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ABSTRACT

The OAuth 2.0 protocol is a popular and widely adopted autho-
rization protocol. It has been proven secure in a comprehensive
formal security analysis, yet new vulnerabilities continue to appear
in popular OAuth implementations.

This paper sets out to improve the security of the OAuth land-
scape by measuring how well individual identity providers (IdPs)
implement the security specifications defined in the OAuth stan-
dard, and by providing detailed and targeted feedback to the op-
erators to improve the compliance of their service. We present a
tool, called OAuch, that tests and analyzes IdPs according to the
guidelines of the OAuth standards and security best practices.

We evaluate 100 publicly deployed OAuth IdPs using OAuch
and aggregate the results to create a unique overview of the current
state of practice in the OAuth ecosystem. We determine that, on
average, an OAuth IdP does not implement 34% of the security
specifications present in the OAuth standards, including 20% of the
required specifications.

We then validate the IdPs against the OAuth threat model. The
analysis shows that 97 IdPs leave one or more threats completely
unmitigated (with an average of 4 unmitigated threats per IdP). No
IdPs fully mitigate all threats.

We further validate the results by picking four attack vectors
and using the tool’s output to determine which IdPs to attack. The
results were highly accurate, with a false positive rate of 1.45% and
a false negative rate of 1.48% for the four attack vectors combined.

CCS CONCEPTS

• Security and privacy → Authorization; Web protocol secu-

rity; Security protocols; Access control;Web application security.
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1 INTRODUCTION

The OAuth 2.0 protocol [48] is a popular and widely adopted au-
thorization protocol that enables a third party, the relying party

(RP), to obtain limited access to an authorization/authentication
service, hereinafter referred to as the identity provider (IdP)1, on be-
half of a user. Compared to its predecessor2, OAuth 2.0 reduces the
implementation complexity, resulting in an easier-to-understand
protocol. However, like any security protocol, it must be carefully
implemented. Security specifications are scattered all over the main
OAuth standard, and additional specifications are described in doc-
uments such as the OAuth Threat Model [54] and the OAuth Security
Best Current Practices [44].

The security of OAuth has been thoroughly analyzed [2, 5, 31],
culminating in the work of Fett et al. [12, 13], which presents a
comprehensive formal analysis of the security of OAuth 2.0 and the
related OpenID Connect framework [56]. Yet, a stream of implemen-
tation vulnerabilities has been discovered over the years, including
high-profile attacks [18, 58, 60, 61]. Despite the strong formal ba-
sis of the OAuth protocol, the security of many implementations
continues to be inadequate.

We set out to enhance the security of the OAuth landscape by
measuring how well OAuth IdP deployments adhere to the stan-
dards documents, and by providing detailed and targeted feedback
to the operators to improve the compliance of their services. We test
IdPs according to the guidelines of the security best practices and
the OAuth threat model. The results are then aggregated to create
a unique overview of the current state of the OAuth ecosystem.

Contributions In this paper, we introduce a tool that can be
used to assess to what degree an OAuth IdP implements the security
specifications from the OAuth standards. We present an analysis
of the current OAuth ecosystem and we zoom in on specific coun-
termeasures and threats. We confirm the results of our analysis by
choosing four attack vectors to mount an attack on several OAuth
IdPs that have been identified by the tool as vulnerable.

The assessment tool ‘OAuch’. We introduce a tool called OAuch
that analyzes OAuth 2.0 IdPs, including implementations that sup-
port the OpenID Connect (OIDC) extension. OAuch features 113
test cases that test the security specifications as defined by the vari-
ous OAuth standards documents. The OAuch user is notified about
missing countermeasures, deprecated features, and unmitigated or
partially mitigated threats.

1The OAuth standard uses the terms client, authorization server, and resource owner to
refer to the RP, IdP, and user respectively. In this paper, we adopt the more common
terminology [4, 12, 24, 25, 27–29, 36, 37, 39, 42].
2This paper does not consider the older and vastly different OAuth 1.0 protocol.
Whenever the term OAuth is used throughout this paper, version 2.0 of the protocol is
assumed.
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A large-scale analysis of the OAuth IdP ecosystem.We present the
results of a large-scale security analysis of 100 publicly deployed
OAuth IdPs to create an overview of the current OAuth ecosystem.
The results show that, on average, an IdP does not implement
20% of the required security specifications and 33% of all security
specifications. To the best of our knowledge, our work is the first
large-scale ecosystem analysis that takes into account the full set
of security requirements as defined in the OAuth standards.

Detailed analysis of specific threats and security requirements.

We expand the OAuth threat model and propose threats for widely
deployed OAuth extensions that are not covered by the threat model.
Based on the ecosystem analysis, we discuss individual threats,
countermeasures, and deprecated features. We show that many
crucial countermeasures are often not implemented.

Demonstration of relevance. We validate the results by launching
four attacks on IdPs that OAuch deemed vulnerable. The results
were highly accurate, with a false positive rate of 1.45% and a false
negative rate of 1.48% for the four attack vectors combined.

Interpretation of the results. Based on the interactions we had
with the operators, we present several arguments that can explain
why OAuth IdPs are missing so many countermeasures.

2 BACKGROUND

The OAuth 2.0 protocol [48] is a popular authorization framework
that solves many of the problems found in the traditional client-
server authentication/authorization model. It separates the role of
the RP from that of the user. The user is the entity that can grant
access to a protected resource, and the RP is an application request-
ing access to the protected resource on behalf of the user. The IdP
issues access tokens when the user successfully authenticates and
authorizes the RP to access the resource. These access tokens are
essentially alternative and revocable credentials that are linked to a
user and a specific scope. A scope defines granular permissions for
an RP, for example to access data or perform actions. Access tokens
can be used on the resource server to access the protected resource.

OAuth is an authorization framework that originally defined
four modes of operation, called grants or flows. Additional flows
that cater to other use cases have been proposed [47, 53], but are
not widely implemented. Section A in the appendix illustrates the
protocol with a detailed description of the authorization code flow.

RPs must be registered with the IdP before they can receive au-
thorization. During enrollment, the RP receives a client identifier
that must be present in the redirection URI of the authorization
requests and during the authorization code exchange. In most cases,
an RP must also register one or more callback URIs for valid redi-
rection. If the IdP issues a secret or uses some other mechanism
to authenticate an RP, the RP is said to be confidential. If the RP
cannot securely store a secret (e.g., a mobile app), the RP is not
issued authentication credentials and is called a public RP.

IdPs may grant refresh tokens together with access tokens. Re-
fresh tokens are special tokens that are typically only used with
confidential RPs and can be exchanged for a new access token and
refresh token. This allows an access token — which is frequently
used and more prone to leakage — to be short-lived. When the
access token expires, the RP can simply use the refresh token to
request a new access token, without having to involve the user.

OpenID Connect (OIDC) is an authentication protocol built on
top of OAuth 2.0 for single sign-on and federated identity function-
alities. OIDC extends OAuth with the concept of an identity token

that contains information about the authenticated user.

3 RELATEDWORK

Other research has looked into the security of the OAuth protocol
and the implementation quality of RP and IdP deployments. The
work that resembles our work the most is the OpenID Certification
Tests website [57]. This test suite is technologically similar to the
OAuch test suite but focuses on conformance tests for OpenID
implementations. The tests include the security- and non-security-
related requirements of the specifications. It also includes tests for
some recommended mitigations (identifying missing mitigations
with warnings) and does not include tests for optional mitigations.
OAuch focuses on security, not conformance, and includes coun-
termeasures of any requirement level. It also supports the OAuth
best current practices, which is the most current source of OAuth
security recommendations. The OAuth best current practices are
currently not supported by the OpenID Certification Tests because
they are published as an Internet-Draft and OIDC implementations
technically do not have to comply with them.

Hedberg [17] implemented a deployment verification tool that
specifically targets the OpenID Connect specification. The goal
was not eliciting security vulnerabilities, but rather promoting
interoperability across implementations of the standard.

Koponen [21] developed a secure implementationmodel of OAuth
2.0 and tested the implementation against the web application se-
curity weaknesses of the OWASP Top 10 [38] and other threats
found in the literature. Similar to our work, the test suite analyzes
OAuth 2.0 implementations following a black-box approach, testing
a self-developed RP and IdP for vulnerabilities. Our work targets
only the IdP, but covers many more test cases, and analyzes a broad
ecosystem of OAuth 2.0 API and OIDC providers.

More recently, Fett et al. [10] carried out a formal analysis of the
OpenID Financial-Grade API (FAPI), an Open Banking security pro-
file of OAuth 2.0 intended for high-risk scenarios to defend against
very strong attackers. Their systematic formal analysis leverages
the Web Infrastructure Model [11] to build a comprehensive model
of FAPI and various OAuth security extensions. The authors used
this model to define and prove security properties and found au-
thentication, authorization, and session integrity vulnerabilities
whenever the proof failed. They were able to address the vulner-
abilities and formally verify the security of the revised OpenID
FAPI. Contrary to the work of Fett et al. that formally analyzes the
specifications and is used to establish the best practices, our work
analyzes the compliance of actual implementations with the OAuth
specifications and best practices.

Many results either limit the number of OAuth providers that
are tested, or focus on a small number of attack vectors. Ferry et
al. [9] analyzed the security of OAuth 2.0 implementations, man-
ually testing 21 sites against the recommendations of the OAuth
threat model, and finding vulnerabilities with 2 sites. Li et al. [25]
assessed the OIDC standard, but specifically focused on testing the
security of a particular implementation, in this case forensically
examining HTTP traffic of 103 relying parties leveraging Google’s
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implementation for signing in their users. Their study revealed
serious vulnerabilities allowing a malicious adversary to log in as a
victim user. Further analysis identified the cause to be a combina-
tion of Google’s design of the OIDC service and the RPs sacrificing
security for ease of implementation.

Shernan et al. [36] investigated non-compliancewith theOAuth 2.0
standard, and in particular vulnerabilities to Cross-Site Request
Forgery (CSRF) attacks on real-world OAuth 2.0 deployments of
the authorization code flow by analyzing to what extent clients and
authorization servers implement the mandatory CSRF protection.
They evaluated 13 IdPs, of which only 4 enforce CSRF protections.
While crawling the Alexa Top 10,000 domains, they observed that
25% of websites using OAuth 2.0 appear vulnerable to CSRF at-
tacks. These vulnerabilities were caused by mistakes ranging from
weaknesses in sample code, lack of documentation, to inconsistent
implementations of APIs across a large company.

Related research on CSRF attacks against both OAuth 2.0 and
OpenID Connect was carried out by Li et al. [26]. They propose a
new technique to mitigate CSRF attacks that can be easily imple-
mented by the RP and that requires no changes at the IdP. Their
approach verifies whether the referrer header points either to a
valid IdP domain or the RP domain. Follow-up work by the same au-
thors [29] presents OAuthGuard, an OAuth 2.0 and OpenID Connect
vulnerability scanner and protector. OAuthGuard aims to protect
user security and privacy even when the RPs do not implement the
standard correctly. The authors investigated 5 vulnerabilities (e.g.,
use of HTTP vs HTTPS, leaking user tokens) on 1,000 top-ranked
websites by majestic.com. From the 137 websites that used Google
Sign-in, 69 suffered from at least one serious vulnerability. OAu-
thGuard could protect user security and privacy for 56 of them,
while warning the user about the insecure implementation for the
remaining ones.

Contrary to previous work that relies on a manual discovery of
new vulnerabilities in OAuth 2.0, Yang et al. [42] proposed OAuthT-
ester, an adaptive model-based testing framework for automated,
large-scale security assessments of OAuth 2.0 implementations.
Based on the OAuth specifications, the authors created a coarse-
grained system model in the form of a state machine that abstracts
the behavior of all parties. They analyzed 4 major IdPs and 500
Alexa top-ranked US and Chinese websites that use the OAuth-
based SSO service provided by the IdPs. Not only did OAuthTester
rediscover known vulnerabilities, but it was also able to discover
new exploits due to, for example, OAuth-based applications not
adopting TLS to protect their OAuth sessions. From a technology
perspective, OAuch follows a different implementation approach.
While previous work mainly tests RPs, OAuch acts as an RP to
analyze the security non-compliance of IdPs. OAuch can only dis-
cover compliance issues that are documented in the OAuth security
guidelines, and does not detect new vulnerabilities.

Calzavara et al. [4] presented WPSE, a browser-side security
defense to prevent attacks against the OAuth 2.0 and SAML 2.0
protocols. Specifically for OAuth 2.0, the authors focused on proto-
col flow deviations, secrecy, and integrity violations. They tested
WPSE on 90 websites, and found security flaws in 55 websites due
to, for example, tracking libraries.

Other research has also looked into the security of client imple-
mentations. Chen et al. [7] performed a large-scale study of 600

popular mobile applications and concluded that almost 60% of appli-
cations were incorrectly implemented. They redid the survey two
years later [6], only to discover that the situation had not improved.
Wang et al. came to a similar conclusion by testing popular Chi-
nese Android apps [40] and international apps [39]. Al Rahat [32]
proposed OAuthLint, a tool that encodes vulnerable patterns ex-
tracted from the OAuth specifications to find bugs in Android apps.
Follow-up work by the same authors [33] investigated the security
of OAuth service provider implementations, proposing a frame-
work called Cerberus that implements a query-driven algorithm
to test security-critical OAuth properties. It investigates vulnera-
bilities in OAuth server libraries widely used by service providers.
OAuch does not analyze specific software libraries, but detects
non-compliance of deployed IdPs running any implementation of
the OAuth 2.0 protocol.

Ghasemisharif et al. [15, 16] researched shortcomings and secu-
rity implications with Single Sign-On. In [16], the authors propose
a countermeasure against account hijacking that implements Sin-
gle Sign-Off capabilities on top of OIDC. Their follow-up work on
account hijacking [15] proposes SAAT as a fully automated frame-
work that analyzes whether RPs using Facebook as the IdP comply
with security best practices and guidelines. Compared to SAAT,
OAuch features less automation, but is not constrained to Face-
book’s IdP and focuses on IdP compliance instead of RP compliance.

Li et al. [30] performed a computationally sound security anal-
ysis of OAuth 2.0 in a three-party setting that covers all kinds of
authorization flows. Complementary to OAuch , it aims to formally
verify the OAuth 2.0 protocol itself rather than its implementation
or deployment. Additionally, the authors validate the soundness of
their model by identifying known attacks against OAuth 2.0.

Benolli et al. [3] empirically analyzed the prevalence of OAuth
CSRF vulnerabilities in the wild in a large-scale study of 314 high-
ranked sites that implemented the Facebook Login flow. OAuch
analyzes similar URI redirection concerns as well as many more
security threats and countermeasures, and explores these concerns
beyond Facebook as the IdP.

Compared to some previous works, OAuch does not focus on a
limited set of threats but tests more thoroughly in both breadth and
depth as explained in Section 4. Related work [8, 43] has shown that
executing an OAuth flow can be successfully automated with the
help of browser automation tools and for a well-defined set of IdPs.
OAuch, on the other hand, is designed to work on any browser
without additional plug-ins and for any IdP. As a result, OAuch is
not fully automated.

Table 5 in the appendix summarizes the contributions of the
related work, categorized per threat. Though the related work in-
vestigates an extensive set of threats on the OAuth framework
and its implementations, many threats are not covered. Works that
are referenced in the table may also investigate other aspects of
a threat, compared to our work. For example, they may assess RP
mitigations, whereas OAuch examines IdP mitigations.

4 THE OAUCH TESTING FRAMEWORK

OAuch3 is an open-source security best practices and threats ana-
lyzer for OAuth 2.0 IdP implementations. Its main goal is to analyze

3https://oauch.io/
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Figure 1: Mapping threats, countermeasures and security

specifications.

an IdP’s compliance with the OAuth standards to uncover unmiti-
gated threats and point out security improvements. OAuch tests
an IdP using a large set of test cases to check an IdP’s compliance
with the security specifications defined in the original OAuth 2.0
standard [48, 49], as well as other documents that refine the secu-
rity assumptions and requirements. These documents include the
OAuth threat model [54], the Security Best Current Practices [44],
and others [45, 47, 50–52, 55]. In addition to OAuth, OAuch also
supports OpenID Connect [56] providers.

4.1 Threat Model

The OAuth working group has published a comprehensive threat
model [54] shortly after publishing the original OAuth 2.0 standard.
This threat model is further refined in the latest Security Best Current
Practices document [44] to include additional threats that have been
observed in real-world usage of OAuth.

As depicted in Figure 1, the threat model describes for each threat
how an implementation may be attacked and which countermea-
sures can be applied. Some threats are mitigated by a combination
of multiple countermeasures, while others can be mitigated by a
single countermeasure. In many cases, alternative sets of counter-
measures may be used to address a threat. Some countermeasures
may (partially) mitigate multiple threats.

The model assumes a powerful attacker that has full access to the
network between the RP and the IdP, and the RP and the resource
server. The attacker may eavesdrop on any communication between
those parties and has unlimited resources to mount attacks. In
addition, two of the three parties involved in the OAuth protocol
may collude to mount an attack against the 3rd party.

This threat model has been adopted in OAuch and is used to
offer precise feedback to the user. OAuch uses test cases to de-
tect which countermeasures are implemented by the IdP. It then
uses the information from the threat model to determine which
threats are mitigated. For every threat, it takes the list of mitiga-
tions that are proposed by the threat model and compares it with
the mitigations that have been detected. If the threat is properly

mitigated, it is marked as fully mitigated. When no relevant coun-
termeasures are active, the threat is unmitigated. Threats can also
be partially mitigated if some countermeasures are present, but not
all. When multiple sets of countermeasures can mitigate a threat, it
is sufficient that only one set is fully implemented.

The OAuth threat model lists 49 threats, and the OAuth best
current practices document adds 6 threats (as well as updating
other threats in the original threat model). OAuch tests for 36 of
these threats. Of the remaining threats, 8 are RP or user threats and
are out of scope, 8 are not protocol-related (e.g., manipulation of

scripts on the authorization page) and cannot be tested, and 3 are
related to denial-of-service attacks. We extend the threat model
with 6 additional threats to incorporate countermeasures from
popular OAuth extensions that are not referenced in the official
threat model. Table 5 lists the threats of the extended threat model
as used by OAuch.

4.2 Supported OAuth Standards

OAuth 2.0 is a framework with multiple extensions that have been
standardized over the years to support new use cases or to improve
the security. The test cases in OAuch are based on the security
specifications as written down in these OAuth-related standards
documents. The following documents are supported:

• The OAuth 2.0 Authorization Framework (RFC6749)
• The OAuth 2.0 Authorization Framework: Bearer Token Usage

(RFC6750)
• OAuth 2.0 Token Revocation (RFC7009)
• JSON Web Token (JWT) Profile for OAuth 2.0 Client Authenti-

cation and Authorization Grants (RFC7523)
• Proof Key for Code Exchange byOAuth Public Clients (RFC7636)
• OAuth 2.0 Device Authorization Grant (RFC8628)
• OAuth 2.0 Security Best Current Practice

• OpenID Connect Core 1.0 incorporating errata set 1

• OAuth 2.0 Form Post Response Mode

4.3 Mapping Threats, Countermeasures and

Security Specifications

Converting the security specifications in the OAuth standards,
which are written in natural language, into actionable security test
cases is a manual process. Though this procedure is time-consuming
and requires technical expertise, it must only be done once per stan-
dard document. The conversion uses the following approach:

(1) Identifying Specifications. The security specifications in the
standard are enumerated. They can be identified by the accom-
panying keyword must, should or may. This keyword indicates
the requirement level. Must indicates an absolute requirement
to implement the specification, should implies a strong prefer-
ence to implement it, and may merely offers it as a suggestion.
The requirement level is always fully capitalized which makes it
easily recognizable. Figure 2 shows a snippet of the core OAuth
specification that specifies two separate countermeasures re-
lated to caching.

(2) Filtering IdP Specifications. Not all security specifications
are relevant for OAuch. Only specifications that govern the
behavior of the IdP are selected. Specifications that focus on
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the RP or other actors in the OAuth protocol are out of scope
and are excluded.

(3) Selecting Specifications. Some specifications are not directly
related to the OAuth protocol and cannot be tested. An example
is the suggestion that IdPs encrypt stored credentials. Other
specifications may be too disruptive to test (e.g., testing the
presence of denial of service protection). These specifications
are also out of scope and excluded.

(4) Implementing Test Cases. A test case is implemented for
each of the selected security specifications. Each test case per-
forms a minimal check to validate the IdP’s implementation
of the specification. A test case can thus be seen as a yes-no
question that provides information about the compliance of the
implementation to a single security specification. This implies
a one-to-one correspondence between security specifications
and test cases.

Because a security specification is a very precise andwell-defined
technical requirement, implementing a test case is not complicated.
For example, the OAuth standard requires that confidential RPs or
other RPs issued client credentials MUST authenticate with the IdP.
This specification is converted into a test case where OAuch tries
to retrieve an access token from the IdP without using client au-
thentication. If the request succeeds and an access token is granted
(despite not using client authentication), OAuch has determined
that the IdP does not implement this specific requirement. On aver-
age, a test case consists of only 11 executable lines of code.

After a careful manual analysis of the documents listed in Sec-
tion 4.2, we extracted and implemented a total of 113 unique test
cases. One security specification may be mentioned in multiple
documents with varying requirement levels. For example, the origi-
nal OAuth standard states that the redirect URI should be exactly
matched to a preconfigured value, whereas the Security Best Cur-
rent Practice document changes this to a must. In this case, OAuch
assigns the most strict requirement level to the test case.

Not all security specifications in the documents are converted
into test cases. This raises the question what percentage of specifi-
cations are represented by the OAuch test cases. We analyzed the
main OAuth standard (RFC6749) to try and determine the coverage
percentage of the mandatory security specifications. Roughly 60
unique security requirements were identified. OAuch implements a
test case for 33 of these requirements. Another 15 requirements are
aimed at RP implementations and are out of scope. Of the remaining
requirements, 11 are not directly related to the protocol and could
not be tested remotely, and one was related to DDoS protection and
was considered too disruptive to test.

Finally, the test cases are mapped to specific threats in the OAuth
threat model:

(1) Selecting Threats. Threats that are only applicable to RPs are
not in scope and are discarded. Two threats that are related to
DDoS attacks are too disruptive to test and are discarded as
well.

(2) Filtering Countermeasures. Each threat has a list of coun-
termeasures to mitigate the threat, as illustrated in Figure 3.
Countermeasures that are not relevant to IdPs are removed.

(3) Mapping Countermeasures to Test Cases. The countermea-
sures in the threat model correspond directly to the security

Figure 2: A snippet of the OAuth 2.0 core specification

(RFC6749) that illustrates how security requirements are

defined.

Figure 3: A snippet of the OAuth 2.0 Threat Model (RFC6819)

that illustrates how a threat is documented.

requirements in the OAuth specifications. For example, the
cache countermeasure mentioned in Figure 3 corresponds to
the two security requirements in Figure 2. Each security re-
quirement has a matching test case. For each countermeasure,
the corresponding test cases are associated with the threat. Sec-
tion C in the appendix lists for every threat the corresponding
OAuch test cases.
The threat model lists for every threat all applicable counter-

measures, but does not refer to the requirement levels that are
mentioned in the security specifications. Hence, it does not show
any preference for one countermeasure over another. OAuch adopts
this approach and does not take the requirement level of a coun-
termeasure into account when determining whether a threat is
(partially) mitigated. However, the requirement levels of the failed
test cases are reported to the user.

4.4 Running Test Cases with OAuch

OAuch tests an IdP with numerous authorization requests trigger-
ing a specific behavior that is either expected or not allowed.

OAuch works like an ordinary RP. When testing an IdP, the
regular RP registration procedure must be followed. The IdP gener-
ates a client id and optionally a client secret. It tells the user which
OAuth endpoint URIs to use for authorization and token requests,
and generally asks the user to register a callback URI (depending
on which flows are used). The user then creates a new test profile
in OAuch and enters the settings they received from the IdP.
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When the testing process is started, the test cases from the se-
lected standards documents are run against the IdP. OAuch starts
by detecting which flows and features are enabled on the IdP and
executes the relevant test cases accordingly.

OAuch uses two browser windows during testing: one window
drives the test process and shows the progress to the user, and a
second window handles the callbacks from the IdP. Figure 4 shows
the two browser windows during an active test run.

OAuch requires user interaction in two cases: when the user
has to authenticate and authorize access, or when the IdP shows
an error message to the user. During a test run, OAuch sends on
average 39 authorization requests to the IdP. However, cookies
are generally used to remember signed-in users and most IdPs
automatically authorize a request if the user has granted access to
the RP before. In practice, 84% of the authorization requests are
granted automatically without any user interaction.

Because OAuch violates the OAuth protocol in many test cases,
the IdP may show an error to the user instead of redirecting the
browser back to the callback URI. Although this behavior is by
design (and often a good sign), it stalls the test progress. OAuch
continues to wait for a callback from the IdP but this callback will
never happen. To solve this stalemate, the user clicks the stalled
test button whenever the IdP shows an error. This signals OAuch
that the callback will not happen, and forces it to move to the next
step in the testing process. An average of 4 authorization requests
per test run fail this way.

4.5 Reporting IdP Scores

OAuch calculates several statistics after each test run. The most im-
portant output is the number of unmitigated threats. These threats
represent weak points in the implementation, which can be ex-
ploited under the right circumstances. The number of partially miti-
gated threats and deprecated features is the second most important
output. Partially mitigated threats may or may not be exploitable;
OAuch does not report to what degree these threats have been
mitigated, only that there is at least one partial mitigation active.
Deprecated features should be avoided if possible, as they are often
deprecated on the grounds of being insecure.

In addition to these three important indicators, OAuch also
computes the failure rates of the test cases. This metric is calculated
by dividing the number of failed tests by the total number of tests
that are executed, and converting the result to a percentage. This
percentage indicates to what degree an IdP correctly implements
the OAuth standard. An overall failure rate is reported, as well as
the individual failure rates of the three requirement levels (must,
should, may). The calculation only takes into account the tests that
were executed and able to verify whether a security requirement
holds. If a test fails for some unanticipated reason (e.g., a temporary
network problem) or if a test is skipped because it is not relevant
for the IdP, it is excluded from the calculation.

A test run executes more test cases if the IdP supports many
flows or enables more features. This increases the number of failed
test cases, but also increases the number of executed tests, keeping
the failure rate relatively stable. To test this assumption of stability,
we analyzed the failure rates of all IdPs that had two or more
flows and recalculated the failure rate as if only the authorization

code flow had been enabled. The overall failure rate increased by
2.05% ± 2.46%, confirming that the number of active flows has only
a small impact on the calculated result.

4.6 Scope and Limitations

The OAuth standard defines security specifications for both RP
and IdP implementations. It is clear that if either the RP or the IdP
contains a vulnerability, the security of the entire system is broken.

OAuch focuses on the IdP specifications and only tests the behav-
ior of an IdP implementation. Security issues on the IdP typically
have a higher impact than issues in an RP. A vulnerability in an RP
allows an attacker to abuse the data of the users using that RP. A
vulnerability on the IdP may affect all users. Furthermore, fixing a
vulnerability on the IdP may require all RPs to be updated as well
(depending on the type of vulnerability). By focusing on the IdP,
OAuch improves the security of RPs to a certain extent. If the IdP
does not allow insecure behavior, the RP is forced to be more secure
as well.

Some OAuth-related threats can be mitigated on the RP (e.g., a
CSRF attack against the redirect URI). In the threat analysis, OAuch
considers a worst-case scenario and assumes that an RP does not
have these mitigations in place. This is not an unrealistic assump-
tion: previous research has shown that many RPs have a flawed
implementation and are unsafe [7, 24, 35, 37, 40, 42]. Threats that
can only be mitigated on the RP and not on the IdP (e.g., phish-
ing for end-user credentials using a compromised or embedded
browser) are not considered.

OAuch only focuses on the security specifications in the OAuth
documents. These documents propose mitigations for protocol-
specific security issues, but they do not cover issues on other levels
of abstraction. For example, implementations could be attacked
through logical flaws on the application layer, like the mismanage-
ment of the scope parameter that could lead to a privilege escalation
vulnerability [21]. Another way to attack an IdP is through timing
attacks, where an attacker takes advantage of race conditions in
the implementation [63]. Programming bugs (e.g., buffer overflows)
might be exploitable as well. Because these vulnerabilities are not
specific to the OAuth protocol, they are not covered by the OAuth
standard. As a result, OAuch does not test for these issues.

The test cases in OAuch each test a very specific part of the
standard and the results are straightforward to interpret. Yet, due
to the black box nature of the IdP’s authentication and authoriza-
tion process, 7 test cases use a heuristic to calculate their output.
For example, when testing whether the IdP automatically grants
an authorization request, OAuch must be able to differentiate be-
tween an automatic authorization and an authorization that the
user manually approved. In this case, a heuristic is used to clas-
sify authorization responses either as automatically or manually
granted. This introduces some inaccuracy in the results, as there
is a small chance that the calculated result is wrong. A manual
analysis of three of these test cases revealed that the error rate is
small, with a false positive rate of 2.4% and a false negative rate of
2.0%. The 106 other test cases have no false positives or negatives.



OAuch: Exploring Security Compliance in the OAuth 2.0 Ecosystem RAID 2022, October 26–28, 2022, Limassol, Cyprus

Figure 4: An active OAuch test run. The left browser window is driving the testing process and informs the user of the progress.

The right window is used to handle callbacks from the IdP.

5 ANALYZING THE ECOSYSTEM

We use OAuch to test 100 publicly available OAuth IdPs that are
deployed and in production, with the expectation that they have
all relevant security precautions in place. This section analyzes the
entirety of the ecosystem. Table 4 in the appendix contains the
detailed results, on a per-IdP basis.

5.1 Approach

Our empirical study of a large selection of OAuth IdPs evaluates the
OAuth implementation of each IdP with OAuch, and aggregates
the results. Our analysis of these results and the current state of
practice offers a unique overview of the OAuth threat landscape
that identifies frequently missing mitigations.

The ProgrammableWeb4 — an independent website that main-
tains an index of publicly available APIs — identifies 187 websites
in the top 10,000 that host an OAuth 2.0 IdP, and over 300 addi-
tional websites in the top 1,000,000. Not every site is accessible to
test. Providers may charge money for their service or require the
purchase of specific hardware. Services may only be available to
citizens of specific countries, or users with security clearance.

We selected a representative sample of 75 IdPs from the top
10,000 for the analysis. This sample closely follows the distribution
of the full dataset, where we observed a strong presence of top sites
(rank < 1000, and especially rank < 100). We further supplemented
the list with another 25 sites in the top 1,000,000.

IdPs are classified into two categories: API providers and OpenID

Connect (OIDC) providers. API providers are websites that allow
RPs to consume data or programmatically interact with the site via
an API. OAuch does not test the security of this API but only the
compliance of the OAuth authorization process. OIDC providers
are IdPs that support the OpenID Connect identity layer on top of
an OAuth 2.0 service. One in five selected IdPs is an OIDC provider.

5.2 Authorization Grants

The original OAuth 2.0 standard defines four different authorization
grants (or flows). The most popular flow is the authorization code

4https://www.programmableweb.com/

Table 1: An overview of the support in the ecosystem for

various OAuth 2.0 authorization grants.

API OIDC

Authorization Grant Overall Prov. Prov.

Authorization Code Grant 94% 93% 100%
Client Credentials Grant 30% 30% 30%
Implicit Grant 37% 40% 25%
Password Grant 3% 4% 0%
Hybrid Grant (OIDC) 8% 0% 40%
Device Grant (RFC8628) 1%5 0% 5%5

flow, which is supported by 93% of the IdPs. Two grants — the
implicit flow and the password flow — have been deprecated since
2019. Yet, the implicit flow is still supported by 40% of the IdPs.
Only 4% of the tested IdPs support the password flow.

OIDC providers are generally used as identity management ser-
vices to enable social logins, but they may also be used for API
authorization. The authorization code flow is supported by every
IdP that was tested. The implicit flow can be used on 25% of the
IdPs, and the hybrid flow — a flow specifically introduced for OIDC
servers — was enabled on 40% of the IdPs. Only one IdP supported
the device flow5.

Table 1 gives the full overview of supportedOAuth grants through-
out the ecosystem.

5.3 OAuth Extensions

Most OAuth extensions are not widely supported in the ecosystem.
Table 2 gives an overview of extensions that are supported by
OAuch and the percentage of IdPs that support each extension.

Two results in Table 2 are noteworthy. The PKCE extension
improves the security characteristics of the authorization code flow.
It is an important mitigation against authorization code injection
attacks, which explains why the security best practices mandate its
use. Yet, only 21% of the tested IdPs support PKCE. Likewise,Mutual

TLS is a recommended security extension to improve OAuth’s client

5This number is an underestimate. In addition to Google, Microsoft also supports the
device grant under certain conditions. Facebook has a flow that is similar to the device
grant but is incompatible with RFC8628.



RAID 2022, October 26–28, 2022, Limassol, Cyprus Pieter Philippaerts, Davy Preuveneers, and Wouter Joosen

Table 2: An overview of the support in the ecosystem for

various OAuth 2.0 extensions.

API OIDC

Normative Document Overall Prov. Prov.

Bearer Tokens (RFC6750) 92% 90% 100%
Token Revocation (RFC7009) 19% 11% 50%
JWT Assertions (RFC7523) 3% 0% 15%
PKCE (RFC7636) 21% 15% 45%
Server Metadata (RFC8414) 13% 3% 55%
Device Grant (RFC8628) 1%5 0% 5%5

Mutual TLS (RFC8705) 0% 0% 0%

authentication capabilities during the authorization process and
when using an access token. None of the tested IdPs support it.

In addition to the documents listed in Table 2, the OAuth work-
ing group has created several other OAuth-related standards like
token binding, dynamic client registration, and SAML assertions.
However, these standards have a low adoption rate. None of the
tested IdPs supported any of these extensions.

5.4 Current State of Practice

Table 4 in the appendix shows a great variety in terms of issues
that have been found. The overall failure rate was 33%, meaning
that on average about one in three (applicable) security specifica-
tions are ignored by implementers. If the failure rate is split up by
requirement level, the failure rates are 20% for the required specifi-
cations, 56% for the recommended specifications, and 81% for the
optional specifications. While the high failure rate for the optional
specifications is somewhat expected, it is alarming that one in five
requirements are not or incorrectly implemented.

The OIDC providers score better than the API providers with an
average failure rate of 26%. This is an interesting result, because
OIDC implementations are more involved than plain OAuth imple-
mentations, and are subjected to more test cases. An explanation
may be that the OIDC consortium offers conformance tests (see Sec-
tion 3) and several of the providers in this category have received
this certification. Despite these conformance tests, all OIDC IdPs
failed to implement several requirements from the standard, result-
ing in an average failure rate of 16% for the mandatory security
specifications.

Figure 5 shows a histogram of the failure rates of the mandatory
specifications. More than half of the test cases failed for less than
20% of the IdPs. This confirms our observation that IdPs have a
relatively unique set of failed test cases. Only a few test cases fail
for many IdPs, making it harder to give generally applicable advice
for improvement.

Popular IdPs do not seem to perform better in our analysis. If
the IdPs are split into categories according to their Tranco top sites
ranking [23], the failure rates are similar over each category. For
example, the categories top 200, top 201–2,000, top 2,001–10,000, and
top 10,001+ yield four similarly sized categories with respective
failure rates of 32.0%, 33.0%, 36.7% and 32.9%.

OAuch can calculate statistics on a per-document basis. Table 3
shows the aggregation of these results over all IdPs. The reported
percentages are the failure rates of the test cases that are relevant
for a particular standard. Lower values indicate better compliance
with the standard.
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Figure 5: A histogram of the average test case failure rate.

This only includes test cases for mandatory security specifi-

cations that have been run against at least 10 IdP implemen-

tations.

Table 3: The average security compliance scores over the

entire ecosystem, listed per document. The percentages are

the failure rates of the test cases (lower is better).

Normative Document Overall Must Should May

OAuth 2.0 (RFC6749) 25.0% 19.8% 40.7% 50.9%
Bearer Tokens (RFC6750) 7.9% 0.7% 60.6%
Threat Model (RFC6819) 22.3% 2.8% 22.8% 63.9%
Token Revocation (RFC7009) 8.9% 5.8% 12.5% 25.0%
JWT Grant Type (RFC7523) 13.8% 4.2% 60.0%
PKCE (RFC7636) 19.5% 11.4% 100.0%
Device Grant (RFC8628) 10.0% 11.1% 0.0%
Security Best Practices 61.1% 40.3% 66.0% 85.6%
OpenID Connect 12.6% 13.2% 5.3%
All documents combined 33.0% 20.0% 56.3% 80.9%

There are large differences between the results, but one result
stands out. No less than 40% of the security specifications in the
Security Best Current Practices (BCP) document are missing in a
typical IdP implementation. These results are alarming because the
BCP is the most up-to-date source of OAuth security guidelines. A
requirement present in the BCP but not in the original OAuth RFC
is almost three times less likely to be implemented, compared to a
requirement that is present in both. As a result, advanced injection,
impersonation, and replay attacks might not be properly mitigated.

5.5 Threat Analysis

The most important indicator of an IdP’s security posture is the
number of unmitigated or partially mitigated threats. Figure 6
shows a histogram of the number of unmitigated threats, with most
IdPs having between one and seven unmitigated threats. Assuming
a worst-case scenario where no additional RP countermeasures are
used, these IdPs are vulnerable under the attack assumptions of
the OAuth threat model. Only three IdPs succeeded in having no
unmitigated threats.

The results of the analysis can be used to rank the threats ac-
cording to prevalence in the ecosystem. Table 5 in the appendix
shows the detailed results for all threats. After filtering out threats
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Figure 6: A histogram of the number of threats that are not

mitigated. An unmitigated threat is a threat for which none

of the countermeasures that are suggested in the OAuth

threat model are implemented.

that are only relevant for a small number of IdPs, the following top
five threats are obtained:
(1) Authorization Code Injection (78% failure rate) — This is di-

rectly linked to the low uptake of the PKCE security extension,
as mentioned in Section 5.3, that mitigates this threat. Sec-
tion 6.1 demonstrates that authorization code injection attacks
are possible on all OIDC IdPs for which we found public RPs.

(2) Obtaining Access Tokens (73% failure rate) — To avoid access
tokens from being leaked, they should be valid for only a short
period. Only 27% of IdPs mint access tokens that are valid for
an hour or less. While most access tokens are valid for less
than a day, 10% of IdPs use tokens that are valid up to a week,
and another 18% use tokens that are valid for more than a
week.

(3) Obtaining Client Secrets (54% failure rate) — Most IdPs auto-
matically grant authorization to an RP if the user has granted
authorization before. This improves the usability of the IdP,
but can also lead to an impersonation attack when a pub-
lic RP (one that uses the implicit flow, for example) is used.
Section 6.2 reports on the results of our proof-of-concept at-
tack that worked on all the IdPs that OAuch believed to be
vulnerable.

(4) PKCE Downgrade Attack (43% failure rate) — An attacker may
trick the IdP into ignoring the PKCE parameters. This threat
is different from the other threats because it originates from
an implementation error instead of a missing countermeasure.
Section 6.3 details our proof-of-concept downgrade attack
that worked on all identified IdPs.

(5) Token Leakage via Log Files and HTTP Referrers (40% failure
rate) — RPs should use the Authorization HTTP header to
transmit the access token to API endpoints. If the resource
server accepts an access token as a URL parameter, there is
a risk that the access token leaks via log files or the HTTP
referrer header6.

6In November 2020, the W3C changed its recommendations on the default browser
behavior with respect to referrers. Going forward, this change may help mitigate some
attacks that fall under the Token Leakage via Log Files and HTTP Referrers threat.

0%

20%

40%

60%

80%

100%

0% 10% 20% 30% 40% 50% 60%

#
 F

u
lly

 m
it

ig
a
te

d
 t

h
re

a
ts

Overall Failure Rate

Figure 7: A plot showing the correlation of an IdP’s overall

failure rate with the percentage of fully mitigated (relevant)

threats. The correlation coefficient is −0.75, which implies a

fairly strong correlation between the parameters.

Threats are linked to one or more test cases, but not all test cases
are linked to a particular threat and some test cases are linked to
multiple threats. This makes the relation non-linear and at times
difficult to interpret. For instance, two IdPs with similar amounts of
mitigated threats may have wildly different test case failure rates.
Nevertheless, an overall correlation is observed. Figure 7 shows for
the tested IdPs the relation between the overall test case failure
rate and the percentage of relevant threats that are fully mitigated.
As expected, the calculated correlation coefficient of -0.75 implies
that a lower failure rate is correlated with the mitigation of more
threats.

5.6 Deprecated Features

Many IdPs support deprecated features for backward compatibility.
Although these features have been deprecated for security reasons,
it is ultimately a business decision whether to continue to support
them or not. OAuch informs the user about deprecated features
but does not include them in the calculated failure rates.

In terms of which deprecated features are enabled most often,
three stand out. Over half of the IdPs (51%) still support outdated
versions of TLS. Access tokens can be passed via URI query param-
eters on 38% of the resource servers, and the deprecated implicit
flow is enabled on 37% of the IdPs.

5.7 Case Studies

The ecosystem analysis has produced a lot of statistics on various
implementation aspects of OAuth. This section contains three case
studies that dig deeper into important parts of the OAuth infras-
tructure. The most important or surprising statistics are presented
for each case study.

5.7.1 Client Authentication. The OAuth standard distinguishes be-
tween public and confidential RPs Out of all the IdPs that were
tested, only one IdP (1%) used public RPs. All other IdPs used con-
fidential RPs, with most IdPs (97%) opting for client passwords to
authenticate an RP. Two IdPs (2%) allow RPs to upload a crypto-
graphic key during the enrollment process. Of the IdPs that issued
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a client secret, 11% did not require this secret to be presented when
exchanging an authorization code, and 13% did not require the
secret to exchange a refresh token.

5.7.2 Redirect URI Matching. The OAuth standard recommends
allowlisting redirect URIs for confidential RPs and requires it for
public RPs (or anyone using the implicit flow). The current advice
is to always use exact string matching when comparing the value
of the redirect_uri parameter with the allowlisted value, as other
approaches turned out to be error-prone [12, 37, 41]. Nonetheless,
only 53% of the tested IdPs follow this advice.

To prevent authorization code leakage through counterfeit web-
sites, RPs must include the redirect_uri parameter when exchanging
a code. The original OAuth standard document already included
this requirement, yet 37% of the IdPs do not validate this parameter.

5.7.3 Authorization Codes and Refresh Tokens. Authorization codes
are a prime target for attackers because they can be used to generate
access tokens as well as refresh tokens. When an attacker steals
an authorization code, the code is used twice (once by the attacker,
and once by the legitimate RP). OAuth does not allow using an
authorization code multiple times, yet 14% of the tested IdPs accept
the code multiple times.

Refresh tokens that are not sender-constrained, i.e., not crypto-
graphically bound to the RP, must use token rotation. A new refresh
token is granted with each exchange and the old refresh token is
invalidated but remembered. If the same refresh token is presented
a second time, the IdP must assume that the refresh token was
compromised and revoke the active refresh token. Only about half
of the IdPs are compliant and use token rotation. Yet, 44% of the
compliant IdPs still accept the old token. Of the IdPs that do not
allow multiple exchanges of the same refresh token, none revoke
the active refresh token.

6 USING OAUCH TO MOUNT ATTACKS

The purpose of OAuch is to measure the compliance of an IdP to
the OAuth standards, and to document partially and unmitigated
threats. It can also be used by an adversary to quickly uncover
potential attack vectors. In this section, we test this assumption
and use the results of Section 5.5 to investigate four threats. We use
OAuch to list the potentially vulnerable IdPs and try to exploit them.
Our results show that the analysis of OAuch is highly accurate and
can be used to find actual vulnerabilities in implementations.

Despite the potential for abuse, our proof-of-concept attacks did
not negatively impact any of the IdPs. All operators have been noti-
fied about these vulnerabilities as part of our responsible disclosure
process. The attacks were executed after the vulnerabilities had
been disclosed to the provider. As noted below, some providers had
already fixed the vulnerabilities by that time.

6.1 Authorization Code Injection Attacks

In an authorization code injection attack, the attacker starts by
stealing an authorization code from a user, for example, by tricking
the user to install a malicious browser add-on, by abusing open
redirects [41], by abusing proxy auto-config (PAC) files [22], by
using URI scheme interception onmobile devices [46], or by abusing
token leaks [59]. Once the authorization code has been acquired,

the attacker uses the same RP on their own device and starts the
authorization process. The stolen authorization code is injected
into this process and is associated with the attacker’s session. The
attacker can now impersonate the victim in the RP.

To counter the attack, the IdP can implement the PKCE exten-
sion, which was specifically created to counter authorization code
interception attacks. Alternatively, the RP can use the nonce param-
eter, as introduced by the OIDC standard. The nonce is a random
value generated by the RP and can be included in the authorization
request. The returned identity token contains this value, allowing
the RP to verify that the received token belongs to the correct ses-
sion. Note that the nonce parameter is specific to OIDC, whereas
authorization code injection attacks apply to plain OAuth as well.

Because none of the tested IdPs require PKCE, no implementation
fully mitigates the authorization code injection threat. If PKCE is
supported, the threat is shown as partially mitigated. Otherwise, it
is shown as unmitigated.

To test this attack on real implementations, we focused on the
OIDC implementations and looked for websites that used these
providers in the context of a social login. We found RPs for the
following IdPs: Apple7, BitBucket, Facebook, GitHub, Google, itsme,
LinkedIn, Microsoft, Orcid, SalesForce, Twitch, and Yahoo. The use
of PKCE or the nonce parameter by these RPs was virtually non-
existent. This made it easy to find one or more vulnerable RPs for
each of these IdPs.

OAuch reported that none of the IdPs fully mitigated the autho-
rization code injection threat. In most cases, RPs could have taken
advantage of PKCE or the nonce parameter. Sadly, the results show
that RPs cannot be expected to make the best security decisions.
This highlights the importance of making strong security demands
on the IdP side, which RPs are then forced to follow.

6.2 Implicit Flow RP Impersonation Attacks

The implicit flow does not support RP authentication, which makes
it vulnerable to a particular type of impersonation attack [19]. To
impersonate an RP, the attacker only needs to know the RP’s iden-
tifier and redirect URI — two publicly known values. Note that
these values can be collected from the RP even if it does not use
the implicit flow. The only prerequisite for the attack is that the
IdP supports the implicit flow. If the attacker can trick a user into
installing a malicious application, the application can impersonate
the RP by using the same app-uri (i.e., the RP’s redirect URI that
it uses for mobile and desktop applications) to steal access tokens
that are linked to the impersonated RP.

One way to mitigate this threat is by explicitly asking the user
to authorize each access token request. OAuch tests this behavior
with a test case that is based on a heuristic (cf. Section 4.3). OAuch
uses the implicit flow to send an authorization request, and if it
receives an access token in a short amount of time, it assumes
that the request was automatically granted and no explicit user
authorization was requested.

To verify OAuch’s analysis, we built a proof of concept based
on the demonstration given in [18]. Of the 37 IdPs that OAuch

7The Apple OIDC implementation is not present in the ecosystem analysis because
Apple requires its users to pay for a developer account. However, for the authorization
code injection attack, RPs deployed by others are exploited.
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examined for this threat, 20 were reported as vulnerable. By the
time we implemented and executed our attack, two IdPs had already
implemented the mitigation, another two IdPs had removed their
support for the implicit flow, and one IdP discontinued public use
of their API. Our tests showed that there were no false positives in
the results of OAuch. All sites that were reported to be vulnerable
were indeed exploitable. However, further analysis revealed that the
heuristic in the test case misclassified two IdPs as not vulnerable,
when they were actually exploitable. Thus, the actual failure rate
of the test case is worse than what OAuch reported.

6.3 PKCE Downgrade Attacks

The PKCE extension is an important mitigation against authoriza-
tion code misuse and CSRF attacks. The RP must add a random
(and optionally hashed) value to the authorization request that is
linked to the authorization code. When the RP tries to exchange
the authorization code for an access token, it must present the (un-
hashed) random value in the token request. The IdP verifies that it
matches with the original value before returning an access token.

Although the mechanics of the countermeasure are straightfor-
ward, a naive implementation may be susceptible to a downgrade
attack. If an attacker can intercept the authorization request, they
may potentially remove the random value from the authorization
request. When the RP tries to exchange the authorization request,
it will include the random value in the token request. If the IdP does
not expect the random value (because the attacker removed it from
the authorization request), it may choose to ignore the parameter.
This eliminates the protection of PKCE without the RP’s or IdP’s
knowledge. OAuch detected this bug in nine IdP implementations
out of 21 that supported PKCE.

To validate the results, we searched for public RP’s that used
the vulnerable IdP’s and used the PKCE extension. For five API
providers, we were not able to find a public RP that met our criteria.
One OIDC provider had several public RP’s that used PKCE incor-
rectly by omitting a crucial parameter in the authorization request.
We could not find an RP for this IdP that implemented PKCE cor-
rectly. The three remaining IdPs had fixed the vulnerability by the
time we ran our PoC. The operators of these IdPs confirmed that
the fixes were a direct result of our coordinated disclosure report.

Finally, we implemented our own RP that implemented PKCE
correctly and relied on it to offer CSRF protection (i.e., in accordance
with the OAuth Security BCP, it did not use the state parameter for
CSRF protection). We tested this RP with each of the six vulnerable
IdPs and performed a CSRF attack against the redirect uri as outlined
in [54]. The attack succeeded for all the tested IdPs.

6.4 Clickjacking Attacks

Clickjacking attacks [1, 20, 34] are important threats to OAuth au-
thorization endpoints. Although these attacks are not specific to
OAuth, they are particularly dangerous in combination with the
security-sensitive nature of the OAuth authorization process. They
work by placing a transparent iframe above an innocuous-looking
page controlled by the attacker. The OAuth authorization URI is
loaded in the iframe, but it is not visible for the user. Despite be-
ing hidden, the browser still redirects all clicks to this transparent
iframe. The attacker then tricks the user to click on the location of

the authorization button by placing another (misleading) button
on the page he controls, precisely under the authorization button.
When the user tries to click the attacker’s button, they unknow-
ingly click the OAuth authorization button instead, unintentionally
granting access.

OAuch identified 22 IdPs that do not use any of the two recom-
mended HTTP headers to limit authorization page framing. These
IdPs include eight top 1,000 sites, according to the Tranco top sites
ranking list [23], and one banking site. We tested whether these
implementations were vulnerable to a clickjacking attack, based on
the OWASP testing guide [14]. The attack succeeded on 19 imple-
mentations, confirming that 86% of the IdPs identified by OAuch
are exploitable.

The attack did not work on two IdPs because they used an in-
termediate page (without the recommended headers — as detected
by OAuch) but then redirected the user via JavaScript to the ac-
tual authorization page. This page was protected by one of the
recommended HTTP headers.

Another IdP used frame-busting JavaScript to stop clickjacking
attacks. These scripts may not always be effective, and their use is
discouraged in the OAuth threat model specification.

7 INTERPRETATION OF THE RESULTS

It is clear from the results in the previous sections that the OAuth
ecosystem is in a bad state with respect to compliance. Most IdP
implementations are missing crucial security requirements, and
threats are often not or only partially mitigated. Nevertheless, it
seems unlikely that most IdPs, including several high-profile targets,
are left completely vulnerable. This raises the question of how the
results should be interpreted.

OAuth IdPs can be better protected by implementing the missing
security specifications. Yet, implementing all security specifications
does not guarantee security. Likewise, not implementing all secu-
rity specifications does not necessarily lead to vulnerabilities. An
attacker may not be able to exploit a detected weakness.

Powerful attacker model The OAuth threat model assumes a
powerful attacker with unlimited resources, advanced eavesdrop-
ping capabilities, and the ability to control multiple parties involved
in the OAuth protocol. While this threat model anticipates nation-
state attackers, most attackers are not nearly as powerful.

RP mitigations OAuch uses a worst case scenario where no
mitigations are implemented by the RP. This is a reasonable as-
sumption, as previous research [7, 24, 35, 37, 40, 42] and the results
in Section 6.1 show that many RPs do not implement crucial coun-
termeasures.

Complex exploitability Some threats make non-trivial assump-
tions. For example, the threat Guessing Access Tokens assumes that
the attacker can brute force short access tokens without being
blocked by the IdP. It is possible that an IdP does not protect against
brute-force attacks [62], but even so, the attack remains challenging.

Another question that arises is why compliance with the security
requirements of the OAuth protocol is so low, especially considering
that OAuth is a security standard. In some cases, the IdP operator
is aware that certain specifications are not implemented. From
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our interactions with the operators, we can identify five types of
justification:

Backward compatibility OAuth operators may not want to
make changes that break RP implementations. It can make business
sense to sacrifice some security for better compatibility. Still, many
of the missing security requirements are backward compatible.
They can be implemented without adversely affecting existing RPs.

Implementation or scalability issues It may not be possible
to implement certain mitigations in the operator’s environment.
For example, APIs that process many requests, may not be able
to verify the revocation status of a token on each request. This
certainly applies to countermeasures that are active when tokens
are used, but these only make up a small percentage of the OAuth
security requirements.

Outdated standards The OAuth standard was published in
late 2012, with additional standards following in the subsequent
years. The most current source of up-to-date security guidelines is
the Security Best Current Practice (BCP) document. However, this
document is a working group draft. Some operators state that they
do not support the BCP because it is not an official standard.

Shifting responsibilities SomeOAuth operators seem reluctant
to implement an IdP-side countermeasure if the threat can also be
mitigated by an RP-side countermeasure. This makes business sense
because it reduces development costs and processing overhead. In
the event of a successful exploit, the operator can claim it is the
RP’s fault. Nevertheless, it is unwise from a security perspective.
Many RPs do not follow the security best practices, so they might
be vulnerable.

Reactive approach to security Some operators claim that they
are aware of the problems in their implementation but prioritize
other development work. Their approach to security seems to be
reactive (i.e., when an actual exploit of their system is demonstrated)
instead of proactive.
In most cases, the operators were unaware of the missing counter-
measures. We observed three types of situations:

Invalid assumptions It is difficult to keep track of the latest
developments in OAuth’s security. Some assumptions that were
true in the past may not be true today. For example, PKCE was
originally intended only for public RPs but is now mandatory for
confidential RPs as well. A few OAuth IdPs in our analysis support
PKCE, but disallow it for confidential RPs.

Misplaced trust Programmers may not be aware of all the
security requirements and may assume that the OAuth library they
are using handles these. Unfortunately, libraries are configurable
and may not have safe defaults. In addition, some parts of the
OAuth implementation may not be managed by the library (e.g.,
the authorization page) but may still require countermeasures to
be present.

Deceptive simplicity One design criterion of the OAuth pro-
tocol was to reduce its complexity as much as possible. This may
entice developers to quickly build their own implementation of the
protocol instead of using a well-established and maintained library.

OAuch provides the IdP operators with insights into which secu-
rity specifications are missing and what the potential consequences

are. Sometimes, business considerations may result in security risks
being ignored. OAuch helps by allowing operators to make an
informed choice.

8 ETHICS AND COORDINATED DISCLOSURE

OAuch is designed to be non-intrusive and avoids any harm to the
IdPs that are tested. It generates a relatively small network data
load and does not try to access private data of accounts that are
not under the user’s control. OAuch does not use tests that might
impact the IdP’s ability to respond to other requests (e.g., tests that
evaluate DoS countermeasures).

In accordance with our coordinated disclosure policy, we reached
out to all parties involved. Every operator received a detailed report
of the test results, including the full log output of the failed test
cases. They have received one year to process the report and update
their services accordingly. In addition to these results, our work also
identified non-security-related bugs in popular OAuth implementa-
tions, such as misnamed parameters or non-standard requirements.
Because these issues might impact standards-compliant RPs, they
were reported to the appropriate parties as well.

The general feedback we received during the coordinated disclo-
sure process was positive, and most operators indicated that the
report was useful. Some operators found it difficult to interpret the
results of the test cases and to map them on vulnerabilities. We
used this feedback to improve the reports by combining the test
case results with the OAuth threat model. This clarifies the actual
impact of the missing countermeasures.

Due to the large number of operators involved in the coordi-
nated disclosure process, we were not able to follow up on every
submission in detail. We did collaborate closely with three very
large operators, due to the severity of the identified problems and
the potentially large impact. We helped them to construct exploit
prototypes to speed up the vulnerability assessment process.

9 CONCLUSION

In this paper, we set out to improve the overall security of the
OAuth 2.0 landscape. We created a tool, called OAuch, that checks
the compliance of IdPs with the OAuth security specifications and
detects potential weaknesses in the implementation. The tool per-
forms a comprehensive analysis, guided by the OAuth threat model.
It generates a detailed report and gives tailor-made advice by iden-
tifying the security specifications that should be implemented to
mitigate weaknesses.

We used OAuch on a set of 100 publicly available OAuth IdP
implementations to determine the current state of practice in the
OAuth ecosystem. We identify 1729 missing security specifications
and found support for 157 deprecated features. The analysis of these
results revealed a total of 431 unmitigated threats and an additional
693 partially mitigated threats. We present several possible expla-
nations for the state of the ecosystem. These hypotheses are partly
based on conversations with OAuth operators.

OAuch is intended to check for compliance with the OAuth
standard, but it can also be used by an attacker as a guide to find
weaknesses in target IdPs. To demonstrate this, we selected four
attack vectors and used OAuch’s output to identify potentially
vulnerable sites. A manual check to verify that these sites were
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exploitable revealed that the output of OAuch is very accurate,
having a low false positive rate of 1.45% and false negative rate of
1.48%.

Unlike previous work, OAuch inspects the full set of security
measures defined in the various OAuth standards, and reviews ev-
ery relevant threat from the threat model. It is highly automated
and can be used in any browser on any OAuth 2.0 implementa-
tion. Furthermore, it can easily be extended to support new OAuth
standards.
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A THE OAUTH PROTOCOL

The OAuth 2.0 protocol [48] is a popular authorization framework.
The original specification defined four modes of operation, called
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Figure 8: A schematic representation of the Authorization

Code flow. Note: The lines illustrating steps 1, 2, and 3 are

broken into two parts as they pass through the user agent.

grants or flows. One popular flow that involves a user is the autho-
rization code flow. Figure 8 illustrates the actors in this grant type
and the steps that have to be taken to authorize an RP and receive
an access token. The user agent is the software used by the user
to interact with the IdP (i.e., a browser, or some kind of web view
embedded in an application).

The authorization process starts when the RP wants to access a
protected resource. The RP sends the user agent a redirection URI

that points to an appropriate IdP (step 1). The user agent navigates
to the requested URI and starts the authentication and authorization
process on the IdP (step 2). Authentication typically requires the
user to log in with a password and/or some other means (e.g., an
authenticator code). After identifying the user, the IdP asks the
user to grant the RP access to the requested resource. If the user
approves the authorization request, the IdP sends an authorization

code to the user agent, which is then forwarded to the RP (step 3).
The RP cannot use the authorization code to access the resource,
but it can convert the code into an access token by sending it to the
IdP (step 4). The IdP validates the code and sends back an access
token to the RP (step 5). This access token can then be used to
access the protected resource on the user’s behalf (step 6).
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Because the user only authenticates with the IdP, an RP never
sees the user’s credentials. Furthermore, the access token is sent
directly from the IdP to the RP, avoiding any potential leaks in the
user agent.

OAuch can test all the flows that are included in the original
OAuth specification. Next to the authorization code flow, these
flows are:

• The Implicit grant. This flow is similar to the authorization
code grant, but instead of using an authorization code, the
IdP sends the access token directly to the RP via the redi-
rect URI (step 3). Because the RP now has the access token,
there is no need for steps 4 and 5. This flow was originally
meant for RPs implemented in a browser but has now been
deprecated.

• The Resource Owner Password Credentials grant. In this flow,
the RP uses the user’s username and password to request
a token from the IdP. This flow was initially intended for
backward compatibility and trusted RPs created by the IdP
provider. Due to security concerns, it has been deprecated.

• The Client Credentials grant. This flow does not involve a
user but uses the client credentials as an authorization grant.
It can be used when the RP is acting on its own behalf. This
is the preferred flow to authorize machine-to-machine com-
munication.

In addition to these flows, other flows have been defined. One of
these flows is called the device authorization grant [47]. It allows
input-constrained RPs (such as smart TVs, printers, ...) to obtain
authorization by using a user agent on a separate device.

OpenID Connect extends OAuth’s authorization code flow and
implicit flow in such a way that identity tokens can be issued as
well. OIDC also introduces a new flow, called the hybrid flow. This
hybrid flow is a mix of the implicit and authorization code flows.
It resembles the authorization code flow, but can also issue access
tokens and identity tokens directly in the front channel (like the
implicit flow).

B ECOSYSTEM RESULTS

This section contains the detailed output of the ecosystem analysis.
Table 4 lists all the IdP implementations that have been tested. For
every implementation, the supported flows are listed and statistics
for the test case failure rates, threats, and deprecated features are
given. OAuch automatically determines which flows are supported
by a site. The supported flows column lists these results for every
IdP. The following abbreviations are used:

• ac — The Authorization Code grant
• cc — The Client Credentials grant
• im — The Implicit grant
• pw — The Resource Owner Password Credentials grant
• hy — The Hybrid grant
• dc — The Device Authorization grant

The Failure Rate columns list the failure rates, as described in
Section 4.5, of the executed test cases. The failure rates are reported
for each requirement level, as well as an overall rate that combines
the results of the three levels. Lower scores represent better adher-
ence to the OAuth standards. The Threats and Deprecated Features

columns show absolute numbers. Mitigated, partially mitigated

and unmitigated threats are reported in separate columns. As ex-
plained in Section 5.5, a lower overall failure rate is correlated with
a mitigation of more threats.

Table 5 shows the aggregated results of the threat statistics. For
each threat that is supported by OAuch, the results of all IdPs
for which that threat is relevant are combined. Not all threats are
relevant to all IdPs. Some threats depend on specific features be-
ing enabled. The Relevant column shows the percentage of IdPs
for which the threat is considered relevant. The three following
columns contain the percentages of IdPs where the threat is fully,
partially, or not mitigated. These percentages are only calculated
over IdPs for which the threat was relevant. The final column lists
related work that discusses the threat in the context of one or more
public OAuth deployments. Threats denoted with a † are added to
incorporate countermeasures from popular OAuth extensions that
are not referenced in the official threat model.
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Table 4: The detailed site results of the ecosystem analysis

Supported Failure Rate Threats Deprecated

Identity Provider Flows May Should Must Overall Mit. Part. Mit. Not Mit. Features

API Providers

Acuity ac 100% 44% 19% 33% 13 6 3 0
Aha ac, cc, im 60% 55% 18% 31% 11 9 5 2
Amazon ac, im 80% 50% 10% 24% 23 6 1 4
Autodesk ac, im 83% 55% 16% 31% 21 6 4 1
Avaza ac, im 67% 55% 32% 40% 12 13 6 3
Basecamp ac 80% 56% 29% 39% 16 7 3 2
BitBucket ac, cc, im 80% 82% 24% 41% 12 12 5 2
Box ac, cc 57% 64% 21% 35% 13 8 8 1
Campaign Monitor ac 100% 86% 36% 50% 11 9 6 1
CitiBank ac 67% 25% 10% 19% 25 2 1 0
ClickUp ac 100% 78% 22% 41% 10 10 2 0
Dailymotion ac, cc, im 100% 54% 22% 37% 15 11 3 3
DaniWeb im 75% 62% 10% 30% 8 4 4 3
DevianArt ac 71% 54% 18% 33% 15 10 4 2
Dexcom ac 100% 71% 34% 47% 16 5 7 1
Discord ac, cc, im 57% 53% 11% 26% 21 10 2 2
Dribbble ac 100% 60% 18% 35% 9 10 3 1
Drift ac 83% 82% 27% 44% 13 10 4 1
Drip ac, cc 100% 60% 19% 36% 10 9 3 1
DropBox ac 80% 44% 25% 35% 15 4 3 1
eBay ac 100% 44% 23% 35% 16 5 5 1
Eventbrite ac, im 80% 75% 26% 40% 14 6 5 1
Everypixel cc 100% 60% 11% 25% 8 1 0 1
Facebook ac, cc, im 80% 45% 21% 33% 13 5 7 3
FatSecret cc 100% 50% 14% 29% 3 0 2 1
Figma ac 80% 50% 29% 38% 16 7 3 0
FitBit ac, cc, im 43% 60% 15% 28% 19 9 6 2
Flowdock ac, pw 83% 45% 20% 33% 12 12 7 3
Formstack ac, im 83% 71% 36% 47% 11 9 10 1
Foursquare ac, im 80% 70% 18% 35% 10 8 7 3
Frame.io ac, im 67% 25% 11% 20% 24 4 2 1
Freesound ac 83% 91% 19% 42% 13 8 6 2
FreshBooks ac, im 43% 47% 20% 29% 14 13 6 3
GetResponse ac, cc, im 67% 73% 24% 39% 14 11 5 2
GitHub ac 80% 56% 36% 45% 11 4 7 1
Harvest ac 80% 55% 26% 37% 13 9 4 1
HelpScout ac, cc 67% 64% 19% 33% 15 9 3 2
Heroku ac 80% 80% 26% 42% 15 8 3 0
HubSpot ac, im 100% 73% 19% 38% 14 12 3 2
Imgur ac, im 100% 80% 31% 48% 13 9 8 2
Indeed ac 100% 50% 26% 39% 14 4 4 0
InoReader ac 83% 90% 11% 35% 17 7 3 1
Jamendo ac 100% 91% 21% 45% 10 13 4 2
LinkedIn ac 100% 44% 19% 33% 13 6 3 0
LiveChat ac, im 100% 88% 23% 40% 13 12 4 2
Lufthansa cc 100% 60% 21% 35% 3 0 2 1
MailChimp ac 80% 100% 25% 42% 10 4 8 0
Mercedes Benz ac 60% 45% 5% 18% 22 5 1 2
MicroBilt cc 100% 50% 29% 36% 6 1 2 0
MindMeister ac, cc, im 60% 38% 14% 24% 18 3 6 2
Monday ac 80% 62% 25% 38% 15 5 3 0
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Table 4: The detailed site results of the ecosystem analysis

Supported Failure Rate Threats Deprecated

Identity Provider Flows May Should Must Overall Mit. Part. Mit. Not Mit. Features

MusicBrainz ac 75% 55% 14% 28% 16 4 3 2
Netatmo ac, pw 100% 70% 23% 40% 13 8 9 3
Nightbot ac, cc, im 83% 85% 11% 36% 16 8 6 2
Patreon ac 83% 60% 19% 35% 14 9 4 0
Podio ac, cc, im, pw 80% 89% 28% 44% 15 6 12 2
Pushbullet ac, im 100% 80% 27% 46% 11 8 6 2
Redbooth ac, cc 83% 42% 22% 33% 11 12 4 2
Reddit ac, cc 83% 31% 12% 23% 21 4 3 1
Slack ac 80% 56% 33% 43% 9 8 5 1
SmartSheet ac 67% 71% 31% 42% 15 8 4 0
Spotify ac, cc, im 100% 36% 20% 31% 19 7 5 3
Stack Exchange ac 80% 71% 35% 47% 9 6 7 0
Starling Bank ac 100% 40% 22% 33% 18 6 2 0
StockTwits ac, im 80% 82% 30% 47% 7 7 11 3
Strava ac 80% 82% 31% 47% 11 7 8 1
Surveymonkey ac 100% 62% 22% 38% 8 10 4 0
Teamleader ac, im 100% 64% 17% 35% 18 8 4 2
Tipeeestream ac, im 100% 58% 14% 32% 17 7 5 3
TSheets ac 100% 70% 18% 37% 13 8 5 1
Twitter cc 100% 60% 11% 25% 6 2 1 0
Typeform ac 100% 44% 22% 35% 15 4 3 0
Uber ac, im 60% 36% 21% 29% 18 2 5 1
Vimeo ac 100% 75% 12% 33% 14 5 3 0
VK ac, cc, im 80% 40% 34% 41% 13 3 5 2
Withings ac 80% 70% 16% 34% 14 6 2 0
WordPress ac, im 60% 67% 21% 34% 13 9 3 2
Wrike ac 67% 64% 19% 34% 18 5 4 1
Yandex ac, cc, im 83% 50% 18% 32% 17 10 4 3
Zoom ac, cc, im 33% 47% 23% 29% 19 6 7 3

OpenID Connect Providers

Adobe ac, hy, im 80% 40% 20% 28% 22 12 2 4
Battle.net ac, cc 100% 58% 22% 35% 11 8 6 2
GitLab ac, im 75% 31% 15% 22% 23 7 3 2
Globus ac, cc 50% 62% 11% 24% 20 5 3 0
Google ac, hy, im, dc 67% 44% 12% 20% 26 4 4 7
IBM ac, cc 100% 33% 5% 18% 26 4 1 0
Intuit ac, cc 75% 38% 11% 21% 25 5 1 1
Itsme ac 83% 44% 16% 28% 12 5 5 0
Legrand ac 100% 50% 27% 36% 16 7 8 1
Microsoft ac 83% 33% 13% 23% 20 9 1 2
Mozilla ac, hy 50% 36% 22% 27% 18 6 3 3
Openstack ac, hy 75% 45% 12% 23% 14 4 7 4
Orcid ac, hy, im 100% 64% 24% 37% 20 7 6 3
Paypal ac, cc, hy 100% 38% 19% 28% 19 10 2 3
PhantAuth ac, hy 83% 42% 20% 28% 17 6 11 5
Salesforce ac 75% 42% 16% 24% 20 9 1 1
Signicat ac 50% 58% 10% 22% 26 5 1 1
Twitch ac, cc, hy, im 100% 58% 28% 38% 20 6 6 3
Xero ac 75% 38% 4% 14% 30 4 0 1
Yahoo ac 50% 33% 14% 20% 23 7 0 1
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Table 5: Aggregated results of the threat statistics

Threats Related

Threat Relevant Mit. Part. Mit. Not Mit. Work

Obtaining Client Secrets 37% 45.9% 0.0% 54.1% [6, 7, 9, 32, 40]
Obtaining Refresh Tokens 32% 0.0% 100.0% 0.0% [9, 32, 42]
Obtaining Access Tokens 100% 27.0% 0.0% 73.0% [9, 30, 32, 40]
Open Redirectors on Client 95% 52.6% 29.5% 17.9% [4, 9, 28]
Password Phishing by Counterfeit Authorization Server 95% 100.0% 0.0% 0.0% [9, 25, 29, 37, 39, 40, 42]
Malicious Client Obtains Existing Authorization by Fraud 95% 61.1% 24.2% 14.7% [4, 9, 28, 40]
Open Redirector 95% 51.6% 30.5% 17.9% [4, 9, 28, 33]
Eavesdropping Access Tokens in Transit 100% 96.0% 4.0% 0.0% [6, 7, 9, 25, 29, 37, 39, 40, 42]
Disclosure of Client Credentials during Transmission 100% 96.0% 4.0% 0.0% [9, 25, 29, 30, 37, 39, 40, 42]
Obtaining Client Secret by Online Guessing 99% 45.5% 24.2% 30.3% [9]
Eavesdropping or Leaking Authorization ‘codes’ 94% 10.6% 86.2% 3.2% [6, 7, 9, 28, 30, 33, 37, 40]
Online Guessing of Authorization ‘codes’ 94% 23.4% 76.6% 0.0% [9]
Authorization ‘code’ Phishing 92% 88.0% 2.2% 9.8% [28, 37]
Authorization ‘code’ Leakage through Counterfeit Client 94% 35.1% 56.4% 8.5% [4, 6, 9, 28, 32]
CSRF Attack against redirect-uri 94% 96.8% 0.0% 3.2% [3, 4, 6, 9, 24, 25, 28–30, 33, 36, 37, 42]
Clickjacking Attack against Authorization 95% 30.5% 48.4% 21.1% [9, 36]
Code Substitution (OAuth Login) 18% 94.4% 0.0% 5.6% [6, 7, 9, 32, 39]
Access Token Leak in Browser History 39% 0.0% 69.2% 30.8% [6, 32, 40]
Accidental Exposure of Passwords at Client Site 3% 0.0% 0.0% 100.0%
Client Obtains Scopes without End-User Authorization 3% 0.0% 0.0% 100.0%
Client Obtains Refresh Token through Automatic Authorization 3% 0.0% 0.0% 100.0%
Obtaining User Passwords on Transport 3% 100.0% 0.0% 0.0% [9, 25, 29, 37, 39, 42]
Eavesdropping Refresh Tokens from Authorization Server 65% 96.9% 3.1% 0.0% [9, 25, 29, 33, 37, 39, 40, 42]
Obtaining Refresh Token from Authorization Server Database 63% 85.7% 3.2% 11.1%
Obtaining Refresh Token by Online Guessing 65% 50.8% 47.7% 1.5%
Refresh Token Phishing by Counterfeit Authorization Server 65% 100.0% 0.0% 0.0% [9, 25, 29, 37, 39, 42]
Eavesdropping Access Tokens on Transport 94% 27.7% 72.3% 0.0% [9, 25, 29, 37, 39, 40, 42]
Replay of Authorized Resource Server Requests 94% 97.9% 2.1% 0.0% [9, 25, 29, 37, 39, 42]
Guessing Access Tokens 94% 22.3% 67.0% 10.6%
Leak of Confidential Data in HTTP Proxies 99% 57.6% 16.2% 26.3%
Token Leakage via Log Files and HTTP Referrers 94% 59.6% 0.0% 40.4%
Redirect URI Validation Attacks on Implicit Grant 37% 81.1% 5.4% 13.5% [4, 9, 28, 30]
Leakage from the Authorization Server 95% 43.2% 49.5% 7.4%
Authorization Code in Browser History 94% 87.2% 0.0% 12.8% [32]
Authorization Code Injection 94% 0.0% 22.3% 77.7%
PKCE Downgrade Attack 21% 57.1% 0.0% 42.9%
Unverified JWTs (resource server) † 13% 92.3% 0.0% 7.7%
Unverified JWTs for client authentication † 3% 33.3% 66.7% 0.0%
Abuse of revoked tokens † 15% 66.7% 26.7% 6.7% [15, 16]
Unauthorized revocation of tokens † 15% 80.0% 0.0% 20.0%
Abuse of incomplete/invalid identity tokens † 19% 57.9% 42.1% 0.0%
Falsifying identity tokens † 19% 89.5% 0.0% 10.5%
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C TEST CASE MAPPINGS

OAuch maps the threats that are defined in the OAuth threat model
and the Security Best Current Practices, as well as the additional
threats from other standards, to specific test cases. The result of
this process, described in Section 4.3, is detailed below.

Each threat has a description and a list of test cases that are
linked to it. The test cases are grouped into categories that refer to
the OAuth infrastructure they apply to. Test cases with the same
name but in different categories, are distinct (but similar) test cases.

Obtaining Client Secrets The attacker could try to get access to
the secret of a particular client in order to obtain tokens on behalf
of the attacked client with the privileges of that ’client_id’ acting
as an instance of the client.

Associated test cases (1):

• Auth. endpoint: RequireUserConsent

Obtaining Refresh Tokens Depending on the client type, there
are different ways that refresh tokens may be revealed to an at-
tacker. An attacker may obtain the refresh tokens issued to a web
application by way of overcoming the web server’s security con-
trols. On native clients, refresh tokens may be read from the local
file system or the device could be stolen or cloned.

Associated test cases (6):

• Revocation endpoint: CanRefreshTokensBeRevoked
• Token endpoint: InvalidatedRefreshToken, IsRefreshAuthentica-
tionRequired, IsRefreshBoundToClient, RefreshTokenRevoked-
AfterUse, UsesTokenRotation

Obtaining Access Tokens Depending on the client type, there are
different ways that access tokens may be revealed to an attacker. Ac-
cess tokens could be stolen from the device if the application stores
them in a storage device that is accessible to other applications.

Associated test cases (1):

• Tokens: TokenTimeout

Open Redirectors on Client An open redirector is an endpoint
using a parameter to automatically redirect a user agent to the
location specified by the parameter value without any validation. If
the authorization server allows the client to register only part of the
redirect URI, an attacker can use an open redirector operated by the
client to construct a redirect URI that will pass the authorization
server validation but will send the authorization ’code’ or access
token to an endpoint under the control of the attacker.

Associated test cases (2):

• Auth. endpoint: RedirectUriFullyMatched, RedirectUriPathMatched

Password Phishing by Counterfeit Authorization Server Auth
makes no attempt to verify the authenticity of the authorization
server. A hostile party could take advantage of this by intercept-
ing the client’s requests and returning misleading or otherwise
incorrect responses. This could be achieved using DNS or Address
Resolution Protocol (ARP) spoofing. Wide deployment of OAuth

and similar protocols may cause users to become inured to the prac-
tice of being redirected to web sites where they are asked to enter
their passwords. If users are not careful to verify the authenticity of
these web sites before entering their credentials, it will be possible
for attackers to exploit this practice to steal users’ passwords.

Associated test cases (3):

• Auth. endpoint:HasValidCertificate, IsHttpsRequired, IsModern-
TlsSupported

Malicious Client Obtains Existing Authorization by Fraud

Authorization servers may wish to automatically process authoriza-
tion requests from clients that have been previously authorized by
the user. When the user is redirected to the authorization server’s
end-user authorization endpoint to grant access, the authoriza-
tion server detects that the user has already granted access to that
particular client. Instead of prompting the user for approval, the
authorization server automatically redirects the user back to the
client. A malicious client may exploit that feature and try to obtain
such an authorization ’code’ instead of the legitimate client.

Associated test cases (3):

• Auth. endpoint: RedirectUriFullyMatched, RedirectUriPathMatched,
RequireUserConsent

Open RedirectorAn attacker could use the end-user authorization
endpoint and the redirect URI parameter to abuse the authorization
server as an open redirector. An open redirector is an endpoint
using a parameter to automatically redirect a user agent to the
location specified by the parameter value without any validation.
An attacker could utilize a user’s trust in an authorization server
to launch a phishing attack.

Associated test cases (3):

• Auth. endpoint: InvalidRedirect, RedirectUriFullyMatched, Redirect-
UriPathMatched

EavesdroppingAccess Tokens in TransitAttackers may attempt
to eavesdrop access tokens in transit from the authorization server
to the client.

Associated test cases (8):

• Device auth. endpoint: HasValidCertificate, IsHttpsRequired, Is-
ModernTlsSupported

• Revocation endpoint: IsModernTlsSupported, IsRevocationEnd-
pointSecure

• Token endpoint:HasValidCertificate, IsHttpsRequired, IsModern-
TlsSupported

Disclosure of Client Credentials during Transmission An at-
tacker could attempt to eavesdrop the transmission of client creden-
tials between the client and server during the client authentication
process or during OAuth token requests.

Associated test cases (4):

• Token endpoint: HasValidCertificate, IsAsymmetricClientAuth-
enticationUsed, IsHttpsRequired, IsModernTlsSupported
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Obtaining Client Secret by Online Guessing An attacker may
try to guess valid ’client_id’/secret pairs.

Associated test cases (3):

• Token endpoint: ClientSecretEntropyMinReq, ClientSecretEn-
tropySugReq, IsAsymmetricClientAuthenticationUsed

Eavesdropping or Leaking Authorization ’codes’ An attacker
could try to eavesdrop transmission of the authorization ’code’ be-
tween the authorization server and client. Furthermore, authoriza-
tion ’codes’ are passed via the browser, which may unintentionally
leak those codes to untrusted web sites and attackers in different
ways.

Associated test cases (4):

• Token endpoint: AuthorizationCodeTimeout, IsCodeBoundTo-
Client,MultipleCodeExchanges, TokenValidAfterMultiExchange

Online Guessing of Authorization ’codes’ An attacker may try
to guess valid authorization ’code’ values and send the guessed
code value using the grant type ’code’ in order to obtain a valid
access token.

Associated test cases (6):

• Token endpoint: AuthorizationCodeTimeout, IsClientAuthenti-
cationRequired, IsCodeBoundToClient, RedirectUriChecked

• Tokens:AuthorizationCodeEntropyMinReq, AuthorizationCode-
EntropySugReq

Authorization ’code’ Phishing A hostile party could impersonate
the client site and get access to the authorization ’code’. This could
be achieved using DNS or ARP spoofing. This applies to clients,
which are web applications; thus, the redirect URI is not local to
the host where the user’s browser is running.

Associated test cases (2):

• Token endpoint: IsClientAuthenticationRequired, IsCodeBound-
ToClient

Authorization ’code’ Leakage through Counterfeit Client The
attacker leverages the authorization ’code’ grant type in an attempt
to get another user (victim) to log in, authorize access to his/her
resources, and subsequently obtain the authorization ’code’ and
inject it into a client application using the attacker’s account. The
goal is to associate an access authorization for resources of the
victim with the user account of the attacker on a client site. The
attacker abuses an existing client application and combines it with
his own counterfeit client web site. The attacker depends on the
victim expecting the client application to request access to a certain
resource server. The victim, seeing only a normal request from
an expected application, approves the request. The attacker then
uses the victim’s authorization to gain access to the information
unknowingly authorized by the victim.

Associated test cases (3):

• Auth. endpoint: RedirectUriFullyMatched, RedirectUriPathMatched
• Token endpoint: RedirectUriChecked

CSRF Attack against redirect-uri Cross-site request forgery
(CSRF) is a web-based attack whereby HTTP requests are trans-
mitted from a user that the web site trusts or has authenticated.
CSRF attacks on OAuth approvals can allow an attacker to obtain
authorization to OAuth protected resources without the consent of
the user.

Associated test cases (3):
• Auth. endpoint: StatePresent
• ID tokens: NoncePresentInToken
• PKCE: IsPkceImplemented

Clickjacking Attack against AuthorizationWith clickjacking, a
malicious site loads the target site in a transparent iFrame overlaid
on top of a set of dummy buttons that are carefully constructed to
be placed directly under important buttons on the target site. When
a user clicks a visible button, they are actually clicking a button
(such as an ’Authorize’ button) on the hidden page.

Associated test cases (2):
• Auth. endpoint: HasContentSecurityPolicy, HasFrameOptions

Code Substitution (OAuth Login) An attacker could attempt to
log into an application or web site using a victim’s identity. Appli-
cations relying on identity data provided by an OAuth protected
service API to login users are vulnerable to this threat. This pattern
can be found in so-called ’social login’ scenarios.

Associated test cases (2):
• Token endpoint: IsClientAuthenticationRequired, IsCodeBound-
ToClient

Access Token Leak in Browser HistoryAn attacker could obtain
the token from the browser’s history. Note that this means the
attacker needs access to the particular device.

Associated test cases (5):
• API endpoint: TokenAsQueryParameterDisabled
• Auth. endpoint: SupportsPostResponseMode
• Token endpoint: HasCacheControlHeader, HasPragmaHeader
• Tokens: TokenTimeout

Accidental Exposure of Passwords at Client Site If the client
does not provide enough protection, an attacker or disgruntled
employee could retrieve the passwords for a user.

Associated test cases (1):
• Token endpoint: IsPasswordFlowDisabled

Client Obtains Scopes without End-User Authorization All
interaction with the resource owner is performed by the client.
Thus it might, intentionally or unintentionally, happen that the
client obtains a token with scope unknown for, or unintended by,
the resource owner. For example, the resource owner might think
the client needs and acquires read-only access to its media storage
only but the client tries to acquire an access token with full access
permissions.

Associated test cases (1):
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• Token endpoint: IsPasswordFlowDisabled

Client Obtains Refresh Token through Automatic Autho-

rization All interaction with the resource owner is performed by
the client. Thus it might, intentionally or unintentionally, happen
that the client obtains a long-term authorization represented by a
refresh token even if the resource owner did not intend so.

Associated test cases (1):
• Token endpoint: IsPasswordFlowDisabled

Obtaining User Passwords on Transport An attacker could
attempt to eavesdrop the transmission of end-user credentials with
the grant type ’password’ between the client and server.

Associated test cases (3):
• Token endpoint:HasValidCertificate, IsHttpsRequired, IsModern-
TlsSupported

EavesdroppingRefreshTokens fromAuthorization ServerAn
attacker may eavesdrop refresh tokens when they are transmitted
between the authorization server and the client.

Associated test cases (3):
• Token endpoint:HasValidCertificate, IsHttpsRequired, IsModern-
TlsSupported

Obtaining Refresh Token from Authorization Server Data-

base This threat is applicable if the authorization server stores
refresh tokens as handles in a database. An attacker may obtain
refresh tokens from the authorization server’s database by gaining
access to the database or launching a SQL injection attack.

Associated test cases (2):
• Token endpoint: IsRefreshAuthenticationRequired, IsRefresh-
BoundToClient

Obtaining Refresh Token by Online Guessing An attacker may
try to guess valid refresh token values and send it using the grant
type ’refresh_token’ in order to obtain a valid access token.

Associated test cases (4):
• Token endpoint: IsRefreshAuthenticationRequired, IsRefresh-
BoundToClient

• Tokens: RefreshTokenEntropyMinReq, RefreshTokenEntropy-
SugReq

Refresh Token Phishing by Counterfeit Authorization Server

An attacker could try to obtain valid refresh tokens by proxying
requests to the authorization server. Given the assumption that the
authorization server URL is well-known at development time or
can at least be obtained from a well-known resource server, the
attacker must utilize some kind of spoofing in order to succeed.

Associated test cases (1):
• Token endpoint: HasValidCertificate

Eavesdropping Access Tokens on Transport An attacker could
try to obtain a valid access token on transport between the client

and resource server. As access tokens are shared secrets between
the authorization server and resource server, they should be treated
with the same care as other credentials (e.g., end-user passwords).

Associated test cases (4):
• API endpoint: HasValidCertificate, IsHttpsRequired, IsModern-
TlsSupported

• Tokens: TokenTimeout

Replay of Authorized Resource Server Requests An attacker
could attempt to replay valid requests in order to obtain or to
modify/destroy user data.

Associated test cases (3):
• API endpoint: HasValidCertificate, IsHttpsRequired, IsModern-
TlsSupported

Guessing Access TokensWhere the token is a handle, the attacker
may attempt to guess the access token values based on knowledge
they have from other access tokens.

Associated test cases (3):
• Tokens: AccessTokenEntropyMinReq, AccessTokenEntropySug-
Req, TokenTimeout

Leak of Confidential Data in HTTP Proxies An OAuth HTTP
authentication scheme as discussed in RFC6749 is optional. How-
ever, RFC2616 relies on the Authorization and WWW-Authenticate
headers to distinguish authenticated content so that it can be pro-
tected. Proxies and caches, in particular, may fail to adequately
protect requests not using these headers. For example, private au-
thenticated content may be stored in (and thus be retrievable from)
publicly accessible caches.

Associated test cases (2):
• Token endpoint: HasCacheControlHeader, HasPragmaHeader

Token Leakage via Log Files and HTTP Referrers If access
tokens are sent via URI query parameters, such tokens may leak to
log files and the HTTP ’referer’.

Associated test cases (1):
• API endpoint: TokenAsQueryParameterDisabled

Redirect URI Validation Attacks on Implicit Grant Implicit
clients can be subject to an attack that utilizes the fact that user
agents re-attach fragments to the destination URL of a redirect
if the location header does not contain a fragment. This allows
circumvention even of very narrow redirect URI patterns, but not
strict URL matching.

Associated test cases (3):
• Auth. endpoint: FragmentFix, RedirectUriFullyMatched, Redirect-
UriPathMatched

Leakage from the Authorization Server An attacker can learn
’state’ from the authorization request if the authorization endpoint
at the authorization server contains links or third-party content.
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Associated test cases (5):

• Auth. endpoint: ReferrerPolicyEnforced, SupportsPostRespon-
seMode

• Token endpoint: IsCodeBoundToClient,MultipleCodeExchanges,
TokenValidAfterMultiExchange

Authorization Code in Browser History When a browser navi-
gates to ’client.example/redirection_endpoint?code=abcd’ as a re-
sult of a redirect from a provider’s authorization endpoint, the URL
including the authorization code may end up in the browser’s his-
tory. An attacker with access to the device could obtain the code
and try to replay it.

Associated test cases (2):

• Auth. endpoint: SupportsPostResponseMode
• Token endpoint: MultipleCodeExchanges

Authorization Code Injection In an authorization code injection
attack, the attacker attempts to inject a stolen authorization code
into the attacker’s own session with the client. The aim is to asso-
ciate the attacker’s session at the client with the victim’s resources
or identity.

Associated test cases (3):

• PKCE:HashedPkceDisabled, IsPkceImplemented, IsPkceRequired

PKCE Downgrade Attack An authorization server that supports
PKCE but does not make its use mandatory for all flows can be
susceptible to a PKCE downgrade attack.

Associated test cases (2):

• PKCE: IsPkceDowngradeDetected, IsPkcePlainDowngradeDe-
tected

Unverified JWTs (resource server) An attacker can remove or
forge the signature of a JWT to impersonate another user.

Associated test cases (1):

• JWT: AcceptsNoneSignature

Unverified JWTs for client authentication An attacker can use
an expired or otherwise invalid token to impersonate another user.

Associated test cases (9):

• JWT: HasAudienceClaim, HasIssuerClaim, HasSubjectClaim,
IsExpirationChecked, IsIssuedAtChecked, IsJwtReplayDetected,
IsNotBeforeChecked, IsSignatureChecked, IsSignatureRequired

Abuse of revoked tokens Leaked (and potentially long-lived)
access or refesh tokens that cannot be revoked may enable an
attacker to impersonate a user.

Associated test cases (4):

• Revocation endpoint: AccessRevokesRefresh, CanAccessTokens-
BeRevoked, CanRefreshTokensBeRevoked, RefreshRevokesAc-
cess

Unauthorized revocation of tokens An authentication server
that supports token revocationmust verify the ownership of a token
before revocation.

Associated test cases (2):
• Revocation endpoint: IsBoundToClient, IsClientAuthRequired

Abuse of incomplete/invalid identity tokens An attacker may
attempt to re-use an identity token that was acquired for another
client or for another authorization session.

Associated test cases (12):
• ID tokens: CodeHashValid, HasAuthorizedParty, HasAzpFor-
MultiAudience, HasCorrectAudience, HasCorrectIssuer, Has-
CorrectMac, HasRequiredClaims, IsAccessTokenHashCorrect,
IsAccessTokenHashPresent, IsAuthorizationCodeHashPresent,
KeyReferences, NoncePresentInToken

Falsifying identity tokens Resource servers that do not verify
the signature of an identity token, or that accept identity tokens
that are signed with weak keys, are subject to an impersonation
attack.

Associated test cases (2):
• ID tokens: ClientSecretLongEnough, IsSigned
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