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a b s t r a c t 

Model predictive control (MPC) has been proven in simulations and pilot case studies to be a supe- 

rior control strategy for large buildings. MPC can utilize the weather and occupancy schedule forecasts, 

together with the system model, to predict the future thermal behavior of the building and minimize 

the overall energy use and maximize thermal comfort. However, these advantages come with the cost 

of increased modeling effort, comput ational demands, communication infrastructure, and commissioning 

effort s. Thus a typical approach is to, often rapidly, simplify the building modeling and MPC optimiza- 

tion problem while paying a price of not reaching the full performance potential. It has been shown 

that by employing accurate physics-based models, MPC performance can be notably increased closer to 

its theoretical performance bound. However, implementation of such high-fidelity MPC in real buildings 

remains a challenge, resulting in a lack of successful field test studies. This work presents the method- 

ology and field test demonstration of a computationally efficient implementation of the white-box MPC 

in an office building in Belgium. The detailed model of the building is based on first-principle physical 

equations. The deployment and supervision of MPC operation in a practical setting are supported by an 

automated cloud-based communication infrastructure. The motivating factor behind the cloud-based ar- 

chitecture is its compatibility with a commercially appealing control as a service concept. The building 

is equipped with a ground source heat pump (GSHP) and thermally activated building structures (TABS), 

where the combination of both is also known as GEOTABS. From a control perspective, GEOTABS buildings 

are particularly challenging systems due to large scale, complex heating, ventilation and air conditioning 

(HVAC) system, and slow dynamics with time delays. On the other hand, there is an increased potential 

for energy savings due to the high thermal mass, which acts as thermal storage. The MPC operation is 

demonstrated during the challenging transient seasons (switching between heating and cooling), and its 

performance is compared to a traditional rule-based controller (RBC). We provide a proof of concept of 

real MPC operation for the most difficult seasons with notable GSHP energy use savings equal to 53.5% 

and thermal comfort improvement by 36.9%. Other MPC applications found in the literature describe tests 

for only cooling or only heating, and up to now only for a black-box or a grey-box approach. 

Published by Elsevier Ltd. 

This is an open access article under the CC BY-NC-ND license. 

( http://creativecommons.org/licenses/by-nc-nd/4.0/ ) 
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. Introduction 

Nowadays buildings use roughly 40% of the global energy (ap-

rox. 64 PWh), a large portion of which is being used for heating,

ooling, ventilation, and air-conditioning (HVAC) [1] . The energy

fficiency of buildings is thus a priority to sustainably address the
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ncreased energy demands and reduction of CO 2 emissions in the

ong term. Recently revised EU policy on the energy performance

f buildings states that large buildings should be equipped with

uilding automation and control systems by 2025 if economically

nd technically feasible [2] . Despite these trends manually tuned

ule-based control (RBC) strategies remain business as usual in the

uilding industry [3] . 

However, this situation is far from ideal. Poorly tuned RBC often

auses thermal comfort problems, such as overheating, undercool-

ng, imbalance in zone temperatures, or fluctuating and fast tem-
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1 https://ibpsa.github.io/project1/ . 
perature changes. The control performance of RBC is often drop-

ping with increased complexity and time constants of the con-

trolled building due to challenging manual tuning of RBC. Mod-

ern large scale office buildings are often equipped with produc-

tion systems in a hybrid configuration, combining energy-efficient

production units (e.g., heat pump (HP)) with less energy efficient

supplementary systems (e.g., gas boilers (GB)). The complexity also

rises with multiple emission systems with different time constants,

for example, slow thermally activated building structures (TABS) or

floor heating (FH), and fast fan coil units (FCU) or radiators. Specifi-

cally challenging cases are geothermal thermally activated building

systems with two or more production systems, also called hybrid

GEOTABS buildings [4] . On top of that, the stochastic nature of the

weather and occupancy patterns have the potential to deteriorate

the performance of any manually tuned control strategy with a set

of fixed rules. 

It has been proven that smart control strategies, like model

predictive control (MPC) can significantly mitigate emissions of

greenhouse gases, improve the thermal comfort of the occupants

while simultaneously reducing the energy use, with average sav-

ings of 15% up to 50% [5–9] . Unfortunately, the transition of this

technology to practice is slow. This is partially due to the con-

servative building sector, but the main reason is that the im-

plementation, commissioning, and maintenance of MPC in prac-

tice remain a real challenge [10,11] . There are several causes of

this situation. First, every building is a unique system which re-

quires tailored modeling and control design. However, building

control engineers do not have advanced education in modern en-

ergy modeling and optimal control methods and tools. Addition-

ally, MPC demands elaborate ICT infrastructure with decent sen-

sor accuracy, which is often not the case in contemporary build-

ings. Even if the building is well equipped, the lack of stan-

dardization and closed software solutions of commercial building

management system (BMS) vendors imposes increased engineer-

ing time and cost for the development of an advanced control

strategy. 

Due to these difficulties, most of the demonstrations of MPC

in real buildings are using considerable simplifications of the un-

derlying building models. One of the first applications of MPC

for control of the building of the Czech Technical University in

Prague were reported in [7,12] . A gray-box model identified from

the measurement data was used to predict the building’s ther-

mal response. Measured energy savings during the heating sea-

son spanned between 15 and 28%, depending on various param-

eters, mainly insulation level and outside temperature. Another pi-

lot case study with MPC for building cooling systems equipped

with thermal energy storage at UC, Merced campus, USA reported

an improvement of 19% in the coefficient of performance (COP)

compared to the original baseline logic [13] . An application of

MPC with an economic objective for optimizing the building en-

ergy cost was used to demonstrate peak shaving capabilities for

energy demand-side management [14] . Agent-based MPC saved

around 8% of operational cost for the heating and cooling sys-

tem in an office building in Ottawa [15] . Another case study us-

ing a gray-box prediction model obtained more than 30% energy

saving during the winter in an office building in Brussels, Bel-

gium [16] . A recent implementation with a four-month experimen-

tal test period shows a 29% HVAC electric energy reduction and

a 63% thermal energy reduction compared to previous years for

the same time period by using MPC [17] . A similar approach to

that presented in this paper describing a proposal for the prac-

tical implementation of the white-box MPC for an office build-

ing without operational data can be found in [18] . Recently, data-

driven MPC solutions have also been successfully applied to im-

prove the cooling energy efficiency for the data centers [19,20] .

From a theoretical and technological perspective, the HVAC control
or data centers is practically identical to the control of modern

ffice buildings. Therefore the white-box MPC approach presented

n this paper is by no means limited to the office buildings and

ould also represent a viable candidate for the data centers cooling

pplications. 

The building used in this work (called Hollandsch Huys) is lo-

ated in Hasselt, Belgium and was previously used for assesment

f building thermal models and predictive controllers. The devel-

pment of the methodology for gray-box system identification tar-

eted to MPC was reported in [11] . Despite the poor quality of

easurement data obtained from BMS, the model was able to

ake two days ahead predictions with a mean error of approxi-

ately 0.3 ◦C. In 2014, the identified 8th order gray-box model was

sed by MPC operating two weeks during the heating season with

7% energy savings [21] . A later simulation case study using a de-

ailed emulator model compared MPC performance with different

ontroller models reported that the white-box MPC outperformed

ray-box MPC in terms of energy savings by 50% [22] . This find-

ng is supported by unrelated simulation case study reporting that

he MPC performance for buildings is sensitive to the prediction

ccuracy of the controller model, highlighting the potential perfor-

ance improvement obtained by more accurate higher-order phys-

cal models [23] . 

In this paper, we present the methodology, successful cloud-

ased implementation, and field test demonstration of the white-

ox MPC in a GEOTABS office building in Hasselt, Belgium. We

rovide a description of the validated high fidelity building model

haracterized by more than 700 state variables, 300 disturbance

ignals, 12 thermal zones and 21 control inputs projected onto 35

ctuator variables. In comparison with the simplified gray-box ap-

roach [21] , the main added value of the detailed physical-based

odeling is its accuracy, reliability, and interpretability. All state

ariables have a physical meaning and can be spatially located

ithin the building structure. Additional added value is the use

f an automated cloud-based communication infrastructure with

 user-friendly web-based interface, which simplifies the devel-

pment and supervision of MPC operation in a practical setting.

he viability of the presented white-box MPC approach is demon-

trated on a real operation in a fully occupied building during the

ransient seasons (intermediate between spring to summer, and

ummer to autumn). 

The centralized hierarchical control configuration consists of

PC and state estimation on a higher level and heuristic rules

ogether with P/PI controllers on a lower level. We show how to

eep the computational time of the corresponding optimal control

roblem (OCP) tractable even for a large scale system with long

rediction horizon. We achieve this by decoupling the input and

isturbance non-linearities from the linearized building envelope

ynamics. Non-linear disturbances are pre-computed using a non-

inear simulation model parallel to linear MPC. Non-linearities in

ontrol inputs are decoupled via post-processing by solving a sepa-

ate but smaller non-linear optimization problem. We present a re-

iable real-time execution procedure with error handling function-

lity as an indispensable part of any real implementation, ensuring

 robust operation even in the presence of computer shutdowns or

ommunication errors. Moreover, a standardized notation for MPC

ormulation in the building control domain is used to facilitate the

nformation exchange between mechanical and control engineering

ommunities as a preliminary result of joint effort within IBPSA

roject 1. 1 

The paper is organized as follows. Section 2 presents the

uilding investigated together with the white-box based modeling

pproach. The standardized notation, control configuration with

https://ibpsa.github.io/project1/
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Fig. 1. Hollandsch Huys office building [24] . 
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Table 2 

Nominal mass flow rates for TABS and floor heating. 

Emission Nominal mass flow rate 

TABS-ceiling 7 [l h −1 m 

−2 ] 0.0019 [kg s −1 m 

−2 ] 

TABS-floor 6 [l h −1 m 

−2 ] 0.0017 [kg s −1 m 

−2 ] 

Floor heating 4 [l h −1 m 

−2 ] 0.0011 [kg s −1 m 

−2 ] 

Entire building 47,600 [l h −1 ] 13.22 [kg s −1 ] 
tate estimation, MPC formulation and non-linear post-processing

f control variables are presented in Section 3 . Section 4 pro-

ides details about cloud-based communication infrastructure and

ractical aspects of the development and operation of MPC. The

emonstration of MPC operation is presented in Section 5 . Finally,

ection 6 concludes the paper. 

. Office building 

This section provides a high-level overview of the building and

ts systems. This section is based on prior modeling work done by

icard [9] . The case study office building shown in Fig. 1 a, called

ollandsch Huys , is located in Hasselt, Belgium. Its construction

as finished in 2007 and it was designed to be a low-energy, inno-

ative building. Fig. 1 b shows the building’s layout, which consists

f five floors: underground parking, three floors, and a roof apart-

ent. The following sections describe the building envelope, the

VAC system, the control oriented model, the occupancy, internal

ains, comfort bounds assumed and RBC. 

.1. Building envelope 

The general parameters of the building envelope are summa-

ized in Table 1 . The U-value is an average value for the thermal

ransmittance, representing the rate of transfer of heat through the

hole building structure. ACH (n50) stands for air changes per hour

hrough the building envelope under a 50 Pa pressure difference.

he loss area represents a total heat loss surface of the building en-

elope. The building is divided into 12 thermal zones, 4 per floor.

ll transparent parts of the façade are equipped with triple glaz-

ng. The window surface lies 40 cm deeper than the façade. Each of

hem is equipped with an external slat shading device whose angle

s adjusted automatically to the solar radiation intensity: the shad-

ng device is controlled by a hysteresis controller which closes the

hading when the horizontal solar radiation exceeds 150 Wm 

−1 

nd re-opens it when the solar radiation is lower than 80 Wm 

−1 . 

.2. Heating ventilation and air conditioning system 

Fig. 2 shows the hydraulic scheme of the building. Holland-

ch Huys represents a so-called hybrid GEOTABS building with the

mission system composed of a central air handling unit (AHU),

oor heating (FH) on the ground floor, and thermally activated
able 1 

eneral building parameters [9] . 

Floor area [m 

2 ] 3760 U-value [Wm 

−2 K −1 ] 0.216 

Conditioned volume [m 

3 ] 10526 Loss area [m 

2 ] 4438 

Window-to-wall ratio [-] 34% ACH (n50) [h −1 ] 0.9 
uilding structures (TABS) with a floor and a ceiling circuits on

ndividual floors, see Fig. 1 b. The nominal mass flow rates are

isted in Table 2 . The main production system is a 150kW Daikin

WWP145 KAW1M heat pump (HP) coupled to ground heat ex-

hangers (22 with 75m depth), two buffer tanks of 1m 

3 each, three

eat exchangers, and circulation pumps. An additional gas boiler

GB) is installed in the building to back up the heating of the ven-

ilation air but it is not included in the model as it is not needed

hen proper control is used. 

.3. Rule-based controller 

Fig. 3 explains the logic of the rule-based controller (RBC) in-

talled in Hollandsch Huys based on three different modes: the

eating (H), the passive cooling (PC) and the active cooling (AC)

ode. The controller can switch from mode to mode once per hour

o avoid fast switches between the modes. The temperature of the

torage tanks are controlled using a PI-controller which modulates

he heat pump based on the feedback from the measurement of

he buffer tank temperature with the set-point given by the heat-

ng/cooling curves for the TABS and floor heating (see Fig. 4 ). The

ABS and floor heating circuits are controlled as follows: each hour,

he water is circulated in each circuit for 10 minutes. Depending

n the difference between its supply temperature and its return

emperature, the re-circulation is continued for a given amount of

ime (see 3 ). It should be noted that the starting time of the dif-

erent circuits is shifted by 10 minutes relative to each other in

rder to smooth the thermal demand loads. A detailed description

f RBC can be found in [9] . 

.4. Control oriented building model 

A detailed white-box non-linear building model was developed

n [9] using the Modelica IDEAS model library [25] . This model
Table 3 

Re-circulation times for TABS and floor heating as a function of the differ- 

ence between the supply temperature T TABS/FH 
sup and the return temperature 

T TABS/FH 
ret [9] . 

T TABS/FH 
sup − T TABS/FH 

ret [K] 3 5 7 9 9 + 

Extra re-circulation time [s] 0 600 1200 2000 3000 
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Fig. 2. Hollandsch Huys hydraulic scheme. The components are: borefield, heat exchangers, buffers, heat pump, TABS, floor heating, and 12 circulation pumps. 

Fig. 3. RBC mode selection between the heating (H), the passive cooling (PC) and 

the active cooling (AC) mode. T e and T e3d are the ambient temperature and its 3- 

day average, respectively. T C,storage 
top is the temperature in the highest layer of the 

cold storage tank and T C,storage 
sp its set-point. ∨ is the logical conjunction (and), ∧ 

the logical disjunction (or), and ~ the negation (not) [9] . 

Fig. 4. Heating/cooling curves for the supply water to the TABS (a) and to the floor 

heating system (b) as a function of respectively the previous three days (3d) and 

previous 6 hours (6h) average ambient temperature ( T e ). 

r  

c  

n  

s  

m  

c  
epresents a high-fidelity building emulator, however, due to its

omplexity, its direct use for control purposes is tedious. Fortu-

ately, the nature of the building’s dynamics allows us to use

everal assumptions to decrease the complexity of the non-linear

odel in Modelica. First, the building envelope model can be ac-

urately linearized around a working point in order to obtain a lin-
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Fig. 5. Structure of the building model with decoupled non-linearities inspired by [18] . 

Fig. 6. Heat maps of the linear controller model matrices (1). 
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ar model. Second, the HVAC dynamics and weather disturbances

an be decoupled from the linearized building envelope dynamics

o form a Hammerstein-Wiener model structure. Fig. 5 illustrates a

eneral building model structure with the decoupling principle. 

The equations for the solar transmission and absorption

hrough the windows are highly non-linear and are pre-computed

sing the non-linear IDEAS model and they are considered as dis-

urbances d in the linearized state space model (SSM). For a com-

lete description of the linearization process, we refer to [26] . The

iscretized linear time-invariant (LTI) SSM has the following form: 

 k +1 = Ax k + Bu k + Ed k , (1a)

 k = Cx k + Du k , (1b)

here x k , u k and d k are states, inputs and disturbances at the k th

ime step, respectively. The model is discretized with a sampling

eriod T s = 15 min. The disturbance signals d k represent the heat

bsorption and the direct and diffuse solar radiation for each win-

ow, the direct, diffuse solar radiation and the ambient tempera-

ure per orientation and inclination, the ambient temperature, and

he ground temperature. The matrix A is a state transition ma-

rix which represents the spatial thermodynamical relations of the

uildings states (floor, walls, roof, and zone temperatures). The ma-

rix B represents the influence of controllable heat flows (TABS
nd floor heating) on states, the matrix E represents the influ-

nce of disturbances (ambient temperature, solar irradiation, in-

ernal gains) on states. Matrix C is a mapping of states onto out-

uts which represent zone operative temperatures, and matrix D

escribes the influence of inputs on outputs, which for buildings,

s usually a zero matrix, as it is also in the case of Hollandsch Huys.

eat maps of the coefficients of the model matrices are provided

n Fig. 6 . Blue areas represent coefficients with zero or very low

ynamical effect, while yellow areas stand for coefficients with a

ignificant effect on model dynamics. Spatial relations of individ-

al variables cause noticeable sparsity patterns in the model. Due

o the high dimensionality, a particular model structure is revealed

fter zooming in the subset of the model matrices shown in white

oxes. The overall dimensions of the building envelope model are

ummarized in Table 4 . A complete list of the system variables and

arameters used for control design, together with their physical

eaning and units are given in Tables 6–8 of Section 3.1 , respec-

ively. 

.5. Disturbance forecast 

The internal gains are computed by the stochastic behavioral

odel of Parys et al. [27] integrated within the non-linear Mod-

lica model. Their nominal values are listed in Table 5 . The actual
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Fig. 7. Model predictive control configuration in Hollandsch Huys. Blue lines represent cooling circuit, red lines represent heating circuit, and purple lines represent main 

distrubution circuits for both heating and cooling. Full lines stand for supply, and dashed lines stand for return flows. Communication channels are given by dotted lines, 

green for writing and orange for reading values. Dash dotted lines stand for unmeasured but forecasted disturbance signals, in particular weather and occupancy. 
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2 https://ibpsa.github.io/project1/ . 
heat gains are obtained by multiplying the nominal values with the

stochastic coefficients which are given in [9] Because we are deal-

ing with an office building, the occupancy presence is scheduled

between 7:00AM and 8:00PM during the working days. 

The weather forecast for Hollandsch Huys is based on real-time

weather data from Dark Sky [28] . Data are automatically down-

loaded using Python Dark Sky API and parsed to the input format

for the non-linear Modelica model. For operational purposes, the

weather model is extracted from the Dymola environment using

the Functional Mockup Interface (FMI). Subsequently, the Dymola

FMI kit for Simulink is used as an interface for simulation in the

Matlab environment. Here, 20 data points from Dark Sky, stored

in a.txt file in TMY format are transformed via an FMI model to

301 disturbance signals d which are used as inputs for the linear

model. 

2.6. Comfort bounds 

Based on the request of the building owner the thermal comfort

range is set to 22 ◦C–24 ◦C for both heating and cooling season,

respectively. The night setbacks are relaxing the comfort abounds

by 2 ◦C. Thermal comfort is kept from 7:00AM to 6:00PM during

the week and the ventilation is on from 6:00AM to 8:00PM. 

3. Model predictive control 

This section describes the design of state estimation, formula-

tion, structure, and technical details of MPC deployment. 
Table 5 

Nominal internal heat gains [9] . 

People ∗

Type of room Convective Radiative Laten

Office area [Wm 

−1 ] 1.63 1.63 2.75

Technical room [Wm 

−1 ] 0 0 0 

∗ (assuming 20 m 

2 per person as the building is only partially 
.1. Notation 

First, we define the notation for control design, which emerged

rom the IBPSA Project 1. 2 The used variables are defined in

able 6 . We introduce the mapping from the physical domain to

he abstract control domain to make the MPC formulation more

ompact and compliant to the control engineering community

tandards. The abstract domain variables represent states x , con-

rolled outputs y , other measured variables m , actuator variables

 , optimal control actions u , disturbances d , and slack variables s ,

espectively. The differentiation between u and a is introduced be-

ause the computed optimal control actions do not always coin-

ide with physical actuators and an additional post-processing step

eeds to be performed via mapping a = f (u ) . The MPC formulation

arameters for modifiers and bounds are given in Tables 7 and 8 ,

espectively. 

.2. Control configuration 

Fig. 7 shows the corresponding control configuration in Hol-

andsch Huys after MPC deployment. We choose the centralized

onfiguration where MPC computes the optimal control actions u ,

ased on estimated ˆ x computed via time-varying Kalman Filter

TVKF). The details of the TVKF implementation can be found in

23] . TVKF uses an augmented state space model to mitigate the

lant-model mismatch via offset-free control [29] . Optimal heat

ows at the current time step u 0 are subsequently post-processed

y a non-linear program (NLP) and heuristic rules to the actua-

or signals a . The NLP computes the set-points for low-level PID

ontrollers regulating supply temperatures to the TABS and floor

eating, as well as the valve modulation signals in individual cir-

uits of the TABS. The HP modulation x HP and activation of the
Light Appliances 

t Convective Radiative Convective Radiative 

 3.50 3.50 6.23 8.60 

0 0 0 0 

occupied). 

https://ibpsa.github.io/project1/
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irculation pumps x TABS and x FH are selected based on computed

eat flows u 0 , and supply and return temperatures of TABS and FH.

he controlled variables are operative temperatures in 12 thermal

ones y . Besides weather and occupancy forecast, the supply tem-

eratures of the AHUs T AHU 
sup are treated as measured disturbance

ariables d . This decision is a trade-off between complexity and

ontrol performance and is motivated by poor tuning of the low-

evel PID controllers regulating the AHU temperatures, exhibiting

vershoots and oscillations during set-point changes. Two possible

olutions are re-tuning of the PID controllers within the BMS sys-

em or adopting a reference-governor MPC scheme [30] . Both rep-

esent the potential for improvement of the control performance

n future work. 

.3. Model predictive control formulation 

The MPC minimizing energy use and thermal discomfort for the

ollandsch Huys building is given as the following quadratic opti-

ization problem (QP): 

min 

 0 , ... ,u N c −1 

N−1 ∑ 

k =0 

|| s T z 
k 
|| 2 Q s 

+ 

N c −1 ∑ 

k =0 

|| u k || 2 Q u 
(2a)

.t. ˜ x k +1 = 

˜ A ̃

 x k + 

˜ B u k + 

˜ E d k , k ∈ N 

N−1 
0 (2b)

˜ 
 k = 

˜ C ̃  x k + 

˜ D u k , k ∈ N 

N−1 
0 (2c)

 

k 
− s T z 

k 
≤ ˜ y k ≤ y k + s T z 

k 
, k ∈ N 

N−1 
0 (2d)

 ≤ s T z 
k 

, k ∈ N 

N−1 
0 (2e)

 k = u N c , k ∈ N 

N−1 
N c 

(2f)

 ≤ u k ≤ u , k ∈ N 

N−1 
0 (2g)
Table 6 

Notation of MPC variables and translation between physical and abst

Physical domain 

Variables Symbol Description 

Temperatures [ ◦C ] T Envelope temperatures 

T z Zone operative temperatu

T TABS 
ret Water return temperatur

T FH 
ret Water return temperatur

T TABS 
sup Water supply temperatur

T FH 
sup Water supply temperatur

T HP 
sup Water supply temperatur

T HP 
sp Set-point supply tempera

T TABS 
sp Set-point supply tempera

T FH 
sp Set-point supply tempera

T AHU 
sup Air supply temperatures 

T e Ambient temperature 

Thermal powers [W] ˙ Q TABS Thermal power of TABS 

˙ Q FH Thermal power of floor h

˙ Q rad Solar radiation 

˙ Q occ Occupancy internal gains

Component signals x val Valve positions TABS [%] 

x TABS ON/OFF signal of TABS pu

x FH ON/OFF signal of FH pum

x heat ON/OFF heating circuit va

x cool ON/OFF cooling circuit va

x HP Heat pump mode [{H, AC

x TABS,circ Recirculation of TABS [{0

Comfort violations [ ◦C ] s T z Violations of thermal com

Thermal power 

violations [W] 

s 
˙ Q TABS Violations of delivered th

s 
˙ Q FH Violations of delivered th
 k = d(t + kT s ) , k ∈ N 

N−1 
0 (2h)

 

k 
= y (t + kT s ) , k ∈ N 

N−1 
0 (2i)

 k = y (t + kT s ) , k ∈ N 

N−1 
0 (2j)

 0 = 

ˆ x (t) , (2k) 

here N 

N−1 
0 

= { 0 , 1 , . . . , N − 1 } is a set of integers, x k ∈ R 

712 , u k ∈
 

21 , y k ∈ R 

12 and d k ∈ R 

301 represent the values of the states, in-

uts, outputs and disturbances, respectively, predicted at the k th

tep of the prediction horizon N and control horizon N c , respec-

ively. Prediction horizon N defines the length of a time win-

ow for which MPC computes the predictions given by the model.

ased on the model dynamics we choose N to be equal to one day,

.e. N = 96 steps. The control horizon N c represents the length of

 time window for which MPC computes the optimal control ac-

ions minimizing the given objective function. Based on simulated

odel response we choose N c to be 16 hours, i.e. N c = 64 steps

n order to reduce computational time without mitigating the con-

rol performance. The predictions are obtained from the LTI predic-

ion model given by Eqs. (2b) and (2c) . The y k and y k parameters

epresent the comfort band given by the constraints (2d) , where

he variables s k are used as the slack variables of a comfort band

iolation. Slack variables are penalized to be non-negative (2e) .

omputational requirements of the resulting optimization problem

re reduced by the so-called move blocking constraint (2f) , limit-

ng the number of optimized control actions u k by control horizon

 c < N . The min/max constraints for the control input amplitude

re given by (2g) . For particular initial conditions (2k) , weather

orecast (2h) and given comfort bounds (2i) and (2j) the optimiza-

ion computes the sequence u ∗
0 
, . . . , u ∗

N−1 
of control inputs that are

ptimal with respect to the quadratic objective function (2a) and

he constraints. The term ‖ � ‖ 2 Q in the objective function repre-
ract domain for this case. 

Abstract domain 

x y m a u d s 

• – – – – – –

res – • – – – – –

es TABS – – • – – – –

e floor heating – – • – – – –

es TABS – – • – – – –

e floor heating – – • – – – –

e heat pump – – • – – – –

ture heat pump – – – • – – –

ture TABS – – – • – – –

tures floor heating – – – • – – –

AHU – – – – – • –

– – – – – • –

– – – – • – –

eating – – – – • – –

– – – – – • –

 – – – – – • –

– – – • – – –

mp [{0, 1}] – – – • – – –

p [{0, 1}] – – – • – – –

lve [{0, 1}] – – – • – – –

lve [{0, 1}] – – – • – – –

, PC}] – – – • – – –

, 1}] – – – • – – –

fort zones – – – – – – •

ermal power by TABS – – – – – – •

ermal power by FH – – – – – – •
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Algorithm 1 Post-processing of control variables. 

1: function PostProcess ( ˙ Q TABS , ˙ Q FH , T 
TABS 

ret , T HP 
sup ) 

2: if 
∑ 

[ ˙ Q TABS , ˙ Q FH ] > 0 then � selection of heating/cooling 

circuit 

3: x heat = 1 , x cool = 0 

4: else 

5: x heat = 0 , x cool = 1 

6: end if 

7: if 
∑ | [ ˙ Q TABS , ˙ Q FH ] | < 2 e 4 then � simultaneous heating and 

cooling 

8: T TABS 
sp = T TABS 

ret � �T TABS = 0 

9: T FH 
sp = T FH 

ret � �T FH = 0 

10: x i 
val 

= 100 , i ∈ N 

n TABS 
1 

� valves fully open for 

recirculation 

11: s 
˙ Q TABS = x val ˙ m 

nom 

wat c p (T TABS 
sp − T TABS 

ret ) − ˙ Q TABS � update 

TABS slack variables 

12: s 
˙ Q FH = ˙ m 

nom 

wat c p (T FH 
sp − T FH 

ret ) − ˙ Q FH � update FH slack 

variables 

13: x TABS,circ = 1 � TABS recirculation flag 

14: else 

15: Solve NLP (3) to obtain values of x val , T TABS 
sp , T FH 

sp , s 
˙ Q TABS , 

and s 
˙ Q FH . 

16: x TABS,circ = 0 

17: end if 

18: u k = [ ˙ Q TABS + s 
˙ Q TABS , ˙ Q FH + s 

˙ Q FH ] � update MPC action for 

initialization of next computation step 

19: if x heat ∨ x TABS,circ then � heating circuit 

20: x HP = H � HP heating mode 

21: if 
∑ 

x val > 10 then � activation of circulation pumps 

22: x TABS = 1 , x FH = 1 

23: else 

24: x TABS = 0 , x FH = 0 

25: end if 

26: if x TABS,circ then � recirculation mode 

27: T HP 
sp = 18 � HP heating modulation off

28: else � heating mode 

29: T HP 
sp = T TABS 

sp + 2 � HP heating modulation on 

30: end if 

31: else � cooling circuit 

32: x HP = PC � HP passive cooling mode 

33: if 
∑ 

x val > 10 then � activation of circulation pumps 

34: x TABS = 1 , x FH = 0 

35: else 

36: x TABS = 0 , x FH = 0 

37: end if 

38: T HP 
sp = T TABS 

sp − 2 � HP cooling modulation on 

39: end if 

40: end function 
sents the weighted squared 2-norm, i.e., � T Q � , with the weight-

ing matrices Q s and Q u given as positive definite diagonal matri-

ces. The first term of the quadratic cost function minimizes the

square of the comfort violation, while the second term minimizes

the square of the energy use. 

3.4. Post-processing of control variables 

The computed optimal control inputs u 0 = [ ˙ Q TABS , ˙ Q FH ] to be de-

livered to the building via the receding horizon control (RHC) prin-

ciple are representing heat flows. However, in a practical setup, we

are not able to directly manipulate the heat flows. Instead, we need

to map them to the physical actuator variables a optimally. In par-

ticular, we control 20 two-way valves of individual circuits of TABS

x val , and supply temperature for TABS T TABS 
sp and floor heating T FH 

sp ,

respectively. We compute these values by solving a non-linear op-

timization problem (NLP) using the heat transfer equation: 

min 

x val ,T 
TABS 

sp ,T FH 
sp ,s 

˙ Q TABS ,s 
˙ Q FH 

n TABS ∑ 

i =1 

x i val + || s ˙ Q TABS || 2 Q TABS 
+ || s ˙ Q FH || 2 Q FH 

(3a)

s . t . ˙ Q TABS + s 
˙ Q TABS = x val ˙ m 

nom 

wat , TABS c p (T 

TABS 
sp − T 

TABS 
ret ) , (3b)

˙ Q FH + s 
˙ Q FH = 

˙ m 

nom 

wat , FH c p (T FH 
sp − T FH 

ret ) , (3c)

T TABS 
sp ≤ T TABS 

sp ≤ T 
TABS 

sp , (3d)

T FH 
sp ≤ T FH 

sp ≤ T 
FH 

sp , (3e)

x val ≤ x val ≤ x val . (3f)

The objective is to select the supply temperature set-points

T TABS 
sp , T FH 

sp and valve openings x val for TABS, which minimize the

sum of the valve openings, while heavily penalizing the violations

of the heat transfer Eqs. (3b) and (3c) via slack variables s 
˙ Q TABS and

s 
˙ Q FH . This formulation, therefore, delivers physically realizable heat

flows while minimizing deviations from MPC control actions. Spe-

cific heat capacity c p of the water, together with nominal mass

flow rates ˙ m nom 

obtained from the technical sheets of the build-

ing are used as constant parameters. The parameters of the prob-

lem are the measurements of return temperatures from TABS T TABS 
ret 

and FH T FH 
ret , respectively, supply temperature from heat pump T HP 

sup ,

and computed optimal heat flows ˙ Q TABS and 

˙ Q FH . The numerical

values of upper and lower bounds for T TABS 
sp and T FH 

sp given by Eqs.

(3d) and (3e) are based on the HP modulation mode and supply

temperatures obtained from the BMS. The valve modulations x val 

are bounded based on their corresponding physical constraints (3f) .

Besides valves and supply temperatures of TABS and FH, we

physically control also supply temperature for HP T HP 
sp , HP mode

x HP , opening of the distribution circuits via two-way valves for

cooling x cool and heating mode x heat , and distribition pumps ac-

tivation for TABS x TABS and floor heating x FH , respectively. The se-

lection of these variables is defined by heuristic rules described in
Table 7 

MPC formulation parameters - modifiers. 

Heat flow parameters Symbol Description Associated variables 

Specific heat capacity c p Specific heat capacity of water [J kg −1 K −1 ] ˙ Q TABS , ˙ Q FH 

Nominal mass flow rates ˙ m 

nom 
wat Nominal mass flow rates [ls −1 ] ˙ Q TABS , ˙ Q FH 

Auxiliary parameters Symbol Description Associated variables 

Weighting factor Q � Weighting for the particular term in the objective function s T z , u, s 
˙ Q TABS , s 

˙ Q FH 

Sampling time T s Time-step used in the optimization problem all 

Dimensionality quantifier n � Cardinality of the vector elements all 
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3 https://mervis.info . 
lgorithm 1 . First step is the selection of heating or cooling cir-

uit of TABS and FH (lines 2 to 6) based on optimal heat flows

 

˙ Q TABS , ˙ Q FH ] = u 0 by solving MPC problem (2). In the special case of

imultaneous heating and cooling with small heat imbalance (lines

 to 13) we open all valves in TABS and FH circuits to recirculate

he water with �T = 0 . This is a straightforward and energy effi-

ient strategy for balancing the temperatures within the building

y exchanging the heat from overheated zones to heat-demanding

ones. This situation happens mostly during the transition period

hen few zones may require heating and other cooling to keep

heir temperatures within prescribed comfort bounds. In the stan-

ard cases (lines 14 to 17) of solely heating or cooling we solve

LP (3). In either case, optimal control actions computed by MPC

2) are corrected for the next computational step by the amount of

issing heat captured by slack variables s 
˙ Q TABS and s 

˙ Q FH (line 18).

n heating mode (lines 19 to 30), the HP mode is set to heating

line 20), the circulation pumps are activated for both TABS and

H based on the opening of the circuit valves (lines 21 to 25). If

e are in TABS recirculation mode activated by simulaneous heat-

ng and cooling x TABS,circ = 1 , the supply temperature of the HP is

et to 18 ◦C, which corresponds to zero voltage to the heat pump

lines 26 to 27). Otherwise, we modulate the HP supply tempera-

ure to be above the set-point for TABS supply temperature (lines

8 to 30). Similar rules apply for the cooling circuit as well (lines

1 to 39). The HP mode is set to passive cooling (line 32). Based

n valve openings the program activates the circulation pump only

or TABS (lines 33 to 37). The supply temperature of the HP is

et to be lower than the set-point for TABS supply temperature

line 38). 

. Communication and operational infrastructure 

This section describes individual components and the overall

rchitecture of the communication infrastructure, which is neces-

ary for the successful implementation of advanced optimal control

trategies in real buildings. 

.1. Cloud-based SCADA system 

The Hollandsch Huys building is governed by a Priva Building

anagement System (BMS) installed on a local computer in the

uilding’s basement. The Priva BMS allows plotting and manual

hange of selected variables, but does not provide a communica-

ion interface necessary for MPC. Unfortunately, the world of build-

ng automation is still far from standardization of communication

rotocols and data formats. Therefore we had to solve the problem

f integrating the BMS running on site and the MPC server running

emotely. We decided to use cloud-based Mervis SCADA [31] and

t’s ecosystem of applications to solve this task. We installed a par-

llel communication system interacting with the Priva controller

ia Modbus TCP protocol. All available Modbus variables are copied

nto the Mervis RTWindows service which communicates current

alues into the Mervis Proxy cloud server and also stores all values

eriodically into the Mervis DB server. Mervis SCADA then offers

 set of APIs to read online values, write new values back to the

MS, or download the historical data. Usually, data from the BMS
Table 8 

MPC formulation parameters - bounds. 

Bounds Symbol Description 

Comfort bounds [ ◦C] T z , T z Lower/upper boun

Thermal power limits [W] ˙ Q 
TABS 

, ˙ Q TABS , ˙ Q 
FH 

, ˙ Q FH Min/max thermal 

Supply temperature bounds [ ◦C] T TABS 
sp , T 

TABS 

sp T FH 
sp , T 

FH 

sp Lower/upper boun

Valve position limits [%] x val , x val Min/max valves po
re not secured, and there is no support for encryption on BMS or

LC level. In our case security is achieved by encryption (HTTPS)

ia Mervis. 

The motivating factor behind the cloud-based architecture is

ts compatibility with a commercially appealing control as a ser-

ice concept, in our case, supported by Mervis. 3 The advantages of

loud-based solutions are user-friendly and easy access to the real-

ime building data from any place via a secured web-based appli-

ation, automatic data back-ups, reliability and customer support,

nd no need for additional hardware investments. The disadvan-

age is the need for an internet connection, which may represent

 single point of failure. This downside was mitigated by imple-

enting a watchdog procedure with a back-up RBC taking over the

ontrol of the building in case of communication shutdowns. An

dvanced solution would be the replacement of the back-up RBC

ith a machine learning-based controller trained by mimicking the

PC as proposed in [32] . 

.2. Modbus communication 

In Hollandsch Huys we communicate 165 data points in real-

ime via Modbus. The 96 reading variables consist of 28 zone tem-

eratures, 18 concrete core temperatures, 23 TABS and FH return

emperatures, 2 supply temperatures for TABS and FH, 2 supply

emperatures for AHUs, 6 measurements for supply and return

emperatures of the HP in different operational modes, 5 discrete

ariables indicating the operation of the HP, 2 variables for inlet

nd outlet temperatures of the borefield, and 10 auxiliary variables

ith mixed nature. The 69 writing variables represent 21 valve

odulations for TABS, 2 valves for switching between cooling and

eating circuit of TABS, 2 circulation pumps for TABS and FH, 2

emperature setpoints for TABS and FH, 3 discrete modes for the

P, 2 temperature setpoints for HP in heating and cooling mode,

 temperature setpoints for AHUs, 1 watchdog flag, and 34 aux-

liary variables representing computed optimal heat flows, com-

ort bounds, and a subset of weather forecast variables. All Mod-

us data from the Hollandsch Huysh building is available in Mervis

CADA. 

.3. Design and operation 

Fig. 8 demonstrates the overall technical scheme for design and

peration phase of MPC in a real office building. 

The design phase starts with studying the technical sheets and

ontinues with a visit to the building to get acquainted with the

uilding’s HVAC and BMS system. Based on a detailed technical de-

cription of the building systems a white-box model is developed

nd linearized as described in Section 2 . Dark Sky weather fore-

ast service is used for real-time data acquisition via python Dark

ky API [28] , generating a text file in a TMY format, which is sub-

equently used for initialization of the non-linear model wrapped

nto FMU and simulated in Simulink environment to obtain the

isturbance forecast for MPC as elaborated in Section 2.5 . The lin-

arized model is used for the Kalman Filter and MPC design via
Associated variables Abstract domain 

ds of thermal comfort zones T z r = { y , y } 
powers Q TABS , Q FH u , u 

ds HVAC supply temperatures T TABS 
sp , T FH 

sp –

sition x val –

https://mervis.info
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Fig. 8. Overall technical scheme for design and operation of MPC in Hollandsch Huys office building. 
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i  
the BeSim toolbox in Matlab [33] . BeSim is built upon the mod-

elling and optimization toolbox YALMIP [34] . MPC problem (2) is

cast as a QP problem for the solution of which the state of the art

optimization solver GUROBI [35] is used. Matlab’s built-in solver

fmincon is used for the solution of the post-processing NLP (3).

Simulations with full-year historical data are performed to test and

tune the formulation and computational aspects of the developed

control strategy ( Section 3 ). For real operation, a remote desk-

top connection to the building’s BMS computer is necessary due

to software changes in the original BMS system. As a final step,

real-time remote communication via Modbus is established using

Mervis, a cloud-based SCADA system, with Mervis Matlab API used

for reading and writing of Modbus variables, as described in previ-

ous sections. 

The operational phase is executed via MATLAB timer with a

sampling period of 15 min. The procedures within each step are

conceptually summarized in Algorithm 2 . 

All measurements are obtained from the past 15 min of oper-

ation with 60sec sampling interval, hence each data point is rep-

resented by 1 to 15 measurements, which are averaged to a sin-
Table 4 

Dimensions of the linear building envelope model. 

Notation Description Values 

n x number of states 700 

n u number of inputs 21 

n y number of outputs 12 

n r number of comfort bounds 24 

n d number of forecasted disturbances 301 

m  

i  

o  

t  

r  

w  

w  

t  

w  

2  

c  
le value. This approach is chosen to filter out measurement errors

nd missing values caused by communication drops. All procedures

n Algorithm 2 are executed within the try and catch statements,

hich, in case of error, recover the numerical values from the pre-

ious execution step. In case of communication drops between the

MS computer and the cloud services, the local watchdog starts a

ountdown of 60min after which the operation reverts to the RBC

trategy. An email notification with an alarm message is generated

ach time the fallback strategy is triggered. This ensures an auto-

ated error handling and keeps the system running 24/7 regard-

ess of computational or communication errors. A single runtime

f the Algorithm 2 takes approximately 50sec on average, of which

5sec are used for disturbance forecast via the FMU model, 20sec

or communication, and 5sec for solving optimization problems. 

. Experimental results 

This section verifies the feasibility of the proposed cloud-based

mplementation methodology and evaluates the field test perfor-

ance of the white-box MPC in the Hollandsch Huys office build-

ng. The experiment was conducted from 18th of April until 23th

f September 2019. However, uneven distribution of the ambient

emperature during the operation of MPC and RBC casts their di-

ect comparison a difficult task. For the sake of increased fairness,

e evaluate the performance on a subset of the gathered data

ith a similar distribution of the weather conditions for both con-

rol strategies. In this case, it corresponds to the transient seasons

ith daily mean ambient temperatures falling in the range 13 ◦C-

5 ◦C. We also exclude the one day after the switch between the

ontrol strategies, to mitigate their cross-influence. The resulting
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Algorithm 2 Real-time MPC timer procedure. 

1: function RealTimeMPC (MPC (2), NLP (3), Mervis SCADA) 

2: try � outputs measurements 

3: Read measurements of y (t) over past 15 min via Mervis 

SCADA API. 

4: Remove error values and missing entries in y (t) . 

5: catch Error in reading y (t) 

6: Use y (t − 1) from previous execution step. 

7: end try 

8: try � disturbances forecast 

9: Load the TMY file generated from DarkSky API and sim- 

ulate FMU non-linear building model to obtain disturbances 

d(t, . . . , t + N − 1) . 

10: Obtain schedules of T AHU 
sup and append their forecast to 

d(t, . . . , t + N − 1) . 

11: catch Error in computing d(t, . . . , t + N − 1) 

12: Use disturbance forecast from previous execution step 

forward-shifted with one step ahead. 

13: end try 

14: try � comfort zone forecast 

15: Generate comfort bound forecast r(t, . . . , t + N − 1) . 

16: catch Error in computing r(t, . . . , t + N − 1) 

17: Use comfort bound forecast from previous execution step 

forward-shifted with one step ahead. 

18: end try 

19: try � state estimation and MPC 

20: Compute state estimates x (t) by running Kalman Filter 

with 20 iterations using current measured outputs y (t) and op- 

timal control actions u (t − 1) from previous executions step. 

21: Solve MPC optimization problem (2) to compute u 0 . 

22: catch Error in computing u 0 
23: Reuse u 0 (t − 1) from previous execution step. 

24: end try 

25: try � HVAC measurements 

26: Obtain measurements of T TABS 
ret , and T HP 

sup . 

27: Remove error values and missing entries in T TABS 
ret , and 

T HP 
sup . 

28: catch Error in reading T TABS 
ret , and T HP 

sup 

29: Reuse the values of T TABS 
ret , and T HP 

sup from previous execu- 

tion step. 

30: end try 

31: try � HVAC actuators 

32: Execute post-processing Algorithm 1 to compute the val- 

ues of actuator variables a (t) . 

33: catch Error in post-processing the actuators a (t) 

34: Reuse the values of a (t − 1) from previous execution 

step. 

35: end try 

36: if watchdogFlag = 0 then � watchdog 

37: watchdogFlag = 1 

38: else 

39: watchdogFlag = 0 

40: end if 

41: try � write to BMS 

42: Write computed actuator variables T HP 
sp , T 

TABS 
sp , T FH 

sp , x val , 

x TABS , x FH , x cool , x heat , x HP , watchdogFlag to Modbus via Mervis 

SCADA API. 

43: catch Error in writing computed values to Modbus. 

44: Generate error message. 

45: end try 

46: end function 
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ataset now consists of 79 days (35 for MPC, 44 for RBC) with

ean ambient temperatures equal to 16.8 ◦C and 18.0 ◦C for MPC

nd RBC datasets, respectively. From the control perspective, the

ransient seasons are particularly challenging because some zones

eed heating and other cooling to satisfy the thermal comfort re-

uirements. 

.1. Performance comparison of MPC with RBC 

The energy savings attributed to MPC operation during the

ransient season are emphasized in Fig. 9 . The left figure displays

he daily HP energy use as a function of the average daily ambient

emperature. The middle figure in Fig. 9 shows a subset of days

ith cooling demand represented via the daily HP energy use as

 function of the cooling degree days (CDD). The right figure in

ig. 9 captures a subset of days with heating demand via the daily

P energy use as a function of the heating the degree days (HDD).

DD and HDD are defined as the number of degrees that a daily

verage temperature is above or below 18 ◦C, respectively. By dif-

erentiating MPC and RBC operational days, we can identify corre-

ated linear relations between energy use and ambient tempera-

ure, CDD, and HDD, respectively. The visual analysis of Fig. 9 re-

eals substantial improvements in favor of MPC. 

Fig. 10 , on the other hand, captures the comfort performance

f MPC and RBC given as the average thermal discomfort per zone

er day given as a function of the daily HP energy use. The black

ashed line represents a comfort threshold equal to 0.275Kh per

one per day (100Kh per year), similarly as used in [36] , and

epresents a violation level as it would be tolerated according to

he standards [37,38] . The left figure represents the whole dataset,

hile the middle and right figure stands for days with a cooling

nd heating demand, respectively. Besides lower energy demand,

PC has also a lower discomfort rate on average compared to RBC.

atisfaction of the thermal constraints on the evaluated dataset

as been particularly challenging for warm days with high cool-

ng demand. The corresponding HP energy savings on the datasets

ith similar mean ambient temperatures are equal to 53.5%, with

 thermal comfort improvement equal to 36.9%. The comparison of

PC and RBC performance is compactly summarized in Table 9 . 

However, it is essential to mention that these improvements are

reliminary, attributed to the transient seasons only and can not

e generalized to yearly performance across all seasons with a high

egree of confidence. Nevertheless, these results are promising and

ncouraging towards a further assessment of MPC performance in

he long-term. 

.2. Details of MPC and RBC operation 

The differences between the MPC and RBC operation are inves-

igated into more details on two similar weeks with cooling de-

and. Fig. 11 shows the corresponding time-series profiles for both

ontrol strategies. The six upper figures demonstrate the evolution

f zone temperatures with similar initial conditions. The seventh

nd eighth figure, capture the supply and return temperatures of

ABS as an indicator of the heat flows delivered to the building.

he bottom figures confirm that both weeks have similar ambient

emperature profiles. Fig. 11 demonstrates that the MPC operation

iffers significantly from RBC. The first difference is in the satisfac-

ion of comfort constraints. In contrast to the RBC, the MPC is ex-

licitly aware of the prescribed comfort zone and predicted indoor

emperatures, which results in anticipatory behavior, minimizing

ay-ahead discomfort and energy use. The RBC, on the other hand,

ompletely lacks the feedback from the zone temperature mea-

urements and is thus unable to react on actual conditions within

he building. 
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Fig. 9. The energy performance of MPC and RBC during the transient seasons. The daily heat pump energy use is displayed as a function of the average daily ambient 

temperature, cooling degree days (CDD), and heating degree days (HDD), respectively. 

Fig. 10. The comfort performance of MPC and RBC during the transient seasons. The daily average thermal discomfort per zone id displayed as a function of the daily HP 

energy use. 

Table 9 

Comparison of MPC and RBC operational performance during the transient seasons. 

Quantitative Objectives Key Performance Indicators (KPIs) Units MPC Operation RBC Operation 

Energy performance Mean HP energy use per day kWh 53.4 114.8 

Energy savings % 53.5 –

Thermal comfort Mean discomfort per zone per day Kh/z/day 0.31 0.48 

Comfort improvement % 36.9 –

Conditions Average ambient temperature ◦C 16.8 18.0 

Dataset Number of evaluated days – 35 44 
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The RBC makes its decisions solely based on the fixed rules and

the heating/cooling curve driven by a three day average of the am-

bient temperature as described in Section 2.3 . As a consequence,

RBC exhibits delayed reactive behavior w.r.t. the weather condi-

tions and a rigid control behavior of the TABS. Middle figure in

Fig. 11 a displays almost constant �T between the supply and re-

turn temperature of TABS controlled by RBC. Three bumps with

higher supply temperatures represent the delayed response of the

RBC on three colder nights at the beginning of the week. Dur-

ing these periods the 3-day mean ambient temperature was below

12 ◦C, and the RBC switched from the cooling mode to the heating

mode. Moreover, due to the rigid modulation of the TABS distribu-

tion circuits valves, RBC is not capable of leveraging the full poten-

tial of the TABS mass flow rates. Because of the fixed schedules of

the valve opening for the duration of 10min per circuit per hour,
he RBC consistently uses roughly 17% of the TABS full capacity.

dditionally, the RBC is not programmed to recirculate the water

n TABS without interaction with the HP. 

MPC, on the other hand, is capable of commanding the wa-

er recirculation in TABS without the use of the HP, resulting in

ubstantial energy savings. TABS recirculation is a very efficient

ay of balancing the zone temperatures via transferring the heat

rom warmer to colder zones, a feature particularly useful during

he transient seasons when both heating and cooling demand are

ften required at the same time in different parts of the build-

ng. Furthermore, the MPC exhibits anticipatory behavior w.r.t. the

eather conditions and comfort bounds and dynamically modu-

ates the mass flows and �T of the TABS as well as the operational

ode of the HP. These capabilities are visible in the middle figure

f Fig. 11 b depicting the supply and return temperatures of TABS
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Fig. 11. Comparison of RBC and MPC building operation on two similar weeks with cooling demand. 
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b  
ontrolled by MPC. Based on the forecast of relatively lower ambi-

nt temperature for 21st and 22th of May, MPC decides to recircu-

ate the water in TABS for most of the time, resulting in a �T close

o 0 ◦C. Different behavior is executed with the forecast of warmer

ays for 23rd and 24th of May. MPC here activates passive cool-

ng for most of the time and increases �T such that the building

s pre-cooled to satisfy the thermal constraints. The bottom part

f Fig. 11 b also shows that despite the accurate predictive capa-

ilities, the MPC does not fully satisfy the comfort bounds. This is

he consequence of the interplay of multiple factors such as uncer-

ainties in the weather and occupancy forecasts, the control input

ffsets caused by the low-level controllers, and the plant-model

ismatch. It is also important to emphasize the challenge of keep-

ng the zone temperatures in a narrow range of 22 ◦C–24 ◦C dur-

ng the weekdays with significant influence of mainly internal and

artially solar gains only by controlling slow-reacting TABS and FH.

ven though, compared to RBC, MPC is capable of decreasing the

ariance of zone temperature profiles and minimizes the overall

onstraints violations. A secondary fast reacting system (controlled

y MPC) and the availability of active cooling will help in guaran-

eeing thermal comfort, leading to the MPC hybridgeotabs concept

39] . 

. Conclusions 

This paper reports a successful cloud-based implementation

nd remote operation of white-box model predictive control (MPC)
n a hybridGEOTABS office building. We introduce a detailed imple-

entation methodology consisting of three interconnected parts:

uilding modeling, control configuration, and communication and

CADA system architecture. The high-fidelity building model is de-

eloped using the Modelica language. The localized weather fore-

ast is computed via simulating the non-linear model initialized

ith the weather forecast obtained from the DarkSky web-service.

PC and Kalman filter are designed and run in the Matlab en-

ironment. MPC computes optimal heat flows, which are subse-

uently post-processed into low-level actuator signals by solving a

on-linear optimization problem. The overall control system runs

n a remote desktop computer and securely communicates with

he building’s BMS via the cloud-based SCADA system Mervis us-

ng the Modbus protocol and HTTPS encoding. The computational

fficiency of the underlying optimization is achieved by decou-

ling the non-linearities into separate sub-problems. As a result,

he whole execution procedure takes less than 1 min to run. Taking

nto account the 15min sampling period, the reported implemen-

ation leaves plenty of space for potential execution of the error

andling procedures or system restarts in case of communication

ropouts. 

Real operation evaluated during the transient seasons demon-

trates preliminary savings of the heat pump energy use equal to

3.5%. On top of that MPC improved thermal comfort by 36.9%

y keeping the zone temperatures closer to the prescribed com-

ort bounds. This pilot implementation and real operation of white-

ox MPC demonstrates the feasibility, computational efficiency, and
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[  
preliminary performance gains w.r.t. the classical RBC strategy. It is

essential to mention that these results are obtained from the eval-

uation of the operation during the transient seasons and hence can

not be generalized to the full-year performance across various sea-

sons. However, the reported results are nevertheless auspicious for

further development, and cast a light into the energy savings and

comfort improvement potential of the high fidelity MPC for office

buildings. 

Future work includes the full-year performance evaluation,

modeling and mitigation of the uncertainties in weather and oc-

cupancy forecast via stochastic MPC, modeling and compensating

of the control input errors caused by the low-level P controllers.

From the practical perspective of the reduction of the deployment

cost and increased operational robustness of a cloud-based solu-

tion, the authors plan to enhance the implementation methodology

with the local deployment of deep neural network control policies

trained on the MPC operational data. 
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