
Extending Cubical Agda with Internal Parametricity∗

Antoine Van Muylder1, Andrea Vezzosi, Andreas Nuyts1, and Dominique
Devriese1

1KU Leuven, Belgium

Abstract. Internally parametric type theories are type systems augmented with additional
primitives and typing rules allowing the user to prove parametricity statements within the
system, without resorting to axioms. We implement such a type system by extending
the cubical type theory of Cubical Agda [17] with parametricity primitives proposed by
Cavallo and Harper [9]. To assess the implementation, we formalize a general parametricity
theorem within the system, which entails a large spectrum of free theorems including a
Church encoding for the circle and a straightforward parametric model for System F1.

A type-polymorphic function is parametric if its type argument is merely used for typing, not
for computing purposes. Such a parametric function necessarily applies the same algorithm irre-
spective of the type it is being used at. Reynolds’ relational parametricity [15, 13] is a semantic
account of this property for, e.g., terms of System F (a.k.a. the second-order polymorphic
lambda calculus). Useful information can systematically be extracted by only looking at the
type of a parametric function. These facts commonly known as “free theorems” [18] provide, for
instance, a formal explanation as to why there are only two functions with type ∀α. α→ α→ α.
Indeed, in a parametric model (where all denotations are parametric), only the first and second
polymorphic projections qualify as valid, as they do not inspect the implementation of α.

Enforcing free theorems. Dependent type theory (DTT) has been proven to admit para-
metric models [16, 6, 12, 3]. Therefore, whenever a free theorem is needed, it can soundly be
added as an axiom. In fact, evidence that a given closed term is parametric (w.r.t. a syntactic
notion of relation) can even be obtained constructively: this is what parametricity translations
[11, 1] achieve. However, parametricity is known to be logically independent from plain DTT [7]
and this prevents the above meta-theoretical translations to be internalized. Hence, to obtain
internal parametricity, novel principles must be added to plain DTT.

Internal parametricity for cubical type theory. Cavallo and Harper (CH) [9] extend
cubical type theory [2] with parametricity primitives [5], in a style reminiscent of cubical type
theory itself. Proofs of relatedness (versus equality) between a0, a1 : A are built using func-
tions p : BI → A from an abstract bridge interval BI, satisfying p(0) = a0, p(1) = a1 defi-
nitionally. Such proofs are called bridges and written λBI r. p(r) : BridgeA a0 a1 (versus paths
λI i. p(i) : PathAa0a1). Contrary to path variables, the logic of bridge variables is sub-structural
(affine): weakening and exchange hold, but not contraction. Concretely, one can eliminate a
bridge Γ1, r : BI, Γ2 ` b : BridgeA a0 a1 at a bridge variable r only if r is fresh for b, mean-
ing that every free variable appearing in b is in Γ1 or is a bridge/path variable in Γ2. This
sub-structurality is crucial to formulate the inference rules of the extent and Gel primitives.
The purpose of those primitives is to guarantee several bridge commutation principles: theo-
rems explaining how the Bridge type former commutes with other type formers. The extent
primitive and its rules provide commutation with Π. For non-dependent functions this reads

∗Van Muylder/Nuyts hold a PhD/Postdoctoral fellowship of the Research Foundation – Flanders (FWO).
1Files, instructions, comparison with other systems: https://github.com/antoinevanmuylder/bridgy-lib.

https://github.com/antoinevanmuylder/bridgy-lib


Extending Cubical Agda with Internal Parametricity Van Muylder, Vezzosi, Nuyts, Devriese

(
Π(a0,a1:A)(ā:Bridge a0 a1)BridgeB(f0a0)(f1a1)

)
' BridgeA→B f0 f1. The principle is analogous to

function extensionality and asserts that functions are related if they map related inputs to re-
lated outputs. The Gel primitive and its rules, together with univalence, prove commutation
with the universe: (A0 → A1 → Type) ' BridgeType A0 A1. This is analogous to univalence and
called relativity by CH. Commutation principles make bridges (and paths) behave as structured
relations (and isomorphisms, resp.). This is most blatant for types of algebraic structures. Con-
sider the type of “magmas” Mag = ΣM :TypeM ×M → M . Commutation with Σ,Type,×,→
grants a characterization of BridgeMagM0M1 (and Path, resp.) as the type of relations (and
isomorphisms, resp.) compatible with the binary functions from M0,M1. Such structured
relations are also known as logical relations [10].

Contributions. We implement CH’s internally parametric type theory [9] on top of the
cubical type theory [8] underlying the Cubical Agda [17] proof assistant. As discussed above,
we must be able to generate freshness constraints for bridge variables during typechecking.
Our implementation hence reuses the existing affine variable infrastructure of Guarded Cubical
Agda [14]. Interestingly and unprecedented in Agda, the extentβ computational rule fires only
if a certain argument M satisfies a specific freshness condition. As this condition is not reflected
by β-reduction, the rule has to operate on the normal form of M in the worst case scenario. Our
current implementation of extentβ is sound but not complete because of this peculiar behaviour.
Implementation of Kan operations for Bridge,Gel is work in progress as well.

Our long term goals include assessing the precise expressivity of CH’s internal parametricity,
connecting it to existing alternate formulations (unary, Kripke, etc.) and evaluating its useful-
ness in practical applications. For now, we have already formalised a (binary) parametricity
statement from which a wide range of free theorems ensue. A native reflexive graph is by
definition a type of vertices G equipped, for any g0, g1 : G with a type of edges G{g0, g1}
and an equivalence ηG : G{g0, g1} ' BridgeG g0 g1. The type of native reflexive graphs is
of course equivalent to Type, but ηG can contain non-trivial information. For instance, Type
equipped with relations A0 → A1 → Type as edges is native exactly thanks to relativity, and
formalizing the relativity theorem was non-trivial. Similarly, a native relator F between na-
tive reflexive graphs G,H : Type acts both on vertices Fvrt : G → H and on edges F g0,g1edge :

G{g0, g1} → H{Fg0, Fg1} and the latter action must satisfy Path...(Fbdg ◦ ηG)(ηH ◦ Fedge)
where Fbdg = (λq. λBIx. Fvrt(qx)). Parametricity now reads as follows: for any native relator
F : G→ Type and any function f : Πx:G Fx, inputs related by an edge e : G{g0, g1} result in a
proof (param : Fedge e (fg0) (fg1)). Bridge commutation principles ensure that native relators
abound. For instance the arrow relator Type × Type → Type : A,B 7→ A → B is native, and
using the above param constant it is easy to show that

(
Π(X:Type)X → X → X

)
' Bool

Less standard is the following Church encoding for the circle [4]:
(
ΠX∗:Type∗Ω(X∗)→ X

)
'

S1, where Type∗ = ΣX:TypeX and X∗ = (X,x0) and Ω(X∗) = PathX x0 x0. The above param
constant provides a direct proof, granted that λX∗. Ω(X∗)→ X is a native relator. The formal
proof of Ω nativeness is ongoing.

Finally we connect Reynolds’ statement to ours and describe a shallow embedding of System
F that can serve as a parametric model. We wrongly assume Type : Type to comply with System
F impredicativity and simplify matters. Semantic open types α1, ..., αn : ∗ |= τ : ∗ are defined as
native relators Type×...×Type→ Type. There is a semantic arrow type given by the above arrow
relator, and a semantic ∀ type as well. Semantic open terms (α1, ..., αn : ∗) | (x1 : τ1, ..., xm :
τm) |= t : τ are functions Πθ:Typen Πjτj(θ) → τ(θ). Once again, as λθ. Πjτj(θ) → τ(θ) is a
native relator, semantic terms are proven parametric thanks to param.

2



Extending Cubical Agda with Internal Parametricity Van Muylder, Vezzosi, Nuyts, Devriese

References

[1] Abhishek Anand and Greg Morrisett. Revisiting Parametricity: Inductives and Uniformity of
Propositions. arXiv:1705.01163 [cs], July 2017.

[2] Carlo Angiuli, Robert Harper, et al. Cartesian cubical computational type theory: Constructive
reasoning with paths and equalities. In 27th EACSL Annual Conference on Computer Science
Logic (CSL 2018). Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik, 2018.

[3] Robert Atkey, Neil Ghani, and Patricia Johann. A Relationally Parametric Model of Dependent
Type Theory. In Principles of Programming Languages, pages 503–515. ACM, 2014.

[4] Steve Awodey, Jonas Frey, and Sam Speight. Impredicative encodings of (higher) inductive types.
In Proceedings of the 33rd Annual ACM/IEEE Symposium on Logic in Computer Science, pages
76–85, 2018.

[5] Jean-Philippe Bernardy, Thierry Coquand, and Guilhem Moulin. A presheaf model of parametric
type theory. Electronic Notes in Theoretical Computer Science, 319:67–82, 2015.

[6] Jean-Philippe Bernardy, Patrik Jansson, and Ross Paterson. Parametricity and dependent types.
In Proceedings of the 15th ACM SIGPLAN international conference on Functional programming,
pages 345–356, 2010.

[7] Auke B Booij, Mart́ın H Escardó, Peter LeFanu Lumsdaine, and Michael Shulman. Parametricity,
automorphisms of the universe, and excluded middle. In 22nd International Conference on Types
for Proofs and Programs, 2018.

[8] Cyril Cohen, Thierry Coquand, Simon Huber, and Anders Mörtberg. Cubical type theory: A
constructive interpretation of the univalence axiom. In 21st International Conference on Types for
Proofs and Programs (TYPES 2015). Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik, 2018.

[9] Robert Harper and Evan Cavallo. Internal parametricity for cubical type theory. Logical Methods
in Computer Science, 17, 2021.

[10] Claudio Hermida, Uday S Reddy, and Edmund P Robinson. Logical relations and parametricity–
a Reynolds programme for category theory and programming languages. Electronic Notes in
Theoretical Computer Science, 303:149–180, 2014.

[11] Chantal Keller and Marc Lasson. Parametricity in an impredicative sort. In Computer Sci-
ence Logic (CSL’12)-26th International Workshop/21st Annual Conference of the EACSL. Schloss
Dagstuhl-Leibniz-Zentrum fuer Informatik, 2012.

[12] Neelakantan R. Krishnaswami and Derek Dreyer. Internalizing relational parametricity in the
extensional calculus of constructions. In Computer Science Logic 2013 (CSL 2013), CSL 2013,
September 2-5, 2013, Torino, Italy, pages 432–451, 2013.

[13] QingMing Ma and John C Reynolds. Types, abstraction, and parametric polymorphism, part
2. In International Conference on Mathematical Foundations of Programming Semantics, pages
1–40. Springer, 1991.

[14] Rasmus Ejlers Møgelberg and Niccolò Veltri. Bisimulation as path type for guarded recursive
types. Proceedings of the ACM on Programming Languages, 3(POPL):1–29, 2019.

[15] John C Reynolds. Types, abstraction and parametric polymorphism. In IFIP congress, volume 83,
1983.

[16] Izumi Takeuti. The theory of parametricity in lambda cube. Technical report 1217, Kyoto Uni-
versity, 2001.

[17] Andrea Vezzosi, Anders Mörtberg, and Andreas Abel. Cubical agda: A dependently typed pro-
gramming language with univalence and higher inductive types. Journal of Functional Program-
ming, 31, 2021.

[18] Philip Wadler. Theorems for free! In Proceedings of the fourth international conference on
Functional programming languages and computer architecture, pages 347–359, 1989.

3


