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Abstract—The photovoltaics (PV) hosting capacity (HC) of the
power system infrastructure is an important planning problem.
The energy transition is happening now, resulting in the addition
of new load types and generation in the low voltage distribution
network. With these new loads and generation devices connected
to the distribution network, a new planning approach is required
that considers their stochastic nature. Computing the stochastic
HC for all individual low voltage distribution feeders is challeng-
ing, as a small service area can have hundreds of feeders. This
work aims to capture appropriate clustering schemes and the
most relevant features of low voltage distribution feeders so that
an accurate estimate of the hosting capacity of the full service area
can be calculated by scaling up the hosting capacity of a small
number of representative feeders. Case studies in actual feeders
from suburban Spain showed that representative feeders obtained
from feature reduction and appropriate cluster size could be used
to scale the stochastic PV HC of an extensive service area. The
case study showed that 3% of the total feeders could estimate the
PV HC of the LVDS feeders in the large service area by selecting
appropriate features.

Keywords—distribution system, renewable hosting capacity, spa-
tial scaling, representative feeders, low voltage, photovoltaics.

I. INTRODUCTION AND MOTIVATION

The hosting capacity (HC) of a low voltage distribution
system (LVDS) refers to “the amount of new generation or
consumption that can be accommodated on a given feeder
without impacting system operation under existing control and
infrastructure configuration” [1]. In [2], it was seen that LVDS
hosting capacity to new photovoltaics (PV) is a multidimen-
sional stochastic problem due to many uncertainties, which
can be classified into three types: a) power generation and
load consumption uncertainties, b) PV scenario uncertainties,
i.e., size, connection phase and type of the installations, and
c) feeder uncertainties, i.e., feeder type and feeder size. The
first type of uncertainty can be regarded as an operational
uncertainty that depends on weather and consumer behaviour.
The second is a planning level uncertainty, dealing with the
size, type and location of PV installed. The third uncertainty
emerges from the features of the feeder involved. The distribu-
tion network is the final capillary of the power grid. They are a
significant part of the power network by length and spread. A
small suburban town may have 160 such LV feeders [3], while
the total number of LV feeders operated by a single operator
can go up by tens of thousands. However, the variability in the
feeder’s features is usually neglected, and the HC is calculated
only for a few selected feeders [2].

The easiest but computationally expensive solution for
getting HC of a network, considering the uncertainty of the
feeder features, is through individual analysis of each feeder.
This feeder-wise calculation is an easy solution if the HC
calculation method is deterministic or the service area is small.
However, it might not be feasible if computationally expensive
stochastic HC calculation methods [2] are used or the service
area is quite large [4]. The limited availability of LVDS feeder
data and load data also limits the feederwise analysis of the
complete network. The other alternative is to estimate the HC
of the whole network based on a smaller set of representative
feeders [5].

PNNL has published 24 synthetic representative feeders [6]
based on the statistical features of medium voltage (MV) grids.
Similarly, EPRI has published six representative MV feeders
sanitized for scientific use [7]. In [8], 9 MV and 8 LV prototype
feeders are presented to represent Australian feeders after the
analysis of 204 members of the MV and 8858 members of
the LV database. In [5], a set of 383 feeders from England
were analyzed and clustered to get 11 representative feeders.
One of such representative feeders was also published as the
IEEE European LV test feeder [9]. In [5], the usefulness of
the representative feeders was shown to identify the group
of feeders which can host 100% PV. It was shown that if a
representative feeder has 100% PV HC capacity, then all the
feeders in the subset represented by that feeder also have 100%
PV HC. In [4], it was shown that the PV HC trend of an LVDS
system with 50 000 feeders can be represented by a set of 2%
of randomly chosen feeders. In [10], representative feeders
for a set of 24,000 Austrian LVDS feeders were obtained
to identify the limiting constraints of the group represented
by those feeders, i.e., thermal or voltage, for a high PV
penetration. These results were for simplified deterministic PV
HC calculations with no other uncertainties considered [5],
only the location of PV considered as uncertain [4], or only
the limiting constraint is observed [10]. So far, the existing
studies do not consider scaling stochastic PV HC in a spatial
dimension using representative feeders. Furthermore, there are
no studies regarding the selection of suitable features of low
voltage feeders, such that the representative feeders represent
the PV HC of their respective groups.

The main contributions of this paper are as follows:

a) a methodology is proposed to obtain the appropriate
number of the representative feeders, whose stochastic
PV HC can be used to estimate the cumulative PV HC
of the network,
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Fig. 1: Decoupling of planning and operational uncertainties to
calculate PV HC [11]

b) a method to identify the most relevant features of LVDS
feeder for stochastic PV HC scaling is proposed (Sec-
tion II),

c) a case study is demonstrated for a) and b) using the set
of European LV feeders from [3] (Section III).

II. METHODOLOGY

A. PV Hosting Capacity

The main objective of this paper is to capture representative
feeders for a given LVDS so that an accurate estimate of the PV
HC of the full service area can be calculated by scaling up the
HC of a small set of those feeders. The representative feeders
are obtained through clustering schemes with the relevant
features of LVDS feeders. The PV HC calculation method
used in this paper is the decoupled PV HC method proposed
in [11]. This stochastic HC method splits the planning level
uncertainties from the operational uncertainties (Fig. 1), and
the best planning scenario out of the considered scenarios is
considered to be the PV HC of the feeder. Defining PV HC
itself is a well-debated topic [2], and not in the scope of this
paper. Hence, a detailed discussion on the methodology to
calculate PV HC of LVDS feeders is skipped in this paper
and interested readers are referred to [2] and [11].

Large scale LVDS can have hundreds of small feeders
whose PV HC needs to be calculated independently. Calcu-
lating HC is a computationally intensive process and can sub-
stantially be reduced by using representative feeders generated
from the relevant features of the feeders in the network.

B. Representative Feeders

The first step for obtaining representative feeders is to
create clusters of closely linked feeders, and crucial to this is
how the distance between feeders is defined and which features
of the feeders are taken into account to define this distance. In
this paper, the following features are available for all feeders:

(1) number of consumers connected to a feeder,
(2) yearly consumption per customer in kWh,
(3) yearly reactive consumption per customer in kWh,
(4) total conductor length in km,
(5) main path length in km,
(6) average length to the customer in km,
(7) total line impedance in Ohm, and

(8) average path impedance in Ohm.

The steps involved in finding appropriate representative
feeders suitable for scaling PV HC can be summarized as
follows:

1) Identify clusters of closely related LVDS feeders.
2) Choose one representative feeder per cluster.
3) Calculate stochastic PV HC of representative feeders.
4) Scale up the HC of representative feeders to the full set

LVDS feeders.

The first step of the process is clustering. There are several
clustering methods, of which k-means is most often used for
LVDS feeder classification [5], [10], [12]. For k-means, an
unsupervised clustering algorithm, the number of clusters and
hence the number of representative feeders is an input.

The next step is then to find the representative feeder of
each cluster, i.e., the closest feeder to the centroid. A parameter
xi,ψ is in standard form when

xi,ψ =
γi,ψ − γ̄k
std(γψ)

, (1)

where γi,ψ is the measurement value of the feature ψ for feeder
i, γ̄ψ denotes the mean value of that feature, and std(γ) denotes
the standard deviation of the feature. One representative feeder
from each of these clusters is selected using the parameter
in the standard form. Consider, xmin

k and xmax
k denotes the

minimum and maximum value of xi,ψ in a cluster. We define
the normalized distance of a given feature and a feeder in that
cluster as

Pi,ψ =
xi,ψ − xmin

ψ

xmax
ψ

. (2)

The representative feeders are selected by identifying ζrep
given as (3) for all clusters.

ζrep = min
i

∑
ψ

|Pi,ψ|. (3)

The unknowns in these steps are: a) how many clusters (and
representative feeders) do we need to get the scaled up PV HC
as close to the fully calculated one? And b) which features are
more relevant for PV HC scaling? This paper presents a case
study in European LVDS feeders to answer these questions.

1) Appropriate number of representative feeder: The num-
ber of clusters required to represent the overall network is
unclear. One of the ways is through the goodness of a cluster
measured using the mean silhouette index. The silhouette
coefficient of a node is a confidence indicator of its association
in a cluster [13]. Rousseeuw in [14] proposed an interpretation
based on the value of silhouette coefficient: where 0.71 to
1.0 implies a strong structure. However, there is no guarantee
that the clusters based on the this coefficient will correctly
represent the similarity in PV HC. Furthermore, the cluster
size is increased to see if the silhouette index-based cluster
size is appropriate choice for getting the best representative
feeder for scaling LVDS PV HC.
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Fig. 2: Covariance matrix of normalized to standard form used for
feature correlationship.

2) Choosing appropriate features: The covariance matrix
of the eight parameters in standard form is shown in the
heatmap shown in Figure 2. Note the high correlationship
between (i) active and reactive power, (ii) total number of
consumers and total line impedance, and (iii) features (4), (5),
(6), and (8). This covariance matrix can be used to reduce
the features taken for clustering. However, it does not say
anything about if these feature reduction improves the scaling
of the PV HC. As seen in [5], the mapping of the PV HC may
not be straightforward in all clusters. The clustering process
is repeated with a reduced number of features and different
combinations of features to fine-tune the result. The aim is to
find the relevant set of features of LV feeders, which will assist
the scaling of the stochastic PV HC spatially.

C. Scaling PV HC

Once a set of representative feeders is obtained using the
features and defined number, the PV HC of those feeders
is compared with the cumulative PV HC of the respective
cluster. The term scaling here refers to the use of representative
feeders’ PV HC to estimate the PV HC of bigger service area
in distribution network. The stochastic decoupled PV HC [11]
is used. Herein, two terminologies used in the remaining paper
are introduced: total HC, meaning the sum of PV size that can
be installed in the feeder and normalized HC, meaning the
average PV size per consumer. Both total and normalized HC
is compared while scaling using the representative feeders.

For this comparison, two indices are proposed:

Mean average absolute error (MAAE): In this index
the absolute difference between HC of representative feeder
(HC rep

κ ) and mean of HC of all feeders in the cluster κ (H̄Cκ)
is summed for all clusters and normalized by total number of
cluster K:

MAAE =
∑
κ

|HC rep
κ − H̄Cκ|
K

(4)

Difference from the representative feeder (DR): In this
index, difference of HC of each feeder i in cluster c from their
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Fig. 3: Mean silhouette score for different sized feeder clusters for
160 Spanish distribution network feeders

representative feeder is measured:

DR(i,κ) = HC rep
κ −HC(i,κ) (5)

The output will be in the form of distribution of error for a
particular clustering scenario from which mean (DRµ), and
variance (DRσ) of the difference can be obtained.

In the case-study following, increasing or decreasing the
number of clusters and use of different combination of fea-
tures is done to observe the error on scaling using indices
MAAE and DR. The result will be a comment on using the
representative feeders to scale the stochastic PV HC:

a) can the representative feeders using all features be used to
obtain the cumulative PV HC of an extensive distribution
service area?

b) if not, what are the most relevant features of LVDS when
scaling the stochastic PV HC spatially for a large service
area?

c) what is the influence of increasing or decreasing the
number of clusters in scaling the PV HC?

III. CASE STUDIES

In this section, feeders from an actual European LVDS [3]
is used to show the case studies in scaling of the PV HC
spatially. The mean silhouette score for different k values
of clusters is shown in Figure 3. It can be observed that
for k = 4, the mean silhouette score exceeds 0.95, and
therefore, four clusters are to be formed according to this
index. The identified representative feeders for clustering based
on maximum silhouette score are shown in Table I. The
increased cluster size has silhouette score above 0.51, which
means they still have a reasonable structure. The different
cluster size on both sides of the one with maximum silhouette
score is evaluated to check the significance of this score in
PV HC scaling. The aim is to obtain an appropriate number
representative feeders for a given threshold of error in scaling.

The first part of this section will deal with impact of
increasing the number of representative feeders scaling of HC.
The second case study is about impact of scaling based on
different features. In the third study, impact of both feature
selection and increasing the number of representative feeders
is shown. All the experiments are repeated for 100 times to get
a mean value to reduce the error due to uncertainty in cluster
centroids.
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Fig. 4: MAAE of stochastic PV HC scaling from representative
feeders using all features

A. Role of number of representative feeders in scaling

According to the silhouette score, the best suited number
of clusters is chosen to be four while. This clustering considers
all the eight features described in Section II(Fig. 3). On close
observation, cluster 1 had the majority of residential feeders.
In contrast, cluster 4 contained all the special feeders: such as
feeders without any load on them or serving consumers like
hospitals or sport-centres. For further calculations, the feeders
of cluster 4 were removed to avoid unnecessary bias. The 136
feeders in clusters 1 to 3 were used for scaling PV HC.

In Fig 4, it is seen that the MAAE of total HC of
the network while using the representative feeder based on
maximum silhouette score is 24%, when all features were used.
The MAAE increases on increasing the number of represen-
tative feeders till some point and then starts decreasing. The
MAAE of normalized HC is 60% at the maximum silhouette
score. Similar to total HC, it increases by increasing the
number of representative feeders first and then decreases. This
inconsistent behaviour means we need to specify a threshold

TABLE I: Representative feeders selected

Cluster 1 Cluster 2 Cluster 3 Cluster 4
Feeder ID 144 52 27 23

(1) No. of consumer 44 20 2 0
(2) Avg active/year [kWh] 2068.79 4256.73 5424.98 0
(3) Avg reactive/year 202.84 415.14 484.25 0
(4) Total line length [km] 0.38 0.15 0.31 0.25
(5) Main path [km] 0.21 0.13 0.29 0.22
(6) Avg length to costumer

[km]
0.15 0.13 0.16 0.0

(7) Total line impedence
[ohm]

4.60 2.52 0.30 0.67

(8) Average path impedence
[ohm]

0.10 0.13 0.15 0

Indices 0.17 1.19 1.65 1.62

for MAAE of total HC and normalized HC to get the required
number of representative feeders. For a threshold of 20%, the
number of needed representative feeders is 44 and 50, respec-
tively. If the maximum of these two is taken, 50 representative
feeders (≈35% of total feeders) are required with an error
threshold of 20% MAAE.

Alternatively, MAAE is observed for a fixed number of
representative feeders. In this case, 20% of the total feeders
were selected, i.e., 27 representative feeders. The MAAE is
29.5% and 39% for the total and normalized HC, respectively.
Hence, the conclusion obtained from this study is mixed.
Yes, the representative feeder can estimate the PV HC of a
larger network. However, better estimation is obtained only by
increasing the number of representative feeders. However, the
result might differ for more extensive datasets with thousands
of feeders, which we cannot say as the extensive network
data are scarce for research. Furthermore, using all features
to obtain representative feeders is not efficient enough, as we
need a detailed analysis of 35% of feeders for MAAE less
than 20%.

B. Feature Selection

The role of different features in scaling the stochastic PV
HC is studied in this section. The correlation analysis in Fig. 2
shows the relation among the features, namely features (1)
and (4), features (2) and (3), and features (4), (5), (6), and
(8) are correlated but does not show their role in PV HC
scaling. Three clustering scenarios are considered to get a
better understanding of these features in PV HC scaling:

a) C1: Clustering using all features,
b) C2: Clustering using the individual features only, and
c) C3: Clustering using a combination of selected features.

A rank-based method is proposed to find better features for
PV HC scaling. Eight different indices based on MAAE and
DR are calculated:

a) I1: the number of representative feeders when an error
threshold of 20% is fixed for the MAAE of total HC,

b) I2: the number of representative feeders when an error
threshold of 20% is fixed for the MAAE of normalized
HC

c) I3:MAAE of total HC when 20% of feeders are taken as
representative feeders,

d) I4: MAAE of normalized HC when 20% of feeders are
taken as representative feeders,

TABLE II: Rank of different indices when taking represen-
tative feeders, considering all features (C1) and individual
features (C2)

Features I1 I2 I3 I4 I5 I6 I7 I8 Rank sum
All 9 9 9 9 9 9 6 3 63
(1) 2 4 2 3 4 5 7 2 29
(2) 7 2 8 2 8 6 8 8 49
(3) 2 2 6 7 6 8 9 9 49
(4) 2 5 3 5 1 2 4 5 27
(5) 2 7 5 4 5 1 3 4 31
(6) 2 1 1 8 2 3 1 7 25
(7) 7 6 4 1 3 7 5 1 34
(8) 1 8 7 6 7 4 2 6 41



TABLE III: Rank of different indices when taking representa-
tive feeders considering all features (C1), individual features
(C2), and combinations of features (C3)

Features I1 I2 I3 I4 I5 I6 I7 I8 Rank sum
All 13 13 13 12 13 11 10 5 90
(1) 3 6 2 4 6 6 11 3 41
(2) 8 2 10 3 10 7 12 12 64
(3) 3 2 8 9 8 9 13 13 65
(4) 3 7 3 7 3 3 8 8 42
(5) 3 9 7 5 7 2 5 6 44
(6) 3 1 1 10 4 4 3 11 37
(7) 8 8 5 1 5 8 9 1 45
(8) 1 10 9 8 9 5 4 10 56
(4), (6) 1 2 4 6 1 10 2 9 35
(1), (4) 11 11 12 11 11 12 6 4 78
(1), (6) 12 12 11 13 12 13 1 7 81
(1), (4), (6) 10 5 6 2 2 1 7 2 35

e) I5: absolute value of DRµ of total HC when 20% of
feeders are taken as representative feeders,

f) I6: absolute value of DRµ of normalized HC when 20%
of feeders are taken as representative feeders,

g) I7: DRσ of total HC when 20% of feeders are taken as
representative feeders,

h) I8: DRσ of normalized HC when 20% of feeders are taken
as representative feeders,

At first, cases C1 and C2 are taken, and the features with
the first three ranks are taken to form C3. Finally, a new
ranking is done, taking C1, C2 and C3 together. The rank
matrix for when taking only C1 and C2 is shown in Table II,
from which features (1), (4) and (6) had the top three sums of
the rank. The C3 scenarios are built from the combination of
(1), (4) and (6), and a new rank table is formed using all C1,
C2, and C3.

From Table III, it is seen that feature (6) and the combi-
nations (4),(6) and (1), (4), (6) had better performance based
on the ranking of all eight indices.

We can reasonably conclude that taking all features with
equal weight would not necessarily lead to better represen-
tative feeders. However, the features such as the number of
consumers connected to a feeder (feature 1), total conductor
length in km (feature 4), and average length to the consumer
(feature 6) have a lower error on scaling PV HC when taken
individually. Similarly, the combination of these three features
had a better ranking among all other tested combinations.

C. Impact of feature selection

In this section, the three top ranking feature combination
from the previous study is evaluated to compare the improve-
ment from the first case study with all features in terms
of MAAE. The two factors considered were the reduction
in MAAE on taking 20% of total feeders as representative
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Fig. 5: MAAE of stochastic PV HC from representative feeders after
feature reduction

feeders and the number of representative feeders required for
a threshold of 20% of MAAE of both the total and normalized
HC.

From Table IV and Fig. 5, two main conclusions can be
drawn. First, the feature reduction reduces the number of
representative feeders required by 94% if the threshold of
MAAE is fixed to 20%. On the other hand, if 20% of feeders
were taken as representative feeders, the MAAE threshold for
both normalized and total HC reduces to 5.29% compared to
39.2% when using all features (86.5% reduction).

Representative feeders based on average length to the
consumer (Feature 6) have better PV HC scaling results alone
and combined with total conductor length and number of
consumers connected (Features 1, 4 and 6). However, as seen
in Fig. 5, the combination of Features 1 and 4 only does not
lead to better scaling of PV HC. It can be fairly concluded
that using the right features for clustering the LVDS feeders
means 3% of the total feeders can be used as representative
feeders to scale the HC of the whole network while having
20% MAAE.

IV. CONCLUSION

The conclusion of this stochastic PV HC scaling exercise in
this paper is two folds. The first one is that, yes, representative
feeders with specific cluster size and features can be used to

TABLE IV: Comparison after feature selection

no of rep. feeders MAAE ≤20% MAAE for 20% total feeder
Features total HC norm. HC max % of total feeder % reduction total HC norm. HC max % reduction
All 44 50 50 37% - 29.50 39.20 39.20 -
(6) 3 3 3 2.2% 94% 2.20 14.90 14.90 62%
(4),(6) 2 4 4 3% 92% 3.98 9.21 9.21 76.5%
(1), (4), (6) 7 5 7 5.22% 86% 5.20 5.29 5.29 86.5%



scale the HC of the representative feeder to get a cumulative
HC of a larger service area. The final number would be
nearly accurate as obtained by adding the HC of individual
feeders, thereby reducing the need to calculate PV HC of
all feeders. Proper feature selection can reduce the number
of representative feeders required to scale the PV HC of the
LVDS. Concretely, only 3% of feeders could estimate the PV
HC of the whole service area with 20% of error. On the
other hand, this type of estimation neglects all the variation
in different feeders, meaning the HC of any random feeder in
a cluster cannot be extracted precisely. The only solution in
such a case is to have HC of all feeders independently.

For the test network, it was seen that maximum silhouette
score based clustering was not good enough to scale the PV
HC. However, it could be used to separate the special feeders.
On increasing the cluster size, the MAAE starts saturating at
one level, which can be used to select the appropriate number
of clusters. Similarly, for the features selection, it was seen
that using all the features can cause overfitting. In contrast, the
representative feeders based on individual features had better
performance on scaling PV HC. The salient features identified
are: the number of consumers connected to the feeder, total
conductor length, and average length to the consumer had
less error in the scaling, both individually and in combination.
The selection of salient features reduce the error in scaling by
86.5% in the test case and number of representative feeders
required by 94% for 20% threshold on MAAE.
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