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ABSTRACT

This paper optimizes Bloom filter algorithms and hardware architectures for high-speed imple-
mentation on FPGAs. A Bloom filter is a data structure that is used to check whether input search
data are present in a table of stored data. Bloom filters are extensively used for monitoring net-
work traffic. Improving the speed of Bloom filters can therefore have a significant impact on the
speed of many network applications. The most important components determining the speed of
Bloom filters are hash functions. While hash functions in Bloom filters do not require strong
cryptographic properties, they do need a minimized computational delay. In this work, we eval-
uate and compare the performance and resource utilization of different Bloom filter algorithms
and architectures as well as non-cryptographic hash functions on an FPGA. We also propose a
new non-cryptographic hash function, called Xoodoo-NC, derived from the cryptographic per-
mutation Xoodoo. Xoodoo-NC is a reduced-round, reduced-state version of Xoodoo, inheriting
Xoodoo’s desired avalanche properties and low logical depth, resulting in an ultra-low-latency
non-cryptographic hash function. We evaluate the performance of Bloom filter architectures
based on Xoodoo-NC on a Xilinx UltraScale+ FPGA and we compare the performance and
resource occupation to existing Bloom filter implementations. We additionally compare our re-
sults to memories that use the built-in CAM cores in Xilinx UltraScale+ FPGAs. Our proposed
algorithmic and architectural advances lead to Bloom filters that, to the best of our knowledge,
outperform all other FPGA-based solutions.

1. Introduction
Network applications require efficient lookup algorithms for, e.g., packet forwarding, traffic flow monitoring and

security, and deep packet inspection. The most popular data structures for high-speed lookups are Content-addressable
Memories (CAMs) and Bloom filters. Whereas a CAM searches for a match between input data and stored data,
and returns the address of the matching data, a Bloom filter can only detect a match without returning the address.
Another difference is that false positives are possible in a Bloom filter, while a CAM has no false positives nor false
negatives. Nevertheless, CAMs perform worse than Bloom filters when it comes to chip area, energy consumption and
operating speed, as presented by George Varghese in [1]. Since these are critical implementation properties for network
routers [2], Bloom filters are the preferred lookup mechanism when a match address is not needed, and when (a limited
number of) false positives are acceptable. This is the case in various network (security) applications, such as deep
packet inspection [3], network intrusion detection [4], distributed caching, resource routing, and network measurement
infrastructures [5, 6]. Additionally, Bloom filters also provide the benefit of constant-time queries, access refinement,
and content anonymization [6]. Applications like flow measurement or traffic mapping [7, 8, 9] check whether or not
the identifier (ID) of a network flow has been recorded earlier. The ID could, for example, be a combination of the
host and destination addresses and ports.

In order to adhere to the strong bandwidth and energy requirements in Terabit networks (which are defined as net-
works with a bandwidth higher than 100 Gbps), hardware implementation platforms, such as FPGAs, are increasingly
used in network applications [10]. This motivates our work which studies the design and implementation of high-speed
Bloom filters on FPGA. Since the speed of a Bloom filter heavily depends on the speed of the hash functions that pro-
cess the incoming data, we first concentrate on the design and implementation of a high-speed, hardware-friendly hash
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function. The desired properties of the non-cryptographic hash functions in Bloom filters are more relaxed than the
properties of cryptographic hash functions. Both cryptographic and non-cryptographic hash functions map an input of
arbitrary length to an output of fixed length. Good hash functions, cryptographic as well as non-cryptographic: 1) map
the inputs as uniformly as possible over the entire set of outputs, 2) are easy to compute, and 3) exhibit the avalanche
effect, which says that many output bits change, even when there is only a small change in the input. Cryptographic
hash functions additionally require preimage resistance, second-preimage resistance and collision resistance [11]. We
propose to start from a cryptographic hash function that possesses all the aforementioned properties, and to simplify
it such that the computational delay is minimized, while the non-cryptographic properties are maintained. This leads
to the Xoodoo-NC (Xoodoo-non-cryptographic) algorithm, derived from the cryptographic permutation Xoodoo [12].
We use Xoodoo-NC in the Bloom-1 architecture, proposed by Qiao et al. in [13], and the Parallel Bloom Filter archi-
tecture, proposed by Dharmapurikar et al. in [4]. We show that our Bloom filter implementations based on Xoodoo-NC
are more efficient with respect to occupied FPGA resources and computational delay in comparison to Bloom filters
based on the previously proposed hash function FNV-1a [14], and CAM-based lookup architectures. This paper ex-
tends our previous work presented in [15] by giving more details on the hardware architectures of the implemented
hash functions and by adding Parallel Bloom Filters to the comparison.

This paper is organized as follows: Sect. 2 consists of background information on lookup algorithms and archi-
tectures in network applications and explains the Bloom filter architectures that we use. Sect. 3 gives an overview of
related work. Sect. 4 presents our novel algorithms and architectures as well as the CAM architectures that we compare
with. The hardware architectures of the implemented Bloom filters and hash functions are presented in Sect. 5. The
results are discussed in Sect. 6. Finally, conclusions are drawn in Sect. 7.

2. Lookup algorithms and architectures
2.1. Content-addressable Memory

Content-addressable memory (CAM) compares input data with data that are stored in the memory. If the same
data are present in the memory, the CAM returns the address of the matching data. In a conventional memory, such
as a Random-Access Memory (RAM), the address is used as an input and the data that are stored at that address are
returned by the RAM. CAMs are, for example, used in network switches, which do a lookup of the destination MAC
address of incoming network traffic to determine the port on which the traffic needs to be sent out. A CAM stores
each bit explicitly in a memory cell, just like a RAM does. CAMs contain additional hardware circuits that facilitate
the look-up. In recent FPGAs, IP cores are available to build fast and resource-efficient CAM structures based on the
embedded RAM in the FPGA [16].

2.2. Bloom filters
In 1970, Howard Bloom presented space/time trade-offs for lookup algorithms in data structures based on hash

coding with allowable errors [2]. The author’s name has been linked to the presented algorithms ever since. The Bloom
filter is an approximate membership query data structure that is used to assist in determining whether an element is in
a set of elements. The filter has two possible outcomes: 1) the element might be in the set, or 2) the element is not in
the set. Although the first option can trigger false positives, the second option rules out false negatives.

A standard Bloom filter (SBF) that looks for an input x in a set S, consists of a bit vector of length m, which
is a compacted representation of the elements that are present in S, and k hash functions, which are used to map n
inputs to the bit vector. An example is shown in Fig. 1, where m is 14 and k is 3. Before the SBF can be used, the bit
vector is first loaded with zeroes. Then, all k hash functions are applied to each element s in the set S, i.e. Hki (s) is
calculated, with i ∈ 1,… , k. For each hash function, the resulting hash value is used as an index in the bit vector and
the corresponding bit is set to 1. This process is repeated for each hash function, and subsequently for each possible
s ∈ S. In Fig. 1, this means that 3 bits out of 14 are set to 1 for each loaded element s. In the figure, this process is
illustrated for two elements s1 and s2. After these steps, the set S has been been successfully loaded into the Bloom
filter.

To query the SBF using input x, all hash digestsHki (x) on x are calculated. Analogous to the initialisation phase,
the hash values are used as indices in the bit vector. If all the corresponding bits in the bit vector are set to 1, the SBF
returns x ∈ S. Otherwise, x ∉ S is returned. As stated above, a membership query can have a false positive result.
This happens when, during the initialization of the Bloom filter, the hash values of different elements in the set lead to
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a 1 being written to the same position in the bit vector. The probability of false positive rate of a standard bloom filter
is approximated as in equation 1.

fpr = (1 − e−kn∕m)k (1)

Figure 1: Standard Bloom filter (SBF) representation

Unlike CAMs, Bloom filters do not explicitly store each element in a memory cell, but rather store the bit vector
that represents all elements that are present in the data structure. This leads to more economical memory resource
utilisation.

2.2.1. Bloom-1 architecture
When the SBF structure in Fig. 1 is used, k locations in the bit vector need to be read out. In order to reduce the

number of read-outs, a more efficient structure Bloom-1 is proposed by Qiao et al. [13], which is a fast Bloom filter
architecture that only requires one read-out for each query. Bloom-1 uses hash functions to map an input element s to
log2(l) + k× log2(w) bits. The first log2(l) bits are the output of the hash functionHl(s) and are used as an address in
a data structure that has l memory locations, as shown in Fig. 2. We call each word in the data structure a membership
word. The next k values (which are log2(w) bits each) are the outputs of the hash functionsHki (s), with i ∈ 1,… , k.
They are used as addresses that point to bit locations in the membership word. The size of a membership word is w
and a 1 is written at the bit locations that correspond to the addressesHki (s). To query an input x, a similar procedure
is followed to read out k bits (of which the locations are determined byHki (x), with i ∈ 1,… , k) from the membership
word at the address determined by Hl(x). If all k bits are 1, the Bloom-1 filter returns x ∈ S. Otherwise, x ∉ S is
returned.

Figure 2: Bloom-1 representation

Typically, w corresponds to the data bus width in a computer system, i.e., w = 32 or 64. The size of the entire
Bloom-1 filter is denoted as m = l × w. The advantage of Bloom-1 is that the number of required hash bits is
significantly lower when k is large, compared to other Bloom filters [13]. The total number of hash bits for Bloom-1 is
log2(l) + k × log2(w), compared to k × log2(m) for SBF. Additionally, the w-bit membership word can be read out at
once, while the k 1-bit values in SBF require k read-outs. This significantly increases the speed of Bloom-1 compared
to SBF.
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Qiao et al. give an approximation of the false positive rate (fpr) for Bloom-1 in [13]. A comment published by
Reviriego et al. in [17] refines the approximation, resulting in Eq. 2. Besides the Bloom-1 parameters, l, w and k, the
number of entries, n, has an influence on the false positive rate.
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2.2.2. Parallel Bloom Filter (PBF) architecture
We propose a modified architecture named as Parallel Bloom Filter to keep the overall latency of Bloom filter to a

single cycle. The parallel bloom filter (PBF) implementation approach is inspired from the work by Dharmapurikar [4].
Our approach follows the Standard Bloom Filter (SBF) model, but uses multiple smaller memory blocks to form SBFs
in parallel to increase the lookup speed. When the number of hash functions k is set to 2 for each SBF, a Bi-SBF
is formed, which requires two memory accesses per update/query. The Bi-SBF is termed as mini-bloom filter in the
original literature and the authors of [4] suggest that a dual-port BRAM can be employed to perform 2 read/write
operations at once, hence keeping the latency at one cycle. Moreover, to avoid write conflicts, it is better to assign one
port for reading and the other port for writing, especially if the memory is being shared.

The Bi-SBFs can be arranged in parallel for two reasons, either to reduce the false positive rate, or to increase the
string storage capacity. In order to reduce the false positive rate, the value of k and m has to be increased keeping the
value of n constant, which is achieved by stacking the Bi-SBF blocks in parallel. Such Bi-SBFs stacked together in
parallel form a parallel Bloom filter (PBF), as shown in Fig. 3 (a). To form a parallel Bloom filter with k hash functions,
k∕2 SBFs are stacked together. The authors of [4] indicate that the false positive rate of a Bi-SBF is ( 12 )

2, considering
a constant n∕m ratio of 1419∕4096, based on Eq. 1. The overall false positive rate of the PBF is then (fpr(Bi-SBF))k∕2.

Figure 3: Parallel Bloom filter logic (a) using Bi-SBF and (b) using Uni-SBF

In order to increase the storage capacity, Dharmapurikar et al. [4] suggest to stack the PBFs together to form a
Large Bloom Filter (LBF) to achieve the required storage capacity. The storage capacity of a LBF formed by arranging
p PBFs together is n × p while keeping the same false positive rate, where n is the string storage capacity of a single
PBF. If the overall memory size of a PBF is m, then p such filters in parallel constitute a Bloom filter of memory size
p × m. An element will be stored in any one of the PBFs and one of the PBFs will be selected using a hash value.
However, this architecture requires additional operational logic and adversely affects the resource requirements as well
as speed.

Hence we prefer to change the memory size of the Bi-SBFs accordingly for the required false positive rate and
storage capacity. To increase the storage capacity, m is increased while keeping the same number of SBFs in parallel.
The query/configure operations are similar to standard Bloomfilters, with every block operating in parallel. An element
e is said to be present in the set only if all the parallel filters show a match. In our implementation, the false positive
rate of the Bi-SBF is determined by Eq. 1 and the n∕m ratio changes depending on the false positive rate or string
storage requirements. The false positive rate of a Bi-SBF is (1− e−kn∕m)2 and the equation (fpr(Bi-SBF))k∕2 still holds
for the false positive rate of PBF. The total memory size of each Bi-SBF is 2 ×m∕k, where m is the total memory size
of the Bloom filter.
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To make the PBFs faster, the number of hash functions for each SBF can be set to 1, resulting in a Uni-SBF. The
memory size of each Uni-SBF ism∕k. The false positive rate of each such Uni-SBF adheres to Eq. 1 and is (1−e−kn∕m).
The overall false positive rate of the PBF is given by (fpr(Uni-SBF))k. The PBF based on the Uni-SBF architecture
shown in Fig. 3 (b) has the same false positive rate as PBF using Bi-SBF, but requires less hash bits. The PBF based
on Uni-SBF can employ a dual port BRAM with dedicated ports for read and write operations, which can reduce the
look up latency to only one cycle with all SBFs operating in parallel.

3. Related work
A wide range of related work is available, elaborating on the design and optimization of Bloom filters for different

applications. Various aspects are to be considered when designing hardware architectures of Bloom filters, such as the
lookup delay, the false positive rate and the operating frequency.

One of the main factors affecting the lookup delay of a Bloom filter is the execution delay of the hash functions.
Cryptographic hash functions would have been the best choice if speed isn’t a prime concern. A number of fast
non-cryptographic hash functions with good avalanche properties have been proposed, such as Murmur3 and FNV-
1a. Murmur3 is the result of a general study of non-cryptographic hash functions by Estebanez et al. [18]. FNV-1a
was taken from an idea sent as reviewer comments to the IEEE POSIX P1003.2 committee by Fowler and Vo and
later improved by Landon Curt Noll [14]. It is considered to have the smallest computational delay. However, on
a high-speed hardware perspective, FNV-1a and Murmur3 are not very efficient. In this work, we propose Xoodoo-
NC, a fast hardware-oriented non-cryptographic hash function with good avalanche properties, which outperforms all
other solutions in terms of execution delay in hardware. Xoodoo-NC is derived from the cryptographic permutation
Xoodoo [12]. It uses a reduced number of rounds and a reduced size of the internal state, which leads to a lower logical
depth than cryptographic hash functions based on Xoodoo, while maintaining the desired avalanche properties.

Besides optimizing the hash functions, there are other methods that contribute to the fast generation of the lookup
addresses in Bloom filters. Examples are the one-hashing Bloom filter (OHBF) [19], the less hashing Bloom filter
(LHBF) [20], and the ultra-fast Bloom filter (UFBF) [21]. OHBF and UHBF follow similar techniques, where a single
base hash function is used, and k modulo operations are performed to obtain k addresses. LHBF employs two base
hash functions, and a linear equation to generate additional addresses from the base hash functions. Although these
techniques can reduce the generation delay of the lookup addresses, the overall delay of a query will still be dominated
by the delay of the memory accesses when a standard Bloom filter (SBF) array [2] is used as depicted in Fig. 1. This
is because each read/write operation will require one clock cycle when the embedded RAM in an FPGA is used for
the storage of the Bloom filter. Hence, it is important to not only reduce the delay for the generation of the lookup
addresses, but to also consider Bloom filter architectures that reduce the number of memory accesses.

In an SBF, the number of memory accesses is directly proportional to the number of hash values (k). In order to
reduce the false positive rate, the number of hash functions and the size of the data structure (m) must be increased,
but this has a negative effect on the execution speed. Parallel Bloom filters, as proposed by Dharmapurikar et al. [3],
are a classical solution to overcome this issue. There are other approaches like multi-partitioning counting Bloom
filters (MPCBF) [22], OMASS [23] and One-memory-access Bloom filters (Bloom-1) [13], where it takes only one
memory access per query. MPCBF, OMASS and Bloom-1 employ similar approaches based on the partitioning of
memory blocks to limit the number of memory accesses to one, as explained for Bloom-1 in Sect. 2. In this work, we
do not focus on counting Bloom filters which store a count value for each memory cell in order to enable the deletion
of elements. That is why MPCBF is not considered for our implementation. In OMASS, each element is represented
in multiple sets with different hash mappings, which decreases the false positive rate but at the cost of extra memory.
In this work, we concentrate on Bloom-1 [13], because it requires less memory storage than OMASS. For applications
in which the false positive rate of Bloom-1 is not sufficiently low, the possibility of moving to an OMASS architecture
can be considered.

A number of works are available on the implementation of Bloom filters in hardware. Dharmapurikar et al. [4]
present an implementation of parallel Bloom filters on FPGA for string matching. The implementation is fast in
terms of number of memory accesses with acceptable resource utilization, but has a very low operating frequency
of 73.5 MHz, which is not suitable for high speed networks. However, an improved version of PBF is implemented
in this work. In [24], a rolling hash function based Bloom filter is presented and implemented on a high-end FPGA
for fast streaming data. However, the architecture assumes a byte-based interface which is only suitable for Gigabit
Ethernet networks. When moving towards Terabit Ethernet, the incoming data need to be processed in larger parallel
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blocks. The work of Kaya et al. [25] and of Lyons et al. [26] focus mainly on the power reduction of Bloom filter
implementations. A counting Bloom filter implementation proposed by [27] for network intrusion detection seems to
provide operating frequencies above 200 MHz for an input data size up to 8 bytes. Although all these publications
present very good implementations, an even higher parallelization level and/or operating frequency is needed in Terabit
Ethernet networks.

In this work, we propose to use the existing Bloom-1 architecture and themodified parallel Bloomfilter architecture,
both of which requires only one memory access per query. We also propose Xoodoo-NC, an extremely fast non-
cryptographic hash function that outputs a hash value large enough to be split into chunks that can directly be used
in the Bloom filter architecture. We implement speed-optimized hardware architectures that outperforms all other
FPGA-based Bloom filter implementations as well as architectures based on the CAM IP cores in Xilinx FPGAs.

4. Novel algorithms and architectures
4.1. Experimental setting and basis of comparison

We concentrate on Terabit Ethernet (defined as Ethernet with speeds above 100 Gbps). An example of an FPGA
platform that supports Terabit Ethernet is the 200Gbps NFB-200G2QL board [28], which processes network packets
at a line rate of 512 bits per clock cycle. It is clear that implementing network security applications on Terabit Ethernet
FPGA platforms requires the processing of many data bits in parallel. Parallelization is also suggested by the authors
of the large flow detection algorithm EARDET [7]. An example of a network encryption implementation that adheres
to the strong operating frequency and parallel processing requirements of Terabit FPGA platforms is given in [29].

Typically in network applications, flow identifiers need to be queried in a data structure. Examples of such appli-
cations are given in Sect. 1. The considered flow ID in this work contains the source IP address, destination IP address,
and both the source and the destination ports. The size of the flow ID is 96 bits, which is the case in an IPv4 network.
To adhere to the requirements of Terabit Ethernet FPGA platforms, these 96 bits need to be processed in parallel at
an operating frequency of at least 200 MHz. We compare six different lookup data structures in terms of cycle count,
clock frequency, occupied FPGA resources and false positive rate:

1. CAM block generated by the design tools of Xilinx,
2. speed-optimized custom CAM consisting of manually combined smaller CAM blocks,
3. Bloom filter based on the PBF architecture and the FNV-1a hash function,
4. Bloom filter based on the PBF architecture and the newly proposed Xoodoo-NC hash function.
5. Bloom filter based on the Bloom-1 architecture and the FNV-1a hash function,
6. Bloom filter based on the Bloom-1 architecture and the newly proposed Xoodoo-NC hash function.

All six architectures store 1024 data words of 96 bits each. For the first two architectures, which are CAM-based,
this means that exactly 1024 x 96 memory cells are occupied. For the last four architectures, which are based on Bloom
filters, we explore different options for the size of the Bloom filter, false positive rate, and the number and output size
of the hash functions. The number of stored entries in the Bloom filters is equal to 1024 to make a fair comparison
with the CAM-based implementations.

The first CAM architecture is directly generated by the design tools of Xilinx, resulting in the utilization of em-
bedded RAM (Block RAM or BRAM) with size 1024 x 96 bits, in combination with a limited amount of logic in
the form of FPGA LUTs (lookup tables) and FFs (flip-flops). A lookup in the directly generated CAM takes 2 clock
cycles. The second CAM architecture consists of 128 CAM blocks of size 24 x 32 bits. These smaller CAM blocks
are again generated by the Xilinx design tools, and the LUTs and FFs for combining and addressing these blocks are
added manually. This leads to an architecture with a higher operating frequency, but with a larger resource occupation
compared to the directly generated CAM architecture. A lookup in the manually modified CAM takes 3 clock cycles.
The operating frequency and resource utilization of the CAM-based architectures that are implemented as a reference
for comparison, are given in Fig. 4. The third, fourth, fifth and sixth architectures that we evaluate are Bloom filters,
which differ in the utilized hash function. We compare FNV-1a, the fastest hash function in hardware according to our
knowledge, to Xoodoo-NC, the proposed hash function in this paper.

For all experiments, the Vivado 2017.4 design tool of Xilinx is used and the UltraScale+ XCVU7P-FLVC2104-1-E
FPGA is targeted. Only for the generation of the CAM blocks, the ISE 14.7 design tool of Xilinx is used, because CAM
generation is no longer supported in Vivado. The resulting code is imported in Vivado to be used in the UltraScale+
FPGA (which is not supported in ISE 14.7).
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Figure 4: Operating frequency and resource utilization of the CAM directly implemented with the Xilinx tools (referred to as
Xilinx CAM IP) and the speed-optimized CAM architecture (Custom Modified CAM IP)

4.2. Design of a high-speed non-cryptographic hash function
The optimization goals in the design of a non-cryptographic hash function for Bloom filters are low logical depth or

critical path (i.e., high operating frequency), low cycle count, high avalanche score and acceptable resource utilization.
FNV-1a [14] and Murmur3 [18] are non-cryptographic hash functions with excellent avalanche properties. However,
both of these algorithms use multiplication operations in which the width of the multiplier is proportional to the output
hash size. FNV-1a and Murmur3 process 8 bits and 32 bits per cycle, respectively, which means the execution time is
proportional to the number of 8-bit or 32-bit input blocks. That is why FNV-1a and Murmur3 perform very well on
an 8-bit or 32-bit microprocessor. When implemented in hardware, however, the high number of flip-flops to store the
intermediate values and the large multipliers have a negative effect on the resource utilization, the operating frequency
and the execution delay, especially when the required output hash size is large.

In our effort to find a non-cryptographic hash function that has a low logical depth and a low resource utilization in
hardware, we start from the hardware-friendly cryptographic permutation Xoodoo, presented by Daemen et al. in [12].
A Xoodoo round employs only shift, AND and XOR operations, and does not need flip-flops inside the round. While
Xoodoo uses a 384-bit state, Xoodoo-NC operates on a 96-bit state, which perfectly fits our needs to process incoming
network flow IDs of 96 bits. Output values can be taken as multiples of 96-bits. A more detailed explanation of
Xoodoo-NC is given in the following paragraphs.

The original Xoodoo permutation is parameterized by the number of rounds nr, and it iteratively applies the round
functionRi to the state A. The state A is depicted in Fig. 5 and has a size of 48 bytes, divided into three 2-dimensional
planes, which are indexed by y. Each plane has four 1-dimensional lanes which are indexed by x. Each lane consists
of 32 bits in size, indexed by z. A collection of three parallel stacked lanes in A is called a sheet, and any three parallel
stacked bits in A are called a column. Each byte in the state can thus be referred to with the coordinates (x, y, z).

Figure 5: Graphical representation of the Xoodoo state

The round function Ri of Xoodoo consists of 5 sequential steps: a mixing step �, a plane shifting step �west, a step
for the addition of round constants �, a non-linear layer � , and a second plane shifting step �east. For more in-depth
details on these steps and the round constants, we refer to [12].

In this work, we require a hash function with an input size of 96 bits or 12 bytes. Therefore, we reduce the state
A of the Xoodoo permutation to 12 bytes, corresponding to one sheet. This fixes the x coordinate and allows the y
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Table 1
Notational conventions of Xoodoo-NC

Ay Lane y of state A. In Xoodoo-NC, A is one sheet.
Ay ⋘ v Cyclic shift of Ay moving bit in z to position (z + v)
Ay

⨁

By Bitwise sum (XOR) of planes Ay and By
Ay.By Bitwise product (AND) of planes Ay and By
Ay Bitwise complement of lane Ay

coordinate to vary from 0 to 2 and the z coordinate from 0 to 31. The original definitions of lanes and columns still
hold. Because of the reduction of the size of the state, the Xoodoo round function is slightly adapted. The cyclic shift
operations involving the x and z coordinates are replaced by operations involving only z. The other operations and the
round constant Ci remain the same as in the original algorithm. The resulting Xoodoo-NC permutation is specified in
Alg. 1, and the notational conventions of Xoodoo-NC is specified in Table 1.

Algorithm 1: Xoodoo-NC[nr]
1 Parameters: Number of rounds nr
2 for Round index i from 1 − nr to 0 do
3 A = Ri(A) ; // A is 96-bit input state (1 sheet)
4 end
5 Round Ri:
6 �:
7 P ← A0

⨁

A1
⨁

A2
8 E ← P ⋘ 5

⨁

P ⋘ 14
9 Ay ← Ay

⨁

E for y ∈ {0, 1, 2}
10 �west:
11 A2 ← A2 ⋘ 11
12 �:
13 A0 ← A0

⨁

Ci
14 � :
15 B0 ← A1.A2
16 B1 ← A2.A0
17 B2 ← A0.A1
18 Ay ← Ay

⨁

By for y ∈ {0, 1, 2}
19 �east:
20 A1 ← A1 ⋘ 1
21 A2 ← A2 ⋘ 8

For the Xoodoo permutation, Table 8 in [12] summarizes the avalanche properties. The avalanche metrics men-
tioned in [12] are used here also to determine the avalanche behaviour of Xoodoo-Nc. The metrics, namely avalanche
dependence (Dav), avalanche weight (wav), and avalanche entropy (Hav), are calculated as in [12] for single-bit dif-
ferences at the input. Only the worst-case values are reported, which are the minimum values taken over all individual
input differences of a given type. The results are presented in Table 2. Xoodoo-NC provides full bit-dependence and
quasi-strict avalanche weight after 2.5 rounds, and ≈ 90% dependence after round 2. We assume that it is sufficient for
our intended application and generate a 96-bit Xoodoo-NC hash output after 2.5 rounds. To obtain an output of 192
bits, one additional round is executed and the output of the next round is concatenated with the output of the previous
round. In a similar way, an output size of any multiple of 96 bits can be obtained by increasing the number of rounds
and concatenating the results.

Xoodoo-NC proves to be a better compared to FNV-1a andMurmur3 when it comes to high-speed applications and
if the required output bits are high. Table 3 summarises the hardware implementation results of FNV-1a, Murmur3 and
Xoodoo-NC on a Xilinx Virtex Ultrascale+ FPGA (XCVU7P-FLVB2104-2-i). The throughput is calculated using the
equation Input block size

latency in cycles ×fmax, where fmax is the maximum operating frequency. As seen from the table, Xoodoo-NC
has improved the frequency of operation and latency significantly compared to both Murmur3 and FNV-1a despite
having a higher output block size. A work by Sateesan et al. [30] on the CM sketch implementation on FPGA has
shown the effectiveness of Xoodoo-NC on hardware. Following the design technique of Xoodoo-NC, Claesen et
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Table 2
Avalanche Scores for Xoodoo-NC
Rounds Dav wav Hav

2 84 35.408 80.332
2.5 96 47.324 95.864
3 96 47.309 95.867
3.5 96 47.922 95.996

Table 3
Comparison of hash implementations on a Xilinx Virtex Ultrascale+

Function Block size LUT FF BRAM DSP Frequency Latency Throughput
(In/Out bits) (ns) (Gbps)

FNV-1a 96/32 38 70 0 2 211.01 MHz 61.6 1.56
96/64 76 161 0 7 160.23 MHz 81.1 1.18

Murmur3 96/32 574 277 0 24 153.87 MHz 65.0 1.48
96/64 566 341 0 38 120.58 MHz 82.9 1.16

Xoodoo-NC (2.5 rounds) 96/96 256 194 0 0 666.67 MHz 1.5 64
96/192 323 290 0 0 416.67 MHz 2.4 40

al. [31] constructed fast non-cryptographic hash functions from lightweight cryptographic block ciphers chosen from
NIST lightweight competition. These non-cryptographic hashes derived from lightweight block ciphers significantly
outperforms any other non-cryptographic hashes and Xoodoo-NC exhibits the best performance in terms of throughput
per area.

5. Hardware implementation
We discuss the hardware implementation of the Bloom-1 architectures that are evaluated in this work. We employ

a single non-cryptographic hash function of which the output is split into k+1 parts, i.e., one part of size log2(l) and k
parts of size log2(w), as explained in Sect. 2.2.1. Two non-cryptographic hash functions with an input size of 96 bits are
evaluated, namely FNV-1a and Xoodoo-NC. In the following paragraphs, we elaborate on the FNV-1a implementation,
the Xoodoo-NC implementation and the Bloom-1 implementation that uses one of these hash functions.

5.1. Hash functions
5.1.1. FNV-1a

FNV-1a can provide output hash sizes ranging from 32 to 1024 bits. It uses only two parameters - a non-zero FNV
Offset basis, and an FNV Prime. Both parameters depend on the hash output size. FNV-1a processes one byte at a
time, and the algorithm consists of iterations of two sequential operations - XOR and multiplication.

The hardware block diagram of FNV-1a is shown in figure 6. The input can be of any size, but only 8 bits are
processed per cycle. The received input is stored in an octet shift register, which shifts a single byte per cycle and has a
total size equal to the size of the incoming message, namely q bytes. In this work, the size of the flow ID is taken as 96
bits, which corresponds to q = 12. Every clock cycle, a byte is passed to the processing element (PE), which performs
the XOR operation with the intermediate hash value, or with the FNV Offset basis for the first byte. Subsequently,
a multiplication with the FNV Prime is calculated. The hash_temp register stores the intermediate hash value. The
output is obtained after processing the final byte of the input. Before the hash value is valid, zeroes are sent to the
output.

The drawback of a straightforward FNV-1a architecture is that it processes only one byte per clock cycle. The input
needs to be buffered until the processing is completed. This is a major concern for high-speed networks like Terabit
Ethernet networks, in which multiple bytes need to be processed in each clock cycle. For the applications that we
consider in this paper, 12 bytes need to be processed every clock cycle, but the FNV-1a architecture requires 12 clock
cycles to process 12 bytes. Another concern regarding the hardware implementation is that one of the core operations
in the PE is a multiplication. If we want to increase the input size and the output hash size, the multiplier width also
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Figure 6: FNV-1a - serialized hardware architecture block diagram

needs to be increased, which further increases the hardware complexity and the critical path. Pipelining somewhat
helps to mitigate this issue and to improve the overall throughput (after an initial delay equal to q clock cycles. The
hardware architecture of the pipelined version is shown in Fig. 7.

Figure 7: FNV-1a - Pipelined hardware architecture block diagram

The core of the design is a free-running FSM, which processes q bytes in each clock cycle. The input buffers store
the incoming q-byte inputs. In total, q input buffers are implemented that each store a q-bit input word. In each clock
cycle, the bytes from the input buffers (starting from register 0) are shifted to the octet register of size q bytes. The
octet register is an array of 8-bit registers. For every input, the first byte is stored in the 0tℎ register, the second byte in
the 1st register and so on. Each PE takes two inputs, one byte from the octet register and the output from the previous
PE (except for PE0). PE0 takes the FNV Offset basis and the 0tℎ byte of the octet register as inputs. The output of each
PE is connected to an output buffer that stores the intermediate hash value and is connected to the input of the next PE
in the sequence. The pipelined version of FNV-1a can process a 96-bit input in every clock cycle and has an output
latency of 12 clock cycles.

5.1.2. Xoodoo-NC
The architectural features of Xoodoo-NC are depicted in section 4.2. The hardware block diagram of Xoodoo-NC

is shown in Fig. 8. The heart of the Xoodoo permutation is the round function, which consists of the 5 steps shown in
Alg. 1: �, �west, �, � , and �east. In general, the round steps are applied sequentially nr times on the input state function
A. In Xoodoo-NC, the round is executed twice when a 96-bit hash output is needed and once more to generate a second
96-bit output, to be concatenated with the first output when a 192-bit hash output is needed. This way, the output of
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Xoodoo-NC can be any multiple of 96 bits, but we stick to two different output sizes in our evaluation: 96 and 192
bits.

The rounds are implemented in a fully unrolled architecture without registers in between the rounds, i.e., the 2 or
3 rounds of Xoodoo-NC are completely implemented in combinational logic. The detailed hardware block diagram of
the round function is shown in Fig. 9. The 96-bit input A consists of 3 lanes of size 32 bits, namely A0, A1, and A2
(cfr. Alg. 1). The round constant Ci used in � is a single 32-bit lane, indexed from 1− nr to 0. The 3-lane output of the
round goes to the input of the next round.

Figure 8: Xoodoo-NC block diagram

Figure 9: Xoodoo-NC Round, which is implemented 2 or 3 times in combinational logic for a 96-bit or 192-bit hash output,
respectively.

5.2. Bloom-1
The hardware architecture of the Bloom-1 filter follows the concept depicted in section. 2.2.1 and is shown in

Fig 10. Bloom-1 implementation employs only BRAMs for storage. The hash bits are generated with a single hash
function, Xoodoo-NC, of which the output is split into k+1 parts. The first part,Hl, is used to determine the location
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of the membership word in the BRAM. The k remaining parts are used to address the bits inside the membership word.
Depending on the query∕insert instruction, the memory is read and written. The execution delay is determined by
the BRAM read-write delay, which is 1 clock cycle, and the delay of the hash generation. Xoodoo-NC is executed
in one clock cycle, while the non-pipelined (serialized) and pipelined versions of FNV-1a take 14 and 2 clock cycles,
respectively.

Figure 10: Bloom-1 hardware architecture

5.3. Parallel Bloom Filter
Parallel bloomfilters (PBF) are constructed by stacking Bi-SBFs or Uni-SBFs in parallel as depicted in section 2.2.2

and the hardware architecture of PFF using Bi-SBFs is shown in Fig. 11. Only on-chip BRAMs are employed to
implement the memory. Dual port BRAMs are employed with dedicated ports for read and write operations. Xoodoo-
NC is used to generate the hash values. The SBFs are operated in parallel such that the read/write latency is always
equal to the latency of a single SBF. Using Bi-SBF, the latency is 3 cycles whereas using Uni-SBF, the latency is only
2 cycles. The memory sizes of Bi-SBF and Uni-SBF are 2m∕k and m∕k, respectively, where m is the overall size of
the Bloom filter and k is the number of hash functions. Dividing the memory block into multiple smaller blocks in
PBF helps to minimize the routing delays associated with larger BRAM blocks.

Figure 11: Parallel Bloom Filter hardware architecture
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Table 4
Comparison of Bloom-1, PBF, and CAM implementations on a Xilinx Virtex Ultrascale+

Max freq No. of cycles Lookup
Bloom filter k fpr LUTs FFs BRAM LUTRAM DSP [MHz] for lookup Delay [ns]
Bloom-1 (Xoodoo-NC) 2 0.0002976 263 34 7.5 0 0 490.92 2 4.074
Bloom-1 (FNV-1a) 2 0.0002976 261 228 7.5 0 3 173.52 16 92.21
Bloom-1 (FNV-1a) Pipelined 2 0.0002976 649 1507 7.5 6 36 151.52 4 24.76
Bloom-1 (Xoodoo-NC) 12 2.61x10−7 643 94 7.5 0 0 462.32 2 4.124
Bloom-1 (FNV-1a) 12 2.61x10−7 1366 339 7.5 0 15 121.18 16 132.03
Bloom-1 (FNV-1a Pipelined) 12 2.61x10−7 2706 1562 7.5 6 180 104.87 4 38.14
PBF (Uni-SBF,Xoodoo-NC) 12 0.14x10−7 338 220 6 0 0 434.21 2 4.606
PBF (Bi-SBF,Xoodoo-NC) 12 0.14x10−7 324 148 6 0 0 389.10 3 7.71
Direct CAM 0.0 6731 1145 320 1536 0 112.75 2 17.74
Custom Modified CAM 0.0 20’797 988 384 1536 0 225.07 3 13.33

Table 5
Comparison with related work

No. of memory
Design m k input size LUTs FFs BRAMs Frequency fpr accesses FPGA
PBF[4] 4096 10 10 byte 1495 1297 5 73.51 MHz 8.89x10−5 2 Virtex 2000E
[27](SBF) 16384 8 8 byte 1058 1058 4 200.6 MHz 5.74x10−4 4 Virtex-4
[27](CBF) 16384 8 8 byte 1188 1188 4 201.6 MHz 5.74x10−4 4 Virtex-4
Ours, PBF (Bi-SBF) 49152 12 12 byte 338 220 6 389.10 MHz 0.14x10−7 2 Virtex UltraScale+
Ours, PBF (Uni-SBF) 49152 12 12 byte 324 148 6 434.21 MHz 0.14x10−7 1 Virtex UltraScale+
Ours, Bloom-1 [13](xoodoo-NC) 262144 12 12 byte 675 158 7.5 462.32 MHz 2.61x10−7 1 Virtex UltraScale+

6. Results & Analysis
In this section, we present the results of the experiments conducted on aXilinxVirtexUltrascale+ FPGA (XCVU7P-

FLVC2104-1-E) using the Vivado 2017.4 design tool. For the Bloom filter implementations, we employ FNV-1a with
64-bit and 128-bit hash outputs, and Xoodoo-NC with 96-bit and 192-bit hash outputs. The input size is always 96
bits. For FNV-1a, both the non-pipelined and the pipelined architectures are evaluated. The Bloom-1 parameters l, w,
and m = l ∗ m are taken as 4096, 64 and 262144, respectively. For the PBF implementations, the values of m and k
are varied to match the fpr of Bloom-1. The size of the CAMs that we compare with is 1024 x 96.

Figure 12: Resource Utilization of Bloom-1: Logic resources and DSP units

6.1. Effect of hash functions on Bloom-1
The usage of FPGA logic and DSP units in the Bloom-1 architectures while using different hash functions is

depicted in Fig. 12. The Xoodoo-NC based Bloom filters outperform the FNV-1a based implementations, especially
for larger values of k. The FNV-1a implementations make use of the multipliers inside the DSP units, whereas no DSP
units are employed in Xoodoo-NC. The pipelined version of FNV-1a has a much higher consumption of logic resources
and DSP units in comparison to the serial FNV-1a and the Xoodoo-NC based Bloom filters. The operating frequency
and execution delay of the Bloom-1 architectures are shown in Fig. 13. The Xoodoo-NC based architectures clearly
feature a much higher operating frequency and a much lower execution delay than the FNV-1a based architectures.

The results of the Bloom filter implementations are listed in Table 4, and in Figs. 12, and 13. Two versions of the
Bloom-1 architectures are considered in the table: those with k = 2 and k = 12. In order to calculate the false positive
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rate (fpr) using Eq. 2, the number of entries in the Bloom filter is assumed to be 1024, such that a fair comparison can
be made with the CAMs whose depth is taken as 1024. Going from k = 2 to k = 12, leads to a resource occupation
that is more than doubled for the Xoodoo-NC based implementation, and at the same time decreases the false positive
rate drastically. Nevertheless, the resource occupation of the Xoodoo-NC based Bloom filter is much lower than all
other considered architectures, even when k = 12.

Figure 13: Maximum Operating Frequency and Delay of Bloom-1

6.2. Bloom filter versus CAM
Table 4 shows the comparison of the bloom filter variants with CAM based lookup architectures. The number of

entries to be stored is taken as 1024. The Xilinx CAMblocks mentioned in [32] and [16] require 40x-50xmore BRAMs
than the Bloom-1 architecture, and requires ≈20 times more LUTs than the PBF architecture. The CAM block having
a size of 1024x96 generated by the Xilinx design tools has an operating frequency of only 112.75 MHz. The search
delay of CAM increases as the number of entries to be stored increases, but the number of entries to be stored barely
affects the search delay of Bloom filters as the number of locations to be searched remains a constant and is equal to
the number of hash functions. The custom modified CAM architecture operates at a higher frequency of 225 MHz,
but consumes more FPGA resources as depicted in Fig. 4 and Table 4. Although the latency is increased by 1 cycle to
query the custom modified CAM, the total query time is lower compared to the directly generated CAM. The lookup
delay of the Xoodoo-NC based architectures is significantly lower than the lookup delay of all other implemented
architectures. This is mainly because of the high operating frequency, and thanks to the cycle count of only 3 cycles.

6.3. Analysis of Bloom filter variants
Analyzing the different bloom filter implementations, we can observe that there is always a trade-off between

the false positive rate and memory utilization. To analyze this, we consider the Bloom-1 architecture and the parallel
Bloom filter architectures, as proposed in Sect. 2.2.2. Table 6 shows the comparison between Bloom-1, parallel Bloom
filter (PBF), and standard Bloom filter (SBF). When comparing Bloom-1 with PBF, it can be noticed from Table 6 and
Table 4 that PBF can achieve a better false positive rate with less memory, but at the cost of a higher number of hash
bits. The Bloom-1 architecture with 12 hash functions requires only 84 hash bits, whereas PBF using Uni-SBF requires
144 bits to achieve a better fpr. However, Bloom-1 requires ≈ 5 times more memory than PBF. Comparing standard
Bloom filter (SBF) and PBF, SBF requires more memory while keeping the number of hash bits the same. PBF using
Uni-SBF shows less hash bit requirements and higher frequency compared to PBF using Bi-SBF. The number of cycles
for lookup given in Tables 4 and 6 includes the number of clock cycles required for both hashing andmemory accesses.

6.4. Power analysis
Power consumption is another important factor to be addressed. Our implementation results from Vivado 2017.4

underline the statement that CAM architectures are power hungry, when comparing with Bloom filters. The static
power consumption of the FPGA occupies the lion’s share of the total power consumption for all implementations.
Static power consumption is almost equal for all the Bloom-1 and CAM implementations and there is only a maximum
increase of 0.6% in static power consumption for CAM compared to Bloom-1. The dynamic power consumption of
Bloom-1 is only less than 1% of the total power consumption for FNV-1a and Xoodoo-NC based implementations.
However, dynamic power consumption of Bloom-1 employing the pipelined version of FNV-1a can rise upto 12%
of the total power consumption. The dynamic power consumption of Bloom-1 based on FNV-1a and Xoodoo-NC is
negligibly small compapred to CAMs as shown in Fig. 14. Although, the dynamic power consumption of pipelined
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Table 6
Comparison of the properties of the Bloom filter architectures considered in this paper

Bloom Filter fpr k n m Hash bits No. of cycles
for lookup

Bloom-1 2.61x10−7 12 1024 262144 84 2
Keeping k constant while achieving similar fpr as Bloom-1
PBF (Bi-SBF) 0.14x10−7 12 1024 49152 156 3
PBF (Uni-SBF) 0.14x10−7 12 1024 49152 144 2
SBF 8.74x10−7 12 1024 32768 192 13
Keeping hash bits constant while achieving similar fpr as Bloom-1
PBF (Bi-SBF) 0.49x10−7 6 1024 98304 90 3
PBF (Uni-SBF) 0.49x10−7 6 1024 98304 84 2
SBF 0.82x10−7 5 1024 131072 85 6

Figure 14: Dynamic Power Consumption of Bloom-1 (Using FNV & Xoodoo-NC), and CAM

FNV-1a based Bloom-1 increases with increasing value of k, it is still significantly lower than the power consump-
tion of a CAM. As the CAM lookup operations are performed in parallel, the dynamic power consumption of CAM
having a depth of 1024 is 33% of the total power consumption, which is significantly larger when compared to <1%
of Xoodoo-NC based Bloom-1 implementation. Another noticeable thing to be mentioned is that our modified CAM
implementation consumes less power compared to the Xilinx IP CAM.

6.5. Comparison with related work
A quantitative comparison with related work is shown in Table 5 for n=1024. It is clear that our Xoodoo-NC

based Bloom-1 architecture with a 96-bit input and m = 4096 ∗ 64 significantly outperforms previously proposed
FPGA architectures that have a smaller input size, a smaller m and a larger false positive rate. Our design drastically
improves the resource occupation and the speed. Although the total lookup delay is not reported for the considered
related architectures, the table shows that the delay of the memory accesses only is longer than the delay of one query
in our Xoodoo-NC based implementation. Note, however, that the considered related work uses older FPGAs with
4-input LUTs, while our FPGA has 6-input LUTs. Nevertheless, our reported number of LUTs is only around half of
the LUTs reported in related work and the number of FFs is roughly one fifth to one tenth of the the FFs reported in
related work. The difference in operating frequency can partially be attributed to the difference in silicon technology
nodes between older and newer FPGAs. Nevertheless, the frequency of 462 MHz is extremely high thanks to the low
logical depth of the Xoodoo-NC hash function.
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6.6. Future-proofing
The present work targeted IPv4 as network-layer protocol. However, the presented architectures are also adaptable

for IPv6. The Bloom filter algorithm is based on the hashed fingerprint and the algorithm is not affected by the size
of the input (flow ID). The false positive rate of the Bloom filter is only a function of the number of hash functions,
number of elements to be inserted and the total memory size. Therefor, it is not affected by the size of the input or
hash collisions, irrespective of the network-layer protocol.

To handle IPv6 flows, the only change to be made is to adapt the hash function to handle IPv6 flow ids, which can
be done by increasing the input size of Xoodoo-NC. The original Xoodoo permutation has a 384-bit input state and
in Xoodoo-NC we used only 96-bit input state as our requirement was only 96-bits. We can modify the Xoodoo-NC
hash to accept either 192-bit (2 sheets of the Xoodoo state) or 288-bit (3 sheets) as input state, and then re-compute
the number of rounds required to meet the avalanche criteria. The latency can still be a single clock cycle and the
computational resources will be slightly higher compared to Xoodoo-NC with a 96-bit input state. This would still
be more advantageous than any other existing non-cryptographic hashes because as the input size becomes large, the
latency and resource utilization of hashes like FNV-1a and Murmurhash increase drastically.

7. Conclusion
In this work, we targeted novel algorithms and architectures for high-speed Bloom filters on FPGA, used for fast

lookups in network applications. We proposed a new high-speed hardware-oriented non-cryptographic hash function
calledXoodoo-NC. The hash functionwas integrated into Bloom-1 and parallel Bloomfilter architectures and evaluated
on a Virtex UltraScale+ FPGA of Xilinx. The resulting resource occupation, power consumption, operating frequency,
lookup delay and false positive rate were compared to previously reported Bloom filter architectures and Content-
addressable Memories on FPGA. To our knowledge, our work significantly outperforms all other solutions on all these
comparison criteria. Finally, we discussed the presented work that it can comply with another protocol stack.
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