

BTech: Electrical Engineering IIT Roorkee (2014)

MTech: Power **Electronics and Power System**

IIT Bombay (2018)

Doctoral Researcher: **Electrical** Engineering KU Leuven (Sept 2019 onwards)

System Operator at an HVDC s/s

Power Grid Corporation of India Ltd (2016)

Research Assistant

Michigan Tech (2019)

Michigan Tech

Motivation:

 300-> 450 GW off offshore wind to be installed by 2050

North Sea: 200GW by 2050

We need to connect 200 GW from the north sea

→ Assume 5 GW links

Robust and secure transmission network expansion planning with HVDC grids

- Long-term view → 30-50 years
- Uncertainty
 generation, demand, investment, technology etc.
- High dimensionality → millions of constraints and variables, many of them binary

Transmission Network Expansion Planning

- Overhead lines or under ground/ sub sea cables
- HVDC configurations:
 - Monopolar (symmetric/asymmetric), bipolar, metallic return or ground return etc.
- Additional resources to control the voltage and power flow in the network

• A lot of uncertainties are involved: Deterministic approach not sufficient

HVDC

Grids

HVDC grid configurations

Fig: Symmetrical monopolar HVDC grid

Fig: Bipolar HVDC grid

Fig: Mixed configurations

Unbalance in DC grids

 As of now DC side is always considered to be balanced (symmetric) → same in future?

- Single pole outage?
- Monopolar tapping or a bipolar backbone:
 Offshore wind
- Operating mixed configurations causes unbalances in the DC orid

Is it beneficial to build and operate such a system?

Building blocks:

Unbalanced DC grid model: $U_i = U_i^{mag} \angle \theta_i$

- DC buses → x3 number variables and constraints
- DC branches → x2 or x3 number of variables and constraints
- DC converters → x2 variables and constraints

 AC Grid

AC/DC Converter station

DC grid

Takeaways from the unbalanced OPF model:

Key features of the model:

- Explicit modelling of metallic return conductor
- Current-Voltage (I-V) model is implemented for HVDC side: because the common Power-Voltage (P-V) models suffers from numerical instability.

Key observations:

- Power flow through the two poles of a bipolar converter can differ not only in magnitude but also in sign (direction) i.e. "converter loop flows" in extreme cases
- Grounding and metallic return resistance have significant effect on the power flow due to voltage increase in single poles with high unbalance

DC Bus 4

DC Bus 2

Incorporating N-1 security: SCOPF

ref: reference state

ps: preventive state

cs: corrective state

o: contingency state

- All HVDC lines and converters → Bipolar configuration
- 11 HVDC line and 9 converters
- 17 conventional and 3 wind generators (2 onshore and 1 offshore)
- The offshore wind station:
 - AC bus no. 67
 - Converter no. 9

Key observations from the SCOPF results:

- Operating a bipolar HVDC grid in unbalanced manner in case of single pole outage contingencies, reduces the redispatch cost.
- Exact amount of the benefits depends on the particular contingencies.
- Example test case (with three contingencies): redispatch cost with the unbalanced operation is almost half compared to when only balanced operation is allowed.
- The set points for positive and negative poles of the same converter can vary significantly under different contingencies.

Conclusions

- An optimal power flow (OPF) model for unbalanced operation of HVDC grids is introduced using a multi-conductor representation of the DC grid.
- The OPF model is extended to incorporate N-1 security criteria resulting security constrained OPF (SCOPF) model.
- The unbalanced operation of the HVDC grid under contingency can have significant savings in operational costs due to utilization of HVDC flexibility.
- Future work → optimal design of mixed HVDC configurations.

Thank you for your attention!

With the support of the Energy Transition Fund

