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Abstract 

Purpose:  Selective internal radiation therapy (SIRT) requires a good liver registration 
of multi-modality images to obtain precise dose prediction and measurement. This 
study investigated the feasibility of liver registration of CT and MR images, guided by 
segmentation of the liver and its landmarks. The influence of the resulting lesion regis-
tration on dose estimation was evaluated.

Methods:  The liver segmentation was done with a convolutional neural network 
(CNN), and the landmarks were segmented manually. Our image-based registration 
software and its liver-segmentation-guided extension (CNN-guided) were tuned and 
evaluated with 49 CT and 26 MR images from 20 SIRT patients. Each liver registration 
was evaluated by the root mean square distance (RMSD) of mean surface distance 
between manually delineated liver contours and mass center distance between manu-
ally delineated landmarks (lesions, clips, etc.). The root mean square of RMSDs (RRMSD) 
was used to evaluate all liver registrations. The CNN-guided registration was further 
extended by incorporating landmark segmentations (CNN&LM-guided) to assess the 
value of additional landmark guidance. To evaluate the influence of segmentation-
guided registration on dose estimation, mean dose and volume percentages receiving 
at least 70 Gy (V70) estimated on the 99mTc-labeled macro-aggregated albumin (99mTc-
MAA) SPECT were computed, either based on lesions from the reference 99mTc-MAA CT 
(reference lesions) or from the registered floating CT or MR images (registered lesions) 
using the CNN- or CNN&LM-guided algorithms.

Results:  The RRMSD decreased for the floating CTs and MRs by 1.0 mm (11%) and 
3.4 mm (34%) using CNN guidance for the image-based registration and by 2.1 mm 
(26%) and 1.4 mm (21%) using landmark guidance for the CNN-guided registration. The 
quartiles for the relative mean dose difference (the V70 difference) between the refer-
ence and registered lesions and their correlations [25th, 75th; r] are as follows: [− 5.5% 
(− 1.3%), 5.6% (3.4%); 0.97 (0.95)] and [− 12.3% (− 2.1%), 14.8% (2.9%); 0.96 (0.97)] for 
the CNN&LM- and CNN-guided CT to CT registrations, [− 7.7% (− 6.6%), 7.0% (3.1%); 
0.97 (0.90)] and [− 15.1% (− 11.3%), 2.4% (2.5%); 0.91 (0.78)] for the CNN&LM- and CNN-
guided MR to CT registrations.
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Conclusion:  Guidance by CNN liver segmentations and landmarks markedly improves 
the performance of the image-based registration. The small mean dose change 
between the reference and registered lesions demonstrates the feasibility of apply-
ing the CNN&LM- or CNN-guided registration to volume-level dose prediction. The 
CNN&LM- and CNN-guided registrations for CTs can be applied to voxel-level dose 
prediction according to their small V70 change for most lesions. The CNN-guided MR 
to CT registration still needs to incorporate landmark guidance for smaller change of 
voxel-level dose estimation.

Keywords:  Selective internal radiation therapy (SIRT), Liver registration, Convolutional 
neural network (CNN), Internal dosimetry, Multi-modality images

Introduction
Selective internal radiation therapy (SIRT) or radioembolization is increasingly applied 
for the treatment of surgically unresectable primary liver malignancies and secondary 
metastases. During this treatment, microspheres loaded with β-emitting radionuclides, 
including yttrium-90 (90Y) or holmium-166 (166Ho), are infused into selected branches 
of the hepatic artery according to the vascular anatomy mapped by angiography [1]. 
Since the selected branches dominate the blood supply to tumors [2], these radioactive 
microspheres are trapped within the tumors. The high energy, small tissue penetrating 
range, and concentration in tumors allow these microspheres to deposit higher energy 
per mass in tumors, while preventing healthy liver parenchyma dysfunction by limiting 
their irradiation..

In the SIRT planning, the absorbed dose is used to measure the amount of energy 
per mass (in Gy or J/kg) from ionizing radiation deposited in a volume of interest 
(VOI), including tumors and healthy liver parenchyma. It serves as a toxicity indicator 
for tumors and normal tissues and a criterion for determining the amount of injected 
activity. There are several different methods to determine the injected activity, includ-
ing mono-compartment [3] and multi-compartment [4] methods and voxel-based 
approaches [3]. The dose calculation better reflects the underlying biology as the VOI 
changes from the volume level (the whole liver, tumors, and non-tumoral parts) to the 
voxel level.

During the pre- and post-treatment studies, multi-modality images are acquired for 
VOI delineation and dose calculation. In the pre-treatment study, a SPECT/CT scan 
is performed shortly after administration of 99mTc-labeled macro-aggregated albumin 
(99mTc-MAA) particles into selected branches of hepatic artery to mimic the activ-
ity distribution of 90Y microspheres in the liver [5]. Cone beam CT (CBCT) images are 
used for delineation of liver perfusion territories (LPTs) [6]. 18F-fluorodeoxyglucose 
([18F]FDG) or [68Ga]DOTATATE PET/CT scans are performed for [18F]FDG- or [68Ga]
DOTATATE-avid tumors. Contrast-enhanced and diffusion-weighted MR images are 
acquired for tumors that are not [18F]FDG- or [68Ga]DOTATATE-avid. Following the 
administration of 90Y-microspheres, a post-treatment study is performed to obtain the 
PET/CT or PET/MR images of the actual activity distribution inside the liver [7]. This 
PET image can be used to compute the absorbed dose in different VOIs for evaluation of 
the treatment irradiation distribution.

Registration of multi-modality images plays an essential role in information integra-
tion for SIRT dosimetry. Different methods of liver registration for intra-modality (CT 
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or MR) and inter-modality images (CT and MR) have been studied. These methods 
include surface-based [8–11], vessel-based [9, 11, 12], intensity-based [10, 13, 14], and 
segmentation-based registrations [15, 16]. Some studies combine both liver surfaces and 
vascular structures for better registration of tumors inside the liver [9, 11], since most 
tumors are found near vessels. Most intensity-based methods adopt mutual information 
for image similarity measurement. The segmentation-based methods use liver segmen-
tations obtained either with histogram-based thresholding [15] or with a convolutional 
neural network (CNN) [16] for guidance of rigid or affine registration. For the applica-
tion of liver registration in SIRT, Alsultan et al. used a rigid registration method in Sim-
plicit90Y (Mirada Medical Ltd, Oxford, UK) to register contrast-enhanced CT images to 
low-dose CT images for efficacy evaluation of coil embolization to acquire intrahepatic 
redistribution [17]. Spahr et al. implemented a registration framework based on normal-
ized gradient fields for liver registration of multi-modality images and evaluated their 
algorithm through landmarks and deformation field analyses [18]. Nodari et al. used a 
multi-modality deformable registration algorithm in MIM SurePlan (v7.0.1; MIM soft-
ware Cleveland, USA), performed by a trained medical physicist, to register the liver 
tumor contours from MR images to 99mTc-MAA-SPECT/CT and 90Y-PET/CT [19]. 
Their study indicates that different tumor contours from anatomical and scintigraphic 
images have no significant impact on mean dose, and registering anatomical tumor con-
tours to scintigraphic images is feasible for improving therapeutic strategy [19]. Besides, 
our in-house non-rigid liver registration regularized by a spring model was applied in 
our previous studies on the development of pre-treatment dosimetry [6] and evaluation 
of the predictive value of 99mTc-MAA-based dose planning [20].

This study describes a (semi-)automatic segmentation-guided registration algorithm 
and evaluates its performance for registering liver contours and anatomic landmarks and 
its influence on dose estimation for SIRT. Our in-house image-based registration algo-
rithm was modified for guidance by only CNN liver segmentations and by both CNN 
liver segmentations and manually delineated landmarks. (Semi-)automatic registration 
algorithms have the advantage of providing the physicians with integrated image infor-
mation for more precise dosimetry, while not creating much cumbersome and time-con-
suming work in the clinical workflow. In our experience, the current lack of automation 
impedes the full use of multi-modality information. The registration can be challenging, 
because in the 99mTc-MAA SPECT/CT protocol, the CT is acquired without contrast 
enhancement, and some MR images from the 90Y-PET/MR studies have severe artefacts. 
In this study, we wanted to assess (semi-)automatic liver registration and demonstrate its 
feasibility and value in a clinical context, so that it can contribute to a personalized and 
precise SIRT treatment with fewer manual interactions.

Material and methods
Data

The training datasets for the CNN model contain 119 CT images from Liver Tumor Seg-
mentation (LiTS17) and SLIVER07 challenges, 30 MR T1 images from the CHAOS chal-
lenge, and 50 SIRT CT and 110 MR T1 images from our hospital.

For the registration experiment, 49 CT and 26 MR images from 20 SIRT patients were 
selected according to several criteria. The selection procedure is presented in Fig.  1. 
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Since the algorithm is designed for registering both CT and MR images in the pre- and 
post-treatment studies to the 99mTc-MAA CT, there should be at least one CT and one 
MR from these studies in addition to the CT image from the 99mTc-MAA-SPECT/CT for 
each patient. Since thresholding a 99mTc-MAA SPECT for lesions may result in overesti-
mation of the tumor targeting performance, landmark delineation (including lesions) for 
the 99mTc-MAA study was performed on its CT image. 99mTc-MAA CTs in our clinical 
routine are not contrast enhanced. Therefore, it was important to select patients with 
visible landmarks in 99mTc-MAA CTs. After patient selection, landmarks visible in all 
CT and MR images for each patient were chosen and manually delineated by a nuclear 
medicine physician. Most landmarks were lesions, and some of them were vessel knots 
and metal clips. For evaluation of liver registration, liver contours were manually deline-
ated by a trained researcher and then corrected by a radiographer with over 10 years of 
experience in liver delineation. For the hyper-parameter tuning of the registration algo-
rithm, 25 CT and 14 MR images from 10 patients were randomly selected for training, 
24 CT and 12 MR images from the other 10 patients were used for testing. The charac-
teristics of the 20 SIRT patients are presented in Table 1.

All SIRT datasets for this research were evaluated at KU Leuven after approval by the 
Ethics Committee Research of UZ / KU Leuven.

CNN structure for liver segmentation

The CNN model used in the paper adopts a U-net structure [21], which was developed 
for biomedical image segmentation. The U-net structure (see Fig.  2), adapted for 3D 
images, consists of four resolution hierarchies with three skip connections to combine 
the high-level liver features from low-resolution hierarchies with the detailed liver fea-
tures from high resolution hierarchies. Our previous research demonstrated that the 
CNN segmentations resulted in good segmentation quality without consuming much 
time and work [22].

Segmentation‑guided registration

The in-house image-based registration algorithm (see Fig. 3) consists of affine registra-
tion followed by non-rigid registration. The image similarity metric for affine registra-
tion is computed by mutual information. The 12 affine parameters, generated after affine 
registration, are converted into an initial displacement field for non-rigid registration, 
where each element represents the displacement of the corresponding voxel in the float-
ing image. The image similarity metric for non-rigid registration is also mutual informa-
tion. To avoid topology-violating deformations during non-rigid registration, the voxel 

Table 1  Characteristics of the SIRT patients for registration experiment

Characteristics Training Test

No. of SIRT patients 10 10

Age (y), median [range] 66.5 [46, 75] 64.5 [25, 78]

Sex (female/male) 5/5 4/6

Weight (kg), median [range] 71 [46,105] 75 [46,95]

Height (m), median [range] 1.70 [1.55, 1.74] 1.70 [1.54, 1.78]
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displacement is regularized through a spring model [23]. Each pair of neighboring vox-
els is assumed to be connected through a spring, which opposes distance changes. The 
spring rigidity is used to adjust the regularization power. Therefore, the image-based 
non-rigid registration algorithm minimizes the weighted sum of the image similarity 
loss (LI) and the regularization loss (LR). The computation and optimization of LI and LR 
are explained in detail in [23].

This image-based registration algorithm was extended through guidance by CNN 
liver segmentations (see Fig. 4). CNN liver segmentations for the reference and floating 
images are registered via affine transformation to provide initialization of the non-rigid 
registration. In the next stage, images and their CNN liver segmentations are simulta-
neously non-rigidly registered. The segmentation similarity loss (LS) is computed as the 
sum of squared differences between the reference and warped segmentations, represent-
ing the segmentations as binary images. The computation and optimization of LS are the 
same as that of LI when using sum of squared distance as the similarity measurement, as 

Fig. 2  Overview of the CNN structure. The model consists of four resolution hierarchies with three skip 
connections. The input image has the voxel size of 3× 3× 3 mm3. The input image size is 189 ×162× 162 
, and the output image size is 163 ×136× 136 . The up- and down-sampling rate is three, and the 
up-sampling is implemented by repetition. The convolutional kernel size for all layers is 3 × 3 × 3

Fig. 3  Overview of the in-house image-based registration algorithm
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described in [23]. The final loss of the non-rigid registration guided by CNN liver seg-
mentations (CNN-guided) is the weighted sum: wILI + wSLS + LR.

To explore the possibility of landmark guidance for better lesion registration, a 
labeled map containing both CNN liver segmentations and landmarks as two classes 
replaces the CNN liver segmentations in the CNN-guided algorithm with other settings 
unchanged. This algorithm guided by both CNN liver segmentations and landmarks 
(CNN&LM-guided) is compared with the image-based and CNN-guided algorithms in 
the following experiments.

Experiments

CNN liver segmentation

The CNN model trained on CT and MR images from the public challenges, and our hos-
pital was implemented to generate automatic liver segmentations for the 49 CT and 26 
MR images from 20 SIRT patients selected for the registration experiment. The results 
were evaluated through the dice similarity coefficient (DSC) between the CNN liver 
segmentation and the ground truth liver segmentation. The DSC quantifies the overlap 
between the segmentations, its definition and computation are explained in [24].

Registration of multi‑modality images

For affine registration, the results from using either images or CNN liver segmenta-
tions were compared. For non-rigid registration, 1D ( wS = 0 ) and 2D grid searches were 
implemented to find the optimal weights without and with guidance of CNN liver seg-
mentations. The non-rigid registration was initialized by either image-based or CNN-
based affine registration. To evaluate the value of landmark guidance for better lesion 
registration, 2D grid searches were implemented to find the optimal weights for the 
CNN&LM-guided non-rigid registration initialized by the CNN&LM-based affine regis-
tration. Each liver registration was evaluated by the root mean squared distance (RMSD) 
of mean surface distance (MSD) between liver contours and mass center distance 
(MCD) between landmarks: RMSD =

√

(MSD
2
+

∑Nlandmarks

i=1
MCD

2
i
)/(1+ Nlandmarks) . 

Mean surface distance is designed to measure the contour difference between two 

Fig. 4  Overview of the registration algorithm guided by CNN liver segmentations
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segmentations [25]. Since a landmark can appear with different shapes and volumes in 
images of different modality, mass center distance, which is independent of shape and 
volume changes, is used to evaluate landmark registration. The root mean square of 
RMSDs (RRMSD) from all liver registrations was used to evaluate each pair of weights. 
The optimal weights, with the lowest RRMSD, were found through grid searches on 
the training datasets for CT to CT and MR to CT registrations, respectively. After that, 
different registration settings were compared on the test datasets through RMSD and 
RRMSD.

Dose estimation

The CNN- and CNN&LM-guided registrations using the optimal weights were imple-
mented to generate registered landmarks (including lesions) for the floating CT and 
MR images (registered floating landmarks) from the test datasets for comparison with 
the landmarks delineated on 99mTc-MAA CTs (reference landmarks). A five-scale Lik-
ert score, with its criteria presented in Table 2, was used for grading the floating land-
marks registered to the reference landmarks. Dose estimation using the registered 
floating lesions from the CNN- and CNN&LM-guided algorithms was compared with 
dose estimation using the reference lesions through the mean dose and the volume per-
centage receiving at least 70 (V70) and 100 Gy (V100) in the lesion. The absorbed doses 
of 70 and 100  Gy illustrate an intermediate and high tumor response probability. The 
injected activities prescribed for the left and right LPTs for each patient were used for 
dose estimation. LPTs are delineated on CBCTs in our clinical workflow. Dose estima-
tion computed on the left and right LPTs requires registration of CBCT to 99mTc-MAA-
SPECT/CT, which introduces extra potential sources of registration errors. To focus on 
evaluating the influence of CT and MR registration on dose estimation in this study, the 
injected activities for the left and right LPTs are summed and distributed in a fractional 
uptake map generated by normalizing all counts of the 99mTc-MAA SPECT within the 
manually delineated liver contour. The computation of the absorbed dose was based on 
the local deposition model.

Results
CNN liver segmentation

The DSCs between CNN liver segmentations of CT and MR images from 20 SIRT 
patients for registration and manual liver segmentations are presented in Fig.  5. The 
median DSCs for CT and MR images are around 0.95 and 0.93, respectively. The DSCs 

Table 2  Likert score criteria for scoring landmark registration

Score Criteria

1 Major misalignment exists for the registration. Major impact on dosimetry is expected. Dosimetry results 
are deemed unreliable

2 Pronounced misalignment exists for the registration. Substantial impact on dosimetry is expected

3 Moderate misalignment exits for the registration. Moderate impact on dosimetry is expected

4 Little misalignment exists for the registration. No significant impact on dosimetry is expected

5 Near perfect alignment for the registration. No intervention is warranted and dosimetry is deemed reli-
able
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for MR images have an outlier with a very low value of 0.72. Through visual inspection, 
the CNN segmentation for this MR image misses a large part of the liver volume and 
is incapable of registration guidance. Therefore, the case involving this MR image was 
excluded for MR to CT registration.

Registration of multi‑modality images

The results of CT to CT registrations are presented in Fig.  6, using the optimal 
weights for each deformable registration. The RRMSD for CNN-based affine registra-
tion is 3.1 mm (27%) smaller than that for image-based affine registration. The image-
based non-rigid registration increases the RRMSD for CNN-based affine registration 
by 0.4  mm (5%). The RRMSD for CNN-guided affine and non-rigid registration1 is 
1.0 mm (11%) smaller than that for image-based affine and non-rigid registration. The 

Fig. 5  DSCs between manual liver segmentations and CNN liver segmentations of 49 CT and 26 MR images 
from the 20 SIRT patients selected for the registration experiment. The orange line, green triangle, and red 
stars represent median, mean, and outliers, respectively. The box corresponds to the first and third quartiles, 
and the whiskers give the range (except for the outliers)

Fig. 6  RMSDs and RRMSDs of the test datasets (14 floating CT images) for comparison of image-based, 
CNN-guided, and CNN&LM-guided CT to CT registrations

1  “The CNN-guided affine and non-rigid registration” always refers to the CNN-based affine and CNN-guided non-rigid 
registration.
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CNN&LM-guided affine and non-rigid registration2 has a RRMSD 2.1 mm (26%) smaller 
than the CNN-guided one.

The results of MR to CT registrations are presented in Fig. 7, using the optimal weights 
for each deformable registration. The CNN-based affine registration has a RRMSD 
3.4 mm (34%) smaller than the image-based one does. The optimal wI and wS for CNN-
guided non-rigid registration initialized by CNN-based affine registration were both 
zero. Therefore, the optimal performance of CNN-guided affine and non-rigid registra-
tion is the same as that of the CNN-based affine registration. This indicates that both 
image-based and CNN-guided non-rigid registration degrade the results of CNN-based 
affine registration. The RRMSD for CNN&LM-guided affine and non-rigid registration 
is 1.4 mm (21%) smaller than that for CNN-based affine registration.

Dose estimation

According to the results in the registration experiment, the optimal performance for 
CNN&LM- and CNN-guided CT to CT registration and CNN&LM-guided MR to CT 
registration were achieved when using both affine and non-rigid registrations, while the 
optimal performance for CNN-guided MR to CT registration was achieved when using 
only affine transformation. These settings using the optimal weights were used to gener-
ate the registered landmarks for dose estimation.

Registration of CT to 99mTc‑MAA CT

The Likert scores for registration of all landmarks (lesions, vessels, clips, etc.) are pre-
sented in Fig. 8a. Over two thirds of registered landmarks had a score of at least 4, which 
means little or almost no misalignment and insignificant impact on dosimetry. There 
were in total 29 lesions from 10 SIRT patients used for dose estimation. The relative dif-
ference of mean dose and the difference of V70 and V100 between the reference and reg-
istered floating lesions using the CNN&LM- and CNN-guided registrations are shown 
in Fig.  9. There were 59% and 45% of lesions having an absolute relative difference of 

Fig. 7  RMSDs and RRMSDs of the test datasets (12 floating MR images) for comparison of image-based, 
CNN-guided, and CNN&LM-guided MR to CT registrations

2  “The CNN&LM-guided affine and non-rigid registration” always refers to the CNN&LM-based affine and CNN&LM-
guided non-rigid registration.
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mean dose smaller than 10% for the CNN&LM- and CNN-guided registrations, respec-
tively. Around 79% (76%) and 83% (69%) of lesions have an absolute V70 (V100) differ-
ence smaller than 10% for the CNN&LM- and CNN-guided registrations, respectively. 
As shown in Fig. 10, the mean dose, V70, and V100 for the floating lesions registered 
by both the CNN&LM- and CNN-guided algorithms had a strong correlation ( r ≥ 0.95 ) 
with the mean dose, V70, and V100 for the reference lesions.

Registration of MR to 99mTc‑MAA CT

According to the Likert scores for all registered landmarks shown in Fig. 8b, around 92% 
and 63% of lesions registered by the CNN&LM- and CNN-guided algorithms had a score 

Fig. 8  Likert scores for the registered landmarks of floating CT (a) and MR (b) images using the 
CNN&LM-guided and CNN-guided registrations

Fig. 9  Relative difference of mean dose (a) and difference of V70 (b) and V100 (c) between the reference 
and registered floating lesions using the CNN&LM-guided or CNN-guided CT to CT registration. MAA: the 
reference lesions. CNN&LM: the floating lesions registered by the CNN&LM-guided registration. CNN: the 
floating lesions registered by the CNN-guided registration. The relative difference of mean dose is computed 
by (mean dose (floating) – mean dose (reference)/mean dose (reference)). The difference of V70 and V100 is 
computed by (V70 or V100 (floating) – V70 or V100 (reference))
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equal to or better than “moderate misalignment and impact on dosimetry”, respectively. 
There were in total 23 lesions from 10 SIRT patients for dose estimation. The relative dif-
ference of mean dose and the difference of V70 and V100 between the reference and reg-
istered floating lesions are presented in Fig. 11. Around 70% and 43% of lesions had an 
absolute difference of mean dose smaller than 10% for the CNN&LM- and CNN-guided 
registrations, respectively. The CNN&LM- and CNN-guided registrations have around 
70% (70%) and 61% (61%) of lesions with an absolute V70 (V100) difference smaller than 

Fig. 10  Passing-Bablok plots for the mean dose, V70, and V100 estimated on the floating CT lesions 
registered by the CNN&LM- or CNN-guided algorithm versus the mean dose, V70, and V100 estimated 
on the reference lesions. MAA: the reference lesions. CNN&LM: the floating lesions registered by the 
CNN&LM-guided registration. CNN: the floating lesions registered by the CNN-guided registration
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10%, respectively. The correlation of mean dose, V70, and V100 between the reference 
and registered floating lesions is presented in Fig. 12. A weaker correlation ( r < 0.90 ) of 
V70 and V100 for the CNN-guided registration is observed than the correlation of mean 
dose for the CNN&LM- and CNN-guided registrations and of V70 and V100 for the 
CNN&LM-guided registration.

Some examples of the reference and floating lesions registered by the CNN&LM- 
and CNN-guided methods and their dose volume histograms (DVHs) are presented in 
Fig. 13.

Discussion
Registration of multimodality images

The CNN-based affine registration of CT to CT and MR to CT improves the RRMSD 
by 3.1 mm (27%) and 3.4 mm (34%), respectively, compared with the image-based aff-
ine registration. This substantial decrease shows the advantage of using CNN liver 
segmentations for affine registration without introducing non-affine deformation. 
The RRSMD increases by 0.4  mm (5%) when the CNN-guided affine registration is 
followed by the image-based non-rigid registration for CT images. The CNN-guided 
non-rigid registration of CT images decreases the RRMSD for the CNN-based aff-
ine registration by 0.1  mm (1%). This indicates the slightly negative influence of 
using only images (including non-contrast-enhanced 99mTc-MAA CT) and the lim-
ited improvement of using CNN liver segmentations for non-rigid registration of CT 

Fig. 11  Relative difference of mean dose (a) and difference of V70 (b) and V100 (c) between the reference 
and registered floating lesions using the CNN&LM-guided or CNN-guided MR to CT registration. MAA: the 
reference lesions. CNN&LM: the floating lesions registered by the CNN&LM-guided registration. CNN: the 
floating lesions registered by the CNN-guided registration. The relative difference of mean dose is computed 
by (mean dose (floating) – mean dose (reference)/mean dose (reference)). The difference of V70 and V100 is 
computed by (V70 or V100 (floating) – V70 or V100 (reference))
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images, given the good initialization provided by the CNN-based affine registration. 
The optimal weights found for the CNN-guided affine and non-rigid MR to CT reg-
istration were both zero indicating that using both images and CNN liver segmen-
tations for non-rigid MR to CT registration could not improve the results from the 
CNN-based affine registration. This might be caused by relatively poorer CNN liver 
segmentations for MR images than for CT images. Some CNN liver segmentations 
for MR images were found to miss some low-intensity lesion regions. This can cause 

Fig. 12  Passing-Bablok plots for the mean dose, V70, and V100 estimated on the floating MR lesions 
registered by the CNN&LM- or CNN-guided algorithm versus the mean dose, V70, and V100 estimated 
on the reference lesions. MAA: the reference lesions. CNN&LM: the floating lesions registered by the 
CNN&LM-guided registration. CNN: the floating lesions registered by the CNN-guided registration
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big misalignment in these regions due to liver surface matching guided by CNN liver 
segmentations during the non-rigid registration. Nevertheless, the CNN-guided reg-
istration improves the RRMSD by 1.0  mm (11%) and 3.4  mm (34%) for the floating 
CT and MR images compared with the image-based registration. Even if there might 
be errors in CNN liver segmentations compared to the “ground truth”, these unedited 
CNN segmentations are still helpful for improving the image-based registration. This 
enables the automation of the liver-segmentation-guided registration without the 
need of extra manual correction for CNN liver segmentations.

Through landmark guidance, the RRMSD is decreased by 2.1 mm (26%) and 1.4 mm 
(21%) compared with the CNN-guided registration for the floating CT and MR 

Fig. 13  Examples of the reference and floating lesions registered by the CNN&LM- and CNN-guided 
methods and their dose volume histograms from three patients. The red, blue, and green contours represent 
the reference lesion (MAA), the floating lesion registered by the CNN&LM-guided method (CNN&LM), and 
the floating lesion registered by the CNN-guided method (CNN). a, b the registered floating lesions from 
the CT of the DOTATATE (DOT) study; CNN&LM: score is 5, relative difference of mean dose is − 0.1%, the 
differences of V70 and V100 are 0.3% and − 0.1%, CNN: score is 5, relative difference of mean dose is − 0.9%, 
the differences of V70 and V100 are 0.2% and − 0.4%. c, d the registered floating lesions from the radiology 
MR (radMR); CNN&LM: score is 3, relative difference of mean dose is − 1.3%, the differences of V70 and V100 
are − 0.7% and − 1.1%, CNN: score is 2, relative difference of mean dose is − 5.2%, the differences of V70 
and V100 are − 1.0% and − 8.4%. e, f the registered floating lesions from radMR; CNN&LM: score is 3, relative 
difference of mean dose is 28.4%, the differences of V70 and V100 are 2.5% and 11.1%, CNN: score is 2, relative 
difference of mean dose is − 32.5%, the differences of V70 and V100 are − 11.1% and − 26.5%
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images, respectively. Since we currently don’t have an automatic lesion segmenta-
tion tool for CT and MR images, manually delineated landmarks were used for both 
registration guidance and evaluation. This might cause a self-fulfilling effect for reg-
istration evaluation. However, it does not change the feasibility of using landmarks 
for better registration, since manually delineated landmarks can be taken as perfect 
automatic lesion segmentations. This indicates that developing automatic lesion seg-
mentation would be beneficial for registration guidance. Besides, manually delineated 
lesions approved by the physician are usable in the clinical context.

Dose estimation

A strong correlation ( r > 0.9 ) of mean dose estimation existed between the reference 
and floating lesions registered by the CNN&LM- and CNN-guided registrations. Land-
mark guidance for the CNN-guided registration resulted in a smaller difference of mean 
dose for CT to CT registration than for MR to CT registration. Since mean dose is com-
puted on the volume level, it appears less sensitive to contour changes than the voxel-
level dosimetry.

For the voxel-level dosimetry, the CNN&LM- and CNN-guided registrations had 
around 79% (76%) and 83% (69%) of lesions with an absolute V70 (V100) difference 
between the reference and floating CT lesions smaller than 10%, respectively. A very 
strong correlation ( r ≥ 0.95 ) of V70 and V100 existed between the reference and float-
ing CT lesions for the two methods. Landmark guidance for CT to CT registration 
made small improvement for the voxel-level dosimetry, which was also reflected in the 
Likert scores given by the physician. Around 70% (70%) and 61% (61%) of MR lesions 
had an absolute V70 (V100) difference smaller than 10% for the CNN&LM- and CNN-
guided registrations, respectively. A weaker correlation ( r < 0.82 ) of V70 and V100 was 
observed between the reference lesions and the floating MR lesions for the CNN-guided 
registration than for the CNN&LM-guided registration. Landmark guidance for MR 
to CT registration helped decrease the discrepancy of the voxel-level dose estimation 
caused by lesion registration.

It was found that the relative difference of mean dose and the difference of V70 and 
V100 were smaller than 10% for most lesions with a volume over 50 cc. It is reasonable 
that small lesions with a small shift can create a relatively large voxel change. Besides, 
lesions delineated on images of different modality can appear with diverse shape and vol-
ume, due to different lesion information expressed in different images or tumor devel-
opment. Small volumes and large shape and volume differences accounted for a V70 
(V100) difference over 10% for 4 (3) out of 6 (7) and 3 (4) out of 5 (9) floating CT lesions 
registered by the CNN&LM- and CNN-guided algorithms and for 4 (2) out of 7 (7) and 5 
(3) out of 9 (9) floating MR lesions registered by the CNN&LM- and CNN-guided algo-
rithms. Good lesion registration does not ensure small difference of dose estimation, 
since the small size and large shape and volume difference are the other two critical fac-
tors with significant impact on dose estimation. It is difficult to eliminate the shape and 
volume difference between lesions delineated on different images, since each modality 
reflects a different aspect of lesion appearance. Therefore, it is beneficial to co-register 
all multi-modality images for joint lesion delineation by the physician, to approach the 
ground truth delineation by making full use of all information.
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Poor lesion registration does not necessarily lead to significant changes of dose esti-
mation. As presented in Fig. 13c, d, the lesion (green) of radiology MR registered by the 
CNN-guided method, scored with 2, does not have a good overlap with the reference 
lesion (red), while both lesion contours include most of the high-uptake region. The rela-
tive mean dose difference and the V70 and V100 difference between the reference and 
registered lesions are − 5.2%, − 1.0%, and − 8.4%, respectively. As long as the reference 
and registered lesions include a similar area of high- and low-uptake regions, the differ-
ence of dose estimation can be insignificant despite of poor registration. This indicates 
that the volume percentage does not necessarily reflect the true energy deposition for 
each voxel.

In our standard workflow, the liver and lesions are manually delineated on the ana-
tomic image by using the delineation tools from a clinical software package used by the 
physician for SIRT planning. After that, the delineated volumes of interest (VOIs) are 
mapped to the 99mTc-MAA SPECT/CT by using the manual or semi-automatic regis-
tration tools of the software to register the anatomic image to the 99mTc-MAA CT. To 
shorten the processing time, the physician delineates the VOIs directly on the 99mTc-
MAA SPECT in selected cases, obviating the need for registration. However, proper reg-
istration of anatomical images to the 99mTc-MAA SPECT/CT allows lesion delineation 
on the anatomical images and correlation to the SPECT findings, as recommended in 
recent international guidelines for SIRT [26]. The standard workflow requires the physi-
cian’s interaction during the entire process. In general, the time to complete the standard 
workflow is around 30 to 45 min. The segmentation-guided workflow consists of liver 
segmentation, registration, and lesion delineation. To facilitate clinical application and 
evaluation of these new tools, we have incorporated the entire workflow into the clinical 
software platform. Liver segmentation is fully automated by the CNN. It takes no more 
than 5 min for the trained CNN model to generate one liver segmentation by a CPU-
based computation server. After that, the CNN liver segmentations are checked and 
corrected, if necessary, by the physician to ensure its usability for registration guidance, 
which takes 1 to 5 min. The segmentation-guided registration algorithm is performed 
by a CPU-based server without parallel computation, which takes around 15  min for 
each registration in general. Since the registration workflow is fully automated without 
manual interaction needed, the processing time is acceptable for routine clinical use. It 
could be speeded up by implementing parallel computation. Lesion delineation is manu-
ally performed by using the delineation tools of the clinical software, which takes around 
10 min and needs to be automated in the future. In total, the segmentation-guided work-
flow can take around 30 min. The automated processing takes 20 min, which does not 
need the physician’s interaction. This makes the segmentation-guided workflow a useful 
tool for the physician.

In summary, the performance of the CNN&LM- and CNN-guided registrations makes 
them useful tools for SIRT treatment planning and verification. The deployment of these 
semi- and automatic registration tools would allow for dose prediction and measure-
ment based on multi-modality images without introducing much manual interaction 
and workload, which currently impede the application of image analysis tools in the clin-
ical workflow. The pre- and post-treatment studies contain many images with relatively 
poor quality, including non-contrast-enhanced CTs from the 99mTc-MAA study and MR 
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with severe shading or bias artifacts from the 90Y-PET/MR. Nevertheless, these registra-
tion algorithms can produce reasonably good results for these low-quality images giving 
them practical value for clinical application. Based on these results, we will study the 
development of an automatic liver lesion segmentation method for fully automatizing 
the CNN&LM-guided registration. The clinical influence of these registration methods 
remains to be fully evaluated in a daily SIRT workflow from a volume-level and voxel-
level perspective.

Conclusion
Registration guidance using CNN liver segmentations and landmarks greatly improved 
the performance of the in-house image-based registration. The CNN&LM- and CNN-
guided registrations for CT and MR images can be used for the volume-level dosim-
etry, since the mean doses obtained from the reference and floating lesion contours were 
very similar. A small V70 and V100 change for most lesions of the floating CT images 
using the CNN&LM- and CNN-guided registrations demonstrates the feasibility of their 
application to the voxel-level dosimetry with the physician’s checkup. Landmark guid-
ance is needed for the CNN-guided MR to CT registration to be applied to the voxel-
level dosimetry. As a result, the CNN&LM- and CNN-guided registration algorithms 
could become valuable semi- and automatic tools applicable for SIRT dosimetry based 
on integration of multi-modality information.
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