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Abstract

Many complex signals, such as point distributions and textures, cannot effi-
ciently be synthesized and stored. In this dissertation we present tile-based
methods to solve this problem. Instead of synthesizing a complex signal when
needed, the signal is synthesized on forehand over a small set of tiles. Arbitrary
large amounts of that signal can then efficiently be generated when needed by
generating a stochastic tiling.

Tile-based methods are traditionally based on Wang tiles. The colored edges
of Wang tiles only constrain the four direct neighboring tiles, but not the four
diagonally neighboring tiles. This problem introduces unwanted artifacts in
the tiled signals, and complicates methods for synthesizing signals over a set
of Wang tiles. To solve this problem we present corner tiles. Corner tiles are
unit square tiles with colored corners rather than colored edges. The colored
corners of corner tiles constrain all neighboring tiles. We revisit the most impor-
tant applications of Wang tiles, and we show that corner tiles have substantial
advantages for each of these applications.

Stochastic tilings are traditionally generated using scanline stochastic tiling
algorithms. However, these algorithms store the complete tiling and are there-
fore not efficient. To solve this problem, we present direct stochastic tiling
algorithms for Wang tiles and corner tiles. These algorithms are capable of
evaluating a stochastic tiling locally, without explicitely constructing and stor-
ing the tiling up to that point. We also introduce long-period hash functions
to generate very large tilings.

Poisson disk distributions and textures are two examples of complex sig-
nals. We present tile-based methods for generating Poisson disk distributions
and for synthesizing textures. Tile-based methods not only allow to efficiently
generate Poisson disk distributions and synthesize textures, but also enable
new applications such as tile-based texture synthesis and a procedural object
distribution function. This new texture basis function allows to distribute pro-
cedural objects over a procedural background, using intuitive parameters such
as the scale, size and orientation of the objects. We also present an overview
of applications of tiled Poisson disk distributions, and a detailed comparison of
methods for generating Poisson disk distributions. We study corner tiles in the
context of the tiling problem and aperiodic tile sets, and we construct several
new aperiodic sets of Wang tiles and corner tiles.

The tile-based methods we present in this dissertation are a valuable tool
for computer graphics, and help to keep up with the continuously increasing
demand for more complexity and realism in digitally synthesized images.
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Chapter 1

Introduction

1.1 Tile-Based Methods in Computer Graphics

Computer graphics is a very diverse field of research with many applications,
including film and visual effects, advertising, car and flight simulators, archi-
tecture, scientific simulations and computer games. These applications are the
driving force behind computer graphics and the continuous demand for more
quality and complexity in digitally synthesized images.

A common problem in the field of computer graphics is the synthesis and
storage of complex signals, such as point distributions or textures. For several of
these complex signals, no efficient synthesis algorithms are available, and storing
large quantities of these signals is expensive. Tile-based methods provide a
solution for both these problems.

As a simple example, consider the use of textures in interactive computer
games. A commonly used technique to create the impression of a large texture
is tiling a small square texture. This technique clearly avoids synthesizing and
storing a large texture, but also introduces visually disturbing artifacts. The
large texture is repeating and tile seams are visible. The challenge of tile-
based methods is to generate a tiled complex signal as similar as possible to
the original complex signal, without obvious repetition and tile seams.

This dissertation presents high-quality tile-based methods based on Wang
tiles and corner tiles. Wang tiles are unit square tiles with colored edges, and
corner tiles are unit square tiles with colored corners. Wang tiles and corner
tiles have a fixed orientation. A tiling is generated by placing the tiles next to
each other, such that adjoining edges or corners have matching colors.

Rather than synthesizing a complex signal directly, the signal is synthesized
over a small set of tiles on forehand. Arbitrary large quantities of that signal
can then efficiently be obtained when needed simply by generating a tiling.
The complex signal is synthesized consistently with the continuity constraints
imposed by the colored edges. This ensures that no tile seams are noticeable
in the tiled complex signals. The tiled signals are generated using stochastic
tilings. This ensures that no repetition is noticeable.

A tile-based method for generating a complex signal consists of a method for
synthesizing the complex signal over a set of tiles, and a method for generat-
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Chapter 1 Introduction

ing a stochastic tiling using the set of tiles. The method for synthesizing the
complex signal over a set of tiles is dependent on the signal and is typically
expensive. The method for generating a stochastic tiling using the set of tiles
is independent of the signal and is typically inexpensive. Once the complex
signal is synthesized over a set of tiles, arbitrary large quantities of that signal
can be generated very efficiently by generating a stochastic tiling. The tile sets
are usually small and therefore reduce storage requirements.

This dissertation introduces corner tiles as a better alternative for Wang tiles.
The colored edges of Wang tiles only constrain the four direct neighboring tiles,
but not the diagonally neighboring tiles. This leads to unwanted artifacts in
the tiled complex signals and complicates methods for constructing complex
signals over a set of Wang tiles. Corner tiles are not subject to this problem.

This dissertation introduces efficient tiling algorithms for generating stochas-
tic tilings using Wang tiles and corner tiles, and methods for constructing Pois-
son disk distributions and synthesizing textures over a set of Wang tiles and
corner tiles. Although the methods for constructing a complex signal over a
set of tiles are dependent on the signal, the general idea behind the methods
presented in this dissertation should generalize to other kinds of signals.

Poisson disk distributions are stochastic point distributions in which all
points are separated by a minimum distance. Poisson disk distributions have
several applications in computer graphics, such as sampling and object distribu-
tion. However, no efficient algorithms are available for generating Poisson disk
distributions. Constructing a Poisson disk distribution over a set of Wang tiles
or corner tiles is challenging, because the minimum distance criterion should
be respected over tile boundaries. This dissertation also includes an overview
of applications of tiled Poisson disk distributions, and a detailed comparison of
several methods for generating Poisson disk distributions.

Textures are ubiquitous in computer graphics, and methods for efficiently
synthesizing textures are clearly of interest. Tile-based methods for texture
synthesis are an interesting alternative for existing texture synthesis techniques,
because the process of texture synthesis is broken up into two parts. In a first
part, a texture is synthesized over a set of tiles. In a second part, an arbitrary
large texture can be generated very efficiently simply by generating a tiling.

The tile-based methods presented in this dissertation enable efficient gen-
eration of Poisson disk distributions and rapid synthesis of textures, but also
enable new applications, such as a procedural object distribution in the case
of Poisson disk distributions, and tile-based texture mapping in the case of
texture synthesis.

Corner tiles are also investigated in the context of the tiling problem and
aperiodic tile sets, which is the original context of Wang tiles. Several new
aperiodic sets of Wang tiles and corner tiles are introduced in this dissertation.

The methods introduced in this dissertation help to manage the continuous
demand for more quality and complexity in digitally synthesized images, and
are a valuable tool for computer graphics.

2



1.2 Contributions

1.2 Contributions

The main contributions of this dissertation are the following.

• We present corner tiles as an alternative for Wang tiles. We revisit the
most important applications of Wang tiles, and we show that corner tiles
have substantial advantages for each of these applications. We also show
that corner tiles result in cleaner, simpler and more efficient applications.

• We introduce direct stochastic tiling algorithms for Wang tiles and corner
tiles. Direct stochastic algorithms are capable of evaluating a stochastic
tiling locally, without explictly constructing the tiling up to that point.
We also present long-period hash functions defined over the integer lattice.

• We propose several tile-based methods for efficiently generating Poisson
disk distributions. We also introduce tile-based methods for efficiently
generating Poisson sphere distributions and nonuniform Poisson disk dis-
tributions.

• We demonstrate a tile-based texture mapping algorithm running on the
graphics processing unit, based on corner tiles. The algorithm is faster
and uses less texture memory than the existing algorithm based on Wang
tiles.

• We present a detailed comparison of methods for generating Poisson disk
distributions, including the methods introduced in this dissertation.

• We introduce a procedural object distribution function, a new procedural
texture basis function that extends the range of textures that can be
generated procedurally.

• We give several methods for constructing small aperiodic sets of corner
tiles and small aperiodic sets of Wang tiles.

A more detailed overview of the contributions of this dissertation is provided
in chapter 9. A complete list of publications is provided on page 173.

1.3 Overview

This dissertation is organized as follows.

Chapter 2 is introductory. This chapter introduces tilings, Wang tiles and cor-
ner tiles, discusses previous applications of tilings in computer graphics,
and introduces several useful definitions, conventions and notations.

3



Chapter 1 Introduction

Chapter 3 presents efficient algorithms for generating stochastic tilings with
Wang tiles and corner tiles. This chapter presents scanline stochastic
tiling algorithms and direct stochastic tiling algorithms for Wang tiles
and corner tiles, and long-period hash functions defined over the integer
lattice, used in direct stochastic tiling algorithms.

Chapter 4 introduces Poisson disk distributions and presents several tile-based
methods for generating Poisson disk distributions. This chapter shows
how to construct a Poisson disk distribution over a set of Wang tiles and
corner tiles, and introduces tile-based methods for generating Poisson
sphere distributions and nonuniform Poisson disk distributions.

Chapter 5 introduces tile-based methods for texture mapping and texture syn-
thesis. This chapter shows how to synthesize a texture over a set of Wang
tiles and corner tiles, presents an efficient tile-based texture mapping al-
gorithm running on the GPU, and discusses the tile packing problem.

Chapter 6 presents a detailed comparison of almost all existing methods for
generating Poisson disk distributions, including the methods presented in
chapter 4.

Chapter 7 discusses several applications of Poisson disk distributions. These
applications include sampling, non-photorealistic rendering, scientific vi-
sualization, procedural modeling, and procedural texturing.

Chapter 8 introduces several methods for constructing small aperiodic sets of
corner tiles. This chapter presents several small aperiodic sets of corner
tiles and also several new aperiodic sets of Wang tiles.

Chapter 9 concludes the dissertation. This chapter includes a summary, a
detailed overview of the original contributions of this dissertation, and
some directions for future research.

1.4 Notes

This dissertation includes several figures that are difficult to reproduce in print,
for example the power spectra and the images for measuring sampling per-
formance of chapter 6. Therefore, the printed version of this dissertation is
accompanied by a full resolution electronic version. In the full resolution elec-
tronic version, all illustrations are included as vector graphics, and all im-
ages are included in full resolution. The reader is encouraged to use the
zoom function of the electronic document viewer where appropriate. The
full resolution electronic version of this dissertation can also be obtained at
http://www.cs.kuleuven.be/.
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1.4 Notes

This dissertation describes at several occasions different variants of the same
technique, for example in section 3.2 (subsection 3.2.1 and subsection 3.2.2), in
section 3.3 (subsection 3.3.1 and subsection 3.3.2) and in chapter 4 (section 4.3,
section 4.5 and section 4.6). We have chosen to describe each variant of a
technique completely, rather than only pointing out the differences with the
previous variant. This makes it easier to use this dissertation as a reference,
or to implement a specific variant of a technique. However, it also causes some
repetition.
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Chapter 2

Wang Tiles and Corner Tiles

2.1 Introduction

The tile-based methods presented in this dissertation are based on Wang tiles
and corner tiles. In this chapter we introduce Wang tiles and corner tiles. We
briefly sketch their history, and introduce key concepts that will be used in
later chapters.

Overview

This chapter is organized as follows. Section 2.2 introduces tilings. In sec-
tion 2.3 we discuss previous applications of tilings in computer graphics. Sec-
tion 2.4 introduces Wang tiles and briefly sketches their background. In sec-
tion 2.5 we discuss applications of Wang tiles in computer graphics. Section 2.6
explains the corner problem and introduces corner tiles. In section 2.7 we intro-
duce definitions, conventions and notations. Section 2.8 proposes a convenient
scheme for enumerating Wang tile sets and corner tile sets. In section 2.9 we
explain the close relationship between Wang tiles and corner tiles. Section 2.10
discusses generalizations of Wang tiles and corner tiles to arbitrary dimensions.
In section 2.11 we conclude.

2.2 Tilings

Tilings are in abundance all around us. Not only man-made, but also occurring
in nature. Some of the most famous examples of tilings can be seen in the
Alhambra at Granada, Spain [Saladin, 1926], and in the work of the Dutch
artist M. C. Escher [Escher and Locher, 1971].

A tiling is an arrangement of plane figures that fills the plane without gaps
or overlaps, or its generalization to higher dimensions. Each plane figure is a
tile. The set of plane figures used in the tiling is the tile set. To tile means to
cover the plane with the tiles.

A tiling is periodic if a translation exists that maps the tiling to itself. If this
is not the case, the tiling is non-periodic. An aperiodic tile set is a tile set that

7



Chapter 2 Wang Tiles and Corner Tiles

Figure 2.1: The smallest aperiodic Wang tile set currently known.

does not admit a periodic tiling. A tiling generated by an aperiodic tile set is
an aperiodic tiling.

The classic work on tilings is Tilings and Patterns [Grünbaum and Shepard,
1986]. A good introductory text on aperiodic tilings can be found in Andrew
Glassner’s Notebook: Recreational Computer Graphics [Glassner, 1999, chapter
12].

2.3 Tilings in Computer Graphics

Most applications of tilings in computer graphics simulate tilings in the real
world. Kaplan and Salesin [2000] used isohedral tilings to provide a solution
to the problem of Escherization: given a closed figure in the plane, find a
new closed figure that is similar to the original and tiles the plane. Their
system creates illustrations much like the ones by the Dutch artist M. C. Es-
cher. Hausner [2001] presented a system for generating decorative tile mosaics.
Ostromoukhov et al. [2004] used a hierarchically subdivided Penrose tiling to
generate well-distributed point sets.

2.4 Wang Tiles

The tiles we focus on in this dissertation are Wang tiles. A Wang tile set is a
finite set of square tiles. The tiles are all the same size, and each edge of a tile
has a fixed color. The colors are combined in several specified ways. The plane
is tiled using arbitrary many copies of the tiles in the tile set, in such a way
that adjoining edges have the same color.

Wang tiles were first proposed by Wang in 1961, and later popularized in an
article in Scientific American [Wang, 1965]. Wang presented an algorithm to
decide whether a given set of Wang tiles could tile the plane. He relied on the
conjecture that aperiodic tile sets, tile sets that do not admit periodic tilings,
do not exist.

This conjecture was in 1966 refuted by Berger. He showed that any Turing
machine can be translated into a Wang tile set, and that the Wang tile set
tiles the plane if and only if the Turing machine will never halt. The halting

8
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problem is undecidable and thus so is Wang’s original problem.

Berger constructed the first aperiodic tile set counting 20426 tiles. This
number was reduced repeatedly, often by well known scientists, such as Knuth
[1968]. The smallest aperiodic set of Wang tiles consists of 13 tiles over 5 colors
[Culik, 1996], and is shown in figure 2.1.

Not only Wang tiles allow the construction of aperiodic tile sets. In 1974,
Penrose discovered his famous kite and dart, an aperiodic set of only two tiles.
Whether a single aperiodic tile exists is still an open question.

2.5 Wang Tiles in Computer Graphics

Computer graphics is often concerned with the synthesis of complex signals.
Wang tiles are an important tool to facilitate the generation of such signals.
Instead of synthesizing a complex signal directly, the signal is constructed over
a small set of Wang tiles, consistent with the continuity constraints imposed
by the colored edges. This is usually more difficult than synthesizing the signal
directly, but once the signal is synthesized over the tile set, arbitrary large
quantities of this signal can be generated very efficiently by generating a tiling.

Wang tiles were introduced in the field of computer graphics by Stam [1997]
who created non-repeating textures of arbitrary size using an aperiodic set of
Wang tiles. Shade et al. [2000] and Hiller et al. [2001] used Wang tiles to
generate Poisson disk distributions. The latter approach was later adopted
by Cohen et al. [2003], in a paper that popularized Wang tiles in the field of
computer graphics. The same paper introduced a method for texture synthesis
using Wang tiles. Wei [2004] proposed tile-based texture mapping on graphics
hardware. Fu and Leung [2005] recently extended texture tiling to surfaces
with arbitrary topology.

2.6 Corner Tiles and the Corner Problem

Wang tiles soon proved to be a valuable tool for constructing complex signals in
real time. However, the colored edges of Wang tiles do not guarantee continuity
of the signal near tile corners. Wang tiles do not constrain their diagonal
neighbors. This is illustrated in figure 2.2(a). Any two Wang tiles can be put
diagonally to each other by adding two suitable tiles to complete the tiling.
This problem, called the corner problem, complicates construction methods
and causes unwanted artifacts in the generated signals.

In order to solve the corner problem, we proposed corner tiles [Lagae and
Dutré, 2006a], square tiles with colored corners. Corner tiles are similar to
Wang tiles, but their colored corners ensure continuity of the signal over both
tile edges and tile corners, thus avoiding the corner problem. This is illustrated
in figure 2.2(b).
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(a) (b)

Figure 2.2: The corner problem. (a) Wang tiles only enforce continuity with
their four direct neighbors and do not constrain their diagonal neighbors. (b)
Corner tiles enforce continuity with all their neighbors.

Figure 2.3: The complete Wang tile set over 2 colors.

Cohen et al. [2003] first identified the corner problem. They superimpose
corner markings on a Wang tile set in an attempt to solve the problem. Al-
though this allowed them to synthesize textures with different densities, the
corner problem remains: for a given corner marking, any two tiles can be put
diagonally next to each other. They did not make the observation that the edge
colors should be dropped altogether to adequately solve the corner problem.

To our knowledge, tiles with colored corners have not been used previously
in computer graphics (or in other domains), except by Ng et al. [2005], who
presented a technique for assembling a set of tiles similar to corner tiles from
an input texture to synthesize larger textures. Their technique is discussed in
detail in section 5.3. Neyret and Cani [1999] use triangular tiles with edge and
corner colors to generate pattern-based textures over a triangle mesh, in the
spirit of Stam [1997].

2.7 Definitions, Conventions and Notations

Wang tiles are unit square tiles with colored edges. The edges of a Wang tile
are named after the compass headings north (N), east (E), south (S) and west
(W). The colors of the edges are indicated by cN , cE , cS and cW .

Corner tiles are unit square tiles with colored corners. The corners of a corner
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Figure 2.4: The complete corner tile set over 2 colors.

Figure 2.5: A tiling with the complete Wang tile set over 3 colors.
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Figure 2.6: A tiling with the complete corner tile set over 3 colors.

tile are named after the compass headings north-east (NE), south-east (SE),
south-west (SW), and north-west (NW). The colors of the corners are indicated
by cNE , cSE , cSW and cNW .

A tile set is a finite set of tiles. The number of different colors used in
the tile set is indicated by C. The C colors are represented by the integers
0, 1, . . . , C − 1. All illustrations in this dissertation use the colors red, yellow,
green, cyan and blue for respectively 0, 1, 2, 3 and 4.

A complete tile set contains a tile for every possible combination of four edge
or corner colors. A complete set of Wang tiles or corner tiles over C colors
therefore counts C4 tiles. Figure 2.3 shows the complete Wang tile set over
two colors, and figure 2.4 shows the complete corner tile set over two colors.
A complete set of Wang tiles or corner tiles over 2, 3, 4, 5, 6, 7 and 8 colors
consist of 16, 81, 256, 625, 1, 296, 2, 401 and 4, 096 tiles.

A tiling is constructed by placing the tiles next to each other such that
adjoining edges or corners have matching colors. Each tile in the tile set can
be used arbitrarily many times. The tiles are placed with their corners on the
integer lattice points. By convention, the tile coordinates are the coordinates
of the lower left corner of the tile. Figure 2.5 shows a tiling with the complete
Wang tile set over three colors, and figure 2.6 shows a tiling with the complete
corner tile set over three colors.

The horizontal edges and vertical edges of Wang tiles are independent. This
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allows Wang tile sets that use a different number of colors for horizontal and
vertical edges. The number of colors used for horizontal edges is indicated by
Ch, and the number of colors used for vertical edges is indicated by Cv. A
complete Wang tile set over Ch horizontal colors and Cv vertical colors consist
of (ChCv)2 tiles. If Ch colors are used for horizontal edges and Cv colors for
vertical edges, then the number of colors used in the tile set is max(Ch, Cv).
In this dissertation, Ch is always a subset of Cv, or vice versa. However, not
everyone follows this convention. For example, Cohen et al. [2003] use a tile set
with red and green for horizontal edges and blue and yellow for vertical edges.
Despite the fact that four different colors are used, this is a tile set over two
colors.

2.8 Enumerating Wang Tile Sets and Corner Tile

Sets

For efficiently manipulating Wang tiles and corner tiles, an enumeration of the
tiles is needed. In this dissertation we use the following scheme.

Wang tiles are uniquely determined by their edge colors cN , cE , cS and cW .
Wang tiles can thus be represented as the 4-digit base-C numbers cNcEcScW ,
or as the decimal integers 0, 1, . . . , C4− 1. A base conversion switches between
the corner colors and the tile index.

The tile index i of the Wang tile with edge colors cN , cE , cS and cW is given
by

i = cNC3 + cEC2 + cSC + cW , (2.1)

or, after factoring out powers of C using Horner’s rule, by

i = ((cNC + cE)C + cS)C + cW . (2.2)

This conversion of base only requires three integer multiplications and three
integer additions.

The edge colors cN , cE , cS and cW of the Wang tile with tile index i are
given by

cN = (i/C3)%C

cE = (i/C2)%C

cS = (i/C)%C

cW = i%C

(2.3)

where % is the modulo division, and / is the integer division. This conversion
of base can be implemented using only three modulo divisions and three integer
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divisions

cW ← i%C

i← i/C

cS ← i%C

i← i/C

cE ← i%C

i← i/C

cN ← i

(2.4)

where ← indicates assignment.

For corner tiles, we use a similar scheme. Corner tiles are uniquely deter-
mined by their corner colors cNE , cSE , cSW and cNW . Corner tiles can thus be
represented as the 4-digit base-C numbers cNEcSEcSW cNW , or as the decimal
integers 0, 1, . . . , C4 − 1. A base conversion switches between the corner colors
and the tile index.

The tile index i of the corner tile with corner colors cNE , cSE , cSW and cNW

is given by

i = ((cNEC + cSE)C + cSW )C + cNW . (2.5)

The corner colors cNE , cSE , cSW and cNW of the corner tile with tile index
i are given by

cNE = (i/C3)%C

cSE = (i/C2)%C

cSW = (i/C)%C

cNW = i%C

(2.6)

where % is the modulo division, and / is the integer division. This conversion
of base can be implemented using only three modulo divisions and three integer
divisions

cNW ← i%C

i← i/C

cSW ← i%C

i← i/C

cSE ← i%C

i← i/C

cNE ← i

(2.7)

where ← indicates assignment.

When the number of colors is a power of two, the base conversions can be
implemented very efficiently using bitwise operators.
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Figure 2.7: The Wang tile set equivalent to the corner tile set over 2 colors.

2.9 Corner Tiles as Wang Tiles

Corner tiles are closely related to Wang tiles. In fact, every corner tile set can
be transformed into an equivalent Wang tile set. This is done by encoding any
combination of two corner colors into an edge color. This operation squares the
number of colors. Figure 2.7 shows the Wang tile set equivalent to the complete
corner tile set over two colors, shown in figure 2.4. This is a Wang tile set of
16 tiles over 4 colors. We will use this technique in section 8.4 to construct an
aperiodic set of Wang tiles from an aperiodic set of corner tiles.

In general, a Wang tile set cannot be transformed into an equivalent corner
tile set, and a Wang tile set equivalent to a corner tile set is not subject to the
corner problem. This shows that corner tiles are in some way more restrictive
than Wang tiles.

2.10 Dominoes, Wang Cubes and Corner Cubes

Wang tiles and corner tiles easily generalize to arbitrary dimension. The one-
dimensional and three-dimensional equivalents are especially useful.

In one dimension, Wang tiles and corner tiles are dominoes. These gaming
pieces are well known and have been studied extensively in the field of recre-
ational mathematics [Ball, 1926]. We will use dominoes in section 5.5 to solve
the Wang tile packing problem.

In three dimensions, Wang tiles and corner tiles become Wang cubes and
corner cubes. Wang cubes have received some attention in the field of discrete
mathematics and in computer graphics. Culik and Kari [1995] showed that an
aperiodic set of 21 Wang cubes exists. Lu and Ebert [2005] used Wang cubes
for example-based volume illustrations. We will use corner cubes in section 4.6
to generate Poisson sphere distributions.

2.11 Conclusion

In this chapter we have introduced Wang tiles and corner tiles. We have dis-
cussed the history of Wang tiles and corner tiles, and we have introduced im-
portant concepts that will be used in later chapters.
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Chapter 3

Tiling Algorithms for Wang Tiles

and Corner Tiles

3.1 Introduction

After synthesizing a signal over a set of Wang tiles or corner tiles, arbitrary
large quantities of that signal can be generated very efficiently by generating a
tiling. Because periodicity in the signal is visually disturbing, applications in
computer graphics require random or stochastic tilings, such as the ones shown
in figures 2.5 and 2.6. Stochastic tilings are inherently non-periodic. The
stronger mathematical guarantee of provable aperiodicity is not that useful in
computer graphics. A mathematical proof of aperiodicity does not necessarily
provide an algorithm for actually generating the aperiodic tiling, and even if it
does, these algorithms are often very complex. Also, aperiodicity does not imply
small scale non-periodicity. Aperiodic tilings are sometimes very structured.
For these reasons, stochastic tilings are better suited for most applications in
computer graphics.

Overview

This chapter is organized as follows. In section 3.2 we discuss scanline stochas-
tic tiling algorithms, and in section 3.3 we discuss direct stochastic tiling al-
gorithms, two classes of stochastic tiling algorithms. Section 3.4 discusses
hash functions defined over the integer lattice, an essential ingredient of di-
rect stochastic tiling algorithms. In section 3.5 we conclude.

3.2 Scanline Stochastic Tiling Algorithms

Scanline stochastic tiling algorithms are stochastic tiling algorithms that gen-
erate a tiling by placing tiles in scanline order. In this section, we discuss a
scanline tiling algorithm for Wang tiles and a scanline stochastic tiling algo-
rithm for corner tiles.
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Figure 3.1: A scanline stochastic tiling algorithm for Wang tiles.

Figure 3.2: A compact Wang tile set over 2 colors.

3.2.1 A Scanline Stochastic Tiling Algorithm for Wang Tiles

In 2003, Cohen et al. presented a scanline stochastic tiling algorithm for Wang
tiles.

The Wang tiles are placed in scanline order, from west to east, and from north
to south. A random Wang tile is selected for the NW corner. The first row is
completed by adding Wang tiles for which the color of the W edge corresponds
to the color of the E edge of the Wang tile to the left. The leading Wang tile
of each new row is selected so that its N edge matches the S edge of the Wang
tile above. The row is completed by choosing Wang tiles for which the N and
W edges match the S and E edges from the Wang tiles above and to the left.
This is illustrated in figure 3.1.

To ensure a non-periodic tiling, the Wang tile set is constructed such that
there are two Wang tiles for each combination of N and W edge colors. Each
time a Wang tile has to be selected, the choice is made at random. A Wang tile
set over C colors will contain 2C2 Wang tiles, since there are C2 combinations
of N and W edge colors. A Wang tile set obtained this way is called a compact
Wang tile set, because it is significantly smaller than a complete Wang tile set.
Figure 3.2 shows a compact Wang tile set over two colors.

Compact Wang tile sets are useful when the size of the Wang tile set should
be minimized. A compact Wang tile set is quadratic in the number of colors,
while a complete Wang tile set is quartic in the number of color. For 2, 3, 4, 5,
6, 7 and 8 colors, a compact Wang tile set counts 8, 18, 32, 50, 98, 128 Wang
tiles while a complete Wang tile set consists of 16, 256, 625, 1, 296, 2, 401 and
4, 096 Wang tiles.
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Figure 3.3: A scanline stochastic tiling algorithm for corner tiles.

3.2.2 A Scanline Stochastic Tiling Algorithm for Corner Tiles

In 2006, we presented a scanline stochastic tiling algorithm for corner tiles
[Lagae and Dutré, 2006a]. The scanline stochastic tiling algorithm for corner
tiles is very similar to the scanline stochastic tiling algorithm for Wang tiles.

The corner tiles are placed in scanline order, from west to east, and from
north to south. A random corner tile is selected for the NW corner. The first
row is completed by adding corner tiles for which the color of the NW corner
and the color of the SW corner corresponds to the color of the NE corner and
the color of the SE corner of the corner tile to the left. The leading corner tile
of each new row is selected so that its NW and NE corners match the SW and
SE corners of the corner tile above. The row is completed by choosing corner
tiles for which the NE, NW and SW corners match the SE and SW corners
from the corner tile above and the NE and SE corners from the corner tile to
the left. This is illustrated in figure 3.3.

To ensure a non-periodic tiling, the corner tile set is constructed such that
there are two corner tiles for each combination of NE, NW and SW corner colors.
Each time a corner tile has to be selected, the choice is made at random. A
corner tile set over C colors will contain 2C3 corner tiles, since there are C3

combinations of NE, NW and SW corner colors. A corner tile set obtained this
way is called a compact corner tile set, because it is significantly smaller than
a complete corner tile set.

Compact corner tile sets are useful when the size of the corner tile set should
be minimized. A compact corner tile set is cubic in the number of colors, while
a complete corner tile set is quartic in the number of color. For 2, 3, 4, 5,
6, 7 and 8 colors, a compact corner tile set counts 16, 54, 128, 250, 432, 686
and 1, 024 corner tiles while a complete corner tile set consists of 16, 256, 625,
1, 296, 2, 401 and 4, 096 corner tiles.

Note that the complete corner tile set over two colors and the compact corner
tile set over two colors are identical. Also note that compact Wang tile sets are
smaller than compact corner tile sets.
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Figure 3.4: A direct stochastic tiling algorithm for corner tiles.

3.3 Direct Stochastic Tiling Algorithms

Several applications, such as tile-based texture mapping (see section 5.4), and
the procedural object distribution texture basis functions (see section 7.6), re-
quire local evaluation of the tiling. In order to evaluate the tiling at a specific
location, scanline stochastic tiling algorithms must construct and store the
tiling up to that point. This is clearly not efficient. To address this problem,
we propose direct stochastic tiling algorithms. Direct stochastic tiling algo-
rithms are able to compute which tile is at a given location without explicitly
constructing and storing the tiling up to that point.

The direct stochastic tiling algorithms we present are based on hash functions
defined over the integer lattice. These hash functions associate a random color
with each lattice point. A tiling is obtained by transforming the colored lattice.
The hash functions we use are efficient in time and space, and the transforma-
tion can be performed locally. This enables efficient direct stochastic tiling
algorithms.

In this section, we discuss several direct stochastic tiling algorithms for Wang
tiles and a direct stochastic tiling algorithm for corner tiles. For clarity, we
will first discuss the direct stochastic tiling algorithm for corner tiles. The
hash functions used in the direct stochastic tiling algorithms are discussed in
section 3.4

3.3.1 A Direct Stochastic Tiling Algorithm for Corner Tiles

In 2006, we proposed a direct stochastic tiling algorithm for corner tiles [Lagae
and Dutré, 2006a].

Corner tiles are placed with their corners on the integer lattice points. The
coordinates of a corner tile are the coordinates of the integer lattice point
corresponding to the lower left or SW corner. To generate a tiling with a
corner tile set over C colors, the direct stochastic tiling algorithm for corner
tiles uses a hash function h defined over the integer lattice. This hash function
associates a random color h(x, y) ∈ {0, 1, . . . , C − 1} with each location (x, y).
The corner colors cNE , cSE , cSW and cNW of the corner tile at tile coordinates
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Figure 3.5: A direct stochastic tiling algorithm for Wang tiles using two hash
functions. The first hash function is used for the horizontal edges, and the
second hash function is used for the vertical edges.

(x, y) are given by h(x+1, y+1), h(x+1, y), h(x, y) and h(x, y+1). The index
of the corner tile can now be obtained using equation 2.5. The direct stochastic
tiling algorithm for corner tiles is illustrated in figure 3.4.

Because the color of each corner is chosen at random, the direct stochastic
tiling algorithm for corner tiles results in a complete corner tile set over C
colors.

The direct stochastic tiling algorithm for corner tiles is very efficient. It
requires only four hash function evaluations.

3.3.2 Direct Stochastic Tiling Algorithms for Wang Tiles

In this subsection, we discuss a direct stochastic tiling algorithm for Wang tiles
using two hash functions, a direct stochastic tiling algorithm for compact sets
of Wang tiles, and a direct stochastic tiling algorithm for Wang tiles using a
hash function defined at the tile edges.

3.3.2.1 A Direct Stochastic Tiling Algorithm for Wang Tiles using Two

Hash Functions

In 2005, we proposed a direct stochastic tiling algorithm for Wang tiles using
two hash functions [Lagae and Dutré, 2005a].

Wang tiles are placed with their corners on the integer lattice points. The
coordinates of a Wang tile are the coordinates of the integer lattice point cor-
responding to the lower left corner. To generate a tiling with a Wang tile set
over C colors, the direct stochastic tiling algorithm for Wang tiles uses two
hash functions hh and hv defined over the integer lattice. These hash functions
associate a pair of random colors (hh(x, y), hv(x, y)) ∈ {0, 1, . . . , C − 1}2 with
each location (x, y). The hash function hh is used to compute the color of
the horizontal edges, and the hash function hv is used to compute the color
of the vertical edges. The edge colors of a Wang tile are computed as the
sum modulo C of the random colors associated with the corners of the Wang
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Figure 3.6: A direct stochastic tiling algorithm for compact sets of Wang tiles.

tile. If the pair of random colors associated with the NE, SE, SW and NW
corner of the Wang tile at tile coordinates (x, y) are

(

ch
NE , cv

NE

)

,
(

ch
SE , cv

SE

)

,
(

ch
SW , cv

SW

)

and
(

ch
NW , cv

NW

)

, then the edge colors cN , cE , cS and cW are
given by (ch

NW +ch
NE)%C, (cv

NE +cv
SE)%C, (ch

SE +ch
SW )%C, (cc

SW +cv
NW )%C.

The index of the Wang tile can now be obtained using equation 2.2. The direct
stochastic tiling algorithm for Wang tiles using two hash functions is illustrated
in figure 3.5.

Because the color of each edge is chosen at random, the direct stochastic
tiling algorithm for Wang tiles using two hash functions results in a complete
Wang tile set over C colors.

The direct stochastic tiling algorithm for Wang tiles is more expensive than
the direct stochastic tiling algorithm for corner tiles. It requires eight hash
function evaluations, four integer additions and four integer modulo divisions.

The direct stochastic tiling algorithm can easily be modified for tile sets
over a different number of colors for horizontal edges Ch and vertical edges Cv

by generating pairs of random colors (hh(x, y), hv(x, y)) ∈ {0, 1, . . . , Ch − 1} ×
{0, 1, . . . , Cv − 1} and performing edge computations for horizontal and vertical
edges modulo Ch and Cv. This modified direct stochastic tiling algorithm for
Wang tiles also results in a complete Wang tile set.

An algorithm similar in spirit was proposed concurrently by Wei [2004].

3.3.2.2 A Direct Stochastic Tiling Algorithm for Compact Sets of Wang

Tiles

In 2005, we also proposed a direct stochastic tiling algorithm for compact sets
of Wang tiles [Lagae and Dutré, 2005a].

The direct stochastic tiling algorithm for compact sets of Wang tiles is very
similar to the direct stochastic tiling algorithm for Wang tiles using two hash
functions. However, to generate a tiling with a compact Wang tile set over
C colors only a single hash function h is used. This hash function associates
a random color h(x, y) ∈ {0, 1, . . . , C − 1} with each location (x, y) The edge
colors of a Wang tile are computed as the sum modulo C of the random colors
associated with the corners of the Wang tile. If the random color associated
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Figure 3.7: A direct stochastic tiling algorithm for Wang tiles using a hash
function defined at the tile edges.

with the NE, SE, SW and NW corner of the Wang tile at tile coordinates (x, y)
is cNE , cSE , cSW and cNW , then the edge colors cN , cE , cS and cW are given
by (cNW + cNE)%C, (cNE + cSE)%C, (cSE + cSW )%C, (cSW + cNW )%C. The
direct stochastic tiling algorithm for compact sets of Wang tiles is illustrated
in figure 3.6.

This algorithm results in a compact set of C3 Wang tiles over C colors. Note
that, except for two colors, these compact Wang tile sets are different from the
compact Wang tile sets produced by the scanline stochastic tiling algorithms
for Wang tiles, that counted 2C3 tiles.

This algorithm was used recently by Kopf et al. [2006] for generating blue
noise in real time (see section 6.14).

3.3.2.3 A Direct Stochastic Tiling Algorithm for Wang Tiles using a Hash

Function Defined at the Tile Edges

The direct stochastic tiling algorithm for Wang tiles using a hash function
defined at the tile edges is a more efficient variant of the direct stochastic tiling
algorithm for Wang tiles using two hash functions.

Compared with the direct stochastic tiling algorithm for corner tiles, direct
stochastic tiling algorithm for Wang tiles are more complicated. This is because
the lattice defined by the colored corners of corner tiles and the lattice over
which the hash function is defined are both square lattices. In contrast, the
lattice defined by the colored edges of Wang tiles is a diamond lattice (a square
lattice rotated 45 degrees). The key observation of the direct stochastic tiling
algorithm for Wang tiles using a hash function defined at the tile edges is that
a diamond lattice can be obtained by discarding points in a square lattice.

Wang tiles are placed with their corners on the integer lattice points. The
coordinates of a Wang tile are the coordinates of the integer lattice point cor-
responding to the lower left. To generate a tiling with a Wang tile set over C
colors, the direct stochastic tiling algorithm for Wang tiles uses a hash function
h defined over a square lattice twice as dense as the integer lattice. The edge
colors cN , cE , cS and cW of the Wang tile at tile coordinates (x, y) are given
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by h(2x + 1, 2y + 2), h(2x + 2, 2y + 1), h(2x + 1, 2y) and h(2x, 2y + 1). The
remaining five random colors are ignored. The index of the Wang tile can now
be obtained using equation 2.2. The direct stochastic tiling algorithm for Wang
tiles using a hash function defined at the tile edges is illustrated in figure 3.7.

Because the color of each edge is chosen at random, the direct stochastic
tiling algorithm for Wang tiles using a hash function defined at the tile edges
results in a complete Wang tile set over C colors. In contrast with the direct
stochastic tiling algorithm for Wang tiles using two hash functions, the direct
stochastic tiling algorithm for Wang tiles using a hash function defined at the
tile edges only requires four hash function evaluations.

3.4 Hash Functions

Hash functions defined over the integer lattice are an essential ingredient of
the direct stochastic tiling algorithms discussed in section 3.3. Hash functions
are also used extensively in procedural modeling and texturing [Perlin, 1985;
Ebert et al., 2002]. In this section, we discuss traditional hash functions based
on permutation tables and we propose long-period hash functions based on
permutation tables.

3.4.1 Traditional Hash Functions Based on Permutation

Tables

Hash functions used in procedural modeling and texturing are typically based
on permutation tables. A permutation table P of size N contains a random
permutation of the integers {0, 1, . . . , N − 1}. The permutation table is zero-
based, the first element is P [0].

A random permutation of the elements {0, 1, . . . , N − 1} can be generated
by starting with the permutation {0, 1, . . . , N − 1}, and then exchanging the
ith element with an element randomly selected from the first i elements, for
i ∈ 0, 1, . . . , N −2. Note that, for i equal to N −1, this operation has no effect.

A one-dimensional hash function is defined as

h(x) = P [x%N ], (3.1)

where x is an integer, P [i] is the (i + 1)th element of P , and % is the modulo
division. This hash function is a periodic function with period N . The range
of this hash function is N .

A two-dimensional hash function can be defined using two permutation tables
Px and Py of size N

h(x, y) = (Px[x%N ] + Py[y%N ])%N, (3.2)
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where x and y are integers. However, in order to avoid the storage of two
permutation tables, the same permutation table is generally used twice

h(x, y) = P [(P [x%N ] + y)%N ]. (3.3)

This hash function is a periodic function with period (N,N). The range of this
hash function is N .

A three-dimensional hash function is defined similarly as

h(x, y, z) = P [(P [(P [x%N ] + y)%N ]) + z)%N ], (3.4)

where x, y and z are integers. This hash function is a periodic function with
period (N,N,N). The range of this hash function is N .

This family of hash functions is used extensively in procedural modeling and
texturing, and we also use them in our direct stochastic tiling algorithms. The
hash functions are easy to implement and efficient to evaluate.

3.4.2 Long-Period Hash Functions Based on Permutation

Tables

The period of hash functions based on permutation tables is short. This causes
unwanted repetition artifacts in procedural textures and tilings. Increasing the
period is easy but also expensive, because the length of the period is equal to
the size of the permutation table.

In 2006, we proposed long-period hash functions based on permutation tables
[Lagae and Dutré, 2006d]. The key observation for constructing long-period
hash functions is that hash functions based on permutation tables are periodic
functions, and that the addition of periodic functions yields a new periodic
function with a larger period.

In this subsection we define long-period hash functions, we study the period
and range, distribution and efficiency of long-period hash functions, and we
formulate guidelines for designing long-period hash functions.

3.4.2.1 Definition

A one-dimensional long-period hash function is defined as

h(x) =

(

M−1
∑

i=0

Pi[x%Ni]

)

%Nj , (3.5)

where x is an integer, P0, P1, . . . , PM−1 are M permutation tables with size
N0, N1, . . . , NM−1, and Nj is one of these sizes.

A two-dimensional long-period hash function is defined as

h(x, y) =

(

M−1
∑

i=0

Pi[(Pi[x%Ni] + y)%Ni]

)

%Nj , (3.6)

25



Chapter 3 Tiling Algorithms for Wang Tiles and Corner Tiles

where x and y are integers
A three-dimensional long-period hash function is defined similarly as

h(x, y, z) =

(

M−1
∑

i=0

Pi[(Pi[(Pi[x%Ni] + y)%Ni] + z)%Ni]

)

%Nj . (3.7)

where x, y and z are integers. These long-period hash functions are also called
combined hash functions.

The period of a combined hash function is the least common multiple of the
periods of the combining hash functions. In order to maximize the period of the
combined hash function, the periods of the combining hash functions should
be relatively prime. The range of the combined hash function is determined by
the final modulo divisor Nj , which is one of N0, N1, . . . , NM−1. Note that, in
contrast with traditional hash functions, the range and period of the combined
hash functions are different.

A similar technique was used in 1988 by L’Ecuyer to construct a long-period
pseudo-random number generator by combining several shorter-period linear
congruential generators. However, with the advent of recent pseudo-random
number generators [Matsumoto and Nishimura, 1998], this technique has largely
become obsolete in its original context.

3.4.2.2 Distribution

Traditional hash functions produce uniformly distributed values over the integer
lattice, and most applications of these hash functions rely on this property.
The following theorem shows that combined hash functions will also produce
uniformly distributed values.

Theorem. If X0,X1, . . . ,XN−1 are N independent discrete random variables,
such that X0 is uniform between 0 and d−1, where d is a positive integer, then

X =

(

N−1
∑

i=0

Xi

)

%d (3.8)

follows a discrete uniform probability law between 0 and d− 1.

Note that there are no requirements on the distribution of the random vari-
ables X1,X2, . . . ,XN−1. This theorem was first hinted at by Wichmann and
Hill [1982], and later proved by L’Ecuyer [1988].

For long-period hash functions, all combining hash functions are uniformly
distributed. Therefore, the final modulo divisor Nj can be any one of the sizes
of the permutation tables of the combining hash functions N0, N1, . . . , NM−1.
However, some care must be taken in selecting the appropriate permutation
table sizes. Suppose a combined hash function is built from a small permutation
table of size Ns and a large permutation table of size Nl, with Ns ≪ Nl. The
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period of the combined hash function is NsNl. However, if the final modulo
divisor is Nl, then the period will contain Ns almost identical parts. This is
because the range of the hash function using the permutation table of size Ns

is very small compared to the range of the hash function using the permutation
table of size Nl. If the final modulo divisor is Ns, this will not be the case.
Therefore, the sizes of the permutation tables should not differ too much.

3.4.2.3 Efficiency

The time needed to evaluate a combined hash function is roughly proportional
to the number of combining hash functions. This does not mean that an ap-
plication that uses a long-period hash function consisting of N combining hash
functions will be N times slower than the same application using a traditional
hash function. In most applications, the evaluation of the hash function is only
a small part of the total computation time. Also note that combined hash
functions typically have a smaller memory footprint, which improves the cache
efficiency of lookups in the permutation tables.

3.4.2.4 Design

The design of a combined hash function is determined by several factors: the
required range of the hash function, the period of the hash function, the memory
footprint of the combined permutation tables, and the time needed to evaluate
the hash function. We recommend the strategy outlined below to design a
long-period hash function.

First, determine the required range of the hash function. This fixes the final
modulo divisor and thus the size of one permutation table. If the range of the
hash function is too small, or if the range should be adjustable, then use a
multiple of the range of the hash function and apply an additional final modulo
divisor.

Next, choose a number of permutation table sizes for the rest of the combining
hash function. The sizes should not differ too much, in order to ensure a uniform
distribution. The sizes should also be relatively prime in order to maximize the
period. An easy way to choose the permutation table sizes is to take the primes
closest to the range of the hash function. If the primes are not a factor of the
range, then the period of the combined hash function will be the product of
the permutation table sizes.

The number of permutation tables will determine the time needed to evaluate
the hash function, and the joint size of the permutation tables will determine
the memory footprint of the hash function. Period length can be traded for
evaluation time and memory footprint.
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(a) (b)

Figure 3.8: Tilings of surfaces with (a) cylindrical and (b) toroidal topology.

3.4.3 Hash Functions for Direct Stochastic Tiling Algorithms

Direct stochastic tiling algorithms use a hash function to associate a random
color with each integer lattice point. This colored lattice is then transformed to
a tiling. Properties of the direct stochastic tiling algorithms such as efficiency
and periodicity are inherited from the hash function.

Traditional hash functions based on permutation tables are simple and effi-
cient. They are often used when speed is crucial or when a long period is less
important. Permutation table sizes of 256 are common.

When speed is less important or when a long period is crucial, long-period
hash functions based on permutation tables can be used. A long-period hash
function for direct stochastic tiling algorithms can be designed as follows. The
number of colors used in most tilings is 2, 3, 4, 6, or 8. The range of the hash
function is therefore set to 24, the least common multiple of these number of
colors. By applying an additional modulo divisor, the range of the hash function
can be adjusted to 2, 3, 4, 6 and 8. For the sizes of the other permutation tables,
the primes 17, 19, 23, 29, 31 and 37 are selected. The period of the combined
hash function is 17×19×23×24×29×31×37 = 5, 930, 659, 848. Note that this
is more than the 32-bit integer range. The size of the combined permutation
table is only 17 + 19 + 23 + 24 + 29 + 31 + 37 = 180.

Note that periodicity is not necessarily a bad thing. Periodicity allows to
correctly handle boundary conditions when tiling surfaces with cylindrical or
toroidal topology. This is illustrated in figure 3.8.

3.4.4 Hash Functions for Procedural Texturing

The most famous texture basis function is Perlin’s noise function [Perlin, 1985,
2002]. Long-period hash functions based on permutation tables can be used to
robustly implement this texture basis function.

A long-period hash function for Perlin’s noise function can be designed as
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(a) (b)

Figure 3.9: Perlin noise generated (a) with the traditional hash function and (b)
with the long-period hash function. The two images have the same appearance.

follows. Perlin’s noise function uses the lower 4 bits of the hash function (16
values) to choose amongst one of 12 vectors at each integer lattice point. The
required range of the hash function is therefore 16. For the sizes of the other
permutation tables the primes 11, 13, 17 and 19 are selected. The period of
the combined hash function is 11 × 13 × 16 × 17 × 19 = 739, 024. The size of
the combined permutation table is 11 + 13 + 16 + 17 + 19 = 76. Compared
to Perlin’s implementation, the period is increased with a factor of almost
3, 000, the memory footprint is decreased with a factor of almost 3.5, and the
evaluation time is increased with a factor of about 5. The total evaluation
time of the modified noise function is increased with a factor of about 2.5.
Figure 3.9 shows the original and the modified implementation. As expected,
the two images have the same appearance. The long-period hash function does
not introduce unwanted artifacts and preserves the typical look of Perlin’s noise
function.

3.5 Conclusion

Tile-based methods in computer graphics require efficient algorithms for gen-
erating stochastic tilings. In this chapter we have presented scanline stochastic
tiling algorithms and direct stochastic tiling algorithms for Wang tiles and cor-
ner tiles. We have also studied the hash functions on which the direct stochastic
tiling algorithms are based.

Direct stochastic tiling algorithms are more elegant and at least as efficient
as scanline stochastic tiling algorithms. We therefore recommend to use direct
stochastic tiling algorithms if possible, even for applications that do not require
local evaluation of the tiling.

Stochastic tiling algorithms for corner tiles are usually more efficient and
more elegant than stochastic tiling algorithms for Wang tiles. We therefore
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recommend to use corner tiles if possible.
One stochastic tiling algorithm that is still missing in this chapter is a direct

stochastic tiling algorithm for compact sets of corner tiles. Although such an
algorithm would be useful, we have not yet succeeded in developing one.

Direct stochastic tiling algorithms are based on hash functions. The period
of the tiling is inherited from the period of the hash functions. Hash func-
tions based on permutation tables allow to trade storage space and evaluation
time for period length, and allow to construct hash functions with long peri-
ods. These hash functions are not only useful in tiling algorithms but also in
procedural modeling and texturing techniques.
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Chapter 4

Tile-Based Methods for Generating

Poisson Disk Distributions

4.1 Introduction

In computer graphics, Wang tiles and corner tiles are used to facilitate the
synthesis of complex signals. Poisson disk distributions are complex point dis-
tributions that are difficult to generate in real time. This chapter presents
several methods for constructing Poisson disk distributions over a set of Wang
tiles or corner tiles. With a single set of precomputed tiles, high-quality Poisson
disk distributions of arbitrary size can be generated very efficient, simply by
producing a stochastic tiling.

Overview

This chapter is organized as follows. In section 4.2 we introduce Poisson disk
distributions. Sections 4.3, 4.4 and 4.5 present edge-based Poisson disk tiles,
template Poisson disk tiles and corner-based Poisson disk tiles, three tile-based
methods for generating Poisson disk distributions. In section 4.6 we investigate
Poisson sphere distributions, the three-dimensional equivalent of Poisson disk
distributions. Section 4.7 discusses nonuniform Poisson disk distributions. In
section 4.8 we conclude.

This chapter only discusses methods for constructing Poisson disk distribu-
tions over a set of Wang tiles or corner tiles. The Poisson disk distributions
generated by these methods are analyzed in detail in chapter 6, applications of
Poisson disk distributions are discussed in chapter 7, and efficient tiling algo-
rithms for Wang tiles and corner tiles are presented in chapter 3.

4.2 Poisson Disk Distributions

In this section we define Poisson disk distributions, we sketch the history and
background of Poisson disk distributions, we propose an intuitive radius spec-
ification scheme for Poisson disk distributions, and we introduce methods for
generating Poisson disk distributions.
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Figure 4.1: A Poisson disk distribution.

4.2.1 Definition

A Poisson distribution or random distribution is the simplest random point
distribution. A Poisson distribution is a point distribution in which the points
and the coordinates of the points have no relationship to each other. A Poisson
distribution is obtained by generating uniformly distributed random numbers
and using them as coordinates for the points. This distribution is called a
Poisson distribution because the number of points in an area is distributed
according to a Poisson probability distribution with mean equal to the area
multiplied with the density.

A Poisson disk distribution is a two-dimensional Poisson distribution in which
all points are separated from each other by a minimum distance. Half that
distance is called the radius r of the distribution. If a disk of that radius
is placed at each point, then no two disks overlap. This explains why this
distribution is called a Poisson disk distribution. Figure 4.1 shows an example
of a Poisson disk distribution.

4.2.2 History and Background

Poisson disk distributions were introduced in the field of computer graphics
to solve the aliasing problem. Aliasing is a major source of artifacts in dig-
itally synthesized images. This problem was first identified by Crow [1977].
Dippé and Wold [1985], Cook [1986] and Mitchell [1987] introduced nonuni-
form sampling to turn regular aliasing patterns into featureless noise, which is
perceptually less objectable. The Poisson disk distribution was identified as
one of the best sampling patterns. This work was based on studies by Yellot
[1982, 1983], who found that the photoreceptors in the retina of the eye are
distributed according to a Poisson disk distribution, an indication that this
sampling pattern is effective for imaging.

Poisson disk distributions are traditionally generated using an expensive dart
throwing algorithm [Cook, 1986]. Fast methods that generate approximate
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Poisson disk distributions have been suggested by various authors [Dippé and
Wold, 1985; Mitchell, 1987, 1991; Klassen, 2000]. The algorithm mostly used
nowadays is due to McCool and Fiume [1992]. It generalizes over the dart
throwing approach, and uses Lloyd’s relaxation method [Lloyd, 1982] to opti-
mize the generated distribution.

Because Poisson disk distributions are expensive to generate, Dippé and Wold
[1985] suggested already in 1985 to replicate a precomputed tile with Poisson
disk distributed points across the plane. Since then, several tile-based methods
were proposed. Most of them use Wang tiles. The first tile based method, an
extension of the dart throwing algorithm, was presented by Shade et al. [2000].
Hiller et al. [2001] used Lloyd’s relaxation algorithm to construct a Poisson disk
distribution over a set of Wang tiles. This method was later adopted by Cohen
et al. [2003]. Ostromoukhov et al. [2004] presented an interesting technique to
generate a distribution with blue noise properties over a given density, based on
the Penrose tiles and Lloyd’s relaxation method. Kopf et al. [2006] presented a
method to generate Poisson disk distributions over a given density in real time,
based on recursive Wang tiles that contain self-similar and progressive Poisson
distributions.

Recently, Jones [2006] and Dunbar and Humphreys [2006] presented efficient
implementations of the dart throwing algorithm.

Tools to analyze the spectral properties of point sets were introduced by
Ulichney [1987], in the context of dithering.

4.2.3 Radius Specification

The radius of a Poisson disk distribution determines how well the points are
distributed, and is therefore a measure of the quality of the Poisson disk dis-
tribution. The radius is typically expressed as an absolute number. However,
this is not practical because the radius is dependent on the size of the domain
of the point distribution and on the number of points in the distribution.

In 2005, we proposed a more intuitive radius specification scheme [Lagae and
Dutré, 2005a]. Instead of using the absolute radius r, the radius is expressed as
a relative radius ρ. The relative radius ρ is a fraction of the maximum radius
rmax that can be achieved.

The densest packing of disks in the plane is a hexagonal lattice. Therefore,
the point configuration with maximum disk radius rmax is a hexagonal lattice.
The packing density η of a hexagonal lattice is [Steinhaus, 1999]

η =
π

2
√

3
≈ 0.9069. (4.1)

The packing density is defined as the fraction of the area filled by the disks.

The maximum disk area of a Poisson disk distribution counting N points
over the toroidal unit square is therefore η/N . The maximum possible disk
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radius rmax of this Poisson disk distribution is thus given by

rmax =

√

1

2
√

3N
. (4.2)

The Poisson disk radius r of a given point distribution is specified as a fraction
ρ of the maximum disk radius

r = ρ rmax, (4.3)

with ρ ∈ [0, 1].

In contrast with the absolute radius, the relative radius is independent of
the number of points and the size of the domain of the point distribution.
The relative radius is therefore a good measure of how well the points are
distributed.

The relative radius of a Poisson distribution is 0, because a Poisson distribu-
tion does not enforce a minimum distance between points. The relative radius
of a hexagonal lattice is 1, because a hexagonal lattice is the densest packing
of disks in the plane. The relative radius of a Poisson disk distribution should
be relatively large, in order to ensure a good distribution of points, but not too
large, because point distributions with a very large relative radius are too close
to the hexagonal lattice, and are therefore too regular. Practice shows that the
radius of most Poisson disk distribution is somewhere in between 0.65 and 0.85.

4.2.4 Generation

Poisson disk distributions are traditionally generated with dart throwing, re-
laxation dart throwing or Lloyd’s relaxation method.

4.2.4.1 Dart Throwing

The dart throwing algorithm of Cook [1986] was the first algorithm to gen-
erate Poisson disk distributions. The algorithm generates points distributed
according to a Poisson distribution, and rejects points that do not satisfy the
minimum separation with already generated points. This process continues un-
til no more points can be added. To correctly handle boundary conditions, the
distributions generated by the dart throwing algorithm are usually toroidal.

This algorithm is expensive, and difficult to control. Instead of specifying the
number of points, the radius of the distribution has to be provided, the final
number of points in the distribution is difficult to predict, and if the process is
stopped too soon, the density of the points is not uniform. The dart throwing
algorithm is discussed in detail in section 6.3.
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(a) (b) (c) (d)

Figure 4.2: Lloyd’s relaxation method. (a) The initial point set. (b) The
Voronoi diagram of the initial point set. The centroids of the Voronoi cells are
indicated by circles. (c) The points are moved to the centroid of their Voronoi
cell. (d) This process is iterated. Note the increase in radius of the point set.

4.2.4.2 Relaxation Dart Throwing

McCool and Fiume [1992] proposed an improved version of the dart throwing
algorithm, which we call relaxation dart throwing. Points are placed with a
large radius initially, and once no more space has been found for a large number
of attempts, the radius is reduced by some fraction.

This algorithm has several advantages compared to dart throwing. It is
faster, it allows to specify the final size of the distributions rather than the
radius, and termination is guaranteed. The relaxation dart throwing algorithm
is discussed in detail in section 6.4.

4.2.4.3 Lloyd’s Relaxation Scheme

After a Poisson disk distribution is generated, McCool and Fiume [1992] apply
Lloyd’s relaxation method [Lloyd, 1982] to optimize the radius of the Poisson
disk distribution. Lloyd’s relaxation method is an iterative process. In each
iteration, the Voronoi diagram of the point set is computed, and each point is
moved to the centroid of its Voronoi cell. This process is illustrated in figure 4.2.
Lloyd’s relaxation method is discussed in detail in section 6.5.

4.3 Edge-Based Poisson Disk Tiles

In 2005, we presented edge-based Poisson disk tiles, a method for constructing
a Poisson disk distribution over a set of Wang tiles [Lagae and Dutré, 2005a].

Constructing a Poisson disk distribution over a set of Wang tiles is challeng-
ing. The difficulty is to generate a Poisson disk distribution in each tile of
the tile set, such that every tiling results in a valid Poisson disk distribution.
The minimum distance criterion of a Poisson disk distribution imposes severe
constraints on the point distributions in the Wang tiles.
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(a) (b)

Figure 4.3: The Poisson disk tile regions and the modified Poisson disk tile
regions. (a) The Poisson disk radius determines corner regions, edge regions
and an interior region. (b) The corner regions are modified such that the
distance between regions of the same type is at least 2r.

Figure 4.4: A tiling obtained by combining the modified Poisson disk tile re-
gions with the complete Wang tile set over 3 colors. This tiling was generated
from the tiling shown in figure 2.5.
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(a) (b) (c) (d)

Figure 4.5: Construction of a Poisson disk distribution over an edge tile of an
edge-based Poisson disk tile set. (a) The edge tile. (b) A toroidal Poisson disk
distribution is generated. (c) The Poisson disk distribution is optimized using
Lloyd’s relaxation scheme. (d) The edge tile is cut out of the Poisson disk
distribution.

Figure 4.6: Poisson disk distributions constructed over edge tiles of an edge-
based Poisson disk tile set.

A point in a tile closer to a corner than the Poisson disk radius affects points
in three neighboring tiles. A point in a tile closer to an edge than the Poisson
disk radius affects points in one neighboring tile. A point in a tile, further away
from the tile boundary than the Poisson disk radius does not affect points in
neighboring tiles. The regions obtained this way are called the Poisson disk tile
regions. The Poisson disk radius determines corner regions, edge regions and
an interior region. This is illustrated in figure 4.3(a).

To minimize the constraints between the different regions, the corner regions
are enlarged such that the distance between edge regions is twice the Poisson
disk radius. The regions obtained this way are called the modified Poisson
disk tile regions. Within a single tile, points in edge regions now only affect
points in corner regions, and not in other edge regions. This is illustrated in
figure 4.3(b).

By combining the modified Poisson disk tile regions with the complete Wang
tile set over C colors, a new tiling is obtained. This is illustrated in figure 4.4.
This tiling uses three different kinds of tiles. Horizontal and vertical edge
tiles, corner tiles1 and interior tiles. Edge tiles correspond to the union of two
modified edge regions. There are C horizontal and C vertical edge tiles, one for

1The term corner tile is used to indicate both a square tile with colored corners and the
union of four Poisson disk regions. The context should make clear which meaning is
intended.
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(a) (b)

(c) (d)

Figure 4.7: Construction of a Poisson disk distribution over a corner tile of
an edge-based Poisson disk tile set. (a) The corner tile is assembled with the
corresponding edge tiles. (b) A toroidal Poisson disk distribution is generated.
(c) The Poisson disk distribution is optimized using Lloyd’s relaxation scheme.
(d) The corner tile is cut out of the Poisson disk distribution.
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Figure 4.8: Poisson disk distributions constructed over corner tiles of an edge-
based Poisson disk tile set.
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(a) (b)

(c) (d)

Figure 4.9: Construction of a Poisson disk distribution over a tile of an edge-
based Poisson disk tile set. (a) The tile interior is assembled with the corre-
sponding corner tiles and edge tiles. (b) A toroidal Poisson disk distribution is
generated. (c) The Poisson disk distribution is optimized using Lloyd’s relax-
ation scheme. (d) The tile is cut out of the Poisson disk distribution.
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Figure 4.10: Poisson disk distributions constructed over tiles of an edge-based
Poisson disk tile set.
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Figure 4.11: A tiling with a set of edge-based Poisson disk tiles.

each color. Corner tiles correspond to the union of four modified corner regions.
There are C4 corner tiles, one for each combination of four colors. Interior tiles
correspond to the modified interior regions. There are C12 interior tiles, one
for each combination of four corner tiles and four edge tiles. Note that there
are C12 rather than C4 interior tiles. This is because each corner tile encodes
its four incident edges.

To construct a Poisson disk distribution over a set of Wang tiles, the number
of colors of the Wang tile set C, the number of points per tile N , and the
relative Poisson disk radius ρ are chosen. The absolute Poisson disk radius
determines the size of the modified Poisson disk regions.

First, a Poisson disk distribution is constructed over the edge tiles. This is
illustrated in figure 4.5. For each edge tile, a toroidal Poisson disk distribu-
tion of N points is generated using dart throwing or relaxation dart throwing
(see figure 4.5(b)), optionally followed by Lloyd’s relaxation method (see fig-
ure 4.5(c)). The edge tile is then cut out of the Poisson disk distribution (see
figure 4.5(d)). If the desired Poisson disk radius is not reached, this process
is repeated. Figure 4.6 shows Poisson disk distributions constructed over edge
tiles.

Next, a Poisson disk distribution is constructed over the corner tiles. This is
illustrated in figure 4.7. Each corner tile is assembled with the corresponding
edge tiles (see figure 4.7(a)). A toroidal Poisson disk distribution is generated
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Figure 4.12: A Poisson disk distribution generated with a set of edge-based
Poisson disk tiles. This Poisson disk distribution was generated from the tiling
shown in figure 4.11.
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using dart throwing or relaxation dart throwing (see figure 4.7(b)), optionally
followed by Lloyd’s relaxation method (see figure 4.7(c)). The corner tile is
then cut out of the Poisson disk distribution (see figure 4.7(d)). If the desired
Poisson disk radius is not reached, this process is repeated. No new points
are added to the edge tiles. During relaxation, the points in the edge tiles are
fixed, and other points are prohibited to enter the edge tiles. This is done by
clipping the displacement vectors of points that are about to enter the edge
tiles. Figure 4.8 shows Poisson disk distributions constructed over corner tiles.

Finally, a Poisson disk distribution is constructed over the interior tiles. This
is illustrated in figure 4.9. Each interior tile is assembled with the corresponding
edge tiles and corner tiles (see figure 4.9(a)). A toroidal Poisson disk distribu-
tion that brings the number of points inside the tile to N is generated using
dart throwing or relaxation dart throwing (see figure 4.9(b)), optionally fol-
lowed by Lloyd’s relaxation method (see figure 4.9(c)). The tile is then cut out
of the Poisson disk distribution (see figure 4.9(d)). If the desired Poisson disk
radius is not reached, this process is repeated. No new points are added to the
corner tiles and the edge tiles. During relaxation, the points in the edge tiles
and the corner are fixed, and other points are prohibited to enter the edge tiles
and the corner tiles. Figure 4.10 shows Poisson disk distributions constructed
over tiles.

An edge-based Poisson disk tile set based on a complete Wang tile set over C
colors consists of C12 tiles. The only practical choice for C is 2, which results
in an edge-based Poisson disk tile set counting 4, 096 tiles. The reason that an
edge-based Poisson disk tile set consists of C12 tiles rather than C4 tiles, is that
edge-based Poisson disk tiles keep into account the color of all edges incident on
the tile corners, which is needed to fix the point configuration around corners.
This is a concrete instance of the corner problem (see section 2.6).

Figure 4.11 shows a tiling with a set of edge-based Poisson disk tiles, and
figure 4.12 shows the resulting Poisson disk distribution. Although edge-based
Poisson disk tiles are not Wang tiles, tiling algorithms for Wang tiles can still
be used, because there is a straightforward mapping between an edge-based
Poisson disk tiling and the Wang tiling it is constructed from.

The time needed to generate a Poisson disk tile set ranges from several min-
utes to several hours, depending on N and ρ. However, the construction of a
tile set has to be done only once. With a single set of tiles, an infinite number
of Poisson disk distributions can be generated.

The properties of the Poisson disk distributions generated with edge-based
Poisson disk tiles are discussed in detail in section 6.9.

4.4 Template Poisson Disk Tiles

In 2005, we presented template Poisson disk tiles [Lagae and Dutré, 2005b],
a simple approach for generating tiled Poisson disk distributions. In contrast
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(a) (b)

Figure 4.13: Construction of a master tile of a template Poisson disk tile set.
(a) A toroidal Poisson disk distribution is generated. (b) The Poisson disk
distribution is optimized using Lloyd’s relaxation scheme.

(a) (b)

Figure 4.14: Construction of a tile template of a template Poisson disk tile set.
(a) The master tile. (b) The tile template, constructed by discarding all points
further from the tile border than the Poisson disk radius.

(a) (b) (c)

Figure 4.15: Construction of a tile of a template Poisson disk tile set. (a) The
tile template. (b) A Poisson disk distribution is generated. (c) The Poisson
disk distribution is optimized using Lloyd’s relaxation scheme.
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Figure 4.16: A tiling with a set of template Poisson disk tiles.

with edge-based Poisson disk tiles, the size of a set of template Poisson disk
tiles is not constrained. This allows to investigate the effect of the size of the
tile set on the quality of the resulting Poisson disk distributions (see section
6.10).

A set of template Poisson disk tiles is a set of unit square tiles that share the
same toroidal boundary of points. Once a set of template Poisson disk tiles is
constructed, a tiled Poisson disk distribution can be generated by placing tiles
chosen randomly from the tile set next to each other.

To construct a set of template Poisson disk tiles, the number of points per
tile N , the number of tiles T , and the relative Poisson disk radius ρ are chosen.

First, a single tile called a master tile is created. A toroidal Poisson disk
distribution is generated using dart throwing or relaxation dart throwing, op-
tionally followed by Lloyd’s relaxation. If the desired Poisson disk radius is not
reached, this process is repeated. This is illustrated in figure 4.13.

A tiled Poisson disk distribution can be generated using only the master tile,
because the distribution it contains is toroidal. However, there will be much
repetition in the distribution, something that should be avoided.

Next, a tile template is created. This is illustrated in figure 4.14. To ensure
that a Poisson disk distribution is continuous over tile edges, only points closer
to an edge of the tile than the Poisson disk radius need to be considered. The
tile template is created by discarding all points in the interior of the master
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Figure 4.17: A Poisson disk distribution generated with a set of template Pois-
son disk tiles. This Poisson disk distribution was generated from the tiling
shown in figure 4.16.
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tile.
Finally, the remaining T − 1 tiles in the tile set are created. This is illus-

trated in figure 4.15. Each tile is created by filling the tile template with a
Poisson disk distribution that brings the total number of points in the tile to
N . This distribution is generated using dart throwing or relaxation dart throw-
ing, optionally followed by Lloyd’s relaxation method. However, no new points
are added to the tile template, and during relaxation, points are prohibited to
enter the tile template. This is done by clipping displacement vectors of points
that are about to enter the tile template.

Figure 4.16 shows a tiling with a set of template Poisson disk tiles, and
figure 4.17 shows the resulting Poisson disk distribution.

A set of template Poisson disk tiles can be seen as a set of several instances
of a single Wang tile or corner tile. This technique can therefore be used to
bring more variation in a set of edge-based Poisson disk tiles (see section 4.3)
or a set of corner-based Poisson disk tiles (see section 4.5).

The properties of the Poisson disk distributions generated with template
Poisson disk tiles are discussed in detail in section 6.10.

4.5 Corner-Based Poisson Disk Tiles

Template Poisson disk tiles were developed to study the effect of the size of
the tile set on the quality of the tiled Poisson disk distributions. In chapter 6
we show that a set of 4, 096 edge-based Poisson disk tiles is enough but too
much for generating high-quality tiled Poisson disk distributions. Template
Poisson disk tiles are also not suited because the tile template causes too much
repetition in the generated Poisson disk distributions. In 2006, we presented
corner tiles and corner-based Poisson disk tiles, a method for constructing a
Poisson disk distribution over a set of corner tiles [Lagae and Dutré, 2006a].

By combining the modified Poisson disk tile regions with the complete corner
tile set over C colors, a new tiling is obtained. This is illustrated in figure 4.18.
This tiling uses three different kinds of tiles. Corner tiles, horizontal and ver-
tical edge tiles, and interior tiles. Corner tiles correspond to the union of four
modified corner regions. There are C corner tiles, one for each color. Edge tiles
correspond to the union of two modified edge regions. There are C2 horizon-
tal and C2 vertical edge tiles, one for each combination of two corner colors.
Interior tiles correspond to the modified interior regions. There are C4 inte-
rior tiles, one for each combination of four corner colors. Note that edge-based
Poisson disk tiles use C12 rather than C4 interior tiles.

To construct a Poisson disk distribution over a set of corner tiles, the number
of colors of the corner tile set C, the number of points per tile N , and the relative
Poisson disk radius ρ are chosen. The absolute Poisson disk radius determines
the size of the modified Poisson disk regions.

First, a Poisson disk distribution is constructed over the corner tiles. This is
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Figure 4.18: A tiling obtained by combining the modified Poisson disk tile
regions with the complete corner tile set over 3 colors. This tiling was generated
from the tiling shown in figure 2.6.

(a) (b) (c) (d)

Figure 4.19: Construction of a Poisson disk distribution over a corner tile of a
corner-based Poisson disk tile set. (a) The corner tile. (b) A toroidal Poisson
disk distribution is generated. (c) The Poisson disk distribution is optimized
using Lloyd’s relaxation scheme. (d) The corner tile is cut out of the Poisson
disk distribution.
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Figure 4.20: Poisson disk distributions constructed over corner tiles of a corner-
based Poisson disk tile set.

(a) (b) (c) (d)

Figure 4.21: Construction of a Poisson disk distribution over a vertical edge tile
of a corner-based Poisson disk tile set. (a) The edge tile is assembled with the
corresponding corner tiles. (b) A toroidal Poisson disk distribution is generated.
(c) The Poisson disk distribution is optimized using Lloyd’s relaxation scheme.
(d) The edge tile is cut out of the Poisson disk distribution.

Figure 4.22: Poisson disk distributions constructed over horizontal edge tiles
of a corner-based Poisson disk tile set.
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Figure 4.23: Poisson disk distributions constructed over vertical edge tiles of a
corner-based Poisson disk tile set.

(a) (b)

(c) (d)

Figure 4.24: Construction of a Poisson disk distribution over a tile of a corner-
based Poisson disk tile set. (a) The interior tile is assembled with the corre-
sponding corner tiles and edge tiles. (b) A toroidal Poisson disk distribution is
generated. (c) The Poisson disk distribution is optimized using Lloyd’s relax-
ation scheme. (d) The tile is cut out of the Poisson disk distribution.
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Figure 4.25: Poisson disk distributions constructed over tiles of a corner-based
Poisson disk tile set.

52



4.5 Corner-Based Poisson Disk Tiles

Figure 4.26: A tiling with a set of corner-based Poisson disk tiles.

illustrated in figure 4.19. For each corner tile, a toroidal Poisson disk distribu-
tion of N points is generated using dart throwing or relaxation dart throwing
(see figure 4.19(b)), optionally followed by Lloyd’s relaxation method (see fig-
ure 4.19(c)). The corner tile is then cut out of the Poisson disk distribution (see
figure 4.19(d)). If the desired Poisson disk radius is not reached, this process is
repeated. Figure 4.20 shows Poisson disk distributions constructed over corner
tiles.

Next, a Poisson disk distribution is constructed over the edge tiles. This is
illustrated in figure 4.21. Each edge tile is assembled with the corresponding
corner tiles (see figure 4.21(a)). A toroidal Poisson disk distribution is generated
using dart throwing or relaxation dart throwing (see figure 4.21(b)), optionally
followed by Lloyd’s relaxation method (see figure 4.21(c)). The edge tile is
then cut out of the Poisson disk distribution (see figure 4.21(d)). If the desired
Poisson disk radius is not reached, this process is repeated. No new points are
added to the corner tiles. During relaxation, the points in the corner tiles are
fixed, and other points are prohibited to enter the corner tiles. This is done by
clipping the displacement vectors of points that are about to enter the corner
tiles. Figures 4.22 and 4.23 show Poisson disk distributions constructed over
horizontal and vertical edge tiles.

Finally, a Poisson disk distribution is constructed over the interior tiles. This
is illustrated in figure 4.24. Each interior tile is assembled with the correspond-
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Figure 4.27: A Poisson disk distribution generated with a set of corner-based
Poisson disk tiles. This Poisson disk distribution was generated from the tiling
shown in figure 4.26.
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ing corner tiles and edge tiles (see figure 4.24(a)). A toroidal Poisson disk
distribution that brings the number of points inside the tile to N is generated
using dart throwing or relaxation dart throwing (see figure 4.24(b)), optionally
followed by Lloyd’s relaxation method (see figure 4.24(c)). The tile is then cut
out of the Poisson disk distribution (see figure 4.24(d)). If the desired Poisson
disk radius is not reached, this process is repeated. No new points are added
to the corner tiles and the edge tiles. During relaxation, the points in the cor-
ner tiles and the edge are fixed, and other points are prohibited to enter the
corner tiles and the edge tiles. Figure 4.25 shows Poisson disk distributions
constructed over corner tiles.

A corner-based Poisson disk tile set based on a complete Wang tile set over C
colors consists of C4 tiles. For 2, 3, 4, 5, 6, 7 and 8 colors, a set of corner-based
Poisson disk tiles counts 16, 81, 256, 625, 1, 296, 2, 401 and 4, 096. Corner-
based Poisson disk tile sets are significantly smaller than edge-based Poisson
disk tile sets.

Figure 4.26 shows a tiling with a set of edge-based Poisson disk tiles, and
figure 4.27 shows the resulting Poisson disk distribution.

The time needed to generate a Poisson disk tile set ranges from several min-
utes to several hours, depending on the parameters. However, the construction
of a tile set has to be done only once. With a single set of tiles, an infinite
number of Poisson disk distributions can be generated.

The properties of the Poisson disk distributions generated with corner-based
Poisson disk tiles are discussed in detail in section 6.11. Although the difference
between corner-based Poisson disk tiles and edge-based Poisson disk tiles is
relatively small, we will show that the increase in quality of the resulting Poisson
disk distributions is large.

4.6 A Tile-Based Method for Generating Poisson

Sphere Distributions

Poisson disk distributions have many applications in computer graphics. Sev-
eral of these applications, such as geometric object distribution (see section 7.5)
and the two-dimensional procedural object distribution texture basis function
(see section 7.6), have three-dimensional counterparts. These applications re-
quire Poisson sphere distributions, the three-dimensional equivalent of Poisson
disk distributions.

In this section we present Poisson sphere distributions and three-dimensional
corner tiles, and we introduce corner-based Poisson sphere tiles, a tile-based
method for efficiently generating Poisson sphere distributions.
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4.6.1 Poisson Sphere Distributions

Poisson sphere distributions are very similar to Poisson disk distributions, and
most concepts of Poisson disk distributions easily generalize to Poisson sphere
distribution. In this subsection we define Poisson sphere distributions, we ex-
tend the relative radius specification scheme to Poisson sphere distributions,
and we discuss methods for generating Poisson sphere distributions.

4.6.1.1 Definition

A Poisson sphere distribution is a three-dimensional Poisson distribution in
which all points are separated from each other by a minimum distance. Half
that distance is called the radius r of the distribution. If a sphere of that radius
is placed at each point, then no two spheres intersect.

4.6.1.2 Radius Specification

The relative radius specification scheme for Poisson disk distributions has a
direct three-dimensional equivalent.

The packing density η of the densest packing of spheres is given by

η =
π

3
√

2
≈ 0.7405. (4.4)

The packing density is defined as the fraction of the volume filled by the spheres.

The problem of finding the densest packing of spheres, also known as the
Kepler Problem, was only solved recently [Cipra, 1998].

The maximum sphere volume of a Poisson sphere distribution counting N
points over the toroidal unit cube is therefore η/N . The maximum possible
sphere radius rmax of this Poisson sphere distribution is thus given by

rmax = 3

√

1

4
√

2N
. (4.5)

The Poisson sphere radius r of a given point distribution is specified as a
fraction ρ of the maximum disk radius

r = ρ rmax, (4.6)

where ρ ∈ [0, 1].

As in two dimensions, the relative radius is also a measure of how well the
points are distributed. Good Poisson sphere distributions should have a relative
radius that is relatively high.
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Figure 4.28: Several tiles of the complete 3D corner tile set over 2 colors.

4.6.1.3 Generation

Poisson disk distributions are traditionally generated with dart throwing, re-
laxation dart throwing or Lloyd’s relaxation method. These algorithms easily
generalize to three dimensions. Dart throwing, relaxation dart throwing and
Lloyd’s relaxation method for Poisson sphere distributions are discussed in more
detail in section 6.15.

4.6.2 Three-Dimensional Corner Tiles

Three-dimensional corner tiles are a simple extension of two-dimensional corner
tiles.

Three-dimensional corner tiles are unit cube tiles with colored corners. The
corners of a three-dimensional corner tile are named after its coordinates. A
complete tile set contains a tile for every possible combination of eight corner
colors. A complete set of three-dimensional corner tiles over C colors counts C8

tiles. Figure 4.28 shows several tiles of the complete set of three-dimensional
corner tiles over two colors. A complete set of three-dimensional corner tiles
over 2, 3 and 4 colors consist of 256, 6, 561 and 65, 536 tiles.

A tiling is constructed by placing the tiles next to each other such that adjoin-
ing corners have matching colors. Each tile in the tile set can be used arbitrarily
many times. The tiles are placed with their corners on the integer lattice points.
Figure 4.29 shows a tiling with the complete set of three-dimensional corner
tiles over two colors.

The enumeration scheme for corner tiles (see section 2.8) and the direct
stochastic tiling algorithm for corner tiles (see section 3.3) easily generalize to
three dimensions.
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Figure 4.29: A tiling with the complete 3D corner tile set over 2 colors.

4.6.3 Corner-Based Poisson Sphere Tiles

In 2006, we presented corner-based Poisson sphere tiles, a tile-based method
for efficiently generating Poisson sphere distributions [Lagae and Dutré, 2006e].
Corner-based Poisson sphere tiles are an extension of corner-based Poisson disk
tiles (see section 4.5) to three dimensions.

A point in a tile closer to a corner than the Poisson sphere radius affects
points in seven neighboring tiles. A point in a tile closer to an edge than the
Poisson sphere radius affects points in three neighboring tiles. A point in a tile
closer to a face than the Poisson sphere radius affects points in one neighboring
tile. A point in a tile, further away from the tile boundary than the Poisson
sphere radius does not affect points in neighboring tiles. The regions obtained
this way are called the Poisson sphere tile regions. The Poisson sphere radius
determines corner regions, edge regions, face regions and an interior region.
This is illustrated in figure 4.30.

To minimize the constraints between the different regions, the corner regions
are enlarged such that the distance between edge regions is twice the Poisson
sphere radius. Now points in different edge regions do not affect each other.
The edge regions are enlarged such that the distance between face regions is
twice the Poisson sphere radius. Now points in different face regions do not
affect each other. The regions obtained this way are called the modified Poisson
sphere tile regions. This is illustrated in figure 4.31.
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(a) (b) (c)

(d) (e) (f)

Figure 4.30: The Poisson sphere tile regions. (a) The corner regions. (b) The
edge regions. (c) The face regions. (d) The interior region. (e) The assembled
tile. (f) The partially assembled tile.

(a) (b) (c)

(d) (e) (f)

Figure 4.31: The modified Poisson sphere tile regions. (a) The modified corner
regions. (b) The modified edge regions. (c) The modified face regions. (d) The
modified interior region. (e) The assembled tile. (f) The partially assembled
tile.
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Figure 4.32: A tiling obtained by combining the modified Poisson sphere tile
regions with the complete 3D corner tile set over 2 colors. This tiling was
generated from the tiling shown in figure 4.29.

(a) (b) (c) (d)

Figure 4.33: The four kinds of tiles in the tiling obtained by combining the
modified Poisson sphere tile regions with the complete 3D corner tile set over
2 colors. (a) Corner tiles. (b) Edge tiles. (c) Face tiles. (d) Interior tiles.
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(a) (b) (c) (d)

Figure 4.34: Construction of a Poisson sphere distribution over a corner tile
of a corner-based Poisson sphere tile set. (a) The corner tile. (b) A toroidal
Poisson sphere distribution is generated. (c) The Poisson sphere distribution
is optimized using Lloyd’s relaxation scheme. (d) The corner tile is cut out of
the Poisson disk distribution.

(a) (b) (c) (d)

Figure 4.35: Construction of a Poisson sphere distribution over an edge tile of
a corner-based Poisson sphere tile set. (a) The edge tile is assembled with the
corresponding corner tiles. (b) A toroidal Poisson sphere distribution is gener-
ated. (c) The Poisson sphere distribution is optimized using Lloyd’s relaxation
scheme. (d) The edge tile is cut out of the Poisson sphere distribution.
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(a) (b) (c) (d)

Figure 4.36: Construction of a Poisson sphere distribution over a face tile of
a corner-based Poisson sphere tile set. (a) The face tile is assembled with
the corresponding corner tiles and edge tiles. (b) A toroidal Poisson sphere
distribution is generated. (c) The Poisson sphere distribution is optimized
using Lloyd’s relaxation scheme. (d) The face tile is cut out of the Poisson
sphere distribution.

(a) (b) (c)

(d) (e) (f)

Figure 4.37: Construction of a Poisson sphere distribution over a tile of a
corner-based Poisson sphere tile set. (a) The interior tile is assembled with
the corresponding corner tiles, edge tiles and face tiles. (b) All points further
from the tile than twice the Poisson sphere radius are discarded. (c) A toroidal
Poisson sphere distribution is generated in the interior. (d) A toroidal Poisson
sphere distribution is generated in the exterior. (e) The Poisson sphere distri-
bution is optimized using Lloyd’s relaxation scheme. (f) The tile is cut out of
the Poisson sphere distribution.
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By combining the modified Poisson sphere tile regions with the complete
corner tile set over C colors, a new tiling is obtained. This is illustrated in
figure 4.32. This tiling uses four different kinds of tiles. Corner tiles, edge
tiles, face tiles and interior tiles. Corner tiles correspond to the union of eight
modified corner regions. There are C corner tiles, one for each color. Edge tiles
correspond to the union of four modified edge regions. There are C2 edge tiles
for each orientation, one for each combination of two corner colors. Face tiles
correspond to the union of two modified face regions. There are C4 face tiles
for each orientation, one for each combination of four corner colors. Interior
tiles correspond to the modified interior regions. There are C8 interior tiles,
one for each combination of eight corner colors. These four kinds of tiles are
shown in figure 4.33. Note that the corner tile is a great rhombicuboctahedron,
an Archimedean solid.

To construct a Poisson sphere distribution over a set of corner tiles, the
number of colors of the corner tile set C, the number of points per tile N , and
the relative Poisson sphere radius ρ are chosen. The absolute Poisson sphere
radius determines the size of the modified Poisson sphere regions.

First, a Poisson sphere distribution is constructed over the corner tiles. This
is illustrated in figure 4.34. For each corner tile, a toroidal Poisson sphere
distribution of N points is generated using dart throwing or relaxation dart
throwing (see figure 4.34(b)), optionally followed by Lloyd’s relaxation method
(see figure 4.34(c)). The corner tile is then cut out of the Poisson sphere
distribution (see figure 4.34(d)). If the desired Poisson sphere radius is not
reached, this process is repeated.

Next, a Poisson sphere distribution is constructed over the edge tiles. This
is illustrated in figure 4.35. Each edge tile is assembled with the correspond-
ing corner tiles (see figure 4.35(a)). A toroidal Poisson sphere distribution is
generated using dart throwing or relaxation dart throwing (see figure 4.35(b)),
optionally followed by Lloyd’s relaxation method (see figure 4.35(c)). The edge
tile is then cut out of the Poisson sphere distribution (see figure 4.35(d)). If
the desired Poisson sphere radius is not reached, this process is repeated. No
new points are added to the corner tiles. During relaxation, the points in the
corner tiles are fixed, and other points are prohibited to enter the corner tiles.
This is done by clipping the displacement vectors of points that are about to
enter the corner tiles.

Next, a Poisson sphere distribution is constructed over the face tiles in the
same way. This is illustrated in figure 4.36.

Finally, a Poisson sphere distribution is constructed over the interior tiles.
This is illustrated in figure 4.37. Each interior tile is assembled with the corre-
sponding corner tiles, edge tiles and face tiles. (see figure 4.37(a)). All points
further away from the tile boundary than the Poisson sphere radius are dis-
carded (see figure 4.37(b)). A Poisson sphere distribution is generated using
dart throwing or relaxation dart throwing, both in the inside (see figure 4.37(c))
and in the outside (see figure 4.37(d)), optionally followed by Lloyd’s relaxation
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method (see figure 4.37(e)). The tile is then cut out of the Poisson sphere distri-
bution (see figure 4.37(f)). If the desired Poisson sphere radius is not reached,
this process is repeated.

A corner-based Poisson sphere tile set based on a complete corner tile set
over C colors consists of C8 tiles. The only practical choice for C is 2, which
results in a corner-based Poisson sphere tile set counting 256 tiles.

The time needed to generate a Poisson sphere tile set ranges from several
minutes to several hours, depending on the parameters. However, the con-
struction of a tile set has to be done only once. With a single set of tiles, an
infinite number of Poisson sphere distributions can be generated.

The properties of the Poisson sphere distributions generated with corner-
based Poisson sphere tiles are discussed in detail in section 6.15.

4.7 A Tile-Based Method for Generating

Nonuniform Poisson Disk Distributions

Poisson disk distributions have many applications in computer graphics. Sev-
eral of these applications, such as sampling (see section 7.2) and primitive dis-
tribution for illustration (see section 7.3), would also benefit from Poisson disk
distributions with nonuniform density. In this section we investigate nonuni-
form Poisson disk distributions. We define nonuniform Poisson disk distribu-
tions and we present a tile-based method for efficiently generating nonuniform
Poisson disk distributions.

4.7.1 Nonuniform Poisson Disk Distributions

Poisson disk distributions with nonuniform density are not very well studied.
There is no established terminology nor definition. Nonuniform Poisson disk
distributions are sometimes called adaptive Poisson disk distributions [McCool
and Fiume, 1992] or distributions with blue-noise properties [Ostromoukhov
et al., 2004; Kopf et al., 2006]. We define a nonuniform Poisson disk distri-
bution as a two-dimensional Poisson distribution in which the point density
is proportional to a given density function, and the points are separated from
each other by a minimum distance inversely proportional to the given density
function.

Poisson disk distributions with nonuniform density can be generated with
a technique similar to Lloyd’s relaxation method [Du et al., 1999]. However,
the challenge is to generate nonuniform Poisson disk distributions in real time.
McCool and Fiume [1992] proposed a technique to generate adaptive Poisson
disk distributions by thresholding a precomputed hierarchical Poisson disk dis-
tribution. Ostromoukhov et al. [2004] proposed a method to generate point
distributions with blue-noise properties by moving the vertices of a recursively
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(a) (b)

Figure 4.38: A self-similar point distribution. (a) The point distribution. (b)
The point distribution scaled down by a factor of two, superimposed on each
quadrant. The points of the original point distribution are circled.

subdivided Penrose tiling according to precomputed relaxation vectors. Con-
currently with our work, Kopf et al. [2006] presented a technique to generate
point distributions with blue-noise properties based on recursive Wang tiles
that contain self-similar and progressive Poisson disk distributions.

However, non of these methods adequately solves the problem of generating
Poisson disk distributions with nonuniform density. The method of McCool and
Fiume is limited by the precomputed hierarchical Poisson disk distribution, and
the techniques of Ostromoukhov et al. and Kopf et al. seem to have problems
with guaranteeing the minimum radius.

4.7.2 A Self-Similar Hierarchical Tile

In 2006, we presented a tile-based method for generating nonuniform well-
distributed point distributions [Lagae and Dutré, 2006c].

Like previous techniques, our method does not adequately solve the problem
of generating nonuniform Poisson disk distributions. It produces deterministic
point sequences rather than Poisson disk distributions. Therefore, we use the
term well-distributed rather than Poisson disk. However, we hope that the
technique we present provides additional insight into the problem.

Our method is based on a single precomputed tile. The tile contains a well-
distributed point distribution that is both self-similar and hierarchical. A tile
with a self-similar point distribution allows to increase the density of points in
large steps by recursively subdividing the tile. A tile with a hierarchical point
distribution allows to smoothly adjust the density of points. A tile containing
a point distribution with both properties can be used to efficiently generate
well-distributed point distributions according to a given density function.

4.7.2.1 Self-Similar Point Distributions

A self-similar point distribution can be defined in several ways. In general, a
point distribution is self-similar if it looks roughly the same on any scale. For
this method, we use the following more concrete definition. A point distribution
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1

0
11/20

Figure 4.39: The function characterizing the self-similar tile.

1

0
17/86/85/84/83/82/81/80

Figure 4.40: Three repeated applications of the function characterizing the
self-similar tile.
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defined over a square domain is self-similar if the point distribution obtained by
superimposing the point distribution scaled down by a factor of two on any of
the quadrants of the domain is the original point distribution scaled down by a
factor of two. Figure 4.38 shows an example of a self-similar point distribution.

For each point in a self-similar point distribution, there is another point in
the distribution that, when the point distribution is scaled down and put in
the appropriate quadrant, will coincide with the point. This property can be
used to construct a self-similar point distribution.

Without loss of generality, assume that the domain of the point distribution
is [0, 1[2. Suppose the self-similar point distribution is constructed starting with
a single point (x, y). Due to the above property, a second point



















(2x, 2y) if 0 ≤ x < 1
2 and 0 ≤ y < 1

2

(2x, 2y − 1) if 0 ≤ x < 1
2 and 1

2 ≤ y < 1

(2x− 1, 2y) if 1
2 ≤ x < 1 and 0 ≤ y < 1

2

(2x− 1, 2y − 1) if 1
2 ≤ x < 1 and 1

2 ≤ y < 1

(4.7)

must be added. Or, more compactly, whenever a point (x, y) is added to the
tile, the point (f(x), f(y)), with

f(x) =

{

2x if 0 ≤ x < 1
2

2x− 1 if 1
2 ≤ x < 1

, (4.8)

must also be added. The function f is shown in figure 4.39.
However, now a third point (f(f(x)), f(f(y))) must be added as well. In

order to generate a point distribution with N points, the (N + 1)th point
(f (N)(x), f (N)(y)) has to be equal to the first point (x, y). Here f (N) is used
to denote N applications of the function f . In other words, x and y are fixed
points of the function f (N).

The function f (N) is a piecewise linear function, given by

f (N)(x) =
{

2Nx− i if i
2N ≤ x < i+1

2N
, for i = 0 . . . 2N − 1. (4.9)

The function f (3) is shown in figure 4.40. The 2N − 1 fixed points of f (N) are
given by

i

2N − 1
, for i = 0 . . . 2N − 2. (4.10)

Note that 1 is not counted as a fixed point because the domain of f is [0, 1[.
Thus, a self-similar point distribution of N points can be constructed by

choosing two arbitrary fixed points x and y of the function f (N) and forming
the deterministic sequence

{

(f (i)(x), f (i)(y))
}N−1

i=0
. (4.11)
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(a) (b)

Figure 4.41: A well-distributed self-similar point distribution. (a) The point
distribution. (b) The point distribution scaled down by a factor of two, super-
imposed on each quadrant. The points of the original point distribution are
circled.

The self-similar point distribution shown in figure 4.38 counts 16 points and
was generated using the fixed points with index 35, 569 and 12, 988.

It is interesting to note that the criterion of self-similarity results in a de-
terministic point sequence. Besides the choice of fixed points, no degrees of
freedom are left.

Also note that this method can be extended in several ways. For example,
point distributions in three or more dimensions could be generated, or three-
way subdivision could be used instead of two-way subdivision.

4.7.2.2 Well-Distributed Self-Similar Point Distributions

The points of a self-similar point distribution are in general not well-distributed.
However, for a given number of points, there are a lot of self-similar point
distributions, and it is relatively easy to construct them. Therefore, instead of
explicitly constructing a well-distributed self-similar point distribution, a well-
distributed self-similar point distribution is obtained by generating self-similar
point distributions and checking if the points are well-distributed.

No matter which criterion is used to determine whether a point distribu-
tion is well-distributed, it is reasonable to assume that each quadrant of the
point distribution should contains an equal number of points. Note that this
limits the number of points to multiples of 4. Remember that a self-similar

point distribution is constructed by combining two sequences
{

f (i)(x)
}N−1

i=0

and
{

f (i)(y)
}N−1

i=0
, with x and y fixed points of f (N). A sequence is called bal-

anced if it contains as many elements in [0, 1
2 [ as in [12 , 1[. A point distribution

is called balanced if each quadrant contains an equal amount of points. Only
two balanced sequences can produce a balanced point distribution.

The algorithm to construct a well-distributed self-similar point distribution
counting N points iterates over all fixed points x of f (N). The algorithm

constructs the sequence
{

f (i)(x)
}N−1

i=0
and checks whether it is balanced. If the

sequence is balanced, the algorithm iterates over all fixed points y of f (N), and

68



4.7 A Tile-Based Method for Generating Nonuniform Poisson Disk Distributions

(a) (b)

Figure 4.42: A hierarchical well-distributed point distribution. (a) The point
distribution. (b) The rank assigned to each point.

constructs the sequence
{

f (i)(y)
}N−1

i=0
. If this sequence is also balanced, then

the point distribution is constructed and the algorithm checks if the distribution
is balanced. If the point distribution is balanced, a criterion is evaluated that
determines how well the points are distributed. We use the relative Poisson
disk radius to determine the quality of a point distribution, although other
measures can also be used.

The time needed to construct and evaluate all 16-point self-similar point
distributions is about 8 minutes on a regular desktop computer. The best
point distribution has a relative radius of 0.6966, but is very symmetric. The
second-best point distribution, with a relative radius of 0.6528, is shown in
figure 4.41. It was generated using the fixed points with index 14217 and 2895.
Approximately 19.64% of the 16-point sequences is balanced.

The time needed to construct and evaluate all 20-point self-similar point
distributions is about three and a half day. The best point distributions have a
relative radius of 0.8324, 0.7141 and 0.6713, but again are very symmetric. The
fourth-best point distribution, with a relative radius of 0.6588, is not symmetric.
Approximately 17.62% of the 20-point sequences is balanced. For 24 and 32
points, respectively 16.12% and 14.00% of the sequences is balanced.

The running times illustrate that this algorithm is only practical for a small
number of points per tile. However, a small number of points per tile seems
to be sufficient (see chapter 6). Moreover, there is still room for improvement.
It is not necessary to construct all the self-similar point distributions, and the
algorithm does not take into account symmetry. For example, the fact that
cyclic permutations of sequences result in the same point distributions is not
exploited.

4.7.2.3 Hierarchical Well-Distributed Point Distributions

A hierarchical (or progressive) well-distributed point distribution of N points
is a well-distributed point distribution in which a rank is associated with each
point such that the first i points of the distribution are well-distributed, for
any i ∈ {1, 2, . . . , N}. Figure 4.42 shows a hierarchical point distribution,
and figure 4.43 shows well-distributed point distributions of increasing density
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(a) (b) (c) (d)

Figure 4.43: Well-distributed point distributions of increasing density gener-
ated using a hierarchical well-distributed point distribution. The first (a) 4, (b)
8, (c) 12 and (d) 16 points of a well-distributed hierarchical point distribution.
Note that each point distribution is well-distributed.

generated with the hierarchical point distribution. Note that the hierarchical
point distribution is toroidal. This ensures that the distributions obtained by
tiling are still well-distributed.

A hierarchical distribution allows the use of thresholding for smoothly ad-
justing the density of points [McCool and Fiume, 1992]. A point is included
based on its rank and the value of the density function at that point. The pro-
cess of thresholding is also used in stochastic screen half toning for electronic
imaging devices [Mitsa and Parker, 1991].

Although methods for generating hierarchical Poisson disk distribution exist
[McCool and Fiume, 1992], it is also possible to assign a rank to each point
after the point distribution has been generated.

We use the following algorithm. An arbitrary point is assigned rank 0. The
next rank is assigned to the point that, when added to the point distribution,
results in the most well-distributed point set, according to the criterion used
in the previous section. Although this algorithm is greedy, it works well in
practice. Figure 4.42 shows a ranking computed using this algorithm.

4.7.2.4 Generating Non-Uniform Well-Distributed Point Distributions

Our method for generating nonuniform well-distributed point distributions in
real time is based on a single precomputed tile that contains a well-distributed
point distribution that is both self-similar and hierarchical.

A nonuniform point distribution is generated according to a given density
function by iterating over all points of the tile. A point is included in the
distribution based on it’s rank and the value of the density function at that
point. If a density value is encountered that exceeds the maximum density of
the tile, the tile is subdivided and the process is repeated.

Figure 4.44 shows a nonuniform well-distributed point distribution generated
with the tile shown in figure 4.42. The coordinates of the points of the tile are
shown in table 4.1.

A disadvantage of the method is that only a single tile is used. This re-
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rank coordinates

rational numbers floating point numbers

0 (14217, 2895) (0.21693751, 0.04417487)

1 (39876, 34215) (0.60846876, 0.52208743)

2 (4719, 40470) (0.07200732, 0.61753262)

3 (37752, 61620) (0.57605859, 0.94026093)

4 (56868, 11580) (0.86775006, 0.17669947)

5 (57933, 54210) (0.88400092, 0.82719158)

6 (19938, 49875) (0.30423438, 0.76104372)

7 (18876, 30810) (0.28802930, 0.47013046)

8 (61734, 27105) (0.94200046, 0.41359579)

9 (35127, 20235) (0.53600366, 0.30876631)

10 (50331, 42885) (0.76800183, 0.65438315)

11 (28434, 5790) (0.43387503, 0.08834974)

12 (48201, 23160) (0.73550011, 0.35339895)

13 (9438, 15405) (0.14401465, 0.23506523)

14 (9969, 57705) (0.15211719, 0.88052186)

15 (30867, 46320) (0.47100023, 0.70679789)

Table 4.1: The coordinates of the points of a 16-point self-similar hierarchical
tile. The tile was constructed by hierarchically sorting the sequence produced
by the fixed points with index 14, 217 and 2, 895, and is shown in figure 4.41.
The nominator of the rational numbers is 65, 535 (216 − 1).

(a)

1

0

-1

1

0

-1

0.25

0

(b)

Figure 4.44: A well-distributed point distribution with nonuniform density
generated with the self-similar hierarchical tile shown in figure 4.42 according
to the density function exp−20(x2+y2) +0.05 sin2(πx) sin2(πy) in [−1,+1]2. (a)
The generated point distribution. (b) A plot of the density function.
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sults in noticeable periodicity in the generated point distributions, especially in
regions of constant density. This problem could be solved by constructing mul-
tiple compatible tiles, performing Lloyd’s relaxation method after the point set
has been generated, or storing precomputed relaxation vectors [Ostromoukhov
et al., 2004].

Concurrently with this work, Kopf et al. [2006] have developed a method for
generating point distributions with blue noise properties in real time. Their
work is based on recursive Wang tiles tiles that are self-similar and progres-
sive. However, the method for constructing the tiles is very different from this
method. Also, Kopf et al. use multiple compatible tiles to avoid periodicity in
the generated point distributions.

The method for constructing a self-similar point distribution is somewhat
similar to the methods for constructing quasi-random sequences [Niederreiter,
1992] and embedded lattice rules [Sloan and Joe, 1994] used in quasi-Monte
Carlo integration. It could be interesting to further investigate this similarity.

4.8 Conclusion

In this chapter we have introduced Poisson disk distributions and we have
proposed an intuitive scheme for specifying the radius of a Poisson disk distri-
bution. We have presented edge-based Poisson disk tiles, template Poisson disk
tiles, and corner-based Poisson disk tiles, three tile-based methods for generat-
ing Poisson disk distributions. We have introduced Poisson sphere distributions
and three-dimensional corner tiles, and we have presented corner-based Poisson
sphere tiles, a tile-based method for constructing Poisson sphere distributions.
We have discussed nonuniform Poisson disk distributions and we have proposed
a tile-based method for generating nonuniform well-distribution point distribu-
tions.
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Chapter 5

Tile-Based Methods for Texture

Synthesis

5.1 Introduction

In computer graphics, Wang tiles and corner tiles are used to facilitate the
synthesis of complex signals. A texture is a complex signal that is difficult
to synthesize efficiently. This chapter presents a method for synthesizing a
texture over a set of Wang tiles or corner tiles, and a tile-based texture mapping
algorithm for efficiently generating an arbitrary large non-repeating texture
using a set of precomputed tiles.

Overview

This chapter is organized as follows. In section 5.2 we introduce texture map-
ping and texture synthesis. Section 5.3 presents a method for synthesizing a
texture over a set of Wang tiles or corner tiles. In section 5.4 we propose a
tile-based texture mapping algorithm. Section 5.5 discusses the tile packing
problem. In section 5.6 we conclude.

This chapter only discusses methods for synthesizing textures over a set of
Wang tiles or corner tiles. Efficient tiling algorithms for Wang tiles and corner
tiles are presented in chapter 3.

5.2 Texture Mapping and Texture Synthesis

Texture mapping was introduced in 1974 by Catmull as a method for increasing
the visual complexity of computer-generated images without adding geometric
detail. A texture map, or simply a texture, is mapped onto the surface of a
shape to add color or detail to the shape.

A texture can be acquired in several ways. Possibilities include painting a
texture, taking a digital photograph of a texture, and generating a texture
procedurally. Procedural texture synthesis is discussed in detail in section 7.6.
Texture synthesis is an alternative way to obtain textures. Texture synthesis
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(a) (b) (c) (d)

Figure 5.1: Construction of a texture tile set based on corner tiles from an
example texture. (a) For each color, a square patch is chosen in the example
texture (the red, green and yellow patch). (b) The patches are assembled
according to the corner colors of the tile. (c) The tile is cut out. (d) The
seam is covered with a new irregular patch from the example texture (the gray
patch).

creates from an example texture a new, usually larger texture that appears to
be generated by the same underlying process.

Texture synthesis has become a popular area of research within computer
graphics, and a complete survey of related work is beyond the scope of this
dissertation. For an overview, we refer to Liu et al. [2004] and Kwatra et al.
[2005]. Most techniques for texture synthesis are region growing methods, such
as pixel-based texture synthesis [Bonet, 1997; Efros and Leung, 1999; Wei and
Levoy, 2000] and patch-based texture synthesis [Efros and Freeman, 2001; Liang
et al., 2001; Cohen et al., 2003; Kwatra et al., 2003], or global methods [Heeger
and Bergen, 1995; Kwatra et al., 2005]. Tile-based texture synthesis can be
classified as a patch-based method.

5.3 Tile-Based Texture Synthesis

Stam [1997] was the first to consider Wang tiles in the context of texturing.
Stam used Wang tiles to generate non-repeating procedural textures of arbi-
trary size. A method similar in spirit was presented by Neyret and Cani [1999].
They used triangular tiles with edge and corner colors to generate pattern-
based textures over a triangle mesh. Cohen et al. [2003] combined Wang tiles
with texture synthesis, and presented a method for synthesizing an example
texture over a set of Wang tiles. A variation on the technique of Cohen et al.
was proposed by Burke. The method of Cohen et al. was also used by Wei
[2004], who presented a texture mapping algorithm based on Wang tiles. Fu
and Leung [2005] extended texture tiling to arbitrary topological surfaces. The
method of Cohen et al. was extended to corner tiles by Ng et al. [2005].

We use the method of Ng et al. for synthesizing an example texture over a set
of corner tiles. This is illustrated in figure 5.1. For each corner color, a square
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(a)

(b)

(c)

Figure 5.2: Texture synthesis with texture tiles based on corner tiles. (a) The
example texture. (b) A set of texture tiles based on corner tiles constructed
from the example texture. (c) A new texture synthesized with the texture tile
set.
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Figure 5.3: Textures synthesized with texture tiles based on corner tiles. These
textures are synthesized by tiling 4 × 4 tiles from a complete texture tile set
based on corner tiles over two or three colors.
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(a) (b)

Figure 5.4: Patch combination strategies for texture tiles based on Wang tiles.
(a) The method of Cohen et al. (b) A variant introduced by Burke.

(a) (b)

Figure 5.5: Patch combination strategies for texture tiles based on corner tiles.
(a) A straightforward extension of the method of Cohen et al. for Wang tiles
to corner tiles. (b) The method of Ng et al. Note that this is the only method
that adds a new texture patch to each tile.
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patch is chosen at random from the example texture (see figure 5.1(a)). Each
tile of the tile set is constructed by combining the four patches corresponding to
the corner colors (see figure 5.1(b)), and cutting out the tile (see figure 5.1(c)).
This leaves a cross shaped seam that is covered with a new diamond-shaped
irregular patch from the example texture (see figure 5.1(d)). This patch is
optimized using the graph cut method [Kwatra et al., 2003], and is restricted
to lie in the circle inscribed in the tile. After an example texture is synthesized
over a set of corner tiles, a new texture can be synthesized by generating a
tiling. The process of tile-based texture synthesis is illustrated in figure 5.2. The
method of Ng et al. is simple and works well. Figure 5.3 shows several textures
synthesized with corner-based texture tiles. The quality of the synthesized
textures is similar to that of other patch-based techniques.

Cohen et al. [2003] were the first to synthesize an example texture over a
set of Wang tiles. Several variations on the method of Cohen et al. have been
proposed, and the technique of Ng et al. for corner tiles is based on the method
of Cohen et al. These methods only differ in how the patches are placed on the
tile. Figures 5.4 and 5.5 show several patch combination strategies for Wang
tiles and corner tiles.

The advantage of corner tiles over Wang tiles is less pronounced in texture
tile construction. Unwanted artifacts in the synthesized textures are typically
located where patches meet. This is at the corners for Wang tiles and in the
middle of the edges for corner tiles. In this respect, Wang tiles and corner
tiles are similar. However, textures synthesized with corner tiles are usually
more similar to the example texture than textures synthesized with Wang tiles.
This is because the center of each corner tile is covered with a new irregular
patch from the example texture. Therefore, each corner tile contains potentially
unique texture samples from the example texture. Other patch combination
strategies use for each tile only the patches corresponding to the corner or edge
colors. We refer to Ng et al. [2005] for a more detailed comparison.

An important advantage of tile-based texture synthesis is that the process
of texture synthesis is broken up into two parts. Once an example texture is
synthesized over a set of tiles, arbitrary large textures can be synthesized very
efficiently simply by generating stochastic tilings.

5.4 Tile-Based Texture Mapping

Interactive applications in computer graphics harness the power of graphics
hardware to guarantee interactive frame rates. Texture mapping is a funda-
mental feature for these applications. However, texture memory is a scarce
resource on graphics hardware, and storing and managing large textures is
challenging. All too often, tileable textures are used to save texture memory.
However, this results in visually disturbing repetition. In 2004, Wei presented
a texture mapping algorithm based on Wang tiles to overcome this problem. In
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Figure 5.6: Tile-based texture mapping using corner tiles. Screenshots from
our interactive tile-based texture mapping application based on corner tiles.
Texture filtering does not introduce unwanted artifacts because a tile packing
was used.
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2006, we presented a cleaner and more efficient variant version of this algorithm
based on corner tiles [Lagae and Dutré, 2006a]. In this section we discuss these
tile-based texture mapping algorithms in detail.

Tile-based texture mapping uses an example texture synthesized over a set
of Wang tiles or corner tiles to simulate an arbitrary large non-periodic texture.
This is more complicated than it seems at first sight, because graphics hard-
ware is very specialized and the graphics processing unit (GPU) is a stream
processing architecture.

The number of texture units on a GPU is typically small, and a GPU gener-
ally prefers square textures. Therefore, all tiles of the tile set must be packed
into a single square texture. Tile-based texture mapping algorithms typically
use complete tile sets. This is because the C4 tiles of a complete tile set over C
colors can easily be arranged into a square texture using a C2 × C2 configura-
tion. However, in order to avoid unwanted discontinuity artifacts introduced by
texture filtering, this configuration must also be a valid tiling. This is because
texture sampling uses texels from adjacent tiles. Note that the borders of a
texture are treated toroidally. For more details, we refer to Wei [2004].

An arrangement of the C4 tiles of a complete set of Wang tiles or corner
tiles over C colors into a C2 × C2 toroidal configuration such that adjoining
edges or corners have matching colors is called a tile packing. Tile packings are
discussed in detail in section 5.5.

The tile-based texture mapping algorithm runs as a fragment program on the
GPU. This fragment program transforms texture coordinates in the arbitrary
large non-periodic texture to texture coordinates in the texture containing the
texture tiles. A tiling is imposed on the arbitrary large non-periodic texture.
For each incoming fragment, the tile coordinates and the coordinates within
the tile are computed. A direct stochastic tiling algorithm is used to determine
the tile at these coordinates. The tile packing provides the location of that tile
in the texture containing the texture tiles. This location is combined with the
coordinates of the fragment within the tile, and the texture lookup is performed.
For more implementation details we refer to Wei [2004] and Lefebvre and Neyret
[2003].

A Wang tile packing can be formulated as a closed-form expression [Wei,
2004]. This expression is evaluated directly in the fragment program. However,
this is not the case for a corner tile packing (see section 5.5). Therefore, the
corner tile packing is stored explicitely, as a constant array in the fragment
program, or as an additional texture. The permutation table used by the hash
function of the direct stochastic tiling algorithm is stored in the same way.

To avoid the corner problem, the tile-based texture mapping algorithm of
Wei requires a second Wang tile packing that contains all possible corner con-
figurations of the Wang tile set. This additional texture is used for texture
lookups close to tile corners. Because corner tiles are not subject to the corner
problem, only the texture containing the tile packing is needed. Compared to
the original method of Wei, our tile-based texture mapping algorithm based on
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(a)

(b)

Figure 5.7: The complete 1D Wang or corner tile sets over (a) 2 and (b) 3
colors.

corner tiles reduces the required texture memory by a factor of two and saves
one texture unit. This is an important advantage, as reducing texture memory
usage is the main goal of tile-based texture mapping. Our algorithm also runs
faster, because the tiling algorithm for corner tiles is simpler and more efficient
than equivalent algorithms for Wang tiles. Corner tiles reduce the cost of tile-
based texture mapping almost to that of regular texture mapping. This is a
significant saving for interactive applications.

Our tile-based texture mapping algorithm based on corner tiles runs at sev-
eral hundred frames per second on a NVidia GeForce 7800 GTX graphics card.
Figure 5.6 shows several results.

5.5 The Tile Packing Problem

A tile packing is an essential ingredient of the tile-based texture mapping al-
gorithms discussed in section 5.4. A tile packing is used to avoid unwanted
texture filtering artifacts. In this section we discuss the problem of computing
a tile packing of a complete set of Wang tiles or corner tiles. We also show that
the tile packing problem is an interesting combinatorial problem.

The tile packing problem consists of arranging the C4 tiles of a complete set
of Wang tiles or corner tiles over C colors into a C2×C2 toroidal configuration
such that adjoining edges or corners have matching colors.

In 2006, we studied the corner tile packing problem in detail [Lagae and
Dutré, 2006a,f].

5.5.1 The One-Dimensional Tile Packing Problem

In one dimension, Wang tiles and corner tiles can be seen as dominoes. A com-
plete set of Wang tiles or corner tiles over C colors counts C2 tiles. Figure 5.7
shows the complete set of tiles over 2 and 3 colors. The one-dimensional tile
packing problem consists of arranging a complete set of C2 tiles into a single
circular train. Domino problems like this one are well known in the field of
recreational mathematics. A solution based on graph theory is given in the
classic work Mathematical Recreations and Essays [Ball, 1926].
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(a) (b)

Figure 5.8: Graphs representing the complete 1D Wang or corner tile set over
(a) 2 and (b) 3 colors.

(a)

(b)

Figure 5.9: Tile packings of the complete 1D Wang or corner tile set over 2
and 3 colors.
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Figure 5.10: The construction of an Eulerian tile packing of the complete Wang
tile set over 3 colors.

The tile set is represented as a directed graph with a vertex for each color,
and an edge connecting two vertices for each tile in the tile set. Figure 5.8
shows the graphs for the complete tile sets over 2 and 3 colors. A solution for
the tile packing problem is given by an Eulerian circuit, a graph cycle that uses
each graph edge exactly once. A complete tile set results in a complete directed
graph, which always has an Eulerian circuit. Figure 5.9 shows tile packings of
the complete tile sets over 2 and 3 colors. A tile packing obtained with this
method is called an Eulerian Wang tile packing.

Wei [2004] presented a closed-form expression that gives the position of a
specific tile in a one-dimensional Eulerian tile packing.

5.5.2 The Wang Tile Packing Problem

Wei [2004] observed that Wang tiles are separable and that a solution for the
two-dimensional Wang tile packing problem is given by the outer product of
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two one-dimensional tile packings. This is illustrated in figure 5.10.
A one-dimensional tile packing of a complete set over C colors consist of

C2 tiles. The outer product of two such tile packings produces a matrix of
C4 tiles. Because adjoining edges have matching colors, and each tile occurs
exactly once, this is a tile packing of the C4 tiles of a complete Wang tile set
over C colors. This construction method generalizes to tile packings of Wang
tiles in any dimension.

A closed-form expression that gives the position of a specific tile in an Eule-
rian Wang tile packing is obtained by applying the closed-form expression for
the one-dimensional case for each dimension.

5.5.3 The Corner Tile Packing Problem

Although tiles with colored edges and problems similar to the Wang tile packing
problem were studied before in the field of recreational mathematics [MacMa-
hon, 1921], corner tiles and the corner tile packing problem have not been
examined. The method for constructing a Wang tile packing also does not
seem to extend to corner tiles.

When we started exploring the corner tile packing problem, it resisted all
attempts to solve it. It was not clear whether the corner tile packing prob-
lem even had a solution. We therefore decided to tackle the problem using
combinatorial search methods.

A simple exhaustive search or generate-and-test method is not practical. For
C colors the tiles can be arranged in C4! ways. For 2, 3 and 4 colors, this
equals approximately 2.09 × 1013, 5.80 × 10120 and 8.58 × 10506. Instead we
use a backtracking method, that places one tile at a time until a dead end
is reached, at which point previous steps are retraced. Backtracking greatly
reduces the amount of work in an exhaustive search, and is often used to solve
hard combinatorial problems such as the knights tour problem and the queens
problem [Ball, 1926]. The algorithm can also be used to search for solutions to
the Wang tile packing problem.

Although backtracking is relatively fast compared to simple exhaustive search
and generate-and-test methods, the time needed to solve the tile packing prob-
lem is still large. Therefore, our backtracking algorithm also supports paral-
lelization, checkpointing and progress estimation. For implementation details,
we refer to [Lagae and Dutré, 2006f].

With the backtracking algorithm, we are able to compute Wang and corner
tile packings for 2, 3 and 4 colors. For 2 colors, all solutions of the Wang
and corner tile packing problem are obtained almost immediately on a regular
desktop computer. The corner tile packing problem has 32 solutions and the
Wang tile packing problem has 203, 520 solutions. This supports the claim
that in some way, corner tile packings are more difficult to construct than
Wang tile packings. For 3 colors, the first solution of the Wang and corner tile
packing problems is obtained almost immediately, but computing or counting
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Figure 5.11: A recursive tile packing of the complete corner tile set over 4
colors.
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Figure 5.12: A recursive tile packing of the complete Wang tile set over 4 colors.
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all solutions seems to be hopeless. For 4 colors, computing a corner tile packing
took 280 days of CPU time, and it took roughly 23 years of CPU time to find
the first solution of the Wang tile packing problem. These last results were
obtained using a parallel version of our backtracking algorithm, running on a
cluster with almost 400 2.4 GHz CPU’s.

A solution for C colors can often be found faster by starting from a solution
of C − 1 colors. That way, a recursive tile packing is obtained. Figures 5.12
and 5.11 show recursive Wang and corner tile packings for 4 colors.

The tile packing problem has many symmetries. New solutions can be ob-
tained from existing ones using translation (the tile packing is toroidal), rota-
tion, reflection, and permutation of the colors. The 32 solutions of the 2 color
corner tile packing problem reduce to a single fundamental solution.

There is still room for improving the backtracking algorithm. The many
symmetries of the tile packing problem are currently not exploited. To solve
the corner tile packing problem we have also experimented with a backtracking
algorithm that places colored pegs rather than tiles. This algorithm seems to
be faster.

The tile packing problem is an interesting combinatorial puzzle. We were
able to obtain Wang and corner tile packings for up to 4 colors. However,
several problems, such as counting the number of solutions of the tile packing
problem, and finding a constructive method and a closed-form expression for
the corner tile packing problem, remain unsolved.

5.5.4 Puzzles Derived from the Tile Packing Problem

The work most closely related to the tile packing problem in the field of recre-
ational mathematics is that of MacMahon [1921]. He describes sets of pieces
of different geometrical forms (including equilateral triangles, squares and pen-
tagons) with colored edges that are tiled into another geometrical form. The
profile of the adjoining edges is then altered to produce jigsaw puzzles. His
work is unique in the fact that it details how the puzzles can be constructed
and solved. In contrast with Wang and corner tiles, the pieces of MacMahon
pieces may be rotated. MacMahon also does not consider pieces with colored
corners.

Inspired by the work of MacMahon, we have created jigsaw puzzles from tile
packings by altering the profile of the adjoining edges or corners. Figure 5.13
shows two examples. To create interesting puzzles, it is better to use tile
packings constructed with the backtracking algorithm instead of Eulerian tile
packings. We found it already hard to construct a tile packing of the complete
set of corner tiles over 2 colors by hand, so these puzzles should be challenging,
especially puzzles based on tile packings of 3 or 4 colors. To prevent the tiles
from being rotated, a picture could be printed on the puzzle.
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(a) (b)

Figure 5.13: Jigsaw puzzles derived from tile packings of the complete (a) Wang
and (b) corner tile set over 2 colors.

5.6 Conclusion

In this chapter we have investigated the use of Wang tiles and corner tiles in
texture mapping and texture synthesis. We have introduced texture mapping
and texture synthesis. We have discussed a method for synthesizing a texture
over a set of Wang tiles or corner tiles. We have presented a tile-based texture
mapping algorithm, and we have discussed the tile packing problem. For tile-
based texture mapping, corner tiles are clearly superior to Wang tiles. For
tile-based texture synthesis corner tiles are also better than Wang tiles, but the
difference is less pronounced. Tile packings are more difficult to compute for
corner tiles than for Wang tiles. However, a tile packing has to be computed
only once.
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Chapter 6

A Comparison of Methods for

Generating Poisson Disk

Distributions

6.1 Introduction

Poisson disk distributions have several applications in the field of computer
graphics. Over the years, a large number of methods for generating Poisson
disk distributions have been proposed. These methods, and the distributions
they generate, often have very different characteristics. This makes it difficult
to choose the right method for a given application. In this chapter, we present
a detailed comparison of methods for generating Poisson disk distributions,
including the tile-based methods presented in chapter 4.

Overview

This chapter is organized as follows. In section 6.2 we introduce the methodol-
ogy used to analyze Poisson disk distributions. The next sections analyze sev-
eral methods for generating Poisson disk distributions. The methods we study
are dart throwing (section 6.3), relaxation dart throwing (section 6.4), Lloyd’s
relaxation method (section 6.5), Shade’s Poisson disk tiles (section 6.6), tiled
blue noise samples (section 6.7), fast hierarchical importance sampling with
blue noise properties (section 6.8), edge-based Poisson disk tiles (section 6.9),
template Poisson disk tiles (section 6.10), corner-based Poisson disk tiles (sec-
tion 6.11), efficient generation of Poisson disk sampling patterns (section 6.12),
a spatial data structure for fast Poisson disk sample generation (section 6.13),
and recursive Wang tiles for real time blue noise (section 6.14). In section 6.15
we analyze several methods for generating Poisson sphere distributions. In
section 6.16 we conclude.

89



Chapter 6 A Comparison of Methods for Generating Poisson Disk Distributions

6.2 Methodology

Poisson disk distributions have several applications in the field of computer
graphics. These applications are often very different. Therefore, choosing a
single method for analyzing Poisson disk distributions is difficult. Instead, we
use a set of methods that cover a wide range of applications. These methods
are radius analysis, spectral analysis, sampling performance, and timings. In
this section, we discuss these methods for analyzing Poisson disk distributions
in detail.

6.2.1 Radius Analysis

The most obvious way for analyzing a Poisson disk distribution is examining
the radius of the distribution. Because the radius of a Poisson disk distribution
determines how well the points are distributed, it is an important measure for
the quality of the distribution.

We use the relative radius specification scheme introduced in section 4.2.3.
The absolute radius r of a Poisson disk distribution is expressed as a relative
radius ρ. The relative radius ρ is a fraction of the maximum radius rmax that
can be achieved. The relative radius should be large (ρ ≥ 0.65), but not too
large (ρ ≤ 0.85), because regular configurations must be avoided.

6.2.2 Spectral Analysis

In computer graphics, continuous functions such as images are stored as a
collection of samples. This discrete representation of functions causes unwanted
side effects such as jaggies, motion strobing, moiré patterns and popping, also
known as aliasing [Crow, 1977]. Aliasing can be traded for noise by using
stochastic sampling patterns rather than regular patterns [Dippé and Wold,
1985; Cook, 1986; Mitchell, 1987]. In computer graphics, noise is preferred
over aliasing because the human visual system is quite tolerant to noise, while
structured aliasing artifacts are spotted easily. For more information about
digital signal processing in computer graphics, we refer to Glassner [1995].

In the early eighties, Yellot [1982, 1983] observed hat the photoreceptors
in the retina are placed according to a Poisson disk distribution. This was an
indication that the Poisson disk sampling pattern is effective for imaging. Yellot
showed that the least noticeable form of aliasing occurs if the power spectrum
of the sampling pattern is noisy and lacks concentrated spikes of energy, and
contains no low-frequency energy. The absence of concentrated spikes prevents
structured aliasing while the absence of low-frequency energy pushes aliasing
noise to less conspicuous higher frequencies. A power spectrum with these
properties is called a blue noise power spectrum.

Analyzing a Poisson disk distribution in the frequency domain is also inter-
esting because it might reveal information that is not obvious in the spatial
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Figure 6.1: The typical power spectrum of Poisson disk distributions. (a)
The power spectrum. (b) The radially averaged power spectrum. (c) The
anisotropy.
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Figure 6.2: The typical power spectrum of Poisson distributions. (a) The power
spectrum. (b) The radially averaged power spectrum. (c) The anisotropy.
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domain.
To estimate the power spectrum of a Poisson disk distribution we use the

method of averaging periodograms of Bartlett [1955]. This technique was first
used by Ulichney [1987] to study dither patterns. The periodogram of a Poisson

disk distribution of N points {x0, x1, . . . , xN−1} ⊂ [0, 1[
2

is the magnitude
squared of the Fourier transform of the distribution

∣

∣

∣

∣

∣

∣

F 1

N

N−1
∑

j=0

δ (x− xj)

∣

∣

∣

∣

∣

∣

2

, (6.1)

where F denotes the Fourier transform and δ is Dirac’s delta function. By
averaging K periodograms, an estimate P̂ (f) of the power spectrum P (f) is
obtained with variance

var
{

P̂ (f)
}

≈ 1

K
P 2(f). (6.2)

Thus, the spectral properties of a method for generating Poisson disk distribu-
tions are obtained by averaging periodograms from Poisson disk distributions
generated with that method. It is important to note that a periodogram is
associated with a single Poisson disk distribution, while the power spectrum
estimate is associated with a specific method for generating Poisson disk dis-
tributions, for example a specific algorithm with a fixed set of parameters.

The periodogram of a Poisson disk distribution is radially symmetric. There-
fore, two one-dimensional statistics are derived from the power spectrum. The
first one is the radially averaged power spectrum

Pr (fr) =
1

Nr (fr)

Nr(fr)
∑

i=1

P̂ (f) , (6.3)

which is obtained by averaging P̂ (f) in concentric annuli of width ∆. Each
annulus has a central radius fr and contains Nr (fr) frequency samples. The
second statistic is the anisotropy

Ar (fr) =
s2 (fr)

P 2
r (fr)

, (6.4)

where the sample variance of the frequency samples is defined as

s2 (fr) =
1

Nr (fr)− 1

Nr(fr)
∑

i=1

(

P̂ (f)− Pr (fr)
)2

. (6.5)

The anisotropy is a measure for the radial symmetry of the power spectrum.
As in the work of Ulichney, the spectral estimates in this paper were produced

by averaging K = 10 periodograms. Therefore, an anisotropy of −10 dB should
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be considered background noise. A reference line at −10 dB appears in all
anisotropy plots.

All spectral estimates in this paper were obtained by analyzing distributions
of 16, 384 (or as close as possible to 16, 384) points. The periodogram resolution
used to analyze a distribution of N points is determined as

1

0.75 rmax

. (6.6)

This ensures that the periodogram covers a domain corresponding to twice the
principal frequency of a Poisson disk distribution with a relative radius of 0.75
(634 × 634 for 16, 384 points). This number is rounded to the next power of
two (1, 024 × 1, 024 for 16, 384 points). Thus, all power spectra and plots are
at the same scale. The width of the annuli ∆ is one sample.

All power spectrum images were tone mapped with a logarithmic tone map-
per, using the same settings for all images. The radially averaged power spec-
trum was normalized. The high magnitude DC peak was removed from all
plots.

Figure 6.1 shows the typical power spectrum of a Poisson disk distribution.
The corresponding radially averaged power spectrum and anisotropy are also
shown. The power spectrum reveals the typical blue noise properties. The
central DC peak is surrounded by an annulus of low energy, followed by a sharp
transition region, a low frequency cutoff at the principal frequency 1/2r, and
a flatter high frequency region. Figure 6.2 shows the typical power spectrum
and radially averaged power spectrum and anisotropy of a Poisson distribution.
The corresponding radially averaged power spectrum and anisotropy are also
shown. As expected, the power spectrum is flat. In both cases, the anisotropy
is low (close to −10 dB), indicating good radial symmetry.

Comparing periodograms, power spectrum estimates and radially averaged
power and anisotropy graphs of different sources is very difficult. Often the dis-
tinction between periodogram and power spectrum is not made, periodograms
and power spectra are tone mapped with different settings, and power and
anisotropy graphs are computed with wide annuli, effectively smoothing the
graphs. Analyzing all methods within a single framework is one of the contri-
butions of this dissertation.

6.2.3 Sampling Performance

Since Yellot [1983] presented theoretical evidence in favor of the Poisson disk
distribution, Poisson disk distributions are frequently used in the context of
sampling. Therefore, the sampling performance of a Poisson disk distribution
is an important measure for the quality of the distribution.

The performance of a sampling pattern can be tested by sampling a function
using the pattern, reconstructing the function, and inspecting the reconstructed
function. When the sampling rate is too low to capture high frequency content
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Figure 6.3: The zone plate function used for testing sampling patterns. This
reference image was constructed by sampling the zone plate function using a
stratified sampling pattern with one million samples per pixel. The image was
reconstructed using a Mitchell filter of 4× 4 pixels.

(a) (b)

Figure 6.4: The zone plate function sampled with a regular and stratified sam-
pling pattern. (a) A regular sampling pattern with one sample per pixel. (b)
a stratified sampling pattern with one sample per pixel. Both images were
reconstructed using a Mitchell filter of 4× 4 pixels.
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in the function, aliasing or noise will appear. In this dissertation, the per-
formance of a sampling pattern is tested by sampling and reconstructing the
function

f(x, y) =
1

2

(

1 + sin
(

x2 + y2
))

. (6.7)

This function is also known as the zone plate function, because it resembles a
zone plate device. The frequency of the zone plate function is proportional to
the distance from the origin. Therefore, the performance of a sampling pattern
is better as aliasing or noise occurs further away from the origin. Noise is
preferred over structured aliasing.

The zone plate function is sampled over the domain [0, 48[2, at sample lo-
cations determined by the Poisson disk distribution, and reconstructed at a
resolution of 512 × 512, using a Mitchell filter of 4 × 4 pixels [Mitchell and
Netravali, 1988]. The reconstructed function is visualized as an image, where 0
is mapped to black, 1 to white, and intermediate values are interpolated. The
origin is at the lower left corner of the image, the x-axis is pointing to the right,
and the y-axis is pointing up. A sampling rate of one sample per pixel is used.
This corresponds to a Poisson disk distribution of 262, 144 points.

Figure 6.3 shows the zone plate function sampled using one million random
samples per pixel and reconstructed using a Mitchell filter of 4× 4 pixels. This
image serves as a reference. However, note that some aliasing artifacts are
still visible. This is not aliasing caused by undersampling, or prealiasing, but
aliasing caused by reconstruction, or postaliasing. In practice, postaliasing is
much less severe than prealiasing.

Figure 6.4 shows the zone plate function sampled using a regular sampling
pattern and a stratified sampling pattern. The regular sampling pattern causes
aliasing, which the stratified sampling pattern trades for noise. In computer
graphics, the noisy image is preferred over the image with moiré patterns.

6.2.4 Timings

A final important measure for comparing methods for generating Poisson disk
distributions is the time needed to generate a Poisson disk distribution. These
timings are an indication of the relative computational cost of the different
techniques. The timings were obtained on a regular desktop PC with an AMD
Athlon(tm) 64 Processor 4000+ CPU running at 2.4 GHz.

6.3 Dart Throwing

In the mid eighties, Dippé and Wold [1985], Cook [1986] and Mitchell [1987]
introduced nonuniform sampling and the Poisson disk distribution to solve
the aliasing problem. Cook [1986] proposed the dart throwing algorithm for
generating Poisson disk distributions.
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Figure 6.5: Spectral analysis of Poisson disk distributions generated with dart
throwing. The Poisson disk distributions have a relative radius of (a) ρ = 0.70
and (b) ρ = 0.75.

Figure 6.6: The zone plate function sampled with a Poisson disk distribution
generated with dart throwing. The Poisson disk distribution has a relative
radius of ρ = 0.70.
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The dart throwing algorithm generates uniformly distributed points, and re-
jects points that do not satisfy the minimum separation with already generated
points. This process continues until no more points can be added. To correctly
handle boundary conditions, the Poisson disk distributions are typically gener-
ated over a toroidal domain.

Dart throwing is widely used and is easy to implement. However, the algo-
rithm is also slow, and difficult to control. Instead of specifying the number of
points, the radius of the distribution has to be provided, the final number of
points in the distribution is difficult to predict, and if the process is stopped
too soon, the density of the points is not uniform.

The dart throwing algorithm can be improved by combining it with the rela-
tive radius specification scheme (see section 4.2.3). The improved dart throwing
algorithm takes as input the desired number of points and the relative radius
of the Poisson disk distribution. The absolute radius is then calculated. This
solves the radius specification problem. Experiments show that dart throwing
is capable of generating Poisson disk distributions with a relative radius up to
0.75. Termination however, is still not guaranteed, and generating large Poisson
disk distributions (100, 000 points or more) is very difficult in practice.

Figure 6.5 shows the power spectrum of Poisson disk distributions generated
with the dart throwing algorithm. The power spectrum is radially symmetric,
the radially averaged power spectrum exhibits the typical blue noise properties,
and the anisotropy is low.

Figure 6.6 shows the zone plate function sampled using a Poisson disk distri-
bution generated with dart throwing. Undersampling causes noise rather than
aliasing, because the Poisson disk distribution is a stochastic distribution. The
zone plate function is reproduced significantly better at higher frequencies than
when using a stratified sampling pattern. This illustrates that the Poisson disk
distribution is a good sampling pattern.

The time required to generate a Poisson disk distribution of 16, 384 points
with a relative radius of 0.70 and 0.75 is respectively 34.997 and 263.492 sec-
onds.

Although the traditional dart throwing algorithm is terribly inefficient, it is
the most natural way for generating a Poisson disk distribution. Therefore, we
will use the power spectra of figure 6.5 as a reference blue noise power spectrum.

In 2006, Jones and Dunbar and Humphreys presented efficient implementa-
tions of the dart throwing algorithm. These algorithms are discussed in sec-
tion 6.12 and in section 6.13.

6.4 Relaxation Dart Throwing

In 1992, McCool and Fiume proposed an improved version of the dart throwing
algorithm, which we call relaxation dart throwing.

Relaxation dart throwing is similar to dart throwing. However, points are
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Figure 6.7: Spectral analysis of Poisson disk distributions generated with re-
laxation dart throwing. The Poisson disk distributions were generated using
an initial radius of 0.15, and the radius was reduced by a factor of (a) 0.9, (b)
0.99 and (c) 0.999 after (a) 100, (b) 1,000 and (c) 10,000 failed attempts.

Figure 6.8: The zone plate function sampled with a Poisson disk distribution
generated with relaxation dart throwing. The Poisson disk distribution was
generated using an initial radius of 0.15, and the radius was reduced by a
factor of 0.99 after 1,000 failed attempts.
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Figure 6.9: The relative radius versus the number of iterations of Lloyd’s re-
laxation method applied to a Poisson disk distribution.

placed with a large radius initially, and once no more space has been found
for a large number of attempts, the radius is reduced by some fraction. The
Poisson disk distributions generated with relaxation dart throwing are usually
toroidal, and also hierarchical.

This algorithm has several advantages compared to dart throwing: it is some-
what faster, it allows to specify the desired number of points rather than the
radius, and termination is guaranteed.

The relative radius of Poisson disk distributions of 16, 384 points generated
using an initial radius of 0.15, a radius reduction factor of 0.9, 0.99 and 0.999,
and 100, 1, 000 and 10, 000 failed attempts is respectively 0.57,0.68 and 0.73.

Figure 6.7 shows the power spectrum of Poisson disk distributions generated
with the relaxation dart throwing. The spectral characteristics of Poisson disk
distributions generated with dart throwing and relaxation dart throwing are
very similar. The transition region is a bit steeper for Poisson disk distributions
generated with relaxation dart throwing.

Figure 6.8 shows the zone plate function sampled using a Poisson disk dis-
tribution generated with relaxation dart throwing. The zone plate function is
reproduced even better at higher frequencies than when using dart throwing.
This might be explained by the fact that Poisson disk distributions generated
with relaxation dart throwing are hierarchical.

The time required to generate Poisson disk distributions of 16, 384 points
using an initial radius of 0.15, a radius reduction factor of 0.9, 0.99 and 0.999,
and 100, 1, 000 and 10, 000 failed attempts is respectively 0.020, 0.289 and
11.733 seconds.

6.5 Lloyd’s Relaxation Scheme

After a Poisson disk distribution is generated using relaxation dart throwing,
McCool and Fiume [1992] apply Lloyd’s relaxation method [Lloyd, 1982] to
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Figure 6.10: Spectral analysis of Poisson disk distributions optimized with
Lloyd’s relaxation method. The Poisson disk distributions were generated with
dart throwing and optimized with (a) 0, (b) 1, (c) 2, (d) 4, (e) 8 and (f) 16
iterations of Lloyd’s relaxation method.
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increase the radius of the Poisson disk distribution.
Lloyd’s relaxation method is an iterative process: in each iteration, the

Voronoi diagram of the point set is computed, and each point is moved to
the centroid of its Voronoi cell. This process is illustrated in figure 4.2. To
correctly handle boundary conditions, Lloyd’s relaxation is performed over a
toroidal domain.

Lloyd’s relaxation can be used as a post-process for increasing the radius of
a Poisson disk distribution generated with any technique, or as a standalone
technique that generates a Poisson disk distribution from a Poisson distribution.

Figure 6.9 shows the radius of Poisson disk distributions generated with dart
throwing versus the number of relaxation iterations. For distributions up to
16, 384 points, Lloyd’s relaxation converges in about 16 to 32 iterations. Poisson
disk distributions with less points seem to converge to a slightly higher radius,
but in general all distributions settle for a relative radius of about 0.75 to 0.85.
Lloyd’s relaxation is the only technique that allows to generate Poisson disk
distributions with such a high radius.

Figure 6.10 shows the power spectrum of Poisson disk distributions generated
with dart throwing after several relaxation iterations. The peak at the principal
frequency, and the smaller peaks at multiples of the principal frequency, increase
in magnitude with each iteration, and the transition region becomes steeper
with each iteration. Hiller et al. [2001] report that Lloyd’s relaxation results in
an increased anisotropy, but the anisotropy graphs do not support that claim,
or the increase is not significant.

We have not succeeded in generating Poisson disk distributions that are large
enough for sampling the zone plate function using Lloyd’s relaxation method
because constructing a Voronoi diagram of such large point distributions was
too time consuming.

It is possible that Lloyd’s relaxation, after many iterations, finds the global
minimum (a hexagonal grid), and that the Poisson disk distribution regains
periodicity. We have seen this happening for smaller distributions, but for
larger distributions this does not seem to be a problem. Also, the problem can
be avoided by monitoring the radius during relaxation.

The time required for 1, 2, 4, 8, 16 and 32 iterations, starting from a Poisson
distribution of 16, 384 points, is respectively 21.308, 35.661, 64.397, 120.448,
234.140 and 458.460 seconds.

6.6 Shade’s Poisson Disk Tiles

In 2000, Shade et al. presented the first tile-based approach for generating
Poisson disk distributions. Their approach is an extension of the dart throwing
algorithm based on Wang tiles.

Shade et al. construct a Poisson disk distribution over a set of eight Wang
tiles using an algorithm similar to dart throwing. Before a point is added to a
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Figure 6.11: The intra and inter tile radius of the Poisson disk tile sets con-
structed with the method of Hiller et al.

tile, all possible neighboring tiles are checked, and the point is rejected if the
minimum separation criterion is not met. Once a Poisson disk distribution is
constructed over a set of Wang tiles, arbitrary large Poisson disk distributions
can be generated in real time by tiling the plane with the Wang tiles using a
stochastic tiling algorithm. For more details, we refer to Shade et al. [2000].

However, as noted by Cohen et al. [2003], this approach is flawed. The
constraints of multiple tiles cause less points to be inserted near the edges and
corners. This results in a noticeable lower density of points in those regions.
The problem of multiple constraints is more severe than it might seem at first
sight: placing a point near the corner of one tile makes it impossible, for at
least one corner of every other tile in the tile set, to have a point nearby.

Although these problems limit the applicability of this method, the idea of
using Wang tiles for generating Poisson disk distributions would later prove to
be very valuable.

6.7 Tiled Blue Noise Samples

In 2001, Hiller et al. presented an approach based on Lloyd’s relaxation algo-
rithm rather than dart throwing to construct a Poisson disk distribution over
a set of Wang tiles.

Hiller et al. construct a Poisson disk distribution over a set of eight Wang
tiles using an algorithm similar to Lloyd’s relaxation method. An initial point
set is generated in the center of every tile. Each tile in the set is surrounded by
all possible configurations of 8 tiles. For all of these configurations, a Voronoi
diagram is constructed. Each Voronoi diagram determines a displacement vec-
tor for every point in the tile. All displacement vectors are averaged, and the
points in the tile are moved accordingly. This process is iterated, until the
point distributions stabilize. For more details, we refer to Hiller et al. [2001].
The method of Hiller et al. was later adopted by Cohen et al. [2003], in a paper
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Figure 6.12: The intra and inter tile radius versus the number of relaxation it-
erations of the Poisson disk tile sets constructed with the method of Hiller et al.
(a) The tile set with N = 19 points per tile. (b) The tile set with N = 53 points
per tile.

that popularized Wang tiles in the field of computer graphics.

To analyze this method, we reviewed the original data of Hiller et al. The
data consists of 63 tile sets, with 1 to 63 points per tile. For each of these tile
sets, the positions of the points from iteration 0 to 29 are given.

From the original data we computed radius statistics, which were not listed in
the original paper. Figure 6.11 shows the intra and inter tile radius of the 63 tile
sets. The intra tile radius, which is the radius of the Poisson disk distribution
within a single tile, is relatively high (ρ ≈ 0.80), as expected from an approach
based on Lloyd’s relaxation. However, the inter tile radius, which is the radius
of the Poisson disk distribution taking into account neighboring tiles, and thus
the final radius of the generated distribution, is relatively low (often ρ ≈ 0.40 or
even less). This shows that the low radius is due to difficulties at the tile edges,
which indicates problems with the construction method. Figure 6.12 shows the
intra and inter tile radius versus the number of relaxation iterations for two tile
sets. As expected, the intra tile radius converges to a relative radius of about
0.80. The inter tile radius, however, does not seem to converge.

Figure 6.13 shows power spectra of Poisson disk distributions generated with
the method of Hiller et al. Compared to the previous methods we have dis-
cussed, the power spectra are relatively bad. This is due to the construction
method, but also because only eight tiles are used. In section 6.10, we will show
that eight tiles is not enough for generating Poisson disk distributions with good
spectral properties. However, due to the problems mentioned above, the algo-
rithm is most likely not capable of handling larger tile sets. Even with eight
tiles, the number of eight-tile configurations is that large that the displacement
vectors tend to average each other out.

The power spectrum also reveals a regular pattern of spikes. The autocorre-
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Figure 6.13: Spectral analysis of Poisson disk distributions generated with the
method of Hiller et al. The Poisson disk distributions were generated by tiling
(a) 32×32, (b) 29×29, (c) 22×22, (d) 20×20, (e) 18×18 and (f) 16×16 tiles
of Poisson disk tile sets consisting of T = 8 tiles with (a) N = 16, (b) N = 19,
(c) N = 32, (d) N = 41, (e) N = 53 and (f) N = 63 points per tile.
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(a) N = 16 (b) N = 19 (c) N = 32

(d) N = 41 (e) N = 53 (f) N = 63

Figure 6.14: The zone plate function sampled with a Poisson disk distribution
generated with the method of Hiller et al. The Poisson disk distributions were
generated by tiling (a) 128 × 128, (b) 117 × 117, (c) 91 × 91, (d) 80 × 80, (e)
70 × 70 and (f) 64 × 64 tiles of Poisson disk tile sets consisting of T = 8 tiles
with (a) N = 16, (b) N = 19, (c) N = 32, (d) N = 41, (e) N = 53 and (f)
N = 63 points per tile.
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Figure 6.15: Spectral analysis of Poisson disk distributions generated with the
method of Ostromoukhov et al. (a) A periodogram of a Poisson disk distribu-
tions generated with the method of Ostromoukhov et al. (b) A periodogram of
a Poisson disk distribution generated with edge-based Poisson disk tiles. (c) A
periodogram of a Poisson disk distribution generated with corner-based Poisson
disk tiles.

lation peaks for lags that are a multiple of the tile size. This is because only a
limited number of tiles are used, and because tiles often have points in common.
In the power spectrum, this results in a grid like pattern of peaks on frequencies
that are a multiple of the reciprocal of the tile size. When using more tiles,
or when tiles have less points in common, the spikes decrease in magnitude.
However, because only a finite number of tiles is used, and because the tiles
have to remain compatible, it is impossible to eliminate the spikes completely.
Note that this effect is not limited to the method of Hiller et al. The regular
pattern of spikes is visible in all methods that are based on tilings.

Figure 6.14 shows the zone plate function sampled using a Poisson disk dis-
tribution generated with the method of Hiller et al. The low-frequency region
of the zone plate function is reproduced relatively good, however, the high-
frequency region shows severe structured aliasing artifacts. This is also due to
the construction method and because only eight tiles are used.
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Figure 6.16: The zone plate function sampled with a Poisson disk distribution
generated with the method of Ostromoukhov et al.

6.8 Fast Hierarchical Importance Sampling with

Blue Noise Properties

In 2004, Ostromoukhov et al. presented an interesting technique for gener-
ating point distributions with blue noise properties over a given density. Al-
though the method of Ostromoukhov et al. is capable of generating nonuniform
distributions, we only analyze it here in the context of uniform Poisson disk
distributions.

The points are placed on the vertices of a Penrose tiling [Penrose, 1974;
Grünbaum and Shepard, 1986], recursively subdivided according to a given
density. The point distribution is optimized by moving the points according to
precomputed displacement vectors obtained with Lloyd’s relaxation method.
For more details, we refer to Ostromoukhov et al. [2004].

The radius of the point distributions generated over a constant density is
comparable with dart throwing. The relative radii we have measured varied
between 0.65 and 0.75.

Because the method is deterministic, it is not possible to compute a power
spectrum estimate. Instead, figure 6.15 shows the periodogram of a Poisson
disk distribution generated with the approach of Ostromoukhov et al. For
comparison, the periodogram of a Poisson disk distribution generated with
edge-based Poisson disk tiles (see section 6.9) and corner-based Poisson disk
tiles (see section 6.11) is included. The periodogram of the Poisson disk dis-
tribution generated with the approach of Ostromoukhov et al. shows severe
artifacts. A star-like pattern of large spikes revealing the 10-fold symmetry of
the underlying Penrose tiling is visible. The anisotropy of is also significantly
higher.

Figure 6.16 shows the zone plate function sampled using a Poisson disk dis-
tribution generated with the method of Ostromoukhov et al. Again, the low-
frequency region of the zone plate function is reproduced relatively good while
the high-frequency region shows severe structured aliasing artifacts. The ex-
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Figure 6.17: Spectral analysis of Poisson disk distributions generated with
edge-based Poisson disk tiles. The Poisson disk distributions were generated
by tiling (a) 23×23, (b) 18×18 and (c) 16×16 tiles of edge-based Poisson disk
tile sets consisting of 4, 096 tiles with (a) N = 32, (b) N = 48 and (c) N = 64
points per tile, and a relative radius of ρ = 0.75.

ample code provided by Ostromoukhov et al. does not generate points in two
regions. This explains the black triangular regions at the top of figure 6.16.

The method of Ostromoukhov et al. is very fast. The time needed to generate
a Poisson disk distribution of 16, 384 points is 0.192 seconds.

6.9 Edge-Based Poisson Disk Tiles

In 2005, we presented edge-based Poisson disk tiles, a method for constructing
a Poisson disk distribution over a set of Wang tiles [Lagae and Dutré, 2005a].
Edge-based Poisson disk tiles are discussed in detail in section 4.3.

Edge-based Poisson disk tiles are capable of generating Poisson disk distri-
butions with a relative radius up to 0.85. This is because edge-based Poisson
disk distributions use Lloyd’s relaxation method, and carefully handle points
near the tile boundary.

Figure 6.17 shows the power spectrum of tiled Poisson disk distributions
generated with edge-based Poisson disk tiles. Compared to the method of
Hiller et al. [2001] the power spectra are relatively good, they are more similar
to the reference power spectrum and the peaks are smaller. However, there are
some strange wavelike artifacts in the power spectra that we cannot explain.

Figure 6.18 shows the zone plate function sampled using Poisson disk distri-
bution generated with edge-based Poisson disk tiles. Although a small amount
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(a) N = 32, ρ = 0.70 (b) N = 48, ρ = 0.70 (c) N = 64, ρ = 0.70

(d) N = 32, ρ = 0.80 (e) N = 48, ρ = 0.80 (f) N = 64, ρ = 0.80

Figure 6.18: The zone plate function sampled with a Poisson disk distribution
generated with edge-based Poisson disk tiles. The Poisson disk distributions
were generated by tiling (a, d) 91× 91, (b, e) 74× 74 and (c, f) 64× 64 tiles of
edge-based Poisson disk tile sets consisting of 4, 096 tiles with (a, d) N = 32,
(b, e) N = 48 and (c, f) N = 64 points per tile, and a relative radius of (a, b,
c) ρ = 0.70 and (d, e, f) ρ = 0.80. Note that the bottom row exhibits more
aliasing artifacts than the top row.

110



6.10 Template Poisson Disk Tiles

0

1

   

2

0 fc

po
w

er

frequency

-10

0

+10

0 fc

an
is

ot
ro

py

frequency

(a) T =8,N =24

0

1

   

2

0 fc

po
w

er

frequency

-10

0

+10

0 fc

an
is

ot
ro

py

frequency

(b) T =32,N =48

0

1

   

2

0 fc

po
w

er

frequency

-10

0

+10

0 fc

an
is

ot
ro

py

frequency

(c) T =128,N =96

Figure 6.19: Spectral analysis of Poisson disk distributions generated with
template Poisson disk tiles. The Poisson disk distributions were generated by
tiling (a) 26× 26, (b) 18× 18 and (c) 13× 13 tiles of template Poisson disk tile
sets consisting of (a) T = 8, (b) T = 32 and (c) T = 128 tiles with (a) N = 24,
(b) N = 48 and (c) N = 96 points per tile, and a relative radius of ρ = 0.75.

of structured aliasing artifacts are visible, the zone plate function is reproduced
relatively good. Poisson disk distribution with a relative radius of 0.80 repro-
duce the low-frequency region of the zone plate function better than Poisson
disk distribution with a relative radius of 0.70, but are also more subject to
aliasing. This is probably because a larger relative radius introduces more
regularity in the Poisson disk distribution.

Tile-based methods like edge-based Poisson disk tiles are typically very fast.
This is because generating a stochastic tiling can be done very efficiently.

6.10 Template Poisson Disk Tiles

In 2005, we presented template Poisson disk tiles [Lagae and Dutré, 2005b].
Template Poisson disk tiles are discussed in detail in section 4.4.

Template Poisson disk tiles were designed to study the effect of the size of
the tile set on the quality of the tiled Poisson disk distributions. Figure 6.20
shows the power spectrum of tiled Poisson disk distributions generated with
template Poisson disk tile sets, for a variety of parameters. In general, the
power spectra for 16 and 24 points per tile and the power spectra for 1, 2, 4, 8
and 16 tiles are rather bad, while spectra for a larger tile set size and number
of points per tile are rather good, and the power spectra for 128 and 256 tiles
are not that different. From this experiment it can be concluded that roughly
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Figure 6.20: The power spectrum of Poisson disk distributions generated with
template Poisson disk tiles for several tile set sizes and number of points per
tile. (Please note the figure is rotated 90 degrees counterclockwise.)
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Figure 6.21: The zone plate function sampled with a Poisson disk distribution
generated with template Poisson disk tiles. (Please note the figure is rotated
90 degrees counterclockwise.)
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at least 32 points per tile and 32 tiles are needed to generate tiled Poisson disk
distributions with good quality, and that it probably does not make much sense
to use several thousands of tiles. We believe these results generalize to other
kinds of Poisson disk tiles, and explain why the power spectrum of tiled blue
noise samples is rather bad.

Figure 6.20 shows more detailed power spectra of tiled Poisson disk distribu-
tions generated with template Poisson disk tiles. Although the power spectra
are not that bad, the square lattice of peaks is more pronounced. This is be-
cause all tiles in a set of template Poisson disk tiles have a number of points in
common, namely the points in the tile template, which are replicated periodi-
cally when generating a tiled Poisson disk distribution. These peaks also turn
up in the radially averaged power spectrum and anisotropy graphs.

Figure 6.21 shows the zone plate function sampled using Poisson disk distri-
bution generated with template Poisson disk tiles for a variety of parameters.
The reconstructed zone plate function shows severe structured aliasing arti-
facts. Although the reconstruction of the zone plate function improves when
using more tiles or more points per tile, the periodically replicated tile template
causes severe structured aliasing artifacts.

Template Poisson disk tiles are not useful in practice. However, template
Poisson disk tiles allow to study the effect of the size of the tile set and the
number of points per tile on the power spectrum, and help to better understand
the spectral characteristics of other tile based approaches.

6.11 Corner-Based Poisson Disk Tiles

In 2006, we presented corner-based Poisson disk tiles, a method for constructing
a Poisson disk distribution over a set of corner tiles [Lagae and Dutré, 2006a].
Corner-based Poisson disk tiles are discussed in detail in section 4.5.

In contrast with edge-based Poisson disk tiles, corner-based Poisson disk tile
sets can be constructed for a variety of tile set sizes. For C colors, an edge-
based Poisson disk tile set contains C12 tiles. The only practical choice for C
is 2, which results in 4, 096 tiles. For C colors, a corner-based Poisson disk tile
set counts only C4 tiles, enabling tile sets of 16, 81, 256, 625, 1, 296, 2, 401 and
4, 096 tiles. This solves the problem of edge-based Poisson disk tiles having too
much tiles, but also allows to trade spectral quality for tile set size.

Like edge-based Poisson disk tiles, corner-based Poisson disk tiles are capable
of generating Poisson disk distributions with a relative radius up to 0.85. This is
because corner-based Poisson disk distributions use Lloyd’s relaxation method,
and carefully handle points near the tile boundary.

Figure 6.22 shows the power spectrum of tiled Poisson disk distributions
generated with corner-based Poisson disk tile sets, for a variety of parameters.
These results confirm earlier findings. Starting from 3 colors (81 tiles) and 32
points per tile the spectra are rather good. The power spectra of corner-based
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Figure 6.22: The power spectrum of Poisson disk distributions generated with
corner-based Poisson disk tiles for several tile set sizes and number of points
per tile. (Please note the figure is rotated 90 degrees counterclockwise.)
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Figure 6.23: Spectral analysis of Poisson disk distributions generated with
corner-based Poisson disk tiles. The Poisson disk distributions were generated
by tiling (a, d, g) 23× 23, (b, e, h) 18× 18 and (c, f, i) 16× 16 tiles of corner-
based Poisson disk tile sets over (a, b, c) C = 4, (d, e, f) C = 6 and (g, h, i)
C = 8 colors with (a, d, g) N = 32, (b, e, h) N = 48 and (c, f, i) N = 64 points
per tile, and a relative radius of ρ = 0.75. Corner tile sets over C = 4, C = 6
and C = 8 colors consist of respectively 256, 1, 296 and 4, 096 tiles.
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Figure 6.24: The number of points in corner and edge regions versus the number
of points per tile.

Poisson disk tiles are significantly better than the spectra of edge-based Poisson
disk tiles, even when using smaller tile sets.

Figure 6.23 shows that the peaks in power spectra of tiled Poisson disk dis-
tributions generated with corner-based Poisson disk tiles are much smaller than
those generated with edge-based Poisson disk tiles. The radially averaged
power spectrum is almost the same as that of non-tiled Poisson disk distri-
butions. Although the anisotropy still contains peaks, it is much smaller than
the anisotropy of other Poisson disk tiles.

Figure 6.24 plots the expected number of points in edge and corner regions.
The expected number of points in corner regions is constant, and much smaller
than the expected number of points in edge regions. Therefore, more variation
in edge tiles will produce a better power spectrum than more variation in corner
tiles. For C = 2 colors, a set of edge-based Poisson disk tiles consists of 4, 096
tiles and there are 2 different edge tiles (and 16 different corner tiles). For C = 8
colors, a set of corner-based Poisson disk tiles also counts 4, 096 tiles, but there
are 64 different edge tiles (and 8 different corner tiles). This is an important
reason why corner-based Poisson disk tiles produce better power spectra than
edge-based Poisson disk tiles.

Figure 6.21 shows the zone plate function sampled using Poisson disk distri-
bution generated with corner-based Poisson disk tiles for a variety of param-
eters. Corner-based Poisson disk tiles perform significantly better than other
tile-based approaches, even when using small tile sets.

The time required to generate Poisson disk distributions of approximately
16, 348 points using a tile set with 4 colors and 32, 48 and 64 points per tile is
respectively 0.088, 0.102 and 0.122 seconds. With 6 colors the time is respec-
tively 0.238, 0.319 and 0.415 seconds, and with 8 colors, the time is respectively
0.629, 0.911 and 1.200 seconds. Most of this time is used for loading the tile
set stored in a text file.
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Figure 6.25: The zone plate function sampled with a Poisson disk distribution
generated with corner-based Poisson disk tiles. (Please note the figure is rotated
90 degrees counterclockwise.)
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Figure 6.26: Spectral analysis of Poisson disk distributions generated with the
method of Jones. The Poisson disk distributions have a relative radius of (a)
ρ = 0.70 and (b) ρ = 0.75.

6.12 Efficient Generation of Poisson Disk Sampling

Patterns

In 2006, Jones presented an efficient implementation of the dart throwing al-
gorithm.

When generating a Poisson disk distribution, the original implementation
of the dart throwing algorithm [Cook, 1986] uses trial and error to add new
points to the Poisson disk distribution. The method of Jones uses a novel data
structure based on the Voronoi diagram to efficiently sample the free space in
the Poisson disk distribution. For more details, we refer to [Jones, 2006].

In terms of radius, spectral properties and sampling performance, the method
of Jones is very similar to the original implementation of the dart throwing al-
gorithm. Figure 6.26 shows the power spectrum of Poisson disk distributions
generated with the method of Jones, and figure 6.27 shows the zone plate func-
tion sampled using a Poisson disk distribution generated with the method of
Jones. As expected, the method has the same spectral properties and sam-
pling performance as the traditional dart throwing algorithm. The Poisson
disk distributions generated with the method of Jones are not toroidal. This
explains the central horizontal and vertical lines in the power spectrum, and
the increased anisotropy at low radial frequencies.

The implementation of Jones has a time complexity of O(N log N) and is
significantly faster than the traditional implementation of the dart throwing
algorithm. The time required to generate a Poisson disk distribution of 16, 384
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(a) ρ = 0.70 (b) ρ = 0.75

Figure 6.27: The zone plate function sampled with a Poisson disk distribution
generated with the method of Jones. The Poisson disk distributions have a
relative radius of (a) ρ = 0.70 and (b) ρ = 0.75.

points with a relative radius of 0.70 and 0.75 is respectively 3.511 and 3.403
seconds.

6.13 A Spatial Data Structure for Fast Poisson

Disk Sample Generation

Also Dunbar and Humphreys presented an efficient implementation of the dart
throwing algorithm in 2006.

The method of Dunbar and Humphreys is similar to the one of Jones [2006].
Dunbar and Humphreys use a data structure based on scalloped sectors to ef-
ficiently sample the free space in the Poisson disk distribution. The algorithm
of Dunbar and Humphreys also has a time complexity of O(N log N). Next to
the logarithmic algorithm, Dunbar and Humphreys also present a linear and
a boundary sampling algorithm. The linear sampling algorithm is obtained
by dropping the requirement that the available neighborhoods be sampled ac-
cording to an area-weighted probability density function. Although the linear
algorithm has linear time complexity, it is in practice not much faster than the
logarithmic one. The boundary sampling algorithm also runs in linear time and
places points such that their disks touch. The boundary sampling algorithm is
also in practice significantly faster than the logarithmic one. For more details,
we refer to Dunbar and Humphreys [2006].

In terms of radius, spectral properties and sampling performance, the algo-
rithms of Dunbar and Humphreys are similar to the original implementation of
the dart throwing algorithm. Figure 6.28 shows the power spectrum of Poisson
disk distributions generated with the algorithms of Dunbar and Humphreys,
and figure 6.29 shows the zone plate function sampled using a Poisson disk
distribution generated with the algorithms of Dunbar and Humphreys. The
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Figure 6.28: Spectral analysis of Poisson disk distributions generated with dif-
ferent variants of the method of Dunbar and Humphreys. The Poisson disk dis-
tributions were generated with the (a) logarithmic, (b) linear and (c) boundary
method.

(a) logarithmic (b) linear (c) boundary

Figure 6.29: The zone plate function sampled with a Poisson disk distribution
generated with the method of Dunbar and Humphreys. The Poisson disk dis-
tributions were generated with the (a) logarithmic, (b) linear and (c) boundary
method.
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Figure 6.30: Spectral analysis of Poisson disk distributions generated with the
method of Kopf et al.

logarithmic algorithm has the same spectral properties and sampling perfor-
mance as the traditional dart throwing algorithm. The peaks in the power
spectrum of the linear algorithm at multiples of the principal frequency are
slightly larger and the power spectrum of the linear algorithm seem to be a
bit skew. The power spectrum of the boundary algorithm is somewhat simi-
lar to the power spectrum of Poisson disk distributions optimized with Lloyd’s
relaxation method, although the peaks in the power spectrum at multiples
of the principal frequency are significantly larger. The zone plate function
reconstructed using a Poisson disk distribution generated with the boundary
algorithm shows some structured aliasing.

The logarithmic and linear algorithms of Dunbar and Humphreys are com-
parable in speed with the method of Jones. The boundary sampling algorithm
is significantly faster. The time required to generate a Poisson disk distribu-
tion with an absolute radius of 0.005877 (corresponding with a relative radius
of 0.70 in the previous methods) using the logarithmic, linear and boundary
algorithm is respectively 7.002, 7.911 and 0.137 seconds.

6.14 Recursive Wang Tiles for Real-Time Blue

Noise

In 2006, Kopf et al. presented a method for efficiently generating nonuniform
Poisson disk distributions. Although the method of Kopf et al. is capable of
generating nonuniform Poisson disk distribution, we only analyze it here in the
context of uniform Poisson disk distributions.
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Figure 6.31: The zone plate function sampled with a Poisson disk distribution
generated with the method of Kopf et al.

Kopf et al. use recursive Wang tiles that contain self-similar and progressive
Poisson disk distributions. The property of self-similarity allows to increase the
point density in large steps by recursively subdividing the tile. A progressive
point distribution allows to smoothly adjust the density of points. Combined,
these two properties enable an algorithm for generating varying-density point
distributions in real time. For more details, we refer to Kopf et al. [2006].

The radius of the point distributions generated over a constant density is
surprisingly low. Using the original tile set of Kopf et al., we have measured
relative radii between 0.44 and less than 0.001. Most distributions had a relative
radius of less than 0.001.

Figure 6.30 shows the power spectrum of Poisson disk distribution generated
with the approach of Kopf et al. Compared to the previous techniques, the
power spectrum rather bad, and the anisotropy is rather high.

Figure 6.31 shows the zone plate function sampled using a Poisson disk dis-
tribution generated with the method of Kopf et al. No structured aliasing
artifacts are visible. This is most likely because Kopf et al. use tiles with a
very large number of points.

As most tile-based methods, the method of Kopf et al. is rather fast. The
time required to generate a Poisson disk distribution of approximately 16, 384
tiles is 1.005 seconds.

6.15 A Comparison of Methods for Generating

Poisson Sphere Distributions

In this section, we analyze dart throwing, relaxation dart throwing and Lloyd’s
relaxation method for Poisson sphere distributions, and corner-based Poisson
sphere tiles.

Dart throwing, relaxation dart throwing and Lloyd’s relaxation method have
direct three-dimensional equivalents. Corner-based Poisson sphere tiles are
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Figure 6.32: The relative radius versus the number of iterations of Lloyd’s
relaxation method applied to a Poisson sphere distribution.

discussed in detail in section 4.6.3.

The methods for analyzing Poisson disk distributions have direct three-
dimensional equivalents. The radius of Poisson sphere distributions is analyzed
using the three-dimensional relative radius specification scheme introduced in
section 4.6.1. The power spectrum of a Poisson sphere distribution is three-
dimensional rather than two-dimensional, and is also radially symmetric. Sam-
pling performance is not explicitely tested, because Poisson sphere distributions
are not used for sampling as much as Poisson disk distributions.

Experiments show that dart throwing can be used for generating Poisson
sphere distributions with a relative radius up to 0.70, and that the relative
radius of Poisson sphere distributions generated with relaxation dart throwing
using an initial radius of 0.15, a radius reduction factor of 0.99, and 1, 000 failed
attempts is 0.70. Lloyd’s relaxation method does not converge as easily in three
dimensions as in two dimensions. This is illustrated in figure 6.32. Although
the global trend indicates convergence, the method seems to get stuck in local
minima often. This is most likely because the maximum radius configurations
are more stable in two dimensions than in three. As a consequence, much more
iterations are needed in three dimensions. Corner-based Poisson disk tiles are
capable generating Poisson sphere distributions with a large relative radius.

Figure 6.33 shows the power spectrum of Poisson sphere distributions gen-
erated with dart throwing. The power spectrum is radially symmetric and
exhibits the typical blue noise power spectrum. Figure 6.34 shows the power
spectrum of Poisson sphere distributions generated with corner-based Pois-
son sphere tiles. The radially averaged power spectrum is rather good. The
anisotropy is a bit high.
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Figure 6.33: Spectral analysis of Poisson sphere distributions generated with
dart throwing. The Poisson sphere distributions consist of 65, 536 points and
have a relative radius of ρ = 0.70. (a) The 3D power spectrum. (b, c, d)
Several 2D slices of the power spectrum. (e) The coordinate plane slices of the
power spectrum. (f, g, h) Close-ups of the coordinate plane slices of the power
spectrum. (i) The radially averaged power spectrum. (j) The anisotropy.
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Figure 6.34: Spectral analysis of Poisson sphere distributions generated with
Poisson sphere tiles. The Poisson sphere distributions were generated by tiling
8 × 8 × 8 tiles of a corner-based Poisson sphere tile set over C = 2 colors
consisting of 256 tiles with N = 128 points per tile, and a relative radius of
ρ = 0.75. (a) The 3D power spectrum. (b, c, d) Several 2D slices of the power
spectrum. (e) The coordinate plane slices of the power spectrum. (f, g, h)
Close-ups of the coordinate plane slices of the power spectrum. (i) The radially
averaged power spectrum. (j) The anisotropy.
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6.16 Conclusion

In this chapter, we have introduced several methods for analyzing Poisson disk
distributions, and we have compared methods for generating Poisson disk dis-
tributions and Poisson sphere distributions.

Dart throwing, relaxation dart throwing and Lloyd’s relaxation method are
only suited for applications that are not interactive, and for applications that
do not require large Poisson disk distributions. The accelerated dart throwing
algorithms of Jones and Dunbar and Humphreys are suited for interactive ap-
plications, but they are still relatively slow compared to tile based approaches,
and if a large radius is required, must still be followed by Lloyd’s relaxation
method.

For real-time applications, and applications that require large Poisson disk
distributions, tile-based approaches are the only option. Shade’s Poisson disk
tiles have major shortcomings and should not be used. We recommend not
to use tiled blue noise samples because the radius of the generated distribu-
tions is low, and because the power spectrum is relatively bad. Edge-based
Poisson disk tiles are better, both in terms of radius and spectral properties.
Template Poisson disk tiles are interesting from a theoretical point of view, but
the toroidal tile boundary introduces too much artifacts in the power spectrum.
Corner-based Poisson disk tiles have several advantages over edge-based Poisson
disk tiles. Corner-based Poisson disk tiles produce better power spectra even
with less tiles, and allow to trade spectral quality for tile set size. Therefore,
corner-based Poisson disk tiles seem to be the best tile-based approach.

The spectral properties of the method of Ostromoukhov et al. and Kopf
et al. are below average. The radius of the Poisson disk distributions generated
with the technique of Kopf et al. is surprisingly low. These techniques should
therefore not be used for generating Poisson disk distributions with constant
density. However, the real power of these methods is that they are capable of
generating nonuniform point distributions. In this chapter, only Poisson disk
distributions with constant density were investigated.

We would like to note that different applications often have different require-
ments. For example, a large radius is very important for object distribution,
while spectral properties may not be that important. For sampling, spectral
properties are very important, and a slightly smaller radius will not matter that
much. Radius statistics, spectral properties and sampling performance are very
important criteria for analyzing Poisson disk distributions. However, this does
not mean that for a specific application certain methods should be discarded a
priori.
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Chapter 7

Applications of Poisson Disk

Distributions

7.1 Introduction

In the previous chapters we have introduced and analyzed efficient methods
for generating Poisson disk distributions. Generating Poisson disk distribu-
tions is of course not a goal in itself, Poisson disk distributions have several
applications in computer graphics. Efficient methods for generating Poisson
disk distributions enable efficient implementation of these applications but also
enable completely new applications. In this chapter we discuss several applica-
tions of Poisson disk distributions.

Overview

This chapter is organized as follows. Section 7.2 discusses sampling. In sec-
tion 7.3 we discuss applications in non-photorealistic rendering. Section 7.4
introduces applications in scientific visualization. In section 7.5 we discuss
procedural modeling, geometric object distribution and geometry instancing.
Section 7.6 introduces a new application of Poisson disk distributions in proce-
dural texturing. In section 7.7 we conclude.

7.2 Sampling

Poisson disk distributions were introduced in the field of computer graphics
in the context of sampling. In 1977, Crow identified unwanted artifacts in
digitally synthesized images, such as jaggies and moiré patterns, as instances
of the aliasing problem from digital signal processing. In the mid-eighties,
Dippé and Wold [1985], Cook [1986] and Mitchell [1987] introduced nonuniform
sampling and the Poisson disk distribution to turn regular aliasing artifacts
into perceptually less objectable stochastic noise. Their work was based on
studies by Yellot [Yellot, 1982, 1983], who found that the photoreceptors in
the retina of the eye are distributed according to a Poisson disk distribution,
and presented theoretical evidence in favor of the Poisson disk distribution. It
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(a) The Uffizi Gallery, 288 points

(b) Galileo’s Tomb, 3, 200 points

Figure 7.1: Environment map sampling using warped Poisson disk distributed
points. The (a) The Uffizi Gallery and (b) Galileo’s Tomb environment maps
were sampled with (a) 288 and (b) 3, 200 point light sources, by warping Poisson
disk distributions generated with edge-based Poisson disk tiles. The sampling
patterns were generated in approximately 150 ms. (The environment maps
used in this figure are courtesy of Paul Debevec.)
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(a) Grace Cathedral, 5, 285 points

(b) St. Peter’s Basilica, 9, 372 points

(c) The Uffizi Gallery, 9, 921 points

(d) Galileo’s Tomb, 10, 116 points

Figure 7.2: Environment map sampling using a self-similar hierarchical tile.
The (a) Grace Cathedral, (b) St. Peter’s Basilica, (c) The Uffizi Gallery and (d)
Galileo’s Tomb environment maps were sampled with (a) 5, 285, (b) 9, 372, (c)
9, 921 and (d) 10, 116 point light sources, using the self-similar hierarchical tile
shown in figure 4.42. The sampling patterns were generated in approximately
30 ms. Note the periodicity in regions of constant density. (The environment
maps used in this figure are courtesy of Paul Debevec.)
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is now generally accepted that because of it’s blue noise power spectrum, the
Poisson disk distribution is one of the best stochastic sampling patterns.

The Poisson disk sampling pattern allows a better reconstruction of a sam-
pled function than other sampling patterns. This matters a lot for applications
in computer graphics, which typically cannot compute enough samples to elim-
inate aliasing artifacts or stochastic noise. For example, the physically based
rendering system of Pharr and Humphreys [2004] uses the best-candidate sam-
pling pattern [Mitchell, 1991], an approximate Poisson disk distribution, to
sample the image plane for generating primary rays. However, the Poisson
disk sampling pattern is not commonly used for sampling, mainly because it is
considered too difficult and too expensive to generate. The efficient methods
for generating Poisson disk distributions discussed in the previous chapters en-
able the use of Poisson disk distributions for sampling, even for interactive and
real-time applications.

Importance sampling is one of the most frequently used variance reduction
techniques in global illumination and distribution ray tracing [Dutré et al.,
2002; Pharr and Humphreys, 2004]. Importance sampling requires nonuniform
point distributions. Similar to Poisson disk distributions, nonuniform Poisson
disk distributions have significant advantages over other point distributions.
An example of importance sampling in the context of global illumination is
sampling a high dynamic range environment map, representing an infinite area
light source [Cohen and Debevec, 2001; Agarwal et al., 2003; Kollig and Keller,
2003]. The environment map is replaced by a number of point light sources to
speed up integration of the incoming illumination. This can be done by warping
Poisson disk distributed points according to a probability density function de-
rived from the environment map. Figure 7.1 shows environment maps sampled
using warped Poisson disk distributions. Another solution is to directly gener-
ate a nonuniform Poisson disk distribution using the technique introduced in
section 4.7. Figure 7.2 shows environment maps sampled using this technique.
However, both techniques are not optimal. Warping can introduce clumping,
and using a single tile introduces periodicity. Efficiently generating sampling
patterns with blue noise properties is still a very active area of research [Ostro-
moukhov et al., 2004; Dunbar and Humphreys, 2006; Kopf et al., 2006].

7.3 Non-Photorealistic Rendering

Non-photorealistic rendering [Gooch and Gooch, 2002] is an area of computer
graphics that uses different rendering styles to communicate specific messages.
Non-photorealistic rendering is used for artistic media simulation, user-assisted
image creation and automatic image creation. Poisson disk distributions have
several applications in non-photorealistic rendering.

A pen-and-ink illustration can be generated from a given image by placing a
number of primitives, for example points or strokes, according to a density func-
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(a) (b) (c)

Figure 7.3: Primitive distribution for illustration using warped Poisson disk
distributed points. (a) The Lena image. (b) Stippled and (c) hatched non-
photorealistic renderings generated from the Lena image, by warping Poisson
disk distributions generated with edge-based Poisson disk tiles. Approximately
13, 000 primitives were distributed.

Figure 7.4: Primitive distribution for illustration using a self-similar tile. (top
row) The Lena image with several zoom-ins. (bottom row) Stippled non-
photorealistic renderings generated from these images using the self-similar hi-
erarchical tile shown in figure 7.4. The point sets consist of respectively 44, 212,
44, 673, 41, 659 and 38, 301 points, and were generated in approximately 80 ms.
Note the periodicity in regions of constant density.
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tion derived from that image. It is widely accepted in stippling and halftoning
that a Poisson disk distribution yields more visually pleasing results [Ulichney,
1987; Deussen et al., 2000; Secord et al., 2002]. However, Poisson disk distri-
butions are not frequently used because they are considered too expensive to
generate. Pen-and-ink illustrations can efficiently be generated by warping or
redistributing Poisson disk distributed points using the inverse cumulative of
the density function. Figure 7.3 shows illustrations generated using warped
Poisson disk distributions. Another solution is to directly generate a nonuni-
form Poisson disk distribution using the technique introduced in section 4.7.
Figure 7.4 shows illustrations generated using this technique.

Non-photorealistic rendering also employs several other techniques intro-
duced in previous chapters to simulate artistic styles. For example, Kaplan
and Salesin [2000] used the theory of tiling to create images much like the ones
by the Dutch artist M. C. Escher, and Hausner [2001] used Lloyd’s relaxation
method to simulate decorative mosaics.

7.4 Scientific Visualization

Scientific visualization [Tufte, 1986] is a field of research that creates images,
diagrams, or animations from complex scientific data. Like non-photorealistic
rendering, the goal is to convey specific messages. Poisson disk distributions
have several applications in scientific visualization. For example, a vector field
can be visualized by sampling the vector field using icons [Tufte, 1986]. The
best results are obtained when the icons are placed according to a Poisson disk
distribution. Scientific visualization also employs other techniques introduced
in previous chapters to create illustrations. For example, Lu and Ebert [2005]
used Wang cubes with point distributions to create example-based volume il-
lustrations.

7.5 Procedural Modeling, Geometric Object

Distribution and Geometry Instancing

Modeling the real world is an important aspect of computer graphics. However,
modeling complex environments such as plant ecosystems or cities by hand can
be very time-consuming. Procedural modeling techniques assist the user to
create complex environments, or create complex environments automatically.
For example, Deussen et al. [1998] proposed a system for creating complex
plant ecosystems and Parish and Müller [2001] presented a method for modeling
cities.

Geometric object distribution is an important aspect of procedural modeling.
Many man-made and natural distributions follow a pattern with a minimum
distance criterion. For example the trees in a forest and the individual hairs in
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Figure 7.5: A beech forest in the winter. Over 2, 000 instances of 5 beeches
were distributed using Poisson disk tiles to create this beech forest. Each beech
consists of about 16, 000 triangles. (The beeches were generated with NatFX
from Bionatics by Karl vom Berge. The environment map was created using
the Utah sky model.)

Figure 7.6: A planet with an asteroid belt. The asteroid belt was modeled by
instancing several thousand asteroids using a Poisson sphere distribution. (The
map of Saturn is courtesy of Björn Jónsson. The asteroid models are courtesy
of Scott Hudson.)
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fur. These distributions can easily be modeled using Poisson disk distributions.
Figure 7.5 shows a beech forest in the winter. The trees were distributed
according to a Poisson disk distribution. Figure 7.6 shows a planet with an
asteroid belt. The asteroid belt was modeled by cutting out a ring of points
from a Poisson sphere distribution.

Geometry instancing is frequently used to efficiently implement geometric
object distribution. Instead of using a unique geometric model for each dis-
tributed object, only a limited set of geometric models is used, and each dis-
tributed object is an instance of one of these models. The instances may have
differentiating parameters, such as orientation, size and color. This technique
was also used in figures 7.5 and 7.6.

However, for very large or complex environments, placing and storing all in-
stances is still expensive. This problem can be relieved by using the tile-based
methods for generating Poisson disk distributions introduced in chapter 4. Be-
cause the direct stochastic tiling algorithm allows to efficiently evaluate a Pois-
son disk distribution locally, it enables on the fly instancing. This eliminates
the cost of storing instancing information. This principle could also be used in
real-time applications, such as flight simulators or games.

7.6 Procedural Texturing

Texture mapping [Catmull, 1974] is commonly used to increasing the visual
complexity of computer-generated images without adding geometric detail. A
texture is mapped onto the surface of a shape to add color or detail to the
shape. Traditional textures are raster graphics images. Raster graphics images
have several disadvantages. Raster graphics images have a fixed resolution and
size, and have large storage requirements.

Procedural textures are textures defined by a procedure or an algorithm
rather than by a raster graphics image. Compared to traditional textures,
procedural textures are compact, have no fixed resolution and size, and can be
easily parameterized. Procedural texturing has become an invaluable tool for
high-quality image synthesis. Procedural techniques are capable of generating
a large variety of convincing textures, such as marble, wood and stone.

At the heart of procedural texturing are texture basis functions. They boot-
strap the visual complexity which is present in the generated textures. The
most famous texture basis function is Perlin’s noise function [Perlin, 1985],
or as Peachy states, “the function that launched a thousand textures” [Ebert
et al., 2002]. However, the use of texture basis functions is not limited to proce-
dural texturing. Texture basis functions are also used in procedural modeling,
shading and animation. This large variety of applications is a motivation to
find new texture basis functions and expand the range of textures that can be
generated procedurally.

In this section, we present a procedural object distribution function. This
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new texture basis function distributes procedurally generated objects over a
procedurally generated texture, which serves as background. Objects are placed
uniformly over the texture, and are guaranteed not to overlap. The texture
basis function allows intuitive control over the scale, size and orientation of
the objects being distributed, and can be evaluated efficiently. We discuss the
history and background of procedural texturing, and present a two-dimensional
as well as a tree-dimensional procedural object distribution function.

7.6.1 History and Background

The introduction of solid texturing by Perlin [1985] and Peachy [1985] in the
mid-eighties was a milestone in the field of procedural modeling.

The most popular three-dimensional texture basis function is Perlin’s noise
function [Perlin, 1985; Perlin and Hoffert, 1989; Perlin, 2002]. The noise value
at each point is determined by computing a pseudo-random gradient at each
of the eight nearest vertices on the integer cubic lattice, followed by splined
interpolation. Perlin’s noise function has become the standard way to model
natural materials such as marble, wood and stone, and natural phenomena such
as smoke, water and fire. Although presented in 1985, the Perlin’s texture basis
function is still heavily used nowadays.

Another useful 3D texture basis function is the cellular texture basis function
of Worley [1996]. Random feature points are scattered throughout space, and
the function returns the distance to the closest feature points. This process
is accelerated using space subdivision: feature points are generated on the fly,
in the cubes defined by the integer lattice. Worley’s texture basis function
is suited for generating rocks, tiled areas, and a variety of organic patterns.
Worley introduced his cellular texture basis function in 1996, although a simpler
version of this texture basis function was already proposed in 1988 by Burchill.

To address a number of shortcomings of Perlin’s noise function, Cook and
DeRose [2005] presented wavelet noise, a band-limited version of Perlin’s noise
function. Their work was inspired by earlier work by Lewis [1989].

There are several other techniques to generate textures procedurally. For
example, Turk [1991] presented a biologically inspired method, called reaction-
diffusion, that generates interesting mammalian patterns. These methods, how-
ever, do not qualify as texture basis functions, because they do not have the
semantics of a point evaluation, but require global operations to work.

For an excellent overview of the field of procedural texturing and modeling,
we refer to [Ebert et al., 2002].

7.6.2 A 2D Procedural Object Distribution Function

The two-dimensional procedural object distribution function is a new texture
basis function that distributes procedurally generated objects over a procedu-
rally generated background.
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(a) (b) (c) (d)

Figure 7.7: Evaluation of the 2D object distribution texture basis function.
The texture basis function returns (a) a boolean value indicating whether the
point of evaluation is within the Poisson disk of the closest feature point, (b)
the coordinates of the closest feature point, (c) a unique ID identifying the
closest feature point, and (d) the distance to the closest feature point.

(a) (b) (c) (d)

Figure 7.8: Procedural object distribution with the 2D object distribution tex-
ture basis function. (a) The texture basis function is evaluated. (b) If the point
of evaluation lies within a Poisson disk, it is transformed to the local coordi-
nate system of that disk, and a procedural object is evaluated. (c) If the point
of evaluation is not located inside a Poisson disk, a procedural texture which
serves as background is evaluated. (d) The resulting procedural texture.
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The texture basis function is defined over the infinite plane. When evaluated,
it returns the point in a tiled Poisson disk distribution closest to the point of
evaluation, and a unique identifier for this point. The function also returns the
distance to the closest point, and a boolean value indicating whether the point
of evaluation is within the Poisson disk of the closest point. This is illustrated
in figure 7.7.

To distribute procedural objects over a procedural background, the texture
basis function is evaluated. If the point of evaluation lies within a Poisson disk,
it is transformed to the local coordinate system of that disk, and a procedural
object is evaluated. If the point of evaluation is not located inside a disk, a
procedural texture which serves as background is evaluated. This process is
illustrated in figure 7.8.

In the remainder of this subsection, we discuss how to evaluate the texture
basis function efficiently, and how to control the placement of the distributed
objects. We also present several results and discuss some more advanced topics.

7.6.2.1 Evaluation

Evaluation of the texture basis function is straightforward. The Poisson disk
tile that contains the point of evaluation (x, y) is located at tile coordinates
(⌊x⌋, ⌊y⌋), and is provided by the direct stochastic tiling algorithm. The tile
and its neighbors are then searched for the closest point. The unique identifier
of the closest point is a combination of the hash value of the tile coordinates of
the tile where the closest point was found, and the index of the closest point
in that tile.

Only a single Poisson disk tile set is needed. Randomness is introduced by
the direct stochastic tiling algorithm, randomizing the texture basis function is
done by randomizing the permutation table used by the hash function of the
tiling algorithm.

The texture basis function can be implemented using edge-based Poisson disk
tiles, template Poisson disk tiles or corner-based Poisson disk tiles. Corner-
based Poisson disk tiles are recommended because the tile sets are smaller and
the tiling algorithms are more efficient.

Several optimizations are employed to evaluate the texture basis function
efficiently. After constructing a Poisson disk tile set, the points in the tiles are
sorted lexicographically. This speeds up the location of the closest point. Also
note that if the distance to a candidate closest point is less than the Poisson
disk radius, it must be the closest point. The largest empty circle optimization
limits the number of neighboring tiles that has to be searched while locating
the closest point. During construction of the Poisson disk tile set, the radius
of the largest empty circle re is computed. Alternatively, re can be bounded
analytically. This radius determines different regions in the tile, much like the
ones in figure 4.3(a). If the point of evaluation (x, y) is closer to a corner than
re, three neighboring tiles have to be considered. Else, if (x, y) is closer to an

139



Chapter 7 Applications of Poisson Disk Distributions

(a) (b) (c) (d)

Figure 7.9: Manipulation of the scale s of the 2D object distribution texture
basis function. (a) s = 1. (b) s = 4. (c) s = 16. (d) s = 64. Note that each
image is a closeup of the next one.

(a) (b) (c) (d)

Figure 7.10: Manipulation of the size r and orientation θ of the 2D object
distribution texture basis function. (a) r = 1, θ = 0. (b) r = 0.75, θ = π/4.
(c) r ∼ U(0.5, 1), θ ∼ N(π/4, π/32). (d) r ∼ N(0.8, 0.05), θ ∼ U(0, 2π). The
scale s of all procedural textures is 36.

edge than re, one neighboring tile needs to be considered. In all other cases,
the closest point must lie within the same tile as (x, y). This optimization is
very effective. For a Poisson disk tile set with N = 32 points per tile, and
α = 0.75, re was approximately 0.16. For about 10% of the evaluations, four
tiles had to be considered. Roughly 40% of the evaluations required two tiles,
and for almost 50% of the evaluations, only a single tile was visited.

Due to these optimizations, the texture basis function can be evaluated very
efficiently. In our implementation, one evaluation of the new texture basis func-
tion is as expensive as 5 evaluations of Perlin’s two-dimensional noise function.
This makes our texture basis function also suited for interactive and real-time
applications.

7.6.2.2 Parameters

The placement of the distributed objects can be controlled by four parameters:
the scale s, the size r, the orientation θ and the aspect ratio a.
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(a) (b) (c) (d)

Figure 7.11: Manipulation of the aspect ratio a of the 2D object distribution
texture basis function. These procedural textures show a color encoding of the
local coordinate systems. (a) θ ∼ U(0, 2π), a = 1. (b) θ ∼ U(0, 2π), a = φ (the
golden ratio, φ ≈ 1.6180). (c) θ ∼ N(π/4, π/32), a = φ. (d) θ ∼ N(0, π/32),
a ∼ N(2.5, 0.1). The scale s and size r of all procedural textures is 36 and 0.80
respectively.

To decouple the texture basis function as much as possible from the under-
lying tiled Poisson disk distribution, a scale parameter s is introduced that
controls the density of objects. A scale of s corresponds to an object density
of s objects per unit square. Controlling the scale of the texture basis function
is done by scaling the domain over which it is evaluated. To obtain an object
density of s, the tiled Poisson disk distribution is scaled by a factor of

√

S/N ,
where N is the number of points per tile. Figure 7.9 shows a procedural tex-
ture for different values of the scale parameter. Note that this scale parameter
is different from the original scale parameter introduced in [Lagae and Dutré,
2005a]. The new scale parameter is more intuitive and easier to use.

When the texture basis function is evaluated, and the point of evaluation
lies within a disk, it is transformed to the local coordinate system of that disk.
These coordinates are then used to evaluate the procedural object. Manipu-
lating the size r and orientation θ of the distributed objects is done by scaling
the local coordinate system by a factor r ∈ [0, 1], and rotating it by an an-
gle θ ∈ [0, 2π], before evaluating the procedural object. Figure 7.10 shows a
procedural texture for different values of the size and orientation parameters.

By introducing the aspect ratio a, a very general and flexible object distribu-
tion function is obtained. As figure 7.11 shows, distributions of local coordinate
systems can be generated procedurally using only four intuitive parameters.
Arbitrary procedural content can be placed in these coordinate systems.

Object attributes, such as size, orientation and aspect ratio, can be chosen
at random on a per-object basis. However, some care must be taken. Although
each object may have different attributes, all evaluations of the texture basis
function involving the same object must produce the same random values for the
attributes. This is why the texture basis function provides a unique identifier
associated with each disk. When used to seed a random number generator,
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(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 7.12: Textures generated with the 2D object distribution texture basis
function. (a) Stars. (b) Flowers. (c) Polka dots. (d) Hearts. (e) Daisies. (f)
Mondriaan shapes. (g) Abstract squares. (h) Starfish.

for example a fast linear congruential generator, random attributes can be
generated correctly on a per-object basis. The unique identifier can also be
used to generate additional object attributes.

7.6.2.3 Examples

The procedural object distribution function extends the range of textures that
can be generated procedurally. Figures 7.12, 7.13 and 7.14 show several pro-
cedural textures generated with the new texture basis function. They demon-
strate the procedural object distribution function for several settings of the
scale, size and orientation parameters. Like all procedural textures, these tex-
tures have no fixed resolution and size, and can be easily parameterized.

A lot of interesting procedural objects can be generated with the so called
superformula [Gielis, 2003; Gielis et al., 2003]. The heart shape of figure 7.12(d)
is based on the polar equation r (θ) = cos 5θ− 5 cos θ. A single petal of a daisy
of figure 7.12(e) was created using an exponentiated cosine lobe. The texture
of figure 7.12(f) is inspired by Mondriaan’s painting Composition with red,
yellow and blue. The parameters for the texture basis function are r = 0.8 and
θ ∼ U(0, 2π). The rounded triangle is a supershape with parameters m = 3,
n1 = 6.7, n2 = n3 = 12 and a = b = 1, and the rounded rectangle is a
supershape with parameters m = 4, n1 = n2 = n3 = 12 and a = b = 1. The
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Figure 7.13: Dresses worn by the Venus model. The dresses are textured with
the procedural textures shown in figure 7.12.

Figure 7.14: A table with a table cloth on a granite floor. The textures used in
this scene were generated with the 2D procedural object distribution function.
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rounded rectangle of figure 7.12(g) is a supershape with parameters m = 4,
n1 = n2 = n3 = 8 and a = b = 1. The starfish of figure 7.12(h) consists of two
supershapes. The parameters for the outer one are m = 5, n1 = 2, n2 = n3 = 7
and a = b = 1, and the parameters for the inner one are m = 5, n1 = 2,
n2 = n3 = 13 and a = b = 1. The particles in the granite of figure 7.14 are
random convex hexagons. The color of these particles, the color of the mortar
and the base color were modulated with Perlin noise.

7.6.2.4 Discussion

By modifying the hash function used in the direct stochastic tiling algorithm,
seamless textures can be created. For example, evaluating the hash function
with tile coordinates modulo M results in a periodic tiling with period M , and
can be used to produce a toroidally wrapping texture to cover a cylinder or
texture.

The procedural object distribution function is somewhat similar to the cel-
lular texture basis function of Worley [1996]. However, the cellular texture
basis function of Worley uses feature points randomly scattered in space, and
therefore cannot be used to distribute objects without overlap.

In general, most texture basis functions generate some kind of pseudo-random
scalar value over their domain. From that perspective, the procedural object
distribution function is not a typical texture basis function. However, the
ultimate goal of all texture basis functions is the same: providing a solid basis
for generating a large variety of textures. The procedural object distribution
function does just that.

7.6.3 A 3D Procedural Object Distribution Function

Solid textures [Perlin, 1985; Peachy, 1985] are three-dimensional textures that
simulate solid materials. When a solid texture is applied to the surface of an
object, the object appears to be carved out of that material. Most texture basis
functions are available in two as well as three dimensions.

The two-dimensional procedural object distribution function easily extends
to three dimensions using three-dimensional corner tiles and corner-based Pois-
son sphere tiles (see section 4.6). Figure 7.15 shows the outputs of the three-
dimensional texture basis function.

The three-dimensional procedural object distribution function is good at
modeling natural materials with particle distributions, such as granite, and
abstract man-made patterns. Figure 7.16 shows several procedural solid tex-
tures generated with the texture basis function. The texture basis function
has a small memory footprint and is quite efficient: one evaluation is about as
expensive as 20 evaluations of Perlin’s Noise function. Figure 7.17 shows how
we integrated the procedural object distribution functions into a commercial
rendering system.
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(a) (b) (c)

Figure 7.15: Evaluation of the 3D object distribution texture basis function.
The texture basis function returns (a) a boolean value indicating whether the
point of evaluation is within the Poisson disk of the closest feature point, (b)
a unique ID identifying the closest feature point, and (c) the distance to the
closest feature point. The coordinates of the closest feature point (not shown)
are also returned.

(a) (b) (c)

Figure 7.16: The Venus model carved from solid textures generated with the
3D object distribution texture basis function. (a) Granite. (b) Mondriaan
shapes. (c) Polka dots.
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Figure 7.17: Integration of the object distribution texture basis function in a
commercial rendering system.

7.7 Conclusion

In this chapter we have discussed applications of Poisson disk distributions in
sampling, non-photorealistic rendering, scientific visualization and procedural
modeling. We have also introduced a procedural object distribution function,
a new texture basis function that extends the range of textures than can be
generated procedurally. We have shown that Poisson disk distributions are a
general tool in computer graphics, and that the tile-based methods for generat-
ing Poisson disk distributions introduced in the previous chapters can be used
to improve existing applications but also enable new applications.
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Chapter 8

Small Aperiodic Sets of Corner

Tiles

8.1 Introduction

Wang tiles originated in the field of discrete mathematics and were first used
to study the tiling problem and aperiodic tile sets. Later, Wang tiles were
introduced in the field of computer graphics to facilitate the generation of
complex non-periodic signals. Corner tiles originated in the field of computer
graphics as an alternative for Wang tiles. In this chapter, we study corner
tiles in the original context of the tiling problem and aperiodic tile sets. We
construct small aperiodic sets of corner tiles to show that corner tiles are not
just an ad hoc extension of Wang tiles, and that corner tiles are sound also
from a discrete mathematical point of view.

Overview

This chapter is organized as follows. Section 8.2 sketches the history and back-
ground of aperiodic tile sets. In section 8.3 we show how to construct small
aperiodic corner tile sets from small aperiodic Wang tile sets, and section 8.4
shows how to do the inverse. In section 8.5 we conclude.

8.2 History and Background

In 1961, Wang studied the tiling problem with Wang tiles and conjectured that
if a set of tiles can tile the plane, then they can always be arranged to do
so periodically. This conjecture was refuted in 1966 by Berger, who showed
that the tiling problem was undecidable and constructed the first aperiodic
tile set, consisting of 20, 426 Wang tiles. This was one of the most remarkable
discoveries in the theory of tilings.

This number was greatly reduced to 104 by Berger in 1966 [Berger, 1966] and
subsequently to 92 by Knuth in 1968 [Knuth, 1968], to 40 by Läuchli in 1966
[Wang, 1975], to 52 by Robinson in 1967 [Robinson, 1967], to 32 by Penrose,
to 24 by Robinson in 1977, to 14 by Kari in 1996 [Kari, 1996] and finally to 13
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Chapter 8 Small Aperiodic Sets of Corner Tiles

Figure 8.1: An aperiodic Wang tile set of 32 tiles over 16 colors.

Figure 8.2: An aperiodic Wang tile set of 24 tiles over 24 colors.

by Culik in 1996 [Culik, 1996]. For an excellent discussion of these results, we
refer to Grünbaum and Shepard [1986, chapters 10 and 11].

Not only Wang tiles allow the construction of aperiodic tile sets. Since the
late sixties, several aperiodic tile sets have been discovered. In 1974, Penrose
discovered his famous kite and dart, an aperiodic set of only two tiles. Whether
a single aperiodic tile exists is still an open question.

8.3 Construction of Aperiodic Corner Tile Sets

from Aperiodic Wang Tile Sets

Because Wang tiles and corner tiles are so closely related, we construct aperiodic
sets of corner tiles using isomorphisms between Wang tilings and corner tilings.
In this section, we present five such construction methods: diagonal translation,
horizontal translation, vertical translation, rotation and subdivision.

The aperiodic corner tile sets we construct are based on small aperiodic Wang
tile sets. We use the following five aperiodic Wang tile sets.
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Figure 8.3: An aperiodic Wang tile set of 16 tiles over 6 colors.

Figure 8.4: An aperiodic Wang tile set of 14 tiles over 6 colors.

Figure 8.5: An aperiodic Wang tile set of 13 tiles over 5 colors. This is the
smallest aperiodic Wang tile set currently known.

Wang tile
set

diagonal
translation

horizontal
translation

vertical
translation

rotation subdivision

13/5 125/13 failed failed 60(13+47)/9 52/19

14/6 214/14 failed 86/6 94(14+80)/9 56/21

16/6 87/16 44/6 44/6 49(16+33)/12 64/23

24/24 203/24 62/12 72/12 67(24+43)/24 96/49

32/16 114/32 failed failed 90(32+58)/28 128/49

Table 8.1: The size of aperiodic corner tile sets constructed with the proposed
construction methods. For the rotation method, the number of white and black
tiles is also indicated.
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Figure 8.6: An aperiodic corner tile set of 44 tiles over 6 colors. This tile set
was constructed from the aperiodic set of 16 Wang tiles over 6 colors shown
in figure 8.3, using the horizontal translation construction method. This is the
smallest aperiodic corner tile set currently known.

• The aperiodic set of 32 Wang tiles over 16 colors, obtained by cutting up
a tiling by Penrose kites and darts [Grünbaum and Shepard, 1986, page
593]. This tile set is shown in figure 8.1.

• The aperiodic set of 24 Wang tiles over 24 colors, constructed from the
Ammann prototiles (set A2) [Grünbaum and Shepard, 1986, page 593].
This tile set is shown in figure 8.2.

• The aperiodic set of 16 Wang tiles over 6 colors, generated using the
Ammann set A2 and Ammann bars [Grünbaum and Shepard, 1986, page
595]. This tile set is shown in figure 8.3.

• The aperiodic set of 14 Wang tiles over 6 colors, constructed in 1996
by Kari with a method based on Mealy machines that multiply Beatty
sequences of real numbers by rational constants. This tile set is shown in
figure 8.4.

• The aperiodic set of 13 Wang tiles over 5 colors, created also in 1996 by
Culik using a construction method based on the method developed by
Kari. This tile set is shown in figure 8.5.

The colors of each aperiodic Wang tile set were relabeled to form an integer
sequence starting with 0 and ending with the number of colors minus one.
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8.3 Construction of Aperiodic Corner Tile Sets from Aperiodic Wang Tile Sets

Figure 8.7: The diagonal translation method for constructing an aperiodic cor-
ner tile set. The lattice of the corner tiles (dashed lines) is translated diagonally
with respect to the lattice of the Wang tiles (solid lines).

8.3.1 Diagonal Translation

The diagonal translation construction method works for an arbitrary aperiodic
set of Wang tiles.

The corner tiles are placed on a lattice translated diagonally with respect to
the lattice of the Wang tiles, as shown in figure 8.7. Each Wang tile is given a
distinct color, and the edge colors of the Wang tiles are ignored. Each corner
of each corner tile now receives the color of the Wang tile it lies on. The corner
tile set constructed with this method consists of a single tile for each valid two
by two square configuration of Wang tiles, and the number of colors used by
the corner tile set equals the number of tiles in the Wang tile set. If the Wang
tile set is aperiodic, then the corner tile set will clearly also be aperiodic.

The second column of table 8.1 summarizes the results obtained with this
construction method.

8.3.2 Horizontal and Vertical Translation

The horizontal and vertical translation construction methods are very similar
to the diagonal translation construction method, but now the corner tiles are
placed on a lattice translated horizontally or vertically with respect to the
lattice of the Wang tiles, as shown in figure 8.8. A corner of a corner tile now
receives the edge color of the edge of the Wang tile it lies on. In general, this is
not an isomorphism, because all vertical or horizontal edges of the Wang tiles
are ignored. However, for certain aperiodic Wang tile sets, this morphism is
bijective.
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(a) (b)

Figure 8.8: The (a) horizontal and (b) vertical translation methods for con-
structing an aperiodic corner tile set. The lattice of the corner tiles (dashed
lines) is translated (a) horizontally and (b) vertically with respect to the lattice
of the Wang tiles (solid lines).

The third and fourth column of table 8.1 summarize the results obtained
with this construction method. The aperiodic set of 44 corner tiles over 6
colors obtained using the horizontal translation method is shown in figure 8.6.

8.3.3 Rotation

The rotation construction method is somewhat more complicated than previous
methods. The corner tiles are placed on a lattice rotated 45 degrees counter-
clockwise with respect to the lattice of the Wang tiles, as shown in figure 8.9.
A corner of a corner tile receives the edge color of the edge of the Wang tile it
lies on. However, the rotation results in two kinds of corner tiles: white tiles,
corresponding to a single Wang tile, and black tiles, corresponding to a 2 by 2
square configuration of Wang tiles. The white and black tiles follow a checker-
board pattern. A corner tiling constructed this way cannot have a period that
maps white tiles onto white tiles (or black tiles onto black tiles), because the
Wang tiling is aperiodic, and a period that maps black tiles onto white tiles, or
vice versa, is also impossible, because twice that period maps white tiles onto
white tiles. We only need to enforce that all valid tilings with the corner tile set
follow the checkerboard pattern. This can be done by superimposing on each
corner tile one of the tiles in figure 8.10. As shown in figure 8.11, this check-
ers corner tile set enforces a checkerboard pattern. This operation effectively
doubles (at most) the number of colors of the corner tile set.

The fifth column of table 8.1 summarizes the results obtained with this con-
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Figure 8.9: The rotation method for constructing an aperiodic corner tile set.
The lattice of the corner tiles (dashed lines) is rotated with respect to the lattice
of the Wang tiles (solid lines). This results in two kinds of tiles, black tiles and
white tiles.

Figure 8.10: A checkers corner tile set. This tile set enforces a checkerboard
pattern.

Figure 8.11: A tiling with the checkers corner tile set.
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Figure 8.12: The subdivision method for constructing an aperiodic corner tile
set. The lattice of the corner tiles (dashed lines) is obtained by subdividing
the lattice of the Wang tiles (solid lines), such that each Wang tile corresponds
with four corner tiles.

Figure 8.13: Examples of the subdivision method for constructing an aperiodic
corner tile set. Two tiles from the aperiodic set of 13 Wang tiles over 5 colors,
numbered a and b, and the corner tiles they produce. The star is a new color.

struction method.

8.3.4 Subdivision

The final construction method we discuss is subdivision.
The corner tiles are placed on a lattice obtained by subdividing the lattice

of the Wang tiles, as shown in figure 8.12. Each Wang tile corresponds to four
corner tiles. The corners that lie on the middle of an edge of a Wang tile receive
the color of that edge. The corners that lie in the center of a Wang tile are
colored with a color that uniquely determines that Wang tile. One additional
color is assigned to the rest of the colors of all corner tiles. This procedure
is illustrated in figure 8.13. The corner tile set obtained this way counts four
times as much tiles as the Wang tile set. The number of colors is equal to the
sum of the number of Wang tiles and the number of colors used in the Wang
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Wang tile
set

diagonal
translation

horizontal
translation

vertical
translation

rotation subdivision

13/5 125/50 failed failed 60/21 52/36

14/6 214/86 failed 86/36 94/23 56/40

16/6 87/44 44/24 44/24 49/32 64/44

24/24 203/72 62/42 72/38 67/38 96/72

32/16 114/84 failed failed 90/52 128/96

Table 8.2: The size of aperiodic Wang tile sets constructed with the proposed
construction methods. Each entry in this table is the number of tiles and the
number of colors of the aperiodic Wang tile set constructed from the aperiodic
corner tile set at the corresponding position in table 8.1.

tile set plus one. If the Wang tile set is aperiodic, then the corner tile set will
also be aperiodic.

The sixth column of table 8.1 summarizes the results obtained with this
construction method.

Note that the additional color can be one of the edge colors used in the Wang
tile set (but not one of the colors that uniquely determine the Wang tiles). Also
note that some tiles can be eliminated by grouping certain colors that uniquely
determine the Wang tiles. For example, one of the corner tiles in figure 8.13 is
eliminated in by merging the colors a and b. We were able to reduce the number
of tiles mentioned in table 8.1, but we have not succeeded in constructing a tile
set smaller than the one shown in figure 8.6.

This construction method was recently used by Lukkarila [2006] to show that
the square tiling problem is NP-complete for deterministic tile sets.

8.4 Construction of Aperiodic Wang Tile Sets from

Aperiodic Corner Tile Sets

Constructing an aperiodic Wang tile set from an aperiodic corner tile set is done
by encoding each unique combination of two corner colors along a horizontal or
vertical edge into a single new edge color. The number of tiles in the aperiodic
Wang tile set constructed with this method is the same as the number of tiles
in the corner tile set, and the number of colors is squared at most. Table 8.2
shows the size of the resulting aperiodic Wang tile sets for each of the aperiodic
corner tile sets of table 8.1.

From an aperiodic Wang tile set created this way we can again construct an
aperiodic corner tile set. Table 8.3, 8.4, 8.7, 8.5 and 8.6 show sequences of ape-
riodic tile sets constructed by repeated application of the diagonal translation,
horizontal and vertical translation, rotation and subdivision construction meth-
ods. Note that the number of tiles in the tile sets is not always an increasing
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13/5 14/6 16/6 24/24 32/16

125/13 214/14 87/16 203/24 114/32

125/50 214/86 87/44 203/72 114/84

1240/125 3052/214 286/87 540/203 280/114

1240/418 3052/1208 286/160 540/326 280/204

14810/1240 58910/3052 777/286 2068/540 662/280

14810/4523 58910/19274 777/464 2068/990 662/512

160168/14810 1213029/58910 1642/777 7092/2068 1124/662

. . . . . . . . . . . . . . .

Table 8.3: The size of aperiodic Wang and corner tile sets constructed by
repeated application of the diagonal translation method.

13/5 14/6 16/6 24/24 32/16

failed failed 44/6 62/12 failed

44/24 62/42

138/24 156/42

138/82 156/104

438/82 436/104

438/271 436/272

1406/271 1154/272

. . . . . .

Table 8.4: The size of aperiodic Wang and corner tile sets constructed by
repeated application of the horizontal translation method.

13/5 14/6 16/6 24/24 32/16

60/9 94/9 49/12 67/24 90/28

60/21 94/23 49/32 67/38 90/52

126/42 210/46 113/52 171/76 212/104

126/84 210/136 113/80 171/118 212/164

336/149 596/204 257/160 367/224 464/308

336/228 596/372 257/226 367/292 464/386

702/456 1306/744 545/416 801/584 972/772

. . . . . . . . . . . . . . .

Table 8.5: The size of aperiodic Wang and corner tile sets constructed by
repeated application of the rotation method.
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13/5 14/6 16/6 24/24 32/16

52/19 56/21 64/23 96/49 128/49

52/36 56/40 64/44 96/72 128/96

208/89 224/97 256/109 384/169 512/225

208/176 224/192 256/216 384/336 512/448

832/385 896/417 1024/473 1536/721 2048/961

832/768 896/832 1024/944 1536/1440 2048/1920

3328/1601 3584/1729 4096/1969 6144/2977 8192/3969

. . . . . . . . . . . . . . .

Table 8.6: The size of aperiodic Wang and corner tile sets constructed by
repeated application of the subdivision method.

13/5 14/6 16/6 24/24 32/16

failed 86/6 44/6 72/12 failed

86/36 44/24 72/38

504/36 138/24 192/38

504/216 138/82 192/122

2968/216 438/82 564/122

2968/1272 438/271 564/378

17464/1272 1406/271 1584/378

. . . . . . . . .

Table 8.7: The size of aperiodic Wang and corner tile sets constructed by
repeated application of the vertical translation method.
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sequence.

8.5 Conclusion

In this chapter we have studied corner tiles in the context of the tiling problem
and aperiodic tile sets. We have shown how to construct an aperiodic set of
square tiles with colored corners from an aperiodic set of Wang tiles, and vice
versa. We have constructed several new aperiodic sets of Wang tiles and corner
tiles. The smallest set of corner tiles we have constructed consists of 44 tiles
over 6 colors. We have shown that, if W and C are the cardinalities of the
smallest aperiodic Wang tile set and the smallest aperiodic corner tile set, then
W ≤ C ≤ 4W . Grünbaum and Shepard [1986] state that “every new aperiodic
tile set is clearly of interest”. We hope that the wide range of aperiodic tile
sets we construct in this chapter sheds some new light on aperiodic tilings.
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Chapter 9

Conclusion

9.1 Summary

A common problem in the field of computer graphics is the synthesis and storage
of complex signals, such as point distributions or textures. In this dissertation
we have presented tile-based methods to solve this problem. Instead of syn-
thesizing a complex signal directly, the signal is synthesized over a small set
of tiles. Arbitrary large amounts of that signal can then be generated very
efficiently simply by generating a stochastic tiling.

We have introduced corner tiles as an alternative for Wang tiles. In contrast
with Wang tiles, corner tiles also constrain the four diagonally neighboring
tiles, and are therefore not subject to the corner problem. We have revisited
the most important applications of Wang tiles, and we have shown that corner
tiles have substantial advantages for each of these applications.

We have presented direct stochastic tiling algorithms for Wang tiles and cor-
ner tiles. In contrast with scanline stochastic tiling algorithms, direct stochastic
tiling algorithms are capable of evaluating a stochastic tiling locally, without
explicitely constructing and storing the tiling up to that point. We have also
presented long-period hash functions for direct stochastic tiling algorithms.

We have demonstrated tile-based methods for generating Poisson disk dis-
tributions and for synthesizing textures. Tile-based methods not only allow
to efficiently generate Poisson disk distributions or synthesize textures, but
also enable new applications such as tile-based texture synthesis and a pro-
cedural object distribution function. This new texture basis function allows
to distribute procedural objects over a procedural background, using intuitive
parameters such as the scale, size and orientation of the objects.

We have presented an overview of applications of tiled Poisson disk distri-
butions, and a detailed comparison of methods for generating Poisson disk
distributions. We have also studied corner tiles in the context of the tiling
problem and aperiodic tile sets, and we have introduced several new aperiodic
sets of Wang tiles and corner tiles.

The tile-based methods we have presented in this dissertation are a valuable
tool for computer graphics, and help to keep up with the continuously increasing
demand for more complexity and realism in digitally synthesized images.
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9.2 Contributions

This is a detailed overview of the contributions of this dissertation. A complete
list of publications is provided on page 173.

Chapter 2

• The concept of corner tiles is an original contribution. Corner tiles were
presented in [Lagae and Dutré, 2006a]. In concurrent work, Ng et al.
[2005] presented ω-tiles, a patch combination strategy for texture tiles
(see section 5.3), which basically are corner tiles.

• The enumeration schemes for Wang tile sets and corner tile sets (see
section 2.8) are original contributions. The enumeration scheme for corner
tile sets was presented in [Lagae and Dutré, 2006a], although we already
used the enumeration scheme for Wang tile sets since [Lagae and Dutré,
2005a].

Chapter 3

• The scanline stochastic tiling algorithm for corner tiles (see subsection 3.2.2)
is an original contribution. This algorithm was presented in [Lagae and
Dutré, 2006a]. However, the algorithm is only a simple extension of the
scanline stochastic tiling algorithm for Wang tiles of Cohen et al. [2003]
(see subsection 3.2.1).

• The concept of direct stochastic tiling algorithms (see section 3.3) is an
original contribution. The direct stochastic tiling algorithm for corner
tiles (see subsection 3.3.1) was presented in [Lagae and Dutré, 2006a]. The
direct stochastic tiling algorithm for Wang tiles using two hash functions
and the direct stochastic tiling algorithm for compact sets of Wang tiles
(see subsection 3.3.2) were presented in [Lagae and Dutré, 2005a]. The
direct stochastic tiling algorithm for Wang tiles using a hash function
defined at the tile edges (see subsection 3.3.2) was not published before.
In concurrent work, Wei [2004] presented a tiling algorithm for Wang tiles
similar in spirit to the direct stochastic tiling algorithms presented in this
dissertation.

• Long-period hash functions based on permutation tables (see section 3.4)
are an original contribution. This family of hash functions was presented
in [Lagae and Dutré, 2006d].

Chapter 4

• The relative radius specification scheme for Poisson disk distributions (see
subsection 4.2.3) is an original contribution. This radius specification
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scheme was presented in [Lagae and Dutré, 2005a], and reformulated in
terms of packing density in [Lagae and Dutré, 2006e].

• Edge-based Poisson disk tiles (see section 4.3) are an original contribution.
Edge-based Poisson disk tiles were presented in [Lagae and Dutré, 2005a].
At that time, edge-based Poisson disk tiles were the only method capable
of efficiently generating high-quality Poisson disk distributions.

• Template Poisson disk tiles (see section 4.4) are an original contribution.
Template Poisson disk tiles were presented in [Lagae and Dutré, 2005b].

• Corner-based Poisson disk tiles (see section 4.5) are an original contribu-
tion. Corner-based Poisson disk tiles were presented in [Lagae and Dutré,
2006a].

• The relative radius specification scheme for Poisson sphere distributions,
three-dimensional corner tiles, and corner-based Poisson disk tiles (see
section 4.6) are original contributions. These were presented in [Lagae
and Dutré, 2006e].

• The tile-based method for generating nonuniform Poisson disk distribu-
tions (see section 4.7) is an original contribution. This method was pre-
sented in [Lagae and Dutré, 2006c]. In concurrent work, Kopf et al. [2006]
presented a somewhat similar technique.

Chapter 5

• The methods for tile-based texture synthesis (see section 5.3) were devel-
oped by Cohen et al. [2003], Burke, and Ng et al. [2005]. The texture
tile sets based on corner tiles were generated with the help of Wang Yue,
Tuen-Young Ng and Tiow-Seng Tan from the National University of Sin-
gapore, using the method of Ng et al. [2005].

• The tile-based texture mapping algorithm based on corner tiles (see sec-
tion 5.4) is an original contribution. This algorithm was presented in [La-
gae and Dutré, 2006a]. The tile-based texture mapping algorithm based
on corner tiles is a revision of the tile-based texture mapping algorithm
based on Wang tiles of Wei [2004].

• The solutions to the corner tile packing problem (see section 5.5.3) and the
puzzles derived from the tile packing problem (see section 5.5.4) are orig-
inal contributions. These were presented in [Lagae and Dutré, 2006a,f].
The Wang tile packing problem (see section 5.5.2) was solved by Wei
[2004].
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Chapter 6

• The comparison of methods for generating Poisson disk distributions is
an original contribution. Most of this comparison is presented in [Lagae
and Dutré, 2006b]. The sampling performance results were not published
before.

Chapter 7

• The applications discussed in this chapter, with the exception of procedu-
ral texturing (see section 7.6), were already known. However, tile-based
Poisson disk distributions open up new possibilities for each of these ap-
plications.

• The procedural object distributions functions (see section 7.6) are original
contributions. The two-dimensional procedural object distribution func-
tion was presented in [Lagae and Dutré, 2005a], and the three-dimensional
procedural object distribution function was presented in [Lagae and Dutré,
2006e].

Chapter 8

• The methods for constructing aperiodic corner tile sets from aperiodic
Wang tile sets (see section 8.3), the method for constructing aperiodic
Wang tile sets from aperiodic corner tile sets (see section 8.4), and the
aperiodic corner tile sets and Wang tile sets presented in this chapter are
original contributions. These are presented in [Lagae et al., 2006]. This
work was done in collaboration with Jarkko Kari from the Department
of Mathematics of the University of Turku.

9.3 Future Work

This dissertation provides a complete set of workable algorithms for tile-based
methods using corner tiles. However, some problems remain unsolved. We have
not presented a direct stochastic tiling algorithm for compact sets of corner
tiles (see section 3.3), and we have not found a constructive method for solving
the corner tile packing problem (see section 5.5.3). We hope that these open
problems will eventually be solved.

There are several opportunities for future work.

• Efficiently generating nonuniform Poisson disk distributions remains a
challenging problem. This problem was already explored by Ostromoukhov
et al. [2004], Kopf et al. [2006], and in section 4.7, but none of the pre-
sented solutions is satisfactory.
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9.3 Future Work

• Exploring more advanced texture synthesis methods, such as the one of
Liu et al. [2004] and Kwatra et al. [2005], for synthesizing a texture over
a set of Wang tiles or corner tiles could be useful to further improve the
quality of tile-based texture synthesis.

• In this dissertation we have applied tile-based methods to Poisson disk
distributions and textures. It would be interesting to apply tile-based
methods to other kinds of complex signals.

• A promising venue for further research is tiling complex signals over a
mesh, in the spirit of Neyret and Cani [1999] and Fu and Leung [2005].
Tiling complex signals over other domains, such as a spherical domain,
would also be interesting.

We hope that this dissertation will inspire future work, and that future tile-
based methods will consider corner tiles as a viable alternative for Wang tiles.
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• Ares Lagae and Philip Dutré. An efficient ray-quadrilateral intersection
test. Journal of Graphics Tools, 10(4):23–32, 2005.
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Samenvatting

Veel complexe signalen, zoals puntenverdelingen en texturen, kunnen niet effi-
ciënt gesynthetiseerd en opgeslaan worden. In deze thesis stellen we tegelgeba-
seerde methodes voor om dit probleem op te lossen. In plaats van een complex
signaal te synthetiseren wanneer nodig, wordt het signaal vooraf gesyntheti-
seerd over een kleine verzameling tegels. Willekeurig grote hoeveelheden van
dit signaal kunnen dan efficiënt gesynthetiseerd worden wanneer nodig, door
het genereren van een stochastische tegeling.

Tegelgebaseerde methodes zijn traditioneel gebaseerd op Wangtegels. De
gekleurde randen van Wangtegels beperken enkel de vier direct aanliggende
tegels, maar niet de vier schuin aanliggende tegels. Dit probleem veroorzaakt
ongewenste artefacten in de getegelde signalen en maakt methodes om signalen
te synthetiseren over een verzameling Wangtegels ingewikkelder. Om dit pro-
bleem op te lossen stellen we hoektegels voor. Hoektegels zijn vierkante tegels
met gekleurde hoeken in plaats van randen. De gekleurde hoeken van Wangte-
gels beperken alle aanliggende tegels. We herzien de belangrijkste toepassingen
van Wangtegels en we tonen aan dat hoektegels belangrijke voordelen hebben
voor elk van deze toepassingen.

Stochastische tegelingen worden traditioneel gegenereerd met lijngebaseerde
stochastische tegelalgoritmes. Deze algoritmes slaan echter de hele tegeling op
en zijn daardoor niet efficiënt. Om dit probleem om te lossen introduceren
we directe stochastische tegelalgoritmes voor Wangtegels en hoektegels. Deze
algoritmes zijn in staat om een stochastische tegeling lokaal te evalueren, zonder
expliciet de ganse tegeling tot op dat punt te construeren en op te slaan. We
introduceren ook hashfuncties met een lange periode om zeer grote tegelingen
te genereren.

Poissonschijfverdelingen en texturen zijn twee voorbeelden van complexe sig-
nalen. We stellen tegelgebaseerde methodes voor om Poissonschijfverdeling te
genereren en om texturen te synthetiseren. Tegelgebaseerde methodes laten
niet enkel toe om efficiënt Poissonschijfverdelingen te genereren en texturen
te synthetiseren, maar maken ook nieuwe toepassingen mogelijk, zoals een te-
gelgebaseerd textuurafbeeldingsalgoritme en een procedurale objectverdelings-
functie. Deze nieuwe textuurbasisfunctie laat toe om procedurale objecten te
verdelen over een procedurale achtergrond, gebruik makende van intüıtieve pa-
rameters zoals de schaal, grootte en oriëntatie van de objecten. We geven
tevens een overzicht van toepassingen van getegelde Poissonschijfverdelingen
en een gedetailleerde vergelijking van verschillende methodes om Poissonschijf-
verdelingen te genereren. We bestuderen ook hoektegels in de context van het
tegelprobleem en aperiodische tegelverzamelingen en we construeren verschil-
lende nieuwe aperiodische verzamelingen Wangtegels en hoektegels.

De tegelgebaseerde methodes die we in deze thesis voorstellen zijn een waar-
devol middel voor computer graphics en helpen om bij te blijven met de steeds
toenemende vraag naar meer complexiteit en realisme in computergegenereerde
beelden.
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1 Inleiding

Het genereren en opslaan van complexe signalen, zoals puntenverdelingen en
texturen, is een algemeen probleem in computer graphics. Voor veel van de-
ze signalen zijn geen efficiënte synthesealgoritmes beschikbaar en het opslaan
van grote hoeveelheden van deze signalen is duur. In deze thesis stellen we
tegelgebaseerde algoritmes voor om dit probleem op te lossen.

In plaats van een complex signaal te genereren wanneer nodig, wordt het
vooraf gesynthetiseerd over een kleine verzameling Wangtegels of hoektegels.
Willekeurig grote hoeveelheden van dit signaal kunnen dan efficiënt gegenereerd
worden wanneer nodig, door het genereren van een stochastische tegeling.

In deze thesis stellen we tegelgebaseerde methodes voor om Poissonschijfver-
delingen te genereren en om texturen te synthetiseren. Deze methodes laten
toe om bestaande toepassingen te verbeteren, maar maken ook nieuwe toepas-
singen mogelijk, zoals een tegelgebaseerd textuurafbeeldingsalgoritme en een
procedurale objectverdelingsfuntie.

Overzicht

In sectie 2 introduceren we tegelingen, Wangtegels en hoektegels. Sectie 3 in-
troduceert efficiënte algoritmes voor het genereren van stochastische tegelingen
met Wangtegels en hoektegels. In sectie 4 stellen we tegelgebaseerde methodes
voor om Poissonschijfverdelingen te genereren. Sectie 5 bespreekt tegelgeba-
seerde methodes voor textuursynthese en textuurafbeelding. In sectie 6 verge-
lijken we verschillende methodes om Poissonschijfverdelingen te genereren in
detail. Sectie 7 geeft een overzicht van verschillende toepassingen van Poisson-
schijfverdelingen. In sectie 8 introduceren we methodes om kleine aperiodische
verzamelingen hoektegels te construeren. We besluiten in sectie 9.

2 Wangtegels en Hoektegels

De tegelgebaseerde methodes die we in deze thesis voorstellen zijn gebaseerd
op Wangtegels en hoektegels. In deze sectie introduceren we tegelingen, Wang-
tegels en hoektegels.

2.1 Tegelingen

Tegelingen vinden we overal terug. Denken maar aan het Alhambra in Granada
en het werk van de Nederlandse kunstenaar M. C. Escher.

Een tegeling (Engels: tiling) is een configuratie van vlakke figuren die het
vlak bedekt zonder gaten en overlappingen. Elke vlakke figuur is een tegel
(Engels: tile). De verzameling van vlakke figuren gebruikt in de tegeling is de
tegelverzameling (Engels: tile set).
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Figuur 1: De volledige verzameling Wangtegels over twee kleuren.

Een tegeling is periodisch (Engels: periodic) als er een verschuiving bestaat
die de tegeling bewaart. Als dit niet het geval is, dan is de tegeling niet-
periodisch (Engels: non-periodic). Een aperiodische (Engels: aperiodic) te-
gelverzameling is een tegelverzameling waarmee geen periodische tegelingen
kunnen geconstrueerd worden. Een tegeling gegenereerd met een aperiodische
tegelverzameling is een aperiodische tegeling.

Het klassieke werk over tegelingen is Tilings and Patterns [Grünbaum and
Shepard, 1986].

2.2 Wangtegels

Wangtegels (Engels: Wang tiles) zijn vierkante tegels. De tegels hebben de-
zelfde grootte en elke rand heeft een bepaalde kleur. Deze kleuren worden
gecombineerd op verschillende manieren. Om het vlak te tegelen met een ver-
zameling Wangtegels mag elke tegel een willekeurig aantal keer gebruikt worden.
Aaneensluitende randen moeten echter steeds dezelfde kleur hebben. Figuur 1
toont een verzameling Wangtegels en figuur 2 toont een tegeling gegenereerd
met Wangtegels.

Wangtegels werden voorgesteld door Wang in 1961 en werden populair door
een artikel in Scientific American [Wang, 1965]. In deze artikels bestudeerde
Wang het tegelprobleem met Wangtegels. Wang stelde een algoritme voor om
te bepalen of een gegeven verzameling Wangtegels het vlak kon tegelen.

Wangtegels werden gëıntroduceerd in computer graphics door Stam [1997]
en werden populair door een artikel van Cohen et al. [2003]. In computer
graphics worden Wangtegels gebruikt voor de synthese en opslag van complexe
signalen. In plaats van een complex signaal te genereren wanneer nodig, wordt
het vooraf gesynthetiseerd over een kleine verzameling Wangtegels. Willekeurig
grote hoeveelheden van dit signaal kunnen dan efficiënt gegenereerd worden
wanneer nodig, door het genereren van een stochastische tegeling.

2.3 Hoektegels

Een nadeel van Wangtegels is dat ze hun diagonale buren niet beperken. Hier-
door kunnen Wangtegels geen continüıteit over hoeken verzekeren in het ge-
genereerde signaal. Dit is gëıllustreerd in figuur 3(a). Om het hoekprobleem
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Figuur 2: Een tegeling met de volledige verzameling Wangtegels over drie kleu-
ren.

(a) (b)

Figuur 3: Het hoekprobleem. (a) Wangtegels beperken enkel hun direct aan-
liggende buren en niet hun schuin aanliggende buren. (b) Hoektegels beperken
zowel hun direct aanliggende als hun schuin aanliggende buren.

Figuur 4: De volledige verzameling hoektegels over twee kleuren.
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Figuur 5: Een tegeling met de volledige verzameling hoektegels over drie kleu-
ren.

(Engels: corner problem) op te lossen stellen we hoektegels (Engels: corner
tiles) voor. Hoektegels zijn gelijkaardig aan Wangtegels, maar hun gekleurde
hoeken verzekeren continüıteit over zowel randen als hoeken in het gegenereer-
de signaal. Dit is gëıllustreerd in figuur 3(b). Figuur 4 toont een verzameling
hoektegels en figuur 5 toont een tegeling gegenereerd met hoektegels.

3 Tegelalgoritmes voor Wangtegels en Hoektegels

Na het synthetiseren van een complex signaal over een verzameling Wangte-
gels of hoektegels kan een willekeurig grote hoeveelheid van het signaal efficiënt
gegenereerd worden door middel van een tegeling. Omdat herhaling in het
signaal visueel storend is, gebruiken toepassingen in computer graphics wille-
keurige of stochastische tegelingen. In deze sectie bespreken we twee soorten
stochastische tegelalgoritmes. We bespreken tevens hashfuncties, een essentieel
ingrediënt van stochastische tegelalgoritmes.

3.1 Lijngebaseerde Stochastische Tegelalgoritmes

Stochastische tegelingen worden traditioneel gegenereerd met lijngebaseerde
stochastisch tegelalgoritmes (Engels: scanline stochastic tiling algorithms). We
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Figuur 6: Een lijngebaseerd stochastisch tegelalgoritme voor hoektegels.

Figuur 7: Een direct stochastisch tegelalgoritme voor hoektegels.

introduceren een lijngebaseerd stochastisch tegelalgoritme voor hoektegels, ge-
baseerd op een gelijkaardig algoritme voor Wangtegels [Cohen et al., 2003].

De hoektegels worden tegel per tegel geplaatst, van links naar rechts en van
boven naar onder. Een willekeurige tegel wordt gekozen voor de linkerboven-
hoek. De rij wordt aangevuld met tegels waarvan de hoekkleuren overeenkomen
met de reeds geplaatste tegels. Dit is gëıllustreerd in figuur 6. Om een niet-
periodische tegeling te garanderen, is de verzameling hoektegels zo opgesteld
dat er voor elke mogelijke combinatie van reeds aanwezige hoekkleuren ten
minste twee tegels zijn. Zo kan er bij het toevoegen van een tegel steeds een
willekeurige keuze gemaakt worden.

3.2 Directe Stochastische Tegelalgoritmes

Een nadeel van lijngebaseerde stochastische tegelalgoritmes is dat ze niet toela-
ten om efficiënt een tegeling lokaal te evalueren. Om dit probleem op te lossen
introduceren we directe stochastische tegelalgoritmes (Engels: direct stochastic
tiling algorithms) voor Wangtegels en hoektegels.

Directe stochastische tegelalgoritmes zijn gebaseerd op hashfuncties gedefi-
nieerd over het integer rooster. Deze functies associëren een willekeurige kleur
met elk roosterpunt. Dit gekleurd rooster wordt getransformeerd naar een
tegeling. Dit is gëıllustreerd in figuur 7. De hashfuncties die we gebruiken
kunnen lokaal geëvalueerd worden en zijn efficiënt in ruime en tijd. Het directe
stochastisch tegelalgoritme voor hoektegels is bijzonder eenvoudig, omdat het
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gekleurde rooster equivalent is met de tegeling. Directe stochastische tegelal-
goritmes voor Wangtegels zijn iets ingewikkelder.

3.3 Hashfuncties

Hashfuncties (Engels: hash functions) gedefinieerd over het integer rooster as-
sociëren een willekeurig getal met elk roosterpunt. Hashfuncties zijn een essenti-
eel ingrediënt van stochastische tegelalgoritmes, maar hebben ook verschillende
andere toepassingen, zoals procedurale modellering.

Een ééndimensionale hashfunctie h is traditioneel gedefinieerd als [Perlin,
2002]

h(x) = P [x%N ], (1)

waarbij x een geheel getal is, % de modulodeling voorstelt en P een permu-
tatietabel met grootte N is. Een permutatietabel met grootte N bevat een
willekeurige permutatie van de getallen {0, 1, . . . , N − 1}. Deze hashfunctie is
een periodische functie met periode N .

Een nadeel van traditionele hashfuncties is dat de periode van de functie rela-
tief kort is in verhouding tot de grootte van de permutatietabel. Daarom stellen
we hashfuncties voor met een lange periode (Engels: long-period hash functi-
ons). Een ééndimensionale hashfunctie h met een lange periode is gedefinieerd
als

h(x) =

(

M−1
∑

i=0

Pi[x%Ni]

)

%Nj , (2)

waarbij P0, P1, . . . , PM−1 M permutatietabellen met groottes N0, N1, . . . , NM−1

zijn en Nj één van deze groottes is. Deze hashfunctie is een periodische functie
met als periode het kleinste gemeen veelvoud van N0, N1, . . . , NM−1, terwijl de

gecombineerde grootte van de permutatietabellen slechts
∑M−1

i=0
Ni is.

Een hashfunctie met lange periode gebaseerd op 7 permutatietabellen met
als grootte 17, 19, 23, 24, 29, 31, 27 heeft een periode van 5.930.659.848, terwijl
een traditionele hashfunctie gebaseerd op één permutatietabel met als grootte
180, de gecombineerde grootte van deze permutatietabellen, een periode heeft
van slechts 180.

4 Tegelgebaseerde Methodes voor het Genereren

van Poissonschijfverdelingen

In computer graphics worden Wangtegels en hoektegels gebruikt voor de syn-
these van complexe signalen. Poissonschijfverdelingen zijn puntenverdelingen
die moeilijk efficiënt te genereren zijn. In deze sectie stellen we methodes voor
om Poissonschijfverdelingen te construeren over een verzameling Wangtegels of
hoektegels.
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4.1 Poissonschijfverdelingen

Een Poissonverdeling (Engels: Poisson distribution) is een willekeurige pun-
tenverdeling waarin de punten en de coördinaten van de punten geen verband
met elkaar hebben. Een Poissonschijfverdeling (Engels: Poisson disk distributi-
on) is een tweedimensionale Poissonverdeling waarin de punten gescheiden zijn
door een minimale afstand. De helft van deze afstand wordt de straal r van
de puntenverdeling genoemd. Als een schijf met straal r op elk punt geplaatst
wordt, dan overlappen de schijven niet.

Poissonschijfverdelingen werden gëıntroduceerd in computer graphics in de
context van niet-uniforme bemonstering. Voor computer graphics is de Poisson-
schijfverdelingen één van de beste stochastische bemonsteringspatronen [Dippé
and Wold, 1985; Cook, 1986; Mitchell, 1987].

Traditioneel worden Poissonschijfverdelingen gegenereerd met dartgooien (En-
gels: dart throwing) [Cook, 1986], relaxatiedartgooien (Engels: relaxation dart
throwing) [McCool and Fiume, 1992] en Lloyd’s relaxatiemethode (Engels:
Lloyd’s relaxation method) [McCool and Fiume, 1992].

De straal r van een Poissonschijfverdelingen wordt typisch uitgedrukt als een
absoluut getal. Omdat dit niet praktisch is stellen we het relatieve straalspe-
cificatieschema (Engels: relative radius specification scheme) voor. De straal
wordt uitgedrukt als een fractie ρ ∈ [0, 1] van de maximale straal rmax

r = ρ rmax. (3)

Voor een puntenverdeling van N punten wordt de maximale straal rmax gegeven
door

rmax =

√

1

2
√

3N
. (4)

De relatieve straal ρ is een maat voor de kwaliteit van de Poissonschijfverde-
lingen. Een goede Poissonschijfverdeling moet een relatieve straal hebben die
hoog is (ρ ≥ 0.65), maar ook niet te hoog (ρ ≤ 0.85).

4.2 Poissonschijftegels Gebaseerd op Hoektegels

Poissonschijftegels gebaseerd op hoektegels (Engels: corner-based Poisson disk
tiles) is een methode om een Poissonschijfverdeling te genereren in elke tegel
van een verzameling hoektegels, zodat elke mogelijke tegeling resulteert in een
geldige Poissonschijfverdeling.

Een punt in een tegel kan naargelang zijn positie punten in drie, één of
geen enkele aanliggende tegel bëınvloeden. Op deze manier wordt een tegel
onderverdeeld in hoekregio’s (Engels: corner regions), randregio’s (Engels: edge
regions) en een inwendige regio (Engels: interior region). Samen worden deze
regio’s de Poissonschijftegelregio’s (Engels: Poisson disk regions) genoemd. Dit
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(a) (b)

Figuur 8: De Poissonschijftegelregio’s en de aangepaste Poissonschijftegelre-
gio’s. (a) De Poissonschijfstraal r bepaalt hoekregio’s, randregio’s en een in-
wendige regio. (b) De hoekregio’s worden aangepast zodat de afstand tussen
regio’s van hetzelfde type tenminste 2r bedraagt.

Figuur 9: De tegeling bekomen door de aangepaste Poissonschijftegelregio’s te
combineren met de volledige verzameling hoektegels over drie kleuren. Deze
tegeling werd gegenereerd van de tegeling getoond in figuur 5.
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(a) (b) (c) (d)

Figuur 10: De generatie van een Poissonschijfverdeling in een hoektegel van
een verzameling Poissonschijftegels gebaseerd op hoektegels. (a) De hoektegel.
(b) Een Poissonschijfverdeling wordt gegenereerd. (c) De Poissonschijfverdeling
wordt geoptimaliseerd met Lloyd’s relaxatiemethode. (d) De hoektegel wordt
uit de Poissonschijfverdeling gesneden.

(a) (b) (c) (d)

Figuur 11: De generatie van een Poissonschijfverdeling in een verticale rand-
tegel van een verzameling Poissonschijftegels gebaseerd op hoektegels. (a) De
randtegel en de overeenkomende hoektegels worden geassembleerd. (b) Een
Poissonschijfverdeling wordt gegenereerd. (c) De Poissonschijfverdeling wordt
geoptimaliseerd met Lloyd’s relaxatiemethode. (d) De randtegel wordt uit de
Poissonschijfverdeling gesneden.
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(a) (b)

(c) (d)

Figuur 12: De generatie van een Poissonschijfverdeling in een tegel van een
verzameling Poissonschijftegels gebaseerd op hoektegels. (a) De inwendige tegel
en de overeenkomende hoektegels en randtegels worden geassembleerd. (b)
Een Poissonschijfverdeling wordt gegenereerd. (c) De Poissonschijfverdeling
wordt geoptimaliseerd met Lloyd’s relaxatiemethode. (d) De tegel wordt uit de
Poissonschijfverdeling gesneden.
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Figuur 13: Een tegeling met een verzameling Poissonschijftegels gebaseerd op
hoektegels.
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Figuur 14: Een Poissonschijfverdeling gegenereerd met een verzameling Pois-
sonschijftegels gebaseerd op hoektegels. Deze Poissonschijfverdeling werd ge-
genereerd van de tegeling getoond in figuur 13.
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is gëıllustreerd in figuur 8(a). De grootte van deze regio’s wordt bepaald door
de straal r van de Poissonschijfverdeling.

Om de invloed tussen de verschillende regio’s te beperken worden de hoek-
regio’s vergroot zodat de afstand tussen de randregio’s 2r wordt. Deze nieuwe
regio’s worden de aangepaste Poissonschijftegelregio’s (Engels: modified Pois-
son disk regions) genoemd. Dit is gëıllustreerd in figuur 8(b).

Door de aangepaste Poissonschijftegelregio’s te combineren met een verza-
meling hoektegels wordt een nieuwe tegeling verkregen. Dit is gëıllustreerd in
figuur 9. In deze tegeling worden drie soorten tegels gebruikt. Hoektegels (En-
gels: corner tiles) komen overeen met de unie van vier aangepaste hoekregio’s,
randtegels (Engels: edge tiles) komen overeen met de unie van twee aangepaste
randregio’s en inwendige tegels (Engels: interior tiles) komen overeen met de
aangepaste inwendige regio’s.

Eerst wordt een Poissonschijfverdeling gegenereerd in de hoektegels. Dan
wordt een Poissonschijfverdeling gegenereerd in de randtegels. De punten in
de hoektegels worden hierbij niet meer aangepast. Tenslotte wordt een Pois-
sonschijfverdeling gegenereerd in de inwendige tegels. Dan worden de Poisson-
schijftegels uitgesneden. Dit is gëıllustreerd in figuur 10, figuur 11 en figuur 12.

Elke tegeling met de Poissonschijftegels resulteert in een geldige Poissonschijf-
verdeling. Figuur 13 toont een tegeling met Poissonschijftegels en figuur 14
toont de corresponderende Poissonschijfverdeling.

4.3 Andere Methodes

Naast Poissonschijftegels gebaseerd op hoektegels stellen we verschillende an-
dere tegelgebaseerde methodes voor om Poissonschijfverdelingen te genereren.

Poissonschijftegels gebaseerd op Wangtegels (Engels: edge-based Poisson disk
tiles) is een voorloper van Poissonschijftegels gebaseerd op hoektegels. Het
gebruik van Wangtegels resulteert door het hoekprobleem echter in een te grote
verzameling Poissonschijftegels.

Poissonschijftegels gebaseerd op een sjabloon (Engels: template Poisson disk
tiles) is een methode opgesteld om de invloed van de grootte van de verzameling
Poissonschijftegels op de kwaliteit van de Poissonschijfverdeling te onderzoeken.
Deze methode is in de praktijk echter niet bruikbaar.

Naast tegelgebaseerde methodes voor het genereren van Poissonschijfverde-
lingen stellen we ook tegelgebaseerde methodes voor om Poissonbolverdelingen
(Engels: Poisson sphere distributions) en niet-uniforme Poissonschijfverdelin-
gen (Engels: nonuniform Poisson disk distributions) te genereren.

5 Tegelgebaseerde Methodes voor Textuursynthese

In computer graphics worden Wangtegels en hoektegels gebruikt voor de syn-
these van complexe signalen. Texturen zijn complexe signalen die moeilijk te
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(a) (b) (c) (d)

Figuur 15: De synthese van een voorbeeldtextuur over een verzameling tex-
tuurtegels gebaseerd op hoektegels. (a) Voor elke kleur wordt een vierkante lap
gekozen in de voorbeeldtextuur (de rode, groene en gele lap). (b) De lappen
worden geassembleerd volgens de hoekkleuren van de tegel. (c) De tegel wordt
uitgesneden. (d) De naad wordt bedekt met een nieuwe onregelmatige lap van
de voorbeeldtextuur (de grijze lap).

Figuur 16: Texturen gesynthetiseerd met textuurtegels gebaseerd op hoektegels.
Deze texturen werden gesynthetiseerd door het genereren van een stochastische
4× 4 tegeling met een verzameling textuurtegels gebaseerd op hoektegels.

synthetiseren zijn. In deze sectie bespreken we een methode om een textuur te
synthetiseren over een verzameling Wangtegels of hoektegels en een textuuraf-
beeldingsalgoritme om grote niet-herhalende texturen te genereren.

5.1 Tegelgebaseerde Textuursynthese

Textuurafbeelding (Engels: texture mapping) is een methode om het realisme
van beelden gegenereerd met de computer te verhogen zonder geometrie toe te
voegen. In plaats daarvan wordt een textuur afgebeeld op het oppervlak van
een object.

Een textuur kan op verschillende manieren verkregen worden. Eén van de-
ze manieren is textuursynthese (Engels: texture synthesis). Hierbij wordt een
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Figuur 17: Tegelgebaseerde textuurafbeelding gebaseerd op hoektegels. De
textuur op het vlak wordt interactief gegenereerd op de grafische kaart ge-
bruik makende van het tegelgebaseerde textuurafbeeldingsalgoritme gebaseerd
op hoektegels.

nieuwe textuur gegenereerd van een voorbeeldtextuur. Tegelgebaseerde tex-
tuursynthese (Engels: tile-based texture synthesis) maakt gebruik van tegels
om texturen te synthetiseren.

Om een textuur te synthetiseren over een verzameling hoektegels gebruiken
we de methode van Ng et al. [2005]. Voor elke kleur gebruikt in de verzameling
hoektegels wordt een vierkante lap (Engels: patch) gekozen in de voorbeeldtex-
tuur. Voor elke hoektegel worden de vier overeenstemmende lappen samenge-
legd. Hieruit wordt de tegel gesneden. Tenslotte wordt de kruisvormige naad
bedekt met een nieuwe lap uit de voorbeeldtextuur. Dit is gëıllustreerd in
figuur 15. Figuur 16 toont enkele texturen gesynthetiseerd met deze methode.

De methode van Ng et al. [2005] voor het genereren van textuurtegels geba-
seerd op hoektegels is een uitbreiding van de methode van Cohen et al. [2003]
voor het genereren van textuurtegels gebaseerd op Wangtegels. Hoektegels zijn
beter geschikt voor textuursynthese dan Wangtegels omdat elke hoektegel een
potentieel nieuw deel van de voorbeeldtextuur bevat.

5.2 Tegelgebaseerde Textuurafbeelding

Een voordeel van tegelgebaseerde textuursynthese is dat het proces van tex-
tuursynthese opgesplitst wordt in twee stappen. In een eerste stap wordt de
voorbeeldtextuur gesynthetiseerd over een verzameling Wangtegels of hoekte-
gels. In een tweede stap wordt een nieuwe textuur gesynthetiseerd door het
genereren van een stochastische tegeling. Tegelgebaseerde textuurafbeelding
(Engels: tile-based texture mapping) voert deze tweede stap efficiënt uit op de
grafische kaart (Engels: GPU ).

Tegelgebaseerde textuurafbeelding neemt als invoer een voorbeeldtextuur ge-
synthetiseerd over een verzameling Wangtegels of hoektegels en synthetiseert
een willekeurig grote niet-herhalende textuur op de grafische kaart. Dit is
gëıllustreerd in figuur 17. Het doel is om textuurgeheugen, een schaars middel
op de grafische kaart, te besparen. Wei [2004] stelde een algoritme voor ge-
baseerd op Wangtegels. We verbeterden het algoritme van Wei door gebruik
te maken van hoektegels. Het algoritme gebaseerd op hoektegels is sneller en
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reduceert het nodige textuurgeheugen met een factor twee.
De verzameling Wangtegels of hoektegels met de voorbeeldtextuur moet in

een bepaalde configuratie worden aangeboden aan de grafische kaart. Deze con-
figuratie wordt een tegelpakking (Engels: tile packing) genoemd. Voor hoek-
tegels is het berekenen van een tegelpakking een interessant combinatorisch
probleem.

6 Een Vergelijking van Methodes voor het

Genereren van Poissonschijfverdelingen

Poissonschijfverdelingen hebben verschillende toepassingen in computer grap-
hics. Over de jaren heen werden verschillende methodes voorgesteld om Pois-
sonschijfverdelingen te genereren. Deze methodes en de Poissonschijfverdelin-
gen gegenereerd met deze methodes zijn dikwijls heel verschillend. Dit maakt
het moeilijk om de juiste methode te kiezen voor een bepaalde toepassing.
Daarom vergelijken we gedetailleerd de verschillende methodes voor het gene-
reren van Poissonschijfverdelingen.

6.1 Methodologie

Om Poissonschijfverdelingen te vergelijken gebruiken we drie criteria. Een eer-
ste criterium is de relatieve straal van de Poissonschijfverdelingen. Dit is een
belangrijke maat voor de kwaliteit van de verdeling. Een tweede criterium is
het spectrum (Engels: power spectrum) van de Poissonschijfverdelingen. Dit
mag geen grote pieken bevatten en er mag geen energie op lage frequenties aan-
wezig zijn [Yellot, 1982]. Een derde criterium is de bemonsteringsperformantie
(Engels: sampling performance) van de Poissonschijfverdelingen.

6.2 Vergelijking

Dartgooien (Engels: dart throwing) [Cook, 1986] is de meest natuurlijke manier
om een Poissonschijfverdeling te genereren. Het spectrum van deze methode
wordt daarom gebruikt als referentiespectrum. Dartgooien is echter traag en
moeilijk controleerbaar.

Relaxatiedartgooien (Engels: relaxation dart throwing) [McCool and Fiume,
1992] is een verbetering van dartgooien. Deze methode genereert daarenboven
puntenverdelingen die op verschillende schalen aan de Poissonschijfvoorwaarde
voldoen. Relaxatiedartgooien is echter nog steeds traag.

Lloyd’s relaxatiemethode (Engels: Lloyd’s relaxation method) [Lloyd, 1982;
McCool and Fiume, 1992] is de enige methode om Poissonschijfverdelingen met
een hoge relatieve straal te genereren. Deze methode is echter zeer traag.

De methode van Shade et al. [2000] is een uitbreiding van dartgooien naar
Wangtegels. Deze methode is echter niet correct [Cohen et al., 2003].
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Figuur 18: Spectrale analyse van Poissonschijfverdelingen gegenereerd met (a)
dartgooien, (b) relaxatiedartgooien, (c) Lloyd’s relaxatiemethode, (d) de me-
thode van Hiller et al., (e) de methode van Ostromoukhov et al., (f) Poisson-
schijftegels gebaseerd op Wangtegels, (g) Poissonschijftegels gebaseerd op een
sjabloon, (h) Poissonschijftegels gebaseerd op hoektegels, (i) de methode van
Kopf et al.
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De methode van Hiller et al. [2001] is een uitbreiding van Lloyd’s relaxatie-
methode naar Wangtegels. Deze methode convergeert echter slecht en gebruikt
te weinig tegels om goede Poissonschijfverdelingen te genereren.

De methode van Ostromoukhov et al. [2004] genereert niet-uniforme Poisson-
schijfverdelingen. Deze methode kan ook gebruikt worden om Poissonschijfver-
delingen te genereren, maar het spectrum van de verdelingen is relatief slecht.

Poissonschijftegels gebaseerd op Wangtegels is de eerste tegelgebaseerde me-
thode die relatief goede Poissonschijfverdelingen kan genereren. Het aantal
Poissonschijftegels hiervoor nodig is echter veel te groot.

Poissonschijftegels gebaseerd op een sjabloon werd ontwikkeld om de invloed
van de grootte van de verzameling Poissonschijftegels op de kwaliteit van de
Poissonschijfverdeling te onderzoeken. Deze methode genereert echter Poisson-
schijfverdelingen met een relatief slecht spectrum.

Poissonschijftegels gebaseerd op hoektegels is de eerste tegelgebaseerde me-
thode die in staat is om Poissonschijfverdelingen met een relatief goede kwaliteit
te genereren met een aanvaardbaar aantal Poissonschijftegels.

De methode van Jones [2006] en de methode van Dunbar and Humphreys
[2006] zijn efficiënte implementaties van dartgooien. Deze methodes produceren
Poissonschijfverdelingen met een goede kwaliteit, maar zijn niet geschikt voor
interactieve toepassingen en voor toepassingen die Poissonschijfverdelingen met
een grote relatieve straal vereisen.

De methode van Kopf et al. [2006] genereert niet-uniforme Poissonschijfver-
delingen. Deze methode kan ook gebruikt worden om Poissonschijfverdelingen
te genereren, maar de relatieve straal van de Poissonschijfverdelingen is laag en
het spectrum van de verdelingen is relatief slecht.

Het spectrum van Poissonschijfverdelingen gegenereerd met de bovenstaande
methodes wordt getoond in figuur 18.

Voor interactieve toepassingen, toepassingen die Poissonschijfverdelingen met
een grote relatieve straal vereisen en voor grote Poissonschijfverdelingen zijn
tegelgebaseerde methodes de enige optie. Van de tegelgebaseerde methodes is
Poissonschijftegels gebaseerd op hoektegels de beste methode.

7 Toepassingen van Poissonschijfverdelingen

In de vorige secties hebben we verschillende methodes om Poissonschijfverdelin-
gen te genereren besproken en geanalyseerd. Het genereren van Poissonschijf-
verdelingen is natuurlijk geen doel op zich. Poissonschijfverdelingen hebben
verschillende toepassingen in computer graphics. In deze sectie bespreken we
een aantal van deze toepassingen.
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Figuur 19: Procedurale texturen gegenereerd met de procedurale objectverde-
lingsfunctie.

7.1 Procedurale Textuurgeneratie

Procedurale texturen (Engels: procedural textures) zijn texturen gedefinieerd
door een algoritme. Ten opzichte van traditionele texturen hebben procedurale
texturen heel wat voordelen. Procedurale texturen zijn compact, hebben geen
vaste resolutie en grootte en zijn gemakkelijk te parametriseren.

Procedurale texturen worden gegenereerd met behulp van textuurbasisfunc-
ties (Engels: texture basis functions). De meest gekende textuurbasisfunctie is
die van Perlin [Perlin, 1985, 2002]. Naast procedurale texturen worden textuur-
basisfuncties ook gebruikt voor procedurale modellering (Engels: procedural
modeling).

We introduceren een procedurale objectverdelingsfunctie (Engels: procedural
object distribution function), een nieuwe textuurbasisfunctie. Deze textuurba-
sisfunctie evalueert efficiënt een getegelde Poissonschijfverdeling. Aan de hand
hiervan kunnen procedurale objecten verspreid worden over een procedurale
achtergrond, zonder dat de objecten overlappen. De textuurbasisfunctie laat
intüıtieve manipulatie toe van de grootte en oriëntatie van de objecten. Dit is
gëıllustreerd in figuur 19. Dergelijke texturen konden voorheen niet proceduraal
gegenereerd worden.

7.2 Andere Toepassingen

Poissonschijfverdelingen werden gëıntroduceerd in computer graphics in de con-
text van bemonstering. De Poissonschijfverdeling is één van de beste stochas-
tische bemonsteringspatronen [Dippé and Wold, 1985; Cook, 1986; Mitchell,
1987]. De Poissonschijfverdeling wordt echter niet veel gebruikt, vooral omdat
er geen efficiënte algoritmes beschikbaar waren om Poissonschijfverdelingen te
genereren. De tegelgebaseerde methodes die we voorgesteld hebben bieden
hiervoor een oplossing.
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Figuur 20: Procedurale modellering van geometrie met Poissonschijfverdelin-
gen. Om dit beukenbos te modelleren werden meer dan 2000 instantiaties van
vijf beuken verdeeld met behulp van een Poissonschijfverdeling.

Poissonschijfverdelingen worden dikwijls gebruikt voor procedurale model-
lering, geometrische objectverdeling (Engels: geometric object distribution) en
geometrie-instantiëring (Engels: geometry instancing) [Deussen et al., 1998].
Dit is gëıllustreerd in figuur 20. Veel verdelingen van objecten volgen namelijk
een patroon dat gelijkaardig is aan een Poissonschijfverdeling.

Andere toepassingen van Poissonschijfverdelingen zijn niet-fotorealistische
visualisering (Engels: non-photorealistic rendering) [Secord et al., 2002] en we-
tenschappelijke visualisering (Engels: scientific visualization).

8 Kleine Aperiodische Verzamelingen Hoektegels

Wangtegels werden gëıntroduceerd in de context van aperiodische tegelverza-
melingen en werden pas later gebruikt in computer graphics. Hoektegels werden
gëıntroduceerd in de context van computer graphics. In deze sectie bestuderen
we hoektegels in de originele context van aperiodische tegelverzamelingen.

8.1 Aperiodische Tegelverzamelingen

In 1961 bestudeerde Wang het tegelprobleem met Wangtegels. Wang stelde een
algoritme voor om te bepalen of een gegeven verzameling Wangtegels het vlak
kon tegelen. Hierbij veronderstelde Wang dat aperiodische tegelverzamelingen
niet bestonden. In 1966 toonde Berger aan dat dit niet zo was. Berger con-
strueerde de eerste aperiodische tegelverzameling, die 20.426 Wangtegels telde.
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Figuur 21: Een aperiodische verzameling van 44 hoektegels over zes kleuren.
Dit is momenteel de kleinste aperiodische verzameling hoektegels.

Dit was één van de meest opvallende ontdekkingen in het onderzoeksgebied van
tegelingen.

Over de jaren heen werd dit aantal herhaaldelijk teruggebracht. De kleinste
aperiodische verzameling Wangtegels bestaat momenteel uit 13 tegels [Culik,
1996]. Er werden ook verschillende aperiodische tegelingen ontdekt met andere
tegels, bijvoorbeeld de Penrose tegeling [Penrose, 1974]. De vraag of er één
enkele aperiodische tegel bestaat is nog steeds niet opgelost.

Volgens Grünbaum and Shepard [1986] is elke aperiodische tegelverzame-
ling interessant. Daarom construeerden we kleine aperiodische verzamelingen
hoektegels.

8.2 Constructie van Aperiodische Verzamelingen Hoektegels

van Aperiodische Verzamelingen Wangtegels

Omdat Wangtegels en hoektegels gelijkaardig zijn, gebruiken we isomorfismes
tussen aperiodische tegelingen met Wangtegels en aperiodische tegelingen met
hoektegels om aperiodische verzamelingen hoektegels te construeren.

We stellen vijf methodes voor om een aperiodische verzamelingen hoektegels
te construeren van een aperiodische verzameling Wangtegels: diagonale, ho-
rizontale en verticale verschuiving, rotatie en onderverdeling. Deze methodes
worden toegepast op reeds gekende kleine aperiodische verzamelingen Wangte-
gels. Zo worden nieuwe aperiodische verzamelingen hoektegels bekomen.

De meest eenvoudige methode is diagonale verschuiving. Het rooster van de
hoektegels is diagonaal verschoven ten opzichte van het rooster van de Wang-
tegels. Aan elke tegel in de verzameling Wangtegels wordt een unieke kleur
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toegekend. Aan iedere hoek van elke hoektegel wordt vervolgens de kleur van
de overeenkomende Wang tegel toegekend. De aperiodische verzameling hoek-
tegels die zo bekomen wordt, bestaat uit één tegel voor elke geldige combinatie
van vier Wangtegels.

De kleinste aperiodische verzameling hoektegels geconstrueerd met één van
bovenstaande methodes bestaat uit 44 tegels over zes kleuren en is getoond in
figuur 21.

8.3 Constructie van Aperiodische Verzamelingen Wangtegels

van Aperiodische Verzamelingen Hoektegels

Een aperiodische verzameling Wangtegels kan geconstrueerd worden van een
aperiodische verzameling hoektegels door elke combinatie van twee hoekkleu-
ren te vervangen door een nieuwe randkleur. Op deze manier bekomen we
nieuwe aperiodische verzamelingen Wangtegels. We tonen aan dat, als W en C

de groottes zijn van de kleinste aperiodische verzameling Wangtegels en hoek-
tegels, dan W ≤ C ≤ 4W .

9 Besluit

In deze thesis hebben we tegelgebaseerde methodes voorgesteld om efficiënt
complexe signalen te genereren en op te slaan. We hebben aangetoond dat te-
gelgebaseerde methodes in staat zijn om complexe signalen te reproduceren met
hoge kwaliteit en dat hoektegels hiervoor beter geschikt zijn dan Wangtegels.

De belangrijkste bijdragen van deze thesis zijn de introductie van hoektegels,
directe stochastische tegelalgoritmes voor Wangtegels en hoektegels, hashfunc-
ties met een lange periode, het relatieve straalspecificatieschema voor Poisson-
schijfverdelingen, tegelgebaseerde methodes voor het genereren van Poisson-
schijfverdelingen, tegelgebaseerde textuurafbeelding gebaseerd op hoektegels,
de vergelijking van de verschillende methodes voor het genereren van Poisson-
schijfverdelingen, de procedurale objectverdelingsfunctie en de kleine aperiodi-
sche verzamelingen hoektegels en Wangtegels. Deze bijdragen werden gerap-
porteerd in verschillende publicaties (zie bibliografie).

Er zijn verschillende mogelijkheden voor verder onderzoek. Het efficiënt ge-
nereren van niet-uniforme Poissonschijfverdelingen is nog steeds een uitdagend
probleem. De technieken voorgesteld in deze thesis kunnen natuurlijk ook op
andere complexe signalen toegepast worden. Een veelbelovende richting is het
tegelen van complexe signalen over oppervlakken.

We hopen dat deze thesis verder onderzoek inspireert en dat toekomstige te-
gelgebaseerde methodes hoektegels zullen overwegen als een waardig alternatief
voor Wangtegels.
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