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Abstract

Dependent type theory allows us to write programs and to prove
properties about those programs in the same language. However,
some properties do not require much proof, as they are evident
from a program’s implementation, e.g. if a polymorphic program is
not ad hoc but relationally parametric, then we get parametricity
theorems for free. If we want to safely shortcut proofs by relying on
the evident good behaviour of a program, then we need a type-level
guarantee that the program is indeed well-behaved. This can be
achieved by annotating function types with a modality describing
the behaviour of functions.

We consider a dependent type system with modalities for rela-
tional parametricity, irrelevance (i.e. type-checking time erasability
of an argument) and ad hoc polymorphism. The interplay of three
modalities and dependent types raises a number of questions. For
example: If a term depends on a variable with a given modality,
then how should its type depend on it? Are all modalities always
applicable, e.g. should we consider parametric functions from the
booleans to the naturals? Do we need any further modalities in
order to properly reason about these three?

We develop a type system, based on a denotational presheaf
model, that answers these questions. The core idea is to equip every
type with a number of relations — just equality for small types,
but more for larger types — and to describe function behaviour
by saying how functions act on those relations. The system has
modality-aware equality judgements (ignoring irrelevant parts)
and modality-aware proving operators (for proving free theorems)
which are even self-applicable. It also supports sized types, some
form of intersection and union types, and parametric quantification
over algebraic structures. We prove soundness in a denotational
presheaf model.
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1 Introduction

By now, several dependent type systems can be found in the litera-
ture in which function types are annotated with a modality which
restricts the behaviour of the functions they contain. A modality
for compile-time erasability is found in (adaptations of) Miquel’s
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implicit calculus of constructions (ICC) [7, 23, 24]. Modalities for
type-checking time erasability (which we will call irrelevance) are
found in [3, 7, 24, 30, 32]. Our previous work with Vezzosi [29] has
a modality for relationally parametric functions, which we can
prove free theorems about, and a ‘pointwise’ modality for func-
tions which break the relational structure, comparable to ad hoc
polymorphism.

Example 1.1 (Parametricity). The polymorphic if operator takes
four arguments: a type X of type U (which is a type of types), a
boolean, and two elements x1, x2 : X of which it picks one, depend-
ing on the boolean.

if :(par1 X : U) > Bool > X - X - X (1)

In the above type signature, we used the annotation par to signal
that the argument X is used parametrically, allowing us to rely on
free theorems such as f (if X b x1 x2) = if Y b (f x1) (f x2), for
any f : X — Y, irrespective of the implementations of f and if.

Example 1.2 (Irrelevance). Let List, Abe the type of lists of length
less than n. Size bounds such as n can be used as a modular way
of ensuring termination of recursive functions [4, 5, 15]. Possible
type signatures for the constructors of lists are then:

nil : (par 1 X : YU) — (irr 1 n: N) — (irr 1 0 < n) — List, X,
cons: (par 1 X : U) — (irr rmn:N) —
(irr 1 m < n) - X — List;;, X — List, X. (2)

All size bounds and proofs about them are marked as irrelevant (irr),
because they can and should be ignored during equality-checking.
Indeed, we want the following lists (where _ replaces arbitrary
inequality proofs) to be judgementally equal as they are both anno-
tated versions of the list (a :: []):

cons A25_a(nilA2_)=consA35_a(nilA3_). (3)
Example 1.3 (Ad hoc polymorphism). The law of excluded middle
lem : (hoc1 X : U) - X W (X — Empty) (4)

breaks parametricity. Indeed, if lem X were parametric in X, then
it would be a parametricity theorem that lem Unit and lem Empty
either both give an inhabitant, or both prove emptiness. Hence, to
avoid inconsistency, we need to mark lem as ad hoc polymorphic. A
sufficiently syntactic model may also justify an ad hoc polymorphic
typecase operator.

Modality of the codomain In a modal dependent type system,
we can consider the function type (1 1 x : A) — B x of functions
f of modality y that map arguments a : Ato f a : B a. Here, B is
a function from A to a universe (i.e. a type of types) U, mapping
a : Ato the type B a : U. An important question is: how well-
behaved does B have to be before it is sensible to even ask p-modal
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behaviour of functions f : (u 1 x : A) — B x? Different authors
have answered this question differently.

Example 1.4 (Shape-irrelevance). Example 1.2 introduced the func-
tion nil which takes an irrelevant size bound n. Pfenning [30] and
Reed [32] do not support this function: they require the codomain
B := An.((irr 1 0 < n) — List, X) of the irrelevant function
nil X : (irr 1 n : N) — B n to be also an irrelevant function.
However, List, X cannot be irrelevant in n; otherwise, list types
of different size bound would be judgementally equal, allowing us
to convert lists between types of different bounds, rendering the
bounds meaningless.

Mishra-Linger and Sheard [24] and Barras and Bernardo [7]
do not impose any restrictions on the behaviour of B, however
Abel and Scherer [3, example 2.8] show that this is problematic in
the presence of type-aware computation (such as n-expansion for
record types or the unit type): if n-expansion of f a is triggered by
its type B a, which in turn depends on a, then computation may
depend on a even if f uses its argument only in type annotations.
Hence, a cannot be erased from f a at type-checking time.

Abel introduced the idea that the argument x may appear in
B x but should be irrelevant to the shape of B x, e.g. x does not
get to decide whether or not B x is a record type, hence it cannot
trigger n-expansion of records. Shape-irrelevance is currently
only formally understood in the context of sized types [4] (i.e. x
has to be a size index), but is available in general in the Agda
programming language.

The type List, X is shape-irrelevant in n: regardless of n, it is
always a type of lists with constructors nil and cons. Similarly,
(0 < n) is always a type of inequality proofs. Hence, B : (shi 1 n :
N) — U is shape9-irrelevant and qualifies as a codomain for nil X.

Example 1.5 (Continuity). The codomain of the if operator from
Example 1.1 w.r.t. the argument X, is the function B := AX.(Bool —
X — X — X) : U — U. This non-dependent function B cannot be
parametric, because it is a parametricity theorem that parametric
non-dependent functions are all constant (in System F, these have
type VX.T, where T does not depend on X). So we should not
require the codomain of a parametric function type to depend
parametrically on its argument.

However, it does not make sense to consider parametric functions
(par 1 X : U) — T(X) if T is defined using a typecase operator: it
is then unclear what theorems parametricity should entail. This
suggests that we need a modality in between parametricity and ad
hoc polymorphism; which we have called continuity [29].

Modalities interact Suppose we want to combine irrelevance,
shape-irrelevance, parametricity, continuity and ad hoc polymor-
phism in a single type system. This raises new questions: if f has
modality y, and g has modality v, then what is the best that can be
said about g o f — do we need a new modality or can we fall back
to one of the existing ones? What about functions whose behaviour
satisfies both y and v?

Example 1.6 (Composition of modal functions). We expect the
following terms of type Lists A, which are both annotated versions
of a:: (if b [] (a’ = as)), to be equal:
cons A4 7 _a (if (Listy A) b (nil A4 _) (cons A3 4 _a’ as)),
cons A57 _a(if (Lists A) b (nil A5 _) (cons A35 _a’ as)).

Indeed, by the parametricity theorem in Example 1.1, we can dis-
tribute the outer cons over the then- and else-clauses, after which
equality becomes clear.

As it stands, though, the terms differ not only in irrelevant ar-
guments to cons and nil, but also in the size-bound on List. This
size-bound is used shape-irrelevantly by List, and List, A is sub-
sequently used parametrically by if. This suggests that a shape-
irrelevant function, post-composed with a parametric one, should
yield an irrelevant function: par o shi = irr.

Pertinence of modalities for a given (co)domain In our previ-
ous work [29] we show that it is sound to allow dependent pattern
matching when constructing parametric functions (par 1 n: N) —
B n from the naturals. This raises the question whether there is any
point in distinguishing between parametric, continuous and ad hoc
functions when the domain is N. Meanwhile, others [6, 16, 34] have
shown that all continuous (non-ad-hoc) functions to a small type
are parametric, e.g. any continuous function (X : Up) - X — X
is automatically parametric. So it seems that certain modalities
become synonymous if the (co)domain is sufficiently small.

A unified framework The above exposition raises a number of
questions. We have mentioned five different modalities that all have
a clear use case; are these all we need or will there be more? What
modalities are synonymous under what circumstances? How do we
compute the modality of composed functions? How do we compute
the required modality for the codomain of a modal dependent
function type? How can we justify that equality checking ignores
irrelevant parts? How can we prove parametricity theorems for
parametric functions? Some of these questions have been answered
for specific modalities or under restricted circumstances [3, 4, 6—
8, 16, 18, 23-25, 29, 30, 32, 34], but to the best of our knowledge,
there are no conclusive answers in the literature in the presence of
all the aforementioned modalities. We provide a general theory of
modalities that deal with relations and equality, including the five
we mentioned, that answers all of the above questions.

The core idea is that we describe function behaviour by stating
how a function affects the degree of relatedness of objects that it
is applied to. In our previous work [29] we already classified func-
tions by how they act on related inputs, with parametric functions
sending them to equal outputs, continuous functions sending them
to related outputs, and ad hoc functions (which there we called
pointwise) sending them to potentially unrelated outputs.

Multiple relations Our current framework is based on the ob-
servation that ‘related’ is an insufficiently specific concept. For
example, in small types such as Bool, N and List, Bool, the only
truly interesting relation is equality. Equality has a heterogeneous
generalization which we call 0-relatedness (informally denoted —~),
e.g. a list of type Lists4 A is 0-related to a list of type Listg A if they
have equal length and contents. This is the most obvious notion of
0-relatedness (henceforth: 0-relation) between List4 A and Listg A
and also the one that our type system will consider by default.
There is no canonical 0-relation between the types N and Unit,
but every object N — Unit — U gives rise to a non-canonical 0-
relation R. Defining B as in Example 1.5, this gives rise to a 0-relation
B R (informal notation) between B N and B Unit, as in Reynolds’
original semantics of parametricity [33]. Regardless of the choice of
R, the object if N : BN will be 0-related to if Unit : B Unit (infor-
mally denoted if N ﬁg R if Unit), since both functions essentially



hoc = (0,0,...,0) m — n ad hoc polym.
strt = (0,0,1,...,n) n —  n+1 | structurality
con = (0,1,...,n) n — n continuity
par = (1,2,...,n) n — n-—1 | parametricity
shi = (0, 7T,...,T) m — n >0 | shape-irr.

irr = (T,T,...,T) m — n irrelevance
up = (0,...,mn) n>0 — n+1 | upw.cont
dn = (0,...,n-2,n) n>1 — n-1 | downw. cont.

Figure 1. Some important modalities

apply the same algorithm. It is a property of our type system that
the default 0-relation between a type A and itself, coincides with
equality, e.g.if a,b : A, then a ,\OA b means that a equals b.

Types themselves can also be 0-related, e.g. Lista43 A ,,(’)Uo
Lists A. However, this is not the only interesting relation that we
can consider on types. Consider the types Listz A and Listy A.
These types are not 0-related (equal), but there is a notion of
0-relatedness of their elements. We say that they are 1-related
(Lista A A‘luo Listy A). This is a proof-relevant property and the
proofsR : S A;u" T correspond up to isomorphism to relations
S — T — Uy and are precisely what gives meaning to (s : S) Aff
(t : T). So we can prove N ,\'1110 Unit in many ways. We can also
prove Listy A A;L(() List4 A in many ways, but there is one default
way to prove it, namely by giving the default 0-relation between
Listy A and Listg A. As such, the type-checker will acknowledge
without proof that Listy A ﬁ;u" List4 A, whereas it will not do so
for N ,\1110 Unit — this is analogous to the distinction between
propositional and judgemental equality. Note that 0-related types
are also 1-related: indeed, if S A((]L{O T, then both types are equal
and the equality relation on S is a 0-relation between them, proving
S ,\'luo T. In general, O-relatedness implies 1-relatedness in the
sense that proofs of the former map to proofs of the latter.

The notion of 1-relatedness extends to other large types. For
example, we can define a type of monoids Mon such that two
monoids M and N are 1-related (R : M ﬁ'l\""” N) if their underlying
types M and N are 1-related (R : M AI”O N) and their operations
(multiplication and neutral element) are 0-related according to R.

We can define a non-canonical 1-relation V between Grp and
Mon by saying that a group G is 1-related to a monoid M (denoted
G AY M) if the underlying monoid N of G is (N ,\gwon M). This
is expressed as V : Grp A;ul Mon, i.e. these types of algebras are
2-related as proven by giving the 1-relation V.

A modality p is now a function (i - 4 « i) mapping degrees of
relatedness of the codomain to degrees of relatedness of the domain.
It expresses what degree of relatedness x Ais_ uY is needed in order
for a y-modal function f : (11 S) — T to map x and y to i-related
objects f x ,\iT f y. The two most extreme modalities are now easy
to define: irrelevant functions produce maximally related outputs
even for unrelated inputs, so we set i - irr = T (where T-relatedness
is the trivial relation ‘true’) and ad hoc functions produce related
outputs only for equal inputs, so we set i - hoc = 0.

Contributions We present (§3) and have proven soundness (§5,
[27]) of a type system in which every dependency is annotated with
a modality (§2.2) that describes its relational behaviour in a fine-
grained way. The available modalities include parametricity [33],

irrelevance [3, 7, 24, 30, 32], shape-irrelevance [4], ad hoc polymor-
phism, and continuity in the sense of our previous work [29]; and
we explain each of these modalities as a certain action on relations
(§2.4). We answer the question which of the available modalities
are synonymous under what circumstances (§2.6) and make the
type system aware of this synonymity using the concept of depth
(§2.1). Depth also bridges the gap between viewing irrelevance as
a property of types (as in Coq) or functions (as in Agda) (§6). We
explain how the available modalities compose (§2.2), and give and
explain the relation between the modalities through which a term
and its type depend on the same variable (§2.3).

We support and justify type-checking time erasure of irrelevant
subterms — even when irrelevance occurs as a composite of other
modalities — using a fine-grained erasure system with a family
erasure functions (§3.2). Using internal parametricity operators
[8, 25, 29], we allow users to construct ‘cheap’ proof terms for ‘free’
theorems [36] (§3.3).

We give the first account of shape-irrelevance in which all func-
tion types, and not just those with the special domain Size, can be
annotated shape-irrelevant (§2.3). We support sized (co)-inductive
types and index them with shape-irrelevant natural numbers from
the inductive type N (§4). Moreover, we support shape-irrelevant
universe polymorphism (T-UN1, Fig. 3) and hence allow the erasure
of universe levels, like size bounds, when they are irrelevant. Some
of these features already experimentally supported by Agda.

We introduce a novel modality that we call structurality (§2.4).
It expresses how algebras depend on their structure and thus al-
lows the correct notion of parametric quantification over a type of
algebras. It also replaces the ad hoc (pointwise) modality that our
previous work [29] had to use in its internal parametricity opera-
tors, and unlike ad hoc polymorphism does not get in the way of
iterated parametricity. This means that we are first to present a type
system that combines fully iterable (i.e. self-applicable) internal
parametricity operators and the identity extension lemma.

Using a special dependent if-expression in which the conditional
is irrelevant, we can implement a notion of intersection and union
types as irrelevant quantification over the booleans (§4).

Overview In §2, we introduce the concept of depth of a type, de-
fine the collection of modalities that we will use, and the necessary
operations on them. In §3, we introduce the type system: we list
core typing rules, explain the erasure system and briefly discuss
the internal parametricity operators. In §4, we consider some ap-
plications: Church encoding and algebra, intersections and unions,
and sized types. In §5, we sketch the denotational model and the
semantics of erasure. In §6, we discuss related and future work.

2 Depths and Modalities

In this section, we define the collection of all available modalities,
and investigate what modality operations a dependent type system
requires and how we can compute them.

2.1 Types, Depth and Relations

An important prerequisite is the concept of depth of a type: a type
of depth n can be thought of as being equipped with n + 1 proof-
relevant relations, numbered 0 through n, plus the trivially satisfied
relation T. As in Reynolds’ original semantics of parametricity [33],
these relations arise from an intricate interplay between user-made



choices and the mechanics of the framework. Here, we give a con-
ceptual discussion and hide higher-dimensional (cubical) relational
structure; in §3.3 we sketch how the relations are exposed internally
using parametricity operators and in §5 we sketch the denotational
model. Conceptually, a depth n type I ,, Atype gives us, for every
assignment y of the variables in T, a set of values A[y]. Moreover,
for every i € {0,...,n}, we get a proof-relevant binary relation on
Aly] which we call the homogeneous i-relation and informally
denote as f-\f[)’]. These relations are reflexive, meaning that A[y]
comes equipped with functions that map values a : A[y] to reflex-
ivity proofs of a : a A;.“[Y] a (denoted with the same symbol). The
homogeneous 0-relation Ag‘[)’] is the strictest one and is always
the equality relation — this generalizes Reynolds’ identity extension
lemma. As i increases, A?[Y] becomes more liberal, meaning more
precisely that A[y] comes equipped with functions that map proofs
roox Af[”] y to proofs r : x A;‘[Y] y (denoted with the same

symbol) if j > i, such that all diagrams commute. Finally, f-\ﬂ[)’]
is always true and can always be proven in only one way. Thus,
we place an order relation 0 < ... < n < T on the degrees of
relatedness available in a type of depth n.

Example 2.1. The type I' Fo Bool type is a weakening of a closed
type and hence its meaning is independent of the assignment y. It
represents a 2-element set Bool equipped with a homogeneous 0-
relation A(?OO' that is equality. The type I +, List Atype yields, for
every assignment y, the set (List A)[y] of lists over A[y], equipped
with the homogeneous i-relation that relates as AgLiSt A1 s if as
and bs have equal length and are componentwise related by A?[Y].
In particular, if Agﬂﬂ is the equality relation, then so is A(()LiSt Alrl,
This exemplifies that the 0-relation is defined by recursion on the
type, while we prove inductively that it is the equality relation.

But there is more to the semantics of T +-,, Atype. For any two
assignments y, y’, any proof y* : y f\g y’ that they are i-related
(meaning that the assignments for each py-modal variable are (i - y)-
related) and any j > i, we obtain a heterogeneous j-relation
AJA[Y*] between elements of A[y] and A[y’]. These heterogeneous
relations need not be reflexive; indeed, they do not even relate
values from the same set. Moreover, the heterogeneous 0-relation
may be any proof-relevant relation and need not be the equality
relation. As in the homogeneous case, the heterogeneous relations
become more liberal as i increases, i.e. A[y*] comes with functions
that map proofs of a A;f\[y*] a’ to proofs of a ,\z\[y*] a ifk > j.

Example 2.2. The type T' ¢ Booltype is closed and has as its
heterogeneous relation AEOOI[Y*] simply the homogeneous rela-
tion ﬁgo"'. The type T F,, List Atype relates as —(Hist Al gg

heterogeneously if as : (List A)[y] and as” : (List A)[y’] have equal
length and are componentwise related by —~ y .

In the introduction, we pretended that the depth of a type would
be derivable from its universe level, e.g. that all small types would
have depth 0. However, in practice it will be useful to treat universe
level and depth as orthogonal properties of a type. Universes U
will be annotated with a level € to prevent impredicativity, and
a depth n which is the depth of the types they contain. We have
Uuy - ‘LI{C‘,Jrl if ¢ < ¢’. This double indexing is not unlike the way the
homotopy level is treated in HoT T [35] and allows us to consider
predicative depth-truncation (using Box, see Remark 2.8) and small
higher inductive types (as a future research direction).

Example 2.3. The universe I' kp11 U type, like Bool, is a closed
type. Its values are the closed types +-, T type of depth n and level
{. As is required by identity extension, ~ ¢ means equality. A
proof of homogeneous (i + 1)-relatedness A f\?ﬁ B wraps up ever
more liberal heterogeneous relations between A and B, numbered i
through n. Reflexivity of A?ﬁ is proven by using the homogeneous
relations as heterogeneous relations. A variable I +, X type will
only be well-typed if " provides a variable X : 71;’ for parametric
use, to which y will assign a value X[y] : ’LI? which contains
everything needed to interpret X[y] as a type. A proof y* : y AI; Y’
assigns to a parametric variable X a proof X[y*] : X[y] A;l_lpp';r
X[y’]. Since i - par = i + 1 (as we will find in §2.4), the object X[y*]
gives us exactly what we need: heterogeneous relations numbered
i through n. Internal parametricity operators (§3.3) give the user
control over what relations they put in X[y*].

A special case are types of depth —1: they are solely equipped
with the trivial relation —~, which then also takes the role of the
0-relation and therefore expresses equality. In other words, in a
—1-type, equality is trivially true, i.e. —1-types are proof-irrelevant
propositions. When dealing with —1-types, we will allow ourselves
to use 0 and T interchangeably, reducing the need for special cases.

2.2 Modalities

Let A be a type of depth m, and B x a type of depth n for each x : A.
Then the behaviour of a dependent function f : (1 A) — Bis
described by a modality p : m — n which gives us the minimal
degree of relatedness i - p that is required of x and y in order to
conclude f x ~; f y. Clearly, a stronger degree of relatedness
of x and y is required in order to conclude a stronger degree of
relatedness of f x and f y. Also clearly, T - p = T. Thus, we say:

Definition 2.4. A depth is an integer n > —1. A modality y :
m — n from depth m to depth n is a monotonically increasing
function g : {0<...<n} - {0<...<mMm<T} i iy,
which we also denote in vector notation as g = (0 y,...,n- u).
By convention, we write T -y = T.

Example 2.5. The precise signature of hoc and irr was already de-
rived in the introduction and can be found in Fig. 1. Notice how both
modalities exist for arbitrary domain and codomain, but coincide
when either has depth —1 (Fig. 2).

Consider a function f : (¢ 1 A) — B of modality g : m — nand
a function g : (v 1 B) — C of modality v : n — p. Then how do we
compute the modality v o y of g o f? Clearly, g (f x) ~; g (f y)
requires f x ~;., f y, which in turn requires x —~ y. Thus,
we havei-(vou)=(i-v)-p

Meanwhile, the identity function id : X — X has a modality con
for which i - con = i. We consider con the default modality (hence
we omit its annotation) and call it continuity (Fig. 1; in §2.4 we
argue that this is also the modality encountered in Example 1.5).
Notice how continuity coincides with ad hoc polymorphism on
depth 0 types like Bool or N (Fig. 2).

Finally, we define a partial order relation on modalities: we say
that p < v when all v-modal functions are also p-modal (the
direction of the ordering arises from viewing y and v as opera-
tions applied to a function’s domain). This means that y concludes
f x ~;i f yunder stronger assumptions than v does,i.e.i-pu <i-v
for all i. For example, an irrelevant function also satisfies every

(iv)p



other modality (irr is maximal), and all functions can be seen as ad
hoc polymorphic (hoc is minimal).

Example 2.6. If a function satisfies both modalities p and v, then
it satisfies their least upper bound y U v, for which i - (p U v) =
max {i-p,i-v}.

Proposition 2.7. Depths and modalities form a poset-enriched cat-
egory, i.e. a category whose Hom-sets are partially ordered and whose
composition operation is monotonically increasing. O

Remark 2.8. We can have a data type Box* A with a single y-modal
constructor box* : (u 1 A) — Box*A. Then box*x ~; box*y can
and can only be proven from x ~;., y, and functions (y 1 A) — B
can be thought of as continuous functions from domain Box*A.
This shows that we can think of modalities as operations that are
applied to the domain of a function type.

2.3 Modality of the Codomain

We come back to the question of what modality v is required of B in
order to consider p-modal functions f : (z 1 x : A) — B x. Assume
that A has depth m and B x always has depth n,ie. p: m — n.
Then B has type (v 1 A) — U, for some universe level {. As
mentioned in §2.1, in order to consider f x —~; f y, we need
(i + 1)-relatedness of their types, i.e. Bx —~;y1 B y. We know
that p asserts the former when x ~;.;, f y, so v should assert the
latter under the same circumstances, i.e. (i + 1) - v = i - yu. Equa-
lity of types B x —~¢ B y is only required when the arguments
x —~o y are equal, so we make the most liberal choice and set
0-v =0.Thenv = (0,0-p,...,n-pu) : m — n+1,ie. the
modality of a function’s codomain is obtained by inserting a 0 in
front of the modality of the function itself. Applying this reasoning
to the signature of irrelevance, we obtain the signature of shape-
irrelevance (Fig. 1), which was indeed conceived as the modality
of an irrelevant function’s codomain. This signature in turn shows
that we can ignore shape-irrelevant subterms when checking for
1-relatedness. We also find that ad hoc functions can have ad hoc
codomain.

2.4 Modalities Worthy of a Name

In this section, we take a closer look at the type signature and mean-
ing of the modalities mentioned in the introduction. Irrelevance
(§1), shape-irrelevance (§2.3) and ad hoc polymorphism (§1) have
already been treated.

Continuity In §2.2, we defined continuity con : n — n as the
modality of the identity function, thus obtaining its signature. Here,
we show that the continuous pair and function type formers are
continuous, confirming what we said in Example 1.5. We have
0-con = 0, and indeed if X Agl;l X' andY ﬁ((]u? Y’, we will have
XxY Aglf',l X'xY andX - Y Agl; X’ — Y’ as O-relatedness
means equality. Next, we show that the type formers respect the fact
that (i +1)-con =i + LIf X" : X ~H¢ X and Y* 1 ¥ ~Uey,
then we can prove X* x Y* : X x Y A;Li‘i X’ x Y’ by taking
PN L XIXY* o * AX* ’
(x,y).(;f,y) : (x",y’) to mean that x* : x ~7 x’ and
Yy AZY y’. Meanwhile, we would naively prove X* — Y* :
X—>Y Aﬂli" X" > Y'by takingaproof]f* : f A?{*-)Y* f’ to
be a function that maps proofs x* : x AIX x’ to proofs f* x* :

fx /-\IY* f’ x’. However, with this definition, the relations for
X* — Y* do not become more liberal as i increases. Thus, we

require that for all j > i, the proof f* maps proofs x* : x ﬁ;(* x’

*

to proofs f* x* : f x A}.’* f’ x’ in a coherent way.

Parametricity We want to continue Example 1.1 and investi-
gate how if X depends on X. However, in order to derive the
general signature of parametricity, we need to consider types X
of arbitrary depth. Because we have not yet explained how to pro-
mote Bool to depths greater than zero, we will instead consider
tX = AxAx'x: TX =X — X — X, which corresponds to
the operation ‘if true’ on X. Under what circumstances can we
conclude that t X Al.TR t Y? Remember that this means that for
all j > i, we have t X x x’ Af t Y y y’ whenever x Af y and

x’ ﬁf y’. But that statement is trivially true (as t X x x” = x
and t Y y y’ = y) provided that it can be stated, i.e. provided that
we can consider i-relatedness of elements of X and Y. So we need
R:X —~j+1 Y, and conclude that i - par = i + 1 (Fig. 1). Inserting
a 0 in front of the signature as per §2.3, we see that parametric
functions indeed require a continuous codomain as was claimed in
Example 1.5. Observe also that par o shi = irr, as was conjectured
in Example 1.6.

Structurality Where parametricity expresses how types can be
used at the term level, the structural modality (str, Fig. 1) expresses
how terms can be used at the type level. For example, the codomain
B x of a continuous function type (con | x : A) — B x depends
structurally on x. In particular, structurality expresses how algebras
depend on their structure. Suppose we want to define a type Mon of
(lawless) monoids M, i.e. types M equipped with a nullary operation
ey : M and a binary operation 31 : TM =M —- M — M.
Monoids M and N should be 0-related, i.e. equal, when all parts are
equal,ie. M f\gl? N, epm AOM en and g A({M # . Meanwhile,
a sensible notion of 1-relatedness R : M —~1 N would be that the
underlying sets are 1-related (R : M —~; N) and that their structure
is 0-related according to R. This shows that monoids depend on
their structure with modality str = (0,0) : 0 — 1, so we can define

Mon = (X : ‘LI?) X Box®™ (X x (X = X — X)). (5)

Notably, structurality is the sole modality that is right inverse
to parametricity: par o str = con. This means that we can uncurry
functions that take both parametric and continuous arguments. For
example, the type of canonical elements that can be constructed in
the same way in any monoid is

(par 1| (X, box*™ (e, %)) : Mon) — X (6)
which can be curried to
(par 1 X : U > X > (X 5> X > X) > X. (7)

This is the Church encoding of the type of binary tree shapes, which
(up to predicativity issues) is the initial lawless monoid.

2.5 Left Division and Contramodalities

Consider modalities ¢ : m — nand v : n — p and functions
f:(u1 A > Bandg: (v 1 B) > C and suppose we want to
type-check A(p 1 x : A).g (f x) : (p 1 A) — C. Mathematically,
it is clear that this should type-check if and only if p < v o p.
However, the type-checker will go about this differently. First of
all, it will put (p 1 x : A) into the context. Then it observes that g
needs an argument of type B with modality v, so it will type-check
v\pix:A¥F fx: B, where v\ pis some modality computed from
v and p. Type-checking now succeeds whenever v \ p < y, so this



irr, shi, hoc = (T,...,T) -1 - n

irr, hoc = () m — -1

hoc, dn o str, con, paroup = (0) 0 — 0
irr, dn o shi = (T) 0 — 0

hoc = {0) 1 — 0

dn? o str, dn o con, par = (1) 1 = 0
dn o shi, irr = (T) 1 - 0

hoc, str, con o up, paroup’ = (0, 0) 0 - 1
shi = (0, T) 0o - 1

irr = (T, T) 0o - 1

hoc = (0,0) 1 — 1

dn o str, con = (0,1) 1 - 1

shi = (0, T) 1 - 1

par o up = (L1) 1 - 1

shi LI (par o up) = (1, T) 1 — 1

irr = (T,T) 1 — 1

Figure 2. All modalities p : m — n withm,n < 1.

should be equivalent to the condition p < v o y mentioned above.
This means that the operation v \ L : (m — p) — (m — n) is left
adjoint to vo wu : (m — n) — (m — p), i.e. they form a Galois
connection. It turns out that left division by v can be computed as
postcomposition with a left adjoint contramodality k 4 v:

Definition 2.9. A contramodality « : p — n is a monotonically
increasing functionk : {0 < ... <n} -5 {L <0< ... <p}:i>
i - k. Composition with a modality p : m — p yields another
modality x o p: m — ngivenby i- (ko p) = (i- k) - p, where by
convention L - p = 0.

Proposition 2.10. For every modality v : n — p, there is a con-
tramodality k : p — n so thatk o i : (m — p) — (m — n) is left
adjoint tovo L1 : (m — n) — (m — p). We writek 4 v and can
compute v \ p as k o p. Adjoint pairs k 4 v are characterized by the
fact that for alli,j (not L or T), we havei < j-k & i-v < j. O

Example 2.11. Parametricity is both a modality and a contramodal-
ity, and we have par 4 str. Hence, if we want to define a monoid
(T, box® (e, +)) with a variable (i1 1 x : A) in the context, then e and
# are type-checked with (par o p 1 x : A) in the context.

Example 2.12. The left adjoint to parametricity is (L,0,...,n).
Hence, par \ j has the signature of y with a 0 inserted in front: it is
the modality of the codomain of a y-modal function. To see where
this comes from, consider the type ascription operator (polymorphic
identity function) _ > _: (par 1 X : U}) - X — X. When we
check the term A(y 1 x : A).(B x 3 f x), the type ascription B x is a
parametric argument and will be checked against (par \ 1 x : A).

Example 2.13. The left adjoint to irrelevanceis (L, ..., L). Hence,
irr \ p = hoc for all p.

2.6 Depth as information

The concepts treated so far will not let us form Bool x U, because
Bool has depth 0 and (ng has depth 1. We first need to increase
the depth of Bool; this can be done by defining —~ as a copy of
~o, which is represented syntactically by the type Box"P Bool,
where up duplicates the weakest relation (Fig. 1). Then we can form
(Box"P Bool) x ‘ng. In our denotational model, up is interpreted as
a fully faithful functor, which shows that we can really see it as an
embedding, i.e. that we can see depth n types as a special case of
depth n + 1 types.

In the introduction, we raised the question whether there is any
difference between parametric, continuous and ad hoc functions
from N. In our previous work [29] we have used pattern match-
ing (intuitively an ad hoc feature) to define a parametric identity
function (par 1 N) — N on the naturals. However, currently we
cannot consider parametric functions N — N as par decreases the
depth, but we can consider (par | Box"P N) — N or equivalently
(par o up 1 N) — N. So we can use precomposition with up to
decrease the depth of a modality’s domain, to make it match the
function type of interest (Fig. 2). In this particular case, we find that
paroup = (1) 0 (0,0) = (0) = con = hoc : 0 — 0. So indeed we
need not distinguish between these modalities at depth 0.

We also mentioned that others [6, 16, 34] have shown that any
continuous function to a small (depth 0) type — e.g. of type (X :
712) — X — X — is parametric. However, we cannot consider
continuous functions of this type, as continuity preserves the depth
and (Ll? has depth 1. But we can consider (X : ‘ng) — Box"P(X —
X). In general, a function (¢ 1 x : A) — Box"PB[x] is essentially the
same as a function (up\ 1 x : A) — B[x], because if we type-check
Ax.box"P b[x], then we end up checking up\p 1 x : A+, b[x] : B[x].
Proposition 2.10 entails that the contramodality dn 4 up is itself
a modality which forgets the second weakest relation (Fig. 1), so
up\ t = dnoy and we can use postcomposition with dn to decrease
the depth of a modality’s codomain, to make it match the function
type of interest. In this case, we find that dn o con = (1) 0 (0,1) =
(1) = par : 1 — 0, i.e. parametricity and continuity coincide.

Repeated application of Box"P allows us to view all types as
being equipped with arbitrarily many relations, and to think of
finite depths as information about these relations: a type of depth
n is a type of depth w for which all relations —~; are equal for i > n.
A modality p : m — n can then be thought of as an equivalence
class of modalities @ —  that are synonymous when used to
describe the behaviour of a function with domain of depth m and
codomain of depth n. Parametricity is then always the equivalence
class of (1,2,3,...) : ©« = w. In Fig. 2, we give an exhaustive list
of all modalities of depth at most 1. We can see e.g. that ad hoc
polymorphism, structurality, continuity and parametricity coincide
for functions between depth 0 types (0 — 0).

There are two good reasons to allow only types of finite depth.
First, the depth gives us valuable information about function be-

haviour, allowing us to consider only %
ities m — n instead of infinitely many modalities 0 — w (we
leave the combinatorics as an exercise to the reader). Secondly,
Proposition 2.10 breaks when considering depth o, for example it
is not clear what hoc \ con : © — w should be. For this reason, our

denotational model also only considers types of finite depth.

different modal-

3 The Type System

In this section, we present the type system a bit more formally. The
core typing rules — which are essentially the typing rules of MLTT,
annotated with modalities — are listed in Fig. 3 and explained in
§3.1. We omit congruence and equivalence rules for judgemental
equality. For space reasons, we also omit inductive types, including
the identity type. A notion of judgemental relatedness is formalized
using erasure functions in §3.2. In §3.3 we briefly discuss proposi-
tional relatedness and internal parametricity.
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T+p indy(z.C, x.y.c, t): C[t/z]  where

ind}(z.C, x.y.c, (u1 a, b)) = cla/x, b/y]

Figure 3. Core typing rules

3.1 Annotating Martin-Lof Type Theory

Judgements The core type system makes use of the following
judgement forms:

I'+, Ctx T is a context of depth n,
I+, Ttype T is a type of depth n in context T,
Trpt:T t is a term of type T of depth n,
Tty T=T type TandT’ arejudgementally equal types,
Trpt=t':T t and t’ are judgementally equal terms.

The latter 4 judgement forms presuppose other judgements of the
same depth, e.g. T +, t : T can only be considered if T -, T type,
which in turn presupposes I' +, Ctx.

Contexts and variables c-Em: The empty context can be formed
at any depth. c-EXT: A context of depth n can be extended with a
variable x of a type T of depth m, provided that we make it available
with a well-typed modality p : m — n. The type T must exist in
context p \ T, so that we can substitute x with p \ T +, ¢ : T later
on. T-VAR: In order to use a variable (1 1 x : T) € T, we require that
the identity function satisfies modality y, i.e. u < con.

Types and universes T-UNTI: For each depth n and each internal
natural number £, we have a universe ‘L[l," of level s ¢ (the internal
successor of {) and depth n+1. It lives in the universe (L{S";l of depth
n + 1 types, which in turn has depth n + 2. Hence, the judgement
has depth n + 2. Note that the shape-irrelevant level polymorphism
makes universes of different level but equal depth 1-related, as
1-shi = T. TY: An element of the universe can be used as a type.
This is the only introduction rule for the type judgement. By making
it parametric, we ensure that the judgement par | X : U/, con | x :
X + x : X can use X as a type, which corresponds to our expectation
that the polymorphic identity function is parametric. T-cumuL: We
can coerce types to higher-level universes. T-coNv: Terms can be
converted between equal types.

Functions and pairs T-P1, T-S16GMA: We have dependent func-
tion and dependent pair types for every modality p. A p-modal
dependent function depends p-modally on its argument (T-LAM,
T-APP), whereas a y-modal dependent pair depends p-modally on
its first component, and continuously on the second (T-PAIR). We
use the notations f(u)a and f a interchangeably, and denote nested
pairs as a single tuple. The required modality of B in x was already
established in §2.3. To get a feel for the modalities for the function

and pair types in A and B, we can use the parametric type ascription
operator from Example 2.12 and type-check

Mp1x:A).(Bx > f{u)(A>x)),

to learn that these terms depend on A with modality pgopar and on B
parametrically. Their type lives behind the colon, which according
to TY is itself a parametric position, so it should depend on A with
modality par \ (¢ o par) and on B with modality par \ par = con.
T-INDPAIR: We can use a pi-modal pair v-modally by using its first
component (v o y)-modally and its second component v-modally.
We will sometimes abbreviate uses of T-INDPAIR by binding a pair
pattern instead of a variable. If the contramodality k 4 y is a modal-
ity (which is the case precisely when 0 - = 0), then we can create
a k-modal first projection, since k o i < con. This allows us to form
the type of the second projection and hence the second projection
itself. In this case, we may instead take the projections as primitives,
add a definitional n-rule for them, and implement ind}; in terms of
them. Typing rules for Box* A are obtained by removing the second
component, i.e. Box*A = (u 1 A) X Unit. Again, a k-modal unbox
function exists if 0 - y = 0.

(u1A3a,Ba>b) (3)

Example 3.1. A contrived example is perhaps most illuminating.
Let p = (0,3,7, T) : 7 — 3. The function type (1 x : A) - Bx
depends on A with modality g = par \ (u o par) = (0,1,4,8,T) :
8 — 4 and continuously on B. Meanwhile, B x depends on x with
modality par \ p = (0,0,3,7,T) : 7 — 4.

3.2 Erasure

Up to this point, the only inference rules that produce equality
judgements, are the - and n-laws in Fig. 3 and the (omitted) con-
gruence and equivalence rules. However, fn-equality is an unsat-
isfying notion of equality in the current setting: we want to also
identify terms that are equal up to their irrelevant subterms. A
naive solution is to modify the congruence rules corresponding to
inference rules with irrelevant premises. There, we would simply
not require equality of the irrelevant subterms. For example, an
equality rule for T-app would say that f{u)a = f'(u)a’ if f = f’
and a = a’; except when pi = irr, then we would not require a = a’.
This could be formulated in terms of an erasure function ] for
which | f(irr)a] := | f](irr)e, and | f{u)a] := | f]{u)la] for all
other p (where = denotes syntactic equality of de Bruijn terms). We
could then say that t = t” whenever |t] = |t’|. However, in Exam-
ple 1.6, we saw irrelevance arise as the composite irr = par o shi.



Without special treatment of par and shi, the irrelevant subterms
of Example 1.6 will be checked for equality.

For this reason, we need an i-erasure function |]; for each
i € {0,...,n, T}, such that [¢]; is the term ¢, considered up to
syntactically obvious i-relatedness. Then we can set | f(u)a]; :=
Lfli{wLal;.,- Ifwethenapply [ 1] to two terms to find out if they
are equal, we will end up applying ||+ to irrelevant subterms,
which we define to always yield e as all terms are T-related. The
rule T-EQ-ERASE then asserts that judgemental equality, and hence
also the conversion rule T-conv, only consider terms up to their
irrelevant subterms.

Note that we sometimes need to compare erased terms from
different types and contexts. For example, when we want to check
that (p 1 a,b) = (u1a’,b’) : (u1 x : A) X B[x], we will check that
lalo., = La’lo., and [b]q = [b],. Here, b : B[a] and b’ : B[a']
live in different types; however since a]y., = La’]o. > the modality
of B guarantees that | B[a]]; = | B[a’]];, i.e. the types are 1-related
so that 0-relatedness of the terms is meaningful. When erasing
A-expressions, we may even end up comparing erased function
bodies with variables of different type in the context; again, the
appropriate erasures of the types will match.

For this reason, we define the erasure functions not just on terms,
but also on contexts and judgements. They are defined as follows:
for terms, we simply set ||+ := e, while | Lu]; is pushed through
to p-modal subterms as | u];.,. For variables, we define |x]; := x
if i < T. For contexts, we define [()]; := () and [T, p1x:A]; :=
(LT1 p1 Lxlip o LAl par)- When applying [ 1] ; to a judgement,
we apply | u]; to the context and any terms (before the colon) on
the right, and [ L1 ]; pa, to any types (behind the colon or in the type
judgement) on the right. We remark that, if i < j, then i-relatedness
implies j-relatedness and hence | ] factors over [1];. Note that
there is no type theory of erased objects; instead erased judgements
should be seen as equivalence classes of non-erased judgements.
The idea of dealing with judgemental i-relatedness as a relation on
derivable judgements is due to Andrea Vezzosi; when this relation
turned out to be an equivalence relation, we chose to present the
partition as an erasure function instead.

Example 3.2. The list terms in Example 1.6 both 0-erase to

cons A e e e g (if (Liste A) b (nil A e e)(cons Aeeea as)). (9)
Example 3.3. Continuing Example 1.2, we have:

lirr 1 n: N, x : N, xs : List, NFocons N n (s n) _x xs : Lists , NJ,

=(irr1e: e x:N, xs: Liste N+gconsN e e e x xs : Liste N).

3.3 Propositional Relatedness and Internal Parametricity

Just as modality-aware equality checking relies on an erasure func-
tion for every i because it needs to detect i-relatedness of subterms,
modality-aware and in particular parametricity-aware equality
proving relies on types encoding the proposition ‘ag and a; are
i-related’, and of course operators for constructing and using ele-
ments of those types. For space reasons, we only give a high-level
discussion.

Like earlier accounts of internal parametricity [8, 25, 29] and
univalence [10], we make use of a special interval pseudo-type I
containing constants 0 and 1 that are related. In our setting, I has
depth 1 and the constants 0 and 1 are seen as 1-related, but not
0O-related. Write i : 1 — n for the modality such that j - i equals 1
if j > i and 0 otherwise, e.g. 2 = (0,0,1,...,1) : 1 = n+ 2 and

T =hoc: 1 — n.One can show that p \ i = i - p. Then a function
b:({1a:I) > Ba(called an i-edge) can serve as a proof that
b0 ~; b1 and the codomain B : (par \i = i+111) — U}
gives us the proof of B 0 A:Lﬁ B 1 according to which this is the
case. Triviality of the T-relation is internalized by allowing the
user to create ad hoc functions from I by giving values only for 0
and 1. These simple observations allow us to reason about relations
internally.

Example 3.4. The constant edge A_.a : (i 1 ) — A shows that
every object a : A is i-related to itself. If j > i, thenz < i, so that
i-edges a : (i1« : I) > A @ weaken to j-edges /1(1 ra:Dala :
jra:)—>Aa.

Example 3.5 (Pairs). Consider the i-edge of pairs A(i 1 & : I).(u 1
aa,ba):(i1a:1) - (1 x:A)XB a x. Using the typing rules
for pair types, we see that this is well-typed if
a:(i-pra:l)>Aa A:r(i-p+ 11D > UP
b:(ira:l)>Ba(aa) B:(i+11I)—(par\pi1Aa)—> Uy

where we assume T + 1 = T. This is exactly as one would expect
from a relational perspective.

Example 3.6 (Functions). Consider an i-edge of functions f : (i |
a:I)—> (pi1x:Aa) —» Bax.Forall j > i, it maps (j - u)-edges
a:(-pra:I)—> Aatoj-edgesA( 1 a : I).f @ (a ). However, we
caantprove that a term such as f can be constructed by giving f 0,
f 1 and a sensible actions on edges. A generalization of Moulin’s
®-operator [25] would prove this, but is not covered by our model.

Example 3.7 (Types). An (i+1)-edge A: (i+11]) — U} allows
us to consider, for all j > i, the j-edges (j 1 @ : I) —» A a. However,
we cannot construct a term such as A by giving A 0, A 1 and notions
of j-edges for j > i. A generalization of Moulin’s ¥-operator [25]
would allow this, but is again not covered by our model.

As soundness of Moulin’s axioms is not covered by our model,
we resort to the less expressive alternative given by the Glue and
Weld types in our previous work [29]. Among other things, Glue
allows us to compose functions A” — Aand B’ — Bwith an (i +1)-
edge A f\;u; B, yielding an (i + 1)-edge A’ ,\;LI? B’. Weld allows
composition with functions in reverse direction.!

Identity extension Finally, as in our previous work [29], we de-
cree by axiom that all non-dependent 0-edges (0 1 I) — B are in fact
constant, so that homogeneous propositional 0-relatedness becomes
equivalent to propositional equality. We leave the computational
content of this axiom for future work, so for now applications of
the J-rule to this axiom are stuck terms.

4 Applications

We briefly discuss three applications of our type system: Church
encoding and algebra, intersection and union types, and sized types.

Church encoding and algebra Let F be a level-preserving func-
tor on types of depth n, i.e. an operator F : U} — U} for every
level ¢ (irrelevant in €), which also has an action on functions and
which satisfies the functor laws judgementally. The inductive type

! The LICS proceeding here says ‘i-edge’, incorrectly including 0-edges.



with a single continuous constructor FX — X can be mimicked by
the Church encoding

MuFp := (par 1 X : Up) — (FX — X) — X. (10)

As in §2.4, this can be uncurried to
(par 1 (X, box*(mkX)) : Alg,F) — X (11)
where Alg,F := (X : U}') x Box"(FX — X) (12)

is the type of F-algebras. This reveals the meaning of MuFy: to
give an element of the Church encoding, is to give a canonical
(parametric) element that exists in every F-algebra of level ¢. This
clean algebraic formulation of Church encoding is possible thanks
to the novel structural modality.

One can easily show that MuFy is itself an F-algebra; call its
structure mkMuF,. Write fold, X mkX g := g X mkX. Define
| : MuF; ¢y — MuF; by restricting the first argument to a smaller
universe. Disregarding predicativity issues, we can see | as the
identity, in which case MuF really is the initial F-algebra:

Theorem 4.1 (Initiality). Assume we have (par | B : (Lls”f), an
algebra structure (con | mkB : FB — B) and an algebra morphism
(con | f : MuF; — B) for which f o mkMuF, = mkB o Ff. Then
we can prove f o | =(mur, ,—B) folds ¢ B mkB propositionally.

We also have the dual theorem for co-algebras. These results are
proven as in our previous work [29]. An important difference is that
previously the internal parametricity operators had a pointwise
dependency, corresponding in the current system to hoc: 1 — 1.
Since this modality has no left inverse, it could not be cancelled,
yielding a proof of the initiality theorem with an ad hoc dependency
on mkB and f. In the current setting, we can instead use the finer
structural modality, which is left inverted by parametricity, yielding
a proof continuous in mkB and f, to which we can apply further
parametricity arguments.

Theorem 4.2. We have a continuous dependent eliminator

indmur : (par 1 C : (str 1 MuFe) — UY,) —
((p* . F (g : MuF) x C q)) — C (mkMuF(Ffst p*))) -
(q: MuFs¢) —» C (1 9).

Observe how the eliminated g comes from a higher-level type
than the one used in the elimination clause. A somewhat dual
result is that we can prove, up to predicativity issues, that bisimilar
Church-encoded streams are equal.

Sized types Let F be a functor as before. Write 3 and V for irrele-
vant quantification over the naturals. A sized F-algebra is defined
to be a type family T : (shi | o : N) — U} equipped with an
operation mkT : Vo.F(3(r < 0).T ) — T 0. We define
M\quO':E(paI‘IXZ(ShiI(A)ZN)—)(L{;})—)
V. F(A(r < w).X 1) > X 0) > Xo. (13)
Using proof techniques by Vezzosi [29], one can show that under
reasonable conditions (e.g. F is a finitely branching container func-
tor) and ignoring predicativity issues, we have Jo.MuF o = MuF.
Dually, if F is any container functor, then up to predicativity issues
we have Vo.NuF ¢ = NuF. The main novelty here with respect to
our previous work [29] is that we now use (shape-)irrelevant quan-
tification over N instead of continuous/parametric quantification
over a special Size type; and that many propositional equalities

become definitional thanks to the erasure system. In practice, we
will instead add size-indexed inductive types to our type system
as primitives. In other words, our account of shape-irrelevance
supports the applications that Abel et al. [4] introduced it for.

Intersection and Union Types A line of work for which we can
cite [12, 22] treats intersection (S N T) and union (S U T) types in a
manner similar to the product (S X T) and the disjoint union (S & T)
respectively, in order to achieve type inference in the presence of in-
tersection and union types. Concretely, the type system is equipped
with an erasure function which erases annotations required only
for type inference, and A N B is inhabited by pairs (s, ¢) for which
s: Sand t : T have equal erasure; the pair then also erases to the
same expression. Similarly, in S U T we find terms (inl s) and (inr t)
which are indistinguishable when s : S and ¢ : T have equal erasure;
the tags inl and inr are erased.

Remarkably, we can mimick this approach using irrelevant quan-
tification over the booleans, if we make the sound assumption that
we can create a function Ab.(if v 1 b then crye else cpyse) = (v 1 b -
Bool) — C b by giving terms cirye : C true and cgyse : C false such
that | ctruel; = |Cfalse]; Whenever i - v = T. Define:

SNT := (irr1b:Bool) — (if shi b then S else T),
(s,t) = A(irr 1 b : Bool).(if irr 1 b then s else t),
fstp = p(irr)true

sndp = p(irr)false

SUT = (irr1b:Bool) x (if shii b then Selse T),
inls = (irr 1 true, s),

inrt = (irr 1 false, t).

Clearly then, N and U do not satisfy any definitional commutativity,
associativity, distributivity or idempotency laws. Moreover, types
need to have equal 1-erasure before we can take their intersection
or union, e.g. we cannot consider NUBool as the shape-irrelevant if-
expression that implements U will reject these operands for having
different 1-erasure, but we can take the union of Listy A — Listg A
and Listg A — Lists A. We see this as a feature: it would be equally
sensible to expect NUBool = Nw Bool as it is to expect NU Bool =
Unit. We prefer to err on the safe side and reject the type altogether.
When we consider terms, we see that if [s], = [t],, then inls =
inr t as both terms 0-erase to (irr 1 o, | s],) via their implementation.
Unfortunately |[SUT|; # |S]; and [inl s]q # |s]o, i.e. comparison
between unions and non-unions is not presently supported as it is
more difficult to prove it sound. Dually, we obtain similar results.

5 Soundness: The Presheaf Model

We give here a high-level discussion of the denotational model, and
refer to our technical report [27] for details.

We define a depth n reflexive graph I’ to be a diagram in Set
of the form

S
[ —r—=>T) —wi>11 —wi> ... -w =T, (14)
t

which need not be commutative but should satisfy sow”__o...o0

10
w(l) or = id and similar for t. For n = 0, this is just a reflexive graph.
A depth -1 reflexive graph T’ is defined to be just any set ', . An
element of T'; is called a point, an element of I; an i-edge. A depth
n reflexive graph can be seen as a (contravariant) presheaf over

a category RG, with n + 2 objects L,0,1,...,n. By considering



presheaves over a somewhat bigger category that also contains
monoidal products such as 0 ® 2 ® 1 with L as the monoidal unit,
we can define various notions of depth n cubical sets. The reasons
for using cubical sets rather than graphs are all technical; for the
sake of the exposition here one may think of cubical sets as graphs.

Every presheaf category constitutes a model of dependent type
theory with basic type formers and universes [13, 14]. We model
judgements of depth n in the category of depth n cubical sets. Modal-
ities and contramodalities are interpreted as functors that preserve
the structural rules of type theory. Their definition is conceptually
straightforward: for a (contra)modality p, we set (uI'), =T, and
(ul); :=Tj.y where It :=T XT}.

We show that the entire type system can be modelled using only
semantic types that are discrete. A graph Ais discreteifr: A; — Ay
(or, in the depth —1 case (id, id) : Ay — A XA, )isanisomorphism.
This is generalized to ‘dependent graphs’ using a lifting property.

Erasure Unfortunately, we do not expect that the erasure func-
tions can be given meaning directly in the current model. For this
reason, we take an intermediate step where we synthesize a proof
of a ~; b whenever |a|; = |b]; in a slightly extended but erasure-
free type system. This system can then be properly interpreted in
the model.

6 Related and Future Work

Relation to some other type systems MLTT without universe
cumulativity embeds into our system if we interpret Uy as 'L{g
and annotate every dependency with continuity (adjusted using up
and dn as in §2.6). Functions to small types are then automatically
parametric, as several authors showed [6, 16, 34]. The core type
system of ParamDTT [29] with cumulativity but without function
extensionality, embeds if we interpret Uy as Box (1) 11},, ie. all
types have depth 1 and the universe is forced to have depth 1 as
0,1) : 2 — 1 forgets the 2-relation. Moreover, the judgement T' +
T type is mapped to hoc\T +; T type, which entails u\T +; T type
for every u : 1 — 1. The pointwise, continuous and parametric
modalities map to hoc = (0, 0), con = (0, 1), upopar = (1,1) : 1 —
1 respectively. Predicative System Fw (see [17] for predicative
System F) embeds into our system if we give types depth 0 and kinds
depth 1, interpreting *, as ’LI?, and annotating every dependency
with con = hoc : 0 - 0,con: 1 — lordn = par : 1 — 0.
Church-style versions of the implicit calculus of constructions
[7, 23, 24] do not embed into our system if we want to map the
implicit modality to irrelevance, as the type may not be shape-
irrelevant, but we may map implicitness to parametricity if we
disable the special conversion rule which allows type-checking
time erasure. Pfenning’s notion of irrelevance [30] does map to
irrelevance in our system, but we do not support intensionality.

Modalities and modes Modalities describing function behaviour
in type theory have been applied to: modal logic (eponymously)
[31], variance of functors [1, 2, 18], intensionality vs. extensional-
ity [30], irrelevance [3, 4, 7, 23, 24, 30, 32], shape-irrelevance [4],
parametricity [29], globality [19] and more.

The treatment in terms of order, composition and left division has
been developed by Pfenning [30] and Abel [1, 2] and is the basis for
the Agda implementation of (shape)-irrelevance. A generalization
to a multi-mode system, where every type gets assigned a mode (in

our case, a depth) which defines the set of available modalities for
functions from/to that type, is described by Licata et al. [20, 21].

Irrelevance and erasure We are aware of two approaches to
type-checking time erasure of irrelevant data. One is to view ir-
relevance as a property of dependencies, i.e. as a modality; see
the previous paragraphs for related work and Example 1.4 for a
more detailed comparison. The other is to view irrelevance as a
property of types, leading to a universe of propositions (as in Coq)
whose proofs may be erased (which Coq does not currently do);
this corresponds to our types of depth —1. Note that there is no
analogue of shape-irrelevance for the latter approach. Compile-time
erasure, which uses different techniques to achieve different goals
(efficiency vs. ease of proving) is beyond the scope of this section.

Parametricity in and of dependent type theory It is known
[6, 9, 16, 34] that all functions in dependent type theory (DTT)
preserve relatedness — in our terminology: that DTT is continuous.
Takeuti [34] and Atkey et al. [6] moreover prove the identity ex-
tension lemma for small types, a result that can be phrased in our
setting as: all continuous functions with small (depth 0) codomain
are parametric (see Fig. 2). Bernardy, Coquand, and Moulin [8, 25]
devise internal operators for building ‘cheap’ proofs of ‘free’ the-
orems [36]; however these operators only exploit continuity, not
parametricity. In our previous work [29] we used a parametricity
modality to allow for internal operators that do exploit parametric-
ity. Atkey et al. [6] prove their results in a reflexive graph model,
which has been enhanced by Bernardy, Coquand, and Moulin [8, 25]
to a cubical set model (cubical sets can be seen as iterated reflexive
graphs). We previously further enhanced the model by annotating
every edge with whether it witnesses 0-relatedness (a ‘path’) or
1-relatedness (a ‘bridge’) [29]; now instead we annotate every edge
with the degree of relatedness it witnesses.

Computation, and cubical homotopy type theory (HoTT) Our
type system is a sound proof environment, but not a good program-
ming language: when we apply the J-rule to the identity extension
axiom (§3.3), we get a stuck term. In order to achieve a canonicity
result, we likely need to use operators similar to the path compo-
sition operator from cubical HoTT [10], that allow us to compute
transport along equality proofs obtained from the identity exten-
sion axiom. From there, we believe it should be possible to merge
our system with cubical HoTT into a system for relational HoTT.

A Propositional Relatedness and Internal
Parametricity

Our treatment of internal parametricity is a generalization of the
one in our previous work [29] and is based on the Glue and Weld
type formers. A possible and more expressive alternative would
be to generalize the operators by Moulin [25], but so far we have
not been able to establish soundness of those operators in the
current setting. The additional typing rules (omitting congruence
rules) are given and explained in the remainder of this section. The
only novelty in this section is that we annotate face predicates
with a modality, and that we allow face predicates to constrain the
modality by which an interval variable is available. Also, we give a
more straightforward presentation of face unification than in our
previous work [29]. Otherwise everything comes directly from our
previous work [29] and/or from cubical type theory [10].



A.1 Additional judgement forms

We need the following additional judgement forms, which are ex-
plained in the following paragraphs:

Try7:1 7 is an interval term,
F'rio=r:1 o and 7 are judgementally equal,
I' vy, Pfpred P is a face predicate of depth n,
'ty P=Qfpred P and Q are judgementally equal,
Tbhpyr P F" P is in the universe of depth n face pred’s,

Tty P=Q:F" P and Q are judgementally equal.

A.2 The interval and identity extension

The first judgement form is akin to a term judgement I' +q ¢ : T
of depth 1, and in fact we model it precisely in the same way we
model term judgements. However, internally, we choose to give
it an exceptional treatment with the purpose of preserving the
following syntactic property:

Lemma A.1. IfT v 7 : 1, then t is either 0, 1 or a variable from T
with modality y < con. O

In other words, we want to avoid neutral interval terms. Then we
should not have functions with codomain I, and so I cannot be part
of a universe. Instead, we explicitly add new typing rules that allow:
context extension with interval variables (c-EXT-1), use of interval
variables (IT-VAR), use of the interval constants 0 and 1 (11-0, 1T-1),
the construction of function and pair types over the interval (T-P1-1,
T-SIGMA-I), A-abstraction and application (T-LAM-1, T-APP-I), pair
formation (T-PAIR-I) and elimination (T-INDPAIR-I) (though never
using projections). Similarly, we can allow types of the form Box* I;
the continuous box type Box I is semantically isomorphic to I and
can be used when we want to treat I as an ordinary type. For each of
these rules, we also add a congruence rule for judgemental equality.
We need not add a counterpart of T-EQ-ERASE, as Lemma A.1 implies
that | 7], = 7 for any interval term 7.

We allow ad hoc elimination of interval terms by providing
clauses for 0 and 1; this internalizes the fact that the T-relation is
trivially true (T-HOC-I).

In the current setting, Reynolds’ identity extension lemma [33]
translates to the statement that homogeneous 0-relatedness, despite
being given meaning by induction on the construction of the type, is
always the equality relation. We prove this in the model [27], while
internalizing it in the form of a non-computational axiom which
states that all non-dependent 0-edges are constant (T-DEGAX). We
called this the degeneracy axiom [29].

A.3 Face predicates

If we have n interval variables in the context, we may think of the
term on the right as ranging over an n-dimensional cube. If the
interval variable a is available with modality i = (0f,1**17i) : 1 —
n, then the edges of the cube in dimension « are i-edges. A calculus
of face predicates allows make assumptions about where we are
on this cube, and about the degree of relatedness that is required
in a certain dimension. Moreover, we can use those assumptions
definitionally. Face predicates can be thought of as propositions, i.e.
types that have at most one element. For that reason, and because
we make sure face predicates are decidable, we will never explicitly
write their proofs or hypotheses.

In our previous work [29], we stated:

Because propositions have no relational struc-
ture, we can ignore modalities for their ele-
ments.

The correctness of this statement depends on how one interprets
the word ‘propositions’. When one means ‘types of depth —1’, then
the statement is correct. In this case, propositional assumptions
should be annotated with a modality y : =1 — n, which is neces-
sarily irrelevance. However, when we classify subobjects of a depth
n context, then we get propositions of depth n whose relational
structure determines the relational structure of the subobject. The
modality on the propositional assumption then becomes impor-
tant. This is the semantics we need for face predicates, so we will
annotate every face assumption with a modality.?

Internally, depth n face predicates are classified by a universe "
which semantically is a type of depth n + 1. Syntactically, however,
we give it an exceptional treatment in order to make sure that
face assumptions can be ‘unified away’. Elements of " can be
turned into actual face predicates using the rule FPRED which is
parametric, analogously to TY. A subobject of T +, Ctx can thus
internally be represented as a term par \ T k41 P : F".

Formation We have falsehood and truth (FT-FALSE, FT-TRUE),
disjunction and conjunction (FT-OR, FT-AND), an equality predi-
cate (FT-EQ), modal boxing (FT-BOX, compare to T-SIGMA) and a
degree predicate 7 € I (FT-DEGREE) that will allow us to make
assumptions about modalities as is explained further. These predi-
cates are subject to a number of definitional equations, of which
FT-EQ-DEGREE is the most subtle: it says that (z € I) is true if 7 is
available with modality (0,1,1) : 1 — 2.

This is more understandable if we look at the modality of the
face predicate judgement. We can derive:

(L, 1)\Try7:1
par\T ko (r €1): F!
T +q (r €1)fpred

FT-DEGREE

FPRED (15)
where we used that (0, 1, 1) \(par\T') = (paro(0, 1, 1))\T = (1, 1)\T,
as is evident from the fact that left division of a context is defined
componentwise and from the fact that y \ Lo is left adjoint to po L.
This derivation shows that (r € I) is a valid face predicate if 7 : I
is available with modality (1, 1), i.e. (r € I) essentially denotes a
subobject of Box{L1) 1. Similarly, we can derive

Try7:1
par\T ko (r €)= T: F!
Tk (rel)=Tfpred

FT-EQ-DEGREE

FPRED  (16)

which shows that I — Box{:1) Tis at least part of the subobject (in
fact, semantically, the predicate denotes precisely that subobject).

Meanwhile, we can derive I’ Fog o = 7 fpredif we haveI +1 0,7 :
I, showing that the equality predicate denotes in fact a subobject
of Box I X Box I. The object denoted is of course the diagonal
Box I — Box I'x Box I. We will abbreviate Box* (¢ = 1) as o =, 7;
this corresponds to the diagonal Box* I — Box* I x Box* I.

%In our previous work [29], face predicates were modelled as depth 0 propositions
and always (secretly) annotated with modality (0, 0) : 0 — 1. Thanks to the current,
richer modality system, we can clearly state and understand the obscurities of our
previous model [26] and dismiss them as a mistake.
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Figure 4. Inference rules for the interval pseudo-type.

Unification Finally, contexts can be extended with face assump-
tions (c-F) which are then ‘unified’ before type-checking. Anything
can be derived under a false assumption (U-FALSE) — we assume
the existence of pre-syntax to avoid the derivation of utter non-
sense. True assumptions are ignored (U-TRUE). For a disjunction
that is available with a modality not mentioning T, we need to
cover both cases (U-0R). We do not give a rule for the unification of
disjunctions available with a modality such as irr that mentions top.
The reason for this is that this case does not occur in practice, and
that Box'™ (@ = 0 V & = 1) is semantically true even for variables
a, so that it does not behave as a disjunction at all. More precisely,
the modalities that semantically preserve disjunctions, are precisely
those that do not mention T. For a conjunction we get to use both
assumptions (U-AND). Boxed assumptions are unboxed (U-Box) —
compare this to T-INDPAIR. An equality predicate reduces to T or
L if both hands are equal terms or different constants; in that case,
unification proceeds by u-conv. For every other case, there is a
rule. In case we have two variables, these are unified and the uni-
fied variable is made available with the infimum of both modalities
(U-EQ-VAR-VAR). In case we have a variable and a constant, the
constant is substituted for the variable (e.g. U-EQ-VAR-0). Finally,
(r € I) reduces to T when 7 is a constant. When it is a variable «,
then a p-modal assumption (a € I) expresses that we are entitled
to use @ with modality p. Hence, type-checking proceeds with a
available with the greatest modality that is less than p and less than
its original modality.

A.4 Systems

Systems are the eliminator for proofs of disjunctions. Assuming
that P v Q is true, we can define a term by giving its value when

either P or Q is true, such taht the given values match when both are
true (T-sYS). In order to avoid having to repeat predicates, we will
denote (P?a|Q VR?(Q?b|R?c)) shorteras (P?a|Q?b|R?c).

A.5 The initial type extension (Weld)

Givenatype A, a face predicate P, atype T and a function f : A — T,
the latter two defined only on the subobject of T represented by P,
the Weld type former extends T and f to all of I'. It does so in an
initial way. If we allow ourselves to treat face predicates as types,
then we can understand the Weld type as a pushout:

(P xA) et

!

In fact, this is how it is constructed in the model. Note that (_ : P)xT
is a dependent pair type: indeed, T is not defined if P is not inhabited.
However, the Weld-type is not just any pushout. If P = T, then T
too is a pushout of the above diagram. The Weld-type is a specific
pushout that extends T.

Alternatively, the Weld-type can be understood as a quotient
inductive type (QIT) with constructors

weld(P? f): A — Weld{A — (P?T, )},
incl: (_:P) > T — Weld{A — (P?T, )},
coh: (_:P)—>(a:A) > weld(P?f)a=incl_(f a),
with the remarkable property that if P holds, then the QIT is

definitionally equal to T and weld (P? f) = f, incl _t = t and
coh _a = refl (f a).

(C:P)xT)

(17)

-
wad P 7) Weld{A — (P?T, f)}.
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Figure 5. Inference rules for face predicates and systems.
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Figure 6. Inference rules for the Weld and Glue types.



The type formation rule is given by T-WELD and the weld-
constructor by T-wEeLD. Initiality is expressed by the dependent
eliminator indy|q (T-INDWELD) — for simplicity we only allow
elimination with modalities v that do not mention T. We supple-
ment this with two equations expressing that Weld and weld extend
T and f, and two S-rules for the ‘two constructors of the QIT’. The
equality constructor of the QIT is treated as a definitional equality.

In comparison with our previous work [29], note that the Weld
type now depends structurally on the function f, rather than ad
hoc (pointwise). The weld constructor depends continuously on f,
rather than ad hoc. This allows for slightly more powerful para-
metricity theorems, and in particular allows iterated parametricity.

Example A.2. In Section 3.3, we stated that Weld allows us to
compose (i + 1)-edges in the universe with functions. Consider an
(i+1)-edge A: (i+1 1) — U} and functions fo : A0 — Ty and
fi : A1 — Tj. Then the following is an i + 1-edge from T to Ti:

Ta=Weld|aa = (=02 T fia = 12T £i)}. ()

where we used the flattened notation introduced for systems to
avoid repeating the same proposition. Note that T « depends on
(x=;0)= Boxi(ar = 0) (as an element of ¥") continuously. This
in turn depends on @ = 0 (as an element of F') with modality
i = par\ (iopar) : 2 — n+ 1. Finally, @ = 0 depends on «
structurally. Now one can check that

cono (par\ (iopar))ostr=i+1:1—n+1. (19)
Ani-edgea: (i1 a:1) —» Aa now gives rise to an i-edge
ta;sweld(aiio?ﬁ)|ai£1?fl)(aa) (20)

from fo (a 0) to fi (a 1).

A.6 The final type extension (Glue)

The Glue type former takes the same input except that f : T — A
points the other way (T-GLUE), and yields a final extension of T
and f. If we allow ourselves to treat face predicates as types, then
we can understand the Glue type as a pullback:

fou

PoA=————(:P>T)

| |

Glue{A « (P?T, f)}.

(21)

unglue (P?f)

Again, this is not any pushout, but one that reduces to T when P
holds.

Alternatively, the Glue-type can be understood as a dependent
record type whose records g : Glue{A « (P?T, f)} have fields

unglue (P? f) g: A,
redg:(_:P)—>T,
cohg:(_:P) > unglue(P?f)g=4 f(redg_),
with the remarkable property that if P holds, then the record type
is definitionally equal to T and unglue (P? f)g= fg,redg_=g
and coh g _ = refl (f g).
The record construction rule is given by T-GLUE and the projec-

tion is given by T-UNGLUE. We add to this a number of equations.
The first and third express that Glue and unglue extend T and f.

The second can be seen as the f-rule for the red field. The latter
two are the f-rule for unglue and the 5-rule.

Again, the Glue-type depends on f structurally and glue and
unglue depend on it continuously, rather than ad hoc as in our
previous work [29].

Example A.3. Similar to Weld, Glue allows us to compose (i + 1)-
edges in the universe with functions. Consider an (i + 1)-edge
A:(i+111) > UP and functions fo : To > AOand f : Ty — AL
Then the following is an (i + 1)-edge from Tj to Ti:

Ta:= Glue{Aa — (a iéO?To,fo|a iil?Tl,fl)}.

The i-edges from tp : Tp to t; : T1 then correspond precisely to
i-edges from fy tp : AOto fit; : A1l. Given an i-edgea: (i 1 a :
I) — A « of the latter class, we get an i-edge

to = glue{aou—u (a iLO?t0|a iil?tl)}.

A.7 Extension types

In cubical homotopy type theory [10], instead of a type (« : I) —
T « of functions from the interval, we have a type Path (a.Ta) to t1
of paths from tj to t;. Such paths f are formed using abstraction
over an interval variable and eliminated using application to an
interval term and in this sense they are just functions from the
interval. What is different is that their endpoint values f 0 = f
and f 1 = t; are kept track of at the type level. This is practical,
as the role of an object such as f is that it witnesses that ty and #;
are equivalent. Under the Curry-Howard correspondence, the type
Path (a.T @) ty t; thus expresses that ty and ¢1 are equivalent over
T, whereas the type (a : I) = T a merely expresses that there exist
some objects to : T 0 and t; : T 1 that are equivalent over T.

In our previous work [29], we did not index interval function
types by their endpoint values, because we did not entirely under-
stand the interaction with the modality system. The availability of
the structural modality clarifies the situation.

Instead of adding endpoint-indexed edge types as a primitive,
we allow to build then in terms of a more primitive concept called
extension types (Fig. 7). We can then define the type of i-edges from
to to t1, which encodes the proposition that ¢y and 1 are i-related,
as

Edge, (@ T)tot1:==(i1a:I)— T{a = 0?t0|a = 1?t1}, (22)
where the codomain is shorthand for

T{aiLOVaiLI?(aiio?t0|aiil?t1)}. (23)

B Primitive Inductive Types

In this section, we discuss some specific inductive types, without
giving a general scheme. The typing rules are found in Fig. 8. Each
time, we also give the corresponding Church encoding; Church
encoded types are discussed in more generality in Appendix C.
Rules for inductive types not given here as primitives, can be de-
vised by studying their Church encoding but need to be validated
in the model to the extent that they make the inductive type more
expressive than the corresponding Church encoded type.

B.1 Identity types

T-ID, T-REFL For every type A and every modality p that can
be applied to it, we define an identity type a =;,4 b with a
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Figure 8. Typing rules for inductive types

p-modal reflexivity constructor refl#. This type has Church

encoding
(par 1 X : (par\ p1x:A) - Uy) > Xa—Xb, (24)

and refl# a could then be implemented as AX.Ax.(X a 3 x),
which depends on a with modality par o (par \ ) = p.

In fact, it would suffice to just include the continuous identity
type a =coniA b, also denoted simply as a =4 b, as the p-
modal one can then be implemented as Box*(a =4 b).

It is worth mentioning that, when 0- i # 0, the typea =4 b
is not isomorphic to box*a =¢onBox#a box*b. Indeed, in
Box!™" A, all values are definitionally equal and hence the



type
irr

— . irr
box"™a = . poxir g POX"D

(25)
is always inhabited by refl®®(box!™q). Conversely, the type
a =irnA b is shape-irrelevant (not irrelevant) in a and b and
is not always inhabited.
In general, just as we saw for face predicates, the identity
type is not a type of depth —1, even though it is inhabited by
at most one object as stated by T-EQ-u1p. The reason is that
types of depth —1 have no relational structure, whereas an
i-edge from refl* a to refl* b witnesses that the two i-edges
from a to b equated in its type, are equal.

T-J The J-rule is the dependent eliminator of the identity type.
It allows us to prove, for example:

(irr 1 m,n : N) — (con | m =jp,N n) — List,;; A — List, A, (26)

which could not be done using the identity type over Boxi'™N.
Note that the J-rule also works for modalities v that have no
right adjoint: as there is only one constructor, it is trivial to
guarantee that the elimination clauses for all constructors
have equal erasure.

T-EQ-RFLCT Our model supports the reflection rule under mod-
ification of the context.

T-FUNEXT Function extensionality, which we do not give com-
putational content, can be derived from the reflection rule.

T-EQ-UIP In our model, proofs of equality are all equal, con-
tradicting univalence (our model is non-univalent).

Our earlier type system ParamDTT [29] had only a single identity
type, which corresponds to @ =par 4 b. However, the reflection (and
function extensionality) rule in ParamDTT does not contain the
left division by par that we require here. This was originally based
on an erratum in the model for ParamDTT, and later rebased on
the conjecture that being a 0-edge (a ‘path’) is proof-irrelevant [26].
Similar to identity extension, one would have to prove by induction
of the construction of a type, that this property is true in every
type. However, in the current setting we can break this property
using Weld and the (a € I) predicate. We could also break it using
Moulin’s ¥-operator [25], although we have not managed to prove
this operator sound in our model.

B.2 Booleans

T-BOOL, T-TRUE, T-FALSE: We have a boolean type of depth 0
which contains constants true and false. This type has Church
encoding

(parlX:fL{‘(?)—>X—>X—>X. (27)

T-INDBoOL: We can v-modally eliminate a boolean by providing
clauses for true and false. If i- v = T (possibly i = T), then the elim-
inator expression should evaluate to i-related values for different
booleans, so we require | ctruel; = Lcfalsel;-

B.3 Empty type

T-EMPTY: We have an empty type of depth —1 (which means that
all its elements are definitionally equal). This type has Church
encoding

(par 1 X : 11[_1) - X. (28)

T-INDEMPTY: If we want to use a value of type Empty in a v-modal
way, where v : —1 — p is necessarily irr, then we need to provide
a clause for each of the zero constructors.

B.4 Unit type

T-UNIT, T-UNIT: We have a unit type of depth —1, with a single

nullary constructor unit. This type has Church encoding
(par 1 X : U ) > X > X. (29)

Strictly speaking, throughout the paper, we have sometimes used
Unit as an abbreviation for Box'™ Unit when we needed a unit type
of different depth. T-INDUNTIT: In order to use a value u : Unitina
v-modal way, we need to provide a clause for the unit constructor.

B.5 Naturals

T-NAT, T-ZERO, T-succ: We have a type of naturals with construc-

tors for zero and successors. This type has Church encoding
(par|X:’Ll2)—>X—>(X—>X)—>X. (30)

T-INDNAT: We can v-modally eliminate natural numbers. If i-v = T,
then we need to make sure that the clauses for 0 and s a have a
common erasure.

B.6 Pair and Box Types
The dependent pair type (u 1 x : A) X B[x] has Church encoding

(par 1 X : UJ) = (n1x:A) = Blx] = X) = X, (31
and the box type Box* A has Church encoding
(par 1 X : UP) — (1 A) = X) = X. (32)

The typing rules given in Fig. 3 are entirely in line with those for
other inductive types in this section.

C Church Encoding

In this section, we transfer and generalize the results on Church
encoding from our previous work [29]. In Appendix C.1, we show
that we can use Church encoding to construct, up to issues related
to predicativity, inductive types with dependent eliminators. We
also show that we can implement modal dependent eliminators
for these Church encodings, which is novel, although these have
some modalities that are weaker than in the dependent elimina-
tors of primitive inductive types. In Appendix C.2, we show that
we can use Church encoding to construct, up to predicativity is-
sues, co-inductive types. We demonstrate that bisimilar streams are
equal. In Appendix C.3, we conclude with some bad news regarding
impredicativity.

Definition C.1. Alevel-preserving functor on types of depth
n consists of the following operations:

irr\T+o €: N
irr\T +o £ : N par\Fi—nHS,T:‘LIg’
I‘I—n+1T:7/[g Trp f:S—>T

(33)

[ bpet FT U} Tty Ff:FS— FT

such that F(Ax.x) = Ax.x and F(g o f) = Fgo Ff.

Note that irrelevance in ¢ implies that promotion to a higher
universe, commutes with F.

C.1 Inductive Types as Initial Algebras

Let F be a level-preserving functor on types of depth n. The induc-
tive type T with a single constructor FT — T has the following
Church encoding:

MuFy := (par 1 X : Up) — (FX - X) —» X : U, (34



Note that this type is not irrelevant but shape-irrelevant in ¢. In-
deed, it depends on U} with modality par = par \ (par o par) =
0,2,3,...,n+2) : n+2 — n+1, which in turn depends on ¢ shape-
irrelevantly. Hence, MuFy has modality par oshi = shi: 0 » n+1
in €.

An F-algebraisatype T equipped with a function mkT : FT — T.
The type of F-algebras is given by

AlgF = (X : U}') X Box™ (FX — X). (35)
Then MuF; can be uncurried to
MuF, = (par | (X, box**mkX) : AlgF;) — X, (36)

i.e. to give an element of MuFy is to give an element of every F-
algebra, in a canonical (parametric) manner. It is then unsurprising
that MuFy is itself an F-algebra. Indeed, if we have a canonical
operand g* : F MuFy, then we can use the algebra operation of
every particular algebra to build a new element of that algebra out
of it. This is a canonical operation, so we obtain a new canonical
element. This is exactly how we define mkMuF, : F MuF, —
Mqu:

fold X mkX q := ¢ X mkX
mkMuF; g* = AX.AmkX.mkX (F (fold X mkX) ¢*)

(37)
(38)
It is then trivial to see that for any algebra T, the function

fold T mkT : MuFy — T is a structure-preserving algebra mor-
phism, i.e. mkT o I?(fold T mkT) = (fold T mkT) o mkMuFy.

Example C.2. Assume we have a functor Maybe such that
Maybe A has constructors nothing : Maybe A and just : A —
Maybe A. Then N can be seen as the inductive type with construc-
tor mkN : Maybe N — N. It has the Church encoding

ChNy := (par 1 X : U}) — (Maybe X — X) — X : U,.

For every Maybe-algebra T, we abbreviate 07 := (mkT nothing)
and st t := mkT (just t). Then we have:

Ochn = AX.AmkX.0x, (39)
schy q = AX.AmkX .sx (g fold X mkX). (40)
which we can further rewrite as:
fold X mkX Ocpy := 0x, (41)
fold X mkX (schy q) := sx (fold X mkX q). (42)

The final graph type In order to prove any results about Church
encoded inductive types, we need to be able to convert a function
f : A — Binto a proof that A —~1 B, i.e. a type family

Graph f: (L1 a: 1) — U} (43)
such that Graph f 0 = A and Graph f 1 = B. Such a function

(Graph f) encodes a 0-relation between A and B and of course we

want a —~¢ b if and only if f a equals b. We would also like to have
maps

push: (01 a:I) - A— Graph f a

pull: (01 :I) - Graph f « — B

(44)
(45)

such that push 0 and pull 1 are identity functions and such that
pull & o push a equals f.

It turns out that this wishlist does not uniquely specify Graph f.
Here, we construct the final type family FinGraph f that satisfies
our wishes; the initial one will be needed to prove results about

MuFS V4
folds ¢, MuFg mky \
MuF,  fold X mkX  MuFg

fold, X n& \ A X mkX
X

Figure 9. Proof of Lemma C.4

Church encoded co-inductive types and is constructed in §C.2. We
define

FinGraph f a := GIue{B — (a igO?A,f|oc =0 17?B, idB)},
push a a := glue{fa<—4 ((x igO?a|a igl?fa)},

pull a g := unglue (a tgo?f|a =0 l?idB) g.

The result is a type family FinGraph f that depends structurally
on f (lacking the structural modality, we used to have an ad hoc
dependency here [29]), and continuously on A and B. The functions
push and pull depend continuously on f and parametrically on A
and B.

Initiality We follow our previous work [29] in proving that —
disregarding predicativity issues — MuFp is the initial F-algebra.

Lemma C.3 (Naturality of fold). Assume (par | A,B : (LI;) —ie.
types A and B which type-check in context par \ I — with algebra
structures (con | mkA : FA — A) and (con | mkB : FB — B).
Assume a morphism of algebras (con | f : A — B) for which
f omkA = mkB o I?f Then we can prove

f o fold A mkA =myF,—p) fold B mkB. (46)

Sketch of proof. One can show that FinGraph f « is always an F-
algebra. Hence, we get a function

fold (FinGraph f @) (mkFinGraph f @) : MuFp — FinGraph f a.

Composing it with push «, we obtain a function g : (0 1 I) —
MuF; — B for which g 0 = f o fold A mkA and g 1 = fold B mkB.
Then T-DEGAX allows us to finish the proof. O

Lemma C.4 (Propositional n-law). Define | : MuFsy; — MuF,
by restricting the first argument to a smaller universe. Disregarding
predicativity issues, we can view this as the identity function. Then
we can prove

foldg y MuFy mkMuFp =(MuF, . —MuFy) 1. (47)

Sketch of proof. By function extensionality (T-FUNEXT in Appen-
dix B), it is sufficient to prove the equation when post-composed

with a general foldy X mkX : MuFp, — X. It is clear that
foldy X mkX o | = foldgp X mkX : MuFs, — X, (48)

so we can apply the previous lemma to fold, X mkX. See also
Fig. 9. O

Combining these lemmas, we find:



Theorem C.5 (Initiality). Assume we have (par | B : ‘L{:t,), an
algebra structure (con | mkB : FB — B) and an algebra morphism
(con | f : MuFp — B) for which f o mkMuFp = mkB o Ff. Then
we can prove:

fol =coni(MuFs ,— B) folds , B mkB. (49)

Dependent elimination We construct dependent eliminators for
Church encoded inductive types. The reasoning in this section is
not new (see e.g. [37]), the novelty lies in the fact that we can use
the internal Lemma C.4 to make the entire argument internally;
and even that lemma was already present in our previous work
[29].

Theorem C.6. We have a continuous dependent eliminator
indmyr : (par 1 C: (str 1 MuFp) — U,) —
((p* . F ((q : MuFg) X C @) — C (mkMuF,(Ffst p*))) =
(q: MuFs¢) = C({ q).

Proof. We can define

indmur C mkC : (g : MuFs¢) — C (lq) (50)

as follows. Let
P:=(q: MuF,) xCq: ‘LIS"[, (51)
mkP := Ap*.(mkMuF,(Ffst p*), mkC p*) : FP — P. (52)

Then we get foldsy P mkP : MuF;p — P. Note that fst : P —
MuF; is an algebra morphism; hence, fst o fold P mkP equals | by
naturality and the 5-law. Then snd o fold P mkP is a dependent
function whose type is propositionally equal to

(g : MuFs¢) — C (lg). m

Example C.7. Continuing Example C.2, we get

indChN C mkC : (q : Cthg) i C(lq) (53)

Here, any possible argument p* to mkC is either nothing, in which
case Oc := (mkC nothing) has type C (Ocpy, ), or it is of the form
(just (g,c)), in which case sc q ¢ := mkC (just (g,c)) has type
C (schi, q)- So p* consists of the data

0c : C (Ochn, )
sc :(q: ChNy) — C q — C (schn, 9)-

This is precisely the input required by a dependent eliminator for
N.

Modal elimination The non-dependent eliminator fold and the
dependent eliminator indp, r are both continuous in the eliminated
value. In case we want to construct a v-modal function

(vig:MuFsp) = C(lg),

and v has a right adjoint v 4 p (which is precisely the case when v
is also a contramodality, i.e. it does not mention T), then we can
instead construct a function

(54)

(con 1 g : MuF,¢) — Box” (C (1q)) (55)
and then postcompose with the projection
unbox : (v 1 Box” (C (1¢))) = C (1g). (56)
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where outcomp; (incomp; t) = ¢
Figure 10. Typing rules for the related component type. These
rules are conjectural: we have not proven their soundness.

Example C.8. Continuing Examples C.2 and C.7, let us try to
create a v-modal function

(vig:ChNsp) = C(lg). (57)
We start by creating a function
(con 1 g : ChNg ) — Box” (C (1q)) (58)
which we know requires us to construct
Oé : Box”(C OChNg)’ (59)
sg : (g : ChNy) — Box?(C q) = Box?(C (sch, @), (60)
or equivalently
0c:C Ochny,» (61)
sc:(v1q:ChNy) = (vopi1Cq) = C(schn, ).  (62)

Note that v o p < con (this is the co-unit of the adjunction), so that
it is sufficient to create

sc:(viq:ChNy) — Cq— C(schy, Q) (63)

The resulting function depends on OZ and sé with modality v o
p which is weaker than con. However, this is an artefact of the
construction, related to the fact that unbox o box” has modality
v o p even though it is equal to the identity function. For primitive
inductive types, we will have a continuous dependency on the
matching clauses.

Related component types If v : n — p has no right adjoint
because it mentions T, then the above approach does not work.
However, suppose that i - v = T if and only if i > j. Then clearly a
v-modal function

fi(vig: MuFsp) = C(lg),
will map all possible inputs g into the same j-related component of C.
Elements of a j-related component can be recognized because they
all have the same j-erasure. (In fact, this is a detectably-j-related
component; terms with different j-erasure may still be proposition-
ally j-related.)

(64)



We can reason about this internally using related component
types. These types, which are found in Fig. 10, are conjectural in the
sense that we have not proven their soundness. They may be fine-
tuned and proven sound in future work and are, in the meantime,
a useful tool for intuition.

T-ComP For any type T and value s : S, we get a type
Comp; T {s} of objects that have type T and have the same
j-erasure as s. This is only meaningful if [S];,; = [T];4.
As all elements of Comp; T {s} are trivially i-related for
i > j, we discard the i-relations on T for i > j, which are
the content of proofs of (i + 1)-relatedness of types. Hence,
Comp; T {s}is(0,1,...,j —1,j)-modal in T. For the depen-
dency on s, we would take the structural modality as in
T-EXT, but again we have to chop off the unused relations,
yielding (0,0,1,...,j—2,j - 1).

T-INCOMP If a term ¢ has the proper erasure, it can be injected
into the component type. This operation discards the rela-
tions j through n, as elements of the component type are
trivially j-related. We have 5-equality.

T-0UTCOMP Ifatermclivesina j-related component of T, then
it can be mapped to T itself. The results of this operation
are trivially i-related for all i > j as they come from the
same j-related component; hence the operation has modality
0,...,j—1,T,..., T). We have f-equality. Note that, for
any c : Comp; T {s}, we have

{outcompj cJ = {outcompj (incomp; s)J _ = outcomp; e,
J J
so that (by 7-equality) every term of the form outcomp; c is
detectably j-related to s.

The modality v : n — p from before, can now be decomposed as
v={0,...,j—1,T,..., T)ov' withv' : n — j — 1. Then v-modal
elimination is achieved as the composite of v’-modal elimination
to a j-related component, postcomposed with outcompj.
Example C.9. The Church encoding for the booleans is

ChBool := (par 1 X : U)) - X - X — X. (65)

Given ag,|se, atrue : Asuch that | agyse|; = |atrue] 1, We can create a
shape-irrelevant function (shi 1 ChBool) — A. We start by folding
(or eliminating) to Comp; A {atrye }:
Ab.b (Comp; A {a}) (incomp; atrue) (incompy agalse)
: ChBool — Comp; A {atrye}-

Then we can postcompose with

outcompy : (shi 1 Comp; A {atrue}) = A (66)

Moreover, any value obtained from the resulting function, is de-

tectably 1-related to atrye and ag,jse-
An irrelevant function can be created if | afajse lg = L atruelo-

C.2 Co-inductive Types as Final Co-algebras
Let F be a level-preserving functor on types of depth n. The co-
inductive type T with a single matcher T — FT has the following
Church encoding:

NuFp := (par 1 X : U) x (X — FX)x X : U], (67)
An F-co-algebrais a type T equipped with a functionmtT : T — FT.
The type of F-co-algebras is given by

CoAlgF; = (X : U}') X Box™" (X — FX). (68)

Then NuF; can be regrouped to
NuF, = (par | (X, box**mkX) : AlgFy) X X, (69)

i.e. an element of NuFy is essentially an element of an unknown
F-co-algebra. The Church encoding is itself an F-co-algebra:
mtNuF, (par | X, mtX, x) := ﬁ(unfold X mtX) (mtX x),
unfold X mtX x := (par 1 X, mtX, x).

(70)
(71)
It is then trivial to see that for any co-algebra T, the function

unfold T mtT : T — NuFy is a structure-preserving algebra mor-
phism, i.e. mtNuFy o unfold T mtT = F(unfold T mtT) o mtT.

Example C.10. The type Str A of streams over A can be seen as
the type with matcher mtStr A : Str A — A X Str A. It has the
Church encoding

ChStrp A= (par 1 X : U ) x (X = AXX)x X : U],

For every (A X Lu)-co-algebra T, we abbreviate hdr ¢ := fst (mtT t)
and tl t := snd (mtT t). Then we have:

hdchstr, 4 (par 1 X, mtX, x) := hdx x, (72)
tlchstr, 4 (par 1 X, mtX, x) := (par 1 X, mtX, tlx x), (73)
which we can further rewrite as
hdchstr, 4 (unfold X mtX x) := hdx x, (74)
tlchstr, 4 (unfold X mtX x) := unfold X mtX (tlx x).  (75)

The initial graph type Assume f : A — B, we now define
InitGraph f : (11 a : I) - U}, proving that A ~1 B, as follows:

InitGraph f o := Weld{4 - (a =0 024,ida |« = 175, f)},
push a a := weld (a igO?idAloc =0 l?f) a,
pull @ w := indyeq(_.B, (a =0 0?x.fx|a =0 l?y.y),x.f X, w).
Finality One easily dualizes the theorems and proofs from C.1.

Bisimulation In the concrete example of Church encoded
streams over a type of depth 0, we show that bisimilarity implies
equality. The result holds in more general settings.

Pick (AXu)-co-algebras Sand T and arelationR: S — T — 71?
such that R s ¢t implies R (tls s) (tlTt) and hdg s Ag“ hdt t, which
in turn means that hdg s : A equals hdr t : A. We show that R s t
implies equality of unfold S mtS s and unfold T mtT ¢.

Define a (constant) function P : (1 1 : I) — ‘Lll'] byPa = (s:
S) X (¢t : T) X R s t and denote the projections with f : P0 — S
and g : P1 — T. We now turn P into a (non-constant) family of co-
algebras. We define hdp 4 (s, t,r) := (hds s, hdr t,hdg r a) where
hdr : Rst — (0 1 I) — Ais the proof that hds s AOA hdr t, and
tlp o (s,t,1) == (tlg, tl, tlg) where tlg : Rst — R (tlg s) (tl7 t).
This makes f and g co-algebra morphisms respecting the structure
definitionally.

Subsequently, we define

W(x:EWeId{Pa—>(a igO?S,f|a igl?T,g)} (76)
and one can then prove that this, too, is a co-algebra.
Now if we have r : R s t, then we get a 0-edge
wa:Eweld((xigO?f|aigl?g)(s,t,r):Wa (77)



from s to t. Unfolding it yields a 0-edge

unfold (W a) (mtW a) (w a) : ChStry A (78)
from unfold S mtS s to unfold T mtT ¢. Then the degeneracy axiom
implies equality.
C.3 A Note on Impredicativity

Most results in this appendix are ‘up to predicativity issues’. One
might postulate that we should make parametric quantification over
the universe impredicative. However, this is inconsistent. Indeed,
the type
Q :E(pamX:’L(?)—)(((X—>71(;1)—>W(;1)—>X)—>X (79)
should not live in (L{g, Otherwise, we have
(Q@->UhH->Ut)=Q, (80)

which is inconsistent [11].

D Sized Inductive and Co-inductive Types

Let F be a level-preserving functor on types of depth n (Defini-
tion C.1). In this section, we use Church encoding to construct
size-indexed inductive and co-inductive types Mu,F and NugF
such that

(irr|0:N)><l\7\TxFa

(irr 1 o : N) - NuF o

IR

MuF,
NuF,

(81)
(82)

IR

up to predicativity issues and under reasonable conditions on F. For
most of this section, we ignore universe levels, because in practice
we will want to add sized types as primitives.

We postulate a depth —1 inequality type < : N — N — U 1

with constructors
lz:(irr1o:N) - 0<o0o (83)
Is:(irr1o,7:N) > 0<7—>s0<sr7. (84)

and define ¢ < 7 to mean s o < 7. We use the following abbrevia-
tions:

Jdo.A:=(irr 1 0 : N) X A, (85)
Vo.A:= (irr 10 : N) — A, (86)
o <1)A=(irr1o:N)X(irr 1o < 7) XA, (87)
Yo <1)A=(irr10:N) > (irr1o<71)—> A (88)

D.1 Sized inductive types

Let F be a level-preserving functor on types of depth n (Defini-
tion C.1). The initial F-algebra is given by

MuF := (par 1 X : U™) = (FX — X) - X. (39)
A sized F-algebra is defined to be a type family
T:(shiio:N)—>UY" (90)

indexed with a shape-irrelevant size bound, equipped with an op-
eration

mkT : Vo.F(A(r < 0).T 1) > T 0. (91)
Then the initial sized F-algebra is given by
MuF o := (par | X : (shi | o : N) - U") —
Vo F3(r < w).X1) > X w)—> Xo. (92)

Clearly, every F-algebra T gives rise to a sized F-algebra KT for
which KT ¢ = T and this operation is functorial. Conversely, every
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sized F-algebra S gives rise to a type J0.S o which is an F-algebra
under the following condition on F:

Definition D.1. We say that F weakly commutes with 3 [29] if
the canonical map

y = Alirr 1 0, t%).F (At.(irr 1 0, ) t*
: (0. F(Ar <0).Tr)) > F(Fo.Ar <0).T1)

is an isomorphism for every type family T : (shi i o : N) — U}

This property is satisfied by all finitely branching container
functors, i.e. functors of the form FX = (g 1s: S) X (As — X)
where the arity A s is finite [29].

The operation 3 is then also functorial and moreover left adjoint
to K; indeed, the proof of this is the currying isomorphism. Because
left adjoints preserve initial objects, J0.MuF o is the initial F-
algebra. Hence it is isomorphic to MuF.

Remark D.2. When we do consider universe levels, we can con-
struct functions

MuF;p — (HU.mF[ o), (EIG.WJFS[ o) = MuFp, (93)

for all £, which compose to the universe level restriction functions

Lol MuFs e — MuFy, (94)
Mirr 1 0,g).(irr 1 0, (L 0 ) @) : (36.MUF, 5 ¢) 0) = (30.MuF; o).
D.2 Sized co-inductive types

Let F be a level-preserving functor on types of depth n (Defini-
tion C.1). The final F-co-algebra is given by

NuF := (par 1 X : U™) x (X — FX) X X. (95)
A sized F-co-algebra is defined to be a type family
T:(shito:N)—U" (96)

indexed with a shape-irrelevant size bound, equipped with an op-
eration

mtT : Vo.T 0 — F(¥(r < 0).T 7). (97)
Then the final sized F-co-algebra is given by
NUF o := (par 1 X : (shi | w : N) - U™)x
MVwX 0w — FV(r<w)X1)XXo. (98)

Clearly, every F-co-algebra T gives rise to a sized F-co-algebra KT
for which KT ¢ = T and this operation is functorial. Conversely,
every sized F-co-algebra S gives rise to a type Vo.S o which is an
F-co-algebra under the following condition on F:

Definition D.3. We say that F weakly commutes with V [29] if
the canonical map

x = Ah* Ao.F (Ah.h o) B
:F(Vo.¥(r < 0).T1)—> (Yo.F (¥(r <0).T 1))
is an isomorphism for every type family T : (shi i o : N) — U/

This property is satisfied by all container functors, i.e. functors
of the form FX = (p1s:5) X (As — X) [29].

The operation V is then also functorial and moreover right ad-
joint to K, as is proven by swapping arguments. Because right
adjoints preserve final objects, Vo.NUF o is the final F -co-algebra.
Hence it is isomorphic to NuF.



'+, Ctx
Tpra:Jr, Ctx

Ihocia:J,A+, Ctx
T,A[0/a] bn to : T
IA[1/albp t1: Th
Thocia:J,A rp (to, 1) o : (To, Th) @
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ILhocia:J,AkFpeq Cix
I[,A[0/a] Fn+1 Po: F"
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((Po, P1) @)[0/a] = Py
((Po, P1) @)[1/a] := P4
INhocia:J,A+, Ctx
I Al0/a] vn J[0/a]
I A[1/a] by J[1/a]
Thocia:J,Ar, ]

p:0—>n

C-EXT-J

T-HOC-J

where

IT-HOC-]

where

FT-HOC-J

where

U-TRIV

Figure 11. Calculus for proof synthesis

Remark D.4. When we do consider universe levels, we can con-
struct functions

NuFy — (Yo.NuFsz 6),  (Yo.NuF; o) = NuFsz,  (99)

for all ¢, which compose to
To1:NuFy — NuFy(s ), (100)
Ag.2a.(101) (q o) : (Yo.NuF 0) = (Yo.NuFy(s¢) o). (101)

E Erasure and Proof Synthesis

Because the erasure functions have no direct meaning in our deno-
tational presheaf model, in this section, we want to get rid of them
before interpreting the type system in the denotational model. The
idea is to replace, in every typing rule, the equality

Laol; = La1l;

with a synthesized proof that ag —~; a;. This high-level idea, which
allows us to give proof-relevant semantics to a proof-irrelevant
syntactic property, was suggested by Andrea Vezzosi.

For this purpose, we use the very succinct proof calculus given in
Fig. 11. c-EXT-J: We can extend a context with a variable of pseudo-
type J. T-HOC-J: We can create ad hoc dependencies on « : J by
giving function values for 0 and 1. Note that the constants 0 and 1
never really occur in the syntax; instead, we provide substitution
operations [0/a] and [1/a] which directly compute the endpoints
of a synthesized relatedness proof. IT-HOC-J, FT-HOC-J: We can
also do this for interval terms and elements of the universe of
face predicates. Of course 1T-HOC-J breaks Lemma A.1, implying in

(102)
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particular that unification of the predicates o = 7 and o € I will not
proceed properly in all cases. However, in practice, we will only ever
need to assume predicates with a modality v : m — n that does not
mention T. Furthermore, predicates can only depend on interval
expressions with a modality y : 1 — m that does not mention T
(except for Box?, which we will only need to use with modalities
p that do not mention T). Finally, interval expressions can only
depend on variables of type J with modality hoc = (0,0) : 0 — 1.
Then we have v o 1 o hoc = hoc : 0 — n. This implies that in
practice, whenever a predicate is assumed that depends on « : I,
we will have (hoc | @ : J) in the context and then U-TRIV allows us
to pretend that « is either 0 or 1. If one presupposes the existence
of the syntax (o, t1) « with its special substitution rules, then one
may argue that U-TRIv entails T-HOC-J, and similar for 1T-HOC-J and
FT-HOC-J.

Theorem E.1 (Proof synthesis). Given terms

To Fn ao : Ap I kpoar: Ay (103)

such that
LTo kn a0 : Aol; = [T1 Fn a1 : A1}, (104)

there exists a termirr; 1 a : J,T Fp, a : A (where irr; = (0}, T""i*1))
such that substitution of a with 0 or 1 yields the aforementioned
Jjudgements up to a-equality.

Proof. The term a is constructed by induction on |ag|; = a1 ];. If
this equals e, then i = T and we can synthesize the proof (ao, a1)) a.
Otherwise, we move into the subterms. So basically, we just replace
every e with a value obtained from T-HOC-J Or IT-HOC-J.

Similarly, the type A and all types in the context are constructed
by viewing them as terms and applying the above procedure. O

Remark E.2. In order to conclude definitional equality of terms
whose formation requires syntactic equality of erasure; we do not
only require definitional equality of all corresponding subterms,
but also of the synthesized proofs.
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