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Abstract. This paper proposes a B-splines integrated method combining in-situ data with grey-box modelling 

to estimate buildings’ dynamic solar gain more efficiently than the conventional white-box model and much 

more precisely than the classic grey-box model. Solar gain, referring to the overall indoor energy gain supplied 

by solar radiation, plays a vital role in the indoor energy balance. Estimating dynamic solar gain precisely is 

essential to building energy optimisation, e.g. , in model predictive control. However, in almost all existing 

grey-box modeling works, a constant solar gain factor (solar aperture; gA) is assumed to estimate dynamic 

solar gain, which almost certainly will result in solar gain prediction errors, especially in buildings with 

unevenly distributed windows. To fill this gap, this study presents an advanced B-splines integrated grey-box 

model, using customized B-splines to advance the constant gA assumption toward its nature of time-

dependence and precisely characterize the dynamic solar gain conclusively. On-site measured datasets of a 

portable site office (PSO) representing a ‘simplified’ building, under two scenarios with windows fully or 

partially uncovered, serve as test cases. To verify the physical interpretation of outcomes estimated by the 

proposed method, based on the said test cases, the proposed B-splines integrated grey-box model is compared 

with a classic white-box simulation. It is concluded that the proposed method can reveal the main trends and 

key dynamic features of solar gain very well, but still has some limitations of quantifying ‘local’ details with 

acceptable variations. Nevertheless, given that the proposed method merely asks for a very limited amount of 

low-frequency data, the proposed method is considered as a much more effective alternative to the classic 

white-box approach, which requires massive and often hard-to-collect input data. 

 

Highlights. 

 

1. Constant solar aperture (gA) assumption, commonly used in reduced-order statistical models, is 

demonstrated as less suitable to predict solar gains in buildings, especially for cases with unevenly distributed 

windows. 

2. An advanced B-splines integrated grey-box modelling technique is proposed and verified by white-box 

simulation outcomes, to offer reliable dynamic solar gain estimations. 

3. Only a short (e.g., one-week) and low frequency (e.g., hourly) dataset with limited number of parameters 

(e.g., seven) is required for this enhanced technique. 

4. Limitations of four techniques for estimating dynamic solar gain are discussed, which include the advanced 

and original B-spline integrated grey-box, traditional grey-box, and white-box (simulation) models. 

 

Keywords. Solar gain; dynamic solar aperture (gA); grey-box model; building energy simulation; direct 

normal irradiance; comparative study 

 

Nomenclature 

Abbreviations 
ACF auto-correlation function 
AIC Akaike information criterion 
BES building energy simulation 
BIC Bayesian information criterion 
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CI  confidence interval 
CP cumulated periodogram 
ctsm-r continuous time stochastic modelling for R 
Dymola dynamic modelling laboratory 
IDEAS integrated district energy assessment by simulation 
LogL loglikelihood-value 
ML maximum likelihood 
MPC model predictive control 
PASSYS passive solar component and system testing 
PRBS pseudo random binary sequence 
PSO portable site office 
RC resistance-capacitance 
SDE stochastic first-order differential equation 

 
Mathematical notation 

𝐵𝑠𝑖,𝑚 the ith B-spline of order m 

𝜙𝑖 scaling factor of the ith B-spline 
S spline function 
𝜔 Wiener process 
𝜎𝑤 standard deviation of Wiener process 
𝜎𝑠 standard error of the spline parameter 
𝑒 measurement error 
𝜃 a vector of length m, containing the spline parameters 
𝐵 a 𝑛-by-𝑚 matrix, containing 𝑚 basis splines with their corresponding values for each of the 𝑛 

observations 
𝜌 correlation matrix of the spline parameters  
𝛷 the cumulative distribution function of the normal distribution 

 
Physical parameters 

A glazed area of window [m2] 
C heat capacity [J/K] 
DNI direct normal irradiance [W/m2] 
DHI diffuse horizontal irradiance [W/m2] 
g solar transmittance [-] 
𝑔𝐴 solar aperture [m2] 
𝑔𝐴𝑑𝑛𝑖 solar aperture tailored to direct normal radiation [m2] 
𝑔𝐴𝑑ℎ𝑖 solar aperture tailored to diffuse horizontal radiation [m2] 
GHI global horizontal irradiance [W/m2] 
prm number of parameters [-] 
R thermal resistance [K/W]  
𝑆𝑔 total solar gain [W] 
𝑆𝑔𝑑𝑖𝑟  direct solar gain [W] 
𝑆𝑔𝑑𝑖𝑟  diffuse solar gain [W] 
t time [s] 
T temperature [°C] 
𝑇𝑘

∗ measured temperature [°C] 
ws wind speed [m/s] 
𝜙𝑠 heat transfer of solar energy through opaque envelope [W] 
𝜙ℎ heating input [W] 
𝜃𝑧 zenith angle of the sun [°] 

 
Subscripts 

95 For 95-percentage confidence interval 
a ambient air 
dir direct 
dif diffuse 
e building envelope 
ea interaction between e and a 
k discrete time step 
i internal air 
ia interaction between i and a 
ie interaction between i and e 
m internal thermal mass 
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s1 PSO scenario 1 
s2 PSO scenario 2 
sim BES-model simulation 
t time 

 

1. Introduction 

1.1 Grey-box modelling of building thermal dynamics 

Energy is an irreplaceable resource for people’s daily life with expanding demands, and the current building 

industry accounts for around one-third of total final energy consumption, and for almost 30% of direct and 

indirect CO2 emissions [1,2]. Thus, to reduce energy consumption and associated carbon emissions, 

understanding and enhancing building energy performance have become increasingly significant. Building 

energy simulation models, such as TRNSYS, Energy+, Modelica (Dymola) amongst others, are nowadays 

common tools to simulate and optimize the thermal and energetic behavior of a building. They are typical 

examples of so-called white box models, which make use of detailed prior information to explicitly model a 

building’s energy use and thermal response. For existing buildings, this detailed input data is often not 

available and simplified models identified based on data collected on ite, are to be preferred [3]. We can 

distinguish between black box and grey box simplified models. Black box models disregard any prior 

knowledge and solely aim at describing input/output relations. Artificial neural networks [4] and linear 

regression models [5] are examples. Grey box models embed limited prior knowledge in a stochastic 

framework. Overall, they are found to be more robust and provide better extrapolation performance with 

limited training data. Recently, grey-box modeling has been widely applied in energy performance assessment 

of buildings [6,7], model predictive control [8–10], fault detection and diagnosis [11], the optimization of 

smart grids [12], etc. The key advantages of grey-box modeling are: 1) relative low needs on data size 

compared to white-box models, and 2) good physical interpretability of parameter estimations compared to 

black-box models. The said merits of the grey-box model are contributed by the fact that grey-box model 

combine the prior physical knowledge with statistical information embedded in the data [8,13]. Thus, the 

performance of the grey-box model leverages the merits and minimizes the weaknesses of both white- and 

black-box models [14]. The qualitative comparison of the three-modeling approach is tabulated in Table 1. It 

is not hard to find that – for existing buildings – grey-box models show the best comprehensive performance, 

in terms of low data requirement, low computational cost, physical interpretation of estimated outcomes, etc. 

 

Table 1 Qualitative comparison of three modeling approaches. 

Model 

Demands for 

data amount 

& quality 

Computational 

cost 

Physical 

interpretation 
Accuracy 

Expertise 

required 

Application 

Scenario 

White 

box 
Very high Very high Excellent Excellent Very high 

(Mainly in) 

design stage 

Grey box Medium Medium Good Good High After 

construction 

(based on ‘real’ 

in situ data) 

Black 

box 
High Medium-High Poor Good Medium 

 

Specifically to estimate solar gains, the part of energy gain supplied by the sun penetrating through the glazed 

building envelope, BES-models (white-box) are a popular technique. However, the BES model demands 

massive data as input, such as building geometry, properties of the envelope, information about the 

surroundings and weather, and certain expertise level. Without sufficient data and expertise, it might not only 

lead to poor simulation accuracy [15,16], but even can result in an incorrect or no outcome. Thus, a grey-box 

model-based method of estimating dynamic solar gains could serve as a more efficient and reliable alternative, 

which will be valuable to reduce the cost of assessing the thermal dynamics of buildings, owing to its low 

demands of data-size. Most importantly, since a grey-box model is based on on-site measurement data, the 

estimated outcomes of the grey-box model stay closer to the ‘reality’. Black-box models are out of interest 

here, because of their poor physical interpretation. In addition, grey-box modelling is generally regarded to 
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have an enhanced extrapolation properties, compared to the black-box models [17]. The reader is referred to 

[18] for elaborated information of said three model types. In brief, grey-box model is able to ‘mine’ the 

maximum information from limited data to estimate unknown parameters of interests, while keeping an 

acceptable physical interpretation of the estimated outcomes. Therefore, developing a grey-box model-

supported technique on the dynamic solar gain is the key focus of this study. 

 

Practically, in grey-box models, buildings are commonly represented as resistance-capacitance (RC) systems 

[18]  by analogy with electric circuits[19], mathematically represented as a system of stochastic first-order 

differential equations (SDEs) [20], making the equations and parameters involved physically interpretable. 

Statistical tools such as maximum likelihood (ML) and Kalman filter algorithm are adopted for the parameter 

estimations [21]. It is noteworthy that, the estimation outcomes (of grey-box models) for each parameter such 

as 𝐶𝑖, 𝐶𝑒 and 𝑅𝑖𝑒 has a mean value with a standard error [22]. Eq. (1-3) gives an example of two states (i.e. Ti 

and Te) grey-box model for modeling a single thermal zone building, which is visualized in Fig. 1. 

 

𝑑𝑇𝑖 =  
1

𝑅𝑖𝑒𝐶𝑖
(𝑇𝑒 − 𝑇𝑖)𝑑𝑡 +

1

𝐶𝑖
(𝑆𝑔 + 𝝓𝒉)𝑑𝑡 + 𝜎𝑤,𝑖𝑑𝜔𝑖                                                                                           (1) 

𝑑𝑇𝑒 =  
1

𝑅𝑖𝑒𝐶𝑒
(𝑇𝑖 − 𝑇𝑒)𝑑𝑡 +

1

𝑅𝑒𝑎𝐶𝑒
(𝑻𝒂 − 𝑇𝑒)𝑑𝑡 + 𝜎𝑤,𝑒𝑑𝜔𝑒                                                                                       (2) 

𝑻𝒊𝒌
∗ =  𝑇𝑖𝑘 + 𝑒𝑘                                                                                                                                                             (3) 

 
Fig. 1 A single zone two-states thermal RC-network model (TiTe model). 

 

Where Ti , Ta and Te refer to the indoor and ambient air and envelope temperature, and Rie and Rea are the 

thermal resistances against heat transfer from the said different temperature (states), with ventilation heat losses 

included [23]. For further specification, see the Nomenclature. The heat capacities of the interior mass and 

envelope are denoted as Ci and Ce. {ωi,t}, and {ωe,t} are independent standard Wiener processes, and 𝜎𝑤,𝑖
2  

and 𝜎𝑤,𝑒
2  are the incremental variances of the Wiener processes [13]. 𝑻𝒊𝒌

∗  is the observed internal temperature 

and 𝑒𝑘 is the residuals between predicted and measured indoor temperature at kth observation. 𝜙ℎ and Sg are 

the energy flux (in W) from the heating system and the solar radiation respectively. A two states (also called 

second-order) model is generally regarded as a sufficient model for modeling building thermal dynamics, in 

most of studies [24–29]. One state (first-order) grey-box model might not be sufficient to ‘catch’ the key 

dynamics [13], and few cases requires three states model or above. For more details on statistical grey-box 

modelling in general the reader is referred to [22] and for applications on buildings specifically to [3,13,18,23]. 

As stated, the solar gain (Sg) is the research object of this work, aiming at proposing a grey-box model-based 

technique of gauging dynamic solar gain effectively and precisely. 

 

1.2 Buildings’ dynamic solar gain estimation  

For most buildings, the solar gain (Sg) supplies considerable energy to the buildings’ indoor heat balance [30], 

which significantly impacts on the heating or cooling loads of buildings [31]. Solar gain through windows 

refer to the total indoor energy gain contributed by the solar irradiance transmitted through the glazed building 

surfaces [32], and can be written as Eq. (4). 
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𝑆𝑔𝑡 = ∑(𝑔𝑖,𝑡 ∗ 𝐴𝑖) ∗ 𝐺𝐻𝐼𝑡  =  𝑆𝑔𝑑𝑖𝑟𝑡
+  𝑆𝑔𝑑𝑖𝑓𝑡

                                                                                                    (4) 

 

with 𝐺𝐻𝐼𝑡 the global horizontal irradiance (W/m²) at time t, and 𝑔𝑖,𝑡 and 𝐴𝑖 respectively the time-dependent 

solar transmittance (-) and the (effective) glazed area (m²) of the window i. In BES (white-box) modelling, the 

details of 𝑔𝑖,𝑡 and 𝐴𝑖 for each glazing are essential, as input data, to simulate accurately the dynamic solar gain, 

while in grey-box modelling, the model is asked to fit the unknown parameters (e.g. 𝑔𝑖,𝑡 and 𝐴𝑖 values) based 

on limited on-site measured data by maximum likelihood estimation. In practice, it is almost infeasible to 

estimate 𝑔𝑖,𝑡 and 𝐴𝑖 values for each window, and a single (aggregated) solar aperture (gA) is used to simplify 

(and replace) ∑(𝑔𝑖,𝑡 ∗ 𝐴𝑖) in Eq. (4). This simplification leads to Eq. (5), which is widely used in literature. 

 

𝑆𝑔𝑡 = 𝑔𝐴 ∗ 𝐺𝐻𝐼𝑡 =  𝑆𝑔𝑑𝑖𝑟𝑡
+  𝑆𝑔𝑑𝑖𝑓𝑡

                                                                                                                               (5) 

 

The solar aperture (𝑔𝐴-value) is also referred to as solar gain factor, solar transmittance, or effective window 

area. It is generally regarded as ‘the equivalent area of a perfectly transparent surface that transmits the same 

amount of solar energy as the actual windows of the space’ for a particular building [33]. gA accounts both for 

direct and indirect solar gains [34], as shown in Eq. (5), since total solar gain (𝑆𝑔𝑡) consists of both direct 

(𝑆𝑔𝑑𝑖𝑟𝑡
) and diffuse parts (𝑆𝑔𝑑𝑖𝑟𝑡

). The decomposition of 𝑆𝑔𝑡 will be elaborated in section 3.1.3. Omitting the 

subscript ‘t’ for 𝑔𝐴 in Eq. (5), refers to the common assumption of a time-invariant value in almost all grey-

box modeling works in literature. For example, Eq. (5) embedded grey-box models are used to determine 

building energy performance [35–37], serve as control model in model predictive control (MPC) [9,38,39] for 

optimizing building energy performance, and etc. However, a constant value gA-value is not in line with the 

dynamic nature of solar aperture (gA), determined by both the angle dependent solar transmittance (Fig. 2) and 

effective glazed area of window. Specifically, the solar transmittance (𝑔) generally decreases when incidence 

angle enlarges [40,41]. In addition, the effective glazed area also varies over time [42], which is jointly 

determined by windows’ distribution and shading effects from the building itself or nearby obstacles. 

 

 
Fig. 2 Example of incidence angle dependent solar properties of glazing layers (modified from [40]). 

 

Hence, the extensively used constant gA assumption in grey-box modeling is significantly inconsistent with 

the ‘reality’, especially in buildings with irregularly distributed windows. For instance, for a particular building 

that merely has windows on the east and west walls, its daily time-dependent gA curve will show small values 

for most of the day but can have large values in the early morning and late afternoon. So, the real gA curve of 

this particular building will obviously not be constant. Therefore, some researchers have reported that 

assuming gA constantly might yield ‘unqualified’ grey-box models [43], while other suggest that a qualified 

grey-box model for model predictive control (MPC) requires on-site measured [38] or pre-simulated [44] 

dynamic solar gain data, as extra input, rather than estimating solar gains by Eq. (5). 
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1.3 Problem statement 

To avoid estimation (or prediction) uncertainties caused by assuming gA as a constant value, Rasmussen et al. 

[33] have proposed a technique to estimation daily 𝑔𝐴𝑡 curve (the blue curve in Fig. 3) for a specific building. 

Similar to the example discussed in the previous section 1.2, The case studied [33] has no windows on the 

southern and northern walls. As expected, Fig. 3 shows that the constant gA assumption (the red line in Fig. 3) 

considerably mismatch with the reality (the blue curve in Fig. 3). 

 

 
Fig. 3 Dynamic solar aperture curve (gA) analysis of the study case in [33] (modified from [33]). 

 

The corresponding calculated solar gains (𝑆𝑔𝑡) under dynamic and constant gA assumptions are visualized in 

Fig. 4. Although, both assumptions might yield the same total amount of daily solar gain (in J) (the red and 

blue zones in Fig. 4 are almost equal in size), the estimated solar gain dynamics (in W; red and blue curve in 

Fig. 4) differ significantly. This discrepancy (between blue and red curves in Fig. 4) could force grey-box 

model to ‘believe’ there is a certain amount of 𝑆𝑔𝑡 around noon, when almost no solar gain exists in reality, 

leading to an over-estimation of the predicted indoor temperature. For most of buildings, especially with evenly 

distributed windows, the common used constant gA assumption might enlarges certain prediction uncertainties. 

 

 
Fig. 4 Dynamic solar gain estimation gap analysis based on constant gA assumption. 

 

1.4 Research aims and methods 

As stated above, efficient and precise estimation of Sg dynamics (e.g., the blue curve in Fig. 4) is vital for 

model predictive control (MPC), fault detection and diagnosis, etc. Thus, this study aims to propose a grey-

box model-based method to gauge the daily dynamic gA curve (e.g., the blue curve in Fig. 3) efficiently and 

reliably. As visualized in Fig. 3, Rasmussen et al. [33] has successfully integrated B-splines into grey-box 

models to estimate the daily 𝑔𝐴𝑡 dynamic curve for a specific building (Fig. 3). However, the method proposed 

in [33] hasn’t been compared to the typical white-box simulation method, leading to the unknown reliability 

of this method. To ensure the comparability between BES-simulation and estimated outcome of grey-box, the 

grey-box model proposed in [33] should also be enhanced to ensure the clear physical interpretation of 

estimated 𝑔𝐴𝑡. This is mainly attributed to the grey-box model suggested in [33] has a certain risk to embed 

the part of solar energy penetrating opaque envelope (e.g. walls and roof) into estimated 𝑔𝐴𝑡, which is not 
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fully in line with the definition of the solar aperture gA, which merely accounts for the part of solar energy 

penetrating window glazing [33]. Details of three main types of solar gains will be elaborated on in section 

3.1.3. At this stage, in short, the work aims to examine the reliability of the modeling technique proposed in 

[33] by a physical interpretation of the estimation offered by the technique in [33]. However, since the version 

of the model used in [33] has a certain risk of estimating 𝑔𝐴𝑡 with ‘ambiguous’ physical interpretation, the 

current study firstly enhances the grey-box model of [33] to systematically fix the physical interpretation 

problem and refines 𝑔𝐴𝑡 to 𝑔𝐴𝑑𝑛𝑖𝑡
 curve. Secondly, the estimated outcome of the enhanced grey-box model 

proposed in this study will be compared with a traditional BES-model simulation, verifying the reliability of 

the proposed technique in this study. The readers refer to section 3.1.3 more details and the definition of 𝑔𝐴𝑑𝑛𝑖𝑡
. 

Fig. 5 visualize the flow chart of this study, and the remaining content of the paper is organized as follows: 

first, two datasets measured under two scenarios of a portable site office (PSO) are described in Section 2. 

Section 3 clarifies the B-splines integrated grey-box model, the model selection process, and the two grey-box 

models selected for the said two datasets. In Section 4, two BES-models of two mentioned PSO scenarios are 

constructed in Dymola (Modelica). Section 5 compares the estimation outcomes from grey-box and white-box 

approaches. Finally, the key lessons learnt in this study are summarized in Section 6. 

 

 
Fig. 5 The workflow of this study. 

 

2. Description of Case Study 

The energy performance of a real building is affected by plenty of factors, such as the building itself, the 

inhabitants-related ones, and others [45]. It is not easy to understand the cumulative impact, from multiple 

factors, at one time. Thus, ‘simplified buildings’, so-called test cells, are often used to explore the complexity 

of building thermal dynamics step-by-step, by controlling particular boundary conditions out of interest [46].  
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As an integrated part of the IEA EBC Annex-71 project: ‘Building energy performance assessment based on 

in-situ measurements’ [47]. A portable site office (PSO) is customized and constructed for this study (Fig. 6). 

The PSO is elevated around 30 cm above the ground to eliminate heat losses to the ground. The PSO is a 

standardized product serving as a temporary residence, which is treated as a full (simplified) building with 

overall dimensions of 9*3*3m³. It has four rooms: two main test rooms, one tiny entrance lobby, and a toilet 

(Fig. 7), and is located at a parking lot (50.86N, 4.68E) at the Arenberg campus, KU Leuven, Belgium. The 

car park is surrounded by some 1 to 4 floor(s) high buildings (Fig. 8-9), which might impose shading effects 

on the PSO. The main façade of the PSO is south-east (SE140°) oriented, with two windows on the main 

façade, and one window on each of the remaining three walls (Fig. 7), leading to in total five windows. All 

windows are 1.42*1.08m2 with a glazing part of 0.98*0.72m2, except the one in the northwest wall, which is 

0.5*0.6m2 with a glazed component of 0.33*0.4m2 (Fig. 6-7). 

 

As summarized in Table 2, two scenarios have been studied. In the first scenario, all windows of the PSO were 

uncovered (Fig. 7). In the second scenario, the two windows on the main façade were shaded by, white colored, 

wooden shading devices (Fig. 11 and Fig. 12). A PRBS (pseudo random binary sequence) heating on-off 

controlling signal was imposed in the two scenarios. The PRBS signal [48] is a deterministic signal with the 

auto-correlation of white-noise properties and uncorrelated with other external signals (e.g. ambient weather 

conditions) [7,49]. Fig. 13 offers an impression of the measurement campaigns in which the heat input is 

imposed by switching the lamps’ on/off. It is noted that, as shown in Eq. (1-3), only the bold parts, i.e., heating 

input (𝝓𝒉), ambient temperature (𝑻𝒂), and measured indoor temperature (𝑻𝒊𝒌
∗ ), plus additional data of solar 

radiation, are known to estimate certain number of physical parameters, such as 𝐶𝑖, 𝐶𝑒, 𝑅𝑖𝑒, 𝑅𝑒𝑎, 𝑇𝑒, 𝑒𝑘 etc.  

Thus, although heating is not necessary in summer, heating input data is essential for the parameter estimation 

in grey-box modeling. Nevertheless, to avoid ‘overheating’ for summer scenario 2, the ten lamps used in the 

winter scenario 1 were reduced to six (Fig. 12). 

 
Table 2 Two datasets measured under different scenarios with PRBS signal. 

Dataset (code) Scenarios Measurement period Heating setting Frequency  

Scenario 1 in 

January dataset 

(DS1) 

All windows uncovered, 

shown in Fig. 6 and  Fig. 

7. 

From 17 January (19:00) to 24 

January 2020 (9:55); in winter 

10 lamps (375W 

each) and 6 fans 

60 mins 

(hourly) 

Scenario 2 in 

August dataset 

(DS2)  

Two windows covered 

shown in Fig. 11 and Fig. 

12.  

From 6 August (00:00) to 12 

August 2020 (23:55); in 

summer 

6 lamps (375W 

each) and 6 fans 

30 mins 

 

Additionally, the weather data is recorded at a weather station at the VLIET test building (Fig. 14) [50,51], 

which is around 300 meters away from the PSO. The short distance between the weather station and PSO 

makes the monitored weather data applicable to the PSO. The weather station documents exterior air dry-bulb 

temperature (°C), wind speed (m/s), direct normal (W/m2), global horizontal (W/m2), and diffuse horizontal 

irradiances (W/m2), etc, in one-minute frequency. It is expected to observe more dynamics in 𝑔𝐴𝑑𝑛𝑖𝑡
 curve of 

PSO scenario 2 (see section 3.1.3), since the windows in scenario 1 (DS1 dataset) are more evenly distributed 

than in scenario 2 (DS2 dataset). Therefore, a common sampling time for buildings’ on-site measurement data 

[52,53] – an hourly frequency – is selected for DS1, while DS2 is sampled on a shorter (30 mins)  time interval 

basis. Appendix A elaborates the measurement accuracies and the sampling practice in detail. Finally, the 

processed DS1-2 dataset consists of seven variables namely “Ti”, “Te”, “𝜙ℎ”, “GHI”, “DNI”, “DHI”, and “ws”, 

referring to indoor temperature (°C), outdoor temperature (°C), heating input (W), global horizontal irradiance 

(W/m2), direct normal irradiance(W/m2), and diffuse horizontal irradiance (W/m2), and wind speed (m/s) 

respectively. The constructed DS1-2 datasets are visualized in Fig. 15 and Fig. 16 respectively. 
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Fig. 6  The image of the PSO in scenario 1. 

 

 
Fig. 7  The layout of the PSO with PRBS scenario 1. 

 

 
Fig. 8  The parking lot where the PSO (red) is located, surrounded by some small trees and in height varying buildings. 
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Fig. 9  The shadow pattern from surrounded obstacles around 10 a.m. on 21 Jan. 2020. 

 

 
Fig. 10 The surrounding environment and shading obstacles of the PSO. 

 

 
Fig. 11 The image of the PSO under scenario 2. 

 

 
Fig. 12 The PRBS scenario 2 of PSO. 
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(a) Entrance (b) Test room 1 

Fig. 13 The pseudo random binary sequence (PRBS) heating test equipment in the PSO. 

 

 
Fig. 14 The weather station at the VLIET test building. 
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Fig. 15 The plots of DS1 dataset. 

 

 
Fig. 16 The plots of DS2 dataset. 
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3. B-splines integrated grey-box modelling 

3.1 Grey-box model 

3.1.1 Forward selection 

As stated in section 1.1, a grey-box model consists of system equations, such as Eq. (1-2), based on (super-

simplified) physical assumptions. For a specific building, various candidate grey-box models are available to 

model its thermal dynamics based on different physical assumptions. To identify the most suitable grey-box 

model among candidates for each case (i.e., DS1-2), a forward model selection method is used in this study. 

This is a common grey-box model identification technique [3,29,33]. The forward selection starts from the 

simplest (smallest) feasible model based on physical knowledge [13], and it is step-by-step extended by adding 

one variable at a time, (statistical) improving the model most, until no candidate variables integration can 

significantly enhance the fitting of a model to the particular dataset. In general, embedding more parameters 

in a grey-box model - increasing model complexity - ‘always gives rise to an increased value of the maximized 

log-likelihood’ (LogL) [54], indicating a better fitting of the grey-box model to a particular dataset, but also 

increases the overfitting risk of local noise, as shown in Fig. 17. The ‘underfitting’ and ‘overfitting’ of a grey-

box model are unwanted, and loglikelihood-value (LogL), AIC (Akaike information criterion), and BIC 

(Bayesian information criterion) are used to pinpoint the ‘balanced’ model (Fig. 17). Referring [54,55] for 

more details. In this study, a step forward in Fig. 21 and Fig. 22 requires a considerable increase LogL and 

remarkable drops of AIC-value of the grey-box model extension, which is regarded as a pre-set selection 

criterion of ‘balanced’ grey-box identification. 

 

 
Fig. 17 Underfitting, overfitting and balanced statistical models’ performances [56] 

 

3.1.2 Model qualification evaluation 

The selected grey-box models in the forward selection also have to meet additional requirements, such as: the 

residuals of the model are white-noise, and the model gives physically reasonable estimation values [13]. Auto-

correlation function (ACF) and the cumulated periodogram (CP) are standard techniques to test the assumption 

of white noise residuals. In addition, the raw periodogram (RP) and plots of inputs versus model residuals 

could help to identify potential impacts, which are not properly characterized. In practice, the R package named 

‘ctsm-r’ (Continuous Time Stochastic Modelling for R, version 0.6.17 [57]) is used in this study, which is 

based on the extended Kalman filter and maximum likelihood method for parameter estimation [21]. 

 

3.1.3 Decomposition of the lumped gA-value 

As mentioned in section 1.2, in almost all grey-box modeling works in literature, the complicated impacts from 

solar radiation to indoor thermal dynamics (e.g., indoor temperature variation) are simplified as an Eq. (5), 

which is based on a single lumped gA-value. However, as visualized in Fig. 18, in reality, there are, at least, 

three main paths of heat transfer from the sun to the indoor environment, resulting in three main types of solar 

gains: 𝑆𝑔𝑑𝑖𝑟, 𝑆𝑔𝑑𝑖𝑓 and 𝜙𝑠. The explanations of three main solar gain types are tabulated in Table 3, but note 

that the real physical heat transfer from the sun to the PSO indoor thermal environment is even much more 

complicated than the diagrams of Fig. 18. 
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Table 3 Three main type of solar gains based on different heat transfer approaches, as visualized in Fig. 18. 

Symbols 
Type of solar 

gains 
Explanation 

𝑆𝑔𝑑𝑖𝑟  

Direct solar gain 

(penetrating via 

glazing) 

The part of solar gain (thermal radiation) from direct normal irradiance (DNI) that 

passes through the window glazing. As simplified visualized in Fig. 18, the heat 

transfer of 𝑆𝑔𝑑𝑖𝑟  is mainly based on two types of heat transfer: radiation and 

convection. 

𝑆𝑔𝑑𝑖𝑓 
Diffuse solar gain 

(penetrating via 

glazing) 

The part of thermal radiation from diffuse horizontal irradiance (DHI) passing 

through the window glazing. As simplified illustrated in Fig. 18, the heat transfer 

of 𝑆𝑔𝑑𝑖𝑓 is mainly based on two types of heat transfer: radiation and convection. 

𝜙𝑠 

(Total) solar gain 

via opaque 

envelope 

The part of solar gain from both direct normal irradiance (DNI) and diffuse 

horizontal irradiance (DHI), in essence from global horizontal irradiance (GHI) 

based on Eq. (9), via the opaque envelope, including opaque walls, roof, etc. As 

simplified shown in Fig. 18, the heat transfer of  𝜙𝑠 depends on all three types of 

heat transfer: radiation, conduction, and convection. 

 

 

 

 

 

  
(a) 3D model diagram (a) Section diagram 

Fig. 18 Diagrams of ‘direct’ and ‘indirect’ ways of solar energy-based heating to indoor environment. 

 

With the three mains types of solar gains in mind (Fig. 18), it is not hard to find that modeling solar gain (Sg) 

based on only a single lumped 𝑔𝐴𝑡 might lead to a weak interpretation of estimated dynamic 𝑔𝐴𝑡 ,e.g., as in 

[33]. Specifically, in the single lumped 𝑔𝐴𝑡  based grey-box model, the part of 𝜙𝑠  will be ‘forced’ by the 

(super-simplified) physical framework, such as Eq. (1-2), to be incorporated in 𝑔𝐴𝑡. This fact leads to an 

estimated 𝑔𝐴𝑡 (as in [33]), which is not perfectly in line with the 𝑔𝐴-definition to merely account for the heat 

flux through window glazing (see section 1.2). Therefore, in this study, on the basis of [33], three types of 

solar gains - 𝑆𝑔𝑑𝑖𝑟 , 𝑆𝑔𝑑𝑖𝑓  and 𝜙𝑠  – will be systematically modelled. Fig. 23 and Fig. 25 could serve as 

references for systematic modeling the three main parts of solar gains. In addition, the reason of splitting the 

solar gain penetrating the windows (Sg) into two parts 𝑆𝑔𝑑𝑖𝑟  and 𝑆𝑔𝑑𝑖𝑓, referring Eq. (5) and Table 3, is 

because 𝑆𝑔𝑑𝑖𝑓  links much less to the sun position, in contrast to 𝑆𝑔𝑑𝑖𝑟 . Specifically, 𝑆𝑔𝑑𝑖𝑟  and 𝑆𝑔𝑑𝑖𝑓 

contributed by DNI and DHI respectively, and the DNI is strongly sun position-dependent, but the DHI varies 

limited with sun movement. Hence, the time-dependent (or sun position-dependent) nature of 𝑔𝐴𝑡 (section 1.2) 

is mainly attributed to the sun position dependence of 𝑆𝑔𝑑𝑖𝑟𝑡
, instead of 𝑆𝑔𝑑𝑖𝑓𝑡

. Hence, modeling the dynamics 

of the direct solar gain ( 𝑆𝑔𝑑𝑖𝑟𝑡
) is of key interest, instead of 𝑆𝑔𝑡 , since estimating the (lumped) 𝑆𝑔𝑡 
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straightforward could not merely lead to a clearer physical interpretation of the estimated outcomes, but also 

reduce estimation uncertainties. In this regard, a direct solar gain (𝑆𝑔𝑑𝑖𝑟𝑡
) tailored solar aperture, denoted as 

𝑔𝐴𝑑𝑛𝑖𝑡
, is defined as Eq. (6). Meanwhile, a similar customized solar aperture for 𝑆𝑔𝑑𝑖𝑓𝑡

 (diffuse solar gain) is 

proposed as 𝑔𝐴𝑑ℎ𝑖𝑡
, formulated as Eq. (7).  

 

𝑔𝐴𝑑𝑛𝑖𝑡
=

𝑆𝑔𝑑𝑖𝑟𝑡

𝐷𝑁𝐼𝑡
                                                                                                                                                        (6) 

𝑔𝐴𝑑ℎ𝑖𝑡
=

𝑆𝑔𝑑𝑖𝑓𝑡

𝐷𝐻𝐼𝑡
                                                                                                                                                        (7) 

 

Nevertheless, to reduce the grey-box model complexity, in this study, a constant 𝑔𝐴𝑑ℎ𝑖 assumption is applied 

to focus on the modeling of daily dynamic 𝑔𝐴𝑑𝑛𝑖𝑡
 curve, which is physically reasonable, since 𝑆𝑔𝑑𝑖𝑓𝑡

 is much 

less sun position (time) dependent. The dynamic modeling of 𝑔𝐴𝑑𝑛𝑖𝑡
 curve is based on the customized B-

splines, which will be introduced in section 3.2. 

 

3.2 B-splines fitting 

To model non-linear relationships, such as the key interest of this study: daily varying 𝑔𝐴𝑑𝑛𝑖𝑡
 curve with time, 

polynomial regression, spline regression, and generalized additive model (GAM) are commonly used 

techniques. Polynomial regression models dependent variable as an nth degree polynomial of the independent 

variable, which requires an increased polynomial degree to fit the more abundant dynamics. However, the 

increased degree (of the polynomial) generally leads to enlarged uncertainties. Thus, to avoid high degrees 

required, spline regression split the full range of independent variable into several sub-intervals firstly and fit 

low degree polynomial in each sub-interval one by one, and connecting them with specific rules to provide a 

full integral smooth spline later on. Spline regression could lower the polynomial degree needed, but the 

optimized splitting in the first step is generally case by case, leading to its poor standardization. B-splines are 

used as flexible ‘smoother’ in GAM models [58], which meets the need of this study better (e.g., standard flow 

modeling), since a linear combination of weighted B-splines can represent any spline function in the same 

degree, and only one combination exists for a particular spline [59]. The pre-construction of B-spline is unified, 

and based on the B-splines technique; the complex modeling of non-linear relationships (e.g., spline) are 

transferred as ‘analogues’ of multiple linear regression, like Eq. (8). The general expression of B-splines fitting 

is formulated as Eq. (8), where 𝜙𝑖 is the weighting (scaling factor) of the 𝑖𝑡ℎ B-spline in, 𝐵𝑠𝑖,𝑚(𝑡) in mth order, 

with q basis splines in total. 

 

𝑆(𝑡) = ∑ 𝜙𝑖𝐵𝑠𝑖,𝑚(𝑡)
𝑞
𝑖=1                                                                                                                                           (8) 

 

The compact definition of B-splines is first reported by Schoenberg [60], and more practical information can 

be found in [33]. A vital property of B-splines is that the point-wise sum of the infinitely B-spline series is 

always equal to unity for the entire range of interest [61]. As stated, the B-splines are designated in this study 

to depict the daily dynamic 𝑔𝐴𝑑𝑛𝑖𝑡
 curve, where 𝑔𝐴𝑑𝑛𝑖𝑡

 is represented by 𝑆(𝑡), in Eq. (8). Therefore, the pre-

construction of B-splines is restricted by the physical meaning of 𝑔𝐴𝑑𝑛𝑖𝑡
. Considering the 𝑔𝐴𝑑𝑛𝑖𝑡

 has no 

physical meaning before sunrise or after sunset, in this study, the pre-constructed B-splines are customized to 

show in the time interval when a considerable global solar irradiation (𝐺𝐻𝐼𝑡) appears. Fig. 19 shows that 𝐺𝐻𝐼𝑡 

generally appears from 8:00 to 17:00 for scenario 1 (January) and 6:00 to 20:00 for scenario 2 (August), at the 

said location of the PSO. Taking six or eight B-splines as examples, this leads to the customized pre-

constructed B-splines for DS1-2 dataset respectively as visualized in Fig. 20. Regarding the B-splines 

application in R, the B-splines basis functions can be generated by the R-core package ‘Splines’ (version 3.6.3) 

[62]. 
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In addition, another natural characteristic of B-splines is visualized in Fig. 20: only one to two basic splines 

dominate the start and end zones, marked as blue in Fig. 20. The feature of B-splines might create difficulties 

of B-splines fitting when the non-zero values of daily 𝑔𝐴𝑑𝑛𝑖𝑡
 curve starts (sunrise) and ends (sunset), since 

very limited flexibility of B-splines is available in the above-mentioned ‘blue’ zones (Fig. 20), leading to 

enlarged estimation uncertainties. This nature limitation of B-splines will be discussed in section 6.2. Moreover, 

candidate B-splines integrated grey-box models with 4, 6, 8, or 10 tailor-made B-splines will be explored 

subsequently in section 3.3, for DS1-2 datasets. 

 

 
Fig. 19 Daily plots of global horizontal irradiance in one-minute frequency from 17 to 24 Jan. (up) and 6 to 12 Aug. 

2020 (down). 

 

 
Fig. 20 Examples of customized daily B-splines in line with 𝐺𝐻𝐼𝑡  presence in DS1 (up) and DS2 (down), taking six 

(up) and eight (down) splines as examples. 
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3.3 Selection of grey-box model 

3.3.1 Candidate models and roadmap  

A two-steps strategy is used to select the most suitable grey-box model for each of the PSO scenarios, as shown 

in Fig. 21 and Fig. 22. Firstly, based on a constant 𝑔𝐴𝑑𝑛𝑖 assumption, the best model for the particular dataset 

is identified. Secondly, the pre-constructed customized B-splines - 𝑆(𝑡) in Eq. (8) – will replace the 𝑔𝐴𝑑𝑛𝑖 in 

each of the selected models, to estimate the varying daily 𝑔𝐴𝑑𝑛𝑖𝑡
 curves for DS1 and DS2 respectively. The 

Sn suffixes (e.g., S6) indicate how many pre-constructed customized B-splines (e.g., Fig. 20) are used in the 

specific B-splines integrated grey-box model. The forward model selection for both datasets starts from the 

Ti* model, and iteratively extends step-by-step by increasing the complexity. The star mark (*) indicates the 

Sg is systematically considered independently, such as 𝑆𝑔𝑑𝑖𝑟  and 𝑆𝑔𝑑𝑖𝑓 are modeled separately in the Ti* 

model, and 𝑆𝑔𝑑𝑖𝑟, 𝑆𝑔𝑑𝑖𝑓 and 𝜙𝑠 are constructed individually in TiTe*_aen model. In addition,  “Ria” reflects 

the potential direct thermal linkage between indoor and outdoor without the impact of envelope capacity such 

as heat loss via air infiltration. The “aen” and “ws” indicate the modeling of solar energy absorbed by the 

envelope (𝜙𝑠𝑡
) and the impact of wind on thermal resistances. Similar to Eq. (5), Eq (9) is proposed to estimate 

𝜙𝑠𝑡
, assuming an (unknown) constant absorption coefficient (i.e., 𝑎𝑒𝑛). In addition, following [63], the effects 

of wind speed on all thermal resistances are simplified modeled as a coefficient, 1/(1+co*ws), to the original 

thermal resistance (e.g., Rie and Rea). The unknown coefficients aen and co will be estimated in the data fitting 

of grey-box models. Moreover, the third state “Tm” accounts for the temperature of the interior thermal mass 

such as furniture, internal walls, etc. 

 

𝜙𝑠𝑡
= 𝑎𝑒𝑛 ∗ 𝐺𝐻𝐼𝑡                                                                                                                                 (9) 

 

As shown in Fig. 21 and Fig. 22, two roadmaps of model identification for the DS1 and DS2 datasets are 

presented. The ‘balanced’ model (Fig. 17) selected in each roadmap generally refers to the one that shows the 

best overall performance in both LogL (high-value desired) and AIC (low-value wanted). In addition, both 

considerable increase of LogL (marked as red) and decline in AIC (signed as blue) indicate a success model 

extension, visualized as red arrows. Thus, guided by the red arrows, TiTe*_aen_ws_S6 and 

TiTe*_Ria_aen_ws_S8 models are selected for the PSO scenario 1 and 2 respectively. It is noted that, 

compared to AIC, BIC imposes a harsher penalty to the model complexity and prefers a model with limited 

parameters [64], since incorporating B-splines into the grey-box model expands the number of parameters 

(prm) sharply but might not improve the model significantly enough, to compensate for the penalty of BIC 

caused by the enlarged prm. Thus, the BIC value is only considered as a reference.  

 

3.3.2 Selected two-states models 

Specifically, for the DS1 dataset (Fig. 21), following the red arrows, indicating LogL increasing and AIC 

reducing, two constant 𝑔𝐴𝑑𝑛𝑖 based grey-box models are selected in step 1: TiTe*_ws model (low LogL and 

lowest AIC and BIC) and TiTe*_aen_ws model (lowest LogL and low AIC and BIC). Extending the two 

models with customized B-splines in different numbers, both results in 4 B-splines (S4) as optimal, leading to 

TiTe*_aen_ws_S4 and TiTe*_ws_S4 being selected in step 2. However, in line with the 𝑔𝐴𝑑𝑛𝑖𝑡
 verification 

purpose stated in section 1.4, 𝜙𝑠 should be modelled separately (marked as ‘aen’). Therefore, although the 

TiTe*_aen_ws_S4 model has a slightly higher AIC-value (for comparable LogL-value), this model is preferred. 

Moreover, extending model from TiTe*_aen_ws_S4 to TiTe*_aen_ws_S6, a slight increase of AIC is 

observed, however, a considerable LogL rise is also noticed (from -264.62 to -263.73). This might indicate 

enhanced flexibility of six B-splines is required, and only four B-splines is not sufficient for capturing the 

dynamics of 𝑔𝐴𝑑𝑛𝑖𝑡
 in DS1. Therefore, the TiTe*_aen_ws_S6 model is ultimately selected as the optimal one 

for the DS1 (see Fig. 21). The TiTe*_aen_ws_S6, illustrated in Fig. 23, is a two-state model, which 

systematically models 𝑆𝑔𝑑𝑖𝑟, 𝑆𝑔𝑑𝑖𝑓, 𝜙𝑠 independently and the wind impacts to indoor thermal dynamics in the 

system equations.  
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Fig. 21 The forward model selection roadmap for DS1 dataset (scenario 1). 

 

 
Fig. 22 The forward model selection roadmap for DS2 dataset (scenario 2). 
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Meanwhile, the red arrows in Fig. 22 point out the TiTe*_Ria_aen_ws_S8 is the selected model, in step 2, for 

the DS2 dataset (PSO scenario 2). Compared to DS1, the integration of ‘Ria’ considerably improved the LogL 

performance in DS2 (Fig. 25), indicating the statistical significance of this model extension, which could be 

physically attributed to the added extra shading. Fig. 25 illustrates the RC model of TiTe*_Ria_aen_ws_S8 

model, with its (white noise) residuals qualified via Fig. 26. It is noted that six and eight B-splines are needed 

for the PSO scenario 1 and 2 respectively (i.e. TiTe*_aen_ws_S6 for DS1 and TiTe*_Ria_aen_ws_S8 for 

DS2). This seems physically reasonable since the uneven distribution of windows in scenario 2 trends to result 

in richer dynamics of both 𝑆𝑔𝑑𝑖𝑟𝑡
 and 𝑔𝐴𝑑𝑛𝑖𝑡

. Additionally, for the two final models chosen for DS1-2, their 

residuals (𝑒𝑘) between predicted (𝑇𝑖𝑘) and measured (𝑇𝑖𝑘
∗ ) indoor temperature, see Eq. (3) as an example, 

should correspond to white noise residuals. Hence, Fig. 24 and Fig. 26 checks the characteristics of residuals 

(𝑒𝑘) of TiTe*_aen_ws_S6 and TiTe*_Ria_aen_ws_S8, by the plots of model residuals versus time, the auto-

correlation function (ACF), and the cumulated periodogram (CP), which indicate two said models meet the 

white noise residuals assumption. For more specifications, the reader refers to [13]. 

 

 
Fig. 23 The selected two-states single zone thermal RC-network model for the DS1 under scenario 1. 

 

 
Fig. 24 The plots of residuals versus time, the auto-correlation function (ACF) and the cumulated periodogram (CP) of 

the residuals for the TiTe*_aen_ws_S6 model of DS1 dataset. 
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Fig. 25 The selected two-states single zone thermal RC-network model for the DS2 under scenario 2. 

 

 
Fig. 26 The plots of residuals versus time, the auto-correlation function (ACF) and the cumulated periodogram (CP) of 

the residuals for the TiTe*_Ria_aen_ws_S8 model of DS2 dataset. 

 

4. BES-model based simulation 

Two classic BES-models are constructed in Modelica (Dymola) for the two PSO scenarios, and each BES-

model will be compared with the grey-box model selected for the same scenario, in section 3.3.2. The 

comparison is aiming to, on the one hand, verify the physical interpretation of estimated outcomes from the 

enhanced grey-box modeling proposed in this study, and on the other hand, understand the potential limitations 

of both two techniques (BES- and the enhanced grey-box models) in revealing buidlings’ dynamic 𝑔𝐴𝑑𝑛𝑖𝑡
 and 

𝑆𝑔𝑑𝑖𝑟𝑡
. Appendix B elaborates the construction details of the two BES-models. In brief, the two BES-models, 

representing only the effective glazing parts of two PSO scenarios (Fig. 7 and Fig. 12), along with the 

corresponding weather files contribute to the simulated direct solar gains: 𝑆𝑔𝑑𝑖𝑟_𝑠𝑖𝑚_𝑠1𝑡
 and 𝑆𝑔𝑑𝑖𝑟_𝑠𝑖𝑚_𝑠2𝑡

 for 

PSO scenarios 1 and 2. As stated in the introduction, for most existing buildings, often not all input data is 

available, such as the exact layers and material properties of the building envelope, etc. Hence, in conformity 

with ‘reality’, only the glass part of the window system and the main shading effect from other buildings and 

tree groups were constructed in the BES-model in this study. 
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5. Results and comparison 

5.1 Daily dynamic 𝑔𝐴𝑑𝑛𝑖𝑡
 estimations 

Based on the selected TiTe*_aen_ws_S6 and TiTe*_Ria_aen_ws_S8 models, two daily dynamic 𝑔𝐴𝑑𝑛𝑖𝑡
 

curves, denoted as 𝑔𝐴𝑑𝑛𝑖_𝑠1𝑡
 and 𝑔𝐴𝑑𝑛𝑖_𝑠2𝑡

, are evaluated by Eq. (10) and Eq. (11), for PSO scenario 1 and 2 

respectively. In Eq. (10-11), t expresses daily 1 to 24 hours for DS1, or sequence numbers of 30mins for DS2, 

and 𝜃 is a vector of length m containing the spline parameters, and 𝐵 is a 𝑛-by-𝑚 matrix containing 𝑚 basis 

splines with their corresponding values for each of the 𝑛 observations. Note that the estimation for each 

unknown parameter (e.g. 𝜙𝑠1𝑖 and 𝜙𝑠2𝑖) has a mean value with a standard error, thus, based on Eq. (10-11), 

the estimated 𝑔𝐴𝑑𝑛𝑖_𝑠1𝑡
 (or 𝑔𝐴𝑑𝑛𝑖_𝑠2𝑡

) has its 95% confidence interval (zone), which is elaborated in Appendix 

C. In addition, by Eq. (6), the Modelica-simulated 𝑔𝐴𝑑𝑛𝑖_𝑠𝑖𝑚_𝑠1𝑡
 and 𝑔𝐴𝑑𝑛𝑖_𝑠𝑖𝑚_𝑠2𝑡

 for PSO scenario 1 and 2, 

in one hour or 30 mins sampling time respectively, are calculated based on Eq. (12-13). Note that, in the above-

mentioned simulations, the measured 𝐷𝑁𝐼_𝑠1𝑡 and 𝐷𝑁𝐼_𝑠2𝑡 in the input weather files of the two BES-models 

is replaced by a constant value of 100 W/m², since the low values of measured direct normal irradiance (𝐷𝑁𝐼𝑡) 

in the early morning and late afternoon might lead to simulation errors and this replacement will not impact 

on the estimations of 𝑔𝐴𝑑𝑛𝑖_𝑠𝑖𝑚_𝑠1𝑡
 and 𝑔𝐴𝑑𝑛𝑖_𝑠𝑖𝑚_𝑠2𝑡

. 

 

𝑔𝐴𝑑𝑛𝑖_𝑠1𝑡
= ∑ (𝜙𝑠1𝑖 ∙ 𝐵𝑠𝑠1𝑖)𝑡

6
𝑖=1  = 𝐵𝑠1𝜃𝑠1                                                                                                     (10) 

𝑔𝐴𝑑𝑛𝑖_𝑠2𝑡
= ∑ (𝜙𝑠2𝑖 ∙ 𝐵𝑠𝑠2𝑖)𝑡

8
𝑖=1  = 𝐵𝑠2𝜃𝑠2                                                                                                      (11) 

𝑔𝐴𝑑𝑛𝑖_𝑠𝑖𝑚_𝑠1𝑡
=  

𝑆𝑔𝑑𝑖𝑟_𝑠𝑖𝑚_𝑠1𝑡

𝐷𝑁𝐼_𝑠1𝑡
                                                                                                                                                    (12) 

𝑔𝐴𝑑𝑛𝑖_𝑠𝑖𝑚_𝑠2𝑡
=  

𝑆𝑔𝑑𝑖𝑟_𝑠𝑖𝑚_𝑠2𝑡

𝐷𝑁𝐼_𝑠2𝑡
                                                                                                                                                   (13) 

 

5.2 Qualitative analysis and quantitative comparison 

Prior to the quantitative comparison of the estimated (simulated) outcomes, offered by Eq. (10-13), Fig. 27 

firstly visualizes the sun trajectories for the particular scenarios under winter (DS1) or summer (DS2) 

conditions. This analysis (Fig. 27) shows only one global 𝑔𝐴𝑑𝑛𝑖𝑡
 peak under scenario 1 in January (left) and 

two 𝑔𝐴𝑑𝑛𝑖𝑡
 ‘peaks’ under scenario 2 in August (right) are expected. Specifically, in scenario 1 (January) the 

one 𝑔𝐴𝑑𝑛𝑖𝑡
 peak is expected shortly after sunrise, when the direction of 𝐷𝑁𝐼𝑡 is perpendicular to the southern 

façade of the building with its two windows. In addition, two 𝑔𝐴𝑑𝑛𝑖𝑡
 ‘peaks’ are expected in scenario 2, of 

which one appears immediately at sunrise, and the other one, gradual rising and declining, when the direction 

of 𝐷𝑁𝐼𝑡 is perpendicular to the southwestern window. Note that Fig. 27 only visualizes the sun’s movement 

of the first days of both datasets (see Table 4) as representatives, since a small variation in sun trajectory is 

observed within the seven to eight days (Table 4). 

 
Table 4 Sunrise/sunset orientations in January and August at Leuven [65]. 

 January DS1 dataset with scenario 1 August DS2 dataset with scenario 2 

No. Date Sunrise Sunset Date Sunrise Sunset 

Day 1 17-01-2020 123° ESE 237° WSW 06-08-2020 62° ENE 298° WNW 

Day 2 18-01-2020 123° ESE 237° WSW 07-08-2020 62° ENE 297° WNW 

Day 3 19-01-2020 122° ESE 238° WSW 08-08-2020 63° ENE 297° WNW 

Day 4 20-01-2020 122° ESE 238° WSW 09-08-2020 63° ENE 296° WNW 

Day 5 21-01-2020 122° ESE 239° WSW 10-08-2020 64° ENE 296° WNW 

Day 6 22-01-2020 121° ESE 239° WSW 11-08-2020 64° ENE 295° WNW 

Day 7 23-01-2020 121° ESE 239° WSW 12-08-2020 65° ENE 295° WNW 

Day 8 24-01-2020 120° ESE 239° WSW    
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Fig. 27 The expected peak(s) of daily dynamic 𝑔𝐴𝑑𝑛𝑖𝑡

 for January DS1 (left) and August DS2 (right). 

 

Based on the outcomes from Eq. (10-13), Fig. 28 and Fig. 29 further quantitatively compare the estimated (or 

simulated) 𝑔𝐴𝑑𝑛𝑖𝑡
 for the two scenarios. The expected key dynamic features of both scenario 1 and 2 are 

clearly unfolded by both approaches, such as the existence of one (two) daily 𝑔𝐴𝑑𝑛𝑖𝑡
 peak(s) for January 

(August). In addition, more key details are well revealed by both two approaches: for example, in January, the 

one daily 𝑔𝐴𝑑𝑛𝑖𝑡
 peak is expected to appear around 11 am (Fig. 28), and the two daily 𝑔𝐴𝑑𝑛𝑖𝑡

 peaks for August, 

of which the first jumps to a high maximum at sunrise and the second one increases in the afternoon and falls 

back to a lower value gradually over time toward sunset (Fig. 29). Therefore, it is concluded that both the 

dynamic 𝑔𝐴𝑑𝑛𝑖𝑡
 tailored B-splines integrated grey-box and BES-models, at least in this cases study, are able 

to reveal the main trend and key characteristics of the daily dynamic 𝑔𝐴𝑑𝑛𝑖𝑡
 curve. Nevertheless, the grey-box 

fitted and BES-simulated course are not in perfect agreement (Fig. 28-29). At this stage, it is hard to answer 

which one is ‘right’, since both two approaches have their limitations, which will be discussed in the next 

section. The two constant 𝑔𝐴𝑑𝑛𝑖  estimated by TiTe*_aen_ws and TiTe*_Ria_aen_ws models with their 

corresponding 95% confidence intervals are also shown in Fig. 28-29. It is clear that a constant solar aperture 

ignores the rich details of 𝑔𝐴𝑑𝑛𝑖𝑡
 dynamics to a large extent, which could increase prediction uncertainties.  

 

 
Fig. 28 The hourly dynamic 𝑔𝐴𝑑𝑛𝑖𝑡

 comparison for scenario 1. 
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Fig. 29 The hourly dynamic 𝑔𝐴𝑑𝑛𝑖𝑡

 comparison for scenario 2. 

 

For example, Fig. 30 compares the predicted direct solar gains by the three methods (constant 𝑔𝐴𝑑𝑛𝑖 and 

dynamic 𝑔𝐴𝑑𝑛𝑖𝑡
 based grey-box models and BES-model) for the DS2 dataset (PSO scenario 2). It visualizes 

how the constant 𝑔𝐴𝑑𝑛𝑖 assumption in TiTe*_Ria_aen_ws model predicts high solar gains around noon, when 

the solar beam (i.e. 𝐷𝑁𝐼𝑡) is orientated to the PSO main façade of which the two windows are shaded (Fig. 

11). It is not hard to understand the prediction uncertainties caused by this wrong 𝑆𝑔𝑑𝑖𝑟𝑡
 dynamic information. 

This clearly illustrates why a constant 𝑔𝐴𝑑𝑛𝑖 based 𝑆𝑔𝑑𝑖𝑟𝑡
 information is rejected in some model predictive 

control (MPC) studies [38,44]. 

 

 
Fig. 30 The comparison of three types of direct solar gain estimations in scenario 2. 
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6. Limitations of grey-box and white-box approaches 

6.1 Limitations of the white-box approach (BES-model) 

As stated in section 5.2, discrepancies are observed for the dynamic details between daily 𝑔𝐴𝑑𝑛𝑖𝑡
 curves 

estimated by proposed grey-box and classic white-box approaches for both scenarios (Fig. 28-29). The 

differences might be caused by the limitations of both approaches. As mentioned in section 1.1, the key 

limitation of the BES-model simulation is its massive demand of input data, such as layers and material 

properties of the building envelope and the shading effect from individual obstacles, which is often unavailable. 

As reported in section 4, the BES-model in this study, merely considered the windows’ glazing and the main 

shading effect (e.g. from buildings and tree groups), but ignored solar gains through the opaque building 

envelope and shading from discrete individual trees. Ignoring the opaque building fabric parts could cause an 

‘ahead-of-time’ estimation of the 𝑔𝐴𝑑𝑛𝑖𝑡
 dynamics in BES-simulation. Specifically, without modeling the 

opaque building fabrics, simulated direct solar gain such as 𝑆𝑔𝑑𝑖𝑟_𝑠𝑖𝑚_𝑠1𝑡
 is assumed to influence the indoor 

air temperature immediately. However, as shown in Fig. 18, the real heat transfer process will take some time, 

since the solar beam heats interior building surfaces via radiation firstly and the heated surface will gradually 

warm up the indoor air via convection subsequently. Therefore, the BES-model has a certain risk of an ‘ahead-

of-time’ estimation, referring to Zone C in Fig. 31, in simulated 𝑔𝐴𝑑𝑛𝑖_𝑠𝑖𝑚𝑡
. Moreover, when the beam 

radiation is blocked, such as the sun facing the covered windows in scenario 2, the simulated 𝑆𝑔𝑑𝑖𝑟_𝑠𝑖𝑚𝑡
 will 

drop more sharply than ‘reality’.  In the real case, the stored part of solar gain in the building envelop will still 

be gradually released as an alternative ‘energy supplier’ to the indoor air mass, postponing the drop of indoor 

temperature. In addition, unmodeled individual trees surrounding the PSO might underestimate potential 

shading effects, resulting in ‘overestimation’ in the simulated 𝑆𝑔𝑑𝑖𝑟_𝑠𝑖𝑚𝑡
, compared to the real case (refers to 

Zone D in Fig. 31). For instance, Fig. 32 shows a potential significant shading effect from a few individual 

trees to the southwest window of PSO, which is unmodelled in the simplified BES-models. 

 

 

 
Fig. 31 Summarized limitations of two approaches and possible explanations for deviations between the fitted and 

simulated 𝑔𝐴𝑑𝑛𝑖𝑡
. 
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Fig. 32 Potential shading effects from several individual trees to the southwestern window of PSO. 

 

6.2 Limitations of the B-splines integrated grey-box approach 

Meanwhile, the method proposed in this study (i.e. enhanced B-splines integrated grey-box model) also has its 

limitations 1) limited flexibility of B-splines for particular zones and 2) limitation of grey-box modeling in 

decoupling lumped physical phenomena. First, for the pre-constructed B-splines, as shown in Fig. 20, around 

sunrise and sunset (marked as blue zones), there is only one (or two) basis spline with a ‘steep’ shape available 

for the data fitting. Close to sunrise and sunset, the direct solar radiation (𝐷𝑁𝐼𝑡) is very low. Hence, the scaling 

factor(s) of the particular basis spline(s) have to fit the 𝑇𝑖𝑡 dynamics under a low 𝐷𝑁𝐼𝑡, prohibiting a reliable 

estimation of 𝑔𝐴𝑑𝑛𝑖𝑡
 dynamics. Especially, in PSO scenario 2, visualized in Fig. 27, the east-northern window 

is immediately exposed to solar radiation as soon as the sun is above the horizon, leading to a considerable 𝑇𝑖𝑡 

increase. With a low 𝐷𝑁𝐼𝑡 at that moment, it is statistically ‘reasonable’ to assign a physically ‘unreasonably’ 

high 𝑔𝐴𝑑𝑛𝑖𝑡
 value for the particular moments. As reported in section 2, the glazed area of the north-eastern 

window is around 0.7 m2, indicating the 𝑔𝐴𝑑𝑛𝑖𝑡
 value should be lower than 0.7 m2 in the morning. However, 

the estimated 𝑔𝐴𝑑𝑛𝑖𝑡
 ranges from 1.3-0.7 m2 in the morning hours (Fig. 29). Luckily, the exaggerated 𝑔𝐴𝑑𝑛𝑖𝑡

 

estimation in the early morning or late afternoon will only impose a limited effect on the grey-box model states, 

due to the low amount of corresponding 𝑆𝑔𝑑𝑖𝑟𝑡
, caused by the low 𝐷𝑁𝐼𝑡-value at that time. 

 

The second limitation is mainly attributed to the data-driven feature of the grey-box model. As stated in section 

1.1, the grey-box model estimation is based on statistical correlations of dynamics between different input data, 

such as indoor temperature (𝑇𝑖𝑡) and direct normal irradiance (𝐷𝑁𝐼𝑡). This mechanism of estimation makes it 

hard to separate each physical phenomenon (or decouple the lumped physical phenomena), when two separated 

physical processes are highly statistically correlated. Given an example, in PSO scenario 2, when the sun 

orientates to the two covered windows in Fig. 27, direct solar gains are blocked, but the heat release from the 

solar gain through the opaque envelope (𝜙𝑠𝑡
; unconsidered in the BES-models in section 4) might still be 

statistically attributed to 𝐷𝑁𝐼𝑡, owing to considerable statistical correlation between 𝑇𝑖𝑡 and 𝐷𝑁𝐼𝑡 during the 

noon hours. This might explain why the dynamic 𝑔𝐴𝑑𝑛𝑖𝑡
 never drops to zero and keeps a value above 0.1 m2 

(Zone C in Fig. 31) during the noon period, which is again physically ‘unreasonable’ in fact, but ‘reasonable’ 

in statistics. Given another example, in PSO scenario 1, the total area of two windows on the PSO southern 

façade is 1.4 m2, indicating the maximum of 𝑔𝐴𝑑𝑛𝑖_𝑠1𝑡
. However, the peak of estimated 𝑔𝐴𝑑𝑛𝑖_𝑠1𝑡

 is beyond 

1.5 m2 (Fig. 28). Keeping the decoupling difficulty of the grey-box model in mind, this could explain why the 

estimated 𝑔𝐴𝑑𝑛𝑖𝑡
 of grey-box model trends to be higher than simulated 𝑔𝐴𝑑𝑛𝑖_𝑠𝑖𝑚𝑡

 most of the time, since the 

estimated 𝑔𝐴𝑑𝑛𝑖𝑡
 is not purely contributed by solar gains through the windows and might incorporate partial 

𝜙𝑠𝑡
. To sum up, the limitations of both data-driven and numerical approaches are summarized in Fig. 31, and 

potential main explanations for deviations are specified. In addition, let us stress again, that none of the blue 

or red curves in Fig. 28-29 are in line with the ‘truth’, due to the said limitations of both approaches.  
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7. Conclusion 

In this study, an enhanced B-splines integrated grey-box modeling technique is proposed to gauge 𝑔𝐴𝑑𝑛𝑖𝑡
 and 

𝑆𝑔𝑑𝑖𝑟𝑡
, as an efficient alternative to the classic building energy simulation (BES-) method. The significance 

of precise 𝑔𝐴𝑑𝑛𝑖𝑡
 (or gA) information, instead of the commonly used constant one, to prediction works, such 

as in model predictive control (MPC), is also demonstrated. It was shown that a constant 𝑔𝐴𝑑𝑛𝑖 assumption 

can lead to high solar gain predictions, when there is in fact no direct solar gain. Meanwhile, the method 

proposed in this study is compared with the classic BES-model simulation method, to test both its robustness 

and physical interpretation of estimation outcomes. The comparison shows both two approaches (i.e. proposed 

advanced grey-box and classic BES-model) can estimate (or simulate) the key dynamic features of daily 

𝑔𝐴𝑑𝑛𝑖𝑡
 curve (Fig. 28 and Fig. 29), but both have certain limitations on quantifying dynamic details. However, 

considering the key dynamics of 𝑔𝐴𝑑𝑛𝑖𝑡
 and the variation between the estimated dynamic 𝑔𝐴𝑑𝑛𝑖𝑡

 curves and 

‘true’ ones is small, the proposed method is still regarded as a promising technique, to fix the problem caused 

by the common constant solar aperture assumption, referring to Fig. 4 and Fig. 30. Most importantly, this 

proposed method cooperates with in-situ data and only requires a very limited amount of input data (e.g. 30 

mins or hourly data of 7 parameters for around one week), showing its merits. Its excellence could be 

understood as two-fold: 1) The data measured on-site is generally regarded as more reliable, since it embeds 

‘everything’ into data, including ‘known’ and ‘unknown’ impacts, where the ‘unknown’ part, such as 

unexpected shading effects is almost impossible to be incorporated into BES-models; 2) the required data (i.e. 

Ti, Te, 𝜙ℎ, GHI, DNI, DHI, ws) are generally easy to access, and the low demands of data size (e.g. only one 

week date sampling in 30 mins) could significantly reduce the cost of measurement. To sum up, the technique 

( 𝑔𝐴𝑑𝑛𝑖𝑡
 tailored B-splines integrated grey-box model) proposed in this study could work much more 

efficiently than the traditional numerical (BES-model) approach, and the estimated 𝑔𝐴𝑑𝑛𝑖𝑡
 curves could 

significantly reduce the prediction uncertainties caused by the invariant solar aperture assumption, which is 

widely used in current grey-box modeling works. Therefore, the technique can considerably contribute to 

multiple fields, such as building thermal performance assessment, model predictive control, fault detection and 

diagnosis, etc. In future work, more cases studies with increased complexity, such as multiple thermal zones 

with complex occupancy profiles could be studied to tests the robustness of this technique. 

 

Acknowledgment 

This research was funded by the Research Foundation Flanders (FWO), application number G0D2519N, and 

by KU Leuven, grant C24/18/040. This support is gratefully acknowledged. 

 

Appendix A 
In practice, the indoor temperature (Ti) in DS 1-2 datasets is processed in two steps. First, the 5 mins indoor 

temperature data from 8 horizontally and vertically distributed sensors (Fig. 7 and Fig. 12) are averaged to one 

representative indoor temperature. Then, the resulting 5 mins (representative) indoor temperature is further 

averaged to hourly values for DS1 or 30 mins ones for DS2 and used for the subsequent statistical modellings. 

For the processing of the remaining data in DS 1-2 (i.e. outdoor temperature (Te), heating input (Ph), direct 

normal irradiance (DNI), etc.), the values are averaged directly from the 5 mins (or 1 min) data to 60 or 30 

mins frequency in DS 1-2 respectively. For the measurement accuracies and frequencies of original data used 

for DS 1-2 datasets construction, they are tabulated in Table 5. 

 

Table 5 The basic information of data measurement. 

Data type Instrument Manufacturer Type 
Measurin

g range 
Accuracy Frequency 

Indoor 

temperature 
-- Eltek GC-10 

+5 / 

40°C 
± 0.4 % 5 mins 

Heating input power meter Elster A100C 100A ± 1 % 5 mins 
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Ambient 

temperature 

Air Temperature 

Sensor (HMP155A) 
Vaisala -- 

-40 / 

+60°C 
±0.2°C 1 min 

Global radiation pyranometer Kipp & Zonen CMP 3 -- ±3% 1 min 

Diffuse radiation pyranometer Kipp & Zonen CMP11-V -- ±1.5% 1 min 

Direct normal 

radiation 
pyrheliometer Kipp & Zonen SHP1-V -- ±1.1% 1 min 

Wind Speed 
ultrasonic 

anemometer 
Thies 

3D No. 

4.3830.20.340 
0-85 m/s 

0-5 m/s: 

±0.1 m/s; > 

5 m/s: ±2% 

1 min 

 

Appendix B 
Modelica is an open-source object-orientated modeling language supporting multi-domain physical system 

modeling, which is increasingly used in the dynamic simulation of thermal-hydraulic systems [66–68] and 

building energy systems [66,69–72]. In this study, in cooperation with the Dymola tool, the IDEAS (Integrated 

District Energy Assessment by Simulation) library version 2.1 is used. The simulation reliability of the IDEAS 

library has been verified in several approaches [73]. As stated, the two BES-models are minimal models, 

indicating that only the transparent part of window system (without considering window frames or opaque 

elements) is considered and constructed, in line with the difficulties of data-collecting in reality. Thus, limited 

data is required, which is: 1) the volume of the indoor air mass, 2) the size and properties of the glazed envelope, 

3) the total size of ceiling and floor (the construction details can be set as default), and 4) information about 

the surrounding shading obstacles (e.g. heights and distances to the PSO). Besides, the glass property for all 

PSO windows is set as uncoated double glazing with a U-value of 2.9 W/m²K, 4mm (glass)/ 12mm (spacer)/ 

4mm(glass). In addition to the BES-models, weather files are needed. Two weather files, exactly in line with 

DS1 and DS2 datasets (i.e. same in time span, data value, and frequency) are constructed according to the 

guidance of [74]. Orientated by the 𝑆𝑔𝑑𝑖𝑟𝑡
 and 𝑔𝐴𝑑𝑛𝑖𝑡

 estimation in this study, only the global horizontal 

radiation (W/m2), direct normal radiation (W/m2), and diffuse horizontal radiation (W/m2) are required here, 

and the remaining data are set to zero in the two weather files. Finally, based on the constructed BES-models, 

modelling the glazed enveloped of two PSO scenarios as shown in Fig. 7 and Fig. 12, along with the 

corresponding pre-established weather files, dynamic 𝑆𝑔𝑑𝑖𝑟𝑡
 outcomes for the two PSO scenarios (denoted as 

𝑆𝑔𝑑𝑖𝑟_𝑠𝑖𝑚_𝑠1𝑡
 and 𝑆𝑔𝑑𝑖𝑟_𝑠𝑖𝑚_𝑠2𝑡

) are simulated in a pre-set 5 mins frequency. Then, the original 5mins 

simulated dynamic 𝑆𝑔𝑑𝑖𝑟  outcomes are averaged to hourly 𝑆𝑔𝑑𝑖𝑟_𝑠𝑖𝑚_𝑠1𝑡
 and 𝑆𝑔𝑑𝑖𝑟_𝑠𝑖𝑚_𝑠2𝑡

 in 30 mins 

frequency ultimately, to ensure the consistency of frequencies in both estimated dynamic 𝑆𝑔𝑑𝑖𝑟𝑡
 and 𝑔𝐴𝑑𝑛𝑖𝑡

 

outcomes from BES- and grey-box models. 

 

Appendix C 
As reported in section 5.1, The mean values (𝐵𝜃) of dynamic 𝑔𝐴𝑑𝑛𝑖_𝑠1𝑡

 and 𝑔𝐴𝑑𝑛𝑖_𝑠2𝑡
 can be. Meanwhile, the 

standard errors for the estimations of two dynamic 𝑔𝐴𝑑𝑛𝑖𝑡
 can be calculated in a general from - √diag(𝐵𝛴𝐵Τ), 

where diag(𝐵𝛴𝐵Τ) is the diagonal of the 𝑛-by-𝑛 matrix 𝐵 Σ 𝐵Τ and 𝛴 is the covariance matrix of the spline 

parameters. Additionally, the covariance matrix (𝛴) can be calculated based on Eq. (16) with the standard 

errors of the spline parameters 𝜎𝑠 and the correlation matrix of the spline parameters 𝜌 obtained directly from 

ctsm-r, where ∘  is the Hadamard operator representing elementwise multiplications of the two m-by-m 

matrices. Finally, assuming that the parameter estimates are normally distributed, the 95% confidence interval 

of the estimated spline of dynamic 𝑔𝐴𝑑𝑛𝑖_𝑠1𝑡
 and 𝑔𝐴𝑑𝑛𝑖_𝑠2𝑡

 (CI95) can be calculated via Eq. (16-17), where 𝛷 

is the cumulative distribution function of the normal distribution. It refers to the zones between two grey lines 

(visualized in Fig. 28-29) as examples for the 95-percentage confidence interval (CI95) of 𝑔𝐴𝑑𝑛𝑖𝑡
. 

 

𝛴 = 𝜎𝑠𝜎𝑠
T ∘ 𝜌                                                                                                                                                               (14) 

CI95 = 𝐵𝜃 ± 𝛷 (0.5 (1 −
95

100
)) √diag(𝐵𝛴𝐵Τ)                                                                                                             (15) 
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