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Abstract—Deep autoencoder models work on an information
bottleneck principle with a lower-dimensional latent space of typ-
ically tens or hundreds of dimensions. Two and three-dimensional
spaces are key for representing information that can be mapped
in physical space, or that can be intuitively navigated and in-
terpreted by a human without extensive background knowledge.
Nevertheless, training autoencoder models with extremely low
dimensional latent spaces is challenging for multiple reasons: (i)
the dimensionality of the latent space is lower than the intrinsic
dimensionality of the data manifold, and (ii) optimization of a
complicated non-convex objective can lead to convergence to a
non-global optimum. In this work, we demonstrate that layer-
wise training strategies lead to improved convergence, as well
as better perceptual properties when applied to models with
extremely low dimensional latent spaces. Experiments on the
CelebA dataset show improved performance on the Fréchet
Inception Distance over standard autoencoder training. Addi-
tionally, we demonstrate the utility of low dimensional, physical
latent representations. We map satellite image patches to a low
dimensional latent space where we align the representation with
the physical attributes of each patch, such as the geographic
coordinates. We show that such representations are inherently
interpretable and allow for an interactive and physically intuitive
approach to generating new images.

I. INTRODUCTION

In some respects, generative models of images via encoder-
decoder architectures have become mature technologies. Gen-
erative Adversarial Networks (GANs), Variational Auto-
encoders (VAEs), and other variants can generate samples
from diverse image categories that are visually compelling and
show interesting modes of variation corresponding to novel
poses and appearance. Such models operate on an information
bottleneck principle: original image data are projected into a
lower-dimensional latent space capturing the main sources of
variation in the data in a compact representation. Often, the
dimensionality of this latent space is a parameter determined
in a model selection procedure, while optimizing performance
metrics of the image generation. The dimensionality of the
generator or decoder input reported in the literature is typically
in the range of 100 dimensions or more [1]–[7]. However,
there are compelling reasons why we might want to develop
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models with latent dimensions of two or three, with use cases
spanning a variety of settings. If a low-enough dimensionality
of the latent space can be achieved in a general setting,
a small number of known features (e.g. image labels, geo-
coordinates etc.) can be used to encode the images in the new
space of these features. From a human interaction perspective,
these are spaces that we can navigate, visualize, and develop
interfaces through which we can interact with such models.
From a spatial perspective, we can develop spatially grounded
models that e.g. align latent space parameters with physical
layouts in two or four dimensions [8]–[10]. For example, for
geotagged images, we could perform an additional mapping
from an low dimensional latent space onto the 2 dimensional
geo-coordinates of images, and subsequently use the geo-
coordinates for image generation. The work of [11], for
example, showcases a model for facial generation conditioned
on geographic latitude and longitude, in addition to other
conditioning variables such as age, gender, pose and facial
landmark points. However, the dimensionality of the encoding
is much larger than the one considered in this work. On the
other hand, we analyze the problem of training generative
models with very low-dimensional latent spaces, with the
cardinality of two to four.

Generative models are trained to optimize various crite-
ria depending on the purpose for which they are deployed.
Optimization objectives can be designed around: (i) expected
image reconstruction error, (ii) perceptual appearance scores,
or (iii) distributional approximation of the original data distri-
bution. Expected image reconstruction error is most com-
monly achieved with a mean squared error penalty and is
the most common loss term incorporated in training. Another
candidate is the mean absolute error penalty, which alleviates
the common issue of excessive blurring that arises when
using the mean squared error [3]. However, there exist other
differentiable measures of reconstruction quality that are more
in line with the human perception, such as the Structural
Similarity Index (SSIM) [12] and Multi-Scale Structural Simi-
larity Index (MS-SSIM) [13], which can be used as a measure
of reconstruction error and optimized, as in the work of
[14]. Additional perceptual appearance scores, such as Fréchet
Inception Distance (FID) [15]–[17] are often used during eval-
uation and provide a measurable quantitative approximation
to perceptual quality. Finally, measures of distribution shift,



such as divergence measures or Maximum Mean Discrepancy
(MMD) [18], are important when we wish to measure whether
a generative model covers the input space. We aim to measure
the performance of several training strategies on each of these
categories of metrics, in order to gauge their suitability in dif-
ferent settings where generative models with low dimensional
latent space are of interest.

The information bottleneck principle, in its instantiation
in encoder-decoder models, is built around the idea that the
important modes of variation in image data are contained
in a low dimensional manifold [19], [20]. In training the
encoder-decoder architecture, the data are mapped into the
latent space in a manner where it can be reconstructed. Thus,
the redundant information common across images is implicitly
encoded in the weights of the decoder. The goal of learning
in this setting is primarily centered around obtaining a model
that achieves minimal reconstruction loss. By contrast, when
training a model that projects to two or three dimensions,
the latent dimension is determined by extrinsic considerations
and in general, the dimensionality reduction will result in
a non-trivial reduction in reconstruction accuracy. As such,
the distinction between competing objectives of (i) image
reconstruction error, (ii) perceptual appearance scores, and
(iii) distributional approximation becomes more acute. We
find that in this setting, it is important to adapt training to
overcome optimization difficulties and emphasize performance
on perceptual metrics, rather than just the reconstruction error.

In this work, we explore variants of layer-wise training
[21], [22] of generative models, where the model is iteratively
trained one layer at a time, after which new layers are added
to the network and the process repeated. As per the findings of
[17], a two-stage training approach to training a VAE, where
the second stage VAE uses the latent representations of the
first stage as the observed data, can yield improved results
compared to a single-stage training, as long as the latent space
is large enough to accommodate the underlying manifold. It is
also emphasized that in this regime, the joint training of two
stages does not necessarily lead to better performance. We,
however, show that in the case of an extremely low latent space
dimensionality, layer-wise training improves performance over
a standard joint training strategy with respect to the perceptual
metric used for the evaluation of deep generative models.
In particular, non-greedy layer-wise training, in which the
previous layers are further tuned after adding new layers,
achieves a performance increase with respect to reconstruction
error over the joint training approach. This indicates that even
in cases when the dimensionality of the latent space becomes
increasingly constrained, non-convexities in the training land-
scape lead to problems in optimization in a joint framework,
making layer-wise training an effective optimization heuristic.

Considering perceptual quality, it appears that an overcon-
strained latent space leads to excessive blurring as a strategy
to minimize the reconstruction error. In this case, greedy
layer-wise training, where no further tuning is performed after
adding additional layers, can help maintain image sharpness.
Moreover, we find that a two-stage t-SNE [23] preimage

approach, where we decode the higher dimensional image
feature that results in the closest low dimensional latent
representation to that of the input image, can yield even better
results in distribution approximation at the cost of substantially
increased reconstruction error over layer-wise training. Finally,
we demonstrate the utility of low dimensional latent spaces
in an image colorization setting, in which alignment of the
latent space to geographic and color information is performed
without substantial loss in reconstruction quality. Source code
and models will be made available at the time of publication.

A. Related Work

The work of [6] introduces the Variational AutoEncoder
(VAE), which is a neural generative model, consisting of an en-
coder and decoder, trained by optimizing the variational lower
bound on the marginal likelihood of the data, which consists
of the reconstruction term and a KL divergence term. The
KL divergence term enforces the posterior distribution of the
underlying low dimensional representations to match the given
prior distribution, which can be seen as a regularization term in
the context of training an auto-encoder. Typically, a zero-mean
multivariate isotropic Gaussian is used as the prior distribution,
and the posterior distribution is assumed to be Gaussian and
parametrized by a neural encoder, from which the data can be
sampled by using the reparametrization trick [6]. In the work
of [24], the authors demonstrate that a modification of the
variational lower bound objective, where the KL divergence
between the latent factors and the prior is constrained by
an upper-bound, can lead to improved disentanglement of
underlying generative factors. This constrained optimization
problem is transformed into an unconstrained optimization
problem with an additional Lagrange multiplier β. Increasing
the value of β only allows the most informative latent units to
deviate from the Gaussian prior, improving disentanglement.
Furthermore, progressively relaxing the constraint on the KL
divergence during training can help mitigate the reconstruction
penalty, while maintaining disentanglement [25].

The work of [21], [26] demonstrates the advantages of
greedy layer-wise training in discriminative models. In a
generative setting, the work of [7] proposed a strategy of pro-
gressively growing a generative model by gradually increasing
the output resolution as additional layers are added. The
approach does not, however, progressively decrease the size
of the latent space as we do, and does not result in extremely
low dimensional latent spaces. Similarly, [27] generate high-
resolution images by a multi-resolution Laplacian pyramid, but
again do not consider such low dimensional latent spaces.

In the work of [17], a two-stage VAE, with two stages
trained separately, is shown to outperform single-stage VAE in
the regime where the latent space is large enough compared
to the dimensionality the underlying data manifold. Unlike
our work, however, it trains a 2 stage network only, while
we explore several stages. Additionally, the latent space is
large enough and assumed to be larger than the manifold, so
the addition of new stages with lower dimensionality of the
latent space improves performance. In our case, we explore



the situation where the latent space dimensionality is certainly
lower than the presumed dimensionality of the data manifold.

II. METHODS

We examine both joint and stage-wise training, while reduc-
ing the dimensionality of the latent space in each additional
stage, in order to finally reach the desired, extremely low
dimensional representation of the data. As per the work on the
β-VAE [24], we train the model by optimizing the parameters
of the encoder ϕ and those of the decoder θ, with the following
objective:

L(θ, ϕ, β;x, z) = Eqϕ(z|x)[log pθ(x|z)]−
−βDKL(qϕ(z|x)||p(z)), (1)

where qϕ(z|x) is the posterior distribution of the latent rep-
resentation z parameterized by the encoder, and pθ(x|z) the
data likelihood parametrized by the decoder. In practice, the
likelihood can be viewed as the the reconstruction term [6],
while the second term represents the discrepancy between
the distribution of the latent representations, which is set to
be a multivariate Gaussian whose mean and covariance are
the outputs of the encoder, and the zero-mean isotropic unit
Gaussian adopted as the prior.

During stage-wise training, after training a VAE in the
previous iteration, an additional linear layer that projects the
latent embedding to an even lower dimensional latent space
is appended to the encoder, and a layer that projects from a
low dimensional latent space back to the higher dimensional
latent space is prepended to the decoder:

enck(x) = σ
(
enck−1(x)W

T
k + bk

)
, k > 0

deck (enck(x)) = deck−1

(
σ
(
enck(x)W̃

T
k + b̃k

))
, k > 0

,

(2)

where Wk and bk are the weights and biases of the newly
added k− th layer of the encoder, while W̃k and b̃k represent
the added layer of the decoder. For k = 1, enc0 and dec0
represent the initial, fully convolutional encoder and decoder.
At the k-th stage, the optimal encoder weights and biases W ∗

and optimal decoder weights and biases W̃ ∗ are obtained as:

W ∗, W̃ ∗ = min
W,W̃

n∑
i=1

γkℓ(xi, deck(enck(xi)))+

+βkDKL (N (enck(xi)) ||N (0, I)) , (3)

where the first term is the reconstruction error and the
second term is the KL divergence between the posterior dis-
tribution parametrized by the encoder (Gaussian with a mean
and covariance matrix, or its diagonal elements, assuming
independent dimensions, given by the encoder), and the prior
defined as an multivariate zero-mean isotropic Gaussian [6].

In the greedy variant of the training, during the training
of the k-th stage, W = Wk and W̃ = W̃k, and we only
optimize the parameters of the newly added layers, while the

parameters of the previously added layers in both encoder
and decoder are frozen, thus effectively treating the latent
representation obtained in the previous training stage as the
observed data in the current stage. In the non-greedy variant
of the training, W = {W1, ...,Wk} and W̃ = {W̃1, ..., W̃k},
i.e. when training the current stage, we also optimize the
parameters of the previously trained layers.

III. EXPERIMENTS

We evaluate the stage-wise training with several different
numbers of stages. We also compare the stage-wise approach
with joint training of all the layers at once. Additionally, we
explore whether or not during stage-wise training, the previous
stages should be jointly optimized with the current stage.
We evaluate the results in terms of the reconstruction error,
perceptual image quality and distributional similarity between
the original and reconstructed images.

Additionally, we examine the effect of linear and non-linear
mapping to a low dimensional latent space with two baselines,
one involving the use of PCA to project the data from a higher
dimensional latent space into a low dimensional latent space,
and another one involving the use of parametric tSNE. We
compare two different variants of each approach.

A. Datasets

We perform experiments on the Celeb-Faces Attributes
(CelebA) [28] and the BigEarthNet dataset [29]. The CelebA
dataset consists of 202,599 of faces, where each image is
annotated with 40 attributes and 5 landmark locations. The
training set consists of 160000 images of 8000 people, the
valiadation set consists of 20000 images of 1000 people, while
the remaining images make up the test set.

The BigEarthNet dataset [29] consists of 590,326 patches
from 152 Sentinel-2 tiles, each characterized by a subset of 43
land cover classes, a timestamp that represents the time and
date of acquisition, as well as the geographic coordinates of
the patch center in Universal Transverse Mercator coordinate
system (UTM), which we convert to latitude and longitude. We
extract satellite image patches between the latitudes of 48.0082
and 48.4082 and longitudes of 16.1738 and 16.5738, which
showcase Vienna and its immediate surroundings, and assign
2312 patches to the train set, 550 patches to the validation set,
and the remaining 560 to the test set.

B. Metrics

a) SSIM: We utilize the Structural Similarity (SSIM)
index [12] to measure the similarity between the original and
the reconstructed images. The SSIM index is sensitive to the
structural differences between images, of which the human
visual system is highly perceptive. The metric compares the
local luminance, contrast, and structure across corresponding
image regions.

b) FID: We utilize the Fréchet Inception Distance (FID)
[16] to compute a semantic-based score for appearance. The
output of the final pooling layer in a pretrained Inception v3
model is used to obtain image features, which have been found



to be sensitive to the perceptually important cues in images
[30]. The mean and covariance of two sets of activations,
where one is obtained from the collection of real, and the
other from the collection of generated images define two
multivariate Gaussian distributions. The Fréchet distance, or
the Wasserstein-2 distance is then used to express the dis-
crepancy between these two distributions [31]. It is found that
this distance correlates very well with perceptual dissimilarity
between images [16].

c) MMD: To evaluate the degree to which the distri-
bution of generated images matches the distribution of the
dataset, we compute the Maximum Mean Discrepancy (MMD)
[18], which is a non-parametric two-sample test used to
evaluate the difference between distributions. It represents
distances between distributions as distances between mean
embeddings of features. Using the kernel trick, we avoid
having to explicitly compute the embeddings, but evaluate the
distances in the original input space using the Gaussian kernel,
where the computed MMD is zero only if the distributions are
identical. We compute the MMD on images resized to 64x64.

C. Experiment Framework

We use a ResNet-18 model [32] for the convolutional part
of the initial encoder (enc0 in Equation 2), while the initial
convolutional part of the decoder (dec0 in Equation 2) is also
based on a ResNet-18 configuration, where we replace the
strided convolutions that downsample the feature maps with
nearest neighbor upsampling and non-strided convolutions, in
addition to reversing the ordering the number of channels in
the residual blocks of the decoder. We finally reverse the order-
ing of residual blocks altogether, resulting in a convolutional
decoder that is symmetrical to the encoder. When training the
VAE, in the reconstruction term, we optimize the SSIM, as
opposed to the standard MSE or BCE minimization, as it is
found that it yields images that are perceptually of higher
quality [14]. Due to the standardized nature of the CelebA
dataset, we do not consider the multi-scale variant of SSIM
(MS-SSIM).

Due to its inherent interpretability, interactivity and the
potential for a physical spatial interpretation, we opt for the
latent dimensionality of 2. For the base model, denoted as
Base-128 in Table I, we train a VAE with one 128 dimen-
sional linear layer appended to the encoder, and another 128
dimensional linear layer prepended to the decoder, resulting
the latent dimension of 128. We evaluate the reconstruction
by computing the Structural SIMilarity index measure (SSIM),
Fréchet Inception Distance (FID) and the Maximum Mean
Discrepancy (MMD), which represents the upper bound on
the model performance with a lower-dimensional latent space.
We then evaluate the effect of the number of stages when
performing stage-wise training of a VAE that yields a 2-
dimensional data representation (results shown in Table I):
(i) 2-stage (G/NG): We train an autoencoder that performs
a projection to a 2-dimensional latent space. The model is
trained in two stages, where in each stage an additional linear
layer is appended to the convolutional encoder and another

layer prepended to the convolutional encoder. The layers
added in the first and second stage have 128 and 2 neurons,
respectivelly. We compare greedy (G) and non-greedy (NG)
training, outlined in Section II; (ii) 3-stage (G/NG): Same as
2-stage, but with 3 training stages and 3 additional layers (128,
32 and 2 neurons); (iii) 4-stage (G/NG/D): Same as 2-stage,
but with 4 training stages and 4 additional layers (128, 32, 8
and 2 neurons). The (D) indicates direct training of all layers
at once, and where the number of training epochs is set to 4
times the number used when training an individual stage in a
4-stage configuration. We minimize the mean reconstruction
error over the image pixels, and the mean KL divergence over
individual latent dimensions, and normalize the value of β
(Equation 1) according to the dimensionality of the input data
and the latent space, as per [24].

We define two additional baselines built on top of the base
VAE with the latent space size of 128. PCA Baseline: In the
first baseline we utilize PCA [33] to perform a linear projection
from the high dimensional latent space to a 2-dimensional
space. We project the 128-dimensional codes onto the first two
principal axes using the transformation matrix consisting the
eigenvectors of the covariance matrix corresponding to the two
highest eigenvalues. In the first variant of the PCA baseline,
denoted as PCA (P), we reconstruct the latent code by mapping
the PCA projections back to the 128-dimensional latent space
using the transposed matrix of the chosen eigenvectors, which
are then fed the decoder to reconstruct the input image. In
the second variant of our approach, denoted as PCA (S), we
reconstruct the input images by using a shotgun approach,
where we compute the preimages for each 2-dimensional PCA
representation by randomly sampling 1000 candidates from a
zero-mean isotropic Gaussian representing the prior distribu-
tion for the 128-dimensional latent codes obtained from the
base VAE. We then embed each candidate into a 2-dimensional
latent space using the same PCA projection matrix, and decode
the candidate whose 2-dimensional embedding has the lowest
Euclidean distance to the 2-dimensional representation of the
corresponding input sample.

Parametric tSNE: The second baseline is based on
the parametric t-distributed stochastic neighbor embedding
(Parametric tSNE) [23], [34], where a neural network model
is trained to embed the 128-dimensional codes obtained
from the VAE into a 2-dimensional space, by minimizing
the KL divergence between the Gaussian distance metric
in the 128 dimensional latent space and the Student’s t-
distributed distance metric in the target 2-dimensional space.
This yields an embedding of the data in a 2-dimensional
latent space, while the inverse of this mapping is found by
solving the preimage problem. The preimages are computed
via ridge regression from the 2-dimensional latent space back
to the 128-dimensional latent space. This version of the tSNE
baseline is denoted as tSNE (P). A second variant of the
approach for computing the preimages is the similar shotgun
procedure as described in the case of the shotgun variant of
the PCA baseline, where the preimage is selected among 1000
candidates sampled from a zero-mean isotropic Gaussian in the



128 dimensional latent space, based on the proximity of its 2-
dimensional parametric tSNE embedding to that of the input
sample, and use it as an input to the decoder to reconstruct
the original image. This version is denoted as tSNE (S).

- FID SSIM MMD
Base - 128 122.1207 ± 0.4202 0.6332 ± 0.0007 0.0070
PCA (P) 196.8630 ± 0.4188 0.3964 ± 0.0006 0.2431
PCA (S) 124.3914 ± 0.4202 0.3023 ± 0.0006 0.0039
tSNE (P) 126.2563 ± 0.8308 0.2767 ± 0.0011 0.0044
tSNE (S) 124.0830 ± 0.4159 0.2752 ± 0.0006 0.0051

2-stage (NG) 208.0426 ± 0.4051 0.4568 ± 0.0007 0.0452
2-stage (G) 212.4302 ± 0.3575 0.4142 ± 0.0006 0.0724

3-stage (NG) 198.3123 ± 0.4314 0.4566 ± 0.0007 0.0493
3-stage (G) 191.5949 ± 0.4257 0.4070 ± 0.0006 0.0748

4-stage (NG) 201.8177 ± 0.4232 0.4567 ± 0.0007 0.0462
4-stage (G) 185.0162 ± 0.4355 0.4098 ± 0.0006 0.0701
4-stage (D) 217.9415 ± 0.3880 0.4525 ± 0.0007 0.0756

TABLE I
FIRST ROW REPRESENTS THE BASELINE VAE WITH A 128 DIMENSIONAL

LATENT SPACE. THE FOLLOWING FOUR ROWS SHOW THE PCA AND TSNE
BASED BASELINE, USING THE STANDARD PRE-IMAGE APPROACH (P) AND

SHOTGUN APPROACH (S). THE FOLLOWING SIX ROWS SHOW A
COMPARISON OF GREEDY (G), AND NONGREEDY (NG) LAYER-WISE

TRAINING IN TERMS OF DIFFERENT TRAINING APPROACHES WITH
DIFFERENT NUMBER OF STAGES. THE FINAL ROW SHOWS DIRECT (D),

NON-LAYER-WISE TRAINING. CONFIDENCE INTERVALS REPRESENT ONE
STANDARD ERROR.

As shown in Table I, in terms of the perceptual reconstruc-
tion quality measured by FID, the greedy 4-stage progressive
training outperforms the stage-wise approach with lower num-
bers of stages. We therefore adopt the 4-stage approach. The
performance of the 4-stage greedy (G) and non-greedy (NG)
training is also compared to directly training all the layers at
once (D), as well as the base model with a 128 dimensional
latent space which represents the performance upper-bound
(Base-128). It can be seen that the greedy training, where only
the weights of the newly added stage are optimized achieves
a better performance in terms of the FID metric, suggesting
superior perceptual quality of the reconstructed images. The
non-greedy stage-wise training, on the other hand, achieves a
higher SSIM. This is expected, as the SSIM represents the
reconstruction objective which is directly optimized during
training, and the freezing of the layers from previous stages
proves to hinder the model from the aspect of the reconstruc-
tion objective. The performance of the non-greedy stage-wise
training with respect to SSIM is also significantly higher than
that of the direct training of all layers at once, which suggests
that the stage-wise approach in general leads to convergence
to a better optimum. The non-greedy stage-wise also achieves
lower MMD than joint training, suggesting that the stage-
wise approach yields benefits from the aspect of distributional
approximation of the original data.

We also observe in Table I that the shotgun-based ap-
proaches achieve a FID score comparable to the Base -
128 model that serves as their backbone. The SSIM on the
other hand, is very low, as the chosen candidate preimage
does not necessarily correspond to the 128-dimensional latent
representation of the input image.

Fig. 1. Comparison of reconstructed images for the base model, 3 different
training procedures and 2 baselines, by rows: (i) input images (ii) Base - 128
(iii) 4-stage (G) (iv) 4-stage (NG) (v) 4-stage (D) (vi) PCA (P) (vii) tSNE (S)

Overall, we notice that the performance on image recon-
struction does not directly yield a better FID score. The greedy
layer-wise training surpasses the performance of non-greedy
layer-wise training and joint training of all latent layers in
terms of the perceptual quality, despite having a lower SSIM
score. Qualitatively, in Figure 1, it can be seen that out of all
approaches that encode data into a two dimensional space, the
greedy layer-wise training produces images with the highest
degree of sharpness, while being able to capture the head
pose and rudimentary facial expressions of the original input
image. The non-greedy stage-wise training, as well as the non-
stage wise training and the PCA baseline, produce exceedingly
blurry images. The nonlinear tSNE-based baseline produces
sharp images, however, the reconstruction quality is poor.

IV. SPATIALLY GROUNDED AUTOENCODER

The topic of interactive scene generation has received some
attention in the literature [35]–[37]. To illustrate the utility of
extremely low-dimensional image representations, we learn a
low-dimensional representation of satellite patches that allows
for the generation of new patches based on the given spatial
coordinates. We perform the task of image colorization, where
the grayscale satellite images are colorized in the way where



the color of each pixel is predicted based on its 15x15
neighborhood. Predicting the pixel’s color, especially based
on such a small field-of-view is an challenging problem. We
examine the possibility of grounding image patches in a latent
space that can be tied to the physical properties of each patch.
We leverage two possible sources of information to obtain a
physical grounding and allow interactive image generation.

In the first, we leverage the HLS color model [38], which
consists of three components: hue, lightness and saturation.
The lightness component is directly provided by the grayscale
image, while the model is tasked with predicting the hue and
saturation color components at each pixel. In the HLS color
model, the saturation values lie in the [0, 1− |l|] range, where
l represents the value of the lightness component. The hue
component may take any value between 0 and 1. Therefore,
for a lightness component value given by the input grayscale
image, we minimize the 2-norm of the deviation of the two
latent variables from the aforementioned ranges, enforcing
the 2-dimensional latent space representations to correspond
to valid hue-saturation components under a bi-conical HLS
model, as shown in Figure 2.

In the second, we use the coordinates of the satellite image.
We calculate the latitude and longitude of each pixel in each
satellite image via interpolation, based on the physical size
of the patch and the coordinates of its center. For any pixel
neighborhood, we enforce that two variables of the latent
representation match the latitude and longitude associated with
the central pixels by minimizing the L2 distance between them.

Fig. 2. Visualization of the latent representations corresponding to the hue
and saturation color component, constrained to the volume of a bi-conical
solid of a HLS color model.

Fig. 3. Colorization based on a given coordinate location.

To efficiently obtain representations of patches around the
each pixel in the image in a parallel fashion, we adopt a
fully convolutional architecture. The first layer has a 15x15

- MSE PSNR
VAE 32 0.0861 ± 0.0018 32.1158 ± 0.2410

CR 2/VAE 2 0.0875 ± 0.0018 31.6968 ± 0.2252
CL 2/VAE 2 0.0895 ± 0.0019 31.5534 ± 0.2249
CR 2/CL 2 0.0905 ± 0.0020 31.2461 ± 0.2088

TABLE II
COMPARISON OF MSE AND PSNR FOR IMAGE COLORIZATION. CR 2

INDICATES THAT THERE ARE TWO LATENT DIMENSIONS THAT ENCODE A
GEOGRAPHIC COORDINATE. CL 2 INDICATES THAT THERE ARE TWO

LATENT DIMENSIONS ENCODING COLOR INFORMATION. VAE DENOTES
LATENT VARIABLES CONSTRAINED SOLELY BY THE KLD TERM.

dimensional kernel, while the subsequent layers perform 1x1
convolutions. Therefore, along each channel dimension at the
output of each layer, we obtain a representation of each 15x15
patch in the original image. The 1x1 convolutions after the
first layer, as well as the use of local-response normalization
instead of batch normalization, make sure that each patch
representation is only influenced by the 15x15 neighborhood
of its original central pixel. We perform a non-greedy stage-
wise training and optimize the mean absolute error between
the predicted hue and saturation component and those of the
ground truth color image. We evaluate the model performance
in terms of the peak signal-to-noise ratio (PSNR). From
the results in Table II, we observe that there is no drastic
deterioration of the reconstruction error or PSNR with a further
projection down to a 4 dimensional latent space. On the
other hand, within a 4 dimensional latent space, we obtain
a fully physically grounded representation of the data, which
is interpretable and interactive. On average, the coordinate loss
achieves a slightly better performance than the color loss.

Given a model trained to embed the data in a physical,
interpretable space of geographic coordinates, we demonstrate
the colorization of input images based on a provided set
of coordinates. In Figure 3, we demonstrate how, given the
coordinates of another image, the model can generate different
colored images from the grayscale version of the source
image. In the same fashion, the coordinates can be provided
interactively, by clicking on the locations on a map.

V. DISCUSSION AND CONCLUSIONS

With the CelebA dataset, the dimensionality of an embed-
ding that can be physically interpretable is significantly lower
than the intrinsic dimensionality of the data manifold. There-
fore, such an embedding is significantly more challenging, and
there is a deterioration of quality, both in terms of recon-
struction error and perceptual quality and the distributional
approximation, as we go to lower dimensions. Additionally,
layer-wise training results in significantly higher perceptual
quality, as well as better result with respect to distribution
approximation. The colorization of image patches, on the other
hand, is a problem where the intrinsic dimensionality of the
underlying manifold is low and can be easily tied to color and
geographic space. The color space can be aligned naturally to
a low dimensional physical space, without significant deterio-
ration of quality, allowing for an interpretable embedding and
an interactive approach to image generation.
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