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Figure 1: Sikkel’s architecture.

Many variants of type theory extend a basic theory with ad-
ditional primitives or properties to enable constructions or
proofs that would be harder or impossible to do in the orig-
inal theory. Examples of such extensions include guarded
recursion [7, 13], parametricity [2, 3, 4, 19, 18, 8], univa-
lence [5, 9, 11], directed type theory [21, 22] and nominal
reasoning [20]. The question addressed in this abstract is
how these extended systems can be used in existing depen-
dently typed programming languages like Agda or Coq. We
present Sikkel1: an Agda library that allows users to work in a class of extended (simple) type
theories called multimode or multimodal type theories [16, 13], which are parametrized by a
mode theory that specifies new primitive type constructors called modalities (but non-modal
primitives can be easily added to Sikkel as well). Such modalities are not only useful in the ob-
ject theory, but they also allow for an elegant translation of Sikkel programs to Agda programs.
Fig. 1 shows Sikkel’s different components, which will be discussed in the following sections.

This abstract is based on a full paper, which was presented at MSFP 2022 [10].

Multimode Simple Type Theory (MSTT) The upper layer of Fig. 1 represents MSTT,
which is essentially Gratzer et al.’s MTT [13] restricted to simple types.2 Our implementation
of MSTT is parametrized by a ModeTheory record, which specifies an Agda type ModeExpr
of modes, a type family ModalityExpr of modalities (indexed by two modes), as well as a unit
modality, modality composition and a type of 2-cells (i.e. a mode theory is basically a strict
2-category). All MSTT contexts, types and terms live at a certain mode and are represented in
Sikkel as values of data types CtxExpr, TyExpr and TmExpr indexed by a mode. Sikkel’s MSTT
syntax is extrinsically typed, so TmExpr is not indexed by a context or type. There is built-in
support for booleans, natural numbers, function types and product types. Every modality µ
from mode m to n gives rise to a modal type former, transforming a type T at mode m to 〈 µ |
T 〉 at mode n, and a lock (left adjoint) on contexts, transforming a context Γ at mode n to Γ
,lock〈 µ 〉 at mode m. Variables are represented by strings3 and always appear in the context
under a modality. The following are 3 of the more interesting MSTT typing rules.

α ∈ µ⇒ locks(∆) x /∈ ∆
Var

Γ , µ | x ∈ T ,∆ ` var x α : T

Γ , µ | x ∈ T ` s : S
Lam

Γ ` lam[ µ | x ∈ T ] s : 〈 µ | T 〉 V S

Γ ,lock〈 µ 〉 ` t : T
ModIntro

Γ ` mod〈 µ 〉 t : 〈 µ | T 〉

A variable x that is in the context under modality µ can be used to construct a term, as long
as there is a 2-cell from µ to the composite of all modalities that appear in locks to the right
of x (Var). In many cases, these two modalities are the same so we can replace α with the
trivial 2-cell which we abbreviate as svar x. Lambda abstraction produces a modal function by
extending the context with a variable under the same modality (Lam). The introduction rule
for modalities (ModIntro) shows that we can construct a term of type 〈 µ | T 〉 whenever we
have a term of type T in the context locked with µ.

1Available at https://github.com/JorisCeulemans/sikkel/releases/tag/v1.0.
2So just like MTT, MSTT does not support substructural modal systems such as [17] or [1].
3The strings are resolved to de Bruijn indices when going from the upper to the middle layer in Fig. 1.

MSTT does not specify an equational theory for terms or reduction of terms.

https://github.com/JorisCeulemans/sikkel/releases/tag/v1.0
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applicative : ModalityExpr m n → TmExpr n
applicative µ = lam[ µ | "f" ∈ T V S ]
lam[ µ | "t" ∈ T ] mod〈 µ 〉 (svar "f" · svar "t")

Figure 2: Example of a modal pro-
gram in Sikkel.

Fig. 2 shows a simple example of a modal program
written in Sikkel (the symbol · is MSTT function ap-
plication). It has type 〈 µ | T V S 〉 V 〈 µ | T 〉 V 〈
µ | S 〉 and proves that every modality satisfies the K
axiom (or, in other words, is an applicative functor).

Presheaf Models & Sound Type-checker MSTT does not have interesting computational
behavior in the sense that there is no reduction for terms. Sikkel’s intended use is that certain
MSTT terms will be interpreted as Agda terms. However, in an off-the-shelf version of Agda
this is not immediately possible for many of the modal type and term formers. For this rea-
son, there is a middle layer in Fig. 1, representing a formalization of presheaf models of type
theory in Agda, which is essentially a shallow embedding of MSTT [23]. A presheaf model is
parametrized by a base category, different modes will correspond to different base categories and
they determine which new type and term formers are implementable in the model. Modalities
are interpreted as dependent right adjunctions (DRAs) [6] and allow to transfer semantic types
and terms between different base categories. Our formalization follows the general construction
by Hofmann [15] and is structured as an internal Category with Families (CwF) [12]. Although
MSTT is simply-typed, Sikkel’s semantic layer already anticipates the addition of dependent
types and semantic types may depend on variables.

The bridge between Sikkel’s first two layers is a type checker which is sound by construction
in the sense that it will either refute a judgment or accept it and interpret it in the presheaf
model. In order for this to be possible, a Sikkel user implementing a new type theory must
provide interpretations of modes as base categories, modalities as DRAs and two-cells as certain
natural transformations. Furthermore, if any non-modal type or term formers are added, the
user must specify how they should be type-checked and interpreted.

Extraction The presheaf model over the trivial base category corresponds to the standard set
model of type theory. We make use of this fact to extract semantic terms in this model to the
meta-level (i.e. to Agda terms), as shown at the bottom of Fig. 1.4 However, the interpretation
of some types (e.g. function types) in the model is only isomorphic to their intended meaning.
This is why Sikkel provides a type class Extractable for semantic types, instances of which
declare the intended translated Agda type and provide a way to apply the isomorphism.

Applications We implemented two applications in Sikkel: guarded recursive type theory
and a restricted form of parametricity. With guarded recursion, we can write definitions of
infinite streams that would not be accepted by Agda’s termination checker. The extraction
mechanism allows us to interpret these definitions as ordinary Agda streams. For parametricity,
we demonstrate how a function definition can be interpreted with two different representations
for an abstract type, and how parametricity allows us to relate the two resulting definitions.

Future Work Eventually, we plan to extend Sikkel with support for dependent types. How-
ever, the interpretation of a dependently typed syntax turns out to be a significant challenge
(especially to satisfy Agda’s termination checker). Furthermore, the addition of a Hofmann-
Streicher universe to our presheaf model is non-trivial. Therefore, we first intend to equip Sikkel
with an extensible program logic (in the same spirit as the Edinburgh Logical Framework [14]),
orthogonal to the different layers in Fig. 1, which will allow a programmer to prove properties
of functions written in Sikkel and translate the proofs to Agda proofs of the extracted Agda
functions. We also plan to study more examples of multimode type theories as applications of
Sikkel, with an ongoing exploration of nominal type theory [20].

4Semantic terms over other base categories must first be transferred by applying a modality.
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