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BACKGROUND: Cell-free DNA (cfDNA) analysis holds
great promise for non-invasive cancer screening, diagno-
sis, and monitoring. We hypothesized that mining the
patterns of cfDNA shallow whole-genome sequencing
datasets from patients with cancer could improve cancer
detection.

METHODS: By applying unsupervised clustering and su-
pervised machine learning on large cfDNA shallow
whole-genome sequencing datasets from healthy indivi-
duals (n= 367) and patients with different hematologic-
al (n= 238) and solid malignancies (n= 320), we
identified cfDNA signatures that enabled cancer detec-
tion and typing.

RESULTS: Unsupervised clustering revealed cancer type-
specific sub-grouping. Classification using a supervised
machine learning model yielded accuracies of 96% and
65% in discriminating hematological and solid malig-
nancies from healthy controls, respectively. The accur-
acy of disease type prediction was 85% and 70% for
the hematological and solid cancers, respectively. The

potential utility of managing a specific cancer was de-
monstrated by classifying benign from invasive and bor-
derline adnexal masses with an area under the curve of
0.87 and 0.74, respectively.

CONCLUSIONS: This approach provides a generic ana-
lytical strategy for non-invasive pan-cancer detection
and cancer type prediction.

Introduction

Cell-free DNA (cfDNA) is a promising non-invasive
biomarker in liquid biopsy for cancer management.
Shallow whole-genome sequencing (sWGS) of cfDNA
can identify cancer-specific copy number aberrations
(CNAs) in patients with cancer (1, 2). Using genome-wide
cfDNA sequencing data to profile genomic imbalances, we
previously reported that CNAs in the asymptomatic popu-
lation were indicative of incipient tumors and had potential
as a cancer screening tool (3).
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In addition to CNAs, sequencing of cfDNA provides
a unique view on the genome-wide cfDNA fragmentation
profile (4, 5). CfDNA fragments carry tissue-associated nu-
cleosome and preferred end position information (6, 7),
reflecting tissue-specific degradation, chromatin accessibil-
ity, and nucleosome organization of its cellular origin
(8, 9). In healthy individuals, plasma cfDNA comprises
DNA fragments that mainly result from apoptotic release
of DNA from the cells of hematopoietic origin (10). In
plasma of patients with cancer, circulating tumor DNA
(ctDNA) has decreased fragment sizes and signatures of
the tissue of origin (8, 11). Consequently, fragmentomics
is emerging as an approach to reveal cfDNA properties,
broadening the potential of cfDNA as a biomarker (4, 12).

Increasing availability of cfDNA sWGS data from
large-scale liquid biopsy projects offer unique opportunities
to explore the cfDNA profiles bymachine learning.We hy-
pothesized that mining variation between sWGS profiles
may uncover distinct patterns that could be associated
with different pathological or physiological states. To test
this hypothesis, we applied an unsupervised clustering ana-
lysis and supervised machine learning workflow, which we
termed GIPXplore, on a large number of genome-wide
sWGS cfDNA profiles from patients with different hema-
tological or solid malignancies.

Materials and Methods

PATIENTS AND CLINICAL DATA

The study was approved by the ethical committee of the
University Hospitals Leuven (S57999, S62285, S62795,
S50623, S56534, S63240, S51375, S59207, S64205,
and S64035). Samples and consents were obtained
from healthy controls and patients with cancer. Blood
was collected either into Streck Cell-Free DNA BCT
or Roche Cell-Free DNA collection tubes. Plasma was
isolated through a standard centrifugation procedure.
Previously published sequencing data from 260 healthy
subjects (3) and 177 patients with Hodgkin lymphoma
(13) were included in the study.

SWGS ANALYSIS

cfDNA was extracted from plasma using standard pro-
cessing procedures and sWGS sequencing (14) (see
online Supplemental Material). Each sample contained
57 509 autosome bin features—normalized and
smoothed bin read counts from the standard processing.
Principal component analysis (PCA) was used for dimen-
sion reduction to transform these bin features from high
dimension to low dimension. We performed the super-
vised learning on both the original data space and PCA
transformed space and found marginal gains of perform-
ance in the majority of analyses with the original data
space. Since the computational time was much higher

using the original data space, we used PCA features in
the main analyses such that features being used in both
unsupervised and supervised learning were consistent.

GIPXPLORE

A schematic illustration of GIPXplore for mining sWGS
cfDNA data for identification of signatures is provided
in Fig. 1. We utilized unsupervised clustering and super-
vised machine learning. For unsupervised clustering, we
evaluated the variance being explained from principal
components in the tumor data. Overall, the top 30, 50,
and 100 principal components explained above 80%,
85%, and 90% of the variance in the data, respectively.
While there is no absolute optimal number of principal
components to be used for further analysis, 50 non-trivial
principal components (online Supplemental Material)
were determined as a default number for downstream ana-
lyses in the results. The Euclidean metric was used to
measure dissimilarity among samples for clustering ana-
lysis. A proximity matrix based on dissimilarity of samples
was generated. The t-distributed stochastic neighbor em-
bedding (tSNE) (15) was used to map high-dimensional
data to 2 (or 3) dimensions and to visualize the clusters.
Due to the random process of tSNE, we applied
Walktrap community (16) detection on the original prox-
imity matrix for cluster assignments regardless of the pres-
entation of tSNE visualization. In running tSNE, we set a
parameter perplexity of 15/30 and the number of itera-
tions to 10 000 with exact tSNE for accuracy, and the pro-
cess was repeated 10 times with different seeds. For
Walktrap, we used the parameters from 8 initial numbers
of neighbors’ searches and a walk step of 2. Clusters de-
fined from the community detection were used for anno-
tation. In supervised learning, PCA-transformed
genome-wide features were used in the machine learning
model for training. PCA was performed on training
data, and test data was projected on the PCA space of
training data for classification tasks. We measured per-
formance by repeating the 10-fold cross validation 10 times
and leave-one-out (LOO) procedures. For cross valid-
ation, the receiver operating characteristic (ROC) curve
and performance were calculated using the mean of 10 re-
peats. For classifiers, we used a support vector machine
and hyperparameters were chosen based on the grid search
with a subset of the data. A separate model was trained to
localize tissue of origin and LOOwas used to evaluate per-
formance characteristics. Weighted sample size was ac-
counted for in the model for imbalanced classes.

Results

GIPXPLORE DETECTS AND CLASSIFIES HEMATOLOGICAL

MALIGNANCIES WITH HIGH ACCURACY

To assess the potential for identifying cancer signals in
sWGS data, we applied our method on a set of
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cfDNA samples from healthy controls (n= 260) and pa-
tients with hematological malignancies that included
Hodgkin lymphoma (HL; n= 179), diffuse large
B-cell lymphoma (DLBCL; n= 37), and multiple mye-
loma (MM; n= 22) (Table 1). Walktrap community
detection was performed on the dataset, and 15 clusters
were defined. Visualization with the tSNE yielded se-
parations between malignant and healthy control pro-
files, and the tSNE representation was largely in
agreement with the clusters found by Walktrap
(Fig. 2, A). Moreover, we observed cancer type-specific
clusters. Clusters 1, 3, and 4 were exclusively composed
of HL samples. Cluster 9 was enriched for DLBCL sam-
ples, and cluster 13 was specific to MM samples (Fig. 2,
B and Supplemental Fig. 1).

In parallel, we benchmarked our method against
the ichorCNA (17) algorithm for copy number profiling
and tumor fraction (TF) estimation from sWGS data.
IchorCNA utilizes the depth of coverage to evaluate
the presence of large-scale copy number aberrations,

and the probabilistic model is used to infer copy number
states and estimate TF. Overall, only 52.95% of hema-
tological cancer samples had a TF higher than 3%—the
detection limit previously suggested for ichorCNA
for accurate detection of the tumor presence (17)
(Fig. 2, C, Supplemental Fig. 2, and Supplemental
Table 1). The abovementioned clusters 1, 3, and 4 con-
sisted of profiles characterized by large chromosomal
aberrations and high tumor load. Clusters 2 and 8 con-
sisted of profiles mainly from patients with HL with
both high and low TF, implying that the clustering
was not completely CNA-driven. In particular, 10 out
of 65 (15%) lymphoma samples in cluster 2 with
normal-like profiles (without detectable CNAs) grouped
together with samples characterized by detectable
CNAs. A less pronounced separation could be observed
between clusters containing healthy controls and cluster
8, in which 76% (26 out of 34) malignant cases had
normal-like profiles with less than 3% TFs. Nine HL
samples in cluster 10 showed higher bin-to-bin log2

Fig. 1. Schematic illustration of GIPXplore. Plasma cfDNA in healthy individuals comprises short
nucleosome-protected DNA fragments mainly released from the cells of hematopoietic origin. In patients
with cancer, cfDNA is also released from the tumor. Since the cfDNA fragmentation pattern is cell- or
tissue-specific, sequencing and mapping of cfDNA from a patient with cancer may have differential
genome-wide distribution of DNA fragments along the genome compared to a healthy one (green and
blue profiles respectively). The workflow of GIPXplore combines 2 tasks. First, explorative analysis of
the high-dimensional data is performed via unsupervised clustering. Data complexity is reduced by using
the first 50 linearly transformed genome-wide coverage features (non-trivial principal components, PCs)
from a large number of cfDNA profiles, which are used for dataset exploration to unveil the potential bio-
logical signals or technical confounding factors based on the sub-grouping of underlying patterns that fa-
cilitate the design of the supervised models. Concurrently, classifiers are constructed to predict disease
status and identify disease type to assess the use of such transformed genome-wide features as a marker
for diagnostic application.

cfDNA Data Mining for Cancer Detection
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Table 1 Participants and characteristics.

Stagea Age, mean (SD) Female, n (%) Total samples

Hematological cancer dataset

Healthy 69 (3) 164 (63) 260

Hodgkin lymphoma 32 (14) 98 (55) 179

I 10

II 145

III 9

IV 15

Diffuse large B-cell lymphoma 59 (13) 22 (60) 37

I 1

II 5

III 7

IV 8

unknown 16

Multiple myeloma 67 (9) 8 (36) 22

I 3

II 7

III 7

unknown 5

Solid tumor dataset

Healthy 49 (12) 107 (91) 107

Breast 56 (12) 46 (100) 46

I 23

II 12

III 5

IV 6

Colorectal 66 (12) 29 (41) 70

I 19

II 17

III 25

IV 9

GIST tumor 64 (11) NA 35

Advanced 35

Lung 44

Advanced NA NA 44

Ovarian invasive tumors 61 (14) 125 (100) 125

I 25

II 11

III 49

IV 31

Metastatic 9

Continued

4 Clinical Chemistry 00:0 (2022)

D
ow

nloaded from
 https://academ

ic.oup.com
/clinchem

/advance-article/doi/10.1093/clinchem
/hvac095/6621909 by KU

 Leuven Libraries user on 06 July 2022



ratio variations and were more likely to be noise on a
genome-wide scale (Fig. 2, D and Supplemental Fig. 3).
The remaining malignant cases without detectable
CNAs co-localized with healthy controls. To further ex-
plore whether clustering of malignant samples would be
mainly CNA-driven, we performed clustering analysis
using the log2 copy ratio values produced by
ichorCNA. The analysis revealed that genome-wide
copy number ratios alone were less informative (online
Supplemental Fig. 4). In addition, we tested whether
our method could detect underlying genome-wide
changes irrespective of the presence of CNAs by restrict-
ing the clustering to the cancer samples with ,3% TF.
The separation between some malignant and healthy
samples still remained (online Supplemental Fig. 5).
Collectively, the clustering analysis on genome-wide fea-
tures showed separation between malignant and healthy
profiles and grouping of similar cancer type-specific
profiles.

The unsupervised learning delineated cancer-
associated profile changes, which suggested that a
more precise prediction can be made by learning repre-
sentations within different tumor types using supervised
classification. Therefore, we evaluated the capability to
detect cancer signals and identify cancer types with
supervised learning on the hematological cohort.
Both LOO and repeated 10-fold cross validation
were used to assess the performance of the classifier.
Incorporating transformed genome-wide features, the
support vector machine learning model correctly classi-
fied 220 (out of 238) malignant cases in LOO analysis,
at a clinical sensitivity of 92% (95% CI, 88%–95%) and
a clinical specificity of 98% (95% CI, 96%–100%), in-
cluding 170 HL, 32 DLBCL, and 18 MM cfDNA sam-
ples (Supplemental Table 1). The remaining 18
misclassified malignant samples had normal-like profiles
and clustered together with healthy controls (online
Supplemental Fig. 6). The detection sensitivity was the
highest for HL (Supplemental Table 1). The clinical
sensitivity did not differ substantially between early
(I-II) and advanced (III-IV) stages for these cancer types,
though the distribution of the cases across clinical stages
was unequal (Fig. 3, A). ROC analysis yielded an AUC
value of 0.99 (95% CI, 0.98–1) in distinguishing

malignant from healthy samples, compared to
ichorCNA TF-based analysis, which had an AUC of
0.93 (Fig. 3, B). Repeated 10-fold cross validation also
revealed a stable performance at a mean AUC of 0.99
(online Supplemental Fig. 7). Since the clustering ana-
lysis demonstrated the co-localization of samples origin-
ating from the same cancer type, we then attempted to
determine the accuracy of our GIPXplore in cancer
type classification. For this purpose, we trained the clas-
sification model using the 220 correctly predicted
malignant samples from the LOO analysis.
The analysis showed an overall accuracy of 85%
(95% CI, 80%–90%), with the highest accuracy in
HL prediction (Fig. 3, C and Supplemental Table 2).
Consistent with the exploratory clustering analysis,
where some of the cfDNA profiles from patients with
DLBCL colocalized together with those from patients
with HL, DLBCL samples were more likely to be
misclassified.

GIPXPLORE IDENTIFIES AND CLASSIFIES DIFFERENT TYPES OF

SOLID MALIGNANCIES AND ALLOWS DISEASE STRATIFICATION

Extending our analyses, we applied our method on a so-
lid tumor dataset consisting of 320 cfDNA profiles from
patients with cancer, and a set of 107 cfDNA profiles
from healthy controls. The malignant cohort was repre-
sented by 5 tumor types: breast (n= 46), colorectal (n=
70), gastrointestinal stromal tumor (GIST; n= 35),
lung (n= 44), and ovarian (n= 125; Table 1). Using
GIPXplore, 19 clusters were identified in the solid tumor
dataset (Fig. 4, A and Supplemental Fig. 8). The separa-
tions between malignant and control cfDNA profiles
were less distinct compared to clustering results of the
hematological cancer dataset. Clusters 4, 8, 10, and 12
were found to be enriched with a particular cancer
type, in which cluster 4 was mainly enriched with ovar-
ian cancer samples, cluster 8 was primarily consisting of
cfDNA profiles from lung cancer patients, cluster 10 was
GIST-specific and cluster 12 was mainly composed of
colorectal samples (Fig. 4, B). Cluster 2, adjacent to clus-
ters 4 and 8, was enriched with ovarian samples, al-
though it co-localized with other tumor types. Clusters
9 (mostly ovarian cancer) and 15 (intermixed cancer
types) deviated from healthy and other malignant

Table 1 (continued)

Stagea Age, mean (SD) Female, n (%) Total samples

Ovarian benign 49 (16) 160 (100) 160

Ovarian borderline 51 (17) 63 (100) 63

aMultiple myeloma stratification refers to Revised International Staging System.

cfDNA Data Mining for Cancer Detection
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Fig. 2. Genome-wide cfDNAprofiles carry cancer type-specific patterns. (A), Two-dimensional tSNEvisualiza-
tion of the clustering result. Sample type is annotated by point color and community detection-resulted clus-
ters are annotatedbypoint shape.Clusternumbers are labeled in the centerof thedefinedcluster; (B), Sample
distribution in each community detection-defined cluster is shown. Theupper bar plot shows the total number
of samples grouped in each cluster and the lower bar plot depicts the proportion of each class of samples;
(C), TFestimatedusing ichorCNA. The redhorizontal line indicates adetection limit of 3%tumor fraction level;
(D), Examples of copy number profiles generated from ichorCNA for selected clusters. In each copy number
profile, red represents copy number gains and green represents copy number losses. The color is supposed
to be interpreted together with the log ratio values to pinpoint copy number gains or losses.
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clusters. The majority of the cfDNA profiles from pa-
tients with breast cancer resembled profiles from healthy
controls, while one advanced stage breast cancer sample
was found in cluster 8, and 2 samples from patients with
advanced stage primary metastatic disease were found in
cluster 2 (Fig. 4, A and B).

Compared with the hematological cancer dataset,
ctDNA fractions estimated by ichorCNA were generally
lower in the solid malignant cohort (Fig. 4, C). TF var-
ied among different types of cancer and increased with
the stage (online Supplemental Fig. 9). The malignant
cases with detectable CNAs and therefore higher TF
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Fig. 3. Plasma cfDNA genome-wide signatures enable hematological malignancies detection and sub-
type prediction. (A), Clinical sensitivities for detection of subtypes of hematological malignancies.
Performance for early and advanced stages for DLBCL andHL are shown. Three (revised international staging
system) stages of MM are shown. The 95% confidence interval is shown as an error bar; (B), The receiver op-
erating characteristic curves for performance comparison between the genome-wide feature analysis and
ichorCNA TF analysis. For the genome-wide feature analysis, the decision value from support vector machine
(SVM) prediction is used to build a dynamic threshold of true and false positives. TF values were used to con-
struct ROC for ichorCNA analysis; (C), Confusion matrix for tissue of origin detection in hematological tumor.
The color shading represents the proportion of samples being correctly localized. The labeled numbers indi-
cate the number of samples being classified into the class.
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Fig. 4. Clustering analysis elucidates profile representations in solid tumors. (A) Two-dimensional tSNE
visualization of solid tumor dataset clustering result. Sample type is annotated by point color and community
detection resulted clusters are annotated by point shape. Cluster numbers are labeled in the center of the
defined cluster; (B), Sample distribution in each community detection-defined cluster is shown. The upper
bar plot shows the total number of samples grouped in each cluster and the lower bar plot depicts the pro-
portion of each class of samples; (C), TF estimation for indicated types of solid tumors. The red horizontal line
indicates a detection limit of 3%TF level; (D), Examples of copy number profiles generated from ichorCNA for
selected clusters.
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were more likely to separate from the healthy controls
(online Supplemental Fig. 10). Cluster 4 contained
ovarian cancer samples with detectable chromosome in-
stability. Among lung cancer profiles in cluster 8,
64.29% (9 out of 14) had detectable CNAs. Clusters
16 to 19 included 4 ovarian samples with high chromo-
somal instability that greatly deviated from other pro-
files. Overall, in clusters 9 and 15, profiles tended to
be noisy, without clear CNAs (Fig.4, D), however,
they deviated from healthy control and other malignant
clusters (Fig. 4, A). When using the log2 copy ratio pro-
files from the CNA analysis to investigate whether the
sub-grouping of cfDNA profiles was driven by CNAs,
cancer type-specific clustering patterns were diminished
(online Supplemental Fig. 11). When restricting
the clustering analysis to samples with TF ,3%, sam-
ples from clusters 9 and 15 still showed deviations
from normal profiles (online Supplemental Fig. 12,
clusters 8 and 9).

We next investigated whether supervised learning
using genome-wide features can enhance the detection
of solid malignancy signals in sWGS cfDNA data.
Classification of samples as either healthy or malignant
(107 healthy controls and 320 malignancies) was per-
formed using the support vector machine model, with
performance estimated by LOO and repeated 10-fold
cross validation. With an overall accuracy of 65%, we
correctly detected 177 out of 320 cancer profiles
(55% clinical sensitivity, 95% CI, 50%–61%), at a
clinical specificity of 95%. Performance in individual
tumor types ranged from 15% (95% CI, 6%–29%)
for classifying breast cancer to 80% (95% CI, 63%–
92%) for GIST (see online Supplemental Table 3).
Stage of the disease affected the detection, with a clin-
ical sensitivity of 26% (95% CI, 18%–36%) in the
early stage (I-II) vs 70% (95% CI, 63%–76%) in the
advanced stage (III-IV). In individual tumor types, it
remained true that higher sensitivities were found for
the advanced stages than for the early-stage diseases
(Fig.5, A). Colorectal cancer was an exception as clinic-
al sensitivities were almost the same for early and ad-
vanced cancer stages. Misclassified malignant samples
had low TF, which potentially restricted the detection
of underlying tumor-specific patterns (online
Supplemental Fig. 13). We could distinguish malig-
nancy from healthy samples with an AUC of 0.83
(95% CI, 0.79–0.87), which again was superior to
ichorCNA TF-based analysis (0.73 AUC; 95% CI,
0.69–0.78; Fig. 5, B and Supplemental Fig. 14).
Subsequently, we explored the potential of our
GIPXplore method for tumor classification. When per-
forming tumor type-specific prediction with the 171
correctly predicted primary tumor samples, the LOO
validation resulted in a 69% (95% CI, 61%–76%)
overall accuracy. Highest clinical sensitivities (.70%)

were obtained for cfDNA samples from patients with
ovarian cancer and GIST. At the same time, ovarian
and colorectal tumor cfDNA profiles were more likely
to be misassigned to each other (Fig. 5, C and
Supplemental Table 4).

Moreover, among this solid malignant cohort, we
had 9 cfDNA samples from patients with ovarian me-
tastases, of which 4 patients had gastrointestinal pri-
mary sites, 1 lymphoma, 1 leiomyosarcoma, 1
uterine origin, and the remaining 2 had Krukenberg
tumors. Annotation of these 9 cases on the tSNE
plot showed that metastatic profiles could resemble
profiles of either the primary tumor or the distant
site (online Supplemental Fig.15,A). Applying the
type-specific classifier to the 6 metastatic cases that
were predicted as malignant cases by the malignancy
classifier, the case with gastrointestinal origin that
was co-clustered with colorectal samples was classified
to be colorectal class. Two out of 3 metastatic cases
that were identified in intermixed clusters of lung
and ovarian tumors were predicted to be lung class
and the other one was assigned to ovarian class. The
additional 2 cases identified by the classifier were clas-
sified to the ovarian and colorectal classes, respectively
(Supplemental Fig. 15, B).

ACCURATE CLASSIFICATION OF BENIGN FROM INVASIVE AND

BORDERLINE ADNEXAL MASSES MAY IMPROVE CLINICAL

MANAGEMENT

In addition to the invasive ovarian tumor samples, our
cohort contained 160 benign and 63 borderline ovarian
samples. To assess the potential utility of the method
for ovarian cancer management, we analyzed the ovarian
tumor cohort independently by performing clustering
analysis and building the ovarian-specific classifier to dif-
ferentiate benign frommalignant adnexal masses. Benign
and borderline samples were less likely to have detectable
ctDNA levels (online Supplemental Fig. 16). In the clus-
tering analysis, 35 invasive samples formed a distinct group
in cluster 1. In clusters 6 to 9, common patterns were
found for invasive, benign and borderline samples, al-
though they remained distinct from controls (online
Supplemental Fig. 17). The classification analysis exhib-
ited an AUC of 0.85 (95%CI, 0.80–0.90) in discriminat-
ing benign from invasive samples, and an AUC of 0.74
(95% CI, 0.69–0.79) in discriminating benign from bor-
derline and invasive samples (online Supplemental Figs.
18 and 19).

Discussion

We present here a generic approach for cancer identifi-
cation and classification by mapping genome-wide
cfDNA signatures, without prior knowledge of genetic
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alterations or predefined signatures in the sequencing
data. The unsupervised clustering allows the discovery
of hidden genome-wide patterns, and the supervised
learning model can be trained to detect such underlying
signatures. This method can be used to classify cfDNA
samples by matching to existing datasets and has the po-
tential to be used as a pan-cancer assay for detection and
typing of multiple cancers from one blood draw.

Current sWGS cfDNA analyses mainly focus on
the detection of somatic CNAs (17–19). These methods
are blind to events that involve copy neutral abnormal-
ities. Our approach also differs from the previous meth-
od that classified tumor types based on selected CNAs,
and in which normal-like profiles were incapable of tu-
mor classification (20). We demonstrate that even pro-
files without detectable CNAs carry informative and
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Fig. 5. Malignancy detection and typing in solid tumors. (A), Clinical sensitivities for detection of different
types of solid malignancies detection. Performance for detection of early and advanced stages of disease
is shown; (B), The receiver operating characteristic curves for performance comparison between the
genome-wide feature analysis and ichorCNA tumor fraction analysis; (C), Confusion matrix for tissue of
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discriminative patterns in sWGS data. Different recent
studies have utilized methylation, transcription factor
binding, fragment lengths, or chromatin immunoprecipi-
tation of cell-free nucleosomes sequencing for cancer detec-
tion (4, 12, 21–25). While these studies have important
implications and show cfDNA as a promising biomarker,
they require more specific workup and/or deeper sequen-
cing. In contrast, analysis of sWGS data can be easily
adapted in clinical settings and complement CNA analysis.
By mapping differences among the cfDNA profiles, shared
abnormality patterns are captured.

One prior study has reported the largest
population-level cfDNA methylation study for multi-
cancer detection, in which the targeted methylation ana-
lysis of cfDNA enabled detection of more than 50 cancer
types at a clinical sensitivity of 54.9% and at a clinical
specificity of 99% (21). This test was refined and vali-
dated in an independent follow-up study, with an overall
clinical sensitivity of 51.5% at 99.5% clinical specificity
reported (26). We estimate the clinical sensitivity of
92% and 55% at above 95% clinical specificity for the
hematological and solid cancer cohorts, respectively.
Performance for cancer signal detection varied among
the different cancer types and stages. While hemato-
logical malignancies, with tumor cells being in direct
contact with blood, were more likely to be detected,
the prediction accuracy of solid malignancies was lower.
Though with a high proportion (72%) of early-stage dis-
eases, the hematological malignancies showed higher
overall tumor fractions and higher dispersion of
cfDNA profiles. The estimated TFs of solid malignan-
cies were lower. In addition, distributions of early and
advanced stages were unequal in the solid tumor cohort:
GIST and lung had only advanced cancers and showed
higher clinical sensitivity. Early-stage solid malignancies
had lower performance, and breast cancer, having 76%
of the early-stage disease, showed the lowest clinical sen-
sitivity among all tumor types in the study. Shedding
of the ctDNA from breast cancer is known to be low
(27, 28). Apart from potential screening applications,
we also demonstrated that GIPXplore could be used
for risk stratification and management of a specific
cancer type. Discrimination between malignant, border-
line, and benign masses at diagnosis is of critical import-
ance to improve patient management (29, 30).

The accuracy of tumor type-specific prediction
might depend on the intrinsic tumor characteristics.
For example, DLBCL, being more heterogeneous on
the molecular level (31, 32), had lower classification ac-
curacy than HL and MM. The subtype of colorectal and
ovarian tumors is of similar cellular origin, and histo-
logical subtypes can be hard to distinguish (33–35),
which might be a reason for misclassification amongst
the 2 cancer types. The identification of the origin of
some metastases suggests the method may allow the

identification of unknown primary cancers. The meta-
static cases were classified into profiles of their primary
or distant sites, possibly reflecting changes during the
metastatic progression or dynamic tumor DNA shed-
ding from tumor tissues (36–38).

Interestingly, besides tumor type- or aberration-
specific sub-groups, our analysis revealed the presence
of additional clusters that segregated from healthy
controls (Fig. 4, B and Supplemental Fig. 17). Though
the origin of such segregations remains unknown, we hy-
pothesize the method provides a system-wide insight, po-
tentially reflecting (patho)physiological conditions of
these individuals. Dynamic cellular responses and malig-
nant cell proliferation with active involvement of im-
mune response during (early) carcinogenesis might lead
to the observed common changes in cfDNA composition
across different cancer types (39, 40). Therefore, it is pos-
sible that our analysis detected tumor-driven immune or
other biological responses or states.

GIPXplore provides an unbiased genome-wide scan
of cfDNA profiles. However, it also has some limita-
tions. Inspection of the data using clustering (online
Supplemental Fig. 20, A) revealed that pre-analytical
factors, i.e., usage of different library preparation kits,
could result in cluster separations (Supplemental Fig.
20, B). Hence, to avoid the bias, we analyzed the data
of hematological and solid tumor cohorts separately.
Other potential pre-analytical factors, including sequen-
cing batch, age, and sex, did not indicate an apparent
confounding effect on the clustering of cfDNA samples
(Supplemental Fig. 20, C–E). Increasing the sequencing
depth might improve detection of disease-specific
cfDNA patterns and improve the clinical sensitivity of
our methodology further. The data presented here has
a larger proportion of HL and ovarian cancer samples
and is limited in the number of different cancer types,
which may affect the aggregated sensitivity and distort
tumor typing accuracies. A higher proportion of ad-
vanced stage cancer samples in the solid cancer cohort
may also skew the performance estimation. Further in-
vestigation on an independent cohort is required to
evaluate the test performance and utility of such analysis
in asymptomatic populations. We foresee that expand-
ing the breadth of the evaluated cancer types may im-
prove prediction of tissue/cell origin and facilitate a
deeper understanding of cfDNA in the context of tu-
mors. Increasing the range of physiological states and
diseases that are relevant for these tumor samples will
be essential to fully interrogate the potential and limita-
tions of our approach. The approach may also be further
broadened to project and embed new treatment or
follow-up data for cancer prognosis and monitoring.

In conclusion, we have extended the scope of
cfDNA analysis, allowing affordable identification of
genome-wide cancer-(type-)specific signatures from
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shallow sequencing data, allowing improved discrim-
ination between profiles from cancer patients and
healthy individuals. This study lays the foundation
for enhanced genomic characterization of cfDNA
that can be used for improved cancer management.
We foresee that the method can be scaled up for
detection of multiple pathological conditions.

Supplemental Material

Supplemental material is available at Clinical Chemistry
online.

Nonstandard Abbreviations: cfDNA, cell-free DNA; sWGS, shallow
whole-genome sequencing; CNA, copy number aberration; PCA,
principal component analysis; tSNE, t-distributed stochastic neighbor
embedding; LOO, leave-one-out; HL, Hodgkin lymphoma; DLBCL,
diffuse large B-cell lymphoma; MM, multiple myeloma; TF, tumor
fraction; AUC, area under the curve; GIST, gastrointestinal stromal
tumor.
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