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Abstract—Mathematical optimization techniques play a key
role in enabling the power system transition to sustainable
energy and are used for a variety of applications such as
scenario analysis, optimal planning and operational decision
making. Power flow optimization, a.k.a., optimal power flow, is
a building block for many applications in network operations
and planning. This paper discusses the treatment of general
polynomial chaos expansion for the current-voltage formulation
of the optimal power flow problem. The power flow equations of
the current-voltage formulation are linear, making their Galerkin
projection significantly more tractable compared to formulations
in the power-voltage space, while still being exact. Furthermore,
auxiliary variables and quadratic constraints enable chance
constraints as second-order-cone constraints. An additional ad-
vantage of this approach is that the Galerkin projection of
the quadratic constraints is significantly less complex compared
to those of non-linear constraints with a polynomial degree
higher than two, as would be needed for expressing the original
variables’ variance without the auxiliary variables. On average,
the current-voltage formulation using auxiliary variables shows
more than an order of magnitude speed-up with respect to the
power-voltage formulation without auxiliary variables.

Index Terms—AC optimal power flow, uncertainty, general
polynomial chaos expansion, chance-constrained, current-voltage
formulation.

I. INTRODUCTION

A. Background and Motivation

Given the rise in renewable energy sources, the operation
of power systems has become increasingly uncertain. Incor-
porating uncertainty in decision making problems benefits
stakeholders and decreases operational costs. Stochastic op-
timization is a framework to make optimal decisions under
uncertainty. Stochastic optimal power flow (OPF) models build
the basis for a number of possible applications. One such
application is the minimisation of the post-market clearing re-
dispatch for congestion management in zonal markets which
can be very costly. In Germany, the cost of congestion man-
agement in the transmission system has been approximately
1.4 billion e in 2020, of which 443 million e are attributed
to re-dispatch alone [1]. By accurately considering uncertainty
from renewable generation in the determination of re-dispatch
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actions, significant operational cost savings can be achieved.
Further, stochastic OPF builds the basis for stochastic security-
constrained OPF models, essential for the secure operation of
the transmission system. For instance, Capitanescu et al. [2]
propose an algorithmic approach for computing day-ahead op-
erational decisions in order to guarantee feasibility of the next-
day security management for a range of possible operating
conditions representing the uncertainties.

Commonly, in stochastic OPF models, random variables
are assumed to be Gaussian, exploiting their mathematical
properties for the sake of computational efficiency. However,
many phenomena in power systems do not cohere to Gaussian
uncertainty, e.g., wind speed follows a Weibull distribution
and solar irradiation follows a Beta distribution. The handling
of the power flow equations under stochastic behavior is
famously challenging, because it requires, (i) propagating un-
certainties through a set of implicit non-linear equations; and
(ii) algorithms that provide probabilistic or robust guarantees
for constraint satisfaction [3]. Furthermore, most methods rely
on convexity of the original deterministic problem, however,
this does not hold for the full AC OPF. In this light, general
polynomial chaos expansion (gPC) has been applied in the
literature to obtain stochastic solutions to the non-linear OPF
problem.

Polynomial choas expansion (PCE) enables development
of structured representation of random variables in terms of
orthogonal base polynomials weighted by coefficients. Essen-
tially, PCE is to random variables what a Fourier series is to a
periodic signal: a representation of an infinite-dimensional ob-
ject in terms of finitely many scalar coefficients [3]. The poly-
nomials are orthogonal with respect to the joint distribution of
the input random variables. This is also called Wiener chaos
expansion [4]. The original PCE introduced by Wiener in 1938
was limited to the Gaussian distribution and the corresponding
Hermite polynomials. Xiu and Karniadakis generalized the
PCE introduced by Wiener to all Askey scheme members [5],
expanding its use to general non-Gaussian distributions [6]
and henceforth gained popularity as gPC. Furthermore, Wan
and Karniadakis proposed an expansion beyond Wiener-Askey
scheme to handle the arbitrary probability density functions
based on Stieltjes procedure [7] and called it arbitrary polyno-
mial chaos expansion (aPC). Oladyshkin and Nowak proposed
the moment based orthogonal polynomial construction and
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named it as data-driven aPC [8]. In this work, we deal with
non-Gaussian distributions defined by Askey schemes and
henceforth refer it as gPC as correct abbreviation even-though
different authors use PCE for the same. Depending on the
chosen polynomial basis, well-known univariate distributions,
e.g., the normal or Beta distribution, are exactly represented by
a first-order polynomial, hence by just two polynomial chaos
expansion coefficients. It has been shown that polynomial
chaos methods are computationally superior to Monte-Carlo
based methods [9]. An in-depth treatment of polynomial chaos
is out of scope for this paper, however, the interested reader
is referred to excellent text books, for instance: “Numerical
methods for stochastic computations” by Xiu [10] or “Intro-
duction to uncertainty quantification” by Sullivan [11].

Compared to Monte-Carlo-based, i.e., scenario-based,
stochastic optimization, the primary advantage of gPC is its
ability to accurately and efficiently handle equality constraints
that involve random continuous variables such as the power
flow equations under uncertain load or generation values. At
the same time, gPC also helps enforcing inequality constraints
using moment-based reformulations of chance constraints.

B. Significance of Variable Spaces for OPF

The power flow physics can be equivalently represented
in a variety of variable spaces. In the OPF literature, the
power-voltage variable space is commonly used, which al-
lows for elimination of the power variables for (fixed) loads.
However, other variable spaces are also used, e.g. current-
voltage is the natural choice in Kirchhoff’s circuit laws [12],
and power-lifted-voltage (‘W’) is a choice that enables tight
convex relaxations [13]. Computational experiments have been
developed by Sadat and Kim for deterministic OPF [14]. They
observe, for transmission data sets, that the rectangular power-
voltage (ACR) form computationally outperforms the rectan-
gular current-voltage (IVR) formulation for the deterministic
OPF.

The choice of variable space changes the opportunities for
elimination of certain categories of variables, which is a way
to influence the problem size, i.e., number of constraints and
variables, without impacting accuracy. Those opportunities
depend on the relative abundance of system elements such as
loads and branches. Table I provides a comparison between
IVR and ACR forms. The ACR form has an advantage when
there is a higher amount of fixed demand, as no variables
are required for constant power loads. Conversely, the power
flow in a branch requires four real scalar variables in ACR
but only two in IVR1. In IVR, the non-linearity is confined
to the transformation of generator/load power set points to
current variables, while the power flow equations themselves
are linear. In ACR, the non-linearity is concentrated in the
expressions for power flow through a branch. A final key
difference is the formulation of Kirchhoff’s current law (KCL)
at the buses. IVR develops the KCL expressions in the

1Eliminating expressions with total current in favor of those with series
current only.

TABLE I
COMPARISON OF ACR AND IVR FORMULATIONS

ACR IVR
KCL at bus i in power current
power flow equations quadratic linear
voltage variable at bus i Ure

i + j Uim
i Ure

i + j Uim
i

flow variable in branch lij power current
-sending Plij + j Qlij Irelij + j Iimlij
-receiving Plji + j Qlji Irelji + j Iimlji
reduced flow variable in branch lij
-sending Plij + j Qlij Is,re

lij + j Iimlij
-receiving Plji + j Qlji -
variable per fixed load d - Ired + jIimd
variable per generator g Pg + jQg Ireg + jIimg

namesake current variables, whereas ACR lifts them to the
power variables,

IVR :
∑

I = 0
U 6=0←→

∑
S = 0 : ACR. (1)

C. Literature Review on Stochastic (O)PF

The literature review focuses on stochastic power flow
simulation and optimization, and categorizes it according to
the presence of:
• chance constraints (CC),
• general polynomial chaos expansion (gPC), and
• power flow (PF) simulation versus optimization (OPF).
1) CC-OPF: Bienstock et al. [15] consider the availability

of a reliable wind forecast and the distribution function of
the uncertain generation, in their CC-OPF to satisfy all the
network limits with a high probability while simultaneously
minimizing the cost of economic re-dispatch. They demon-
strate the scalability on a 2746-bus network, run on a personal
laptop. Venzke et al. [16] propose a convex reformulation
of chance-constrained OPF, considering two types of uncer-
tainty sets, i.e., a rectangular one and a multivariate Gaussian
distribution of forecast errors. The authors propose a novel
analytical reformulation of the linear chance constraints and a
tractable approximation to the semi-definite chance constraints
and provide numerical illustration on a 9-bus system with
two wind farms. Roald et al. [17] propose an accurate but
tractable analytical reformulation of the chance constraints
in the context of OPF in polar power-voltage variables. The
reformulation maintains the non-linear power flow equations
for a forecasted operating point, and models the impact of
uncertainty through a linearization in that point.

2) gPC-PF: Mühlpfordt et al. [18] demonstrate the appli-
cation of gPC to the stochastic power flow problem. They
develop numerical results for the polynomial chaos for the
rectangular power-voltage formulation of the power flow
equations, applied to the IEEE 14 bus system. Métivier et
al. [19] propose a modified algorithm based on gPC that
delivers significantly improved computational efficiency, while
retaining the high level of accuracy of the standard polynomial
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chaos expansion. The key contribution is that they exploit
sparsity and algebraic properties of the power flow equations.
Sheng and Wang [20] propose a computationally efficient and
accurate algorithm to evaluate stochastic gPC-based power
flow, exploiting sparsity and a continuation method.

3) gPC-OPF: Engelmann et al. [21] combine uncertainty
propagation via gPC with the augmented lagrangian alter-
nating direction inexact Newton method to solve stochastic
OPF problems with non-Gaussian uncertainties, in a context
of distributed computation.

4) gPC-CC-OPF: Arguably, the most advanced and con-
ceptually complete framework for stochastic optimization is
that of gPC with chance constraints. Mühlpfordt et al. [22]
present a constructive approach to chance-constrained lin-
earized ‘dc’ OPF that does not assume a specific probabil-
ity distribution and demonstrate its use on a 300-bus case
study. Lastly, Mühlpfordt et al. [23] propose a framework
to formulate chance-constrained ACR-OPF using gPC and
constraint generation, accounting for voltage magnitude and
current magnitude limits, but without relying on samples,
relaxations or linearizations.

D. Contributions and Organization of the Paper

While a lot of work has been done on stochastic power
flow simulation using the gPC technique, optimization-focused
works that include chance constraints are comparatively rare.
Previous work in the context of gPC-CC-OPF universally use
the ACR formulation. However, the impact of variable spaces
for the power flow physics has not yet been explored in the
context of stochastic OPF through gPC. Therefore, this paper
develops the gPC extension of the IVR formulation of the
deterministic OPF problem. Our work therefore complements
the ACR results of Mühlpfordt et al. [23]. Additionally, using
auxiliary variables and constraints, chance constraints are
formulated as convex second-order cones, and the Galerkin
projection the constraints for the necessary probabilistic mo-
ments is simplified from order four to order two.

The remainder of the paper is organized as follows: Sec-
tion II introduces the deterministic IVR-OPF. Section III ex-
tends the IVR-OPF to allow for random variables through gPC.
Furthermore, its fundamental theorems, integration with the
Galerkin projection and application towards chance constraints
are discussed. Section IV provides numerical results for a
number of test cases. Finally, Section V concludes the paper.

II. DETERMINISTIC OPF

The feasible set of the deterministic IVR-OPF problem is
introduced. Special attention is paid to its features, focusing
on the differences compared to the ACR formulation.

Buses i ∈ I are the vertices of the graph representing
the power system of interest. The bus voltage in rectangular
coordinates is,

Ui = Ure
i + j Uim

i . (2)

Voltage magnitude |Ui| is bounded between Umin
i and Umax

i .
The shunt admittance at a bus i is given by ysh

i , where gsh
i

Ilij Islij zs
l

Islji Ilji

Ish
lij

ysh
lij

Ish
lji

ysh
ljiUi Uj

Fig. 1. π-model of a branch lij, with series impedance zs
l and from- and

to-side shunt admittances ysh
lij and ysh

lji.

and bsh
i denote the corresponding conductance and suscep-

tance, respectively.
Branches l ∈ L are the edges of the graph, represented by

a π-model (Fig. 1). A tuple lij ∈ T l links a branch l to its
from- i and to-bus j; T l contains the equivalent tuples with
i and j reversed, and the union set is T l = T l ∪ T l . The
current flowing through a branch l from bus i to j is,

Ilij = Irelij + j Iimlij (3)

= Ish
lij + Islij (4)

= (Ish,re
lij + Is,re

lij ) + j (Ish,im
lij + Is,im

lij ). (5)

Note that this notation implies Islij + Islji = 0. The current
magnitude |Ilij | is bounded by I rated

l . The series impedance
of a branch l is given by zs

l , where rs
l and xs

l denote the
corresponding series resistance and reactance, respectively.
The shunt admittance of a branch l at bus i is given by ysh

lij ,
where gsh

lij and bsh
lij denote the corresponding shunt conduc-

tance and susceptance, respectively.
Units u ∈ U generalize loads and generators. A tuple ui ∈

T u links a unit u to a specific bus i. The current flowing from
the bus i to the unit u is,

Iu = Ireu + j Iimu . (6)

The complex power flowing into a unit is therefore,

Su = UiI
∗
u (7)

= (Ure
i I

re
u + Uim

i Iimu ) + j (Uim
i Ireu − Ure

i I
im
u ) (8)

= Pu + j Qu. (9)

A unit u is either a load d or a generator g belonging to
subsets D or G, respectively, and with set-points P ref

d and Qref
d

or limits Pmin
g , Pmax

g , Qmin
g and Qmax

g , respectively.
Consequently, the feasible set of the IVR formulation of the

deterministic OPF problem is,

Reference Bus Constraint:
Uim
i = 0, ∀i ∈ I ref, (10a)

Bus Constraints:∑
lij∈T l

Irelij +
∑

ui∈T u

Ireu + gsh
i U

re
i − bsh

i U
im
i = 0, ∀i ∈ I, (10b)

∑
lij∈T l

Iimlij +
∑

ui∈T u

Iimu + gsh
i U

im
i + bsh

i U
re
i = 0, ∀i ∈ I, (10c)

(Umin
i )2 ≤ (Ure

i )2 + (Uim
i )2 ≤ (Umax

i )2, ∀i ∈ I, (10d)
Branch Constraints:
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Ure
j = Ure

i − rs
l I

s,re
lij + xs

lI
s,im
lij , ∀lij ∈ T l ,(10e)

Uim
j = Uim

i − rs
l I

s,im
lij − x

s
lI

s,re
lij , ∀lij ∈ T l , (10f)

Irelij = gsh
lijU

re
i − bsh

lijU
im
i + Is,re

lij , ∀lij ∈ T l, (10g)

Iimlij = gsh
lijU

im
i + bsh

lijU
re
i + Is,im

lij , ∀lij ∈ T l, (10h)

(Irelij)
2 + (Iimlij)

2 ≤ (I rated
l )2, ∀lij ∈ T l, (10i)

Demand Constraints:
Ure
i I

re
d + Uim

i Iimd = P ref
d , ∀di ∈ T d, (10j)

Uim
i Ired − Ure

i I
im
d = Qref

d , ∀di ∈ T d, (10k)
Generator Constraints:
Pmin
g ≤ Ure

i I
re
g + Uim

i Iimg ≤ Pmax
g , ∀gi ∈ T g, (10l)

Qmin
g ≤ Uim

i Ireg − Ure
i I

im
g ≤ Qmax

g , ∀gi ∈ T g. (10m)

The following aspects of the IVR formulation with respect
to its ACR counterpart are highlighted for the subsequent
application of the gPC method,

1) the power flow equations, i.e., Ohm’s law and Kirchhoff’s
current law, in (10e)-(10h) are linear, whereas these are
quadratic in the ACR formulation;

2) unit power is enforced through quadratic expressions
(10j)-(10m), whereas they are linear in the ACR formu-
lation; and

3) bounds on bus voltage magnitude (10d) and line current
magnitude (10i) are quadratic, similar to the ACR formu-
lation.

III. STOCHASTIC OPF THROUGH GPC

The formulation presented in the previous Section II as-
sumes deterministic load and generator set-points. However,
in reality, these set-points are influenced by random variables,
and consequently are random variables themselves. In turn,
all variables in (10) become random variables. In general,
all stochastic drivers are captured by a real-valued finite-
variance stochastic germ ω = [ω1, ..., ωNω

]T with Nω ∈ N,
and corresponding set of possible realizations Ω ⊂ RNω . One
method of modeling non-linear behavior of under uncertainty
is through gPC expansion. The crucial features of gPC are
summarized in the next sections, including: § III-A) its fun-
damental theorems, § III-B) integration with the Galerkin pro-
jection, and § III-C) application to chance constraints. Finally,
Section III-D presents the IVR formulation of the gPC-CC-
OPF.

A. General Polynomial Chaos Expansion

Consider a basis of Nω-variate polynomial basis func-
tions [ψk(ω)]k∈K that is orthogonal with probability func-
tion P(ω) such that,

〈ψl, ψk〉 = E[ψl, ψk] =

∫
ψlψkdP(ω) = γlδlk, ∀l, k ∈ K ⊆ N,

(11)

where γl and δl,k denote a positive scalar and the Kronecker
delta, respectively. Polynomial chaos expansion approximates
any real-valued random variable x of finite variance that is a

function of the stochastic germ ω as a linear combination x̂ of
the orthogonal polynomial basis [ψk(ω)]k∈K,

x̂ =
∑
k∈K

xkψk =
∑
k∈K

〈x, ψk〉
〈ψk, ψk〉

ψk, (12)

where xk ∈ R denote the gPC coefficients. For a given random
variable x, a gPC coefficient xk is given by the inner product of
the random variable x and the corresponding polynomial basis
function ψk divided by the inner product of the polynomial
basis function ψk with itself, see (12). The expectation E and
variance V of an approximated random variable x̂ are,

E[x̂] = x0, (13)

V[x̂] =
∑

k∈K\{0}

〈ψk, ψk〉x2
k. (14)

The truncation error ‖x− x̂‖ decays to zero for |K| → ∞. The
cardinality of K is,

|K| = (Nω +Nd)!

Nω!Nd!
, (15)

where Nd denotes the maximum degree of the polynomial
basis functions. It has been shown that polynomial basis
functions with degree two capture the non-linear nature of
the power flow equations without significant loss of accuracy
while solving gPC-CC-OPF [23].

B. Stochastic Galerkin Method

An intrusive approach is required to exploit gPC in an
optimization context. This implies that pre-existing numerical
solution schemes for the deterministic problem cannot be used
as they are, and must be coupled or otherwise modified to solve
the stochastic problem [11]. The stochastic Galerkin method
uses the formalism of weak solutions, expressed in terms of
inner products, to form systems of equations for the stochastic
modes, which are generally coupled together.

Concretely, a vector of approximated prescribed random
variables, e.g., load set-points, is propagated through a set
of implicit non-linear equations (10) to obtain a vector of
unknown random variables, e.g., bus voltages. Taking a closer
look at (10), two distinct operations stand out: summation
and multiplication. Consider three approximated random vari-
ables x̂, ŷ and ẑ defined using the same gPC basis, the Galerkin
projection of both operations is,

ẑ = x̂ + ŷ
gp→ zk = xk + yk, ∀k ∈ K, (16)

ẑ = x̂ · ŷ gp→ zk =
∑

k1,k2∈K

M(xk1 · yk2), ∀k ∈ K, (17)

where M denotes the multiplication tensor,

M =
〈ψk1

, ψk2
, ψk〉

〈ψk, ψk〉
, (18)

and can be computed ahead-of-time. Furthermore, note that
if one of the terms in the multiplication is a deterministic
parameter, i.e., xk = 0, ∀k ∈ K\{0} = K0, the Galerkin
projection of the multiplication simply reduces to,

zk = x0 · yk, ∀k ∈ K. (19)
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Concretely, the Galerkin projection permits solution of the
stochastic problem by means of |K| deterministic and
‘tractable’ relations.

However, besides the Galerkin projection adding |K| − 1
additional constraints for each constraint in (10), each Galerkin
multiplication significantly reduces the sparsity of the corre-
sponding constraints following the summation over all second-
order permutations of K. Consequently, using the OPF for-
mulation containing the smallest number of quadratic terms
improves the sparsity of the resulting stochastic problem. The
quadratic terms of the ACR formulation occur in the branch
power flow equations, whereas for the IVR formulation, they
occur in the unit power equations. Analysis of the benchmark-
ing library PGLIB [24] shows that, on average, the branches
outnumber the units by a factor 1.6. Therefore, from the
perspective of sparsity, the IVR formulation seems a promising
choice for improving the gPC-CC-OPF scalability.

C. Moment-Based Reformulation of Chance Constraints

In a stochastic context, it is infeasible to enforce determin-
istic bounds on continuous random variables. Alternatively,
chance constraints ensure that the probability of a random
variable x violating a deterministic bound xmin or xmax is below
a certain level ε:

P(x ≥ xmin) ≥ (1− ε) or P(x ≤ xmax) ≥ (1− ε). (20)

The moment-based reformulation equivalently states this as,

xmin ≤ E(x)± λ(ε)
√
V(x) ≤ xmax, (21)

where λ(ε) > 0 is chosen based on knowledge of the random
variable. For example, for a Gaussian random variable, the
reformulation is exact with λ(ε) = λΦ(ε) := Φ−1(1 − ε),
where Φ(·) is the quantile function of the standard Gaussian
distribution N (0, 1).

Using (13) and (14), (21) is exactly reformulated as,

xmin ≤ x0 ± λ(ε)

√∑
k∈K0

〈ψkψk〉x2
k ≤ x

max, (22)

which are two second-order cone constraints.
However, note that deterministic bounds (10d), (10i), (10l)

and (10m) are not expressed using a single variable, rather
by using the sum of product of variables, e.g., Pmin

g ≤
Ure
i I

re
g + Uim

i Iimg ≤ Pmax
g , preventing direct application of (22).

Mühlpfordt et al. [23] address this by expressing the expec-
tation and the variance of the voltage and current magnitude2

through a Galerkin projection (Table II). Note that this in-
troduces a sum over all fourth-order permutations of K and
corresponding fourth-order multiplication tensor.

As an alternative, this paper proposes auxiliary variables and
constraints to avoid the need for a fourth-order multiplication
tensor, consequently keeping the feasible set purely quadratic.
The chance constraints are enforced on the auxiliary variables.

2Note that there is no need to extend this for the active and reactive
generator bounds as these variables are naturally part of the ACR formulation.

Concretely, the following auxiliary variables and constraints
are introduced:

1) lifted bus voltage magnitude: Wi = (Ure
i )2 + (Uim

i )2,
2) lifted branch current magnitude: Jlij = (Irelij)

2 + (Iimlij)
2,

3) active generator power: Pg = Ure
i I

re
g + Uim

i Iimg , and,
4) reactive generator power: Qg = Uim

i Ireg − Ure
i I

im
g .

These equations are subsequently pushed through a Galerkin
projection as described in Section III-B, resulting in |K|
constraints for each auxiliary variable. Although the auxiliary
approach introduces a factor |K| more constraints, three fea-
tures make it an appropriate choice for the gPC-CC-OPF:

1) individual constraints are significantly sparser given the
summation over all second-order permutations of K,
rather than all fourth-order permutations;

2) individual constraints are quadratic rather than fourth-
order polynomial, avoiding the need for automatic dif-
ferentiation; and

3) it avoids compounding truncation errors from repeated
orthogonal projection associated with the non-associative
property of the Galerkin projection [11].

D. GPC-CC-OPF Using IVR Formulation

Finally, the feasible set of the IVR formulation of the gPC-
CC-OPF is,

Reference Bus Constraints – i ∈ I ref :

Ure
i,k = 0, ∀k ∈ K0, (23a)

Uim
i,k = 0, ∀k ∈ K, (23b)

Bus Constraints – ∀i ∈ I :∑
lij∈T l

Irelij,k +
∑

ui∈T u

Ireu,k + gsh
i U

re
i,k − bsh

i U
im
i,k = 0, ∀k ∈ K, (23c)

∑
lij∈T l

Iimlij,k +
∑

ui∈T u

Iimu,k + gsh
i U

im
i,k + bsh

i U
re
i,k = 0, ∀k ∈ K, (23d)

∑
k1,k2∈K

M(Ure
i,k1

Ure
i,k2

+ Uim
i,k1

Uim
i,k2

) = Wi,k, ∀k ∈ K, (23e)

(Umin
i )2 ≤ E(Wi)± λ(εv)

√
V(Wi) ≤ (Umax

i )2, (23f)

From Branch Constraints – ∀lij ∈ T l :

Ure
j,k = Ure

i,k − rs
l I

s,re
lij,k + xs

lI
s,im
lij,k, ∀k ∈ K, (23g)

Uim
j,k = Uim

i,k − rs
l I

s,im
lij,k − x

s
lI

s,re
lij,k, ∀k ∈ K, (23h)

Branch Constraints – ∀lij ∈ T l :

Irelij,k = gsh
lijU

re
i,k − bsh

lijU
im
i,k + Is,re

lij,k, ∀k ∈ K, (23i)

Iimlij,k = gsh
lijU

im
i,k + bsh

lijU
re
i,k + Is,im

lij,k, ∀k ∈ K, (23j)∑
k1,k2∈K

M(Irelij,k1
Irelij,k2

+ Iimlij,k1
Iimlij,k2

) = Jlij,k, ∀k ∈ K, (23k)

E(Jlij)± λ(εi)

√
V(Jlij) ≤ (I rated

l )2, (23l)

Demand Constraints – ∀di ∈ T d :∑
k1,k2∈K

M(Ure
i,k1

Ired,k2
+ Uim

i,k1
Iimd,k2

) = P ref
d,k, ∀k ∈ K, (23m)∑

k1,k2∈K

M(Uim
i,k1

Ired,k2
− Ure

i,k1
Iimd,k2

) = Qref
d,k, ∀k ∈ K, (23n)
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TABLE II
REFORMULATION OF THE EXPECTATION AND VARIANCE OF THE BUS VOLTAGE AND LINE CURRENT MAGNITUDE FOR ACR [23].

E[|Ui|2] =
∑

k∈K〈ψk, ψk〉
(
(Ure

i,k)
2 + (Uim

i,k)
2
)

V[|Ui|2] =
∑

k1,k2,k3,k4∈K〈ψk1
, ψk2

, ψk3
, ψk4

〉
(
Ure
i,k1

Ure
i,k2

Ure
i,k3

Ure
i,k4

+ 2Ure
i,k1

Ure
i,k2

Uim
i,k3

Uim
i,k4

+ Uim
i,k1

Uim
i,k2

Uim
i,k3

Uim
i,k4

)
E[|Ilij |2] = |ys

l |
2
∑

k∈K〈ψk, ψk〉
(
(Ure

ij,k)
2 + (Uim

ij,k)
2
)

V[|Ilij |2] = |ys
l |
2
∑

k1,k2,k3,k4∈K〈ψk1
, ψk2

, ψk3
, ψk4

〉
(
Ure
ij,k1

Ure
ij,k2

Ure
ij,k3

Ure
ij,k4

+ 2Ure
ij,k1

Ure
ij,k2

Uim
ij,k3

Uim
ij,k4

+ Uim
ij,k1

Uim
ij,k2

Uim
ij,k3

Uim
ij,k4

)

Generator Constraints – ∀gi ∈ T g :∑
k1,k2∈K

M(Ure
i,k1

Ireg,k2
+ Uim

i,k1
Iimg,k2

) = Pg,k, ∀k ∈ K, (23o)∑
k1,k2∈K

M(Uim
i,k1

Ireg,k2
− Ure

i,k1
Iimg,k2

) = Qg,k, ∀k ∈ K, (23p)

Pmin
g ≤ E(Pg)± λ(εp)

√
V(Pg) ≤ Pmax

g , (23q)

Qmin
g ≤ E(Qg)± λ(εq)

√
V(Qg) ≤ Qmax

g , (23r)

where M denotes the multiplication tensor (18), and X· =
[X·,k]k∈K is employed for notational convenience. Observe
the lower-order multiplication tensor in (23e), (23m)-(23p)
compared to Table II. Finally, an objective is introduced to
minimize the expected generation cost,

min
∑
g∈G

E
[
fg(Pg)

]
. (24)

Typically, fg is a quadratic function of the generator output.

IV. NUMERICAL ILLUSTRATION

The numerical illustration shows the impact of two aspects
on the gPC-CC-OPF: the underlying OPF formulation, and
auxiliary variable and constraints. To this end, the problem is
solved for four networks: 14-bus, 30-bus, 57-bus and 118-bus
systems3, where the 30-bus system is altered to match the case
study in [23]4. In [23], the ACR formulation of the gPC-CC-
OPF has been validated against Monte-Carlo simulations.

A stochastic germ is introduced with four distinct sources of
uncertainty: two Beta distributions and two Normal distribu-
tions (Table III). The stochastic germ is used to represent load

TABLE III
STOCHASTIC GERM AND AFFECTED BUSSES FOR EACH NETWORK.

Affected buses
ω Distribution 14-BUS 30-BUS 57-BUS 118-BUS

1 B([0, 1], 2, 2) 3. 2,3. 3,15,18,29,41, 42,62,88,
51,52,53,55. 92,94,117.

2 B([0, 1], 2, 5) 4. 4. 9,27,35,38, 56,59,70,95,104,105,
42,50,56. 110,112,115,118.

3 N (0, 1) 2. 24. 12,14,25,31, 49,60,80,96,
44,49,54. 98,107.

4 N (0, 1) 9. 10,21. 13,57. 82,99,103,106.

3available at github.com/timmyfaraday/StochasticPowerModels.jl
4Assumptions: 1) shunt elements are neglected, 2) voltage magnitude at

slack bus 1 is assumed constant at one, 3) line current limits of branches
15-23 and 25-27 are reduced to 11 and 12, respectively.

uncertainty P ref
d at the affected buses, with E[P ref

d ] = P nom
d

and V[P ref
d ] = (σP nom

d )2, where P nom
d denotes the nominal

active power of the corresponding load d. Two relative stan-
dard deviations σ are considered: 0.10 and 0.15. Three chance
constraint levels ε are considered for all chance constraints:
0.05, 0.10 and 0.15. In similar work involving power flow [25]
and three-phase unbalanced power flow [26], degree two
polynomials were deemed accurate enough for these problems.
Henceforth, all numerical illustrations are limited till degree
two polynomials.

The nonlinear solver used for the calculations is the open-
source Ipopt v3.12.10 [27]. Simulations are run on a 64-
bit machine with Intel i7 CPU with 4 cores @2.80 GHz,
16 GB RAM, using JULIA 1.6.5. In contrast to the constraint
generation method proposed in [23], all case studies in this
paper are solved as a single-shot optimization. The maximum
CPU time and iteration limit are set to 3600 s and 3000.

A. Results and Discussion

First, the effect of the power flow formulation and the
auxiliary variables on the computation time is studied for a
polynomial degree of one (Fig. 2). To this end, the following
formulations are compared for each network:

1) reduced IVR formulation with auxiliary variables,
2) reduced IVR formulation without auxiliary variables,
3) ACR formulation with auxiliary variables,
4) ACR formulation without auxiliary variables.

Two things are highlighted: first, the computational time of
the IVR formulation is consistently lower by approximately a
factor five compared to the ACR. Second, the computational
time of the formulation with auxiliary variables is consistently
lower with approximately an order of magnitude compared
to the one without. Note that at least some instances of the
ACR and IVR formulations without auxiliary variables fail to
converge within the set iteration limit. The ACR formulation
with auxiliary variables is numerically more stable but fails to
converge for one instance of the 118-bus network. The IVR
formulation with auxiliary variables converges for all instances
and networks.

This behavior confirms the analysis in Section III. Further-
more, as stated in (1), the equivalence of ACR and IVR only
holds when voltages are nonzero. In deterministic OPF, this
is guaranteed by the lower bound on the voltage magnitude,
independent of whether polar, rectangular of lifted voltage
variables are used, e.g., (10d). In the stochastic extension, the
voltage limit (10d) is formulated as the chance constraint (23f).
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Fig. 2. Computation time of the gPC-CC-OPF with polynomial degree one for (a) 14-bus, (b) 30-bus, (c) 57-bus, and (d) 118-bus system, respectively. Each
subfigure shows the computation time related to formulations: 1) IVR w. aux, 2) IVR w/o aux, 3) ACR w. aux, and 4) ACR w/o aux, respectively. The
numbers of simulations out of six that reached the iteration limit is denoted by (*), where * denotes the number.

TABLE IV
EXPECTED GENERATION COST AND COMPUTATION TIME OF THE GPC-CC-OPF USING THE IVR FORMULATION AND AUX VARIABLES.

14-BUS SYSTEM 30-BUS SYSTEM 57-BUS SYSTEM 118-BUS SYSTEM

Nd = 1 Nd = 2 Nd = 1 Nd = 2 Nd = 1 Nd = 2 Nd = 1 Nd = 2

σ ε cost [$] time [s] cost [$] time [s] cost [$] time [s] cost [$] time [s] cost [$] time [s] cost [$] time [s] cost [$] time [s] cost [$] time [s]

0.10
0.05 2195.71 0.78026 2195.71 6.87220 599.245 1.54441 599.245 11.6154 37614.2 3.09476 - - 97177.4 133.214 - -
0.10 2195.70 0.56104 2195.70 7.26801 599.240 1.15217 599.240 25.4086 37612.5 5.78977 37612.5 193.025 97156.7 180.280 - -
0.15 2195.70 0.63611 2195.70 6.79953 599.236 1.08340 599.237 15.4373 37611.3 25.8857 - - 97143.1 196.203 - -

0.15
0.05 2271.08 0.68390 2268.68 9.82704 599.369 1.22294 599.369 17.2999 37626.7 4.13501 37626.7 127.463 97279.1 269.288 - -
0.10 2196.50 0.63158 2196.50 7.01366 599.358 0.93242 599.358 13.0235 37622.9 4.17222 37623.0 42.4937 97237.6 265.499 - -
0.15 2196.47 0.60114 2196.47 6.07373 599.347 1.08706 599.347 8.67785 37620.0 3.71313 - - 97210.7 146.090 - -

Consequently, the individual Ure
i,k,U

im
i,k variables only have box

bounds,

− Umax
i ≤ Ure

i,k,U
im
i,k ≤ Umax

i , (25)

while (23e) is used to derive bounds on the lifted voltage,

− 2Umax
i ≤Wi,k ≤ 2Umax

i , (26)

and therefore 0 + j0 is in the feasible set of voltage variables
for individual k. Effectively, the ACR KCL is now a relaxation
of the original IVR:

ACR :
∑

S = 0
U=0−→

∑
I 6= 0 : IVR. (27)

The absence of voltage lower bounds introduces additional,
potentially non-physical solutions to the feasible set of ACR
that violate the true KCL. These additional solutions are likely
to impede convergence of the interior-point method. It is
observed that virtually all voltages Ure

i,k,U
im
i,k, ∀k ∈ K0 are

close to zero, consequently resulting in a significant speed-up
for IVR. This suggests a significant limitation of the lifting
to power variables using the natural voltage variables in the
absence of voltage magnitude lower bounds. Nevertheless, Tel-
legen’s theorem states it is possible to pick alternative voltage
variables for the lifting and still obtain results consistent with
KCL. Whether similar opportunities for variable elimination
remain is a topic for future work.

Lastly, Table IV shows the objective values and computation
times for the IVR formulation of the gPC-CC-OPF with
auxiliary variable for polynomial degrees one and two. The
results of the 30-bus case are consistent with [23], validating
the implementation. Note that simulations for the 118-bus
system with polynomial degree two did not converge within
the set iteration limit.

V. CONCLUSION

A novel tractable reformulation of chance-constrained OPF
is proposed using general polynomial chaos expansion in the
as-yet unexplored current-voltage variable space. The imple-
mentation is validated against the more common rectangular
power-voltage form. In the proposed IVR formulation, chance
constraints are second-order cones, and the Galerkin projection
simplifies to constraints of order two due to the introduction of
auxiliary variables and constraints. Consequently, the problem
remains a quadratically constrained program similar to its
deterministic counterpart. The numerical illustration shows the
advantages of the IVR formulation of the one-shot gPC-CC-
OPF using auxiliary variables with respect to computation
time, showing on average an order of magnitude speed-up with
respect to ACR and variants without auxiliary variables.

However, computation times are still significant, especially
for the larger networks and higher polynomial degrees. Conse-
quently, future work includes investigation of voltage variable
bounds, exploiting the complex nature of the variables, and
applying techniques set out in [19] in an optimization context.
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[28] T. Mühlpfordt, F. Zahn, V. Hagenmeyer, and T. Faulwasser, “Polychaos.jl
- A julia package for polynomial chaos in systems and control,” in IFAC-
PapersOnLine, vol. 53, no. 2, 2020, pp. 7210–7216.

[29] C. Coffrin, R. Bent, K. Sundar, Y. Ng, and M. Lubin, “PowerModels.jl:
an open-source framework for exploring power flow formulations,” in
Power Syst. Comp. Conf., vol. 20, Dublin, Ireland, 2018, p. 8.

22nd Power Systems Computation Conference

PSCC 2022

Porto, Portugal — June 27 – July 1, 2022

http://arxiv.org/abs/2107.07700

	Introduction
	Background and Motivation
	Significance of Variable Spaces for OPF
	Literature Review on Stochastic (O)PF
	CC-OPF
	gPC-PF
	gPC-OPF
	gPC-CC-OPF

	Contributions and Organization of the Paper

	Deterministic OPF
	Stochastic OPF Through GPC
	General Polynomial Chaos Expansion
	Stochastic Galerkin Method
	Moment-Based Reformulation of Chance Constraints
	GPC-CC-OPF Using IVR Formulation

	Numerical Illustration
	Results and Discussion

	Conclusion
	References

