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Abstract 

Background:  

Understanding kidney metabolism during perfusion is vital to further develop the technology as a 

preservation, viability assessment, and resuscitation platform. We reviewed the evidence on the use 

of labelled metabolites (tracers) to understand “on-pump” kidney behavior. 

Methods:  

PubMed, Embase, Web of Science, and Cochrane databases were systematically searched for studies 

evaluating metabolism of (non)radioactively labelled endogenous compounds during kidney 

perfusion.  

Results: 

Of 5899 articles, 30 were included. All were animal studies [rat (70%), dog (13%), pig (10%), rabbit 

(7%)] perfusing but not transplanting kidneys. Perfusion took place at hypothermic (4°C-12°C) (20%), 

normothermic (35°C-40°C) (77%), or undefined temperatures (3%). Hypothermic perfusion used 

albumin or a clinical kidney preservation solution, mostly in the presence of oxygen. Normothermic 

perfusion was mostly performed with oxygenated crystalloids often containing glucose and amino 

acids with unclear partial oxygen tensions. Active metabolism of carbohydrate, amino acid, lipids, and 

large molecules was shown in hypothermic and normothermic perfusion. Production of 

macromolecules, such as prostaglandin, thromboxane, and vitamin D, takes place during 

normothermic perfusion. No experiments compared differences in metabolic activity between 

hypothermic and normothermic perfusion. One conference abstract showed increased anaerobic 

metabolism in kidneys donated after circulatory death by adding labelled glucose to hypothermically 

perfused human kidneys.  

Conclusions: 

Tracer studies during kidney perfusion contribute to unravelling kidney metabolic behavior in pre-

clinical models. Whether findings are truly translational needs further investigation in large animal 
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models of human kidneys. Furthermore, it is essential to better understand how ischemia changes this 

metabolic behavior. 

 

Keywords: isolated organ perfusion; kidney perfusion; machine perfusion; kidney; kidney 

transplantation; kidney metabolism; organ preservation; viability assessment; systematic review; 

isotopic tracer  
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Introduction 

Improved organ preservation and options for viability assessment and resuscitation are direly needed 

to reduce post-transplant complications and avoid futile discard of deceased donor kidneys [1-3]. Ex 

situ kidney perfusion, also called machine perfusion, has been proposed as a platform that could 

accommodate all three unmet needs and is expected to be increasingly implemented in clinical 

settings [4-6]. 

While hypothermic perfusion has been shown to be superior to static cold storage, it is not a reliable 

viability assessment tool [7]. Good quality studies have shown that selection criteria investigated to 

date do not have adequate predictive power for decision-making [8-11]. The usefulness of newer 

markers, such as flavin mononucleotide, is the subject of ongoing research [12, 13]. Recent evidence 

shows hypothermic perfusion can be improved by actively adding oxygen and thereby likely promoting 

kidney metabolism during preservation, though the underlying mechanisms of action are not 

understood [14, 15]. Initial clinical experience with a short period of normothermic perfusion to 

‘resuscitate’ the kidney following static cold storage, shows feasibility and a first large randomized 

controlled trial is awaited [16-19]. As the kidney is metabolically active at normothermic 

temperatures, it is believed that this platform is better suited for viability assessment and resuscitation 

compared to hypothermic perfusion [5, 11]. Nevertheless, no validated viability markers in kidney 

have been identified, unlike for liver where more evidence is available [4, 11].  

As the kidney remains metabolically active during both hypothermic and normothermic perfusion, it 

need adequate metabolic support and it is surprising how little we know about the kidney’s metabolic 

behavior during perfusion [20]. Furthermore, changes of the metabolome might also correlate with 

post-transplant outcomes and as such serve as viability markers. Adding a (non)radioactively labelled 

compound [21] – called a “tracer” – to the ex situ kidney perfusion set-up might provide insight into 

active or perturbed metabolic pathways and as such reveal information about the biochemical fate of 

different metabolites in the perfusate. Indeed, these labelled compounds are processed through the 
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metabolic network and the label eventually ends up in products that are released into the perfusate. 

The way these products are labelled provides a non-invasive readout of the biochemical activities that 

gave rise to the observed labelling pattern. This allows to identify metabolic pathways that are actively 

connected to the parent labelled compound (Figure 1).  

 

This systematic review assesses what tracer studies have revealed in the setting of hypothermic and 

normothermic kidney perfusion. 

Methods 

Search strategy  

This review was conducted using the Preferred Reporting Items for Systematic Reviews and Meta-

Analyses (PRISMA) guidelines. The protocol of this systematic review was prospectively registered in 

Open Science Framework [22]. With the help of an experienced biomedical information specialist, a 

search strategy was built and PubMed, Embase, Web of Science Core Collection, and Cochrane 

databases were searched. The following concepts: "tracer", "kidney", and "perfusion” were 

developed. The complete search strategy can be found in Table S1. 

Study Selection, eligibility criteria, and study outcomes 

Two authors independently assessed eligibility of the articles based on title and abstract, conducted 

full-text analysis, and extracted data. In case of disagreements, a third experienced researcher was 

consulted. Studies were included from database inception with final searches carried out on 30 May 

2022. Studies were eligible for inclusion if they reported on any of the prespecified outcomes. Only 

studies in mammals evaluating the metabolism of the isolated kidney (both ex situ and in situ) were 

included. Articles were excluded when the metabolites were exogenous or not labelled. Articles 

written in a language other than English, Dutch, or French; articles with no full text available; review 

articles; letters; editorials; and conference abstracts were also excluded. Reference lists of included 
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studies were also searched using the same inclusion and exclusion criteria (‘snowballing') Since no 

study in human kidneys was identified, we ran an additional search in Embase on May 30 2022, with 

the specific aim to find published conference abstracts on tracer studies in perfused human kidneys 

(Table S1). 

Data extraction 

The results of the search were imported into Endnote (Version X9 or 20, Clearview Analytics, 

Philadelphia, PA, USA) where they were screened for duplicates by two independent reviewers. 

Duplicates were removed using the “Find duplicates” tool in Endnote. The remaining articles were 

imported to Rayyan [23] and screened according to prespecified inclusion and exclusion criteria 

(Table S2). The full data extraction table is publicly accessible and contains information on title, 

authors, year of publication, study type, experimental set-up, group characteristics, perfusion 

characteristics, tracer and labelling conditions, analyses, perfusate results, urine results, tissue results 

and isolated tubules results [24]. When details on experimental set-up were not mentioned, we 

attempted to retrieve information from referenced studies. Radioactive tracers are written between 

brackets (e.g. [14C]). 

Perfusion temperature was defined as hypothermic (0-12°C) or normothermic (>34°C) as in clinical 

practice and results are categorized accordingly [25]. 

Quality assessment 

Quality was rated by two independent reviewers. The ‘systematic review center for laboratory animal 

experimentation (SYRCLE’s) risk of bias tool for animal studies’ was used to assess the quality of the 

reported experiments and the article. This tool is based on the Cochrane Risk of Bias tool and has been 

adjusted for aspects of bias that play a specific role in animal intervention studies [26]. Signaling 

questions were formulated by Hooijmans et al. to facilitate judgment and were reported to enhance 

transparency and applicability of the results [26]. 
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Results 

Search Results 

A systematic search of online databases, performed on May 30th, 2022, resulted in the identification 

of 9386 articles (PubMed: 3191, Embase: 3984, Web of Science: 1943, and Cochrane Library: 268). 

After duplicate removal, 5899 articles remained of which 5825 articles were excluded based upon 

predefined in and exclusion criteria at time of Title and Abstract screening (217 based on language, 

106 based on type of publication, and 4834 based on content). Another 42 articles were excluded at 

time of full text screening, leaving 25 articles that were included. From the reference lists, another 

771 potential papers were identified. After removal of 97 duplicates, an additional 669 records were 

excluded, leading to 5 additional inclusions (Figure 2). In total, 30 papers were included in this 

systematic review. The full data extraction table can be accessed online [24].  

All articles reported on pre-clinical experimental studies and were published between 1974 and 2020. 

Most articles (25/30, 83%) were published between 1974 and 1992 followed by 14 years where no 

study could be identified. Five (5/30, 17%) articles were published more recently, between 2006 and 

2020. Kidneys were retrieved from rats (21/30, 70%), rabbits (2/30, 7%), dogs (4/30, 13%), and more 

recently from pigs (3/30, 10%). A perfusion device, allowing ex situ kidney perfusion was used in all 

but four cases [27-51]. In the latter, the kidney was perfused in situ [52-54] or the perfusion method 

was unclear [55]. Kidney perfusion took place at hypothermic (4°C-12°C) (6/30, 20%) or normothermic 

temperatures (35°C-40°C) (23/30, 77%). In one study, studying glutamate metabolism by adding L-14C-

glutamine to the perfusion solution of rat kidneys, temperature was not further specified [56]. There 

were no studies in which the kidney was transplanted after perfusion. 

An additional search was carried out on May 30th, 2022 to identify Conference Abstracts of tracer 

studies of perfused human kidneys registered in Embase. This search identified 174 records of which 

1 was retained (Figure S1). 
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Quality and risk of bias assessment 

The majority of studies (28/30, 93%) compared at least two experimental groups. The risk of bias was 

assessed as “unclear” because essential information was often not reported (Figure 3, Table S3, S4). 

Risk of selection bias remained unclear for the majority of studies (21/30, 70%) [27-30, 32-34, 36, 37, 

39, 41, 43-47, 49, 52-54] and could be rated as low in two studies [42, 50] and high in seven [31, 35, 

38, 40, 48, 51, 55]. Group allocation was not reported in 25 studies (25/30, 83%) [27-30, 32-37, 39, 41, 

43-49, 51-56]. In three others (3/30, 10%), group allocation was assessed as high risk, based on the 

experiment set-up, since comparison groups only had one or a non-specified amount of animals [31, 

38, 40]. In two recent studies, either the animals or both kidneys of one animal (paired study design) 

were randomly assigned to different experimental groups [42, 50]. Baseline characteristics (animal 

strain, sex, weight, or diet) were mostly well described. In five studies (5/30, 17%), the different groups 

did not have similar baseline characteristics or analyses were not adjusted for confounders [35, 38, 

48, 51, 55]. Performance bias was rated as high in three studies [31, 34, 40], low in one study [42], and 

unclear in all others (26/30, 87%) [27-30, 32, 33, 35-39, 41, 43-55]. Random housing of animals was 

not performed in two studies (2/30, 7%) [31, 40] and was not reported in the remaining studies [27-

30, 32-39, 41-56]. Due to the nature of the paired study set-up used by Patel et al., animal caregivers 

were automatically blinded [42]. The risk of detection bias was unclear in most of the studies (23/30, 

77%) [27-30, 33, 35-37, 39, 41, 43-49, 51-56]. A low risk was found in the two recent studies [42, 50] 

whereas five older studies [31, 32, 34, 38, 40] were deemed to have high risk because outcomes were 

not assessed randomly (5/30, 17%) [31, 32, 34, 38, 40] or the outcome assessor was not blinded (2/30, 

7%) [31, 40]. Risk of attrition bias was high in 18 studies (18/30, 60%) [27-30, 35, 37, 38, 40, 43, 45-49, 

51, 53, 55, 56], low in two studies (2/30, 7%) [33, 36] and unclear in the others (10/30, 33%) [31, 32, 

34, 39, 41, 42, 44, 50, 52, 54]. In 11/30 (37%) articles, outcomes were not reported selectively, 

reducing the risk of reporting bias [31, 32, 34, 36, 39, 41, 42, 44, 50, 52, 54]. Three (3/30, 10%) studies 

were evaluated as high risk for reporting bias [37, 38, 40]. The risk on another potential bias was 
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assessed as high in eight articles (27%) [28, 29, 34, 37, 45, 46, 53, 55] and low in one study [42], mainly 

based on evaluation of potential analysis errors, design-specific risks of bias, unclear reporting on 

exclusions due to technical failures or no information on possibly received funding. The risk of 

potential bias was unclear in all 21 other articles [27, 30-32, 34-36, 38-41, 43, 44, 47-54]. 

In the hypothermic perfusion group (Table S3, S4), two recent studies had low risk of bias [41, 42] 

whereas three older studies were assessed to have a high risk of selection, attrition, and reporting 

bias [37, 38, 48]. In the normothermic perfusion group (Table S3, S4), risk of bias was mainly unclear. 

Five studies (5/23, 22%) showed low risk of bias, when assessable [36, 39, 45, 50, 52]. Of these, two 

were recently published [39, 50]. However, in five articles risk of bias was assessed high on different 

domains [31, 35, 40, 51, 55].  

 

Hypothermic kidney perfusion 

Hypothermic isolated kidney perfusion set-up 

All six studies reporting on the use of metabolite tracers during ex situ hypothermic kidney perfusion 

investigated metabolism in large animals (Table 1) [37, 38, 41, 42, 44, 48]. Between 1974 and 1979, 

dog kidneys were used for research with temperatures ranging from 5 to 12°C. Length of perfusion 

ranged from 18 hours [42] to 6 days [37, 38, 44]. Lundstam et al. set the perfusion target pressure at 

60 mmHg. No (ischemic) damage to the kidneys was mentioned. In contrast, two recent studies 

exposed pig kidneys to 15 min of warm ischemia and then deliberately cold stored them for 120 

minutes before hypothermic perfusion for 18-24h at a target pressure of 30 mmHg [41, 42]. 

Acellular perfusates were used in all studies without the use of oxygen carriers (Table 2). In four 

papers, oxygenation of the perfusate was mentioned [37, 42, 44]. Two dog studies mention the adding 

of a mixture of 66% N2, 33% O2 and 1% CO2 to the oxygenator [37, 44]. Lundstam et al. oxygenated 

the perfusate with a mixture of 99% O2 and 1% CO2 [38]. Although Skrede et al. mentioned the use of 

an oxygenator, no further details were given [48]. In pigs, Patel et al. investigated whether adding 
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oxygen (95%) versus exposure to air (21%) via a membrane oxygenator would result in metabolic 

changes [38, 48]. In the study of Nath et al. no additional oxygen was added to the circuit [41]. In both 

pig studies, Kidney Perfusion Solution-1 [41, 42], a specific hypothermic perfusion solution designed 

for preservation of human kidneys for transplantation, or human serum albumin [37, 38, 44, 48] were 

used as prime solution (Table 3). None of these studies added extra amino acids to the perfusate. Two 

studies added a vasodilator (papaverine) [37, 44]. 

Patel et al. perfused human donor kidneys before transplantation with Kidney Perfusion Solution-1 

with labelled glucose using a LifePort Kidney Transporter at a perfusion pressure of 30 mmHg [57]. 

The conference abstract does not mention the use of active oxygenation of the perfusate. 

 

Active metabolic pathways in hypothermically perfused kidney 

Studies were categorized as either studying carbohydrate (4/6, 66%) [37, 41, 42, 44], amino acid (1/6, 

17%) [38], and lipid (2/6, 33%) [37, 48] metabolism (Table 4). Lundstam et al. combined research on 

carbohydrate and lipid metabolism in one study [37, 48]. Both radioactive (4/6, 67%) [37, 38, 44, 48] 

and non-radioactive, stable isotope tracers (2/6, 33%) [41, 42] were used, all containing carbon 

labelling. 

Carbohydrate metabolism: Petterson et al. found that radioactively labelled glucose was mainly 

converted into lactate whereas only small amounts of radioactivity were found in glycogen and CO2 

[44]. These findings were confirmed by Lundstam et al. who added radioactively labelled glucose and 

lactate to separate experiments of hypothermic perfusion of dog kidneys [37]. The studies were 

designed to examine the role of metabolic inhibition at the level of pyruvate dehydrogenase on the 

production rate of lactate from glucose to obtain indirect information on the sufficiency of the oxygen 

supply – 33% of oxygen was given via membrane oxygenator – in this perfusion condition [37]. They 

found that metabolic blockade of glucose catabolism by multiple mechanisms was at least a 

contributive factor for lactate production during hypothermic perfusion [37]. 
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Recently, Nath et al. piloted the use of 2D-NMR spectroscopy to analyze the fate of non-radioactively 

labelled glucose in the perfusate [41]. After 6h of perfusion, fully labelled lactate, alanine, and acetate 

were identified confirming active metabolism during hypothermic perfusion. Lactate and alanine 

concentrations and labelling percentages increased further during perfusion. In cortex biopsies at 24h 

of perfusion, the same compounds were identified together with newly formed glutamate, where C-

atoms at place 4 and 5 were labelled (indicative for citric acid cycle activity). Patel et al. went further 

and performed a paired study where pig kidneys exposed to warm ischemia were either assigned to 

oxygenated or aerated hypothermic perfusion [42]. Using the same tracer and analyzing technique as 

Nath et al., they observed lower fully labelled alanine and lactate concentrations in oxygenated 

compared to aerated perfusion, showing a higher degree of aerobic metabolism with higher oxygen 

levels. In cortex samples, more 4-5-labelled glutamate was present in oxygenated perfusion [41]. Also, 

two labelled forms of citrate, succinate and malate (intermediates of the citric acid cycle) were 

identified. In a follow-up study, identified only as a Conference Abstract, Patel et al. supplemented 

the perfusate of 14 human kidneys preserved by hypothermic perfusion with 13C-glucose and analyzed 

perfusate samples by 1D and 2D-NMR spectroscopy, in addition to gas chromatography-mass 

spectrometry [57]. Kidneys donated after circulatory death had higher perfusate levels of 13C-alanine 

and 13C-lactate compared to kidneys donated after brain death, showing that these kidneys are reliant 

on anaerobic metabolism early during perfusion. 

Amino acid metabolism: Lundstam et al. showed incorporation of radioactively labelled threonine 

and leucine in dog kidney cortex proteins during hypothermic perfusion [38]. 

Free fatty acid metabolism: Two dog studies added radioactively labelled short- (acetate, caprylic 

acid) or long-chain fatty acids (palmitate, linoleate, oleate, myristic acid) to their perfusates [37, 48]. 

Adding labelled acetate [37] or caprylic acid [44] resulted in signs of decarboxylation (appearance of 

labelled CO2), and incorporation of labelled carbons in glucose and to a lesser extent into lactate. 

Palmitate, on the other hand, was oxidized to CO2 at a very low rate (0.4%) as found by both studies. 
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Exchange happened mainly with phospholipid fatty acids and no conversion of lineolate to arachidonic 

acid could be demonstrated. Linoleic, palmitic, and myristic acid were mainly converted into 

phospholipids and at a lower rate into triglycerides whereas caprylic acid was not incorporated [37]. 

 

Normothermic kidney perfusion 

Normothermic isolated kidney perfusion set-up 

All experiments were set-up in rodent models [27-36, 40, 43, 45-47, 49-55] except for one recent pig 

study [39] (Table 1). Although most papers describe tracer studies in healthy kidneys, some 

investigators used a (chronic) disease model where the kidney was injured in vivo before the start of 

the experiment. Hsueh et al. studied hydronephrotic kidneys (bilateral ligation of the ureters 3 days 

in advance) [55]. Funahashi et al. induced diabetes by administration of streptozotocin [32]. 

Summerfield et al. ligated the rat’s bile duct to induce chronic bile duct obstruction [49]. van Erp et al. 

induced brain death in rats (inflation Fogarty catheter in the epidural space) to evaluate the effect of 

organ donation after brain death on kidney metabolism [50]. 

Although three studies described in situ perfusion [52-54] most kidneys were retrieved and connected 

to an ex situ perfusion device. In rats, the right renal artery was cannulated via the mesenteric artery, 

avoiding interruption of oxygen/nutrient supply (ischemia) in the majority of studies (17/23, 74%) [27-

31, 33-36, 40, 43, 45-47, 49, 52, 54], as described by Nishiitsutsuji-Uwo et al. [58] In pigs, kidneys were 

retrieved and prepared for cannulation ex situ (mimicking clinical practice of organ retrieval and 

perfusion). As this takes time, kidneys were cooled down after retrieval resulting in a short cold 

ischemia period (±32 minutes) before normothermic perfusion [39]. Reported kidney perfusion times 

ranged from 30 to 480 minutes (Table 2). 

Normothermic perfusion was either pressure (13/23, 57%) [27, 29-34, 36, 46, 47, 50, 52, 53] or flow 

driven (4/23, 17%) [39, 40, 49, 54] or not mentioned (6/23, 26%) [28, 35, 43, 45, 51, 55] (Table 2). 

When pressure driven, target arterial pressure was uniformly set at 100 mmHg [27, 30-34, 36, 46, 47, 
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50, 52, 53], except in one study (120 mmHg) [29]. When flow-driven target perfusion was used, flows 

varied from 30 to 40 ml/min/g in rats [40, 49] with one study using lower flow rates (12-15 ml/min/g) 

[54] and 170 ml/min in pigs [39] (Table 2). Vasodilators (bradykinin [55], prostacyclin [51], verapamil 

[39]) were added to the circuit in three studies (3/23, 13%) [39, 43, 55] (Table 3). 

The main perfusate component (prime solution) were crystalloid based solutions containing glucose 

and various amino acids (Krebs-Henseleit (12/23, 52%) [27, 31-34, 40, 45-47, 52, 53, 55], Krebs-Ringer 

(8/23, 35%) [28-30, 35, 36, 43, 49, 54], Tyrode's solution (1/23, 4%) [51], or William’s Medium E 

GlutaMAX (1/23, 4%) [50]; composition of the solutions is summarized in Table S5), sometimes 

supplemented with albumin to increase oncotic pressure (Table 3). Extra glucose or amino acids were 

added in respectively 15 (65%) and 10 (43%) studies, depending on the composition of the prime 

solution (Table 3). The use of other additives like antibiotics, inulin, insulin, and other metabolites was 

described in 67% of the studies. Only one study, with pig kidneys, used whole blood diluted with 

Ringer’s lactate [39]. Perfusate supplementation with 95% O2 and 5% CO2 was provided in the majority 

of studies (19/23, 83%) [27, 29-34, 36, 39, 40, 44-47, 49, 50, 52, 53, 55] and not mentioned in four 

(17%) [28, 35, 51, 54]. Remarkably, and despite high oxygen delivery at normothermic temperatures, 

an oxygen carrier (red blood cells/perfluorocarbons) was only used in two studies (one with rat, the 

other with pig kidneys) [39, 47]. 

Active metabolic pathways in normothermically perfused kidney 

Studies were categorized as either studying carbohydrate (4/23, 17%) [29, 30, 39, 50], amino acid 

(5/23, 22%) [27, 32, 40, 43, 47], metabolism of other molecules (4/23, 17%) [33, 34], and synthesis of 

macromolecules [51-53, 55] (Table 5). Both radioactive (20/23, 87%) [27-30, 32-36, 40, 43, 45-47, 49, 

51-55] and non-radioactive, stable isotope tracers (3/23, 13%) [31, 39, 50] were used, containing 

either carbon, nitrogen, hydrogen, sulphur, or iodine labelling. 

Carbohydrate metabolism: Cohen et al. showed that a stepwise increase of lactate concentration 

(from 0 to 10 mM) resulted in increased lactate utilization but plateauing of lactate oxidation rates 
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when concentrations reached 4.2 mM in the absence of other substrates, suggesting gluconeogenesis 

from lactate in rat kidneys [29]. In a second study, Cohen et al. showed that perfusate composition 

effects lactate metabolism as a lower net utilization and decarboxylation of lactate was seen when 

the kidney was perfused with a substrate free albumin compared to bovine serum albumin [30]. 

Mariager et al. showed that pyruvate metabolism differs in ex situ versus in vivo conditions in pig 

kidneys perfused with a red blood cell based perfusate [39]. A recent rat study showed that 

pathological conditions influence glucose metabolism [50]. Glucose oxidation was significantly lower 

in brain dead animals versus sham when glucose hydrogens were radioactively labelled. 

Amino acid metabolism: Two studies investigated the role of the kidney in arginine metabolism [32, 

43]. Both added radioactive [14C]-citrulline to the perfusate and found conversion to arginine and 

guanidinoacetate. Perez et al. found label of guanidino-14C-citrulline in urea, creatine, and guanidine 

derivatives in healthy kidneys [43]. Funahashi et al. found that conversion to guanidinoacetate was 

impaired in kidneys from diabetic rats and did not improve by insulin treatment [32]. 

Serine metabolism was studied by adding 14C-aspartate to the perfusate [47]. Radioactively labelled 

aspartate was incorporated into serine and glucose, showing that the (non) phosphorylated triose 

pathway is a major pathway for serine synthesis. Aspartate label was also found in tissue malate and 

fumarate.  

Bogusky et al. added two different forms of radioactively labelled glutamine [27]. One in which 

nitrogen of the amido and one in which the nitrogen from the amino group was labelled. They found 

that lowering perfusate pH increases the rate of glutamine deamidation.  

Metabolism of branched-chain amino acids (leucine, isoleucine, and valine) to their 2-oxo acids was 

studied by Miller et al. [40]. Oxo-acids from branched chain amino-acids were released into the 

perfusate. Valine transamination increased linearly while oxidation increased exponentially. Adding 

the 2-oxo acid of valine resulted in increased oxidation and formation of valine while concentrations 

of isoleucine and leucine decreased and levels of their oxo-acids increased. 
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Other metabolism: Rat studies with radioactively labelled A- or B-chain insulin suggest insulin 

degradation by the kidney has similar cellular mechanisms to those in the liver [55]. The release of 

partially degraded insulin into the perfusate also suggests that either some degradation occurs on the 

plasma membrane without requiring internalization or that partially degraded insulin is released from 

an intracellular site [55]. 

Active metabolization of carnitine and acylcarnitines in the kidney was shown. α-keto-acids stimulated 

acetylcarnitine, isovalerylcarnitine, and isobutyrylcarnitine production from methyl-3H-carnitine 

whereas adding propionate inhibited their production [33]. Furthermore, adding [14C]-labelled keto-

acids resulted in formation of labelled 3-hydroxyisobutyrate, 3-hydroxyvalerate, 2-methyl-3-

hydroxybutryate, branched chain amino-acids, branched-chain acylcarnitines, and lactate [34]. 

Urinary bile acid monosulphate synthesis in rats was shown by Summerfield et al. and this was not 

influenced by bile-duct ligation [49]. Perfusate composition influenced bile acid excretion with less 

urinary excretion in the presence of albumin compared to a protein-free substrate.  

Biosynthesis of macromolecules: Prostaglandin production was studied in rabbits [51, 55]. Hsueh et 

al. showed efficient incorporation of radioactively labelled arachidonic acid into tissue lipids (mainly 

phospholipids) [55]. Labelling was found pre-dominantly in the cortical region and was confined to 

vascular tissue (compared to more diffuse labelling) when perfusing with a protein free compared to 

an albumin containing perfusate. This incorporation occurred in both healthy and hydronephrotic 

kidneys. Labelled arachidonic acid was converted into a mixture of prostaglandin I2, F2, and E2 whereas 

stimulation of release of endogenous arachidonic acid (by ischemia or bradykinine) resulted only in 

prostaglandin E2 production. Wong et al. identified two major products of prostacyclin I2 beta-

oxidation in the kidney [51]. 

Thromboxane B2 (TXB2) was shown to be metabolized by the kidney through beta-oxidation (2,3-dinor-

TXB2, 2,3-dinor-TXB1, and 2,3,4,5-tetranor-TXB1), with only little excretion in the urine in healthy 

kidneys [52, 53]. 
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Two studies investigated cholesterol synthesis using labelled mevalonate [28, 36]. Brunengraber et al. 

showed that 46% of R[3-14C]-mevalonate was incorporated into lipids (saponifiable, digitonin-

precipitable sterols, and squalene and prenols) while 22% was secreted in the urine [28]. Kopito et al. 

showed a potential role of the mevalonate shunt pathway in long-term regulation of cholesterol 

synthesis in the kidney as 17% of mevalonate entered this pathway instead of the cholesterol synthesis 

pathway [36]. 

Incorporation of [35S] into proteoglycan was shown to be impaired in hyperglycemia. Kanwar et al. 

showed 30-40% less [35S]-sulphate incorporation in the glomerular extracellular matrices in a diabetic 

kidney (streptozotocin induced diabetes) compared to control [54]. Furthermore, [35S]-methionine 

was incorporated into type IV collagen, laminin, or in the core peptide of heparan sulfate-

proteoglycans when a hyperglycemic state was mimicked during perfusion by adding mannose, 

galactose, or glucose to the perfusate [35]. 

Vitamin D3 metabolites containing a 25-hydroxyl group was found to stimulate 3H-24R,25(OH)2D3 

production [45]. Calcioic and cholacalcioic acid were identified as end-products of 25-OHD3 

metabolism through the C-24 oxidation pathway. As their production enhanced in vitamin D3 

intoxicated rats, C-24 oxidation can play a protective role by inactivating 25(OH)D3 [46]. 

Discussion 

This systematic review assessed the models and conditions in which tracer studies have been used to 

investigate the metabolic behavior of kidneys during hypothermic or normothermic kidney perfusion 

and summarized the findings of these studies. 

 

Studies fell in one of two eras. The first era is historical, with articles published between 1974 and 

1992. These studies generally focused on unraveling kidney metabolism in healthy conditions in both 

hypothermic and normothermic perfusion. Some investigated pathophysiology of chronic disease 
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models (diabetes, hydronephrosis). Regarded by today’s quality standards, the risk of bias in these 

studies is high. The second era is recent, with papers identified between 2006 and 2020. These studies 

explored the feasibility of adding primarily non-radioactive, stable isotope labelled metabolites to 

assess kidney viability in the setting of kidney transplantation. Risk of bias in these studies was lower 

than those of the historic era, though many items remained unclear, pointing towards the need for 

more complete reporting of study methodology with particular emphasis on risk of bias.  

 

The tracer studies identified here show active metabolism of carbohydrate, amino acid, and lipid 

metabolism in hypothermic conditions with less aerobic metabolism in conditions of lower 

oxygenation. While studies have shown the need for high partial oxygen tensions to support ATP 

production during hypothermic kidney perfusion, only one study provides information on partial 

oxygen tensions in the perfusate [59]. The solubility of oxygen in cold temperatures is high and 

therefore high partial oxygen tensions are easily reached with limited gas flow of 100% oxygen 

through a membrane oxygenator [60]. This supports the findings of a recent randomized trial showing 

improved outcomes of kidneys transplanted after preservation by oxygenated hypothermic perfusion 

compared to those that were preserved by hypothermic perfusion without supplemental oxygenation 

[14]. Whether these findings are translatable to the setting of kidney preservation is unclear, though 

the feasibility of the use of tracers in the clinical setting has been shown by Patel et al., who perfused 

human donor kidneys with non-radioactively labelled glucose during hypothermic perfusion and 

subsequently transplanted these kidneys [57]. From the Conference Abstract it is unclear whether the 

kidneys received oxygen during perfusion. 

 

Tracer studies in healthy kidneys perfused at normothermia found evidence of active glucose, amino 

acid, and metabolism of other large molecules as well as biosynthesis of macromolecules such as 

prostaglandins, Vitamin D. The aims of the experiments were highly variable with mostly 
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heterogenous research questions for each experiment and we cannot draw any overall conclusions on 

the data presented here. However, the use of tracers allowed researchers to address specific 

hypotheses. 

It is clear from these studies that the metabolism of the normothermically perfused healthy kidney is 

incompletely understood. Furthermore, we do not understand how this metabolism changes in 

perturbed conditions, such as ischemia. Both are vital to unravel, firstly to improve our overall 

knowledge on kidney metabolism and secondly to ensure that the metabolic needs of donor kidneys 

– that will have been exposed to some form of injury (e.g. brain death, hypoperfusion, ischemia) – are 

met during preservation. In that light, it is important to recognize that that glucose oxidation was 

found to be significantly lower in brain dead rats compared to sham [50], underpinning the likeliness 

that donor kidneys behave differently compared to healthy kidneys. 

There are, however, a few important issues to consider. These studies were performed in 

normothermic conditions making use of an oxygenated crystalloid based perfusate containing glucose 

and additional nutrients. The variability of the perfusion solution makes direct comparison of the 

outcomes difficult and it is important to realize that the composition of the perfusion solution might 

affect or alter metabolism during perfusion, as was shown by Cohen et al. and Hsueh et al. [29, 30, 55] 

Furthermore, oxygen carriers (such as red blood cells) were seldomly used. The low solubility of 

oxygen at atmospheric pressures and normothermic temperatures was counteracted by actively 

oxygenating the gas mixture (95% O2, 5% CO2), however, the flow rate of the gas mixture and the 

actual partial oxygen tensions, which are critical to assess the results, were rarely mentioned. As 

oxygen uptake by cells is bound by diffusion gradients between perfusate and cytosol, it is difficult to 

know whether the oxygen requirements of the cells were met in these models. In the few cases where 

an oxygen carrier was used, the gas mixture was not adapted, most likely resulting in hyperoxia. This, 

too, might have changed the normal physiological metabolism. Therefore, any results found in these 
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studies, and their translatability to human settings, needs to be interpreted with the necessary 

caution.  

 

The recent and sudden regained interest in the use of tracer metabolomics in kidney perfusion can be 

explained by multiple factors. 

Firstly, the availability of non-radioactive tracers and advanced analyses methods in the metabolomics 

field have created the opportunity to not only explore in vivo metabolism [61-63] in depth but also to 

use these to further elucidate the metabolism of the single, isolated organ. Indeed, isolated from the 

neural, hormonal stimuli and feedback mechanisms of other organs, metabolism of the kidney ex situ 

is likely to be different from that in vivo. Indeed, the findings by Mariager et al., show different use of 

pyruvate by pig kidneys in ex situ compared to in vivo conditions [39]. Although tracers are powerful 

tools to follow the metabolism of specific compounds, some consideration needs to be given to the 

choice of the labelled compound (which needs to be actively metabolised by the organ), the labelled 

atom (e.g. labelling of nitrogen in an amino acids will allow to follow the nitro group but not the carbon 

bonds), and the tracer type. Indeed, radioactive tracers are more limited in comparison to the stable 

isotope tracers as the majority of them are only capable of monitoring one specific enzyme reaction 

and thus fail, in contrast to stable isotopes, to monitor a broad set of enzymatic reactions at once. 

Secondly, hypothermic kidney perfusion has become a recognized kidney preservation platform after 

large well-designed studies showing improved outcomes with hypothermic perfusion compared to 

static cold storage [7]. Recently, we showed that supplementing the perfusate with oxygen, to reach 

high partial oxygen tensions, improves outcomes after transplantation of kidneys donated after 

circulatory death [14]. In that respect, it is encouraging that the use of tracers has shown active 

metabolism during hypothermic kidney perfusion of porcine and human kidneys as maintaining 

aerobic metabolism might be the underlying reason for improved graft preservation. 
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Thirdly, the increased use of less-than-ideal deceased donor kidneys for transplantation has 

heightened the clinical need for viability assessment and organ repair. Classic static cold storage 

cannot meet these needs and therefore ex situ kidney perfusion is increasingly studied. The use of 2D-

NMR to detect non-radioactive labelled glucose has been shown feasible in normothermic pig kidney 

studies [41] and might open a door towards not only a better understanding of kidney metabolism 

but also potentially predicting viability of injured kidneys before they are transplanted. In that light, it 

is important to note that none of kidneys were not transplanted in the identified experimental studies. 

 

As with all systematic reviews, it is possible that some relevant articles were not identified or that 

relevant studies were published after the search. We limited the chance of missing relevant articles 

by setting up a broad search strategy in collaboration with experienced biomedical reference 

librarians. Furthermore, references of included articles were searched to identify any articles that 

might have been missed by in the systematic search. 

 

In conclusion, tracers have been used in the setting of preclinical models of isolated kidney perfusion 

to investigate how healthy and diseased kidneys metabolize nutrients. It is clear that adding a 

(non)radioactively labelled compound to kidney perfusion set-ups is feasible and can contribute 

greatly to unravelling the metabolic behavior. This is vital to further develop kidney perfusion as a 

platform for organ preservation, viability assessment, and resuscitation. Whether findings, particularly 

those in normothermic perfusion, are truly translational remains to be shown as most studies were 

performed in rodents with considerable differences in perfusion solution and oxygenation levels 

compared to physiological conditions. In that respect well-designed tracer studies, that mimic 

physiology as closely as possible, in large animal models, human organs not fit for transplantation, or 

in the setting of a clinical study would be very valuable. In particular, understanding how metabolism 

changes after exposure to ischemia is essential in the transplantation setting. 
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Tables 

Table 1. Overview of included studies summarizing species, model, and perfusion temperature. 

Study Species Model Temp (°C) Disease model* 

Normothermic perfusion     

Cohen 1975 [30] Rat Ex situ 38-39 healthy 
Summerfield 1976 [49] Rat Ex situ 38 bile-duct ligation 
Cohen 1977 [29] Rat Ex situ 38 healthy 
Perez 1978 [43] Rat Ex situ 37 N/A 
Hsueh 1978 [55] Rabbit Unclear 37 hydronephrotic 
Wong 1978 [51] Rabbit Ex situ 37 healthy 
Brunengraber 1981 [28] Rat Ex situ 38 healthy 
Funahashi 1981 [32] Rat Ex situ 37 diabetes 
Kanwar 1983 [54] Rat In situ 30-35 diabetes 
Reddy 1983 [45] Rat Ex situ 38 Vit D intoxication 
Kopito 1984 [36] Rat Ex situ 38-40 healthy 
Miller 1984 [40] Rat Ex situ 38-40 healthy 
Scaduto 1985 [47] Rat Ex situ 37 healthy 
Hokland 1986 [33] Rat Ex situ 38-40 healthy 
Hokland 1988 [34] Rat Ex situ 38-40 healthy 
Benigni 1989 [52] Rat In situ 37 healthy 
Bogusky 1989 [27] Rat Ex situ 38-40 healthy 
Chiabrando 1989 [53] Rat In situ 37 healthy 
Duckworth 1989 [31] Rat Ex situ 37 healthy 
Kanwar 1992 [35] Rat Ex situ N/A healthy 
Reddy 2006 [46] Rat Ex situ 37 healthy 
van Erp 2020 [50] Rat Ex situ 37 brain death 
Mariager 2020[39] Pig Ex situ 38 cold ischemia 

Hypothermic perfusion     

Pettersson 1974 [44] Dog Ex situ 5-7 healthy 
Lundstam 1976 [37] Dog Ex situ 6-8 healthy 
Lundstam 1977 [38] Dog Ex situ 10 healthy 
Skrede 1979 [48] Dog Ex situ 8-12 healthy 
Nath 2016 [41] Pig Ex situ 4 warm + cold ischemia 
Patel 2019 [42] Pig Ex situ 4 warm + cold ischemia 

Perfusion temperature not specified 

Welbourne 1977 [56] Rat Ex situ N/A N/A 

*, chronic model in the animal (e.g. diabetes was induced several days before experiment); N/A, not 

available 
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Table 2. Overview of included studies summarizing perfusion settings. 

Study 
Pressure 
(mmHg) 

Flow 
(ml/min) 

Perfusion 
length 

O2 

carrier 
FiO2 

(%) 
Gas flow 
(l/min) 

pO2 

(mmHg) 

Hypothermic perfusion 

Pettersson 1974 [44] 60 N/A 6d No 33 N/A N/A 
Lundstam 1976 [37] 60 N/A 6d No 33 N/A N/A 
Lundstam 1977 [38] N/A N/A 6d No 99 N/A N/A 
Skrede 1979 [48] N/A N/A 45h No N/A N/A N/A 
Nath 2016 [41] 30 N/A 24h No N/A N/A N/A 
Patel 2019 [42] 30 N/A 18h No 95 0.1 150* 

Normothermic perfusion 

Cohen 1975 [30] 100 N/A 80 min No 95 N/A N/A 
Summerfield 1976 [49] N/A 32-34 60 min No 95 N/A N/A 
Cohen 1977 [29] 120 N/A 75 min No 95 0,3 N/A 
Perez 1978 [43] N/A N/A 90 min No 95 N/A N/A 
Hsueh 1978 [55] N/A N/A 191 No 95 N/A N/A 
Wong 1978 [51] N/A N/A N/A No N/A N/A N/A 
Brunengraber 1981 [28] N/A N/A 65 min No N/A N/A N/A 
Funahashi 1981 [32] 100 N/A 30 min No 95 N/A N/A 
Kanwar 1983 [54] 120-150 12-15 7-8h No N/A N/A N/A 
Reddy 1983 [45] N/A N/A 6h No 95 N/A N/A 
Kopito 1984 [36] 100 +/-5 N/A 65 min No 95 N/A N/A 
Miller 1984 [40] N/A 30-40 90 min No 95 N/A N/A 
Scaduto 1985 [47] 100 N/A 60 min Yes 95 N/A N/A 
Hokland 1986 [33] 90-100 N/A 30 min No 95 N/A N/A 
Hokland 1988 [34] 100 N/A 40 min No 95 N/A N/A 
Benigni 1989 [52] 95-100 N/A 80 min No 95 N/A N/A 
Bogusky 1989 [27] 100 +/-5 N/A 60 min No 95 N/A N/A 
Chiabrando 1989 [53] 100 N/A 60 min No 95 N/A N/A 
Duckworth 1989 [31] 100 N/A 75 min No 95 N/A N/A 
Kanwar 1992 [35] N/A N/A 300 min No N/A N/A N/A 
Reddy 2006 [46] 100 N/A 480 min No 95 N/A 400 
van Erp 2020 [50] 100 N/A 90 min No 95 N/A 450 
Mariager 2020 [39] N/A 170 120 min Yes 95 0.5 N/A 

Perfusion temperature not specified 

Welbourne 1977 [56] N/A N/A 60 min No 95 N/A N/A 

*, 150 mmHg at the start of perfusion, rapidly decreasing to absolute anoxia (11 mmHg) within 90 

minutes. FiO2, oxygen concentration; N/A, not available; O2; oxygen 
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Table 3. Overview of included studies summarizing perfusion settings. 

Study Species Perfusate 
Amino 
acids 

Glucose Vasodilator 

Hypothermic perfusion 

Pettersson 1974 [44] Dog Albumin No Yes Yes 
Lundstam 1976 [37] Dog Saline (+Albumin) No Yes Yes 
Lundstam 1977 [38] Dog Albumin solution Yes Yes No 
Skrede 1979 [48] Dog Albumin solution No No No 
Nath 2016 [41] Pig Kidney Preservation Solution-1 No No No 
Patel 2019 [42] Pig Kidney Preservation Solution-1 No Yes No 

Normothermic perfusion 

Cohen 1975 [30] Rat Krebs-Ringer (+Albumin) No No No 
Summerfield 1976 
[49] 

Rat Krebs-Ringer No Yes No 

Cohen 1977 [29] Rat Krebs-Ringer (+Albumin) No Yes No 
Perez 1978 [43] Rat Krebs-Ringer (+Albumin) Yes Yes No 
Hsueh 1978 [55] Rabbit Krebs-Henseleit (+ Albumin) No No Yes 
Wong 1978 [51] Rabbit Tyrode's No No Yes 
Brunengraber 1981 
[28] 

Rat Krebs-Ringer (+Albumin) No Yes No 

Funahashi 1981 [32] Rat Krebs-Henseleit Yes No No 
Kanwar 1983 [54] Rat Krebs-Ringer N/A N/A N/A 
Reddy 1983 [45] Rat Krebs-Henseleit (+Albumin) No Yes No 
Kopito 1984 [36] Rat Krebs-Ringer (+Albumin) No Yes No 
Miller 1984 [40] Rat Krebs-Henseleit (+Albumin) Yes Yes No 
Scaduto 1985 [47] Rat Krebs-Henseleit No No No 
Hokland 1986 [33] Rat Krebs-Henseleit No Yes No 
Hokland 1988 [34] Rat Krebs-Henseleit (+Albumin) Yes Yes No 
Benigni 1989 [52] Rat Krebs-Henseleit (+Albumin) Yes Yes No 
Bogusky 1989 [27] Rat Krebs-Henseleit (+Albumin) Yes No No 
Chiabrando 1989 [53] Rat Krebs-Henseleit (+Albumin) Yes Yes No 
Duckworth 1989 [31] Rat Krebs-Henseleit (+Albumin) Yes Yes No 
Kanwar 1992 [35] Rat Krebs-Ringer Yes Yes No 
Reddy 2006 [46] Rat Krebs-Henseleit (+Albumin) No Yes No 
van Erp 2020 [50] Rat William’s Medium E GlutaMAX 

(+Albumin) 
No No No 

Mariager 2020 [39] Pig Ringer lactate Yes Yes Yes 

Perfusion temperature not specified 

Welbourne 1977 [56] Rat Krebs Henseleit Yes Yes No 

 



33 
This is the version of the paper as accepted by “Artifical Organs”, doi: 10.1111/aor.14355 

This version has been through peer-review but still contains the authors’ original formatting. It has not yet undergone the publisher’s copy-editing and typesetting process, 

which will usually result in changes to the font and text alignment. 

Table 4. Summary of studies reporting on tracer use during hypothermic kidney perfusion. 

Study reference Metabolic pathway Tracer* Findings 

Carbohydrate metabolism 

Pettersson 1974 [44] Glucose [14C]-glucose Glucose was mainly converted into lactate and incorporated to a 
lesser extent into glycogen or CO2. 

Lundstam 1976 [37] Lactate 
Glucose 
Acetate 

[14C]-lactate 
[14C]-glucose 
[14C]-acetate 

Lactate production lower in kidneys perfused with fatty acid-free 
perfusate versus fatty acid-rich perfusate. Perfusate glucose 
concentration decreased more rapidly and glucose oxidation was 
more pronounced with a fatty acid-free perfusate. A metabolic 
blockade of glucose catabolism by multiple mechanisms is at least a 
contributive factor for lactate production during hypothermic 
perfusion. 
Acetate was utilized by the perfused kidney as an oxidative substrate. 

Nath 2016 [41] Glycolysis 13C-glucose De novo metabolism occurs during hypothermic perfusion. Whilst 
majority of 13C-glucose is metabolized into glycolytic endpoint 
metabolites (e.g. lactate) there is also presence of non-glycolytic 
pathway derivatives. Isotopic labelled ex situ organ perfusion studies 
using 2D NMR are feasible and informative. 

Patel 2019 [42] Glycolysis 
Citric acid 

13C-glucose Supplementation of perfusion fluid with high-concentration oxygen 
(95%) results in a greater degree of aerobic metabolism versus 
aeration (21%) during hypothermic perfusion. 

Amino acid metabolism 

Lundstam 1977 [38] Amino acid [14C]-leucine 
[14C]-threonine 

Both leucine and threonine were incorporated into kidney cortex 
proteins during hypothermic perfusion. 

Lipid metabolism 

Lundstam 1976 [37] Acetate [14C]-acetate Acetate was utilized by the perfused kidney as an oxidative substrate. 
Skrede 1979 [48] Fatty acid [14C]-palmitate 

[14C]-linoleate 
Palmitic acid was oxidized to CO2 at a very low rate. No conversion of 
lineolate to arachidonic acid could be demonstrated. 

*, radioactive tracers are depicted in bold. 
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Table 5. Summary of studies reporting on tracer use during normothermic kidney perfusion. 

Study reference Metabolic pathway Tracer* Findings 

Carbohydrate metabolism 

Cohen 1975 [30] 
Lactate 
Gluconeogenesis 

L-(+)-[U-14C]-lactate 
Lactate consumption increased with increasing lactate 
administration though lactate oxidation plateaued, explained by an 
increase in gluconeogenesis from lactate. 

Cohen 1977 [29] 
Lactate 
Glucose 

L-(+)-[U-14C]-lactate 
D[U-14C]-glucose 

Lower net utilization and decarboxylation of lactate with substrate 
free albumin. Both lactate and glucose administration increased 
tubular sodium reabsorption. 

Mariager 2020 [39] Pyruvate 13C-pyruvate 
Reduced pyruvate turnover ex situ compared to in vivo (MRI/MRS 
techniques). 

van Erp 2020 [50] Glucose oxidation d-6-3H-glucose 
Glucose oxidation significantly lower in brain dead animals versus 
sham, based on 3H2O production. 

Amino acid metabolism 

Perez 1978 [43] Urea cycle 

L-[guanidino 14C]-
arginine 
L-[guanidino 14C]-
citrulline 

Citrulline converted to arginine and guanidinoacetate. Guanidino 
14C-citrulline labelling also found in urea, creatine, and other 
guanidine derivatives. 

Funahashi 1981 [32] Arginine 
[14C]-arginine 
L-[carbamoyl-14C]-
citrulline 

Citrulline converted to arginine and guanidinoacetate. Citrulline 
conversion to guanidinoacetate was impaired in kidneys from 
diabetic rats and did not improve by insulin treatment. 

Miller 1984 [40] 
Valine 
Oxo acid 

L-[1-14C]-valine 
3-methyl-2-oxo[1-14C]-
butanoate 

Oxo-acids from branched chain amino-acids were released into the 
perfusate. Valine transamination increased linearly while oxidation 
increased exponentially. Adding the 2-oxo acid of valine resulted in 
increased oxidation and formation of valine while concentrations 
of isoleucine and leucine decreased and levels of their oxo-acids 
increased. 

Scaduto Jr 1985 [47] 
Serine 
Gluconeogenesis 

[14C]-aspartate 
[14C]-glycerol 

Labelled aspartate was incorporated into serine and glucose, 
showing that the (non) phosphorylated triose pathway is a major 
pathway for serine synthesis. 
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Study reference Metabolic pathway Tracer* Findings 

Bogusky 1989 [27] Ammonia 
[amido-15N]-glutamine 
[amino-15N]-glutamine 

Regulation of glutamine deamidation is an important controlling 
step in ammonia formation during acute metabolic acidosis in 
kidney as lower perfusate pH increases glutamine deamidation 
rates. 

Other metabolism 

Hokland 1986[31, 49] [33] Carnitine [methyl-3H]-carnitine 
Perfusion with labelled carnitine and branched chain α keto-acids 
resulted in excretion of newly formed branched-chain 
acylcarnitines. 

Hokland 1988 [34] Carnitine 

α-keto[U14C]-
isovalerate 
α-keto[U14C]-
isocaproate 
α-keto[U-14C]-ß-
methylvalerate 

Branched-chain hydroxy acids, branched-chain amino acids and 
branched-chain acylcarnitines and lacate are formed when labelled 
α keto-acids were added to the perfusate. 

Duckworth 1989 [31] Insulin 
125iodo(A14)-insulin 
125iodo(B26)-insulin 

Major insulin products found in the perfusate consist of an intact A-
chain and cleaved B-chain and differed from intracellularly found 
products. 

Summerfield 1976 [49] Bile acids 

[24-14C]-
chenodeoxycholate 
[24-14C]-litocholate 
[H2

35SO4] 

Perfusion with a protein-free perfusate resulted in urinary 
excretion of lithocholic and chenodeoxycholic acid (3%) and their 
principal polar metabolites litocholate 3-sulphate and 
chenodeoxycholate-7-sulphate respectively. Cholestasis did not 
enhance conversion. 

Biosynthesis of macromolecules 

Hsueh 1978 [55] Prostaglandin 
[14C]-AA 
[14C]-PG 

Efficient incorporation of arachidonic acid into tissue lipids (mainly 
phospholipids). Added arachidonic acid was converted into a 
mixture of prostaglandin I2, F2 and E2 whereas stimulated release of 
arachidonic acid from tissues resulted in formation of 
prostaglandin E2. 

Wong 1978 [51] Prostaglandin [9-3H]-PGI2 
Prostaglandin I2 metabolized into 7,9-dihydroxy-4,13-diketo-dinor-
PGF1a (25%) and dinor-6-keto-PGF1a (10%). 
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Study reference Metabolic pathway Tracer* Findings 

Benigni 1989 [52] Thromboxane [3H]-TXB2 
Only 1% of radioactivity was found in urine. Only low levels of TXB2, 
2,3-dinor-TXB2, and 11-dehydroxy-TXB2 were excreted in urine 
(1%). 

Chiabrando 1989 [53] Thromboxane [2H]-TXB2-d8 Major metabolites of thromboxane (TX) B2 were identified. 

Brunengraber 1981 [28] Cholesterol synthesis 
R[3-14C]-mevalonate 
S[5-14C]-mevalonate 

Sterol synthesis in the kidney appears to be controlled, at least in 
part, by the level of circulating R-mevalonate. 

Kopito 1984 [36] Cholesterol synthesis 
[5-14C]-mevalonate 
[4,5-14C]-mevalonate 
[5-3H] mevalonate 

Mevalonate (17%) entered the mevalonate shunt pathway 
suggesting a potential role of this pathway in long-term regulation 
of cholesterol synthesis in the kidney. 

Kanwar 1983 [54] Proteoglycan [35S]-sulphate 
[35S]-sulphate incorporation into glomerular extracellular matrices 
was 30-40% less in diabetic kidneys compared to control. 

Kanwar 1992 [35] Proteoglycan 
[35S]-sulphate 
[35S]-methionine 

[35S]-methionine was incorporated into type IV collagen, laminin, or 
in the core peptide of heparan sulfate-proteoglycans when a 
hyperglycemic state was mimicked during perfusion by adding 
mannose, galactose, or glucose to the perfusate. 

Reddy 1983 [45] Vitamine D [3H]-25(OH)D3 
25-hydroxylated vitamin D3 metabolites stimulated 3H-
24R,25(OH)2D3 production, where analogues without 
hydroxylgroups did not. 

Reddy 2006 [46] Vitamine D [1,2-3H]-25(OH)D3 

Both calcioic and cholacacioic acids are end products of 25(OH)D3 
metabolism through the C-24 oxidation pathway. Increased 
production from 25OHD3 in vitamin D3 intoxicated rats indicate a 
protective role for C-24 oxidation. 
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Figure legends 

 

Figure 1. Schematic representation of labelled compounds. If aerobic metabolism is active, a fully 

labelled glucose molecule would give rise to a fully labelled pyruvate molecule that enters the citric 

acid cycle. The labelled carbon atoms are incorporated into citrate and downstream, allowing 

identification of other active pathways. 
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Figure 2. Study flow chart. 

 

Figure 3. Risk of bias assessment in 30 studies identified, using SYRCLEs tool [26]. 
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Supplementary Materials:  

Table S1: Search string in databases Pubmed, Embase, Web of science, and Cochrane 

Table S2: Inclusion and exclusion criteria. 

Table S3: Detailed Risk of Bias Assessment using SYRCLE’s tool for articles 

Table S4: SYRCLE’s signaling questions for bias assessment 

Table S5: Composition of the media forming the basis for the perfusion solution used in the studies 

that were identified 

Figure S1: Flow chart of systematic search for abstracts reporting on use of tracers in human kidneys 


