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ABSTRACT

In this paper, we propose a distributed cross-relation-based adap-
tive algorithm for blind identification of single-input multiple-output
(SIMO) systems in the frequency domain, using the alternating di-
rection method of multipliers (ADMM) in a wireless sensor net-
work (WSN). The network consists of a fixed number of nodes each
equipped with a processing unit and a sensor that represents an out-
put channel of the SIMO system. The proposed algorithm exploits
the separability of the cross-channel relations by splitting the multi-
channel identification problem into sub-problems containing a sub-
set of channels, in a way that is determined by the network topology.
Each node delivers estimates for the subset of channel frequency
responses, which are then combined into a consensus estimate per
channel using general-form consensus ADMM in an adaptive updat-
ing scheme. Using numerical simulations, we show that it is pos-
sible to achieve convergence speeds and steady-state misalignment
values comparable to fully centralized low-cost frequency-domain
algorithms.

Index Terms— blind system identification, multichannel signal
processing, distributed signal processing, admm, online-admm

1. INTRODUCTION

The problem of blind system identification (BSI), which aims to
estimate channel responses of an unknown system without knowing
the input signal, has been the subject of extensive research over
recent decades. It was introduced in [1] and various algorithms have
been proposed since. Early algorithms used higher-order statistics
[2, 3, 4] for channel estimation, however, a high computational com-
plexity has motivated research into algorithms that only use second-
order statistics. Such algorithms include the cross-relation (CR)
algorithm [5, 6], subspace algorithms [7, 8, 9, 10], and maximum-
likelihood algorithms [11]. Out of the various multichannel BSI
algorithms that have been proposed, adaptive cross-relation-based
least-mean-squares (LMS) algorithms in the time and frequency
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dation - Flanders (FWO) grant 12ZD622N as well as from the European
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tor Grant: SONORA (No. 773268). This paper reflects only the authors’
views and the Union is not liable for any use that may be made of the con-
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SOUNDS-RESEARCH/iwaenc2022-dist-bsi-admm.

domain are the ones most widely used. For instance, the normal-
ized multi-channel frequency-domain LMS (NMCFLMS) [12, 13]
algorithm is an efficient algorithm utilizing the fast Fourier trans-
form (FFT) which has been extended to include constraints which
improve robustness to noise and performance for acoustic impulse
responses such as the noise-robust-NMCFLMS (RNMCFLMS)
[14], lp-RNMCFLMS [15] or phase-constrained-lp-RNMCFLMS
[16] algorithms. On the other hand, the quasi-Netwon algorithm
(MCQN) [17] is a time-domain algorithm that utilizes the Broy-
den–Fletcher–Goldfarb–Shanno (BFGS) [18] method to estimate
the Hessian of the problem.

The expanding field of distributed signal processing in wire-
less sensor networks (WSN) has brought forward algorithms for dis-
tributed signal estimation [19], noise control and echo cancellation
[20], as well as beamforming [21, 20]. However, research into the
task of BSI is limited. While there exist time-domain algorithms as
introduced in [22, 23, 24], they do not pose apt comparisons to the
frequency-domain algorithm being proposed here. In this paper, we
use the general-form consensus alternating direction method of mul-
tipliers (ADMM) [25] to distribute and solve the optimization prob-
lem posed by the task. We separate the inter-channel cross-relations
of the BSI problem according to the network’s topology, i.e., each
node solves a sub-problem using data from its network neighbors
and the entirety of the connected nodes subsequently reach a con-
sensus for the channel frequency responses. The ADMM update
steps are applied in a block processing scheme forming an adaptive
algorithm which is also referred to as Online-ADMM [26, 27].

As shown in numerical simulations, the resulting algorithm pro-
vides good estimation results when compared to state-of-the-art cen-
tralized frequency-domain algorithms.

2. PROBLEM STATEMENT

2.1. Signal Model

We consider an acoustic SIMO system with input signal s(n) =⇥
s(n) s(n� 1) . . . s(n� 2L+ 2)

⇤
T and M output signals

xi(n) =
⇥
xi(n) xi(n� 1) . . . xi(n� L+ 1)

⇤
T where i 2

M , {1, . . . ,M}. Each output xi(n) is the convolution of s(n)
with the respective channel impulse response hi and an additive
noise term vi(n), assumed to be zero-mean and uncorrelated with
s(n). The signal model is described by

xi(n) = His(n) + vi(n), (1)

where Hi is the L ⇥ (2L � 1) linear convolution matrix of the ith
channel using the elements of hi of length L which represents the
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system to be identified. For the purpose of this paper, the length L
of the impulse responses is assumed to be known.

2.2. Cross-relation Approach

The cross-relation approach for BSI aims to use only the output sig-
nals of the system to identify it. This can be achieved by exploit-
ing the relative channel information when more than one channel is
available, and the identifiability conditions [6] are satisfied. These
conditions are: (i) the channel transfer functions have no common
zeros (i.e., the polynomials are not co-prime), and (ii) the covariance
matrix of the input signal s(n) is of full rank (i.e., the signal has a
number of modes � 2L+ 1).

The fundamental equality of this approach in the noiseless case
vi(n) = 0 is

x
T

i (n)hj = x
T

j (n)hi, i, j 2 M, i 6= j (2)

which states that the channel output signal convolved with the im-
pulse response of another is equal to the vice-versa as follows from
the commutativity property of the convolution. Left-multiplication
with xi(n), assuming deterministic hj , and applying the expectation
operator to form the covariance matrix Rij(n) = E

�
xi(n)x

T

j (n)
 

,
and then combining all cross-relations (2) (see e.g., [12] for a more
detailed derivation) yields the system of equations

Rh = 0, (3)

where R is an ML⇥ML matrix given by

R =

2

6664

P
i 6=1

Rii �R21 · · · �RM1

�R12

P
i 6=2

Rii · · · �RM2

...
...

. . .
...

�R1M �R2M · · ·
P

i 6=M Rii

3

7775
(4)

and h =
⇥
h
T

1 . . . h
T

M

⇤T. The derivation is analogous when
formulating the problem in the frequency domain. We denote all
frequency-domain variables in bold italic (e.g., R) compared to
the time-domain bold upright (e.g.,R). The derivation involves the
frame-based overlap-save technique, working with signal frames
xi,2L(m) of length 2L, frame index m, leading to the system of
equations

Rh = 0, (5)

where h =
⇥
hT

1 . . . hT

M

⇤T is a stacked vector of channel fre-
quency responses and the ML ⇥ ML matrix R is recursively esti-
mated by

R̂(m) = ⌘R̂(m� 1) + (1� ⌘)R̃(m), (6)

where ⌘ 2 [0, 1] is an exponential smoothing factor. The matrix
R̃(m) is constructed similarly to (4), with

P
i 6=n R̃ii and �R̃ij ,

i, j, n 2 M, on the diagonal and off-diagonal blocks respectively,
where the instantaneous cross-spectrum matrices are defined as

R̃ij(m) = Xi(m)XH

j (m) (7)

with
Xi(m) = W 01

L⇥2LDi(m)W 10

2L⇥L. (8)
The matrix Di(m) = diag {FFT2L {xi,2L(m)}} contains the sig-
nal spectrum on its diagonal and

W 01

L⇥2L = FL⇥LW
01

L⇥2LF
�1

2L⇥2L, (9)

W 10

2L⇥L = F2L⇥2LW
10

2L⇥LF
�1

L⇥L (10)

are the frequency-domain overlap-save matrices where FL⇥L and
F2L⇥2L are the discrete Fourier transform (DFT) matrices for
sizes L and 2L respectively and W

01

L⇥2L =
⇥
0L⇥L IL⇥L

⇤
,

W
10

2L⇥L =
⇥
IL⇥L 0L⇥L

⇤
T denote the time-domain overlap-save

matrices [13].
Analogously to the time-domain formulation, the ML⇥1 vector

h is a stacked vector of complex-valued frequency responses. The
null-space problem in (5) cannot be solved by computing the eigen-
vector corresponding to the zero-valued eigenvalue because, in the
presence of noise, the system matrix R is of full rank and may not
have any. Therefore, it is best solved by posing it as a quadratic min-
imization problem [6, 12] with a non-triviality constraint to avoid the
zero solution:

ĥ = argmin
h

hHR̂h

s.t. hHh = 1.
(11)

2.3. Wireless Sensor Network

The major types of network topologies for distributed signal process-
ing can be distinguished by the way information is shared within
the network. For example, in a centralized or star topology where
nodes transmit their signals to a dedicated device (fusion center),
the processing is (partly) centralized. This has drawbacks, such as
the dependence on one or a small number of dedicated devices and
a potentially large number of signals to be processed on these de-
vices. Therefore, it can be advantageous to consider ad-hoc network
topologies, as we do in this paper, where nodes only communicate
with their respective neighbors. We refer the reader to [28] for a
more detailed review of WSNs and their topologies.

We consider a WSN consisting of M sensors each acquiring an
output signal xi(n). For each node i, let Ti ✓ M be the set of
indices of nodes that have access to the signal xi, i.e., the set of nodes
that xi(n) is transmitted to. Correspondingly, let Ri ✓ M be the set
of indices of nodes from which node i receives signal information,
i.e., if i 2 Tj , then j 2 Ri. Note that i 2 Ti and i 2 Ri for
simplifying notation in later sections, but no actual transmission is
necessary as the signal xi(n) is available locally at node i. Fig. 1a
shows a network where each node shares its signal information with
one or more neighbors. For this work, we assume synchronicity of
all nodes (i.e., no sampling rate offset) and perfect transmission of
data with no time delay.

In the following section, we introduce a distributed adaptive al-
gorithm to find a solution to (11) utilizing the sensor nodes.

3. PROPOSED ALGORITHM

3.1. General-Form Consensus ADMM

Recall that in addition to its own signal information, each node i 2
M has access to that of nodes j 2 Ri. This is used to solve
a BSI sub-problem of the same form as in (11), which only in-
volves the subset of channels. We define the local variables wi =h�

(wi)
T

j

 
j2Ri

i
T

, which are stacked vectors of locally estimated
frequency responses (cf. Fig. 1c). Further, the global variable h =⇥
hT

1 . . . hT

M

⇤T is the stacked vector of all M channel response
consensus variables. Lastly, we define the matrix P̂ i, which is the
frequency-domain cross-relation matrix analogous to R̂ as intro-
duced in Sec. 2.2, however only using the signals xj with j 2 Ri.
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Fig. 1: (a) Network topology with 4 nodes. Arrows indicate ex-
change of signal information. (b) Data transmission between nodes
i and j for each frame m. (c) Parameter mapping of the local vari-
able components (wi)j to the global variable components hj via
G(i, j) for the network in (a).

We replace the cost function minimized in (11) with the separa-
ble cost function

J̃(w) =
X

i2M

J̃i(wi) =
X

i2M

wH

i P̂ iwi (12)

with w , (w1, . . . ,wM ) as the local stacked estimates. Minimiza-
tion problems with separable cost functions, as introduced here, can
be solved by the well-established method of consensus ADMM [25]

minimize
w,h

X

i2M

J̃i(wi)

subject to (wi)j = hG(i,j) i 2 M, j 2 Ri

hHh = 1

(13)

where G(i, j) denotes the mapping of L local variable components
(wi)j , i.e., one of the frequency responses in the stacked vector, to
the corresponding global variable components hj (cf. Fig. 1c). For
the sake of brevity, the mapped global variables (h̃i)j = hG(i,j) are

introduced. This defines h̃i =
h�

hT

j

 
j2Ri

i
T

. The equality con-
straint between local variables wi and global variable h enforces
consensus, i.e., a common solution taking into account estimates of
all nodes that share data of the same channel. The augmented La-
grangian for this particular general-form consensus problem is

L⇢(w,h,u) =
X

i2M

⇣
wH

i P̂ iwi + 2<
⇣
uH

i

⇣
wi � h̃i

⌘⌘

+⇢
���wi � h̃i

���
2
◆ (14)

where u , (u1, . . . ,uM ) are the stacked local dual variables (La-

grange multipliers) ui =
h�

(ui)
T

j

 
j2Ri

i
T

with (ui)j denoting the
dual variable for channel j at node i. These variables follow from
the consensus equality constraint in (13). The ADMM with penalty

parameter/step size ⇢ > 0 then consists of the steps [25]:

wk+1

i = argmin
wi

L⇢(w,hk,uk) (15)

hk+1 = argmin
h,khk=1

L⇢(w
k+1,h,uk) (16)

uk+1

i = uk
i + ⇢

⇣
wk+1

i � h̃k+1

i

⌘
, (17)

where k is the iteration index. Evidently, this is an iterative algorith-
mand we will therefore introduce the online/adaptive aspect of the
proposed algorithm in the following.

3.2. Online ADMM-BSI

We introduced the original problem in (5) with a time-dependent es-
timate R̂(m) of the matrix R(m). It therefore follows that the data
term in (14) can also be considered time-dependent, which from here
on will be denoted with the additional superscript time index m as
wH

i P̂
m
i wi. A thorough review of ADMM with time-varying data

terms can be found in [26, 27] where it is referred to as “Online-
ADMM”. We transform the iterative batch processing method (15)-
(17) into an adaptive one by computing only a (small) finite number
of iterations with each time-frame-m specific data term. Here specif-
ically, we apply one iteration per time frame, which manifests itself
as simply replacing the iteration index k with the time frame index
m.

The minimization problem for the local variable wi (15) can be
solved by various algorithms, in this case however we perform the
adaptive update step as

wm+1

i = wm
i �µV m

i

⇣
P̂

m
i wm

i + um
i + ⇢

⇣
wm

i � h̃m
i

⌘⌘
, (18)

where µ, (0 < µ  1), is a step size and V m
i =

⇣
P̂

m
i + ⇢I

⌘�1

is
the regularized inverse Hessian of the problem. The implicit overlap-
save matrices in V m

i make this a constrained update step which is
costly to compute, so in order to reduce computational complexity,
we introduce the approximation

V̂
m
i = diag

n
diag

n
P̂

m
i

o
+ ⇢1

o�1

, (19)

which is straightforward to compute. It may be readily verified (cf.
[25]) that the solution to (16) is given by an update step which com-
putes

hm+1

i =
h̄m+1

iqP
j2M kh̄m+1

j k2
(20)

for each node i 2 M with the local unnormalized consensus

h̄m+1

i = w̄m+1

i +
1
⇢
ūm

i . (21)

Here, w̄i = 1

Ni

P
j2Ti

(wj)i and ūi = 1

Ni

P
j2Ti

(uj)i, with
Ni = |Ti|, are neigborhood averages of the channel response es-
timate and the dual variable of channel i respectively, computed at
node i. The values of all kh̄m+1

i k2, i 2 M are transmitted and
relayed through the network until all nodes can compute the denom-
inator in (20). Finally, the update of the dual variables is given by

um+1

i = um
i + ⇢

⇣
wm+1

i � h̃m+1

i

⌘
. (22)

The computations of local, consensus, and dual variables in (18),
(20) and (22) respectively, require data transmitted by other nodes



(a)

(b)

Fig. 2: (a) NPM at SNR = 20 dB over frame index m and (b) steady-
state NPMs over different SNRs.

(cf. Fig. 1b). For this paper, we assume that all transmissions are
done instantaneously whenever variables are required by neighbor-
ing nodes and are error-free.

4. NUMERICAL EVALUATION

The performance of the proposed algorithm is assessed via numeri-
cal simulations. As an error measure, we use the normalized projec-
tion misalignment (NPM) [13]

NPM(m) = 20 log
10

✓����h(m)� h
T(m)ht

h
T

t ht
h(m)

���� / kh(m)k
◆
,

(23)
where h is the stacked vector of impulse response estimates (cf.
Sec. 2.2), which are the inversely Fourier-transformed estimated fre-
quency responses hi stacked in h and ht is the ground truth. The
signal-to-noise ratio (SNR) for the simulations is defined as

SNR = 10 log
10

✓
�2

skhtk
M�2

v

◆
, (24)

where �2

s and �2

v are the variance of signal and noise respectively
which for this paper both are modelled by (channel-independent)
white Gaussian noise (WGN).

For this paper, the first simulation evaluates the performance
using randomly generated impulse responses of length L = 64
under different signal-to-noise ratios (SNR) on a 5-node network
(5-channel system, M = 5) with a ring topology where each
node transmits its signal information to one neighbor. The im-
pulse responses are drawn from a zero-mean Gaussian distribution
with unit variance, and the signal is 8⇥ 105 samples of WGN to
ensure convergence of all algorithms. The step sizes are hand-
tuned, so that the steady state is reached at similar frame counts (or

1 2

34

(a) (b)

Fig. 3: Convergence behaviour with L= 16 for different values of
⇣ for SNR = 20 dB. NPM for systems of (a) 4 nodes/channels and
(b) 8 nodes/channels. The inset of (a) shows the base ring topology
(black arrows) and all other possible connections (dashed black ar-
rows).

later than the proposed algorithm): µMCQN = 0.01, µNMCFLMS =
0.3, µlp�NMCFLMS = 0.4, µADMM = 0.6, ⇢ = 1, ⌘ = 0.98. Fig. 2a
shows the median NPM (30 Monte-Carlo runs) over frame index m.
Fig. 2b shows the median (30 Monte-Carlo runs) where the averaged
NPM of 100 frames after convergence is plotted. It can be observed
that the proposed algorithm yields a lower steady-state NPM than
the compared algorithms. The choice to present the median is based
on the fact that randomly generated impulse responses may have
(near) common zeros which diminish the identifiability of these
systems [29], here considered outliers.

The second simulation is a small-scale assessment of the influ-
ence of the number of connections within the WSN. Two base sce-
narios, M = 4 and M = 8 are evaluated using short (L = 16 for in-
creased simulation speed) random impulse responses and with semi-
random topologies. Each topology is generated by forming a ring
topology as marked with solid arrows on the inset of Fig. 3a and ad-
ditionally randomly selecting a defined number of connections from
all remaining possible connections, marked with dashed arrows. The
parameter ⇣ is defined as the ratio of randomly selected connections
to possible connections (excluding the ring topology). Topologies
satisfying this definition for ⇣ 2 {0.0, 0.25, 0.5, 0.75} were gen-
erated. Fig. 3a and Fig. 3b show the median NPM (30 Monte-Carlo
runs) for M = 4 and M = 8 respectively. The plots suggest a pro-
portional relation between convergence speed, channel number M
and ⇣. Moreover, the steady-state error appears to be independent of
⇣.

5. CONCLUSIONS

In this paper, a distributed adaptive algorithm for blind system iden-
tification using ADMM in the context of sensor networks was de-
veloped. The BSI problem is distributed amongst the nodes by ex-
ploiting the separability of the cross-relation problem formulation
which leads to node-wise sub-problems using signal information of
a node’s neighborhood. The nodes solve the subproblem and trans-
mit estimates to their respective neighbors which are combined into
consensus estimates. Preliminary results using white Gaussian noise
and randomly generated impulse responses have demonstrated im-
proved steady-state error measures compared to state-of-the-art al-
gorithms. Further, they suggest that steady-state performance is not
affected by the separation of the full BSI problem into node-wise
sub-problems while convergence speed is.
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