
Correspondence: Response to Lakens

We thank Associate Professor Lakens for his interest in our
editorial. We will address each of his five comments.

‘. only God knows the probability that the null hypothesis is true
given the data observed, and no statistical method can provide it. Esti-
mation will not tell you anything about the probability of hypotheses.’
Bayesian analyses can estimate the probability of a hypothesis given
the data. In any case, as the editorial explains, there is little point in
knowing the probability that the null hypothesis is true.

‘A p-value does not constitute evidence. Neither do estimates, so their
proposed alternative suffers the same criticism.’ It is true that estimates,
like p values, are not evidence. However, proponents of null hy-
pothesis testing imply that p values are useful or meaningful because
they provide evidence that can be used to reject the null hypothesis
(Fisherian significance testing) or that can be used to choose between
the null and alternative hypotheses (Neyman-Pearson hypothesis
testing). In contrast estimates, unlike p values, are intrinsically
meaningful.

‘It is not possible to determine the probability a study will replicate
based on a single value (Miller & Schwarz, 2011). Furthermore, well-
designed replication studies do not use the same sample size as an
earlier study, but are designed to have high power for an effect size of
interest (Lakens, 2022).’ We don’t disagree with either assertion.
Neither changes the substantive point: experimenters who obtain a
significant test finding cannot expect that, if an exact replication of
their study were possible, it too would obtain a significant finding. As
Amhrein and Greenland1 state: ‘random variation alone can easily
lead to large disparities in P values, far beyond falling just to either
side of the 0.05 threshold. For example, even if researchers could
conduct two perfect replication studies of some genuine effect,
each with 80% power (chance) of achieving P , 0.05, it would not
be very surprising for one to obtain P , 0.01 and the other P .

0.30’ (p306).
‘Fourth, the editors argue, without any empirical evidence, that in

most clinical trials the null-hypothesis must be false.’ The assertion that
the null hypothesis is false in most clinical trials does not require
empirical evidence, because it is self-evidently true. The null hy-
pothesis is that there is exactly no effect – it is not, as A/Prof Lakens
implies, that the null is true within the bounds we can detect with
available resources. While the latter may often be true, the former
never is. The null hypothesis may often be approximately true, but it
is rarely if ever exactly true. Moreover, empirical estimates of effects
are always at least a little bit biased. So exactly null hypotheses must
always be false. The only reason they are not always found to be false
is that almost all studies lack the precision to detect tiny effects. For
that reason, empirical evidence is unable to demonstrate that the null
hypothesis is not always true. And that is why van der Laan and Rose2

state that ‘We know that for large enough sample sizes, every study,
including one in which the null hypothesis of no effect is true, will
declare a statistically significant effect’ (p xvi).

‘Finally, the fifth point that “Researchers need to know more than
just whether an effect does or does not exist” is correct, but the “more
than” is crucial. It remains important to prevent authors from claiming
there is an effect, when they are actually looking at random noise, and

therefore, effect sizes complement, but do not replace, hypothesis tests.’
We disagree for reasons explained in the previous paragraph. There
is no reason to worry about authors claiming there is an effect
when there truly is exactly no effect, because there truly always is
at least some effect (although the effect may be microscopically
small). Instead of being concerned with whether there is or is not
an effect we need to know if the effect is big enough to be of any
substantive interest. p values convey no useful information on this
issue, and they convey no information that cannot be gleaned from
a confidence interval. In contrast, confidence intervals contain much
useful information that cannot be gleaned from a p value. Confi-
dence intervals can replace p values without any loss of useful
information.

A/Prof Lakens argues that the suggestion of how to interpret a
confidence interval is not estimation but is ‘minimum effect testing’.
In our opinion, the key feature of estimation is that it seeks to
estimate the value of a population parameter. That should be the
key objective of most inferential statistical analyses, and is the
approach advocated in the editorial. Interpretation of the data from
clinical trials inevitably involves consideration of the importance or
clinical significance of the estimated average effect of the inter-
vention. A/Prof Lakens points out that, if that is done formally using
the tools of significance or hypothesis testing then it becomes
minimum effect testing. And, as he points out, that requires formal
enumeration of the smallest important effect. However, like Amr-
hein and Greenland,1 we do not see the need to use the machinery
of significance testing or hypothesis testing to rationally interpret
estimates of effect. In the absence of a well-established threshold
for interpretation, authors can still interpret a confidence interval
by describing the practical implications of all values inside the
confidence interval.1 And there is another reason not to conduct
minimum effect tests: researchers who supply confidence
intervals, rather than conducting minimum effect tests, devolve
the responsibility of distinguishing between important and
unimportant effects to their readers. Arguably that is where that
responsibility should lie.
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