
���������	��
����������
���������
�����
��������������

FACULTEIT INGENIEURSWETENSCHAPPEN

DEPARTEMENT COMPUTERWETENSCHAPPEN

AFDELING INFORMATICA

Celestijnenlaan 200 A — B-3001 Leuven

��� �"!$#�%�&('*)+)-,�%�)*'�.-%0/21435,�%�#6'�.-17�839'-#�#�%0':,�3;143<)

Promotor:

Prof. Dr. ir. H. BLOCKEEL

Proefschrift voorgedragen tot

het behalen van het doctoraat

in de ingenieurswetenschappen

door

=?>A@ B CD>�E6FHGJI

Maart 2007

���������	��
����������
���������
�����
��������������

FACULTEIT INGENIEURSWETENSCHAPPEN

DEPARTEMENT COMPUTERWETENSCHAPPEN

AFDELING INFORMATICA

Celestijnenlaan 200 A — B-3001 Leuven

��� �"!$#�%�&('*)+)-,�%�)*'�.-%0/21435,�%�#6'�.-17�839'-#�#�%0':,�3;143<)

Examencommissie:

Prof. Dr. ir. H. Van Brussel, voorzitter

Prof. Dr. ir. H. Blockeel, promotor

Prof. Dr. ir. M. Bruynooghe, assessor

Prof. Dr. ir. D. Roose, assessor

Prof. Dr. S. Džeroski

(Institut Jožef Stefan, Slovenië)

Prof. Dr. S. Kramer

(Technischen Universität München, Duitsland)

Dr. A. Knobbe

(Universiteit Utrecht, Nederland)

Proefschrift voorgedragen tot

het behalen van het doctoraat

in de ingenieurswetenschappen

door

=?>A@ B CD>�E6FHGJI

UDC 681.3∗I26

Maart 2007

c©Katholieke Universiteit Leuven – Faculteit Ingenieurswetenschappen
Arenbergkasteel, B-3001 Heverlee (Belgium)

Alle rechten voorbehouden. Niets uit deze uitgave mag worden vermenigvuldigd
en/of openbaar gemaakt worden door middel van druk, fotocopie, microfilm,
elektronisch of op welke andere wijze ook zonder voorafgaande schriftelijke toe-
stemming van de uitgever.

All rights reserved. No part of the publication may be reproduced in any form by
print, photoprint, microfilm or any other means without written permission from
the publisher.

D/2007/7515/26
ISBN 978–90–5682–792–2

Beknopte samenvatting

Relationele leertechnieken leren patronen uit relationele gegevensbanken, die
gewoonlijk uit meerdere tabellen bestaan, die met elkaar gerelateerd zijn. Deze
relaties kunnen bijvoorbeeld een één-op-veel of veel-op-veel cardinaliteitsver-
houding hebben. Een voorbeeld waarvoor een predictie gemaakt moet worden
kan dus gerelateerd zijn aan een verzameling objecten die mogelijk relevant zijn
voor de predictie. Bestaande relationele leermethoden behandelen deze verza-
melingen op één van volgende manieren: door het opleggen van condities aan de
elementen in de verzameling of door het gebruik van aggregaatsfuncties om ze
samen te vatten. Bestaande methoden zijn niet in staat om beide benaderingen
te combineren, waardoor ze bepaalde patronen niet kunnen leren. Het belan-
grijkste doel van dit eindwerk is het combineren van beide benaderingen, dus
het aggregeren over een deelverzameling van elementen die aan een specifieke
selectieconditie voldoen.

Deze combinatie van aggregaten en selecties brengt verscheidene moeilijkhe-
den met zich mee. Ten eerste wordt de zoekruimte substantieel uitgebreid en
ten tweede is de algemeen-naar-specifiek ordening van de hypothesen, die veron-
dersteld wordt door veel relationele leersystemen, geschonden. Dit impliceert
dat men, gebruik makende van klassieke verfijningsoperatoren, ofwel efficiëntie
ofwel volledigheid moet opgeven bij het doorzoeken van de hypotheseruimte.
In dit werk ontwikkelen we een algemeen bruikbaar verfijningsraamwerk dat
de volledige zoekruimte beschouwt en deze in een algemeen-naar-specifieke, en
dus efficiënte, manier doorloopt.

Complexe aggregaten worden ingebouwd in een bestaand relationeel leersys-
teem dat beslissingsbomen construeert. We argumenteren dat de algemeenhei-
dsordening van de zoekruimte in deze context niet geschonden kan worden, en
dat bijgevolg klassieke verfijningsoperatoren gebruikt kunnen worden. Om de
efficiëntie te verhogen worden twee technieken voorgesteld: een toepassing van
het voorgestelde verfijningsraamwerk en een opwaardering van het relationeel
beslissingsboomleeralgoritme naar een systeem dat relationele gerandomiseerde
bossen leert.

Het gebruik van complexe aggregaten wordt ook bestudeerd in het conse-
quent van een hypothese. Meerbepaald onderzoeken we het gebruik van com-
plexe aggregaten in de lineaire modellen die gebouwd worden in de bladeren
van relationele modelbomen. Daarvoor wordt het relationele beslissingsboom-
leeralgoritme uitgebreid om modelbomen te leren. De belangrijkste contributie
hierbij is het ontwikkelen van een efficiënte heuristiekfunctie die geschikt is voor
het leren van modelbomen.

Tenslotte wordt het gebruik van complexe aggregaten geëvalueerd in twee
toepassingen.

Abstract

In relational learning one learns patterns from relational databases, which usu-
ally contain multiple tables that are interconnected via relations. These re-
lations may be of one-to-many or many-to-many cardinality ratios. Thus, an
example for which a prediction is to be given may be related to a set of ob-
jects that are possibly relevant for that prediction. Relational classifiers differ
with respect to how they handle these sets: some use properties of the set as
a whole (using aggregation), some refer to properties of specific individuals of
the set, however, most classifiers do not combine both. This imposes an unde-
sirable bias on these learners. This dissertation describes a learning approach
that avoids this bias, by using complex aggregates, i.e., aggregates that impose
selection conditions on the set to aggregate on.

This combination of aggregates and selections presents several difficulties.
First, the search space is substantially increased, and second, the generality
order of the hypotheses that is assumed by many relational learners is violated.
This implies that one either has to give up on efficiency or on completeness
when searching the hypothesis space using classical refinement operators. We
develop a general refinement framework that considers the complete search
space, and traverses it in a general-to-specific, hence efficient, way.

Complex aggregates are included in an existing relational learner that con-
structs relational decision trees. We argue that in this context, the generality
ordering can not be violated, and classical refinement operators can be applied.
To improve efficiency, we present two techniques: an application of the de-
veloped refinement framework and an upgrade of the relational decision tree
algorithm to a relational random forest inducer.

The use of complex aggregates is also studied in the consequent of a hypoth-
esis. More precisely, we investigate the use of complex aggregates in the linear
models built by a relational model tree learner. This involves upgrading the
relational decision tree algorithm to a relational model tree learning system.
The main contribution in this work is the development of an efficient heuristic
function suitable for learning model trees.

Finally, the use of complex aggregates is evaluated in two real life applica-
tions.

Acknowledgements

I would like to express my gratitude to all people who have made this great
Ph.D. adventure possible.

First and foremost, I would like to thank my supervisor prof. Hendrik Bloc-
keel. I am grateful for the opportunity he gave me to start a Ph.D. in the
machine learning group. I very much appreciate his knowledge and enthusi-
asm about machine learning. Whenever the results were less encouraging, a
discussion with Hendrik gave me a new energy boost to go on. I also thank
him for proofreading this text over and over again and for suggesting many
improvements. I am still amazed about his punctuality to provide feedback on
papers or on any other technical text. I have enjoyed many great experiences
with Hendrik, also after work. I remember a walk to a very charming tea house
in the middle of nowhere at Lake Louise in Canada (with an over-enthusiastic
taxi driver to take us there), and a safari-trip together with other colleagues in
South-Africa.

I am grateful to prof. Maurice Bruynooghe and prof. Dirk Roose for being
in my doctoral committee and for providing valuable comments on this text.
I especially thank Maurice, who was also my supervisor at the start of my
Ph.D. and who was always there to advise me. I would like to thank prof. Sašo
Džeroski, prof. Stefan Kramer, and dr. Arno Knobbe for accepting to be mem-
bers of my jury and prof. Van Brussel for chairing the jury. A special word
of thanks goes to Sašo. I will never forget our first meeting. It was at ECML
2003 and he told me to pay close attention to Leo Breiman’s invited talk about
random forests, because “he had an idea”. When I wanted to discuss this with
him afterwards, he told me to come and find him later for a swim in the sea.
So, our first discussion actually took place in the Adriatic Sea, at the coast of
Cavtat, Croatia. Since then he has been like an extra supervisor to me. During
his frequent visits to Leuven, he always made time to discuss research, and
came up with many great ideas.

A dissertation is usually not made by only one person. Therefore, I would
like to thank all my co-authors without whom many parts of this text would
not have been possible: Aneta Ivanovska, Anneleen Van Assche, Hendrik Bloc-
keel, Jan Ramon, Jan Struyf, Sašo Džeroski, Tom Croonenborghs, and Werner
Uwents.

I gratefully acknowledge the financial support of the Fund for Scientific Re-
search of Flanders (FWO Vlaanderen) and the GOA on Inductive Knowledge
Bases.

vii

Acknowledgements

The people that are responsible for a fantastic work climate are my colleagues
from the machine learning group. Since lately the group expands faster than
I can get to know everyone, I can not thank them all. However, a few people
deserve a special word of thanks. First there is Anneleen, who started working
at the machine learning group together with me and has been a great colleague
ever since. We have had many enjoying collaborations and also had fun in less
work related things, such as in discovering Europe and the rest of the world.
Then there is Stefan, who, together with Anneleen, has been my office mate for
the last 4.5 years. I especially thank him for the great salsa lessons he teaches
every week, which have been a welcome distraction for me the last few months.
Then there are Joaquin and Werner, who make up the rest of the 03.46 team
and contribute to the great atmosphere in the office. The two people without
whom this Ph.D. would have taken many more years to get finished are the
two Jans. I thank them for patiently answering my endless stream of ACE-
related questions and for providing feedback or suggesting interesting ideas for
my research.

I am grateful to my friends in Leuven and at home for the many enjoying
evenings we have, far away from complex aggregates and ILP clauses.

I would like to express my deepest gratitude to my mom and dad, for their
love and support, for their encouragement, and for making my weekends at
home a pleasure to look forward to. I also thank Ares’s parents Dit and Luc, and
Eris and David (who would have thought that my master’s thesis companion
would become my brother-in-law?) for their support and interest in my work.

I saved the last “thank you” for the most important person in my life. I
would like to thank him especially for his support during the last half year. I
am very lucky to have a partner who did most of the housekeeping, helped me
with technical details about LATEX, listened to my complaints, and dragged me
away from my desk every now and then, all this while being confronted with
writing his own Ph.D. Thank you, Ares.

Celine Vens
Heverlee, March 2007

viii

Contents

Acknowledgements vii

Contents ix

List of Figures xi

List of Tables xiii

1 Introduction 1
1.1 Context . 1

1.1.1 Artificial intelligence . 1
1.1.2 Machine learning . 2
1.1.3 (Relational) data mining and inductive logic programming 3

1.2 Motivation and contributions 4
1.3 Structure of the text . 5
1.4 Bibliographical note . 6

2 Background 9
2.1 Knowledge discovery in databases and data mining 9
2.2 Patterns and their learning algorithms 11

2.2.1 Linear equations . 12
2.2.2 Decision trees . 13

2.3 Relational data mining and inductive logic programming 15
2.3.1 Relational data . 16
2.3.2 Propositionalization . 18
2.3.3 Relational data mining and inductive logic programming 20

2.4 Using background information in relational learning 30

3 Combining Aggregates and Selections 33
3.1 Introduction . 33
3.2 Related work . 34
3.3 Preliminaries . 36

3.3.1 Complex aggregate conditions in ILP: syntax 36
3.3.2 Complex aggregate conditions in ILP: semantics 38
3.3.3 θ-subsumption for clauses with aggregates 38

ix

Contents

3.3.4 Specialization and generalization 40
3.4 Refining clauses with complex aggregates 40

3.4.1 The search space explodes 41
3.4.2 Semantics of the aggregate function 42
3.4.3 Monotonicity . 46

3.5 Conclusion . 57

4 Adding Complex Aggregates to First Order Decision Trees 59
4.1 Introduction . 59
4.2 Tilde: a first order decision tree learner 59
4.3 Adding complex aggregates to Tilde 61

4.3.1 Refining an existing aggregate condition 62
4.3.2 Directly inserting a refined aggregate condition 65

4.4 Improving efficiency . 66
4.4.1 Random forests . 67
4.4.2 Structuring the aggregate space 72

4.5 Dealing with empty sets . 75
4.6 Experiments . 80

4.6.1 Datasets . 80
4.6.2 Experimental setup . 82
4.6.3 Experimental results . 82

4.7 Conclusion . 91

5 Constructing Predictions with Complex Aggregates 93
5.1 Introduction . 93
5.2 Related work . 94
5.3 Finding a suitable heuristic for learning model trees 96

5.3.1 The variance based approach 96
5.3.2 More complex approaches 99
5.3.3 A simple linear regression based heuristic 103
5.3.4 Experiments . 106

5.4 Upgrading Mauve to relational learning 118
5.4.1 Adapting Tilde-RT’s heuristic function. 121
5.4.2 Adapting Tilde-RT’s predictive function. 121
5.4.3 Dealing with global effects. 122
5.4.4 Stop criterion. 122
5.4.5 Undefined attributes. 123
5.4.6 Comparison with Mr-Smoti. 125

5.5 Experiments . 126
5.5.1 Datasets . 126
5.5.2 Experimental setup . 127
5.5.3 Experimental results . 128

5.6 Conclusion . 129

x

Contents

6 Applications 133
6.1 Introduction . 133
6.2 An agricultural application . 133

6.2.1 Problem description . 133
6.2.2 Dataset . 135
6.2.3 The ILP representation 136
6.2.4 Experiments . 137
6.2.5 Summary . 141

6.3 A biological application . 142
6.3.1 Problem description . 142
6.3.2 Propositionalization . 144
6.3.3 Predictive clustering trees 146
6.3.4 Experiments . 146
6.3.5 Summary . 148

6.4 Conclusion . 148

7 Conclusions 151
7.1 Summary . 151

7.1.1 Combining aggregate functions and selection conditions 151
7.1.2 Learning trees with complex aggregate conditions 152
7.1.3 Using complex aggregates in prediction functions 153
7.1.4 Applications of complex aggregates 154

7.2 Further work . 154
7.2.1 Combining aggregates and selections 154
7.2.2 Finding suitable threshold values 155

Bibliography 157

Index 167

Publication List 169

Biography 173

xi

List of Figures

1.1 Student restaurant example . 3

2.1 Spending money example . 11
2.2 Classification tree for the Spending money example 13
2.3 ER-diagram of the Account example 17
2.4 Extension of the Account database 17
2.5 ER diagram of the Mutagenesis example 18

3.1 Monotonicity Properties of Aggregate Conditions 51
3.2 Refinement cubes for the generalized averages 53
3.3 Refinement cubes for the generalized sums 54
3.4 Combined refinement cubes . 55
3.5 Example of refinements by the cube for the generalized sums . 56

4.1 Candidate generation in Tilde 71
4.2 Query pack in Tilde . 74
4.3 Comparison between the query pack structures 77
4.4 Tree for Financial with 100% accuracy 84

5.1 Optimal split point for a variance based heuristic function . . . 98
5.2 Illustration of the variance based heuristic function 100
5.3 Learning a piecewise linear function of one variable 107
5.4 Learning a piecewise linear function of two variables 108
5.5 Summary of the comparison of different model tree inducers . . 119
5.6 Target function for two synthetic datasets 128
5.7 Resulting tree for the MassSpectrogram dataset. 129

6.1 GeneSys: input and output variables 136
6.2 Large-risk field plan . 137
6.3 Tree with target information for the contamination problem . . 140
6.4 A part of the hierarchical FunCat classification scheme 142
6.5 PCT for the gene function prediction of yeast 147

xiii

List of Tables

2.1 A generic TDIDT algorithm . 14
2.2 Logic program representation of the Account database 23
2.3 Tilde’s language bias for the Account example 28

3.1 Tilde’s language bias for the Account example repeated 42

4.1 Tilde algorithm for first order logical decision tree induction . 60
4.2 Advanced language bias for the Account example 62
4.3 Refinement operator based on α-subsumption (RA) 64
4.4 Complex aggregate condition refinement example 65
4.5 Refinement operator based on α-subsumption (LA) 66
4.6 Algorithm for first order random forest induction 69
4.7 Refinement operator based on µ-subsumption 76
4.8 Dealing with undefined aggregate conditions 79
4.9 Results for different levels of aggregation (Mutagenesis) 83
4.10 Results for different levels of aggregation (Diterpenes) 83
4.11 Results for different levels of aggregation (Financial) 84
4.12 Results for different levels of aggregation (Trains) 86
4.13 Induction times for Tilde-α and Tilde-µ (Mutagenesis) . . . 86
4.14 Induction times for Tilde-α and Tilde-µ (Diterpenes) 87
4.15 Induction times for Tilde-α and Tilde-µ (Financial) 87
4.16 Induction times for Forf-LA (Mutagenesis) 87
4.17 Induction times for Forf-LA (Diterpenes) 88
4.18 Induction times for Forf-LA (Financial) 88
4.19 Accuracy and model size results for Forf-LA (Mutagenesis) . 89
4.20 Accuracy and model size results for Forf-LA (Diterpenes) . . 89
4.21 Accuracy and model size results for Forf-LA (Financial) . . . 89
4.22 Accuracy compared to other systems (Mutagenesis) 90
4.23 Accuracy compared to other systems (Diterpenes) 91
4.24 Accuracy compared to other systems (Financial) 91

5.1 M5’ instantiation of TDIDT 97
5.2 Retis instantiation of TDIDT 101
5.3 Treed Regression instantiation of TDIDT 102

xv

List of Tables

5.4 Mauve instantiation of TDIDT 104
5.5 Predictive accuracy for synthetic datasets 108
5.6 Tree size and induction times for synthetic datasets 109
5.7 Description of real world data sets 110
5.8 Accuracy for real world data sets 111
5.9 Size and induction times for real world data sets 111
5.10 Summary of the comparison . 111
5.11 Accuracy for real world data sets with optimal pruning factor . 112
5.12 Model size for real world data sets with optimal pruning factor 113
5.13 Summary of the comparison for optimal pruning factor 113
5.14 Accuracy for real world data sets when smoothing is used . . . 114
5.15 Summary of the comparison for smoothing 114
5.16 Accuracy for the different systems 116
5.17 Number of leaves for the different systems 117
5.18 Number of parameters for the different systems 117
5.19 Total induction time used for the different systems 118
5.20 Induction time for growing the tree for the different systems . . 120
5.21 Algorithm for first order model tree induction 124
5.22 Results for relational (model) tree learners (Mutagenesis) . . . 130
5.23 Results for relational (model) tree learners (other datasets) . . 131

6.1 Representation of the first example in the GeneSys dataset . . 138
6.2 General background predicates for the GeneSys dataset 138
6.3 Experimental results on the GeneSys dataset 140
6.4 Results for different F values on the Yeast dataset 147
6.5 Prior probabilities and precision on the Yeast dataset 148

xvi

Chapter 1

Introduction

In this chapter we present an overview of this work and motivate it within
the context of several scientific fields. The work is mainly situated in the
fields of relational data mining and inductive logic programming. We begin
this dissertation by giving an introduction to these domains, starting from the
more general field of artificial intelligence, and passing through its sub-domain
of machine learning.

1.1 Context

1.1.1 Artificial intelligence

For the general public, artificial intelligence (AI) is most probably known from
some of its successful applications, such as the Deep Blue chess computer, or
from science fiction movies, such as Bicentennial Man (1999) or more recently I
Robot (2004), where robots show intelligent behaviour. However, AI has more
applications, which are present in every-day life. For example, e-mail spam
filters, the behaviour of characters in video games, the personalized results
returned by Internet search engines, or the handwriting recognition component
of personal digital assistants (PDA’s) all involve AI. As omnipresent as AI may
be, it is hard to define the concept exactly, which is illustrated by the fact that
definitions abound. Therefore, we provide the intuitive definition given by John
McCarthy, considered as the father of AI, as an answer on the question “What
is AI?” in the frequently asked questions section of his website1.

Definition 1.1 (Artificial Intelligence) [Artificial intelligence] is the sci-
ence and engineering of making intelligent machines, especially intelligent com-
puter programs.

The concept of intelligence itself also has numerous definitions, which seem to
agree that one of the main characteristics of intelligent behaviour is the ability
to learn from experience.

The term artificial intelligence dates back to 1956, when it was introduced at
the Dartmouth Summer Research Conference on Artificial Intelligence, which

1http://www-formal.stanford.edu/jmc/whatisai.html

1

Chapter 1 Introduction

was organized by John McCarthy, Marvin Minsky, Nathan Rochester and
Claude Shannon. The conference lasted for a month and was essentially a
brainstorming session to proceed on the basis of the conjecture that every aspect
of learning or any other feature of intelligence can in principle be so precisely
described that a machine can be made to simulate it (McCarthy et al. 1955).

Last summer the field of AI celebrated its 50th anniversary with a confer-
ence commemorating the founding Dartmouth College. Also in Belgium, a
symposium was organized last November, emphasizing the most influential AI
realizations in Flanders. Interestingly, two of the ten talks were devoted to the
field of machine learning, which brings us to our next topic.

1.1.2 Machine learning

Machine learning is the sub-domain of AI concerned with developing algorithms
and techniques that allow computer programs to learn. While the concept of
learning is difficult to define, Langley (1996) provides the following practical
definition.

Definition 1.2 (Learning) Learning is the improvement of performance in
some environment through the acquisition of knowledge resulting from experi-
ence in that environment.

Since the first workshop on machine learning, which was held in 1980 and
was attended by some 30 participants, the field has considerably grown. For ex-
ample, in 2006 the 23rd International Conference on Machine Learning hosted
140 technical presentations. Given the huge amount of researchers in the field,
it should come as no surprise that the research domain knows several subfields
that each has its own view on learning or focusses on particular learning tasks.
A significant part of the research in machine learning has been concerned with
extracting new knowledge out of available data, also called inductive learning.
The available data is most often represented as a table, where each row repre-
sents an example (data entity), and each column a property (called attribute)
of the example. If the aim of the learning task is to predict the value of one
specific attribute (called the target attribute), one speaks of predictive learn-
ing. If, on the other hand, the task is to provide general descriptions of the
examples, it is called descriptive learning.

Example 1.1 Consider the table in Fig. 1.1. It presents 7 examples in the con-
text of a university’s student restaurant. Each example represents a day and is
described by 4 attributes: the day of the week (Monday to Friday), the weather
that day (sunny or rainy), whether there was a party the night before, and
whether many students ate at the restaurant that day. If descriptive learning
techniques were applied to this dataset, they might come up with descriptions as
“on Fridays it always rains” or “on Thursdays many students eat at the restau-
rant”. If predictive learning algorithms were used to predict, e.g., the attribute

2

1.1 Context

STUDENT RESTAURANT
Day Of Week Weather Party Last Night Plates Sold

Monday sunny yes few
Wednesday sunny no many

Friday rainy no many
Wednesday sunny yes few
Thursday rainy no many

Friday rainy yes few
Monday rainy no few

Figure 1.1: Student restaurant example.

Plates Sold, the following property might be discovered: “on Mondays or on
days that had a party the night before, few students come to eat; on any other
day many students come to the restaurant”.

Often, one wants to learn descriptions of examples that are contained in a
large database, which brings us to the concept of data mining.

1.1.3 (Relational) data mining and inductive logic
programming

The field of data mining is concerned with finding generally valid regularities
(called patterns) in large databases. It is usually considered to be part of the
broader task of knowledge discovery in databases, which also encompasses the
tasks of data pre-processing and post-processing of the results.

Progress in computer technology has made generation and storage of data
easy and inexpensive, resulting in the availability of huge volumes of data about
various domains (e.g., finance, bio- and chemoinformatics, marketing and re-
tailing,. . .).

Example 1.2 Most supermarkets offer some kind of loyalty card or rewards
card to their customers. By presenting the card, the customer is typically
granted either a discount on the current purchase, or an amount of points
that can be collected for later purchases. Meanwhile, the store is entitled to
record the customer’s purchases and to use the stored information as part of its
marketing research.

The availability of such large volumes of data created a problem of how to make
use of this data. There is a great demand for powerful tools that turn the vast
amounts of data into useful and manageable knowledge. Therefore, the field
of data mining has gained considerable importance in business and scientific
applications.

3

Chapter 1 Introduction

Example 1.3 Let us return to the retailing example given in Ex. 1.2. The
large amounts of data recording the purchases of all customers in the loyalty
program allow the supermarket to extract valuable knowledge that can be used in
marketing strategies. For example, it may be found that if a customer buys beer
he is also likely to buy pizza. This regularity may be exploited by positioning
the beer and the pizza close together in the store in order to improve sales.

Traditional data mining algorithms require the data to reside in one table
and use ideas and techniques from the fields of statistics and machine learning
to extract valid patterns. In practice, however, this single-table assumption
turns out to be a limiting factor for many applications. Given the availability
of a large number of commercial relational database systems, more and more
data is stored in multiple, interconnected, tables. Whereas the first reaction
from the data mining community was to transform the data to fit in one table
and apply well-established existing algorithms (this approach is still an active
research topic), a new research area began to emerge where techniques were
developed to learn patterns directly from the relational data. An important
contribution to this topic was the development of Inductive Logic Program-
ming (ILP), a research field at the intersection of machine learning and logic
programming. Within ILP, the relational database as well as the learned pat-
terns are represented as first order logic programs, which makes it relatively
easy to express background knowledge, and provides an expressive, well under-
stood, and theoretically founded basis. It is exactly in this area of relational
learning and ILP that the research presented in this dissertation is situated.

1.2 Motivation and contributions

In relational learning one learns patterns from relational datasets, which usually
contain multiple tables that are interconnected via relations. These relations
may be of one-to-many or many-to-many cardinality ratios. Thus, an example
for which a prediction is to be given may be related to a set of objects that
are possibly relevant for that prediction. Current relational learners usually
handle these sets in one of two possible ways: by imposing conditions on the
elements that they contain or by using an aggregate function to summarize
them. The main topic of this thesis is the investigation of the combination of
both approaches, i.e., aggregating over a subset of elements that fulfil a spe-
cific condition. This combination of aggregates and selections presents several
difficulties, which are addressed in this work.

For implementing and testing the developed techniques in a practical system,
we used the pattern language of decision trees, mainly for two reasons:

• decision trees, together with rule sets, are amongst the most popular
patterns, mainly because of their easy interpretability, and

4

1.3 Structure of the text

• a relational decision tree learner, which is still a widely used ILP system
today, has been developed at our research group.

However, many of the developed techniques carry over to other patterns, such
as rule sets.

The main contributions of this dissertation can be summarized as follows:

• We propose complex aggregate conditions, which are a combination of
aggregates and selections, in the ILP framework. The classical ILP re-
finement operator that is used to search the space of possible hypotheses
is redefined to take into consideration complex aggregates. The main
problems of combining aggregates with selections are, first, a substantial
increase of the hypothesis space and, second, the violation of the gener-
ality order of the hypotheses assumed by the refinement operator.

• A general refinement framework for complex aggregate conditions is de-
veloped that solves the generality problem. The framework is applicable
to any relational learner that learns complex aggregates. Next to keep-
ing the generality order in the hypothesis space, the refinement operator
based on this framework can yield substantial efficiency improvements.

• The first order decision tree algorithm is upgraded to a random forest
inducer. Essentially, an ensemble of decision trees is constructed in which
only a sample of all possible tests is tried at each node. Random forests
provide a solution for the increase of the feature space and are able to lift
the predictive performance.

• We also propose to use complex aggregates to construct predictions in
the conclusion part of a hypothesis. More precisely, we investigate the
use of complex aggregates in the linear equations in the leaves of model
trees. For that purpose, the first order decision tree learner is upgraded
to a model tree induction system.

• An important contribution in the development of the first order model
tree learner is the design of a suitable heuristic function. For this purpose,
we first study existing heuristics, which are all either too expensive to
compute in our application or are not specifically targeted for predicting
linear equations. We propose a new heuristic function that overcomes
both deficiencies.

1.3 Structure of the text

In this chapter we have briefly outlined the context of this work. Chapter 2
provides a more in-depth explanation of the research field of data mining, its

5

Chapter 1 Introduction

sub-domain focussing on relational databases, and the related subject of in-
ductive logic programming. It describes the basic background and terminology
upon which the following, more technical, chapters are built.

Chapter 3 introduces complex aggregates. After redefining the classical
refinement operator used in ILP, problems are discussed that occur when refin-
ing clauses with complex aggregates. These problems are the explosion of the
search space considered at each refinement step, the semantics of the aggregate
functions, and the violations of the generality ordering underlying the refine-
ment operator. In order to solve this last problem, a new refinement operator
is proposed.

In Chapter 4 the complex aggregate conditions are integrated into a first
order decision tree learner. We explain that in this context, the generality
problem does not occur. Two techniques are presented to deal with the size of
the search space: the use of random forests in first order logic, and restructur-
ing the search space by making use of the refinement framework presented in
Chapter 3.

While in Chapters 3 and 4 the complex aggregates are used in the antecedent
(condition part) of a hypothesis, in Chapter 5 we investigate their use in the
consequent (conclusion part). This research is done in the context of first order
model trees. The first order decision tree algorithm is upgraded to learn model
trees that contain complex aggregates in the linear equations constructed at
their leaves. For this purpose, an efficient heuristic function is developed.

Chapter 6 discusses two applications in which complex aggregates are used
in real life problems. The first application deals with an agricultural dataset in
which the task is to predict the level of contamination with genetically modified
variants of an oilseed rape field. The second application discusses the task of
predicting gene function in the genome of baker’s or brewer’s yeast.

Finally, Chapter 7 presents general conclusions for this dissertation and
suggests a number of directions for future work.

1.4 Bibliographical note

Most parts of this work have been published before. The following list contains
the key articles. A complete publication list of the author can be found at the
end of this text (page 169).

• Introduction of complex aggregate conditions and development of a first
order random forest algorithm:

– A. Van Assche, C. Vens, H. Blockeel, and S. Džeroski, First order
random forests: Learning relational classifiers with complex aggre-
gates, Machine Learning 64, pp. 149-182, 2006.

• Development of a general refinement framework for complex aggregate
conditions:

6

1.4 Bibliographical note

– C. Vens, J. Ramon, and H. Blockeel, Refining aggregate conditions in
relational learning, Proceedings of European Conference on Princi-
ples and Practice of Knowledge Discovery in Database, Berlin, Ger-
many (Fürnkranz, J. and Scheffer, T. and Spiliopoulou, M., eds.),
pp. 383-394, 2006.

• Development of an efficient heuristic function for learning model trees:

– C. Vens, and H. Blockeel, A simple regression based heuristic for
learning model trees, Intelligent Data Analysis 10 (3), pp. 215-236,
2006.

• Development of a first order model tree learner that constructs linear
equations with complex aggregates in the leaves:

– C. Vens, J. Ramon, and H. Blockeel, Re-Mauve, a relational model
tree learner, ILP’06, 16th International Conference on Inductive
Logic Programming, Post-proceedings (Muggleton, S. and Otero,
R., eds.), accepted.

• The biological application:

– J. Struyf, C. Vens, T. Croonenborghs, S. Džeroski, and H. Blockeel,
Applying predictive clustering trees to the inductive logic program-
ming 2005 challenge data, Inductive Logic Programming, 15th In-
ternational Conference, ILP 2005, Late-Breaking Papers (Kramer,
S. and Pfahringer, B., eds.), pp. 111-116, 2005.

• The agricultural application:

– A. Ivanovska, C. Vens, and S. Džeroski, Using ILP to study the
presence of genetically modified variants in organic oil seed rape,
ILP’06, 16th International Conference on Inductive Logic Program-
ming, Short Papers (Muggleton, S. and Otero, R., eds.), pp. 107-109,
2006.

7

Chapter 2

Background

This chapter describes the basic fundamental background on which this work
is based. We start by introducing the research areas of knowledge discovery in
databases and data mining (Sect. 2.1). We describe what patterns in data are,
and discuss two popular forms, linear equations and decision trees, together
with methods for finding them in Sect. 2.2. In Sect. 2.3 we move from data
mining to relational data mining, covering concepts as propositionalization and
inductive logic programming. Section 2.4 focusses on the use of predictive at-
tributes in relational data mining and provides connections with the rest of the
thesis.

2.1 Knowledge discovery in databases and data
mining

Over the last decades many companies and organizations have generated large
amounts of data, stored in a database. Query languages like SQL can be used to
process the data, if the user knows what information he is looking for. However,
given the often massive datasets the user is faced with, new questions related
to making business decisions, predicting future gains given historical data,...
have naturally arisen, and can not be formulated by a specific query. This has
led to the emergence of a new research area known as knowledge discovery in
databases (KDD), defined as follows (Fayyad et al. 1996):

Definition 2.1 (Knowledge discovery in databases) Knowledge discove-
ry in databases is the non-trivial process of identifying valid, novel, potentially
useful, and ultimately understandable structure in data.

The process of KDD contains many steps, which are often iterated. The main
step in this process is data mining (Fayyad et al. 1996).

Definition 2.2 (Data mining) Data mining is a step in the KDD process
consisting of applying computational techniques that, under acceptable com-
putational efficiency limitations, produce a particular enumeration of patterns
over the data.

9

Chapter 2 Background

Other steps in KDD include data understanding, data preparation and evalu-
ation of the discovered structure. The whole process of KDD is described in
detail in the Cross Industry Standard Process for Data Mining (Chapman et al.
2000).

The term data used in the above definitions denotes a set of facts, also called
instances or examples. A dataset is often contained in a single table where each
row represents an example, and each column a property, called an attribute or
feature. An attribute is either nominal, when it takes values in a predefined
finite set of discrete values, or numeric, when it is continuous. This setting
where data resides in a single table is also referred to as attribute-value data
mining or propositional data mining . When data from more than one table
needs to be considered, we use the term relational data mining (see Sect. 2.3).

The central term in the definition of data mining is pattern. Frawley et al.
(1991) define a pattern in a dataset as a statement that describes relationships
in a subset of the dataset with some certainty, such that the statement is simpler
(in some sense) than the enumeration of all facts in the dataset. To find these
patterns, data mining algorithms are used. Many of them stem from the fields
of machine learning (Mitchell 1997) and statistics (Hastie et al. 2001). From
the viewpoint of machine learning, algorithms perform a search through some
hypothesis space, where a hypothesis corresponds to a pattern. Thus, we can
see data mining as searching a hypothesis space in order to learn interesting
patterns that are valid in the data (Džeroski 2001a).

There are two main data mining tasks. In predictive data mining one is
concerned with predicting the value of a distinguished attribute, called the
target attribute or simply the target. Thus, the N attributes in a dataset consist
of one target and N − 1 predictive attributes. If the target is nominal, it is also
called the class and the prediction task at hand is called classification. If, on the
other hand, the target is numeric, the task is called regression. In descriptive
data mining, on the other hand, there is no target attribute; all attributes play
the same role and the task is to find generally valid patterns. Examples are the
discovery of association rules (Agrawal et al. 1996), or clustering (Michalski
1987), which is concerned with partitioning the examples in similar subgroups.
In this text, we will mainly concentrate on prediction.

When a pattern is found, the next step is to determine the quality of it.
Usually the dataset is split in two parts: the training set is the part of the
data used to learn the patterns, and the rest, called the test set, is used to test
the validity of the patterns obtained. A frequently used ratio is employing two
thirds of the data for training and one third for testing. However, discarding
one third of the data from being used to learn the model can sometimes result
in inferior models. Therefore, a commonly used technique is to use all data
for learning a model and using cross validation to estimate the quality of the
model. Cross validation partitions the dataset in N equally sized folds (e.g.,
N = 10) and the learning process is repeated N times, each time using one
of the folds as test set and the remaining folds as training set. The resulting

10

2.2 Patterns and their learning algorithms

SPENDING MONEY
Name Age Gender Siblings Par Income Spending Money
Jimmy 15 male 2 48000 20
Kelly 17 female 0 45000 50
Andy 14 male 1 30000 5
Lenny 16 male 1 38000 35
Jenny 15 female 3 50000 25

Figure 2.1: Spending money example.

statistics are then averaged. For classification tasks the evaluation measure
takes into account the ratio of examples that are well classified, called the
(predictive) accuracy. For regression tasks, a frequently used measure is the
mean squared error: the average, calculated over all examples, of the squared
difference between the target value and the predicted value.

We illustrate the introduced terminology with an example.

Example 2.1 (Spending money) Consider a dataset that records informa-
tion about the amount of spending money a teenager receives from his parents.
The dataset is represented by a single table, which is shown in Fig. 2.1. There
are 6 attributes, of which Spending Money is the target. Since the target is
numeric, we have a regression problem. However, one could easily obtain a
classification problem by discretizing the target attribute into, e.g., the values
{low, medium, high}. The attribute Gender is a nominal attribute and takes
values in the set {male, female}, while Age, Siblings, and Parent Income are
numeric. The attribute Name is used as a key attribute, in order to identify
the examples, and hence does not play a role in prediction tasks.

2.2 Patterns and their learning algorithms

As discussed in the previous section, the task of data mining is to find patterns
that are valid in the data. There exist several forms of patterns, each having its
own set of learning algorithms. For example, in predictive data mining, patterns
can be linear equations, decision trees, predictive rules, probabilistic models
(e.g., bayesian models), artificial neural networks, support vector machines,
instance based models,... We discuss the first two in detail, because they will
be of particular interest in the rest of the text. For a discussion of the other
approaches we refer to Mitchell (1997), Witten and Frank (1999), or Witten
and Frank (2005).

11

Chapter 2 Background

2.2.1 Linear equations

The use of linear equations for prediction is probably the most widely used
statistical method in data mining. Linear equations take the form

Y = c0 + c1X1 + c2X2 + ... + cNXN

and predict a numeric value Y as a linear combination of predictive attributes
Xi. Hence, they can be used for performing regression tasks. The patterns are
sometimes referred to as linear regression models1.

An example of a linear regression model for the Spending money dataset
(Ex. 2.1) is

Sp Money = −221.89 + 16.17Age + 2.47Nb Siblings− 0.0001Parent Income

Linear equations represent hyperplanes in multi-dimensional spaces. In the
special case where only one predictive attribute is used, the equation can be
depicted as a straight line in a two-dimensional space. This kind of regression
model is called simple linear regression model, in contrast to multiple linear
regression models.

When employing a linear regression model for prediction, the task reduces
to finding suitable values for the coefficients ci. The most widely used method
for this purpose is to use the method of least squares, i.e., one tries to find the
set of coefficients C = (c0, ..., cN) that minimizes the squared error between
target value and predicted value, summed over all examples. More formally,
one searches for the optimal set of coefficients C∗, such that

C∗ = arg minC

∑

i (yi −
∑

j cjxij)
2

where C = (c0, ..., cN), yi is the target value for example i and xij is the value
for the j-th predictive attribute for example i (with xi0 = 1). In the case of
simple linear regression the coefficients c0 and c1 in the formula Y = c0 + c1X
are calculated as

c1 =
∑

i (xi − x)(yi − y) /
∑

i (xi − x)2

c0 = y − c1x

where x denotes the average value of the predictive attribute X and y the av-
erage value of the target Y . Also for multiple linear regression the method of
least squares can be applied. Note that in both cases, since the coefficients
can be calculated directly from a formula, no search through the space of pos-
sible equations takes place. In the case of multiple linear regression, the task

1When saying a model is linear, one actually refers to linearity in the parameters. For
example, the equation Y = c0 + c1Z2

1
+ c2log(Z2) is also a linear regression equation,

thus, in the equation above, the Xi can in fact be any function of the original predictive
attributes.

12

2.2 Patterns and their learning algorithms

age < 16

Parent Income < 40000

LOW MED

Nb Siblings ≤ 1

HIGH MED

Figure 2.2: Classification tree for the Spending money example.

of parameter estimation is often accompanied by the task of variable selec-
tion (Kohavi and John. 1997), to determine what attributes to include in the
equation.

While linear equations are mostly used for regression tasks, they can also
be employed for classification, using generalized linear models, e.g., logistic
regression (McLachlan 1992).

2.2.2 Decision trees

A decision tree is a tree-shaped hierarchical predictive model that can be used
both for classification and regression tasks. In the former case, the tree is called
a classification tree, in the latter case a regression tree. Each inner node of a
tree contains a test on one of the predictive attributes, and each leaf node yields
a prediction for the target attribute.

An example classification tree for the Spending money example (Ex. 2.1) is
given in Fig. 2.2. In this tree the target attribute Spending Money was dis-
cretized in the intervals [0, 15], [16, 30], and [30,∞] denoted by low, medium,
and high respectively.

Prediction for an unseen example is done by sorting the example down the
tree, starting at the root. Depending on the outcome of the test at each node,
either the left branch (the test succeeds) or the right branch (the test does not
succeed) is taken. Eventually, the example ends up in a leaf and the predicted
value is obtained. The tree depicted in Fig. 2.2 only contains tests on numeric
attributes. Tests on nominal attributes may have a branch for each possible
value (possibly resulting in non-binary trees) or may test whether the value for
the unseen example is element of a subset of the possible values, e.g., gender ∈
{female}.

Decision trees are among the most popular types of patterns used in data
mining. This is not surprising as they are easy to interpret by users. Also, de-
cision tree induction algorithms typically possess some nice properties (Kramer
and Widmer 2001):

• Low computational complexity: the induction of decision trees has a time

13

Chapter 2 Background

Table 2.1: A generic TDIDT algorithm.

procedure TDIDT (E: examples):
if stop criterion (E)
then return leaf(local model(E))
else

S := set of all possible splits
s∗ := arg maxs∈S quality(s, E)
P := partition induced on E by s∗

for all Pj in P:
Tj := grow tree(Pj)

return node(s∗,
⋃

j{(j, Tj)})

complexity linear in the number of examples.

• Effective handling of noise: sophisticated pruning techniques have been
developed for dealing with noise in the data.

• Well-understood theoretical basis: the basic characteristics of decision
tree induction algorithms are well understood.

Although decision tree induction algorithms have low computational complex-
ity, the general task of finding the smallest decision tree that fits a given dataset
is NP-hard (Zantema and Bodlaender 2000). Therefore, induction algorithms
use heuristic, usually greedy, search techniques to build the tree. Just as pre-
diction for an unseen example is done by sorting the example from the root
down to a leaf, also the tree building process usually starts at the root and
builds the tree in a top-down manner. This is called the Top Down Induction
of Decision Trees (TDIDT) approach, of which the algorithms CART (Breiman
et al. 1984) and C4.5 (Quinlan 1993) are popular implementations. A generic
variant of the TDIDT approach is shown in Table 2.1.

The method recursively partitions the examples such that maximally ho-
mogeneous (with respect to the target attribute) subsets are obtained, and
recursively re-applies this procedure on the subsets until a stop criterion holds
(e.g., all subsets are sufficiently homogeneous, or a predefined minimum num-
ber of examples in the leaf is reached). Thus, the main task is to decide which
split condition results in the best partitioning of the instances. An estimate
of the quality of a split is usually computed with a heuristic function, such as
information gain (Quinlan 1993) or gini-index (Breiman et al. 1984) in the case
of classification trees, or reduction of variance (Breiman et al. 1984) for regres-
sion trees. If the stop criterion holds, a leaf is constructed and a prediction
for the target attribute is given. For classification tasks the majority class of
the training instances resulting in the leaf is taken; for regression tasks their

14

2.3 Relational data mining and inductive logic programming

average target value. This procedure results in a greedy search for the best
decision tree.

Often it is hard to determine a good stop criterion for the growing phase:
stopping the growing phase too early may result in trees that are not able to
capture all relevant information in the data, whereas growing overly large trees
may lead to difficulties in the presence of noise in the data. In the last case,
we say the tree is overfitting the data: there may exist an alternative tree that
performs worse on the training set, but with better predictive performance on
the unseen test set. A successful approach to dealing with overfitting is to
grow an initial tree that is allowed to overfit the data and afterwards post-
prune the tree, i.e. cutting away nodes if the resulting pruned tree performs no
worse than the original one. Popular pruning techniques include reduced error
pruning (Quinlan 1988) and rule post pruning (Quinlan 1993).

2.3 Relational data mining and inductive logic

programming

In the previous section we have introduced the concepts of knowledge discov-
ery in databases and data mining and have described two kinds of patterns
together with their learning algorithms. Since these learning algorithms as-
sume that the input data is stored in a single table where each example is
represented by a fixed number of attributes, they are called attribute-value or
propositional (as the patterns found can be expressed in propositional logic)
techniques. Propositional data mining techniques are popular, mainly because
they are efficient, easy to use, and widely accessible. WEKA (Witten and Frank
1999), Orange (Demsar and Zupan 2004), and KDB2000 (Appice et al. 2002)
are only a few of the non-commercial, freely available data mining tools that let
the user play around and experiment with several learning techniques to mine
his data. In practice, however, the single-table assumption turns out to be a
limiting factor for many data mining tasks. Indeed, examples of data mining
problems that involve data residing in multiple related tables abound. For an
overview, see Džeroski (2001b). In Sect. 2.3.1 we present two such example data
mining tasks. These tasks can be solved in two ways: transforming the rela-
tional problem into a propositional form and applying a propositional learning
technique (Sect. 2.3.2), or tackling the problem in its original relational repre-
sentation using techniques from relational data mining (Sect. 2.3.3). Relational
data mining (Džeroski and Lavrač 2001b) is a sub-area of data mining that
looks for patterns that involve multiple related tables. A lot of relational data
mining algorithms come from the field of inductive logic programming, which
is also presented in Sect. 2.3.3.

15

Chapter 2 Background

2.3.1 Relational data

The data explored by relational data mining approaches typically resides in a
relational database. A relational database (Elmasri and Navathe 2004) consists
of several tables that are related to one another. Each table represents some
real world object or a relation between objects and has several attributes that
define properties of the data residing in the table. One of the attributes (or
a combination of several of them) forms the primary key, this means that
the value for this attribute is different for each row in the table. Tables are
interconnected via foreign key links. A foreign key is an attribute that takes
the value of a primary key of another table. Relationships between tables can
be of the following cardinality ratios: one-to-one, one-to-many, many-to-one,
and many-to-many.

When performing data mining on a relational database, one of the tables
contains the target attribute, this table is called the target table. The rows in
the target table represent the examples.

We discuss two examples that will be used to illustrate several techniques
throughout the text: a simple synthetic example called Account, and Mutagen-
esis, a well known relational dataset that is often used as benchmark for testing
relational data mining techniques.

Example 2.2 (Account) The ER (entity-relationship) diagram and an ex-
tension of the corresponding relational database schema of the synthetic Account
example are shown in Fig. 2.3 and Fig.2.4, respectively. The database consists
of three tables: Person, Account, and Transaction. A person is to be considered
as a bank customer for whom information on his personal accounts is stored. A
person is identified by a primary key named PersonID (e.g., his social security
number, or client number, or name). Further information stored about a per-
son is his age, and some non-specified target attribute (e.g., the chance that the
person will be interested in buying a particular stock option). The table Person
is thus the target table. A person can have 0 or more accounts, each having an
Id (account number), a type (savings or checkings), and a balance. For simplic-
ity, we assume that an account can have only one owner. For each account, all
transactions are saved. A transaction is described by a transactionID, a date,
a type (deposit or withdrawal), and an amount. The attribute AccountID in the
table Transaction is an example of a foreign key, since it points to the primary
key (AccountID) of the table Account.

Example 2.3 (Mutagenesis) The Mutagenesis dataset was introduced to the
ILP community by Srinivasan et al. (1996), and comes from the field of or-
ganic chemistry. The task is to predict mutagenicity of 230 nitro-aromatic
compounds. These compounds occur, for example, in automobile exhaust fumes.
Mutagenic compounds have often found to be carcinogenic and may cause dam-
age to DNA. For each compound, the molecular structure, in terms of atom

16

2.3 Relational data mining and inductive logic programming

PERSON
1 N

has ACCOUNT TRANSACTION
1 N

has

TransId

Type Amount

AccIdPersId

Type BalanceTarget Age

Figure 2.3: ER-diagram of the Account example.

PERSON ACCOUNT

PersId Age Target
john 24 positive
mary 27 negative
billy 25 negative

PersId AccId Type Balance
john 123456 checkings 100
john 987654 checkings 200
john 789123 savings 200
john 891234 savings 50
mary 567890 checkings 50
mary 345678 savings 250
billy 456789 checkings 150

TRANSACTION
AccId TransId Date Type Amount
123456 tr090 010706 withdrawal 50
123456 tr091 030706 deposit 30
987654 tr098 120706 deposit 70
789123 tr100 150706 withdrawal 100
789123 tr101 150706 deposit 80
567890 tr150 220706 withdrawal 20
567890 tr150 240706 deposit 40
456789 tr122 170706 deposit 50

Figure 2.4: Extension of the Account database.

17

Chapter 2 Background

MOLECULE
1 N

contains ATOM

N N
bond

Mutagenicity

MolId

AtomId Element

Charge

Type

Figure 2.5: ER diagram of the Mutagenesis example.

and bond connectivities, is stored. The corresponding ER diagram is shown
in Fig. 2.5 and results in three tables: Molecule (the target table), Atom, and
Bond. The first table stores the ID and target attribute for the 230 molecules.
The target can either be numeric: the logarithm of the mutagenicity level of the
compound, or nominal: positive if logarithm is positive and negative otherwise.
The atoms consist of an ID, an element (e.g., carbon, nitrogen,...), a type (e.g.,
aromatic carbon, aryl carbon,...) and a partial charge. The table Bond repre-
sents bonds between atoms. Each bond is identified by the two atoms it binds,
and its description also contains a type (e.g., aromatic, single, double,...).

In order to discover patterns in relational data, in general two strategies can
be taken. One can first transform the data into attribute-value format and
apply one of the many available propositional data mining techniques, or one
can learn patterns directly from the relational data, applying a relational data
mining technique. We discuss these two approaches in the next sections.

2.3.2 Propositionalization

Propositionalization approaches, sometimes called transformation based ap-
proaches, consist of two steps:

• transform the relational data into attribute-value format, i.e, into one
single table, and

• apply a propositional learning technique to this table.

Sometimes, a third step is considered:

• transform the obtained propositional patterns into relational patterns.

The propositional table is constructed by starting from the target table and
subsequently joining it with other tables, by following the foreign key links. If

18

2.3 Relational data mining and inductive logic programming

the relational data contains one-to-many or many-to-many relationships, more
than one row per example is obtained. In most systems, they are transformed
back to one row by summarizing methods, such as aggregate functions2.

Examples of early propositionalization systems are Linus (Lavrač et al. 1991;
Lavrač and Džeroski 1994) and its successor Dinus (Lavrač and Džeroski 1994).
They are not able to introduce non-determinate attributes in the universal ta-
ble. By non-determinate attributes we mean attributes that may have more
than one possible value for an example, due to one-to-many or many-to-many
relationships. For example, in the Account dataset, the attributes AccId, Type,
and Balance are non-determinate, because several values for them may corre-
spond to a given person.

We now discuss two different methods for summarizing non-determinate at-
tributes, such that one row per example is obtained and propositional learning
techniques can be applied. Kramer et al. (2001) describe how Linus can be ex-
tended to handle non-determinate attributes. Each non-determinate attribute
added to the propositionalized table involves checking the existence of some re-
lated entity with a certain property. For example, in the Account dataset such a
feature might check whether a savings account exists with balance greater than
500. Relaggs (Krogel and Wrobel 2001) and RollUp (Knobbe et al. 2001)
are propositionalization systems that use aggregate functions to summarize
non-determinate information. For example, one can include into the proposi-
tional table the average balance of a person’s accounts, the total number of
transactions of a person’s accounts,...

The advantages of propositionalization approaches can be summarized as
follows:

• existing reliable and efficient propositional learning techniques can be
used,

• methods for feature selection, meta learning, noise handling,... are di-
rectly applicable, and

• feature construction is decoupled from model construction.

The disadvantages include that

• the propositionalization step may require considerable time and effort,
and usually involves expensive joining of related tables,

• summarizing the propositional table such that only one row per example is
kept almost inevitably leads to a loss of information, (if one does not want
loss of information, usually a large amount of redundant data is generated;

2An exception is the system by Zucker and Ganascia (1998), in the context of concept
learning. A dataset of positive and negative examples is propositionalised. The task is
to find a description that covers at least one row in the universal table for each positive
example, and covers no rows for any of the negative examples.

19

Chapter 2 Background

De Raedt (1998) showed that in this case propositionalized feature spaces
can be exponential in the number of attributes of the original learning
problem), and

• application is limited to a restricted class of relational learning problems,
e.g., propositionalization can not deal with recursive relations (Džeroski
and Lavrač 2001a).

These disadvantages have lead to the development of techniques that learn
directly from relational data.

2.3.3 Relational data mining and inductive logic programming

Relational data mining techniques learn patterns from relational data directly,
without transforming them first to a propositional table, we call these patterns
relational patterns. Most propositional patterns have a relational counterpart.
To induce these relational patterns, existing propositional learning techniques
have been upgraded to the relational case. For example, a number of rela-
tional decision tree algorithms have been developed. Examples are the work
by (Knobbe et al. 1999) that induce decision trees from a relational database,
or Tilde (Blockeel and De Raedt 1998), and S-Cart (Kramer and Widmer
2001), two techniques inducing so-called first-order decision trees. The for-
mer algorithm is an upgrade of the popular C4.5 algorithm (Quinlan 1993),
whereas the latter upgrades the propositional CART system (Breiman et al.
1984). Other propositional learning techniques have been upgraded to induce
relational rule sets (De Raedt and Van Laer 1995), relational neural networks
(Blockeel and Uwents 2004; Uwents and Blockeel 2005), probabilistic relational
models (Jaeger 1997; Koller 1999; Getoor et al. 2001), relational instance
based models (Emde and Wettschereck 1996; Horvath and Wrobel 2001; Ra-
mon 2002), relational association rules (Dehaspe and Toivonen 2001),. . .
Van Laer and De Raedt (2001) present a stepwise methodology for upgrading
propositional learners to the relational context.

A number of relational data mining systems operate directly on relational
databases through the use of SQL to query the data (Knobbe et al. 1999;
Knobbe et al. 1999; Appice et al. 2003). However, most of the research in
relational data mining is situated in the field of inductive logic programming
(ILP) (Muggleton 1992; Lavrač and Džeroski 1994), a research area situated
at the intersection of machine learning and logic programming (Lloyd 1987;
Bratko 2001). While the key ideas of ILP were formulated in an early work
by Plotkin (1969), the area’s real development began in 1991, with the orga-
nization of the First International Workshop on Inductive Logic Programming
(Muggleton 1992), a yearly event since then that has expanded into an interna-
tional conference. In the rest of this section we concentrate on inductive logic
programming.

20

2.3 Relational data mining and inductive logic programming

In ILP, input data as well as discovered patterns are expressed as logic pro-
grams, an important subset of first order (predicate) logic. ILP approaches
are therefore also referred to as first-order approaches. We first provide some
terminology from first order logic and logic programming in Sect. 2.3.3.1. We
go on by discussing how to transform a relational database into a logic program
in Sect. 2.3.3.2. Next, we provide some explanation regarding the semantics of
logic programs (Sect. 2.3.3.3), which is necessary in order to discuss the two
main representation approaches in ILP (Sect. 2.3.3.4). Finally we are able to
formally define the learning task considered in ILP (Sect. 2.3.3.5) and explain
how hypotheses are usually formed (Sect. 2.3.3.6).

2.3.3.1 Logic programs: terminology

We start by explaining the basic terminology used in logic programming. Fol-
lowing the example of Jacobs (2004), we do this in a bottom-up manner, start-
ing from the basic language elements.

• As in many other programming languages, the basic elements to write a
logic program are constants and variables. As is the convention in Prolog
(Bratko 2001), a programming language rooted in first order logic, we
will write variable names starting with a capital.

• A term is a constant, a variable, or a function symbol immediately fol-
lowed by a bracketed tuple of terms. In fact, a constant is a function
of arity 0, in which case we do not write the brackets. For example
f(g(X,Y), h(Y), j) is a term with function symbols f , g, h, and j (which
is a constant), and variables X, and Y . The length of the tuple is called
the arity of the term. Thus, the arity of f is 3 and the arity of g is 2.

• A predicate symbol immediately followed by a bracketed tuple of terms
is called an atom or predicate. For example, person(PId, 12, Target)
and account(PId,AccId, savings,Bal) are predicates of arity 3 and 4,
respectively.

• A literal is an atom, or the negation (written as ¬) of an atom.

• A clause is a disjunction of literals, for example h1 ∨ h2 ∨ ... ∨ hk ∨ ¬b1 ∨
¬b2 ∨ ...∨¬bl. It is common to write a clause as an implication h1 ∨ h2 ∨
...∨hk ←− b1∧b2∧ ...∧bl, where h1∨h2∨ ...∨hk is called the head of the
clause (conclusion part), and b1∧ b2∧ ...∧ bl is called the body (condition
part). Often, the ∧ and ∨ symbols are replaced by commas. In a clause
all variables occurring in the literals are universally quantified.

• A conjunction of clauses is called a (clausal) theory.

• According to the number of literals in the head or body of a clause, we can
distinguish some special forms. A Horn clause is a clause with maximum

21

Chapter 2 Background

one literal in the head. A definite clause is a clause with exactly one
literal in the head. A query is a clause with no literals in the head. A fact
is a definite clause with no literals in the body. Usually, the implication
arrow is omitted for facts.

• A program clause is a clause of the form h←− l1, l2, ..., lm, where h is an
atom and l1, l2, ..., lm are (positive or negative) literals.

• A predicate definition is a set of program clauses with the same predicate
symbol and arity in their heads.

• And finally, a logic program is a set of predicate definitions.

2.3.3.2 Relation between logic programs and relational databases

To apply an ILP technique, the input data needs to be transformed to a logic
program. Fortunately, a relational database can be easily converted into a logic
program (Das 1992). A base table of a relational database corresponds to a
predicate in a logic program. The predicate has the same name as the table.
The attributes of the table correspond to the arguments of the predicate. The
predicate corresponding to the target table is called the target predicate. An
extension of the database is written as an enumeration of facts.

Example 2.4 To represent the extension of the Account database given in
Fig. 2.4 as a logic program, three predicates would be needed: person/33, ac-
count/4, and transaction/5, of which person/3 is the target predicate. The
Prolog representation is shown in Table 2.2.

Next to base relations, relational databases may contain views. They can be
represented in logic programs in the form of clauses.

Example 2.5 In the Account example, young persons that have saved a spec-
ified amount of money during the period of one year may be granted benefits,
such as a cinema ticket or a discount for a concert ticket. This could be specified
as follows, assuming a predicate saved last year is available.

saving youngster(PersId)←−age(PersId,Age), Age < 24,
saved last year(PersId,Amount),
Amount > 2000.

age(PersId,Age)←− person(PersId,Age, Target).

Example 2.6 In the Mutagenesis dataset, molecules are described by atoms
and bonds. Bonds describe connections between two atoms and they are known
to be undirected. Thus, whenever a fact bond(Mol,At1, At2, T ype) occurs, there

3This notation is used in logic programming to describe a predicate by its functor and its
number of arguments in the form of functor/numargs.

22

2.3 Relational data mining and inductive logic programming

Table 2.2: Logic program representation of the Account database extension of
Fig. 2.4.

person(john,24,positive).
person(mary,27,negative).
person(billy,25,negative).

account(john,123456,checkings,100).
account(john,987654,checkings,200).
account(john,789123,savings,200).
account(john,891234,savings,50).
account(mary,567890,checkings,50).
account(mary,345678,savings,250).
account(billy,456789,checkings,150).

transaction(123456,tr090,010706,withdrawal,50).
transaction(123456,tr091,030706,deposit,30).
transaction(987654,tr098,120706,deposit,70).
transaction(789123,tr100,150706,withdrawal,100).
transaction(789123,tr101,150706,deposit,80).
transaction(567890,tr150,220706,withdrawal,20).
transaction(567890,tr150,240706,deposit,40).
transaction(456789,tr122,170706,deposit,50).

23

Chapter 2 Background

is also an implicit fact bond(Mol,At2, At1, T ype). Instead of writing two bond
predicates whenever two atoms are connected, we can write one of them and
add the following clauses:

sbond(Mol,At1, At2, T ype)←− bond(Mol,At1, At2, T ype).
sbond(Mol,At1, At2, T ype)←− bond(Mol,At2, At1, T ype).

The idea is that when learning patterns that predict mutagenicity, we can use
the predicate sbond instead of bond.

Thus, a logic program representing data coming from a relational database
usually consists of two parts. The extensional part consists of facts representing
the base relations and the intensional part consists of a number of clauses that
represent views from the relational database. Clauses can also be included
to supply domain expert background knowledge to the ILP algorithms. For
example, in the context of the Mutagenesis dataset, the definition of functional
groups (i.e., frequently occurring substructures in the molecule) may be added.
The combination of the intensional and extensional parts is called the knowledge
base. When we refer to a dataset in this text, we mean the knowledge base,
although in most cases our datasets will only consist of extensionally defined
predicates. There are different interpretations as to which part of the knowledge
base belongs to the examples and which part is background. Before introducing
the two main paradigms, we first provide some explanation on the semantics
of logic programs.

2.3.3.3 Logic programs: semantics

We sketch some basic notions about the semantics of logic programs; they will
be needed to formalize the task of inductive logic programming.

• A substitution σ = {V1/t1, V2/t2, ..., Vn/tn} is an assignment of the terms
t1, t2, .., tn to the variables V1, V2, ..., Vn, respectively. A substitution σ
can be applied to a term, atom, clause, or theory T and is denoted as
Tσ, i.e., the term, atom, clause, or theory T with all occurrences of the
variables V1, V2, ..., Vn simultaneously replaced by the terms t1, t2, .., tn.

• An interpretation is a function that maps a theory to the values true or
false and can be determined by a set of ground facts (i.e., facts without
variables). Assigning a truth value to a theory proceeds as follows:

– All ground facts that determine the interpretation are assigned the
value true.

– Ground clauses are assigned a truth value by considering the truth
value of their ground atoms and a set of general rules for interpreting
logic operators (e.g., ¬A is true iff A is false; A ←− B is true iff B
is false or A is true,...).

24

2.3 Relational data mining and inductive logic programming

– Atoms, clauses or theories T that contain variables are considered
true if Tσ is true for each substitution σ that makes Tσ ground.

• An interpretation that makes a clause or a theory true is called a model
for that clause or theory.

• A theory T1 is said to (logically) imply, or entail, a theory T2 (denoted
by T1 |= T2) if and only if every model for T1 is also a model for T2.

We illustrate these concepts with the Account example.

Example 2.7 The interpretation I1 =
{person(john, 24, positive), account(john, 123456, checkings, 100),
account(john, 987654, checkings, 200), account(john, 789123, savings,
200), account(john, 891234, savings, 50)} is a model for the theory T1:

person(PId,Age, positive)←− account(PId,AccId, savings,Bal).

because the theory is true for each of the substitutions {{PId/john,Age/24,
AccId/123456, Bal/100}, {PId/john,Age/24, AccId/987654, Bal/200},
{PId/john,Age/24, AccId/789123, Bal/200}, {PId/john,Age/24, AccId/
891234, Bal/50}} that make the theory ground. For the first two substitutions
the theory is true because the body of T1 is false, and for the last two substitu-
tions it is true because both body and head are true.
The interpretation I2 =
{person(billy, 25, negative), account(billy, 456789, checkings, 150)} is
also a model, but the interpretation I3 =
{person(mary, 27, negative), account(mary, 345678, savings, 250)}
is not. Theory T1 entails theory T2:

person(PId,Age, positive)←−account(PId,AccId1, savings,Bal1),
account(PId,AccId2, checkings,Bal2).

since each model for T1 is also a model for T2. However, the reverse is not the
case, i.e., T2 2 T1, since the interpretation I3 is a model for T2, but not for T1.

2.3.3.4 Two learning paradigms

We distinguish two main learning paradigms in ILP: learning from interpre-
tations and learning from entailment. They concern the representation of the
knowledge base. We briefly introduce the two approaches here. A more de-
tailed discussion can be found in Chapter 4 by Blockeel (1998). An overview
of these and other paradigms is given by De Raedt (1997).

25

Chapter 2 Background

Learning from interpretations. In this paradigm each example e is repre-
sented as a separate Prolog program. The program contains all the extension-
ally defined information for the example, as well as a target label. A separate
Prolog program B encodes the generally valid background knowledge. Each
example corresponds to an interpretation defined by all ground facts that are
entailed by e ∧B.

Example 2.8 If we would include transaction information into interpretation
I1 given in Ex. 2.7, this interpretation would correspond to the example “john”
from the Account dataset.

Learning from entailment. The learning from entailment setting is the most
widely used paradigm in ILP. It was described under the name of normal seman-
tics by Muggleton and De Raedt (1994). In this approach the knowledge base
(examples and background) is represented as one single logic program, where
each example is represented by a ground fact (the target predicate). The ex-
tensionally defined predicates that are not target predicates are considered to
be part of the background knowledge.

Example 2.9 Consider the logic program version of the Account database (see
Fig. 2.2). In the learning from entailment setting, the examples are the three
person/3 predicates. The rest of the program (i.e. the predicates account/4

and transaction/5) are background knowledge.

While in the learning from interpretations setting, it is not really necessary
to include a key attribute, since each example is contained in a separate pro-
gram, the learning from entailment setting does require a key attribute in each
extensionally defined predicate.

In the remainder of this section, we will assume the learning from entailment
setting.

2.3.3.5 Inductive logic programming

The task of inductive logic programming can now be formalized as follows

Definition 2.3 (Inductive logic programming) Given a set of examples
E, and background knowledge B, the task is to find a hypothesis H such that
∀e ∈ E : B ∧H |= e

In the above definition, H is typically a definite predicate definition that de-
fines the target predicate, and each example e ∈ E is a ground fact with the
target as one of its arguments, as explained above. ILP is usually defined as
a concept learning task (Džeroski and Lavrač 2001a), where the examples are
either positive or negative and clauses are searched that entail all positive and
no negative examples. We take a slightly different approach that covers both
classification and regression, as well as descriptive learning.

26

2.3 Relational data mining and inductive logic programming

Example 2.10 Given the small extension of the Account example (Table 2.2),
a possible hypothesis H that discriminates positive from negative examples is:

person(PId,Age, positive)←−Age < 26, account(PId,AccId, checkings,
Bal), Bal > 180, !.

person(PId,Age, negative)←− .

stating that a person under 26 owning an account that has a balance of over 180
is positive, and all other persons are negative. The ! (cut-symbol) in the first
clause of the hypothesis means that if this clause succeeds, none of the other
clauses are evaluated (this ensures that only one prediction is given).

The above hypothesis indeed classifies the example John as positive and the
examples Mary and Billy as negative. In practice, however, it will not always
be possible to find a hypothesis that perfectly classifies the data, e.g., if the
target contains noise. Therefore, we usually try to find the best hypothesis that
assigns as many examples as possible to the right class.

Example 2.11 The following is a hypothesis for the Mutagenesis example with
an accuracy of 66.5% measured over a tenfold cross validation.

molecule(Mol, positive)←− atom(Mol,At,Elem, 27, Charge), !.
molecule(Mol, positive)←− atom(Mol,At,Elem, 29, Charge), !.
molecule(Mol, positive)←− atom(Mol,At,Elem, 32, Charge), !.
molecule(Mol, negative).

The hypothesis states that a molecule is mutagenic if it contains an atom of
type 27, or if it contains no atom of type 27 but does contain one of type 29,
or if it contains no atoms of types 27 and 29 but contains an atom of type 32.
In all other cases the molecule is predicted non-mutagenic.

We go on with discussing how ILP systems search the space of hypotheses.

2.3.3.6 Searching the space of hypotheses

Probably the most important challenge in ILP, or relational data mining in gen-
eral, is how to deal with the large hypothesis space. In propositional learning,
hypotheses take rules of the form

target = t←− attr1 = value1k ∧ attr2 = value2l ∧ ... ∧ attrn = valuenm.

In the relational case, given the fact that hypotheses may contain quantifiers
and variables, and that attributes from several background relations can be
used, the space of possible hypotheses is much larger, which makes the task of
learning more complex. Therefore techniques are used to limit the hypothesis
space and to traverse it in an efficient way.

To limit the hypothesis space, one usually imposes restrictions on the syntax
of the hypotheses that may be considered. This is done by the use of a language

27

Chapter 2 Background

bias (Nédellec et al. 1996), i.e., the user defines what predicates may occur in
the resulting hypothesis.

Example 2.12 Table 2.3 shows how a possible language bias for the Account
example would look like in Tilde (Blockeel and De Raedt 1998), an ILP system
that learns relational decision trees. First, types for the three possible predicates
are declared. The first declaration states that a predicate person takes an ar-
gument of type persid, one of type age, and one of type class. After the type
declarations a number of rmode specifications follow. These rmodes define how
the predicates used in hypotheses may look like. A “+” symbol before a variable
name means that the variable is an input variable, it needs to be unified with a
variable already occurring in the hypothesis under construction. A “-” means
the variable is a new variable. A “+-” means that the variable can but need
not be unified with some other variable. The “#” symbol is placeholder for a
constant, it will be replaced by each element from the list following the symbol.
For more information on Tilde’s language bias, see (Blockeel et al. 2006).

Table 2.3: Tilde’s language bias for the Account example.

% types

type(person(persid,age,class)).
type(account(persid,accid,acctype,balance)).
type(transaction(accid,trans,transtype,amount)).

% rmodes: basic language constructs

rmode(account(+PersID, -AccID, -Tp, -Bal)).
rmode(account(+PersID,+-AccID, #[“savings”,“checkings”],-Bal)).
rmode((account(+PersID, +-AccID, -Tp,Bal), Bal ≥ #[500,2000,5000,10000])).
rmode(transaction(+AccID, -Tr, -Tp, -Am)).
rmode(transaction(+AccID, +-Tr,#[“deposit”,“withdrawal”], -Am)).
rmode((transaction(+AccID, +-Tr, -Tp, Am), Am ≥ #[500,1000,2000])).

Hypotheses are typically learned one clause at a time. Traversing the space
of possible clauses in an efficient way is done by imposing an order relation
on the clauses and exploiting this order relation to systematically search the
space. The most common ordering is based on θ-subsumption (Plotkin 1969),
and imposes a lattice structure on the space of clauses.

Definition 2.4 (θ-subsumption) A clause c1 θ-subsumes a clause c2 (de-
noted c1 ≤θ c2) if there exists a substitution θ such that c1θ ⊆ c2.

Example 2.13 Clause C1 :

person(PersId,Age, pos)←− account(PersId,AccId, Type,Balance)

θ-subsumes clause C2 :

28

2.3 Relational data mining and inductive logic programming

person(PersId,Age, pos)←− account(PersId,AccId, savings,Balance)

under the substitution θ = {Type/savings}. Clause C1 also θ-subsumes clause
C3 :

person(PersId,Age, pos)←−account(PersId,AccId, Type,Balance),
Balance > 500.

In this last example θ = ∅.

The θ-subsumption relation has an interesting property regarding generality:

Theorem 2.1 If C1 ≤θ C2 then C1 is at least as general as C2.

We define generality in terms of coverage of a clause.

Definition 2.5 (Coverage) An example e is covered by a clause C if the
clause, together with the background B, entails the example, i.e., B ∧ C |= e.

Definition 2.6 (Generality) A clause c1 is more general (resp. more spe-
cific) than a clause c2 if the set of examples covered by c1 is a superset (subset)
of the set of examples covered by c2. We say that c1 is a generalization (spe-
cialization) of c2.

Thus, θ-subsumption introduces a syntactic notion of generality, which allows
to traverse the search space in a general-to-specific order, using simple syntactic
computations. Constructing a clause then proceeds as follows. One starts with
the most general clause h←−, i.e., the top of the lattice structure imposed by
θ-subsumption. Then so-called refinements, or specializations, are generated
using a refinement operator based on θ-subsumption.

Definition 2.7 (refinement operator) Given a hypothesis language L and
some ordering <, a refinement operator ρ is a function mapping a clause c onto
a set of clauses ρ(c) which are called refinements of c: ρ(c) = {c′|c′ ∈ L, c < c′}.

Typically, the generated refinements are minimal (i.e., most general) refine-
ments of the clause that is being refined. For a refinement operator based on
the θ-subsumption order relation, these minimal refinements are

• apply a substitution to the clause, and

• add a basic language construct to the body of the clause.

The basic language constructs are usually defined in a language bias. For the
example in Table 2.3, they are specified by the rmodes. Examples of basic lan-
guage constructs in that context are the literal account(PersId,AccId, Tp,Bal)
or the conjunction of literals (account(PersId,AccId, Tp,Bal), Bal ≥ 500).
Thus, starting from the most general clause, the search space is traversed by

29

Chapter 2 Background

repeatedly generating refinements, until at some point in the lattice a clause is
obtained that obeys a certain stop criterion. Remark that θ-subsumption can
also be used to prune parts from the search space: if the coverage of a clause
C1 is too low, then the clauses θ-subsumed by C1 need not be searched, since
their coverage will be even lower. The search to find the best clause is often
based on heuristics, such as the number of positive and negative examples that
are covered by it. Given the large number of refinements at each refinement
step, greedy methods are often preferred over exhaustive search methods.

2.4 Using background information in relational

learning

In this thesis we focus on how the information that is related to an example can
be used to predict the target of that example in relational learning. In terms of
relational databases, the information that is related to an example E consists
of the attributes in the row in the target table that corresponds to E and in
those rows in other tables that are linked to E via foreign key relations. For
example, for the Account problem, the information that can be used to predict
the target for a particular person P is the age of P which is contained in the
target table, the values for the balances and types of the accounts of P , and
information related to the transactions that are linked to the accounts of P .

For all information that is related to an example E exactly one of the follow-
ing two properties holds:

• the information is contained in the target table, or in a background table
with a one-to-one or a many-to-one relation between the target table and
the background table, or

• the information is contained in a background table with a one-to-many
or a many-to-many relation between the target table and the background
table.

In the first case, the information can be directly extracted from its table and
be used in the predictive model. For example, suppose that we also keep track
of the branch office a person in the Account database is associated with. Since
many persons would be affiliated to the same branch office, there would typically
be a many-to-one relation between the person and office tables. With each
person corresponds exactly one tuple in the office table. Hence, information
about the office (number of employees, level of service,. . .) can be directly
included in the predictive model.

The second case, however, is more difficult to handle. The difficulty lies in the
non-determinacy of the information: for each example there are several related
tuples in the related table. For example, it is non-trivial how the accounts

30

2.4 Using background information in relational learning

related to a person can be used to predict the target for that person. In
present-day relational learners, one of the following strategies is used:

• the existence of a particular tuple for which a number of conditions apply
is checked, or

• the information related to the example is summarized by using aggregate
functions such as max, min, avg,. . . and can then be used as if contained
in the target table.

For example, the first strategy, which is typically used by ILP learners, could
check whether the person has a savings account with balance larger than 5,000.
The second strategy could check whether the average balance of the accounts
related to the person is larger than 5,000, or whether the number of accounts
related to the person is larger than 3. However, none of the currently existing
learners is able to learn patterns where both strategies are combined. For
example, it is not possible to check whether the number of accounts with balance
larger than 5,000 is larger than 3, or whether the average balance of the accounts
that have a related transaction involving an amount larger than 1,000 is larger
than 5,000.

In the following three technical chapters, we incorporate such combinations
of the two strategies in the ILP context. In Chapt. 3 we provide a theoretical
foundation for this combination. Two important problems that occur are that
the space of refinements that is considered by an ILP learner substantially
expands and that the generality ordering underlying θ-subsumption is violated
when applying a refinement operator based on θ-subsumption for generating
refinements that combine the two strategies. These problems are discussed in
detail and solutions are presented. In Chapt. 4 we incorporate such refinements
in an existing ILP learner (in particular, in a decision tree learner). We present
two techniques to deal with the enlarged refinement space in the context of
that learner. In Chapt. 5 we investigate the use of features that combine the
two strategies in predictive functions. For example, in linear equations, the
attributes that are used as independent variables may be combinations of the
two approaches. For instance, assuming that Target is a numeric attribute, we
might construct linear equations of the form Target = 3X1 + 2X2 with X1 the
minimum balance of the savings accounts and X2 the number of transactions
related to accounts with balance exceeding 2,000.

31

Chapter 3

Combining Aggregates and
Selections

3.1 Introduction

As explained in Chapt. 2, in relational learning an individual to be classified
may be related to a set of other objects, via one-to-many or many-to-many
relationships. Properties of this set, or of some of the objects it contains (or
perhaps both) may be relevant for the classification. Among the many ap-
proaches to relational learning that currently exist, an important distinction
can be made with respect to how they handle these relationships.

Blockeel and Bruynooghe (2003) present a categorization of current ap-
proaches. Whereas inductive logic programming (ILP) (Muggleton 1992) is
biased towards testing the existence of specific elements in the set, other tech-
niques use aggregate functions, which compute a feature of the set to sum-
marize it. In the context of the Account example (Ex. 2.2), an ILP system
might predict a person to be positive if, for example, he has an account that
is related to a transaction of type deposit with an amount higher than 10,000.
Systems that use aggregates, on the other hand, could for example predict a
person as positive if the sum of the balances on his accounts is higher than
50,000. Examples of the latter approach include certain propositionalization
techniques (e.g., (Krogel and Wrobel 2001; Knobbe et al. 2001)), probabilistic
relational models (Koller 1999) and relational probability trees (Neville et al.
2003). These methods are optimized for highly non-determinate (e.g. business)
domains, whereas ILP is geared more towards structurally complex domains,
e.g., molecular biology, language learning, etc.

Current relational learners usually do not combine both approaches, which
imposes an undesirable bias on them (Blockeel and Bruynooghe 2003). Such
a combination would involve aggregating over a subset of elements fulfilling
specific conditions (“aggregating over a selection”). For example, a relevant
criterion to determine whether a person is positive could be related to the sum
(aggregation) of the balances on his savings (selection) accounts. Such com-
binations might be expected to naturally appear in certain patterns, but they
are very difficult to construct for machine learning systems, both because they

33

Chapter 3 Combining Aggregates and Selections

increase significantly the search space and because it becomes more difficult
to search it in a structured and efficient way due to, e.g., non-monotonicity
(Knobbe et al. 2002). These two issues will be described in detail in this
chapter.

In terms of relational algebra, combining both approaches boils down to con-
structing features of the form F(σC(R)) with F an aggregate function, σC(R)
a selection function based on a condition C, and R a set of tuples somehow
connected to the tuple we want to classify. From this viewpoint, ILP systems
typically build a complicated selection condition C but the aggregate function
F is always the “there exists” function, returning true if at least one element
of R fulfills C, and false otherwise. Other relational learners use features of
the form F(R), where F is taken from a predefined set of aggregate functions,
such as avg, sum,. . .

Perlich and Provost (2003) present a hierarchy of relational concept classes
in order of increasing complexity, where the complexity depends on that of any
aggregate functions used. The first class corresponds to concepts where no ag-
gregation is involved, i.e. only one-to-one or many-to-one relationships occur
in the data. The second class involves one-to-many relations where the objects
contain a number of attributes, each of which can be aggregated independently.
The third and fourth class concepts rely on so-called multi-dimensional aggrega-
tion, which corresponds to what we call “combining selection and aggregation”.
Perlich and Provost’s analysis points out that ILP-like systems are the only ones
that can handle concepts of class 3 or 4, but they have the disadvantage that
they typically do not use numeric aggregation, and the latter is identified as a
crucial weakness. It is exactly that weakness that we eliminate in this chapter
and the next one. In this chapter we lay the basis for combining aggregates
with selection conditions; in the next chapter we describe a learning algorithm
that builds on this.

We start by discussing related work in Sect. 3.2. In Sect. 3.3 we introduce the
concept of complex aggregates in first order logic and provide some terminology
and definitions. In Sect. 3.4 we discuss refinement of first order logic clauses
with aggregates and analyse the difficulties that arise. We conclude in Sect. 3.5.

3.2 Related work

There exists work that shares our goal of learning hypotheses with aggregates.
We can distinguish methods that use a fixed set of aggregates that is defined
in advance, and methods that construct the aggregates as part of the learning
process.

We first discuss some examples of the former group. Krogel and Wrobel
(2001) present a system called Relaggs (RELational AGGregationS), which
builds on transformation based approaches to ILP. Relaggs computes several
joins of the input tables according to their foreign key relationships. These joins

34

3.2 Related work

are compressed using aggregate functions, specific to the data types of the table
columns, such that there remains a single row for each example. The result is
an appropriate input for conventional data mining algorithms, such as deci-
sion tree induction or support vector machines. Simultaneously, Knobbe et al.
(2001) propose the system RollUp, another system that uses aggregates to
propositionalize a multi-relational database. The feature sets of RollUp and
Relaggs overlap but do not coincide. Krogel and Wrobel (2003) present a com-
parative evaluation of approaches to propositionalization, where they compare
Relaggs to logic-oriented transformation approaches. Other systems employ
predefined aggregate functions directly in their relational model representa-
tions, without first building a propositionalized table. Relational Probability
Trees (RPTs) (Neville et al. 2003) extend standard probability estimation
trees to a relational setting. The algorithm for learning an RPT uses aggrega-
tion functions to dynamically propositionalize the data. Probabilistic relational
models (Koller 1999) use aggregates to specify non-deterministic relations in a
dependency structure and in conditional probability tables.

The second group, methods that construct aggregates as part of the learning
process, are especially useful when one wants to consider more complex aggre-
gates, where the set to be aggregated over is defined by selection conditions:
there may be too many such aggregates to compute and store them all during
preprocessing.

Several authors argue in favour of including selection conditions into the ag-
gregate functions. Perlich and Provost (2003) provide a detailed examination
of aggregation for relational learning. They define various classes of relational
learning problems with respect to aggregation. On their domain of interest the
results demonstrate that aggregation operators of higher complexity can signif-
icantly improve generalization performance. Blockeel and Bruynooghe (2003)
discuss the bias that is imposed on relational learners that either use aggre-
gates or use selections of specific elements and provide some ideas to remove it.
One of these ideas is to use relational neural networks (Uwents and Blockeel
2005). Also, Krogel et al. (2003), when comparing logic-oriented and database-
oriented methods for propositionalization, conclude that a combination of the
features produced by both groups of methods seems a valuable venture.

Unfortunately, finding good hypotheses with complex aggregate conditions is
difficult. Besides the fact that the hypothesis space is significantly expanded by
allowing complex aggregate conditions, it also becomes more difficult to search
this space in a structured way, because the effect of refinements of the aggregate
condition on the generality of the hypothesis is not well-understood in general.
As a result, all current relational learners are somehow limited with respect to
the aggregates they can learn. Krogel and Wrobel (2003) (when presenting an
extended version of the system Relaggs) introduce in their propositionalized
table aggregate functions that apply not only to single attributes, but also to
pairs of attributes, one of which has to be nominal and serves as another group
by condition, besides the target object identifiers. For example, in terms of the

35

Chapter 3 Combining Aggregates and Selections

Account example, the set of features could include the sum of the balances of
a person’s accounts, grouped by account type. The resulting aggregate con-
ditions are still of limited complexity and are not refined further during the
search. Knobbe et al. (2002) propose a method for subsequently specializing
the set to be aggregated in the generalized selection graph pattern language. Se-
lection graphs are a graphical description of sets of objects in a multi-relational
database. By restricting the application of their specialization operator to ag-
gregate functions where its effect is well-understood (which is a strict subset of
all aggregate functions), they can search the hypothesis space in a general-to-
specific way, but this obviously limits the kind of complex conditions that can
be found. Uwents and Blockeel (2005) describe relational neural networks as
a subsymbolic approach towards learning complex aggregates. Their approach
is not constrained to using predefined aggregate functions and does not make
a distinction between searching for aggregate functions and searching for com-
plex conditions, but the resulting theories are also not interpretable in terms
of well-understood aggregates and conditions.

In the following, we will analyse the difficulties that arise when combining
aggregation and selection in the context of first order logic.

3.3 Preliminaries

This section introduces the concept of complex aggregate conditions in first
order logic and reviews refinement under θ-subsumption and coverage, adapting
these concepts to our context where needed.

3.3.1 Complex aggregate conditions in ILP: syntax

The kind of clauses that we are interested in are not pure logical clauses: they
may contain aggregate literals, which are defined as follows.

Definition 3.1 (Aggregate literal) An aggregate literal is a literal of the
form F (V,Q,R) where F is an aggregate function, V is an aggregate variable
occurring in the aggregate query Q, and R is the result of applying F to the
(multi-)set of all answer substitutions for V that Q results in.

The aggregate functions we consider in this work are those that result in a
numeric value, such as max, min, avg, sum, and count, and that take one
aggregate variable. However, most of the theory extends to other aggregate
functions as well (e.g., mode (most frequent value) that may result in a nominal
value, or correlation that takes two aggregate variables).

Typically, the result R is compared to an interval. An aggregate literal
together with such a condition is called an aggregate condition.

Definition 3.2 (Aggregate condition, syntactic definition) An aggrega-
te condition is a pair of literals (F (V,Q,R), between(R, T1, T2)) where F (V,Q,R)

36

3.3 Preliminaries

is an aggregate literal, T1 and T2 are threshold values, and between/3 checks
whether R ∈ [T1, T2].

Often, the interval used is [−∞, T] or [T,∞] and the literal between(R, T1, T2) is
replaced by R ϑ T , where ϑ is a comparison operator, and T a threshold value.
We will use the term standard clauses to refer to clauses without aggregate
conditions.

Remember from Chapt. 2 that many learning systems rely on a general-to-
specific ordering of the hypothesis space, which allows them to traverse this
space in an efficient way. For example, if the coverage of a hypothesis h is too
low, then all hypotheses that are more specific than h can be pruned from the
search space. ILP systems learn hypotheses by learning one clause at a time.
Clauses are learnt by starting with the most general clause h← and gradually
refining it using a refinement operator based on θ-subsumption (see definition
2.4). Such a refinement operator employs one of the following basic operations
on a clause:

• apply a substitution to the clause, or

• add a basic language construct (a literal or a set of literals as defined in
the language bias) to the body of the clause.

Now assume that the body of the clause contains an aggregate condition.
For instance, the clause

person(PersId, pos)←
max(Bal, account(PersId,AccId, Type,Bal),M),M ≥ 50000

classifies a person as positive if the maximum balance on his accounts is higher
than 50,000. Such a clause could now be refined not only by extending the
clause itself with a literal (i.e., using refinement under θ-subsumption), but
also by extending or applying a substitution to the aggregate query

account(PersId,AccId, Type,Bal).

This way the aggregate literal results in a combination of an aggregate and a
selection, what we will call a complex aggregate literal.

Definition 3.3 (Complex and simple aggregate literal) A complex agg-
regate literal is an aggregate literal where the aggregate query Q is a complex
query, i.e., has been refined with selection conditions.
Similarly, a simple aggregate literal is an aggregate literal where the aggregate
query has not been refined.

In terms of relational algebra, a complex aggregate literal would be expressed
as F(σC(R)), with F an aggregate function, R a set of tuples connected to the
tuple under consideration, and σC(R) a non-empty selection condition on R. A
simple aggregate literal would be denoted by F(R). The definition of complex
and simple aggregate conditions follows straightforwardly.

37

Chapter 3 Combining Aggregates and Selections

Definition 3.4 (Complex and simple aggregate condition) A complex
aggregate condition is an aggregate condition with a complex aggregate literal.
Similarly, a simple aggregate condition is an aggregate condition with a simple
aggregate literal.

For example, the preceding clause could be refined into the following clause,
containing a complex aggregate condition (note that Type has been instantiated
into savings),

person(PersId, pos)←
max(Bal, account(PersId,AccId, savings,Bal),M),M ≥ 50000

classifying a person as positive if the maximum balance on his savings accounts
exceeds 50,000.

3.3.2 Complex aggregate conditions in ILP: semantics

In the preceding section an aggregate condition was defined as a pair of literals
F (V,Q,R), between(R, T1, T2). While this definition defines an aggregate con-
dition in terms of Prolog literals and can be seen as a syntactic definition, we
now provide a more general, semantic, definition of aggregate conditions.

Definition 3.5 (Aggregate condition, semantic definition) An aggrega-
te condition is a function c : F × S × I → B : F (S) ∈ I 7→ B, with F a set of
aggregate functions, S a set of multi-sets, I a set of numeric intervals, and B

the set of boolean values. The value B is true if the condition F (S) ∈ I holds,
and false otherwise.

In this definition we make abstraction of the fact that S is generated by some
query Q and some variable V (see definition 3.2).

3.3.3 θ-subsumption for clauses with aggregates

As we are interested in learning classifiers with complex aggregate literals, it
is useful to be able to gradually refine aggregate queries, in a similar way
as standard clauses would be refined. We therefore define an extension of
the classical θ-subsumption relation on clauses with aggregation, and call it
α-subsumption. A standard literal is any literal in a clause that is not an
aggregate literal and does not occur inside an aggregate query. The standard
part of a clause c, denoted S(c), is the clause consisting of all standard literals
of c (and only those).

Definition 3.6 (α-subsumption) A clause c1 α-subsumes a clause c2 (de-
noted c1 ≤α c2) if and only if ∃θ : S(c1)θ ⊆ S(c2), and for each aggregate
literal F (V1, Q1, R1) ∈ c1, there exists an aggregate literal F (V2, Q2, R2) ∈ c2

such that R1θ = R2, Q1θ ≤α Q2, and the latter α-subsumption only involves a
set of substitutions σ over locally defined variables in Q1, such that V1σ = V2.

38

3.3 Preliminaries

In other words, a clause α-subsumes another clause if, after applying the right
variable substitutions to the standard part of the clause as well as to its ag-
gregate queries, the standard part of the first clause becomes a subset of the
standard part of the second clause, and each aggregate query becomes a subset
of the corresponding aggregate query in the second clause. Thus, a refine-
ment operator based on α-subsumption refines a clause by employing one of
the following basic operations:

• applying a substitution to the clause,

• adding a basic language construct to the body of the clause, or

• applying a substitution or adding a basic language construct to the ag-
gregate query of an aggregate literal in the clause.

These three operations are illustrated in the following example.

Example 3.1 The clause

person(PersId, pos)←
sum(Bal, account(PersId,AccId, Type,Bal),M),M ≥ 50000,
account(PersId,AccId2, T ype2, Bal2), Bal2 ≥ 10000

stating that a person is positive if the sum of the balances on his accounts
exceeds 50,000 and if he owns an account with balance larger than 10,000 can
be refined under α-substitution in the following ways:

• person(PersId, pos)←
sum(Bal, account(PersId,AccId, Type,Bal),M),M ≥ 50000,
account(PersId,AccId2, savings,Bal2), Bal2 ≥ 10000

(applying a substitution θ = {Type2/savings} to the clause)

• person(PersId, pos)←
sum(Bal, account(PersId,AccId, Type,Bal),M),M ≥ 50000,
account(PersId,AccId2, T ype2, Bal2), Bal2 ≥ 10000,
transaction(AccId2, T rId, TrType,Am), Am ≥ 2000

(adding a pair of standard literals (basic language construct) to the clause)

• person(PersId, pos)←
sum(Bal, account(PersId,AccId, Type,Bal),M),M ≥ 50000,
account(PersId,AccId2, T ype2, Bal2), Bal2 ≥ 10000,
count(AccId3, account(PersId,AccId3, T ype3, Bal3), C), C ≥ 5

(adding an aggregate condition to the clause)

• person(PersId, pos)←
sum(Bal, account(PersId,AccId, checkings,Bal),M),
M ≥ 50000, account(PersId,AccId2, T ype2, Bal2), Bal2 ≥ 10000

(applying a substitution to the aggregate query)

39

Chapter 3 Combining Aggregates and Selections

• person(PersId, pos)←
sum(Bal, (account(PersId,AccId, Type,Bal),

transaction(AccId, TrId, TrType,Am), Am > 2000),M),
M ≥ 50000,

account(PersId,AccId2, T ype2, Bal2), Bal2 ≥ 10000

(adding a pair of standard literals (basic language construct) to the ag-
gregate query)

• person(PersId,pos)←
sum(Bal, (account(PersId,AccId, Type,Bal),

count(TrId, transaction(AccId, TrId, TrType,Am),
Cnt), Cnt > 10),M),M ≥ 50000,

account(PersId,AccId2, T ype2, Bal2), Bal2 ≥ 10000

(adding an aggregate condition to the aggregate query)

This last refinement illustrates the recursive use of aggregates. It states that
the sum of the balances of the accounts that have more than 10 transactions
exceeds 50,000.

3.3.4 Specialization and generalization

In Chapt. 2 we have defined the concepts of generalization and specialization
of a clause in terms of its coverage (see definition 2.6). Generally, we say that a
clause covers an example if it covers the example. Clause c1 is a specialization
(generalization) of c2 if and only if the set of examples it covers is a subset
(superset) of the examples covered by c2.

For clauses without aggregate literals, it holds that whenever c1 ≤α c2 (or
equivalently, c1 ≤θ c2), the coverage of c1 must be a superset of the coverage
of c2, i.e., c2 is a specialization of c1. Hence, by using a refinement operator ρ
that, given a clause c, yields only clauses θ-subsumed by c, a general-to-specific
search through the hypothesis space is obtained. In the next section we will
see that for clauses with aggregate literals and the α-subsumption relation, this
property is lost: if c1 ≤α c2, then, generally, c2 is not necessarily a specialization
of c1. We will call a refinement valid if and only if it constitutes a specialization.

3.4 Refining clauses with complex aggregates

We can now discuss in what way refinement of clauses with aggregate literals
is more complicated than refinement of standard clauses.

First, the introduction of complex aggregate conditions into the search space
causes a significant increase in size of the hypothesis space. This is discussed in
Sect. 3.4.1. Second, while our definition of α-subsumption is syntactically very
similar to the original θ-subsumption definition, the property that c1 ≤α c2

40

3.4 Refining clauses with complex aggregates

implies that c2 is a specialization of c1, is lost. Refinement under α-subsumption
may yield a specialization or a generalization, or even none of both. This
behaviour can be related to two issues. On the one hand, in the first order logic
context, an aggregate function can be interpreted in several ways when applied
to a complex aggregate query (roughly, as being applied to sets or to bags).
When being applied to bags, the number of answer substitutions the aggregate
query results in may either increase or decrease. This is discussed in more
detail in Sect. 3.4.2. On the other hand, even when using an interpretation that
guarantees that the number of answer substitutions decreases, the refinement
may still yield a generalization. This behaviour is related to the monotonicity
properties of the aggregate conditions, an observation also made by Knobbe
et al. (2002) in the context of refining selection graphs. This is discussed in
Sect. 3.4.3. The discussion leads to the definition of a refinement operator that
guarantees valid refinements.

3.4.1 The search space explodes

ILP systems explore large search spaces. They often do this in a greedy man-
ner: from the current best clause, they generate a number of refinements, take
the best among these, and continue the process. The computational complex-
ity of this process depends on the branching factor of the search (how many
refinements are generated from a clause).

By introducing aggregates in clauses, and allowing the aggregate queries to
be refined as well, the branching factor is multiplied. Assume that a standard
clause can be refined in C ways by adding a standard literal to it, and we
now also allow the addition of an aggregate literal with any of those C literals
as aggregate query, and any variable occurring in the literal as the aggregate
variable. If the literal has V variables and we consider N possible aggregate
functions, the branching factor increases to (C +V ·N ·C). The multiplication
factor (1 + V · N) can easily be one or two orders of magnitude. Greedy
searches slow down with the same factor. If these searches make use of complex
aggregate conditions, the branching factor becomes C + V ·N ·C + V ·N ·C ·
(C+V ·N ·C)L with L the number of added language elements in the aggregate
query.

We illustrate this with an example from the Account dataset.

Example 3.2 Consider the language bias for the Account example, which is
repeated in Table 3.1. If we discard the “+” and “-” symbols, the rmodes give
rise to 1, 2, 4, 1, 2, and 3 tests, respectively, resulting in a total of 13 tests.
Two of the rmodes result in non-determinate numeric tests (the rmodes that
check the balance of the accounts and the amounts of the transactions of a
person). By including simple aggregate conditions with the functions max,
min, avg, and sum for these two rmodes, the number of tests produced by
them is multiplied by 5 (1 for the original rmode, and 4 aggregate functions).

41

Chapter 3 Combining Aggregates and Selections

The rmodes then produce 1, 2, 20, 1, 2, and 15 tests, respectively, yielding
41 tests in total. Now suppose we also consider complex aggregate conditions
(say, with only one extra test in the aggregate query that comes from any of
the other 5 rmodes), then any of the 16 simple aggregate conditions coming
from the third rmode gives rise to 1 + 2 + 1 + 2 + 15 = 21 complex aggregates
and any of the 12 simple aggregates coming from the sixth rmode produces
1 + 2 + 20 + 1 + 2 = 26 complex aggregate conditions. This gives a total of
41 + (16 ∗ 21) + (12 ∗ 26) = 689 tests. Including two extra tests in the aggregate
query gives rise to 41 + (16 ∗ 212) + (12 ∗ 262) = 15,209 tests.

Table 3.1: Tilde’s language bias for the Account example.

% types

type(person(persid,age,class)).
type(account(persid,accid,acctype,balance)).
type(transaction(accid,trans,transtype,amount)).

% rmodes: basic language constructs

rmode(account(+PersID, -AccID, -Tp, -Bal)).
rmode(account(+PersID,+-AccID, #[“savings”,“checkings”],-Bal)).
rmode((account(+PersID, +-AccID, -Tp,Bal), Bal ≥ #[500,2000,5000,10000])).
rmode(transaction(+AccID, -Tr, -Tp, -Am)).
rmode(transaction(+AccID, +-Tr,#[“deposit”,“withdrawal”], -Am)).
rmode((transaction(+AccID, +-Tr, -Tp, Am), Am ≥ #[500,1000,2000])).

3.4.2 Semantics of the aggregate function

Consider the following clause:

person(PersId, pos)←
count(AccId, (account(PersId,AccId, Type,Balance), C), C < 4

with the following refinement, which adds a literal to the aggregate query:

person(PersId, pos)←
count(AccId, (account(PersId,AccId, Type,Balance),

transaction(AccId, TransId, TransType,Amount)),
C), C < 4

The count aggregate function counts the number of times the aggregate query
succeeds, which, for the refined query, may be larger than the number of ac-
counts if there are multiple transactions per account, or smaller if some accounts
have no transactions. In other words, this refinement may lead to generaliza-
tion or specialization, or none of both. The reason for this is that the count

42

3.4 Refining clauses with complex aggregates

function computes the cardinality of the bag, rather than the set, of AccId val-
ues returned by the aggregate query. While the set of AccId values returned
by the refined query must be a subset of the set returned by the original one,
the bag of AccId values returned by the refined query is not guaranteed to be a
subbag or superbag of the original one: some accounts may have disappeared,
others may have been duplicated.

The situation is similar to what one would get with an SQL query (for rela-
tional databases) along the lines of

select count(A.AccId)
from account as A, transaction as T
where A.AccId=T.AccId

A solution in the relational database case is to use the count distinct con-
struct. This is semantically meaningful if AccId is a key attribute for the
Account relation.

In general, there are thus two possible outcomes for an aggregate function:
applying the function to the bag or to the set of variable substitutions returned
by the aggregate query. For example, consider the simple extension of the
Account database in Table 2.2. The query

sum(Balance, (account(PersId,AccId, Type,Balance),
transaction(AccId, TransId, TransType,Amount)), C)

leads to two possible results for the first example (john):

• 100 + 100 + 200 + 200 + 200 = 800 (when aggregating over the bag of
balances)

• 100 + 200 = 300 (when aggregating over the set of balances).

However, taking the set over the balance values is often not intuitive. Instead,
one most likely wants to take the set of the account objects and then take the
sum of the balances (i.e., taking the sum of the balances of the accounts that
have a transaction). Thus, if two different accounts have the same balance, this
value should be counted twice. More generally, this corresponds to taking the
set over the first predicate in the aggregate query, and applying the aggregate
function to the corresponding aggregate variable values. This leads to a third
possible result:

• 100 + 200 + 200 = 500 (when aggregating over the set of accounts)

These solutions correspond to the following queries in relational algebra
(where ? denotes the natural join operator):

• FSUM(Balance)(account ? transaction)

• FSUM(Balance)(πBalance(account ? transaction))

43

Chapter 3 Combining Aggregates and Selections

• FSUM(Balance)(πAccountId,Balance(account ? transaction))

In the following chapters, we will apply these aggregate conditions in an
existing ILP system. Therefore, we need to decide on what semantics we will
use. Since the third interpretation is the most intuitive, in the sense that
it is what one would expect when reading an aggregate condition (“the sum
of the balances of the accounts that have a transaction”), we will use this
interpretation. This is consistent with the way of executing aggregates by
Knobbe et al. (2002). However, since the first interpretation is the way Prolog
executes aggregate conditions, we will also provide this semantics. It will be
denoted by the suffix bag added to the aggregate function. Thus, we introduce
the following aggregate functions: count bag, avg bag, and sum bag. As the
minimum (maximum) of a set is the same as the minimum (maximum) of a
bag defined over the set, there is no need to have a min bag (max bag). The
second interpretation is in most cases not intuitive (note that when aggregating
over a key attribute, the second and third interpretation are the same). The
only aggregate function where this second interpretation may be useful is count.
We will denote it as count distinct, which corresponds to the count distinct

aggregate function in SQL.
We will now formalize the concepts of bag-, set-, and object-defined aggregate

conditions. Therefore, we introduce the notion of result bag.

Definition 3.7 (Result bag, result set, object result bag) The result
bag defined by a query Q and a variable V is the bag of all answer substitutions
for V that Q results in.
The result set defined by a query Q and a variable V is the set of all answer
substitutions for V that Q results in.
The object result bag defined by a query Q = (SimplePart, ComplexSelections)
and a variable V that occurs in SimplePart is the bag of all answer substitutions
for V taken from the set of all answer substitutions for SimplePart that Q
results in.

The last type of result bag is called object result bag, because in a sense, the
aggregate is taken over objects (represented by the simple part of Q, i.e., the part
of Q that corresponds to a simple aggregate literal1), as opposed to the result
bag and result set, where the aggregate only considers values. The following
example illustrates the computation of an object result bag.

Example 3.3 Consider again the aggregate condition

sum(Balance, (account(PersId,AccId, Type,Balance),
transaction(AccId, TrId, TrType,Amount)), C)

1We assume the simple part of Q can be unambiguously determined, in this text it is
assumed to be the first literal in Q.

44

3.4 Refining clauses with complex aggregates

and the extension of the Account dataset in Table 2.2. In order to compute the
object result bag for the first example (“john”), we first obtain the set of answer
substitutions for account(PersId,AccId, Type,Balance) yielded by the aggre-
gate query (account(PersId,AccId, Type,Balance), transaction(AccId, TrId,
TrType,Amount)). This is the set {account(john, 123456, checkings, 100),
account(john, 987654, checkings, 200), account(john, 789123, savings, 200)}
(note that the last account of john has no transactions related). Then, for each
element in S, we take the corresponding value for Balance. This results in the
object result bag {100, 200, 200}.
The following property holds for any query Q and variable V occurring in Q:
result set(Q,V) ⊆ object result bag(Q,V) ⊆ result bag(Q,V). We can now
define bag-, set-, and object-defined aggregate conditions.

Definition 3.8 (Bag-, set-, and object-defined aggregate conditions)
A bag-defined aggregate condition is an aggregate condition with an aggregate

literal F bag(V,Q,R) where R is the result of applying F bag to the result bag
defined by Q and V .
A set-defined aggregate condition is an aggregate condition with an aggregate
literal F distinct(V,Q,R) where R is the result of applying F distinct to the
result set defined by Q and V .
An object-defined aggregate condition is an aggregate condition with an aggre-
gate literal F (V,Q,R) where R is the result of applying F to the object result
bag defined by Q and V .

For completeness, we show how the result of an aggregate literal would be
computed in Prolog for the three different semantics:

agg bag(V ar,Query,Result) : −
findall(V ar,Query,ResultBag),
agg(ResultBag,Result).

agg distinct(V ar,Query,Result) : −
setof(V ar,QueryˆQuery,ResultSet),
agg(ResultSet,Result).

agg(V ar, (Simple, Complex), Result) : −!,
findall(V ar, (Simple, once(Complex)), ObjectResultBag),
agg(ObjectResultBag,Result).

agg(V ar, Simple,Result) : −
findall(V ar, Simple,ObjectResultBag),
agg(ObjectResultBag,Result).

In these clauses, agg denotes an aggregate function (max, min, avg, sum, count,
mode).

45

Chapter 3 Combining Aggregates and Selections

3.4.3 Monotonicity

In the previous section we have discussed how the bag semantics of an aggregate
condition may violate the property that c1 ≤α c2 implies that c2 is a special-
ization of c1. Refining bag-defined aggregate conditions under α-subsumption
may yield a specialization or a generalization, or even none of both, because
the refinement may increase or decrease the result bag. Refining object- or
set-defined aggregate conditions guarantees that the corresponding object re-
sult bag or result set decreases. However, even with a decreased result set,
the refinement may still yield a generalization instead of a specialization. This
behaviour is related to the monotonicity properties of the aggregate condition,
which is the subject of this section.

Take the following example clause:

person(PersId, pos)←
count(AccId, account(PersId,AccId, Type,Balance), C), C ≥ 4

Applying a substitution to the aggregate query can yield the following refine-
ment

person(PersId, pos)←
count(AccId, account(PersId,AccId, savings,Balance), C), C ≥ 4

which must have at most the same coverage (the set of people with at least four
savings accounts must be a subset of the people with at least four accounts),
so the refinement is valid.
However, if we consider the following query

person(PersId, pos)←
count(AccId, account(PersId,AccId, Type,Balance), C), C < 4

and its refinement

person(PersId, pos)←
count(AccId, account(PersId,AccId, savings,Balance), C), C < 4

then the result yields a generalization (the set of people with less than four
savings accounts is a superset of the people with more than four accounts).

This example shows that refinement under α-subsumption, although applied
to object-defined aggregate conditions, does not guarantee valid refinements.
The fact that the refinement operator yields a specialization in the first case,
and a generalization in the second case, is related to the aggregate condition,
which is monotone in the first example and anti-monotone in the second. In
the following sections we present a refinement operator that does guarantee
valid refinements for aggregate conditions. To this end, we first introduce
the concept of monotonicity (Sect. 3.4.3.1). Then we describe an ordering on
the aggregate functions (Sect. 3.4.3.2) in order to be able to investigate the

46

3.4 Refining clauses with complex aggregates

monotonicity properties of an aggregate condition (Sect. 3.4.3.3). Afterwards,
we discuss valid refinements of aggregate conditions (Sect. 3.4.3.4) and formalize
the new refinement operator by means of a visualization of the valid refinements
(Sect. 3.4.3.5). Finally, we briefly present a related work (Sect. 3.4.3.6).

3.4.3.1 Monotonicity

Definition 3.9 (Monotonicity) Given a function f(x1, ..., xn) :
(D1, ..., Dn) → R, an order relation ≤Di

on each domain Di and an order
relation ≤R on R. The function f is

• monotone in xi iff
xi ≤Di

xi′ ⇒ f(x1, ..., xi, ..., xn) ≤R f(x1, ..., xi′ , ..., xn),

• anti-monotone in xi iff
xi ≤Di

xi′ ⇒ f(x1, ..., xi, ..., xn) ≥R f(x1, ..., xi′ , ..., xn),

• and non-monotone in xi otherwise.

In other words, a function mapping an ordered domain onto an ordered range
is monotone if it preserves the order, anti-monotone if it reverses the order, and
non-monotone otherwise.

To investigate the monotonicity properties of an aggregate condition F (S) ∈
I, an order relation is needed on each of the domains and on the range. We
define these relations as follows:

• F, the set of aggregate functions:

– F1 �F F2 ⇔ ∀S ∈ S : F1(S) ≤ F2(S), this is discussed in the next
section,

• S, the set of bags (multi-sets)

– S1 �S S2 ⇔ S1 ⊆ S2, we say that A is a subbag of B (denoted A ⊆
B) if and only if each element of A is also in B and its multiplicity
in B is at least as high as in A,

• I, the intervals defined over R

– I1 �I I2 ⇔ I1 ⊆ I2,

• B, the boolean values

– false �B true.

47

Chapter 3 Combining Aggregates and Selections

3.4.3.2 Ordering the aggregate functions

In this section we discuss several parameterized classes of aggregate functions
that are ordered and together cover all aggregates of interest. As before, the
aggregates of interest are those that result in numeric attributes, i.e., max, min,
avg, sum, and count. The interpretation used for these aggregate functions (bag,
set or object semantics) does not influence the ordering relation, unless stated
otherwise.

Generalized averages. We define a class of generalized averages as follows:

Definition 3.10 (Generalized average)

avgk(S) = (
P

i
(xk

i)

n)1/k with S = {x1, ..., xn}
The function avgk(S) is defined for −∞ ≤ k ≤ ∞ (k 6= 0) if S ⊆ R

+ and for
k = {1,−1,∞,−∞, 2 ∗ z} with z ∈ Z if S ⊆ R. If S ⊆ R

+, then the following
order relation holds:

i ≤ j ⇒ avgi �F avgj .

While this relation holds for all k, only some of these k-values are commonly
used: avg1(S) = avg(S), lim

k→∞
avgk(S) = max(S), and lim

k→−∞
avgk(S) =

min(S). Moreover, the order relation min �F avg �F max also holds for
sets S that contain negative numbers.

Generalized sums. For sum we can define an aggregate function class very
similar to the generalized averages:

Definition 3.11 (Generalized sum)

sumk(S) = (
∑

i(x
k
i))1/k with 1 ≤ k ≤ ∞ and

S = {x1, ..., xn}
We have that sum1(S) = sum(S) and lim

k→∞
sumk(S) = max(S). In other

words, these generalized sums range from max to sum. If S contains only
positive numbers, we obtain the following order relation:

i ≥ j ⇒ sumi �F sumj .

Generalized counts. Our last aggregate function of interest is count. An
aggregate function that can form an aggregate class with count is count distinct.
This function counts the number of different values in the multi-set. We have
the following order relation:

count distinct �F count.

Note that these two functions correspond to different semantics of the count
function.

48

3.4 Refining clauses with complex aggregates

Summary. While the proposed aggregate classes contain an infinite amount
of aggregate functions, for the most important ones, we obtain the following
order:

• min �F avg �F max,

• max �F sum if S ⊆ R
+,

• count distinct �F count.

Remark that there exist other parameterized classes for these aggregate func-
tions.

3.4.3.3 Monotonicity properties of aggregate conditions

Having defined an ordering relation on the domains F, S, I, and B of an aggre-
gate condition, we can discuss the monotonicity properties of each domain.

For the ease of explanation, we consider an aggregate condition F (S) ∈ I to
be the composition of two functions:

• an aggregate function a : F× S→ R,

• a member function m : R× I→ B.

For each of these two functions, we can now describe the monotonicity prop-
erties. Afterwards, we describe some issues that come along when composing
the two functions. The monotonicity properties are summarized in Fig. 3.1.

Monotonicity of the aggregate function. The function a(F, S) is monotone
in F , because the order on F is defined as such.

The monotonicity of a(F, S) w.r.t. S depends on F . The function a(F, S) is
monotone in S if F ∈ {count, count distinct,max} (if any of these functions is
applied to a subset (subbag) S ′ ⊆ S, its resulting value will decrease). Similarly,
a(min, S) is anti-monotone, and a(sum, S) and a(avg, S) are non-monotone in
S2.

Monotonicity of the member function. The member function m(R, I) is
monotone in I: decreasing the interval can cease the membership of R.

The monotonicity in R depends on I: m(R, [v,∞[) (with v ∈ R) is monotone
in R, m(R,]-∞, v]) anti-monotone, and m(R, [v, w]) (v, w ∈ R) non-monotone.

2For sum the monotonicity depends on the set S, e.g., if this set contains only positive
numbers then a(sum, S) is monotone.

49

Chapter 3 Combining Aggregates and Selections

Monotonicity of the composite function. Care is needed when composing the
aggregate function and the member function. The monotonicity properties in
F and S are inherited by m(a(F, S), I) if this function is monotone in a(F, S).
However, the monotonicity in F and S is reversed if the composed function
is anti-monotone in a(F, S). For example, a condition max(S) ∈]-∞, v] is
anti-monotone in max and S.

Similarly, when the composed function is non-monotone in a(F, S), the mono-
tonicity properties in F and S are broken. For instance, for a condition
max(S) ∈ [v, w], the monotonicity properties in max and S are lost. Therefore,
in the following we do not consider intervals of the form [v, w], with v, w ∈ R.
We only consider the aggregate conditions F (S) ≤ v and F (S) ≥ v.

3.4.3.4 Valid refinements

In order to define valid refinements for an aggregate condition, we can use the
monotonicity properties described above. Keeping in mind that the goal is to
obtain more specific conditions (i.e. refinements that make the condition false
for some of the examples for which it was true), definition 3.9 learns that a
function that is monotone (anti-monotone) in one of its inputs can be validly
refined by decreasing (increasing) its value for that input.

Before turning to an example, we explain how a multi-set S can be increased
or decreased in an ILP system.

Increasing or decreasing S. An aggregate condition that is monotone in S
(e.g., count(S) ≥ v) can be validly refined by decreasing S, i.e., reducing the
multi-set to be aggregated. In ILP, this can be achieved by specializing the
query Q used to generate S, if object or set semantics is used.

An aggregate condition that is anti-monotone in S (e.g., count(S) ≤ v) can
be validly refined by increasing S, i.e., enlarging the set to be aggregated. If
object or set semantics is used, this can be obtained in ILP by generalizing the
query that is used to generate the set, thus, by removing literals from it.

For bag-defined aggregate functions there is no general strategy for increasing
or decreasing S. To refine bag-defined aggregate conditions in a valid way, only
the aggregate function or the interval can be changed.

Example 3.4 We now illustrate the possible refinements with a small example
from the Account database. Consider the following clause:

person(PersId, pos)←
max(Bal, account(PersId,AccId, Type,Bal),M),M ≥ 15000

The aggregate condition F (S) ∈ I in this clause can be refined in three ways:

• decrease I (because the member function m(R, I) is monotone in I)

max(Bal, account(PersId,AccId, Type,Bal),M),M ≥ 20000

50

3.4 Refining clauses with complex aggregates

F
(S

)
∈

I

F
(S

)
=

R
R
∈

I

w
.r

.t
.

F
w

.r
.t
.

S
w

.r
.t
.

R
w

.r
.t
.

I

m
on

ot
on

e
F
∈
{c

ou
n
t,

co
u
n
t

d
is

t,
m

a
x
}

F
∈
{m

in
}

F
∈
{a

v
g
,s

u
m
}

I
∈

[v
,∞

[
I
∈]
−
∞

,v
]

I
∈

[v
,w

]
m

on
ot

on
e

m
on

ot
on

e
an

ti
-m

on
.

n
on

-m
on

.
m

on
ot

on
e

an
ti
-m

on
.

n
on

-m
on

.

m
on

ot
on

ic
it
y

p
ro

p
er

ti
es

ar
e

re
ve

rs
ed

m
on

ot
on

ic
it
y

p
ro

p
er

ti
es

ar
e

lo
st

Figure 3.1: Monotonicity Properties of Aggregate Conditions.

51

Chapter 3 Combining Aggregates and Selections

• decrease max(S) (because for I = [v,∞[the member function m(R, I) is
monotone in R). This can be achieved by

– decreasing max (because the aggregate function a(F, S) is monotone
in F)

avg(Bal, account(PersId,AccId, Type,Bal),M),M ≥ 15000

– decreasing S (because a(max, S) is monotone in S).

max(Bal, account(PersId,AccId, savings,Bal),M),M ≥ 15000

In the next section, we present a visualization of the valid refinements and
give a formal definition of the refinement operator that follows from this dis-
cussion.

3.4.3.5 Refinement cubes

We have presented three dimensions along which aggregate conditions can be
refined: the aggregate function F , the query Q (or equivalently, the multi-set
SQ, consisting of all answer substitutions generated by Q3), and the interval
bound v. If object or set semantics is used for the aggregate functions, the
whole set of hypotheses spanned by these three dimensions can be visualized
in what we call a refinement cube (see Figure 3.2). Every discrete point in
the cube represents a hypothesis and can be constructed in a finite number
of steps, starting from one aggregate condition. A chain of refinements in the
cube will be called a path. For simplicity, we only consider refinements along
one direction at a time. We are only interested in valid refinements, therefore
we only allow monotone paths in the refinement cubes, i.e. paths that consist
only of valid refinements.

For a given aggregate function class, refinement of aggregate conditions pro-
ceeds as follows. For every numeric attribute A, we look for a query Q that
generates the set of values SQ for each example. We take the smallest and
largest aggregate function in the class (Fsmall and Flarge respectively) and look
for the smallest possible value returned by Fsmall(SQ) and the largest possible
value returned by Flarge(SQ) (Vsmall and Vlarge respectively). Then we con-
struct two start conditions: Flarge(SQ) ≥ Vsmall and Fsmall(SQ) ≤ Vlarge. For
each aggregate function class and each start condition there is a corresponding
refinement cube that shows the allowed refinements.

The refinement cubes for the generalized averages. The generalized aver-
ages range from min to max. Possible thresholds for these functions range
from the minimum to the maximum value in the dataset for the attribute un-
der consideration. Hence, the two start conditions for this aggregate class are

3In this section, we make abstraction of the variable in Q for which the answer substitutions
are generated.

52

3.4 Refining clauses with complex aggregates

(a) (b)

Figure 3.2: The refinement cubes for the generalized averages. (a) Refinement
cube for start condition max(SQ) ≥ min value. (b) Refinement cube for
start condition min(SQ) ≤ max value.

max(SQ) ≥ min value and min(SQ) ≤ max value. The corresponding refine-
ment cubes are shown in Figure 3.2, with the start conditions indicated as a
large dot. The arrows show the directions in which we can generate monotone
paths starting from these aggregate conditions. Observe that when moving
along the F -axis, the monotonicity properties of the aggregate function in SQ

change, so moving along the Q axis is only allowed in the top or bottom faces
of the cube.

The refinement cubes for the generalized sums. Figure 3.3 shows the re-
finement cubes for the generalized sums. The V -axis ranges from the lowest
value in the range of max (the minimal value for the numeric attribute) to
the largest value in the range of sum (the maximum of the sum of the values
for the attribute A, grouped by example, this value is called sum value in the
cube). The start conditions from which we can generate the whole cube are
thus sum(SQ) ≥ min value and max(SQ) ≤ sum value. The second start con-
dition is anti-monotone in SQ, and therefore positioned at the specific side of
Q. Remark that, if we would use bag semantics for F , it would not be possible
to determine this second start condition, since sum value would be unknown.

In this case moving along the F -axis does not change monotonicity (under
the assumption that the generalized sums are only applied to sets of positive
numbers), so the previous restriction does not apply here.

The refinement cubes for the generalized sums can be connected to the
cubes for the generalized averages. This results in a combined refinement

53

Chapter 3 Combining Aggregates and Selections

(a) (b)

Figure 3.3: The refinement cubes for the generalized sums. (a) Refinement
cube for start condition sum(SQ) ≥ min value. (b) Refinement cube for
start condition max(SQ) ≤ sum value.

space (see Figure 3.4). The start condition for the ≥ operator is sum(SQ) ≥
min value (Figure 3.4(a)). For the≤ operator the start condition is min(SQ) ≤
sum value and is located outside the original cubes. It can be replaced by the
two other start conditions indicated in Figure 3.4(b).

The refinement cubes for the generalized counts. For the generalized counts
the F -axis only contains the functions count and count distinct. The V -axis
ranges from 0 to the maximum size of the set generated by Q (cnt value).
The start conditions are count(SQ) ≥ 0 and count dist(SQ) ≤ cnt value. The
monotone paths in the refinement cubes are the same as those for the general-
ized sums (see Figure 3.3).

We now illustrate the use of the refinement cubes with an example.

Example 3.5 Consider the following start condition for the generalized sums:

person(PersId, pos)←
sum(Bal, account(PersId,AccId, Type,Bal), S), S ≥ 10000

Suppose we only use the functions sum and max, only use the threshold values
10,000 and 15,000, and only specialize the aggregate query in account(PersId,
AccId, savings,Bal). Figure 3.5 schematically shows the refinements that are
generated. Note that an aggregate condition can be obtained via more than one
path, so in practice one has to take care to generate the conditions only once.

54

3.4 Refining clauses with complex aggregates

(a) (b)

Figure 3.4: The refinement cubes for the generalized sums in combination with
the generalized averages. (a) Refinement cube for start condition sum(SQ) ≥
min value. (b) Refinement cube for start condition min(SQ) ≤ sum value.

Refinement operator. We now give a formal definition of the refinement op-
erator that follows monotone paths in the refinement cubes. We therefore
introduce the notion of µ-subsumption.

Definition 3.12 (µ-subsumption) A clause c1 µ-subsumes a clause c2 (de-
noted c1 ≤µ c2) if and only if S(c1) ≤θ S(c2), and for each aggregate condition
(F1(V1, Q1, R1), between(R1, T11, T12)) ∈ c1, there exists an aggregate condi-
tion (F2(V2, Q2, R2), between(R2, T21, T22)) ∈ c2 such that R1θ = R2, the tuple
(F2, Q2, T21, T22) is obtained from (F1, Q1σ, T11, T12) via a monotone path in
the corresponding refinement cube, V1σ = V2, and the substitution σ consists of
θ augmented with a substitution over locally defined variables in Q1.

In other words, a refinement operator based on µ-subsumption refines a clause
by applying one of the following basic operations:

• applying a substitution to the clause,

• adding a basic language construct to the body of the clause, or

• replacing an aggregate condition in the clause by an other aggregate con-
dition, obtained via a monotone path in the refinement cube correspond-
ing to the aggregate condition.

Contrary to α-subsumption, µ-subsumption implies generality:

Theorem 3.1 If C1 ≤µ C2 then C1 is at least as general as C2.

55

Chapter 3 Combining Aggregates and Selections

sum,account,10000

sum,savings,10000 max,account,10000 sum,account,15000

max,savings,10000 sum,savings,15000 max,account,15000

max,savings,15000

Figure 3.5: Refinements generated for the start condition
sum(Bal, account(PersId,AccId, Type,Bal), S), S ≥ 10000 by the
cube for the generalized sums. In each node, the function F , query
Q, and threshold value v are shown. The query is abbreviated:
account stands for account(PersId,AccId, Type,Bal) and savings means
account(PersId,AccId, savings,Bal).

When using a refinement operator based on µ-subsumption we obtain a
search strategy that is

• efficient: only valid refinements are generated in each step, which allows
to prune the aggregate search space,

• complete: every aggregate condition is reachable in a finite number of
steps starting from the start conditions.

Note that this efficiency can only be achieved by considering all three dimen-
sions F , Q, and V together. A system that does not allow refinements along
the F -axis (e.g., max → avg → min) can not obtain the aggregate con-
ditions in a monotone (general-to-specific) way. For example, the condition
avg(Bal, account(PersId,AccId, savings,Bal), S), S ≥ 10000 can only be ob-
tained in a monotone way via the path max(Bal, account(PersId,AccId, Type,
Bal), S), S ≥ 10000→ max(Bal, account(PersId,AccId, savings,Bal), S),
S ≥ 10000→ avg(Bal, account(PersId,AccId, savings,Bal), S), S ≥ 10000.

Remark that a refinement based on α-subsumption corresponds to moving
along the Q-axis in the general to specific direction.

3.4.3.6 Related work

The presented work is to some extent related to the research started by Ng et al.
(1998) on constraint based mining. In that work, the task is to find frequent
itemsets that fulfill constraints that possibly involve aggregations. For instance,
in addition to minimal support, one can impose that the total price of the items

56

3.5 Conclusion

in an itemset must be below some threshold. The set of frequent itemsets that
fulfill the constraints is constructed by starting with frequent itemsets that
contain only one element and subsequently combining frequent itemsets. The
research also involves studies of the monotonicity properties of aggregates and
the fact that the aggregate condition sum(S) ≤ T is anti-monotone in the set
S (assuming S contains only positive numbers, which is the case with prices)
is exploited as follows. If an itemset {X,Y } violates the total price constraint,
then all itemsets that are extensions of {X,Y } can be pruned. Thus, in that
work, a pattern without aggregates can be pruned on the basis of aggregate
constraints.

In the context of knowledge representation, Pelov (2004) studies the mono-
tonicity properties of aggregate conditions when defining semantics of logic
programs that contain recursion over aggregate atoms. An example of such a
program is the following clause, which states that a person accepts an invitation
for some party if at least three of his friends accept the invitation.

accept invitation(Person)←
count(Friend, (friend(Person, Friend), accept invitation(Friend)),

NbFriends), NbFriends ≥ 3

The work presents extensions of several semantics of logic programming (in-
cluding least fixpoint semantics, well-founded semantics,. . .) to include such
aggregate expressions.

3.5 Conclusion

In this chapter we have discussed the problem of combining aggregates and
selections. Such combinations might be expected to naturally appear in certain
patterns, but they are very difficult to construct for machine learning systems,
both because the feature space explodes and because it becomes more difficult
to search it in a structured and efficient way. In this chapter we have analyzed
these issues.

First, we have introduced the notion of complex aggregate condition and
have presented a refinement operator based on α-subsumption, which is a triv-
ial extension of a θ-subsumption based operator to the context of complex ag-
gregate conditions. We have shown that refining an aggregate condition under
α-subsumption causes the result set or the object result bag of the aggregate
query to decrease (to become a subset of what it originally was), but may have
any effect on the (normal) result bag of the aggregate query. Hence, for the
object- or set-defined aggregate conditions that are (anti-)monotone in the set
to aggregate on we can say that refining an aggregate query can only yield
a specialization (generalization), but for the bag-defined aggregate conditions
no such statements are possible. A consequence of this is that searching the
hypothesis space in a general-to-specific manner becomes more complicated.

57

Chapter 3 Combining Aggregates and Selections

There is no obvious refinement strategy for aggregate queries that guarantees
that the refinement will yield a specialization, unless we limit the hypothesis
space to patterns involving refinements of monotone aggregate conditions, and
use the object semantics. This is essentially what Knobbe et al. (2002) do.

However, instead of looking for a refinement strategy for aggregate queries,
one can solve the problem from the level of aggregate conditions which have,
besides aggregate queries, other parameters (the aggregate function and the
threshold value). No current relational learners consider refinements on all
three dimensions together, and indeed the effect of such refinements on the
generality of a rule, and the interaction between these effects, are non-trivial.
Therefore, we have presented an in-depth study of the monotonicity of aggre-
gate conditions along the following dimensions: the aggregate function, the
set to be aggregated, and the threshold value. This first dimension has never
been explored before, but turns out to be crucial to obtain an efficient refine-
ment strategy for aggregate conditions. This study has led to the notion of
µ-subsumption and an associated refinement operator. The presented refine-
ment operator can be beneficial for any relational learning system that learns
aggregates and makes use of a general-to-specific ordering of the hypotheses
to guide the search (e.g., decision tree learners, rule learners, frequent pattern
miners,. . .).

58

Chapter 4

Adding Complex Aggregates to
First Order Decision Trees

4.1 Introduction

In the previous chapter we have explained that current relational learners han-
dle sets either by testing for the existence of specific elements or by summarizing
them using aggregate functions. The fact that no system is able to fully combine
both approaches, causes an undesirable bias on current learners. Therefore, we
have introduced what we call complex aggregate conditions. These are aggre-
gate conditions where the set to be aggregated may be generated by a complex
query, thus, may contain a number of selection conditions.

In this chapter we include these complex aggregate conditions in an ILP
system that learns first order decision trees. While rule induction is more
common in ILP than tree induction, ILP tree learners have been around for
several years now. The system that we will use is Tilde(Blockeel and De Raedt
1998). Although we focus on decision trees, the techniques discussed in this
chapter are also applicable to learning algorithms for other patterns.

The chapter is organized as follows. First, we describe how first order deci-
sion trees are built in Tilde(Sect. 4.2). Then, we discuss how complex aggre-
gate conditions can be included in the search space of first order decision trees
(Sect. 4.3). In Sect. 4.4 we discuss two techniques to deal with the feature space
explosion. Section 4.5 proposes a number of approaches to deal with aggregat-
ing over empty sets. Experiments are presented in Sect. 4.6. We conclude in
Sect. 4.7.

4.2 Tilde: a first order decision tree learner

The system Tilde (Blockeel and De Raedt 1998) is included in the ACE-
ilProlog data mining system (ACE 2004; Blockeel et al. 2006). It is a relational
top-down induction of decision trees (TDIDT) instantiation, and outputs a first
order decision tree.

A first order decision tree (Blockeel and De Raedt 1998) is a binary deci-
sion tree that contains conjunctions of first order literals in the internal nodes.

59

Chapter 4 Adding Complex Aggregates to First Order Decision Trees

Table 4.1: Tilde algorithm for first order logical decision tree induction (Bloc-
keel and De Raedt 1998).

procedure GROW TREE (E: examples, Q: query):
candidates := ρ(Q)
Qb := OPTIMAL SPLIT(candidates, E)
if STOP CRIT (Qb, E)
then

K := PREDICT(E)
return leaf(K)

else
conj := Qb −Q
E1 := {e ∈ E|Qb succeeds in e ∧B}
E2 := {e ∈ E|Qb fails in e ∧B}
left := GROW TREE (E1, Qb)
right := GROW TREE (E2, Q)
return node(conj, left, right)

Classification with a first order tree is similar to classification with a proposi-
tional decision tree: a new instance is sorted down the tree. If the conjunction
in a given node succeeds (fails), the instance is propagated to the left (right)
subtree. The predicted class corresponds to the label of the leaf node where
the instance arrives. A given node n of the tree may introduce variables that
can be reused in the nodes of its left subtree, which contains the examples for
which the conjunction in n succeeds (with certain bindings for these variables).

In Tilde, first order decision trees are learned with a divide and conquer
algorithm similar to C4.5 (Quinlan 1993). The main point where it differs
from propositional tree learners is the computation of the set of tests to be
considered at a node. The algorithm to learn a first order decision tree is given
in Table 4.1.

The OPTIMAL SPLIT procedure returns a query Qb, which is selected from a
set of candidates generated by the refinement operator ρ, by using a heuristic,
such as information gain for classification problems, or variance reduction for
regression. The refinement operator operates under θ-subsumption and gen-
erates candidates by extending the current query Q (the conjunction of all
succeeding tests from the root to the leaf that is to be extended) with a num-
ber of new literals that are specified in the rmode constructs of the language
bias (see Ex. 2.12 for more details about Tilde’s language bias). The conjunc-
tion put in the node consists of Qb −Q, i.e., the literals that have been added
to Q in order to produce Qb. Remark that the only way that the refinement
operator can apply a substitution to a literal in the current query is to add
the substituted literal to the end of the query. In the left branch, Qb will be

60

4.3 Adding complex aggregates to Tilde

further refined, while in the right branch Q is to be refined. When the stop cri-
terion holds (typically, this is when a predefined minimum number of examples
is reached), a leaf is built. The PREDICT procedure returns the most frequent
class of the examples in E in case of classification, or the mean target value in
case of regression.

4.3 Adding complex aggregates to Tilde

Tilde was modified to include (complex) aggregate conditions. The set of can-
didates considered at each node in the tree was expanded to consist of the origi-
nal candidates, augmented with aggregate conditions (both simple and complex
ones). As explained in the previous chapter, a simple aggregate condition is
an aggregate that is constructed directly from the language bias, without hav-
ing selection conditions. By complex aggregate conditions, we mean aggregate
conditions that have been refined with selection conditions. It is practically im-
possible to declare the complex aggregate conditions as intensional background
knowledge, if the relevant ones are not known in advance. The main difficulty
is that the aggregate queries themselves are the result of a search through some
hypothesis space, hence we want to learn them.

To illustrate how our method works, we provide an example language bias
for the Account example in Table 4.2. This is an extension of the language bias
discussed in Ex. 2.12. Next to the rmode construct, the language bias now
contains a second important construct, aggcondition, to specify the candidates
that can be generated. To include aggregate conditions in the search space, the
user needs to specify the basic ingredients in the aggcondition construct: the
aggregate functions, the aggregate query, aggregate variables, and comparison
operators. A number of values to compare the result with can be provided
by the user, or can be obtained using discretization (Blockeel and De Raedt
1997). Aggregate conditions with the between predicate are not supported,
only aggregate conditions with one threshold value are provided.

The system then constructs simple aggregate conditions, using these compo-
nents. The refinement operator ρ includes the aggregate conditions in the set
of candidate queries it generates. A simple aggregate condition that will be
generated from the first aggcondition construct in Table 4.2 is for instance:

max(Balance, account(PersId, AccId, Type,Balance),M),M ≥ 2000

with PersId bound to the PersId variable in person(PersId, Class). This query
states that the maximum balance of the accounts of a person exceeds 2000.

After adding the standard literals coming from the rmode constructs and the
simple aggregate conditions coming from the aggcondition constructs to the set
of candidates, the construction of complex aggregate conditions takes place.
This can be done in two ways: refining an aggregate condition that occurs

61

Chapter 4 Adding Complex Aggregates to First Order Decision Trees

Table 4.2: Advanced language bias for the Account example.

% prediction

predict(person(+persid,-class)).

% types

typed language(yes).
type(account(persid, accid, acctype, balance)).
type(transaction(accid, trans, transtype, amount)).
type(person(persid,class)).

% rmodes: basic language constructs

rmode(account(+PersId, -AccId, -Tp, -Bal)).
rmode(account(+PersId,+-AccId, #[“savings”,“checkings”],-Bal)).
rmode((account(+PersId, +-AccId, -Tp,Bal), Bal ≥ #[500,2000,5000,10000])).
rmode(transaction(+AccId, -TrId, -Tp, -Am)).
rmode(transaction(+AccId, +-TrId,#[“deposit”,“withdrawal”], -Am)).
rmode((transaction(+AccId, +-TrId, -Tp, Am), Am ≥ #[500,1000,2000])).

% aggcondition: aggregate condition constructs

aggcondition([max], account(+PersId, -AccId, -Tp, -Bal), Bal, [≤,≥],[2000,5000]).
aggcondition([min], account(+PersId, -AccId, -Tp, -Bal), Bal, [≤,≥],[-100,0,100]).
aggcondition([sum], account(+PersId, -AccId, -Tp, -Bal), Bal, [≤,≥],[0,5000]).
aggcondition([count],account(+PersId, -AccId, -Tp, -Bal), AccId, [≤,≥],[2,5]).
aggcondition([count],transaction(+AccId, -TrId, -Tp, -Am), Tr, [≤,≥],[5,10,50]).

higher in the tree or directly introducing an aggregate condition refined with
selections. We discuss the two approaches.

4.3.1 Refining an existing aggregate condition

In this approach aggregate conditions that occur higher in the tree are refined.
Only aggregate conditions in the current query are considered, since these are
the conditions that succeed for the examples in the node to be expanded. For
every such aggregate condition C, a local search has to be conducted.

In the previous chapter, we have introduced two refinement operators to
refine aggregate conditions. The first one is based on α-subsumption and ba-
sically adds a selection condition or applies a substitution to the aggregate
query. We have shown that such refinements may result in generalizations and
have proposed a second refinement operator to solve this problem. The second
refinement operator works under µ-subsumption.

Let us take a look at the generality issue in the context of Tilde. In Tilde,
refining the hypothesis under consideration means adding a node to a leaf of
the tree. Given that with each node a query is associated, we can reformulate

62

4.3 Adding complex aggregates to Tilde

this as follows: given a query Q, the refinements of Q are obtained by extending
Q with one or more literals from the language bias. Thus, the examples for
which a refinement (Q,R) (meaning Q and R) is true, have to be a subset of the
examples for which Q is true, which means (by definition) that (Q,R) is always
a specialization of Q. In case Q contains an aggregate condition C of which
R is a refinement that is a generalization of C, the set of examples for which
(Q,R) succeeds equals the set of examples for which Q succeeds. In that case,
the refinement (Q,R) will never be chosen by the optimal split procedure
from Table 4.1, since it yields no split. This means that pure generalizations
do not occur in this context, and hence, a (simple) refinement operator based
on α-subsumption can be used to implement ρ. A drawback of this method is
that the generated refinement space may contain a number of refinements that
are useless.

Pseudo-code for such a refinement operator based on α-subsumption is out-
lined in Table 4.3. An extra input argument is assumed for the ρ procedure:
the parameter MAX SELECTIONS denotes the maximum number of selection con-
ditions that may be added to an aggregate condition. For every aggregate con-
dition C occurring in the current query, a local search has to be conducted.
Therefore, ρ constructs an inner refinement operator ρα, which generates can-
didates by extending the aggregate query of C with all features specified in
either the rmode or aggcondition constructs. Each candidate generated by ρα

is included as an aggregate query in an aggregate condition with the same ag-
gregate function, comparison operator, and threshold value as C. These new
aggregate conditions are added to the set of candidates produced by ρ.

Example 4.1 If the current query Q at a given node N is

person(P,Class),
count(Acc,account(P,Acc, Tp,Bal), C), C ≥ 5,

then, given the language bias of Table 4.2, all refinements of Q that represent
complex aggregate conditions are given in Table 4.4. No recursive aggregate
conditions (see Ex. 3.1) are shown. For example, the last refinement generated
by ρ is

person(P,Class),
count(Acc,account(P,Acc, Type,Bal), C), C ≥ 5,
count(Acc, (account(P,Acc, Tp,Bal),

transaction(Acc, Tr, TrTp,Am), Am ≥ 2000), C ′), C ′ ≥ 5

This refinement states that a person is positive if he has at least five accounts
that have a transaction with an amount larger than 2000 associated with it. If
the query above is chosen by the OPTIMAL SPLIT procedure, then

count(Acc, (account(P,Acc, Tp,Bal),
transaction(Acc, Tr, TrTp,Am), Am ≥ 2000), C ′), C ′ ≥ 5.

63

Chapter 4 Adding Complex Aggregates to First Order Decision Trees

Table 4.3: Refinement operator based on α-subsumption for refining complex
aggregate conditions in the current query.

procedure ρ (Q: query, MAX SELECTIONS: integer):
candidates := EXTEND WITH RMODES(Q)
candidates := candidates ∪ EXTEND WITH AGGCONDITIONS(Q)
for each aggregate condition (F (V,Q1, R), RϑT) ∈ Q

if SELECTIONS(Q1) < MAX SELECTIONS

then candidates := candidates ∪ ρα ((F (V,Q1, R), RϑT))
return candidates

procedure ρα ((F (V,Q1, R), RϑT): aggregate condition):
candidates := ∅
querycand := EXTEND WITH RMODES(Q1)
querycand := querycand ∪ EXTEND WITH AGGCONDITIONS(Q1)
for all (Q1, Q2) ∈ querycand

candidates := candidates ∪ (F (V, (Q1, Q2), R), RϑT)
return candidates

is the conjunction added in the left child node of N .

Also the refinement operator based on µ-subsumption can be used to refine
aggregate conditions in the current query. In that case the aggregate condition
C needs to be looked up in the refinement cubes and, based on the direction of
the arrows in the cube, the corresponding refinements are generated.

Let us consider an example to compare the two refinement operators. Sup-
pose the aggregate condition C in the current query that we wish to refine
is

avg(Bal, account(PersId,AccId, Type,Bal), R), R > 1000.

The α-subsumption based refinement operator would generate all refinements
shown in Table 4.4. Since the aggregate condition C is non-monotone in the
aggregate query, a lot of the refinements may be generalizations and will thus,
in combination with C, cover the same set of examples as C. In other words,
a lot of them are useless. If we were using a refinement operator based on µ-
subsumption, then we can use the refinement cube drawn in Fig. 3.2(a) to gen-
erate the refinements. However, we notice that the avg function is only mono-
tonically refinable along the dimensions of the aggregate function or threshold
value. This means that refinements along the query axis, although they might
all be valid, will not be generated. Therefore, and also because the latter re-
finement framework was chronologically developed in a later stage, we only
provide a refinement operator based on α-subsumption for refining aggregate
conditions that occur higher in the tree.

64

4.3 Adding complex aggregates to Tilde

Table 4.4: Complex aggregate condition refinements for the query Q =
count(Acc, account(P,Acc, Tp,Bal), C), C ≥ 5. Only the new aggregate
query to form the refinement is shown. No recursive aggregates are used.

(account(P,Acc,Tp,Bal),account(P, Acc2, Tp2, Bal2))
(account(P,Acc,Tp,Bal),account(P, Acc, savings, Bal))
(account(P,Acc,Tp,Bal),account(P, Acc, checkings, Bal))
(account(P,Acc,Tp,Bal),account(P, Acc2, savings, Bal2))
(account(P,Acc,Tp,Bal),account(P, Acc2, checkings, Bal2))
(account(P,Acc,Tp,Bal),account(P, Acc, Tp, Bal),Bal ≥ 500)
(account(P,Acc,Tp,Bal),account(P, Acc, Tp, Bal),Bal ≥ 2000)
(account(P,Acc,Tp,Bal),account(P, Acc, Tp, Bal),Bal ≥ 5000)
(account(P,Acc,Tp,Bal),account(P, Acc, Tp, Bal),Bal ≥ 10000)
(account(P,Acc,Tp,Bal),account(P, Acc2, Tp2, Bal2),Bal2 ≥ 500)
(account(P,Acc,Tp,Bal),account(P, Acc2, Tp2, Bal2),Bal2 ≥ 2000)
(account(P,Acc,Tp,Bal),account(P, Acc2, Tp2, Bal2),Bal2 ≥ 5000)
(account(P,Acc,Tp,Bal),account(P, Acc2, Tp2, Bal2),Bal2 ≥ 10000)
(account(P,Acc,Tp,Bal),transaction(Acc, Tr, TrTp, Am))
(account(P,Acc,Tp,Bal),transaction(Acc, Tr, deposit, Am))
(account(P,Acc,Tp,Bal),transaction(Acc, Tr, withdrawal, Am))
(account(P,Acc,Tp,Bal),transaction(Acc, Tr, TrTp, Am),Am ≥ 500)
(account(P,Acc,Tp,Bal),transaction(Acc, Tr, TrTp, Am),Am ≥ 1000)
(account(P,Acc,Tp,Bal),transaction(Acc, Tr, TrTp, Am),Am ≥ 2000)

4.3.2 Directly inserting a refined aggregate condition

There is a second way in which complex aggregates can be built. It is based
on lookahead (Blockeel and De Raedt 1997), a technique commonly used in
ILP to make the learner look ahead in the refinement lattice. In most cases,
the refinement operator ρ adds only one basic language construct (i.e., the
new node contains literal(s) from only one basic language construct). In some
cases, however, it is interesting to add more literals at once, e.g., if the first
language construct yields no gain, but introduces interesting variables that can
be reused by other literals. If the refinement operator adds up to k+1 language
constructs, one says that it performs a lookahead of depth k. We extend this
mechanism to be directly applied to the aggregate query. In the context of
the refinement operator described in Table 4.3, ρα refines aggregate queries not
from the aggregate conditions occurring in the current query, but from the
simple aggregate conditions already added to the set of candidates1. These
aggregate conditions are refined with up to a predefined depth of literals. The
adapted ρ procedure is shown in Table 4.5. The differences with Table 4.3 are

1The two approaches may also be used together. However, the refinements generated by
the lookahead approach usually contain the refinements of the first approach.

65

Chapter 4 Adding Complex Aggregates to First Order Decision Trees

Table 4.5: Refinement operator based on α-subsumption for directly adding
complex aggregate conditions to Tilde’s search space. The procedure ρα is
the same as in Table 4.3.

procedure ρ (Q: query, MAX SELECTIONS: integer):
candidates := EXTEND WITH RMODES(Q)
candidates := candidates ∪ EXTEND WITH AGGCONDITIONS(Q)

for each aggregate condition (F (V,Q1, R), RϑT) ∈ candidates

while SELECTIONS(Q1) < MAX SELECTIONS

candidates := candidates ∪ ρα ((F (V,Q1, R), RϑT))
return candidates

highlighted.
With this approach, the query

count(Acc, (account(P,Acc, Tp,Bal),
transaction(Acc, Tr, TrTp,Am), Am ≥ 2000), C ′), C ′ ≥ 5

of Ex. 4.1 could immediately be inserted, without having the query

count(Acc,account(P,Acc, Tp,Bal), C), C ≥ 5

in one of its ancestor nodes. Obviously, the lookahead technique is computation-
ally expensive, but it may yield significant predictive improvements (Blockeel
and De Raedt 1997).

The refinements of aggregate conditions based on lookahead can also be gen-
erated by a refinement operator based on µ-subsumption. This brings a sig-
nificant efficiency improvement, while generating exactly the same refinement
space in this case. It is discussed in the next section. Since µ-subsumption was
developed in a later stage of this work, we first describe an other approach to
improve efficiency. It is based on sampling the refinement space.

4.4 Improving efficiency

In Chapt. 3 we have identified the substantial increase of the search space as
one of the major problems when learning theories with complex aggregate con-
ditions. The time needed to traverse this space can in some cases escalate, such
that the use of complex aggregates, especially when the lookahead method is
used, becomes practically infeasible. In this section we present two techniques
to cope with this problem.

In Sect. 4.4.1 we discuss an approach based on random forests. Random
forests are collections of trees, where each tree has been built by considering
in each node only a random sample of the possible tests for that node. In

66

4.4 Improving efficiency

our ILP setting, this boils down to making a random selection of the refine-
ments generated by α-subsumption. This compensates for the increase of the
branching factor of the search when considering complex aggregate conditions.
In Sect. 4.4.2 we explore the whole feature space, but traverse it in an effi-
cient way. This approach is based on using a refinement operator based on
µ-subsumption, as defined in the previous chapter. This allows to prune the
search space. The second approach has the advantage of producing only a single
tree, and hence, to keep the model interpretable.

4.4.1 Random forests

Random forest induction (Breiman 2001) is an ensemble method. An ensemble
learning algorithm constructs a set of classifiers, and then classifies new data
points by combining the predictions of each classifier. A necessary and sufficient
condition for an ensemble of classifiers to be more accurate than each of its
individual members, is that the classifiers are accurate and diverse (Hansen
and Salamon 1990). An accurate classifier does better than random guessing
on new examples. Two classifiers are diverse if they make different errors on
new data points.

Random forests introduce diversity among the classifiers by changing the
feature sets over the different tree induction processes, and additionally by
resampling the data. The exact procedure to build a forest with k trees is as
follows:

• for i = 1 to k do:

– build training set Di by sampling (with replacement) from data set
D

– learn a decision tree Ti from Di using randomly restricted feature
sets

The part of the algorithm where random forests differ from the normal bagging
procedure is emphasized. Normally, when inducing a decision tree, the best
feature is selected from a fixed set of features F in each node. In bagging, this
set of features does not vary over the different runs of the induction procedure.
In random forests however, a different random subset of size f(|F |) is considered
at each node (e.g., f(x) = 0.1x or f(x) =

√
x, . . .), and the best feature from

this subset is chosen. This obviously increases variability.
Consider now a classification problem where a new example is to be assigned

one of the m possible classes (ω1,. . . , ωm). Each decision tree Ti from the
random forest gives a class label Cli to the new example. The label given by
the random forest to the new example will then be

Cl∗ = arg max
ωj

k
∑

i=1

I(Cli = ωj)

67

Chapter 4 Adding Complex Aggregates to First Order Decision Trees

where I(x) = 1 if x is true and I(x) = 0 otherwise. Hence the majority vote of
the predicted class labels of the set of k trees in the random forest is the label
predicted.

An advantage of using bagging is that out-of-bag error estimates (Breiman
1996) can be used to estimate the generalization errors. This removes the need
for a set-aside test set or cross-validation. Out-of-bag error estimation proceeds
as follows: each tree is learned on a training set Di drawn with replacement
from the original training set D. For each example d in the original training
set, the predictions are aggregated only over those classifiers Ti for which Di

does not contain d. This is the out-of-bag classifier. The out-of-bag error
estimate is then the error rate of the out-of-bag classifier on the training set.
Note that in each resampled training set, about one third of the instances are
left out (actually 1/e in the limit). As a result, out-of-bag estimates are based
on combining only about one third of the total number of classifiers in the
ensemble. This means that they might overestimate the error rate, certainly
when a small number of trees is used in the ensemble.

Random forests have some other interesting properties (Breiman 2001). They
are efficient since only a sample of f(|F |) features needs to be tested in each
node, instead of all features. They do not overfit as more trees are added.
Furthermore, they are relatively robust to outliers and noise, and they are
easily parallelized.

4.4.1.1 First order random forests with complex aggregates

We have upgraded Tilde with complex aggregates to a first order random
forest induction algorithm, called Forf. First, a wrapper was built around
the algorithm in order to get bagging. Some adaptations were made to get
out-of-bag error estimates.

Next, we built in a filter that allows only a random subset of the tests to
be considered at each node2. As a result, constructing a new node proceeds
as follows: first all possible refinement candidates ρ(Q) from the current query
Q are generated, then a random subset of approximate size f(|ρ(Q)|) (where
f(x) is a function given by the user, e.g., f(x) = 0.1x or f(x) =

√
x, . . .) is

chosen. For each query in this subset, a heuristic is computed and the optimal
split is placed in the new node. Consequently, only a part of all generated
queries needs to be executed on the examples to calculate the heuristics, which
obviously results in an efficiency gain.

To summarise, we provide an overview of the resulting algorithm in Table 4.6.
The procedure GROW FOREST takes the number of trees to grow as one of its
input parameters. For each tree, it first builds a new set of examples, sampled
with replacement from the original set E. Then the procedure GROW TREE 2 is

2This actually differs from the definition in (Breiman 2001) where a random subset of the
attributes, instead of the tests, is chosen. Note that one attribute may yield different
tests.

68

4.4 Improving efficiency

Table 4.6: Algorithm for first order random forest induction. The parts of
the algorithm that are in boxes show the differences with the grow tree

algorithm from Table 4.1.

procedure GROW FOREST (N : nb trees, f : function, E: examples):
for i = 1 to N

Ei := SAMPLE(E)
Ti := GROW TREE 2(Ei, true, f)

return forest(T1, T2, ..., TN)

procedure GROW TREE 2 (E: examples, Q: query, f : function):

candidates := ρ(Q)

subsetsize := f(|candidates|)
candidates subset := SUBSET(candidates, subsetsize)

Qb := OPTIMAL SPLIT(candidates subset , E)
if STOP CRIT (Qb, E)
then

K := PREDICT(E)
return leaf(K)

else
conj := Qb −Q
E1 := {e ∈ E|Qb succeeds in e ∧B}
E2 := {e ∈ E|Qb fails in e ∧B}
left := GROW TREE 2 (E1, Qb, f)

right := GROW TREE 2 (E2, Q, f)

return node(conj, left, right)

called, which is an adaptation of GROW TREE (see Table 4.1), differences with
this algorithm are denoted in boxes. The refinement operator ρ includes (com-
plex) aggregate conditions in the set of candidate splits it generates, as dis-
cussed in Section 4.3. The SUBSET procedure generates a random subset of the
candidate set. The size of the subset is a function f of the number of can-

didates. Hence, each candidate has probability f(|ρ(Q)|)
|ρ(Q)| to be selected. The

OPTIMAL SPLIT procedure returns the optimal split among the set of candidate
splits.

A more efficient approach. An important difference between propositional
random forests and first order random forests is the generation of tests at each
node. In a propositional tree the possible tests are the same at each node. In
first order trees however, a node may introduce variables that can be reused
in the nodes of its left subtree. Hence, the number of candidate tests depends

69

Chapter 4 Adding Complex Aggregates to First Order Decision Trees

on the number of variable bindings in the conjunction of all succeeding tests
on the path from the root to the node that is to be extended (this conjunction
was called the current query earlier in this chapter).

Query sampling reduces the time used for query evaluation in random forests.
Still, in Forf, query generation also takes a substantial amount of time, cer-
tainly when lookahead within the aggregate queries is performed and a huge
amount of queries needs to be generated. In that case, a lot of time is spent
on generating queries that may not be evaluated in the end. As such, the al-
gorithm described in Table 4.6 is still performing a lot of redundant actions. A
more efficient version of the GROW TREE 2 procedure would directly generate a
random sample of queries, instead of generating them all. This is not trivial
since the number of queries in the sample is a function of the total number
of possible queries, which is hard to calculate in advance. Moreover, if we it-
eratively take a random language construct (rmode or aggcondition) from the
language bias to produce a random candidate query, the resulting sample will
not be drawn from a uniform distribution over all possible candidates, since the
number of candidates differs per language construct and also depends on the
current query. Therefore, such an efficient sample generator would consist of
two steps. First, for each language construct in the language bias, the number
of candidates that can be generated from it would have to be determined (with-
out generating them all). Second, given the number of candidates, a uniform
distribution can be used to randomly generate the query sample.

In Tilde, the refinement operator ρ extends the current query with literals
from the basic language constructs. This is implemented as follows: for each
language construct in the language bias, variable instantiation is performed and
for each of these variable instantiations all possible constants are generated (in
case of lookahead, these are again refined in the same way). Let us illustrate
this with an example from the Account dataset.

Example 4.2 A possible language bias for the Account dataset is given in Ta-
ble 4.2. Suppose we want to refine a node where the current query Q is

person(P,C), account(P,A1, T1, B1), account(P,A2, checkings,B2).

Then Tilde will generate all candidate refinements for this query according to
the tree in Figure 4.1. In the figure, only the rmode language constructs are
drawn for simplicity and readability (the aggregate conditions are not treated
differently by the sampling procedure). At depth 1 of the tree all language con-
structs that occur in the language bias (both the ones specified by the rmode
constructs as those specified by the aggcondition constructs) are added, at depth
2 variable instantiations with respect to query Q are performed and at depth 3
possible constants are filled in. If lookahead is used (either normal lookahead or
in complex aggregate conditions), some leaves of this tree are again expanded
as if they were the root of the tree.

70

4.4 Improving efficiency

Q

. . .

account(+Pers,+-Acc,#,-Bal)

account(P,A1,#,B1)

account(P,A1,’savings’,B1)

account(P,A1,’checkings’,B1)

account(P,A2,#,B2)

account(P,A2,’savings’,B2)

account(P,A2,’checkings’,B2)

account(P,A3,#,B3) . . .

. . .

. . .

. . .

trans(+Acc,+-Tr,Tp,Am),Am≥#

trans(A1,Tr1,Tp,Am),Am≥#

trans(A1,Tr1,Tp,Am),Am≥500

trans(A1,Tr1,Tp,Am),Am≥1000

trans(A1,Tr1,Tp,Am),Am≥2000

trans(A2,Tr2,Tp,Am),Am≥#

trans(A2,Tr2,Tp,Am),Am≥500

trans(A2,Tr2,,Tp,Am),Am≥1000

trans(A2,Tr2,Tp,Am),Am≥2000

Figure 4.1: Generation of candidates to refine the current query
Q: person(P,C), account(P,A1, T1, B1), account(P,A2, checkings,B2) in
Tilde.

71

Chapter 4 Adding Complex Aggregates to First Order Decision Trees

In order to count, in an efficient way, the number of candidate tests an rmode
(or aggregate condition) produces, we proceeded as follows. The tree from Fig-
ure 4.1 is only built partially, in the sense that each instantiated literal of depth
two only has a single child node at depth three, representing all constants for
that language construct. Hence, in case of lookahead (e.g., with complex aggre-
gates), the corresponding candidates are generated only once, instead of once
per available constant. We then count, for each language construct, how much
offspring it yields, thereby multiplying each node representing the constants
with the number of constants available for that literal (this number can be ob-
tained from the language bias). For example, for the last rmode in Figure 4.1
(transaction(+AccId,+−TrId, Type,Amount), Amount >#[500, 1000, 2000])
there are three constants. While generating the search tree, we find two instan-
tiations for this rmode. Thus, a total of 6 refinements is obtained from this
rmode. Doing this for all language constructs we get a probability distribution
over them. Using this distribution a sample of queries is randomly generated.

This approach will be especially rewarding if the tree of Figure 4.1 contains
many levels, e.g., because of the use of lookahead or complex aggregates, and if
its branching factor can be largely reduced (i.e. when a lot of constants need to
be filled in). The largest gain over the naive algorithm will occur when using
small sample ratios. Obviously, when one would use a ratio of, say 90%, the
extra work for counting the number of candidates will not pay off.

4.4.2 Structuring the aggregate space

In the previous section we have proposed a solution for the search space explo-
sion based on sampling the search space. The approach was presented in the
context of first order random forests. While the sampling procedure obviously
reduces the induction time to build a single tree, the time needed to induce a
whole forest of trees can still be a limiting factor.

In this section we present an other approach to deal with the growth of the
search space. This approach is not based on ensemble methods, thus we keep
the interpretability often praised in decision trees. The approach also does not
sample the search space, but performs an exhaustive search at each node of
the tree. It is based on µ-subsumption, which was defined in Chapt. 3. In
particular, µ-subsumption will be used to structure the aggregate refinement
space in a general-to-specific way, allowing to prune parts of that space when
looking for the optimal refinement candidate.

We first discuss how Tildetraverses the search space (Sect. 4.4.2.1). Next,
we describe how the new refinement operator was implemented (Sect. 4.4.2.2).

4.4.2.1 Traversing the search space

We first provide more details on the optimal split procedure in the algorithm
shown in Table 4.1. This procedure has to perform the following two tasks:

72

4.4 Improving efficiency

• evaluate all candidates against the examples in the node being split, cal-
culating the heuristic value for each of the candidates, and

• choose the candidate with the highest heuristic value to split the node.

In the first step, all candidate queries need to be executed against all examples.
This involves a double loop: one over the candidates and one over the examples.
Two strategies can be used: “queries in the outer loop” and “examples in the
outer loop” (Blockeel et al. 2002). Both have been used in data mining systems.
The latter strategy does not require that all data resides in main memory at
the same time, which can be advantageous when processing large datasets.

The set of candidates returned by the refinement operator ρ in Table 4.1 is
collected in a data structure called a query pack (Blockeel et al. 2002). A query
pack is a tree structure that represents the search space at a certain node of the
decision tree that is being built. The query pack contains queries in the nodes.
The underlying idea is that refinements that are very similar can be executed
more efficiently if their common part is executed only once for each example.
The pack is organized such that the query contained in a node is a common
prefix for all its children. Since the refinement operator takes the current query
and adds one (or more if lookahead is used) literal to it, the current query is
a common prefix for all refinements. Therefore, in Tildequery packs usually
have a broom-like structure. The corresponding query pack for the refinements
in Fig. 4.1 is shown in Fig. 4.2. The query packs allow pruning the search space
while executing the queries: if, for a particular example, there exists no variable
substitution for the test in a node of the pack, none of the tests in its children
has to be tested for that example (hence, the use of query packs assumes the
“examples in outerloop” strategy). It is clear that the resulting efficiency gain
is highest for small query packs of large depth.

In Sect. 4.3 we described how to add aggregate conditions to the hypothesis
language of Tilde. When using a refinement operator based on α-subsumption,
no structure is imposed on the aggregate search space, i.e., the aggregate condi-
tions are all added to the query pack on the lowest level, together with the other
tests, and are executed in the order given. However, using the monotonicity
properties discussed in Sect. 3.4.3, we know that whenever an aggregate con-
dition C fails for an example, none of the tests that can be obtained from C
via monotone paths of the refinement cubes has to be executed against that
example. This can be exploited when building the query pack. Organizing the
pack such that it reflects the monotone paths of the refinement cubes would
obviously result in an efficiency gain, while the same search space is searched,
and hence, the same tree is obtained.

73

Chapter 4 Adding Complex Aggregates to First Order Decision Trees

person(P,C) account(A1,P,T1,B1) account(A2,P,checkings,B2)

account(A1,P,savings,B1)

account(A1,P,checkings,B1)

account(A2,P,savings,B2)

account(A2,P,checkings,B2)

. . .

trans(Tr1,A1,Tp,Am),Am≤500

trans(Tr1,A1,Tp,Am),Am≤1000

trans(Tr1,A1,Tp,Am),Am≤2000

trans(Tr2,A2,Tp,Am),Am≤500

trans(Tr2,A2,Tp,Am),Am≤1000

trans(Tr2,A2,Tp,Am),Am≤2000

Figure 4.2: Query pack with refinements of the current query person(P,C),
account(A1, P, T1, B1), account(A2, P, checkings,B2). The lowest level con-
tains all literals that can be added to the current query to form a refinement.

74

4.5 Dealing with empty sets

4.4.2.2 Re-implementing Tilde’s query pack structure

We provide a new refinement operator ρ for Tilde that organizes the aggregate
conditions in the query pack that it returns in a way that reflects the mono-
tone paths in the refinement cubes. Pseudo-code for this refinement operator
is given in Table 4.7. The current query and the candidates are now contained
in a query pack. In the algorithm, pack(X) means the node in the query pack
with conjunction X. Nodes can be added to the query pack by the add method.
First, candidates originating from the rmodes and from the cubes’ start con-
ditions are generated and added to the pack. Then, for each start condition,
we subsequently refine the aggregate query, the aggregate function, and the
threshold to compare the result with. Refining along these dimensions consists
of following the arrow in the corresponding cube along the direction pointed to.
The fact that in the REFINE FUNCTION and REFINE VALUE methods, we do not
consider the three dimensions anymore for further refinements, ensures that
each aggregate condition is only generated once. Note that in Tilde a query
can only be refined by specializing it, not by dropping literals. Thus, in the
context of the refinement cubes, refinements along the Q-axis can only take
place in one direction.

Example 4.3 Figure 4.3 shows how the query pack for the example in Fig. 3.5
would be organized, both for the α-subsumption and µ-subsumption based refine-
ment operators. If the test sum(Bal, account(PersID,AccID, Type,Bal), S),
S ≥ 10000 fails for an example, with the optimized pack structure we could
prune all its children in the search space, whereas in the original unstructured
space, they would still all be tested.

4.5 Dealing with empty sets

An issue that has not been mentioned before is what happens if an aggregate
function is undefined for an example. For example, the maximum balance of a
person’s savings accounts is undefined if a person only has checkings accounts,
or if he does not have any account. Aggregating over empty sets often occurs
when using complex aggregates: the selection condition on the set to aggregate
over can become so complex that the aggregate is defined only for a few exam-
ples. Only the function count is able to deal with this in a natural way. For the
other functions, a number of possibilities exist. We first discuss some of them.
Then we give a number of desirable properties for the approaches and report
for each approach whether the property is fulfilled. Afterwards, we explain the
approach adopted in Tilde.

Possible approaches to deal with undefined aggregate conditions include

1. using a fixed value (e.g., 0) as result,

75

Chapter 4 Adding Complex Aggregates to First Order Decision Trees

Table 4.7: Refinement operator based on µ-subsumption for adding complex
aggregate conditions to Tilde’s search space.

procedure ρ (pack(Q): query pack, MAX SELECTIONS: integer):
rmode cand := EXTEND WITH RMODES(Q)
aggcondition cand := EXTEND WITH STARTCONDITIONS(Q)
conj := LAST LITERAL(Q)
for each (Q,Q2) ∈ rmode cand

pack(conj).add(Q2)
for each (Q, (F (V,Q1, R), RϑT)) ∈ aggcondition cand

pack(conj).add((F (V,Q1, R), RϑT))
ρµ(pack(F (V,Q1, R), RϑT),MAX SELECTIONS)

procedure ρµ (pack(F (V,Q,R), RϑT): query pack,
MAX SELECTIONS: integer):

REFINE QUERY(pack(F (V,Q,R), RϑT),MAX SELECTIONS)
REFINE FUNCTION(pack(F (V,Q,R), RϑT))
REFINE VALUE(pack(F (V,Q,R), RϑT))

procedure REFINE QUERY (pack(F (V,Q,R), RϑT): query pack,
MAX SELECTIONS: integer):

if SELECTIONS(Q) <MAX SELECTIONS

then querycand := EXTEND WITH LANGUAGE CONSTRUCTS(Q)
for all (Q,Q2) ∈ querycand

pack(F (V,Q,R), RϑT).add(F (V, (Q,Q2), R), RϑT)
REFINE QUERY(pack(F (V, (Q,Q2), R), RϑT),MAX SELECTIONS-1)
REFINE FUNCTION(pack(F (V, (Q,Q2), R), RϑT))
REFINE VALUE(pack(F (V, (Q,Q2), R), RϑT))

procedure REFINE FUNCTION (pack(F (V,Q,R), RϑT): query pack):
F2 := GET REFINED FUNCTION(F)
pack(F (V,Q,R), RϑT).add(F2(V, (Q), R), RϑT)
REFINE FUNCTION(pack(F2(V, (Q), R), RϑT))
REFINE VALUE(pack(F2(V, (Q), R), RϑT))

procedure REFINE VALUE (pack(F (V,Q,R), RϑT): query pack):
T2 := GET REFINED VALUE(T)
pack(F (V,Q,R), RϑT).add(F (V, (Q), R), RϑT2)
REFINE VALUE(pack(F (V, (Q), R), RϑT2))

76

4.5 Dealing with empty sets

Q

...

sum,account,10000

sum,savings,10000

max,account,10000

sum,account,15000

max,savings,10000

sum,savings,15000

max,account,15000

max,savings,15000

...

(a)

Q

...

sum,account,10000

sum,savings,10000

max,savings,10000 max,savings,15000

sum,savings,15000

max,account,10000 max,account,15000

sum,account,15000

...

(b)

Figure 4.3: Comparison between the query pack structures. In this figure, the
current query Q is reduced to one node. (a) Original query pack structure
(α-subsumption). (b) Query pack structure that reflects the monotone paths
in the refinement cubes (µ-subsumption).

77

Chapter 4 Adding Complex Aggregates to First Order Decision Trees

2. using a value in the range of the aggregate condition as result

a) the value can be chosen as close as possible to the values of defined
examples (e.g., the average of the values for the examples on which
the aggregate condition is defined),

b) the value can be chosen as far as possible of the values of defined
examples as result (e.g., since the maximum decreases when we
decrease the set, we can set the maximum of the empty set as
max(∅) = min(S), and similarly, min(∅) = max(S) with S the set
of values observed for the aggregate query for all training examples),

3. always failing the aggregate condition for examples for which it is unde-
fined,

4. disqualifying an aggregate condition from being chosen by the opti-

mal split procedure if it is undefined for at least one example.

Desirable properties for the approaches to deal with empty sets include the
following

• equivalent branches:
When the comparison operator of an aggregate condition is switched (i.e.,
≤ is changed into ≥ or vice versa), then it is desirable that the branches
are switched too (i.e. all examples from the left branch go to the right
branch, and vice versa). This allows to dispose of one of the comparison
operators and still have the same expressivity.

• generality preservation:
If an aggregate condition C1 is more general than C2, then this generality
order should be preserved if C1 and C2 are undefined for some examples.

• domain preservation:
If the aggregate condition returns a value for undefined cases (as in the
first two approaches given above), then the comparison to a threshold
value makes only sense if the value returned belongs to the range of the
aggregate function.

• noise tolerance:
We say that an approach is noise tolerant if a noisy example can only in-
fluence the branch the example itself sorts down to and does not influence
the other examples.

• unambiguity:
After the tree is built, it may be used to make predictions for new unseen
examples. If an aggregate condition is undefined for a new example,
the child node into which the example has to be sorted down should be
unambiguously determined.

78

4.5 Dealing with empty sets

Having proposed a number of approaches to deal with undefined aggregate
conditions, and a number of desirable properties for the approaches, Table 4.8
shows for each combination of approach and property, whether the property
is fulfilled by the approach. The property of equivalent branches is fulfilled
by all approaches except the failing approach, since in the latter, examples for
which the condition is undefined always go to the right branch, no matter what
comparison operator is used. Concerning the second property, only the last
two approaches (failing and disqualifying) maintain the generality order. For
example the aggregate condition

min(Bal, account(PersId,AccId, Type,Bal),M),M ≤ 100

has a specialization

min(Bal, account(PersId,AccId, savings,Bal),M),M ≤ 100.

Suppose a person has only checkings accounts, and the minimum balance is
500. Whereas the first aggregate condition fails for this person, the second one
may succeed if the value returned by the aggregate condition is smaller than
100, which would result in a generalization. The domain preserving property is
trivially fulfilled by the second approach and is not applicable to the third and
fourth one. Noise tolerance is fulfilled by every approach but the last one. In the
last approach one noisy example is able to discard the aggregate condition from
being chosen by the optimal split procedure. Also disambiguity is fulfilled
by every approach but the last one.

Table 4.8: Approaches to deal with aggregate conditions that are undefined for
some examples and desirable properties for them.

fixed value value in range fail disqualify
eq. branches yes yes no yes

generality pres. no no yes yes
domain pres. no yes n/a n/a

noise toler. yes yes yes no
disambiguity yes yes yes no

For inclusion in Tilde, probably the most important property is generality
preservation. If we would use an approach that does not fulfill this property,
then we would not be able to use a refinement operator based on µ-subsumption.
Therefore, only the third and fourth approach are candidates that may be con-
sidered. Since the fourth approach is too much influenced by noisy examples
and is not deterministic w.r.t. new examples, the approach taken in our system
is the third one: an aggregate condition fails for examples on which it is unde-
fined. This implies that the trees we learn are not equivalent up to switching
branches, thus both the ≤ and ≥ comparison operators have to be used to
obtain full expressivity (if this is desired).

79

Chapter 4 Adding Complex Aggregates to First Order Decision Trees

4.6 Experiments

In this section we experimentally evaluate the use of complex aggregates in
Tilde. The precise questions we want to answer in our experimental evaluation
of complex aggregates are the following:

1. How does the use of aggregates (both simple and complex ones) influence
the predictive performance, model size, induction times, and search space
sizes of trees output by Tilde?

2. How do our two techniques to deal with the size of the feature space
(sampling the aggregate search space by upgrading Tildeto a first or-
der random forest induction system and structuring the aggregate search
space with the µ-subsumption based refinement operator) compare w.r.t.
induction times?

3. Is the predictive performance of Tildeincreased by upgrading it to a first
order random forest induction system?

4. How does the performance of Tildewith complex aggregate conditions
relate to other available relational learners?

To answer these questions, we will perform experiments on three datasets,
they are introduced in Sect. 4.6.1. The setup used for our experiments is dis-
cussed in Sect. 4.6.2. Results are presented in Sect. 4.6.3.

4.6.1 Datasets

For our experiments we used three well-known real world data sets: Mutage-
nesis (Srinivasan et al. 1996), Diterpenes (Džeroski et al. 1998), and Finan-
cial (Berka 2000). The first two data sets contain complicated structures and
have been widely used as ILP benchmarks. The latter is a business domain
data set with high degree of non-determinacy.

4.6.1.1 Mutagenesis

The Mutagenesis dataset (Srinivasan et al. 1996) was already introduced in
Ex. 2.3. The task is to predict mutagenicity of 230 nitro-aromatic compounds.
We consider the classification version of this problem: a compound is positive
if the logarithm of its mutagenicity level is positive and negative otherwise.
60% of the compounds is classified positive. The description of compounds
consists of the atoms and the bonds that make up the molecule, i.e., the so
called background B2 (Srinivasan et al. 1995) (including the partial charges of
the atoms). Of the 230 compounds, 188 are called “regression-friendly”. Unless
stated otherwise, we use the complete dataset in the experiments.

The aggregate functions included are

80

4.6 Experiments

• count to count the number of atoms and bonds in the molecules,

• max, min, and avg of the partial charges of the atoms of the molecules,

• mode (most frequent value) of bond types and atom elements.

4.6.1.2 Diterpenes

The Diterpenes data set (Džeroski et al. 1998) contains information on 1503
diterpenes with known structure. The red(Mol,Mult, Freq) relation stores
the measured NMR-Spectra. It contains the multiplicity and frequency for
each of the 20 carbon atoms in the skeleton of the diterpene. The prop(Mol,
Satoms,Datoms, Tatoms,Qatoms) relation counts the atoms that have multi-
plicity s, d, t, or q respectively. Additional unary predicates describe to which
of the 23 classes a compound belongs. Several learning settings are defined
on this data set: using prop only, using red only, and using both prop and
red. In our experiments, only the red-relation was used, since we expect that
by allowing aggregate functions the system should be able to construct the
propositionalized prop-relation by itself if necessary.

The aggregate functions used are

• min, max and avg for the frequencies,

• mode for the multiplicities,

• count for the different values of multiplicities.

4.6.1.3 Financial

The Financial data set originates from the discovery challenge that was organ-
ised at PKDD’99 and PKDD’00 (Berka 2000). This data set involves learning
to classify expired bank loans into good and bad ones. Since 86% of the exam-
ples is positive, the data distribution is quite skewed. The data set consists of
8 relations. For each of the 234 loans, customer information and account infor-
mation is provided. The account information includes permanent orders and
several hundreds of transactions per account. This problem is thus a typical
business data set which is highly non-determinate.

The aggregate functions used apply to the orders and transactions and in-
clude

• max, min, avg, and sum for the amount of transactions and orders,

• max, min, and avg for the balance of transactions,

• count to count the number of transactions and orders,

• mode for transaction type, transaction operation, and characteristic of
transactions and orders.

81

Chapter 4 Adding Complex Aggregates to First Order Decision Trees

4.6.2 Experimental setup

To address the first question formulated above, we have investigated the perfor-
mance of Tildeaccording to different levels of aggregation. In the first level,
we did not use any aggregates (afterwards, this setting is denoted by NA).
In the second level, simple aggregate conditions were introduced (SA). The
third level includes refinement of aggregate queries already present in the tree
(RA) and the fourth level allows lookahead up to depth 1 within the aggre-
gate queries (LA). For this experiment we used a refinement operator based on
α-subsumption (denoted by Tilde-α). We report accuracy and complexity of
the trees, and induction times and maximal encountered search space size to
build a tree.

For the second question, the LA-experiments were rerun using the structured
search space strategy (denoted by Tilde-µ) and using the first order random
forest induction algorithm (denoted Forf) with the original refinement oper-
ator. For Forf various settings were used w.r.t. the number of trees in the
forest and the number of tests considered at each node. Since Tilde-µ searches
the same search space as Tilde, the same tree is obtained in the end. Only
induction times are influenced by this method. Combining the prediction of
several trees, however, can improve predictive performance, thus for Forf we
also evaluate the accuracy obtained, which addresses question 3.

For the last question, we compared the accuracies of Tilde and Forf to
other systems for which results were found in the literature.

In all our experiments, the trees output by Tilde were pruned using C4.5’s
post-pruning method. In Forf no pruning was used, since pruning decreases
the diversity among the trees in our random forest. The minimal number
of examples a leaf has to cover is two (Tilde’s default value). However, for
the Diterpenes dataset, it was changed to 20, for efficiency reasons, except for
answering the last question, where it was reset to two.

Concerning refinements, we do not allow aggregate queries to be refined with
new aggregate conditions, since otherwise the search space becomes too large
for some of our experimental settings. For Mutagenesis and Diterpenes the
aggregates can be refined with selection conditions coming from any of the
rmodes in the language bias. For Financial we have constructed a separate set
of rmodes, such that refinements would relate to the transaction or order in the
simple aggregate condition (and not to other transactions or orders or to the
loan or account objects, which would result in a huge search space containing
a lot of uninteresting aggregate conditions). For all datasets only one level
of complexity was allowed in the RA and LA settings, i.e., starting from the
simple aggregates, at most one selection condition was added.

4.6.3 Experimental results

For each of the four questions above, we now present the experimental results.

82

4.6 Experiments

Table 4.9: Accuracy, model size, induction time, and maximal search space size
of Tilde with different levels of aggregation on the Mutagenesis data set.

Tilde
LA RA SA NA

accuracy 73.4% (1.9) 73.6% (2.5) 73.1% (2.6) 70.9% (3.7)
nodes 11.7 (1.5) 10.5 (2.5) 9.9 (2.2) 13.7 (1.4)
time 6672.2 (5.8) 18.7 (0.0) 8.5 (0.0) 1.8 (0.0)

search space 38341 1299 570 911

Table 4.10: Accuracy, model size, induction time, and maximal search space
size of Tilde with different levels of aggregation on the Diterpenes data set.

Tilde
LA RA SA NA

accuracy 84.4% (0.4) 82.7% (0.8) 82.7% (0.8) 70.0% (1.3)
nodes 9.8 (0.7) 9.7 (0.7) 9.4 (1.1) 14.1 (1.9)
time 26701.2 (34.8) 298.6 (0.8) 18.0 (0.1) 40.6 (0.2)

search space 76361 3788 1613 4545

4.6.3.1 Varying the level of aggregation

In this experiment, we run Tildewith different levels of aggregation (NA, SA,
RA, and LA, as described above) and compare predictive performance, model
size, induction times, and search space sizes. Predictive performance is ob-
tained by averaging the accuracy of five full threefold cross-validations with
different folds. We use threefold cross-validation since this error assessment
approach is closest to out-of-bag estimation, which will be used to measure
predictive performance of Forf in Sect. 4.6.3.3. Model size is measured as the
average number of internal nodes of the trees learned with the cross validation
procedure. Induction time is measured as the time (in seconds) of building
a single tree on the whole dataset (averaged over 5 runs). Also the maximal
size of the refinement space is reported. The experiments were run with the
refinement operator based on α-subsumption.

The results are presented in Table 4.9 (Mutagenesis), Table 4.10 (Diterpenes),
and Table 4.11 (Financial), respectively. We now discuss the main results for
each performance measure.

Accuracy. The results show that including aggregates in the search space leads
to an obvious improvement in predictive performance (the accuracy increases
with 2.2% for Mutagenesis, 12.7% for Diterpenes, and 3.6% for Financial).
However, the difference between simple (SA) and complex (RA and LA) aggre-

83

Chapter 4 Adding Complex Aggregates to First Order Decision Trees

Table 4.11: Accuracy, model size, induction time, and maximal search space
size of Tilde with different levels of aggregation on the Financial data set.

Tilde
LA RA SA NA

accuracy 98.4% (1.4) 98.2% (0.9) 97.7% (1.1) 94.1% (2.0)
nodes 3.8 (0.4) 4.3 (0.8) 4.3 (0.9) 6.1 (0.6)
time 535.3 (6.7) 23.3 (0.1) 23.4 (0.1) 4.2 (0.0)

search space 6972 305 305 145

loan(LId, AccId, Date, Amount, Dur, Paym, Status), Amount > 156672 ?

+yes: min(Bal, trans(TrId, AccId, . . . , Bal, Ch), R), R < 2.0 ?

| +yes: [neg] (14 ex.)

| +no: [pos] (31 ex.)

+no: loan(LId, AccId, Date, Amount, Dur, Paym, Status), Amount > 23184 ?

+yes: min(Bal, trans(TrId, AccId, . . . , Bal, Ch), R)), R < 2.0 ?

| +yes: [neg] (17 ex.)

| +no: [pos] (151 ex.)

+no: [pos] (21 ex.)

Figure 4.4: Tree for Financial with 100% accuracy.

gates is less clear.

Fig 4.4 shows the tree with simple aggregates for Financial, that is learned
on the whole dataset. It yields a training accuracy of 100%. (Note that it is
not the shortest tree possible.)

Model size. Next to an improvement in predictive accuracy, the use of ag-
gregates also results in a decrease of model size. Again, complex aggregates do
not seem to give further improvements. For Mutagenesis and Diterpenes, the
model size even tends to slightly increase again.

Induction times and search space size. When comparing induction times
and search space sizes, we see that going to the next more complex level of ag-
gregation results in an increase of both measures. This increase is most explicit
when moving from RA to LA. With the lookahead applied in aggregate condi-
tions, the search space is significantly expanded, sometimes causing induction
times to escalate. For example, for Diterpenes, where we already increased the
minimal number of examples in the leaves, building one tree takes almost 7.5
hours.

Interestingly, in Mutagenesis and Diterpenes, the search space size decreases

84

4.6 Experiments

when going from NA to SA. For Diterpenes this also results in a decrease in
induction time. An explanation for the decrease in search space size is that
standard tests can introduce variables that may be reused lower in the tree,
while aggregates can not. Thus, for the NA setting, nodes deeper in the tree will
have a larger set of candidate refinements than in the SA setting (if aggregates
are used higher in the tree). The fact that for Diterpenes this also results in
a reduction of induction time for SA, may be attributed to the fact that most
of the aggregates are count aggregates, which are faster to execute than max,
min, and avg.

Artificial data. The experiment showed that the use of simple aggregates
yields quite a large performance improvement on all data sets. Refinement of
the aggregate conditions, on the other hand, increased accuracy only in a few
cases, and in general the use of lookahead within the aggregate query also added
only a slight performance improvement. The reason for these small improve-
ments could be that the target concept simply does not require a combination
of selection and aggregation. To test this conjecture and to know whether
complex aggregates can add any improvements when the target concept does
contain complex aggregates, we conducted experiments on artificially generated
data where the target concept was defined to involve these complex aggregate
functions. We used the Random Train Generator from Muggleton3 for gener-
ating random “Michalski-style” train examples (Michalski 1980) according to
a specified concept. We used the following concept:

eastbound(T)←sum(W, (car(T, C), wheels(C, W)), SumW), SumW > 7,

count(C, (car(T, C), roof(C, none), NbC),
NbC > 1, !.

westbound(T)← sum(W, (car(T, C), wheels(C, W)), SumW), SumW > 7, !.
westbound(T)← sum(L, (car(T, C), load(C, circle, L)), SumL), SumL > 1, !.
eastbound(T).

This concept states that if a train has more than 7 wheels and there is more
than one car without a roof, the train goes east, else if only the first condition
holds or if the train has at least 2 circular loads, it goes west. In all other cases
it goes east. A dataset of 1000 trains was generated, half of them going to the
west and the other half going to the east.

Table 4.12 gives an overview of predictive accuracy and model size for differ-
ent levels of aggregation. The aggregate functions used include counting the
number of cars, and taking the sum over the number of wheels and the number
of loads. The table clearly shows an improvement of both accuracy and model
size when going from simple aggregates (SA) to complex aggregates (RA and

3The train generator is available at
http://www-users-csyork. ac.uk/∼stephen/progol.html.

85

Chapter 4 Adding Complex Aggregates to First Order Decision Trees

Table 4.12: Accuracy and model size of Tilde with different levels of aggre-
gation on the Trains data set.

Tilde
LA RA SA NA

accuracy 99.1% (0.6) 98.4% (0.5) 84.5% (1.7) 72.9% (1.4)
nodes 8.5 (1.9) 8.7 (0.2) 60.3 (4.3) 53.2 (6.6)

Table 4.13: Induction times for the LA experiment for Tilde-α and Tilde-µ
on the Mutagenesis data set.

Tilde-α Tilde-µ
execution time 6641.3 (5.5) 1629.9 (66.4)
induction time 6672.2 (5.8) 1829.2 (73.4)

LA). This suggests that when the concept indeed involves complex aggregates,
it is very useful to use higher levels of aggregation.

4.6.3.2 Comparing efficiency

For comparing efficiency results, we will concentrate on the LA setting, where
efficiency really is a concern. We first compare the induction times for the two
refinement operators and then check how this compares to the results for the
first random forest induction algorithm.

Tilde-α versus Tilde-µ. The Tilde-LA experiment was rerun with the re-
finement operator based on µ-subsumption. The obtained results are indicated
with Tilde-µ. Using this optimized refinement operator, the search space is
structured differently, such that faster execution of the candidate tests on the
examples is possible. Thus, the search space remains the same (which means
that also the same tree is obtained), only the induction times are affected.
Timings are reported in Tables 4.13, 4.14, and 4.15 for the three datasets. Next
to induction time, also the execution time is reported, which is the sum of the
time needed to execute all candidate tests on all examples for each node of
the tree. A first observation when looking at the tables is that execution time
corresponds to about 98% of the total induction time, thus, reducing this fac-
tor will be very rewarding w.r.t. the total induction time. Second, we indeed
observe an efficiency gain: for the execution times we obtain speedup factors
of 2.27 (Financial) to 4.07 (Mutagenesis), resulting in overall speedup ratios of
2.22 (Financial) to 3.65 (Mutagenesis).

86

4.6 Experiments

Table 4.14: Induction times for the LA experiment for Tilde-α and Tilde-µ
on the Diterpenes data set.

Tilde-α Tilde-µ
execution time 26153.9 (33.5) 7684.6 (12.9)
induction time 26701.2 (34.8) 8275.1 (6.9)

Table 4.15: Induction times for the LA experiment for Tilde-α and Tilde-µ
on the Financial data set.

Tilde-α Tilde-µ
execution time 528.7 (1.3) 233.2 (0.7)
induction time 538.0 (1.4) 242.6 (0.7)

Tilde-α versus Forf. We have also experimented with the first order random
forest induction algorithm (Forf). Note that in Forf also the refinement
operator based on α-subsumption is used. We considered random subsets of
50%, 25%, 10%, and the square root of the number of tests at each node in
the trees to test the influence of the size of the refinement sample. The effect
of the size of the forest was tested by using forests of 3, 11, and 33 trees. For
Forf the size of the search space decreases according to the sample ratio used
at each node. Induction times for the LA setting are reported in Tables 4.16,
4.17, and 4.18, respectively. We see that, depending on the settings used, Forf

may take more or less time than Tilde-α and Tilde-µ to induce a model.

4.6.3.3 Comparing predictive performance

We compare the predictive performance obtained for Forf to the performance
of Tilde4. The accuracy as well as model size results for the different settings
of Forf-LA are shown in Tables 4.19, 4.20, and 4.21, respectively. Accuracy is
measured by averaging the out-of-bag accuracy of five independent runs of the

4Note that we do not compare the predictive performance of Tilde-α and Tilde-µ, since
these are the same.

Table 4.16: Induction times for Forf-LA on the Mutagenesis data set.

Forf-LA
forest 50% 25% 10% sqrt

3 2740 (116) 1303 (102) 602 (60) 37 (1)
11 10049 (428) 4780 (376) 2210 (220) 137 (3)
33 30148 (1285) 14342 (1130) 6630 (660) 412 (10)

87

Chapter 4 Adding Complex Aggregates to First Order Decision Trees

Table 4.17: Induction times for Forf-LA on the Diterpenes data set.

Forf-LA
forest 50% 25% 10% sqrt

3 44853 (121) 17911 (102) 6277 (90) 191 (8)
11 164463 (446) 65673 (376) 23017 (332) 701 (29)
33 493391 (1338) 197021 (1128) 69053 (997) 2104 (89)

Table 4.18: Induction times for Forf-LA on the Financial data set.

Forf-LA
forest 50% 25% 10% sqrt

3 1045 (12) 540 (10) 153 (8) 28 (2)
11 3833 (44) 1982 (37) 561 (29) 105 (9)
33 11500 (132) 5946 (111) 1684 (89) 315 (28)

algorithm, and therefore is comparable to the accuracy results given for Tilde.
Model size is measured as the sum of the number of internal nodes of all trees
in the forest.

Looking at the predictive performances of the forests we see clear improve-
ments w.r.t. Tilde-LA (shown in Tables 4.9 to 4.11). Thus, one may want to
spend more time building the forest in order to achieve higher accuracies. We
see that for Mutagenesis the accuracy increases from 73.4% for Tilde-LA to
up to 80.0% for Forf-LA. For Diterpenes we observe a maximal improvement
of 2.8% and for Financial a maximal improvement of 1.3% can be found. Also
if a sampling ratio of, say 10%, is used, this increase in performance can be
obtained if enough trees are used. Thus, with Forf one can obtain higher
predictive accuracies compared to Tilde, while in general giving up on inter-
pretability of the model and, depending on the settings used, giving up on
efficiency.

4.6.3.4 Comparing to other systems

To compare Tilde and Forf with complex aggregates to other systems, we
reran the algorithms (using one particular parameter instantiation for Forf)
using tenfold cross-validation and did this five times with different folds to get
more reliable estimates. We follow this approach since the previously published
results of the other systems were also obtained by doing five times tenfold cross-
validation.

Mutagenesis. Table 4.22 shows predictive accuracies of Forf-LA and Tilde-

LA compared to other systems. All results in this table were obtained using

88

4.6 Experiments

Table 4.19: Accuracy and model size results for Forf on the Mutagenesis data
set.

Forf-LA
forest 50% 25% 10% sqrt

accuracy 3 73.4% (3.1) 74.4% (2.8) 74.7% (4.7) 74.1% (1.6)
11 77.2% (1.9) 76.2% (1.5) 77.6% (1.7) 75.1% (1.8)
33 78.7% (1.9) 80.0% (2.1) 79.1% (0.9) 79.6% (1.5)

nodes 3 49.4 (3.9) 58.0 (6.2) 55.2 (6.8) 61.6 (2.3)
11 195.2 (8.4) 201.4 (6.2) 211.0 (17.6) 234.8 (8.1)
33 579.0 (11.3) 606 (19.2) 636.5 (30.4) 692.8 (22.5)

Table 4.20: Accuracy and model size results for Forf on the Diterpenes data
set.

Forf-LA
forest 50% 25% 10% sqrt

accuracy 3 84.1% (1.1) 83.9% (0.8) 83.8% (0.6) 77.8% (1.8)
11 85.7% (0.9) 85.4% (0.2) 85.4% (0.3) 82.0% (1.0)
33 87.2% (0.7) 86.4% (0.3) 86.6% (0.4) 85.4% (0.8)

nodes 3 27.1 (2.0) 27.2 (2.0) 30 (2.9) 44.4 (6.2)
11 97.7 (3.1) 100.4 (5.4) 111.7 (7.8) 161.0 (3.6)
33 301.5 (3.8) 319.6 (3.8) 330.2 (8.3) 469.2 (12.3)

Table 4.21: Accuracy and model size results for Forf on the Financial data
set.

Forf-LA
forest 50% 25% 10% sqrt

accuracy 3 97.9% (1.5) 98.3% (0.7) 98.1% (1.5) 97.6% (1.1)
11 99.3% (0.2) 98.9% (0.6) 98.7% (1.0) 98.9% (0.4)
33 99.7% (0.2) 99.6% (0.4) 99.7% (0.2) 99.7% (0.4)

nodes 3 12.6 (4.6) 14.6 (3.1) 14 (1.2) 17.2 (5.9)
11 51.4 (7.9) 53.2 (7.9) 51.8 (8.4) 64.2 (9.9)
33 152.4 (11.4) 155.2 (15.5) 156.8 (7.6) 187.8 (19.9)

89

Chapter 4 Adding Complex Aggregates to First Order Decision Trees

Table 4.22: Accuracy results on the “regression-friendly” Mutagenesis data set
compared to other systems. The results for Foil and Progol are obtained
from (Srinivasan et al. 1995), and for RollUp from (Knobbe et al. 2001).

Forf-LA Tilde-LA Tilde Foil Progol RollUp

87.2% (1.3) 85.8% (1.5) 75.3% (1.5) 75% (3.0) 81% (3.0) 85%

tenfold cross-validation only on the “regression-friendly” part of the Mutagene-
sis data set, using background B2. Foil (Quinlan 1990) induces concept defini-
tions represented as function-free Horn clauses, from relational data. Progol

(Muggleton 1995) is an ILP learner capable of learning in structurally very
complex domains. RollUp (Knobbe et al. 2001) is a propositionalization ap-
proach that makes use of aggregates. For Forf-LA 33 trees and a sampling
ratio of 25% were used. From Table 4.22, we see that Tilde-LA is at least
competitive with the best of the other results and Forf-LA is able to lift the
performance over the other systems.

Diterpenes. To allow a good comparison with previously published results for
the Diterpenes dataset, the minimal leaf size of trees was reset to its default
value of 2. Given the increased induction time, we report results for the SA
setting. For Forf again 33 trees and a sampling ratio of 25% were used.

The result of these experiments is compared with published results for other
first order systems in Table 4.23. Ribl (Emde and Wettschereck 1995) is a
relational instance based learning algorithm. The Icl system (De Raedt and
Van Laer 1995) uses exactly the same representation as Tilde, but induces
rule sets instead of trees.

We only used the red relation for Forf-SA and Tilde-SA, since they should
be able to construct the prop relation by themselves, but we compared them
to the other systems both using only red and using red and prop. The dif-
ference between Tilde-SA with the red relation and Tilde with the red and
prop relations is that the latter only counts atoms with a particular multiplicity
whereas the former also uses the aggregate functions given in Sect. 4.6.1.2. It
was already found that combining propositional (aggregate) features with rela-
tional information yielded the best results (Džeroski et al. 1998). Comparing
with those best results, we see that Forf-SA outperforms the best of the other
approaches.

Financial. Table 4.24 shows predictive accuracies for Forf-LA and Tilde-

LA for Financial compared to other systems. The forest contained again 33
trees and a sampling ratio of 25%. Dinus-C (Lavrač and Džeroski 1994) is a
propositionalization technique using only determinate features and using C4.5
rules as propositional learner. Relaggs (Krogel and Wrobel 2001) is a propo-

90

4.7 Conclusion

Table 4.23: Accuracy results on the Diterpenes data set compared to other
systems. The results for Foil, Ribl, Icl, and Tilde are obtained from
(Džeroski et al. 1998) (no standard deviations were available for these re-
sults).

Forf-SA Tilde-SA Tilde Foil Ribl Icl

red 92.7% (0.4) 90.2% (0.7) 80.1% (0.7) 46.5% 86.5% 65.3%
red+prop 89.9% (1.0) 78.3% 91.2% 86.0%

Table 4.24: Accuracy results on the Financial data set compared to other
systems. The results for Dinus-C, Relaggs, and Progol are obtained
from (Krogel and Wrobel 2001).

Forf-LA Tilde-LA Tilde Dinus-C Relaggs Progol

90.8% (1.7) 87.9% (1.5) 87.3% (1.1) 85.1% (10) 88.0% (7) 86.7% (7)

sitionalization approach where aggregates are used to summarize related indi-
viduals. Progol (Muggleton 1995) is an ILP learner capable of learning in
structurally very complex domains.

The results for Dinus-C, Relaggs, and Progol are taken from (Krogel
and Wrobel 2001), where they were obtained from experiments on a modified
version of the Financial dataset. In particular, all transactions dated after
the granting of the loan were removed. This causes the average number of
transactions per example to drop from 388 to 75. The motivation for this data
reduction is that, if the model is to be used to classify customers who apply
for a loan, only data known at the time of granting the loan can be used. It
turns out that this is a more difficult learning setting. For our comparison,
the systems Tilde, Tilde-LA and Forf-LA were run on the same reduced
dataset.

The table shows that Tilde-LA’s predictive performance is very close to Re-

laggs’s, but has a lower variance. Forf-LA adds another 3% to the accuracy,
yielding the best result.

4.7 Conclusion

In this chapter we have discussed how to add complex aggregates to Tilde’s
hypothesis space. The basic components of aggregate conditions are provided
by the user in the language bias specification. From these components (i.e.,
aggregate functions, aggregate queries, threshold values, and comparison oper-
ators) the system then constructs simple aggregate conditions and adds them
to the search space traversed by Tilde. Complex aggregate conditions are

91

Chapter 4 Adding Complex Aggregates to First Order Decision Trees

obtained by refining an aggregate condition that occurs higher in the tree, or
by including them directly by using a lookahead procedure inside the aggre-
gate query. We have explained that invalid refinements are not a problem in
Tilde, and therefore it is possible to use a simple refinement operator based
on α-subsumption.

An issue to cope with when introducing complex aggregate conditions in
Tildeis the significant increase in size of the search space, which is very explicit
in the case of lookahead. We have described two techniques to deal with this
problem. The first technique upgrades Tildeto a first order random forest
induction system. Essentially, an ensemble of decision trees is constructed in
which only a sample of all possible tests is tried at each node. In the second
technique we retain the complete search space but traverse it in an efficient way.
To this end, we implement the refinement operator based on µ-subsumption,
which was introduced in the previous chapter, into Tilde.

Experimental evaluation showed that the capability of learning aggregates
brings clear performance improvements. The largest improvements are due to
the use of simple aggregates. The use of complex aggregates turns out to be
useful if the target concept involves complex aggregates, as was shown by the
use of an artificial dataset.

The use of the refinement operator based on µ-subsumption results in a
significant efficiency gain. Upgrading the system to a random forest learner
can increase or decrease induction times, depending on the number of trees
and sampling ratio used, while improving the predictive performance.

92

Chapter 5

Constructing Predictions with
Complex Aggregates

5.1 Introduction

In the previous chapters we have explained that one-to-many and many-to-
many relationships in a relational database may lead to non-determinate at-
tributes for the objects in the target table. These non-determinate attributes
are typically summarized by testing for the existence of a specific value, or by
aggregating them. In Chapt. 3, we have proposed complex aggregates, which
are a combination of both approaches. Up till now, the complex aggregates that
we used occurred in the if-part (antecedent) of the hypothesis. The then-part
(consequent, conclusion) was always a fixed value (nominal for classification and
numeric for regression). However, in some patterns, e.g., linear equations (see
Sect. 2.2.1), predictive attributes are involved in the consequent of the hypothe-
sis. In relational learning, these predictive attributes may be non-determinate,
each possible value resulting in a different predictive function. In this chap-
ter we consider the use of complex aggregates to summarize the predictive
attributes in the conclusion part of a hypothesis.

We will focus on model trees, which are a combination of linear equations
and regression trees and, hence, are another example of patterns that involve
predictive attributes in the consequent. More precisely, model trees are regres-
sion trees that contain some non-trivial, usually linear, model in their leaves.
In the propositional case, they have been shown to be able to increase predic-
tive performance compared to regression trees that predict the same constant
value for each example falling into the same leaf (Alexander and Grimshaw
1996; Karalic 1992; Malerba et al. 2004; Quinlan 1992; Torgo 1997). While
classification and regression trees have been around in ILP for several years
now (Blockeel and De Raedt 1998; Kramer 1996; Kramer and Widmer 2001),
less can be said about model trees. Probably the main reason for this is the
problem mentioned above, i.e., that the predictive attributes to be included in
the regression functions may be non-determinate.

We distinguish a number of approaches to handle non-determinate predictive
attributes in regression functions:

93

Chapter 5 Constructing Predictions with Complex Aggregates

1. do not use non-determinate attributes (Kramer and Widmer 2001)

2. assume one of the instances is relevant

a) and it can be specified with conditions (Karalič and Bratko 1997)

b) and it can not be specified (Ray and Page 2001; Srinivasan 2003)

3. summarize the instances

a) using simple aggregate functions defined in advance (Appice et al.
2003)

b) using complex aggregate functions

Complex aggregates were introduced in Chapt. 3 and there we have studied
how they can be efficiently learned to be included in the condition part of a hy-
pothesis. We have proposed a refinement operator by which complex aggregate
conditions are learned general-to-specific, subsequently reducing the coverage
of the hypothesis. In Chapt. 4, we have extended an existing decision tree
algorithm to learn complex aggregates in the internal nodes. The algorithm
can output both classification and regression trees. In this chapter, we lift
the algorithm to a model tree learner that constructs regression functions with
complex aggregates in the leaves. These complex aggregates are not learned
from scratch at the leaves, since this would be very time consuming. Instead,
complex aggregates are included in the regression model of a leaf if they have
shown a linear effect with the target during the tree building process. This
means that the heuristic function employed needs to take into consideration
the construction of linear models at the leaves. It has been shown that model
tree learners produce good results if such a heuristic function is used (Malerba
et al. 2004). However, most (propositional and relational) systems that use
a heuristic that takes into account linear functions are quadratic (Alexander
and Grimshaw 1996) or cubic (Karalic 1992; Malerba et al. 2004; Appice et al.
2003) in the number of numeric attributes. Given the fact that we want to in-
clude complex aggregates in the search, the number of numeric attributes can
become very large, which renders existing systems infeasible to use. Therefore,
an important requirement for our system is an efficient heuristic function.

In Sect. 5.2 we present some related work on learning regression functions
and model trees in relational learning. Section 5.3 focusses on heuristics for
learning model trees and proposes a new heuristic that meets our requirements.
Section 5.4 then presents our relational model tree learner. Experimental results
are presented in Sect. 5.5. Finally, in Sect. 5.6 we conclude.

5.2 Related work

The task of relational regression was formalized by Džeroski (1995) in the nor-
mal ILP framework. This work presents the transformation based system Di-

94

5.2 Related work

nus, which is the first ILP system to address the task of relational regression.
The induction is delegated to a propositional learner. Using a model tree
learner as Retis (Karalic 1992), linear regression is used in the model output
by Dinus.

Fors (Karalič and Bratko 1997) is the first system able to predict numbers
with non-determinate background knowledge. It is a sequential covering ap-
proach that learns rules that contain linear regression models. Non-determinacy
among the predictive attributes is handled by testing for the existence of a spe-
cific instance giving a number of conditions. If the conditions succeed for more
than one instance, the value of the first of these instances is taken.

Tilde (Blockeel and De Raedt 1998) and Srt (Kramer 1996) are first order
regression tree learners. S-Cart (Kramer and Widmer 2001), the successor
of Srt, is capable of including linear models in the leaves. The use of non-
determinate predictors in these linear models is not supported. The model
trees induced by S-Cart are built by first constructing a normal regression
tree (using a standard variance reduction heuristic), and afterwards replacing
the constant predictions by linear models. This heuristic has been shown to
produce sub-optimal model trees in the sense that it tends to split the data set
in the wrong places and results in trees that are larger than necessary (Malerba
et al. 2004; Torgo 2002).

Appice et al. (2003) present a system called Mr-Smoti which is a relational
upgrade of their propositional Smoti model tree algorithm (Malerba et al.
2004). The Smoti algorithm is different from most model tree inducers in
the sense that the multiple linear model that is associated with the leaves is
built incrementally from simple linear regression models. These models are
introduced by so-called regression nodes occurring in the tree. Each regression
node thus adds one term to the multiple regression model and requires updating
the target value and other continuous attributes in order to remove the linear
effect of the introduced term. To determine the coefficients of a simple linear
regression model in a regression node of a tree induced by Mr-Smoti, the
problem is locally transformed into a propositional problem by joining the tables
from the underlying relational database structure, and normal least squares is
applied on this flattened table. Note that this propositionalization step gives
examples that have a higher number of related objects more weight in the least
squares procedure. The predicted value for unseen examples is the average
prediction for all instances in the propositional representation of the example.
Contrary to the efficient methods as S-Cart, the systems Smoti and Mr-

Smoti have a high computational complexity. This is due to the heuristic
function, which takes into account the fact that linear models are built. It is
discussed in more detail further in this chapter.

95

Chapter 5 Constructing Predictions with Complex Aggregates

5.3 Finding a suitable heuristic for learning model

trees

In this section, we concentrate on finding a suitable heuristic for our relational
model tree learner. The most important requirement is that it is efficient to
compute. This is necessary in order to deal with large search spaces that contain
complex aggregates. In order to find a suitable heuristic, we first examine
existing model tree learners. Since in propositional learning model tree systems
abound, we concentrate on this setting for now.

The most efficient group of systems use what we call a variance based heuris-
tic. This is the same heuristic as used by standard regression tree learners:
reduction of variance (or variations of variance, such as standard deviation, or
sum of squared errors). However, in Sect. 5.3.1, we show that model tree learn-
ers employing this heuristic may exhibit pathological behaviour in some quite
simple cases. This is not visible in the predictive accuracy of the tree, but it re-
duces its explanatory power. Section 5.3.2 discusses more complex approaches.
This discussion leads to the identification of four levels of complexity, where the
second level represents a heuristic that overcomes the problems of the variance
based approach, and this at little additional computational cost. In Sect. 5.3.3
we elaborate on this approach and propose a propositional model tree learner
using such a heuristic. The resulting model tree induction algorithm is experi-
mentally evaluated and compared with simpler and more complex approaches
on a variety of synthetic and real world data sets in Sect. 5.3.4. In the remain-
der of this chapter we then show how the heuristic function and a number of
other aspects of the algorithm are adopted by our relational model tree learner.

5.3.1 The variance based approach

Existing regression tree algorithms are instantiations of the the Top Down
Induction of Decision Trees (TDIDT) algorithm, see Table 2.1 for a generic
variant.

TDIDT algorithms vary mainly with respect to the heuristic they use to
decide which partitioning is best and the model that is stored in each leaf. For
instance, CART (Breiman et al. 1984), when building regression trees, uses
variance reduction as a heuristic (that is, it tries to reduce the variance of the
target variable within the subsets as much as possible), and the model stored in
a leaf is the mean of the target values of all examples in that leaf. M5 (Quinlan
1992), a popular algorithm for building model trees with linear models in the
leaves, and M5’ (Wang and Witten 1997), a re-implementation that is included
in the well-known Weka software (Witten and Frank 1999) also use variance1

reduction as a heuristic. They fill in constants in the leaves, but in the pruning

1Or variations of variance, such as standard deviation (Wang and Witten 1997) or the 5th
root of the variance, as in the Weka implementation.

96

5.3 Finding a suitable heuristic for learning model trees

Table 5.1: M5’ instantiation of TDIDT.

procedure local model (E: examples):
return linear regression model for E
(based on variables occurring in the subtree)

procedure quality (S: split, E: examples):
P := partition induced on E by S
return SD(E)−∑

Ej∈P
|Ej |/|E|SD(Ej)

(SD(T) = target variable’s standard deviation in T)

procedure stop criterion (E: examples):
return |E| < 4 or SD(E) < 0.05 ∗ SD(all examples)

phase they change internal nodes into leaves containing a linear model if that
model performs at least equally good as the subtree rooted in that node. The
linear model uses as predictor variables only attributes occurring in the subtree
that it replaces. Hence, M5 and M5’ can be described as an instantiation of the
generic TDIDT algorithm. Table 5.1 shows the instantiation of the local model,
quality, and stop criterion functions.

Keeping in mind that linear models will be built in the leaves, it seems
reasonable to select tests that maximize the expected quality of these models.
In that sense, variance reduction is not a very suitable heuristic. As also noted
elsewhere (Karalic 1992; Malerba et al. 2004), the quality of a linear model
constructed for a data set is quite independent of the variance of that data set.
For instance, a set of points that form a perfectly linear but steep line has a
greater variance than a set of points closer together but randomly distributed.
Given this independence, there is no reason why variance would perform better
than random splitting. In fact, it may even be worse, as the following simple
example shows.

Consider the piecewise linear function y = x, 0 ≤ x ≤ 1; y = 2−x, 1 < x ≤ 2
(see Fig. 5.1(a)). Clearly the simplest model tree to represent this function is
one that splits on the condition x < 1 and builds two linear models.

In the following, we consider a continuous uniform distribution of (x, y) cou-
ples. Note that for the optimal tree, the variance along y of both subsets is
equal to the variance along y of the original set; thus, from the point of view
of reducing variance, this tree would not be considered a good tree. The split
x < c that is found by M5’ is the one that minimizes the sum of the weighted
variance over both subsets. For a continuous uniform distribution, the optimal
c can be computed by minimizing

h(c) = c · V ar(y|x ≤ c) + (2− c) · V ar(y|x > c),

97

Chapter 5 Constructing Predictions with Complex Aggregates

0 2

1

1 X

Y

c

(a)

0.06

0.065

0.07

0.075

0.08

0.085

0 0.2 0.4 0.6 0.8 1

average variance

(b)

Figure 5.1: (a) A piecewise linear function and split point c. (b) The weighted
mean of the variance in the subsets defined by x ≤ c and x > c as a function
of c.

where the factors c and 2− c are weights referring to the respective sizes of the
subsets and the Var factors are the variances of these subsets. The optimal c
is then defined as

c∗ = arg min
c

h(c).

Due to symmetry, 2− c∗ is an optimum in the interval [1,2].
The function h(c) is plotted in Fig. 5.1(b), and there it can clearly be seen

that a minimum is obtained near 0.4; that is, quite far away from the optimal
split point 1. In fact, even random splitting can be expected to yield slightly
better results on average, since it has 60% probability of creating a split closer
to 1.

Without loss of generality, given the symmetry, we assume c∗ < 1. The left
subset yields a perfect linear model. However, as the model is not actually
constructed as part of the stopping criterion, M5’ constructs a subtree for this
subset, partitioning this linear area into many small areas with ever decreasing
variance; only in the pruning phase does it remove this subtree to build the
linear model. The right subset is a function similar to the original one, though
less symmetric. Hence, similar behaviour can be expected. Note that in con-
trast to the left branch, the right branch cannot be pruned to a single leaf; and
that also further down the tree, the splits will always be off the optimal point.
Thus a relatively deep tree will still remain.

The above reasoning shows that variance-based heuristics tend to split the
data set in the wrong places. This reduces the explanatory power of the tree:
first, a larger tree is obtained than is necessary, and second, the splits in the
tree are not really informative. Moreover, superfluous partitioning of the data
space causes relatively small areas to be separated, with each area containing

98

5.3 Finding a suitable heuristic for learning model trees

few examples. As local models built from few examples tend to be less accurate,
the predictive performance of the induced trees may also be reduced.

In our experiments section (Sect. 5.3.4) we further explore this behaviour of
M5’. At this point, we just illustrate the concrete behaviour of M5’ on the
simple function mentioned above, for a random sample of data points with
some noise added. Figure 5.2 shows the tree M5’ builds for such a data set.
It confirms our theoretical analysis: the model built by M5’ is good in the
sense that it has a reasonably good predictive performance, but its explanatory
power is diminished.

Another system that uses variance reduction as a heuristic is Htl (Torgo
1997). The major difference with M5 is that it is a hybrid system that can
integrate several alternative models into the tree leaves. However, since we are
interested only in the case where linear models are used in the leaves, we will
not elaborate on Htl.

5.3.2 More complex approaches

Our simple case above not only shows that variance does not work very well as
a heuristic, it also suggests that constructing linear models for the subsets and
evaluating their goodness of fit should work fine. This is exactly the approach
followed by Retis (Karalic 1992). Retis evaluates a split by building a multiple
linear model for each subset and computing its residual variance. Also in the
leaves multiple linear regression models are built. The Retis instantiation
of TDIDT is shown in Table 5.2. Unfortunately, these multiple regressions
result in a complexity that will not scale up to large problems. Torgo (2002)
has presented a set of incremental formulae that allows to evaluate the set of
candidate splits for a given variable with complexity quadratic in the number of
attributes. Hence, the complexity for evaluating all splits in a node is cubic in
the number of attributes, which is still too high for many practical applications.
Besides its high computational cost, another drawback of Retis is that only full
regression models (i.e. regression models in all variables) are considered in the
leaves and in the quality function. Next to the obvious fact that understanding
a smaller model is usually easier than understanding a larger one, it is well-
known that if some of the predictors are related to each other, that is, they
are (approximately) collinear, models based on subsets may give more precise
results than will models based on more variables (Weisberg 1980). Therefore,
variable selection is a desirable part of many regression analyses. In the case
of Retis, applying variable selection techniques when choosing the best split
may become too costly, since it may require the computation of extra multiple
regression models (Malerba et al. 2004).

A number of systems have been proposed that were designed to address the
computational concerns of Retis. They can be divided into two groups. The
first group uses multiple linear regression models in the leaves, but at each
node transforms the regression problem into a classification problem in order

99

Chapter 5 Constructing Predictions with Complex Aggregates

0.0 0.5 1.0 1.5 2.0

0.0

0.4

0.8

1.2

.

.

.

.
..

.

.

.
.

..
.

.

.

. .

.
.

.

.

.

. . .

.

.
.

.

.
.

.

.

.

.

.

.

.
.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.
. .

. .

. .
.

.
.
.

.

.
.

.

. .

.
.

.
.

.

.

.

.

.

.
..

.

.

.

.

.

.

. .
.

.
.

.

.

..
.

..

..
.

.

.

.

.
.

.

..

..

.

.

.

..

.

.

.
.

.

.

. .

. .

.

.

..

.

..
.

.

..

.

.
.

. .

.

.
.

.

.

.

.

.

.

. .

.

.
..

.

. .
.

.

.

..
.

.

.
.

.

.

.

.

. .. .

.

.

.
. .

.
.

.

.

.

.
.

.

. .

.
.

.
.

.

..

.

.
.

.

.

.

.
.

.

.

.

. .
.

.

.

.

.

.

.
.

.

.

.

.

.

. .

.

.

.

.

.

. .

.

.
.

.
.

.

.

.
..

..
...

..
.. .

.
.

.

.

.

.

.
.. .

.

.

.

.

.

..

.

..

.

.

.

.

. .. .
.

.

.

.

.
.

.

.

.

.
.

.

.

.

.

.

.
.

.

.

.

.

.

.

.

.

.

.

.

.

.
.

.

. .

.

.

.

.

. .
.

. .

.

.

.

.
.

..
.

.

.

.
.

.

.

.

.

.

.

.
.

.

.

.

.

.

..

.

.
.

.

.

.

..
.

.

.
.

.

.
. . .

.

.
.

.

.

.

.

.

.
.
..

.
.

. .

..

.

.

.

.

.
.

.

.

.

.

.

. .

.

.

.

.

..

.

..

.

.

.
.

.

.
.

.

.. .

..

.

.

.

.
.

.

.

.

.

.

.

.

. .

.
.

.

.

.

.

.

.
.

..

.

.
.

.

.

. . .

. .

.

.

.

.

.
.

..

.

.
.

.

.
.

.

.

.

.

.
.

.

.
.

. .

.

.

.

.

.

..
. .

. .

.
.

.
.

.
.

.

.

.

.
.

. .

.

.

.

.

.

.

.

.

.

.

.

.

..
.

.

.

.

.

.

.

.

.

.

..

.

.

.
.

.

.

.

.
.

. .
.

.

..

.

..
.

.
. .

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.
.

. ..

.

.

.

.

.
.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

..
.

.

.
..

.

.
..

..

...

..

.

.

.

.

.
.

.

..

.

.

.

.

.

.

.

.

. .

.
. .

.
.

.

.

.

.

.

.
.

.

.
.

.

.

. .
.

.

.

.

.

.. .
.

.
.

.

.

.

.

.

.

.
.

..
.

. .

.

..

.

.

.

.

.

.

.

.
.

.
.

.

.

.

.

..

.

.

.

.

. .
.

.
.

.

.
.

.

.

..

.

.
.

.
.

.
. .

.

.

. .

.

.

.
.

.

.

.

.

.
.

.

.

.
.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.
.

.
.

.

.

.

.

.

.

.

.

.
.

.

.

.

.

.

.

.

.
.

.

. .

.

.
.

.

. .

.
.

. .

.

.

.
.

.

.

.
.

.

.

.
..

.

.

.

. .
.

.
. .

.

.
.

.

.

.

.

..

.

.

.
. .

. .

.
. .

..

.

.
. .

. .

..

. .

. .

.

.
..

.

.

.

.

.

. .

.
.

.

.

.
. .

.
.

.
.

.

.

.

.
.

.

.

.

.
.

.

.

.

. .

.

. .

.

.

.

.

.
.

.

.
.

.

.

.
..

.
.

.
.

..
.

.

.

.

.

.

..
.

.

.

.

.

.

.
.

.

.

.

.

.

.

.. .
.

.

.

.

.

.
.

.

.

. .

.
.

..
.

.
.

. .
.

.

.

..

.

.

.
.

.

.
.

.

.

.

..

.

.

.
.

.

.

.

.

..

.. .

.

.

.

.

.

..

.

(a)

x ≤ 1.6

x ≤ 0.51

LM1 x ≤ 1.32

x ≤ 0.715

x ≤ 0.665

LM2 LM3

x ≤ 1.19

x ≤ 0.861

LM4 x ≤ 1.11

x ≤ 0.919

LM5 LM6

LM7

LM8

LM9

LM10

LM1: y = 0.003 + 1.010x
LM2: y = 0.577
LM3: y = 0.713
LM4: y = 0.470 + 0.411x
LM5: y = 2.163 - 1.449x
LM6: y = 1.260 - 0.296x
LM7: y = 0.859
LM8: y = 0.730
LM9: y = 1.630 - 0.744x
LM10: y = 1.806 - 0.895x

(b)

Figure 5.2: (a) A simple data set. The vertical lines in the data plot indicate
where the split points of a variance based model are. (b) The model induced
for this dataset by a variance based model tree builder.

100

5.3 Finding a suitable heuristic for learning model trees

Table 5.2: Retis instantiation of TDIDT.

procedure local model (E: examples):
return linear regression model for E
(based on all variables)

procedure quality (S: split, E: examples):
P := partition induced on E by S
return RVAR(E)−∑

Ej∈P
|Ej |/|E|RVAR(Ej)

(RVAR(E) = residual variance of a multiple
linear model built from E)

to use more efficient search strategies. Examples are Support (Chaudhuri
et al. 1994), Guide (Loh 2002), and Secret (Dobra and Gehrke 2002). The
first two systems make use of statistical methods for variable selection. At each
node, a (constant or linear) model is fit, then the signs of their residuals are
used to separate the observations into two classes and a statistical test is used
to pick the variable giving the largest separation between the two classes. The
two systems differ in the test they use and in the way to determine the split
point, once the variable is found. However, as Dobra and Gehrke (2002) point
out, these approaches may also lead to redundant splits. Secret uses the
EM algorithm (Dempster et al. 1977) at each node to determine two Gaussian
clusters in the data and to label the data based on the closeness to these clusters.
Classification tree techniques are then used to select the split attribute and the
split point.

The second group retains the regression problem at each node, but fits a
simpler regression model to evaluate a split. In this work, we will focus on the
second group. Obviously, M5 is an example of this approach, since it fits the
most basic model at the nodes: the average of the sample data at that node.

The simple example described in the previous section deals with a single
predictor variable, which is uncommon. Consequently, the variable used to
define the split is the same as the variable used in the regression. When multiple
predictor variables exist, a number of different approaches are possible, with
Retis and M5 at both ends of the spectrum. We characterize each of them
by listing the variables for which it performs regression in order to evaluate the
split (not to be confused with the construction of linear models in the leaves),
given the variable it splits on. We consider only univariate splits here. All these
options could be extended by considering also multivariate splits (Brodley and
Utgoff 1995), but this extension is more or less orthogonal to the dimension
discussed here, and hence out of scope for us.

The four options we distinguish are:

1. no regression (the M5 approach)

101

Chapter 5 Constructing Predictions with Complex Aggregates

Table 5.3: Treed Regression instantiation of TDIDT.

procedure local model (E: examples):
return simple linear regression model for E

procedure quality (S: split, E: examples):
P := partition induced on E by S
return −∑

Ej∈P
|Ej |/|E|RSSE∗(Ej)

(RSSE∗(E) = smallest residual sum of squared errors of a
simple linear model built from E)

procedure stop criterion (E: examples):
return |E| < 20

2. simple regression on the split attribute if it is numerical

3. simple regression on all numerical attributes separately

4. multiple regression on all numerical attributes together (the Retis ap-
proach)

Our reason for listing exactly these different options is that they differ sig-
nificantly with respect to their computational complexity: options 1 and 2 are
linear in the number of attributes, option 3 quadratic and option 4 cubic. All
of these complexity factors are multiplied with at least N , with N the number
of examples.

An example of a system that takes the third option is described by Alexander
and Grimshaw (1996) and is called Treed Regression. To evaluate a split,
say, on attribute Xj , each independent attribute is evaluated as the regressor
attribute for a simple regression. The best linear model is determined for each
child node independently. The algorithm stores simple linear regression models
at each leaf. The TDIDT instantiation is shown in Table 5.3.

Another example of an option 3 system is Smoti (Malerba et al. 2004). It
induces an alternative kind of decision trees, where, besides splitting nodes,
regression nodes can be introduced. Whereas the former partition the sample
space, the latter perform only simple linear regression. The regression is done
in such a way that the multiple linear model associated to each leaf is obtained
by composing the effect of regression nodes along the path from the root to the
leaf. The purpose of this tree building mechanism is to discover global effects
that some attributes may have in the underlying model function. In order to
evaluate a split, simple regression is performed on all attributes separately and
combined with the regressions associated to regression nodes along the path
from the root to the node. In order to evaluate a regression node, a lookahead

102

5.3 Finding a suitable heuristic for learning model trees

step is performed, which actually renders this method cubic in the number of
attributes (Malerba et al. 2004).

5.3.3 A simple linear regression based heuristic

In this section we present an algorithm that uses a simple linear regression based
heuristic, hence it follows option 2 from the previous section. We start by mo-
tivating our approach in Sect. 5.3.3.1 and discuss the algorithm in Sect. 5.3.3.2.

5.3.3.1 Motivation

To our knowledge, there exists no system that uses option 2, although such a
system would have some interesting properties:

• It is expected to provide a solution for the undesirable behaviour that
systems using option 1 exhibit. More specifically, it should work better
in those cases where at least one variable has an influence on the target
variable that is non-linear but can be approximated with a piecewise
linear function.

• It has a computational complexity close to that of option 1, differing only
with a constant factor. Variance, σ2 =

∑

i(yi− ȳ)2/n with ȳ the mean of
the yi, can be computed entirely from the sufficient statistics

∑

i(1, yi, y
2
i)

with i varying over all elements of the data set. Similarly, a simple linear
regression model as well as its residual variance can be computed from
∑

i(1, xi, x
2
i , yi, y

2
i , xiyi). In our experience, this takes about three times

longer. Computing the residual variance from these statistics is about four
times as much work as computing the total variance from them. Hence,
this heuristic is roughly three to four times as expensive to compute as
the one in M5. In fact, since smaller trees can be expected, the slightly
more complex computation might well be compensated.

Obviously, for each of the options 1-3 it is possible to point out situations
where the next more complex option performs better. The point that we wish
to make, is that the move from option 1 to 2 solves at least some problems,
and costs almost nothing with respect to efficiency.

5.3.3.2 The algorithm

The model tree induction algorithm we propose follows option 2 and is a variant
of M5’ that we call Mauve (“M5’ Adapted to use Uni-VariatE regression”).
The Mauve instantiation of TDIDT is shown in Table 5.4. The main difference
with M5’ lies in the heuristic, which is based on simple regression. Also the
stop criterion and pruning method are altered to be better tuned towards the
heuristic. We discuss each of these, as well as other components of the algorithm

103

Chapter 5 Constructing Predictions with Complex Aggregates

Table 5.4: Mauve instantiation of TDIDT.

procedure local model (E: examples):
return linear regression model for E
(based on all variables)

procedure quality (S: split, E: examples):
P := partition induced on E by S
return RSD(T)−∑

Tj∈P
|Tj |/|T |RSD(Tj)

(RSD(T) = residual standard deviation of a
simple linear model built from T)

procedure stop criterion (E: examples):
return |T | < 2 ∗ nbattributes or

SD(T) < 0.05 ∗ SD(all examples)

(pruning and smoothing). The algorithm is implemented in the Weka software
(Witten and Frank 1999), which also contains the M5’ algorithm.

Quality function. A model tree is built by calling the grow tree function
(see Table 2.1) using all examples. For each input variable Xj , we pass through
the possible split points. If Xj is numeric, each possible split takes the form
Xj < v with v an element from the domain of Xj . The splits are evaluated by
calculating, for each subset of the partition induced by the split, the residual
standard deviation of the target variable after fitting a simple linear regression
model with Xj as regressor.

If Xj is a nominal variable, say it takes values in V ={Xj1, Xj2, ..., Xjm,},
then splits take the form Xj ∈ V ′ with V ′ ⊂ V , i.e. we consider only binary
splits. Each of these splits can be seen as testing the value of a binary variable
(a variable that has value 1 for those examples with Xj ∈ V ′, and value 0 oth-
erwise). Since the residual standard deviation is undefined when using binary
variables, these splits are evaluated using the (normal) standard deviation of
the target variable. If Xj can take m possible values, there are 2m−1 different
binary partitions possible, so we need to consider 2m−1 binary variables. How-
ever, since the binary splits minimize the (normal) standard deviation, we can
make use of a result by Breiman et al. (1984) to reduce the number of binary
splits to be considered to m − 1, as in the implementation of M5’. To this
purpose, the average target value corresponding to each possible value for Xj

is computed and the values in the enumeration are sorted according to these
averages. Then Xj is replaced by m − 1 binary attributes, the ith being 0 if
the value is one of the first i in the ordering, and 1 otherwise.

For each input variable Xj , the calculations of the (residual) standard devi-

104

5.3 Finding a suitable heuristic for learning model trees

ation are performed incrementally, by sorting the examples by their Xj-value,
and by updating a set of statistics

∑

i(1, xi, x
2
i , yi, y

2
i , xiyi) for each possible

split point. From all possible splits, we choose the one that maximizes the
reduction in (residual) standard deviation. The function is recursively applied
to the subsets of the partition induced by the chosen split.

Local models. The occurrence of a certain split attribute Xj at a node N
reflects the existence of a linear relation between the target and Xj in the child
nodes of N . Hence, Xj should be included in the linear model of the leaves
in the subtree of N . Since attributes not occurring on a particular path may
also be relevant, the model stored in each leaf is a multiple linear regression
model that considers all input attributes as predictor variables. As in M5’,
variable selection techniques are applied, in order to increase the reliability
of the estimated regression coefficients, and hence to minimize the difference
between predicted target and actual target.

Stop criterion. The stop criterion of the grow tree function was slightly
modified. M5’ doesn’t split a node if it contains less than four instances,
because the minimum number of instances in a leaf is two. However, when
building a linear model in k variables in the leaves, one needs at least k + 1
examples. Taking into account that we consider all predictor variables to be
included in the model, we need at least a number of examples equal to the
number of predictors plus one in each leaf. Hence, at least (2j + 2) examples,
with j the number of predictor variables, are needed to split a node. The second
part of M5’s stop criterion (see Table 5.1) was left unchanged.

Pruning. In the pruning phase, each interior node N is associated with two
error measures. The first is called the model error ME(N) and is the error that
would be experienced if the node were a leaf (hence, a multiple regression model
is built at the node). The second is the subtree error SE(N) and measures the
error if the node keeps its child nodes. The tree is pruned at N (i.e. its subtrees
are discarded and the node becomes a leaf) if ME(N) < SE(N). In order to
compensate for the underestimation of these errors on unseen cases, they are
multiplied by (n + m ∗ p)/(n− p) with n the number of examples reaching the
node N , p the number of parameters, and m the pruning factor, a multiplier
that controls the size of the tree (Wang and Witten 1997). The number of
parameters is the sum of the number of nodes in the subtree starting at N and
the number of variables occurring in the linear equations of the leaves in the
same subtree. The pruning factor m has default value 2 in M5’, which is taken
over in Mauve. Of course, for both systems, performance can be improved by
using cross validation to estimate an optimal value (see Sect. 5.3.4.2).

105

Chapter 5 Constructing Predictions with Complex Aggregates

Smoothing. Smoothing (Quinlan 1992) is a method for improving the pre-
dictions of a model tree. It can be used in the final stage of the tree building
process. It compensates for the sharp discontinuities that may occur between
adjacent linear models at the leaves of the pruned tree. A weighted average
between models in the leaves and linear models higher up in the tree is taken
to make predictions. Smoothing may substantially increase the accuracy of
predictions, without altering tree size.

5.3.4 Experiments

This section serves to evaluate the performance of our propositional model tree
learning system and to compare it with traditional variance based approaches
and with more sophisticated approaches. In particular, three questions are
addressed:

1. If there is a (piecewise) linear relation between the target and (at least)
one of the input variables, does our approach perform better than a vari-
ance based approach? If yes, at which computational cost?

2. How often does such a linear relation occur in practice?

3. Does the use of more sophisticated approaches result in a performance
improvement?

In order to answer the first question, experiments were performed on syn-
thetic data sets, specifically constructed with (piecewise) linear relations. Re-
sults are presented in Sect. 5.3.4.1. The second question is tackled by conduct-
ing experiments on real world data sets (Sect. 5.3.4.2). The third question is
dealt with by performing a more complete comparison of our approach to other
existing approaches on the same real world data sets (Sect. 5.3.4.3).

All experiments were performed using tenfold cross validation and were run
twenty times in order to account for the variance between the folds. The rele-
vant criteria are predictive performance, tree size, and induction time. Predic-
tive performance is estimated using the RRMSE2, a measure output by Weka.
Tree size is measured in number of leaves. Since the number of leaves alone
does not give a good estimation of the complexity of the model (which is also
influenced by the number of variables in the linear equation in the leaves), we
also report the number of parameters. The number of parameters is the sum of
the number of nodes in the tree and the number of variables occurring in the
equation in each leaf.

For our experiments, standard settings in Weka were used, except for smooth-
ing, which was initially switched off.

2RRMSE = root relative mean squared error, this is the root of the ratio of the mean
squared error of the tree to the mean squared error of a trivial model always predicting
the mean.

106

5.3 Finding a suitable heuristic for learning model trees

0.0 0.5 1.0 1.5 2.0

0.0

0.4

0.8

1.2

.

.

.

.
..

.

.

.
.

..
.

.

.

. .

.
.

.

.

.

. . .

.

.
.

.

.
.

.

.

.

.

.

.

.
.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.
. .

. .

. .
.

.
.
.

.

.
.

.

. .

.
.

.
.

.

.

.

.

.

.
..

.

.

.

.

.

.

. .
.

.
.

.

.

..
.

..

..
.

.

.

.

.
.

.

..

..

.

.

.

..

.

.

.
.

.

.

. .

. .

.

.

..

.

..
.

.

..

.

.
.

. .

.

.
.

.

.

.

.

.

.

. .

.

.
..

.

. .
.

.

.

..
.

.

.
.

.

.

.

.

. .. .

.

.

.
. .

.
.

.

.

.

.
.

.

. .

.
.

.
.

.

..

.

.
.

.

.

.

.
.

.

.

.

. .
.

.

.

.

.

.

.
.

.

.

.

.

.

. .

.

.

.

.

.

. .

.

.
.

.
.

.

.

.
..

..
...

..
.. .

.
.

.

.

.

.

.
.. .

.

.

.

.

.

..

.

..

.

.

.

.

. .. .
.

.

.

.

.
.

.

.

.

.
.

.

.

.

.

.

.
.

.

.

.

.

.

.

.

.

.

.

.

.

.
.

.

. .

.

.

.

.

. .
.

. .

.

.

.

.
.

..
.

.

.

.
.

.

.

.

.

.

.

.
.

.

.

.

.

.

..

.

.
.

.

.

.

..
.

.

.
.

.

.
. . .

.

.
.

.

.

.

.

.

.
.
..

.
.

. .

..

.

.

.

.

.
.

.

.

.

.

.

. .

.

.

.

.

..

.

..

.

.

.
.

.

.
.

.

.. .

..

.

.

.

.
.

.

.

.

.

.

.

.

. .

.
.

.

.

.

.

.

.
.

..

.

.
.

.

.

. . .

. .

.

.

.

.

.
.

..

.

.
.

.

.
.

.

.

.

.

.
.

.

.
.

. .

.

.

.

.

.

..
. .

. .

.
.

.
.

.
.

.

.

.

.
.

. .

.

.

.

.

.

.

.

.

.

.

.

.

..
.

.

.

.

.

.

.

.

.

.

..

.

.

.
.

.

.

.

.
.

. .
.

.

..

.

..
.

.
. .

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.
.

. ..

.

.

.

.

.
.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

..
.

.

.
..

.

.
..

..

...

..

.

.

.

.

.
.

.

..

.

.

.

.

.

.

.

.

. .

.
. .

.
.

.

.

.

.

.

.
.

.

.
.

.

.

. .
.

.

.

.

.

.. .
.

.
.

.

.

.

.

.

.

.
.

..
.

. .

.

..

.

.

.

.

.

.

.

.
.

.
.

.

.

.

.

..

.

.

.

.

. .
.

.
.

.

.
.

.

.

..

.

.
.

.
.

.
. .

.

.

. .

.

.

.
.

.

.

.

.

.
.

.

.

.
.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.
.

.
.

.

.

.

.

.

.

.

.

.
.

.

.

.

.

.

.

.

.
.

.

. .

.

.
.

.

. .

.
.

. .

.

.

.
.

.

.

.
.

.

.

.
..

.

.

.

. .
.

.
. .

.

.
.

.

.

.

.

..

.

.

.
. .

. .

.
. .

..

.

.
. .

. .

..

. .

. .

.

.
..

.

.

.

.

.

. .

.
.

.

.

.
. .

.
.

.
.

.

.

.

.
.

.

.

.

.
.

.

.

.

. .

.

. .

.

.

.

.

.
.

.

.
.

.

.

.
..

.
.

.
.

..
.

.

.

.

.

.

..
.

.

.

.

.

.

.
.

.

.

.

.

.

.

.. .
.

.

.

.

.

.
.

.

.

. .

.
.

..
.

.
.

. .
.

.

.

..

.

.

.
.

.

.
.

.

.

.

..

.

.

.
.

.

.

.

.

..

.. .

.

.

.

.

.

..

.

0 1 2 3 4

0.0

0.35

0.7

1.05

.

..

.

.

.

.

.

.

.

.

.

.

.

.

.. .

. .

.

.

.

.

. . ..

.
.

.

.

.

.
.

.

. .
.

.

.

.

.

.

.

.

.

.

.

.

.

.

.
. .

.

.

.

.. .

.

.

.

.
.

.

.

.

.
.

.

.

.

.

.

.
.

.

.

.

.

..

.

.
. .

.

.

.

.

.

.

.

.

.

. ..

.
.

. .

.

.

.

.

..
.

. ..

.

.

.

.

.

.

.

.
.

.

. .

.

.

.

.

.

.
.

.

.

.

. ..

.

.

.
.
.

.
.

.
.

.

..

.

..
.

. .

.

.

.

.

.

.
.

.

.

.

.

.

.

.

.

.

.
.

.

.

.

.

.

.

.

.
.

.

.

.

.

.

. . .

.

.

.

.
.

..

.

.
.

.

.

.

.

.

.
.

.

.

.

.

.

.

.

.. .

.

. .

..

.

.

.

.
..

.

. .

.
.

.
.

.

.

.

.

.
.

.

..
.

.

.

.
.

.

.

.

.

.

.

.

.

.
.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. .
.

.

.

.

.
.

.

.

.
.

. .

.

.

..

...

.
.

.

.

.

.
.

.
.

.

.

. .

.

.
.

.
.

..

.

.

.

.

.

.

.
.

.

..

.

. .

.

..

.

.
.

.

.

.
.

.

.

.

.

.

.
.

.

..
.

.

.

.

.

.

.

.

..

.

.

.
.

.

.

.
.

.

.
.

.. . .

.

.

.

.
.

.

..

.
..

.

. .

.

.

.

.

.

.

.

.
.

.
.

.

.

.

.

.

.

.

.
.

.

. .

.

.

.

.

.

.

.
.

.

.

.

.

.

.

. .

.

.
.

.

.

. .
.

.

.

.

.

.

.

.

.

.

.
..

.

.

.
.

.

.

.

.

.

. .

. .

..

.

.

.

.

.

.
.

.

.

.

.

.

.

.

.

.
.

.

.

.

.

.

.
. .

.

.

.

.

.
.

.

..

.

.

.

.

..

.

. .
.

.
.

.

.

.

.

.

.

. .

. .

.

.

.

.

.

.

.
.

.

.

.

.

.
. .

.

.

.

.
.

. . .

. .
.

.

.

.
.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.
.

.

.

.

.

.

.

.

.

.

.

.

.
.

. .
.

.
.

.

.
.

.

.

.

.

.

.

.
. .

.

.

. .

.

.

.

.

.

.

.

.

.

.

.
..

.

.

.

.

.

. .
.

.
.

.
.

.
.

.
.

. .

...

.

.

.
.

.

.

.

.
.

.

.

...

.

.

.
.

.

.

.

.

.

.

.

.
.

.

.

.

.

.

.

.
.

.

.

.

.

.

..

.

.

.

.

.

..

..

.

.

.

.

.

.

.
.

.

.
.

.

.
.

.

.. ..

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

.

.

.

. .

.

.
.

. ..

..

.

.

.
.

.

.

.

.

.
.

.

.

.

.

.

.. .

.

.
.

.

.

.

.

.

.
.

.

.

.
.

. .

..

.

.

.

.

.

.
.

. .

. .

.
.

. .
.

.

.

.
.

.

.

.

.
.

.

.

.

.
.

.

.

. ..

.
.

.

.
.

.

.

.
.

.

.

.

.

..

.

.

. .

..

.

.

.

.

.

.

.

.

.

.

.
.

.

.

.
.

.
.

. .

.

.

.

.

.

.

.
.

.

.

.

.

.
.
.

.

. .
.

.

.

.

..

.

.

.

.

.

.

.

.

. .

.

.
.

.

.

.
.

. .

.

.

.
.

.
.

. .

.

.

.

.

.

.

.

.

.

.

. .

.

.

.

.

.

.

.

.

.

.
.

.

.

.

.

..

.

.
.

.

.

.

.
.

.
.

.

.

.

.

.
.

.

. .

.

.

.

.

. .

. .

.
.

.

.

.
.

.

.

.

.
.

.

..

.
.

.

.

.
.

.

.

.

.

.

..

.

.
.

. .

..

.

0.0 0.5 1.0 1.5 2.0

0.0

0.4

0.8

1.2

.
.

.

.
.

.
.

.
.

.
.

.

. .
.

.

..

. .

. .

.
.

.

.

.

.

.
.

.
.

.

.

.

.

.

.

.

. .

.

.

.

.

.

.

.

.

.

.

.

.
.

.

.
.

.

. .

.

.

.

.
..

.

. .

.
.

.

.

.

.

.

..

.

.

.

.

.
.

.
.

.

.

.

.

.

.
.

.

.

. .

.

.
.

.
.

.

.
. ..

.

.

..

.

. .

.

.

.

.

.

. .. .

.

.

.

.
.

.

.

.

.

.

.

.

.

.

. .

.

.

.

.

.
.

.

.

.

.
.

.

.

..

.

.

.

.
.

.

.

.

.
..

.

.

.
.

.

.

.

.
. .

.

..

.

.

.

.

.
.

.

.

.

.

..

.

.

.

.
..

.
.

.

.

.

.

.

.

..

.
.
.

.
.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. . .

. .

.

.

.
.

.

. . .

.

.
.

.

.
.

.

.
.

.

..

.

.

. .
.

.

.

..

.

.

..
.

.
.

.
.

.
.

.

..

.

.

.

.

.

.

.
.

.

.

.
.

.
.

.

.

..

.

.

.

.

.
.

..

.

.

.

.

.

.

.
.

.
.

.

.

..

.

.

. .

.

.

.

.

.

.
.

.

.

.

.

. .

.

.

.
.

.

.

.
.

.

.

.
.

..

.
.

.
.

.
.

.

.

.

.

.

. . .

.
.

.
.

.

.
.

.

.

.

.

.
.

.
.

.

.

.

.

.

.

.

.
.

.

..

.

.
.

.

.

.

.

.
.

.

.

.

.
.

.

.

.

.

.
.

..
.

..

.

.

.

.

.

.
.

.

.

..

.

.

.

.

.

.

.

.

.

.

.

.

.
.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. . ..

.

.
.

.

.

.

.

.

.

.
.

.
.

.

.

.
.

.

.

.

.

.
.

.

.

.

.

.

.
.

.
.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.
.
.

.

.

.

.. .

.

.

.

. .

.

.

. .

..
.

.

.

..

..

.

.

.
.

. .

.

.

.
.

.

.
..

.

.

.

.

.

..
. ..

.

.

.

.

.

. .
.

.

.

.

.

.

.

.

..

.

. .

.

.
.

.
.

.

.

.

.

.

.
.

..

.
.

.
..

.

.
.

.

.
.

.

.

.

.

.

.

.

.
.

.. ..
.

.

.

.
...

.

.

.
.

.

.

.

.
.

.

.

. .
.

.

.

.

.

.

.

.

.

.

. .

.

. .

.

.

.

.

.

..
.

.
.

.

..

.
.

.

.

.

.
.

.

. .

. ..
. .

.

.
.

.

.
..

.

.
.

.

.
. . .

.

.
.

..

.

.

.

.
.

.

.

. .

.

.
..

.

. . .

.
.

.

.

.
. .

.

.

.

.

. ..
.

. .
..

.
.

.

.

.

..

.

.

.

.
. ..

.

.

..

. .
.

.

.
.

.

.
.

.

.

.

.
.

.

.
.

.
.

.

.
.

. ..

..

.

.
.

.

.

.
.

.

.
.

.

.
.

.

.

.

.
.

.

.

.

..

.

.

.
.

.

.
.

.

.

.

.

.
. .

.

.
.

.

. .

.

.

.

.

.

.

.

.

.

.

.

.

.

.
. ..

.
.

.

.

.

.

.

.

.

.

.
.

.

.

.

.

.

.
.

.

.

.

.

.

.
.

.

.

.

.

.
.

.

.
.

.

.

..

.
.

.

.

.
.

.
.

.

.

.
..

.

.
.

.
.

..
. .

.

.
..

. .
.

.
.

.

.
.

. .
.

.

.

.

.

.

.

.

.

. .
..

..

.

.

.

.

. .
.

.
.

.

.

.
.

..

.

.

..

.. .

.

..

..

.

. .

.

.
.

.
.

.

.

.
.

.

.
.

.

.

.

.

.

.

.

... .
.

. .

.

.

.

.

.

0.0 0.5 1.0 1.5 2.0

0.0

0.4

0.8

1.2

.

.

.

.
..

.

.

.
.

..
.

.

.

. .

.
.

.

.

.

. . .

.

.
.

.

.
.

.

.

.

.

.

.

.
.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.
. .

. .

. .
.

.
.
.

.

.
.

.

. .

.
.

.
.

.

.

.

.

.

.
..

.

.

.

.

.

.

. .
.

.
.

.

.

..
.

..

..
.

.

.

.

.
.

.

..

..

.

.

.

..

.

.

.
.

.

.

. .

. .

.

.

..

.

..
.

.

..

.

.
.

. .

.

.
.

.

.

.

.

.

.

. .

.

.
..

.

. .
.

.

.

..
.

.

.
.

.

.

.

.

. .. .

.

.

.
. .

.
.

.

.

.

.
.

.

. .

.
.

.
.

.

..

.

.
.

.

.

.

.
.

.

.

.

. .
.

.

.

.

.

.

.
.

.

.

.

.

.

. .

.

.

.

.

.

. .

.

.
.

.
.

.

.

.
..

..
...

..
.. .

.
.

.

.

.

.

.
.. .

.

.

.

.

.

..

.

..

.

.

.

.

. .. .
.

.

.

.

.
.

.

.

.

.
.

.

.

.

.

.

.
.

.

.

.

.

.

.

.

.

.

.

.

.

.
.

.

. .

.

.

.

.

. .
.

. .

.

.

.

.
.

..
.

.

.

.
.

.

.

.

.

.

.

.
.

.

.

.

.

.

..

.

.
.

.

.

.

..
.

.

.
.

.

.
. . .

.

.
.

.

.

.

.

.

.
.
..

.
.

. .

..

.

.

.

.

.
.

.

.

.

.

.

. .

.

.

.

.

..

.

..

.

.

.
.

.

.
.

.

.. .

..

.

.

.

.
.

.

.

.

.

.

.

.

. .

.
.

.

.

.

.

.

.
.

..

.

.
.

.

.

. . .

. .

.

.

.

.

.
.

..

.

.
.

.

.
.

.

.

.

.

.
.

.

.
.

. .

.

.

.

.

.

..
. .

. .

.
.

.
.

.
.

.

.

.

.
.

. .

.

.

.

.

.

.

.

.

.

.

.

.

..
.

.

.

.

.

.

.

.

.

.

..

.

.

.
.

.

.

.

.
.

. .
.

.

..

.

..
.

.
. .

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.
.

. ..

.

.

.

.

.
.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

..
.

.

.
..

.

.
..

..

...

..

.

.

.

.

.
.

.

..

.

.

.

.

.

.

.

.

. .

.
. .

.
.

.

.

.

.

.

.
.

.

.
.

.

.

. .
.

.

.

.

.

.. .
.

.
.

.

.

.

.

.

.

.
.

..
.

. .

.

..

.

.

.

.

.

.

.

.
.

.
.

.

.

.

.

..

.

.

.

.

. .
.

.
.

.

.
.

.

.

..

.

.
.

.
.

.
. .

.

.

. .

.

.

.
.

.

.

.

.

.
.

.

.

.
.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.
.

.
.

.

.

.

.

.

.

.

.

.
.

.

.

.

.

.

.

.

.
.

.

. .

.

.
.

.

. .

.
.

. .

.

.

.
.

.

.

.
.

.

.

.
..

.

.

.

. .
.

.
. .

.

.
.

.

.

.

.

..

.

.

.
. .

. .

.
. .

..

.

.
. .

. .

..

. .

. .

.

.
..

.

.

.

.

.

. .

.
.

.

.

.
. .

.
.

.
.

.

.

.

.
.

.

.

.

.
.

.

.

.

. .

.

. .

.

.

.

.

.
.

.

.
.

.

.

.
..

.
.

.
.

..
.

.

.

.

.

.

..
.

.

.

.

.

.

.
.

.

.

.

.

.

.

.. .
.

.

.

.

.

.
.

.

.

. .

.
.

..
.

.
.

. .
.

.

.

..

.

.

.
.

.

.
.

.

.

.

..

.

.

.
.

.

.

.

.

..

.. .

.

.

.

.

.

..

.

0 1 2 3 4

0.0

0.35

0.7

1.05

.

..

.

.

.

.

.

.

.

.

.

.

.

.

.. .

. .

.

.

.

.

. . ..

.
.

.

.

.

.
.

.

. .
.

.

.

.

.

.

.

.

.

.

.

.

.

.

.
. .

.

.

.

.. .

.

.

.

.
.

.

.

.

.
.

.

.

.

.

.

.
.

.

.

.

.

..

.

.
. .

.

.

.

.

.

.

.

.

.

. ..

.
.

. .

.

.

.

.

..
.

. ..

.

.

.

.

.

.

.

.
.

.

. .

.

.

.

.

.

.
.

.

.

.

. ..

.

.

.
.
.

.
.

.
.

.

..

.

..
.

. .

.

.

.

.

.

.
.

.

.

.

.

.

.

.

.

.

.
.

.

.

.

.

.

.

.

.
.

.

.

.

.

.

. . .

.

.

.

.
.

..

.

.
.

.

.

.

.

.

.
.

.

.

.

.

.

.

.

.. .

.

. .

..

.

.

.

.
..

.

. .

.
.

.
.

.

.

.

.

.
.

.

..
.

.

.

.
.

.

.

.

.

.

.

.

.

.
.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. .
.

.

.

.

.
.

.

.

.
.

. .

.

.

..

...

.
.

.

.

.

.
.

.
.

.

.

. .

.

.
.

.
.

..

.

.

.

.

.

.

.
.

.

..

.

. .

.

..

.

.
.

.

.

.
.

.

.

.

.

.

.
.

.

..
.

.

.

.

.

.

.

.

..

.

.

.
.

.

.

.
.

.

.
.

.. . .

.

.

.

.
.

.

..

.
..

.

. .

.

.

.

.

.

.

.

.
.

.
.

.

.

.

.

.

.

.

.
.

.

. .

.

.

.

.

.

.

.
.

.

.

.

.

.

.

. .

.

.
.

.

.

. .
.

.

.

.

.

.

.

.

.

.

.
..

.

.

.
.

.

.

.

.

.

. .

. .

..

.

.

.

.

.

.
.

.

.

.

.

.

.

.

.

.
.

.

.

.

.

.

.
. .

.

.

.

.

.
.

.

..

.

.

.

.

..

.

. .
.

.
.

.

.

.

.

.

.

. .

. .

.

.

.

.

.

.

.
.

.

.

.

.

.
. .

.

.

.

.
.

. . .

. .
.

.

.

.
.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.
.

.

.

.

.

.

.

.

.

.

.

.

.
.

. .
.

.
.

.

.
.

.

.

.

.

.

.

.
. .

.

.

. .

.

.

.

.

.

.

.

.

.

.

.
..

.

.

.

.

.

. .
.

.
.

.
.

.
.

.
.

. .

...

.

.

.
.

.

.

.

.
.

.

.

...

.

.

.
.

.

.

.

.

.

.

.

.
.

.

.

.

.

.

.

.
.

.

.

.

.

.

..

.

.

.

.

.

..

..

.

.

.

.

.

.

.
.

.

.
.

.

.
.

.

.. ..

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

.

.

.

. .

.

.
.

. ..

..

.

.

.
.

.

.

.

.

.
.

.

.

.

.

.

.. .

.

.
.

.

.

.

.

.

.
.

.

.

.
.

. .

..

.

.

.

.

.

.
.

. .

. .

.
.

. .
.

.

.

.
.

.

.

.

.
.

.

.

.

.
.

.

.

. ..

.
.

.

.
.

.

.

.
.

.

.

.

.

..

.

.

. .

..

.

.

.

.

.

.

.

.

.

.

.
.

.

.

.
.

.
.

. .

.

.

.

.

.

.

.
.

.

.

.

.

.
.
.

.

. .
.

.

.

.

..

.

.

.

.

.

.

.

.

. .

.

.
.

.

.

.
.

. .

.

.

.
.

.
.

. .

.

.

.

.

.

.

.

.

.

.

. .

.

.

.

.

.

.

.

.

.

.
.

.

.

.

.

..

.

.
.

.

.

.

.
.

.
.

.

.

.

.

.
.

.

. .

.

.

.

.

. .

. .

.
.

.

.

.
.

.

.

.

.
.

.

..

.
.

.

.

.
.

.

.

.

.

.

..

.

.
.

. .

..

.

0.0 0.5 1.0 1.5 2.0

0.0

0.4

0.8

1.2

.
.

.

.
.

.
.

.
.

.
.

.

. .
.

.

..

. .

. .

.
.

.

.

.

.

.
.

.
.

.

.

.

.

.

.

.

. .

.

.

.

.

.

.

.

.

.

.

.

.
.

.

.
.

.

. .

.

.

.

.
..

.

. .

.
.

.

.

.

.

.

..

.

.

.

.

.
.

.
.

.

.

.

.

.

.
.

.

.

. .

.

.
.

.
.

.

.
. ..

.

.

..

.

. .

.

.

.

.

.

. .. .

.

.

.

.
.

.

.

.

.

.

.

.

.

.

. .

.

.

.

.

.
.

.

.

.

.
.

.

.

..

.

.

.

.
.

.

.

.

.
..

.

.

.
.

.

.

.

.
. .

.

..

.

.

.

.

.
.

.

.

.

.

..

.

.

.

.
..

.
.

.

.

.

.

.

.

..

.
.
.

.
.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. . .

. .

.

.

.
.

.

. . .

.

.
.

.

.
.

.

.
.

.

..

.

.

. .
.

.

.

..

.

.

..
.

.
.

.
.

.
.

.

..

.

.

.

.

.

.

.
.

.

.

.
.

.
.

.

.

..

.

.

.

.

.
.

..

.

.

.

.

.

.

.
.

.
.

.

.

..

.

.

. .

.

.

.

.

.

.
.

.

.

.

.

. .

.

.

.
.

.

.

.
.

.

.

.
.

..

.
.

.
.

.
.

.

.

.

.

.

. . .

.
.

.
.

.

.
.

.

.

.

.

.
.

.
.

.

.

.

.

.

.

.

.
.

.

..

.

.
.

.

.

.

.

.
.

.

.

.

.
.

.

.

.

.

.
.

..
.

..

.

.

.

.

.

.
.

.

.

..

.

.

.

.

.

.

.

.

.

.

.

.

.
.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. . ..

.

.
.

.

.

.

.

.

.

.
.

.
.

.

.

.
.

.

.

.

.

.
.

.

.

.

.

.

.
.

.
.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.
.
.

.

.

.

.. .

.

.

.

. .

.

.

. .

..
.

.

.

..

..

.

.

.
.

. .

.

.

.
.

.

.
..

.

.

.

.

.

..
. ..

.

.

.

.

.

. .
.

.

.

.

.

.

.

.

..

.

. .

.

.
.

.
.

.

.

.

.

.

.
.

..

.
.

.
..

.

.
.

.

.
.

.

.

.

.

.

.

.

.
.

.. ..
.

.

.

.
...

.

.

.
.

.

.

.

.
.

.

.

. .
.

.

.

.

.

.

.

.

.

.

. .

.

. .

.

.

.

.

.

..
.

.
.

.

..

.
.

.

.

.

.
.

.

. .

. ..
. .

.

.
.

.

.
..

.

.
.

.

.
. . .

.

.
.

..

.

.

.

.
.

.

.

. .

.

.
..

.

. . .

.
.

.

.

.
. .

.

.

.

.

. ..
.

. .
..

.
.

.

.

.

..

.

.

.

.
. ..

.

.

..

. .
.

.

.
.

.

.
.

.

.

.

.
.

.

.
.

.
.

.

.
.

. ..

..

.

.
.

.

.

.
.

.

.
.

.

.
.

.

.

.

.
.

.

.

.

..

.

.

.
.

.

.
.

.

.

.

.

.
. .

.

.
.

.

. .

.

.

.

.

.

.

.

.

.

.

.

.

.

.
. ..

.
.

.

.

.

.

.

.

.

.

.
.

.

.

.

.

.

.
.

.

.

.

.

.

.
.

.

.

.

.

.
.

.

.
.

.

.

..

.
.

.

.

.
.

.
.

.

.

.
..

.

.
.

.
.

..
. .

.

.
..

. .
.

.
.

.

.
.

. .
.

.

.

.

.

.

.

.

.

. .
..

..

.

.

.

.

. .
.

.
.

.

.

.
.

..

.

.

..

.. .

.

..

..

.

. .

.

.
.

.
.

.

.

.
.

.

.
.

.

.

.

.

.

.

.

... .
.

. .

.

.

.

.

.

0.0 0.5 1.0 1.5 2.0

0.0

0.4

0.8

1.2

.

.

.

.
..

.

.

.
.

..
.

.

.

. .

.
.

.

.

.

. . .

.

.
.

.

.
.

.

.

.

.

.

.

.
.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.
. .

. .

. .
.

.
.
.

.

.
.

.

. .

.
.

.
.

.

.

.

.

.

.
..

.

.

.

.

.

.

. .
.

.
.

.

.

..
.

..

..
.

.

.

.

.
.

.

..

..

.

.

.

..

.

.

.
.

.

.

. .

. .

.

.

..

.

..
.

.

..

.

.
.

. .

.

.
.

.

.

.

.

.

.

. .

.

.
..

.

. .
.

.

.

..
.

.

.
.

.

.

.

.

. .. .

.

.

.
. .

.
.

.

.

.

.
.

.

. .

.
.

.
.

.

..

.

.
.

.

.

.

.
.

.

.

.

. .
.

.

.

.

.

.

.
.

.

.

.

.

.

. .

.

.

.

.

.

. .

.

.
.

.
.

.

.

.
..

..
...

..
.. .

.
.

.

.

.

.

.
.. .

.

.

.

.

.

..

.

..

.

.

.

.

. .. .
.

.

.

.

.
.

.

.

.

.
.

.

.

.

.

.

.
.

.

.

.

.

.

.

.

.

.

.

.

.

.
.

.

. .

.

.

.

.

. .
.

. .

.

.

.

.
.

..
.

.

.

.
.

.

.

.

.

.

.

.
.

.

.

.

.

.

..

.

.
.

.

.

.

..
.

.

.
.

.

.
. . .

.

.
.

.

.

.

.

.

.
.
..

.
.

. .

..

.

.

.

.

.
.

.

.

.

.

.

. .

.

.

.

.

..

.

..

.

.

.
.

.

.
.

.

.. .

..

.

.

.

.
.

.

.

.

.

.

.

.

. .

.
.

.

.

.

.

.

.
.

..

.

.
.

.

.

. . .

. .

.

.

.

.

.
.

..

.

.
.

.

.
.

.

.

.

.

.
.

.

.
.

. .

.

.

.

.

.

..
. .

. .

.
.

.
.

.
.

.

.

.

.
.

. .

.

.

.

.

.

.

.

.

.

.

.

.

..
.

.

.

.

.

.

.

.

.

.

..

.

.

.
.

.

.

.

.
.

. .
.

.

..

.

..
.

.
. .

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.
.

. ..

.

.

.

.

.
.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

..
.

.

.
..

.

.
..

..

...

..

.

.

.

.

.
.

.

..

.

.

.

.

.

.

.

.

. .

.
. .

.
.

.

.

.

.

.

.
.

.

.
.

.

.

. .
.

.

.

.

.

.. .
.

.
.

.

.

.

.

.

.

.
.

..
.

. .

.

..

.

.

.

.

.

.

.

.
.

.
.

.

.

.

.

..

.

.

.

.

. .
.

.
.

.

.
.

.

.

..

.

.
.

.
.

.
. .

.

.

. .

.

.

.
.

.

.

.

.

.
.

.

.

.
.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.
.

.
.

.

.

.

.

.

.

.

.

.
.

.

.

.

.

.

.

.

.
.

.

. .

.

.
.

.

. .

.
.

. .

.

.

.
.

.

.

.
.

.

.

.
..

.

.

.

. .
.

.
. .

.

.
.

.

.

.

.

..

.

.

.
. .

. .

.
. .

..

.

.
. .

. .

..

. .

. .

.

.
..

.

.

.

.

.

. .

.
.

.

.

.
. .

.
.

.
.

.

.

.

.
.

.

.

.

.
.

.

.

.

. .

.

. .

.

.

.

.

.
.

.

.
.

.

.

.
..

.
.

.
.

..
.

.

.

.

.

.

..
.

.

.

.

.

.

.
.

.

.

.

.

.

.

.. .
.

.

.

.

.

.
.

.

.

. .

.
.

..
.

.
.

. .
.

.

.

..

.

.

.
.

.

.
.

.

.

.

..

.

.

.
.

.

.

.

.

..

.. .

.

.

.

.

.

..

.

0 1 2 3 4

0.0

0.35

0.7

1.05

.

..

.

.

.

.

.

.

.

.

.

.

.

.

.. .

. .

.

.

.

.

. . ..

.
.

.

.

.

.
.

.

. .
.

.

.

.

.

.

.

.

.

.

.

.

.

.

.
. .

.

.

.

.. .

.

.

.

.
.

.

.

.

.
.

.

.

.

.

.

.
.

.

.

.

.

..

.

.
. .

.

.

.

.

.

.

.

.

.

. ..

.
.

. .

.

.

.

.

..
.

. ..

.

.

.

.

.

.

.

.
.

.

. .

.

.

.

.

.

.
.

.

.

.

. ..

.

.

.
.
.

.
.

.
.

.

..

.

..
.

. .

.

.

.

.

.

.
.

.

.

.

.

.

.

.

.

.

.
.

.

.

.

.

.

.

.

.
.

.

.

.

.

.

. . .

.

.

.

.
.

..

.

.
.

.

.

.

.

.

.
.

.

.

.

.

.

.

.

.. .

.

. .

..

.

.

.

.
..

.

. .

.
.

.
.

.

.

.

.

.
.

.

..
.

.

.

.
.

.

.

.

.

.

.

.

.

.
.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. .
.

.

.

.

.
.

.

.

.
.

. .

.

.

..

...

.
.

.

.

.

.
.

.
.

.

.

. .

.

.
.

.
.

..

.

.

.

.

.

.

.
.

.

..

.

. .

.

..

.

.
.

.

.

.
.

.

.

.

.

.

.
.

.

..
.

.

.

.

.

.

.

.

..

.

.

.
.

.

.

.
.

.

.
.

.. . .

.

.

.

.
.

.

..

.
..

.

. .

.

.

.

.

.

.

.

.
.

.
.

.

.

.

.

.

.

.

.
.

.

. .

.

.

.

.

.

.

.
.

.

.

.

.

.

.

. .

.

.
.

.

.

. .
.

.

.

.

.

.

.

.

.

.

.
..

.

.

.
.

.

.

.

.

.

. .

. .

..

.

.

.

.

.

.
.

.

.

.

.

.

.

.

.

.
.

.

.

.

.

.

.
. .

.

.

.

.

.
.

.

..

.

.

.

.

..

.

. .
.

.
.

.

.

.

.

.

.

. .

. .

.

.

.

.

.

.

.
.

.

.

.

.

.
. .

.

.

.

.
.

. . .

. .
.

.

.

.
.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.
.

.

.

.

.

.

.

.

.

.

.

.

.
.

. .
.

.
.

.

.
.

.

.

.

.

.

.

.
. .

.

.

. .

.

.

.

.

.

.

.

.

.

.

.
..

.

.

.

.

.

. .
.

.
.

.
.

.
.

.
.

. .

...

.

.

.
.

.

.

.

.
.

.

.

...

.

.

.
.

.

.

.

.

.

.

.

.
.

.

.

.

.

.

.

.
.

.

.

.

.

.

..

.

.

.

.

.

..

..

.

.

.

.

.

.

.
.

.

.
.

.

.
.

.

.. ..

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

.

.

.

. .

.

.
.

. ..

..

.

.

.
.

.

.

.

.

.
.

.

.

.

.

.

.. .

.

.
.

.

.

.

.

.

.
.

.

.

.
.

. .

..

.

.

.

.

.

.
.

. .

. .

.
.

. .
.

.

.

.
.

.

.

.

.
.

.

.

.

.
.

.

.

. ..

.
.

.

.
.

.

.

.
.

.

.

.

.

..

.

.

. .

..

.

.

.

.

.

.

.

.

.

.

.
.

.

.

.
.

.
.

. .

.

.

.

.

.

.

.
.

.

.

.

.

.
.
.

.

. .
.

.

.

.

..

.

.

.

.

.

.

.

.

. .

.

.
.

.

.

.
.

. .

.

.

.
.

.
.

. .

.

.

.

.

.

.

.

.

.

.

. .

.

.

.

.

.

.

.

.

.

.
.

.

.

.

.

..

.

.
.

.

.

.

.
.

.
.

.

.

.

.

.
.

.

. .

.

.

.

.

. .

. .

.
.

.

.

.
.

.

.

.

.
.

.

..

.
.

.

.

.
.

.

.

.

.

.

..

.

.
.

. .

..

.

0.0 0.5 1.0 1.5 2.0

0.0

0.4

0.8

1.2

.
.

.

.
.

.
.

.
.

.
.

.

. .
.

.

..

. .

. .

.
.

.

.

.

.

.
.

.
.

.

.

.

.

.

.

.

. .

.

.

.

.

.

.

.

.

.

.

.

.
.

.

.
.

.

. .

.

.

.

.
..

.

. .

.
.

.

.

.

.

.

..

.

.

.

.

.
.

.
.

.

.

.

.

.

.
.

.

.

. .

.

.
.

.
.

.

.
. ..

.

.

..

.

. .

.

.

.

.

.

. .. .

.

.

.

.
.

.

.

.

.

.

.

.

.

.

. .

.

.

.

.

.
.

.

.

.

.
.

.

.

..

.

.

.

.
.

.

.

.

.
..

.

.

.
.

.

.

.

.
. .

.

..

.

.

.

.

.
.

.

.

.

.

..

.

.

.

.
..

.
.

.

.

.

.

.

.

..

.
.
.

.
.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. . .

. .

.

.

.
.

.

. . .

.

.
.

.

.
.

.

.
.

.

..

.

.

. .
.

.

.

..

.

.

..
.

.
.

.
.

.
.

.

..

.

.

.

.

.

.

.
.

.

.

.
.

.
.

.

.

..

.

.

.

.

.
.

..

.

.

.

.

.

.

.
.

.
.

.

.

..

.

.

. .

.

.

.

.

.

.
.

.

.

.

.

. .

.

.

.
.

.

.

.
.

.

.

.
.

..

.
.

.
.

.
.

.

.

.

.

.

. . .

.
.

.
.

.

.
.

.

.

.

.

.
.

.
.

.

.

.

.

.

.

.

.
.

.

..

.

.
.

.

.

.

.

.
.

.

.

.

.
.

.

.

.

.

.
.

..
.

..

.

.

.

.

.

.
.

.

.

..

.

.

.

.

.

.

.

.

.

.

.

.

.
.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. . ..

.

.
.

.

.

.

.

.

.

.
.

.
.

.

.

.
.

.

.

.

.

.
.

.

.

.

.

.

.
.

.
.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.
.
.

.

.

.

.. .

.

.

.

. .

.

.

. .

..
.

.

.

..

..

.

.

.
.

. .

.

.

.
.

.

.
..

.

.

.

.

.

..
. ..

.

.

.

.

.

. .
.

.

.

.

.

.

.

.

..

.

. .

.

.
.

.
.

.

.

.

.

.

.
.

..

.
.

.
..

.

.
.

.

.
.

.

.

.

.

.

.

.

.
.

.. ..
.

.

.

.
...

.

.

.
.

.

.

.

.
.

.

.

. .
.

.

.

.

.

.

.

.

.

.

. .

.

. .

.

.

.

.

.

..
.

.
.

.

..

.
.

.

.

.

.
.

.

. .

. ..
. .

.

.
.

.

.
..

.

.
.

.

.
. . .

.

.
.

..

.

.

.

.
.

.

.

. .

.

.
..

.

. . .

.
.

.

.

.
. .

.

.

.

.

. ..
.

. .
..

.
.

.

.

.

..

.

.

.

.
. ..

.

.

..

. .
.

.

.
.

.

.
.

.

.

.

.
.

.

.
.

.
.

.

.
.

. ..

..

.

.
.

.

.

.
.

.

.
.

.

.
.

.

.

.

.
.

.

.

.

..

.

.

.
.

.

.
.

.

.

.

.

.
. .

.

.
.

.

. .

.

.

.

.

.

.

.

.

.

.

.

.

.

.
. ..

.
.

.

.

.

.

.

.

.

.

.
.

.

.

.

.

.

.
.

.

.

.

.

.

.
.

.

.

.

.

.
.

.

.
.

.

.

..

.
.

.

.

.
.

.
.

.

.

.
..

.

.
.

.
.

..
. .

.

.
..

. .
.

.
.

.

.
.

. .
.

.

.

.

.

.

.

.

.

. .
..

..

.

.

.

.

. .
.

.
.

.

.

.
.

..

.

.

..

.. .

.

..

..

.

. .

.

.
.

.
.

.

.

.
.

.

.
.

.

.

.

.

.

.

.

... .
.

. .

.

.

.

.

.

Figure 5.3: Approximating functions of one variable. Three different functions
are shown, we call them (from left to right) function1, function2 and func-
tion3; for each we indicate the thresholds that are created by (from top to
bottom) Mauve; M5’ with its original variance heuristic; M5’ with random
splits.

5.3.4.1 Synthetic data sets

Figure 5.3 shows some simple functions, in which there is a piecewise linear
relation (or a relation that can be approximated by it) between the target
and the input variable. For each function f(x), a data set was constructed
by drawing a random sample of 1000 values from a uniform distribution over
x, and associating with each x a y = f(x) + ε with ε a normally distributed
random variable with mean 0 and standard deviation σ that represents noise.
Varying σ had no significant influence on the interpretation of our results.

For each function, Fig. 5.3 shows the partitioning created by model tree
builders using simple regression, variance, and random splits. These results
confirm our earlier findings: for a variety of functions, Mauve tends to find
simpler models, with fewer split points that intuitively make more sense. In-
troducing random splits works approximately as well as using variance-based
splits, or even slightly better.

We have also constructed piecewise linear functions in multiple predictor
variables. Figure 5.4 presents a representative example problem. A dataset of
700 examples was constructed according to the target model in Fig. 5.4(a), this
time no noise was added. From Fig. 5.4(b) and Fig. 5.4(c), we see again that
Mauve produces a model that is much shorter than that of M5’.

Some statistics on the induced trees are presented in Tables 5.5 and 5.6.
They confirm that the models induced by Mauve are always simpler without
causing any loss of accuracy. In fact, for these datasets, predictive performance

107

Chapter 5 Constructing Predictions with Complex Aggregates

x ≤ 5

y ≤ 3

LM1 LM2

y ≤ 6

LM3 LM4

(a) Target model

x ≤ 5.01

y ≤ 3.01

LM1 LM2

y ≤ 5.99

LM3 LM4

(b) Mauve’s model

x ≤ 5.12

y ≤ 8.33

y ≤ 3.01

x ≤ 2.61

LM1 x ≤ 3.53

LM1 x ≤ 4.96

LM1 LM5

y ≤ 4.86

LM2 x ≤ 2.87

LM2 x ≤ 4.98

LM2 LM6

LM2

y ≤ 2.43

LM3 y ≤ 8.59

y ≤ 5.99

LM3 LM4

LM4

(c) M5’s model

Figure 5.4: Learning a piecewise linear function of two variables (function4).
(a) The original function. (b) The model tree built by Mauve. (c) The
model tree built by M5’.

Table 5.5: Predictive accuracy (RRMSE) for synthetic datasets when using
simple regression (Mauve), variance (M5’), and random heuristics (Rnd).

Mauve M5’ Rnd

Data set RRMSE (StdDev) RRMSE (StdDev) RRMSE (StdDev)
function1 33.99% (0.04) 34.35% (0.12) 34.39% (0.22)
function2 32.96% (0.13) 34.72% (0.21) 33.61% (0.37)
function3 31.39% (0.06) 31.70% (0.20) 31.63% (0.53)
function4 16.40% (3.05) 21.83% (1.85) 68.64% (2.97)

108

5.3 Finding a suitable heuristic for learning model trees

Table 5.6: Tree size and induction times for synthetic datasets when using
simple regression (Mauve), variance (M5’), and random heuristics (Rnd).

Size CPU time
Mauve M5’ Rnd Mauve M5’ Rnd

Data set Leaves Pars Leaves Pars Leaves Pars Secs Secs Secs
function1 2 5 10 25 5 13 3.75 3.41 3.87
function2 6 17 18 44 12 32 3.95 3.51 3.45
function3 4 11 8 20 6 16 3.11 3.95 2.89
function4 4 15 13 47 9 28 1.67 1.51 2.23

is improved. Moreover, the induction times for Mauve are similar to those
of M5’, which suggests that the tree building procedure stops earlier and that
this effect compensates for the more complex heuristic.

We conclude that, if we know that there is a simple piecewise linear relation
(or a relation that can be approximated by it, such as function3) between the
target attribute and (at least) one of the input attributes, Mauve outperforms
variance based methods. The question remains whether this linear behaviour
also occurs in real life data sets.

5.3.4.2 Real world data sets

We have compared the performance of the different heuristics on a number
of UCI data sets (Merz and Murphy 1996) and on some datasets taken from
the collection of regression datasets by Luis Torgo3. Most of these datasets
have been used as benchmarks in other studies on regression trees and model
trees. For each dataset, we list the number of examples, the number of predic-
tor attributes, the number of numeric predictor attributes, and the origin in
Table 5.7.

Standard experiments. In this section, we compare the basic versions of M5’

and Mauve, i.e., with a fixed pruning factor (having M5’s default value of 2)
and without using the smoothing operator. Alternative parameter settings will
be discussed in the following sections.

Table 5.8 shows predictive accuracies. Due to the high variation in the
RRMSE, we also compared the error for Mauve and M5’ for each random
seed of the cross validation and report the number of times each system won.
As noted by Dietterich (1998), the use of significance tests based on the means
and standard deviations from repeated cross validations is not valid, since null
hypotheses will nearly always be rejected given enough repetitions. Therefore,
we don’t make any statements regarding significance. Instead, we emphasize
the results in Table 5.8 if one method outperforms the other one in at least 90%

3 http://www.liacc.up.pt/∼ltorgo/Regression/DataSets.html

109

Chapter 5 Constructing Predictions with Complex Aggregates

Table 5.7: Description of real world data sets.

Data set Examples Attributes Origin
Housing 506 13 (12 num.) UCI

Machines 209 7 (6 num.) UCI (without unique model name and

linear regression prediction of target)

Auto-Mpg 398 7 (4 num.) Torgo
Auto-Price 159 15 (14 num.) Torgo

Abalone 4177 8 (7 num.) UCI
Servo 167 4 (0 num.) UCI

Wisconsin 198 34 (33 num.) UCI (prognostic dataset)

Kin8NM 8192 8 (8 num.) Torgo
Puma8NH 8192 8 (8 num.) Torgo
Puma32H 8192 32 (32 num.) Torgo
Bank8FM 8192 8 (8 num.) Torgo

Bank32NH 8192 32 (32 num.) Torgo

of the cases. Model complexity and timings are shown in Table 5.9. In that
table, sizes are emphasized if one method results in a model that is at least one
third shorter than the other method’s model.

The results can be summarized as follows (see also Table 5.10). Overall, the
predictive performance of Mauve is better than, or equally good as M5’. In the
one case where M5’ performs clearly better (Auto-Price), the model output by
Mauve is shorter. Concerning model complexity, in almost all cases, the tree
found by Mauve is smaller than, or equally large as the tree output by M5’.
The only exception is Auto-Mpg, for which Mauve outputs a slightly larger
tree than M5’. In Table 5.10 we see that, taking into account both accuracy
and number of leaves, Mauve has seven clear winners, against one for M5’.

If we look at the number of parameters, then the results are not that clear
(not visible in Table 5.10). That Mauve is not longer outperforming M5’ on
this measure is probably due to the fact that it considers all predictor variables
in the leaf models.

We can conclude that, from the point of view of minimizing the number of
subregions in the input space where the same linear relation holds, the use of
a simple regression based heuristic is in many cases useful for real world data.
As can be seen from the induction times in Table 5.9, this heuristic comes at
no additional computational cost.

In the following sections we examine whether this conclusion still holds in
a different setting, e.g. when the pruning parameter is tuned, or when the
smoothing operator is used.

Tuning the pruning factor. As discussed in Sect. 5.3.3.2 the two error esti-
mates to be compared in the pruning phase are multiplied with a compensation

110

5.3 Finding a suitable heuristic for learning model trees

Table 5.8: Accuracy for real world data sets.

Mauve M5’

Data set RRMSE (StdDev) Wins RRMSE (StdDev) Wins
Housing 47.98% (8.78) 8 46.56% (3.73) 12
Machines 32.06% (3.03) 19 37.34% (4.85) 1
Auto-Mpg 36.73% (0.87) 8 36.91% (0.95) 12
Auto-Price 56.08% (7.72) 1 42.16% (3.62) 19
Abalone 68.17% (2.10) 9 67.25% (0.51) 11
Servo 40.14% (3.31) 17 42.81% (3.03) 3
Wisconsin 103.69% (4.47) 12 104.42% (2.77) 8
Kin8NM 60.02% (1.19) 20 66.47% (0.66) 0
Puma8NH 56.94% (0.09) 20 57.88% (0.15) 0
Puma32H 28.31% (0.21) 11 28.28% (0.19) 9
Bank8FM 20.21% (0.09) 19 20.42% (0.08) 1
Bank32NH 67.62% (0.26) 19 69.34% (0.88) 1

Table 5.9: Size and induction times for real world data sets.

Size CPU times
Mauve M5’ Mauve M5’

Data set Leaves Pars Leaves Pars Secs Secs
Housing 6 46 13 52 0.93 1.14
Machines 2 38 3 15 0.46 0.46
Auto-Mpg 3 32 2 17 0.75 0.69
Auto-Price 1 11 10 29 0.30 0.35
Abalone 12 87 13 79 4.92 4.97
Servo 5 37 5 21 0.24 0.27
Wisconsin 3 29 4 14 0.49 0.47
Kin8NM 62 473 173 688 94.10 89.41
Puma8NH 17 74 46 153 93.58 104.45
Puma32H 26 238 169 618 141.68 132.79
Bank8FM 23 170 24 145 110.76 86.18
Bank32NH 3 56 3 54 116.16 150.19

Table 5.10: Summary of the comparison between Mauve and M5’ on real
world datasets. One method is said to be winning in accuracy if its RRMSE
is smaller in 90% of the cases. One method is said to be winning in size if it
results in a tree with one third less leaves.

Accuracy
Mauve wins Equality M5’ wins

S
iz

e Mauve wins 3 2 1
Equality 2 3 0
M5’ wins 0 1 0

111

Chapter 5 Constructing Predictions with Complex Aggregates

Table 5.11: Accuracy for real world data sets with optimal pruning factor.

Mauve M5’

Data set RRMSE (StdDev) Wins RRMSE (StdDev) Wins
Housing 48.42% (3.98) 6 46.38% (4.34) 14
Machines 32.15% (2.96) 19 37.25% (4.83) 1
Auto-Mpg 37.23% (0.84) 5 36.63% (0.74) 15
Auto-Price 53.79% (5.75) 1 42.43% (3.35) 19
Abalone 67.32% (1.15) 14 67.43% (0.38) 6
Servo 39.92% (3.40) 14 42.50% (2.54) 6
Wisconsin 106.17% (5.02) 6 101.80% (3.54) 14
Kin8NM 60.16% (0.70) 20 66.35% (0.60) 0
Puma8NH 56.89% (0.07) 20 57.52% (0.15) 0
Puma32H 28.27% (0.18) 0 27.46% (0.13) 20
Bank8FM 20.26% (0.09) 18 20.43% (0.08) 2
Bank32NH 67.54% (0.17) 19 68.02% (0.26) 1

factor that takes into account the number of parameters. In the calculation of
the compensation factor a multiplier is used that was called the pruning fac-
tor. This parameter controls the size of the tree. The previous experiments
were performed using M5’s default value of 2 for this parameter. Since in
Mauve the leaves contain linear models that may include all predictor vari-
ables (while M5’ only includes the variables occurring in the pruned subtree),
another value might be more appropriate, which might influence our experi-
mental results. Therefore, the experiments were rerun, both for M5’ and for
Mauve, while estimating an optimal value for the pruning factor using cross
validation. We proceeded as follows. For each of the training sets in the tenfold
cross validation, we performed an inner threefold cross validation to estimate
the optimal value for that training set. This optimal value was then used to
test the model on the remaining test data. This procedure was again performed
20 times. The values for the pruning factor that were tested are 1, 2, 3, 4, and
5.

Table 5.11 shows error estimates. Model complexity is shown in Table 5.12.
The number of leaves (parameters) is now the mean value of the number of
leaves (parameters) of the model for each fold in the 20 tenfold cross validations.
The tables show that, for both methods, the RRMSE value is not that much
affected, but its variance tends to decrease. The size of the trees and the number
of parameters also tend to decrease.

From Tables 5.11, 5.12, and 5.13 we learn that the relative performance of
both systems is not much affected by the changed experimental setting. The
only changes concern the Puma32H dataset, for which M5’ becomes superior
in accuracy, and the Auto-Mpg data, for which the size of both models becomes
equal.

112

5.3 Finding a suitable heuristic for learning model trees

Table 5.12: Model size for real world data sets with optimal pruning factor.

Mauve M5’

Data set Leaves Pars Leaves Pars
Housing 4.86 40.51 10.81 43.56
Machines 2.66 35.79 4.50 17.33
Auto-Mpg 2.56 26.05 2.38 18.30
Auto-Price 2.14 19.60 5.46 17.65
Abalone 8.43 57.92 6.19 39.15
Servo 4.03 28.47 4.28 19.59
Wisconsin 1.71 23.21 3.38 12.66
Kin8NM 54.09 384.80 103.54 442.22
Puma8NH 14.31 61.39 26.02 102.88
Puma32H 17.57 142.55 57.20 296.13
Bank8FM 23.58 173.26 27.19 157.13
Bank32NH 3.53 59.84 3.72 49.91

Table 5.13: Summary of the comparison between Mauve and M5’ on real
world datasets with optimal pruning factor. One method is said to be winning
in accuracy if its RRMSE is smaller in 90% of the cases. One method is said
to be winning in size if it results in a tree with one third less leaves.

Accuracy
Mauve wins Equality M5’ wins

S
iz

e Mauve wins 3 2 2
Equality 2 3 0
M5’ wins 0 0 0

113

Chapter 5 Constructing Predictions with Complex Aggregates

Table 5.14: Accuracy for real world data sets when smoothing is used.

Mauve M5’

Data set RRMSE (StdDev) Wins RRMSE (StdDev) Wins
Housing 43.55% (6.72) 10 44.13% (2.66) 10
Machines 30.86% (3.02) 19 33.74% (4.05) 1
Auto-Mpg 36.08% (0.63) 10 36.25% (0.51) 10
Auto-Price 48.97% (3.70) 1 41.07% (2.16) 19
Abalone 66.44% (0.62) 14 66.74% (0.41) 6
Servo 39.37% (2.47) 11 40.30% (1.83) 9
Wisconsin 100.91% (3.22) 4 97.86% (1.57) 16
Kin8NM 58.87% (0.84) 20 63.68% (0.49) 0
Puma8NH 56.81% (0.06) 20 57.26% (0.11) 0
Puma32H 28.17% (0.17) 0 27.07% (0.09) 20
Bank8FM 20.10% (0.08) 18 20.25% (0.05) 2
Bank32NH 67.52% (0.19) 20 68.33% (0.33) 0

Table 5.15: Summary of the comparison between Mauve and M5’ on real
world datasets, when the smoothing operator is used. One method is said
to be winning in accuracy if its RRMSE is smaller in 90% of the cases. One
method is said to be winning in size if it results in a tree with one third less
leaves.

Accuracy
Mauve wins Equality M5’ wins

S
iz

e Mauve wins 3 1 2
Equality 2 3 0
M5’ wins 0 1 0

Using the smoothing operator. A last experiment investigates the validity of
our results in a setting where smoothing is used. At the same time, we examine
whether smoothing improves the predictive performance of Mauve, as it does
for standard M5’ (Wang and Witten 1997). The pruning factor was reset to its
default value in this experiment. Since smoothing does not change the model,
only the way it is interpreted during prediction, it has no effect on the size of
the tree. Therefore, we only report predictive performances (Table 5.14). For
both systems, we see high improvements in RRMSE, up to an improvement of
7.11% for the Auto-Price dataset for Mauve.

Concerning the relative performance of both systems, we see no important
changes in the summary table (Table 5.15). The only difference w.r.t. not using
the smoothing operator again concerns the Puma32H dataset, for which M5’

now wins in accuracy.

114

5.3 Finding a suitable heuristic for learning model trees

5.3.4.3 An extended comparison

In this last experiments section, we want to investigate where Mauve is posi-
tioned with respect to other model tree builders. For each of the four options
discussed in section 5.3.2 we choose a representative system:

1. M5’

2. Mauve

3. Treed Regression (Alexander and Grimshaw 1996)

4. Retis (Karalic 1992)

In order to be able to compare the results (including induction times) in an
objective manner, we also implemented these last two systems in Weka. In
fact, we used Mauve’s implementation and only adapted its quality func-
tion (the quality functions of Treed Regression and Retis are shown in
Figures 5.3 and 5.2, respectively). This allows for a better comparison with
the other methods. Consequently, there is a difference between Treed Re-

gression and our implementation: in the latter, multiple linear models are
used in the leaves, while Treed Regression uses simple linear models). We
denote our Weka-implementation of Treed Regression and Retis by TR’

and Retis’ respectively. As in Mauve (and in M5’) the calculations of the
residual standard deviations are performed incrementally in TR’, in order to
evaluate the set of candidate splits in an efficient way. In the implementation
of Retis’, we used the incremental formulae proposed by Torgo (2002).

For completeness, we also included a standard regression tree inducer in our
comparison. For this purpose we used M5’ with the option to induce a normal
regression tree instead of a model tree. This method is called RegTree in
the comparison. Remark that RegTree is also an option 1 system, since it
employs the same heuristic function as M5’.

For these experiments, both the pruning factor tuning and the smoothing
operator were used. This gives a realistic experimental setup (optimized for
high accuracy, which is what the user would normally do). The experiments
were conducted on the same real world data sets of the previous section. In
the tables we highlight the best results for each data set, without adding any
statistical significance. Again, each experiment was performed 20 times and
the results are averaged.

Table 5.16 shows the RRMSE for the different systems. We see that, except
for the Wisconsin data set, RegTree always performs worst. Hence, the bene-
fit of using model trees instead of standard regression trees is clearly shown. For
the model tree systems, however, differences are smaller and, although Mauve

and Retis’ have the most winners, no clear conclusions can be drawn.
Tables 5.17 and 5.18 show the average number of leaves and parameters, re-

spectively. We see in Table 5.17 that RegTree and M5’ build overly large

115

Chapter 5 Constructing Predictions with Complex Aggregates

Table 5.16: Accuracy for the different systems.

RegTree M5’ Mauve TR’ Retis’

Data set RRMSE (StD) RRMSE (StD) RRMSE (StD) RRMSE (StD) RRMSE (StD)
Housing 52.22% (0.93) 44.02% (2.80) 44.15% (1.80) 38.97% (1.41) 40.10% (1.95)

Machines 71.80% (1.55) 33.65% (4.09) 30.92% (2.97) 40.15% (3.84) 36.92% (4.73)
Auto-Mpg 46.63% (0.75) 36.34% (0.51) 35.99% (0.74) 35.41% (0.99) 37.95% (1.73)
Auto-Price 56.90% (1.26) 40.80% (2.35) 49.11% (2.77) 46.84% (4.92) 53.05% (8.71)

Abalone 69.77% (0.32) 67.06% (0.50) 66.36% (0.57) 67.04% (0.21) 66.80% (0.62)
Servo 59.57% (1.18) 39.93% (1.53) 38.82% (2.37) 38.89% (2.43) 39.27% (2.13)

Wisconsin 85.69% (1.57) 83.42% (2.05) 89.05% (4.49) 87.51% (4.36) 90.29% (2.43)
Kin8NM 69.91% (0.31) 62.92% (0.44) 57.76% (0.57) 53.47% (0.33) 49.23% (0.55)

Puma8NH 58.63% (0.13) 57.29% (0.11) 56.82% (0.06) 56.88% (0.06) 56.93% (0.07)
Puma32H 28.48% (0.10) 27.09% (0.09) 28.19% (0.16) 24.88% (0.07) 22.09% (0.08)
Bank8FM 25.64% (0.09) 20.15% (0.07) 20.04% (0.07) 20.62% (0.15) 19.64% (0.06)

Bank32NH 75.10% (0.24) 67.93% (0.17) 67.49% (0.15) 67.47% (0.16) 67.41% (0.29)

trees, as discussed in previous sections. The other systems are better matched.
The differences in model size are reduced as we look at the number of parame-
ters (Table 5.18). Note that for the standard regression trees, if the number of
leaves is n, then the number of parameters is 2n− 1.

If we compare Tables 5.17 and 5.18 to Table 5.12, we see large discrepancies
in model size. The only difference in experimental setup is that smoothing
is used in this last experiment. This suggests that the smoothing operator
favours large trees. Remark that smoothing itself does not alter the tree size.
When tuning the pruning factor, however, smoothed trees are compared in each
fold of the tenfold cross validation. For each fold, the smoothed tree with the
lowest error (determined by an inner threefold cross validation) is chosen. Since
smoothing can be seen as somewhat reducing the effect of a split, larger trees
may be chosen.

Induction times for building a single tree are shown in Table 5.19. A first
observation is that the induction times of Retis’ may be too high for many
practical applications. For instance, for the Puma32H dataset, building one
tree took us over six hours (on an Intel Pentium4 system with a 2.0GHz CPU).
If one wants to tune the pruning factor using our method, in total 160 trees
are built (although most of them on smaller parts of the data). A second
observation is that, although we would expect RegTree to be the fastest (since
it does not build regression models), in three cases Mauve is faster. This fact,
together with the sizes of the pruned trees in Table 5.17 suggests that Mauve’s
tree building procedure in general stops earlier. A last observation concerns
the Bank8FM dataset, where TR’ has a shorter induction time than Mauve,
although its pruned tree is twice as large. Given the fact that TR’s tree building
procedure is more complex, we conclude that Mauve’s pruning procedure for
this dataset takes much more time. Because of these two last observations
we also measured the CPU time needed for the grow tree function for each
system, i.e. the time needed to grow the initial tree, before pruning takes place

116

5.3 Finding a suitable heuristic for learning model trees

Table 5.17: Number of leaves for the different systems.

RegTree M5’ Mauve TR’ Retis’

Leaves Leaves Leaves Leaves Leaves
Housing 36.29 18.77 7.39 10.44 6.18

Machines 15.08 5.02 2.66 2.85 3.49
Auto-Mpg 26.74 3.32 4.15 6.17 3.31
Auto-Price 10.59 7.50 2.34 2.95 2.99

Abalone 105.87 20.48 12.84 5.29 5.65
Servo 10.34 4.66 4.39 4.15 4.52

Wisconsin 16.33 11.06 2.88 2.60 1.48
Kin8NM 576.03 400.80 135.60 272.49 201.59

Puma8NH 205.95 38.83 16.12 19.09 14.16
Puma32H 759.25 147.83 18.81 38.83 36.67
Bank8FM 451.78 64.71 31.71 64.16 33.38

Bank32NH 267.33 3.82 3.66 3.69 4.21

Table 5.18: Number of parameters for the different systems.

RegTree M5’ Mauve TR’ Retis’

Pars Pars Pars Pars Pars
Housing 71.58 63.70 56.48 73.70 56.49

Machines 29.17 18.74 35.83 33.34 37.80
Auto-Mpg 52.49 20.87 36.95 46.94 36.13
Auto-Price 20.18 22.18 21.52 28.73 34.30

Abalone 210.74 83.38 80.08 34.72 41.24
Servo 19.68 20.53 30.85 28.40 29.90

Wisconsin 31.67 30.31 38.58 34.83 27.07
Kin8NM 1151.07 1184.45 843.68 1464.77 1523.98

Puma8NH 410.91 135.31 68.56 77.51 63.63
Puma32H 1517.51 531.18 153.31 313.21 380.91
Bank8FM 902.56 284.49 225.16 375.70 250.79

Bank32NH 533.67 50.54 61.80 60.09 73.63

117

Chapter 5 Constructing Predictions with Complex Aggregates

Table 5.19: Total induction time used for the different systems.

RegTree M5’ Mauve TR’ Retis’

Secs Secs Secs Secs Secs
Housing 0.91 1.05 0.86 1.39 19.47

Machines 0.35 0.37 0.38 0.92 36.40
Auto-Mpg 0.57 0.61 0.67 1.12 39.59
Auto-Price 0.25 0.31 0.29 0.35 4.87

Abalone 3.84 4.88 4.78 7.35 605.04
Servo 0.20 0.23 0.16 0.27 3.23

Wisconsin 0.35 0.40 0.42 0.70 34.53
Kin8NM 84.38 86.90 89.13 91.51 1976.87

Puma8NH 95.75 101.14 91.57 102.06 2641.36
Puma32H 88.63 130.16 139.43 224.21 24175.54
Bank8FM 83.61 84.34 107.62 81.34 2835.64

Bank32NH 89.52 147.55 114.69 177.73 23561.74

and before any regression model is built in the leaves. Table 5.20 shows the
results. There we see that Mauve always has the shortest CPU time (except
for one case). Since the time needed for pruning is relatively stable compared
to the time needed for growing the tree, it follows that the relative time spent
in the pruning phase is much smaller for Retis’ (3.4% on average) than for,
e.g., Mauve (92.4% on average).

This extensive comparison of different model tree systems is summarized
in Fig. 5.5. We left out the results for RegTree and take M5’ as a base
reference. The results of the other model tree inducers are plotted against this
base reference. We conclude that going from option 1 (represented by M5’)
to option 2 (represented by Mauve) leads to a large drop in the number of
leaves while costing nothing w.r.t. accuracy or induction time. Going to more
sophisticated systems in general does not add any noticeable improvements in
accuracy or model size, while giving up on efficiency.

5.4 Upgrading Mauve to relational learning

In the previous section we have proposed a propositional model tree learner,
called Mauve, that uses a heuristic that overcomes the problems of variance
based methods without giving up on efficiency. In this section we discuss how
Mauve is upgraded to a relational model tree learner. Again, we start from
the system Tilde, and make changes to the algorithm where needed. We call
the resulting algorithm ReMauve (Relational Mauve).

The system Tilde was introduced in Sect. 4.2 and its procedure to grow a
tree is given in Table 4.1. Remember that Tilde learns both classification and

118

5.4 Upgrading Mauve to relational learning

M5’ Mauve TR’ Retis’
0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4 RRMSE

(a)

M5’ Mauve TR’ Retis’
0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4 leaves
pars

(b)

M5’ Mauve TR’ Retis’
5

1

2

5

10

2

5

102

2

5

103 growing
total

(c)

Figure 5.5: Summary of the comparison of different model tree inducers. (a)
RRMSE (b) Model Size (c) Induction times (logarithmic scale).

119

Chapter 5 Constructing Predictions with Complex Aggregates

Table 5.20: Induction time for growing the tree for the different systems.

RegTree M5’ Mauve TR’ Retis’

Secs Secs Secs Secs Secs
Housing 0.10 0.10 0.06 0.53 18.56

Machines 0.09 0.09 0.05 0.53 36.01
Auto-Mpg 0.10 0.10 0.07 0.66 39.03
Auto-Price 0.05 0.05 0.03 0.15 4.67

Abalone 0.70 0.72 0.69 3.75 600.42
Servo 0.03 0.03 0.02 0.12 3.05

Wisconsin 0.08 0.08 0.04 0.36 32.07
Kin8NM 1.53 1.54 1.47 7.08 1866.99

Puma8NH 1.69 1.69 1.49 7.78 2486.98
Puma32H 6.61 6.63 6.00 80.09 24021.03
Bank8FM 1.51 1.53 1.83 6.80 2742.07

Bank32NH 8.24 8.26 5.50 71.60 23418.22

regression trees. The regression tree subsystem is usually denoted by Tilde-

RT.

We briefly repeat the main steps in Tilde’s procedure to grow a tree. It takes
as input the training examples E and a query Q that corresponds to the empty
query. In the recursive calls of the algorithm, Q will represent the conjunction
of all succeeding tests from the root of the tree to the node being split. This
query was referred to as the current query in Chapt. 4. The procedure to
grow a node T is as follows. First, a refinement operator generates the set
of candidate splits. This set is determined by the language bias given by the
user, and by the variables occurring in the current query at T . The refinement
operator typically operates under θ-subsumption (Plotkin 1969) and generates
candidates by extending the current query with a number of new literals. Next,
the optimal split procedure executes all candidates on the set of examples
E, estimating the quality of each candidate, and returns the best candidate
Qb. The candidate Qb is chosen to split the examples. The conjunction put in
the node T consists of Qb − Q, i.e., the literals that have been added to Q in
order to produce Qb. In the left branch, Qb will be further refined, while in the
right branch Q is to be refined. When the stop criterion holds (typically, this
is when a predefined minimum number of examples is reached), a leaf is built.
The predict procedure returns the mean target value of the examples E.

In Tilde-RT the quality of a candidate is calculated using a simple variance
based heuristic function. More precisely, the sum of squared errors in both child
nodes is minimized, and an F-test is used to decide whether an improvement
is obtained w.r.t. the parent node.

In the following sections, we discuss several aspects of the algorithm that
were changed in order to upgrade Tilde to a model tree algorithm.

120

5.4 Upgrading Mauve to relational learning

5.4.1 Adapting Tilde-RT’s heuristic function.

We changed Tilde-RT’s heuristic function in order to use residual standard
deviation (RSD) instead of sum of squared errors. For nominal splits the normal
standard deviation is used. In other words, we have implemented the same
heuristic function as Mauve’s.

For numeric splits, an important issue to deal with concerns the multi-
valuedness of the numeric split attribute to be introduced in the regression
functions for the RSD calculations. The formula for residual standard devia-
tion (residual w.r.t. a simple linear regression line) is as follows:

RSD(Y,X) =

√

∑

i(yi − (αxi + β))2

n− 2
,

and can be computed entirely from the statistics
∑

i(1, xi, x
2
i , yi, y

2
i , xiyi), where

Y is the predicted attribute and X is the predictor. If X is non-determinate,
different values can be filled in, each one resulting in an other RSD value.

In Chapt. 3, we have seen that, in general, two approaches exist to deal
with multi-valuedness. ILP systems usually test for the existence of a specific
element, thus, a split condition account(PersId,AccId, Type,Bal), Bal > 1000
corresponds to testing the existence of an account with balance larger than
1000. Other approaches (Koller 1999; Neville et al. 2003; Krogel and Wrobel
2003) use aggregate functions (such as max, min, avg, sum,...) to summarize
the set of values. The following lemma shows that ILP tests are semantically
equivalent to an aggregate function (Knobbe and Ho 2005):

Lemma 5.1 Let B be a bag of real numbers, and t some real value, then
∃v ∈ B : v ≥ t iff max(B) ≥ t, and
∃v ∈ B : v ≤ t iff min(B) ≤ t.

Using this lemma, every numeric attribute results for each example in one deter-
ministic value to feed to the RSD formula. The previous non-determinate nu-
meric attribute would become max(Bal, account(PersId,AccId, Tp,Bal),M).

5.4.2 Adapting Tilde-RT’s predictive function.

In Mauve the leaves contain a multiple linear regression function using all
numeric attributes as predictors. Adopting this strategy in ReMauve is not
feasible: in relational learning the number of numeric attributes becomes very
high, especially when complex aggregate conditions are taken into account.
Therefore, we include a numeric attribute in the predictive model of a leaf only
if it was chosen at a node on the path4 from the root to the leaf. The underlying
idea is that an attribute would not have been chosen to split the dataset if it
did not result in a linear relation with the target in the child nodes.

4Note that we use the numeric attributes on the complete path from the root to the leaf,
not only those from the current query which correspond only to the succeeding tests.

121

Chapter 5 Constructing Predictions with Complex Aggregates

5.4.3 Dealing with global effects.

Consider an attribute that has a global linear effect on the target. Sooner or
later in the tree building process this attribute will give rise to a best split, with
the same linear effect in both child nodes and will thus generate a superfluous
split in the model tree. While the split is redundant, we do want to take into
account this attribute in the predictive models at the leaves. Therefore, when
the best test for a node N is determined and is found to be a numeric split,
the RSD is also calculated for all examples at node N . If this RSD is equal to
the heuristic value of the split, then we know that the linear effect between the
split attribute and the target holds in the complete set of examples at N , thus
it should be introduced in the predictive models in the leaves under N without
splitting the data at N . To deal with such global linear effects, we introduce
unary regression nodes that do not split the data, but only serve to introduce an
extra predictor in the linear regression function. The regression nodes contain
numeric attributes (without the “>” or “<” equation) and pass all examples
down to their unique child node. As for split nodes, variables occurring in the
attribute of a regression node can be used further down the tree.

In relational learning, especially when aggregates are used, correlation be-
tween attributes often comes into play, either true or apparent (Jensen et al.
2003). For example, in the task of predicting a person’s income, the income
may increase with the number of children. However, the number of children
is correlated with the number of daughters or with the sum of the ages of the
children. In our system, if the number of children is an attribute occurring
in a regression node, the probability of having an other regression node with
the number of daughters is high. To avoid this, the linear effect of numeric
attributes occurring in the tree needs to be accounted for. Therefore, after
introducing a regression node or a numeric split node, we remove the linear
effect of the involved attribute A from the target, i.e., we pass on the residuals
yi − ŷi with ŷi = α ∗ A + β to the child node(s). In fact, the linear effect
should also be removed from all other numeric attributes that can still be used
in the model. Given the large number of such attributes, this is not feasible,
and instead, when building a regression node N we check whether the involved
numeric attribute A has a significant correlation with an attribute in a split
or regression node on the path from the root to N . If this is the case a leaf is
built.

By introducing regression nodes, the analogy with Mr-Smoti increases. A
comparison between the two systems is given later in this section.

5.4.4 Stop criterion.

We implemented several stop criteria. The first one concerns the minimal
number of examples a leaf has to cover. Building a linear model in k attributes
in the leaves requires at least k + 1 examples.

122

5.4 Upgrading Mauve to relational learning

Therefore, after refining a node T , we check whether each child node of T
contains at least m+1 examples, where m is the number of numeric attributes
occurring on the path from the root to T . If this is not the case, T is made a
leaf. The second stop criterion calculates the SD of the target values, before
they are updated to reflect the linear effect of the best test. If this falls below
a certain percentage (default 5%) of the original SD at the root node, a leaf is
constructed.

As a last stop criterion, if the best test turns out to be nominal, its SD value
is compared to the SD value of the parent node. If they are the same, a leaf
node is built. As stated before, for numeric tests, a regression node is built in
that case.

The pseudo code of the most important procedures of the algorithm is pre-
sented in Table 5.21. Pruning and smoothing are not supported in the current
version of ReMauve.

5.4.5 Undefined attributes.

An issue that has not been mentioned in the description of the algorithm is
what happens if an attribute is undefined for an example. This problem and
several possible solutions for it were presented in Sect. 4.5. We argued that for
our system the best option was to fail whenever aggregating over empty sets. In
ReMauve the same approach is taken, in the sense that examples for which a
split condition is undefined go to the right (failing) branch of the tree. However,
this is not sufficient: the heuristic function needs to have a numeric value for
each example in the node to be split (also for those going to the right branch)
and the linear equations in the leaves need to be able to provide a prediction for
each example. Therefore, whenever an explicit value for an undefined attribute
is needed (i.e., to calculate the heuristics or to make predictions in the leaves),
we make use of a default value. There are several possibilities for choosing a
default value. We decided to use a value that reduces as much as possible the
influence of examples for which the attribute is undefined. This corresponds to
option 2(a) in Sect. 4.5. The exact values are:

• max(∅) = avg(max(S1),max(S2), ...,max(Sn))

• min(∅) = avg(min(S1),min(S2), ...,min(Sn))

• avg(∅) = avg(avg(S1), avg(S2), ..., avg(Sn))

• sum(∅) = avg(sum(S1), sum(S2), ..., sum(Sn))

• mode(∅) = mode(mode(S1),mode(S2), ...,mode(Sn))

where Si is the set of values observed for the attribute for the i-th example and
n is the number of training examples at the node under consideration for which

123

Chapter 5 Constructing Predictions with Complex Aggregates

Table 5.21: ReMauve algorithm for first order logical model tree induction.

procedure GROW TREE (E: examples, T : targets, Q: query, P : path):
candidates := ρ(Q)
Qb := OPTIMAL REFINEMENT(candidates, E, T)
conj := Qb −Q
Pnew := P + conj
if STOP CRIT (conj, Pnew, E)
then

K := PREDICT(E,P)
return leaf(K)

else
if SPLIT COND (conj)
then

El := {e ∈ E|Qb succeeds in e ∧Background}
Er := {e ∈ E|Qb fails in e ∧Background}
Tl :=REMOVE LINEAR EFFECT (El, T, conj)
Tr :=REMOVE LINEAR EFFECT (Er, T, conj)
left := GROW TREE (El, Tl, Qb, Pnew)
right := GROW TREE (Er, Tr, Q, Pnew)
return split node(conj, left, right)

else
Tch :=REMOVE LINEAR EFFECT (E, T, conj)
child := GROW TREE (E, Tch, Qb, Pnew)
return regression node(conj, child)

procedure OPTIMAL REFINEMENT (Q: queries, E: examples, T : targets):
for all Qi ∈ Qs

EXECUTE(Qi, E)
if (NOMINAL (Q))

then Heur(Qi) := |El|
|E| SD(El) + |Er|

|E| SD(Er)

else Heur(Qi) := |El|
|E| RSD(El, Q) + |Er|

|E| RSD(Er, Q)

Qb := arg minQi
Heur(Qi)

if (NOMINAL (Qb))
then return Qb

else
Heurp(Qb) := RSD(E,Qb)
if (Heurp(Qb) ≤ Heur(Qb))
then return EXTRACT NUMERIC ATTR(Qb)
else return Qb

124

5.4 Upgrading Mauve to relational learning

the attribute is defined. Note that this may not be the best solution. An other
possibility would be to use the normal standard deviation for numeric splits
where the split attribute is undefined for some examples.

5.4.6 Comparison with Mr-Smoti.

By introducing regression nodes into our system, the resemblance with Mr-

Smoti increases. In the remainder of this section, we discuss the most impor-
tant differences between both systems.

Complexity of finding the best split node. In ReMauve the evaluation of
a numeric split requires the calculation of two simple linear regression func-
tions: one for each child node. In Mr-Smoti a similar, but more complex
heuristic function is used: in each child node simple linear regression models
are constructed, each with a different numeric attribute used as the predictive
attribute. The best regression is chosen independently for the two children
and the heuristic value associated with the split under consideration is the
weighted average of the RSD of the best regression lines of left and right child.
Finding the best numeric split amongst all predictors therefore has complexity
O(m) for ReMauve and O(m2) for Mr-Smoti, with m the number of numeric
predictors.

Complexity of introducing regression nodes. In our system, introducing a
regression node requires almost no computation: after the best split condition
is obtained and is found to be numeric, the global linear effect of the attribute
in the split is tested. This requires only one extra RSD to be computed. In Mr-

Smoti the best regression node is searched for independently of the best split
node and requires a lookahead step, in the sense that the best split is searched
after the new attribute is included in the multiple model. This renders the whole
node selection procedure for Mr-Smoti cubic in the number of predictors.

Removing the linear effect of attributes. In Mr-Smoti regression nodes
were introduced in order to incrementally build the multiple regression models
in the leaves of the model tree. To achieve that, next to updating the target
values, the linear effect of an introduced numeric attribute also has to be re-
moved from all other numeric predictors that may be used later in the tree. In
ReMauve it is not possible to update all numeric attributes in the dataset,
because these attributes are generated on-the-fly at each node. It would not
be feasible to do this updating during refinement generation (requiring another
RSD calculation for each refinement and each numeric attribute on the path
from the root to the node) given the huge search spaces that may be dealt with
by introducing complex aggregates. Therefore, in ReMauve, the final multiple
regression model in the leaves is built from scratch.

125

Chapter 5 Constructing Predictions with Complex Aggregates

Overall complexity. The observations above lead to the following overall com-
plexity results. For Mr-Smoti, the inner node refinement procedure has com-
plexity O(m3), with m the number of numeric attributes. In a leaf, however, the
predictive regression model is obtained by composing the models on the path
from the root to the leaf, and thus, can be performed in constant time. A model
tree with k inner nodes contains at most k+1 leaves, thus the overall complexity
for building a model tree with Mr-Smoti is k ×O(m3) + (k + 1)×O(1).

For ReMauve the node refinement process has complexity O(m). Con-
structing a leaf requires O(p3), where p is the number of numeric attributes
on the path from the root to the leaf. This results in an overall complexity of
k×O(m)+(k +1)×O(p3). Given the fact that p << m, especially when using
complex aggregates, the ReMauve system is more efficient for the applications
we target.

Representational formalism. A last important difference between both sys-
tems concerns their representational formalism. Whereas ReMauve is an ILP
system, Mr-Smoti operates on a relational database, using selection graphs
(Knobbe et al. 1999) to represent nodes of the model tree.

5.5 Experiments

In this experiments section, we address two questions:

1. How do model trees that predict functions with complex aggregates per-
form compared to model trees that do not predict aggregates?

2. How does ReMauve compare to other systems as Tilde-RT or Mr-

Smoti?

The datasets used in our experiments are described in Sect. 5.5.1. The exper-
imental setup is discussed in Sect. 5.5.2 and the obtained results are reported
in Sect. 5.5.3.

5.5.1 Datasets

We have performed experiments on two biological datasets: Mutagenesis (Srini-
vasan et al. 1996) and MassSpectrogram5. Given the scarceness of publicly
available relational regression datasets with numeric attributes, we also con-
structed two synthetic datasets.

5SDBS, National Institute of Advanced Industrial Science and Technology, Japan,
http://www.aist.go.jp

126

5.5 Experiments

5.5.1.1 Mutagenesis

The Mutagenesis dataset was already discussed in Ex. 2.3 and in Sect. 4.6.1.1.
Recall that the task is to predict the mutagenicity of nitro-aromatic compounds.
In these experiments we use the numeric target value, which corresponds to the
logarithm of the mutagenicity level of the molecules. The dataset contains 230
compounds, of which 188 are known to be well predicted by linear regression
methods. In our experiments we use both the regression friendly subset and
the full dataset. Several descriptions of the compounds have been proposed
(Srinivasan et al. 1995). In these experiments, we use the backgrounds B2
(atoms and bonds, including partial charge of atoms) and B3 (B2 extended
with the εLumo (energy of the compounds lowest unoccupied molecular orbital)
and LogP (logarithm of the compound’s octanol/water partition coefficient)
properties).

5.5.1.2 MassSpectrogram

The task in the MassSpectrogram dataset is to predict the weight of a molecule
based on its mass spectrogram. In mass spectroscopy, molecules of a compound
are bombarded with electrons. Some break up to give a variety of charged
fragments. A mass spectrogram is a graph of the mass-to-charge ratio of the
different fragments versus the frequency. The dataset contains 873 molecules.

5.5.1.3 Synthetic datasets

For the synthetic datasets the true target function is a model tree that con-
tains aggregates. They both contain 1000 examples. The first dataset (Artifi-
cial1) contains two predictive attributes: x(X) (determinate) and y(Y) (non-
determinate). Each example contains 8 y literals, for which the value can be
aggregated. All numeric values are random values, uniformly distributed be-
tween 0 and 10. The target function for this dataset is shown in Fig. 5.6(a). It
requires two regression nodes in ReMauve.

The second dataset (Artificial2) includes three predictive attributes: x(X),
y(C, Y), and z(Z), of which y is non-determinate and has 15 values for each
example. Again the numeric values for x, y, and z are uniformly distributed
between 0 and 10. The C variable in the y literal is a boolean value. The target
function is shown in Fig. 5.6(b). This dataset also requires two regression nodes,
one of which involves a complex aggregate using the boolean condition. For
the two datasets, we added Gaussian distributed noise to the target value.

5.5.2 Experimental setup

As explained before, ReMauve is able to learn complex aggregate conditions.
In order to address the first question defined above and to allow for a comparison
with Mr-Smoti, we performed the experiments with and without the ability

127

Chapter 5 Constructing Predictions with Complex Aggregates

x(V), V < 5

max{V |y(V)} < 9

4x(V) + 6avg{V |y(V)} 3max{V |y(V)}+ 1

avg{V |y(V)} < 4

3x(V) + 4 x(V)− 2max{V |y(V)}+ 3avg{V |y(V)}

(a)

x(V), V < 6

min{V |y(, V)} < 1

2x(V) + 3max{V |y(true, V)}+ 3 2x(V) + 5min{V |y(, V)}

−2x(V) + z(V)

(b)

Figure 5.6: Target function for two synthetic datasets. (a) The Artificial1
dataset. (b) The Artificial2 dataset.

to learn aggregates. ReMauve is compared to Tilde-RT and Mr-Smoti

w.r.t. predictive performance and model complexity. Predictive performance is
obtained by taking the average MSE (mean squared error) of five tenfold cross
validations. Model size is measured as the number of leaves and the number
of regression nodes (the latter only for ReMauve and Mr-Smoti). Induction
times are difficult to compare, since Tilde-RT and Remauve were run on a
different platform than Mr-Smoti.

5.5.3 Experimental results

The results are presented in Tables 5.22 and 5.23.

The first question is dealt with by comparing ReMauve’s predictive per-
formance when learning complex aggregates to when not learning them. For
MassSpectrogram and the artificial datasets, a clear predictive performance im-
provement is obtained when complex aggregates are considered. Moreover, the
improvement holds for both ReMauve and Tilde-RT. Part of the resulting
tree for MassSpectrogram is shown in Fig. 5.7. For Mutagenesis, the result is less
obvious. Both for ReMauve and Tilde-RT the error tends to increase when
learning aggregates. Whereas in the classification setting complex aggregates
turned out to be beneficial for this task, to our knowledge, complex aggre-
gates have not been used before to predict the numeric mutagenicity level of
molecules, thus we can not compare this result to other results in the literature.

The second question is answered by comparing ReMauve to Tilde-RT and
Mr-Smoti w.r.t. predictive performance and model complexity. When com-

128

5.6 Conclusion

max{Ratio|ms(Mol, Ratio, Freq)} < 199.0 ?
+yes: avg{Ratio|ms(Mol, Ratio, Freq), Ratio < 83.0} < 51.0 ?
| +yes: max{Ratio|ms(Mol, Ratio, Freq), F req < 2.3} < 119.0 ?
| | +yes: 0.84 ∗ max{Ratio|ms(Mol, Ratio, Freq)}+
| | 0.85 ∗ avg{Ratio|ms(Mol, Ratio, Freq), Ratio < 83.0}+
| | 0.06 ∗ max{Ratio|ms(Mol, Ratio, Freq), F req < 2.3} − 19.08

...

+no: avg{Freq|ms(Mol, Ratio, Freq)} < 8.0 ?
+yes: avg{Freq|ms(Mol, Ratio, Freq), Ratio < 60.0}
| +--: 0.95 ∗ max{Ratio|ms(Mol, Ratio, Freq)}+
| −13.30 ∗ avg{Freq|ms(Mol, Ratio, Freq)}+
| 5.50 ∗ avg{Freq|ms(Mol, Ratio, Freq), Ratio < 60.0}+ 97.91
...

Figure 5.7: Resulting tree for the MassSpectrogram dataset.

paring ReMauve to Tilde-RT, we see that in the aggregate settings (i.e., in
the context of many numeric attributes), an improvement in both predictive
accuracy and model complexity is obtained. Also, for the artificial datasets,
where the target concept involves linear regressions, a clear improvement is ob-
tained, both with and without aggregates. In the other settings, while generally
resulting in smaller models, the comparison in predictive performance is less
clear. When comparing ReMauve to Mr-Smoti, a first observation is that
ReMauve tends to build shorter trees. Only on the Artificial2 dataset is the
model built by Mr-Smoti simpler. Regarding predictive performance, we see
clear winners for ReMauve on the artificial datasets. On the MassSpectrogram
dataset, Mr-Smoti outperforms ReMauve. However, when learning complex
aggregates, ReMauve reduces Mr-Smoti’s MSE with a factor 3.6. On the
Mutagenesis datasets, the results are divided: two winners for each system.
(The high MSE of 32.68 for Mr-Smoti on the full dataset with background
B2 is due to two particular test examples. Removing them from the test sets
yields an average MSE of 4.79 (0.12).)

5.6 Conclusion

In the previous chapters, we have introduced the concept of complex aggregates.
We have constructed hypotheses of the form “if A then B” where A is a conjunc-
tion of conditions that may contain complex aggregates and B is the predicted
value. Some patterns, however, do not just predict a single value, but may
involve predictive functions that contain predictive attributes. Examples are
linear equations or model trees, which are regression trees that construct linear
equations in their leaves. When these patterns are extrapolated to a relational
setting, they are exposed to the same difficulty as explained in Chapt. 2: the
predictive attributes may be non-determinate due to one-to-many and many-
to-many relations and, thus, a technique is needed to summarize them.

In this chapter, we have developed a relational model tree learner that may

129

Chapter 5 Constructing Predictions with Complex Aggregates

Table 5.22: Comparing ReMauve’s predictive performance and tree size to
Tilde-RT and Mr-Smoti for the Mutagenesis dataset.

Mutagenesis
Regression friendly subset Full dataset
B2 B3 B3 B2 B3 B3

no agg. no agg. agg. no agg. no agg. agg.

Avg. MSE

ReMauve 1.98 (0.1) 1.45 (0.5) 1.43 (0.4) 4.01 (0.2) 3.50 (0.6) 3.70 (0.6)
Tilde-RT 1.96 (0.1) 1.57 (0.1) 1.85 (0.2) 3.67 (0.2) 3.44 (0.2) 3.94 (0.4)
Mr-Smoti 3.02 (0.1) 1.14 (0.2) - 32.68 (28.1) 3.32 (0.2) -

Regr. nodes

ReMauve 1 2 8 2 1 6
Mr-Smoti 8 5 - 8 15 -

Leaves

ReMauve 7 3 5 11 8 5
Tilde-RT 14 16 28 11 23 28
Mr-Smoti 10 7 - 9 15 -

involve complex aggregate conditions in the linear equations at their leaves of
the learned trees. Complex aggregates can be included in the model of a leaf if
they occur on the path from the root of the tree to the leaf.

The main problem is to find a suitable heuristic function for the model trees.
Next to taking into account linear models, an important requirement is effi-
ciency, given the large feature spaces at the nodes of the trees. First, we have
studied the behaviour of variance as a heuristic. While the inappropriateness
of variance for this task, in itself, was pointed out in earlier work (Karalic
1992; Malerba et al. 2004), no investigation was performed on exactly how this
influences the quality of the induced trees. Our results show that it mainly
influences the explanatory power of the tree, rather than its predictive power.
Since explanatory power is often mentioned as an important advantage of trees
over black-box models, it is worthwhile to try to improve it. Therefore, we have
presented a system, called Mauve, that does indeed induce model trees with
better explanatory power, in the sense that shorter trees are built. This ap-
proach has a complexity that is linear in the number of attributes, and as such
differs from the complexity of the most efficient approaches only with a con-
stant factor. Currently existing alternative approaches towards building better
trees (such as Retis or Smoti) have a complexity that is at least quadratic.
Our experimental validation of Mauve confirms that the heuristic we propose
yields simpler trees with equal predictive accuracy in cases where there is a
piecewise linear relation between the target and the input variables. More-
over, the results suggest that this kind of behaviour often occurs in real world
data and that using more sophisticated approaches on average does not yield
improvements in accuracy or model size.

130

5.6 Conclusion

Table 5.23: Comparing ReMauve’s predictive performance and tree size to
Tilde-RT and Mr-Smoti for the MassSpectrogram and artificial datasets.

MassSpectrogram Artificial1 Artificial2
no agg. agg. no agg. agg. no agg. agg.

Avg. MSE

ReMauve 8144 (65) 1289 (101) 30.84 (0.2) 1.08 (0.0) 1.64 (0.1) 0.97 (0.0)
Tilde-RT 8132 (24) 2401 (146) 35.18 (0.3) 3.94 (0.1) 2.55 (0.0) 2.06 (0.1)
Mr-Smoti 4583 (221) - 60.58 (2.0) - 12.08 (0.7) -

Regr. nodes

ReMauve 1 9 1 2 2 3
Mr-Smoti 6 - 10 - 0 -

Leaves

ReMauve 3 10 5 4 3 3
Tilde-RT 3 222 30 58 44 64
Mr-Smoti 8 - 14 - 3 -

Afterwards, we have upgraded Mauve to a relational model tree learner,
correspondingly called ReMauve. The system was implemented in Tilde

and, hence, making use of the results of Chapt. 4, it is able to learn complex
aggregate conditions in the internal nodes of the tree. The linear equations at
the leaves contain complex aggregates if these aggregates have shown a linear
relation with the target during the tree building process.

Experimental results demonstrate that, if many numeric attributes occur in
the dataset (e.g., in the context of learning aggregates), our system outperforms
normal regression tree learners. When comparing to a model tree learner that
uses a more complex heuristic function, the comparison in predictive perfor-
mance is less obvious, while our system in general produces shorter trees.

131

Chapter 6

Applications

6.1 Introduction

In this chapter we present two applications where complex aggregate conditions
are used in real life problems.

In the first application, we investigate an agricultural dataset about geneti-
cally modified crops. The possibility of genetically modified crops mixing with
conventional or organic crops (e.g., by pollen being blown by wind) has be-
come a delicate issue and the detection of modified crops in conventional fields
presents a challenge. In Sect 6.2, we use Tilde with complex aggregates to in-
vestigate the influence of surrounding fields on the level of contamination with
genetically modified variants in a particular target field.

The second application was introduced at the Inductive Logic Programming
2005 Challenge. The challenge consists of analysing a real world biological
dataset containing the genes in the genome of baker’s or brewer’s yeast. The
task is to predict the function of the genes. The complex aggregates used in
this study are learned with a frequent pattern miner, which illustrates an other
application of the aggregates. This application is presented in Sect. 6.3.

Section 6.4 concludes and gives a brief summary of the obtained results.

6.2 An agricultural application

In this first application we predict adventitious presence of genetically modi-
fied varieties in conventional oilseed rape crops. The problem is described in
Sect. 6.2.1. The dataset and corresponding ILP representation are described in
Sect. 6.2.2 and 6.2.3, respectively. Experiments are discussed in Sect. 6.2.4 and
Sect. 6.2.5 concludes.

6.2.1 Problem description

Genetically modified (GM) crops were first planted world-wide to a signifi-
cant extent in 1996 and since then the planted area has increased rapidly.
The biggest share of area planted with GM crops (99%) is in USA, Canada,
Argentina and China. The main purpose of engineering genetically modified

133

Chapter 6 Applications

crops is to create crops that are able to survive being sprayed with harmful
chemicals like pesticides and herbicides.

However, for as long as GM crops have been planted, there has been contro-
versy about it. Concerns about GM food include the following:

• commercial considerations: unintended presence of GM variants in con-
ventional crop production affecting its competitiveness on the market
place,

• ecological influences: creation of new weeds, pests may develop resistance
to GM crops that have been designed to kill them,. . .

• health hazard: a lot of debate is going on about the possible unwanted
influence of consuming GM crops on the human health, which has not
been proven yet.

The main concern today is the co-existence issue, i.e., the possibility of GM
crops mixing with conventional or organic crops. GM crops can contaminate
other crops simply by pollen being blown by wind from one field to another.
EU regulations allow 0.9% of adventitious presence of GM material in conven-
tional yield and the co-existence is concerned with achieving the prescribed
level of adventitious presence in regions with both conventional and organic
crops. Therefore, there is a need to find appropriate cropping practices (sowing
date, soil tillage,. . .) to minimize adventitious presence of GM crops.

To estimate levels of adventitious presence of GM varieties in non-GM vari-
eties and to compare the effects of changing farming practices, computer models
have been developed, such as GeneSys (Colbach et al. 2001). GeneSys’s pur-
pose is to rank cropping systems according to their probability of gene flow be-
tween genetically modified and non-genetically modified organisms, in this case
oilseed rape (Brassica napus), which exists in a genetically modified herbicide-
tolerant variant and a non-GM, conventional, variant. GeneSys predicts the
level of harvest contamination of conventional oilseed rape crops by genetically
modified rape seeds.

In this section we analyze a dataset produced by GeneSys. The dataset
contains simulations of field patterns with information on the cropping prac-
tices for each field and for several years. The task considered is to predict the
level of harvest contamination for one specific target field. The dataset was
previously propositionalized and analyzed using propositional learning tech-
niques (Ivanovska et al. 2006). However, intuitively, one would expect that
the contamination of the target field depends a lot on the cropping techniques
and crops grown on the surrounding fields (e.g., the level of contamination of a
field may be influenced by the crop grown at or the level of contamination of its
neighbouring fields). So it seems worthwhile to exploit neighbourhood relations
in the predictive model and create a relational representation of the problem.
Also, the probability of contamination might increase if the field plan contains

134

6.2 An agricultural application

a lot of contaminated fields in the neighbourhood of the target field. Therefore
it would be useful to investigate properties at the regional level, which can be
obtained by using complex aggregates. For this study we use the first order
decision tree learner Tilde, extended with the capability of learning complex
aggregates. More precisely, Tilde-µ was used.

6.2.2 Dataset

The dataset used in our study is the output from GeneSys simulations (Col-
bach et al. 2001). GeneSys was developed by INRA (French National Institute
for Agricultural Research) to rank cropping systems according to their proba-
bility of gene flow from herbicide-tolerant oilseed rape to conventional oilseed
rape both in time, via seeds, and in space, via pollen and seeds. GeneSys has
the following input variables (Fig. 6.1):

• The field plan of the region, comprising cultivated fields as well as un-
cultivated field- and road-margins consisting of spontaneous vegetation
(hence ”borders”). Borders consist of strips of spontaneous vegetation
where rape volunteers can appear, producing pollen and seeds that dis-
perse to fields and other borders;

• The crop rotation of each field;

• The cultivation techniques applied to each crop (summer tillage, tillage
for seed bed preparation, sowing date and density, herbicide applications,
cutting dates and seed loss at rape harvest), and

• The type of the simulated gene, as well as the genotype of the rape seed
varieties.

For the purpose of our research, a large-risk field plan is used with a small
and rectangular central field surrounded by large neighbour fields (see Fig. 6.2),
a combination which maximises pollen and seed input into the central field.
Each simulation starts with an empty soil seed bank and simulates a period of
25 years. For each year, the crops and the cultivation techniques are chosen
randomly, as well as the genetic variables. The only exception is the crop grown
during the 25th year in the central field which is always a non-GM oilseed rape.
The major output variables of GeneSys are, for each field and year, the number
of rape seed plants, the proportions of these plants with and without GM seeds,
the amount of seeds produced, and the seed bank containing the viable rape
seeds in soil. Of the 25 simulated years of each simulation, full details on
input and output variables were kept only for the last 4 years, resulting in a
total of 1899 attributes. This was done because of the intended propositional
analysis. In total 100,000 simulations were performed with GeneSys, thus the
dataset consists of 100,000 examples, each example described by 1899 variables
as mentioned above. In our study we are interested in the contamination with

135

Chapter 6 Applications

fieldplan

crop succession plants

GENESYS seeds produced

crop management seedbank

rape varieties

input output

(for each year and field)

Figure 6.1: GeneSys: input and output variables.

GM seeds of the central field of the field plan in the 25th year (this is denoted
as year 0).

6.2.3 The ILP representation

This analysis is intended to be a first step in a wider research for developing
predictive models on gene flow. In this initial study, a simplified representation
of the dataset is used. Next to the level of contamination, further information
for each simulation includes

• for each field the number of years since the last GM oilseed rape crop was
grown (denoted with yearsSinceGM/2),

• for each field and for each of the last four years (i.e., years 0 to 3)

– the crop grown (GM oilseed rape, non-GM oilseed rape, winter crops,
spring crops, autumn-sown set-aside, spring-sown set-aside, unsown
set-aside, permanent set-aside),

– the sowing date (measured in number of days since 1st January),

denoted with fieldDataYear/4.

As an example, the information for the first simulation is given in Table 6.1.
The background information further includes the following information for each
field in the field plan (note that a fixed field plan is used, thus this information
is valid for all simulations):

• the area of the field,

136

6.2 An agricultural application

1 2 3 4

5 6 7 8

9 10 11 12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

Figure 6.2: Large-risk field plan. The fields are numbered from 1 to 35. Field
14 is the central target field.

• whether the field is a neighbour of the central field,

• the neighbouring fields, including the neighbour type (common corner or
common edge),

• the length of the common edge between the field and its neighbours of
the corresponding type,

• the distance of the field to the central field (the distance is taken between
the midpoints of the fields).

The general background knowledge for the application is summarized in Ta-
ble 6.2.

6.2.4 Experiments

As mentioned before, we use the first order decision tree learner Tilde for
analysing the dataset. We have three different sets of (non-overlapping) fea-
tures:

• A first set of features are the central features: the information for the
central field. This does not include any of the general background predi-
cates in Table 6.2. It corresponds to a subset of the 1899 variables output
by GeneSys that relates to the central field.

• A second set relates to the fields in the surroundings of the central field.
These are the fields that are reachable from the central field using the

137

Chapter 6 Applications

Table 6.1: Representation of the first example in the GeneSys dataset.

contamination(4.815339e-03).
yearsSinceGM(1,7).
yearsSinceGM(2,2).
...
yearsSinceGM(35,7).
fieldDataYear(1, 3, autumn-sown-set-aside, 301).
fieldDataYear(2, 3, spring-sown set-aside, 97).
...
fieldDataYear(35, 3, winter-crops, 272).
fieldDataYear(1, 2, spring-crops, 127).
...
fieldDataYear(35, 2, spring-sown-set-aside, 56).
...
...
fieldDataYear(35, 0, unsown-set-aside, 213).

Table 6.2: General background predicates for the GeneSys dataset.

area(1, 3.00).
area(2, 3.00).
...
targetneighbour(8).
targetneighbour(12).
...
neighbour(1,2,edge).
neighbour(1,5,edge).
...
lengthOfCommonEdge(1,2,300.00).
lengthOfCommonEdge(1,5,100.00).
...
distance(1, 542.63).
distance(2, 480.51).
...

138

6.2 An agricultural application

neighbour, distance, or common edge relations (we will call these the
field-by-field features).

• A last set of features is constructed through the use of complex aggregates.
The aggregate literals that are used to start from are the following:

– count(,fieldDataYear(Field,Year,gm oilseed rape,SowDate),R)

– mode(Crop,fieldDataYear(Field,Year,Crop,SowDate),R)

– max/min/avg(SowDate,fieldDataYear(Field,Yr,Crop,SowDate),R)

– max/min/avg(Year,fieldDataYear(Field,Year,Crop,SowDate),R)

– max/min/avg(Dist,distance(Field,Dist),R)

While the first three aggregates may be used as simple aggregates condi-
tions, the last two aggregate conditions are only meaningful when condi-
tions are applied to the aggregate query. These conditions include state-
ments about the distance, area or contaminated fields. Thus, we could
obtain complex aggregates that, for example, calculate the smallest dis-
tance to a contaminated field, or that compute the last sowing date of a
contaminated field.

In our experiments, we consider increasingly richer language biases by first
running experiments on the central features alone, then the central features
complemented with the field-by-field features or the aggregate features, and
finally the three feature sets together.

The dataset is split in a training set (60,000 examples) and test set (40,000
examples). Given the size of the dataset we used a sampling strategy to build
the tree: at each node only 10,000 examples are used to search for the best
test1. Afterwards, the whole dataset is split according to this best test found.
The minimum number of examples a leaf has to cover was set to 2000 in order
to get manageable trees, and 20% of the examples is set aside as validation set
for pruning. For the settings with aggregates, the refinement operator based
on µ-subsumption is used (see Sect. 4.4.2).

For each of the experiments, we report the predictive performance (measured
as RRSE, the root of the relative mean squared error) on the test set, the tree
size (number of internal nodes), and the number of these nodes that contain a
test referring to the target, neighbour fields, and aggregates. The results are
given in Table 6.3.

A first observation when looking at Table 6.3 is that, in general, the predictive
models are not of good quality (the RRMSE is quite high in all settings). This
may be due to the strong language bias that is imposed by only including the
crop and sowing dates for each field and year.

1Note that this sampling strategy differs from the sampling strategy used in the random
forest algorithm: in the latter case queries are sampled, whereas here we sample examples.

139

Chapter 6 Applications

Table 6.3: Experimental results on the GeneSys dataset.

central centr.+f.-by-f. centr.+agg. centr.+f.-by-f.+agg.

RRMSE 72.52% 72.36% 72.51% 72.36%
nb. nodes 20 21 22 21
centr. nodes 20 16 16 15
f.-by-f. nodes 0 5 0 5
agg. nodes 0 0 6 1

targetfield(B), fieldDataYear(B, 0, C, D), D < 252 ?

+yes: yearsSinceGM(B, E), E > 1 ? [0.192] (25907 ex.)

| +yes: . . . [0.131] (22504 ex.)

| +no: [0.598] (3403ex.)

+no: targetfield(U), yearsSinceGM(U, V), V > 2 ? [0.023] (34093 ex.)

| +yes: . . . [0.011] (25347 ex.)

| +no: . . . [0.059] (8746 ex.)

Figure 6.3: Part of the tree with target information.

When we compare the predictive error between the settings, we hardly see
any difference. Moreover, all resulting trees have the same structure. The top
tests, together with their average contamination level, are shown in Fig. 6.3.
The test in the root checks whether the sowing date in the central field in the
current year was before day 252. If yes, we check whether the last GM oilseed
rape in the central field was grown more than one year ago. The tree contains
20 internal nodes and is of depth 6. If relational information is included, this
only affects the tree from depth 4 on. Examples of relational field-by-field tests
include

distance(F,D), D < 258, fieldDataY ear(F, 1, gm oilseed rape, SD), and
targetNeighbour(F), fieldDataY ear(F, 2, C, SD), SD < 233.

The first example checks whether there is a field that had GM oilseed rape
planted one year ago and is situated within distance 258 of the central field.
Examples of complex aggregate conditions include

avg(SD, (fieldDataY ear(F, 0, C, SD), targetNeighbour(F)), Avg),
Avg < 213, and

count(, (fieldDataY ear(F, Y, gm oilseed rape, SD), distance(F,D),
D < 301), Cnt), Cnt > 4.

The first aggregate condition checks whether the average sowing date of the
immediate neighbours of the central field in the current year is before day 213.
The second aggregate counts the number of fieldDataYear predicates with a

140

6.2 An agricultural application

field within a distance of 301 meters from the central field that had GM oilseed
rape in the last 4 years. This last aggregate is the only one that remains when
adding relational information both on a field-by-field basis and with aggregates.

In order to have a better view on the importance of the relational data,
we ran another experiment in which we discard information about the central
field and used only relational information. The question was thus: can we
obtain the same level of performance in predicting the contamination of the
target field when only considering information about the surrounding fields
(using both field-by-field and aggregated features)? The tree we obtained in
this experiment has a RRMSE of 85.35%, and has 21 internal nodes, of which
4 contain complex aggregate conditions. Interestingly, the top node contains
an aggregate condition:

max(SD, (fieldDataY ear(F, 0, C, SD), distance(F,D), D < 200),Max),
Avg < 252.

This condition tests whether the latest sowing date on the current year for
the fields within distance 200 of the central field was before day 252. Next
to the central field, only 2 fields are situated within this distance. Note that
this test is very similar to the test in the top node of the trees that do include
target information. When learning a tree using only aggregation features, a
poor RRMSE value of 93.59% is obtained.

To summarize the experiments, we have learned that, for this particular
dataset and with this particular language bias, the best prediction models are
obtained when information about the target field is included in the language
bias. Furthermore, the models with both central field related and relational
features do not provide a noticeable improvement over the model with only
central field features. However, it has been shown that the surrounding fields
do indeed contain some information about the contamination of the central
field.

6.2.5 Summary

In this work we used the first order decision tree learning system Tilde to
predict adventitious presence of genetically modified varieties in conventional
oilseed rape crops. This kind of study is important, since the possibility of
genetically modified crops mixing with conventional crops is a concern today.

In our analysis, we used a dataset with 100,000 simulations of the cultiva-
tion practices on a fixed field pattern. The main question to be answered was
whether surrounding fields have any influence on the contamination with ge-
netically modified varieties in conventional oilseed rape crops. Intuitively, the
answer would be positive given that crops can be contaminated by other crops
simply by pollen being blown by wind from one field to another.

We have constructed three sets of features: central features only involving
the field for which contamination needs to be predicted, and relational features

141

Chapter 6 Applications

1 METABOLISM

1/1 amino acid metabolism

1/2 nitrogen and sulfur metabolism

...

2 ENERGY

2/1 glycolysis and gluconeogenesis

...

Figure 6.4: A part of the hierarchical FunCat classification scheme.

regarding the surrounding fields, either on a field-by-field basis or aggregated
by using complex aggregate conditions. Experiments showed that, although
the surrounding fields do have an influence on the contamination of the target
field, this does not yield better predictive performances compared to only using
features concerning the central field. However, this study was only an initial
step in this analysis. Further work includes to consider other language biases
and to move from the fixed field plan to variable plans.

6.3 A biological application

In this section we present a biological application, introduced at the Inductive
Logic Programming 2005 Challenge, where the task is to build accurate models
predicting gene function in the genome of the yeast Saccharomyces cerevisiae,
based on relational homology and secondary structure data. The prediction is
non-trivial as each gene is labeled with a set of functional classes instead of just
one class and the classes are organized in a class hierarchy.

The problem is further described in Sect. 6.3.1, where we also discuss the
method that will be used to analyse the dataset. This method consists of
two steps: first, a relational frequent pattern mining system is used to obtain
the most frequently occurring patterns (including complex aggregates) in the
data (Sect. 6.3.2), and afterwards, a propositional predictive clustering tree
(Sect. 6.3.3) is applied that uses the constructed features. Experimental results
are presented in Sect. 6.3.4, and conclusions are formulated in Sect. 6.3.5.

6.3.1 Problem description

The goal of this application is to build accurate models predicting gene function
in the genome of the yeast Saccharomyces cerevisiae (baker’s or brewer’s yeast).
The data set provided for the challenge records information about 3,894 genes,
and each gene is annotated with a set of functional classes assigned according to
the FunCat classification scheme of the Munich Information Center for Protein
Sequences (MIPS). FunCat is a hierarchical classification scheme; a small part
is shown in Figure 6.4.

142

6.3 A biological application

The classification setting of the data (each instance is labeled with one or
more classes, each class selected from a class hierarchy) is known as hierarchical
multilabel classification (HMC) (Blockeel et al. 2002). A simple approach to
solve a HMC problem is to ignore the hierarchy and to learn separate models for
each individual class (indicating whether a single instance belongs to the class
or not). In this work, we instead follow the approach proposed by Struyf et al.
(2005), which is to use so-called predictive clustering trees (PCTs) (Blockeel
et al. 1998) in combination with a distance metric designed for HMC. This has
two main advantages:

• a single PCT can be used to predict most of the classes, which reduces
the total size of the predictive model, and

• the hierarchical structure defined over the classes is taken into account.

This last property is important, because the hierarchy conveys relevant infor-
mation about the similarity and differences between classes and also expresses
the constraint that an instance belonging to a class also belongs to the parent
class. Predictive clustering trees have been implemented in Tilde (Blockeel
et al. 1998), but application of it to HMC has been worked out in Clus2. This
is a propositional version of Tilde, designed for building predictive clustering
trees, and where a distance metric that is specific to HMC has been imple-
mented and successfully applied in the context of functional genomics (Struyf
et al. 2005).

For our specific dataset, the input data that is available for each gene consists
of two parts: homology data and predicted secondary structure data. The
homology data is relational, and may be interesting to learn complex aggregates
on, and the secondary structure data stores sequences. Since we are dealing
with relational data, there are two approaches to analyse the dataset:

• we can implement the distance metric designed for HMC into Tilde, or

• we can use the Clus system and transform the relational data into the
appropriate input format in a propositionalization step.

In this study, we have chosen for the second approach, which consists of two
steps. In the first step, the structured input data (relational data and se-
quences) is propositionalized by constructing features with the relational fre-
quent pattern mining system Warmr (Dehaspe and Toivonen 1999). The con-
structed features are relational features including complex aggregates for the
homology data, and subsequences for the secondary structure data. This ap-
proach illustrates the use of complex aggregates in another context than deci-
sion learning, or even predictive learning. In the second step, the propositional
data is used to build the required models.

2http://www.cs.kuleuven.be/∼dtai/clus/

143

Chapter 6 Applications

6.3.2 Propositionalization

The process of converting structured input data into a format suitable for
propositional learning algorithms (a table where each row describes an instance
with a fixed number of features or attributes) is known as propositionalization,
this was introduced in Sect. 2.3.2. Since constructing the propositional table
through joins often results in an overly large table, we decided to use an other
approach. We chose to use the relational frequent pattern mining algorithm
Warmr (Dehaspe and Toivonen 1999) to propositionalize the data. This al-
gorithm computes the set F of all queries expressed in a given hypothesis lan-
guage that succeed for at least a proportion minfreq of the available instances
(throughout this analysis, minfreq = 5%). The Warmr system is included
in the ACE-ilProlog data mining system (ACE 2004; Blockeel et al. 2006),
which also contains Tilde. It makes use of the same refinement operator as
Tilde, and, hence, the extensions of the refinement operator (based on α- or
µ-subsumption) that produce complex aggregate conditions are also available
in Warmr.

Each query in the set F is used as a binary feature in the propositional
representation, which takes the value true (false) for the instances for which
the query succeeds (fails). In the following, we discuss the features that were
constructed for the challenge data.

6.3.2.1 Homology data

The homology data stores for each yeast gene a number of similar SwissProt
genes, together with their properties.

A first set of features that we construct based on this data are of the form
eval(Gj , S), S < s,Tests(Gj), and indicate that there exists a SwissProt gene
Gj that is sufficiently similar and that fulfills the tests in Tests(Gj). By re-
stricting the search depth of Warmr to queries with |Tests(Gj)| ≤ 3 we obtain
105,456 features. Some examples, together with their frequencies, are shown
below.
eval(Gj , S), S < 3 · 10−5, organismclass(Gj , bacteria) 72.5%
eval(Gj , S), S <∞, keyword(Gj , inner membrane) 57.7%
eval(Gj , S), S < 0.14, (molweight(Gj , W), W < 353173) 87.3%
eval(Gj , S), S < 0.14, dbref(Gj , maizedb), dbref(Gj , mendel) 24.6%
eval(Gj , S), S < 0.14, dbref(Gj , embl), (seqlength(Gj , L), L > 316) 85.7%

Feature 1 tests for example if the given gene is homologous (S < 3 · 10−5) to
a gene Gj originating from a bacterium. Note that organisms are classified
according to a hierarchy with bacteria, viruses, eukaryota, and archaea the
top-level classes.

Each feature in a second set of features is a test on the outcome of a complex
aggregate. In particular, we use aggregates that compute the most frequent
value (mode) of the database references, keywords, and top-level classification

144

6.3 A biological application

(of the originating organism) over the similar SwissProt genes Gj . Each feature
is of the form mode(V, (Pred(Gj , V),Tests(Gj)),M),M = m, with V the vari-
able to be aggregated and M the resulting mode. We used |Tests(Gj)| ≤ 1 be-
cause with mode it is not possible to use the efficient refinement operator based
on µ-subsumption (neither the aggregate function, nor the aggregate query, nor
the value to compare with can be refined in a monotone way). We obtain 361
of these complex aggregates with Warmr. Some examples are shown below.

mode(D, (dbref(Gj , D), eval(Gj , S), S < 0.54), M), M = embl 91.4%
mode(K, (keyword(Gj , K), seq length(Gj , L), L > 1056), M), M =
repeat

56.7%

mode(K, keyword(Gj , K), M), M = transmembrane 34.6%
mode(C, (topclass(Gj , C), dbref(Gj , embl)), M), M = bacteria 18.7%

The homology data also stores similarity scores with particular other yeast
genes. In this case, no extra information is available for the Gj . Therefore, we
decided to construct features of the form yeast to yeast(gj , S), S < s, with
gj a particular yeast gene identifier. We obtain 139 features; two of them are
shown below.

yeast to yeast(ytq0070, S), S < 1.2 14.0%
yeast to yeast(ytq0105, S), S < 0.005 5.4%

6.3.2.2 Predicted secondary structure data

A second part of the data available for the genes is the predicted secondary
structure data. The secondary structure is a sequence of stretches that are
classified as alpha helix (a), beta sheet (b) or random coil (c). The class and
length of each stretch is recorded in the challenge data. The features that we
construct with Warmr for this part are frequent subsequences. The number
of stretches in the subsequences varies from 1 to 8 (no frequent subsequences
with 9 stretches were found). In total, we obtain 6259 features; some are shown
below.

a1−1 98.7%
a8−15, c16−31 45.1%
a1−1, c4−7, b4−7, c4−7, a8−15, c4−7, b4−7, c1−1 6.6%

Feature 2 tests for example if the secondary structure contains a subsequence
consisting of a alpha helix with a length between 8 and 15 and a random
coil with a length between 16 and 31. Note that the stretch length in the
subsequences is discretized into exponentially increasing intervals of the form
2i to 2i+1 − 1.

The secondary structure data also includes for each gene the proportion of
alpha helices, beta sheets and random coils. We also include these three numeric
attributes in the propositional representation.

145

Chapter 6 Applications

6.3.3 Predictive clustering trees

In this section, we briefly discuss predictive clustering trees (PCTs) (Blockeel
et al. 1998) and their application to hierarchical multilabel classification (HMC)
(Blockeel et al. 2002; Struyf et al. 2005).

PCTs generalize decision trees by viewing them as a hierarchy of clusters:
the top-node corresponds to one cluster containing all data, which is recur-
sively partitioned into smaller clusters while moving down the tree. PCTs are
constructed with a standard top-down induction algorithm similar to that of
C4.5 (Quinlan 1993), but use instead of information gain, intra-cluster vari-
ance summed over the subsets induced by the test. Minimizing intra-cluster
variance results in homogeneous leaves, which in turn results in accurate predic-
tions. PCTs can be used for any prediction task as long as a suitable distance
metric on the target variable(s) can be defined (the distance metric is used to
compute the intra-cluster variance heuristic).

PCTs can be used for HMC by defining a suitable distance metric. We use
the metric defined by Struyf et al. (2005). To compute this metric, the set
of classes S associated with each example e is represented as a vector v with
one component for each class in the hierarchy; the components corresponding
to the classes in S are set to one, the others to zero. The distance metric is
the weighted Euclidean distance on the vector representation and the weights
are used to take into account the hierarchical structure (i.e., the weight of a
component vk is set to wk = 0.75level(vk), with level(vk) the level on which the
corresponding class occurs in the hierarchy4).

In the multilabel classification setting, a tree predicts a vector of binary class
attributes, predicting positive for a component (a class) if at least 50% of the
examples in the leaf belongs to that class.

6.3.4 Experiments

We apply the Clus system, which implements PCTs for HMC, to the proposi-
tional data set described in Section 6.3.2. The dataset contains 3,894 examples
and 112,271 input attributes. The experiments are based on a three-way split
of this data set: a training set, a validation set and a test set. The test set
contains 33% of the data. The remaining 66% are split again using a 66%/33%
split to create the training and validation set. The validation set is used to
remove insignificant predictions from the PCT, by means of a significance test
based on the hypergeometric distribution with a significance level of 0.05. Us-
ing this test has been shown to increase precision; details can be found in Clare
(2003).

The Clus system uses an F-test as stopping criterion. Smaller values for
the F significance level result in smaller trees. Results for different values

4The value 0.75 was selected ad-hoc. By using a value smaller than 1.0, errors at a deeper
level receive a smaller weight.

146

6.3 A biological application

Table 6.4: Results for different F values.

F-Test: 0.001 0.005 0.01 0.05 0.1 1.0
Average precision: 66.5 68.9 66.4 63.4 58.4 59.7
Coverage: 50.9 51.1 35.7 48.5 47.6 40.0
#Classes: 12 22 27 66 93 106
#Leaves: 7 12 16 64 133 286

mode(C, (topclass(G, C), dbref(G, embl)), M), M = bacteria

+yes:eval(G, S), S < 3 · 10−5, orgcls(G, bacteria), sqlen(G) > 316

| +yes: 1 (260ex.)

| +no: none (67ex.)

+no: eval(G, S), S < 3 · 10−5, dbref(G, prints), dbref(G, prosite), keyw(G, in.memb)

+yes: eval(G, S), S < 3 · 10−5, dbref(G, pir), molwt(G) < 48391, sqlen(G) > 432

| +yes: 20, 20/1, 20/9 (98ex.)

| +no: none (47ex.)

+no: eval(G, S), S < 0.14, orgcls(G, diptera), sqlen(G) < 316, molwt(G) > 35317

+yes: 1, 1/4, 1/4/1, 10, 10/3, 14, 14/7, 14/7/3 (59ex.)

+no: . . .

Figure 6.5: Part of the PCT that was used to generate the submitted predic-
tions.

are shown in Table 6.4. In accordance to Clare (2003), we report the tree’s
performance in terms of precision rather than accuracy. (Component-wise)
precision is defined as the fraction of correct predictions among all positive
predictions. The table shows average precision (precision averaged over the
predicted classes) and coverage (proportion of examples for which at least one
class is predicted) computed over the test set together with the total number
of classes predicted by the PCT and its number of leaves.

We select the tree with F = 0.005 as final model (this tree was used to
submit our predictions to the challenge) because it yields the highest average
precision. A part of the tree is shown in Figure 6.5. The leaf at the bottom
of the figure for example represents a cluster in which the genes are predicted
to have three functions: 1/4/1, 10/3, and 14/7/3. Note that the tests in the
nodes above the leaf provide a description of the cluster. The component-wise
precisions obtained with this tree are listed in Table 6.5.

The tree uses almost exclusively homology based features. It includes one
test on the distribution of random coils (not visible in the figure), but in general
it appears that the features based on the predicted secondary structure data
are less important. They are used more often in trees for larger F values, but
never close to the top. Aggregates are also not used often, but interestingly,
the top-test includes a complex aggregation condition.

147

Chapter 6 Applications

Table 6.5: Prior probabilities and component-wise precision obtained by the
selected PCT (F = 0.005).

Class Prior Clus

1 34.2 81.2
1/4 9.3 81.2
1/4/1 8.9 81.2
10 21.3 51.3
10/3 14.5 51.3
11 22.8 47.3
12 10.7 77.5
12/1 6.7 77.5
12/1/1 5.6 77.5
14 24.5 88.6
14/7 12.9 86.4

Class Prior Clus

14/7/3 4.1 87.2
14/7/11 1.9 60.0
14/13 5.5 60.0
14/13/1 4.1 60.0
14/13/1/1 2.7 60.0
16 22.0 77.8
16/19 5.2 77.8
16/19/3 4.4 77.8
20 22.8 94.8
20/1 13.4 84.5
20/9 15.5 43.1

6.3.5 Summary

The goal of this application was to build accurate models for predicting gene
function in the genome of the yeast Saccharomyces cerevisiae. The approach
followed in this study is a propositionalization approach. In a first step, the
structured input was converted into a propositional format by means of feature
generation with Warmr. Since Warmr uses the same refinement operator as
Tilde, it is able to learn complex aggregate conditions. In the second step,
the propositional data was used to build models with Clus, a system that
builds predictive clustering trees. Our resulting model has a complex aggregate
condition in the top node, yields an average precision of 68.9%, covers 51.1%
of the examples, and predicts a reasonable number of classes. Of the four
submissions to the challenge, we ended second, with a score that was very close
to the score of the winning team.

6.4 Conclusion

This chapter has presented two applications in which complex aggregates are
used.

The first application dealt with an agricultural dataset about genetically
modified crops. The task was to predict adventitious presence of genetically
modified varieties in a field where conventional oilseed rape crops are planted
and to investigate the influence of surrounding fields. It turned out that prop-
erties of neighbouring fields did occur in the models (either aggregated or not),
but that predictive performance was not improved by it.

In the second application we analysed a biological dataset containing genes

148

6.4 Conclusion

in the genome of baker’s or brewer’s yeast. The task was to predict the function
of the genes, making use of (possibly aggregated) homology data and secondary
structures. The data was first propositionalized using a relational frequent pat-
tern miner and afterwards analysed with a propositional predictive clustering
tree learner. The resulting tree contained almost exclusively homology based
features, with a complex aggregate condition in the root node.

149

Chapter 7

Conclusions

In this chapter we summarize the most important results and provide some
directions for further work.

7.1 Summary

The work presented in this dissertation is situated in the fields of machine
learning and data mining, where one is concerned with extracting a set of useful
patterns from data. More precisely, we concentrate on predictive learning,
where the patterns predict one specific property (attribute) of the examples in
the dataset and we assume that the data is contained in a relational database,
i.e., information relevant for making a single prediction is spread over a set of
tuples from different relations. We have argued that current relational learners
handle such a set by implicitly using aggregations over a condition-defined
subset of it, where either the aggregation function itself or the conditions are
trivial, and that the combination of more general aggregation functions (i.e.,
other functions than “exists”) with non-trivial conditions is worth exploring.
This thesis analyses the problems that such a combination brings along, and
proposes solutions for them.

7.1.1 Combining aggregate functions and selection conditions

In Chapt. 3 we have laid the basis for this combination. We have introduced
so called complex aggregate conditions in the context of inductive logic pro-
gramming (ILP), where most of the work in relational learning is situated.
Complex aggregate conditions are aggregate conditions where the (first order)
query representing the set to be aggregated is extended with a number of liter-
als imposing selection conditions on that set. In ILP the patterns are predicate
definitions and they are learned one clause at a time. For learning one clause,
one usually starts with the most general clause and subsequently specializes it
by applying a refinement operator based on θ-subsumption. We have extended
the θ-subsumption relation in order to take into account refinements of the
aggregate conditions, the extension is called α-subsumption.

151

Chapter 7 Conclusions

Using a refinement operator based on α-subsumption to form a combination
of aggregates and selections presents several difficulties. First, the space of
refinements considered by the ILP learner is significantly expanded. Second, the
property that a clause c1 θ-subsumes a clause c2 implies that c2 is more specific
than c1 is lost. Refinement under α-subsumption may yield a specialization or
a generalization, or even none of both. This behaviour can be related to two
issues:

• In the first order logic context, an aggregate function can be interpreted
in several ways when applied to a complex aggregate query (roughly, as
being applied to sets or to bags).

• This behaviour can also be related to the monotonicity properties of the
aggregate conditions.

To deal with the first issue, we propose a semantics for aggregate functions, such
that, when refining the set to be aggregated, the function is always applied to
a smaller set. The second issue is dealt with by investigating in more detail
the monotonicity properties of aggregate conditions, and this along three di-
mensions: the aggregate functions, the set to aggregate over, and the threshold
values to compare the result with. This study leads to the development of a new
subsumption relation, called µ-subsumption, that guarantees specializations.

7.1.2 Learning trees with complex aggregate conditions

In Chapt. 4 we have applied the complex aggregate conditions in a learning
system. We have chosen Tilde (Blockeel and De Raedt 1998), a first order
decision tree learner, for investigating the practical use of complex aggregates.
First, the system was modified to incorporate simple aggregate conditions (i.e.,
aggregate conditions without selections on the set to be aggregated) in the
candidate refinements it considers at each node of the tree being built. Next,
we have presented two approaches to introduce complex aggregate conditions
in the learning algorithm: refining an aggregate condition that occurs higher in
the tree, and directly adding a complex aggregate condition by extending the
lookahead mechanism (Blockeel and De Raedt 1997) to the level of aggregates.
Both approaches are implemented by providing a refinement operator based
on α-subsumption, both because it was the first refinement operator developed
in this thesis and because generalizations are not a problem in Tilde, which
makes it possible to use this simple refinement operator. A problem that does
occur, especially when including aggregates with the lookahead mechanism, is
the substantial expansion of the feature space.

To improve efficiency, two techniques were developed. The first technique is
to sample the refinement space. To that aim, Tilde is upgraded to a first order
random forest learner. The second technique is to structure the refinement
space in a general to specific way by applying a refinement operator based on

152

7.1 Summary

µ-subsumption. When an aggregate condition fails for an example, there is no
need to test the aggregate conditions that are more specific, and as such, parts
of the refinement space can be pruned.

An extensive experimental evaluation of all presented methods has been per-
formed. The main results can be summarized as follows.

• The use of simple aggregate conditions in Tilde always results in a signifi-
cant predictive performance improvement. The difference between simple
and complex aggregate conditions is more subtle, but becomes very ap-
parent when testing on synthetic datasets where the target function has
been designed to involve complex aggregates.

• The use of a refinement operator based on µ-subsumption gives an effi-
ciency gain of up to factor 3.6 on the tested datasets. The efficiency gain
yielded by first order random forests may be more or less, depending on
the sampling ratio used and the number of trees in the forest.

• Although random forests may or may not improve efficiency, they always
result in a predictive performance improvement over Tilde.

• When comparing predictive performance results of Tilde or the first
order random forest induction algorithm with complex aggregates to other
learning systems, there is a noticeable improvement, even when compared
to systems that use aggregates.

7.1.3 Using complex aggregates in prediction functions

While in Chapt. 3 and 4 complex aggregates were applied in the condition
part of the hypothesis, in Chapt. 5, we investigate their use in the conclusion
part. We do this in the context of model trees, which are regression trees
that construct linear equations in the leaves. In particular, we incorporate
complex aggregates in these linear equations. For that aim, we upgrade Tilde

to a first order model tree learner. We do not consider all possible complex
aggregates in the linear equation at a leaf, but only include those (or other
numeric predictors) that have been chosen as a test in the nodes on the path
from the root to the leaf.

The main difficulty in this work is to design a suitable heuristic function for
choosing the best test at a node: it needs to take into account the fact that
linear models are built in the leaves, while being efficient to compute. This
second property is important, since existing heuristic functions that assume
linear models in the leaves are at least quadratic in the number of attributes
and this number becomes very high when learning complex aggregates. A
considerable part of the chapter has been devoted to finding such a heuristic
function. We have studied different heuristic functions used in propositional
model tree learners, and have proposed a new function that differs from the

153

Chapter 7 Conclusions

complexity of the most efficient approaches only with a constant factor, while
being better targeted towards learning linear models in the leaves. We have
then applied this function to our first order model tree learner.

Experimental results demonstrate that, if many numeric attributes occur in
the dataset (e.g., in the context of learning aggregates), our system outperforms
normal regression tree learners. When comparing to a model tree learner that
uses a more complex heuristic function, the comparison in predictive perfor-
mance is less obvious, while our system in general produces shorter trees.

7.1.4 Applications of complex aggregates

In Chapt. 6 we present two applications where complex aggregate conditions
are used in real life applications. In the first application an agricultural dataset
is analyzed where the task is to predict adventitious presence of genetically
modified varieties in conventional oilseed rape crops. The idea is that fields in
the neighbourhood of a target field may have an influence on the contamination
of this target field. Complex aggregates are applied to see whether this influence
is present on the regional level, rather than on a field-by-field level. For this
task we used Tilde with the µ-subsumption based refinement operator. Results
showed that, although the aggregates (or the field-by-field relational properties)
do contain some information regarding the contamination of the target field,
for this particular simulated dataset, most of the information is contained in
the target field itself.

The second application is of biological nature. The task is to build accurate
models for predicting gene function in the genome of baker’s or brewer’s yeast,
based on relational homology and secondary structure data. The prediction
task is non-trivial as each gene is labelled with a set of functional classes in-
stead of just one class and the classes are organized in a class hierarchy. To
tackle this application, we use a propositional predictive clustering tree, which
is specifically targeted to this kind of learning task. In order to apply this
algorithm, the relational data is first propositionalized using the frequent pat-
tern mining algorithm Warmr (Dehaspe and Toivonen 1999). Since Warmr

is contained in the same software package as Tilde it makes use of the same
refinement operator, and thus also incorporates complex aggregates. The re-
sulting tree that we obtained had a complex aggregate condition in its root
node.

7.2 Further work

7.2.1 Combining aggregates and selections

In this work we have combined the concepts of aggregation and selection by
introducing complex aggregate conditions. These conditions aggregate over a

154

7.2 Further work

subset of elements, for which a selection condition is fulfilled. For example, in
the context of Mutagenesis, this results in tests as “the maximal charge for the
carbon atoms is larger than 0.6”. However, one could also combine aggregates
and selections by doing in a sense the opposite: imposing selection conditions
on the outcome of an aggregate. For example, this could result in tests as “the
element of the atom with the maximal charge is carbon” or “the number of
atoms that are bounded to the atom with the maximal charge is larger than
4”. Whereas the outcome of an aggregate now is a (numeric) value, it would
have to include a key (or a set of keys) in the proposed approach, such that
properties of the object(s) associated with the key(s) could be tested.

Whereas the use of this approach would probably be limited to the aggregate
functions max and min, several examples of patterns involving this combination
of aggregates and selections occur in real life:

• In a chess play, each opponent has to think about what piece he will
move next. To that aim, players (or computer programs) calculate an
evaluation score for each possible move. The next piece to be moved will
be the piece corresponding to the move with the highest score.

• In football, the trophy for top scorer of the year goes to the player with
the highest number of goals.

In the first example, we are not interested in the value of the highest score, but
in the piece corresponding to the move with the highest score. Similarly, in the
second example, the value of interest is not the number of goals, but the name
of the person associated with these goals.

7.2.2 Finding suitable threshold values

In this thesis, the basic language components for aggregate conditions need
to be specified in the language bias: the aggregate functions, the aggregate
queries, the comparison operator, and a number of threshold values. These
threshold values may be given by the user or produced by a discretization
procedure. A discretization algorithm typically finds a number of intervals in
the domain of a numeric attribute. In Tilde these threshold values may be
chosen in two different ways: such that an equal number of examples falls
into each interval, or such that the class entropy is minimized in each interval
(Blockeel and De Raedt 1997). The cut points of the intervals are then used as
thresholds in the inequality tests.

However, discretization is not sufficient for dealing with aggregates. There
are three main problems:

• The domain of the aggregate function may differ from the domain of the
attribute to be aggregated. For example, count returns natural numbers,
but is usually applied to key attributes. Hence, discretization procedures
can not be used to produce a set of threshold values for count.

155

Chapter 7 Conclusions

• The aggregate function may result in values in the same domain, but in
a different range than the attribute to be aggregated. For example, sum
can result in values that do not fall in the range of the numeric attribute.

• Even if in the same domain and range of the numeric attribute, different
aggregate functions may have different sets of optimal threshold values.
For example, max may prefer threshold values that are larger than the
optimal threshold values for min.

We can conclude that techniques are needed to automatically find good values
to compare the result of an aggregate function with.

156

References

ACE (2004). The ACE data mining system. Katholieke Universiteit Leuven,
Dept. of Computer Science, Declarative Languages and Artificial Intelli-
gence research lab. http://www.cs.kuleuven.ac.be/∼dtai/ACE/.

Agrawal, R., H. Mannila, R. Srikant, H. Toivonen, and A. Verkamo (1996).
Fast discovery of association rules. In U. Fayyad, G. Piatetsky-Shapiro,
P. Smyth, and R. Uthurusamy (Eds.), Advances in Knowledge Discovery
and Data Mining, pp. 307–328. The MIT Press.

Alexander, W. and S. Grimshaw (1996). Treed regression. Journal of Com-
putational and Graphical Statistics 5, 156–175.

Appice, A., M. Ceci, and D. Malerba (2002). Kdb2000: An integrated knowl-
edge discovery tool. In A. Zanasi, C. Brebbia, N. Ebecken, and P. Melli
(Eds.), Data Mining III, Series Management Information Systems, Vol-
ume 6, pp. 531–540. Southampton, UK: WIT Press.

Appice, A., M. Ceci, and D. Malerba (2003). Mining model trees: a multi-
relational approach. In T. Horváth and A. Yamamoto (Eds.), Proceed-
ings of the 13th International Conference on Inductive Logic Program-
ming, Volume 2835 of Lecture Notes in Artificial Intelligence, pp. 4–21.
Springer-Verlag.

Berka, P. (2000). Guide to the financial data set. In A. Siebes and P. Berka
(Eds.), The ECML/PKDD 2000 Discovery Challenge.

Blockeel, H. (1998). Top-Down Induction of First Or-
der Logical Decision Trees. Ph. D. thesis, Department
of Computer Science, Katholieke Universiteit Leuven.
http://www.cs.kuleuven.ac.be/∼ml/PS/blockeel98:phd.ps.gz.

Blockeel, H. and M. Bruynooghe (2003). Aggregation versus selection bias,
and relational neural networks. In IJCAI-2003 Workshop on Learning
Statistical Models from Relational Data, SRL-2003, Acapulco, Mexico,
August 11, 2003.

Blockeel, H., M. Bruynooghe, S. Džeroski, J. Ramon, and J. Struyf (2002).
Hierarchical multi-classification. In Proceedings of the ACM SIGKDD
2002 Workshop on Multi-Relational Data Mining (MRDM 2002), pp. 21–
35.

157

REFERENCES

Blockeel, H. and L. De Raedt (1997). Lookahead and discretization in ILP.
In Proceedings of the Seventh International Workshop on Inductive Logic
Programming, Volume 1297 of Lecture Notes in Artificial Intelligence, pp.
77–85. Springer-Verlag.

Blockeel, H. and L. De Raedt (1998, June). Top-down induction of first order
logical decision trees. Artificial Intelligence 101 (1-2), 285–297.

Blockeel, H., L. De Raedt, and J. Ramon (1998). Top-down induction of
clustering trees. In Proceedings of the 15th International Conference on
Machine Learning, pp. 55–63.

Blockeel, H., L. Dehaspe, B. Demoen, G. Janssens, J. Ramon, and H. Van-
decasteele (2002). Improving the efficiency of inductive logic program-
ming through the use of query packs. Journal of Artificial Intelligence
Research 16, 135–166.

Blockeel, H., L. Dehaspe, J. Ramon, J. Struyf, A. Van Assche, C. Vens,
and D. Fierens (2006). The ace data mining system: User’s manual.
http://www.cs.kuleuven.be/∼dtai/ACE.

Blockeel, H. and W. Uwents (2004). Using neural networks for relational
learning. In Proceedings of SRL-2004, the ICML-2004 Workshop on Sta-
tistical Relational Learning and its connections to other fields, SRL-2004,
Banff, Canada, July 8, 2004.

Bratko, I. (2001). Prolog Programming for Artificial Intelligence. Addison-
Wesley. 3rd Edition.

Breiman, L. (1996). Out-of-bag estimation.
ftp.stat.berkeley.edu/pub/users/breiman/OOBestimation.ps.

Breiman, L. (2001). Random forests. Machine Learning 45 (1), 5–32.

Breiman, L., J. Friedman, R. Olshen, and C. Stone (1984). Classification and
Regression Trees. Belmont: Wadsworth.

Brodley, C. and P. Utgoff (1995). Multivariate decision trees. Machine Learn-
ing 19, 45–77.

Chapman, P., J. Clinton, R. Kerber, T. Khabaza, T. Reinartz, C. Shearer,
and R. Wirth (2000). CRISP-DM 1.0: Step-by-step data mining guide.
Technical report, CRISP-DM Consortium.

Chaudhuri, P., M. Huang, W. Loh, and R. Yao (1994). Piecewise-polynomial
regression trees. Statistica Sinica 4, 143–167.

Clare, A. (2003). Machine learning and data mining for yeast functional
genomics. Ph. D. thesis, University of Wales, Aberystwyth.

Colbach, N., C. Clermont-Dauphin, and J. Meynard (2001). Genesys: A
model of the influence of cropping system on gene escape from herbicide
tolerant rapeseed crops to rape volunteers. Agriculture, Ecosystems and
Environment 83, 235–270.

158

REFERENCES

Das, S. K. (1992). Deductive Databases and Logic Programming. Addison-
Wesley.

De Raedt, L. (1997). Logical settings for concept learning. Artificial Intelli-
gence 95, 187–201.

De Raedt, L. (1998). Attribute-value learning versus inductive logic program-
ming: the missing links (extended abstract). In D. Page (Ed.), Proceedings
of the Eighth International Conference on Inductive Logic Programming,
Volume 1446 of Lecture Notes in Artificial Intelligence, pp. 1–8. Springer-
Verlag.

De Raedt, L. and W. Van Laer (1995). Inductive constraint logic. In K. P.
Jantke, T. Shinohara, and T. Zeugmann (Eds.), Proceedings of the Sixth
International Workshop on Algorithmic Learning Theory, Volume 997 of
Lecture Notes in Artificial Intelligence, pp. 80–94. Springer-Verlag.

Dehaspe, L. and H. Toivonen (1999). Discovery of frequent datalog patterns.
Data Mining and Knowledge Discovery 3 (1), 7–36.

Dehaspe, L. and H. Toivonen (2001). Discovery of relational association rules.
In S. Džeroski and N. Lavrač (Eds.), Relational Data Mining, pp. 189–
212. Springer-Verlag.

Dempster, N., A. Laird, and D. Rubin (1977). Maximum likelihood from
incomplete data via the EM algorithm. J. R. Statist. Soc. B 39, 185–197.

Demsar, J. and B. Zupan (2004). Orange: From experimental machine learn-
ing to interactive data mining. http://www.ailab.si/orange.

Dietterich, T. G. (1998). Approximate statistical tests for comparing su-
pervised classification learning algorithms. Neural Computation 10 (7),
1895–1924.

Dobra, A. and J. Gehrke (2002). Secret: A scalable linear regression tree
algorithm. In Proceedings of the 8th ACM SIGKDD International Con-
ference on Knowledge Discovery and Data Mining.

Džeroski, S., S. Schulze-Kremer, K. R. Heidtke, K. Siems, D. Wettschereck,
and H. Blockeel (1998, July-August). Diterpene structure elucidation
from 13C NMR spectra with inductive logic programming. Applied Arti-
ficial Intelligence 12 (5), 363–384.

Džeroski, S. (1995). Numerical constraints and learnability in inductive logic
programming. Ph. D. thesis, University of Ljubljana (Slovenia).

Džeroski, S. (2001a). Data mining in a nutshell. In S. Džeroski and N. Lavrač
(Eds.), Relational Data Mining, pp. 3–27. Springer-Verlag.

Džeroski, S. (2001b). Relational data mining applications: An overview. In
S. Džeroski and N. Lavrač (Eds.), Relational Data Mining, pp. 339–364.
Springer-Verlag.

159

REFERENCES

Džeroski, S. and N. Lavrač (2001a). An introduction to inductive logic pro-
gramming. In S. Džeroski and N. Lavrač (Eds.), Relational Data Mining,
pp. 48–74. Springer-Verlag.

Džeroski, S. and N. Lavrač (Eds.) (2001b). Relational Data Mining. Springer-
Verlag.

Elmasri, R. and S. Navathe (2004). Fundamentals of Database Systems (4nd
ed.). Addison-Wesley.

Emde, W. and D. Wettschereck (1995). Relational instance based learning.
In Proceedings of the 1995 Workshop of the GI Special Interest Group on
Machine Learning.

Emde, W. and D. Wettschereck (1996). Relational instance-based learning.
In L. Saitta (Ed.), Proceedings of the Thirteenth International Conference
on Machine Learning, pp. 122–130. Morgan Kaufmann.

Fayyad, U., G. Piatetsky-Shapiro, and P. Smyth (1996). From data mining to
knowledge discovery: An overview. In U. Fayyad, G. Piatetsky-Shapiro,
P. Smyth, and R. Uthurusamy (Eds.), Advances in Knowledge Discovery
and Data Mining, pp. 495–515. The MIT Press.

Frawley, W., G. Piatetsky-Shapiro, and C. Matheus (1991). Knowledge dis-
covery in databases: an overview. In G. Piatetsky-Shapiro and W. Fraw-
ley (Eds.), Knowledge Discovery in Databases, pp. 1–27. Cambridge, MA:
MIT Press.

Getoor, L., N. Friedman, D. Koller, and A. Pfeffer (2001). Learning Proba-
bilistic Relational Models. In S. Dzeroski and N. Lavrac (Eds.), Relational
Data Mining, pp. 307–334. Springer-Verlag.

Hansen, L. and P. Salamon (1990). Neural network ensembles. IEEE Trans-
actions on Pattern Analysis and Machine Intelligence 12, 993–1001.

Hastie, T., R. Tibshirani, and J. Friedman (2001). The Elements of Statistical
Learning. Springer-Verlag.

Horvath, T. and S. Wrobel (2001). Towards discovery of deep and wide first-
order structures: A case study in the domain of mutagenicity. In Discov-
ery Science 2001, Volume 2226 of Lecture Notes in Artificial Intelligence,
pp. 100–112.

Ivanovska, A., P. Panov, N. Colbach, M. Debeljak, S. Džeroski, and
A. Messean (2006). Using simulation models and data mining to study
co-existence of gm/non-gm crops at regional level. In Proceedings of 20th
International Conference on Informatics for Environmental Protection,
pp. 489–500.

Jacobs, N. (2004). Relational Sequence Learning and User Modelling. Ph. D.
thesis, Department of Computer Science, Katholieke Universiteit Leuven.

160

REFERENCES

Jaeger, M. (1997). Relational Bayesian networks. In Proceedings of the Thir-
teenth Annual Conference on Uncertainty in Artificial Intelligence (UAI-
97), pp. 266–273. Morgan Kaufmann Publishers.

Jensen, D., J. Neville, and M. Hay (2003). Avoiding bias when aggregating
relational data with degree disparity. In Proceedings of the 20th Interna-
tional Conference on Machine Learning.

Karalic, A. (1992). Employing linear regression in regression tree leaves. In
European Conference on Artificial Intelligence, pp. 440–441.

Karalič, A. and I. Bratko (1997). First order regression. Machine Learning 26,
147–176.

Knobbe, A., H. Blockeel, A. Siebes, and D. van der Wallen (1999). Multi-
relational data mining. In H. Blockeel and L. Dehaspe (Eds.), Proceedings
of the 9th Belgian-Dutch Conference on Machine Learning, Maastricht,
The Netherlands, pp. 61–74.

Knobbe, A., M. de Haas, and A. Siebes (2001). Propositionalisation and ag-
gregates. In L. De Raedt and A. Siebes (Eds.), Proceedings of the 5th
European Conference on Principles of Data Mining and Knowledge Dis-
covery, Volume 2168 of Lecture Notes in Artificial Intelligence, pp. 277–
288. Springer.

Knobbe, A. and E. Ho (2005, October). Numbers in multi-relational data
mining. In Principles of Data Mining and Knowledge Discovery, Pro-
ceedings of the 9th European Conference, pp. 544–551. Springer-Verlag.

Knobbe, A., A. Siebes, and B. Marseille (2002, August). Involving aggregate
functions in multi-relational search. In Principles of Data Mining and
Knowledge Discovery, Proceedings of the 6th European Conference, pp.
287–298. Springer-Verlag.

Knobbe, A., A. Siebes, and D. van der Wallen (1999). Multi-relational de-
cision tree induction. In Proceedings of PKDD-1999 - The Third Euro-
pean Conference on Principles and Practice of Knowledge Discovery in
Databases, Volume 1704 of Lecture Notes in Computer Science, Prague,
Czech Republic, pp. 378–383. Springer.

Kohavi, R. and G. John. (1997). Wrappers for feature subset selection. Ar-
tificial Intelligence 97, 273–324.

Koller, D. (1999). Probabilistic relational models. In Proceedings of the Ninth
International Workshop on Inductive Logic Programming, Volume 1634
of Lecture Notes in Artificial Intelligence, pp. 3–13. Springer-Verlag.

Kramer, S. (1996). Structural regression trees. In Proceedings of the Thir-
teenth National Conference on Artificial Intelligence, Cambridge/Menlo
Park, pp. 812–819. AAAI Press/MIT Press.

161

REFERENCES

Kramer, S., N. Lavrač, and P. Flach (2001). Propositionalization approaches
to relational data mining. In S. Džeroski and N. Lavrač (Eds.), Relational
Data Mining, pp. 262–291. Springer-Verlag.

Kramer, S. and G. Widmer (2001). Inducing classification and regression
trees in first order logic. In S. Džeroski and N. Lavrač (Eds.), Relational
Data Mining, pp. 140–159. Springer-Verlag.

Krogel, M.-A., S. Rawles, F. Železný, P. Flach, N. Lavrač, and S. Wrobel
(2003). Comparative evaluation of approaches to propositionalization. In
Proceedings of the 13th International Conference on Inductive Logic Pro-
gramming, Volume 2835 of Lecture Notes in Artificial Intelligence, pp.
194–217. Springer-Verlag.

Krogel, M.-A. and S. Wrobel (2001). Transformation-based learning using
multi-relational aggregation. In Proceedings of the Eleventh International
Conference on Inductive Logic Programming, pp. 142–155.

Krogel, M.-A. and S. Wrobel (2003). Facets of aggregation approaches to
propositionalization. In T. Horváth and A. Yamamoto (Eds.), Proceedings
of the Work-in-Progress Track at the 13th International Conference on
Inductive Logic Programming, pp. 30–39.

Langley, P. (1996). Elements of Machine Learning. Morgan Kaufmann.

Lavrač, N. and S. Džeroski (1994). Inductive Logic Programming: Techniques
and Applications. Ellis Horwood.

Lavrač, N., S. Džeroski, and M. Grobelnik (1991). Learning nonrecursive
definitions of relations with LINUS. In Y. Kodratoff (Ed.), Proceedings of
the Fifth European Working Session on Learning, Volume 482 of Lecture
Notes in Artificial Intelligence, pp. 265–281. Springer-Verlag.

Lloyd, J. (1987). Foundations of Logic Programming (2nd ed.). Springer-
Verlag.

Loh, W.-Y. (2002). Regression trees with unbiased variable selection and
interaction detection. Statistica Sinica 12, 361–386.

Malerba, D., F. Esposito, M. Ceci, and A. Appice (2004). Top-down induc-
tion of model trees with regression and splitting nodes. IEEE Transac-
tions on Pattern Analysis and Machine Intelligence 26 (5), 612–625.

McCarthy, J., M. Minsky, N. Rochester, and C. Shannon (1955). A proposal
for the dartmouth summer research project on artificial intelligence.

McLachlan, G. (1992). Discriminant analysis and statistical pattern recogni-
tion. Addison-Wesley.

Merz, C. and P. Murphy (1996). UCI repository of machine learning
databases http://www.ics.uci.edu/∼mlearn/mlrepository.html.
Irvine, CA: University of California, Department of Information and
Computer Science.

162

REFERENCES

Michalski, R. (1980). Pattern Recognition as Rule-Guided Inductive Infer-
ence. IEEE Transactions on Pattern Analysis and Machine Intelligence 2,
349–361.

Michalski, R. (1987). Clustering. In S. Shapiro (Ed.), Encyclopedia of Arti-
ficial Intelligence. Wiley.

Mitchell, T. (1997). Machine Learning. McGraw-Hill.

Muggleton, S. (Ed.) (1992). Inductive Logic Programming. Academic Press.

Muggleton, S. (1995). Inverse entailment and Progol. New Generation Com-
puting, Special issue on Inductive Logic Programming 13 (3-4), 245–286.

Muggleton, S. and L. De Raedt (1994). Inductive logic programming : Theory
and methods. Journal of Logic Programming 19,20, 629–679.

Nédellec, C., H. Adé, F. Bergadano, and B. Tausend (1996). Declarative bias
in ILP. In L. De Raedt (Ed.), Advances in Inductive Logic Programming,
Volume 32 of Frontiers in Artificial Intelligence and Applications, pp.
82–103. IOS Press.

Neville, J., D. Jensen, L. Friedland, and M. Hay (2003). Learning relational
probability trees. In Proceedings of the 9th ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining. ACM.

Ng, R. T., L. V. S. Lakshmanan, J. Han, and A. Pang (1998). Exploratory
mining and pruning optimizations of constrained associations rules. In
SIGMOD International Conference on Management of Data, pp. 13–24.

Pelov, N. (2004, apr). Semantics of Logic Programs with Aggregates. Phd,
Department of Computer Science, K.U.Leuven, Leuven, Belgium. 152 +
x pages.

Perlich, C. and F. Provost (2003). Aggregation-based feature invention and
relational concept classes. In Proceedings of the ninth ACM SIGKDD
International Conference on Knowledge Discovery and Data Mining, pp.
167–176. ACM Press.

Plotkin, G. (1969). A note on inductive generalization. Machine Intelli-
gence 5, 153–163.

Quinlan, J. (1990). Learning logical definitions from relations. Machine
Learning 5, 239–266.

Quinlan, J. (1992). Learning with continuous classes. In Proceedings of the
5th Australian Joint Conference on Artificial Intelligence, pp. 343–348.
World Scientific, Singapore.

Quinlan, J. R. (1988). Simplifying decision trees. In B. Gaines and J. Boose
(Eds.), Knowledge Acquisition for Knowledge-Based Systems, pp. 239–
252. London: Academic Press.

163

REFERENCES

Quinlan, J. R. (1993). C4.5: Programs for Machine Learning. Morgan Kauf-
mann series in Machine Learning. Morgan Kaufmann.

Ramon, J. (2002). Clustering and Instance Based Learning in First Order
Logic. Ph. D. thesis, Department of Computer Science, K.U.Leuven.

Ray, S. and D. Page (2001). Multiple instance regression. In Proceedings of
the 18th International Conference on Machine Learning, pp. 425–432.
Morgan Kaufmann.

Srinivasan, A. (2003). Note on the use of statistical procedures as background
predicates in ilp. Technical Report PRG-RR-03-09, Oxford University
Computing Laboratory.

Srinivasan, A., S. Muggleton, and R. King (1995). Comparing the use
of background knowledge by inductive logic programming systems. In
L. De Raedt (Ed.), Proceedings of the Fifth International Workshop on
Inductive Logic Programming, pp. 199–230. Department of Computer Sci-
ence, Katholieke Universiteit Leuven.

Srinivasan, A., S. Muggleton, M. Sternberg, and R. King (1996). Theories
for mutagenicity: A study in first-order and feature-based induction. Ar-
tificial Intelligence 85 (1,2), 277–299.

Struyf, J., S. Džeroski, H. Blockeel, and A. Clare (2005). Hierarchical multi-
classification with predictive clustering trees in functional genomics. In
Progress in Artificial Intelligence: 12th Portugese Conference on Artifi-
cial Intelligence, Volume 3808 of Lecture Notes in Computer Science, pp.
272–283. Springer.

Torgo, L. (1997). Functional models for regression tree leaves. In Proceedings
of the 14th International Conference on Machine Learning, pp. 385–393.
Morgan Kaufmann.

Torgo, L. (2002). Computationally efficient linear regression trees. In Proceed-
ings of the 8th Conference of the International Federation of Classification
Societies. Springer.

Uwents, W. and H. Blockeel (2005). Classifying relational data with neural
networks. In Proceedings of 15th International Conference on Inductive
Logic Programming, Bonn, Germany, Volume 3625 of Lecture Notes in
Artificial Intelligence, pp. 384–396. Springer.

Van Laer, W. and L. De Raedt (2001). How to upgrade propositional learners
to first order logic: A case study. In S. Džeroski and N. Lavrač (Eds.),
Relational Data Mining, pp. 235–261. Springer-Verlag.

Wang, Y. and I. Witten (1997). Inducing model trees for continuous classes.
In Proc. of the 9th European Conf. on Machine Learning Poster Papers,
pp. 128–137.

Weisberg, S. (1980). Applied linear regression. John Wiley & Sons.

164

REFERENCES

Witten, I. and E. Frank (1999). Data Mining: Practical Machine Learning
Tools and Techniques with Java Implementations. Morgan Kaufmann.

Witten, I. and E. Frank (2005). Data Mining: Practical Machine Learning
Tools and Techniques. Morgan Kaufmann. 2nd Edition.

Zantema, H. and H. Bodlaender (2000). Finding small equivalent decision
trees is hard. International Journal of Foundations of Computer Sci-
ence 11 (2), 343–354.

Zucker, J.-D. and J.-G. Ganascia (1998). Learning structurally indeterminate
clauses. In Proceedings of the International Conference on Inductive Logic
Programming, pp. 235–244.

165

Index

α-subsumption, 38
µ-subsumption, 55
θ-subsumption, 28, 37

Account example, 16
accuracy, 11
aggcondition, 61
aggregate condition, 36

bag-defined, 45
complex, 38
object bag-defined, 45
semantic, 38
set-defined, 45
simple, 38
syntactic, 36

aggregate function, 36, 49
aggregate literal, 36

complex, 37
simple, 37

aggregate query, 36
anti-monotone function, 47
artificial intelligence, 1

basic language construct, 29

classification, 10
clause, 21
Clus, 143
coverage, 29
cross validation, 10
current query, 60, 73, 120

data, 10

data mining, 9
descriptive, 10
predictive, 10
propositional, 10, 15, 18
relational, 20

dataset, 24
decision tree, 13

first order, 59
Diterpenes dataset, 81

ensemble, 67

fact, 22
Financial dataset, 81

generality, 29
generalization, 40
generalized average, 48
generalized count, 48
generalized sum, 48
GeneSys, 134

hierarchical multilabel classifica-
tion, 143

inductive logic programming, 20, 26
interpretation, 24

knowledge base, 24
knowledge discovery in databases, 9

language bias, 28
learning, 2
learning from entailment, 26

167

Index

learning from interpretations, 26
least squares, 12
linear equation, 12
linear regression, 12

multiple, 12
simple, 12

literal, 21
logic program, 22
logical entailment, 25
lookahead, 65

M5, 96
M5’, 96
MassSpectrogram dataset, 127
Mauve, 103
mean squared error, 11
member function, 49
model, 25
model tree, 93
monotone function, 47
monotonicity properties, 49
Mr-Smoti, 95, 125
Mutagenesis dataset, 16, 80, 127

non-determinate attribute, 19
non-monotone function, 47

object result bag, 44
out-of-bag error, 68

pattern, 10
predicate, 21
predicate definition, 22
predictive clustering trees, 143, 146

query, 22
query pack, 73

random forest, 67
first order, 68

refinement cube, 52
refinement operator, 29
regression, 10
regression node, 95, 122
Relaggs, 34

relational database, 16
ReMauve, 118
residual standard deviation, 121
result bag, 44
result set, 44
Retis, 95, 99
rmode, 28, 61
RollUp, 35

S-Cart, 95
smoothing, 105
Smoti, 95, 102
specialization, 40
standard clause, 37
standard literal, 38
standard part, 38
substitution, 24

target attribute, 10
TDIDT, 14, 59, 96
term, 21
Tilde, 59
Treed Regression, 102

valid refinement, 40, 50

Warmr, 144

168

Publication List

Articles in international reviewed journals

• C. Vens, and H. Blockeel, A simple regression based heuristic for learning
model trees, Intelligent Data Analysis 10 (3), pp. 215-236, 2006.
http://www.cs.kuleuven.ac.be/cgi-bin-dtai/publ info.pl?id=41951

• A. Van Assche, C. Vens, H. Blockeel, and S. Džeroski, First order random
forests: Learning relational classifiers with complex aggregates, Machine
Learning 64, pp. 149-182, 2006.
http://www.cs.kuleuven.ac.be/cgi-bin-dtai/publ info.pl?id=42153

Contributions at international conferences

Published in proceedings

• C. Vens, J. Ramon, and H. Blockeel, ReMauve, a relational model tree
learner, ILP’06, 16th International Conference on Inductive Logic Pro-
gramming, Post Conference Proceedings (Muggleton, S. and Otero, R.,
eds.), 2006, accepted.

• C. Vens, J. Ramon, and H. Blockeel, Refining aggregate conditions in
relational learning, Knowledge Discovery in Databases: PKDD 2006,
10th European Conference on Principles and Practice of Knowledge Dis-
covery in Databases, Proceedings (Fürnkranz, J. and Scheffer, T. and
Spiliopoulou, M., eds.), vol 4213, Lecture Notes in Artificial Intelligence,
pp. 383-394, 2006.
http://www.springerlink.com/content/433582r410g77426/

• C. Vens, J. Ramon, and H. Blockeel, Re-Mauve, a relational model tree
learner, ILP’06, 16th International Conference on Inductive Logic Pro-
gramming, Short Papers (Muggleton, S. and Otero, R., eds.), pp. 216-218,
2006.
http://www.cs.kuleuven.ac.be/cgi-bin-dtai/publ info.pl?id=42376

• A. Ivanovska, C. Vens, and S. Džeroski, Using ILP to study the presence
of genetically modified variants in organic oil seed rape, ILP’06, 16th

169

Publication List

International Conference on Inductive Logic Programming, Short Papers
(Muggleton, S. and Otero, R., eds.), pp. 107-109, 2006.
http://www.cs.kuleuven.ac.be/cgi-bin-dtai/publ info.pl?id=42495

• W. Uwents, C. Vens, A. Van Assche, and H. Blockeel, Learning aggrega-
tions and selections with relational neural networks, Proceedings of the
Workshop on Sub-Symbolic Paradigms for Learning in Structured Do-
mains (Gori, M. and Avesani, P., eds.), pp. 112-121, 2005.
http://www.cs.kuleuven.ac.be/cgi-bin-dtai/publ info.pl?id=41894

• J. Struyf, C. Vens, T. Croonenborghs, S. Džeroski, and H. Blockeel, Ap-
plying predictive clustering trees to the inductive logic programming 2005
challenge data, Inductive Logic Programming, 15th International Confer-
ence, ILP 2005, Late-Breaking Papers (Kramer, S. and Pfahringer, B.,
eds.), pp. 111-116, 2005.
http://www.cs.kuleuven.ac.be/cgi-bin-dtai/publ info.pl?id=41826

• C. Vens, A. Van Assche, H. Blockeel, and S. Džeroski, First order random
forests with complex aggregates, Inductive Logic Programming, 14th In-
ternational Conference, ILP 2004, Proceedings (Camacho, R. and King,
R. and Srinivasan, A., eds.), vol 3194, Lecture Notes in Computer Sci-
ence, pp. 323-340, 2004.
http://www.cs.kuleuven.ac.be/cgi-bin-dtai/publ info.pl?id=41318

• A. Van Assche, C. Vens, H. Blockeel, and S. Džeroski, A random forest
approach to relational learning, ICML 2004 Workshop on Statistical Re-
lational Learning and its Connections to Other Fields (Dietterich, T. and
Getoor, L. and Murphy, K., eds.), pp. 110-116, 2004.
http://www.cs.kuleuven.ac.be/cgi-bin-dtai/publ info.pl?id=41239

• C. Vens, and H. Blockeel, On heuristics for learning model trees, Pro-
ceedings of the 15th Belgian-Dutch Conference on Artificial Intelligence
(Heskes, T. and Lucas, P. and Vuurpijl, L. and Wiegerinck, W., eds.), pp.
307-314, 2003.
http://www.cs.kuleuven.ac.be/cgi-bin-dtai/publ info.pl?id=40883

Not published or only as abstract

• C. Vens, J. Ramon, and H. Blockeel, Refining aggregate conditions in
relational learning, 18th Belgium-Netherlands Conference on Artificial
Intelligence, BNAIC 2006, Namur, Belgium, October 5-6, 2006.
http://www.cs.kuleuven.ac.be/cgi-bin-dtai/publ info.pl?id=42428

• C. Vens, and H. Blockeel, Refining aggregate conditions in relational
learning, Joint APrIL/IQ Workshop, Titisee, Germany, March 15-18,
2006.
http://www.cs.kuleuven.ac.be/cgi-bin-dtai/publ info.pl?id=42181

170

• C. Vens, and H. Blockeel, Refining aggregate conditions in relational
learning, 7th ”Freiburg, Leuven and Friends” Workshop on Machine Lear-
ning, FLF-06, Titisee, Germany, March 13-14, 2006.
http://www.cs.kuleuven.ac.be/cgi-bin-dtai/publ info.pl?id=42167

• C. Vens, A. Van Assche, H. Blockeel, and S. Džeroski, Aggregation and
selection in relational data mining, Dutch Belgian Database Day 2004,
DBDBD 2004, Antwerpen, Belgium, December 3, 2004.
http://www.cs.kuleuven.ac.be/cgi-bin-dtai/publ info.pl?id=41531

• A. Van Assche, C. Vens, H. Blockeel, and S. Džeroski, A random forest
approach to relational learning, 16h Belgian-Dutch Conference on Arti-
ficial Intelligence, BNAIC 2004, Groningen, The Netherlands, October
21-22, 2004.
http://www.cs.kuleuven.ac.be/cgi-bin-dtai/publ info.pl?id=41415

• C. Vens, A. Van Assche, H. Blockeel, and S. Džeroski, Random forests
for combining selection and aggregation in relational data mining, 5th
”Freiburg, Leuven and Friends” Workshop on Machine Learning, FLF-
04, Hinterzarten, Germany, March 8-10, 2004.
http://www.cs.kuleuven.ac.be/cgi-bin-dtai/publ info.pl?id=41194

• H. Blockeel, and C. Vens, On heuristics for learning model trees, 4th
”Freiburg, Leuven and Friends” Workshop on Machine Learning, FLF-
03, Leuven/Dourbes, Belgium, March 19-21, 2003.
http://www.cs.kuleuven.ac.be/cgi-bin-dtai/publ info.pl?id=40763

Contributions at other conferences

Published in proceedings

• J. Struyf, C. Vens, T. Croonenborghs, S. Džeroski, and H. Blockeel,
Napovedovanje funkcij genov z induktivnim logičnim programiranjem in
drevesi za napovedno razvrščanje, Prvo Srečanje Slovenskih Bioinformati-
kov (BIOINFO2005) (Anderluh, G. and Zupan, B. and Stare, J., eds.),
pp. 27-30, 2005.
http://www.cs.kuleuven.ac.be/cgi-bin-dtai/publ info.pl?id=42015

Not published or only as abstract

• C. Vens, and H. Blockeel, On heuristics for building model trees, Belgian
Data Mining Day, BDM 2005, Antwerpen, Belgium, May 27, 2005.
http://www.cs.kuleuven.ac.be/cgi-bin-dtai/publ info.pl?id=41721

171

Publication List

Courses, with text

• C. Vens, and A. Van Assche, Prediction, The HIV Data Management and
Data Mining Workshop, South African Medical Research Council, 491
Ridge Road, Durban, South-Africa, December 15, 2004, Molecular Virol-
ogy and Bioinformatics Unit at Africa Centre for Health and Population
Studies, 6h.

172

Biography

Celine Vens was born on July 12, 1980 in Menen (Belgium). After finishing high
school at the Lyceum Onze-Lieve-Vrouw van Vlaanderen in Kortrijk in 1998,
she started studying computer science at the Katholieke Universiteit Leuven,
Campus Kortrijk. After two years, she came to Leuven to graduate cum laude
as a Master in Informatics in July 2002. Her Master’s thesis “Visualization of
Genetic Algorithms” was supervised by Hendrik Blockeel.

In October 2002, she joined the Declarative Languages and Artificial Intel-
ligence research group of the Katholieke Universiteit Leuven, starting a Ph.D.
funded by a doctoral scholarship of the university. Her Ph.D. research, enti-
tled “Complex Aggregates in Relational Learning”, was supervised by Hendrik
Blockeel and was defended on March 30, 2007.

173

Complexe aggregaten in relationeel

leren

Nederlandse samenvatting

1 Inleiding

Situering van het onderzoek

Dit werk situeert zich in het vakgebied van kunstmatige intelligentie (Mc-
Carthy et al. 1955), de wetenschap die zich bezighoudt met het maken van in-
telligente machines, of meer specifiek, intelligente computerprogramma’s. Het
begrip intelligent is moeilijk te definiëren, wat zich uit in verschillende beschik-
bare definities. Deze lijken het toch eens te zijn dat één van de belangrijkste
kenmerken van intelligent gedrag het vermogen tot leren is. Dit brengt ons
bij het automatisch leren, een belangrijk deeldomein van kunstmatige intel-
ligentie, dat algoritmen en technieken ontwikkelt die een automatisch systeem
toelaten te leren. Van een automatisch systeem (bvb. een computerprogram-
ma) wordt gezegd dat het leert als het beter wordt in de uitvoering van een
taak door het vergaren van kennis opgedaan door ervaring in die taak (Langley
1996). Het onderzoeksdomein van automatisch leren kent vele subdomeinen
met elk een eigen manier van leren of een eigen taak. Een groot deel van het
onderzoek in dit domein houdt zich bezig met het leren van nieuwe kennis uit
datasets. Zo’n dataset wordt meestal voorgesteld als een tabel, waarbij elke
rij een voorbeeld (gegeven) voorstelt, en elke kolom een eigenschap (attribuut)
van de gegevens. We onderscheiden twee toepassingen. Bij predictief leren is
de taak het voorspellen van de waarde van een specifiek attribuut. Bij descrip-
tief leren is de taak het vinden van een algemeen geldende beschrijving van de
voorbeelden. In dit onderzoek concentreren we ons vooral op predictief leren.

Het domein van automatisch leren kent vele raakpunten met datamining.
Bij datamining zoekt men naar regelmatigheden (patronen genoemd) in grote
gegevensbanken. Dit is een stap in het bredere gebied van kennisvergaring
uit gegevensbanken, wat ook het voorbereiden van de gegevens en het ver-
werken van de resultaten omvat.

Door de vooruitgang in computertechnologie is het genereren en opslaan van
gegevens de laatste jaren erg gemakkelijk en goedkoop geworden, wat resulteert
in de beschikbaarheid van enorme hoeveelheden gegevens uit verschillende ge-
bieden (bvb. financiewezen, bio- en chemo-informatica, marketing,. . .). Zulke
gegevens worden praktisch altijd opgeslagen in relationele gegevensbanken (El-
masri and Navathe 2004), die meerdere gerelateerde tabellen kunnen omvatten.
Dit conflicteert met de klassieke leermethoden die alle gegevens in één tabel
veronderstellen. Een aantal zogenaamde propositionalizatiemethoden zijn ont-
wikkeld die een relationele gegevensbank transformeren tot één enkele tabel,
zodat klassieke algoritmen kunnen uitgevoerd worden. De laatste jaren wordt
echter meer en meer onderzoek verricht naar methoden die onmiddellijk uit
een relationele gegevensbank leren. Het bijhorende onderzoeksgebied wordt
relationeel leren of relationele datamining genoemd.

Een belangrijk deel van het onderzoek binnen relationeel leren is inductief
logisch programmeren (ILP) (Muggleton 1992; Lavrač and Džeroski 1994),

NL 3

een domein dat zich situeert op de doorsnede tussen automatisch leren en logisch
programmeren. In ILP worden de gegevens alsook de patronen voorgesteld als
logische programma’s (Lloyd 1987; Bratko 2001). Dit maakt het relatief een-
voudig om achtergrondkennis uit te drukken en geeft een expressieve, makkelijk
begrijpbare, en theoretisch gefundeerde basis aan het domein.

Doel en motivatie

Bij relationeel leren of ILP leert men patronen uit relationele gegevensbanken,
die normaalgezien uit meerdere tabellen bestaan, die met elkaar gerelateerd
zijn. Deze relaties kunnen bijvoorbeeld een één-op-veel of veel-op-veel cardina-
liteitsverhouding hebben. Een voorbeeld waarvoor een predictie moet gemaakt
worden kan dus gerelateerd zijn aan een verzameling objecten die mogelijk re-
levant zijn voor de predictie. Bestaande relationele leermethoden behandelen
deze verzamelingen gewoonlijk op één van volgende manieren: door het opleg-
gen van condities aan de elementen in de verzameling of door het gebruiken
van aggregaatsfuncties om ze samen te vatten.

Bestaande methoden zijn niet in staat om beide benaderingen te combineren,
waardoor ze bepaalde patronen niet kunnen leren (Blockeel and Bruynooghe
2003). Een dergelijke combinatie zou bestaan uit het aggregeren over een deel-
verzameling van elementen die aan een specifieke conditie voldoen (“aggregeren
over een selectie”). Bijvoorbeeld, in een gegevensbank die informatie over per-
sonen en hun bankrekeningen bijhoudt zou de predictie van een persoon kunnen
gerelateerd zijn aan de som (aggregatie) van het saldo op zijn spaarrekeningen
(selectie). Hoewel van dergelijke combinaties verwacht kan worden dat ze vaak
relevant zijn bij de predictie zijn ze moeilijk om automatisch te leren, ten eerste
omdat de zoekruimte van mogelijke patronen significant groeit en ten tweede
omdat het moeilijker wordt om deze zoekruimte op een gestructureerde en effi-
ciënte manier te doorlopen. Toch geven een aantal auteurs het belang van deze
combinatie aan (Perlich and Provost 2003; Blockeel and Bruynooghe 2003; Kro-
gel et al. 2003). Het belangrijkste doel in dit eindwerk is het combineren van
beide benaderingen, dus het aggregeren over selecties.

2 Inductief logisch programmeren

Zoals gezegd in de inleiding worden de gegevens en geleerde patronen bij induc-
tief logisch programmeren (ILP) voorgesteld als logische programma’s, een be-
langrijk onderdeel van de eerste orde predicatenlogica. ILP methoden worden
daarom ook eerste-orde methoden genoemd. Een gegeven wordt voorgesteld
door een feit, een patroon door een verzameling regels.

Voorbeeld 1 Beschouw een gegevensbank die informatie bijhoudt over perso-
nen en hun bankrekeningen. Voor elke bankrekening worden ook de bijhorende
transacties bijgehouden. Een persoon wordt gekenmerkt door een identificator

NL 4

PERSOON REKENING
PersId Leeftijd Doel

john 24 positief
mary 27 negatief
billy 25 negatief

PersId RekId Type Saldo
john 123456 zicht 100
john 987654 zicht 200
john 789123 spaar 200
mary 345678 spaar 250
billy 456789 zicht 150

TRANSACTIE
RekId TransId Datum Type Bedrag
123456 tr090 010706 afhaling 50
123456 tr091 030706 storting 30
987654 tr098 120706 storting 70
789123 tr100 150706 afhaling 100
789123 tr101 150706 storting 80
345678 tr150 220706 afhaling 20

Figuur 1: Extensie van de Rekening gegevensbank.

(bvb. naam of rijksregisternummer), zijn leeftijd en een niet nader gespecificeerd
doelattribuut. Een extensie van deze gegevensbank wordt getoond in Fig. 1. Bij
het gebruik van ILP methoden wordt deze gegevensbank eerst omgezet naar een
eerste orde voorstelling (Tabel 1). Een mogelijk patroon dat de positieve voor-
beelden van de negatieve onderscheidt is het volgende:

persoon(PId, Leeft, positief)←− Leeft < 26, rekening(PId,RekId, spaar,
Saldo), Saldo > 180, !.

persoon(PId, Leeft, negatief)←− .

Dit patroon zegt dat een persoon positief is als zijn leeftijd kleiner is dan 26 en
als hij een spaarrekening heeft met saldo groter dan 180. In alle andere gevallen
wordt een negatieve voorspelling gegeven.

Patronen (ook wel hypothesen genoemd) worden normaalgezien regel per
regel geleerd. Aan de ruimte van mogelijk regels wordt een orderelatie opge-
legd die toelaat om deze efficiënt te doorzoeken. Deze orderelatie is meestal
gebaseerd op θ-subsumptie (Plotkin 1969).

Definitie 1 (θ-subsumptie) Een regel r1 θ-subsumeert een regel r2 (geno-
teerd als r1 ≤θ r2) als er een substitutie θ bestaat, zodat r1θ ⊆ r2.

Een substitutie σ = {V1/t1, V2/t2, ..., Vn/tn} vervangt gelijktijdig alle variabe-
len V1, V2, ..., Vn door de termen (dit zijn constanten, variabelen of functies)

NL 5

Tabel 1: Eerste orde voorstelling van de Rekening gegevensbank extensie van
Fig. 1.

persoon(john,24,positief).
persoon(mary,27,negatief).
persoon(billy,25,negatief).

rekening(john,123456,zicht,100).
rekening(john,987654,zicht,200).
rekening(john,789123,spaar,200).
rekening(mary,345678,spaar,250).
rekening(billy,456789,zicht,150).

transaction(123456,tr090,010706,afhaling,50).
transaction(123456,tr091,030706,storting,30).
transaction(987654,tr098,120706,storting,70).
transaction(789123,tr100,150706,afhaling,100).
transaction(789123,tr101,150706,storting,80).
transaction(345678,tr150,220706,afhaling,20).

t1, t2, .., tn.

Voorbeeld 2 Regel R1 :

persoon(PersId, Leeft,Doel)←− rekening(PersId,RekId, Type, Saldo)

θ-subsumeert regel R2 :

persoon(PersId, Leeft,Doel)←− rekening(PersId,RekId, spaar, Saldo)

d. m. v. de substitutie θ = {Type/spaar}. Regel R1 θ-subsumeert ook regel R3 :

persoon(PersId, Leeft,Doel)←− rekening(PersId,RekId, Type, Saldo),
Saldo > 500.

In dit laatste voorbeeld is θ = ∅.

De θ-subsumptie relatie heeft een interessante eigenschap m.b.t. algemeenheid
van regels: als R1 ≤θ R2, dan is R1 minstens zo algemeen als R2, waarbij een
regel algemener gesteld wordt dan een andere als hij meer voorbeelden dekt.
Deze algemeenheid is belangrijk om te kunnen snoeien in de hypotheseruimte:
als een bepaalde hypothese H te weinig voorbeelden dekt, dan hoeven de hypo-
thesen die gesubsumeerd worden door H niet meer onderzocht te worden. Een
regel wordt geconstrueerd startende van de meest algemene regel (waar ←−)
en wordt stap voor stap opgebouwd, gebruik makende van een verfijningsope-
rator gebaseerd op θ-subsumptie. Zo’n verfijningsoperator verfijnt een regel op
een van volgende manieren:

NL 6

• het uitvoeren van een substitutie op de regel, of

• het toevoegen van een taalelement aan de regel.

De taalelementen die kunnen toegevoegd worden (zoals Saldo > 500 in Vb. 2)
worden door de gebruiker gespecificeerd in een hypothesetaalbeschrijving.

3 Combineren van aggregaten en selecties

In deze sectie bekijken we hoe de combinatie van aggregaten en selecties bereikt
wordt in de ILP context.

Complexe aggregaatscondities

De regels waarin we gëınteresseerd zijn, zijn niet van pure logische aard: ze
kunnen aggregaatscondities bevatten, die we als volgt definiëren.

Definitie 2 (Aggregaatsconditie, syntactisch) Een aggregaatsconditie is
een literalpaar (F (V,Q,R), between(R, T1, T2)), waarbij F een aggregaatsfunc-
tie is, V een variabele die voorkomt in de aggregaatsquery Q, R het resultaat
van het toepassen van F op de (multi-)verzameling van alle antwoordsubstitu-
ties voor V waarin Q resulteert, T1 and T2 grenswaarden, en het between/3
predicaat nagaat of R ∈ [T1, T2]. De literal F (V,Q,R) wordt de aggregaatliteral
genoemd.

De aggregaatsfuncties die we beschouwen zijn deze die resulteren in een nume-
rieke waarde, zoals max, min, avg (gemiddelde), sum (som) en count (cardinali-
teit). Vaak wordt als interval]−∞, T2] of [T1,∞[gebruikt en wordt het between
predicaat vervangen door de overeenkomstige ongelijkheid. De voorgaande de-
finitie van aggregaatscondities is louter syntactisch. De volgende definitie geeft
de betekenis ervan weer.

Definitie 3 (Aggregaatsconditie, semantisch) Een aggregaatsconditie is
een functie c : F × S × I → B : F (S) ∈ I 7→ B, met F een verzameling
aggregaatsfuncties, S een verzameling multi-verzamelingen, I een verzameling
numerieke intervallen en B de verzameling booleaanse waarden. De waarde
voor B is waar als de conditie F (S) ∈ I voldaan is, en vals in het andere geval.

In deze definitie wordt abstractie gemaakt van het feit dat S gegenereerd is
door een query Q en een variabele V .

In de vorige sectie legden we uit dat de meeste ILP systemen gebruik maken
van een algemeen-naar-specifiek orde in de zoekruimte van mogelijke regels
om deze zoekruimte efficiënt te doorzoeken. De verfijningsoperator die daarbij
gebruikt wordt verfijnt de reeds bekomen regel door het toevoegen van een
taalelement of door het uitvoeren van een substitutie. Stel nu dat de reeds
bekomen regel een aggregaatsconditie bevat, bijvoorbeeld

NL 7

persoon(PersId, positief)←
max(Saldo, rekening(PersId,RekId, Type, Saldo),M),M ≥ 50000.

Deze regel classificeert een persoon als positief indien het maximale saldo van
zijn rekeningen groter is dan 50000. Dergelijke regel kan niet enkel verfijnd wor-
den door toepassing van de verfijningsoperator op de regel zelf, maar ook door
toepassing van de verfijningsoperator op de aggregaatsquery rekening(PersId,
RekId, Type, Saldo), resulterend in, bijvoorbeeld

persoon(PersId, positief)←
max(Saldo, rekening(PersId,RekId, spaar, Saldo),M),M ≥ 50000,

waarbij Type gesubstitueerd werd door spaarrekening. Naast een substitutie
kan ook een taalelement toegevoegd worden aan de aggregaatsquery. Derge-
lijke verfijningen resulteren in wat we noemen complexe aggregaten, die een
combinatie vormen van aggregaten en selectiecondities.

Definitie 4 (Complexe en simpele aggregaatscondities) Een complexe
aggregaatsconditie is een aggregaatsconditie waar de aggregaatsquery Q een
complexe query is, m.a.w. Q is verfijnd met selectiecondities.
Een simpele aggregaatsconditie is een aggregaatsconditie waar de aggregaats-
query niet verfijnd is.

Verfijnen van regels met complexe aggregaatscondities

Om regels met aggregaatscondities op dezelfde manier te kunnen verfijnen als
standaard regels, definiëren we een extensie van de klassieke θ-subsumptie
relatie voor regels met aggregaten. We noemen de resulterende relatie α-
subsumptie. In de volgende definitie stelt S(C) het standaard deel van een
regel voor; dit is de verzameling literals die geen deel uitmaken van een aggre-
gaatsconditie.

Definitie 5 (α-subsumptie) Een regel c1 α-subsumeert een regel c2 (geno-
teerd als c1 ≤α c2) als en slechts als ∃θ : S(c1)θ ⊆ S(c2), en voor elke ag-
gregaatliteral F (V1, Q1, R1) ∈ c1, is er een aggregaatliteral F (V2, Q2, R2) ∈ c2

zodat R1θ = R2, Q1θ ≤α Q2, en deze laatste α-subsumptie heeft enkel betrek-
king op een verzameling substituties σ over lokaal gedefinieerde variabelen in
Q1, zodat V1σ = V2.

Een verfijningsoperator gebaseerd op α-subsumptie verfijnt een regel door het
uitvoeren van een van volgende basisoperaties:

• het uitvoeren van een substitutie op de regel,

• het toevoegen van een taalelement aan de regel, of

• het uitvoeren van een substitutie op of het toevoegen van een taalelement
aan de aggregaatsquery van een aggregaatliteral in de regel.

NL 8

Het verfijnen van regels gebruik makende van α-substitutie brengt een aantal
moeilijkheden met zich mee. Ten eerste wordt de zoekruimte significant uitge-
breid. Ten tweede is er, hoewel de definitie van α-substitutie syntactisch erg
gelijkaardig is aan die van θ-subsumptie, een belangrijk verschil tussen beide:
de eigenschap dat c1 ≤α c2 impliceert dat c2 meer specifiek is dan c1 geldt niet
meer. Dit kan te wijten zijn aan de semantiek van de aggregaatsfunctie of aan
de monotoniciteitseigenschappen van de aggregaatsconditie. We bespreken elk
van de problemen achtereenvolgens.

Uitbreiding van de zoekruimte

Door aggregaatsqueries te verfijnen wordt het aantal mogelijke verfijningen
voor een regel drastisch verhoogd. Veronderstel dat een standaard regel op
C manieren verfijnd kan worden. Als we nu ook aggregaatliterals toelaten
met elk van deze C verfijningen als aggregaatsquery, elk van de V variabe-
len in deze verfijningen toelaten als aggregaatsvariabele en N mogelijke ag-
gregaatsfuncties beschouwen, dan wordt het aantal verfijningen verhoogd tot
C + V · N · C + V · N · C · (C + V · N · C)L met L het aantal taalelementen
toegevoegd in de aggregaatsquery.

Semantiek van de aggregaatsfuncties

Zoals gezegd resulteert het verfijnen van een aggregaatsquery niet automatisch
in een specializatie van de verfijnde regel. Het kan ook resulteren in een ge-
neralizatie, of sterker nog, in geen van beide. Het resultaat hangt af van hoe
de (multi-)verzameling van antwoordsubstituties voor de aggregaatsvariabele
berekend wordt. We stellen in de tekst drie semantieken voor. Voor de aggre-
gaatliteral

som(Saldo, (rekening(PersId,RekId, Type, Saldo),
transactie(RekId, TransId, TransType,Bedrag)), Resultaat)

leidt dit tot volgende mogelijke resultaten voor het eerste voorbeeld (john) met
de gegevens uit Tabel 1:

• 100+100+200+200+200 = 800 (bij aggregatie over de multi-verzameling
van saldo’s)

• 100 + 200 = 300 (bij aggregatie over de verzameling van saldo’s)

• 100+200+200 = 500 (bij aggregatie over de verzameling van rekeningen).

Bij de eerste semantiek kan het verfijnen van een aggregaatsquery zowel een
specializatie als een generalizatie (of zelfs geen van beide) van de regel tot
gevolg hebben, doordat de multi-verzameling van antwoordsubstituties zowel
kan verkleinen als uitbreiden. Bij de tweede en derde semantiek wordt deze
laatste gegarandeerd verkleind. De derde semantiek geeft het meest intuı̈tieve

NL 9

resultaat van de aggregaatliteral (som van de saldo’s van de rekeningen met
een bijhorende transactie).

Monotoniciteit

Zelfs indien we gebruik maken van de derde semantiek uit vorige paragraaf,
kan een verfijning van een aggregaatsconditie er nog steeds voor zorgen dat we
een generalizatie van de regel bekomen in plaats van een specializatie. Dit is
te wijten aan de monotoniciteitseigenschappen van de aggregaatsconditie. In
het algemeen noemen we een functie f(x1, ..., xn) die een geordend domein op
een geordend bereik afbeeldt, monotoon in xi als een stijging of daling in xi

de orde bewaart, anti-monotoon in xi als de orde omgekeerd wordt, en niet-
monotoon in xi in de andere gevallen. Om de monotoniciteitseigenschappen
van een aggregaatsconditie F (S) ∈ I 7→ B te onderzoeken, moeten we dus
eerst een orde definiëren op elk van de domeinen F, S, I en B. Waar dit voor
S, I en B triviaal is, is het moeilijker een orde te definiëren voor F. In de tekst
stellen we verschillende klassen van aggregaatsfuncties voor, waarbij binnen
elke klasse een orde geldt, en leiden daarna de monotoniciteitseigenschappen
van een aggregaatsconditie af.

Er bestaat geen verfijningsstrategie voor aggregaatsqueries die garandeert dat
een specializatie verkregen wordt, tenzij we ons beperken tot aggregaatscondi-
ties die monotoon zijn in de aggregaatsquery en de derde semantiek gebruiken.
Als we echter, naast verfijningen in de aggregaatsquery, ook verfijningen in de
aggregaatsfunctie en in het interval toelaten, kunnen we wel zo’n verfijnings-
strategie definiëren. Voor elke geordende klasse van aggregaatsfuncties wor-
den de mogelijke verfijningen visueel weergegeven in een verfijningskubus. Een
voorbeeld voor de zogenaamde klasse van veralgemeende gemiddelden wordt
gegeven in Fig. 2. De achterliggende idee is dat, startende van één enkele ag-
gregaatsconditie, de volledige kubus gegenereerd kan worden door het volgen
van monotone paden die aangegeven worden door de pijlen in de kubus. Langs
deze monotone paden worden alsmaar specifiekere aggregaatscondities gegene-
reerd.

Geen van de bestaande leermethoden beschouwt verfijningen langs deze drie
dimensies tesamen. Toch toont onze analyse aan dat alle dimensies nodig zijn
om de volledige zoekruimte op te bouwen via de monotone paden.

Ook bij de verfijningskubussen hoort een subsumptie relatie, we noemen ze
µ-subsumptie.

Definitie 6 (µ-subsumptie) Een regel c1 µ-subsumeert een regel c2 (geno-
teerd als c1 ≤µ c2) als en slechts als S(c1) ≤θ S(c2), en voor elke aggregaats-
conditie (F1(V1, Q1, R1), between(R1, T11, T12)) ∈ c1 bestaat er een aggregaats-
conditie (F2(V2, Q2, R2), between(R2, T21, T22)) ∈ c2 zodat R1θ = R2, het tupel
(F2, Q2, T21, T22) verkregen werd uit (F1, Q1σ, T11, T12) via een monotoon pad
in de corresponderende verfijningskubus, V1σ = V2, en de substitutie σ bestaat
uit θ uitgebreid met een substitutie over lokaal gedefinieerde variabelen in Q1.

NL 10

(a) (b)

Figuur 2: Verfijningskubussen voor de veralgemeende gemiddelden. (a) Verfij-
ningskubus voor de startconditie max(SQ) ≥ min value. (b) Verfijningskubus
voor de startconditie min(SQ) ≤ max value.

Deze relatie heeft, net zoals θ-subsumptie, maar in tegenstelling tot α-subsump-
tie, de eigenschap dat c1 µ-subsumeert c2 impliceert dat c1 minstens zo alge-
meen is als c2.

4 Complexe aggregaten bij eerste orde

beslissingsbomen

In vorige sectie legden we de basis voor het gebruik van complexe aggregaten in
het ILP raamwerk. Nu implementeren en testen we de ontwikkelde concepten
en technieken in een concreet ILP systeem, nl. Tilde (Blockeel and De Raedt
1998).

Tilde: een eerste orde beslissingsboom algoritme

Tilde is een eerste orde beslissingsboom leeralgoritme. Beslissingsbomen zijn
boomvormige patronen die de voorbeelden in een dataset recursief opsplitsen
volgens hun uitkomst op een test. Elk voorbeeld komt op die manier terecht in
een blad van de boom, waar zich de predictie voor dat voorbeeld bevindt. Als
een nominaal attribuut voorspeld wordt, spreken we van een classificatieboom;
bij een numeriek attribuut van een regressieboom. Tilde leert bomen van bo-
ven naar beneden, te starten bij de wortelknoop en te eindigen in de bladeren.
De testen in de knopen zijn eerste orde literals. Bij elke knoop hoort ook een
query die de conjunctie is van alle literals op het pad van de wortelknoop tot

NL 11

de knoop in kwestie die slagen; deze query wordt de huidige query genoemd.
Bij het zoeken naar een test voor een knoop K wordt de huidige query in K
uitgebreid met een taalelement uit de hypothesetaalbeschrijving. Een verfij-
ningsoperator gebaseerd op θ-subsumptie genereert deze uitbreidingen, waarna
ze getest worden op de voorbeelden horende bij K en de beste genomen wordt.

Toevoegen van aggregaatscondities bij Tilde

Om simpele aggregaatscondities toe te voegen aan de testen die Tilde kan
leren, moeten deze toegevoegd worden aan de hypothesetaalbeschrijving. Voor
het toevoegen van complexe aggregaatscondities in een knoop zijn er twee mo-
gelijkheden:

• het verfijnen van de aggregaatsquery van een (simpele of complexe) ag-
gregaatsconditie die voorkomt in de huidige query van die knoop, of

• onmiddellijk een complexe aggregaatsconditie toevoegen, onafhankelijk
van de aggregaatscondities die reeds voorkomen in de huidige query.

De tweede manier maakt gebruik van een vooruitkijktechniek (Blockeel and
De Raedt 1997) die vaak gebruikt wordt binnen ILP.

Verfijnen van aggregaatscondities bij Tilde

Aangezien bij Tilde verfijningen van een query Q bestaan uit een uitbreiding
van Q met een of meerdere literals R, zijn de voorbeelden waarvoor de ver-
fijning (Q,R) (de conjunctie van Q en R) slaagt een deelverzameling van de
voorbeelden waarvoor Q slaagt. Dit betekent (per definitie) dat (Q,R) een spe-
cializatie is van Q. Een gevolg hiervan is dat een eenvoudige verfijningsoperator
gebaseerd op α-subsumptie gebruikt kan worden voor het verfijnen van aggre-
gaatscondities. Dergelijke verfijningsoperator is echter weinig efficiënt, vooral
bij de vooruitkijkmethode, en daarom onderzoeken we enkele technieken om de
snelheid van het algoritme te verhogen.

Een eerste techniek is het gebruik van gerandomiseerde bossen (Breiman
2001). Een gerandomiseerd bos is een verzameling beslissingsbomen, waarbij
elke boom gebouwd wordt door bij elke knoop slechts een willekeurige steek-
proef van de verfijningen te testen bij het zoeken naar de beste test. Dit com-
penseert voor de groei van de zoekruimte bij complexe aggregaten. Bovendien
hebben gerandomiseerde bossen bij propositioneel leren aangetoond de predic-
tieve performantie te verhogen indien de verzameling testen heel groot is en
een voldoende aantal bomen gebouwd worden.

Een tweede techniek (die chronologisch na het gerandomiseerd bos ontwikkeld
werd) is het gebruik van een verfijningsoperator gebaseerd op de voorgestelde
µ-subsumptie relatie. Deze kunnen we bij de methode die gebruik maakt van
vooruitkijken als volgt toepassen. We schikken de verfijningen teruggegeven

NL 12

door de verfijningsoperator op die manier dat ze de monotone paden uit de ver-
fijningskubussen reflecteren. Bij het zoeken naar de beste test worden alle ver-
fijningen op alle voorbeelden uitgevoerd. Als blijkt dat een bepaalde verfijning
V faalt voor een bepaald voorbeeld E, dan kunnen we voor E alle verfijningen
die verkregen worden uit V via een monotoon pad, uit de zoekruimte snoeien,
wat logischerwijze een snelheidswinst oplevert. Deze techniek heeft als voordeel
over de gerandomiseerde bossen dat de volledige zoekruimte doorzocht wordt
en dat er slechts één boom gebouwd wordt, wat de interpretatie van het model
ten goede komt.

Experimenten

Het leren van complexe aggregaten en de zopas voorgestelde technieken om
de efficiëntie te verbeteren worden geëvalueerd door de uitgebreide versie van
Tilde te evalueren op een aantal ILP datasets. Onze experimentele evaluatie
toont aan dat het gebruik van aggregaten een duidelijke winst in predictieve
performantie oplevert. Het grootste deel van deze winst is wordt verkregen
met simpele aggregaatscondities. De stap naar complexe aggregaten levert
enkel een kleine bijkomstige winst op bij onze drie ILP benchmark datasets.
Het gebruik van een artificiële dataset toont echter aan dat, indien het doel-
concept complexe aggregaten bevat, het gebruik van complexe aggregaten een
duidelijke winst biedt ten opzichte van simpele aggregaten. Het gebruik van
de verfijningsoperator gebaseerd op µ-subsumptie levert een snelheidswinst tot
factor 3 op bij de benchmark datasets. Het systeem uitbreiden tot een eerste
orde gerandomiseerd bos leersysteem levert, naargelang het aantal bomen en
de steekproefverhouding die gebruikt worden, een snelheidswinst of -verlies op.
De predictieve performantie wordt bij gerandomiseerde bossen altijd verbeterd.

5 Predicties met complexe aggregaten

In de vorige secties beschouwden we het gebruik van complexe aggregaten in het
antecedent van de hypothese (bvb. in de knopen van een beslissingsboom). We
kunnen echter ook bij het consequent (de predictie, bvb. in de bladeren van
een beslissingsboom) aggregaten gebruiken. Neem bijvoorbeeld modelbomen
(Karalic 1992; Quinlan 1992). Dit zijn regressiebomen waarbij de bladeren een
model bevatten in plaats van een constante waarde. Dit model voorspelt het
numerieke doelattribuut (meestal) als een lineaire combinatie van een aantal
invoerattributen. Als deze invoerattributen niet-deterministisch zijn (d.i. er
zijn meerdere waarden voor deze attributen voor elk voorbeeld, door één-op-
veel of veel-op-veel relaties in de dataset), moet er opnieuw een keuze gemaakt
worden hoe deze verzamelingen van waarden behandeld worden. Bestaande
leeralgoritmen gaan ook hier ofwel de waarde nemen van de objecten die aan een
specifieke conditie voldoen ofwel aggregaatsfuncties gebruiken om de waarden

NL 13

samen te vatten, zonder beide benaderingen te combineren. In deze sectie
stellen we het gebruik van complexe aggregaten voor bij het construeren van
lineaire vergelijkingen in de bladeren van modelbomen.

Zoeken naar een gepaste heuristiek

De complexe aggregaten in de vergelijkingen in de bladeren worden niet van
nul geleerd, maar worden ingevoerd indien ze een lineair verband met het doe-
lattribuut vertoond hebben bij het bouwen van de boom. Dit betekent dat de
heuristiekfunctie (d.i. de functie die de kwaliteit aangeeft voor elke mogelijke
test voor een knoop) lineaire verbanden in rekening moet brengen. Bestaan-
de heuristieken voor modelbomen die dit doen zijn minstens kwadratisch in
het aantal attributen (Karalic 1992; Alexander and Grimshaw 1996; Maler-
ba et al. 2004). Aangezien we complexe aggregaten willen gebruiken is het
aantal attributen bij ons zeer groot, waardoor we op zoek gaan naar een effi-
ciëntere heuristiek. Daar het merendeel van het onderzoek naar modelbomen
in de propositionele context gebeurd is, bestuderen we eerst de in de literatuur
voorgestelde heuristieken in die context.

De meest efficiënte heuristiek is de variantiegebaseerde heuristiek (Quinlan
1992; Wang and Witten 1997). Daarbij wordt de variantie (of een variant
daarvan, zoals standaard deviatie of som van de kwadratische fout) in linker-
en rechterkind van de te splitsen knoop geminimaliseerd. Variantiegebaseerde
heuristieken zijn echter geen geschikte aanpak voor het leren van modelbomen,
aangezien de variantie onafhankelijk is van de kwaliteit van een lineair model
(Karalic 1992; Malerba et al. 2004). Onze analyse toont aan dat niet zozeer
de predictieve performantie, maar wel de verklarende kwaliteit van de mo-
delbomen bëınvloed wordt: onnodig grote modelbomen met niet-informatieve
splitcondities worden gëınduceerd.

De meest performante heuristiek is het minimaliseren van de residuele va-
riantie, waarbij de variantie genomen wordt ten opzichte van een meervoudig
lineair model (in alle predictieve attributen) (Karalic 1992). Deze aanpak is
echter kubisch in het aantal attributen en dus niet geschikt voor onze toepas-
sing.

De heuristiek die we voorstellen combineert de voordelen van beide genoemde
benaderingen. Ze houdt rekening met lineaire modellen in die zin dat de resi-
duele variantie genomen wordt ten opzichte van een enkelvoudig lineair model
(met als predictief attribuut het attribuut waarop gesplitst wordt). De bijho-
rende complexiteit is lineair in het aantal attributen en verschilt slechts een
constante factor van de variantiegebaseerde methoden.

We implementeren de voorgestelde heuristiek in een modelboom leeralgorit-
me, Mauve genaamd. Alle numerieke attributen die voorkomen in de data-
set kunnen gebruikt worden als predictieve attributen in de lineaire modellen
in de bladeren van de modelbomen. Experimentele evaluatie toont aan dat
Mauve kortere bomen met eenzelfde predictieve performantie als variantiege-

NL 14

baseerde technieken leert, indien er een stuksgewijs lineair verband is tussen de
invoerattributen en het doelattribuut. Bovendien suggereren de resultaten dat
dergelijke verbanden vaak voorkomen in echte datasets en dat het gebruik van
meer ingewikkelde technieken in het algemeen niet leidt tot betere predicties of
kortere modelbomen.

Relationele modelbomen met complexe aggregaatscondities

We breiden het Mauve algoritme uit naar de relationele context. Daarvoor
opwaarderen we Tilde tot een eerste orde modelboom leeralgoritme. Til-

de’s heuristiek voor het leren van regressiebomen, die een variantiegebaseerde
heuristiek is, wordt aangepast naar de ontwikkelde heuristiek bij Mauve. De
lineaire vergelijking in een blad bevat de attributen (waaronder eventueel com-
plexe aggregaten) die voorkomen in de knopen op het pad van de wortelknoop
tot het blad. Het resulterende algoritme noemen we ReMauve.

Om globale lineaire verbanden in de data te modelleren voorzien we een spe-
ciale soort knopen: regressieknopen (Appice et al. 2003). In tegenstelling tot
de splitknopen gaan regressieknopen de data niet splitsen maar geven ze de
volledige verzameling bijhorende voorbeelden door naar hun enige kindknoop.
De bedoeling van regressieknopen is het introduceren van een predictief attri-
buut dat kan gebruikt worden in de lineaire vergelijkingen in de bladeren. Om
sterk gecorreleerde testen te vermijden, wordt, na het invoegen van een regres-
sieknoop of een splitknoop met een numerieke test, het lineaire effect van de
test afgetrokken van het doelattribuut.

Experimenten tonen aan dat ReMauve, bij datasets met veel numerieke
attributen (zoals het geval is bij het leren van complexe aggregaten), beter
scoort dan Tilde op gebied van predictieve performantie en modelgrootte. Als
we de mogelijkheid om (complexe) aggregaten te leren afzetten, dan verschilt de
predictieve performantie van ReMauve, in vergelijking met een ander systeem
dat relationele modelbomen bouwt (Appice et al. 2003), niet significant, maar
worden in het algemeen wel kortere bomen gebouwd. De mogelijkheid om
complexe aggregaten te leren laat in sommige gevallen toe om de predictieve
performantie te verbeteren.

6 Toepassingen

We stellen twee toepassingen van complexe aggregaten voor.

Een landbouwtoepassing

In de eerste toepassing analyseren we een dataset over genetisch gemanipuleerde
landbouwproducten. De mogelijkheid dat genetisch gemanipuleerde gewassen
gemengd worden met organische gewassen (bvb. door stuifmeel meegedragen

NL 15

door de wind) is een delicate aangelegenheid en daarom is de detectie van
gemanipuleerde gewassen in velden met organische gewassen een uitdaging. In
onze toepassing concentreren we op koolzaad gewassen.

Elk voorbeeld in de onderzochte dataset is een veldplan van 35 velden, met
voor elk veld informatie over de cultiveringstechnieken van de laatste vier jaar
(geteelde gewas, zaaidatum,. . .). De taak is het voorspellen van de graad van
contaminatie met gemanipuleerd materiaal in de koolzaadgewassen van het
middelste veld in het huidige jaar. De specifieke bedoeling van de toepassing is
om na te gaan of naburige velden een invloed hebben op deze voorspelling en
of complexe aggregaten (bvb. de gemiddelde zaaidatum van de velden binnen
een afstand van 200m was vóór 1 juni) een voordeel bieden ten opzichte van
testen op aparte velden (bvb er bestaat een veld binnen een afstand van 200m
met zaaidatum voor 1 juni).

Resultaten tonen aan dat eigenschappen van naburige velden (zowel geag-
gregeerd of niet) inderdaad een invloed hebben op de predictie, maar dat ze de
predictieve performantie niet verhogen. Verder onderzoek met meer realistische
datasets is nodig.

Een biologische toepassing

Bij de tweede toepassing analyseren we een biologische dataset die de genen
in het genoom van gist bevat. Bedoeling is om de functie van de genen te
voorspellen aan de hand van informatie over gelijksoortige genen en secondai-
re structuren. Aangezien een gen meerdere functies heeft, die gestructureerd
zijn in een hiërarchie, hebben we te maken met een zogenaamd hiërarchisch
meervoudig classificatie probleem (Blockeel et al. 2002).

In deze toepassing gebruiken we het Clus algoritme, een propositionele versie
van Tilde en speciaal aangepast voor hiërarchische meervoudige classificatie
toepassingen (Struyf et al. 2005). Dit betekent dat we eerst de relationele data
moeten omzetten naar een propositionele tabel. Hiervoor gebruiken we Warmr

(Dehaspe and Toivonen 1999), een relationeel frequent patroon leeralgoritme.
Warmr gebruikt dezelfde verfijningsoperator als Tilde en dus kunnen ook
complexe aggregaten geleerd worden. De invoer voor Clus bestaat dus uit
één tabel met als kolommen de frequente patronen (die complexe aggregaats-
condities kunnen bevatten) die geleerd zijn met Warmr. De waarde voor elk
voorbeeld is waar als het patroon voorkomt in dat voorbeeld, en vals anders.

De resulterende boom bevat bijna uitsluitend testen gerelateerd aan de ge-
lijksoortige genen, met een complex aggregaat in de wortelknoop.

7 Besluit

De belangrijkste bijdragen uit dit eindwerk kunnen als volgt samengevat wor-
den.

NL 16

• Het introduceren van complexe aggregaatscondities, dewelke een combi-
natie van aggregaten en selectiecondities vormen, in het ILP raamwerk.
De klassieke ILP verfijningsoperator is uitgebreid om complexe aggrega-
ten te kunnen leren. De belangrijkste problemen die hierbij opduiken
zijn de groei van de hypotheseruimte en het schenden van de algemeen-
naar-specifiek orde in de hypotheseruimte die verondersteld wordt door
de verfijningsoperator. Het laatste probleem kan gerelateerd zijn aan de
semantiek van de aggregaatsfunctie of aan de monotoniciteitseigenschap-
pen van de aggregaatsconditie.

• Het opstellen van een algemeen verfijningsraamwerk voor complexe aggre-
gaatscondities dat de algemeen-naar-specifiek orde in de hypotheseruimte
bewaart. Dit raamwerk is toepasbaar op elk relationeel leersysteem dat
complexe aggregaten leert.

• Het uitbreiden van een bestaand eerste orde beslissingsboom leeralgo-
ritme om complexe aggregaten te kunnen leren. Complexe aggregaten
worden bekomen door het verfijnen van aggregaten die hoger in de boom
voorkomen of door toepassing van een vooruitkijktechniek.

• Het opwaarderen van het beslissingsboom algoritme naar een eerste or-
de gerandomiseerd bos leeralgoritme. Een verzameling beslissingsbomen
wordt geleerd waarbij elke knoop gebouwd wordt door een willekeurige
steekproef van mogelijke testen te beschouwen. Gerandomiseerde bossen
brengen een oplossing voor de groei in de hypotheseruimte en zijn in staat
om de predictieve performantie te verhogen.

• Het gebruiken van complexe aggregaten bij het bouwen van predicties in
het conclusiegedeelte van een hypothese. Meerbepaald onderzoeken we
het gebruik van complexe aggregaten in de lineaire vergelijkingen in de
bladeren van modelbomen. Daarvoor is het eerste orde beslissingsboom
leeralgoritme opgewaardeerd tot een eerste orde modelboom leeralgorit-
me.

• Het bepalen van een geschikte heuristiekfunctie voor het leren van model-
bomen. Daarvoor zijn bestaande heuristieken bestudeerd. Deze werden
allemaal ofwel te complex bevonden, ofwel te weinig naar lineaire model-
len gericht. Een nieuwe heuristiek werd voorgesteld die beide tekortko-
mingen vermijdt.

Wat betreft verder werk noemen we eerst en vooral het automatiseren van
de generatie van grenswaarden voor de aggregaatscondities. In het voorgestel-
de werk worden deze grenswaarden ofwel opgegeven door de gebruiker, ofwel
gegenereerd aan de hand van een discretizatieprocedure. Bestaande discretiza-
tieproceduren genereren echter grenswaarden binnen de schaal van de getallen

NL 17

die voorkomen in de dataset. Voor aggregaatsfuncties als sum of count schiet
deze aanpak tekort.

Een ander idee voor toekomstig werk is het combineren van aggregaten en
selecties op een andere manier. In dit eindwerk legden we selectiecondities op
aan de verzameling van waarden die geaggregeerd wordt. Men zou ook selec-
tiecondities kunnen opleggen aan het resultaat van de aggregaatsconditie. In
een biochemische applicatie kunnen we zo condities opleggen als het element
van het atoom met maximale lading is koolstof. In dit geval moet een aggre-
gaatsconditie een object teruggeven en niet enkel een waarde.

Bibliografie

Alexander, W. and S. Grimshaw (1996). Treed regression. Journal of Com-
putational and Graphical Statistics 5, 156–175.

Appice, A., M. Ceci, and D. Malerba (2003). Mining model trees: a multi-
relational approach. In T. Horváth and A. Yamamoto (Eds.), Pro-
ceedings of the 13th International Conference on Inductive Logic Pro-
gramming, Volume 2835 of Lecture Notes in Artificial Intelligence, pp.
4–21. Springer-Verlag.

Blockeel, H. and M. Bruynooghe (2003). Aggregation versus selection bias,
and relational neural networks. In IJCAI-2003 Workshop on Learning
Statistical Models from Relational Data, SRL-2003, Acapulco, Mexico,
August 11, 2003.

Blockeel, H., M. Bruynooghe, S. Džeroski, J. Ramon, and J. Struyf (2002).
Hierarchical multi-classification. In Proceedings of the ACM SIGKDD
2002 Workshop on Multi-Relational Data Mining (MRDM 2002), pp. 21–
35.

Blockeel, H. and L. De Raedt (1997). Lookahead and discretization in ILP.
In Proceedings of the Seventh International Workshop on Inductive Logic
Programming, Volume 1297 of Lecture Notes in Artificial Intelligence, pp.
77–85. Springer-Verlag.

Blockeel, H. and L. De Raedt (1998, June). Top-down induction of first order
logical decision trees. Artificial Intelligence 101 (1-2), 285–297.

Bratko, I. (2001). Prolog Programming for Artificial Intelligence. Addison-
Wesley. 3rd Edition.

Breiman, L. (2001). Random forests. Machine Learning 45 (1), 5–32.

Dehaspe, L. and H. Toivonen (1999). Discovery of frequent datalog patterns.
Data Mining and Knowledge Discovery 3 (1), 7–36.

Elmasri, R. and S. Navathe (2004). Fundamentals of Database Systems (4nd
ed.). Addison-Wesley.

NL 18

Karalic, A. (1992). Employing linear regression in regression tree leaves. In
European Conference on Artificial Intelligence, pp. 440–441.

Krogel, M.-A., S. Rawles, F. Železný, P. Flach, N. Lavrač, and S. Wrobel
(2003). Comparative evaluation of approaches to propositionalization. In
Proceedings of the 13th International Conference on Inductive Logic Pro-
gramming, Volume 2835 of Lecture Notes in Artificial Intelligence, pp.
194–217. Springer-Verlag.

Langley, P. (1996). Elements of Machine Learning. Morgan Kaufmann.

Lavrač, N. and S. Džeroski (1994). Inductive Logic Programming: Techniques
and Applications. Ellis Horwood.

Lloyd, J. (1987). Foundations of Logic Programming (2nd ed.). Springer-
Verlag.

Malerba, D., F. Esposito, M. Ceci, and A. Appice (2004). Top-down inducti-
on of model trees with regression and splitting nodes. IEEE Transactions
on Pattern Analysis and Machine Intelligence 26 (5), 612–625.

McCarthy, J., M. Minsky, N. Rochester, and C. Shannon (1955). A proposal
for the dartmouth summer research project on artificial intelligence.

Muggleton, S. (Ed.) (1992). Inductive Logic Programming. Academic Press.

Perlich, C. and F. Provost (2003). Aggregation-based feature invention and
relational concept classes. In Proceedings of the ninth ACM SIGKDD
International Conference on Knowledge Discovery and Data Mining, pp.
167–176. ACM Press.

Plotkin, G. (1969). A note on inductive generalization. Machine Intelligen-
ce 5, 153–163.

Quinlan, J. (1992). Learning with continuous classes. In Proceedings of the
5th Australian Joint Conference on Artificial Intelligence, pp. 343–348.
World Scientific, Singapore.

Struyf, J., S. Džeroski, H. Blockeel, and A. Clare (2005). Hierarchical multi-
classification with predictive clustering trees in functional genomics. In
Progress in Artificial Intelligence: 12th Portugese Conference on Artifi-
cial Intelligence, Volume 3808 of Lecture Notes in Computer Science, pp.
272–283. Springer.

Wang, Y. and I. Witten (1997). Inducing model trees for continuous classes.
In Proc. of the 9th European Conf. on Machine Learning Poster Papers,
pp. 128–137.

NL 19

