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Abstract

Transmission system operators (TSOs) forecast load and renewable energy generation to
maintain smooth functioning of the grid by contracting sufficient generation and reserve
capacity. These forecasts are also utilized by third parties, such as energy generators and
demand aggregators, in their own forecasting and decision-making pipelines e.g. to deter-
mine suitable trading strategies. Inaccurate forecasts by the TSOs can therefore lead to
increased balancing needs as well as elevated societal and market costs. The situation is
further exacerbated by the challenges arising due to rapidly increasing renewable generation
and the effects of the post-covid era. In this paper, we analyse five years of TSO forecasts
for load, wind and solar generation for 16 European countries. More concretely, using a
comprehensive set of metrics, we explore relevant questions such as whether there are TSO
specific differences in forecast accuracy, and how forecast errors have changed over time and
if they can be reduced further. Our results show that while errors tend to increase linearly
with demand or renewable generation, most TSOs still have considerable room for improve-
ment in terms of accuracy. The paper concludes with a set of recommendations for TSOs to
improve their forecasts, as well as the ENTSO-E transparency platform where we obtained
the data used in this study.

Keywords: Forecasting, electricity demand, renewable energy generation, accuracy,
learning curves

1. Introduction

Forecasting future energy demand and generation lies at the heart of planning and
decision-making in the modern electric power sector. In fact, it is widely seen as the corner-
stone that underpins stable grid operation by matching production and consumption in real
time [1]. Over time, forecasting the future has gained in importance with energy market
liberalization and increasing proliferation of intermittent renewable energy sources [2].

Today, supply-side volatility is a growing concern in many countries across the world with
inherently variable renewable generation displacing (largely) predictable thermal generation
[3]. In the future, the adoption of electric vehicles (EVs) and electric heating [4], the
formation of consumer-centric energy systems [5], and the introduction of virtual power
plants (VPPs) [6] are expected to further complicate the forecasting tasks necessary for
stable grid operation [7].
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These challenges arise in part due to the non-stationary character inherent of the time
series under consideration. Both electricity demand and generation through renewables
exhibit strong seasonalities and trends, which are in continuous flux. For instance, increasing
the installed base of renewable energy sources means that historic data should be used with
caution while training forecast models that predict the future. Likewise, changing electricity
demand trends - for instance due to electrification of transportation - also pose the danger
to make established load forecasts less accurate than they used to be. To better understand
the scale of change over the past few years, Fig. 1 shows how the demand and renewable
generation in several European countries has evolved since 2015 and 2017 respectively. It
is obvious that, for many countries, even though the overall demand levels have remained
largely stable, renewable generation has increased rapidly during this time. The figure also
identifies how different European countries have extremely diverse demand and generation
profiles.

1.1. Forecasting in power grids

In the context of electric power systems, there are numerous ways to categorize fore-
casting techniques [7]. Depending on the time frame and purposes, forecasting models can
be classified into long-term and short-term forecasting techniques. Likewise, forecast mod-
els can also be classified based on how the model is constructured, including white- and
black-box models (also referred to as judgment-based and empirical or data-driven models
respectively in forecasting literature). As the name implies, a white-box forecast utilizes
an energy conversion model that mimics the physical processes in the real world [8, 9]. In
contrast, black-box forecasting techniques are typically data-driven and are driven by statis-
tical and machine learning theory [7, 10]. Therefore, white-box forecasting methods typically
enjoy better interpretability due to the existence of a physical model [11], while black-box
forecasting techniques tend to generalize better by continuously adjusting model parameters
to the latest observation data [12]. Another emerging, yet important, distinction in forecast-
ing methods is that of global and local forecast models [13]. Local forecast models predict
the future for a single time series, while global models can predict several time series simul-
taneously, thereby potentially improving generalization by leveraging cross-learning across
time series [14].

In this regard, long-term forecasting techniques, which are used to guide investments in
new capacity and even policy-making, are usually designed and implemented using physical
principles. This is due primarily to their huge business impact and the resulting requirements
on interpretability [10, 15]. Short-term forecasting needs, on the other hand, arise commonly
for operational generation and transmission planning, such as day-ahead market clearing. In
this regard, one can find both white- and black-box forecasting methods. A comprehensive
review of different forecasting techniques deployed in the electric power sector can be found
in [2]. In the remainder of this study, we focus exclusively on short-term, day-ahead forecasts.

1.2. Impact of forecast errors

As highlighted earlier, transmission system operators (TSOs) need to ensure that elec-
tricity demand and generation is balanced at all times on the transmission grid level [16].
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Figure 1: Evolution of load (top), solar generation (middle), and wind generation (bottom) in 16 different
European countries; the average demand and renewable generation is also included to provide an overall
indication of the overall trend and seasonality. The annual variations are caused by both the weather
conditions and an increasing installed renewable base.
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This is achieved by forecasting future demand, and then ensuring that sufficient capacity is
available to meet it at all times. Therefore, the accuracy of these forecasts is key to ensuring
the technical stability and economical efficiency. Technically, supply-demand imbalances
cause frequency deviations on the grid from its nominal frequency [17]. Left untreated, such
imbalances can lead to large scale disruption in the form of grid outages and equipment
failures. Moreover, TSOs typically contract and operate a frequency reserve pool, which
can be activated to ensure that imbalance-driven frequency deviations do not exceed certain
thresholds [18]. Large forecast errors consequently increase the absolute values of imbal-
ance, influence subsequent market prices, and necessitate larger reserves [19]. Additionally,
in some cases, these forecast errors can even lead to operational curtailment of renewable
generation (i.e. when there is insufficient demand in the system), which can reduce the
willingness of operators to accept these technologies in their area of control.

From an economic perspective, such forecasts are used by power generation companies
to guide both the bidding and the optimal operation of their power generation assets. In the
presence of demand response, these forecasts also serve as a preliminary reference for imbal-
ance service optimal bidding and operation. The economic impact of (in)accurate short-term
forecasting has been quantified and discussed in [20], in which the authors concluded that
even simple electricity trading strategies can lead to substantial economic impact if com-
bined with a decent forecasting technique. Likewise, the actual impact of market forecast
errors on revenue generated by battery storage is explored in [21]. Existing research also
indicates that underforecasting wind generation at the TSO level leads power producers to
make decisions that favor social welfare (rather than corporate benefit), and vice versa [22].

1.3. Sources of forecast error

There are numerous sources of forecast errors. As alluded to earlier, this can be due
to the changing character of the time series being forecast (e.g. due to increasing installed
base of renewables or caused by pandemic-induced disruptions [23]). Several other sources of
forecast error exist as well. These include predominantly the forecast time horizon - demand
and generation in the near future tends to be easier to forecast accurately than that in the
distant future [24]. Likewise, errors can also arise due to mis-specification of the forecaster,
e.g. due to choices made during the modelling process [25], and can manifest as bias (i.e.
systematically over- or under-predicting), and variance. Moreover, the incorrect deployment
of forecasting models or provision of incorrect input data to the forecasters can also lead to
significant errors [26].

Finally, forecast accuracy can also degrade due to upstream forecast errors. An example
of this is in the use of meteorological forecasts as input features to predict electricity demand
and generation. These coupled inputs also greatly increase the risk of correlated errors, e.g.
across TSOs in several neighboring countries [27]. In fact, while the aggregated variability
of wind and solar is in general less than that of each resource alone, it is extreme weather
conditions, such as storms, that often lead to the largest forecast errors [28]. A recent study
concludes that, over the last decade, increasingly accurate weather forecasts have saved
consumers over $150 million in annual energy savings [29].
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1.4. Contributions

Over the past decades, TSOs have actively adapted and improved the capability of their
forecasting techniques so as to tackle the challenges and impacts discussed above. During
this period, the field of forecasting has also evolved considerably. In practice, however, since
the TSOs do not publicly publish their methodology, it is difficult to anticipate when forecast
accuracy should have improved. Likewise, this lack of transparency also limits cross-TSO
comparisons, since it is unclear whether several TSOs utilize the same methodology and
input data streams, or if they implement their own. Furthermore, cross-comparisons over
different forecasting techniques have remained limited and are often restricted to theoretical
settings ([30, 31]). This is mainly due to the fact that the performance of forecasting tech-
niques is highly context-dependent. Intuitively, deploying identical forecasting techniques
to different regions will lead to different performances.

Nevertherless, even though the forecast models cannot be directly evaluated, publicly
available forecasts can be. This is enabled by the fact that TSO forecasts for both load and
renewable generation are available for most European countries over the past few years. To
evaluate these forecasts, several metrics have been developed in literature, which are well-
aligned in both academia and industry [32]. Following the methodology formalized in [33],
this paper makes several important contributions to address the issues highlighted above:

1. It establishes the forecast accuracy of several European TSOs’ load and renewable
generation forecasts, based on their published day-ahead forecasting data between
year 2015-2021 for load, and 2017-2021 for renewable generation.

2. It evaluates the individual TSO forecast errors and compares them against baselines
to help understand whether the existing forecasts can be further improved upon, and
provides specific recommendations where this is the case. This is important for TSOs
to improve their own forecasts, but can also be utilized by other market agents to
improve the openly accessible TSO forecasts.

3. It creates learning curves for forecasting as a function of varying electricity demand and
generation. These help us better understand the drivers of forecast accuracy and yield
insights into whether there are inherent differences between time series forecastability
in different countries.

The rest of this paper is organized as follows: Section 2 highlights the methodology and
data used in this paper, while Section 3 provides a description of the most important results,
including error metrics for load, solar and wind generation in several countries. Section 4
discusses the most important insights and recommendations resulting from the analysis.
Section 5 concludes the paper.

2. Methodology and data

The day-ahead forecasts considered in this paper are made available by European TSOs
through their own web interfaces or dashboards, and are aggregated by the European Net-
work of Transmission System Operators for Electricity (ENTSO-E) Transparency Platform
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(TP) for easier, unified access [34]. In this section, we first describe the ENTSO-E TP from
which we obtained the observed and forecast load and generation values used in this paper.
Next, we describe the methodology we followed to evaluate these forecasts.

2.1. The ENTSO-E transparency platform (TP)

The past decade has seen increasing integration of the European electrical grids and
markets. With rising cross-border power flows, it is critical to record and process this infor-
mation in a centralized manner. Consequently, these data or information flows transcend the
responsibility or jurisdiction of any individual transmission system operator (TSO). While
several papers point out a general lack of open data in the energy sector [35], in this case the
transparency platform from ENTSO-E fills this gap and has been widely utilized in research
[36]. Several papers have also appeared discussing its extensions [37] and limitations [38].

The TP publishes and updates around 50 data items distributed in six different cat-
egories, which include load, generation, transmission, balancing, outages and congestion
management. The reporting duration and resolution are dependent on the data item and
the TSO. The TP also distinguishes between a number of zonal aggregations, including
country, bidding zone, control areas, and market balance areas. Subsequently, in this paper,
we focus exclusively on the country-level aggregation for easier interpretability of results.
This does occasionally lead to some challenges as a single country may have multiple TSOs
and the datasets or forecasts provided by each one of these may differ in quality. The TP
makes it possible to access this data in several ways, including using the website’s graphical
user interface (GUI), an application programming interface (API) and a file transfer protocol
(FTP) service. We used the API to retrieve the data used in this study.

2.2. Data

It is important to note that while ENTSO-E makes an enormous amount of data available
through its API (over ten thousand time series for several years according to some estimates
[38]), we utilize only a small subset of these in our analysis. More specifically, since we are
primarily interested in evaluating the day-ahead forecast accuracy of load and generation,
we work with (1) actual and day-ahead forecasts of load, and (2) actual and day-ahead
forecasts of renewable sources (wind, solar).

We focused on a group of 16 countries that make the bulk of energy demand and gen-
eration in the European Union (EU). These include Austria (AT), Belgium (BE), Germany
(DE), France (FR), Spain (ES), the Netherlands (NL), Italy (IT), Sweden (SE), Poland
(PL), Portugal (PT), Denmark (DK), Greece (GR), Norway (NO), Finland (FI), Switzer-
land (CH), and Hungary (HU). However, the sheer size of the dataset makes understanding
and communicating results challenging: not all results for all countries can be visualized and
presented in a single paper. Furthermore, it is unclear whether the data used in the analysis
(i.e. downloaded from the TP) has been post-processed in the time since it was first made
available (which is when the forecast would have been originally used).

It is pertinent to point out some issues with the data collection phase here. Not every
country uses the same time resolution, therefore some measurements were on an hourly
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interval while others were on a half- or quarter-hourly interval. To keep cross-country com-
parisons fair, we sub-sampled data from all countries to an hourly interval. A more serious
issue arose due to API calls that did not always yield usable data, and occasionally crashed.
This was particularly an issue for renewable generation, where data for a number of countries
was only available since the beginning of 2017. We consequently limit most of the analysis
to the period of 2017-2021 (inclusive). In line with earlier findings [38], we also experienced
several time-out errors while retrieving data using the API. This led to roughly 5-10% of
renewable energy sources values to be missing in the final analysed dataset (depending on
country), which were not used in subsequent forecast evaluations. In addition, we also ob-
served a few anomalous measurements for load and generation time series for some countries,
which were filtered out. We highlight these findings in subsequent sections.

2.3. Evaluating forecast errors

It is important to note that, pandemic-induced disruptions notwithstanding, the Euro-
pean electricity demand has not seen a level shift over the past few years (Fig. 1). On
the other hand, renewable generation has expanded considerably in several countries dur-
ing this time. All three time series are inherently seasonal, with solar energy generation
being arguably the most pronounced example of this. This existing trend and seasonality
makes the evaluation of forecast errors inherently tricky as any change in error over time
can be attributed to changes in the time series to be forecast or the forecasting algorithm
(or both). Unfortunately, the algorithms used by the various TSOs to make the forecasts
remain black-box, and to the best of our knowledge, there is no documentation to study
whether they have changed over time or not. It is also unclear, though unlikely, whether
different TSOs coordinate while making forecasts and what meteorological (or other) data
sources they ingest as input features while making their forecasts. Consequently, this section
focuses on forecast evaluation metrics for the different countries considered in the study for
all three forecasts (load, solar, and wind).

The forecast errors are calculated for each individual country using several metrics. There
are two practical reasons for this. First, it is unknown which error metrics the different TSOs
are utilizing. Second, good forecast methods should theoretically perform well on multiple
metrics, rather than on only the one they are trained to optimize for [33]. Consequently,
we consider (1) the coefficient of determination (R2), (2) mean error (ME), (3) mean abso-
lute error (MAE), (4) weighted mean absolute percentage error (WAPE), (5) relative mean
absolute error (rMAE), (6) autocorrelation function (ACF) of residuals, and (7) a non-
stationarity of residuals test. Taken together, the metrics provide a rather holistic view of
the forecast performance. The different error metrics are defined as follows:

R2 =
(
∑

(yt − ȳ)(ŷt − ¯̂y))2∑
((yt − ȳ)2(ŷt − ¯̂y)2)

(1)

ME =
1

n

n∑
t=1

(yt − ŷt) (2)
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MAE =
1

n

n∑
t=1

|yt − ŷt| (3)

WAPE = 100 ·
∑n

t=1 |yt − ŷt|∑n
t=1 |yt|

(4)

rMAE =
MAETSO

MAEBaseline

(5)

rk =

∑n
t=k+1 (et − ē)(et−k − ē)∑n

t=1(et − ē)2
(6)

Here, y and ŷ are the observed and forecast time series (load, wind and solar for all sixteen
countries). Likewise, ȳ and ¯̂y are the mean values for these observations and forecasts, and
n is the extent of the time series (in this case, mostly five years). et is the error at time t
(i.e. yt − ŷt), and ē is the mean error. rk is the autocorrelation function at lag k.

2.3.1. Scale-preserving metrics

Of these metrics, only the ME and MAE follow the same units as the observed time
series. The ME provides a measure of whether the forecaster is biased or not, while the
MAE provides insights into the extent the forecast deviates from the observations. These
metrics, ME and MAE, however do not let us compare the forecast errors between countries
with very different overall demand or generation (such as Germany and Austria or Belgium).

2.3.2. Relative and scaled metrics

R2, WAPE and rMAE can be used for this purpose instead. R2 is considered a measure
of the amount of variation in the observed time series that is explained by the prediction.
Another way to think about it is the strength of correlation between the observed and
predicted time series. Instead of the standard MAPE, we use WAPE to prevent divisions
by zero, something which is especially an issue for solar forecasts. Due to the trend and
seasonality in the data, the average also provides a slightly more indicative denominator
of how the forecast can be expected to behave. Finally, the rMAE compares the forecast
models’ performance against a baseline model. In this case, a daily persistence model is used
for both demand and generation. The accuracy from such a baseline model may slightly
exaggerate its skill since in practice the day-ahead forecast is sometimes created 36 to 40
hours in advance. This is balanced by the fact that in reality baseline load forecasts can be
made using weekly seasonalities combined with special treatment for weekends.

2.3.3. Metrics based on temporal evolution of residuals

In addition to the error metrics defined above, it is also instructive to take a closer look
at the residuals themselves. For instance, the autocorrelation function of residuals can be
used to establish whether there is any remaining structure in the time series that could have
been exploited for a better forecast. More concretely, when the autocorrelation function
(ACF) of (forecast) residuals is non-zero for some non-zero lags, we can conclude that there
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is still some structure in the time series which has not been modelled sufficiently. This can
be ascertained visually or using a Ljung Box test on out of sample residuals [39]. Finally,
even though the time series under consideration are non-stationary, forecast errors should
ideally be stationary over time. When they vary over time, it can indicate that the skill level
of the forecaster varies over time as well (based on changes in the forecaster or the forecasted
time series). Therefore, we also estimate whether the forecast errors are stationary or not,
using the Kwiatkowski–Phillips–Schmidt–Shin (KPSS) test for the load [40] and a visual
test for wind and solar using clock plots.

The choice of these error metrics raises an important point: all time series under con-
sideration vary considerably over time, both due to foreseen seasonalities and trends, and
unforeseen disturbances such as Covid-19. Consequently, the aforementioned metrics are
calculated for two different contexts for the load forecasts: (1) business-as-usual case, which
includes predictable disruptions such as holidays etc., and (2) unforeseen disruption caused
by Covid-19-induced lockdowns. For renewable energy, the latter two considerations are not
relevant, but the forecast error trend over time is considered.

3. Results

We follow the same sequence to evaluate forecast errors for all three time series (load,
wind and solar) for all countries in this section. First, we present the distribution of the
residuals for each country as a scatter plot and a boxplot (to identify effects such as het-
eroskedasticity and biased forecasts etc.). Second, we explore the autocorrelation function
of the forecast residuals, disaggregated by country. Third, the aggregated error for all coun-
tries is visualized as a function of time (from 2017 to 2021). This is followed by a table
summarizing the error metrics for all countries discussed earlier. Finally, for load forecasts,
we include a sub-section to discuss how Covid-19 lockdowns effected different TSOs’ fore-
cast errors. Likewise, for renewable energy forecasts, we include a clock plot to explore the
seasonalities and trends of forecast errors.

3.1. Load

3.1.1. Normal operating conditions

Fig. 2 shows load forecast errors in the different countries. Day-ahead demand forecasts
appear to be quite accurate in most countries with only small deviations from the line of
perfect fit. There are some notable departures from this trend. For instance, based on
the scatter plot, the Austrian day-ahead load forecasts seem to be inaccurate when the
load is rather low. Additionally, a few outliers with extremely poor forecasts are evident
as well, including for the Netherlands and Switzerland. The data for the Netherlands was
verified against that shown in ENTSO-E dashboards, but it is unclear why these forecasts
are consistently biased for extended periods of time. The German forecast also likewise
seems to be biased. The type of errors made for these countries indicate that this is perhaps
a data quality rather than a forecast issue, as it is unlikely that a TSO can continue making
hugely biased errors for years on end. Practitioners should therefore proceed with caution
when using TP for obtaining load (or other) forecasts, especially for these countries.
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Figure 2: (Top): A scatter plot showing the coefficient of determination for each country, along with the
distribution of load forecasts (y-axis) as a function of observed load (x-axis); (Bottom): a boxplot showing
the error distribution for the load forecasts, disaggregated by country
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Despite the high R2 and tight fit between forecast and observed demand, Fig. 3 shows the
autocorrelation function for the residuals from most countries is non-zero at numerous lags.
This provides strong evidence that the forecasts can be further improved, while illustrating
two facts. First, that there is considerable serial structure in the residuals. This holds true
for all countries considered in the study. Second, there is a considerable periodic element
to the errors as well, which differs for different countries. More specifically, we were able to
identify four different archetypes based on the autocorrelation function of their residuals:

1. The first archetype, which includes Greece, Belgium, Hungary, and Finland, demon-
strates primarily daily seasonality in the forecast errors;

2. The second archetype, which includes the Austrian, Dutch and German regions (given
the likely data quality issues, this needs further investigation), demonstrates both daily
and weekly autocorrelations;

3. The third archetype, which contains all remaining countries except Spain, demonstrate
seasonality in the residuals at multiples of 12 hours;

4. The fourth archtetype, which consists only of Spain for now, shows very limited sea-
sonal autocorrelations (as well as a low serial autocorrelation as well).

Unfortunately, the residuals are not just autocorrelated, they are also non-stationary for
many countries as indicated by the KPSS test. This indicates that the error distribution
changes over time. A common cause for this includes higher errors during peak hours. The
exceptions to this, at p = 0.05, include Belgium, France, Spain, Sweden, Portugal, Denmark
and Hungary where we fail to reject the null hypothesis.

Next, we compare the TSO forecasts against a simple, daily-naive baseline model. This
leads to the relative MAE metric (rMAE), which mirrors findings from other metrics as well.
Norway, Denmark and Spain have very low rMAE values (all three also score very well on the
other scale-invariant metrics of R2 and WAPE). On the other hand, as expected, the (likely)
data quality issues mean that the Dutch forecast performs poorly even when compared to
the naive baseline. For the other countries, there remains a non-monotonic relationship
between the WAPE and rMAE. This provides some evidence for the fact that there may be
inherent differences in the forecastability of underlying time series, which effects results in
addition to the TSO forecasting skill.

Finally, Fig. 4 visualizes the error observed in all regions between 2017 and 2021, i.e.
the absolute forecast errors are simply added for all countries. Overall, the forecast error
does not appear to have changed considerably over the past years. While it is interesting
that load forecasts have not necessarily gotten more accurate, this must be tempered with
the realization that 2020 and 2021 saw large disruptions due to Covid-19, which we turn
our attention to in the next section. The overall results for load forecasts are summarized
in Table 1.

3.1.2. The effect of Covid-19

This section focuses on the pandemic-related disruptions and their effect on electricity
demand forecasts. Fig. 5 shows that the overall electricity demand in 2020 (i.e. the aggre-
gated electricity demand in the sixteen countries under consideration) deviated significantly
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Figure 3: The autocorrelation function of the load forecasts; four different countries are highlighted as
representing the archetypes identified in the text, i.e. those showing 1. strong daily autocorrelations; 2.
strong daily and weekly autocorrelations; 3. strong sub-daily, daily and weekly autocorrelations; and 4. only
a serial autocorrelation

Figure 4: The distribution of load forecasts between 2017 and 2022, aggregated over all 16 countries; Covid-
induced forecast errors in 2020 do not seem to lead to a departure from expected forecast accuracy

12



Country Symbol R2 ME [MW] MAE [MW] WAPE [%] rMAE

Austria AT .88 38 352 4.95 .61
Belgium BE .94 34 250 2.56 .45
Germany DE .95 2082 2436 4.27 .56
France FR .99 -78 917 1.71 .29
Spain ES .99 -9 307 1.09 .17

The Netherlands NL .59 -242 1271 10.14 1.59
Italy IT .99 -154 678 2.06 .21
Sweden SE .98 -79 388 2.48 .42
Poland PL .98 -281 424 2.21 .29
Portugal PT .96 -4 157 2.77 .37

Denmark DK .99 -1 41 1.08 .14
Greece GR .96 -75 178 3.07 .49
Norway NO .99 17 107 .70 .14
Finland FI .98 59 184 1.93 .39
Switzerland CH .74 -68 416 5.84 .92

Hungary HU .96 184 201 4.10 .7

Table 1: Summary of load forecast error metrics for different countries
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Figure 5: Comparing aggregated load in all sixteen countries for different years; the first lockdown period
in spring of 2020 shows a significant departure from its expected value, thereafter no discernible difference
is obvious

Figure 6: Load forecast errors for three different countries (Spain, France, and Italy): shaded regions
represent the expected error values (i.e. based on 2015-2019) compared with the realized forecast errors in
2020

from the norm around mid-March and only reverted to its expected value around July or
August. Different countries contributed differently to this deviation, with countries in the
South of Europe (such as Spain and Italy) being especially hard hit. However, in terms of
forecast accuracy, we found that after an initial adjustment period, most TSOs responded
quickly and managed to minimize the error magnitude in a few days to weeks. One notable
exception to this rule is Spain. Despite boasting one of the most accurate load forecasts in
general, it had one of the highest increases in forecast error during the initial lockdown in
2020. As seen in fig. 6, it was hit particularly hard by lockdowns while other countries such
as Italy, France and Belgium also saw comparable lockdown periods without a correspond-
ing sustained spike in forecast error. This is not to say that most other TSOs managed to
get through the disruption unscathed, just that they were rather nimble in adjusting to the
evolving conditions, which is after all a desirable property in forecasting the future.
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3.2. Wind power generation

For wind power generation, only the case of normal operating conditions is considered,
as pandemic-induced disruptions could not directly effect generation. As before, we first
consider the error distributions, both as a scatter plot and as a boxplot in Fig. 7. From
the scatter plot, it is already obvious that the error distribution is much less tight when
compared to the load forecast errors. Considerable country-specific differences exist as well.
As before, Swiss and Dutch forecast data appears of dubious quality. Several countries,
such as Austria, Germany, Germany and Sweden, also show strong deviations from the
line of perfect fit, indicating considerable periods of sustained over- or under-predictions.
Interestingly enough, Sweden still manages to have a very low overall error rate.

The residuals are next tested using the autocorrelation function of the residuals, where
we see a somewhat similar trend as before (Fig. 8). Most countries exhibit strongly (daily)
seasonal residuals, which indicate they can be further improved. In this case however, there
is no evidence of weekly or 12-hourly seasonality. Unlike in the load case where we needed
to carry out the KPSS test, here the errors are obviously non-stationary for most countries
due to the nature of wind power generation. This can also be seen in Fig. 9, which shows
that the median forecast error aggregated over all 16 countries has grown by a factor of
almost two since 2017. This is primarily due to increases in installed capacity. At the same
time, the worst case errors have also grown considerably during this period, with the 95th
percentile growing from 6 GW to almost 10 GW. Fig. 9 also provides further evidence for
the non-stationarity of the forecast errors by visualizing the errors as a clock plot. Here, it
is evident that the errors differ based on time of day, season of year, and year of study. For
instance, the forecast error aggregated over all countries in the study at 22.00 during winter
2021 is over three times the average error in 2017. This rapid growth in forecast errors is
a serious cause for concern, as wind power generation (and consequently forecast error) is
expected to rise steeply in the years to come.

Finally, we turn our attention to the relative MAE for the wind forecasts. Here, as before,
we see some poor forecasts due to potential data quality issues (e.g. in the Netherlands and
Switzerland). On the other hand, most other countries show high levels of skill, when
compared with the naive baseline forecast. This is especially true for Sweden and Spain.
Most of the remaining countries also perform much better than the naive baseline (often
by a factor of three to four times), demonstrating considerable skill at forecasting wind
generation in the next 24 hours when compared to the daily persistence model.

3.3. Solar power generation

Finally, we take a look at the solar generation forecasts. Solar power production is, by
definition, zero for a considerable period of time, which can cause issues for some evaluation
metrics. This was one reason for the choice of WAPE as a relative error metric rather than
MAPE. As before, we begin the analysis with the scatter and boxplots, shown in Fig. 10.
There is very little data for solar production from the Nordic countries (Norway, Sweden
and Finland), and Switzerland and the Netherlands exhibit the same data quality issues
as before. In the remaining countries, Austria and Portugal also exhibit poor forecasting
performance. For Portugal, this translates to a considerable amount of time where the TSO
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Figure 7: (Top): A scatter plot showing the coefficient of determination for each country, along with the
distribution of wind forecasts (y-axis) as a function of observed wind generation (x-axis); (Bottom): a
boxplot showing the error distribution for the wind forecasts, disaggregated by country
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Country Symbol R2 ME [MW] MAE [MW] wMAPE [%] rMAE

Austria AT .8 -14 201 24.6 0.3
Belgium BE .87 -32 184 19 .29
Germany DE .88 -77 1343 10.1 .2
France FR .92 36 414 11.5 .24
Spain ES .9 10 437 7.3 .19

The Netherlands NL .69 -367 492 49.4 .85
Italy IT .22 195 404 18.4 .36
Sweden SE .92 -8 151 5.9 .14
Poland PL .92 119 208 12.3 .22
Portugal PT .77 17 201 14.1 .25

Denmark DK .87 38 220 12.2 .21
Greece GR .86 -55 128 17.5 .33
Norway NO .88 -4.5 66 8.7 .21
Finland FI .81 11 120 16.6 .3
Switzerland CH 0 5.6 8.9 83 1.28

Hungary HU .73 -5.6 24.4 31.7 .37

Table 2: Summary of wind forecast error metrics for different countries
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Figure 8: Autocorrelation function of the wind forecast residuals, with the average highlighted; the ACF
shows non-zero values at many lags indicating both serial and seasonal autocorrelations; barring countries
with probable data quality issues, most countries exhibit a largely similar behaviour with daily peaks in the
ACF

forecast solar generation when there was in fact none and vice versa. Austria, on the other
hand, shows a curious break in the data where the forecasts continue to grow between 2017
and 2021. The actual generation data, on the other hand, does not grow and actually falls
below the previous levels in 2020. We can only hypothesise that this is yet another data
quality issue. The remaining countries (Belgium, Germany, France, Spain, Italy, Poland,
Denmark, Greece and Hungary) exhibit fair performance based on the scatter plot. However,
even in this subset, the boxplot shows that Italy has a number of very high positive errors
(reaching almost 10 GW), which could potentially destabilize the grid.

The autocorrelation plot (Fig. 11) shows a largely similar pattern as before for wind
forecasts, with significant serial and daily correlations for every country. The ACF in general
goes down much slower than for wind generation and load, indicating potentially greater
serial autocorrelations and consequent scope for improvement. However, this is naturally
influenced by the intermittent nature of solar production as well. Furthermore, unlike for
wind, some of the countries again show a sub-daily significant autocorrelation function,
which could potentially be related to the morning and evening ramps.

As with wind and unlike the load series, the solar forecast errors (aggregated over all
countries) have grown tremendously since 2017, with the median value growing by over five
times (Fig, 12). Likewise, the worst case error has grown by over two times and is roughly
of the same order of magnitude as wind generation forecast errors at this point. At the same
time, there is an understandable element to the forecast errors which are consistently higher
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Figure 9: Wind forecast errors aggregated over all countries by (top) year, and (bottom) visualized as a
function of time of day and season of year; in addition to visualizing the rising error, the plot also showcases
how diurnal and seasonal variations can be quite important
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Figure 10: (Top) Scatter plot visualizing solar forecasts x-axis against observations y-axis by country,
(bottom) box plot visualizing solar forecast error on an individual country basis
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Figure 11: Autocorrelation function of solar forecast errors with the average highlighted; the ACF shows non-
zero values at many lags indicating both serial and seasonal autocorrelations; most countries demonstrate a
very strong diurnal seasonality in the forecast errors, with some also showing a sub-daily seasonality

during the day when the sun is actually shining. The diurnal, seasonal and annual variations
of the forecast error can also be seen in the clock plot (Fig. 12). However, this strongly
non-stationary nature of forecast error means that the grid operator now has to contend
with dramatically different levels of uncertainty and forecast errors at different times of the
day and year.

Finally, the MAE of the solar forecasts can be compared against the daily naive baseline
to estimate the rMAE metric. In this case, the result is meaningless for several countries
due to missing or (likely) incorrect data. For the remaining countries, the rMAE is generally
higher than what was witnessed for wind generation and is, on average, only about twice as
good as the baseline forecast. Sweden shows deceptively good performance but is excluded
from the rankings because of its very low overall reported generation.

4. Discussion

This paper fills a significant gap in existing literature on the evaluation of publicly
available forecasts of load and renewable generation across sixteen different countries. Owing
to the diversity in energy demand and generation in these countries which are spread across
Europe, the results can be expected to generalize well to other regions in the world as well.
In this section, we cover some of the most important implications of these results.
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Figure 12: (Top) Evolution of solar forecast error aggregated across all countries from 2017 to 2021, (bottom)
clock plot to visualize solar forecast error by time of day and year; in addition to visualizing the rapidly
rising error, the plot also showcases how diurnal and seasonal variations will become increasingly important
in grid operation
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Country Symbol R2 ME [MW] MAE [MW] WAPE [%] rMAE

Austria AT .7 -42 43.6 34.3 1.61
Belgium BE .88 2.8 65.1 15.3 .45
Germany DE .89 .6 332 7.0 .31
France FR .82 -12.3 277 21.6 1.2
Spain ES .93 -22 164 8.4 .45

The Netherlands NL .56 -487 488 4361 116
Italy IT .44 79.3 212 9.6 .59
Sweden SE .82 0 .22 3.5 .05
Poland PL .96 -46 92.9 22.8 .91
Portugal PT .69 -.91 32.2 24 1.17

Denmark DK .87 1.9 20 16.5 .48
Greece GR .83 -7.7 40.2 9.3 .49
Norway NO NA NA NA NA NA
Finland FI NA NA NA NA NA
Switzerland CH 0.27 97 109.8 78.3 2.04

Hungary HU .91 4.5 26.5 12.4 .44

Table 3: Summary of solar forecast error metrics for different countries
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Figure 13: Relative MAE (rMAE) for different countries for load, solar and wind generation; a value of one
would indicate a forecast that is no more skilled than the naive daily persistence model, while a value below
one indicates a model which outperforms the baseline

4.1. Cross-country effects

As we observed earlier, there are obvious differences between the forecast accuracy of
different countries, both in load and renewable generation forecasts. For instance, with
seemingly comparable average electricity usage, the forecast error in France is less than half
that in Germany. Likewise, a similar trend is visible for both wind and solar generation:
we see a three-fold increase in forecast error between Poland and Greece, even though the
average electricity generation through solar is roughly the same. This latter is of course
partially explained by the different installed capacities in different countries and local con-
ditions. However, at the end of the day, the installed capacity is far less important from an
operational perspective than the energy and power actually generated and available to the
grid.

The errors in the three time series under consideration are largely decorrelated or show
only weak positive or negative correlations depending on the geographic zone. For instance,
wind generation forecast errors are weakly negatively correlated for the Iberian peninsula
(Spain and Portugal). This however does not hold in most other locations. Consequently,
as a whole, it is fair to assume that the forecast errors different TSOs make tend to be
largely decorrelated from one another. This is of course only a general guideline and does
not necessarily hold in every instance. Practitioners and TSOs should therefore keep this in
mind when planning for potential worst case outcomes. As an example, the 95th percentile
of errors (load, wind and solar), assuming positive correlation, amounts to over 38 GW in
2021, up from around 22 GW in 2017. Most of the growth has come from renewable energy
source forecasts.

4.2. Learning curves

Data quality and access issues notwithstanding, it is obvious that the TP is a valuable
resource for data on forecasts of solar and wind generation as well as the expected load on
the grid. However, there are considerable differences among the skill level of these various
forecasts as shown in Fig. 13. The rMAE benchmarks all TSO forecasts against naive
baselines. Overall, wind forecasts are the most accurate, followed by load and finally solar.
However, this conclusion is somewhat biased by the fact that countries for which solar
generation data is available is still rather low.
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Figure 14: Forecast error as a function of increasing (left) load, (center) wind, and (right) solar; the y-axis
represents the absolute error, which is relevant for system planning especially to prevent worst-case scenarios

In 2021, even though the median wind power forecast error was considerably higher than
solar, taken together the two amount to around 5.5 GW, assuming decorrelated errors. This
has grown roughly two-fold since 2017, and is now of roughly the same order of magnitude as
the load forecast error, which has a median value of 7.5 GW. In fact, as Fig. 14 shows, there
is an obvious trend of increasing error with increasing energy demand and generation for
wind and solar. This trend is most pronounced for wind, where for each additional GWh/h
generated, the forecast error rises by roughly 100 MWh/h. For solar, this amounts to 82
MWh/h and for load to only 25 MWh/h.

4.3. The road ahead

As the European Union pursues its ambitious climate and energy security goals, this
error will take increasing centre stage in grid operation and planning. According to the
latest climate goals, the EU aims to have renewables make up 45% of its overall energy mix
by 2030, up from 40% under previous plans. This means doubling installed solar generation
capacity by 2025, and expanding it by over 3.5 times by 2030. Similar growth targets
are foreseen for wind power generation as well. This will lead to a worst case scenario
with forecast errors almost an order of magnitude higher than what they are at present.
Naturally, this will require large scale prescriptive analysis to understand and mitigate the
effect of these forecast errors [41]. At the same time, these developments also necessitate
both more accurate forecasts and the activation of distributed energy flexibility [42] for grids
to continue to operate in a stable and secure manner.

The autocorrelation plots in our analysis have identified that, without exception, TSO
forecasts can still be improved. There are several suggestions to achieve this:

1. Based on [33], a number of algorithmic remedies are possible, including increasing
model order, feature transformations (such as smoothing, normalisation, differencing
or log transformations) and use of techniques such as meta- and multi-task learning
which are increasingly relevant for forecasting contexts as well [14, 43].

25



2. The TSOs should embrace greater transparency regarding their methodologies, and
actively engage with the research community. An improved understanding of how
these forecasts are made, possibly in conjunction with hackathons and competitions,
will inevitably lead to breakthroughs helping improve their performance.

4.4. Limitations of the study

At this point, it is also important to discuss some important limitations of this study.
First, the dataset we analysed was not perfect and there were significant amounts of missing
data. Likewise, results for a number of TSOs represent not the actual forecast accuracy, but
arguably underlying data quality issues. This holds true for especially the Netherlands and
Switzerland. We also only consider the day-ahead point forecasts available on TP. However,
many TSOs do provide other time horizons and interval forecasts on their own open data
portals. A follow-up study could analyse these, along with carrying out a deeper analysis of
the drivers behind large forecast errors.

Even for countries with no data quality concerns, it is unclear what fraction of forecast
skill can be attributed to (improvements in) forecasting models or whether errors have simply
evolved as a function of changing electricity (supply) mix. Likewise, it is difficult to ascertain
whether the forecast model used by any TSO in 2021 is the same as the one used by that
TSO in 2017 (or if several countries are using the same or similar models). It is also unclear
how cross-border couplings have influenced the electricity demand and generation forecasts
or whether neighbouring TSOs consider each others’ forecasts, when making their own.
We hypothesise that this consideration - if not already implemented - could further improve
performance, but it must also account for the elevated risk of correlated errors. Additionally,
what is included in the load and generation data that is being forecast varies as well; for
instance, there are often important differences in the jurisdiction of TSOs in European
countries and no single, unified framework to demarcate TSO-DSO (distribution system
operator) responsibilities exists. Greater transparency on part of the system operators can
considerably alleviate this.

5. Conclusion

In this paper, we have analysed openly available load and renewable generation forecasts
from ENTSO-E TP, leading to several interesting insights. Rather surprisingly, the foremost
insight was driven by what we expect to be data quality issues. Several forecasts (or, in
one case, the actual generation series) provide garbled values which bear little resemblance
to reality. The issue is arguably most obvious with data from the Dutch and Swiss TSOs,
but other countries, including Germany and Austria, exhibit dubious quality data as well.
Coupled with the frequent time-outs in retrieving data, the first conclusion is therefore that,
despite its obvious utility, TP’s real-world usability is limited and the data cannot necessarily
be relied upon. ENTSO-E must consequently take steps to rectify this situation - potentially
incorporating automated error detection techniques to avoid providing corrupted or incorrect
data to downstream users.
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Secondly, we discovered that the forecast error grows almost linearly in all three cases
with increasing demand or generation using renewable energy sources. In fact, the combined
forecast error due to solar and wind has roughly doubled during just the last five years, and
is now of roughly the same order of magnitude as the load forecasts. As EU ramps up its
renewable generation, this rapidly growing forecast error poses grave concerns about system
stability. We also found that the TSO forecast skill measured using rMAE (i.e. compared
to a naive baseline) is arguably the highest for wind forecasts, followed by load and finally
solar. At the same time, while the forecast errors are not strongly positively correlated
with one another, all of them exhibit very strong autocorrelation. This leads to the second
and most important conclusion of the paper that, even when the data is not garbled, TSO
forecasts should not be blindly relied upon. In fact, as our analysis shows, it is possible to
improve on them by exploiting the structure still remaining in the residuals. This can be
done by increasing model complexity, feature engineering as well as using more infomrative
features in the first place etc.

Finally, in this paper, we have focused exclusively on day-ahead forecasts. The TP
provides these in the form of point forecasts. There are also several other lower resolution
forecasts, which include month ahead and year ahead forecasts. However, some TSOs (such
as Elia the Belgian TSO), already provide interval forecasts for all three time series at
multiple time horizons. Such interval forecasts, when properly calibrated, can then be used
by downstream stakeholders and market agents to plan in risk-aware contexts. For instance,
high uncertainty around demand forecast can force generators to bid conservatively. This
leads to the final conclusion that the TP should introduce an additional requirement to the
reporting TSOs to provide more frequently updated interval forecasts rather than focusing
solely on day-ahead point forecasts.

In an increasingly coupled European electricity network, having observed and forecast
energy demand and generation in a single, openly available repository can create tremendous
value, besides facilitating several downstream users ranging from aggregators to balance
responsible parties. At the moment however, the data and the forecasts made available
through the TP are not always at a quality level that can be relied upon for downstream
services. In this, the current work builds further on highlighting limitations of the TP, but
also presents a way forward to help realize the ongoing energy transition.
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