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Abstract. Advances in Al, and especially machine learning, are increas-
ingly drawing research interest and efforts towards predictive process
monitoring, the subfield of process mining (PM) that concerns predict-
ing next events, process outcomes and remaining execution times. Un-
fortunately, researchers use a variety of datasets and ways to split them
into training and test sets. The documentation of these preprocessing
steps is not always complete. Consequently, research results are hard or
even impossible to reproduce and to compare between papers. At times,
the use of non-public domain knowledge further hampers the fair com-
petition of ideas. Often the training and test sets are not completely
separated, a data leakage problem particular to predictive process mon-
itoring. Moreover, test sets usually suffer from bias in terms of both the
mix of case durations and the number of running cases. These obstacles
pose a challenge to the field’s progress. The contribution of this paper
is to identify and demonstrate the importance of these obstacles and to
propose preprocessing steps to arrive at unbiased benchmark datasets in
a principled way, thus creating representative test sets without data leak-
age with the aim of levelling the playing field, promoting open science
and contributing to more rapid progress in predictive process monitoring.

Keywords: Predictive Process Monitoring - Remaining Time Predic-
tion - Bias - Benchmarking - Reproducibility - Datasets - Preprocessing

1 Introduction

Process mining analyzes event data logged by information systems with the
goal of process discovery, process conformance checking and process enhance-
ment. Predictive process monitoring is an important sub-field of process mining
and concerns predicting next events, process outcomes and remaining execution
times. The field is enjoying increased interest and is progressing thanks to oppor-
tunities offered by developments in Al and machine learning and the availability
of data. Consequently, an increasing number of papers concerning predictive
process monitoring are being published. Studying them, however, we identified
three major obstacles to further progress in the field.
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The first obstacle involves the use of different datasets that complicates or
even impedes the comparison of results between papers. Even though many re-
searchers use publicly available datasets, differences in their pruning and train-
ing/test set splits lead to significantly diverging results. Somewhat unfairly, some
of these preprocessing decisions may have been guided by domain knowledge un-
available to all researchers. The second obstacle concerns the proper splitting of
training and test sets. When using standard temporal splitting or cross-validation
techniques, a number of cases will have prefixes in both the training and test
set which is a form of data leakage and affects prediction performance. Most
papers do not remedy this issue. For correct science, however, predictive process
monitoring problems require a specific data split technique. The third obstacle
relates to two forms of bias that are often ignored: when crudely determining
start and end times for training and test sets, the number and average length of
running cases at any given time may be greatly impacted at the chronological
beginning and ending of these training and test sets.

To overcome these three obstacles, we believe predictive process monitor-
ing needs benchmark datasets with predefined targets, training and test sets.
With such datasets available, researchers could process the training sets at will
while having to test their results on the given test sets. Benchmark datasets
have always played an important role in major machine learning areas such as
natural language', reinforcement learning?, image recognition, etc. They allow
the research community to compare different proposed methods and spur the
development of new state-of-the-art ideas, often in the form of competitions.
Well-known examples in the field of image recognition include —sorted by in-
creasing size and complexity— MNIST? (60,000 black-white handwritten digit
images), CIFAR-10* (60,000 color images in 10 classes) and ImageNet® (14 mil-
lion images in 20,000 classes), progressively used as the field matured.

The contribution of this paper is twofold. First, we want to expose the three
obstacles mentioned above by investigating nine of the most commonly used
public process mining datasets. Second, based on this analysis, we derive a set
of proposals on how to design benchmark datasets for predictive process moni-
toring. These will ensure fairness, enable reproducibility and facilitate progress
in the field. The code to implement our proposals is publicly available.

The next section refers to influential process outcome prediction research and
relates it to the three obstacles. We then detail our approach in Section 3 and
describe our experimental setup in Section 4. We derive preprocessing steps that
convert public datasets into unbiased benchmark datasets in Section 5. Using
a simple convolutional neural network (CNN), Section 6 exposes the impact of
dataset design decisions before concluding in Section 7.

! https://gluebenchmark.com/

2 https:/ /arxiv.org/abs/2004.07219

3 http://yann.lecun.com/exdb/mnist/

4 https://www.cs.toronto.edu/ kriz/cifar.html

® https://image-net.org/

5 https://github.com/hansweytjens/predictive-process-monitoring-benchmarks
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2 Related work

When exploring some of the most influential original papers and surveys on out-
come [1, 2], next event [5,6,8] or remaining time [3,5, 7] prediction, the first
obstacle of poor comparability becomes immediately apparent. Even where re-
searchers work with the same datasets, direct comparisons of their results prove
impossible. For example, the classes for the BPIC_2011 and Traffic datasets are
defined differently by Teinemaa et al. [1] and Kratsch et al. [2]. In next event pre-
diction, Tax et al. [5] consider only events of type “complete” whilst Evermann
et al. [6] create new features by concatenating the “activity” and “resource” fea-
tures. In the remaining time prediction problem, Tax et al. [5] and Verenich et
al. [3] use different ratios (67%/33% and 80%/20% respectively) when chrono-
logically splitting training and test sets, whereas Polato et al. [7] use fivefold
cross-validation. In their literature overview study, Neu et al. [4] acknowledge
the latter problem and propose to “use a unified evaluation approach for further
publications.” Other than Teinemaa et al. [1] largely solving and Verenich et
al. [3] recognizing (but also accepting) the data leakage problem when naively
splitting training and test sets, we found no mention of the second obstacle in
these papers. To the best of our knowledge, no research diagnoses the third
obstacle of bias.

3 Approach

To counter the first obstacle’s lack of comparability, we will formulate a stan-
dardized preprocessing approach to construct benchmark datasets in Section 5.
Along the steps in this preprocessing procedure, we will observe and remedy
both the second obstacle of data leakage between test and training sets and the
third obstacle of bias as they appear. We will use nine datasets to analyze the
problems and illustrate the preprocessing steps and their effects on prediction.
Before doing so, we first define the four main guiding principles that steer this
work:

— A principled approach: increases transparency and enables reproducibil-
ity to other datasets / problems,

— Proximity to real-life: creates datasets that resemble the original under-
lying business problems as much as possible,

— Enabling of good science: (only) where required, we deviate from the first
two principles for the benefit of science,

— Domain agnosticism: as domain knowledge is often sparse and unevenly
distributed amongst researchers, we refrain from using it altogether.

We demonstrate how different preprocessing impacts prediction results. It is
rather unconventional to illustrate the importance of the problem towards the
end of a paper; however, in our case, it offers the benefit of having clearly-defined
preprocessing steps that each generate different variants of the original datasets
on which we ran a simple convolutional network to predict remaining times.
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4 Experimental setup
4.1 Preliminaries

In predictive process monitoring, datasets are event logs describing processes,
often called cases. These cases consist of events. A number of features describe
these cases and events. Every event is also associated with a target feature. A
prefix is an ongoing case, with the prefiz length its number of completed events.
The learning problem is to train an algorithm on a training dataset containing
events, described by their features and organized in prefixes labelled with targets,
with the goal of predicting the targets of unseen prefixes.

We distinguish two phases in the preprocessing process. We will restrict the
use of the term preprocessing to refer to the first phase steps that are only
performed once and lead to the construction of unique benchmark training and
test sets. The second phase involves further steps, such as feature selection and
standardisation taken by individual researchers to prepare these fixed training
and test sets to train and test their models. This latter phase is not subject of
this paper and belongs to the area where researchers and ideas compete.

4.2 Datasets

We used five publicly available datasets from the 4TU.ResearchData reposi-
tory. BPIC_20127 contains logs of a loan application process at a Dutch bank.
BPIC_2015 8 is a collection of building permit applications in five Dutch munici-
palities, which we concatenated into one dataset. BPIC_2017? is a richer, cleaner
and larger set of logs of a Dutch bank loan application process. BPIC_2019'°,
while comparable in size, has much shorter cases and concerns a purchase order
handling process. BPIC_2020'! is a collection of five smaller datasets related to
travel administration at a university. The five subsets are records of processes
covering domestic declaration documents (Domestic Declarations), international
declaration documents (Intl. Declarations), pre-paid travel costs and requests
for payment (Payments), travel permits (Permits) and expense claims (Travel
Costs). Our target for all of these datasets was defined as the fractional num-
ber of days until case completion. Table 1 provides some key statistics of these
datasets.

4.3 Models

To illustrate the relevance of the preprocessing choices to construct datasets
at the hand of the remaining time prediction problem, we calculated the mean
absolute error (MAE) of a CNN model on various preprocessing versions of the
datasets. For each dataset, we included one categorical (“activity”) and one
range (“elapsed”: time since case start) feature. We used embedding to feed the

" https://data.4tu.nl/articles/dataset /BPI_Challenge_2012/12689204

8 https://data.4tu.nl/collections/BPI_Challenge_2015/5065424

9 https://data.4tu.nl/articles/dataset /BPI_Challenge_2017 /12696884
10 https://data.4tu.nl/articles/dataset/BPI_Challenge_2019/12715853
" https://data.4tu.nl/collections/BPI_Challenge_2020,/5065541
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Table 1. Statistics of the used datasets™.

Dataset Nr. Nr. Median| Avg. |Median|Mean| Max |Dataset
cases | events nr. nr. nr. nr. | nr. nr.
events |events| days |days |days| days
BPIC_2012 12,183 | 228,873 9 18.8 0.5 7.8 |137.2| 152
BPIC_2015 5,641 | 262,328 45 46.5 | 68.4 |100.8|1,512| 1,617
BPIC_2017 31,497 (1,201,390 35 38.1 | 19.1 |21.9 |286.1] 397
BPIC_2019 251,465(1,587,810| 5 6.3 64.0 | 69.5 |380.0| 830
IBPIC 2020: | S I A R N
Domestic. Declarations|| 6,087 | 56,359 5 9.3 14.3 [101.7|735.2| 773
Intl. Declarations 1,440 | 71,735 13 49.8 | 416.1 [382.9|781.7| 1,010
Payments 6,593 | 35,046 5 5.3 7.9 11.1 |1,238| 711
Permits 7,063 | 86,560 11 12.3 | 71.7 | 87.1(502.4| 1121
Travel Costs 2,097 | 18,238 8 8.7 24.0 | 36.7 |325.0| 749

*QOutliers already removed as per Subsection 5.2.

categorical feature in the models and reduced its dimensionality to the square
root. Two convolutional layers followed the embedding layer, each with 40 kernels
of size three and a max-pooling operation with a window of size three. The
stride size for both the kernels and pooling was one. Two dense layers of sizes
100 and ten and with a ReLu activation completed the architecture. We reduced
overfitting with early stopping using a validation set of the 20% latest-starting
cases in the training sets and a patience of 30. The sequence length was ten, the
batch size 2048.

5 Constructing benchmark datasets

This section applies to remaining time prediction and classification problems.
There are some important differences with next event predictions that will be
covered in subsection 5.8.

5.1 Target definition

Remaining time targets are defined as the remaining time between an event’s
time stamp and the case’s last time stamp. For classification tasks, however,
determining targets requires weakening the domain agnosticism principle and
recourse to an authority for a final decision.

5.2 Elimination of chronological outliers and duplicates

The BPIC_2015 dataset contains cases starting in the period 2009-2015. As is
shown in the top row in Fig. 1, the cases in the year 2009 appear aberrant as
they are few in number and last much longer than cases in the following years.
When zooming in on cases starting before 2011-01-31st (bottom row), we see
that the log starts behaving “normally” as of October 2010. In the following,
we only included cases starting after Oct 1st, 2010. We found similar outliers in
BPIC_2019.
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Fig. 1. BPIC_2015 contains remote, faulty outliers at the beginning of the dataset.

Similar patterns arose for the case’s ending times at the end of all datasets
involved. To remove those outliers, we imposed new end dates. An overview can
be found in Table 2.

Table 2. Start and end dates before and after eliminating outliers.

Dataset Original dataset After removing outliers
First event|Last event|Start in/after|[End before/in
BPIC_2012 2011-10 | 2012-03 - 2012-02
BPIC_2015 2009-11 | 2015-07 2010-10 -
BPIC_2017 2016-01 2017-02 - 2017-01
BPIC_2019 1948-01 | 2020-04 2018-01 2019-02
IBPIC2020: [ [ | -]
Domestic Declarations|| 2017-01 2019-06 - 2019-02
Intl. Declarations 2016-10 | 2020-05 - 2019-07
Payments 2017-01 2019-08 - 2018-12
Permits 2016-10 | 2021-08 - 2019-10
Travel Costs 2017-01 | 2019-02 - 2019-01

A dataset may also contain faulty outliers. These are not detectable with-
out domain knowledge and therefore we did not attempt to remove them. The
elimination of duplicates requires no further discussion. None were found in our
datasets. For clarity, all tables and graphs (outside of this subsection) in this
paper, including the preceding Table 1, rely on datasets without chronological
outliers.

5.3 Debiasing the end of the dataset

In order to know their targets, a dataset should only contain completed cases.
Without domain knowledge, however, we cannot be 100% certain which cases
are completed. We therefore drop the potentially incomplete cases that start
in the yellow zone (both light and dark maroon) in the artificial example of
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Fig. 2. To be on the safe side, the zone’s width equals the duration of the
dataset’s longest case. This introduces two forms of bias towards the end of
the dataset (third obstacle). First, the black-grey cases that end in the yellow
zone have a longer average duration than the grey cases ending before the yellow
zone. Moreover, the number of running cases in the yellow zone (black prefixes)
no longer reflects the underlying reality, which is the second form of bias. It
prohibits the use of inter-case variables to compute for example the load of a
resource dealing with the cases. To debias the ending of the dataset, we must
reject the (black) prefizes ending in the yellow zone. Cases for which we removed
the longer (black) prefixes, still remain in the dataset with their shorter (grey)
prefixes whose targets are known.

| Training set Test set | Rejected

Cases NOT
part of
training

Prefixes
NOT part

Prefixes of test set

NOT part J
of test set known
Biased! Biased! Biased!
Time >

Fig. 2. An artificial dataset with cases ranked by starting time.

Note that one (possibly faulty) long case in the dataset could suffice to
severely reduce the training set size or even annihilate it when debiasing the
dataset’s end. This problem will be tackled below in Subsection 5.7.

5.4 Choice of test set

Some authors (e.g. [6,7]) use cross-validation for predictions (not just whilst
training) to make their models robust against concept drift. However, some of
that concept drift can be attributed to the end-of-dataset bias we described
and remedied above. Moreover, concept drift happens in real-life situations too.
It may be even learnable to some extent. As the strict separation of training
and test sets (second obstacle) is also more difficult to implement in a cross-
validation setting, we recommend using a classic temporal training/test split for
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all of these reasons. Larger test sets are more likely to be representative for the
whole dataset, but will reduce the size of the corresponding training set and
carry a higher risk of real concept drift. As a compromise, we propose that test
sets consist of the last 20% of the datasets’ cases chronologically.

5.5 Temporal splitting

To isolate a test set, many authors rank cases by the timestamp of their first
event and determine a separation time, with the x% last cases starting after that
time going to the test set and the remainder constituting the training set. From
a real-life perspective, the logical flaw is that the outcome (remaining time or
class) of incomplete cases in the training set (red/grey in Fig. 2) is not known at
that separation time. Moreover, some cases from the training set and test will
be running concurrently and influencing each other. This is the second obstacle
mentioned in the introduction. To counter it, we recommend to always apply
“strict temporal splitting” by only retaining in the training set those cases that
are completed before the separation time. These are colored in green in Fig. 2.
As a result, the training set will contain two biased zones (light blue), at its
beginning and end. It is left to researchers to debias these zones as they see fit.
A compelling reason to make this imperative is not present. Depending on the
duration of the cases in relation to the time span covered by the dataset, the
difference between strict and regular temporal splitting can be rather significant,
as demonstrated in Fig. 3.

BPIC_2012 BPIC_2015 BPIC_2017
E| I . I 6000 100000
= 40000
v
2 | 4000
s 20000 BN training set correct 50000
H EEE training set wrong 2000
B test set
0 0 o]
BPIC 2019 BPIC_2020 dom_decl BPIC 2020 int_decl
150000 6000
2 4000
f=4
% 100000 4000
s 2000
= 50000 2000
o] 0 o]
BPIC_2020_payments BPIC_2020_permits BPIC_2020_travel_costs
8000 2000
3000
% 6000 1500
£ 2000
o 4000 1000
k]
& 1000 2000 500
0 0 0
prefix ending months (chronological) prefix ending months (chronological) prefix ending months {chronological

Fig. 3. Grey bars represent test set events (20%). Green bars are events in training set
cases ending before the separation time (strict temporal splitting), red ones belong to
cases ending after that separation time (regular temporal splitting). As debiasing was
not done to retain sufficient samples, the bias at the datasets’ ends is clearly visible.
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5.6 Debiasing the beginning of the test set

We now face both obstacle three biases at the beginning of the test set. Of
the (red-grey) cases that start before the separation time but end after it, we
also include in the test set those (grey) prefizes that end after the separation
time. This restores balance both in terms of the case lengths and the number
of running cases. It also better resembles real-life settings where a maximum of
available data at any given time would be considered.

5.7 Removal of long cases

Applying our third guideline, we suggest discarding extremely long cases from
the dataset in the interest of the dataset’s survival when removing biases at
the end of the dataset as described in Subsection 5.3. This clearly changes the
nature of the original dataset, but we believe that leaving the biases in would
have a more negative impact. Fig. 4 plots the size of the training and test sets
(in number of events) constructed as described above for different maximum
case durations. Keeping the longest cases would drastically, often fatally shrink
the datasets as can be seen on the right side of the graphs. Some degree of
pragmatism is called for: we propose removing up to, but no more than, 5%
of the longest-lasting cases to find the case duration within the window that
corresponds with the largest training set (in number of cases) as shown by the
red lines in Fig. 4. We, thus, obtain the training and test sets in Tables 3 and 4.
The (quasi) disappearance of the training sets for BPIC_2020 Domestic and Intl.
Declarations disqualifies them for serious research. Of course, steps 5.3 - 5.6 have
to be carried out after removing the longest cases. We only discussed the removal
last, as it assumes an understanding of these same steps 5.3 - 5.6.

5.8 Next event prediction

As the targets in the next event prediction problem do not depend on the knowl-
edge of cases’ final events, subsections 5.3 - 5.7 no longer apply: we can work
with prefixes rather than completed cases. After removing the chronological out-
liers, it suffices to separate training and test sets by chronologically sorting all
remaining events in the log and determining the 80%/20% separation time. All
prefixes (not cases) ending before that separation time belong in the training set,
and those ending after it constitute the test set. Viewed on Fig. 2, this means
we retain all cases in the yellow zone and keep the red prefixes in the training
set.

6 Model predictions

With the example of the remaining time prediction problem, Fig. 5 visualizes the
impact of the preprocessing decisions on predictions. For every dataset, we ran
seven simulations. The first simulation concerned a base case with a train/test
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split of the first 90% and last 10% starting cases. In the following six simulations,
we successively introduced the measures from Section 5. The maximal durations
used in the last simulation correspond to the red vertical lines in Fig. 4. The
resulting quality of the predictions from the CNN model, expressed as MAE, is
represented by the black lines (left vertical axis). The obtained sizes of training
(green bars) and test set (grey bars) are calibrated to the right vertical axis.
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Fig. 4. Size of training and test sets in function of maximal case lengths. Debiasing
and strict temporal splitting applied. Vertical red lines show our proposals.

Table 3. Proposed benchmark datasets™ (test set 20%): Timing.

Original datasets™ Proposed datasets
Max. |Data-| Data- | Data- ||[Max.| Data- Test Test
Dataset .

duration| set set set ||dura-| set set (= Data-)

cases nr. start end tion nr. start set

days cases| days end
BPIC_2012 137.2 | 152 |2011-10{2012-02| 32.3 | 119.7 |2012-01-05|2012-01-28
BPIC_2015 1,512 |1,617|2010-10{2015-03/302.8(1,314.2|2013-06-10{2014-05-10
BPIC_2017 286.1 | 397 (2016-01|2017-01| 47.8 | 348.5 |2016-10-10|2016-12-14
BPIC_2019 380.0 | 830 |2018-01|2019-02||143.3| 253.6 |2018-07-19{2018-09-11
IBPIC_2020: ||~ T A N
Payments 1,238 711 |2017-01|2018-12| 28.9 | 682.2 |2018-09-14|2018-11-22
Permits 502.4 |1,121(2016-10|2019-10[258.8| 806.2 |2018-09-07|2018-12-20
Travel Costs|| 325.0 | 749 [2017-01{2019-01(/114.3| 634.0 |2018-07-06|2018-10-06

*Qutliers removed as per Subsection 5.2.
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Table 4. Proposed benchmark datasets™ (test set 20%). For the test sets, the total
number of cases are listed first, followed by cases at the beginning of the test set
missing some of their shorter prefixes (red/grey in Fig. 2), cases at the end of the
test set missing their longer prefixes (grey/black in Fig. 2) and cases with all prefixes
present in the test sets (grey in Fig. 2). The last column is the total number of cases
in the dataset, but with the average of both kinds of incomplete test set cases rather
than their sum.

Number of cases

Original || Training Test Total

Dataset dataset set set dataset
all |missing, missing,com-| all |  full
I short 1| long Iplete I case

\ \ \ Lot
prefixes prefixes ‘equivalent

BPIC 2012 || 12,183 || 7.019 |2,468, 570 , 621 ,1,340] 9,487 , 8,955
BPIC_2015 || 5,641 || 3,311 |1,1161 229 1 221 1666 | 4,427 | 4,202
BPIC_2017 || 31,497 || 21,404 7,902} 2,040 } 1,754 }4,108 29,306} 27,409

BPIC_2019 | 251,465 || 84,233 |86,905, 52,676 | 46,423 5,327|171,138; 139,110
BPIC2020: || [ | v oo T
Payments || 6,593 || 4,494 |1,203| 135 | 171 | 987 | 5,787 | 5,634
Permits 7,063 | 4,168 |2,6791 1,309 | 831 | 667 | 6,847 | 5,905

Travel Costs|| 2,097 1,265 | 533 ' 173 ' 100 ' 260 | 1,798 ' 1,662
*QOutliers removed as per Subsection 5.2.
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Fig. 5. Prediction results (MAE, lower is better) vary significantly in function of the
chosen training and test data sets, calling for an agreement on proper benchmarks.
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7 Conclusion and future work

In this paper, we demonstrated the impact of dataset preprocessing choices and
pointed out the problem of overlapping training and test sets and at two sources
of bias in test sets. Left unaddressed, these three obstacles risk slowing down
progress in the field of predictive process monitoring. We argued for the use of
unbiased benchmark datasets with strict temporal splitting of training and test
sets. Using the example of nine BPIC datasets and the remaining time predic-
tion problem, we established preprocessing steps to construct such benchmark
datasets. The scripts for our examples are publicly available!?. It is our hope
that researchers will use these benchmarks and thus facilitate a more rapid ad-
vancement of predictive process monitoring as the comparability and quality (no
data leakage, no bias) of their results improves. In the future, perhaps recom-
mendations for metrics and statistical analysis of results could be formulated
to further enhance comparability and interpretability. We also hope that other
publicly available datasets will be constructed using our proposed transforma-
tion steps. The scientific marketplace will then decide which of these datasets will
become predictive process monitoring’s next MNIST, CIFAR-10 or ImageNet.
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