ
t

m

i

r

l

p

a

c

l

R

b

d

s

t

u

b

t

p

M

T

t

t

w

e

a

c

a

l

i

b

t

e

g

p

d

s

e

2 Throughout the paper we adopt boldface notation for vectors.
3 These equations are well-defined only if matrix and vector dimensions are such

that all matrix-vector multiplications and vector-vector additions are well-defined.
4 σ : R K → �K satisfies σ (x) i = exp (x i) /

∑ K exp (x k) .
ponentially in the lead time: application of exact methods be-

comes cumbersome for lead times above five and hopeless for

lead times above ten. To analyse such problems, the Bellman

optimality equations in (2) have been used as the basis for

a vast range of numerical approaches that seek policies with

satisfactory, yet sub-optimal performance. For such numerical

approaches, the MDP framework is thus used as a modelling

tool.

DRL belongs to the class of approximate numerical methods . Such

ethods have been referred to using various nomenclature such as

pproximate dynamic programming, neuro-dynamic programming

nd reinforcement learning, and these terminologies are essentially

quivalent (cf. Bertsekas, 2019); in what follows we will adopt the

erm reinforcement learning. Deep reinforcement learning refers to

he use of neural networks in reinforcement learning to approxi-

ate the value functions, the (stochastic) policy, or a combination

f both.

The application of neural networks in MDPs is not new (see e.g.,

ertsekas & Tsitsiklis, 1996; Powell, 2007; Tesauro, 1992; 1994),

ut the advances in hardware and software support for neural net-

orks have invigorated their use: the highly parallel structure of

odern GPUs has reduced the overall time needed to train neu-

al networks by orders of magnitude in the last decade. In con-

ert, deep learning frameworks such as PyTorch and Tensorflow

ave significantly simplified the implementation of efficient train-

ng algorithms that use such accelerators, resulting in a very broad

esearch base and substantial algorithmic advances. A key break-

hrough of the use of neural networks in decision-making was Al-

haZero (Silver et al., 2017), which combines neural networks with

lever search techniques to arrive at board game policies for vari-

us games that vastly outperform the state-of-the-art, without us-

ng any expert knowledge.

As we have recently witnessed some applications of DRL in

nventory management, we believe the technique also bears sub-

tantial further promise for our field. The most apparent strength

f DRL lies within its use of deep neural networks to model a

iversity of (complex) problems without requiring extensive do-

ain knowledge or making restrictive assumptions. This contrasts

o classical inventory control solution methods that typically re-

uire thorough domain knowledge or rely on restrictive modelling

ssumptions. DRL may also provide new opportunities to enable

ore interaction between the numerical and analytical approaches

escribed above. Simpler (explainable) heuristics may for instance

e extracted from policies developed by DRL algorithms or (exist-

ng or new) heuristics may be benchmarked against DRL policies

o build better understanding of their dynamics and performance

i.e., why or when do they perform better or worse). We also per-

eive DRL to become a complementary tool in data-driven inven-

ory control as it enables turning data into decision-making. Think

or instance of enriching the state space by big data or learning

nventory policies based on previously collected datasets. We ac-

nowledge, however, that DRL also has some disadvantages, such

s: the learning process of DRL algorithms may not always be sta-

le or convergent and its performance may be very sensitive to

yperparameters. Further research is thus needed to improve the

calability and training performance of DRL algorithms. Nonethe-

ess, we believe DRL to be a promising avenue that can be used

n a variety of decision-making problems (among which inventory

ontrol problems) while simultaneously blurring the lines between

arious solution approaches and paving the way for data-driven in-

entory control.

As the typical OR/OM researcher may not be familiar with

eural networks, we continue with a brief introduction. In

ection 3 we elaborate on their role in DRL algorithms for appli-

ation in inventory control.
403
.2. The use of neural networks to solve MDPs

Neural networks are essentially parameterized functions from

N to R

M (with N, M ∈ N). Denote such a (generic) function by

 θ (·) , with θ the parameters of the function/network. The pro-

otypical example of a neural network is the multi-layer per-

eptron (MLP). The MLP, like most neural networks, is com-

osed of multiple operations, denoted as layers . Layer/operation

 ∈ { 1 , . . . , L } is parameterized by a (weight) matrix A

[l] and a

bias) vector 2 b

[l] , thus the parameters of the entire network are

= { A

[1] , b

[1] , . . . , A

[L] , b

[L] } . Each layer also involves an activation

unction f [l] (·) : R

k → R

k ; a typical example is f [l] (x) = max (x , 0) ,

here the max is taken component-wise. The output of each layer

of the MLP is obtained by operating on the output ψ

[l−1]
of the

revious layer, i.e., for l ∈ { 1 , . . . , L } 3 :

[l] = f [l] (A

[l] ψ

[l−1] + b

[l]) .

he MLP is then defined by N θ (x) := ψ

[L]
, with ψ

[0]
:= x , such that

[1] = f [1] (A

[1] x + b

[1]) . In general, the MLP maps vectors x ∈ R

N

o vectors N θ (x) ∈ R

M . For the final layer L , the activation function

ay be used to ensure that the output of the neural network sat-

sfies certain constraints. E.g., when the output of the MDP must

epresent a probability distribution over { 1 , . . . , M} , outputs must

ie on the standard/probability simplex �M . This can be accom-

lished by setting the so-called softargmax /softmax function σ as

ctivation function

4 for layer L , i.e., f [L] (·) = σ (·) . Alternatively one

an use no activation function for the final layer, which is equiva-

ent to setting f [L] (x) = x and results in arbitrary output vectors in

M .

The MLP can be viewed as the standard/vanilla neural network

ut a range of alternative neural network architectures have been

eveloped over the years. Specific architectures typically excel at

pecific tasks, and the development of suitable architectures for

asks such as image processing (convolutional networks) and nat-

ral language processing (recurrent and attention networks) has

een instrumental in breakthroughs in those fields. While architec-

ure development is the cornerstone of the field of deep learning,

apers on DRL in inventory control typically adopt the standard

LP; there is clear future research potential here (cf. Section 4).

he architecture determines the number and form of the parame-

ers θ , but the numerical values of the parameters θ that provide

he most desirable outcome are determined while training the net-

ork.

Training a network is conceptually similar to fitting the param-

ters of a regression model. It involves minimizing a loss function :

 function that measures how well N θ (·) matches the desired out-

ome. For instance, training a neural network to distinguish (im-

ges of) dogs and cats involves a training set of images, and the

oss function measures the degree of errors made while categoriz-

ng these images. In general, the loss function guides a gradient-

ased iterative search for better values of the parameters θ . While

he loss function guides this search, its minimization is not nec-

ssarily the end goal: for image recognition, for instance, the end

oal is to correctly classify images of cats and dogs that were not

art of the training set. In inventory control the end goal is to

evelop near-optimal replenishment policies that minimize corre-

ponding costs.

The ability to adapt the parameters θ renders neural networks

xtremely versatile. In DRL, neural networks are employed to rep-
k =1

R.N. Boute, J. Gijsbrechts, W. van Jaarsveld et al. European Journal of Operational Research 298 (2022) 401–412

r

t

fi

t

m

s

t

π
u

m

o

m

t

o

s

(

t

b

r

(

p

E

t

s

m

v

t

c

R

t

t

s

v

n

r

e

f

t

i

d

n

i

w

fi

1

t

t

d

p

o

e

t

T

t

t

m

t

l

θ

T

u

o

p

t

t

w

d

3

c

s

o

a

w

i

b

p

a

t

v

t

w

p

p

r

p

e

i

l

s

s

e

B

2

2

fi

i

p

r

s

p

u

esent one or more key functions pertaining to the Bellman equa-

ions 5 :

1. In value-based methods neural networks represent the action

values q θ (s, a) . As such they search for approximations of the

optimal value functions and not the optimal policy;

2. In policy-based methods neural networks represent a policy

πθ (s) . Hence they directly approximate the optimal inventory

policy;

3. In actor-critic methods neural networks represent the policy

πθ (s) and the state-value function v θ (s) . This hybrid approach

combines features of both value-based and policy-based meth-

ods by adding a value-based baseline to guide policy updates.

Consider for instance a state space S ⊂ R

N for some N and a

nite action space A , with M = |A| . Any neural network architec-

ure N θ : R

N → �M , e.g. some MLP which sets f [L] (·) := σ (·) , can

ap the state vectors in R

N to a stochastic policy vector in �M ,

uch that the probability to take action a for state s corresponds to

he a ’th entry in the vector N θ (s) , or πθ (a | s) := (N θ (s)) a . Then

θ is a valid stochastic policy for a given set of parameter val-

es θ . The training algorithm then seeks numerical values for all

atrix and vector entries in θ such that πθ is a good policy, i.e.,

ne with low expected costs. In typical DRL algorithms, it is instru-

ental that the probabilities πθ (a | s) are continuous and differen-

iable w.r.t. (the components of) θ , which explains the popularity

f stochastic policies in DRL.

In a similar way, the action-value function q θ (s, a) can be repre-

ented by the neural network, except that N maps from R

N to R

M

instead of to �M), by using the identity function for activation in

he final layer. A standard value function v θ (s) can be represented

y a neural network from R

N to R

1 . Fig. 1 visualizes how a neu-

al network can represent the action-values (panel a), the policy

panel b), or an actor-critic combination (panel c) with a stochastic

olicy (the actor) and the value function (the critic).

xample: For the classical lost-sales inventory system with lead-

ime τ , states are naturally expressed as τ -dimensional vectors

 ∈ R

τ : The first entry (s) 1 denotes inventory on hand, and re-

aining entries denote pipeline inventories. We assume that in-

entory is discrete, and let x̄ denote the uniform upper bound on

he optimal order quantity in any state (cf. Zipkin (2008)). Ac-

ordingly, A = { 0 , 1 , . . . , ̄x } , i.e. |A| = x̄ + 1 . Then any network N θ :

τ → �x̄ +1 can represent stochastic policies for the lost sales sys-

em with leadtime τ .

This representation hinges on specific assumptions regarding

he MDP, e.g. that the action space is finite (we discuss these as-

umptions further in Section 4).

Reflecting on the sometimes complex structure of optimal in-

entory policies, one may wonder whether MLPs or other neural

etworks and their simple matrix multiplications could ever rep-

esent something as complex as a near-optimal (inventory) policy,

ven if matrices are carefully tuned. Actually, repeated affine trans-

ormations and non-linearities are more flexible than one may in-

uitively think: if neural networks can learn to distinguish between

mages of dogs and images of cats, then perhaps they can also

evelop good inventory policies. Besides, MLPs (even single layer

eural networks) have been shown to be universal approximators,

.e., they are able to approximate continuous functions arbitrary

ell on compact sets (closed and bounded intervals) given a suf-

cient number of hidden neurons (Hornik, Stinchcombe, & White,

989).
5 While deep learning typically refers to state-of-the-art neural networks beyond

he standard multi-layer perceptron, the term DRL is used to describe algorithms

hat seek to solve MDPs using any neural network architecture (including MLP).

n

w

p

o

p

404
Training a neural network to find a good MDP policy is rather

ifferent from training a neural network for classification pur-

oses, such as image recognition. Instead of using a training set

f images with labeled data, DRL makes use of (simulated or

xternally-collected) sequences of states, actions and rewards, of-

en referred to as trajectories , to determine the loss function L (θ) .

he loss function measures how well the neural net approximates

he policy and/or value functions using observations in the trajec-

ory and the output of the neural network (see Section 3.5 for

ore details). In every training iteration k + 1 , the values of

he parameters θk are updated based on the gradient of the

oss:

k +1 ← θk − α∇ θk
L (θk) (5)

he learning rate α > 0 may be optimized based on past gradient

pdates, e.g., ADAM (Kingma & Ba, 2015). The ultimate goal is to

btain good approximations of the optimal value functions and/or

olicy for state and action regions in- and outside those encoun-

ered in the training trajectories. A particular challenge of DRL is

hat when the loss function depends on θ , it changes over time,

hich renders DRL algorithms more difficult to tune compared to

eep learning algorithms for classification purposes.

. How to develop a DRL algorithm?

The choice of the most appropriate DRL algorithm for a spe-

ific optimization problem is not trivial. The most important de-

ign choice of a DRL algorithm relates to the design and purpose

f the neural network. The neural network is the ‘heart’ of the DRL

lgorithm. As described above, DRL algorithms train neural net-

orks by learning the numerical values of parameter set θ . That

s, by iteratively updating the parameter set θk in every iteration k

ased on trajectories of actions, states and rewards, stored as tu-

les (s, a, c, s ′) , with c the cost or reward incurred when taking

ction a in state s . The end goal is to obtain a neural network

hat approximates the optimal policy πθ (s) ≈ π ∗(s) , the optimal

alue function v θ (s) ≈ v ∗(s) , and/or the optimal action-value func-

ion q θ (s, a) ≈ q ∗(s, a) .

Once the design of the DRL algorithm is fixed, the neural net-

ork can be trained. A key element to evaluate the (final) policy

erformance is to evaluate the model for different sets of hyper-

arameters. Hyperparameters are the parameters of the DRL algo-

ithm that need to be set prior to the training process; that is,

rior to the process of obtaining the weights and biases (param-

ter set θ) of the neural network. These hyperparameters are for

nstance the number of layers and their activation functions, the

earning rate, or the length of experience buffers. The parameter

et θ by contrast is updated during the learning process. Several

earch techniques exist to identify well-performing hyperparam-

ter sets including manual search, grid search, random search or

ayesian optimization (for an in-depth discussion see e.g., Bengio,

012; Bergstra, Yamins, & Cox, 2013; Snoek, Larochelle, & Adams,

012). As different hyperparameter sets can result in different con-

gurations of the neural network (and as such different policies), it

s thus instrumental to compare different sets on their final policy

erformance. To evaluate one specific hyperparameter set, we must

un the DRL algorithm, meaning that it learns values of parameter

et θ that result in good policy performance. During the learning

rocess, policy performance is occasionally evaluated through sim-

lation. While evaluating, the weights of the neural network are

ot changed as that could change the policy suggested by the net-

ork. This process is repeated for multiple combinations of hyper-

arameter sets. The hyperparameter set and the learned weights

f the neural network corresponding to it that result in the best

olicy performance are retained.

R.N. Boute, J. Gijsbrechts, W. van Jaarsveld et al. European Journal of Operational Research 298 (2022) 401–412

Fig. 1. DRL makes use of neural networks to represent either (a) the action-value functions q θ (s, a) , (b) the stochastic policy πθ (s) or (c) an actor-critic combination with a

stochastic policy πθ (s) (the actor) and the value function v θ (s) (the critic).

Table 1

Overview of influential DRL algorithms with their typical design specifications.

Design choices

Algorithm Role(s) of neural network Offline Online Model-based Model-free Off-policy On-policy

DQN q -value estimation � � � �

REINFORCE policy representation � � �

A3C hybrid/actor-critic � � �

TRPO hybrid/actor-critic � � �

PPO hybrid/actor-critic � � �

AlphaZero hybrid � � � �

p

a

t

t

o

w

W

r

L

t

t

r

T

a

h

s

3

w

o

l

fl

r

l

d

d

c

t

a

t

The evaluation of each design choice requires additional com-

utation time. Due to the time-consuming process of selecting

nd evaluating the most appropriate designs it may take long

o obtain decent performance and discourage interested users

o start with DRL. To speed up this process we shed light

n the main design choices in DRL algorithms and highlight

hat we believe is most impactful for inventory optimization.

e do not aim to provide a tutorial on the various DRL algo-

ithms (for that we refer the interested reader to e.g., François-

avet, Henderson, Islam, Bellemare, & Pineau, 2018). 6 Some of

hese design choices are rather trivial for inventory applica-

ions, while other choices require more care because (like the

ole of the neural network) they have important repercussions.

able 1 summarizes the design choices of some well-known DRL

lgorithms.
6 The code of many DRL algorithms is also available online, see for instance

ttps://spinningup.openai.com , https://github.com/openai/baselines and https://

table-baselines.readthedocs.io .

m

K

n

405
.1. Offline versus online

A first design choice relates to the question whether neural net-

orks are trained based on previously collected data—in the form

f (s, a, c, s ′) tuples—or on additional tuples collected during the

earning process. This refers to offline versus online learning. In of-

ine reinforcement learning algorithms (also referred to as batch

einforcement learning) no new tuples are collected during the

earning process and the neural network is trained using a pre-

efined set of tuples, e.g., based on a static data set with historical

emands, orders and inventory levels. In settings where it is diffi-

ult to create new experience, offline learning may be instrumen-

al. It enables turning (existing) data into decision-making without

llowing exploration of new states and actions. To date, various

echnical challenges remain within the field of offline reinforce-

ent learning and its full promise has yet to be realized (Levine,

umar, Tucker, & Fu, 2020).

Online reinforcement learning algorithms, in contrast, create

ew tuples by interacting with the environment and explore new

https://spinningup.openai.com
https://github.com/openai/baselines
https://stable-baselines.readthedocs.io

R.N. Boute, J. Gijsbrechts, W. van Jaarsveld et al. European Journal of Operational Research 298 (2022) 401–412

r

i

l

t

e

f

t

m

c

a

t

i

r

E

e

t

r

s

m

D

t

E

t

d

m

m

m

a

D

g

I

c

l

s

3

a

M

r

q

i

d

p

p

r

t

t

w

c

c

s

t

t

a

t

t

m

t

t

t

r

e

i

l

o

t

m

s

t

f

i

p

p

f

c

m

w

o

p

b

a

a

a

q

t

d

p

t

d

(

3

l

a

t

w

n

b

d

a

t

r

t

a

p

r

i

t

f

t

t

t

b

t

c

p

a

m

s

c

e

s

S

egions of the state and action space as learning progresses. This

nteraction can be in the form of physical experiments that col-

ect trajectories of states, actions and rewards, or it can be facili-

ated using a simulator. Such a simulator generates tuples by mod-

lling the environment, i.e., the underlying MDP with its transition

unction between states and its reward function. Inventory settings

ypically assume the MDP is well-defined, although the uncertainty

ay have to be estimated from data. Nevertheless, they are typi-

ally amenable for simulation to generate orders, inventory levels

nd rewards. For instance, we may not know the true demand dis-

ribution but we may know the inventory balance equation: order-

ng one item more (compared to an existing tuple in the dataset)

aises the pipeline inventory level of the transition state s ′ by one.

ven when (demand) data are scarce, online algorithms may gen-

rate new observations by sampling from the empirical distribu-

ion, or any fitted distribution. Although this inherently results in

educed performance compared to using the true distribution, the

ame is true for all optimization models, including heuristic bench-

ark policies. Nonetheless, significant opportunities exist to make

RL more data-driven, as we discuss in the future research direc-

ions (see Section 4.1).

xample: Consider the lost sales problem, where the true inven-

ory dynamics may be hard to recover. As we only observe the

emands that have been fulfilled from inventory, the unmet de-

and (when inventory is depleted) remains unobserved. There

ay also be a correlation between the inventory level and de-

and. The modeler may wish to model these effects and build

 simulation model (using a static data set) to support an online

RL algorithm. Alternatively, we may also train an offline DRL al-

orithm on the existing static dataset without building a simulator.

n the latter case, however, the agent has no room to explore and

reate new data tuples. Whenever new data comes in, both on-

ine and offline methods may be re-trained on the expanded data

et.

.2. Model-free versus model-based

A second design choice relates to the question whether the

gent (the decision-maker) uses the model (i.e., the simulator or

DP) to predict the impact of its actions on the future states and

ewards before it takes an action. Before deciding on the order

uantity, the agent may for instance compute the impact of var-

ous order decisions on subsequent inventory levels and costs. To

o this, it may use the simulator to perform a Monte Carlo sam-

ling to project future states and costs, or recursively compute

rojected inventory levels and costs using the transition and/or

eward function of the MDP. The model may be fully known to

he agent or may have to be learnt while training. In the lat-

er case, the agent trains on estimations of the transition and re-

ard functions of the MDP. The agent may for instance have ac-

ess to the inventory balance equation to predict future states and

osts, but may have to learn the demand distribution while ob-

erving samples, without having access to the true demand dis-

ribution. Algorithms that use the model when deciding on an ac-

ion (for instance by looking ahead) are referred to as model-based

lgorithms.

Model-free algorithms cannot predict the future, and take ac-

ions without explicitly knowing the impact of their actions on

he resulting states and rewards. Implicitly model-free value-based

ethods also learn (action-)value functions that represent the fu-

ure costs. Yet, they cannot explicitly exploit the underlying model

o predict future states and rewards to achieve better approxima-

ions: they merely interact with the environment and observe the

esulting rewards and subsequent states. We note that, when the

nvironment itself is a simulation model (as is often in the case
406
n inventory management, in contrast to robotics that oftentimes

earn in a physical world), also model-free algorithms make use

f a model of the environment. In that case the difference is sub-

le: while both model-free and model-based algorithms use the

odel, model-free algorithms only use the model to simulate new

equences of states, actions and rewards but not for predicting fu-

ure states and rewards when taking an action. The key trade-off

or the modeler is to decide whether the (potential) performance

mprovement of exploiting the model offsets the additional com-

utational effort within every simulated period to predict the im-

act of various decisions.

As can be observed in Table 1 , many DRL algorithms are model-

ree. We attribute this to the fact that to date DRL has mostly fo-

used on applications with environments that are too complex to

odel, such as robots or self-driving cars interacting in the real

orld. Besides, they are attractive as a general-purpose technol-

gy as the same algorithm can be applied to a variety of inventory

roblems without requiring too much domain knowledge. Model-

ased algorithms, in contrast, may benefit from less training iter-

tions to develop a good policy as they look a few steps ahead

nd take this information into account when making a decision,

lbeit at the expense of increased computational effort and re-

uiring more domain knowledge. Also in classical inventory con-

rol, state-of-the-art forward-looking heuristics and approximate

ynamic programming policies consider a few steps ahead when

lacing orders. For example, a myopic lost sales policy chooses

he order that minimizes the cost in the period in which the or-

er arrives by recursively computing the expected inventory levels

 Zipkin, 2008).

.3. Exploration versus exploitation

The exploration exploitation trade-off is inherent to machine

earning: agents need to choose between exploiting regions and

ctions that are known to perform well versus exploring new ac-

ions and regions. This is especially relevant when learning online

here balancing well-performing actions against the exploration of

ew actions is important. Exploitation involves taking the currently

est known action from each state while exploration implies we

o not follow the recommendation of our neural network. Various

pproaches exist to explore new actions: ε-greedy approaches pick

he best-known action with probability (1 − ε) or a different (often

andom) action else; another exploration approach is to add ‘noise’

o the chosen action. The latter has the advantage to pick random

ctions that may be closer to the best-known action. Due to their

robabilistic nature, stochastic policies inherently encourage explo-

ation. To ensure that the policies continue to explore over time, it

s in addition customary to penalize near-deterministic policies in

he loss function by adding a so-called entropy term to the loss

unction.

Smart and careful exploration may be fruitful—especially when

he algorithm is exploring good regions, and when taking bad ac-

ions may result in a sudden transition to poor regions. In inven-

ory management it may take several periods to recover from one

ad action. One excessive order, for instance, has to travel through

he whole pipeline vector and may take multiple periods to be

onsumed by the demand. As such one could constrain the ex-

loration to actions that lie within a specific distance from the

ctions proposed by the neural network. At the same time one

ay argue that in order to make the model more robust (i.e.,

uch that it explores the entire state space), we may want to en-

ourage more extreme actions to explore rare states or perhaps

ven impose uncertainty in e.g., demand or lead times. We discuss

mart exploration in more detail as a future research avenue in

ection 4 .

R.N. Boute, J. Gijsbrechts, W. van Jaarsveld et al. European Journal of Operational Research 298 (2022) 401–412

3

t

p

i

b

e

a

d

e

s

p

a

i

r

p

r

e

m

u

p

p

t

g

f

e

w

c

t

j

w

o

c

v

3

i

f

p

v

a

a

3

(

v

t

q

p

w

r

γ
a

r

n

m

b

l

t

a

l

i

r

f

m

c

o

v

b

r

t

p

f

R

s

v

p

i

a

r

o

t

s

p

O

p

f

c

t

c

n

o

3

t

k

p

(

w

s

d

v

fi

o

o

T

l

g

S

∇

T

w

w

o

c

r

i

f

o

i

.4. On-policy versus off-policy

Another design choice refers to which policy is used to generate

he tuples (s, a, c, s ′) that are used to train the neural network. On-

olicy algorithms update the weights of the neural network in each

teration based on tuples generated by the policy that is proposed

y the current configuration of the neural network. Off-policy mod-

ls can use experience from other policies, such as tuples gener-

ted from older versions of the neural network or tuples from a

ata set that was collected upfront, which it stores in an experi-

nce buffer . Notice the difference between on one hand, online ver-

us offline learning and, on the other hand, on-policy versus off-

olicy learning. The former refers to the question if we can gather

dditional tuples: online algorithms generate new experience dur-

ng the learning process, while offline algorithms do not; the latter

efers to how online learning algorithms generate new tuples: on-

olicy methods follow and use the recommendations of the cur-

ent neural network while off-policy methods also include experi-

nces generated using different policies. Note that offline reinforce-

ent learning is naturally off-policy as it uses data that is collected

pfront according to some policy.

On-policy learning may benefit from theoretical convergence

roperties. The on-policy REINFORCE algorithm, for instance, is

roven to converge to a local optimal policy (Williams, 1992). At

he same time, the downside of on-policy learning is that it may

et stuck in these local optima when only few data are used to

eed the neural network. Off-policy algorithms are more “sample

fficient”, as they re-use the same tuples to train the neural net-

ork. Furthermore, when learning off-policy, the neural network

an be trained with larger batches of simulation trajectories, as

he experience buffer is orders of magnitudes larger than the tra-

ectories sampled by on-policy algorithms. Feeding the neural net-

ork with more data allows to exploit the parallelization power

f GPUs. This may provide more stability in the training process

ompared to on-policy learning, yet without any theoretical con-

ergence properties.

.5. The role of the neural network

The neural network is the core of any DRL algorithm. The most

nfluential choice that distinguishes DRL algorithms is thus its role:

or which component of the MDP do we wish to leverage the ap-

roximation power of the neural network. We separate between

alue-based, policy-based, and other hybrid approaches such as

ctor-critics in the following sections, and discuss their main pros

nd cons.

.5.1. Value-based

Value-based methods, such as the seminal Deep Q-Network

DQN) use neural networks to approximate the optimal action-

alue functions. They do so by minimizing the value loss: the

emporal difference between the estimated action-value function,

 θ (s, a) , and the observed costs, c, after simulating one (or more)

eriod(s), bootstrapped by the value function of the (last) state to

hich we transitioned, min a q θ (s ′ , a) . A simple one-period tempo-

al difference for the tuple (s, a, c, s ′) would thus be: q θ (s, a) −
(
c +

min a q θ (s ′ , a)
)
; the loss function to guide a gradient-based iter-

tive search to update θk then follows using a mean squared er-

or: L (θk) =

(
q θk

(s, a) − (c + γ min a q θk
(s ′ , a))

)
2 . In practice, neural

etworks will be fed with many of these tuples, and minimize the

ean squared error over all tuples. One major advantage of value-

ased methods is that they lend themselves better to off-policy

earning, making them more sample efficient.

Yet, value-based methods search for approximations of the op-

imal value functions and not the optimal policy. Inherently they

re thus set up to optimize the wrong objective. Eq. (4) may seem
407
ike a small step to convert the approximated value function into

ts policy but in general it is unclear how small approximation er-

ors in the value functions impact the final policy performance. In

act, small errors often result in extremely poor policies. To make

atters worse, value-based methods tend to be unstable and not

onverge well. Many value-based methods are off-policy and rely

n bootstrapping of the value function based on the most recent

ersion of the neural network. Using the approximation provided

y the neural network itself to bootstrap may prevent the neu-

al network to converge to stable approximations. In particular,

he combination of function approximation (neural networks), off-

olicy learning and bootstrapping appears destructive. It is also re-

erred to as the deadly triad (Sutton & Barto, 2018). Tsitsiklis & Van

oy (1997) have shown that this deadly triad makes learning un-

table. Our lack of theoretically understanding the performance of

alue-based methods thus remains a limitation—and likely ham-

ered adoption of these methods in the past. Early experiments in

nventory management to combine neural networks and RL such

s Van Roy, Bertsekas, Lee, & Tsitsiklis (1997) were successful but

equired manual selection of features.

To improve the performance of value-based methods, a number

f heuristic techniques have been suggested. The DQN implemen-

ation of Mnih et al. (2015) , for instance, uses algorithmic “tricks”

uch as experience replay and target networks to improve the em-

irical performance of DQN. In the wake of these breakthroughs,

roojlooyjadid, Nazari, Snyder, & Takác (2021) shows how DQN

erforms well on the well-known supply chain Beer Game. We re-

er to the Rainbow implementation of Hessel et al. (2018) for a

omparison of more algorithmic improvements, of which the po-

ential in inventory control remains largely unexplored to date.

Value-based DRL methods are most fruitful when sample effi-

iency is important, for instance, when data is scarce or gathering

ew data is difficult or unreliable. Alternatively, policy-based meth-

ds may be preferred, which we discuss next.

.5.2. Policy-based

Policy-based methods directly approximate the optimal inven-

ory policy by minimizing the policy loss L (θk) in each update

 of the neural network. This policy loss is defined as the ex-

ected cumulative (discounted) cost obtained during a trajectory

of length T) while following policy πθk
: L (θk) = E [

∑ T
t=0 γ

t c ′ t | πθk
]

ith c ′ t the cost incurred when taking action a t in state s t at time

tep t of the trajectory. Note that for policy-based methods the

iscount factor may be set to γ = 1 , in contrast to (unmodified)

alue-based methods where the action values would inflate to in-

nity. In essence, our goal is thus to minimize the expected cost

f the policy. Similar to value-based methods, the parameters θk

f the neural network are updated in the direction of the gradient.

he policy gradient theorem states that the gradient of the policy

oss is the expectation of the product of the expected cost and the

radient of the log of the policy (see Marbach & Tsitsiklis, 2001;

utton, McAllester, Singh, Mansour et al., 1999):

 θk
L (θk) = E

[

T ∑

t=0

∇ θk
log πθk

(a t | s t)
(T ∑

t=0

γ t c ′ t
)]

. (6)

his result is elegant as it allows us to use the sampled tuples

ithout losing convergence guarantees. Perhaps counter-intuitively,

e do not require the steady-state distribution nor any dynamics

f the model (such as the exact transition or rewards functions) to

ompute the gradient of the neural network. The REINFORCE algo-

ithm (Williams, 1992) for instance, directly follows from the pol-

cy gradient theorem. These vanilla policy gradient methods suf-

er, however, from high variance among the trajectories, i.e., the

bserved costs of parallel trajectories may vary significantly. Var-

ous expressions exist that effectively reduce this variance, such

R.N. Boute, J. Gijsbrechts, W. van Jaarsveld et al. European Journal of Operational Research 298 (2022) 401–412

a

s

t

&

d

p

o

t

f

p

w

t

a

3

t

i

p

o

i

p

p

t

B

l

t

n

h

c

t

(

p

W

g

d

p

i

t

a

e

t

(

(

i

c

r

t

e

w

p

S

a

v

c

s

k

a

L

v

w

r

t

n

s

n

I

n

s

p

4

l

p

s

4

t

T

fi

t

a

r

w

P

L

m

t

h

t

t

t

i

a

t

t

i

c

a

t

n

s

c

i

m

F

a

e

u

a

d

b

i

t

p

o

e

t

p

s

f

e

s subtracting value-based baselines dependent on states we tran-

ition to, as is typically done in actor-critic methods. We discuss

hese methods next and refer to Schulman, Moritz, Levine, Jordan,

 Abbeel (2015b) for a more in-depth discussion on variance re-

uction.

As the gradient update is directly computed using the policy,

olicy-based methods have better convergence properties in terms

f policy performance (i.e., they converge to a local minimum of

he cost function); a desired property for inventory control. Un-

ortunately, the policy gradient theorem no longer holds when tu-

les generated by older policies are used. In fact, we know this

ould introduce ‘bias’, potentially shifting the desired update in

he wrong direction. For this reason many policy-based algorithms

re on-policy and suffer from weaker sample efficiency.

.5.3. Actor-critics and other hybrid techniques

Actor-critic methods are hybrid approaches that leverage mul-

iple benefits of both value-based and policy-based methods. For

nstance, actor-critic algorithms add a value-based baseline to

olicy-based methods to reduce the variance caused by relying

n sampled trajectories (Mnih et al., 2016). The increased stabil-

ty of adding the baseline of the critic, however, goes at the ex-

ense of adding an additional value loss function compared to

ure policy gradient methods. This comes at additional computa-

ion requirements. The A3C actor-critic models used by Gijsbrechts,

oute, Zhang, & Van Mieghem (2019) show good performance in

ost sales, dual sourcing and multi-echelon inventory management,

hereby demonstrating that DRL resembles a general purpose tech-

ology. They do highlight the computational burden to find good

yperparameters while many training runs still result in poor poli-

ies.

To cope with these shortcomings, different metrics may be used

o update the policy in a smarter way, often resulting in better

sometimes theoretically justified) convergence, albeit at the ex-

ense of a more expensive computation in each training iteration.

e specifically refer to Kakade (2001) for a discussion on natural

radients that may result in convergence to the optimal policy—

espite being computationally very intensive or even intractable in

ractice. Kakade & Langford (2002) shows how conservative policy

teration (when restarting from past states is allowed) converges

o approximately optimal policies. (Note how the latter implies the

lgorithm is model-based, as we discussed in Section 3.2 .) They

ven provide an explicit bound when the policy update is a mix-

ure of the old and new policy. The trust region policy optimization

TRPO) algorithm of Schulman, Levine, Moritz, Jordan, & Abbeel

2015a) is directly inspired by Kakade & Langford (2002) . It also

mproves monotonically in every training iteration by using a hard

onstraint to keep the updates to the new policy within a specified

ange (measured using the KL-distance).

The above methods do not always work well in practice due

o the excessive computational need in every training step. More

mpirical approaches were proposed following the aforementioned

orks, such as clipping the distance between the old and new

olicy in the proximal policy optimization (PPO) algorithm of

chulman, Wolski, Dhariwal, Radford, & Klimov (2017) . The PPO

lgorithm was successfully applied in the joint replenishment in-

entory problem by Vanvuchelen, Gijsbrechts, & Boute (2020) . The

omputational requirements could be further improved. For in-

tance, rather than starting from scratch we may start from a well-

nown heuristic (or a heuristic currently in use by a company)

nd aim to improve monotonically on this policy as in Kakade &

angford (2002) . Soft constraints may also be used to penalize de-

iations from the heuristic. A similar teacher student framework

as proposed by Nazari, Jahani, Snyder, & Takác (2019) , which may

eadily be applied in inventory settings. We elaborate further in

he future research avenues.
408
Cutting-edge algorithms improve on typical architectures. The

eural network architecture used in AlphaZero, for instance,

trongly resembles that of actor-critic methods by combining a

eural network that outputs both a value function and a policy.

n addition to using a complex neural network including a combi-

ation of convolutional and residual networks, AlphaZero also uses

elf-play, in the form of a Monte Carlo Tree Search (MCTS) to im-

rove the decisions of the actor.

. Avenues for future research

The application of DRL in inventory management is novel and

argely unexplored (apart from a few exceptions discussed in the

revious section). In what follows we highlight a number of re-

earch avenues that may facilitate the adoption of DRL in practice.

.1. DRL for data-driven inventory control

Traditional inventory control models assume the distribution of

he uncertainty, such as the demand or lead time, to be known.

o implement these models, a pre-processing step is required by

rst estimating or forecasting the uncertainty, before the inven-

ory policy can be optimized. Instead of separating the estimation

nd optimization, the abundance of (big) data available today gave

ise to a new, data-driven research stream within operations, in

hich both steps are no longer made sequentially, but integrated.

rominent works such as Miši ́c & Perakis (2020) and Simchi-

evi (2014) call for further research within data-driven decision-

aking. The advent of machine learning is deeply entangled with

he availability of lots of data, but the use of data in DRL lags be-

ind its supervised learning counterpart. Most (if not all) papers

hat explore DRL in inventory management focus on models where

he uncertainty is assumed to be known by the modeler, neglecting

he impact (and potential) of using data. Data-driven decision mak-

ng is clearly underexplored in DRL. We believe DRL may become

 complimentary tool in data-driven decision making and envision

he following potential avenues to use DRL in data-driven inven-

ory control:

Leverage big data to enrich the state space: A key benefit of DRL

s that it allows to capture large state spaces. Therefore we could

onsider augmenting the state space with additional features that

re traditionally used for estimation. For instance, we may add his-

orical demands or lead times and exogenous data such as weather,

ews events, competitor activity or traffic information in the state

pace. Without explicitly forecasting the (demand or lead time) un-

ertainty, the DRL algorithm may learn to include these features

n the training of the neural network and the corresponding opti-

ization of the inventory policy.

Leveraging these big data does raise a few additional challenges.

or instance, the DRL algorithm might require a model to inter-

ct with and it is not directly obvious how the model can gen-

rate samples when it only has access to historical data without

nderstanding the (conditional) probability distributions between

ll state and random variables. This is essentially the core of data-

riven optimization: integrating the estimation in the optimization

y avoiding that small forecast errors propagate into the final pol-

cy performance. If significant data is available we may circumvent

he need to generate new samples and use an offline learning ap-

roach by exclusively sampling from (a part of the) historically

bserved data samples, without the need to generate additional

xperience. In most cases, however, we want the DRL algorithm

o learn online by exploring unobserved states and actions. Sam-

ling new data points requires some additional engineering. For in-

tance, we may generate new samples by combining bootstrapping

rom historically observed samples (and their feature values) and

ngineering new samples (for instance by adding random noise on

R.N. Boute, J. Gijsbrechts, W. van Jaarsveld et al. European Journal of Operational Research 298 (2022) 401–412

e

t

d

t

m

c

b

p

o

t

t

(

d

b

s

d

s

c

d

w

o

o

b

r

i

a

p

p

p

b

t

i

r

e

p

s

l

l

t

b

c

s

n

n

h

T

r

p

O

n

g

j

d

4

i

t

e

i

m

t

s

t

n

D

c

a

f

r

d

t

t

t

&

m

o

d

2

j

t

t

i

a

t

t

a

i

b

b

l

o

d

l

a

p

i

M

l

t

m

r

c

t

t

p

a

h

a

O

b

c

a

a

2

t

i

t

n

D

w

a

e

d

t

t

xisting samples). This noise can be set depending on how closely

he observed state variables resemble an existing data point in the

ataset (i.e., we may assume the random variables more closely

rack values of nearest neighbours in the dataset). Alternative to

anually engineering samples, we may also let the DRL algorithm

ome up with data points to make the resulting policy more ro-

ust, as we discuss next.

Develop more robust policies: An alternative data-driven ap-

roach that has gained popularity in inventory control is robust

ptimization, in which the worst-case cost is minimized rather

han the expected cost. The worst case may be defined based on

he available data samples. We refer to Mamani, Nassiri, & Wagner

2017) , Bertsimas & Thiele (2006) and the references therein for a

iscussion on the use of robust optimization in inventory control

ut note that the construction of the worst case, which is an es-

ential component of robust optimization, is typically left to the

iscretion of the modeller. As DRL algorithms are notoriously un-

table and non-robust, an interesting avenue to explore is the in-

lusion of the worst case in the training of the DRL algorithm in or-

er to make the policy more robust to uncertainties. For instance,

e may use an additional neural network (or DRL algorithm) that

utputs the uncertainty and tries to negatively impact the other

ne: the adversarial DRL algorithm would observe the same state

ut instead of deciding how much to order, it would output the

andom variables. This is very similar to how Generative Adversar-

al Networks (GANs) are being used in supervised learning to make

lgorithms more robust with respect to small deviations in the in-

uts (Goodfellow et al., 2014). That is, the adversarial network has

ermission to slightly modify or create new samples (for instance

ictures) to fool the initial predictor. The initial network will then

e retrained and learn to make more robust predictions due to

he additional challenge imposed by the presence of the adversar-

al network. This approach can be used to make the policies more

obust with respect to limited data availability, inaccurate data, or

xtreme events that increase the level of uncertainty.

Develop policies for dynamic environments: The current DRL ap-

lications in inventory control assume stationary environments,

uch as stationary demand or lead times. Many real-life prob-

ems are inherently dynamic, think of for instance the product

ifetime where the demand distribution evolves over time. In par-

icular with respect to data-driven decision-making this problem

ecomes apparent as data may quickly become outdated in fast-

hanging environments (for instance, in fast-fashion). Future re-

earch may focus on developing DRL algorithms that can cope with

on-stationary environments. Despite not being explored, this does

ot seem impossible as specific configurations of neural networks

ave been developed specifically to identify patterns and trends.

hese network configurations may also be appropriate to develop

eplenishment policies for SKUs in dynamic environments such as

roducts with short product life cycles or with strong seasonality.

ne of the main modelling challenges will be to adapt the neural

etwork to these changes. For instance, in case of a rapid demand

rowth, the output layer of the neural network may have to be ad-

usted such that the action space stays in line with the increasing

emand realizations.

.2. Blending numerical and analytical approaches to optimize

nventory policies

As we have discussed in Section 2 , inventory policies can be op-

imized through MDPs in an analytical or numerical way, and using

xact or approximate methods. To date, the application of DRL to

nventory problems falls exclusively in the latter category of nu-

erical and approximate methods, aimed at finding good inven-

ory policies. While we acknowledge this has value in an initial re-

earch stage, we believe there is a lot of untapped potential of DRL
409
o integrate the aforementioned roles by leveraging and obtaining

ew structural results using the inherently numerical approach of

RL.

Leverage analytical results to improve DRL performance: Inventory

ontrol is a forerunner in understanding value function structures

nd related properties for stylized problems. An interesting avenue

or further research is the integration of these results into algo-

ithmic design in order to steer the DRL algorithm into the right

irection. It has for instance been shown that the value function of

he lost sales inventory problem is L
 -convex (Zipkin, 2008). This

heoretical property has been used to develop excellent heuris-

ics, such as the Best Weighted Bounds policy (Hua, Yu, Zhang,

 Xu, 2015) in dual sourcing or approximate dynamic program-

ing policies that use linear programming to fit the parameters

f an L
 -convex function to approximate the value functions of

ual sourcing with stochastic supply and lost sales (Chen & Yang,

019; Sun, Wang, & Zipkin, 2014). In a similar way, we may in-

ect these analytical properties into DRL algorithms by shaping

he value function through smart elimination of sub-optimal ac-

ions or states, for instance, by penalizing the loss function when

ts shape does not resemble the desired structure. An additional

dvantage of exploiting these theoretical properties is the poten-

ial to find and compare against clever performance bounds, po-

entially even proving worst-case performance bounds of the DRL

lgorithm itself. For dual-source inventory models, one could for

nstance use well-established single-sourcing optimality results to

ound state or action spaces, or as a general upper performance

ound.

Extract simple heuristic policies from DRL outputs: Instead of

everaging analytical results to improve the numerical performance

f DRL, the numerical policies developed by DRL may also spur the

evelopment of new, simpler heuristic policies that can be ana-

ytically characterized, and are thus easier to implement. A novel

pproach to convert numerical results into analytic insights is pro-

osed by Bravo & Shaposhnik (2020) . They leverage exact numer-

cal methods to find the optimal value functions for a range of

DPs, and subsequently use the output as input to a machine

earning method to extract analytic insights into the structure of

he optimal policy for a range of problem domains: inventory

anagement, queuing admission control, multi-armed bandits, and

evenue management. This exciting result thus uses exact numeri-

al methods to derive new analytic insights. Similarly, we could use

he approximate numerical methodology of DRL to learn the struc-

ure of well-performing solutions, which may lead to new heuristic

olicies for challenging problems that have until now resisted ex-

ct or approximate analysis. Once their structure is learned, these

euristic policies can be implemented without the need to train

ny neural network.

Understand and improve performance of heuristic policies: The

R/OM community has a strong focus on knowledge building and

enchmarking these new approaches against existing policies. Ac-

ordingly, most early studies that apply DRL to inventory man-

gement benchmark DRL performance against the state-of-the-

rt problem-specific heuristic policies (see e.g., Gijsbrechts et al.,

019; Vanvuchelen et al., 2020). As DRL matures, we may reverse

his process and use DRL to benchmark the performance of exist-

ng (or new) heuristic policies, and understand why—or when—

hese heuristics perform better or worse. Demonstrating that a

ew heuristic matches (or beats) well-designed general-purpose

RL benchmarks may provide evidence that the heuristic performs

ell. Comparing their performance against the DRL policies may

lso identify combinations of problem parameters (e.g., certain cost

nvironments) where the heuristic performs poorly. We may then

rill down one level and identify the states where the DRL agent

akes substantially different actions from the heuristic. This may in

urn allow us to formulate an improved heuristic.

R.N. Boute, J. Gijsbrechts, W. van Jaarsveld et al. European Journal of Operational Research 298 (2022) 401–412

p

t

v

o

f

S

a

p

e

v

i

4

c

M

a

p

t

i

a

t

l

v

b

i

e

m

a

c

s

a

f

u

1

c

a

o

t

t

V

q

e

n

g

g

m

o

t

d

w

a

k

l

a

c

e

t

s

s

p

i

c

B

n

e

a

(

b

i

l

p

v

a

t

R

c

o

c

m

s

n

d

v

p

W

M

e

n

u

a

l

w

t

a

E

h

t

q

f

s

e

e

n

|

r

e

b

s

t

t

e

d

w

a

c

s

t

d

n

n

Explain DRL policies: Neural network policies are flexible and

erformant, but notoriously difficult to interpret. This sharply con-

rasts with the often highly intuitive character of policies obtained

ia analytic methods, such as for instance base-stock or constant

rder policies. In addition to developing more intuitive policies

rom the complex output of neural networks similar to Bravo &

haposhnik (2020) , we may also develop models that addition-

lly explain why an action is proposed. A vast field exists on ex-

laining and interpreting the output of AI models (see also Gilpin

t al., 2018). When models not only output actions, but also pro-

ide managers the intuition behind the action, the adoption of DRL

n practice will be fostered.

.3. Scalability of DRL algorithms

Since DRL relies only on a general MDP formulation (and basi-

ally any practical inventory problem can be characterized by an

DP), DRL algorithms may in principle deliver good policies for

ny inventory model for which it is difficult to derive simple, well-

erforming heuristics. This observation is an important driver for

he excitement about DRL for inventory control: DRL could bring

nventory research closer to practical implementations.

Apart from providing proof of concept that DRL can be applied

s a general-purpose technology to classic, yet intractable inven-

ory problems, Gijsbrechts et al. (2019) also highlighted various

imitations of the current state-of-the-art DRL algorithms for in-

entory management: they require extensive tuning to identify the

est performing set of hyperparameters of the neural network. This

s computationally very expensive. Moreover, the inventory mod-

ls considered in these early studies are still restricted to stylized

odels in the sense that they consist of a single SKU and one or

 few locations. This is in contrast with the complexity of typi-

al practical inventory systems such as for instance the one con-

idered in Kranenburg & Van Houtum (2009) . They consider a re-

listic case study of a lost sales inventory system at the manu-

acturer ASML, who produces photolithography machines that are

sed in the production of computer chips. Their setting consists of

9 warehouses/locations, 27 machine groups, and 1451 SKUs. To fa-

ilitate the implementation of DRL for inventory control with a re-

listic scale, it is clear that we should go beyond the current state-

f-the-art of DRL applications. Various future research avenues per-

ain to this ambition:

Better DRL training algorithms: Researchers in OR/OM may con-

inue to draw from innovations within the active field of DRL. From

anvuchelen et al. (2020) , for instance, it appears that PPO re-

uires less tuning compared to A3C as employed by Gijsbrechts

t al. (2019) , though it should be noted that the algorithms were

ot compared on the same problem. In particular, model-based al-

orithms may be tailored to inventory research with the option to

eneralize well across problems, just like MuZero learned to play

ultiple games at master class level (Schrittwieser et al., 2020),

r one may even develop DRL algorithms specifically tailored to

he theoretical characteristics of inventory problems obtained after

ecades of in-depth research, as we discuss next.

Improve training performance: To speed up the training process,

e may leverage the structural knowledge of the heuristics that

re known to perform well. The transfer of such external expert

nowledge when training a neural network is studied in imitation

earning , which is a popular research field in supervised learning

s it may significantly improve training performance and reduce

omputational requirements. To date, this field remains largely un-

xplored in DRL and especially in inventory control. One approach

o leverage known heuristics or structural knowledge would be to

tart the training process from a neural network that trains on

amples generated by a well-performing heuristic. This might im-

rove training performance compared to starting from a randomly
t

410
nitialized neural network. These ideas are studied in a sub-field

alled behaviour cloning , the simplest form of imitation learning.

ehaviour cloning is a supervised learning problem in which the

eural network learns a policy based on a training set of states and

xpert decisions. The teacher student framework , in addition, en-

bles the decision maker to generate efficient policy improvements

student) guided by ‘teacher’ advice. The teacher can for instance

e a well-performing heuristic or structural knowledge about the

nventory policy. This framework ensures better guidance of the

earning process towards well-performing state/action regions and

olicies (see e.g., Nazari et al., 2019 for an example outside in-

entory control). Rewards may also be altered or shaped, known

s reward shaping to speed up the training process and to make

raining more stable, without losing performance (Ng, Harada, &

ussell, 1999). De Moor, Gijsbrechts, & Boute (2021) recently suc-

essfully applied reward shaping to stabilize the learning process

f DQN for a perishable inventory problem, while their model oc-

asionally outperforms the best-known heuristics.

Extend to large action spaces: While there appear to be no funda-

ental limits to the size of state spaces that DRL can address, this

tands in contrast with the limitations for action spaces. Neural

etworks are mappings from R

N to R

M , where in many models M

irectly corresponds to the number of actions, i.e., M = |A| . Larger

alues of M (say M = 10 0 0) lead to neural networks with many

arameters, which are more difficult, if not impossible, to train.

ithout modifications, this implies that DRL can only be used for

DPs/inventory models with discrete action spaces, and |A| small

nough. In inventory control, large action spaces may arise when

o upper bound can be proven on the size of orders or when this

pper bound is very large, and also when orders take values in

 continuous interval. Discretizing the set of potential orders may

ead to theoretical performance loss.

An even more pressing concern arises in inventory models

here multiple actions need to be taken simultaneously, e.g., when

here are multiple SKUs or when inventory at a location must be

llocated for shipment to multiple down-stream locations.

xample: When managing inventory for multiple products, one

as to decide how much to replenish for each item. Let I denote

he number of items and x̄ i the upper bound on the optimal order

uantity for item i in any state, and assume for simplicity x̄ i = x̄

or all i ∈ { 1 , . . . , I} and zero lead times. The latter implies that the

tate space is I-dimensional, consisting of the inventory levels of

ach product. The number of actions (i.e., the order quantity for

ach item), and the resulting number of output nodes of the neural

etwork in a standard DQN or policy-based algorithm then equals

A| = (̄x + 1) I and the action-value or policy functions can be rep-

esented by a neural network, N θ : R

I → R

(̄x +1) I .

As the number of output nodes of the neural network increases

xponentially in the number of items, standard DRL algorithms

ecome less suitable for inventory problems with a large action

pace. Most inventory models that are important in practice fea-

ure such simultaneous actions (see e.g. Kranenburg & Van Hou-

um, 2009), and overcoming this limitation is a foundational av-

nue for future research into increasing scalability of DRL. We next

iscuss various ideas that have appeared in literature for dealing

ith multi-dimensional action spaces.

The policy (and as such the action space) may be both discrete

nd continuous. The action space of continuous policies are typi-

ally represented in a neural network by letting the output repre-

ent the first moments of a pre-specified distribution from which

he action is sampled. Moreover, action spaces may be multi-

imensional, as is often apparent in robotics where multiple joints

eed to be steered simultaneously. These techniques are rather

ew and have potential for multi-product or multi-sourcing inven-

ory problems in particular, and multi-dimensional action spaces in

R.N. Boute, J. Gijsbrechts, W. van Jaarsveld et al. European Journal of Operational Research 298 (2022) 401–412

g

d

p

U

i

i

t

r

s

n

p

i

a

B

T

n

s

A

t

t

s

t

t

a

o

s

c

c

r

m

h

t

r

f

a

T

v

t

d

t

f

t

t

d

t

t

t

i

v

l

t

t

m

S

d

p

a

e

e

t

b

t

d

5

p

e

a

e

n

p

n

n

e

s

w

c

s

p

u

s

t

t

a

o

b

a

R

B

B

B

B

B

B

B

B

B

C

D

D

F

G

G

G

G

G
eneral. As such, continuous action spaces may be useful also for

iscrete inventory problems with large action spaces as continuous

olicies require less output nodes compared to discrete policies.

ntil now no such models have been successfully trained within

nventory control; it is not clear how representing the order size

n a single output node will affect the ability to effectively train

he neural networks.

Another approach that may be taken is to train a separate neu-

al network for each action that needs to be taken. Apart from is-

ues with regards to the computational demands of training many

eural networks, a challenge here is that actions may be interde-

endent (e.g., products are transported in the same truck or when

nventory is allocated over multiple downstream locations). Several

pproaches have been proposed to overcome this (see for instance

aker et al., 2020; Kaynov, 2021; Pirhooshyaran & Snyder, 2020).

o reduce the computational demands of training various neural

etworks, Pirhooshyaran & Snyder (2020) propose in addition to

hare the weights for the first few layers of the neural network.

lternatively, multi-agent DRL (Baker et al., 2020), in which mul-

iple agents optimize individual or (partly) shared objective func-

ions may be a good fit to tackle large, multi-dimensional action

paces. We may, for instance, model products as individual agents

hat have their own service level penalties but share inventory or

ransportation space.

Another approach to deal with simultaneous actions is to lever-

ge symmetry in the problem. In inventory control, this idea was

riginally proposed by Van Roy et al. (1997) in the context of a

ymmetric one-warehouse multi-retailer inventory setting. For that

ase, it suffices to train a single neural network to make all allo-

ation decisions, as those decisions will be the same because the

etailers are identical. While complete symmetry is not so com-

on in practice, partial symmetry is much more common and per-

aps there are ways to similarly use that. Think for instance of

he replenishment process of items that only differ in cost pa-

ameters and/or lead times. In the field of deep learning, trans-

er learning uses previously trained neural networks for some task

s a starting point to learn a different (potentially related) task.

hese dissimilarities are by no means limited to the examples pre-

iously given. Instead, these tasks can differ in several aspects of

he MDP: state/ action space, reward function or the transition

ynamics. To date, only Oroojlooyjadid et al. (2021) employs this

echnique for inventory control. They use a neural network trained

or one agent in the Beer supply game and use transfer learning

o quickly adapt the network to other agents and other parame-

er settings. Their results are promising as they were able to re-

uce training time by one order of magnitude. A final approach

o cope with large action spaces, is meta-learning . This is essen-

ially learning how to learn. The ultimate goal is learning a model

hat can efficiently adapt (i.e. only require a small amount of train-

ng iterations) to solve new test tasks by training the model on a

ariety of different training tasks. We may for instance use meta-

earning when a firm has a large amount of products: rather than

raining a DRL algorithm for each product individually, we may

rain one meta-learning across a set of SKUs such that with only

inor additional training time it can be trained to the specific

KUs.

DQN and other value-based DRL methods are less suitable for

ealing with large state spaces. However, under the banner of ap-

roximate dynamic programming (ADP), a vast range numerical

nd approximate methods have been proposed that utilize lin-

ar function approximators to approximate the value function, see

.g., Powell (2007) . Those approaches fall outside the scope of

his review paper because they do not use deep neural networks,

ut their adoption of linear value function approximations enables

hem to exploit problem structure to efficiently deal with high-

imensional action spaces.
411
. Conclusion

Despite being coined as a promising technique to tackle com-

lex sequential decision-making problems for which analytical or

xact numerical solution methods fall short, applications of DRL

lgorithms in inventory control remain rather scarce. A significant

ffort is needed to construct and train DRL algorithms, making it

otably harder to use than its supervised deep learning counter-

art, often without performance guarantees. We shed light on how

eural networks may effectively be employed as an approximate

umerical approach to optimize inventory problems that are mod-

led as MDPs. In addition to shedding light on the essential de-

ign choices of DRL algorithms we highlight new research avenues

hich have not been explored to date.

As an operations community, and especially within inventory

ontrol, we have invested strongly in theory building—one of the

trengths of our field. While it is common to use results from

ioneering works from decades ago, the field of AI, and partic-

larly machine learning, is newer, less structured and often less

upported theoretically. We believe that as DRL for inventory con-

rol becomes a more established field, it must also have focus on

heory building. Blending the numerical approach of DRL with an-

lytical results may be fruitful for inventory control.

As DRL is extremely versatile to tackle diverse problems with-

ut prior knowledge, we hope our paper may inspire beyond the

oundaries of inventory control within operations management

nd management science.

eferences

aker, B. , Kanitscheider, I. , Markov, T. , Wu, Y. , Powell, G. , McGrew, B. , et al. (2020).

Emergent tool use from multi-agent autocurricula. Proceedings of the 8th inter-
national conference on learning representations (ICLR) .

ellman, R. (1954). The theory of dynamic programming. Bulletin of the American
Mathematical Society, 60 (6), 503–515 .

engio, Y. (2012). Practical recommendations for gradient-based training of deep

architectures. In Neural networks: Tricks of the trade (pp. 437–478). Springer .
ergstra, J. , Yamins, D. , & Cox, D. (2013). Making a science of model search:

Hyperparameter optimization in hundreds of dimensions for vision architec-
tures. In Proceedings of the 30th international conference on machine learning

(pp. 115–123) .
ertsekas, D. P. (1987). Dynamic programming: Deterministic and stochastic models .

Englewood Cliffs, NJ: Prentice-Hall .

ertsekas, D. P. (2019). Reinforcement learning and optimal control . Belmont, MA:
Athena Scientific .

ertsekas, D. P. , & Tsitsiklis, J. N. (1996). Neuro-dynamic programming . Belmont, MA:
Athena Scientific .

ertsimas, D. , & Thiele, A. (2006). A robust optimization approach to inventory the-
ory. Operations Research, 54 (1), 150–168 .

ravo, F. , & Shaposhnik, Y. (2020). Mining optimal policies: A pattern recognition

approach to model analysis. INFORMS Journal on Optimization, 2 (3), 145–166 .
hen, W. , & Yang, H. (2019). A heuristic based on quadratic approximation for dual

sourcing problem with general lead times and supply capacity uncertainty. IISE
Transactions, 51 (9), 943–956 .

e Moor, B. J., Gijsbrechts, J., & Boute, R. N. (2021). Reward shaping to improve the
performance of deep reinforcement learning in inventory management. Avail-

able at SSRN: https://doi.org/10.2139/ssrn.3804655 .

ulac-Arnold, G., Mankowitz, D., & Hester, T. (2019). Challenges of real-world rein-
forcement learning. arXiv:1904.12901

rançois-Lavet, V. , Henderson, P. , Islam, R. , Bellemare, M. G. , & Pineau, J. (2018). An
introduction to deep reinforcement learning. Foundations and Trends in Machine

Learning, 11 (3–4), 219–354 .
arychl (2018). Applications of Reinforcement Learning in Real World. Re-

trieved April 13, 2021, from https://towardsdatascience.com/applications-of-

reinforcement- learning- in- real- world- 1a94955bcd12 .
ershgorn, D. (2018). There’s only been one AI breakthrough. Retrieved April

13, 2021, from https://qz.com/1419346/ai- has- had- just- one- breakthrough- says-
kai- fu- lee .

ijsbrechts, J., Boute, R., Zhang, D., & Van Mieghem, J. (2019). Can deep reinforce-
ment learning improve inventory management? Performance on dual sourc-

ing, lost sales and multi-echelon problems. Available at SSRN: https://doi.org/
10.2139/ssrn.3302881 .

ilpin, L. H. , Bau, D. , Yuan, B. Z. , Bajwa, A. , Specter, M. , & Kagal, L. (2018). Explaining

explanations: An overview of interpretability of machine learning. In Proceedings
of the 5th ieee international conference on data science and advanced analytics

(DSAA) (pp. 80–89) .
oldberg, D. A. , Katz-Rogozhnikov, D. A. , Lu, Y. , Sharma, M. , & Squil-

lante, M. S. (2016). Asymptotic optimality of constant-order policies for lost

http://refhub.elsevier.com/S0377-2217(21)00611-1/sbref0001
http://refhub.elsevier.com/S0377-2217(21)00611-1/sbref0001
http://refhub.elsevier.com/S0377-2217(21)00611-1/sbref0001
http://refhub.elsevier.com/S0377-2217(21)00611-1/sbref0001
http://refhub.elsevier.com/S0377-2217(21)00611-1/sbref0001
http://refhub.elsevier.com/S0377-2217(21)00611-1/sbref0001
http://refhub.elsevier.com/S0377-2217(21)00611-1/sbref0001
http://refhub.elsevier.com/S0377-2217(21)00611-1/sbref0001
http://refhub.elsevier.com/S0377-2217(21)00611-1/sbref0002
http://refhub.elsevier.com/S0377-2217(21)00611-1/sbref0002
http://refhub.elsevier.com/S0377-2217(21)00611-1/sbref0003
http://refhub.elsevier.com/S0377-2217(21)00611-1/sbref0003
http://refhub.elsevier.com/S0377-2217(21)00611-1/sbref0004
http://refhub.elsevier.com/S0377-2217(21)00611-1/sbref0004
http://refhub.elsevier.com/S0377-2217(21)00611-1/sbref0004
http://refhub.elsevier.com/S0377-2217(21)00611-1/sbref0004
http://refhub.elsevier.com/S0377-2217(21)00611-1/sbref0004
http://refhub.elsevier.com/S0377-2217(21)00611-1/sbref0005
http://refhub.elsevier.com/S0377-2217(21)00611-1/sbref0005
http://refhub.elsevier.com/S0377-2217(21)00611-1/sbref0006
http://refhub.elsevier.com/S0377-2217(21)00611-1/sbref0006
http://refhub.elsevier.com/S0377-2217(21)00611-1/sbref0007
http://refhub.elsevier.com/S0377-2217(21)00611-1/sbref0007
http://refhub.elsevier.com/S0377-2217(21)00611-1/sbref0007
http://refhub.elsevier.com/S0377-2217(21)00611-1/sbref0007
http://refhub.elsevier.com/S0377-2217(21)00611-1/sbref0008
http://refhub.elsevier.com/S0377-2217(21)00611-1/sbref0008
http://refhub.elsevier.com/S0377-2217(21)00611-1/sbref0008
http://refhub.elsevier.com/S0377-2217(21)00611-1/sbref0008
http://refhub.elsevier.com/S0377-2217(21)00611-1/sbref0009
http://refhub.elsevier.com/S0377-2217(21)00611-1/sbref0009
http://refhub.elsevier.com/S0377-2217(21)00611-1/sbref0009
http://refhub.elsevier.com/S0377-2217(21)00611-1/sbref0009
http://refhub.elsevier.com/S0377-2217(21)00611-1/sbref0010
http://refhub.elsevier.com/S0377-2217(21)00611-1/sbref0010
http://refhub.elsevier.com/S0377-2217(21)00611-1/sbref0010
http://refhub.elsevier.com/S0377-2217(21)00611-1/sbref0010
https://doi.org/10.2139/ssrn.3804655
http://arxiv.org/abs/1904.12901
http://refhub.elsevier.com/S0377-2217(21)00611-1/sbref0013
http://refhub.elsevier.com/S0377-2217(21)00611-1/sbref0013
http://refhub.elsevier.com/S0377-2217(21)00611-1/sbref0013
http://refhub.elsevier.com/S0377-2217(21)00611-1/sbref0013
http://refhub.elsevier.com/S0377-2217(21)00611-1/sbref0013
http://refhub.elsevier.com/S0377-2217(21)00611-1/sbref0013
http://refhub.elsevier.com/S0377-2217(21)00611-1/sbref0013
https://towardsdatascience.com/applications-of-reinforcement-learning-in-real-world-1a94955bcd12
https://qz.com/1419346/ai-has-had-just-one-breakthrough-says-kai-fu-lee
https://doi.org/10.2139/ssrn.3302881
http://refhub.elsevier.com/S0377-2217(21)00611-1/sbref0017
http://refhub.elsevier.com/S0377-2217(21)00611-1/sbref0017
http://refhub.elsevier.com/S0377-2217(21)00611-1/sbref0017
http://refhub.elsevier.com/S0377-2217(21)00611-1/sbref0017
http://refhub.elsevier.com/S0377-2217(21)00611-1/sbref0017
http://refhub.elsevier.com/S0377-2217(21)00611-1/sbref0017
http://refhub.elsevier.com/S0377-2217(21)00611-1/sbref0017
http://refhub.elsevier.com/S0377-2217(21)00611-1/sbref0017
http://refhub.elsevier.com/S0377-2217(21)00611-1/sbref0018
http://refhub.elsevier.com/S0377-2217(21)00611-1/sbref0018
http://refhub.elsevier.com/S0377-2217(21)00611-1/sbref0018
http://refhub.elsevier.com/S0377-2217(21)00611-1/sbref0018
http://refhub.elsevier.com/S0377-2217(21)00611-1/sbref0018
http://refhub.elsevier.com/S0377-2217(21)00611-1/sbref0018
http://refhub.elsevier.com/S0377-2217(21)00611-1/sbref0018

R.N. Boute, J. Gijsbrechts, W. van Jaarsveld et al. European Journal of Operational Research 298 (2022) 401–412

G

H

H

H

K

K

K

K

K

K

K

L

L

M

M

M

M

M

M

N

N

O

P

P

P

S

S

S

S

S

S

S

S

S

S

T

T

T

V

V

V

W

Z

sales inventory models with large lead times. Mathematics of Operations Re-
search, 41 (3), 745–1160 .

oodfellow, I. J. , Pouget-Abadie, J. , Mirza, M. , Xu, B. , Warde-Farley, D. , Ozair, S. ,
et al. (2014). Generative adversarial nets. In Proceedings of the 27th international

conference on neural information processing systems (pp. 2672–2680) .
essel, M. , Modayil, J. , Van Hasselt, H. , Schaul, T. , Ostrovski, G. , Dabney, W. ,

et al. (2018). Rainbow: Combining improvements in deep reinforcement
learning. In Proceedings of the 32nd aaai conference on artificial intelligence

(pp. 3215–3222) .

ornik, K. , Stinchcombe, M. , & White, H. (1989). Multilayer feedforward networks
are universal approximators. Neural Networks, 2 (5), 359–366 .

ua, Z. , Yu, Y. , Zhang, W. , & Xu, X. (2015). Structural properties of the optimal pol-
icy for dual-sourcing systems with general lead times. IIE Transactions, 47 (8),

841–850 .
akade, S. , & Langford, J. (2002). Approximately optimal approximate reinforcement

learning. In Proceedings of the 19th international conference on machine learning

(pp. 267–274) .
akade, S. M. (2001). A natural policy gradient. Advances in Neural Information Pro-

cessing Systems, 14 , 1531–1538 .
arlin, S. , & Scarf, H. (1958). Inventory models of the Arrow–Harris–Marschak type

with time lag. In Studies in the mathematical theory of inventory and production
(pp. 155–178)). Stanford University Press .

aynov, I. (2021). Deep Reinforcement Learning for Asymmetric One-Warehouse

Multi-Retailer Inventory Management. Available at: https://research.tue.nl/en/
studentTheses/deep-reinforcement-learning-for-asymmetric-one-warehouse-

multi-re .
ingma, D. P. , & Ba, J. (2015). Adam: A method for stochastic optimization. Proceed-

ings of the 3rd international conference on learning representations (ICLR) .
ranenburg, A. , & Van Houtum, G.-J. (2009). A new partial pooling structure for

spare parts networks. European Journal of Operational Research, 199 (3), 908–921 .

rizhevsky, A. , Sutskever, I. , & Hinton, G. E. (2012). Imagenet classification with deep
convolutional neural networks. Advances in Neural Information Processing Sys-

tems, 25 , 1097–1105 .
evine, S., Kumar, A., Tucker, G., & Fu, J. (2020). Offline reinforcement learning: Tu-

torial, review, and perspectives on open problems. arXiv:2005.01643
u, Y. , & Song, J.-S. (2005). Order-based cost optimization in assemble-to-order sys-

tems. Operations Research, 53 (1), 151–169 .

amani, H. , Nassiri, S. , & Wagner, M. R. (2017). Closed-form solutions for robust
inventory management. Management Science, 63 (5), 1625–1643 .

arbach, P. , & Tsitsiklis, J. N. (2001). Simulation-based optimization of Markov re-
ward processes. IEEE Transactions on Automatic Control, 46 (2), 191–209 .

artagan, T. , Krishnamurthy, A . , Leland, P. A . , & Maravelias, C. T. (2018). Performance
guarantees and optimal purification decisions for engineered proteins. Opera-

tions Research, 66 (1), 18–41 .

iši ́c, V. V. , & Perakis, G. (2020). Data analytics in operations management: A re-
view. Manufacturing and Service Operations Management, 22 (1), 158–169 .

nih, V., Badia, A. P., Mirza, M., Graves, A., Lillicrap, T. P., & Harley, T. et al. (2016).
Asynchronous methods for deep reinforcement learning. arXiv:1602.01783

nih, V. , Kavukcuoglu, K. , Silver, D. , Rusu, A . A . , Veness, J. , Bellemare, M. G. ,
et al. (2015). Human-level control through deep reinforcement learning. Nature,

518 (7540), 529–533 .
azari, M., Jahani, M., Snyder, L. V., & Takác, M. (2019). Don’t forget your teacher: A

corrective reinforcement learning framework. arXiv:1905.13562

g, A. Y. , Harada, D. , & Russell, S. (1999). Policy invariance under reward transfor-
mations: Theory and application to reward shaping. In Proceedings of the 16th

international conference on machine learning (pp. 278–287) .
412
roojlooyjadid, A. , Nazari, M. , Snyder, L. V. , & Takác, M. (2021). A deep q-network for
the Beer Game: deep reinforcement learning for inventory optimization . Manufac-

turing & Service Operations Management .
irhooshyaran, M., & Snyder, L. V. (2020). Simultaneous decision making for stochas-

tic multi-echelon inventory optimization with deep neural networks as decision
makers. arXiv:2006.05608

owell, W. B. (2007). Approximate dynamic programming: Solving the curses of dimen-
sionality . Hoboken, NJ: John Wiley & Sons .

uterman, M. L. (1994). Markov decision processes: Discrete stochastic dynamic pro-

gramming . Hoboken, NJ: John Wiley & Sons, Inc. .
chrittwieser, J. , Antonoglou, I. , Hubert, T. , Simonyan, K. , Sifre, L. , Schmitt, S. ,

et al. (2020). Mastering Atari, Go, Chess and Shogi by planning with a learned
model. Nature, 588 (7839), 604–609 .

chulman, J., Levine, S., Moritz, P., Jordan, M. I., & Abbeel, P. (2015a). Trust region
policy optimization. arXiv:1502.05477

chulman, J., Moritz, P., Levine, S., Jordan, M. I., & Abbeel, P. (2015b). High-

dimensional continuous control using generalized advantage estimation. arXiv:
1506.02438

chulman, J., Wolski, F., Dhariwal, P., Radford, A., & Klimov, O. (2017). Proximal pol-
icy optimization algorithms. arXiv:1707.06347

ilver, D. , Schrittwieser, J. , Simonyan, K. , Antonoglou, I. , Huang, A. , Guez, A. ,
et al. (2017). Mastering the game of Go without human knowledge. Nature,

550 (7676), 354–359 .

imchi-Levi, D. (2014). OM forum-OM research: From problem-driven to data-driven
research. Manufacturing and Service Operations Management, 16 (1), 2–10 .

noek, J. , Larochelle, H. , & Adams, R. P. (2012). Practical Bayesian optimization of
machine learning algorithms. Advances in Neural Information Processing Systems,

25 , 2951–2959 .
un, P. , Wang, K. , & Zipkin, P. (2014). Quadratic approximation of cost functions in lost

sales and perishable inventory control problems .

utton, R. S. , & Barto, A. G. (2018). Reinforcement learning: An introduction (2nd ed.).
MIT Press Cambridge .

utton, R. S. , McAllester, D. A. , Singh, S. P. , Mansour, Y. , et al. (1999). Policy gradi-
ent methods for reinforcement learning with function approximation.. In Pro-

ceedings of the 12th International Conference on Neural Information Processing
(pp. 1057–1063) .

esauro, G. (1992). Practical issues in temporal difference learning. Machine Learning,

8 , 257–277 .
esauro, G. (1994). TD-Gammon, a self-teaching Backgammon program, achieves

master-level play. Neural Computation, 6 (2), 215–219 .
sitsiklis, J. N. , & Van Roy, B. (1997). An analysis of temporal-difference learn-

ing with function approximation. IEEE Transactions on Automatic Control, 42 (5),
674–690 .

an Roy, B. , Bertsekas, D. P. , Lee, Y. , & Tsitsiklis, J. N. (1997). A neuro-dynamic pro-

gramming approach to retailer inventory management. Proceedings of the 36th
IEEE Conference on Decision and Control .

anvuchelen, N. , Gijsbrechts, J. , & Boute, R. (2020). Use of proximal policy optimiza-
tion for the joint replenishment problem. Computers in Industry, 119 , 103239 .

einott, A. F. (1966). The status of mathematical inventory theory. Management Sci-
ence, 12 (11), 745–777 .

illiams, R. J. (1992). Simple statistical gradient-following algorithms for connec-
tionist reinforcement learning. Machine Learning, 8 (3), 229–256 .

ipkin, P. (2008). Old and new methods for lost-sales inventory systems. Operations

Research, 56 (5), 1256–1263 .

http://refhub.elsevier.com/S0377-2217(21)00611-1/sbref0018
http://refhub.elsevier.com/S0377-2217(21)00611-1/sbref0019
http://refhub.elsevier.com/S0377-2217(21)00611-1/sbref0019
http://refhub.elsevier.com/S0377-2217(21)00611-1/sbref0019
http://refhub.elsevier.com/S0377-2217(21)00611-1/sbref0019
http://refhub.elsevier.com/S0377-2217(21)00611-1/sbref0019
http://refhub.elsevier.com/S0377-2217(21)00611-1/sbref0019
http://refhub.elsevier.com/S0377-2217(21)00611-1/sbref0019
http://refhub.elsevier.com/S0377-2217(21)00611-1/sbref0019
http://refhub.elsevier.com/S0377-2217(21)00611-1/sbref0020
http://refhub.elsevier.com/S0377-2217(21)00611-1/sbref0020
http://refhub.elsevier.com/S0377-2217(21)00611-1/sbref0020
http://refhub.elsevier.com/S0377-2217(21)00611-1/sbref0020
http://refhub.elsevier.com/S0377-2217(21)00611-1/sbref0020
http://refhub.elsevier.com/S0377-2217(21)00611-1/sbref0020
http://refhub.elsevier.com/S0377-2217(21)00611-1/sbref0020
http://refhub.elsevier.com/S0377-2217(21)00611-1/sbref0020
http://refhub.elsevier.com/S0377-2217(21)00611-1/sbref0021
http://refhub.elsevier.com/S0377-2217(21)00611-1/sbref0021
http://refhub.elsevier.com/S0377-2217(21)00611-1/sbref0021
http://refhub.elsevier.com/S0377-2217(21)00611-1/sbref0021
http://refhub.elsevier.com/S0377-2217(21)00611-1/sbref0021
http://refhub.elsevier.com/S0377-2217(21)00611-1/sbref0022
http://refhub.elsevier.com/S0377-2217(21)00611-1/sbref0022
http://refhub.elsevier.com/S0377-2217(21)00611-1/sbref0022
http://refhub.elsevier.com/S0377-2217(21)00611-1/sbref0022
http://refhub.elsevier.com/S0377-2217(21)00611-1/sbref0022
http://refhub.elsevier.com/S0377-2217(21)00611-1/sbref0022
http://refhub.elsevier.com/S0377-2217(21)00611-1/sbref0023
http://refhub.elsevier.com/S0377-2217(21)00611-1/sbref0023
http://refhub.elsevier.com/S0377-2217(21)00611-1/sbref0023
http://refhub.elsevier.com/S0377-2217(21)00611-1/sbref0023
http://refhub.elsevier.com/S0377-2217(21)00611-1/sbref0024
http://refhub.elsevier.com/S0377-2217(21)00611-1/sbref0024
http://refhub.elsevier.com/S0377-2217(21)00611-1/sbref0025
http://refhub.elsevier.com/S0377-2217(21)00611-1/sbref0025
http://refhub.elsevier.com/S0377-2217(21)00611-1/sbref0025
http://refhub.elsevier.com/S0377-2217(21)00611-1/sbref0025
https://research.tue.nl/en/studentTheses/deep-reinforcement-learning-for-asymmetric-one-warehouse-multi-re
http://refhub.elsevier.com/S0377-2217(21)00611-1/sbref0027
http://refhub.elsevier.com/S0377-2217(21)00611-1/sbref0027
http://refhub.elsevier.com/S0377-2217(21)00611-1/sbref0027
http://refhub.elsevier.com/S0377-2217(21)00611-1/sbref0027
http://refhub.elsevier.com/S0377-2217(21)00611-1/sbref0028
http://refhub.elsevier.com/S0377-2217(21)00611-1/sbref0028
http://refhub.elsevier.com/S0377-2217(21)00611-1/sbref0028
http://refhub.elsevier.com/S0377-2217(21)00611-1/sbref0028
http://refhub.elsevier.com/S0377-2217(21)00611-1/sbref0029
http://refhub.elsevier.com/S0377-2217(21)00611-1/sbref0029
http://refhub.elsevier.com/S0377-2217(21)00611-1/sbref0029
http://refhub.elsevier.com/S0377-2217(21)00611-1/sbref0029
http://refhub.elsevier.com/S0377-2217(21)00611-1/sbref0029
http://arxiv.org/abs/2005.01643
http://refhub.elsevier.com/S0377-2217(21)00611-1/sbref0031
http://refhub.elsevier.com/S0377-2217(21)00611-1/sbref0031
http://refhub.elsevier.com/S0377-2217(21)00611-1/sbref0031
http://refhub.elsevier.com/S0377-2217(21)00611-1/sbref0031
http://refhub.elsevier.com/S0377-2217(21)00611-1/sbref0032
http://refhub.elsevier.com/S0377-2217(21)00611-1/sbref0032
http://refhub.elsevier.com/S0377-2217(21)00611-1/sbref0032
http://refhub.elsevier.com/S0377-2217(21)00611-1/sbref0032
http://refhub.elsevier.com/S0377-2217(21)00611-1/sbref0032
http://refhub.elsevier.com/S0377-2217(21)00611-1/sbref0033
http://refhub.elsevier.com/S0377-2217(21)00611-1/sbref0033
http://refhub.elsevier.com/S0377-2217(21)00611-1/sbref0033
http://refhub.elsevier.com/S0377-2217(21)00611-1/sbref0033
http://refhub.elsevier.com/S0377-2217(21)00611-1/sbref0034
http://refhub.elsevier.com/S0377-2217(21)00611-1/sbref0034
http://refhub.elsevier.com/S0377-2217(21)00611-1/sbref0034
http://refhub.elsevier.com/S0377-2217(21)00611-1/sbref0034
http://refhub.elsevier.com/S0377-2217(21)00611-1/sbref0034
http://refhub.elsevier.com/S0377-2217(21)00611-1/sbref0034
http://refhub.elsevier.com/S0377-2217(21)00611-1/sbref0035
http://refhub.elsevier.com/S0377-2217(21)00611-1/sbref0035
http://refhub.elsevier.com/S0377-2217(21)00611-1/sbref0035
http://refhub.elsevier.com/S0377-2217(21)00611-1/sbref0035
http://arxiv.org/abs/1602.01783
http://refhub.elsevier.com/S0377-2217(21)00611-1/sbref0037
http://refhub.elsevier.com/S0377-2217(21)00611-1/sbref0037
http://refhub.elsevier.com/S0377-2217(21)00611-1/sbref0037
http://refhub.elsevier.com/S0377-2217(21)00611-1/sbref0037
http://refhub.elsevier.com/S0377-2217(21)00611-1/sbref0037
http://refhub.elsevier.com/S0377-2217(21)00611-1/sbref0037
http://refhub.elsevier.com/S0377-2217(21)00611-1/sbref0037
http://refhub.elsevier.com/S0377-2217(21)00611-1/sbref0037
http://arxiv.org/abs/1905.13562
http://refhub.elsevier.com/S0377-2217(21)00611-1/sbref0039
http://refhub.elsevier.com/S0377-2217(21)00611-1/sbref0039
http://refhub.elsevier.com/S0377-2217(21)00611-1/sbref0039
http://refhub.elsevier.com/S0377-2217(21)00611-1/sbref0039
http://refhub.elsevier.com/S0377-2217(21)00611-1/sbref0039
http://refhub.elsevier.com/S0377-2217(21)00611-1/sbref0040
http://refhub.elsevier.com/S0377-2217(21)00611-1/sbref0040
http://refhub.elsevier.com/S0377-2217(21)00611-1/sbref0040
http://refhub.elsevier.com/S0377-2217(21)00611-1/sbref0040
http://refhub.elsevier.com/S0377-2217(21)00611-1/sbref0040
http://refhub.elsevier.com/S0377-2217(21)00611-1/sbref0040
http://arxiv.org/abs/2006.05608
http://refhub.elsevier.com/S0377-2217(21)00611-1/sbref0042
http://refhub.elsevier.com/S0377-2217(21)00611-1/sbref0042
http://refhub.elsevier.com/S0377-2217(21)00611-1/sbref0043
http://refhub.elsevier.com/S0377-2217(21)00611-1/sbref0043
http://refhub.elsevier.com/S0377-2217(21)00611-1/sbref0044
http://refhub.elsevier.com/S0377-2217(21)00611-1/sbref0044
http://refhub.elsevier.com/S0377-2217(21)00611-1/sbref0044
http://refhub.elsevier.com/S0377-2217(21)00611-1/sbref0044
http://refhub.elsevier.com/S0377-2217(21)00611-1/sbref0044
http://refhub.elsevier.com/S0377-2217(21)00611-1/sbref0044
http://refhub.elsevier.com/S0377-2217(21)00611-1/sbref0044
http://refhub.elsevier.com/S0377-2217(21)00611-1/sbref0044
http://arxiv.org/abs/1502.05477
http://arxiv.org/abs/1506.02438
http://arxiv.org/abs/1707.06347
http://refhub.elsevier.com/S0377-2217(21)00611-1/sbref0048
http://refhub.elsevier.com/S0377-2217(21)00611-1/sbref0048
http://refhub.elsevier.com/S0377-2217(21)00611-1/sbref0048
http://refhub.elsevier.com/S0377-2217(21)00611-1/sbref0048
http://refhub.elsevier.com/S0377-2217(21)00611-1/sbref0048
http://refhub.elsevier.com/S0377-2217(21)00611-1/sbref0048
http://refhub.elsevier.com/S0377-2217(21)00611-1/sbref0048
http://refhub.elsevier.com/S0377-2217(21)00611-1/sbref0048
http://refhub.elsevier.com/S0377-2217(21)00611-1/sbref0049
http://refhub.elsevier.com/S0377-2217(21)00611-1/sbref0049
http://refhub.elsevier.com/S0377-2217(21)00611-1/sbref0050
http://refhub.elsevier.com/S0377-2217(21)00611-1/sbref0050
http://refhub.elsevier.com/S0377-2217(21)00611-1/sbref0050
http://refhub.elsevier.com/S0377-2217(21)00611-1/sbref0050
http://refhub.elsevier.com/S0377-2217(21)00611-1/sbref0050
http://refhub.elsevier.com/S0377-2217(21)00611-1/sbref0051
http://refhub.elsevier.com/S0377-2217(21)00611-1/sbref0051
http://refhub.elsevier.com/S0377-2217(21)00611-1/sbref0051
http://refhub.elsevier.com/S0377-2217(21)00611-1/sbref0051
http://refhub.elsevier.com/S0377-2217(21)00611-1/sbref0051
http://refhub.elsevier.com/S0377-2217(21)00611-1/sbref0052
http://refhub.elsevier.com/S0377-2217(21)00611-1/sbref0052
http://refhub.elsevier.com/S0377-2217(21)00611-1/sbref0052
http://refhub.elsevier.com/S0377-2217(21)00611-1/sbref0052
http://refhub.elsevier.com/S0377-2217(21)00611-1/sbref0053
http://refhub.elsevier.com/S0377-2217(21)00611-1/sbref0053
http://refhub.elsevier.com/S0377-2217(21)00611-1/sbref0053
http://refhub.elsevier.com/S0377-2217(21)00611-1/sbref0053
http://refhub.elsevier.com/S0377-2217(21)00611-1/sbref0053
http://refhub.elsevier.com/S0377-2217(21)00611-1/sbref0053
http://refhub.elsevier.com/S0377-2217(21)00611-1/sbref0054
http://refhub.elsevier.com/S0377-2217(21)00611-1/sbref0054
http://refhub.elsevier.com/S0377-2217(21)00611-1/sbref0055
http://refhub.elsevier.com/S0377-2217(21)00611-1/sbref0055
http://refhub.elsevier.com/S0377-2217(21)00611-1/sbref0056
http://refhub.elsevier.com/S0377-2217(21)00611-1/sbref0056
http://refhub.elsevier.com/S0377-2217(21)00611-1/sbref0056
http://refhub.elsevier.com/S0377-2217(21)00611-1/sbref0056
http://refhub.elsevier.com/S0377-2217(21)00611-1/sbref0057
http://refhub.elsevier.com/S0377-2217(21)00611-1/sbref0057
http://refhub.elsevier.com/S0377-2217(21)00611-1/sbref0057
http://refhub.elsevier.com/S0377-2217(21)00611-1/sbref0057
http://refhub.elsevier.com/S0377-2217(21)00611-1/sbref0057
http://refhub.elsevier.com/S0377-2217(21)00611-1/sbref0057
http://refhub.elsevier.com/S0377-2217(21)00611-1/sbref0058
http://refhub.elsevier.com/S0377-2217(21)00611-1/sbref0058
http://refhub.elsevier.com/S0377-2217(21)00611-1/sbref0058
http://refhub.elsevier.com/S0377-2217(21)00611-1/sbref0058
http://refhub.elsevier.com/S0377-2217(21)00611-1/sbref0058
http://refhub.elsevier.com/S0377-2217(21)00611-1/sbref0059
http://refhub.elsevier.com/S0377-2217(21)00611-1/sbref0059
http://refhub.elsevier.com/S0377-2217(21)00611-1/sbref0060
http://refhub.elsevier.com/S0377-2217(21)00611-1/sbref0060
http://refhub.elsevier.com/S0377-2217(21)00611-1/sbref0061
http://refhub.elsevier.com/S0377-2217(21)00611-1/sbref0061

	Deep reinforcement learning for inventory control: A roadmap
	1 Introduction
	2 Markov decision problems and neural networks
	2.1 Markov decision processes to optimize inventory control
	2.2 The use of neural networks to solve MDPs

	3 How to develop a DRL algorithm?
	3.1 Offline versus online
	3.2 Model-free versus model-based
	3.3 Exploration versus exploitation
	3.4 On-policy versus off-policy
	3.5 The role of the neural network
	3.5.1 Value-based
	3.5.2 Policy-based
	3.5.3 Actor-critics and other hybrid techniques

	4 Avenues for future research
	4.1 DRL for data-driven inventory control
	4.2 Blending numerical and analytical approaches to optimize inventory policies
	4.3 Scalability of DRL algorithms

	5 Conclusion
	References

