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in het domein van de groep sequentile methoden. Door de vele dis-

cussies over het onderwerp en de aanmoedigingen tijdens de moeilijke

momenten heeft hij mij weten te motiveren om toch telkens door te

bijten. Ik dank ook Prof. J. Beirlant om mede promotor te zijn van

deze thesis. Bijzandere dank aan Prof. H. Küchenhoff en Prof. D. De-
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Preface

Since long, methods have been developed in epidemiologic studies

to correct for the effects of measurement and scoring errors on the

exposure-disease relation. Ignoring measurement and scoring errors

has a possible biasing effect on this relation. For this reason we ob-

serve an increasing use of these correction methods in epidemiology,

especially in nutritional studies which aim to relate the risk of various

diseases on, say, measures for dietary behaviour such as saturated fat

intake. However, in other medical areas, such as in caries research, we

argue that the correction for scoring errors is largely underused.

Chapter 1 gives a general overview of measurement error and mis-

classification in epidemiological studies. When the variable under con-

sideration is continuous, then one speaks of measurement error. In

the case of a discrete variable, scoring with error leads to misclassifi-

cation. More attention has been paid in the literature to adjustment

for measurement error. Both correction for measurement error and/or

misclassification involves validation data. These validation data are

extra collected data where the true and possibly corrupted variables

are measured for each subject.

In this thesis, the applications are taken from caries research. Im-

portant issues in caries research are described in Chapter 2. This chap-

ter also introduces the Signal Tandmobielr study, which provided the

trigger to study methods dealing with misclassification errors. The

xix
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dmft-index, a popular measure for caries experience in the primary

dentition, will mainly be used in this thesis as a response variable.

In Chapter 3 general principles of frequentist and Bayesian model

fitting are reviewed.

In large oral health surveys, clinical measurements are often ob-

tained from several examiners. This raises the issue of examiner bias

and variability in measuring. Often kappa values are reported to indi-

cate agreement between scorers. In Chapter 4, the limitations of this

statistic are presented. Further, an alternative approach to correct for

scoring errors, based on the sensitivity and specificity of the scoring

behaviour of the dental examiners relative to a benchmark scorer, is

proposed within either the frequentist or the Bayesian paradigm. We

applied this approach to the caries experience data of the seven-year-

old children from the Signal Tandmobielr study. In this application,

the measurement of interest is a binary outcome, that is, no-caries (0)

vs. caries (1). We also accounted for the uncertainty with which the

correction terms are estimated. In Chapter 5 we extend this approach

to an ordinal score. In the application the ordinal score is obtained

by splitting up the dmft-index. The correction process is now based

on a matrix of misclassification probabilities. Various models for esti-

mating the misclassification structure are considered.

In Chapter 6 models for count data subject to misclassification are

expressed. Here we look at the zero-inflated negative binomial regres-

sion model, and illustrate how correction for misclassification can be

achieved. We also consider the approach of Albert, Hunsberger, and

Biro (1997) to model the correction terms. Our approach is applied

to the dmft-index. Similarly, Chapter 7 describes models for bounded

count data, focusing mainly on the zero-inflated beta-binomial regres-

sion model. The outcome of interest is then the dmft-score restricted



Preface xxi

to the 8 deciduous molars. In addition to the approach of Albert et al.

(1997), the double binomial approach is used to model the misclassi-

fication process. The double binomial approach is based on the fact

that to determine a count the examiner needs to evaluate all items

that make up that count. We also suggest various extensions of this

approach which might mimic better the scoring behavior of the exam-

iner relative to a benchmark scorer.

In Chapter 8, a general approach for handling misclassification in

discrete covariates or responses in regression models is developed. The

simulation and extrapolation (SIMEX) method, which was originally

designed for handling additive covariate measurement error, is devel-

oped for misclassification and is called the MC-SIMEX method. We

show that our method is quite general and applicable to models with

misclassified response and/or misclassified discrete regressors.

In Chapter 9, a general approach to multivariate binary data sub-

ject to misclassification error is proposed. The misclassification prob-

lem is simplified by expressing the unobserved true response in terms

of the observed and latent data. In this application, the response is a

multivariate binary vector indicating absence or presence of caries in

the primary molars.

Finally, a general conclusion and ideas for future research are given

in Chapter 10.





Notations

In this section we give brief explanation of the notations used in this

thesis. For precise definitions, see the text.

β coefficients in the regression model

βb(λ) simulated estimator used in MC-SIMEX

fY |X,Z or [Y |X,Z] conditional density of Y given (X,Z)

G extrapolation function in MC-SIMEX

Π a matrix of misclassification probabilities

(λ1, λ0) sensitivity and specificity of Y ∗ as surrogate for Y

M a matrix of misclassification frequencies

π probability of success in logistic regression

θ unknown vector of parameters

W a latent variable underlying the misclassification process

X the error-prone covariate

X∗ the observed value of the mismeasured covariate

Y the error-prone response

Y ∗ the observed value of the mismeasured response

Z covariate measured without error

xxiii





CHAPTER

1 Measurement Error and

Misclassification: An Overview

1.1 Introduction

Epidemiological studies aim to estimate the impact of exposure to a

risk factor on the development of a disease. To quantify the effect of

exposure it is important that the risk factor as well as the variable

that measures the disease are recorded without error. Unfortunately,

this is often not the case. If measurement error is present the associ-

ation between the risk factor and the disease will be underestimated

and one speaks of a dilution effect. Many epidemiological study areas

suffer from this dilution effect. For instance, when the impact of di-

etary habits on the incidence of coronary heart disease is of interest

one typically inquires subjects using a food questionnaire. Unfortu-

nately, a food questionnaire can never measure the true food intake

of a subject. Often there will be underreporting of the exact food

intake but also there will be a larger variability in the reported food

1



2 Chapter 1

intake from questionnaires than in the true food intake. This implies

that the relationship with the risk of coronary heart disease might be

underestimated if based on the reported food intake. The same phe-

nomenon occurs when examining the impact of passive smoking on,

for example, lung cancer. Not only the risk factors (covariates) are

subject to measurement error, also the disease variable (response) can

be corrupted, as we shall see here in this thesis.

When the data are categorical, measurement error is called

misclassification error. Measurement error and hence also misclassifi-

cation error results in biased estimates of the parameters of interest.

Any regression analysis that treats the error-corrupted variable to be

the same as the true variable of interest is referred to as naive, since it

ignores the effect of measurement error in the parameter estimation.

It is well known that the effect of measurement error is to bias param-

eter estimates. For example, in simple linear regression, measurement

error on a covariate will bias the slope estimator in the direction of

0. This type of bias is referred to as attenuation or attenuation to the

null.

Despite the detrimental effect that measurement and misclassifi-

cation error have on the estimation process, unbiased estimates of

the parameters can still be obtained if one has an idea of the mag-

nitude and the direction of the error. This knowledge could possibly

be elicited from experts and combined in a Bayesian way to correct

for bias. This correction can also be achieved if validation data are

available. Such data are obtained from a validation study where, on

a subset of subjects, not only the possibly corrupted value is known

but also the true value. Correction for measurement/misclassification

error can be done in a frequentist and a Bayesian way. This will be

the topic of this thesis, where the problem will be specifically applied
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to caries research.

1.2 Existing literature

The problem of covariate measurement error in regression analysis

has been extensively studied for the last two decades. Fuller (1987)

presents early research in linear regression with covariates subject to

measurement error and/or misclassification. Models that take mea-

surement error in the covariates into account are called errors-in-

variables models.

The early literature on the effects of misclassification include Bross

(1954); Goldberg (1975); Greenland (1980); Greenland and Robins

(1985); Greenland (1988); Birkett (1992) and a (bibliography) review

by Chen (1989). A general overview of measurement error including

misclassification error is given by Willett (1989). More recent reviews

on both measurement error and misclassification are included in a

bibliography by Carroll, Ruppert, and Stefanski (1995) and also in

Gustafson (2004).

We will now summarize the most important issues in measure-

ment/ misclassification error problems.

1.3 Types of errors in epidemiologic studies

Sources of measurement error can be grouped into two general types:

random and systematic. The distinction is that for random measure-

ment error, the mean of many repeated measures will approach the

true value. On the other hand for systematic measurement error, the

mean of the repeated measurements does not approach the true value.

In Figure 1.1 measurement variability, σ2
i , describes a typical spread in
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the values of repeated measurements for subject i, and hence it repre-

sents the random measurements fluctuating around the average value.

Therefore, under random error (see Figure 1.1(a)), measurements fluc-

tuate at random around the individual’s true value, µi. Examples of

random error are the day-to-day variation in dietary intake and day-

to-day measurements of systolic blood pressure. On the other hand,

systematic measurement error is the measurement bias, i.e. the offset

between the observed value, µ∗
i , and the true value, µi, equal to ∆i

(see Figure 1.1(b)).

measurement variability

true (observed) value

µi = µ∗
i

σ2
i

(a) Random measurement error.

measurement variability

true value observed value

measurement bias

µ∗
i

µi

∆i

σ2
i

(b) Systematic measurement error.

Figure 1.1: A graphical view of measurement error for subject i. The dis-
persion of the distribution determines the measurement variance – random
error, while the offset between the observed value and the true value is bias
of the measurement – systematic error.

Systematic measurement error happens frequently in many (epi-

demiologic) studies and can have many causes, but typically it hap-

pens because of a miscalibrated instrument. Systematic measurement

error is also likely to occur when a standardized food questionnaire,
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in which a common food item is omitted, is used. In that case all

individuals are affected in the same direction, but not necessarily to

the same degree since the use of these foods will differ among subjects.

Figure 1.2(a) shows two measurements exhibiting random error but

differing in precision. It is clear that random error is simply the vari-

ability around the true value, µi, measured by σ2
1,i (Measurement 1)

or by σ2
2,i (Measurement 2). Now ∆i = 0. In Figure 1.2(b) a measur-

ing instrument is shown that experiences both random and systematic

measurement error. Thus now ∆i 6= 0. While in the previous example

it was clear which measuring instrument is to be preferred, now the

situation is less clear. It will not only depend on the magnitude of ∆i

and the ratio σ2
1,i/σ

2
2,i but also on how well ∆i, σ2

1,i and σ2
2,i can be

estimated.

1.4 The effect of measurement error and misclassi-

fication on estimation

In this section we present the basic concepts used in the measurement

error literature. First we point out the distinction between differential

and non-differential error, then explore the effect of measurement er-

ror and misclassification on the estimation of parameters, and finally

review the existing methods which correct for error-prone data. The

methods are classified into two main classes: functional and structural

error. In this thesis we shall consider both the case of a covariate and

a response measured with error.
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d
en

si
ty

measured value

µi = µ∗
1,i = µ∗

2,i

∆i = 0
σ2

1,i

σ2
2,i

(a) Measurement 1 (solid line) is more precise than Measurement 2 (broken

line). The true value being measured is µi.

d
en

si
ty

measured value

µ∗
1,i µi = µ∗

2,i

∆i

σ2
1,i σ2

2,i

(b) Measurement 1 (solid line) is more precise than Measurement 2 (broken

line) but presents bias. The true value being measured is µi.

Figure 1.2: Comparison of bias and precision of two measurement pro-
cesses on the basis of the probability distribution of the measurements for
subject i.

1.4.1 Measurement error

1.4.1.1 Non-differential and differential

Suppose the true response is denoted by Y and the possibly corrupted

response by Y ∗. Consider a regression of the response Y on covariates
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X and Z. When, given the true response Y , the conditional distri-

bution of the possibly corrupted response Y ∗ does not depend on the

covariates (X,Z) then the measurement error process is said to be non-

differential, i.e. fY ∗|Y,X,Z = fY ∗|Y , where fw|v denotes the conditional

distribution of w given v. In other words, for a non-differential mea-

surement error process the covariates do not provide any extra infor-

mation about the response measured with error over and above what

is given by the true response. On the other hand, if fY ∗|Y,X 6= fY ∗|Y

then measurement error in response is said to be differential. Under

non-differential measurement error the possibly corrupted Y ∗ is called

a surrogate for Y . If measurement error is due solely to instrument

or laboratory-analysis error, then it can often be argued that the er-

ror is non-differential. Non-differential misclassification often arises

in prospective studies, where the true and observed covariates are as-

sessed before response is measured.

For a covariate, non-differential measurement error occurs when

the observed covariate X∗, as a measure of X, has no information

about the response Y , in addition to the information already contained

in the true covariate X and other correctly measured covariates Z.

In other words, the conditional distribution of Y given (Z,X,X∗)

is the same as that of Y given (Z,X), that is fY |Z,X,X∗ = fY |Z,X .

When fY |Z,X,X∗ 6= fY |Z,X the error is called differential. Differential

misclassification is more likely to occur in case-control studies, where

the response is obtained first and subsequently ascertained covariates

may be subject to recall bias.

Under non-differential measurement error the observed covariate

X∗ is said to be a surrogate for the true covariate X. The same

terminology is used for misclassification error.
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1.4.1.2 Effect of measurement error

In this section we explore the effect of response or covariate measure-

ment error in simple and multiple regression.

Response measurement error: There is an extensive literature on the

effect of measurement error on estimation of parameters, e.g.: Mote

and Anderson (1965); Goldberg (1975); Greenland (1980); Stefanski

(1985); Greenland (1988); Yoshimura (1991); Birkett (1992); Fuller

(1987); Carroll et al. (1995). Most of the papers focus on errors in co-

variates. The problem with measurement in the response has received

less attention, largely because response measurement error may be

ignorable in some cases. By ignorable we mean that the model for

the true response holds also for the error-prone response, with the

same parameters values, except for some variance parameters which

are changed due to measurement error. For example, in a linear re-

gression model with equation

Y = β0 + β′
xX + ε,

where Y represents the true response variable and X the covariate

vector measured without error, ε represents the inter-subject variabil-

ity with variance σ2
e . Let β̂ be the estimate of βx from the regression

of Y on X. If instead Y ∗ = Y + U is measured with error, where U

is independent of (Y,X) with mean zero and variance σ2
u, then

Y ∗ = β0 + β′
xX + (ε + U)

implying that var(Y ∗) = σ2
u + σ2

e and β̂
∗

= β̂, where β̂
∗

is the esti-

mate of βx from the regression of Y ∗ on X. Clearly, in this example,

the proxy response Y ∗ is unbiased for Y , i.e. E(Y ∗) = E(Y ) but the
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variance is increased. In this case measurement error is ignorable but

still present since variance increases.

On the other hand, suppose that Y = β0 + β′
xX + ε and that

Y ∗ = α0 + α1Y + U , α0 6= 0, α1 6= 1, with U independent of (Y,X).

Then the observed data follow a linear model of the form:

Y ∗ = α0 + α1β0 + α1β
′
xX + (ε + U), α0 6= 0, α1 6= 1

implying that var(Y ∗) = σ2
u + σ2

e and β̂
∗

= α̂1β. In this case

E(Y ∗) 6= E(Y ), i.e. Y ∗ is biased for Y , hence measurement error

is not ignorable.

The attenuation effect for a simple nonlinear model is similar to

that for simple linear regression. However, the effect of measurement

error in nonlinear models is in general more complex than for linear

models.

Measurement error in covariates: Fuller (1987) and Carroll et al. (1995)

present a comprehensive overview on the effect of measurement error

on covariates in linear and nonlinear regression models. In linear re-

gression, measurement error on covariates will not only attenuate the

parameter estimate but also induce increased variability around the

regression line.

More specifically, suppose Y = β0+βxX +ε, where X has mean µx

and variance σ2
x, and the equation error ε is independent of X and has

mean 0 and variance σ2
ε . Assuming a classical additive measurement

error model, i.e. X∗ = X + U where U is independent of X with

mean 0 and variance σ2
u, then a naive ordinary least squares regression

estimates βx∗ = λβx, where

λ =
σ2

x

σ2
x + σ2

u

< 1.
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Figure 1.3(a) shows the effect of σ2
u on the estimation of βx. Clearly

the ordinary least squares regression of Y on X∗ produces an estimator

that is attenuated to 0. The attenuating factor λ is also called a

reliability ratio. The variance of Y given X∗ is

var(Y |X∗) = σ2
ε + λβ2

xσ
2
u.

As can be seen in Figure 1.3(b), the variability around the regres-

sion increases as σ2
u increases. Thus, in this example measurement

error causes two problems: attenuation of the slope parameter, and

increased variability around the regression line.

σ2
u

β
∗ x

0 1 2 3 4 5

0.
5

1.
5

1.
0

2.
0

(a) Effect of σ2
u on βx.

σ2
u

va
r(

Y
|X

∗
)

0

1

1

2

2

3

3

4

4 5

(b) Effect of σ2
u on var(Y |X∗).

Figure 1.3: Illustrating the effect of measurement error on a simple linear
regression: Y = β0 + βxX + ε for different values of σ2

u. For this example
σ2

ε = σ2
x = 1, and (β0, βx) = (−1, 2).

In multiple regression the effect of measurement error is more com-

plicated if at least one additional covariate is correlated with the sur-

rogate covariate. For example, suppose that the multiple regression

model for Y given X and Z is Y = β0 + β′
xX + β′

zZ + ε, where X
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is a matrix of multiple covariates measured with error and Z is a set

of covariates measured without error. For the additive measurement

error model X∗ = X + U , the naive ordinary least square estimator

consistently estimates (β∗
x,β

∗
z) different from (βx,βz) with

(
β∗

x

β∗
z

)
=

(
Σxx + Σuu Σxz

Σzx Σzz

)−1

{(
Σxx Σxz

Σzx Σzz

)(
βx

βz

)
+

(
Σuε

0

)}
,

where Σst is in general the covariance matrix between S and T . In

general when more than one covariate is measured with error in a

linear regression model the effect of a naive analysis is unpredictable.

For generalized linear models, such as logistic regression and Pois-

son regression, the effect of measurement error is much the same as in

linear regression. This implies that a relative risk or an odds ratio is

affected in largely the same way as coefficients in a linear regression

model.

1.4.1.3 Correction for measurement error

Below we give a short description of the models for adjusting for mea-

surement error, which are grouped into functional and structural mod-

els.

Functional and structural models: Methods for correcting for measure-

ment error are classified into two broad classes, namely functional and

structural models. Consider a measurement error model relating Y to

X with possibly error-prone X∗ observed instead of X. Models with

fixed X are called functional models, whereas models in which Xs are
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regarded as random variables are called structural models. This leads

to functional modeling with only minimal assumptions made about

the distribution of Xs. Further, in structural modeling, parametric

models are assumed for the distribution of the random Xs. At first

sight functional modeling is to be preferred because it is based on

only few assumptions. Structural modeling, on the other hand, allows

for more complex models through the distributional assumption of X.

Functional approach is quite efficient in some problems, e.g., linear

regression with additive measurement error. On the other hand, in

other problems for example regression analysis with replicated data,

structural modeling is more efficient.

First, we describe examples of functional models, including the

method-of-moments, regression calibration and simulation extrapo-

lation (SIMEX). Secondly, we present structural methods which in

general are likelihood-based using either a frequentist or a Bayesian

approach.

Functional modeling: Suppose that the reliability ratio λ is known in

simple linear regression then an estimate of βx corrected for measure-

ment error is given by dividing the ordinary least squares estimate

by β̂x∗/λ, where β̂x∗ is the naive ordinary least square estimate of

βx. If the reliability ratio is unknown and we are given the esti-

mates of the measurement error variance, σ̂2
u, and the sample vari-

ance of X∗, σ̂2
x∗ , then the consistent estimate of the reliability ratio is

λ̂ = (σ̂2
x∗−σ̂2

u)/σ̂
2
x∗ . Thus the estimate of β̂x is β̂x∗/λ̂. This approach is

known as method-of-moments, because the ordinary least squares es-

timate of β̂x∗ and the reliability ratio λ̂ depend only on the moments

of the observed data. This method can be extended to a generalized

linear model (GLM), see, e.g., Fuller (1987) and Carroll et al. (1995).
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The most popular and also more general functional approaches are

regression calibration and simulation extrapolation (SIMEX). Rosner,

Willett, and Spiegelmann (1989, 1990) developed regression calibra-

tion methods for logistic regression. Further, Carroll and Stefanski

(1990) and Gleser (1990) describe the general idea about the regres-

sion calibration method. The rationale behind regression calibration

is to replace X by the predicted value of X from a regression of X

on (X∗, Z). The intuition about regression calibration is best seen in

simple linear regression: Y = β0 + βxX + βzZ + ε with X∗ = X + U

where, given X, U is independent of (Y, Z). Then

E[Y |X∗, Z] = E {E[Y |X∗, X, Z]|X∗, Z}
= E {E[Y |X,Z]|X∗, Z}
= E [β0 + βxX + βzZ|X∗, Z]

= β0 + βxE [X|X∗, Z] + βzZ

Thus, X is replaced by an estimate X̂ from a regression model pre-

dicting X from X∗ and Z.

Cook and Stefanski (1994) suggested the SIMEX (acronym for

simulation extrapolation) method. SIMEX estimates are obtained

by adding additional measurement error to the data in a resampling

stage, creating a measurement error trend, and extrapolating back to

the case with no measurement error. This approach is intuitively ap-

pealing and relatively easy to implement. However, it can be sensitive

to the choice of the extrapolation function (see, e.g., Küchenhoff and

Carroll, 1997).

Structural modeling: Carroll et al. (1984) consider a binary regression

model when some of the covariates are measured with error. This is an
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example of random effects modeling because the marginal likelihood

is a product of the observed data likelihood and the distribution of the

error. The unobserved covariates measured with error can be assumed

independently and normally distributed. Given the sample estimates

of the mean and the covariance matrix of the corresponding normal

distribution then the binary regression is completed by relating the

covariates to the response via either a logit or a probit link function.

This structural approach, however, requires replication in estimating

the measurement error variance. Note that the functional maximum

likelihood estimate of the regression coefficient from this binary re-

gression is not consistent, even when the measurement error variance

is known.

Other examples of likelihood based structural models include Schafer

(1993) for probit regression with measurement error in a covariate,

Richardson and Gilks (1993b) and Wang, Carroll, and Liang (1996)

for logistic regression with a mismeasured covariate in epidemiological

studies, Küchenhoff and Carroll (1997) in change of point problems

with a mismeasured covariate and Carroll, Roeder, and Wasserman

(1999) on flexible parametric for measurement error in a covariate. Ex-

amples of structural models for logistic regression with a mismeasured

covariate using a Bayesian approach include Stephens and Dellaportas

(1991), Schmid and Rosner (1993), Richardson and Gilks (1993a) and

Müller and Roeder (1997).

1.4.2 Misclassification

In this section we look on the effect of misclassification in a covariate

and a response. Further, we provide a brief overview on the correc-

tion for misclassification. Note that the definition of non-differential

and differential misclassification is similar to that of measurement er-



1.4 The effect of measurement error and misclassification on estimation 15

ror (Section 1.4.1.1), only that for misclassification the variables are

categorical.

1.4.2.1 Effect of misclassification

Below we explore the effect of (a) response misclassification on the

estimation of the difference of population proportions in two exposure

groups, and (b) binary covariate misclassification on estimation of a

regression coefficient in simple linear regression.

Misclassification in response: Let Y ∗ denote a binary response vari-

able subject to misclassification, and Y the true binary response vari-

able. The misclassification process is expressed by the misclassification

probabilities

Pr
(
Y ∗ = j|Y = k

)
= πjk, j, k = 0, 1.

The misclassification probabilities may be collected in the following

2× 2 matrix:

Π =

(
π00 1− π11

1− π00 π11

)
. (1.1)

Under non-differential misclassification, the effect of misclassification

is described by sensitivity and specificity of Y ∗ as a proxy measure of

Y . The parameter π11 = Pr(Y ∗ = 1|Y = 1) is called the sensitivity

of the measuring instrument and π00 = Pr(Y ∗ = 0|Y = 0) is the

specificity.

Suppose the interest focuses on the difference between two popula-

tion proportions, say δ = (π1−π2) where πj (j = 1, 2) is the proportion

of population j. For example this could be the difference of popula-

tion proportions of disease cases between two exposure groups. The
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Figure 1.4: This plot shows the effect of sensitivity π11 and specificity π00

on the difference of proportions between two exposure groups for a misclas-
sified disease measurement. The larger the misclassification, corresponding
to smaller values of π00 and π11, the more the line (surrogate difference) is
pulled towards zero. In this example π00 = π11 = 0.8 (solid line); π11 = 0.6,
π00 = 0.7 (dashed line); and π00 = 0.5, π11 = 0.6 (dotted line).

sample proportion pj (j = 1, 2) is an unbiased point estimator of πj

if Y is measured without error. However, if Y is recorded with mis-

classification, characterized by misclassification matrix (1.1), it can be

shown that the difference between two proportions is

δ∗ = (π00 + π11 − 1)δ.

In practice, the sensitivity (π11) and specificity (π00) are often larger

than 0.5, so that the surrogate difference is always smaller than the



1.4 The effect of measurement error and misclassification on estimation 17

true difference.

Figure 1.4 demonstrates the effect of π00 and π11 on the estimation

of the difference of proportions between two populations. Thus, the

effect of non-differential misclassification is to attenuate δ towards the

null.

A similar attenuation effect of non-differential misclassification mech-

anism is seen for other risk measures like a relative risk or an odds

ratio. However, if we assume that sensitivities and specificities vary

over the covariate groups, i.e. under differential misclassification, the

bias can be away or towards the null. Summarized, in general, the ef-

fect of response misclassification is similar to the effect of measurement

error in response.

Misclassification in covariates In this section we explore the effect of

covariate misclassification in linear models. For example, consider a

continuous response Y and binary predictor X. We can write

E(Y|X) = β0 + βxX.

Now suppose that one observes X∗, a misclassified version of X with

misclassification matrix (1.1).

It can be easily shown that the naive regression of Y on X∗ esti-

mates not βx but βx∗ = µβx with (e.g., Gustafson, 2004)

µ = (π11 + π00 − 1)
r(1− r)

r∗(1− r∗)
,

where r = Pr(X = 1) and

r∗ = Pr(X∗ = 1) = (1− π00) + (π11 + π00 − 1)r.
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Figure 1.5: The effect of π11, π00 and r on attenuation of the regression
coefficient in simple linear regression with misclassified binary covariate.
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Note that the attenuating factor, µ, is also a function of the prevalence

of the risk factor.

As can be seen in Figure 1.5(a), for a fixed r, the higher the sen-

sitivity or specificity the higher the attenuation factor. Further, as

shown in Figure 1.5(b), the attenuation factor varies quadratically as

a function of r. In particular, when sensitivity is equal to specificity

the attenuation factor is higher and symmetric around r = 0.5.

In general, for any set {r, π00, π11} such that π00 + π11 − 1 < 1.0,

the attenuation factor is less than 1 implying that the effect of non-

differential misclassification in the binary covariate is again to atten-

uate the estimate of the regression coefficient to the null. Therefore,

the effect of misclassification of a categorical covariate is similar to

measurement error in a continuous covariate.

1.4.2.2 Correction for misclassification

The most straightforward approach to correct for misclassification is

via the matrix method. This method follows a functional modeling

approach since no distribution assumptions are made about the pos-

sibly error-prone variable. The matrix method exploits the relation

p∗ = πp, where p∗ and p are the observed proportions for the possi-

bly corrupted and the true categorical variable in the main data, re-

spectively and π is the misclassification matrix. The matrix method

estimate of p is given by p̂ = π̂−1p̂∗. The main analysis is performed

on the transformed probabilities p̂. A variance estimator for p̂ can

be obtained using the delta-method (Greenland, 1980). The matrix

method is straightforward to compute, but it has the disadvantage

that the estimated probabilities are not constrained to lie between 0

and 1, a consequence of matrix inversion.
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Gustafson (2004) describes an example of structural modeling in

which a misclassified categorical covariate X is treated as a random

variable in a Bayesian model. The misclassified covariate X is assumed

to have two imperfect surrogate variables X∗
1 and X∗

2 , which are as-

sumed conditionally independent given the actual variable X. The

resulting likelihood is in fact a product of binomial probabilities for

observing the pair (X∗
1 , X

∗
2 ). The Bayesian estimation of the model

is simplified by including the unobserved covariate X into the poste-

rior, i.e. by assigning prior distributions to the unknown quantities.

This is an example of data augmentation. Other examples of struc-

tural models include: Liu and Liang (1991) for the misclassification of

categorical covariates, Whittemore and Gong (1991) for the misclassi-

fied Poisson counts, Greenland and Brenner (1993) and Prescott and

Garthwaite (2002) using a frequentist approach to misclassification of

a binary risk factor, and Neuhaus (1999, 2002) using a frequentist

approach to data subject to response misclassification.

1.5 Validation studies and the gold standard

1.5.1 Validation studies

An ideal epidemiological studies would measure all variables without

error. Unfortunately, this is for many studies not possible for vari-

ous reasons. For example, the error-free measurement may be very

expensive to apply to all subjects in the main study. Further, due

to practical or ethical considerations, it may not be possible to mea-

sure all study subjects. Consequently, measurements are taken by a

standard instrument subject to error.

To correct for attenuation in the parameter estimates, one needs

information about the error structure. If the measurement error struc-
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ture is known the correction is straightforward. In general, however,

the measurement error structure is unknown and is estimated from

a suitable subset of auxiliary data. The auxiliary data sources can

be grouped into two broad categories: an internal subset of the main

study, and an external set of independent studies. Within each of

these two broad categories there are three data types, namely, valida-

tion data, replication data and instrumental data.

1.5.1.1 Validation data

In a validation study the true variable is observed together with the

possibly corrupted data. An internal validation is ideal because it

allows for the direct examination of the error structure and typically

leads to much greater precision in parameter estimation. On the other

hand, with external validation one must assume that the same error

structure also applies to the main data, i.e. a subset of the param-

eters of the measurement error model could be transportable. For

example, if examiners with a similar level of training are working in

different centres, then it is reasonable to expect that the distribution

of the error is independent of the centre and the examiner making the

measurement.

An internal validation study will be referred to below as a val-

idation study. In a validation study, the response (or explanatory)

variable of each subject is measured by two methods: first, by the pri-

mary but error-prone method used on all subjects in the main study;

and second, by a ‘gold standard’ method used on only a subset of

subjects in the main study. The validation data therefore contain the

true and error-prone variable(s), possibly with other correctly mea-

sured variables.
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1.5.1.2 Replication data

In replication data, replicates of the mismeasured response/covariate

are available. Replicated or repeated data are useful when it is impos-

sible to measure the true variable exactly. For example, when a covari-

ate measured with error represents long-term systolic average blood

pressure or long-term average nutrient intake. Usually, one would

make replicate measurements if there were good reasons to believe

that the replicated mean is a better estimate of the true variable than

a single observation. In additive measurement error models, replica-

tion data can be used to estimate the variance of the measurement

error.

1.5.1.3 Instrumental data

It is not always possible to obtain replicates or validation data and

thus direct estimation of the measurement error variance is sometimes

impossible. In the absence of information about measurement error

variance, estimation of the regression model parameters is still possible

provided that the data contain an instrumental variable, in addition

to the mismeasured covariate. The instrumental variable is a second

surrogate measurement of the mismeasured variable obtained by an

independent method. This additional variable is correlated with the

true explanatory variable but not measured with error, and can be

used to predict the true explanatory variable. For example, in an

epidemiologic study of skin cancer and arsenic exposure, the water

arsenic measurements are possibly error-corrupted while the toenail

arsenic measurements are interpreted as the instrumental variable.
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1.5.2 Gold standard versus benchmark scorer

A key assumption in a validation study is that true data are measured

by a gold standard, a measuring instrument that is assumed to be

error-free. However, in practice the measurements are often made by

a benchmark scorer, an experienced examiner or a tested measuring

instrument which is assumed to be error-free or is nearly so, in relation

to error-prone measurement. In this case, the corrected overall study

results are valid since there is no distinction between the measurements

of the benchmark scorer and the gold standard.

A benchmark scorer may, however, be an ‘alloyed’-gold standard,

i.e. a too imperfect approximation of the gold standard. In this sit-

uation, the corrected estimates are attenuated. For example, when

the errors of the alloyed-gold standard and the usual method of mea-

surement are negatively correlated, the corrected estimates will tend

to overcorrect beyond the true value (Wacholder, Armstrong, and

Hartge, 1993). This finding suggests that it is possible that the meth-

ods for correcting estimates for the effect of measurement error might

introduce more bias than they are correcting.

Spiegelman, Schneeweiss, and McDermott (1997) give an example

of using medical records to validate the self-reported prescription drug

use, in the study of exogenous oestrogen as a risk factor for endometrial

cancer. This may not be a true measurement, because the apparent

low accuracy of the self-report may result from errors in the records

rather than in the self-reports.

This is a clear warning to safeguard against using any measuring

instrument, no matter how much better than the available measure, as

a proxy to a gold standard. Nevertheless, an experienced benchmark

scorer (or a duly tested measuring instrument) can replace the gold

standard if the resulting measurements are believed or shown to match
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that of the gold standard with negligible error.



CHAPTER

2 Caries Research

2.1 Dental caries

Dental caries (decay) is in fact the dissolution (demineralisation) of

tooth enamel by acids from bacterial origin. Bacteria, e.g., Strepto-

coccus mutans species present in dental plaque (a bio-film of bacteria,

food remnants and other debris) metabolize dietary sugars to produce

organic acids which attack the enamel surface of the tooth. On the

other hand, exposure to alkali, such as sodium bicarbonate in saliva,

reverses this process and aids in remineralisation. Therefore, enamel

is in a dynamic state of de- and re-mineralisation, and when deminer-

alisation predominates, cavitation occurs (see, e.g., Moyniham, 2000).

Cavitation of the tooth enamel surface occurs, followed by the spread

into the dentine and then eventually to the pulp.

In most westernized countries, the occurrence of dental caries has

declined over the past decades (see, e.g., Spencer, 1997; Carvalho,

van Nieuwenhuysen, and D’Hoore, 2001; Pieper and Schulte, 2004)

leading to a skewed distribution of the degree of caries experience.

25
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Figure 2.1: Tooth indices for the primary dentition.

For this reason, the majority of children have no or only a few cavi-

tated lesions, while for a minority the degree of caries experience still

remains relatively high (Hausen, 1997). The polarized distribution of

the degree of caries experience heeds for high risk strategies to target

preventive care or treatment to those individuals or groups identified

as being at high risk for future caries development.

The first set of teeth appearing in the mouth are called decidu-

ous teeth. A child can have maximally 20 deciduous teeth. Figure
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2.1 shows the European way of indexing deciduous teeth. A decid-

uous tooth can have four or five surfaces

as shown in Figure 2.2. The incisors and

canines have four surfaces, namely mesial

(M), buccal (B), distal (D) and lingual (L),

whereas molars have an occlusal (O) sur-

face in addition. Molars are more likely to

become decayed than other teeth because

the occlusal surface (due to the complex

anatomy) is most vulnerable to a caries at-

Figure 2.2: Tooth sur-

faces label

tack. Consequently, there could be a considerable different suscepti-

bility to caries development of the different teeth in the mouth.

Saliva, bacteria and diet play an important role in caries activity.

Consequently, there is a variation in the degree of dental caries ex-

perience between subjects caused by differences in biological factors

like the bacterial strains in the mouth and differences in the level of

oral hygiene and dietary habits. Demographic, behavioral, and en-

vironmental factors may also be associated with caries activity. For

example, tap water may contain fluoride and since fluoride is assumed

to have a protective effect against caries development, geographical

differences in caries experience may occur.

2.2 Measuring the degree of caries experience

The dmft-index is probably the simplest but certainly the most com-

monly used index for reporting dental caries experience. The dmft

index quantifies the dental health status based on the total sum of

decayed (d), missing due to extractions because of caries (m) and

filled (f) teeth in the primary dentition (see, e.g., Klein, Palmer, and
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Knutson, 1938; Klein and Palmer, 1941). An analogous index, the

dmfs-index, is the sum of the surfaces which are either decayed, miss-

ing or filled due to caries. The dmft (dmfs) score for any individual

can range from 0 to 20 (0 to 88). The lower the index, the better the

dental health of the subject. For permanent teeth, the correspond-

ing index is DMFT for caries on teeth level and DMFS for caries on

surface level. The DMFT (DMFS) score for any individual can range

from 0 to 32 (0 to 148).

The dmft(s)/DMFT(S) indices have some limitations. First, the

dmft (DMFT) index (and also the dmfs (DMFS)) do not indicate

which teeth are affected such that much detail is lost by working with

this aggregate measure. Secondly, the dmft(s)/DMFT(S)-index is an

exaggerated score for caries experience because, if a tooth is missing,

all surfaces of that tooth are considered as diseased (Benigeri, Payette,

and Brodeur, 1998). Nevertheless, the indices provide a reasonably

accurate history of changes in the degree of dental caries experience

because of their widespread use over the past decades. Thus, at least

for this reason, we are motivated to examine these indices in this

thesis.

Measuring caries experience is a yes/no decision as to whether

caries as a disease is present in, for example, a particular tooth surface.

The result obtained depends on the diagnostic threshold, i.e. an arbi-

trary cut-off level, to decide on what to classify as diseased and what

to classify as sound. Caries experience scoring is based on four levels

of lesion severity: d4 (dentine caries with pulpal involvement), d3 (lim-

ited dentine caries), d2 (enamel cavity) and d1 (white or brown-spot

initial lesions without cavitation) as displayed in Figure 2.3. See, for

example, Pitts and Fyffe (1988), Fyffe et al. (2000) and Pitts (2004).

These scores permit the calculation of the dmft/dmfs indices at vari-
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replacemen

(d1)

(d2)

(d3)

(d4)
lesions
in pulp

+ clinically detectable
lesions in dentine

+ clinically detectable cavities
limited to enamel

+ clinically detectable enamel lesions with
intact surfaces

Figure 2.3: Caries diagnostic thresholds.

ous levels of diagnosis (d1, d2, d3, d4). Note that the severity of caries

experience will not only depend on the level of diagnosis used, but also

on the diagnostic instrument used: visual, radiological or advanced di-

agnostic tools. The accuracy of the measurement of interest will thus

vary depending on which level of lesion severity is used.

2.3 Signal Tandmobielr study

2.3.1 Sample and study design

The Signal Tandmobielr study1 is a population-based study. This

study involved a sample representative of 4468 Flemish primary school-

1The partners in this collaborative project are: the Dental Departments (Pae-
diatric and Preventive Dentistry) of the Catholic University of Leuven, the Univer-
sity of Ghent and the Free University of Brussels; the Youth Health Department
of the Catholic University of Leuven; the Biostatistical Centre of the Catholic
University of Leuven; the Working Group of Oral Health of the Flemish Dental
Association and the Flemish Association for Youth Health Care.
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children (2315 boys and 2153 girls). The sample represents 7.3% of

the children born in 1989 in Flanders and first examined in 1996. At

the first examination the average age of the children was 7.1 years

(standard deviation = 0.4) and varied from 6.12 years to 8.09 years.

The children were randomly drawn through stratified cluster sam-

pling without replacement. The selection units were the schools, strat-

ified by province and educational system. Thus, the target population

was divided into 15 different strata, comprising the three types of the

Belgian educational system, namely private schools (mainly catholic

schools), state schools and municipal schools, for the five provinces of

Flanders. Schools were selected with a probability proportional to the

number of children in the first year of primary school. By this sam-

pling scheme, the children were selected with equal probability. They

were examined annually during their primary school time (1996–2001).

They underwent an oral health examination in a mobile dental clinic

by one of the 16 examiners and the parent completed a questionnaire.

Three groups were sampled as shown in Figure 2.4. For Group

A, the intervention group (initially 4468 children) – the children were

followed over 6 consecutive years and they were subjected to an oral

health educational programme. In Group B, a longitudinal control

group (initially 520 children) of children age matched to group A –

the children were examined in the first and sixth year but did not

receive the oral health educational programme. Group C, comprises

a different cross-sectional control group each year (approximately 500

children) – each year a different group was selected and they were

included to be used for a cross-sectional comparison with the longitu-

dinal A group. Note that the first year children of group B also serve

as the first C group.

In this thesis we will use only the data from Group A. Hence, the
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YEAR

Experimental

GROUP A

GROUP B

GROUP C

group

Control group

Control group

(changing every year)

(longitudinal)

(longitudinal)

= clinical examination

1996 1997 1998 1999 2000 2001

Figure 2.4: Study groups and examination periods for children parti-
cipating in the Signal Tandmobielr study.

data from Group A will be referred to below as the Signal Tandmobielr

data. In this study caries experience was measured at level d3 of lesion

severity (see Section 2.2).

Clinical data were collected by dental examiners on the level of oral

hygiene, gingival condition, dental trauma, prevalence and extent of

enamel developmental defects, fluorosis, tooth decay, the presence of

restorations, missing teeth, the stage of tooth eruption and orthodon-

tic treatment need, all using established criteria, as recommended by

the WHO report (1987) and based on the diagnostic criteria for caries

prevalence surveys published by the British Association for the Study

of Community Dentistry (BASCD) (Pitts, Evans, and Pine, 1997). Be-

sides the detailed data, information was also collected on oral hygiene
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and dietary habits, the use of fluorides, dental attendance, medical

history and social demographic background of the children. These

extra data were obtained from questionnaires completed by parents

and school medical centres. For a more detailed description of the

Signal Tandmobielr study we refer to Vanobbergen et al. (2000).

2.3.2 Variables included

For most of the analyses, the degree of caries experience in the pri-

mary dentition, i.e. the dmft-index will be used in this thesis as a

response variable in a regression model. In particular, we will treat

the response either as a categorical (binary/ordinal) or as a count

variable. Throughout the thesis, we are interested in establishing the

determinants of caries experience taking into account the potential

misclassification by the dental examiners involved in the study with

respect to the benchmark examiner. The scoring was based on the d3

level of caries experience.

Various explanatory variables were considered. We considered: age

(years), gender (girl = 1), geographical location (in terms of the x−
and y−coordinates) of the school that the child attends, age at start

of brushing (years), systemic use of fluorides (regular use = 1), daily

consumption of sugar containing drinks between meals (yes = 1), in-

take of in-between-meals (= 1 if greater than 2, 0 otherwise), and

frequency of brushing (= 1 if less than twice a day, 0 otherwise).

Observe that the geographical components expressed in terms of

x− and y−coordinates represent also the stratification variable ‘province’.

‘Age at start of brushing’ reflects the age of the child when it first

started brushing while the systemic use of fluoride means that tablets

or drops were regularly used as fluoride supplements. Further, daily

consumption of sugar containing drinks was compared to the use of
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water, milk, etc.

2.4 Calibration exercises

Dentist-examiners were specifically trained at baseline and parti-

cipated in calibration exercises according to the guidelines of training

and calibration published by the British Association for the Study

of Community Dentistry (see, Pine, Pitts, and Nugent, 1997). The

examiners were calibrated by observing the same group of children

(all tooth surfaces) and comparing their results to the scores obtained

by the benchmark examiner. Calibration exercises were conducted

in children with a variety of pathology present, including untreated

caries, recurrent caries and fillings, nevertheless making sure that some

caries free children were also included.

In the Signal Tandmobielr study much attention was paid to the

selection and training of the 16 dental examiners. In order to maintain

a high level of intra- and inter-examiner reliability, calibration exer-

cises were carried out twice a year for all examiners involved. During

the study period (1996-2001), three calibration exercises involving 92,

32 and 24 children respectively, were devoted to the scoring of caries

experience. At the end of each of the three calibration exercises the

sensitivity and specificity of each dental examiner vis-a-vis the bench-

mark examiner (Dominique Declerck)2 was determined. In this study,

since the scoring of caries experience was based on d3 level then it im-

plies that the benchmark scorer is approximate to gold standard. The

detection of d1 and d2 lesions requires a more careful clinical diagnosis

and the evaluation of radiographs, and hence benchmark scorer would

be far from gold standard.

2Professor, School of Dentistry, Catholic University Leuven, Belgium.
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2.5 The validation data of the Signal Tandmobielr

study

The validation data of the Signal Tandmobielr study is obtained from

the above calibration exercises. In the Signal Tandmobielr study

sixteen dental examiners were involved. The three calibration exercises

for scoring caries experiences yield a misclassification table for each

examiner.

In the literature it is often recommended that the validation data

constitute a random sample of the main study, thereby establishing an

internal validation data set. But in the Signal Tandmobielr validation

data the children were not sampled at random from the main study.

Rather, a school was selected (and all seven-year old children exam-

ined) where a relatively high prevalence for caries experience could

be expected. Although the validation study is not internal, since the

children belong to the same population as those of the main study and

the dental examiners are also the same, the misclassification probabil-

ities can be unbiasedly estimated using the validation data. But, for

these children no questionnaire data were available so their true scores

could not be included in likelihood.

In Chapters 4, 5 and 6 the validation data is combined from the

three caries calibration exercises. In Chapter 7 and the succeeding

chapters, we considered the validation data of the first calibration

exercise.

2.6 Some preliminary results

Vanobbergen et al. (2001) fitted a logistic regression model to the

dichotomised (dmft = 0 versus dmft 6= 0) response on a set of risk
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indicators (described in Section 2.3.2), but instead of the x− and y−
coordinates they used 4 dichotomous variables to indicate the five

Flemish provinces to which the school of the child belonged. The

variables found to be playing an important role as determinants of

caries experience in the primary dentition in Flanders for the seven-

year old children are: geographic area (province), oral hygiene habits

(age at start of brushing, frequency of brushing), the use of fluorides

supplements and fluoridated toothpaste, and dietary habits (daily use

of sugar containing drinks between meals, in-between-meal snacks).

Further, the geographical variable (province) showed that living in

the Western part of Flanders seems to be a protective factor. The

Table 2.1: Maximum likelihood estimates of the multiple logistic regression
model fitted to the binary dmft score (caries experience versus no caries
experience)

Parameter Estimate† 95% CI‡

Intercept −0.398(0.119) −0.632 −0.163
x-ordinate 0.195(0.037) 0.122 0.268
y-ordinate −0.025(0.037) −0.098 0.048
Gender (girl) 0.028(0.072) −0.113 0.169
Age (years) 0.326(0.089) 0.151 0.500
Brushing frequency (< 2 days) 0.229(0.107) 0.018 0.439
Age at start brushing (years) 0.200(0.035) 0.132 0.268
Fluoride supplement (yes) −0.446(0.072) −0.588 −0.304
Sugary drinks (yes) 0.310(0.074) 0.166 0.455
Between meals (> 2) 0.210(0.078) 0.056 0.363

†Standard error in parenthesis.
‡CI = Confidence interval.
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probability of remaining caries free was 14% higher for children living

in the Western part compared with the Eastern part of Flanders.

Table 2.1 shows the results of fitting multiple logistic regression

controlling for the geographical component using x− and y−coordinates.

The results clearly indicate a significant geographical trend, i.e. the

East-West gradient in prevalence of caries experience, with higher

scores in the Eastern part of Flanders (the province of Limburg). The

positive regression coefficient for age implies that the older the child

the higher the risk of having caries. Similarly, the positive regres-

sion coefficient for age at start of brushing implies that the later the

child starts brushing the higher the risk of having caries. Daily use of

sugar containing drinks between meals and the consumption of more

than two between-meals snacks per day are also important risk factors.

Moreover, regular use of fluoride supplements and brushing more than

once a day, are important protective factors.



CHAPTER

3 An Overview of Frequentist and

Bayesian Approaches Applied to

Random Effects Logistic Regression

3.1 Introduction

In this chapter we present an overview of frequentist and Bayesian

approaches with application to the random effects logistic regression.

The rationale is to briefly explore the methods used for parameter

estimation throughout the thesis, and also to highlight the software

used in model fitting.

Further, we study the random effects logistic regression not only

because of its simple form but also due to its wide application in epi-

demiological analysis. In addition, it serves as a typical introduction

to the models described in Chapters 4 and 5.

37
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3.2 The logistic random-effects model

Examples of clustered data include repeated measurements in longitu-

dinal studies, multiple observations in the same mouth in oral health

research and family data in genetic studies. It is well known that ob-

servations within a cluster are more alike than observations of different

clusters. Random effects logistic regression model is an extension of

classical logistic regression model, in which random effects are intro-

duced into the linear predictor, to model the clustering effect.

Specifically, suppose we have binary responses Yij, i = 1, · · · , N
and j = 1, · · · , ni, where Yij denotes the jth measurement on the ith

subject (cluster). The random-intercept logistic regression model has

the following form:

log

(
Pr(Yij = 1|ui)

1− Pr(Yij = 1|ui)

)
= x′

ijβ + ui, (3.1)

where xij is a d−dimensional vector of covariates with β the corre-

sponding vector of regression coefficients, and ui is a random vari-

able expressing the ith subject-specific level. The term ui is called

a random intercept (of the ith subject) and it is assumed to follow

a standard normal distribution with mean 0 and variance σ2, i.e.

ui ∼ N (0, σ2). The random effects can be expressed in a standardized

form, namely ui = σzi, σ > 0, where zi ∼ N (0, 1). Thus, model (3.1)

may be rewritten as

log

(
Pr(Yij = 1|zi)

1− Pr(Yij = 1|zi)

)
= x′

ijβ + σzi, σ > 0. (3.2)

It is assumed that, conditionally on zi, the likelihood terms involv-

ing the ith subject are independent. The evaluation of the marginal

likelihood (expressing likelihood of the observed vector of responses)
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for the ith subject involves integrating out the random intercept and

is equal to

Li ≡ L(Y i|β, σ) =

∫ ni∏

j=1

Pr(Yij = yij|β, σ, zi)φ(zi)dzi, (3.3)

where Y i = (Yi1, · · · , Yini
)′ is the random vector of measurements for

the ith subject, yij is the corresponding observed value of the response,

and φ(·) is the standard normal density. The total (marginal) likeli-

hood function for β and σ is the product of the N terms in expression

(3.3) and hence

L ≡ L(Y |β, σ) =
N∏

i=1

L(Y i|β, σ) =
N∏

i=1

Li, (3.4)

where Y = (Y ′
i, · · · ,Y ′

N)′ is the total vector of the responses.

Calculating the marginal likelihood requires the evaluation of in-

tegral (3.3). However, there is no analytic solution available and thus

numerical approximations are needed. For parameter estimation we

consider both a frequentist and a Bayesian approach, as described

below.

3.3 Frequentist approach

The parameters of the random-effects logistic regression can be esti-

mated by maximizing the marginal likelihood (3.4). Among the vari-

ous methods of approximating the integrals that have been proposed

in the literature the most widely used is the Gauss-Hermite quadra-

ture, which we present in the next section.
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3.3.1 Gaussian quadrature

The Gauss-Hermite quadrature procedure implies that the integral

(3.3) is approximated by the weighted sum

Li =

∞∫

−∞

Pr(z)φ(z) ≈
Q∑

q=1

wq Pr(zq), (3.5)

where

Pr(z) =

ni∏

j=1

Pr(Yij = yij|β, σ, z),

with zq denoting the nodes (or quadrature points), which are solutions

to the Qth order Hermite-polynomials and wq are appropriately chosen

weights. In general, the higher the order Q the more accurate the

approximation will be. The main disadvantage of the (non-adaptive)

Gaussian quadrature is that the quadrature points zq are based on

φ(z), which is independent of Pr(z) in the integral. That is, Pr(z)

is calculated at points ẑ irrespective of the range of where Pr(z) is

relatively high. In general, a larger number of quadrature points (Q)

is necessary for adequate accuracy when the variance of the random

effect is large.

It is useful to rescale and shift the quadrature points such that

more quadrature points lie in the region of interest. This is done in

the so-called adaptive Gaussian quadrature.

3.3.2 Adaptive Gaussian quadrature

Adaptive Gaussian quadrature centers the quadrature nodes with re-

spect to the mode of the function being integrated, and scales them ac-

cording to the estimated curvature at the mode. Liu and Pierce (1994)

suggested an adaptive Gauss-Hermite technique using the adaptive
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quadrature idea (see also Molenberghs and Verbeke, 2005).

Typically, adaptive Gaussian quadrature needs fewer evaluation

points than non-adaptive Gaussian quadrature. However, adaptive

Gaussian quadrature requires the calculation of the mode for each

individual in the data set, hence a numerical maximization of functions

of the form (3.5). This implies that adaptive Gaussian quadrature is

in general much more time consuming than non-adaptive Gaussian

quadrature.

Both the non-adaptive and adaptive Gaussian quadrature proce-

dure have been implemented in the SAS procedure NLMIXED (SAS c©

Institute Inc., 1999–2001). Results from the frequentist analyses will

not be shown in the cases where they are practically the same as those

from the Bayesian analyses.

3.4 Bayesian approach

The Bayesian approach differs from the frequentist approach in treat-

ing parameters as random variables and using data to update prior

knowledge about the parameters. The prior distribution of the param-

eters expresses the prior knowledge of these parameters. An informa-

tive prior expresses specific or definite information about a variable,

whereas an uninformative prior expresses vague information about a

variable. When more than one parameters are involved, often the prior

distribution of each parameter is assumed to be a priori independent.

In the random-effects logistic regression model a prior distribution

needs to be specified for β and σ2. Also here we assumed prior inde-

pendence. The corresponding prior densities are represented by p(β)

and p(σ2), respectively. Using Bayes’ Theorem, the prior information

can be combined with the likelihood to yield the posterior distribution
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p(β, σ2|y). That is,

p(β, σ2|y) =

N∏
i=1

∫ ni∏
j=1

Pr(Yij = 1|β, ui)φ(ui|σ2)dui p(β)p(σ2)

∫
N∏

i=1

∫ ni∏
j=1

Pr(Yij = 1|β, ui)φ(ui|σ2)dui p(β)p(σ2)dβdσ2

.

Note that the denominator is a normalizing constant independent of

β and σ2, so that the estimators, such as the posterior mode, can be

derived from the numerator. That is,

p(β, σ2|y) ∝
N∏

i=1

∫ ni∏

j=1

Pr(Yij = 1|β, ui)φ(ui|σ2)dui p(β)p(σ2). (3.6)

3.4.1 Bayesian Data Augmentation

It is difficult to establish the posterior distribution (3.6) because it

involves an intractable integral. Instead, we use a sampling-based

approach using the idea of Data Augmentation to obtain the marginal

posterior density p(β, σ2|y).

The idea of a Bayesian Data Augmentation procedure is that we

augment the vector of unknowns θ = (β′, σ2)′ by the (latent) random

effects u. Thus we augment the vector of parameters θ with (latent

but unknown) data u and work with the posterior distribution of

(θ,u) given y. In other words the u are also parameters. The marginal

posterior distribution p(θ|y) is related to the posterior p(θ,u|y) as
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follows:

p(θ|y) =

∫
p(θ,u|y)du.

All marginal posterior properties (e.g., summary statistics) of θ

are the same regardless of whether they are obtained directly from

p(θ|y) or from first p(θ,u|y) and then marginalized over u. Thus,

inference can be based on the joint posterior density p(θ,u|y). For

our random effects logistic regression example the p(θ,u|y) is given

by

p(β, σ2,u|y) ∝
N∏

i=1

ni∏

j=1

Pr(Yij = 1|β, ui)φ(ui|σ2)p(β)p(σ2). (3.7)

Expression (3.7) is easier to work with as seen in the next sec-

tion, posterior information is obtained via Markov chain Monte Carlo

(MCMC) sampling.

3.4.2 Markov chain Monte Carlo sampling

Markov chain Monte Carlo (MCMC) methods are a class of algo-

rithms for sampling the posterior distribution based on constructing

a Markov chain that has the desired distribution as its limiting (sta-

tionary) distribution. The idea of MCMC sampling is to simulate a

random walk in the space of parameters of interest, θ = (θ1, · · · , θd)
′,

which converges to the joint posterior distribution p(θ|y). The sam-

ples are drawn sequentially, with the distribution of the sampled draws

depending on the last value drawn; hence, the draws form a Markov

chain. The states of the chain after a large number of iterations is

then used as a sample from the desired posterior distribution.

MCMC techniques have several attractive features. From a prac-
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tical point of view, they are in general relatively easy to construct

and often not too difficult to implement. In addition, they are often

the only available techniques for exploring high dimensional problems.

We present below the basic Metropolis(-Hastings) algorithm and the

Gibbs sampler.

The Metropolis algorithm

Given a target posterior distribution p(θ|y), known up to a normaliz-

ing constant, the Metropolis algorithm creates a sequence of random

vectors (θ(1),θ(2), · · · ) whose distribution converges to the target dis-

tribution. Each sequence can be considered a random walk whose sta-

tionary distribution is p(θ|y). The algorithm proceeds as follows (see,

e.g.,Tierney, 1994; Gelman, Carlin, Stern, and Rubin, 1995). Start

with some initial value θ0. For t = 1, 2, · · · , obtain θ(t) from θ(t−1)

using the following steps:

1. Sample a candidate point θ∗ from a proposal distribution at time

t, q(θ∗|θ(t−1)). The proposal distribution distribution must be

symmetric; that is, q(θa|θb) = q(θb|θa) for all θa and θb.

2. Calculate the ratio of the densities,

r =
p(θ∗|y)

p(θ(t−1)|y)
.

3. Set

θ(t) =

{
θ∗ with probablity min(r, 1),

θ(t−1) otherwise.

The algorithm requires the ability to draw θ∗ from the proposal (jump-

ing) distribution q(θ∗|θ) for all θ.
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The Metropolis-Hastings algorithm

The Metropolis-Hastings (M-H) algorithm generalizes the basic Metropo-

lis algorithm, described above, in two ways. First, the proposal dis-

tribution q needs no longer to be symmetric. That is, there is no

requirement that q(θa|θb) = q(θb|θa). Secondly, to correct for the

asymmetry in the proposal density the acceptance ratio is now (see,

e.g., Tierney, 1994; Chib and Greenberg, 1995; Gelman et al., 1995)

r =
p(θ∗|y)q(θ(t−1)|θ∗)

p(θ(t−1)|y)q(θ∗|θ(t−1))
.

Allowing an asymmetric proposal distribution can be useful in increas-

ing the speed of the random walk.

Gibbs sampler

The Gibbs sampler (Geman and Geman, 1984; Gelfand and Smith,

1990; Gilks, 1996) is a MCMC algorithm that has been found very

useful in multidimensional problems. It is defined in terms of subvec-

tors of θ. At each iteration t, the Gibbs sampler cycles through the

subvectors of θ, drawing θj from the conditional distribution given all

the remaining components of θ:

pj(θj|θ(t−1)
(−j) ,y),

where θ(−j) represents all the components of θ, except for θj, i.e.

θ(−j) = (θ1, · · · , θj−1, θj+1, · · · , θd)
′. This suggests the following MCMC

scheme.

1. Generate θ
(t)
1 from p1(θ1|θ(t−1)

2 , θ
(t−1)
3 , · · · , θ(t−1)

d ,y)

2. Generate θ
(t)
2 from p2(θ2|θ(t)

1 , θ
(t−1)
3 , · · · , θ(t−1)

d ,y)
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...

d. Generate θ
(t)
d from pd(θd|θ(t)

1 , θ
(t)
2 , · · · , θ(t)

d−1,y)

At the completion of these steps, the vector θ(t) = (θ
(t)
1 , · · · , θ(t)

d )′

provides the simulated value of θ at the tth iteration of sampling.

The d steps of this Gibbs sampling scheme completes one iteration of

the simulation method.

After a large number, T , of iterations, we obtain θ(T ). Geman

and Geman (1984) have shown that under mild conditions, the joint

distribution θ(T ) converges at an exponential rate to p(θ|y) as T →∞.

The desired joint posterior distribution, p(θ|y), can be approximated

by the empirical distribution of M values θ(t) for t = T + 1, T +

2, · · · , T + M , where T is large enough so that the Gibbs sampler has

converged and M is chosen to give sufficient precision to the empirical

distribution of interest.

3.4.3 Posterior samples from our logistic example

In the random-effects logistic regression, we are interested in the joint

posterior density p(β, σ2,u|y) and its marginal posterior densities

p(β, σ2|y) and p(u|y). Let [U |V,W ] denotes the conditional distri-

bution of U given V and W . Then β and σ2 can be sampled by Gibbs

sampling from the full conditionals [β|σ2(t−1),u(t−1),y], [σ2|β(t),u(t−1)]

and [u|β(t), σ2(t)]. The elegance of this approach (using the Data Aug-

mentation approach) is that it is easy to sample from each of the

conditionals.

The conditional [β|σ2,u,y] = [β|u,y] as long as p(β, σ2) = p(β)p(σ2),

i.e. under prior independence of β and σ2. Similarly, [σ2|β,u] =

[σ2|u]. The conditional [u|β, σ2,y] does not simplify.

The assumed prior distributions are:
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(a) a multivariate normal prior on β, i.e.

p(β) ∝ exp

[
−1

2
(β − β0)

′B−1
0 (β − β0)

]
,

where β0 denotes the prior mean, and B−1
0 the prior precision

matrix. For a reasonably vague prior, it is common to assume

that β0 = 0 and B−1
0 = 10−3Id, where Id is a d × d identity

matrix.

(b) the inverse-gamma prior density for σ2, i.e.

p(σ2) =
ξα

Γ(α)
(σ2)−(α+1) exp

(−ξ

σ2

)
,

which has hyperparameters (α, ξ). A convenient parameteriza-

tion is a scaled inverse-χ2 with scale σ2
0 and ν0 degrees of free-

dom (e.g., Gelman et al., 1995). That is, the distribution of σ2

is taken to be the distribution of σ2
0ν0/W , where W is a χ2

ν0

random variable.

The sampling method for each of the conditionals is now specified.

• [β|u(t−1),y]

Given u
(t−1)
i (i = 1, · · · , N), the random-effects logistic model reduces

to the simple logistic model with offset u
(t−1)
i for each observation.

The posterior conditional density is given by

p(β|u(t−1),y) ∝ exp

[
−1

2
(β − β0)

′B−1
0 (β − β0)

]

×
N∏

i=1

ni∏

j=1

exp
[
x′

ijβ + u
(t−1)
i

]

1 + exp
[
x′

ijβ + u
(t−1)
i

] .
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This expression, p(β|u(t−1),y), does not have an explicit form, i.e.

it does not have a kernel of any known standard distribution. The

exact posterior distribution of β can be obtained by the Metropolis

algorithm with proposal density (e.g., Johnson and Albert, 1999)

q(β(t−1)|β∗) = N
(
β∗|β(t−1)

u , τβV u

)
,

where τβ is a scalar that is adjusted in order to obtain a reasonable

acceptance rate. That is, to sample from p(β|u(t−1),y), we find β̂u

and V̂ u by performing a GLM regression of y on x using the simulated

values u(t−1) as offsets and then generate a random variate β∗ from

a multivariate normal distribution, N(β̂u, τβV̂ u), and set β(t) = β∗

with probability

min

(
p(β∗|u(t−1),y)

p(β(t−1)|u(t−1),y)
, 1

)
,

otherwise, set β(t) = β(t−1). Any acceptance rate between 10%-40%

ought to perform close to optimal (e.g., Roberts and Rosenthal, 2001).

• [σ2|u(t−1)]

With the inverse-gamma prior on σ2, and hence a scaled inverse-χ2

prior distribution, the resulting posterior density is

p(σ2|u(t−1)) ∝ p(σ2)p(u|σ2)

=
(
σ2
)−(N+ν0)/2+1

exp

(
− 1

2σ2

(
ν0σ

2
0 +

N∑

i=1

u
2(t−1)
i

))
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Thus,

σ2|u(t−1) ∼ Inv−χ2


N + ν0,

(
ν0σ

2
0 +

N∑
i=1

u
2(t−1)
i

)

N + ν0




which is also a scaled inverse-χ2 distribution. Hence, it is possible to

sample σ2 directly.

• [u|β(t), σ2(t),y]

Unfortunately, the conditional distribution [u|β, σ2,y] does not have

a closed form. Its posterior density is

p(ui|β(t), σ2(t),yi) ∝ exp

(
− u2

i

2σ2(t)

)

×
ni∏

j=1




exp
(
x′

ijβ
(t) + ui

)

1 + exp
(
x′

ijβ
(t) + ui

) .




As described by Zeger and Karim (1991), we can use the Metropolis

algorithm to generate the posterior samples of u
(t)
i with

q(u∗
i |u(t−1)

i ) = N(û
(t−1)
i , τ−1

u v̂
(t−1)
i ),

where τu is a tuning parameter for adjusting the Metropolis acceptance

rate. The maximum value of p(ui|β(t), σ2(t),y) occurs at

û
(t−1)
i =

(
ni∑

j=1

vij + σ−2(t)

)−1 ni∑

j=1

vij

(
y∗

ij − x′
ijβ

(t)
)
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and its curvature is

v̂
(t−1)
i =

(
ni∑

j=1

vij + σ−2(t)

)−1

,

where vij = var(Yij|ui), y∗
ij = ηij +

dµij

dηij
(yij − µij), ηij = x′

ijβ + ui and

µij = E(Yij|ui. Generating ui, (i = 1 · · · , N), from its full conditional

distribution is the most time-consuming step because y∗
ij and vij de-

pend on ui; hence the actual mode and curvature must be obtained

by iterating the equations for ûi and v̂i.

The WinBUGS software, described in the next section, uses Gibbs

sampling and a Metropolis-within-Gibbs routine to draw MCMC sam-

ples from complex statistical models.

3.4.4 WinBUGS for Bayesian inference

WinBUGS (MS Windows operating system version of the BUGS: Bayes-

ian analysis Using Gibbs Sampling) is flexible software for the Bayes-

ian analysis of complex statistical models using MCMC methods. The

software is currently distributed electronically from the BUGS project

web site.

http://www.mrc-bsu.cam.ac.uk/bugs/winbugs/contents.shtml

More details can be obtained from WinBUGS’ extensive user manual (Spiegel-

halter, Thomas, Best, and Lunn, 2003).

The versatility of the WinBUGS package allows for a wide variety of

posterior models. Firstly, it is possible to sample from a large number of

statistical models including, for example, the Bernoulli, Poisson, normal,

multinomial and gamma distributions. Secondly, with recent developments

in the software, it is also possible to draw samples from non-standard dis-

tributions using the “ones” trick (see WinBUGS’s manual). Thirdly, various

sampling algorithms are implemented including Gibbs sampler, Metropolis,
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slice sampler etc.

A Bayesian p-value can be obtained from the WinBUGS program by

using the step( ) function. The function creates a Boolean variable that

counts the number of simulations in which, for example, βx > 0 is true.

As a result, the 0/1 values from the step( ) function can be used to

compute left- or right-tail areas. For example, if we have M samples of

pβx
= step(βx) after T burn-in samples, an equal-tail two-sided Bayesian

p-value of βx is given by

2 min

(
1− 1

M

T+M∑

t=T+1

p
(t)
βx
,

1

M

T+M∑

t=T+1

p
(t)
βx

)
.

While the MCMC algorithms, e.g. using WinBUGS, have the potential

to be quicker than the numerical approximations, the convergence rate

of any algorithm cannot be guaranteed. In the next section we describe

methods for assessing the rate of convergence of MCMC samples.

3.4.5 MCMC convergence

Convergence is diagnosed when the chains have ‘forgotten’ their initial val-

ues, and the output from all chains is indistinguishable. Geweke (1992)

proposed a convergence diagnostic for MCMC samples based on a test for

equality of the means of the first and last part of a single chain (by default

the first 10% and the last 50%). Geweke’s approach involves calculation of

the sample mean and asymptotic variance in each window, the latter being

determined by spectral density estimation. His convergence diagnostic Z is

the difference between these two means divided by the asymptotic standard

error of their difference. As the chain length →∞, the sampling distribu-

tion of the chain has converged. Hence values of Z → N (0, 1) which fall in

the extreme tails of a standard normal distribution, ±2, suggest that the

chain has not fully converged.
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Gelman and Rubin (1992) and Gelman (1996) proposed a general ap-

proach to monitoring convergence of MCMC output in which two or more

parallel chains are run with starting values that are overdispersed relative to

the posterior distribution. Convergence for multiple chains may be assessed

using Gelman-Rubin scale factor reduction factors that compare variation

of the samples parameter values within and between chains. It is based on

a comparison of within-chain and between-chain variances, and is similar

to a classical analysis of variance. To measure the variability of sample θ
(t)
j

within the chain (j = 1, · · · , J) define

Vj =
T+M∑

t=T+1

(
θ
(t)
j − θ̄j

)2
/(M − 1)

over M iterations after an initial burn-in of T iterations, where θ̄j is the

average of θ
(t)
j (t = T + 1, · · · , T + M). Ideally, the burn-in period is the

initial set of samples where the effect of initial parameter values tails off.

Convergence is therefore assessed from T + 1 to T +M . Variability within

chains VW is the average of Vjs. Between chain variance is measured by

VB =
M

J − 1

J∑

j=1

(
θ̄j − θ̄

)2

where θ̄ is the average of θ̄js. The scale factor reduction (SRF) compares

a pooled estimator of Var(θ), given by VP = VB/M + MVW /(M − 1), to

VW . More specifically, SRF =
√
VP /VW with values under 1.2 (Congdon,

2003, p. 19) indicating convergence.

More recently Brooks and Gelman (1997) proposed a convergence statis-

tic known as Brooks-Gelman-Rubin (BGR). This is a ratio of parameter

interval lengths, where for chain j the length of the 100(1 − α)% interval

for parameter θ is obtained, i.e. the gap between 0.5α and (1−0.5α) points

from M simulated values. This provides J within-chain interval lengths,

with mean Iw. For the pooled output of MJ samples, the same 100(1−α)%
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interval IB is obtained. The ratio IB/IW should converge to one if there is

convergent mixing over different chains.

The above MCMC convergence diagnostics are implemented in two R-

packages, namely CODA (Convergence Diagnosis and Output Analysis)

and BOA (Bayesian Output Analysis). These packages are downloadable

from http://cran.r-project.org/. The packages compute convergence

diagnostics and statistical and graphical summaries for the MCMC samples.

Even though BOA is designed to be faster and more efficient than CODA,

it is not flexible in terms of data manipulation than CODA. That is, CODA

offers more analysis options and better graphical tools than BOA.





CHAPTER

4 Analysis of Binary Data Subject to

Response Misclassification

4.1 Introduction

Whenever multiple examiners are involved in an epidemiological study

kappa values (Cohen, 1960), denoted as κ, are reported. High values of

κ indicate that the examiners agree much in their scoring behaviour. How-

ever, since the introduction of Cohen’s kappa, several ‘paradoxes’ in its

interpretation have been pointed out (Cicchetti and Feinstein, 1990; Fe-

instein and Cicchetti, 1990). Further, the measures of agreement do not

indicate the impact of the bias and variability of scoring of the examiners on

the estimates of the regression coefficients of an epidemiological regression

model. Instead, when a gold standard or benchmark scorer is available, the

appropriate measures are the sensitivity and specificity of each examiner

vis-à-vis the gold standard (or benchmark scorer).

From the literature on errors-in-variables (see, e.g., Carroll et al., 1995

and Gustafson, 2004), it is known that when covariates are measured with

error (with misclassification as a special case), this will result in biasedly es-

55
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timated regression coefficients. When the model is nonlinear, like a logistic

regression model, attenuation also occurs when the response is measured

with error. The idea is then to correct for this misclassification using the

sensitivity and specificity values.

In this thesis, we wish to correct for examiners’ misclassification in the

prevalence of caries experience. More specifically, we show here how the

scores of different dental examiners can be corrected in a logistic regres-

sion model using data from calibration exercises. In this chapter, we will

explain the concepts of correcting for misclassification for a binary logistic

regression model and apply it to the Signal Tandmobielr study. Simplify-

ing caries experience to a binary response has the advantage that correction

for misclassification is done in a relatively simple manner, which is useful

given the sparseness of the validation data. The following rule was used to

construct a binary response y based on the dmft-index:

y =





0 if the dmft-index is 0 (no caries experience),

1 if the dmft-index is > 0.

From a dental point of view it is of interest to examine the geographical

trend in the prevalence of caries experience in Flanders. For our geograph-

ical analysis we have taken the data of the first year survey of the Sig-

nal Tandmobielr study, which will be referred to below as a cross-sectional

oral health study. The geographical trend in the prevalence of caries expe-

rience was examined by including the (standardized) (x, y)−co-ordinate of

the municipality of the school to which the child belongs. Additionally age

(centred) and gender were included as covariates.

Since children of the same school share some common characteristics,

‘school’ was included in the model as a random effect (see Mwalili, Lesaffre,

and Declerck, 2005) measuring the between school variation. A preliminary

fit (Section 2.6) from a random effects logistic regression model showed a

significant East-West gradient in the prevalence of caries experience. A

possible cause for the apparent geographical trend in caries experience is a
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Figure 4.1: Map of Flanders showing the distribution of the examiners
scoring in the different schools (numbers indicate examiners that scored
the children of a particular school located at the corresponding (x, y)−co-
ordinate) in the five provinces of Flanders.

different scoring behaviour of the 16 dental examiners. Indeed, in Figure

4.1 it is clearly seen that each examiner was active in a relatively restricted

geographical area. Thus, a legitimate question was whether the geograph-

ical trend in the prevalence of caries experience was genuine or due to the

different scoring behaviour of the examiners. In Figure 4.1 the benchmark

examiner is an experienced dentist, indicated by the symbol ‘0’ near the

centre of the map, who is assumed to be error free for measuring the dmft-

index. But, even if the benchmark examiner were not error free, it is still of

interest to know whether the geographical trend would remain if only one

examiner (say the benchmark examiner) had scored the caries experience
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alone.

A classical way to take a confounder into account is to include it in the

(logistic) regression model. Thus, we considered three binary regression

models, namely,

Model 1: random effects logistic regression without examiners’ term;

Model 2: random effects logistic regression with fixed examiners’ term;

Model 3: random effects logistic regression corrected for examiners’ mis-

classification.

Since the ith child is scored by the jth examiner and is located in the

kth school, sometimes the notation yi, yij or yik will be used, whichever is

appropriate.

4.2 Measures of agreement, bias and variability

The kappa statistic is used to measure inter-observer agreement. It deter-

mines how strongly two observers agree by comparing the probability of the

two agreeing by chance with the observed agreement. Cohen’s kappa is a

coefficient of agreement for binary outcomes (0, 1) and is equal to (Cohen,

1960):

κ =
po − pe

1− pe
,

where po is the observed proportion of agreement between the two scores

and pe is the agreement obtained purely by chance. Using the misclassifi-

cation matrix
0 1

0

1

(
n11 n12

n21 n22

)

and n11 + n12 + n21 + n22 = n, we obtain p0 = (n11 + n22)/n and pe =

[(n11 + n12)(n11 + n21) + (n21 + n22)(n12 + n22)]/n
2. In terms of the cell
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frequencies the estimate of κ simplifies to

κ̂ = 2(n11n22−n12n21)
(n11+n12)(n12+n22)+(n11+n21)(n21+n22) .

The possible values of κ range from −1 (complete disagreement) through 0

(no agreement above that expected by chance) to +1 (perfect agreement).

Kappa statistics, even when high (> 0.8), do not rule out that the results

of an epidemiological analysis are biased when different examiners are in-

volved, as will be shown in our analysis below. Further, kappa statistics do

not distinguish between bias and variability. The misclassification matrices

below illustrate this. They all correspond to κ = 0.6.

(1)

0 1

0

1

(
37 13

3 27

)

(2)

0 1

0

1

(
35 11

5 29

)

(3)

0 1

0

1

(
32 8

8 32

)

(4)

0 1

0

1

(
29 5

11 35

)

(5)

0 1

0

1

(
27 3

13 37

)

In the first matrix, the examiner (row) clearly underscores caries expe-

rience compared with the gold standard (column), while in the fifth matrix

the reverse is true. In the third matrix, κ = 0.6 because of scoring variabil-

ity.

When a gold standard is available, it is preferable to estimate the sen-

sitivity (π11) and specificity (π00) of each examiner vis-à-vis the gold stan-

dard. In the above notation, π̂11 = n22/(n12+n22) estimates the probability

that the examiner rates caries experience when the gold standard also rated

caries experience, while π̂00 = n11/(n11+n21) estimates the probability that

the examiner did not rate caries experience when the gold standard did not.
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The sensitivity and specificity can differentiate between bias and variability.

Indeed, the sensitivities of the above tables are 27/40, 29/40, 32/40, 35/40,

and 37/40, respectively, and the specificities are 37/40, 35/40, 32/40, 29/40,

and 27/40. The sensitivity and specificity of each examiner vis-à-vis the

benchmark scorer will be used as correction terms for the binary regression

model.

Further, to illustrate that the errors in a binary response can produce

biased measures of association and loss of precision in estimation, consider

an hypothetical population with exposure-disease classification shown in

Table 4.1. The true and the observed disease (binary response) status are

denoted by Y and Y ∗, respectively, with the exposure (binary covariate)

denoted by X. The estimated log odds ratio measuring the association of

X with Y is β̂ = 0.539, with asymptotic standard error (ASE) = 0.3318

and a Wald statistic, z2 = (β̂/ASE)2 = 2.638 (p = 0.1044), for the test of

null hypothesis H0 : β = 0.

However, we do not observe Y directly but rather a possibly error-

corrupted version Y ∗. Suppose that the misclassification probabilities for

observing Y ∗ given Y are

π =

(
0.9 0.2

0.1 0.8

)
.

That is, given Y = 0 we observe Y ∗ = 1 with probability 0.1 and given

Y = 1 we observe Y ∗ = 0 with probability 0.2. These misclassification

probabilities leads to observed counts in Table 4.1.

Table 4.1: Classification of hypothetical data

True classification Observed classification

X = 0 X = 1 X = 0 X = 1

Y = 0 30 20 70 Y ∗ = 0 41 34 75
Y = 1 70 80 130 Y ∗ = 1 59 66 125

100 100 200 100 100 200
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A naive analysis of the observed counts in Table 4.1 yields as estimate

β̂∗ = 0.299, with asymptotic standard error (ASE∗) = 0.2931 and Wald

statistic z2
∗ = 1.043 (p = 0.3071). The correct likelihood of the Y involves

the response misclassification probabilities (described in Section 4.4). The

corrected maximum likelihood estimate of the regression coefficient then

becomes β̂cor = 0.539, with asymptotic standard error (ASEcor) = 0.5393

and Wald statistic z2
cor = 1.00 (p = 0.3176). The regression coefficients

are here the estimates of the log odds ratios. Thus, the corrected estimate

of the log odds ratio is unbiased for the true log odds estimate but it is

estimated with less precision, implying that errors in the response lead to

attenuation and loss of estimation efficiency.

4.3 The logistic random-effects model

The purpose is to regress a binary response yik for the ith subject (i =

1, · · · , nk) within cluster k (k = 1, · · · , N) on a d-dimensional vector of

covariates xi pertaining to the ith subject. Let β be the corresponding vec-

tor of regression coefficients (fixed effects). Further, let y = (y′
1, · · · ,y′

N )′,

where yk = (y1k, · · · , ynk,k)
′, and x = (x′

1, · · · ,x′
N )′.

The common approach to explicitly model the effect of clusters (here

‘school’) is to use a generalized linear mixed model (GLMM). The GLMM

is an extension of the class of generalized linear model (GLM) (McCullagh

and Nelder, 1989) by adding random effects to the linear predictor (see, e.g.

Zeger, Liang, and Albert, 1988; Neuhaus, Kalbfleisch, and Hauck, 1991).

That is, given a vector uk of the random effects specific to the kth cluster,

for the ith subject, the conditional density of yik is in GLM form. In other

words, one assumes that

πik ≡ Pr (yik = 1|xi,uk) = g−1
(
x′

iβ + z′
iuk

)
, (4.1)

where zi is a specified q-dimensional vector of covariates. Further, the
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model assumes that the random effects follow a distribution G with mean

zero. The logit link function

g(θ) = log

[
θ

(1− θ)

]

yields the logistic random-effects regression model. The marginal likelihood

of the logistic random-effects regression model is given by

L(β, G) =
N∏

k=1

∫

<q

nk∏

i=1

πyik

ik (1− πik)
1−yikdG(uk).

In particular, if we assume that uk is an independent random vector

from a multivariate normal distribution with mean 0 and variance D, i.e.

uk ∼ N (0,D) then

L(β, D) =

N∏

k=1

∫

<q

nk∏

i=1

πyik

ik (1− πik)
1−yik

× 1√
2π|D|

exp

(
−1

2
u′

kD
−1uk

)
duk. (4.2)

The model parameters are obtained by maximizing the marginal likelihood

(4.2).

Note that for our application we considered a logistic regression with

random school intercepts, so that uk ∼ N (0, σ2). Observe that the factor

“school” was included into the logistic regression model, even though, from

a dental viewpoint it is only marginally necessary. This is so because caries

experience is examined here for seven year old children and the prevalence

of caries experience at this age is largely the result of the dietary and

brushing behaviour in the past, i.e. in the pre-school period. Hence, a large

“cluster” effect of school was not anticipated, but we kept “school” in the

model as a random effect to take account for its clustering effect on caries

experience in (mainly the last part of) the first year. Further, children from
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the same school may be more similar, e.g. in the socio-economic aspects,

than children from different schools.

4.3.1 Fitting a random effects logistic model

The random effects logistic regression can be fitted with a frequentist and

a Bayesian approach as explained below.

4.3.1.1 Frequentist approach

In the frequentist approach, the log-likelihood (4.2) can be evaluated and

maximized numerically. The natural choice is the Gauss-Hermite quadra-

ture method (e.g., Liu and Pierce, 1994). We used the SAS procedure

NLMIXED, as explained in Section 3.3.

4.3.1.2 Bayesian approach

In a Bayesian analysis of the random effects GLM (4.1), the parameters

β and σ2 are random variables. Let p(β) and p(σ2) represent the prior

distributions for β and σ2. The posterior distribution p(β, σ2,u|y) is given

by

p(β, σ2,u|y) ∝
N∏

k=1

nk∏

i=1

p(yik|uk,β, σ
2)× p(uk|β, σ2)× p(β)× p(σ2)

=
N∏

k=1

nk∏

i=1

πyik

ik (1− πik)
1−yik × 1√

2πσ2
exp(− u2

k

2σ2
)×

p(β)× p(σ2) (4.3)

The conditional distributions of the parameters simplify because the GLMM

is an example of a hierarchical Bayes model. It therefore possible to sample

alternatingly from the conditionals [β|u,y], [σ2|u] and [u|β, σ2,y], where

[s|t] denotes the conditional density of s given t.
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We performed a Bayesian analysis using the WinBUGS (version 1.4)

program. The specific prior distributions for this random-effects logistic

model are:

(a) For the regression coefficient βs (s = 1, · · · , d), a vague normal prior

was assumed i.e, βs ∼ N (0, 106).

(b) The prior distribution for σ2 was taken as IG(10−3, 10−3) but a sen-

sitivity analysis was also performed later (see Section 4.6.3) because

of the known problem with this prior in hierarchical models (e.g.,

Gelman et al., 2004).

4.3.2 Application to the Signal Tandmobielr study

Geographical differences in, for example, caries experience are often re-

ported (Nadanovsky and Sheiham, 1994; Tickle et al., 2003). The analysis

of determining factors for these differences is of utmost importance and fa-

cilitates the introduction of region-specific measures and/or interventions.

The results from (Model 1 – without examiners’ effect), shown in the

left panel of Table 4.2, clearly indicate a significant East-West gradient

in the prevalence of caries experience, being higher in the Eastern part

of Flanders (the province of Limburg) (Figure 4.1). Other covariates, e.g.

indicating the degree of deprivation for the area where the schools belong

to, have also been included in the model (see Table 2.1 in Chapter 2).

However, they did not have an appreciable effect on the East-West gradient.

This means that the geographical trend is probably not due to sociological

factors. The same conclusion could be drawn for fluoride intake from tap

water and the intake of fluoride tablets. So, the question remained what

the possible cause is for this phenomenon.

When adding ‘examiner’ into the random ‘school’ effects logistic model

as a fixed effect (Model 2), the geographical East-West trend was clearly

diminished; see the right panel of Table 4.2. In fact, the regression coef-

ficient of the (x, y)−co-ordinate expresses the East-West gradient relative
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Table 4.2: Parameter estimates from the uncorrected random effects lo-
gistic model (4.1) predicting the prevalence of caries experience, controlling
for the geographical effect in two ways (using WinBUGS Program 4.1)

without examiners’ with examiners’
fixed effects fixed effects

Estimate 95% CIa Estimate 95% CIa

Parameter (SE) 2.5 97.5 (SE) 2.5 97.5
Intercept 0.310(0.055) 0.20 0.42 0.239(0.456) −0.63 1.14
x-ordinate 0.176(0.045) 0.09 0.27 0.109(0.078) −0.04 0.26
y-ordinate −0.025(0.046) −0.12 0.07 −0.016(0.050) −0.11 0.08
Gender −0.052(0.066) −0.18 0.08 −0.049(0.067) −0.18 0.08
Age 0.342(0.090) 0.16 0.52 0.321(0.091) 0.14 0.50

1 −0.088(0.487) −1.05 0.85
2 0.324(0.486) −0.64 1.25
3 0.260(0.485) −0.71 1.19
4 −0.149(0.489) −1.13 0.80

E 5 0.254(0.508) −0.75 1.24
X 6 0.049(0.476) −0.89 0.96
A 7 −0.169(0.492) −1.14 0.78
M 8 −0.093(0.492) −1.06 0.85
I 9 0.540(0.504) −0.46 1.51
N 10 0.198(0.509) −0.81 1.19
E 11 −0.341(0.487) −1.30 0.59
R 12 0.259(0.514) −0.75 1.25
S 13 0.051(0.497) −0.93 1.01

14 0.346(0.496) −0.63 1.30
15 −0.191(0.471) −1.14 0.72
16 0.320(0.485) −0.64 1.25

σ2 0.160(.041) 0.09 0.25 0.124(0.039) 0.06 0.21
aCI = Credible interval

to the geographical area where the dental examiner was active. Thus there

seems to be no local geographical East-West trend in caries experience.

However, we argue that this is not the most appropriate way to correct

for an examiner effect because it does not take into account the scoring

bias and/or variability of the examiners. To take the examiners’ effect

into account properly, we opted for a corrected binary regression model as

described in the next section.
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4.4 Corrected binary random effects model

4.4.1 General framework

We consider a non-differential misclassification model where the misclassi-

fication probabilities are

λ0 = Pr(Y ∗
ik = 1|Yik = 0) and λ1 = Pr(Y ∗

ik = 0|Yik = 1).

The probability 1−λ0 is the specificity of the measurement Y ∗, while 1−λ1

is the sensitivity. We will assume that λ0 +λ1 < 1 since values of λ0 and λ1

larger than 0.5 indicate that the misclassification process of the observed

response Y ∗ performs worse than chance.

When response misclassification occurs, the true model for the observed

dependent variable has the expression

E(Y ∗
ik|xi) ≡ Pr(Y ∗

ik = 1|xi)

=
∑

y

Pr(Y ∗
ik = 1|Yik = y) Pr(Yik = y|xi)

=λ0 Pr(Yik = 0|xi) + (1− λ1) Pr(Yik = 1|xi)

=λ0 (1− Pr(Yik = 1|xi)) + (1− λ1) Pr(Yik = 1|xi)

=λ0 + (1− λ0 − λ1) g
−1
(
x′

iβ + uk

)
(4.4)

where g is the link function, namely: logit, probit or complementary log-log

cumulative density function. Expression (4.4) collapses to the usual binary

regression expression, g−1 (x′
iβ + uk), when there is no misclassification

(λ0 = λ1 = 0).

4.4.2 The approach proposed by Neuhaus

The misclassified binary regression has been analyzed by Neuhaus (1999)

and Neuhaus (2002) for GLM and GLMM, respectively. If Y follows a
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GLM, from (4.4) we have

Pr(Y ∗
i = 1|xi) = λ0 + (1− λ0 − λ1) g

−1 (ηi) , (4.5)

where ηi = x′
iβ. Note that Pr(Y ∗

ik = 1|xi) in expression (4.5) depends on xi

only through the the linear predictor ηi. Thus, performing simple algebra

one gets

ηi = g

[
Pr(Y ∗

i = 1|xi)− λ0

1− λ0 − λ1

]
= g∗ [Pr(Y ∗

i = 1|xi)] .

When Yi follows a GLM with link function g and the misclassification prob-

abilities are known and independent of covariates, so does Y ∗
i but with a

modified link function, g∗.

For the case of simple binary regression Pr(Y = 1|X) = g−1 (β0 + β1X) .

Neuhaus (1999) gives approximate bias factors, ψ, for the relationship be-

tween β1 and β∗1 . That is, β∗1 = ψβ1. For instance,

ψ = 1− λ0 − λ1 if g is linear;

ψ = (1−λ0−λ1) exp(β0)
[λ0+(1−λ1) exp(β0)][1−λ0+λ1 exp(β0)] if g is logistic;

ψ = (1−λ0−λ1)φ(β0)
φ[Φ−1{λ0+(1−λ0−λ1)Φ(β0)}]

if g is probit.

Thus the bias due to misclassified binary responses are all towards the null

and substantial when either λ0 or λ1 are greater than 0.1.

Neuhaus (2002) extended the misclassified GLM to misclassification in

GLMM. When Yik follows a GLMM with link function g and the misclassi-

fication probabilities are known and independent of covariates and random

effects, it can be shown that the possibly error corrupted response Y ∗
i will

also follow a GLMM but with a modified link function, g∗.



68 Chapter 4

4.4.3 Our approach

In our approach we formulate the model in terms of the corrected probabil-

ity in expression (4.4). Let πi(j)k be the expected proportion of successes for

the ith child scored by the jth examiner (j = 1, · · · , 16) in the kth school.

Further, λj0 and λj1 are the misclassification probabilities corresponding

to the jth examiner. Thus, the vector of misclassification parameters is

λ = (λ10, λ20, · · · , λ16,0, λ11, λ21 · · · , λ16,1)
′.

The corrected success probability is

ψi(j)k = λ0j + (1− λ0j − λ1j)πi(j)k, (4.6)

so that the corrected likelihood of the random intercepts binary regression

model is given by

L(β, σ2) =
N∏

k=1

∫ nk∏

i=1

[ψi(j)k]
yik [1− ψi(j)k]

yik

×− 1√
2πσ2

exp

(
−1

2
u2

k

)
duk. (4.7)

We use the notation πi(j)k and ψi(j)k since the ith child is scored by the jth

examiner and is located in the kth school.

4.5 Estimating the parameters under misclassifica-

tion

4.5.1 Frequentist approach

The parameters of interest are β and σ2. These parameters could be es-

timated by maximizing the likelihood function given by expression (4.7)

with respect to β and σ2 and with respect to the λ parameters using the
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data set combining the cross-sectional and the validation data. For instance

the SAS procedure NLMIXED could be used for this by writing a dedicated

program employing the delta method for the propagation of errors. How-

ever, our experience with the NLMIXED procedure is that it can be quite

cumbersome to achieve convergence even when based on adaptive Gaussian

quadrature (see, e.g., Lesaffre and Spiessens, 2001).

4.5.2 Bayesian approach

4.5.2.1 Likelihood and prior for the cross-sectional data

The likelihood of the cross-sectional data for a binary response measured

with error is obtained from (4.7). We denote the corresponding density

for all observations as f(y∗
M |β, σ2, λ), where y∗

M is the total vector of

observed binary caries experience responses over all children in the main

(cross-sectional) study. The vague prior distributions for the parameters

were described in Section 4.3.1.2.

A prior distribution for λ needs to be specified also, but the λ-parameters

actually pertain to the validation data. Hence, we specify a prior dis-

tribution for λ for the validation data set which, when combined with

the observed validation data alone, then results in a posterior distribution

p(λ|yV ,y
∗
V ) for λ, where yV and y∗

V is the total vector of the true (bench-

mark scorer) and possibly corrupted (examiner) binary responses from the

validation study, respectively. The posterior distribution p(λ|yV ,y
∗
V ) could

be used as a prior for the likelihood of the cross-sectional data.

4.5.2.2 Likelihood and prior for the validation data

The validation data provide information for estimating λ because we are

provided with the surrogate responses y∗
V and the corresponding true (bench-

mark scorer) responses yV , for each of the 16 examiners. Let M j de-

note the 2× 2 matrix corresponding to the jth examiner with entries mjab

(a, b = 0, 1), whereby mjab is the frequency of scoring in the validation data
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an “a” by the jth examiner when the benchmark scorer assigns a score “b”.

It is reasonable to assume prior independence among the misclassifica-

tion rates (λj0, λj1), j = 1, · · · , 16. It is known from a classical Bayesian

theory that the resulting posterior density of a Bernoulli variable with

a Beta prior distribution is a Beta density. We therefore assign non-

informative independent beta distributions to the misclassification prob-

abilities, i.e. the prior distributions are Beta(1, 1).

4.5.2.3 Posterior distribution p(β, σ2|y∗
M ,yV ,y∗

V )

For a given λ̃ the Bayesian analysis of the cross-sectional data yield

p(β, σ2|y∗
M , λ̃), and the posterior estimates obtained by WinBUGS are con-

ditional on the imputed value for λ̃. On the other hand, the validation

data result in the posterior distribution p(λ|yV ,y
∗
V ). That is,

λj0 ∼Beta(mj10 + 1,mj00 + 1),

λj1 ∼Beta(mj01 + 1,mj11 + 1). (4.8)

This posterior distribution could thus be used as a prior distribution for

λ in the Bayesian analysis of the cross-sectional data. However, it was

not immediately clear how to do this in an elegant way using WinBUGS

and for general prior distributions for λ. Instead, we opted to process the

cross-sectional data and the validation data simultaneously. That is, at each

iteration of the Markov chain of the validation data we obtained an estimate

of λ and this estimate was imputed into the Markov chain pertaining to

the cross-sectional data. This procedure enabled us in a simple way to take

into account the variability with which λ is estimated from the validation

data. In fact, our procedure samples from

p(β, σ2|y∗
M ,yV ,y

∗
V ) =

∫
p(β, σ2|y∗

M , λ) · p(λ|yV ,y
∗
V )dλ.
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Hence our procedure estimates the marginal posterior distribution of (β, σ2)

taking into account the uncertainty with which the misclassification param-

eters are estimated. This procedure can be applied to any model, not just

to binary logistic regression model and with any prior distribution for λ

(at least those available in WinBUGS, but the approach can of course also

be used outside WinBUGS), without major modifications.

4.6 Application to the Signal Tandmobielr study

In spite of the considerable efforts that are undertaken to calibrate examin-

ers involved in oral health surveys, variability in scoring cannot be avoided.

Since examiners often operate in well-defined geographical areas, the pres-

ence of possible bias can influence results considerably when the research

question has a geographical nature. The methodology presented here of-

fers an opportunity to refine current analytical approaches, allowing more

reliable conclusions to be drawn.

In this section we present the results from the corrected binary anal-

ysis with application to Signal Tandmobielr study. First, we show the

frequentist estimates of simple kappa statistics and the Bayesian posterior

estimates of the sensitivity and specificity in validation data. Second, we

present the results of the main analysis corrected for misclassification, more

specifically the posterior summary statistics of the regression parameters.

The correction was done considering the misclassification rates for each ex-

aminer because each examiner was active in a quite limited geographical

area.

4.6.1 Analysis of the validation data

Due to the relatively small number of children used per calibration exercise

we combined here the validation data from the three caries calibration exer-

cises. Table 4.3 shows the combined caries (0/1) validation data. Observe
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Table 4.3: The caries validation data combined from the 1996, 1998 &
2000 caries calibration exercises.

Examiner Misclassification frequencies
j mj00 mj01 mj10 mj11

1 17 2 2 12
2 18 0 2 15
3 19 2 1 6
4 10 0 2 12
5 15 1 2 15
6 16 0 2 13
7 8 0 1 11
8 17 1 1 12
9 1 0 1 7
10 21 0 0 14
11 10 0 1 8
12 15 1 1 13
13 16 1 2 13
14 15 2 2 10
15 20 2 0 6
16 17 0 0 13

that by pooling the data of the calibration exercises we actually underesti-

mated the possible systematic bias of the examiners in the first year since

it would be expected that the examiners became better calibrated in due

time.

The scores on prevalence of caries experience of each of the 16 dental

examiners were compared with the scores obtained by the benchmark ex-

aminer. As can be seen in Table 4.4, based on the scheme of agreement

levels proposed by Landis and Koch (1977), all examiners had an excellent

agreement with the benchmark examiner (κ above 0.80) except for the ex-

aminers 1, 3, 9 and 14 who had only a “substantial agreement” (κ between

0.61 and 0.75). Note that the upper bounds of the estimated 95% confi-

dence intervals from the SAS (version 8.2) procedure FREQ for some κs

are greater than 1 because of the rough asymptotic approximation.
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Table 4.4: Simple κ measuring agreement between the benchmark scorer
and each of the 16 dental examiners when scoring caries experience in the
calibration exercises, obtained from SAS (version 8.2) procedure FREQ

Estimate 95% CIa Estimate 95% CIa

(SE) LCI UCI (SE) LCI UCI

κ1 0.752(0.116) 0.524 0.980 κ9 0.609(0.340) -0.057 1.274
κ2 0.885(0.078) 0.732 1.039 κ10 1.000(0.000) 1.000 1.000
κ3 0.727(0.147) 0.439 1.015 κ11 0.894(0.103) 0.693 1.095
κ4 0.833(0.111) 0.615 1.051 κ12 0.866(0.091) 0.687 1.045
κ5 0.818(0.100) 0.623 1.014 κ13 0.811(0.104) 0.608 1.014
κ6 0.870(0.088) 0.698 1.043 κ14 0.716(0.132) 0.457 0.974
κ7 0.898(0.099) 0.704 1.092 κ15 0.811(0.127) 0.563 1.059
κ8 0.868(0.091) 0.690 1.045 κ16 1.000(0.000) 1.000 1.000

aCI = Confidence interval; LCI = lower CI; UCI = upper CI.

Further, to compare scores on prevalence of caries experience of each

of the 16 dental examiners with the scores obtained by the benchmark

examiner, we computed the specificities and sensitivities from the validation

data of the prevalence of the caries experience. The estimates of sensitivity

and specificity for the 16 examiners are shown in Table 4.5. We opted

for Bayesian estimation to avoid the embarrassing asymptotic properties of

frequentist estimation, as seen above.

The misclassifications suggest that the prevalence of caries experience,

as scored by the dental examiners, is possibly biased. Hence there is a need

to correct for this bias.

4.6.2 Regression analysis of the main data with correction

Bayesian analysis was performed using the WinBUGS (version 1.4) program.

Observe that our WinBUGS program simultaneously estimates the parame-

ters of model main model and of misclassification model and hence is based

on two Markov chains. Namely, one chain pertains to the validation data,

sampling the conditional classification probabilities. In the other chain the
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Table 4.5: Posterior summary statistics of the misclassification rates from
model (4.8) (using WinBUGS Program 4.2)

Examiner Specificity(π̂00) Sensitivity(π̂11)
Estimate 95% CIa Estimate 95% CIa

(SE) 2.5 97.5 (SE) 2.5 97.5
1 0.856(0.075) 0.682 0.967 0.812(0.095) 0.593 0.957
2 0.863(0.071) 0.697 0.969 0.941(0.055) 0.794 0.999
3 0.909(0.060) 0.762 0.988 0.699(0.139) 0.398 0.924
4 0.787(0.105) 0.547 0.950 0.929(0.066) 0.756 0.998
5 0.842(0.082) 0.654 0.964 0.888(0.073) 0.713 0.986
6 0.851(0.077) 0.672 0.967 0.933(0.063) 0.766 0.998
7 0.818(0.111) 0.557 0.974 0.923(0.072) 0.736 0.998
8 0.900(0.065) 0.740 0.987 0.867(0.085) 0.662 0.982
9 0.500(0.224) 0.094 0.907 0.888(0.101) 0.625 0.997
10 0.957(0.041) 0.850 0.999 0.937(0.059) 0.780 0.998
11 0.846(0.096) 0.618 0.979 0.900(0.091) 0.663 0.997
12 0.889(0.072) 0.712 0.985 0.875(0.080) 0.681 0.983
13 0.850(0.078) 0.670 0.966 0.875(0.080) 0.682 0.984
14 0.842(0.082) 0.653 0.965 0.786(0.105) 0.546 0.951
15 0.955(0.043) 0.839 0.999 0.701(0.138) 0.398 0.923
16 0.947(0.050) 0.813 0.999 0.934(0.062) 0.770 0.998

aCI = Credible interval

parameters β and σ2 are sampled, employing the sampled λ from the first

chain. Hence our MCMC analysis consists of an ‘imputation step’, i.e.

where the correction factors are imputed from the MCMC analysis per-

taining to the validation data, and an estimation step whereby, given the

imputed correction term, the parameters of the logistic regression model

are sampled.

We have chosen to use WinBUGS’s cut function on the misclassification

parameters. This function prevents the cross-sectional data from giving

feed-back on the estimation of the parameters λ. Although in principle the

main data could also be used to provide information (though little) on λ

(by not using the cut option) we preferred not to do so for the following

reasons.

(a) Our approach resembles better the classical, frequentist, approach
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where the correction terms are estimated from the validation data

and are imputed into the logistic regression analysis in a second step.

(b) The use of the cut function reduced the necessary time for conver-

gence in our case by a factor of more than 10, one of the reasons

being that with the cut function much fewer iterations are needed

to attain convergence.

(c) For the initially fitted models the posterior estimates of the model

parameters were practically the same regardless of using the cut

function or not.

Five initially overdispersed chains were initiated. After the first 5000

iterations, Gelman and Rubin’s shrinkage factors as well as Geweke’s Z-

scores and QQ-plots (Best, Cowles, and Vines, 1996) were evaluated for

every chain in batches of 5000 iterations. This was continued until 20,000

iterations were seen, where convergence was diagnosed for all regression

parameters in three of the five chains. The posterior summary statistics

were computed after obtaining convergence (which was judged by the three

diagnostic procedures) from an extra 10,000 iterations.

The posterior estimates of the regression parameters from the corrected

binary logistic model are shown in Table 4.6. The posterior means of the

geographical regression parameters are usually larger in absolute value than

the corresponding means from the uncorrected model. This shows an im-

provement in the parameter estimates as they are pulled away from the

null. However, the standard errors of the estimates are increased as a re-

sult of the sampling variability in estimating λ. But, more importantly,

here the East-West gradient remains significant (in a Bayesian sense).

4.6.3 Sensitivity analysis

We performed a sensitivity analysis for the choice of the prior distributions

for β and σ2. First, a sensitivity analysis was performed by changing the



76 Chapter 4

Table 4.6: Parameter estimates from the corrected random-effects sim-
ple logistic regression model (4.7) in combination with misclassification
model (4.8) predicting the prevalence of caries experience (using WinBUGS
Program 4.3).

Parameter Estimate 95% CIa Bayesianb

(SE) 2.5 97.5 p−value

Intercept 0.438(0.158) 0.135 0.759 0.0035
x-ordinate 0.290(0.117) 0.064 0.525 0.0046
y-ordinate 0.011(0.099) −0.184 0.208 0.3651
Gender −0.074(0.151) −0.376 0.222 0.2211
Age 0.519(0.155) 0.219 0.830 0.0008
σ2 0.606(0.156) 0.353 0.965 <0.001

aCI = Credible interval.
bThe Bayesian p−value is calculated as explained in
Section 3.4.4.

prior distribution for σ2 from IG(10−3, 10−3) to a Uniform(0, 100) distri-

bution for σ giving practically the same results. Second, changing the prior

distribution of the regression coefficients from a normal to a t-distribution

with 4 degrees of freedom also gave very similar results.

4.7 Discussion

Large-scale epidemiologic studies necessarily involve multiple examiners,

due to a large number of subjects to be examined and some unavoidable

organizational aspects, like geographical locations. This implies that the

collected data are inevitably subject to measurement error, and hence it is

necessary to investigate the impact of such errors.

In the analysis, we have opted for a Bayesian approach for two reasons.

First, the Bayesian approach allows for the incorporation of oral health

knowledge into the statistical analysis. Although we have not done so here,

we believe that this is an important feature of the approach. Indeed, the

validation datasets are most often quite small, implying that the correction
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terms are then (relatively) poorly estimated. In that case, any external

useful oral health information can improve the stability of the estimated

correction terms. Secondly, the Bayesian software provides a flexible way

to fit quite complex statistical models and to switch from one model to

another with a limited amount of extra work, usually implying much less

analytical work, which can be quite cumbersome once one deviates from

classical statistical approaches.

Finally, despite the fact that a gold standard was not available in our

study, but only a benchmark examiner, our analysis is not invalidated. In-

deed, our regression coefficients estimate a binary logistic regression model

as if all children were scored by the same individual, in this case the bench-

mark examiner. Of course, if the benchmark examiner also scores with

error, then some attenuation will still be present in the analysis.





CHAPTER

5 Analysis of Ordinal Data Subject to

Response Misclassification

5.1 Introduction

Ordinal variables are common in epidemiological research. Examples are

severity of a disease (none, mild, moderate, severe), agreement ratings (dis-

agree, undecided, agree), smoking status (nonsmoker, light smoker, heavy

smoker), and so on. However, an ordinal variable represents often a sub-

jective qualification and is therefore more prone to misclassification than a

numerical variable. As seen above, this misclassification needs to be taken

into account in statistical analyses.

Response misclassification has been considered only for the binary data

(e.g., Hausman, Abrevaya, and Scott-Morton, 1998; Neuhaus, 1999, 2002).

Although the extension to ordinal misclassification does not pose any major

methodological obstacles it has not been considered in the literature until

recently. In this chapter we illustrate the ordinal response misclassification

using a categorized score for caries experience. The dmft-index for the ith

79
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child at school k scored by examiner j was split up according to:

yijk =





1 if the dmft-index for the ith child is 0 (no caries experience),

2 if the dmft-index for the ith child is 1,

3 if the dmft-index for the ith child is in (1,4],

4 if the dmft-index for the ith child is in (4,20].

5.2 Cumulative logit random effects model

Let the ordinal response Yik take possible values in {1, ..., R}. The threshold

model for an ordinal response posits a latent variable S, such that one

observes Yik = r if S is between αr−1 and αr. Suppose that S has a

cumulative density function (CDF) G(s − η), with η related to covariates

by

ηik = x′
ikβ + z′

ikuk,

where xik is a d−dimensional vector of known covariates with fixed regres-

sion coefficient β and zik is a q−dimensional vector of known covariates

for a vector uk ∼ N (0,D) of random effects accounting for within-cluster

(school) correlation. Then CDF for yik conditional on uk is modeled by

Pr (Yik ≤ r|uk) = Pr (S ≤ αr|uk) = G(αr − x′
ikβ − z′

ikuk).

The inverse of the CDF of G(·) serves as the link function. Further, αr is

the rth ordered category cut-off parameter, satisfying α1 < α2 · · · < αR−1

and depending on the values of the regression variables and the random

components.

The most popular ordinal regression model, with logit link

G(·) =
exp(·)

1 + exp(·) ,

is the cumulative logit model. A random-effect version has the expression
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(see, e.g., Hartzel, Agresti, and Caffo, 2001)

logit [Pr(Yik ≤ r|uk)] = ηikr = αr − x′
ikβ − z′

ikuk. (5.1)

It is assumed here that the effect of covariates is the same for all logits.

This is called the proportional odds assumption. Thus the probability of

subject i in cluster k being classified in category r of the ordinal caries

experience response is

πikr = Pr (Yik = r|uk) = G (ηikr)−G (ηik,r−1)

with ηik0 = −∞.

For subject i in cluster k define wikr = 1 if Yik = r (r = 1, · · · , R)

and wikr = 0 otherwise. Then wik = (wik1, · · · , wikR)′ is a R−dimensional

vector following the multinomial distribution:

wik ∼ Multinomial
(
1,πik

)
,

where πik = (πik1, · · · , πikR)′ with πikR = 1−∑R−1
r=1 πikr. Let fy(yik,α,β|u)

be the multinomial mass function and φ be the multivariate normal density

function with mean 0 and covariance D. The marginal likelihood for the

cumulative logit random effects model is thus

l(α,β,D) =
N∑

k=1

log

∫

<q

[
nk∏

i=1

fy(yik,α,β|uk)

]
φ(uk|D)duk. (5.2)

5.2.1 Fitting a cumulative random effects logit model

For the Signal Tandmobielr data, the ordinal response variable takes R =

4 possible values, and thus, the ordered category cut-off parameters are

α1, α2, α3. Let α = (α1, α2, α3)
′. Similar to Chapter 4, we considered

here an ordinal logit regression model with random school intercepts, uk

with uk ∼ N (0, σ2).
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5.2.1.1 Frequentist approach

The computation of the maximum likelihood estimate (MLE) of the param-

eter vector (α′,β′, σ2
u) is a complex task: the likelihood (5.2) is, in general,

not analytically tractable. However, maximum likelihood estimation can

be done using the SAS procedure NLMIXED.

5.2.1.2 Bayesian approach

For a Bayesian approach, the unknown parameters are treated as random

variables. Let p(α), p(β) and p(σ2) be prior distributions for α, β and σ2,

respectively. Then the posterior distribution p(α,β, σ2,u|y) is given by

p(α,β, σ2,u|y) ∝
N∏

k=1

nk∏

i=1

p(y|u,α,β, σ2)p(u|β, σ2)p(α)p(β)p(σ2)

=
N∏

k=1

nk∏

i=1

fy(yik|α,β,xi, uk)
1√

2πσ2
exp(− u2

k

2σ2
)

× p(α)p(β)p(σ2) (5.3)

Bayesian estimation of expression (5.3) is possible via Gibbs and Metropolis-

Hastings (MH) sampling. We can sample from WinBUGS through the fully

conditional posteriors [α|u,β,y], [β|u,α,y] and [σ2|u] in a similar way to

the Bayesian analysis in Chapter 4.

The assumed prior distributions chosen for this ordinal random-effects

logit model are as follows:

(a) for the regression coefficient βs (s = 1, · · · , d), a vague normal prior

was assumed i.e, βs ∼ N (0, 106);

(b) the prior distribution for σ2 was taken as IG(10−3, 10−3) but for the

same reason as in Chapter 4 a sensitivity analysis was also performed

(see Section 5.5.3);

(c) a normal vague prior is taken for the first category cutoff, i.e. α1 ∼
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N (0, 106) and combined with a truncated normal vague prior for the

other category cutoffs, i.e. α2 ∼ N (0, 106)I(α1, α3) and α3 ∼
N (0, 106)I(α2, +∞), where I(a, b) is the truncation function for the

interval (a, b). Note that α2 and α3 have truncated prior distributions

because of the constraint α1 < α2 < α3.

5.2.2 Application to the Signal Tandmobielr study

The left hand side (LHS) of Table 5.1 shows the result of fitting model (5.1)

to the cross-sectional caries experience data by using WinBUGS (version 1.4)

without taking into account examiners’ effect. The results clearly indicate

a significant East-West gradient in the degree of caries experience, being

higher in the Eastern part of Flanders (the province of Limburg) (Figure

5.1).

When adding ‘examiner’ to model (5.1) as a fixed effect, to account

for its confounding effect, the geographical East-West trend was clearly at-

tenuated but remained significant; see the right hand side (RHS) of Table

5.1. Observe that for the binary response (Chapter 4) the geographical

East-West trend vanished after adding the fixed examiners’ terms to the

model. Thus, this demonstrates that the ordinal response provides extra

information over and above the binary response. Thus there seems to be a

genuine (local) geographical East-West trend in the degree of caries experi-

ence. However, following the same argument as in Chapter 4, this approach

is not the best choice to correct for examiner misclassification.

Model (5.1) assumes that the probability of scoring r on y is the same

for all examiners, and hence it ignores possible different scoring behaviour

of the examiners. However, it became clear during the conduct of the Sig-

nal Tandmobielr study that some examiners had the tendency to overscore

or underscore the dmft-index compared with the benchmark examiner. In

Figure 5.1 the over- and underscoring behaviour of the dental examiners

shows an East-West gradient which is similar to that of the caries expe-

rience. Clearly, this over- and underscoring behaviour can have an effect
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on the East-West geographical trend in caries experience. To take the

examiners’ effect into account properly, we opted for an ordinal logistic

measurement error model that is described below.

Table 5.1: Parameter estimates from the random-intercepts multinomial
logit (5.1) model predicting the degree of caries experience, controlling for
the geographical effect in two ways (using WinBUGS Program 5.1)

without examiners’ with examiners’
fixed effects fixed effects

Estimate 95% CIa Estimate 95% CIa

Parameter (SE) 2.5 97.5 (SE) 2.5 97.5
α1 −0.317(0.053) −0.42 −0.21 −0.217(0.520) −1.30 0.68
α2 0.164(0.053) 0.06 0.27 0.265(0.520) −0.82 1.16
α3 1.321(0.057) 1.21 1.43 1.426(0.521) 0.34 2.32
x-ordinate 0.198(0.042) 0.11 0.28 0.146(0.073) 0.00 0.29
y-ordinate −0.017(0.044) −0.10 0.07 −0.002(0.048) −0.09 0.09
Gender −0.062(0.061) −0.18 0.06 −0.059(0.060) −0.18 0.06
Age 0.309(0.082) 0.15 0.47 0.287(0.083) 0.12 0.45

1 −0.023(0.546) −1.15 0.94
2 0.360(0.545) −0.79 1.32
3 0.230(0.543) −0.90 1.18
4 −0.161(0.546) −1.29 0.80

E 5 0.231(0.564) −0.92 1.23
X 6 0.139(0.535) −0.97 1.07
A 7 −0.079(0.550) −1.21 0.90
M 8 0.044(0.550) −1.09 1.02
I 9 0.502(0.557) −0.65 1.50
N 10 0.119(0.560) −1.04 1.12
E 11 −0.262(0.546) −1.38 0.71
R 12 0.185(0.569) −0.97 1.20
S 13 −0.002(0.553) −1.16 0.97

14 0.345(0.551) −0.79 1.33
15 −0.133(0.533) −1.24 0.80
16 0.335(0.541) −0.79 1.28

σ2 0.154(0.035) 0.09 0.23 0.132(0.035) 0.07 0.21
aCI = Credible interval.
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Figure 5.1: Map of Flanders with level of caries experience and over-
and underscoring of dental examiners. Caries experience was split into 3
categories according to quartiles of the mean dmft scores obtained per school
and coded as 0 (minimum to Q1), 1 (Q1 to Q3), or 2 (above Q3). The over-
and underscoring of the examiner is indicated with the symbols �, �, and
�. The symbol � signifies that the dental examiner scoring the respective
school underscored 5% to 15% compared with the benchmark examiner in
the calibration exercises. The symbol � signifies between 5% under- and
5% overscoring, and the symbol � signifies at least 5% overscoring (up to
18%).

5.3 Corrected cumulative logit random effects

Under non-differential misclassification, i.e. assuming that the distribution

of Y ∗ does not depend on X given Y , the corrected model for observed
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ordinal response has the expression

Pr(Y ∗ = y∗|X = x; θ,λ)

=
∑

y Pr(Y = y|X = x; θ) · πy∗|y(λ),
(5.4)

where πy∗|y(λ) = Pr(Y ∗ = y∗|Y = y; λ).

Using the child and examiner subscripts i and j, respectively, the prob-

ability of scoring caries experience as s (taking into account the random

effect of school) is given by

Pr(Y ∗
i = s|xi, uk; θ,λ) =

4∑

r=1

[
πs|r,j(λ)× Pr (Yi = r|xi, uk,θ)

]
(5.5)

for s = 1, . . . , 4, where uk ∼ N (0, σ2) is the random intercept pertaining

to the school k of child i, and θ′ = (α′,β′, σ). The subscript j on the

classification probabilities π(λ) indicates that these probabilities possibly

depend on the dental examiners.

For the model introduced in Section 5.2 the probability of observing

Yi = r is given by

Pr(Yi = r|xi, uk,α,β, σ) =




G(α1 − x′
iβ − uk) if r = 1,

G(α2 − x′
iβ − uk))−G(α1 − x′

iβ − uk) if r = 2,

G(α3 − x′
iβ − uk) −G(α2 − x′

iβ − uk) if r = 3,

1 −G(α3 − x′
iβ − uk) if r = 4.

where, as before, G(·) = exp(·)/[1 + exp(·)] is the logistic CDF.
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5.4 Estimating the parameters

5.4.1 Frequentist approach

The parameters of interest are α, β, σ2. These parameters could be es-

timated by maximizing the likelihood corresponding to model (5.5) with

respect to α, β, σ2 and with respect to the λ parameters using the data

set combining the cross-sectional and the validation data. For instance the

SAS procedure NLMIXED could be used for this by writing a dedicated

program employing the delta method for the propagation of errors.

5.4.2 Bayesian approach

5.4.2.1 Likelihood and prior for the cross-sectional data

The likelihood for the cross-sectional data for an ordinal response measured

with error is obtained from (5.5). We denote the corresponding density

for all observations as f(y∗
M |α, β, σ2, λ), where y∗

M is the total vector of

observed ordinal caries experience responses over all children in the main

(cross-sectional) study. The vague prior distributions for the parameters

were described in Section 5.2.1.2. As explained in Section 4.5.2.1 validation

data results in a posterior distribution p(λ|yV ,y
∗
V ) for λ, which could be

used as a prior for the likelihood of the cross-sectional data.

5.4.2.2 Likelihood and prior for the validation data

The validation data provide information for estimating λ because we are

provided with the surrogate responses y∗
V and the corresponding true (bench-

mark examiner) responses yV , for each of the 16 examiners. Let M j

denote the matrix corresponding to the jth examiner with entries mjab

(a, b = 1, · · · , 4) whereby mjab is the frequency of scoring in the validation

data an “a” by the jth examiner when the benchmark examiner assigns a

score “b.” In first instance we assumed that the distribution f(y∗
V |yV ,λ)
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is the product of 16 multinomial distributions. That is, we assumed for the

jth examiner that the bth column of M j , i.e. mjb, has the distribution:

mjb ∼ Mult
(
mj+b,πjb

)
, (5.6)

where π′
jb = (πj1b, πj2b, πj3b, πj4b) and mj+b =

∑4
a=1mjab. Thus we as-

sumed that the conditional probabilities πjb of the different examiners are

not related. A Dirichlet prior with parameters (1, 1, 1, 1) is a natural choice

for a vague prior for πjb. This model involves the estimation of 12 × 16

λ = (π1,(1,1),π1,(2,1),π1,(3,1), . . . ,π16,(4,4))
′-parameters, where πj,(a,b) per-

tains to the ath row of the probability vector πjb, and it implicitly assumes

that the jth examiner could react quite differently when, say, the true score

is 1 (1st column of M j) than when, say, the true score is 2 (2nd column

of M j). However, as will be seen in the Section 5.5.2, no convergence was

obtained with this (basic) model and further modeling was necessary to

reduce the number of parameters. A number of misclassification models

were tried out and we discuss four of them here.

The first misclassification model assumes that the jth examiner is scor-

ing in-between “the worst score” and “the benchmark examiner score” in a

similar manner for all benchmark examiner scores. In this sense, the worst

scorer assigns scores furthest away from the truth (benchmark examiner

score). In that case mjb has the distribution:

mjb ∼ Mult
(
mj+b, wjvb + (1− wj)πb

)
(5.7)

where wj is an examiner specific coefficient taking values in [0, 1], vb is

a vector of size 4 with the bth element equal to 1 and 0 otherwise and

πb represents the vector of conditional probabilities of the worst scorer

when the true score is b. Now λ′ = (w1, . . . , w16,π1,1, . . . ,π4,3), where

πa,b pertains to the ath row of the probability vector πb . Thus, there are

12+16 = 28 parameters to estimate now. Observe that model (5.7) indeed

locates each examiner in-between the benchmark examiner (vb) and the
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worst scorer (πb). Again vague priors for the parameters could be taken,

i.e. for the wj a natural choice for the vague prior is the uniform distribution

on [0,1], while for πb a Dirichlet prior with parameters (1, 1, 1, 1) could be

taken.

The previous misclassification model assumes that the scoring of the

different examiners shows no relationship. Yet, all dental examiners re-

ceived in the past a similar training, say, at college and at the calibration

exercises prior to collecting the validation data. Hence for our second mis-

classification model we assumed that, although the dental examiners do

not score in exactly the same manner, they might share similar experi-

ences and therefore the wj might have a common distribution. In other

words we assumed a hierarchical misclassification model. One could for in-

stance assume that logit(wj) ∼ N (µw, σ
2
w) whereby the prior distribution

for µw is N (0, 106) while for σ2
w ∼ IG(10−3, 10−3) could be taken. Now

λ′ = (µw, σw,π1,1, . . . ,π4,3) which implies that now we need to estimate

18 parameters for the validation data.

Up to now, the ordinal nature of the scores has not been used in the mis-

classification model. One might argue that it is improbable that the dental

examiners would score far away from the benchmark examiner. Therefore

we assumed in the third misclassification model that it is impossible that

the dental examiner assigns a score which differs from the benchmark exam-

iner score with more than three classes. More specifically, the third model

assumes that for each examiner there is a “latent” score which differs from

column to column (score “b”), denoted as cjb, and which yields a score “a”

with a probability given by

mjb ∼ Mult
(
mj+b,πjb

)
, (5.8)

where now
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πjab =




Φτb
(ζab − cjb) if a = 1, b = 1, 2, 3; a = 2, b = 4;

Φτb
(ζab − cjb)− Φτb

(ζa−1,b − cjb) if a = 2, b = 1, 2, 3; a = 3, b = 2, 4;

1− Φτb
(ζab − cjb) if a = 3, b = 1; a = 4, b = 2, 3, 4;

0 if a = 1, b = 4; a = 4, b = 1.

In other words, we assume a latent continuous scoring scale for each ex-

aminer with a cumulative normal density Φτb
with mean zero and standard

deviation τb. Hence, the terms cjb are latent random examiner scores. In

this way the distance between the scores is maximally 3. We assigned a uni-

form prior, ranging from −3 to +3 , on the first ζ in each category and set

succeeding ζ to be larger than the preceding ζ, i.e., ζab = ζa,b−1 +δab where

δab ∼ U [0, 3]. Now λ′ = (τ1, . . . , τ4, ζ11, · · · , ζ43, c11, · · · , c16,1, δ11, · · · , δ42).
Thus we have now 4 + 6 + 6 + 4 = 20 parameters to estimate.

In the fourth misclassification model we assumed that the conditional

misclassification probabilities are given by (Albert et al., 1997)

πa|b =





1
1+

P

c6=b

g(c|b) if a = b,

g(a|b)
1+

P

c6=b

g(c|b) if a 6= b,
(5.9)

with g(a|b) being a positive-valued function of a given b. As special cases

for g(a|b) they considered :

log g(a|b) = ζ0, (5.10)

log g(a|b) = ζ0 + ζ1|a− b|, (5.11)

log g(a|b) = ζ0 + ζ1(a− b)I(a > b) + ζ2(b− a)I(a < b), (5.12)

where I(x) is an indicator function: I(x) = 1 if x is true and 0 otherwise.
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Misclassification model (5.10) assumes that there is a constant misclassifi-

cation probability irrespective of how far the scored value of the examiner

lies from the true value of the gold standard. Misclassification model (5.11)

assumes, with a negative value for ζ1, that the probability of misclassifying

‘b’ as ‘a’ decreases in a symmetrical way when ‘a’ moves away from ‘b’.

Finally, for a negative ζ1 and a negative ζ2, misclassification model (5.12)

describes in a similar manner as model (5.11) the scoring process of the

examiner relative to the benchmark examiner.

We consider here one simple extension of the model, namely:

log g(a|b) = ζ0(b) + ζ1(a− b)I(a > b) + ζ2(b− a)I(a < b), (5.13)

where ζ0(b) is a simple function of the true value of the count, say ζ0(b) =

ζ00 + ζ01I(b > 0). This extension allows to differentiate the performance

of the examiner with respect to the specificity π00 and the other diago-

nal elements of the misclassification matrix. Models (5.10), (5.11), (5.12)

and (5.13) will be referred to below as the symmetric 1p (one parame-

ter), the symmetric 2p (two parameter), the asymmetric 3p (three param-

eter) and the asymmetric 4p (four parameter) model, respectively. The

prior distribution for ζt (t = 0, 1, 2) is N (0, 106). For this misclassification

model, the misclassification parameter vector, λ, is therefore a vector of

the ζ̃−coefficients. As can be seen in Table 5.4 there are 4 × 1 + 3 × 6 +

2× 6 + 1× 3 = 37 parameters to estimate.

In general, combined with the validation data, the posterior distribu-

tion p(λ|yV ,y
∗
V ) is obtained, which could be used as a prior for the model

of the cross-sectional data. However, we have chosen to simultaneously es-

timate the cross-sectional and the misclassification parameters, for reasons

explained below.
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5.4.2.3 Posterior distribution p(α,β, σ2|y∗
M ,yV ,y∗

V )

As explained in the previous chapter, we process the cross-sectional data

and the validation data simultaneously. So that the sampling mechanism in

WinBUGS alternates between the posterior density from the cross-sectional

data posterior p(α,β, σ2|y∗
M , λ̃) and the posterior density from the valida-

tion data p(λ|yV ,y
∗
V ). Thus we are sampling from

p(α,β, σ2|yM ,yV ,y
∗
V ) =

∫
p(α,β, σ2|yM ,λ) · p(λ|yV ,y

∗
V )dλ.

Thefore our sampling procedure estimates the marginal posterior distri-

bution of (α,β, σ2) taking into account the uncertainty with which the

misclassification parameters are estimated.

5.5 Application to the Signal Tandmobielr study

In this section we present the results from the corrected ordinal analysis

applied to the Signal Tandmobielr study. Firstly, we show the frequentist

estimates of weighted kappa statistics and the Bayesian posterior estimates

of the ws in validation data. Secondly, we present the results of the main

analysis corrected for misclassification.

5.5.1 Analysis of the validation data

A classical way to express the difference between the benchmark scorer and

the 16 examiners is to show a measure of agreement like the weighted κ

(κw) (Agresti, 1990, page 367):

κw =

∑
a

∑
bwabπab −

∑
a

∑
bwabπi+π+b

1−∑a

∑
bwabπa+π+b

,

where πab denotes here the probability that the examiner scores an “a”

for caries experience (row) while the benchmark examiner scores a “b”
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(column), πa+ =
∑

a πab, π+b =
∑

b πab and the weights wab = 1 − (a −
b)2/(I − 1)2; a, b = 1, · · · , 4; I = 4.

Table 5.2: Weighted κ(κw) measuring agreement between the benchmark
scorer and each of the 16 dental examiners when scoring caries experience in
the calibration exercises, obtained from SAS (version 8.2) procedure FREQ

Estimate 95% CIa Estimate 95% CIa

(SE) LCI UCI (SE) LCI UCI

κw1 0.755(0.097) 0.566 0.944 κw9 0.816(0.114) 0.593 1.040
κw2 0.891(0.051) 0.791 0.992 κw10 1.000(0.000) 1.000 1.000
κw3 0.777(0.115) 0.552 1.002 κw11 0.913(0.060) 0.795 1.031
κw4 0.799(0.080) 0.642 0.956 κw12 0.881(0.058) 0.768 0.995
κw5 0.815(0.072) 0.673 0.957 κw13 0.768(0.077) 0.616 0.919
κw6 0.929(0.050) 0.830 1.028 κw14 0.812(0.087) 0.641 0.983
κw7 0.960(0.040) 0.882 1.038 κw15 0.860(0.104) 0.656 1.063
κw8 0.890(0.063) 0.767 1.013 κw16 1.000(0.000) 1.000 1.000

aCI = Confidence interval. LCI = lower CI; UCI = upper CI

The weighted kappas for the 16 examiners involved in Signal Tand-

mobielr study using the pooled validation data from the combined 1996,

1998 and 2000 caries calibration exercises are shown in Table 5.2. Based

on the scheme of agreement levels proposed by Landis and Koch (1977)

all examiners had an excellent agreement with the benchmark examiner

(κw above 0.80) except for the examiners 1, 3 and 13 who had “only” a

substantial agreement (κw between 0.60 and 0.79). Note that the upper

bounds of the estimated 95% confidence intervals from the SAS (version

8.2) procedure FREQ for some κs are greater than 1 because of the rough

asymptotic approximation.

The posterior mean of the examiner-specific coefficient ‘wj ’ expressing

the position of the jth examiner with respect to the benchmark examiner

and the worst scorer is shown in Table 5.3, for the first and second misclassi-

fication models, i.e. given by expression (5.7). Remember that an examiner

with a value of w that is close to 1 has excellent agreement with the bench-

mark examiner. Our results to some extent confirm the conclusion obtained
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Table 5.3: Posterior summary statistics of the examiner-specific coefficients ws
of the first and second misclassification model (5.7), estimated from the corre-
sponding (using WinBUGS Program 5.2).

Parameter Results for wj ∼ dbeta(1, 1) logit(wj) ∼ N (µw, σ
2
w)

Estimate 95% CIa Estimate 95% CIa

(SE) 2.5% 97.5% (SE) 2.5% 97.5%
w1 0.334(.167) 0.034 0.660 0.506(.146) 0.192 0.758
w2 0.560(.171) 0.180 0.844 0.647(.134) 0.343 0.861
w3 0.293(.193) 0.013 0.703 0.515(.172) 0.149 0.805
w4 0.435(.178) 0.076 0.760 0.571(.142) 0.248 0.807
w5 0.357(.178) 0.037 0.701 0.534(.149) 0.204 0.782
w6 0.728(.145) 0.385 0.941 0.740(.120) 0.464 0.920
w7 0.710(.183) 0.263 0.961 0.724(.142) 0.387 0.933
w8 0.625(.166) 0.245 0.888 0.681(.129) 0.390 0.884
w9 0.440(.223) 0.040 0.849 0.595(.168) 0.216 0.869
w10 0.904(.092) 0.658 0.998 0.823(.109) 0.579 0.967
w11 0.514(.219) 0.071 0.883 0.636(.158) 0.268 0.888
w12 0.467(.192) 0.078 0.806 0.602(.149) 0.264 0.843
w13 0.343(.168) 0.037 0.668 0.511(.145) 0.194 0.758
w14 0.338(.187) 0.027 0.709 0.529(.159) 0.180 0.802
w15 0.536(.217) 0.082 0.891 0.646(.156) 0.282 0.889
w16 0.869(.125) 0.535 0.997 0.794(.125) 0.504 0.963

µw 0.606(.470) −0.314 1.403
σ2

w 0.732(.387) 0.093 1.446
aCI = Credible interval.

Table 5.4: The selected misclassification models for the 16 dental exam-
iners (for the fourth validation model)a

Examiner 1 2 3 4 5 6 7 8

Misc model A3p A3p A3p S2p S2p S2p S1p S2p

Examiner 9 10 11 12 13 14 15 16

Misc model S2p S1p S2p A3p A4p A3p A3p S1p

aS1p = symmetric 1p; S2p = symmetric 2p; A3p = asymmetric 3p;

A4p = asymmetric 4p

from the κ-statistics. As expected, estimates from the hierarchical model

are shrunk.
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For the fourth misclassification model (of Albert et al. (1997)) we ob-

serve that for many examiners we need to take the symmetric (2p) and

asymmetric (3p) misclassification model and could not simplify the model

(to receptively a 1p or 2p model). See Table 5.4 for the choice (based on

AIC) of the misclassification models for each examiner separately. Observe

that the asymmetric misclassification model 4p was chosen only once.

5.5.2 Regression analysis of the main data with correction

The parameter estimates of model (5.5) and (5.6) had not converged af-

ter 20,000 iterations, showing a very high autocorrelation for most of the

parameters probably because of an excessive number of parameters to es-

timate for the misclassification model (5.6) in relation to the available val-

idation data, rendering it an unidentifiable model. Therefore we turned to

misclassification model (5.7). The WinBUGS program simultaneously esti-

mates the parameters of model (5.5) and of model (5.7) and hence is based

on two Markov chains. The convergence of the regression parameters was

done using diagnostic procedures similar to the previous chapter.

The posterior estimates of the regression parameters from the corrected

model corresponding to the first misclassification model are shown in Table

5.5. The posterior means of the geographical regression parameters are

usually larger in absolute value than the corresponding means from the

uncorrected model. This shows an improvement in the parameter estimates

as they are pulled away from the null. However, the standard errors of the

estimates are increased as a result of the sampling variability in estimating

λ. But, more importantly, the East-West gradient remains significant (in

a Bayesian sense).

Table 5.6 shows the posterior estimates of the regression coefficients

from the corrected model corresponding to hierarchical misclassification

model. This gives even more improved parameter estimates. Again, the

East-West gradient remains significant.

The posterior estimates of the regression parameters from the corrected
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Table 5.5: Parameter estimates from the corrected random-effects ordinal
logistic regression model (5.5) in combination with the first misclassification
model, expression (5.7) with wj ∼ dbeta(1, 1), predicting the degree of caries
experience (using WinBUGS Program 5.3)

Parameter Estimate 95% CIa Bayesianb

(SE) 2.5% 97.5% p−value

α1 −0.4391(0.1184) −0.6762 −0.2097 0.0006
α2 0.0683(0.1112) −0.1496 0.2878 0.2670
α3 1.1550(0.1270) 0.9003 1.4010 0.0000

x-coordinate 0.2252(0.0537) 0.1190 0.3315 0.0000
y-coordinate −0.0215(0.0521) −0.1231 0.0797 0.3450

Gender −0.0659(0.0998) −0.2567 0.1357 0.2421
Age 0.3334(0.0955) 0.1471 0.5241 0.0004

σ2 0.2156(0.0497) 0.1309 0.3251 0.0000
aCI = Credible interval.
bThe Bayesian p−value is calculated as the fraction of the number of

times that a parameter is positive or negative, whichever is appropriate

model corresponding to the third misclassification model (5.8) are shown

in Table 5.7. These estimates are somewhat smaller in absolute value than

the posterior estimates from the other two corrected models, but the same

conclusion with regard to the East-West gradient holds.

Table 5.8 shows the posterior estimates of the regression coefficients

from the corrected model corresponding to the fourth misclassification

model (5.9) with the examiner-specific misclassification models given in

Table 5.4. The standard errors for the category cut-off are smaller com-

pared to other corrected models but the standard errors for the regression

coefficient are somewhat larger. Again, the same conclusion with regard to

the East-West gradient holds.

In all misclassification models, the East-West gradient remains (signifi-

cant). Hence, we can now claim that there is a genuine East-West gradient

taking into account the differential scoring behaviour of the dental exam-

iners.
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Table 5.6: Parameter estimates from the corrected random-effects ordinal
logistic regression model (5.5) in combination with second misclassification
model, expression (5.7) with logit(wj) ∼ N (µw, σ

2
w), predicting the degree

of caries experience (using WinBUGS Program 5.4).

Parameter Estimate 95% CIa Bayesianb

(SE) 2.5% 97.5% p−value
α1 −0.4302(0.1237) −0.6809 −0.1912 0.0003
α2 0.0538(0.1144) −0.1759 0.2805 0.3132
α3 1.1430(0.1311) 0.8758 1.3960 0.0000

x-ordinate 0.2278(0.0522) 0.1279 0.3345 0.0000
y-ordinate −0.0239(0.0519) −0.1269 0.0804 0.3205

Gender −0.0693(0.1017) −0.2643 0.1322 0.2396
Age 0.3380(0.0954) 0.1524 0.5259 0.0000

σ2 0.2146(0.0499) 0.1281 0.3232 0.0000
aCI = Credible interval.
bThe Bayesian p−value is calculated as the fraction of the number of

times that a parameter is positive or negative, whichever is appropriate

For the four misclassification models one can produce posterior esti-

mates of the misclassification tables allowing (more stable) posterior es-

timates of the overscoring and underscoring behaviour of the dental ex-

aminers. More specifically for each examiner we calculated the difference

between the expected probability of overscoring versus the benchmark ex-

aminer with the expected probability of underscoring. These estimates give

us insight about the estimated correction terms. In Figure 5.2 we show for

the third misclassification model the scatterplot of the expected differences

for the 16 dental examiners versus the observed differences. We observe that

the estimated differences are relatively close to the observed differences and

show minor shrinkage compared with the observed differences.

The scatter plots for the other three misclassification models show much

more shrinkage (not shown). Hence we can expect that for the first two

misclassification models the correction for the differential scoring behaviour
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Table 5.7: Parameter estimates from the corrected random-effects ordi-
nal logistic regression model (5.5) in combination with third misclassifica-
tion model (5.8) predicting the degree of caries experience (using WinBUGS
Program 5.5).

Parameter Estimate 95% CIa Bayesianb

(SE) 2.5% 97.5% p−value
α1 −0.4174(0.1222) −0.6684 −0.1834 0.0006
α2 0.1189(0.1075) −0.0938 0.3306 0.1274
α3 1.3230(0.1186) 1.0800 1.5510 0.0000

x-ordinate 0.2244(0.0539) 0.1188 0.3309 0.0000
y-ordinate −0.0170(0.0498) −0.1134 0.0832 0.3490

Gender −0.0678(0.0944) −0.2549 0.1173 0.2284
Age 0.3201(0.0912) 0.1398 0.4979 0.0000

σ2 0.1966(0.0439) 0.1198 0.2921 0.0000
aCI = Credible interval.
bThe Bayesian p−value is calculated as the fraction of the number of

times that a parameter is positive or negative, whichever is appropriate

of the examiners will be less than for the third model as a correction is more

needed when the underscoring and/or overscoring is more pronounced and

the correction terms are based on the estimated misclassification table.

From Tables 5.5, 5.6, 5.7 and 5.8 we can see that in absolute value the re-

gression coefficients corresponding to the third and fourth misclassification

model are the smallest, confirming the more pronounced correction of the

regression coefficients of the cross-sectional model with these misclassifica-

tion models.

5.5.3 Bayesian sensitivity analysis

We performed for the ordinal logistic regression model in combination with

the four misclassification models, sensitivity analyses with respect to the

choice of the prior distributions. Remember though that the first mis-
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Table 5.8: Parameter estimates from the corrected random-effects ordi-
nal logistic regression model (5.5) in combination with fourth misclassifica-
tion model (5.9) predicting the degree of caries experience (using WinBUGS
Program 5.6).

Parameter Estimate 95% CIa Bayesianb

(SE) 2.5% 97.5% p−value
α1 −0.335(0.073) −0.480 −0.195 0.0000
α2 0.008(0.071) −0.133 0.148 0.9128
α3 1.143(0.081) 0.985 1.302 0.0000

x-ordinate 0.216(0.059) 0.104 0.334 0.0004
y-ordinate −0.008(0.054) −0.113 0.099 0.8638

Gender −0.067(0.079) −0.223 0.090 0.3914
Age 0.319(0.098) 0.129 0.513 0.0010

σ2 0.228(0.054) 0.138 0.349 0.0000
aCI = Credible interval.
bThe Bayesian p−value is calculated as the fraction of the number of

times that a parameter is positive or negative, whichever is appropriate

classification model did not yield convergence. For instance, a sensitiv-

ity analysis was performed by changing the prior distribution for σ2 from

IG(10−3, 10−3) to a Pareto(0.5, 0.01) distribution for 1/σ2 giving practi-

cally the same results. Further, a sensitivity analysis by changing the prior

distribution of the regression coefficients from a normal to a t-distribution

with 4 degrees of freedom also gave very similar results. However since the

prior distributions for the parameters of the validation data in the first two

models were the classical uniform priors for each parameter separately we

felt that a sensitivity analysis based on other vague priors was less com-

pelling. Of course, we could have taken informative priors expressing our

believe that lumping together the four calibration exercises underestimates

the under- and overscoring behaviour of the examiners. This can easily be

done by taking another Beta-distribution for the “w” parameters and an-

other Dirichlet prior for the conditional classification probabilities. For the
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Figure 5.2: Scatter plot of O(overscored − underscored)% on the x-axis
(i.e. the difference of the sum of the elements in the lower diagonal from
the sum of the elements in the upper diagonal of the 4×4 observed misclas-
sification matrix M divided by the sum of all elements of M times 100)
versus E(overscored− underscored)% on the y-axis (i.e. the corresponding
value based on the expected value of the third misclassification model (5.8))

second misclassification model the logit−normal assumption of the wj was

relaxed to the logit− t(4) assumption with the same prior distributions for

µw and σw. Additionally, the uniform priors for µw and σw were changed

to N (0, 0.05) and IG(1, 1). For the third misclassification model we also

changed the distribution of first λ in each category and δ to N (0, 0.01) and

IG(1, 1), respectively. Changing the prior distributions and the likelihood

models did not result in appreciable differences.

Finally, we monitored the Deviance Information Criteria, or DIC (Spiegel-
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halter, Carlin, Best, and van der Linde, 2002) and related statistics to

compare and evaluate the complexity of the misclassification models. The

DIC-values of the corrected models, pertaining to the main analysis, corre-

sponding to the last four models are 11229.6, 11220.6, 11363.2 and 11446,

respectively. This suggests that the second (hierarchical) model may be the

most simplest one.

5.6 Discussion

The estimates from the corrected ordinal regression are typically more pre-

cise than the estimates from the corrected binary regression (Chapter 4)

because an ordinal response contains more information than a binary re-

sponse. Further, the ordinal response allows for various misclassification

models as compared to the binary response.

As a general conclusion we can now state that the East-West gradient

remains important under the different statistical models we considered for

the cross-sectional and validation data.





CHAPTER

6 Analysis of Count Data Subject to

Response Misclassification

6.1 Introduction

The most popular model for count data is the Poisson model. This model

can involve covariates leading to a Poisson regression model. When the

counts show more variability than the Poisson model, then overdispersion

can be modeled by assuming that the parameter of the Poisson model has

itself a distribution which varies over the subjects. A popular model ac-

counting for overdispersion is the negative binomial model when the Poisson

mean has a gamma distribution. However, often the counts show an ex-

cess of zeroes compared to what is expected from the negative binomial

model. To account for this inflated number of zeroes one traditionally

assumes that the distribution is a mixture of the negative binomial distri-

bution and a degenerate distribution at zero. This model is then coined as

the zero-inflated negative binomial (regression) model. These models and

random-effects versions thereof are described in Hall and Berenhaut (2002)

and in the references of that paper.

103
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Unfortunately, in practice counts are often recorded with error due to

over- or underreporting of the count or, in other words, due to misclassifica-

tion of the count. To obtain unbiased estimates of the regression coefficients

a correction for misclassification is needed. Bratcher and Stamey (2002)

and Stamey, Young, and Bratcher (2004) considered Bayesian approaches

to correct for misclassification for a Poisson model. Using a binomial model

for the number of false negatives and a Poisson model for the number of

false positives, they obtained a closed form expression for the possibly cor-

rupted counts. But, to our knowledge, no approach has been suggested to

correct for misclassification for more complicated models for counts.

In this chapter we present various count data models, and mainly focus

on the zero-inflated negative binomial (ZINB) model. To illustrate our ap-

proach we fitted the ZINB (regression) model to the dmft-index. Although,

the dmft-index is bounded, the ZINB model gave an excellent fit to the dis-

tribution of the dmft scores obtained from the Signal Tandmobielr study.

Further, we regressed the dmft-index on brushing and dietary behavior

covariates, as well as on the geographical co-ordinates of the school to which

the child belonged. As in previous chapters, the misclassification was fitted

in a pooled and an examiner-specific manner.

6.2 Models for count data

6.2.1 Introduction

In this section, we consider and compare different models for count data

– both allowing for overdispersion and taking into account also the pos-

sibility of extra zeros. In the Poisson model, the mean and variance are

assumed equal. However, when the variance exceeds the mean one speaks

of overdispersion. For overdispersed count data the generalized Poisson

(GP), negative binomial (NB) or Poisson-inverse Gaussian (PIG) distribu-

tion can be used. These models allow for overdispersion by adding a scale
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parameter.

Further, in order to account for extra zero observations in the count

data we also considered the zero-inflated counterparts, namely, Poisson

(ZIP), zero-inflated generalized Poisson (ZIGP), zero-inflated negative bi-

nomial (ZINB) and zero-inflated Poisson-inverse Gaussian (ZIPIG). The

zero-inflated models assume a mixture distribution with one part following

the reference distribution and the other part being degenerate at zero. We

describe these models in the following section.

6.2.2 Poisson model

The Poisson distribution is the standard distribution for modeling count

data. The Poisson distribution assumes for each observation Yi (i = 1, 2, · · · , N)

that

Pr(Yi = yi|ψ) =
ψyi exp(−ψ)

yi!
yi = 0, 1, 2, · · · , (6.1)

where ψ = E(Yi) is the mean value of Yi. A key property of the Poisson

distribution is that the mean and variance are equal, thus

E(Yi) = Var(Yi) = ψ. (6.2)

The Poisson distribution arises when Yi =
S∑

s=1
Zsi, whereby Zsi are in-

dependent binary random variables with Pr(Zsi) = π for s = 1, · · · , S; i =

1, · · · , N . A Poisson regression model is obtained by allowing ψ to depend

on covariates through a link function. A common choice is the log link, i.e.

log(ψi) = x′
iβ, (6.3)

where xi is a d-dimensional vector of covariates and β is the corresponding

vector of regression coefficients.

In caries research, the Poisson distribution is often inappropriate for

modeling the dmft- and dmfs-index, because of the (high) correlation be-
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tween the binary random variables. Further, the distribution of the dmft-

and dmfs-index assumes finite values in contrast to the Poisson distribution.

Thus, at best a distribution of dmft- and dmfs-index can be described by a

truncated (at 20 and 88 for the dmft- and dmfs-index, respectively) Pois-

son distribution. When ψ is small, ignoring truncation has only a minor

impact.

We observed overdispersion for the dmft-index in the Signal Tandmobi-

elr study. We therefore look here for extensions of the Poisson distributions

which allow Var(Yi) > E(Yi). Each time we critically examine the appro-

priateness of the distribution to model the distribution of the dmft-index.

6.2.3 Generalized Poisson (GP) model

An alternative to the standard Poisson distribution is the generalized Pois-

son (GP) distribution (Satterthwaite, 1942; Consul and Jain, 1973; Consul,

1989), also known as the Lagrangian Poisson distribution (Johnson, Kotz,

and Kemp, 1992). The generalized Poisson (GP) distribution, for count

response Yi, with parameters ψ and ω is given by:

Pr(Yi = yi|ψ, ω) = (1− ω)ψ
{(1− ω)ψ + ωyi}yi−1

yi!
(6.4)

× exp (−(1− ω)ψ − ωyi) ,

where ψ > 0, and 0 ≤ ω ≤ 1. When ω = 0 the GP distribution reduces

to the Poisson distribution. The GP distribution (6.4) has mean ψ and

variance ψ(1− ω)−1. Therefore this distribution may be suitable for count

data with a sample variance (substantially) larger than the mean. How-

ever, increasing only the variance does not guarantee that the distribution

of dmft-index is better approximated. Finally, a generalized Poisson re-

gression model is obtained by relating the mean response ψ to a vector of

covariates, xi, using e.g. the log-linear model (6.3).
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6.2.4 Continuous mixture of Poisson distributions

Another approach to model overdispersion is by using a Poisson mixture

model. We consider here a continuous mixture of Poisson distribution; in

particular, the negative binomial (NB) and Poisson-inverse Gaussian (PIG)

distributions. By allowing ψ to vary according to a mixing density function

f the following probability distribution function is obtained

Pr(Yi = yi|θ) =

∞∫

0

ψyi

yi!
exp(−ψ)f(ψ|θ)dψ. (6.5)

6.2.4.1 Negative binomial (NB) model

A negative binomial (NB) distribution is a continuous mixture of Poisson

distributions, which allows the Poisson mean ψ to be gamma distributed

(i.e., f(·) is a gamma distribution in expression (6.5)) and in this way

overdispersion is modeled. Observe that this distribution is also useful

when the count is made of correlated binary random variables which is the

case for the dmft-index. More specifically, if ψ ∼ Gamma(τ, τ/µ) then the

NB distribution is obtained. The NB distribution is given by (see, e.g.

Booth, Casella, Friedl, and Hobert, 2003)

Pr(Yi = yi|µ, τ) =
Γ(yi + τ)

yi!Γ(τ)

(
τ

µ+ τ

)τ ( µ

µ+ τ

)yi

(6.6)

yi = 0, 1, · · · ; µ, τ > 0,

where µ = E(Yi), τ is a shape parameter which quantifies the amount

of overdispersion. The variance of Yi for the NB distribution is µ + µ2/τ .

Clearly, the NB distribution approaches a Poisson distribution when τ tends

to ∞ (no overdispersion). Finally, the mean response µ can be related to a

vector of covariates, xi, through a log-linear model (6.3), which then gives

rise to a NB regression model.
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6.2.4.2 Poisson-Inverse Gaussian (PIG) model

Dean, Lawless, and Willmot (1989) consider the Poisson-inverse Gaussian

(PIG) regression model for insurance claims data. If f(ψ|θ) in (6.5) is the

pdf of an inverse Gaussian (IG) distribution then

f(ψ|θ) ≡ f(ψ|µ, α) =

√
α

2πψ3
exp

{
−α(ψ − µ)2

2µ2ψ

}
,

where α is the shape parameter and µ, α > 0. The PIG distribution has a

complicated expression, see Sichel (1974), Stein, Zucchini, and Juritz (1987)

and Willmot (1987).

The mean and the variance of the PIG distribution are µ and µ(1+µ/ζ),

respectively, where ζ =
√
µ2 + α2 − µ2. The PIG distribution approaches

the standard Poisson distribution as α tends to ∞. Finally, the mean

response µ can be related to a vector of covariates, xi, through a log-linear

model (6.3), which then gives rise to a PIG regression model.

6.2.5 Zero-inflated Models

The distribution of dmft-index in Signal Tandmobielr study shows an ex-

cess of zeroes, see Figure 6.1. Two types of zeros can occur: one comes

from the zero state and the other from the standard count distribution

state. For example, some children may have a zero observation purely by

chance, while others have a zero observation because they are protected

by some genetic factors. Thus, the resulting distribution is a mixture of

a standard count model, such as the Poisson or NB distribution, with one

that is degenerate at zero (e.g., Lambert, 1992). For a general treatment

of finite mixture distributions, we refer to McLachlan and Peel (2000).

Let f(yi|θ) be a distribution function for count data, such as the Pois-

son and NB distribution, with unknown parameters θ. The zero-inflated



6.2 Models for count data 109

distribution with extra an proportion p ∈ (0, 1) of zeros is obtained from

Yi =

{
0, with probablity p,

f(Yi = yi|θ) with probablity 1− p.

More specifically, the zero-inflated f(yi|θ)−distribution, denoted as ZIf(yi|θ),

is given by (Lambert, 1992; Johnson et al., 1992)

Pr(Yi = yi|p,θ) =

{
p+ (1− p)f(Yi = 0|θ),

(1− p)f(Yi = yi|θ), yi = 1, 2, · · · .
(6.7)

The mean and variance of the ZIf(yi|θ)−distribution are given by

Ezif(Yi|p,θ) = (1− p) Ef(Yi|θ)

and

Varzif(Yi|p,θ) = (1− p)
[
Ef(Y

2
i |θ)

]
− [(1− p) Ef(Yi|θ)]2

= (1− p)
{
Varf(Yi|θ) + p[Ef(Yi|θ)]2

}
.

When p = 0, Ezif(Yi|p,θ) = Ef(Yi|θ) the mean under f(Yi|θ), and

Varzif(Yi|p,θ) = Varf(Yi|θ) the variance under f(Yi|θ).

The zero-inflated regression model relates µ and p to covariates, i.e.

log(µi) = x′
iβ and logit(pi) = z′

iγ, (i = 1, · · · , n) (6.8)

where xi and zi are d- and q-dimensional vectors of covariates pertaining

to the ith subject, and with β and γ the corresponding vector of regression

coefficients, respectively. The vectors of covariates xi and zi could be the

same or different. The zero-inflated log-likelihood given the observed data is

obtained from plugging in equation (6.7) the dependence of the parameters

on the covariates by using equation (6.8).

The zero-inflated model (6.7) can used in combination with any model
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=

(1−
p
)µ

.
Distribution Density function

ZIP

{
p+ (1− p) exp(−µ), yi = 0,

(1− p) exp(−µ)µyi/yi!, yi > 0.

var(Yi) = (1− p)µ(1 + pµ)

ZIGP





p+ (1− p) 1
exp((1−ω)µ) , yi = 0,

(1− p){(1− ω)µ [(1− ω)µ+ ωyi]}/{yi! exp [(1− ω)µ+ ωyi]}, yi > 0.

var(Yi) = (1− p)µ[1/(1− ω) + pµ]

ZINB

{
p+ (1− p)(1 + µ/τ)−τ , yi = 0,

(1− p){Γ(yi + τ)(1 + µ/τ)−τ}/{Γ(yi + 1)Γ(τ)(1 + τ/µ)yi}, yi > 0.

var(Yi) = (1− p)µ(1 + pµ+ µ/τ)

ZIPIG†





p+ (1− p) exp(ζ − α), yi = 0,

(1− p)(µζ/α) Pr(Yi = 0), yi = 1,

(1− p)(2µζ/α2)2yi−3
2yi

Pr(Yi = yi − 1) + (µζ/α)2

yi(yi−1) Pr(Yi = yi − 2), yi ≥ 2.

var(Yi) = (1− p)µ(1 + pµ+ µ/ζ)

†The probabilities are computed recursively.
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for count data. The zero-inflated distributions, together with their variance,

arising from the Poisson, GP, NB and PIG count models are listed in Table

6.1.

6.2.6 Application to the Signal Tandmobielr study

In this section we fit the distribution of the dmft-index. Actually the dmft-

index is bounded but models for count data can be applied since the ex-

pected mean of the dmft-index is relatively small (mean = 2.243). As can

be seen in Figure 6.1, the distribution of the dmft-index is markedly skewed,

with the majority of the children having a low score for caries experience

and a minority with a high score. About 44% (= (1913/4351) × 100%) of

7-year-old children presented without any sign of caries experience.

Further, from Figure 6.1 it is clear that the estimated Poisson distribu-

tion does not fit the observed distribution of the dmft-index well, especially

for the low values of the dmft-index. Indeed, the distribution of the dmft-

index is overdispersed with respect to a Poisson distribution. For a Poisson

distribution one would expect var(y)/mean(y) to be approximately 1, but

here we obtain for var(dmft)/mean(dmft) = 3.53. Böhning et al. (1999)

suggested the zero-inflated Poisson (ZIP) distribution to model the DMFT-

index and concluded that it gives a reasonable fit to the observed distribu-

tion. However, a ZIP model is not appropriate when the non-zero part of

the distribution is overdispersed with respect to a Poisson distribution.

We fitted all the count data models described above to the dmft-index

using WinBUGS (version 1.4). The assumed prior distributions for the pa-

rameters of interest are: (a) ψ, µ, τ ∼ IG(10−3, 10−3) and, (b) p, ω ∼
Uniform(0, 1).

The posterior summary statistics are given in Table 6.2. The expected

mean for all models is practically the same as the observed mean. The

performance of the model is thus determined by the estimated variance.

In this application, the Poisson and the GP models underestimate the ob-

served variance, whereas the NB and the P-IG models overestimate the
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Figure 6.1: Distribution of the dmft-index among 7-year old Flemish chil-
dren, � observed, � fitted from ZINB model; the dotted line shows the fit
of the Poisson model, the broken line shows the fit of the pooled corrected
ZINB model and the solid line shows the fit of the examiner-specific cor-
rected ZINB model combined with the Albert et al.’s approach.

observed variance.

Table 6.3 shows the fitted zero-inflated models to the distribution of

the dmft-index. Again, the expected mean from all models are practically

equal to the observed mean. The number of caries-free children is always

estimated exactly equal to 1913 (observed frequency), implying that the

zero-inflated models perfectly fit the caries-free group. The estimated vari-

ances from the ZINB and ZIPIG fits are closer to the observed variance

compared to those of the ZIP and ZIGP fits. Observe that the ZINB model

is better than ZIPIG model based on the Deviance Information Criterion
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Table 6.2: Observed distribution of the dmft-index together with expected
frequencies obtained by fitting the Poisson, generalized Poisson (GP), nega-
tive binomial (NB) and Poisson-inverse Gaussian (PIG) distributions (us-
ing WinBUGS Program 6.1).

Expected frequencies
dmft-index Observed Poisson GP NB PIG

0 1913 462.0 1687.0 1773.0 1584.0
1 497 1036.0 896.9 788.8 1033.0
2 409 1162.0 529.3 491.7 573.1
3 329 868.4 338.3 335.7 335.6
4 290 487.0 228.5 239.2 212.3
5 250 218.5 160.5 174.6 143.2
6 213 81.7 116.1 129.6 101.3
7 160 26.2 86.0 97.3 74.3
8 137 7.3 64.8 73.6 56.0
9 67 1.8 49.5 56.1 43.2

10 40 0.4 38.4 43.0 33.9
11 23 0.1 30.0 33.1 26.9
12 15 0.0 23.7 25.5 21.7
13 3 0.0 18.8 19.8 17.6
14 2 0.0 15.1 15.3 14.5
16 2 0.0 9.8 9.3 12.1
18 1 0.0 6.5 5.7 10.1

Mean 2.243 2.243 2.245 2.244 2.244
Variance 7.924 2.243 5.321 11.320 14.450
π0† 0.440 0.106 0.392 0.411 0.369

DIC 22933 17370 17151 17689

†The proportion of caries free children.

(DIC) (Spiegelhalter et al., 2002), i.e. the ZINB model has a lower DIC

than the ZIPIG model. This motivates the use of the ZINB model here, as

was done by Lewsey and Thomson (2004) in their study. The ZINB model

fit to the dmft-index distribution of the Signal Tandmobielr study, can be

seen in Figure 6.1 and is close to being perfect. In addition, the compu-
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Table 6.3: Observed distribution of the dmft-index together with ex-
pected frequencies obtained by fitting the zero-inflated Poisson (ZIP),
zero-inflated generalized Poisson (ZIGP), zero-inflated negative binomial
(ZINB) and zero-inflated Poisson-inverse (ZIPIG) Gaussian distributions
(using WinBUGS Program 6.2).

Expected frequencies
dmft-index Observed ZIP ZIGP ZINB ZIPIG

0 1913 1913.0 1913.0 1913.0 1913.0
1 497 193.0 416.5 428.5 398.1
2 409 378.5 455.2 449.8 463.3
3 329 494.9 409.6 401.2 423.4
4 290 485.4 331.1 326.1 339.4
5 250 380.9 250.6 249.5 252.2
6 213 249.1 181.7 182.9 179.3
7 160 139.6 127.8 130.0 124.1
8 137 68.5 88.0 90.2 84.5
9 67 29.9 59.7 61.4 57.1

10 40 11.7 40.0 41.1 38.4
11 23 4.2 26.6 27.2 25.7
12 15 1.4 17.6 17.8 17.2
13 3 0.4 11.6 11.6 11.6
14 2 0.1 7.6 7.4 7.8
16 2 0.0 3.2 3.0 5.2
18 1 0.0 1.4 1.2 3.5

Mean 2.243 2.242 2.243 2.243 2.242
Variance 7.924 6.011 8.779 8.302 8.323
π0† 0.440 0.440 0.440 0.440 0.440

DIC 17505 16810 16794 16836

†The proportion of caries free children.

tation of the ZINB model is more efficient than that for the ZIPIG model

since for the latter model the probabilities require recursive computations.

Thus we shall focus on the ZINB distribution for modeling the dmft-index.
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6.3 The ZINB regression model

6.3.1 The ZINB regression model formulation

The ZINB log likelihood, relating the parameters to the covariates by using

equation (6.8), given the observed data can be derived from the ZINB

distribution (see Table 6.1). Hence for the total sample the (minus) log-

likelihood of the ZINB regression model is

Lz(β,γ, τ ; y,X,Z) =

N∑
i=1

log
(
1 + ez

′
iγ
)
−

∑
i:yi=0

log

(
ez

′
iγ +

(
ex

′
iβ + τ

τ

)−τ)
+

∑
i:yi>0

(
τ log(

ex
′
iβ + τ

τ
) + yi log(1 + e−x′

iβ τ)

)
+

∑
i:yi>0

(
log Γ(τ) + log Γ(1 + yi)− log Γ(τ + yi)

)
, (6.9)

where X = (x1, · · · ,xn) and Z = (z1, · · · , zn).

6.3.2 Parameter estimation

6.3.2.1 Frequentist approach

Parameter estimation can be carried out by the BFGS algorithm (Appendix

A.2.3) as described in Nocedal and Wright (1999, pp. 193–201). This

technique is a quasi-Newton optimization method implemented in the optim

R-software package.

Parameter estimation in the likelihood approach was done using R-

software calling C++ routines for fast computation of the likelihood and

the first derivative. This has been implemented in our R-library zicounts,

which is downloadable from http://cran.r-project.org/.
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6.3.2.2 Bayesian approach

We performed a Bayesian analysis using a WinBUGS (version 1.4) program

similar to the previous chapters. The assumed prior distributions for the

ZINB and ZIBB regression models are as follows:

(a) For the regression coefficients βs (s = 1, · · · , d) and γs (s = 1, · · · , q),
a vague normal prior was assumed i.e., βs ∼ N (0, 106)

(b) For the shape parameter τ , a vague inverse gamma prior was used

i.e., τ ∼ IG(10−3, 10−3).

6.3.3 Application to the Signal Tandmobielr study

We wish to examine again the geographical trend in caries experience in

Flanders but now for the dmft-index as response, taking into account var-

ious risk factors. In the previous chapters an East-West gradient for caries

experience at the age of seven in Flanders was demonstrated using the bi-

narized and ordinal indicator for caries experience. Here we applied the

ZINB regression model with dmft-index as response and xi ≡ zi, i.e. we

assumed the same covariates effect on both the NB and zero part of the

ZINB regression model.

The results of fitting the ZINB regression model using WinBUGS (ver-

sion 1.4) are shown in Table 6.4. Similar to the previous chapters, we report

results from the analysis (upper panel of Table 6.4) controlling only for the

geographical components, age and gender. Overall we obtain similar re-

sults as before, but now the information is a bit more refined. Namely, a

significant positive regression coefficient of the x−ordinate in the negative

binomial part of the model reveals a significant East-West gradient in the

degree of caries experience. On the other hand, a significant negative re-

gression coefficient of the x−ordinate in the zero-inflated part of the model

signifies a significant East-West gradient in the prevalence of caries. Thus,

in fact the ZINB regression model allows to assess both the degree and

prevalence of caries experience.



6.3
T

h
e

Z
IN

B
regression

m
o
d
el

117

T
a
b
le

6
.4

:
P
a
ra

m
eter

estim
a
tes

fro
m

th
e

m
u
ltip

le
Z
IN

B
regressio

n
m

od
el

p
re-

d
ictin

g
th

e
d
m

ft-in
d
ex

(u
sin

g
W
i
n
B
U
G
S

P
r
o
g
r
a
m

6
.
3
).

Negative binomial part Zero-inflated part
Parameter Estimate 95% CIa Estimate 95% CIa

(SE) 2.5% 97.5% (SE) 2.5% 97.5%

without brushing & dietary habits terms
Intercept 1.237(0.030) 1.177 1.295 −0.501(0.066) −0.632 −0.375
x-ordinate 0.064(0.020) 0.024 0.104 −0.165(0.043) −0.250 −0.081
y-ordinate −0.038(0.022) −0.083 0.005 0.059(0.045) −0.030 0.146
Gender (girl) 0.018(0.040) −0.059 0.094 0.014(0.085) −0.153 0.181
Age (years) 0.069(0.050) −0.028 0.170 −0.376(0.107) −0.586 −0.167

τ 2.623(0.236) 2.190 3.115

with brushing & dietary habits terms
Intercept 1.038(0.068) 0.913 1.183 0.143(0.149) −0.152 0.434
x-ordinate 0.068(0.021) 0.026 0.110 −0.194(0.046) −0.283 −0.105
y-ordinate −0.033(0.021) −0.073 0.009 0.013(0.046) −0.078 0.104
Gender (girl) 0.037(0.039) −0.039 0.113 −0.008(0.088) −0.182 0.165
Age (years) 0.060(0.051) −0.038 0.160 −0.350(0.110) −0.567 −0.139
Brushing frequency (< 2) −0.008(0.055) −0.116 0.098 −0.291(0.140) −0.572 −0.020
Age start brushing (years) 0.029(0.018) −0.008 0.064 −0.233(0.045) −0.321 −0.147
Systemic fluoride (yes) −0.081(0.041) −0.162 −0.003 0.483(0.088) 0.312 0.658
Sugary drinks (yes) 0.199(0.044) 0.113 0.285 −0.269(0.090) −0.442 −0.089
Between meals (> 2) 0.033(0.042) −0.054 0.114 −0.228(0.097) −0.422 −0.039

τ 2.721(0.241) 2.270 3.220
aCI = Credible interval.
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We posed the question whether the East-West gradient could be ex-

plained by an East-West gradient of the brushing and dietary habits. As

can be seen in Table 6.4 (lower panel), the East-West gradient (x−ordinate)

remains significant in both parts of the ZINB regression model. This im-

plies that the East-West gradient in caries experience cannot be explained

by a possible difference in the brushing and dietary habits. The consump-

tion of sugar containing drinks is significant in both parts of the model,

implying that it has an impact on the prevalence and the degree of caries

experience. Except for gender and the y−ordinate, the other covariates are

significant only in the zero-inflated part. Thus they only have an impact on

the prevalence. The negative regression coefficient for age at start of brush-

ing implies that the later the child starts brushing the lower the probability

of being caries-free. In addition, the children who brushed their teeth in-

adequately and those who took more than two in-between-meals have a

lower probability of being caries free. Finally, the use of systemic fluoride

supplements increased the chance of being caries free.

6.4 Correction for misclassification in the main study

6.4.1 Correcting for misclassification in a regression model

Interest lies in relating Y to covariates, but if Y ∗ is observed instead, then

the relationship will be distorted. The possibly error-corrupted count re-

sponse Y ∗ is related to the true unobservable responses Y through

Pr(Y ∗ = r|x,θ,π(x)) =

K∑

s=0

Pr(Y ∗ = r|Y = s,x) Pr(Y = s|x,θ), (6.10)

where θ contains the vector of regression coefficients and model parameters

relating the true counts to the regressors, K is the maximal value of Y ,

and π(x) represents the misclassification matrix under possibly differential
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misclassification. Expression (6.10) consists of:

(a) the misclassification model for Y ∗ given the true response and co-

variates, i.e. Pr(Y ∗ = r|Y = s,x);

(b) the underlying main model of interest, i.e. Pr(Y = y|x,β).

When misclassification is non-differential, the covariates provide no in-

formation about Y ∗ over and above what is provided by Y , so that (6.10)

becomes

Pr(Y ∗ = r|X = x; θ; π) =
K∑

s=0

Pr(Y = s|X = x; θ)πrs, (6.11)

where πrs = Pr(Y ∗ = r|Y = s). Expression (6.11) can be applied to any

misclassified count data distribution by replacing Pr(Y = y|x,β) with the

appropriate distribution.

Suppose that there are n observations in the main data, i.e. {Y ∗
1 , . . . , Y

∗
n },

and that an extram pairs of observations {(Y ∗
i , Yi), i = (n+1), . . . , (n+m)}

constitute the validation data set, either being a random subsample from

the main data or sampled to increase the efficiency in unbiasedly estimat-

ing the misclassification probabilities πrs (r, s = 0, . . . ,K). The estimated

probabilities π̂rs from the misclassification model (see Section 6.5) are im-

puted in equation (6.11), to estimate the parameter vector θ using, e.g. a

maximum likelihood procedure, yielding θ̂.

6.4.2 Variability of the corrected estimates

For a likelihood-based method, the asymptotic covariance matrix of θ can

be derived from the second order derivatives of the log-likelihood at the

final iteration, where the likelihood is derived from expression (6.11) re-

placing the unknown misclassification probabilities by their estimates ob-

tained from the validation study. However, this approach does not take the

sampling variability of π̂rs (r, s = 0, . . . ,K) into account.
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The total likelihood, combining the main data and the validation data,

is given by (the dependence on covariates is omitted for convenience):

n∏

i=1

Pr(Y ∗
i |θ,π)

n+m∏

i=n+1

Pr(Y ∗
i , Yi|φ,π), (6.12)

where the first term is obtained from (6.11). Further, the second term

splits up in the products
∏n+m

i=n+1 Pr(Y ∗
i |Yi; π) and

∏n+m
i=n+1 Pr(Yi|φ). The

first product represents the misclassification probabilities and the second

product pertains to the true counts. When the validation study is a ran-

dom sample of the main study, φ ≡ θ. In this case, the main data set

consists of N = n + m observations. The m observations then contribute
∏n+m

i=n+1 Pr(Yi|θ) to the main likelihood. When the validation data is not a

subsample of the main study, the relation of φ and θ is not always clear.

Often, one needs to assume that the validation data does not provide any

information about the main parameter of interest (θ). Given the nature

of the validation data of the Signal Tandmobielr study (Section 2.5), this

will be assumed also here. The total likelihood in (6.11), as a function θ

and Π, now becomes

n∏

i=1

Pr(Y ∗
i |θ,π)

n+m∏

i=n+1

Pr(Y ∗
i |Yi; π). (6.13)

The second derivative matrix at the maximum likelihood estimate of

θ and Π, obtained from likelihood (6.13), yields the asymptotic covari-

ance matrix of the estimate of θ taking the variability into account with

which πrs is estimated. This approach has been implemented in Chap-

ters 4 and 5. In Chapter 5 we have seen how a Bayesian approach can

handle the variability of estimating Π. However, here the WinBUGS Devel-

opment Interface (WBDev) was used, which enables the implementation of

user defined functions into the WinBUGS system via compiled Pascal code.

There are two main reasons for doing this: first, function evaluations asso-
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ciated with user defined components can be computed much more quickly

than with their BUGS-language counterparts; and second, the full flexibil-

ity of a general-purpose computer language is available for specifying each

new component, for instance, function specification via the BUGS language

(mainly using the step( ) function) can be somewhat cumbersome and

sometimes infeasible.

When multiple examiners are involved we could either assume: (a) that

the misclassification matrix π is the same for all examiners and hence that

it is pooled over the examiners; or (b) that the misclassification matrix

varies with the examiner.

6.5 Misclassification model

A general assumption we can make is that sth column, ms, of the misclas-

sification table with entries mrs follows a multinomial distribution:

ms ∼ Multinomial
(
m+s,πs

)
. (6.14)

where m+s =
∑K

r=0mrs. The multinomial estimate of πrs, i.e. π̂rs =

mrs/
∑K

r=0mrs is one possibility to estimate the misclassification probabil-

ities. However, for a sparse table M , which is often the case with counts,

the multinomial estimates π̂rs are either determined with high variability or

do not exist, say when the benchmark examiner did not score ‘s’ in the val-

idation data. Clearly some modeling of the misclassification probabilities

is needed to overcome this problem.

Others, (see, e.g. Espeland and Odoroff, 1985; Espeland and Hui, 1987),

have suggested a log-linear misclassification model for categorical data.

However, when the log-linear misclassification model is applied to count

data it too experiences computational difficulties, typically if not all true

counts have been observed in the validation study.

To overcome the computational difficulties with the multinomial and
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log-linear misclassification models, we used Albert et al.’s approach for

estimating the conditional misclassification probabilities as described in

Chapter 5. Although the method has been suggested for ordinal data, this

model might also be appropriate for counts. Even though this approach

is reasonable for the dmft-index it is difficult to use for counts in general,

especially if the number of observed levels is large.

The approach of Albert et al. (1997) implies a drastic reduction of the

number of parameters to estimate. This is particularly important here

since we need to estimate these parameters for each examiner separately.

Another advantage of this approach is that, even when the sth column

of M contains only zeros, the model allows for estimation of πrs. The

unknown misclassification parameter (λ) is a vector of the ζ̃−coefficients

(Section 5.4.2.2). Thus, there are 1 to 4 parameters to estimate depending

on whether one chooses the symmetric 1p (one parameter), the symmetric

2p (two parameter), the asymmetric 3p (three parameter) or the asym-

metric 4p (four parameter) model. Observe that for an examiner-specific

correction the number of parameters in the misclassification model will

range from 16 to 48. We refer also to Chapter 7 where we evaluated Albert

et al.’s approach for bounded count data.

6.6 Application to the Signal Tandmobielr study

6.6.1 Analysis of the validation data

The pooled (over the examiners) misclassification matrix and the examiner-

specific misclassification matrices were estimated. For the frequentist ap-

proach and the pooled misclassification matrix, the asymmetric misclassi-

fication structure 3p is chosen if based on Akaike’s Information Criterion

(AIC) (Sakamoto, Ishiguro, and Kitagawa, 1986) and the same is true for

the Bayesian approach using DIC, see Table 6.5. Indeed, the difference of

AIC is equal to the difference of DIC comparing any two models in Table
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Table 6.5: The ML (using R Program 6.4-a) and Bayesian (using
WinBUGS Program 6.4-b) parameter estimates of both symmetric and
asymmetric misclassification model from pooled Albert et al.’s approach.

Likelihood approach

Model Estimate(SE) 95% CIa AICb

Symmetric 1p α0 −4.416(0.119) −4.650 −4.182 964

Symmetric 2p α0 −0.806(0.240) −1.277 −0.335 635
α1 −1.253(0.153) −1.553 −0.953

Asymmetric 3p α0 −0.483(0.259) −0.990 0.024 556
α1 −2.153(0.253) −2.650 −1.657
α2 −0.676(0.153) −0.976 −0.376

Asymmetric 4p α00 −0.376(0.411) −1.181 0.429 557
α01 −0.129(0.382) −0.877 0.620
α1 −2.205(0.301) −2.794 −1.615
α2 −0.668(0.155) −0.971 −0.365

Bayesian approach

Model Estimate(SE) 95% CIc DICd

Symmetric 1p α0 −4.418(0.119) −4.659 −4.190 524

Symmetric 2p α0 −0.792(0.246) −1.280 −0.290 195
α1 −1.270(0.157) −1.608 −0.978

Asymmetric 3p α0 −0.466(0.256) −0.986 0.027 115
α1 −2.190(0.255) −2.692 −1.708
α2 −0.696(0.154) −1.012 −0.407

Asymmetric 4p α00 −0.334(0.406) −1.083 0.458 117
α01 −0.150(0.386) −0.928 0.581
α1 −2.266(0.302) −2.902 −1.718
α2 −0.690(0.161) −1.034 −0.397

aCI = Confidence interval; bAIC = Akaike Information Criterion.
cCI = Credible interval; dDIC = Deviance Information Criterion

6.5. For the examiner-specific correction we observe that for many exam-

iners we need to take the asymmetric misclassification model 3p and could

not simplify the model (to a 1p or 2p model), again based on AIC. See

Table 6.6 for the choice of the misclassification models for each examiner

separately. Observe that the asymmetric misclassification model 4p was

never chosen.
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Table 6.6: The selected misclassification model for the 16 dental examiners
from examiner-specific Albert et al.’s approach.†

Examiner 1 2 3 4 5 6 7 8

Misc model A3p S1p S2p A3p A3p S1p A3p S2p

Examiner 9 10 11 12 13 14 15 16

Misc model S1p S2p A3p S1p A3p A3p S2p S1p

†S1p = symmetric 1p; S2p = symmetric 2p; A3p = asymmetric 3p.

6.6.2 Analysis of the main data

6.6.2.1 Fitting the corrected distribution of the dmft-index

The ZINB model was corrected in a pooled and in an examiner-specific

way. As can be seen in Figure 6.1 the correction mechanism using the

model without covariates does not give very different results. The propor-

tion of caries-free children from the pooled and from the examiner-specific

correction are about 45% and 47% respectively, which is a slight increase

over the observed 44%.

6.6.2.2 Regression analysis of the main data with correction

The results of fitting the corrected ZINB regression model to the dmft-

index of the Signal Tandmobielr data are shown in Table 6.7 for the pooled

correction and in Table 6.8 for the examiner specific correction. For the

pooled correction, the East-West gradient (x−ordinate) remains significant

in both parts of the corrected ZINB model. In contrast, for the examiner-

specific correction the East-West gradient vanishes in the negative binomial

part.

A possible and perhaps speculative explanation of the discrepancy be-

tween the results of the two corrections is that the pooled correction ignores

the fact that the misclassification model has become differential. Indeed,

our regression model contains the geographical co-ordinates of the school
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Negative binomial part Zero-inflated part
Parameter Estimate 95% CIa Estimate 95% CIa

(SE) 2.5% 97.5% (SE) 2.5% 97.5%

without brushing & dietary habits terms
Intercept 1.426(0.036) 1.357 1.496 −0.296(0.078) −0.450 −0.145
x-ordinate 0.052(0.019) 0.015 0.089 −0.179(0.045) −0.269 −0.091
y-ordinate −0.032(0.021) −0.072 0.009 0.068(0.046) −0.023 0.158
Gender (girl) 0.018(0.043) −0.068 0.102 0.016(0.101) −0.185 0.213
Age (years) 0.027(0.048) −0.067 0.121 −0.453(0.112) −0.673 −0.232

τ 5.319(0.834) 3.957 7.200

with brushing & dietary habits terms
Intercept 1.283(0.070) 1.143 1.425 0.422(0.163) 0.113 0.742
x-ordinate 0.054(0.019) 0.017 0.092 −0.215(0.049) −0.312 −0.120
y-ordinate −0.029(0.020) −0.070 0.011 0.019(0.050) −0.079 0.117
Gender (girl) 0.034(0.042) −0.047 0.117 −0.006(0.101) −0.201 0.193
Age (years) 0.014(0.048) −0.082 0.108 −0.460(0.118) −0.692 −0.228
Brushing frequency (< 2) −0.016(0.052) −0.117 0.086 −0.300(0.150) −0.600 −0.008
Age start brushing (years) 0.012(0.018) −0.024 0.047 −0.261(0.050) −0.360 −0.163
Systemic fluoride (yes) −0.027(0.042) −0.109 0.054 0.591(0.099) 0.398 0.783
Sugary drinks (yes) 0.159(0.044) 0.075 0.245 −0.329(0.101) −0.524 −0.127
Between meals (> 2) 0.024(0.041) −0.054 0.105 −0.251(0.103) −0.458 −0.053

τ 5.506(0.885) 4.071 7.501
aCI = Credible interval.
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Negative binomial part Zero-inflated part
Parameter Estimate 95% CIa Estimate 95% CIa

(SE) 2.5% 97.5% (SE) 2.5% 97.5%

without brushing & dietary habits terms
Intercept 1.317(0.035) 1.246 1.386 −0.331(0.077) −0.484 −0.182
x-ordinate 0.039(0.024) −0.008 0.086 −0.171(0.052) −0.275 −0.070
y-ordinate −0.022(0.025) −0.070 0.026 0.087(0.050) −0.012 0.185
Gender (girl) 0.025(0.047) −0.067 0.117 0.007(0.100) −0.187 0.202
Age (years) 0.007(0.058) −0.106 0.119 −0.395(0.117) −0.627 −0.167

τ 3.555(0.426) 2.810 4.479

with brushing & dietary habits terms
Intercept 1.153(0.082) 0.997 1.312 0.324(0.165) −0.005 0.637
x-ordinate 0.042(0.023) −0.005 0.087 −0.203(0.054) −0.310 −0.096
y-ordinate −0.019(0.025) −0.067 0.030 0.044(0.055) −0.065 0.151
Gender (girl) 0.044(0.045) −0.043 0.133 −0.006(0.099) −0.203 −0.195
Age (years) −0.009(0.057) −0.120 0.099 −0.390(0.122) −0.635 −0.139
Brushing frequency (< 2) −0.002(0.058) −0.117 0.115 −0.303(0.151) −0.607 −0.018
Age start brushing (years) 0.017(0.021) −0.025 0.056 −0.243(0.049) −0.337 −0.150
Systemic fluoride (yes) −0.047(0.047) −0.139 0.044 0.554(0.097) 0.368 0.746
Sugary drinks (yes) 0.185(0.049) 0.090 0.281 −0.304(0.101) −0.497 −0.099
Between meals (> 2) 0.012(0.045) −0.075 0.100 −0.227(0.105) −0.434 −0.027

τ 3.658(0.442) 2.877 4.613
aCI = Credible interval.
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to which the child pertains and this is confounded with the dental exam-

iner (actually with the dummy variable that indexes the dental examiner)

who has examined the child. Hence, as we have indicated in Section 6.4.1,

we obtained a differential misclassification process even when each dental

examiner misclassified the score in a non-differential manner.

The ZINB regression model together with the examiner-specific cor-

rection shows more overdispersion (τ̂ = 3.9) than that of the pooled cor-

rection (τ̂ = 5.7), since the variance of the ZINB distribution is equal to

(1 − p̂)µ̂(1 + p̂µ̂ + µ̂/τ̂). Thus, the examiner-specific correction preserves

the negative binomial structure of the dmft-index more than the pooled

correction.

6.7 Discussion

As indicated in the introduction, fallible count data is a problem occurring

in probably all applications areas, not only in the dental or the medical area.

For example, Bratcher and Stamey (2002) applied their method in a large

scale epidemiological study on death rates due to congenital anomalies.

Further, Stamey et al. (2004) corrected for misclassification of counts in an

animal abundance study.

Because Stamey et al. (2004) assumed a particular misclassification pro-

cess and a Poisson model for the infallible counts, a Poisson distribution

for the fallible counts was obtained. In our approach we have chosen for

the ZINB model by inspecting the distribution of the fallible counts. In

a second step we then assumed that the ZINB models are also suitable

for the infallible counts. It must be said, though, that it is unclear what

model must be assumed for the infallible counts and what statistical as-

sumptions must be made about the misclassification process to obtain a

ZINB distribution for the fallible counts. Indeed, attempts to combine a

ZINB distribution with a misclassification process of the same type, yields

a much more complex model than the ZINB distribution.





CHAPTER

7 Analysis of Bounded Count Data

Subject to Response Misclassification

7.1 Introduction

In this chapter we present bounded count data models with correction

for misclassification error. An obvious candidate for the distribution of

bounded counts is the binomial distribution. When the bounded counts

show more variability than the binomial, then overdispersion can be mod-

eled by assuming that the success probability in the binomial model has a

beta distribution. This gives rise to a beta-binomial model. However, when

the bounded counts show an excess of zeroes compared to what is expected

from the beta-binomial model, a zero-inflated beta-binomial (ZIBB) model

is used. Due to extra zeros in scoring caries experience we shall focus on

the ZIBB (regression) model.

In this chapter, we look at the dmft-score restricted to the 8 deciduous

molars (teeth x4 and x5, with x=5,6,7,8 – see Figure 2.1), denoted by

dmft4,5-score. Among other things, we are interested in the effect of dietary

and brushing behavior on the dmft4,5-score. The ZIBB (regression) model

129
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was thus fitted to the dmft4,5-index, which is a dmft-index based on the first

and second primary molars. The dmft4,5-index was regressed on brushing

and dietary behavior covariates, as well as on the geographical co-ordinates

of the school to which the child belonged.

When the misclassification probabilities can be estimated unbiasedly,

then a suitable correction mechanism can result in (nearly) unbiased esti-

mated parameters. However, from our experience in oral health research

we must conclude that validation studies are often too small implying that

the corrective terms are estimated with high variability. Especially with

(finite) count data the misclassification matrix is most often sparse. Hence

when estimated from a multinomial model, some of the misclassification

probabilities cannot be determined or the estimated misclassification prob-

abilities will be quite unreliable yielding corrected estimated parameters

with high variability and thus unclear scientific conclusions.

Here, we suggest to base the estimation of the misclassification proba-

bilities on the double binomial (DB) approach or extensions thereof. The

DB approach exploits the nature of a count. Namely, in order to obtain a

count the sum needs to be made of binary scores, each of which is prone

to misclassification. Thus, one could estimate the misclassification proba-

bilities for count data from the misclassification table of the binary scores

making up the count.

The DB can only be applied when the misclassification process of the

binary scores is done independently and does not depend on the label of

the binary score. These assumptions have been implicitly taken for granted

in a number of applications (see e.g. Paulino, Soares, and Neuhaus, 2003;

Paulino, Silva, and Achcar, 2005). However, when the counts are deter-

mined within a subject, it is not immediately clear that these simplifying

assumptions hold in practice. Further, when the misclassification process

is differential, this needs to be taken into account also. This is exempli-

fied by Luan et al. (2005). Finally, Paulino et al. (2003, 2005) assumed a

(random-effects) binomial regression model, which easily combines with the
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misclassification model. However, in the dental example examined here, a

more complex model had to be assumed. Thus, we argue that there is a

need for an approach to analyze finite count data in the presence of misclas-

sification that: (a) expresses the misclassification process in an appropriate

manner; (b) maximizes the efficiency in estimating the misclassification

probabilities; and (c) combines the misclassification process with an ap-

propriate and possibly complex model for the measurement process. The

misclassification was fitted in a pooled and an examiner-specific manner.

7.2 Models for bounded count data

7.2.1 Beta-binomial model

Since the response dmft4,5 ≡ Yi = Zi1 + . . . + ZiK where K = 8 is a

finite count, a natural candidate for the distribution of Yi is the binomial

distribution. However, the Zik (k = 1, . . . ,K) are correlated. In that case,

the beta-binomial distribution is a possible choice, given by (Skellam, 1948;

Altham, 1978; Prentice, 1986):

Pr(Yi = yi) =

(
K

yi

)
yi−1∏
h=0

(π + τh)
K−yi−1∏

h=0

(1− π + τh)

K−1∏
h=0

(1 + τh)

(7.1)

with mean Kπ and variance Kπ(1−π)[1+ (K − 1)δ], where δ = τ/(1+ τ).

7.2.2 Zero-inflated beta-binomial model

In the Signal Tandmobielr study, large frequencies of zeros are observed

relative to what is predicted by the beta-binomial distribution. Therefore,

we have chosen for the zero-inflated beta-binomial (ZIBB) model assuming

for the distribution of the count a mixture of a beta-binomial distribution
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and a point mass at zero. The ZIBB distribution is given by

Pr(Yi = yi) =

{
p+ (1− p)g(0) if yi = 0;

(1− p)g(yi) if yi > 0,
(7.2)

where g(yi) is the beta-binomial distribution defined by expression (7.1).

The ZIBB distribution has mean (1 − p)Kπ and variance (1 − p)Kπ[(1 −
π)(1 + (K − 1)δ) +Kπp].

7.2.3 Application to the Signal Tandmobielr study

Table 7.1: Observed and expected distribution of the dmft4,5 with expected
frequencies obtained by fitting a beta-binomial (BB) and zero-inflated beta-
binomial (ZIBB) distribution (using WinBUGS Program 7.1).

dmft4,5 Observed Expected
BB ZIBB

0 1972 1935.0 1972.0
1 496 616.0 501.4
2 397 407.9 400.4
3 353 317.0 340.8
4 295 264.9 297.5
5 273 230.9 261.8
6 225 207.2 229.2
7 179 190.7 195.6
8 161 181.6 152.7

Mean 2.019 1.983 2.020
Variance 6.032 6.073 6.050
π0† 0.453 0.440 0.453
DIC 108 68

†The proportion of caries free children.

In this section we fitted the BB and ZIBB distributions to the dmft4,5

using WinBUGS (version 1.4). The assumed prior distributions for the
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parameters of interest are: (a) τ ∼ IG(10−3, 10−3) and, (b) logit(p),

logit(π) ∼ N (0, 106).

Table 7.1 shows the fitted BB and ZIBB models to the distribution of

the dmft4,5. The fitted mean and variance are very close to the observed

values for both models. Further, the number of caries-free children is esti-

mated exactly equal to 1972 (observed frequency). The ZIBB model is to

be preferred over the BB model based on the DIC.

7.3 The ZIBB regression model

7.3.1 The ZIBB regression model formulation

The ZIBB regression model relates the parameters π and p of the ZIBB

distribution to covariates as follows:

logit(πi) = x′
iβ and logit(pi) = z′

iγ, (i = 1, · · · , N). (7.3)

The ZIBB log likelihood, relating the parameters to the covariates by using

equation (7.3), can be derived from equation (7.2). Parameter estimation

using a frequentist or a Bayesian approach is done as described for the

ZINB regression model in Chapter 6.

7.3.2 Application to the Signal Tandmobielr study

The results of fitting the ZIBB regression model to the dmft4,5 with covari-

ates using WinBUGS (version 1.4) are shown in Table 7.2. Overall we obtain

similar results in the beta-binomial part of the ZIBB regression model as

in the negative binomial part of the ZINB regression model of Chapter

6 (apart from the fact that now the regression coefficients have a different

meaning). For the degenerate part (explaining 0) only age at start of brush-

ing was important. However, we omitted this variable from that part of

the model to enhance the comparability between this model and the fitted
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models corrected for misclassification (see Section 7.7.2.2).

Table 7.2: Posterior estimates of the uncorrected ZIBB regression model
fitted to the dmft4,5 (using WinBUGS Program 7.2).

Parameter Estimate 95% CIa

(SE) 2.5 % 97.5%

without (x, y)−co-ordinate terms

Intercept −1.414(0.116) −1.647 −1.184
Gender (girl) 0.059(0.063) −0.062 0.183
Age (years) 0.306(0.075) 0.162 0.455
Brushing frequency (< 2) 0.087(0.087) −0.080 0.253
Age start brushing (years) 0.150(0.028) 0.095 0.205
Systemic fluoride (yes) −0.429(0.064) −0.551 −0.303
Sugary drinks (yes) 0.382(0.067) 0.256 0.517
Between meals (> 2) 0.160(0.065) 0.032 0.284

p 0.177(0.035) 0.099 0.242
τ 0.582(0.040) 0.506 0.667

with (x, y)−co-ordinate terms

Intercept −1.432(0.111) −1.652 −1.220
x-ordinate 0.194(0.031) 0.136 0.255
y-ordinate −0.042(0.032) −0.105 0.021
Gender (girl) 0.052(0.060) −0.066 0.169
Age (years) 0.335(0.076) 0.186 0.488
Brushing frequency (< 2) 0.106(0.085) −0.064 0.273
Age start brushing (years) 0.160(0.029) 0.105 0.217
Systemic fluoride (yes) −0.433(0.063) −0.556 −0.308
Sugary drinks (yes) 0.376(0.064) 0.247 0.502
Between meals (> 2) 0.116(0.065) −0.013 0.240

p 0.173(0.037) 0.089 0.230
τ 0.574(0.038) 0.504 0.652

aCI = Credible interval.
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7.4 Correcting for misclassification in a ZIBB regres-

sion model

Correction for misclassification in a ZIBB regression model follows the same

arguments as in Section 6.4.1. Indeed, we only need to replace Pr(Y = s|·)
in expression (6.11) by the ZIBB distribution. When multiple examiners are

involved, the misclassification matrix changes from examiner to examiner.

7.5 Misclassification models of a finite count

Let Y =
∑K

k=1 Zk be the “true” count as determined by the benchmark

scorer and Y ∗ =
∑K

k=1 Z
∗
k be the possibly corrupted observed count es-

tablished by an examiner. Zk and Z∗
k are the true and possibly corrupted

binary scores, respectively which make up the respective counts. Further,

let πrs(x) = Pr(Y ∗ = r|Y = s,x) (r, s = 0, . . . ,K) with
∑K

r=0 πrs(x) = 1

represent the misclassification probabilities constituting the vector πs(x) =

(π0s(x), π1s(x), · · · , πKs(x))′ and the misclassification matrix

(π0(x), . . . ,πK(x)). Suppose a (K + 1) × (K + 1) misclassification table

is obtained from validation data with entries mrs with
∑K

r,s=0mrs = m

whereby mrs represents the number of subjects classified as Y = s by the

benchmark scorer and Y ∗ = r by the examiner and n is the total number

of subjects involved in the validation study.

For (finite) count data the misclassification matrix is often sparse. Hence

if estimated from a multinomial model, the estimated misclassification

probabilities are quite unreliable yielding corrected estimated parameters

with high variability. Albert et al. (1997) suggested a fairly general ap-

proach for modeling misclassification probabilities of an ordinal variable.

This approach could also be used for finite count data. Further, we suggest

here a third approach, called the double binomial approach which exploits

the nature of a count. Namely, in order to obtain a count the sum needs

to be made of binary scores, each of which is prone to misclassification.
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7.5.1 The multinomial approach

Let us assume independence of the subjects. Then the sth column, ms, of

the misclassification table with entries mrs follows a multinomial distribu-

tion:

ms ∼ Multinomial
(
m+s,πs(x)

)
. (7.4)

For a non-differential misclassification process, the multinomial estimate

of πrs is π̂rs = mrs/
∑K

r=0mrs and has variance πrs(1 − πrs)/
∑K

r=0mrs.

However, the variance can be high and the estimate does not exist when

the benchmark examiner does not score ‘s’ in the validation data. When

the misclassification process is differential the dependence on the covariates

needs to be modeled.

7.5.2 The double binomial approach

In order to obtain a count, one needs to score the binary indicators Zk

(k = 1, . . . ,K). Hence, it is likely that the validation data provide a mis-

classification table for each Zk. Suppose for a non-differential misclassifi-

cation process that αk = Pr(Z∗
k = 1|Zk = 1) , βk = Pr(Z∗

k = 0|Zk = 0)

(k = 1, . . . ,K) represent the sensitivity and specificity for Zk, respectively

of the examiner relative to a benchmark examiner. αk and βk can be es-

timated from the corresponding 2× 2 misclassification table established in

the validation study with entries mk,rs with
∑1

r,s=0mk,rs = m as follows:

α̂k =
mk,11

mk,01+mk,11
and β̂k =

mk,00

mk,00+mk,10
(k = 1, . . . ,K).

The above assumptions imply a binomial model for the sensitivity and

for the specificity on the binary score. Further, it is assumed in first instance

that the misclassification process is non-differential. Therefore, the basic

double binomial approach (see below) will be based on the following three

simplifying assumptions:

Assumption A1: scoring Zk is done independently from scoring Zl with

k 6= l
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Assumption A2: the scoring behavior of the examiner does not depend

on k

Assumption A3: the scoring behavior of the examiner does not depend

on the subject (non-differential misclassification process)

For the dental example, the assumptions A1 and A2 imply that the

scoring of teeth is done equally well or bad for all teeth and that in an inde-

pendent manner. Hence, when A1 to A3 are satisfied, αk = αZ and βk = βZ

and are estimated by α̂Z =
PK

k=1 mk,11
PK

k=1[mk,01+mk,11]
and β̂Z =

PK
k=1 mk,00

PK
k=1[mk,00+mk,10]

,

respectively.

Under the above simplifying assumptions, one can determine the mis-

classification table for Y based on the misclassification table for Zk (k =

1, . . . ,K), which is assumed to be equal for all k. Namely

πrs =

N1∑

n=N0

(
s

n

)(
K − s
r − n

)
αn

Z(1− αZ)(s−n)(1− βZ)(r−n)β
(K−s−r+n)
Z , (7.5)

where the bounds N0 = max(r− (K − s), 0) and N1 = min(r, s) arise from

the fact that expression (7.5) is derived from the distribution of two in-

dependent binomial distributions, Bin(s, αZ) and Bin(K − s, 1 − βZ). In

the dental example, the first binomial distribution expresses the probabil-

ity that the examiner scores n teeth as decayed from the s teeth that the

benchmark examiner has scored decayed. The second binomial distribu-

tion expresses the probability that the examiner scores (r − n) teeth as

decayed from the (K − s) teeth that the benchmark examiner has scored

not decayed. Plugging the estimates α̂Z , β̂Z in expression (7.5) yields es-

timates π̃rs (r, s = 0, . . . ,K) and hence the vectors π̃s = (π̃0s, . . . , π̃Ks)
′

(s = 0, . . . ,K).

7.5.3 Extensions of the DB approach

Assumptions A1 to A3 might not hold in practice. But, since the DB

approach is based on two binomial distributions in principle all types of
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extensions of binomial models could be used. We will discuss below some

natural extensions of the DB model. The DB model can be described as

follows:

Pr(Z∗
1 , . . . , Z

∗
K |Z1, . . . , ZK) =

K∏

k=1

Pr(Z∗
k |Zk), (7.6)

with Pr(Z∗
k = 1|Zk = 1) = αZ and Pr(Z∗

k = 0|Zk = 0) = βZ . Thus,

extensions of the DB approach can be formulated as extensions of (7.6).

Extension E1: the sensitivity and specificity of the binary scores depend

on covariates (Begg, 1987). For instance, when diagnosing oral cancer

the sensitivity of detecting the disease might be higher for smokers

than for non-smokers because the physician is more alerted for a

smoker. Thus, we assume that (7.6) holds, but that αZ ≡ αZ(x),

βZ ≡ βZ(x). In other words, we assume that A1 and A2 are satis-

fied, but not A3. In this case, the misclassification process is called

differential.

Extension E2: model (7.6) is extended to

Pr(Z∗
1 , . . . , Z

∗
K |Z1, . . . , ZK) =

K∏

k=1

Pr(Z∗
k |Zk, f(Z1, . . . , ZK)).

Thus, the misclassification process depends on a global summary

statistic of the binary scores, i.e. αZ ≡ αZ(f(Z1, . . . , ZK)),

βZ ≡ βZ(f(Z1, . . . , ZK)). The motivation behind this extension is

best seen in the caries example. When f(Z1, . . . , ZK) =
∑K

k=1 Zk is

large there is much caries in the mouth. It is conceivable that in such

a mouth there might be some confusion of when a tooth is decayed

or not.

Extension E3: the scoring is dependent, i.e. Pr(Z∗
1 , . . . , Z

∗
K |Z1, . . . , ZK)

does not split up in a product. Thus, assumption A1 is relaxed,

for a motivation in oral health studies see e. g. Hujoel, Moulton,
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and Loesche (1990). There exists a variety of models for correlated

binary random variables, see e.g. Rudolfer (1990). A convenient

way to introduce correlation is to assume that, given a subject, the

scoring is independent but that the sensitivity and specificity depend

on the subject (unknown) characteristics. More formally, assume

that α and β have a distribution depending on the subject’s unknown

characteristics, given by the random vector b and that

Pr(Z∗
1 , . . . , Z

∗
K |Z1, . . . , ZK , b) =

K∏

k=1

Pr(Z∗
k |Zk, b),

and Pr(Z∗
1 , . . . , Z

∗
K |Z1, . . . , ZK) =

∫ ∏K
k=1 Pr(Z∗

k |Zk, b)f(b)db. There

are two natural candidates for the distribution of α and β. Firstly,

assume that α and β each have a Beta density and that they are in-

dependent of each other. In that case Pr(Z∗
1 , . . . , Z

∗
K |Z1, . . . , ZK) =∫ ∏

Zk=1 Pr(Z∗
k |Zk, α)B(α)dα

∫ ∏
Zk=0 Pr(Z∗

k |Zk, β)B(β)dβ, where

B(·) represents a Beta-density. Thus, α ≡ b1 and β ≡ b2, where

b′ = (b1, b2). This generalizes the binomial distribution Bin(K,π) to

a beta-binomial distribution BB(K,π,τ), with mean π and variance

τ (see Section 7.3 for an expression). Further, this implies that in

expression (7.5), Bin(s, αZ) and Bin(K − s, 1 − βZ) are replaced by

BB(s, αZ ,τα) and BB(K − s, βZ ,τβ), respectively. Secondly, since α

and β have a distribution depending on the subject, it is natural to

assume that they are also correlated. Correlation can be introduced

by first taking the logit transform of α and β, i.e. b1 = logit(α),

b2 = logit(β) and then assuming that b′ = (b1, b2) ∼ N (µb,Σb).

Extension E4: sensitivity and specificity depend on k, i.e. αk, βk (k =

1, . . . ,K). For instance, in caries research it is known that detecting

caries experience in molars is more difficult than in other teeth.

In the sequel the basic DB model will also be denoted by E0. To

test whether the E0 model needs to be extended to Ex (x = 1, . . . , 4) a
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likelihood ratio test can be employed. To choose between the extensions,

Akaike’s Information Criterion might be used. Further, the above exten-

sions could be combined making the misclassification process even more

general. The availability of a battery of models for the misclassification

process helps in obtaining unbiased estimates of the misclassification prob-

abilities while maintaining high efficiency. For all of the extensions, the

estimated misclassification probabilities will still be denoted by π̃s.

7.6 Simulation study

A simulation study was set up to evaluate the performance of the DB

approach and its extensions. More specifically, we have set up two types

of simulations: (1) Evaluating the efficiency of the E0 model (basic DB

approach) when the true model is in fact Ex (x = 0, . . . , 4) in comparison to

the true extension and in comparison to the multinomial and Albert et al.’s

model. This evaluates the basic DB approach in estimating the correction

terms; (2) Evaluating the efficiency of the DB approach as above, but when

estimating the main model parameters. This efficiency comparison was set

up to evaluate the practical gain in estimating the main model parameters

when using the most efficient procedure for estimating the correction terms.

7.6.1 Setup of the simulation study

7.6.1.1 First simulation study

In the first simulation study, the sample size of the validation study was

fixed to N = 100. Each scenario was sampled 1000 times. We formulated

below the four extensions of the basic DB approach as logistic models.
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Namely:

logit[Pr(Z∗
k,i = 1)] = γ0 + γ1Zk,i (7.7)

logit[Pr(Z∗
k,i = 1)] = γ0 + γ1Zk,i + ξ1X1,i + . . .+ ξqXq,i (7.8)

logit[Pr(Z∗
k,i = 1)] = γ0 + γ1Zk,i + δf(Z1i, . . . , ZKi) (7.9)

logit[Pr(Z∗
k,i = 1)] = γ0 + γ1Zk,i + γ2T2,ki + . . .+ γKTK,ki (7.10)

where i = 1, . . . , N and k = 1, . . . ,K and the dependence on the covariates

is omitted from the expression for convenience. The true and possibly mis-

classified counts are obtained by making the sums
∑K

k=1 Zk,i and
∑K

k=1 Z
∗
k,i,

where K = 8 has been taken.

Two values for the prevalence pM at mouth level were considered, i.e.

pM = 0.10 and pM = 0.30. This implies a prevalence at tooth level equal

to pT = 1− (1−pM )(1/K) yielding pT = 0.013 and pT = 0.043, respectively.

Model E0, i.e. the basic DB approach, corresponds to model (7.7) with

γ0 = −2.94 and γ1 = 5.14, so we obtain αZ = 0.90 and βZ = 0.95.

In extension E1, see equation (7.8), we have taken q = 2. The regression

vector ξ is taken equal to (0.7,−0.3, 0.4)′ for a minimal variation of the

sensitivities and specificities and equal to (1.5,−0.6, 0.9)′ for a moderate

variation. Further, for the two covariates we assume that X1 ∼ N(3, 0.2)

and X2 ∼ Bernoulli(0.6). These two distributions were inspired by the

covariates considered in the Signal Tandmobielr study (namely, “age at

start brushing” and “gender”). αZ and βZ vary over the subjects and

hence assumption A3 is violated here.

Extension E2, see equation (7.9), expresses that αZ and βZ depend on

the values of Z1, . . . , ZK and thus assumption A1 is violated now. More

specifically, we have taken f(Z1, . . . , ZK) =
∑K

k=1 Zk. For a minimal vari-

ation of the sensitivities and specificities we have taken δ = 0.1 and for a

moderate variation δ = 0.2.

In extension E3, assumption A1 is relaxed by allowing the αZ and

βZ to have a distribution varying by subject. For a minimal variation of
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the sensitivities and specificities we take µ′
b

= (logit(αZ), logit(βZ)), e.g.

µ′
b

= (2.197, 2.944) for αZ = 0.90 and βZ = 0.95, and

Σb =

(
0.050 0.035

0.035 0.030

)
.

For a moderate variation the values of Σb are doubled.

Finally, in extension E4, see equation (7.10), the variables Tj,k = 1 if

j = k and 0 otherwise for j, k = 1, . . . ,K. They express the fact that the

αk and βk differ over k and hence that assumption A2 is violated. For a

small variation, we have taken for K = 6, γ = (−0.3,−0.3, 0.3, 0.3, 0.3)′

and for K = 8 we have taken γ = (−0.3,−0.3,−0.3, 0.3, 0.3, 0.3, 0.3)′. For

a moderate variation, these values are doubled.

We have assumed that the true binary scores Zk are independent (ρ = 0)

and as well as that they are related (ρ = 0.7). However, since the simulation

results for the two values of ρ are similar, we report only the results for

ρ = 0.7. To generate the correlated binary scores we used the method of

Dunn and Davies (1998).

For the models Ex (x = 0, . . . , 4), the multinomial model and Albert

et al.’s model, we calculated αW and βW : the average, the median, the SD,

the Mean Squared Error (MSE) and the 95% confidence range. We calcu-

lated also the estimates for all elements of the misclassification matrix, i.e.

πrs, but reporting all of these results would be overwhelming. Alternatively,

we calculated the discrepancy measureD =
∑K

s=0

∑K
r=0(πrs−prs)

2/(K+1),

where πrs is the true misclassification probability and prs = π̂rs, π̃rs, respec-

tively. A chi-square type of statistic is also possible but it would give too

much weight to the small (and unimportant) true misclassification proba-

bilities and is therefore not reported here.

To determine the true misclassification probabilities and consequently

the value of αW and βW an approximative method was used. Namely, we

approximate the true misclassification probabilities using the multinomial

method determined on a validation study of size 200, 000.
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We report below only the case of moderate variability together with

K = 8 since these results are sufficient to deliver the message.

7.6.1.2 Second simulation study

In the second simulation study, we examined the effect of the basic DB

approach and its extensions on the estimation of the main model parameters

and compared their performance to the multinomial approach. For all cases,

the size of the main study is 1000 and 1000 simulations were performed for

each scenario. We considered as main model a binomial regression model

given by Y ∼ Binom(K, pY ) with logit(pY ) = β0 + βXX + βZZ, where X

is a binary covariate with success probability pX and Z is an independent

continuous normal variate with mean 0 and standard deviation SDZ . We

have varied the values of pX and SDZ . This was done to examine the

effect of the precision with which the regression coefficient is estimated in

the model without scoring errors on the relative gain of the DB approach.

For instance, when SDZ is large it is known that the regression coefficient

of Z is estimated with more precision than when SDZ is small. Therefore,

it is expected that the gain of the DB approach will be better seen for a

relatively large value of SDZ .

The size of the validation study was fixed at 100. Further, we sampled

the validation data such that :

(a) there is equal probability for scoring Y = s, i.e. Pr(Y = s) =

1/(K + 1);

(b) there is unequal probability for Y = s, i.e. Pr(Y = s) =

[2(K + 1− s)]/[(K + 1)(K + 2)] which is decreasing in s;

(c) the validation study is a random sample of the main study.

Sampling and estimation was done under the different DB approaches.

More specifically, we sampled from extension Ex and estimated the param-

eters with E0 and Ex. Thus, when sampling was done under extension Ex,

estimation was done under the same model.
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7.6.2 Simulation results

7.6.2.1 First simulation study

In Table 7.3 the simulation results are shown for the sensitivity (αW ) and

in Table 7.4 the simulation results for the specificity (βW ) are given. More

specifically, we show the estimated sensitivity and specificity for the two

values of the prevalence when estimated with the basic DB , the multinomial

and Albert et al.’s approach. when sampling is done under the models Ex

(x = 0, . . . , 4). We observe that in all cases αW and βW are estimated

unbiasedly for the first two approaches. For a low prevalence the specificity

is estimated with less variability than the sensitivity, while the reverse is

true for the higher prevalence. In all cases the variability in estimation is

lower for the DB approach than with the multinomial and Albert et al.’s

approach.

Table 7.3: Simulation results for sensitivity: K= 8, N = 100 with moderately
varying sensitivity αk and specificity βk around 90%, 95% respectively for each of
the four extensions (E0 corresponds to the basic DB approach). Prev represents
the prevalence at mouth level. All values are expressed in percentages.

Double binomial (E0) Multinomial Albert et al.

Ext Prev SN† Mean(Median)/ SD/ Mean(Median)/ SD/ RE
‡
M

Mean(Median)/ SD/ RE
]
A

95% Range MSE 95% Range MSE 95% Range MSE

E0 10 93.3 93.3(94.1) 6.59 93.5(100.0) 8.36 93.2(93.9) 7.99
[78.0, 100.0] 43.4 [72.7, 100.0] 69.8 161 [75.0, 100.0] 63.9 147

E1 10 94.1 94.5(95.1) 5.95 94.2(100.0) 7.75 94.1(100.0) 7.70
[80.5, 100.0] 35.5 [75.0, 100.0] 60.1 169 [75.0, 100.0] 59.2 167

E2 10 92.5 91.8(92.8) 7.54 91.9(92.3) 9.11 92.0(92.4) 8.83
[74.3, 100.0] 57.4 [70.0, 100.0] 83.2 145 [70.0, 100.0] 78.1 136

E3 10 93.3 93.3(94.0) 6.45 93.4(95.0) 8.03 92.9(94.7) 9.18
[77.9, 100.0] 41.6 [75.0, 100.0] 64.5 155 [70.0, 100.0] 84.1 202

E4 10 92.8 92.5(93.3) 7.45 92.8(93.8) 8.83 92.1(92.3) 8.32
[75.0, 100.0] 55.6 [70.0, 100.0] 77.9 140 [73.3, 100.0] 69.8 126

E0 30 94.0 94.0(94.4) 3.30 94.0(94.3) 4.42 92.8(93.3) 4.45
[86.7, 100.0] 10.9 [83.3, 100.0] 19.6 180 [82.8, 100.0] 21.8 200

E1 30 94.8 95.0(95.3) 2.86 94.8(95.8) 4.12 93.8(94.2) 4.11
[88.2, 100.0] 8.2 [85.2, 100.0] 16.9 206 [84.5, 100.0] 17.7 216

E2 30 93.1 93.0(93.4) 3.70 93.1(93.3) 4.73 92.9(94.7) 4.78
[85.1, 98.5] 13.7 [82.9, 100.0] 22.3 163 [70.0, 100.0] 22.9 167

E3 30 94.1 93.8(94.0) 3.12 94.0(94.2) 4.32 92.8(93.3) 4.31
[86.9, 98.9] 9.8 [84.0, 100.0] 18.7 191 [83.9, 100.0] 20.2 206

E4 30 93.4 92.6(92.8) 3.58 93.5(93.9) 4.53 91.3(91.7) 4.74
[85.2, 98.6] 13.4 [83.3, 100.0] 20.5 153 [80.0, 100.0] 27.0 201

†SN = true sensitivity at mouth level.
‡REM = MSEMult/MSEDB × 100
]REA = MSEAlbert/MSEDB × 100
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Table 7.4: Simulation results for specificity: K= 8, N = 100 with moderately
varying sensitivity αk and specificity βk around 90%, 95% respectively for each of
the four extensions (E0 corresponds to the basic DB approach). Prev represents
the prevalence at mouth level. All values are expressed in percentages.

Double binomial (E0) Multinomial Albert et al.

Ext Prev SP† Mean(Median)/ SD/ Mean(Median)/ SD/ RE
‡
M

Mean(Median)/ SD/ RE
]
A

95% Range MSE 95% Range MSE 95% Range MSE

E0 10 66.1 66.6(66.5) 4.33 66.4(66.3) 4.95 66.6(66.7) 4.58
[58.6, 75.7] 18.9 [57.0, 76.3] 24.6 130 [57.6, 75.8] 21.0 111

E1 10 61.2 61.1(61.2) 4.33 61.3(61.4) 5.12 61.3(61.6) 4.79
[52.7, 69.6] 18.8 [51.6, 71.4] 26.2 139 [52.0, 70.7] 23.0 122

E2 10 71.6 71.9(71.8) 4.40 72.0(72.2) 4.88 72.0(72.0) 4.39
[63.2, 80.6] 19.4 [62.5, 81.0] 24.0 123 [63.3, 80.8] 19.4 100

E3 10 65.7 65.3(65.3) 4.47 65.5(65.6) 4.92 66.1(66.0) 4.82
[57.0, 73.4] 20.1 [56.2, 74.7] 24.2 120 [56.6, 75.0] 23.6 117

E4 10 71.6 71.8(71.8) 4.27 71.7(71.8) 4.81 71.7(72.0) 4.78
[63.7, 80.6] 18.3 [61.9, 81.1] 23.1 126 [61.8, 80.6] 23.0 126

E0 30 66.5 66.2(66.4) 4.34 66(66.2) 5.82 67.8(68.0) 4.73
[57.6, 75.0] 18.9 [54.3, 77.0] 34.1 180 [58.2, 77.0] 24.1 128

E1 30 61.4 60.9(60.9) 4.49 61.4(61.4) 5.82 62.9(63.0) 4.94
[52.2, 70.1] 20.3 [50.0, 72.5] 33.9 167 [52.6, 72.1] 28.3 139

E2 30 71.9 71.1(71.1) 4.48 71.7(72.0) 5.54 66.1(66.0) 4.82
[62.3, 80.0] 20.6 [60.0, 82.6] 30.7 149 [56.6, 75.0] 23.6 115

E3 30 65.6 65.3(65.0) 4.43 65.5(65.3) 5.58 67.0(67.0) 4.78
[57.5, 74.5] 19.7 [55.2, 77.1] 31.2 158 [57.3, 76.0] 24.6 125

E4 30 71.5 71.9(71.8) 4.42 71.6(71.7) 5.57 72.9(72.7) 4.52
[63.9, 80.9] 19.7 [60.9, 82.4] 31.0 157 [63.4, 82.0] 22.4 114

†SP = true specificity at mouth level.
‡REM = MSEMult/MSEDB × 100
]REA = MSEAlbert/MSEDB × 100

The discrepancy measureD of the misclassification probabilities is given

in Table 7.5. More specifically, the measure D is calculated for each sim-

ulated scenario and descriptive statistics over the 1000 simulations are re-

ported. We observe that again the basic DB approach is the winner under

most scenarios, with the most important gain for the higher value of the

prevalence.

7.6.2.2 Second simulation study

Tables B.1 and B.2 (Appendix B) show the simulation results for a binomial

regression with equal and unequal probability of scoring Y = 0, 1, · · · ,K
in the validation data.

The simulation results indicate that when SDZ is relatively low, i.e.

when the precision of estimating the true regression coefficient in the data
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Table 7.5: Simulation results for misclassification probabilities: estimate (over
1000 simulation samples) of the discrepancy measure D =

∑∑
(πrs− prs)

2/(K+
1), where πrs is the true and prs the estimated misclassification probability over of
the four extensions (K = 8, N = 100; E0 corresponds to the basic DB approach).

Double binomial (E0) Multinomial Albert et al.

Quantile Quantile Quantile

Ext Prev Mean 25% 50% 75% Mean 25% 50% 75% Mean 25% 50% 75%

E0 10 9.3 7.8 8.4 9.8 17.2 15.0 16.3 17.9 10.4 7.1 12.2 12.3
E1 10 12.9 12.2 12.5 13.2 23.9 21.2 22.6 25.3 9.1 5.9 10.7 10.8
E2 10 17.5 14.9 16.4 18.9 25.0 22.5 23.9 26.0 9.1 6.3 10.7 10.9
E3 10 9.4 8.3 8.7 9.8 18.6 16.0 17.1 19.8 8.4 5.3 10.1 10.2
E4 10 9.3 7.6 8.5 10.1 15.1 12.2 14.0 16.4 8.6 6.4 9.9 10.0

E0 30 1.1 0.6 0.8 1.2 17.1 14.4 16.2 18.8 8.8 6.1 10.1 10.2
E1 30 1.4 1.1 1.2 1.5 18.3 15.3 17.2 20.5 8.1 5.6 9.2 9.4
E2 30 1.7 0.9 1.4 2.2 20.3 16.6 19.0 23.2 9.7 7.0 10.8 11.0
E3 30 1.3 0.8 1.1 1.5 18.9 16.0 17.8 20.8 10.1 7.3 11.3 11.5
E4 30 0.7 0.3 0.5 0.8 16.4 13.4 15.6 19.1 8.7 6.8 9.5 9.7

set without scoring errors is relatively low, then the DB approaches are

roughly equivalent (although practically always better than) to the multi-

nomial approach. In contrast, when the precision of estimating the true

regression is high, there is much gain in using the DB approaches as com-

pared to the multinomial method. Further, the multinomial method shows

a serious bias in estimating the regression coefficients when SDZ is high.

We also observe that the variability with which the parameters are esti-

mated with the DB approach does not depend on the marginal probability

distribution of Y. The same seems to be true for the multinomial approach.

However, the latter approach clearly suffers from computational difficulties

when the marginal probability of Y is not uniform. The results are some-

times dramatic when the validation study is a random sample of the main

study, see Table B.3.

Finally, we observe that when the correct extension is used the perfor-

mance of the DB approach is best. That is, when sampling is done under

Ex and estimation is done under Ex, then the MSE is the lowest. How-

ever, the performance of the basic DB approach is relatively close to the

extension, certainly in view of its difference with the multinomial approach.



7.7 Application to the Signal Tandmobielr study 147

7.7 Application to the Signal Tandmobielr study

7.7.1 Analysis of the validation data

In previous chapters the validation data were combined from the three

caries calibration exercises. Here we look at the validation data of the

first calibration based on ninety-two children. First we present results from

the analysis of the pooled validation data. Then we give results from the

analysis of the examiner-specific validation data.

7.7.1.1 Analysis of the pooled validation data

Table 7.6: Overall misclassification table for dmft4,5, column= benchmark
examiner, row= (pool of) dental examiner(s)

Y
Y ∗ 0 1 2 3 4 5 6 7 8
0 32 1 3 0 0 0 0 0 0 36
1 2 13 2 1 0 0 0 0 0 18
2 0 1 5 2 3 0 1 0 0 12
3 0 0 2 4 1 1 1 0 0 9
4 0 0 0 0 2 1 2 0 0 5
5 0 0 0 0 1 3 1 0 0 5
6 0 0 0 0 0 1 2 2 0 5
7 0 0 0 0 0 0 0 1 1 2
8 0 0 0 0 0 0 0 0 0 0

34 15 12 7 7 6 7 3 1 92

In Table 7.6 the observed misclassification table for dmft4,5 with respect

to the benchmark examiner is given. Clearly, this is a very sparse table. In

Table 7.7 scoring caries experience by the dental examiners on tooth level

is compared with the scores of the benchmark examiner. From this table

we can obtain α̂Z = 133/154 = 0.86 and β̂Z = 418/433 = 0.97. These

values are plugged in (7.5) together with K = 8 and yields the estimated

misclassification probabilities for the basic DB method. Combined with the

marginal totals from Table 7.6 the estimated frequencies of misclassification
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are obtained. The fitted table, shown in Table 7.8, indicates that the

expected frequency of cell (0, 0) under the basic DB method is 26 which is

about 25% lower than the observed frequency.

Table 7.7: Misclassification table at tooth level, column= benchmark ex-
aminer, row= (pool of) dental examiner(s)

Z
Z∗ 0 1
0 418 21 439
1 15 133 148

433 154 587

Table 7.8: Expected misclassifications (probability of misclassification
×100) of dmft4,5 based on the observed sensitivity (α̂Z = 133/154 = 0.86)

& specificity (β̂Z = 418/433 = 0.97). Column = benchmark examiner, row
= dental examiner(s)

Y
Y ∗ 0 1 2 3 4 5 6 7 8
0 26(75) 2(11) 0( 2) 0( 0) 0( 0) 0( 0) 0( 0) 0( 0) 0( 0) 28
1 7(22) 10(70) 2(19) 0( 4) 0( 1) 0( 0) 0( 0) 0( 0) 0( 0) 19
2 1( 3) 3(17) 8(64) 0(26) 1( 7) 0( 2) 0( 0) 0( 0) 0( 0) 15
3 0( 0) 0( 2) 2(13) 1(59) 2(32) 1(11) 0( 3) 0( 1) 0( 0) 8
4 0( 0) 0( 0) 0( 1) 2(10) 4(53) 2(35) 1(15) 0( 5) 0( 1) 8
5 0( 0) 0( 0) 0( 0) 3( 1) 0( 7) 3(47) 3(38) 1(18) 0( 7) 7
6 0( 0) 0( 0) 0( 0) 1( 0) 0( 0) 1( 5) 3(41) 1(39) 0(22) 5
7 0( 0) 0( 0) 0( 0) 0( 0) 0( 0) 0( 0) 0( 3) 1(36) 1(39) 2
8 0( 0) 0( 0) 0( 0) 0( 0) 0( 0) 0( 0) 0( 0) 0( 1) 0(31) 0

34 15 12 6 7 7 7 3 1 92

In Figure 7.1 the observed tooth-specific specificities and sensitivities

are plotted as a function of the dmft4,5-index. From this figure there is

some evidence that the specificity and the sensitivity depend on the ac-

tual value of the dmft4,5-index, namely they are higher for dmft4,5 = 0

and 1. A possible explanation for the dependence of sensitivity and speci-

ficity on dmft4,5, is that when there is (almost) no caries experience in

the mouth caries might be easier to distinguish from no-caries, while in a
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Figure 7.1: Tooth-specific specificity and sensitivity (+ 95% CI) as a
function of dmft4,5. Open (filled) circles represent the observed specificities
(sensitivities). The lines correspond to fitted values from model (7.12), the
solid lines represent specificity and the dashed lines sensitivity. The inner
lines represent the average curve, the outer lines show the 95% pointwise
boundary values

mouth with considerable caries experience the dental examiner might be

distracted somewhat easier. We fitted a logistic regression model predicting

the scoring behavior of the examiners as a function of the true score and

dmft4,5-index:

logit(Pr(Z∗
k = 1|Zk,dmft4,5)) =

− 4.2 + 6.3Zk + 0.43dmft4,5 − 0.45Zk × dmft4,5, (7.11)
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where we have omitted the subscript k in dmft4,5 for convenience. This

model actually represents two models:

logit(α̂k) = 2.6− 0.14× dmft4,5,

logit(β̂k) = 4.1− 0.45× dmft4,5.
(7.12)

Model (7.12) corresponds to extension E2. The regression coefficient (SE)

indicates that the specificity decreases with dmft4,5, but the negative de-

pendence of the sensitivity on dmft4,5 is not so pronounced. Hence, we used

model (7.12) to provide the pooled correction terms for the main model.

Table 7.9: Expected misclassifications (probability of misclassification
×100) of dmft4,5 with specificities & sensitivities estimated from model
(7.12). Column = benchmark examiner, row = dental examiner(s)

Y
Y ∗ 0 1 2 3 4 5 6 7 8
0 30(88) 1( 7) 0( 1) 0( 0) 0( 0) 0( 0) 0( 0) 0( 0) 0( 0) 31
1 4(11) 12(78) 2(14) 0( 2) 0( 1) 0( 0) 0( 0) 0( 0) 0( 0) 18
2 0( 1) 2(14) 8(68) 1(20) 0( 5) 0( 1) 0( 0) 0( 0) 0( 0) 11
3 0( 0) 0( 1) 2(16) 4(59) 2(24) 1( 9) 0( 3) 0( 1) 0( 1) 9
4 0( 0) 0( 0) 0( 1) 1(17) 4(50) 2(28) 1(13) 0( 7) 0( 4) 8
5 0( 0) 0( 0) 0( 0) 0( 2) 1(17) 3(43) 2(32) 1(20) 0(14) 7
6 0( 0) 0( 0) 0( 0) 0( 0) 0( 3) 1(16) 3(37) 1(35) 0(29) 5
7 0( 0) 0( 0) 0( 0) 0( 0) 0( 0) 0( 3) 1(13) 1(30) 1(34) 3
8 0( 0) 0( 0) 0( 0) 0( 0) 0( 0) 0( 0) 0( 2) 0( 7) 0(18) 0

34 15 12 6 7 7 7 3 1 92

Table 7.9 shows the estimated misclassification probabilities Pr(Y ∗
2 =

r|Y2 = s) × 100 and the estimated frequencies using model (7.12). Our

estimated frequencies are now closer to the observed values than for the

basic DB method, especially for the small (true) values of dmft4,5. The

value of D × 100 for the extension E2 and the multinomial approach are

15.4 and 20.3, respectively.
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7.7.1.2 Analysis of the examiner-specific validation data

We fitted a logistic regression model predicting the scoring behavior of each

examiner as a function of the true score and dmft4,5:

logit(α̂jk) = â0j + â1j × dmft4,5,

logit(β̂jk) = b̂0j + b̂1j × dmft4,5.
(7.13)

where j = 1, · · · , 16 indexes the examiner. The regression coefficients in

the logistic model (7.13) are treated as random examiner effects and are

assumed to follow independent normal distributions, i.e. atj ∼ N(µat , σ
2
at

),

btj ∼ N(µbt
, σ2

bt
) for t = 0, 1 and j = 1, · · · , 16. The hyperparameters are

assigned vague prior distributions, i.e. µat , µbt
∼ N(0, 106) and σ2

at
, σ2

bt
∼

IG(103, 103) for t = 0, 1 and j = 1, · · · , 16.

Table 7.10: Posterior summary statistics of the hyperparameters of the random
coefficients from the examiner-specific logistic regression (7.13).

Estimate 95% CIa Estimate 95% CIa

(SE) 2.5% 97.5% (SE) 2.5% 97.5%
µa0

4.210(0.337) 3.583 4.904 σ2
a0

0.058(0.128) 0.001 0.373
µa1

−0.425(0.122) −0.658 −0.178 σ2
a1

0.033(0.051) 0.001 0.163
µb0 2.096(0.527) 1.100 3.085 σ2

b0
0.080(0.171) 0.001 0.527

µb1 −0.012(0.110) −0.215 0.205 σ2
b1

0.008(0.012) 0.001 0.038
aCI = Credible interval.

The posterior mean estimate of the random examiner-slopes (a1j
′s, b1j

′s)

together with their 95% credible interval are displayed in Figures 7.2. It

is evident that the specificity for majority of the examiners depend on the

actual value of the dmft4,5-index, but the dependence of the sensitivity on

dmft4,5 is not significant for all examiners. Table 7.10 below shows the

posterior summary statistics of the hyperparameters of the random coeffi-

cients. The posterior mean estimate of µ = (µa0 , µa1 , µb0 , µb1)
′ is similar to

the estimated regression coefficients of the logistic model (7.12).
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Figure 7.2: Examiner-specific coefficients (+ 95% credible interval) from
model (7.13). The solid and the dashed lines represent 95% credible interval
of â1j’s and b̂1j’s, respectively. Open (filled) circles represent the posterior

mean of â1j’s (b̂1j’s).

7.7.2 Analysis of the main data

7.7.2.1 Fitting the corrected distribution of the dmft4,5-index

The observed prevalence is 55%. To estimate the true prevalence of caries

experience we need to assume a model for dmft4,5 and correct for misclas-

sification using either of the three methods discussed above. The ZIBB

distribution gave a good fit to the observed dmft4,5 so that our calculations

are based on this distribution.

As can be seen in Figure 7.3 the three pooled correction mechanisms

do not give very different results for the model without covariates. The

corrected estimates of prevalence (and 95% credible interval) for the three

correction methods are: (a) using the multinomial method: 60.1% (54.2 –

66.7), (b) using Albert et al.’s method: 57.8% (55.4 – 60.7) and (c) using

extension E2: 59.4% (55.5 – 64.4). The estimated prevalence from both
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Figure 7.3: Distribution of the dmft4,5-index among 7-year old Flemish
children: observed values (�); and fitted values from the pooled corrected
ZIBB model combined with Albert et al.’s (�), the DB under extension E2
(continuous line) and multinomial (broken line) misclassification model.

methods are quite close, but the estimate of E2 presents less variability

than the multinomial estimate.

7.7.2.2 Regression analysis of the main data with correction

Table 7.11 shows the results from the pooled corrected ZIBB regression

models based on the three approaches. First, observe that the fitted value

for p is much lower for the multinomial and the DB (extension E2) method

than for the method proposed by Albert et al.. This implied that no co-

variates turned out to be important to predict the extra-zeros in the first

two approaches.

From Table 7.11 we observe that the effects of the covariates are roughly

similar to that of the model without correction, except that the effect of

taking in-between-meals vanishes for the multinomial correction, and, prac-
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Table 7.11: Posterior estimates of the pooled corrected ZIBB regression
model fitted to the dmft4,5 (using WinBUGS Program 7.3).

Double binomial Multinomial Albert et al.
Parameter Estimate Estimate Estimate

SE SE SE
Intercept −1.592(0.143) −1.779(0.333) −1.274(0.194)
Gender (girl) 0.053(0.097) 0.056(0.223) 0.061(0.107)
Age (years) 0.337(0.081) 0.477(0.164) 0.348(0.088)
Brushing frequency (< 2) 0.111(0.118) 0.174(0.256) 0.102(0.124)
Age start brushing (years) 0.157(0.043) 0.237(0.099) 0.166(0.046)
Systemic fluoride (yes) −0.465(0.086) −0.683(0.230) −0.477(0.091)
Sugary drinks (yes) 0.388(0.088) 0.519(0.229) 0.430(0.108)
Between meals (> 2) 0.171(0.080) 0.212(0.169) 0.180(0.087)

p 0.004(0.017) 0.128(0.161) 0.143(0.103)
τ 1.302(1.124) 1.143(3.810) 0.769(0.153)

aβ0 −4.128(0.417)
aβZ 6.655(0.791)
aβdmft4,5

0.453(0.130)
aβZ∗dmft4,5

−0.589(0.180)

bα0 −0.088(0.438)
bα1 −2.382(0.496)
bα2 −0.656(0.226)

aCoefficients of the logistic regression model (7.11) from the corrected model.
bCoefficients of the 3p−asymmetric Albert et al. method from the corrected

model.

tically all regression coefficients increased in absolute value. The increase

(in absolute value) is the highest for the multinomial correction method.

With respect to the variability of the estimated regression coefficients we

observe that for all corrected regression coefficients, the 95% credible in-

terval increased in size with respect to the model without correction. On

the other hand, the 95% credible interval increased in size with respect to

the uncorrected model. But, the median increase in size is about 1.5 for

extension E2, while for the Albert et al. and multinomial correction this

increase is about 1.8 and 2.5, respectively.

The regression coefficients from the beta-binomial part of the ZIBB
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regression model have the same interpretation as for the negative binomial

part in the ZINB regression model. For the degenerate part (explaining

0) only age at start of brushing was important. However, we omitted this

variable from the model to enhance simple interpretation of the model.

Table 7.12: Posterior estimates of the examiner-specific corrected ZIBB
regression model in combination with double binomial misclassification
model predicting the dmft4,5 (using WinBUGS Program 7.4).

Parameter Estimate CIa %
(SE) 2.5% 97.5%

without (x, y)−co-ordinate terms

Intercept −1.581(0.134) −1.824 −1.295
Gender (girl) 0.050(0.075) −0.099 0.197
Age (years) 0.330(0.080) 0.174 0.488
Brushing frequency (< 2) 0.109(0.097) −0.082 0.298
Age start brushing (years) 0.159(0.033) 0.098 0.228
Systemic fluoride (yes) −0.457(0.072) −0.599 −0.318
Sugary drinks (yes) 0.387(0.079) 0.238 0.550
Between meals (> 2) 0.173(0.072) 0.031 0.314
p 0.049(0.074) 0.000 0.207
τ 0.963(0.188) 0.630 1.372

with (x, y)−co-ordinate terms

Intercept −1.454(0.178) −1.809 −1.110
x-ordinate 0.217(0.048) 0.126 0.315
y-ordinate −0.044(0.039) −0.121 0.031
Gender (girl) 0.053(0.084) −0.112 0.222
Age (years) 0.385(0.090) 0.214 0.562
Brushing frequency (< 2) 0.129(0.110) −0.088 0.345
Age start brushing (years) 0.186(0.039) 0.112 0.265
Systemic fluoride (yes) −0.491(0.080) −0.651 −0.339
Sugary drinks (yes) 0.434(0.089) 0.260 0.609
Between meals (> 2) 0.130(0.079) −0.025 0.289

p 0.177(0.085) 0.000 0.305
τ 0.822(0.201) 0.526 1.317

aCI = Credible interval.
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The results from examiner-specific correction in combination with dou-

ble binomial misclassification model are shown in Table 7.12. The examiner-

specific correction have standard errors that are larger than those corre-

sponding to pooled correction. The regression coefficients have the same

interpretation as those of the pooled correction, except that the East-West

gradient remains significant for the model including (x, y)−co-ordinate.

However, there was no significant gain in terms of overdispersion after the

correction, presented by τ̂ . The excess of caries-free children (p̂) is now

much larger for examiner-specific correction (5% and 18% for the model

without and with (x, y)−co-ordinate, respectively) compared to the pooled

estimate (<1%). The validation data sets need to be large to avoid such

changes in the parameter estimates.

7.8 Discussion

Correction for misclassification can only work efficiently if the correction

terms are estimated with high precision. This necessitates that the val-

idation study is large enough. To increase the efficiency with which the

misclassification probabilities are estimated some modeling of these proba-

bilities seems necessary. In this chapter, we have suggested to describe the

misclassification process in a simple statistical way by the double binomial

method. The gain in efficiency but also the decrease in bias, compared

to multinomial modeling, can be large if assumptions A1-A3 are roughly

satisfied. We admit that it is not clear how often these assumptions will

hold in practice. But from the simulations we can conclude that moderate

violation of these assumptions seems of less importance. Further, we have

shown that our approach can easily be extended when the assumptions do

not hold.



CHAPTER

8 General Misclassification Model using

Simulation-Extrapolation

8.1 Introduction

Models for adjusting for measurement error can be grouped into two classes,

namely functional and structural models, as described in Chapter 1. In this

chapter we adopt a functional modeling approach whereby no distributional

assumptions are made about the misclassified data. In particular, we apply

the SIMEX idea to the case of misclassification. We show that it is a very

general method and can be applied to misclassification of the response, of

the discrete regressors or to both.

In the previous chapters we analyzed the prevalence and degree of caries

experience at child level, i.e. with a single summarized outcome for each

child. In this chapter, we model the prevalence of caries experience at

tooth level, implying multiple observations from different teeth for each

child. But, we are also interested in assessing the geographical trend in the

prevalence of caries experience in Flanders for the tooth level dmft-index,

taking into account the various risk factors.

157
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8.2 SIMEX for Measurement Error in Continuous Data

The SIMEX (SIMulation EXtrapolation) method is a general method to

correct for measurement error via simulation. This approach is applica-

ble when the measurement error variance is known or can be estimated

(accurately), e.g., from validation data or replicated measurements. The

SIMEX method was first suggested by Cook and Stefanski (1994) and fur-

ther developed by Stefanski and Cook (1995) and Carroll and Küchenhoff

(1995). This method is designed for estimating a parameter β in a general

regression problem with additive measurement error in one regressor. An

estimator, which is consistent when all variables are measured without er-

ror, is assumed to be available. This estimator is usually called the naive

estimator, when it is used in spite of measurement error.

The SIMEX method uses the relationship of the size of measurement

error, i.e. the measurement error variance σ2
u, to the bias of the effect

estimators when ignoring measurement error. In other words, SIMEX esti-

mator is obtained by adding additional measurement error to the observed

data in a resampling stage, establishing a trend of the induced bias versus

the variance of the added measurement error, and then extrapolating back

to the case of no measurement error. So we define the function

σ2
u −→ β∗(σ2

u) =: G(σ2
u),

whereby β∗ is the limit to which the naive estimator converges as the sample

size n → ∞. Consistency then implies that G(0) = β and in many cases

G(σ2
u) declines in absolute value when σ2

u increases. G(σ2
u) corresponds

to the attenuation of the estimated effect induced by measurement error.

The SIMEX method is based on a parametric approximation of the function

G(σ2
u) ≈ G(σ2

u,Γ), e.g. for a quadratic approximation G(σ2
u,Γ) = γ0+γ1σ

2
u+

γ2(σ
2
u)2.

The idea behind the SIMEX method is best illustrated in a simple

linear measurement error regression model. Suppose that the regression
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model of interest is EY |X = β0 +βxX and that X∗ = X+σuU rather than

X, is observed where U has mean zero and variance 1, and the measure-

ment error variance σ2
u is known. As seen in Chapter 1, the ordinary least

squares regression does not estimate βx but instead βx∗ = {σ2
x/(σ

2
x+σ2

u)}βx,

where σx denotes the variance of X. Suppose that one repeatedly adds,

by simulation, additional error with mean zero and variance σ2
uλ to X∗

resulting in X∗∗, for fixed λ ≥ 0, so that the variance of the X∗∗ is

(σ2
u + σ2

uλ) = (1 + λ)σ2
u. Then, an ordinary least squares regression of

Y on X∗∗ consistently estimates

β∗x∗(λ) =
σ2

x

σ2
x + (1 + λ)σ2

u

βx.

Observe that β∗x∗(−1) = βx, a case of no measurement error. The idea is

therefore to fit a regression model of β∗x∗(λ) against λ, and then extrapolate

back to λ = −1.

In general, for a given data set, the method adds, by simulation, extra

measurement error with variance λσ2
u to the error prone variable. The

resulting measurement error is then (1+λ)σ2
u leading to an estimator which

converges to G[(1 + λ)σ2
u)] for naive estimation. Repeating this simulation

for a fixed grid of λs yields an estimator Γ̂ of the parameters of G(σ2
u,Γ)

e.g. by least squares. In the extrapolation step the function G(σ2
u,Γ) is

extrapolated back to 0. The SIMEX estimator is defined by G(0, Γ̂), i.e.

setting λ = −1 in G[(1+λ)σ2
u)]. If G(σ2

u,Γ) is a good approximation to the

true function G(σ2
u) then the SIMEX procedure is approximately consistent.

This has been verified in many cases. For the variance estimation three

methods are available: Delta method (Carroll et al., 1996), jackknife type

(Stefanski and Cook, 1995) and the bootstrap.
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8.3 Misclassification SIMEX for Measurement Error

in Discrete Data

We consider a general regression problem with a response Y and with a

discrete regressor X and further correctly specified regressors Z. Usually

misclassification error is characterized by a k × k misclassification matrix

Π, which is defined in Section 1.4.2.1. The parameter of interest is β, with

the limit of the naive estimator denoted by β∗. The existence of β∗ and

its determination can be assumed by the theory of misspecified models

(see e.g. White, 1982), depending on the model and on the misclassifica-

tion matrix. Therefore we denote it as β∗(Π). Further we assume that

β∗(Ik×k) = β, i. e. that the estimator is consistent when there is no mis-

classification (represented by identity matrix Ik×k).

For SIMEX we define the function (λ ≥ 0)

λ −→ β∗(Πλ), (8.1)

whereby Πλ := ΞΛλΞ−1, Λ is a diagonal matrix of eigenvalues and Ξ the

corresponding matrix of eigenvectors. Note that for λ = n, an integer,

Π1+n = Πn ∗ Π and that Π0 = Ik×k. Expression (8.1) allows the SIMEX

method to be applied to the misclassification problem, in this case we will

denote the method as MC-SIMEX. Namely, if X∗ has misclassification Π

in relation to matrix X and X∗∗ is related to X∗ by the misclassification

matrix Πλ then X∗∗ is related to X by the misclassification matrix Π1+λ,

when the two misclassification mechanisms are independent. For the func-

tion (8.1) to be well–defined we need to ensure the existence of Πλ and that

it is a misclassification matrix for λ ≥ 0.

In the 0− 1 case this is equivalent to det(Π) = π00 + π11 − 1 > 0. This

is fulfilled, if π00 > 0.5 and π11 > 0.5, which should hold for any useful

measurement of X, see Gastwirth (1987). In the case of three or more

categories a possible problem is that some of the entries of Πλ are negative
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or that Π has negative eigenvalues. We discuss these problems in Appendix

A.3 and give concrete examples in Section 8.4.

The MC-SIMEX algorithm consists in applying the misclassification

matrix Πλ to the misclassified variable in the simulation step. For the

extrapolation step of the MC-SIMEX procedure we need a parametric ap-

proximation of (8.1):

λ −→ β∗(Πλ) ≈ G(1 + λ,Γ).

In detail, the MC-SIMEX procedure consists of a simulation and an ex-

trapolation step. Given data (Yi, X
∗
i , Zi)

n
i=1 we denote the naive estimator

by β̂na[(Yi, X
∗
i , Zi)

n
i=1].

8.3.1 Simulation step

For a fixed grid of values λ1, . . . , λm, (≥ 0) we simulate B new pseudo data

sets by

X∗
b,i(λk) := MC[Πλk ](X∗

i ), i = 1, . . . , n; b = 1, . . . B; k = 1, . . . ,m.

where the misclassification operation MC[M ](X∗
i ) denotes the simulation

of a variable given X∗
i with misclassification matrix M . Further, we define

λ0 = 0, with β̂(λ0) = β̂na [(Yi, X
∗
i , Zi)

n
i=1] the estimate of β without further

measurement error and

β̂(λk) := B−1
B∑

b=1

β̂na

[
(Yi, X

∗
b,i(λk), Zi)

n
i=1

]
, k = 1, . . .m. (8.2)

8.3.2 Extrapolation step

Note that β̂(λk) is an average over naive estimators corresponding to data

with misclassification matrix Π1+λk . The estimator β̂ is obtained by fit-

ting a parametric model G(1 + λ,Γ) by least squares on [1 + λk, β̂(λk)]
m
k=0,
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yielding an estimator Γ̂. The MC-SIMEX estimator is then given by

β̂SIMEX := G(0, Γ̂), (8.3)

which corresponds to λ = −1. If β is a vector, the MC-SIMEX estimator

can be applied on each component of β separately. The application of

the MC-SIMEX procedure for a misclassified response Y or more complex

misclassification settings is defined in the same way.

The estimator β̂SIMEX is consistent when the extrapolation function is

correctly specified, i. e. β∗(Πλ) = G(1 + λ,Γ), for some parameter vector

Γ. However, this is often not the case. When G(1 + λ,Γ) is a good ap-

proximation of β∗(Πλ) then approximate consistency will hold. To find a

suitable candidate for the function G(1 + λ,Γ) we exploit the relationship

between β∗ and the misclassification parameter λ in the next section for

some special cases.

8.4 Calculation of the extrapolation function

We start with the regressor or the response measured without error and

evaluate the effect of misclassification based on the matrix Πλ on the esti-

mated regression coefficients using the naive method. Hence in contrast to

the previous section where we started with X∗ and needed to take λ = −1

to find the MC-SIMEX estimate; here we start with X so that λ = 0 results

in the MC-SIMEX estimate because we now work with G(λ,Γ).

8.4.1 Linear model

The simplest case is a linear model with one misclassified binary covariate

X ∈ {0, 1}
E(Y |X) = β0 + β1X. (8.4)
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Here, β1 is just the difference E(Y |X = 1) − E(Y |X = 0), i. e. this is the

situation of a two sample t-test.

Assuming that we observe X∗, which is related to X by the misclassi-

fication matrix Π, and denoting the marginal probability Pr(X = 1) by πx

we get

E(Y |X∗) = E[E(Y |X)|X∗] = E(β0 + β1X|X∗) = β0 + β1 E(X|X∗)

=β0 + β1X
∗ Pr(X = 1|X∗ = 1) + β1(1−X∗) Pr(X = 1|X∗ = 0)

=β∗0 + β∗1X
∗,

where it can be shown that

β∗0 = β0 + β1
(1− π11)πx

π00 − δπx
and

β∗1 = β1
δ (1− πx)πx

(1− π00 + δ πx) (π00 − δ πx)
, (8.5)

with δ = det(Π) = π00 + π11 − 1.

Since we are interested in the effect of misclassification depending on the

exponent of the misclassification matrix we have to evaluate Πλ. To ensure

the existence of Πλ, we assume that det(Π) > 0. This is a reasonable

assumption, which is e.g. true, if π00 > 0.5 and π11 > 0.5. Then the matrix

Πλ is:

Πλ = ΞΛΞ−1 (8.6)

where

Ξ =

(
1−π11
1−π00

1

1 −1

)

is a matrix of the eigenvectors spanning the misclassification matrix Π, and

Λ =

(
1 0

0 (π00 + π11 − 1)λ

)
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is the diagonal matrix of the eigenvalues. We can show that expression

(8.6) simplifies to

Πλ =
1

1− δ

(
1− π11 + (1− π00)δ

λ (1− π11)(1− δλ)

(1− π00)(1− δλ) 1− π00 + (1− π11)δ
λ

)
. (8.7)

To evaluate the function λ −→ β∗1(Πλ) we have to insert the components

of Πλ in (8.5). For example, when π00 = π11 and πx = 0.5, then β∗1(λ) =

β1(2π11 − 1)λ and when π00 = 1, then β∗1(λ) = β1
1−πx

1−πxπλ
11

. In Figure

8.1(a) we plot the function β∗1(λ) for different values of the misclassification

matrix, clearly demonstrating the attenuating effect of measurement error,

here indicated by λ.

8.4.2 Estimation of a probability

The problem of estimating probability Pr(Y = 1) can be treated as a binary

regression model without covariates:

Pr(Y = 1) = g−1(β0), (8.8)

where g is the link function, e.g. logit, probit etc. Instead of Y we observe

Y ∗ with misclassification matrix Π. Then

Pr(Y ∗ = 1) = π11 Pr(Y = 1) + (1− π00)(1− Pr(Y = 1)). (8.9)

Solving (8.9) for Pr(Y = 1) yields the ML estimator when Pr(Y ∗ =

1) is estimated from the data by the relative frequency and π00 and π11

are known or estimated from validation data. The properties of the ML-

estimator are well known (see e.g. Gastwirth (1987) and Stefanski (1992)).

To use the MC-SIMEX approach we define β∗0 := g [Pr(Y ∗ = 1)] and we get

β∗0(λ) = g
[
π

(λ)
11 g

−1(β0) + (1− π(λ)
00 )(1− g−1(β0))

]
. (8.10)
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(a) Linear regression with misclassified X. (b) Logistic regression with misclassified Y.
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(d) Logistic regression with misclassified X. (e) Ordinal logistic regression with

misclassified Y.

Figure 8.1: Limit of the naive estimator (y−axis) depending on the exponent
λ of the misclassification matrix Π. In (c) the true parameter is β1 = 2, while
in all other plots the true regression parameter is β1 = 1. In the first four plots
the misclassification matrix is given by π00 = π11 = 0.8 (solid line) and π00 =
0.7, π11 = 0.9 (dotted line). In the last plot, the misclassification matrix is given
by πii = 0.8 and πij=0.1 (i 6= j).
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Here, π
(λ)
ij are the components of the matrix Πλ, see (8.7). In Figure 8.1(c)

we display the function β0(λ) for the logistic link and for the case of β0 = 2,

which relates to Pr(Y = 1) = 0.88.

8.4.3 Binary regression with a misclassified response

We now explore the case of a binary regression with a misclassified response:

Pr(Y = 1|X) = g−1(β0 + β1X).

When we observe Y ∗ with misclassification matrix Π then we know from

Section 4.4 that the observed regression is

Pr(Y ∗ = 1|X) =(1− π00) + (π00 + π11 − 1)g−1(β0 + β1X)

and that the observed model is not logistic, but can be written as a GLM

with a modified link function. This yields the following approximations of

the function β∗(λ) (Section 4.4.2):

For the identity link:

β∗1 = δ(λ)β1.

For the logistic link

β∗1 =
δλ exp(β0)(

(1− π(λ)
01 ) exp(β0) + π

(λ)
10

)(
π

(λ)
01 exp(β0) + 1− π(λ)

10

)β1.

In the case of a binary X, β is simply estimated by the log odds ratio.

Therefore β∗1 can be calculated exactly. In Figure 8.1(b) we display the

function β∗1(λ) for different values of the misclassification matrix and β0 = 0

and β1 = 1.
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8.4.4 Logistic regression with a misclassified binary covariate

In simple logistic regression with a misclassified binary covariate, which cor-

responds to the case of a 2× 2 table, we are able to calculate the observed

odds ratios by the matrix method (Section 1.4.2.2) when the marginal prob-

abilities are given. In Figure 8.1(d) we give the result for one particular

example.

8.4.5 Misclassification of a response with three categories

We explore the case of an ordinal response variable with three categories

(k = 1, 2, 3) with a single covariate. The cumulative logit model, see Agresti

(1984), is given by

Pr(Y ≤ k | X) = G(αk + βX), k = 1, 2, 3, (8.11)

where αk are the threshold parameters and G(t) = [1 + exp(−t)]−1. As-

suming that Y is misclassified with the 3×3-matrix Π we can calculate the

observed model by

Pr(Y ∗ ≤ 1 | X) =π11G(α1 + βX) + π12[G(α2 + βX) −G(α1 + βX)] +

π13[1−G(α2 + βX)]

Pr(Y ∗ ≤ 2 | X) = Pr(Y ∗ ≤ 1 | X) + π21G(α1 + βX)+

π22[G(α2 + βX)−G(α1 + βx)] + π23[1−G(α2 + βX)]

To find the vector γ∗ := (α∗
1, α

∗
2, β

∗), the Kullback Leibler distance from

the observed model to model (8.11) has to be minimized. This yields the

following system of equations to be solved:
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∫
Z ′DΣ−1

(
Pr(Y ∗ = 1|x)−G1

Pr(Y ∗ = 2|x)− (−G1 +G2)

)
dfx = 0,

with

Z =

(
1 0 x

0 1 x

)
,

D =

(
G1(1−G1) −G1(1−G1)

0 G2(1−G2)

)
,

Σ =

(
G1(1−G1) −G1G2

−G1G2 G2(1−G2)

)
,

Gi := G(α∗
i + β∗x).

In Figure 8.1(e) we give the function β∗(λ) for a special setting with α1 =

1, α2 = 2, β = 1. Here X is assumed to be binary, which reduces the above

integral to a sum. The results are similar in other settings. In principle the

result can be well approximated by using a discrete distribution for X.

8.4.6 Consequences for the extrapolation function

In all cases we explored, the extrapolation function was monotonic in all pa-

rameters. The function has a curvature which should be well approximated

by the quadratic extrapolation function, see Figure 8.1. In some simple

cases the function is exponential in λ, which is also approximately true in

more complicated cases. Therefore, we also use a log linear extrapolation

function GLOG(λ) := exp(γ0+γ1λ). The quadratic and linear extrapolation

functions are given by GQ(λ,Γ) := γ0 + γ1λ+ γ2λ
2 and GL(λ) := γ0 + γ1λ,

respectively.
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8.5 Variance estimation of βSIMEX

Since the methods of Carroll et al. (1996) and Stefanski and Cook (1995)

are based on expansions where the additivity of the measurement error is

essential, they do not simply apply to the variance estimation in the MC-

SIMEX approach. However, the variance estimation of the approach of

Stefanski and Cook (1995) showed good simulation results, so we use it for

our analysis in our example. It is described in Appendix B and will be

referred to VST with corresponding standard error SEST =
√

VST.

Another approach is the application of the bootstrap. It allows to take

the uncertainty about the misclassification matrix into account. This can

be done by a two stage bootstrap procedure: In the first step the misclassi-

fication matrix is estimated by a bootstrap sample from a validation study

or by a parametric bootstrap step. Then the MC-SIMEX procedure is done

on a bootstrap sample from the main data using the misclassification ma-

trix from the first step. This is repeated in the usual way to find bootstrap

variances and bootstrap confidence intervals. A 95% bootstrap confidence

interval for β is computed as β̂±1.96·ŜEb(β̂), where ŜEb(β̂) is the estimated

standard deviation of β̂ from bootstrap samples. Note that this approach

is rather time consuming, since MC-SIMEX has to be calculated for every

bootstrap sample.

8.6 Simulation Study

8.6.1 Simulation study set up

The MC-SIMEX procedure is evaluated for different settings having a

rather high probability of misclassification (π00 = 0.8, π11 = 0.8 and π00 =

0.9, π11 = 0.7). In the case of a binary response with misclassification,

we compared MC-SIMEX estimates to the estimates from the maximum

likelihood (ML) approach of Neuhaus (1999). Whereas in the case of a mis-

classified binary regressor we compared the MC-SIMEX estimates to the
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estimates from the matrix method (Matrix) presented in Section 1.4.2.2.

We focussed on logistic regression and considered the following cases that

may be anticipated to occur in practice:

A. Misclassified binary response Y ∗ and a binary or a continuous covari-

ateX. The MC-SIMEX estimates are compared to the ML estimates.

B. Correctly measured binary response Y and a binary misclassified co-

variate X∗ with and without an additional correctly measured con-

tinuous confounder variable Z. The MC-SIMEX estimates are com-

pared to the matrix method estimates for the case without the con-

founder.

C. Correctly measured binary response Y with differential misclassifi-

cation in a binary covariate X∗ dependent on Y . The MC-SIMEX

estimates are compared to the matrix method estimates.

D. Misclassification both in a binary response Y ∗ and in a binary covari-

ateX∗ with and without an additional correctly measured continuous

confounder Z.

We performed 200 simulations each time with a sample size of 1000. One

motivation for this large sample size is that correction for measurement

error is usually done for large epidemiological studies. We generated the

true binary covariate X from a Bernoulli distribution with Pr(X = 0) =

Pr(X = 1) = 0.5, whereas the confounder variable Z is generated from a

normal distribution with mean equal to 0.5 for X = 0 or −0.5 for X = 1,

and variance 1. The continuous covariate in case A is randomly drawn

from a standard normal distribution. The true response is generated as a

Bernoulli random variable with Pr(Y = 1) = 1/ (1 + exp(−β0 − βXX)) for

cases A & C, or Pr(Y = 1) = 1/ (1 + exp(−β0 − βXX − βZZ) for cases

B & D. We apply a misclassification operation (see Section 8.3.1) on Y

and X to obtain the misclassified variables Y ∗ and X∗, respectively. Note
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that for Case C (differential misclassification) the misclassification can be

represented by a 4× 4 matrix, i.e.

Π =




π000 π001 0 0

π010 π011 0 0

0 0 π100 π101

0 0 π110 π111



,

where πijk = Pr(X∗ = j|X = k, Y = i); i, j, k = 0, 1. The top-left and the

bottom-right blocks correspond to misclassification of X for Y = 0 and for

Y = 1, respectively.

We calculated the MC-SIMEX estimator for the three extrapolation

functions (linear, quadratic & log-linear), the naive estimator and the ‘true’

estimator using the (unobserved) benchmark variable. The true estimator is

obtained by regressing the correctly measured Y on the correctly measured

X (and/or Z). The MC-SIMEX procedure was performed with B = 100

(Section 8.3.1). Hence, for each of the 200 simulations the B = 100 rep-

etitions result in an extrapolated point and a (Stefanski and Cook, 1995)

variance estimate for each parameter. Hereby, one can calculate the mean

of the 200 point estimates, and the mean of the 200 variance estimates VST

and hence the standard error SEST.

8.6.2 Simulation results of MC-SIMEX method

The simulation results indicate that our method leads to substantial re-

duction of bias compared to the naive estimator. In the tables below, the

MC-SIMEX standard error is given by SE = SEST =

√
1

200

200∑
i=1

VST,i, where

VST,i is the Stefanski and Cook (1995) variance estimate of the ith simula-

tion; whereas for True model, Naive model and ML (maximum likelihood)

SE =

√
1

200

200∑
i=1

VM,i, where VM,i is the maximum likelihood variance es-

timate of the ith simulation. The nature of the sensitivity (π11) and the
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(π00, π11) = (0.9, 0.7) (π00, π11) = (0.8, 0.8)

Estimator Estimate SE RMSEa CRb Estimate SE RMSEa CRb

X is a binary covariate
True model βX 0.989 0.135 0.135 0.955 0.989 0.135 0.135 0.955
Naive model βX 0.559 0.128 0.459 0.075 0.573 0.129 0.446 0.125
MC-SIMEX(L) βX 0.702 0.179 0.348 0.550 0.731 0.186 0.327 0.645
MC-SIMEX(Q) βX 0.842 0.179 0.239 0.865 0.903 0.186 0.210 0.940
MC-SIMEX(LOG) βX 0.875 0.179 0.218 0.895 0.966 0.186 0.189 0.970
ML βX 1.004 0.240 0.240 0.950 1.003 0.237 0.237 0.970

X is a continuous covariate
True model βX 1.002 0.083 0.083 0.945 1.002 0.083 0.083 0.945
Naive model βX 0.553 0.071 0.453 0.000 0.530 0.069 0.475 0.000
MC-SIMEX(L) βX 0.698 0.104 0.320 0.055 0.676 0.103 0.340 0.040
MC-SIMEX(Q) βX 0.848 0.104 0.184 0.720 0.852 0.103 0.181 0.750
MC-SIMEX(LOG) βX 0.884 0.104 0.155 0.820 0.903 0.103 0.142 0.880
ML βX 1.013 0.159 0.159 0.980 1.017 0.165 0.166 0.975

aRMSE = Root mean square error.
bCR = Coverage rate, based on SE.



8.6
S
im

u
lation

S
tu

d
y

173

T
a
b
le

8
.2

:
S
im

u
la

tio
n

resu
lts

fo
r

C
a
se

B
:

L
ogistic

regressio
n

o
f

a
co

rrectly

m
ea

su
red

respo
n
se

Y
o
n

a
bin

a
ry

m
iscla

ssifi
ed

co
va

ria
te
X

w
ith

a
n
d

w
ith

o
u
t

a

co
rrectly

m
ea

su
red

co
n
tin

u
o
u
s

co
n
fo

u
n
d
er
Z

.
T

h
e

tru
e

regressio
n

coeffi
cien

ts
w
ere

β
0

=
0,
β

X
=

1
&
β

Z
=

1.
T

h
e

resu
lts

a
re

n
o
t
sh

o
w
n

fo
r
β

0
(ba

sed
2
0
0

sim
u
la

tio
n
s

ea
ch

w
ith

sa
m

p
le

size
=

1
0
0
0
).

(π00, π11) = (0.9, 0.7) (π00, π11) = (0.8, 0.8)

Estimator Estimate SE RMSEa CRb Estimate SE RMSEa CRb

Without confounder
True model βX 0.993 0.135 0.135 0.955 0.993 0.135 0.135 0.955
Naive model βX 0.616 0.137 0.408 0.145 0.593 0.132 0.428 0.080
MC-SIMEX(L) βX 0.778 0.189 0.292 0.735 0.757 0.190 0.308 0.630
MC-SIMEX(Q) βX 0.916 0.189 0.207 0.930 0.928 0.190 0.203 0.935
MC-SIMEX(LOG) βX 0.971 0.189 0.192 0.955 0.995 0.190 0.190 0.965
Matrix βX 0.987 0.181 0.181 0.930 1.009 0.229 0.229 0.980

With an additional continuous confounder Z
True model βX 1.025 0.166 0.168 0.965 1.025 0.166 0.168 0.965
Naive model βX 0.535 0.151 0.488 0.120 0.513 0.148 0.509 0.070
MC-SIMEX(L) βX 0.676 0.216 0.389 0.545 0.654 0.216 0.408 0.525
MC-SIMEX(Q) βX 0.829 0.216 0.275 0.880 0.830 0.216 0.275 0.910
MC-SIMEX(LOG) βX 0.864 0.216 0.255 0.915 0.884 0.216 0.245 0.935

True model βZ 1.011 0.085 0.086 0.935 1.011 0.085 0.086 0.935
Naive model βZ 0.846 0.076 0.172 0.440 0.843 0.076 0.174 0.445
MC-SIMEX(L) βZ 0.869 0.082 0.155 0.650 0.865 0.082 0.158 0.610
MC-SIMEX(Q) βZ 0.923 0.082 0.113 0.875 0.921 0.082 0.114 0.860
MC-SIMEX(LOG) βZ 0.871 0.082 0.153 0.650 0.867 0.082 0.157 0.625

aRMSE = Root mean square error.
bCR = Coverage rate, based on SE.
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Table 8.3: Simulation results for Case C: Logistic regression of a correctly
measured response Y on a binary covariate X with differential misclassi-
fication dependent on Y . The true regression coefficients were β0 = 0 &
βX = 1, only the results for βX are shown (based 200 simulations each with
sample size = 1000).

Estimator Estimate SE RMSEa CRb

(π000, π011, π100, π111) = (.9, .7, .7, .8)

True model βX 1.008 0.135 0.135 0.945
Naive model βX 1.203 0.138 0.246 0.705
MC-SIMEX(L) βX 1.120 0.200 0.233 0.885
MC-SIMEX(Q) βX 1.042 0.200 0.205 0.945
MC-SIMEX(LOG) βX 1.133 0.200 0.241 0.875
Matrix βX 1.020 0.332 0.332 0.990

(π000, π011, π100, π111) = (.8, .8, .75, .75)

True model βX 1.008 0.135 0.135 0.945
Naive model βX 0.561 0.132 0.458 0.055
MC-SIMEX(L) βX 0.721 0.193 0.339 0.570
MC-SIMEX(Q) βX 0.913 0.193 0.212 0.920
MC-SIMEX(LOG) βX 0.995 0.193 0.193 0.950
Matrix βX 1.022 0.355 0.356 0.995

aRMSE = Root mean square error.
bCR = Coverage rate,based on SE.

specificity (π00) does not have a great impact on the misclassification as

can be seen in Tables 8.1 and 8.2. The results presented in Table 8.1 show

a better correction in the case of binary regressor than in the case of a

continuous regressor to the logistic regression with misclassified response.

Furthermore, it is clear from Table 8.2 that the addition of a confounder

leads to more attenuation than the case without a confounder, and conse-

quently a poorer correction than in the case with no confounder.

As can be seen in Table 8.3, we observe that differential misclassification

can lead to attenuation but in different directions, e.g. away from (left

panel) or towards (right panel) the true estimate. Table 8.4 shows the results

from the logistic regression with misclassification in both the response and
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(π00, π11)x = (π00, π11)y = (0.9, 0.7)† (π00, π11)x = (π00, π11)y = (0.8, 0.8)†

Estimator Estimate SE RMSEa CRb Estimate SE RMSEa CRb

Without a confounder
True model βX 0.984 0.135 0.136 0.955 0.984 0.135 0.136 0.955
Naive model βX 0.344 0.130 0.669 0.005 0.337 0.128 0.675 0.000
MC-SIMEX(L) βX 0.449 0.206 0.588 0.145 0.441 0.208 0.596 0.135
MC-SIMEX(Q) βX 0.669 0.206 0.389 0.775 0.695 0.208 0.369 0.835
MC-SIMEX(LOG) βX 0.866 0.206 0.245 0.925 1.008 0.208 0.208 0.965

With a continuous confounder Z
True model βX 0.971 0.165 0.167 0.955 0.971 0.165 0.167 0.955
Naive model βX 0.256 0.139 0.757 0.000 0.253 0.137 0.759 0.000
MC-SIMEX(L) βX 0.332 0.221 0.703 0.035 0.328 0.222 0.708 0.070
MC-SIMEX(Q) βX 0.517 0.221 0.531 0.580 0.537 0.222 0.513 0.675
MC-SIMEX(LOG) βX 0.704 0.221 0.369 0.960 0.774 0.222 0.316 0.990

True model βZ 1.002 0.085 0.085 0.940 1.002 0.085 0.085 0.940
Naive model βZ 0.441 0.064 0.563 0.000 0.442 0.064 0.562 0.000
MC-SIMEX(L) βZ 0.554 0.094 0.455 0.000 0.563 0.097 0.448 0.005
MC-SIMEX(Q) βZ 0.702 0.094 0.313 0.260 0.736 0.097 0.281 0.435
MC-SIMEX(LOG) βZ 0.713 0.094 0.302 0.285 0.768 0.097 0.252 0.510

aRMSE = Root mean square error.
bCR = Coverage rate, based on SE.
†Subscripts x and y indicate the misclassification matrix Π for the regressor and response, respectively.
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the binary covariate with or without an additional continuous confounder.

The addition of the confounder further attenuates the naive estimate of βX .

Nonetheless, the MC-SIMEX correction gives improved estimates even for

this complicated situation and even with this rather high misclassification

probability, although some bias remains.

8.6.3 Comparison to alternative methods

The performance of the MC-SIMEX method to the ML approach (Chapter

4) and matrix method is compared with regard to bias, root mean square

error (RMSE), and coverage rate. The coverage rate is computed as the

proportion of situations that the 95% confidence interval (95% CI) includes

the true value of β, with 95% CI = β̂ ± 1.96 · ŜE(β̂), where ŜE(β̂) depends

on the actual model used.

In the case of a logistic regression of a misclassified binary response

regressed on either a correctly measured binary or a continuous covariate,

the ML method performs better in terms of the Bias and coverage rate than

the MC-SIMEX method as shown in Table 8.1. However, the performance

of the ML estimates is similar to the MC-SIMEX in terms of the RMSE.

In Table 8.2 we compare the MC-SIMEX and the Matrix method in the

case of a misclassified binary regressor. Compared to Table 8.1, the two

approaches perform better in terms of bias reduction. Moreover, the MC-

SIMEX method (logarithmic and quadratic extrapolation) gives a better

coverage rate than the Matrix method, though, the RMSE’s are compara-

ble. Finally, we compared the MC-SIMEX method to the Matrix method

in the case of differential misclassification in the binary regressor (see Table

8.3). Again, the two methods are comparable in terms of bias. However,

the Matrix method has a higher RMSE.

As a general conclusion we suggest that the MC-SIMEX method sub-

stantially reduces bias compared to the naive estimator and its performance

is comparable to ML- or Matrix estimation when it is feasible. It is also ap-

plicable to complicated situations as non differential misclassification error
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and yields good results.

8.7 Application to the Signal Tandmobielr Study

The response of interest is a binary variable, coded 1 if the tooth is decayed,

missing due to caries or filled, and 0 otherwise. Thus, the analysis here is at

a tooth level, not a child level analysis as in the previous chapters. Indeed,

this is the first time were a modeling tooth level outcome. Furthermore, we

will investigate whether the East-West gradient is also present in the four

first permanent molars in the first year of the study, and whether the trend

remains or changes in time. In addition to the tooth level binary response,

a child-level binary response, combined binary response (over the 4 first

molars), was constructed – which is 1 if there is caries on at least one of

the 4 teeth.

The prevalence of caries experience on the four first molars was mod-

eled with a GEE analysis (SAS version 8.2 PROC GENMOD, SAS c© In-

stitute Inc., 1999–2001) as a function of several covariates and tooth. The

covariates of interest were x-, and y-ordinate (both standardized), year

= 0, 1, · · · , 5 (0 = baseline, 5 = end of study), gender (girl = 1), upper jaw

tooth dummy (U), and right side tooth dummy (R).

8.7.1 Logistic regression on a combined teeth response

We fitted a logistic regression model on the combined binary response using

as covariates: x−ordinate, y−ordinate, year, gender and the interaction

of year with x−ordinate, using GEE with a MC-SIMEX correction for

misclassification. The correction was based on a misclassification matrix for

each examiner – each child’s probability for caries experience was corrected

using the corresponding misclassification matrix. In addition, we applied

a two stage bootstrap procedure to MC-SIMEX as explained in Section

8.5. The results of MC-SIMEX with and without bootstrap from PROC

GENMOD are shown in Table 8.5.
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The results suggest a baseline East-West gradient in prevalence of caries

experience but now on the first permanent molar. However, the difference

established at baseline remains the same over the years (non-significant x-

ordinate×year). In addition, year and gender are important predictors of

caries experience – the older the child the more caries, with girls being more

affected than boys. The results are comparable to the results of Chapters

4 and 5. But gender was not significant in the ordinal logistic model.

As expected, the bootstrap standard deviations are in general larger than

the Stefanski and Cook (1995) standard errors. This extra variation in

bootstrap estimates is a result of taking into the account the uncertainty

in estimating the misclassification structure.

Table 8.5: The mean and the confidence limits from the MC-SIMEX and the

bootstrapped MC-SIMEX parameter estimates from a GEE model on the combined

binary response from first molars. Only the estimates from the log-linear extrapo-

lation are shown.

Parameter Estimate Estimate 95% CI
Parameter SE SE Lower Upper

Naivea MC-SIMEXb

intercept −1.884(0.047) −1.858(0.053) −1.962 −1.754
x-ordinate 0.096(0.041) 0.097(0.043) 0.013 0.182
y-ordinate −0.014(0.029) −0.013(0.038) −0.088 0.063
gender 0.164(0.057) 0.238(0.067) 0.108 0.369
year 0.313(0.009) 0.446(0.009) 0.429 0.463
x-ordinate×year 0.019(0.009) 0.012(0.008) −0.004 0.029

Bootstrapped MC-SIMEXc

intercept −2.398(0.188) −2.766 −2.031
x-ordinate 0.078(0.033) 0.014 0.142
y-ordinate −0.018(0.055) −0.126 0.089
gender 0.245(0.089) 0.070 0.420
year 0.530(0.062) 0.409 0.651
x-ordinate×year 0.015(0.021) −0.025 0.056

aGEE standard errors from PROC GENMOD are given in parenthesis.
bStefanski and Cook (1995) standard are given in parenthesis
cBootstrap standard deviation are given in parenthesis.
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8.7.2 GEE analysis on tooth level response

A GEE analysis with a logistic link and with a MC-SIMEX correction for

misclassification was performed on tooth level. The included covariates are

found in Table 8.6 and were obtained from the initial variable selection

procedure. Again, the correction was done using a misclassification matrix

for each examiner. We did not consider the bootstrap in this model be-

cause the MC-SIMEX results with and without bootstrap in Section 8.7.1

were very close. Further, bootstrapping now would be too time consuming

because of the large size of the data at tooth level. The results from PROC

GENMOD with a MC-SIMEX correction for misclassification are shown in

Table 8.6.

Table 8.6: MC-SIMEX parameter estimates from a GEE model to caries preva-

lence at tooth (first molar) level using different misclassification probabilities ma-

trix for each examiner.

Parameter Naive MC-SIMEX
Linear Quadratic Loglinear

Estimate Estimate Estimate Estimate
SE SE SE SE

intercept −2.756(0.062) −2.964(0.070) −3.029(0.093) −2.998(0.111)
x-ordinate 0.146(0.041) 0.129(0.047) 0.122(0.060) 0.132(0.060)
y-ordinate −0.016(0.030) −0.004(0.033) 0.016(0.040) −0.011(0.040)
gender 0.183(0.060) 0.237(0.068) 0.235(0.081) 0.288(0.083)
year 0.325(0.012) 0.407(0.014) 0.494(0.017) 0.507(0.023)
U −0.049(0.067) −0.043(0.071) −0.114(0.105) −0.038(0.083)
R −0.008(0.061) −0.005(0.071) −0.056(0.092) −0.011(0.185)
U×R −0.057(0.086) −0.080(0.094) −0.131(0.133) −0.079(0.132)
x-ordinate×year 0.018(0.008) 0.018(0.008) 0.022(0.011) 0.018(0.009)
U×year 0.001(0.017) −0.001(0.018) −0.004(0.026) 0.001(0.022)
R×year −0.025(0.015) −0.024(0.018) −0.070(0.020) −0.015(0.026)
U×R×year 0.045(0.022) 0.049(0.025) 0.120(0.032) 0.145(0.030)

The corrected parameter estimates are in absolute value all larger than

the corresponding naive estimates as shown in Table 8.6, thereby adjusting

for the attenuation effect due to misclassification of the caries experience.

But, it is not immediately clear from Figure 8.2, to decide which of the
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Figure 8.2: The left panel shows the the box plots of the simulated data, whereas

right panel shows the fitted extrapolants – linear(dashed line), quadratic (solid line)

and log-linear (dotted line), for the MC-SIMEX fit to the Signal Tandmobielr data.
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three extrapolation functions should be chosen.

In this analysis the importance of year, gender and the East-West gradi-

ent are confirmed. Further, now the East-West gradient seems to be slightly

more pronounced in the later years (significant x-ordinate×year). Finally,

the regression coefficient of the interaction U×R×year has increased con-

siderably with MC-SIMEX with only a moderate increase of its standard

error. The reason for this is not clear.

8.8 Discussion

We have presented the misclassification SIMEX (MC-SIMEX) method for

parameter estimation in regression models in the presence of misclassifica-

tion. It is based on the simulation and extrapolation idea for additive nor-

mal covariate measurement error (Cook and Stefanski, 1994). Our approach

is very general since the only assumptions to be made are the availability

of a consistent estimator for the model parameters in case of no misclassifi-

cation and an estimator or exact knowledge of the misclassification matrix.

So MC-SIMEX is applicable to general regression models involving binary,

ordinal and count data subject to misclassification in either response or re-

gressor. Moreover, it can handle more complex situations like the addition

of confounders, differential misclassification, misclassification dependent on

other variables, or simultaneous misclassification in more than one discrete

variable.

Note that the MC-SIMEX can also be applied in the simple case of

prevalence estimation, see Section 8.4.2. While one would usually prefer

the ML estimation, in some cases this estimate can be out of [0; 1]. Lew

and Levy (1989) discuss this problem and propose a Bayesian solution.

Like in other papers on prevalence estimation (see also Stefanski (1992))

they exploit the functional relationship between the observed and the true

prevalence. In contrast, the idea of MC-SIMEX is a parametric approxi-

mation of the observed prevalence as a function of the parameter λ. So the
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MC-SIMEX could serve as an alternative in prevalence estimation, if the

ML estimator is not in [0; 1].

Like for the original SIMEX one problem is the correct specification of

the parametric form of the extrapolation function, which characterizes the

relationship between the amount of misclassification and the limit of the

naive estimator. Since the exact form is not available in most situations,

SIMEX-methods in general are only approximately consistent. We have

shown by calculations of the true extrapolation function in some concrete

models, that a log linear or a quadratic function is a good approximation.

Furthermore, in a concrete data set the results of the simulation step give

an indication of the form of the extrapolation function.

For variance estimation and confidence intervals we have proposed using

a two step bootstrap method in the case of uncertain knowledge of the

misclassification matrix. When the misclassification matrix is known, the

method by Stefanski and Cook (1995) can be applied, since it has shown

good results in the simulation. However, this method still lacks theoretical

foundation in the misclassification case.

In our simulation study the MC-SIMEX method has shown good results.

It reduces bias compared to the naive estimator and its performance is

comparable to ML-estimation, where it is feasible.



CHAPTER

9 Analysis of Multivariate Binary Data

Subject to Response Misclassification

9.1 Introduction

We propose in this chapter a general approach to correct for misclassifica-

tion error when interest lies in regressing a multivariate binary vector on

covariates. The approach is applied to the caries experience on tooth level

taking into account that the misclassification process now depends on the

type of tooth.

In this respect, Neuhaus (2002) suggested both a GEE and a GLMM to

adjust for misclassification error in correlated binary data. Paulino et al.

(2005) considered a random intercept logistic regression model for multi-

variate binary data and combined it with a binomial model for misclassi-

fication. However, the assumptions of the above approaches are too rigid

for the misclassification process in scoring caries experience. For instance,

their model assumes equal misclassification rates for all teeth. Using our

approach, these assumptions can be relaxed.

183
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9.2 Neuhaus’ approach for possibly misclassified

multivariate binary data

9.2.1 Classical approach to analyse multivariate binary data

Consider a sample of subjects (clusters) indexed by i = 1, · · · , N , and let

Ti = T be the number of responses on subject i. Denote the tth binary

response of ith subject by Yit. Further let xit denote a d× 1 vector of fixed

covariates for the tth response, t = 1, 2, · · · , T .

The most common methods to model clustered data are: (a) a multivari-

ate marginal parametric approach incorporating the correlation structure

of the responses; (b) a subject specific parametric model like the generalized

linear mixed model (GLMM); and (c) the GEE approach, which specifies

the marginal or the population averaged distribution of the response with-

out explicitly specifying the correlation structure.

A commonly used model for multivariate binary data is the multivariate

probit (MVP) model, see for example Chib and Greenberg (1998) and Chen

and Dipak (1998). The MVP model is formulated in terms of Gaussian

latent variables. Let Zi = (zi1, zi2, · · · , ziT )′ denote a T -variate normal

vector with distribution Zi ∼ N T (x′
iβ,R) and let Yit be 0 or 1 according

to the sign of zit, i.e.

yit = I(zit > 0) (t = 1, · · · , T ),

where I(A) is the indicator function for the event A. According to the MVP

model,

Pr(Y i = yi) ≡ Pr(Yi1 = yi1, Yi2 = yi2, · · · , YiT = yiT |β,R,xi)

=
∫
Ai1

· · ·
∫

AiT

φT (Zi|x′
iβ,R)dZi, (9.1)

where φT (Z|µ,R) is the T -variate normal density with mean µ and cor-
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relation matrix R, and Ait is the interval (−∞, 0) when yit = 0 and the

interval (0,+∞) when yit = 1. Other similar multivariate models include,

the multivariate t-link and logistic regression model proposed by Chen and

Dipak (1998) and O’Brien and Dunson (2004), respectively.

The GLMM for binary data was introduced in Chapter 4. The model

assumes that the random effects ui follow a distribution G with mean zero.

It is usually assumed that ui follow a multivariate normal distribution

with mean 0 and variance D, i.e. ui ∼ N (0,D). Further, it is assumed

that, conditionally on ui, the likelihood terms involving the ith cluster are

independent. The total (marginal) likelihood is a product of the marginal

likelihood for the N clusters, integrating out the random effects, and is

equal to (e.g. Stiratelli, Laird, and Ware, 1984)

L(β,D) =
N∏

i=1

∫ T∏

t=1

pYit

it (1− pit)
Yit |D|−1/2 exp

(
−1

2
u′

iD
−1ui

)
dui. (9.2)

The model parameters are obtained by maximizing the marginal likelihood

(9.2). Paulino et al. (2005) used a random intercept logistic model which

is a simplified version of equation (9.2).

Liang and Zeger (1986) introduced the GEE approach as a method

of dealing with correlated data when, except for the correlation among

responses for each dimension, the data can be modeled as a GLM. The

GEE approach models the marginal expectation, specifically it assumes

that

Pr(Yit = 1|x′
it) = g−1(x′

itβ),

where g is the link function. This approach uses a working correlation

matrix substituting the true correlation structure among the multiple ob-

servations. For a more detailed description of parameter estimation using

GEE we refer to Liang and Zeger (1986) and Zeger et al. (1988).

It is known that β in a GLMM and a GEE model have a different

interpretation. Consider a random intercept logistic regression. In GLMM,
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β measures the change in conditional logit of the probability of a positive

response for an individual conditional on ui. On the other hand, in GEE,

β measures the change in logit in fraction of the positive response. In other

words, regression coefficients in a GLMM measure the change in logit for

a subject conditional on the underlying heterogeneity, whereas in GEE the

regression coefficients are interpreted marginally, i.e. in reference to the

population (see Neuhaus et al., 1991).

Above methods, however, assume that the clustered binary data are

measured without error, which may lead to biased results. In the next

section we explore these methods in the presence of misclassification errors

for the response.

9.2.2 Neuhaus’ approach to model misclassified multivariate

binary data

In practice we do not observe Yit but rather an error prone version Y ∗
it . We

assume tentatively that the probability of the misclassification of Y ∗
it only

depends on the true response (non-differential assumption). That is,

Pr(Y ∗
it |Yit, Yis,xit,xis) = Pr(Y ∗

it |Yit), (s = 1, 2, · · · , T, s 6= t).

It can be easily shown that

Pr(Y ∗
it = 1|xit) = λ0 + (1− λ0 − λ1)g

−1(x′
itβ),

where λ0 = Pr(Y ∗
it = 1|Yit = 0) (1 − specificity) and λ1 = Pr(Y ∗

it =

0|Yit = 1) (1 − sensitivity), so that if Yit follows a GLM with link function

g, Y ∗
it will follow a GLM with a modified link function g∗ (see Neuhaus,

2002). In particular,

g∗ {Pr(Yit = 1|xit)} = g

{
Pr(Yit = 1|xit)− λ0

1− λ0 − λ1

}
. (9.3)
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Thus, Neuhaus (2002) concluded that the observed response Y ∗
it can be

analyzed by a GEE method with link function g∗. He also concluded for a

GLMM that the observed response will also follow a GLMM with the link

g∗ assuming that the misclassification probabilities do not depend on the

random effects.

The corrected GEE and GLMM above, however, are based on some

simplifying assumptions. Applied to caries research, Neuhaus’ assumptions

imply that

Assumption A1: scoring caries experience (response) is the same for all

teeth, i.e. the misclassification rates (sensitivities and specificities)

are the same for all teeth.

Assumption A2: scoring teeth caries experience occurs independently.

That is, there is no association in the sensitivities and specificities

for the different teeth in the mouth.

Assumption A1 is probably not valid for scoring caries experience since

scoring of mandibular teeth is more difficult than of maxillary teeth as the

former involves indirect sight (using a dental mirror). Further, Hujoel et al.

(1990) pointed out that site-specific diagnostic tests within a subject are

often dependent, implying that assumption A2 probably does not hold for

scoring caries experience in the mouth.

Figure 9.1 shows that the pooled (over-teeth) estimator of the sensi-

tivity and specificity may be inappropriate to describe the misclassification

process in the Signal Tandmobielr study. Indeed, the point-wise 95% cred-

ible intervals do not always cover the pooled point estimates of the tooth-

specific sensitivity and specificity. Hence, there is a need for a tooth-specific

correction for misclassification in a tooth-level analysis.

In this chapter we describe a general approach to misclassified multi-

variate binary data, which allows for response dependent misclassification

parameters, i.e. relaxing assumption A1. In the discussion (Section 9.6),

we will also provide suggestions for relaxing assumption A2 and we will
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address the problem when A2 is violated.

9.3 A general approach to analyse misclassified mul-

tivariate binary data

Below we develop a model which relaxes assumption A1. Define the tooth-

specific misclassification rates as λ0t = Pr(Y ∗
it = 1|Yit = 0) (1 − specificity

of the tth response) and λ1t = Pr(Y ∗
it = 0|Yit = 1) (1 − sensitivity of the

tth response) for t = 1, · · · , T . Further, let pit be the success probability

of the Bernoulli variable Yit. We know that Pr(Y ∗
it = 1|pit, λ0t, λ1t) =

λ0t + (1− λ0t − λ1t)pit. The success probability pit can be allowed to vary

as a function of covariates, e.g.,

pit ≡ pit(β) = g−1(x′
itβ).
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The multivariate binary response Y i = (Yi1, Yi1, · · · , YiT )′ can take 2T

possible response values. In the case of a univariate binary response, the

observed data Y ∗
i are expressed in terms of the true data Yi by

Pr(Y ∗
i = y∗i |xi) =

∑

yi

Pr(Y ∗
i = y∗i |Yi = yi) Pr(Yi = yi|xi).

We can use here a similar representation for the multivariate binary re-

sponses. That is,

Pr(Y ∗
i1 = y∗i1, Y

∗
i2 = y∗i2, · · · , Y ∗

iT = y∗iT |xi)

=
∑

yi1

∑

yi2

· · ·
∑

yiT

Pr(Y ∗
i1 = y∗i1, Y

∗
i2 = y∗i2, · · · , Y ∗

iT = y∗iT |Yi1 = yi1,

Yi2 = yi2, · · · , YiT = yiT ) Pr(Yi1 = yi1, Yi2 = yi2 · · · , YiT = yiT |xi)

(Assuming A2)

=
∑

yi1

∑

yi2

· · ·
∑

yiT

(
T∏

t=1

Pr(Y ∗
it = y∗it|Yit = yit)

)

× Pr(Yi1 = yi1, Yi2 = yi2 · · · , YiT = yiT |xi) (9.4)

Expression (9.4) involves 2T evaluations for each subject. With a moderate

to large value of T , calculating the resulting likelihood will thus be compu-

tationally intensive. For this reason we suggest below a different approach

assuming a latent random variable thereby involving the data augmentation

algorithm. In this approach one can use the EM algorithm or a Bayesian

method for parameter estimation. Here we used a Monte Carlo version of

the EM algorithm.

The idea of data augmentation to correct for measurement error in

covariates was introduced by Kuha (1997). He suggested the use of im-

putation to estimate the parameters of a regression model where some of

the covariates are subject to measurement error. Further, Rekaya, Weigel,

and Gianola (2001) suggested a Bayesian data augmentation approach to

misclassified binary response, but with a simplified misclassification struc-
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ture, i.e. with sensitivity equal to specificity. We extend the ideas of data

augmentation to a more complex problem of modeling misclassified multi-

variate binary responses in which sensitivity and specificity are allowed to

vary with the response.

Assume that the latent variable Wit for observation “it” is defined as

Wit = 1 if Yit is misclassified and 0 otherwise. Wit is the missing information

linking Y ∗
it and Yit. The use of Wit simplifies the model formulation by

expressing Yit as a function of Y ∗
it and Wit through the relation

Yit = (1−Wit)Y
∗
it + Wit(1− Y ∗

it), (9.5)

so that Yit = Y ∗
it when there is no misclassification. Wit is a Bernoulli

variable with success probability

Pr(Wit = 1|Yit) =

{
λ0t if Yit = 0,

λ1t if Yit = 1.
(9.6)

The joint probability distribution of W and Y , given β, is

Pr(W ,Y |β,x) =

N∏

i=1

T∏

t=1

Pr(Wit = 1|Yit)
Wit [1− Pr(Wit = 1|Yit)]

1−Wit pYit

it [1− pit]
1−Yit ,

where W = (W ′
1, · · · ,W ′

N )′ with W i = (Wi1, · · · ,WiT )′. The joint prob-

ability distribution of Wit and Y ∗
it , given β and λ is

Pr(Wit, Y
∗
it |β,λ,x) ≡ Pr(Wit, Yit = [1−Wit]Y

∗
it +Wit[1− Y ∗

it ]|β,λ,x)

= Pr(Wit = 1|Yit)
Wit [1− Pr(Wit = 1|Yit)]

1−Wit ×

p
(1−Wit)Y

∗
it+Wit(1−Y ∗

it)
it [1− pit]

1−(1−Wit)Y
∗
it−Wit(1−Y ∗

it) . (9.7)

With the latent (unobserved) variable W , we can use the data augmen-

tation algorithm (Tanner and Wong, 1987) for parameter estimation. The
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algorithm essentially consists of two (iterative) steps, namely (a) the S-step

(simulation): the latent variables and hence the true data are sampled; and

(b) the P-step (posterior): based on the true data generated from the S-

step new estimates of the parameters are obtained. The S-step obtains the

conditional expected value of W given (Y ∗,x), given the current value of

the other parameters (β̂, λ̃), where β̂ is the current estimate of β and λ̃ is

the value of the misclassification rates obtained, say, from validation data.

That is, in the S-step the following is calculated:

ω ≡ E[W |Y ∗,x, β̂, λ̃] = Pr(W = 1|Y ∗,x, β̂, λ̃). (9.8)

From expressions (9.6) and (9.7), we have:

Pr(Wit = 1|Y ∗
it , ·) =

Pr(Wit = 1, Y ∗
it |·)

Pr(Y ∗
it |·)

(9.9)

=
Pr(Wit = 1|Yit)p

1−Y ∗
it

it (1− pit)
Y ∗

it

Pr(Wit = 1|Yit)p
1−Y ∗

it

it (1− pit)
Y ∗

it + Pr(Wit = 0|Yit)p
Y ∗

it

it (1− pit)
1−Y ∗

it

=
λ0t(1− pit)

λ0t(1− pit) + (1− λ1t)pit
Y ∗

it +
λ1tpit

(1− λ0t)(1− pit) + λ1tpit
(1− Y ∗

it).

To obtain the estimate of β, start with an initial estimate β(0) say, from a

naive analysis. Given β̂
(k)

of β at iteration k we then proceed as follows.

For iteration (k + 1):

S-step: Draw W
(k+1)
it from a Bernoulli distribution with success proba-

bility Pr(Wit = 1|Y ∗
it ,xit, β̂

(k)
, λ̃) based on (9.9) for (t = 1, · · · , T )

and (i = 1, · · · , N) and determine Y (k+1) from (9.5).

P-step: Apply a multivariate binary regression model on Y (k+1) to ob-

tain a new estimate β̂
(k+1)

.

The S- and P-steps are alternated until convergence. In the P-step, re-

gression models for correlated binary data such as the multivariate-logistic,

-t link and -probit regression models can be applied. We observe that the
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P-step is the most time consuming step of this approach since it involves

fitting a regression model for the correlated binary data in every iteration.

The variances and covariances of the estimated regression coefficients

are obtained from the inverse of the information matrix, IY (β̂). It can be

shown that for the misclassified binary regression (e.g., Louis, 1982; Magder

and Hughes, 1997)

IY (β̂) = IY
∗(β̂)− IY

∗
|Y (β̂)

=
∑

i

X ′
iV iXi, (9.10)

where Xi is the T × d regression matrix for the ith individual. For the

logit link function V i is a T × T diagonal matrix with general element

[pit(1− pit) − ωit(1− ωit)]. For the probit link function, the variances and

covariances could be evaluated as above but using the logit–probit relation:

x′
iβ (from logit ) ' 0.627x′

iβ (from probit), for a detailed description, see

Genton (2004, p. 135). Alternatively, these (co)variances could be cal-

culated by taking the second order derivatives of the log-likelihood now

assuming the probit model.

Further, the covariance matrix of the responses can be directly ob-

tained from the naive estimate of the responses’ covariance. We know that

Pr(Y ∗
it = r) = λrt + (1 − λ0t − λ1t) Pr(Yit = r) for r = 0, 1. Hence, it

immediately follows that the covariance between Yit and Yis, t 6= s, is (e.g.

Neuhaus, 2002)

Cov(Y ∗
it , Y

∗
is) = Cov [(1− λ0t − λ1t)Yit, (1− λ0s − λ1s)Yis]

= (1− λ0t − λ1t) (1− λ0s − λ1s)Cov(Yit, Yis), t 6= s.

Hence, Cov(Yit, Yis) =
1

(1− λ0t − λ1t) (1− λ0s − λ1s)
Cov(Y ∗

it , Y
∗
is), t 6= s.
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Correspondingly, the estimator of the corrected covariance is given by

Ĉov(Yit, Yis) =
1(

1− λ̃0t − λ̃1t

)(
1− λ̃0s − λ̃1s

) Ĉov(Y ∗
it , Y

∗
is),

where Ĉov(Y ∗
it , Y

∗
is) is the naive estimator of the covariance between Y ∗

it

and Y ∗
is, λ̃0t and λ̃1t are respectively the estimates of the specificity and

sensitivity for tooth t. Indeed, Ĉov(Yit, Yis) = Ĉov(Y ∗
it , Y

∗
is) when there is

no misclassification (i.e. λ̃0t = λ̃1t = 0 for all ts). To fully take account of

all uncertainty one needs to incorporate also the variability with which λ0t

and λ1t are estimated, as indicated in the previous chapters.

Our approach will be referred below to as MC-DA (correction for mis-

classification using data augmentation). In principle, a MC-DA method

for relaxing the second assumption A2, can be developed. However, this

extension to relax assumption A2 is a topic for further research, see also

Section 9.6.

In the next section we perform a simulation study to assess the perfor-

mance of our approach as compared to existing methods.

9.4 Simulation Study

9.4.1 Simulation study set up

The MC-DA procedure is evaluated for different scenarios with T = 4

binary responses. We considered the following cases:

A. equal misclassification with λ′
0 = (0.9, 0.9, 0.9, 0.9) and

λ′
1 = (0.8, 0.8, 0.8, 0.8);

B. moderately unequal misclassification with λ′
0 = (0.9, 0.7, 0.7, 0.8) and

λ′
1 = (0.8, 0.8, 0.75, 0.75). This scenario is motivated by the observed

sensitivities and specificities in the Signal Tandmobielr validation

data;
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C. large(r) unequal misclassification with λ′
0 = (0.7, 0.8, 0.6, 0.9) and

λ′
1 = (0.6, 0.8, 0.9, 0.7).

It is important to note, however, that in the simulations study the

misclassification probabilities were not estimated from a validation study,

but were directly imputed into the MC-DA procedure. Thus, we assumed

that λ0t and λ1t (t = 1, · · · , 4) are known.

We performed 200 simulations each time with a sample size of 1000.

This sample size is motivated by the fact that correction for misclassification

is usually done for large epidemiological studies. We generated the true

binary responses Yis through latent variables Zis such that Yit = 1 (Yit = 0)

if Zit > 1 (Zit ≤ 0) with Zi = (Zi1, · · · , Zi4)
′ ∼ N(x′

iβ,R), where β is a

vector of the regression coefficient of xi and R is a 4×4 correlation matrix.

In particular, we have set

β = (−2.00, 0.35, 0.45,−1.50, 0.32, 0.48,−1.50, 0.28, 0.52,−2.00, 0.25, 0.55)′

comprising the intercept and the coefficients of the simulated covariates

Xi1 and Xi2, respectively, for each of the four response variables, where

Xi1 ∼ N (7, 0.4) and Xi2 ∼ Bernoulli(0.6). The simulated covariates mimic

the age and gender in our Signal Tandmobielr application. The values

of the regression coefficients have been chosen arbitrarily. We chose the

correlation matrix with correlation equal to 0.6 among all responses.

9.4.2 Simulation results of MC-DA method

The simulation results indicate that our method leads to considerable re-

duction of bias compared to the naive estimator, as can be seen in Tables

9.1, 9.2 and 9.3. The point estimates remain fairly stable irrespective of

the choice of misclassification probabilities. Thus the MC-DA method gives

improved estimates even under high misclassification probability. However,

the standard errors increase as misclassification gets worse, i.e. from sce-

nario A to C.
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Corrected

Naive Neuhaus MC-DA

Para Resb True Estimate CR‡ Estimate RMSE† CR‡ Estimate RMSE† CR‡

(SE) (SE) (SE)

β0 1 −2.00 −1.204(0.718) 81 −1.947(1.272) 1.273 96 −1.925(1.436) 1.438 97
2 −1.50 −0.730(0.741) 82 −1.536(1.575) 1.575 94 −1.657(1.617) 1.625 96
3 −1.50 −0.928(0.720) 87 −1.661(1.317) 1.327 96 −1.379(1.473) 1.478 98
4 −2.00 −1.446(0.707) 88 −1.924(1.043) 1.046 94 −2.082(1.194) 1.197 96

βX1
1 0.35 0.198(0.102) 70 0.344(0.182) 0.182 96 0.340(0.219) 0.219 97
2 0.32 0.156(0.106) 63 0.325(0.226) 0.226 94 0.345(0.286) 0.287 96
3 0.28 0.159(0.103) 76 0.302(0.189) 0.190 96 0.263(0.232) 0.233 97
4 0.25 0.163(0.101) 87 0.238(0.148) 0.148 94 0.261(0.175) 0.175 96

βX2
1 0.45 0.254(0.083) 33 0.445(0.145) 0.145 96 0.446(0.170) 0.170 97
2 0.48 0.222(0.085) 13 0.513(0.187) 0.190 92 0.515(0.237) 0.240 97
3 0.52 0.295(0.083) 22 0.540(0.150) 0.151 96 0.538(0.178) 0.179 95
4 0.55 0.386(0.082) 47 0.571(0.119) 0.121 92 0.555(0.130) 0.130 96

aPar = Parameter.
bRes = Response variable.
†RMSE = Root mean square error.
‡CR = Coverage rate (%), based on SE.
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Corrected

Naive Neuhaus MC-DA

Para Resb True Estimate CR‡ Estimate RMSE† CR‡ Estimate RMSE† CR‡

(SE) (SE) (SE)

β0 1 −2.00 −1.097(0.719) 77 −1.947(1.257) 1.258 96 −2.005(1.494) 1.494 96
2 −1.50 −0.086(0.761) 53 −1.457(2.250) 2.250 93 −1.354(2.369) 2.373 96
3 −1.50 −0.231(0.717) 59 −1.821(2.262) 2.285 93 −1.452(2.222) 2.223 96
4 −2.00 −1.117(0.703) 76 −1.905(1.325) 1.328 98 −2.127(1.412) 1.418 98

βX1
1 0.35 0.185(0.102) 65 0.344(0.179) 0.179 96 0.352(0.184) 0.184 95
2 0.32 0.081(0.108) 38 0.315(0.323) 0.323 93 0.333(0.330) 0.330 95
3 0.28 0.070(0.102) 49 0.327(0.325) 0.328 93 0.290(0.326) 0.326 94
4 0.25 0.130(0.100) 77 0.236(0.186) 0.187 98 0.269(0.209) 0.210 97

βX2
1 0.45 0.240(0.084) 26 0.445(0.148) 0.148 96 0.451(0.158) 0.158 97
2 0.48 0.162(0.085) 2 0.529(0.315) 0.319 92 0.508(0.313) 0.314 98
3 0.52 0.184(0.083) 2 0.545(0.238) 0.239 96 0.531(0.241) 0.241 96
4 0.55 0.308(0.082) 17 0.568(0.160) 0.161 94 0.553(0.161) 0.161 95

aPar = Parameter.
bRes = Response variable.
†RMSE = Root mean square error.
‡CR = Coverage rate (%), based on SE.
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Corrected

Naive Neuhaus MC-DA

Para Resb True Estimate CR‡ Estimate RMSE† CR‡ Estimate RMSE† CR‡

(SE) (SE) (SE)

β0 1 −2.00 −0.712(0.697) 60 −1.182(1.355) 1.583 90 −2.040(1.539) 1.540 97
2 −1.50 −0.489(0.703) 70 −0.826(2.882) 2.960 99 −1.165(2.752) 2.772 98
3 −1.50 −0.372(0.776) 71 −0.747(1.183) 1.402 88 −1.513(1.569) 1.569 96
4 −2.00 −1.538(0.686) 92 −1.530(1.035) 1.137 32 −2.124(1.378) 1.384 96

βX1
1 0.35 0.151(0.099) 53 0.289(0.195) 0.204 63 0.354(0.203) 0.203 97
2 0.32 0.073(0.100) 30 0.267(0.410) 0.413 71 0.340(0.397) 0.397 95
3 0.28 0.145(0.111) 77 0.236(0.169) 0.175 52 0.287(0.171) 0.172 97
4 0.25 0.161(0.098) 88 0.213(0.146) 0.151 46 0.256(0.180) 0.181 96

βX2
1 0.45 0.202(0.085) 17 0.359(0.180) 0.202 53 0.454(0.198) 0.198 96
2 0.48 0.118(0.080) 1 0.561(0.543) 0.549 69 0.511(0.454) 0.455 94
3 0.52 0.268(0.084) 20 0.436(0.155) 0.176 44 0.533(0.190) 0.191 97
4 0.55 0.338(0.086) 27 0.489(0.136) 0.149 38 0.554(0.138) 0.138 97

aPar = Parameter.
bRes = Response variable.
†RMSE = Root mean square error.
‡CR = Coverage rate (%), based on SE.
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9.4.3 Comparison to Neuhaus’ method

The performance of MC-DA method is compared to the approach of Neuhaus

(2002), both for the GEE approach, with regard to bias, root mean square

error (RMSE), and coverage rate. Under equal misclassification probabili-

ties (Scenario A), both methods perform equally good in terms of bias and

coverage rate, as shown in Table 9.1. However, the RMSEs of the MC-DA

method are larger.

For moderately unequal misclassification probabilities (Scenario B) the

MC-DA method performs better in terms of bias reduction as can be seen

in Table 9.2. The coverage rates and RMSEs are comparable between the

two methods, but the MC-DA estimates are somewhat larger.

Results from the extreme situation (Scenario C) in terms of misclassi-

fication probabilities are shown in Table 9.3. The Neuhaus’ method gives

biased results compared to MC-DA method, and has also poor coverage

rate, though, the RMSEs are comparable between the two methods.

As a general conclusion, we suggest that the MC-DA method can no-

tably reduce the bias compared to the naive estimator and its performance

is comparable to Neuhaus’ method estimation under unequal misclassifica-

tion process. Further, the MC-DA method has shown to perform better in

terms of bias than Neuhaus’ approach when the misclassification probabil-

ities are very unequal, though the two methods are equally good in terms

of RMSE.

9.5 Application to the Signal Tandmobielr study

We are now interested in modeling on tooth level. In particular, we are

interested in the comparison of the effect of the covariates on left versus

right, upper versus lower, and first versus second primary molars. The

corrected models that were fitted were pooled over the examiners due to

computational difficulties arising from the sparseness of the validation data.

We shall thus not focus here on the interpretation of the (x, y) geographical
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coordinates, though, we keep these components in the analysis.

We considered two corrections: (a) Neuhaus’ correction with GEE ap-

proach, where the sensitivity and specificity are pooled over the teeth; and

(b) MC-DA correction with GEE regression model, where sensitivity and

specificity are tooth-specific. The GEE estimation was done using the SAS

(Version 9.1) procedure GENMOD.

Results from tooth-level regression analyses both with and without cor-

rection for misclassification are displayed in Table 9.4. Overall, the cor-

rected estimates are larger in absolute value than the corresponding esti-

mates from the naive regression model. This shows a gain in the parameter

estimates as they are pulled away from the null. However, the standard

errors of the estimates are increased as a result of misclassification errors.

While the point estimates are similar in the Neuhaus’ approach and MC-DA

method, the latter shows larger standard errors.

After correction for misclassification the following covariates were sig-

nificantly (overall) associated with the risk of caries (Table 9.4): age of the

child, use of systemic fluoride supplements, age at the start of brushing,

and consumption of sugar containing drinks. On the other hand, frequency

of brushing, and daily intake of at least two in-between-meals were not

significant. Below we give an interpretation of the results on tooth-level.

The coefficients of age at the start of brushing are, in general, larger for

the right molars than the left molars. The positive coefficients for age at

start of brushing implies that the later the child starts brushing the higher

the probability of presenting caries, but this probability is somewhat higher

for the right molars. However, this effect is not statistically significantly

different (Wald Chi-square = 6.56, df=4; P = 0.161). For a description of

the Wald Chi-square statistic, see Appendix A.4. The other risk factors did

not show an appreciable difference between the left and the right molars.

In relation to mandibular and maxilla teeth, the results indicate that the

coefficients of age at the start of brushing are smaller for the mandibular

than for the maxilla teeth. This implies that the later the child start
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Table 9.4: Parameter estimates from Neuhaus & MC-DA corrected GEE regres-
sion analysis of caries experience controlling for the tooth-dependent covariates
effect.

Naive Corrected

GEE Neuhaus (GEE) MC-DA (GEE)

Parameter Tooth Estimate Estimate Estimate
(SE) (SE) (SE)

Intercept 54 −1.205(0.083) −1.281(0.105) −1.074(0.132)
55 −0.976(0.079) −1.007(0.097) −0.974(0.132)
64 −1.152(0.084) −1.225(0.103) −1.082(0.130)
65 −0.973(0.081) −1.006(0.097) −1.285(0.154)
74 −0.947(0.076) −0.968(0.093) −2.119(0.155)
75 −1.110(0.079) −1.167(0.097) −1.496(0.141)
84 −0.960(0.076) −0.986(0.093) −1.272(0.135)
85 −0.922(0.078) −0.938(0.094) −0.938(0.126)

x-ordinate 54 0.089(0.027) 0.105(0.032) 0.105(0.041)
55 0.081(0.025) 0.096(0.029) 0.092(0.041)
64 0.117(0.026) 0.140(0.031) 0.126(0.040)
65 0.095(0.025) 0.112(0.029) 0.166(0.048)
74 0.092(0.024) 0.107(0.028) 0.226(0.048)
75 0.135(0.025) 0.160(0.029) 0.164(0.044)
84 0.119(0.024) 0.140(0.028) 0.155(0.042)
85 0.144(0.025) 0.169(0.029) 0.145(0.039)

y-ordinate 54 −0.019(0.026) −0.023(0.033) −0.025(0.041)
55 −0.008(0.025) −0.008(0.030) −0.019(0.041)
64 −0.022(0.026) −0.027(0.032) −0.010(0.041)
65 −0.022(0.025) −0.027(0.030) −0.067(0.048)
74 −0.005(0.024) −0.006(0.029) −0.024(0.048)
75 −0.042(0.025) −0.047(0.030) −0.058(0.044)
84 −0.002(0.024) −0.001(0.029) −0.018(0.042)
85 −0.040(0.024) −0.046(0.029) −0.035(0.039)

Gender (girl) 54 0.025(0.051) 0.031(0.062) 0.019(0.080)
55 0.012(0.049) 0.014(0.057) 0.035(0.079)
64 0.045(0.051) 0.060(0.061) 0.092(0.079)
65 −0.002(0.049) −0.001(0.057) 0.008(0.093)
74 −0.003(0.047) −0.004(0.055) −0.236(0.094)
75 0.127(0.048) 0.152(0.057) 0.290(0.085)
84 −0.018(0.047) −0.021(0.055) 0.008(0.082)
85 0.068(0.048) 0.078(0.056) 0.086(0.076)

Age (years) 54 0.256(0.062) 0.306(0.078) 0.182(0.099)
55 0.186(0.059) 0.217(0.071) 0.222(0.099)
64 0.242(0.063) 0.294(0.077) 0.214(0.097)
65 0.217(0.060) 0.258(0.072) 0.242(0.115)
74 0.167(0.058) 0.196(0.068) 0.180(0.117)
75 0.110(0.059) 0.131(0.071) 0.110(0.105)
84 0.162(0.058) 0.191(0.068) 0.169(0.102)
85 0.221(0.058) 0.257(0.070) 0.186(0.094)

Continued on next page
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Table 9.4: continued from previous page

Naive Corrected

GEE Neuhaus (GEE) MC-DA (GEE)

Parameter Tooth Estimate Estimate Estimate
(SE) (SE) (SE)

Brushing frequency (< 2) 54 0.039(0.076) 0.045(0.088) 0.022(0.117)
55 0.094(0.071) 0.109(0.081) 0.047(0.117)
64 0.003(0.076) 0.000(0.088) 0.015(0.116)
65 0.107(0.071) 0.125(0.081) 0.287(0.139)
74 −0.059(0.070) −0.069(0.080) −0.066(0.138)
75 0.087(0.070) 0.101(0.081) 0.097(0.126)
84 0.105(0.068) 0.123(0.078) 0.140(0.119)
85 0.125(0.068) 0.147(0.080) 0.134(0.111)

Age start brushing (years) 54 0.067(0.024) 0.079(0.029) 0.067(0.038)
55 0.054(0.022) 0.063(0.027) 0.060(0.038)
64 0.090(0.024) 0.107(0.028) 0.094(0.037)
65 0.084(0.023) 0.098(0.027) 0.105(0.045)
74 0.110(0.022) 0.127(0.026) 0.100(0.045)
75 0.146(0.022) 0.171(0.027) 0.191(0.040)
84 0.113(0.021) 0.132(0.026) 0.146(0.038)
85 0.073(0.022) 0.085(0.026) 0.069(0.036)

Systemic fluoride (yes) 54 −0.172(0.052) −0.207(0.064) −0.183(0.081)
55 −0.179(0.049) −0.212(0.059) −0.220(0.081)
64 −0.244(0.052) −0.295(0.063) −0.240(0.080)
65 −0.242(0.050) −0.286(0.059) −0.457(0.094)
74 −0.180(0.048) −0.209(0.056) −0.368(0.095)
75 −0.303(0.049) −0.359(0.058) −0.492(0.087)
84 −0.195(0.048) −0.228(0.056) −0.277(0.083)
85 −0.277(0.049) −0.324(0.058) −0.307(0.077)

Sugary drinks (yes) 54 0.242(0.054) 0.292(0.067) 0.257(0.082)
55 0.249(0.051) 0.293(0.061) 0.278(0.082)
64 0.155(0.053) 0.187(0.065) 0.177(0.081)
65 0.218(0.051) 0.259(0.061) 0.320(0.095)
74 0.248(0.049) 0.289(0.058) 0.335(0.099)
75 0.198(0.050) 0.235(0.060) 0.356(0.088)
84 0.254(0.049) 0.298(0.058) 0.328(0.085)
85 0.187(0.050) 0.217(0.059) 0.198(0.078)

Between meals (> 2) 54 0.106(0.055) 0.121(0.066) 0.068(0.086)
55 0.055(0.052) 0.064(0.061) 0.062(0.086)
64 0.134(0.054) 0.158(0.065) 0.127(0.085)
65 0.001(0.052) 0.000(0.062) 0.083(0.101)
74 0.082(0.051) 0.092(0.059) 0.044(0.102)
75 0.025(0.052) 0.029(0.061) 0.003(0.092)
84 0.151(0.050) 0.174(0.059) 0.194(0.088)
85 0.092(0.051) 0.107(0.060) 0.106(0.082)
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brushing the higher the risk of caries attack on the maxilla molars than in

the mandibular molars. Again, the effect of age at start brushing is not

statistically significantly different (Wald Chi-square = 7.291 df=4; P =

0.121). In addition, use of systemic fluoride supplements appears to be more

protective for the maxilla molars than for the mandibular molars. However,

again this different effect is shown to be not statistically significant (Wald

Chi-square = 9.10, df=4; P = 0.058).

For the first and second molars, use of systemic fluoride supplements ap-

pears to be more protective for the second than for the first molars against

caries attack. This observation is however not statistically significant with

Wald Chi-square = 4.22 (df=4, P = 0.376).

9.6 Discussion

We have proposed a general and flexible approach for parameter estimation

in correlated binary regression models in the presence of misclassification.

This approach is simple in that it can be fitted using the standard software

such as SAS and R.

The interesting feature of this approach is that we can easily relax

the assumption of equal misclassification probabilities in scoring caries ex-

perience (A1). In our simulation study the MC-DA method has shown

good results in terms of bias reduction but comparable to the approach of

Neuhaus (2002) in terms of RMSE for unequal misclassification probabili-

ties. However, our method, being an iterative procedure, is very computer

intensive; for example in application to Signal Tandmobielr the Neuhaus’

approach took about 1 hour, while our procedure took over 36 hours. Thus

the Neuhaus’ approach is appropriate for GEE (and GLLM) regression

models under equal or moderately unequal misclassification probabilities.

Our method, though computer intensive, can be used for extreme mis-

classification process since it has been shown to outperform the Neuhaus’

approach as misclassification gets worse. The major advantage of our
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method to the Neuhaus’ approach is that it is robust to the choice of the cor-

related binary regression model. In particular, the approach of Neuhaus is

only limited to the GEE and GLMM methods, whereas the MC-DA proce-

dure can be applied, in addition to the GEE and GLMM methods, with any

multivariate binary regression model, for example, the MVP, multivariate-

t and logistic regression. Thus our method is more general since it allows

for a complex and variety of multivariate binary regression model at the

posterior step.

Wrongly assuming independent scoring (A2) will not bias the estimates

in contrast to inadvertently assuming equal scoring (A1), but the standard

errors will be clearly different. However, when A2 is violated, the misclas-

sification parameters will be estimated with artificially too high precision.

Consequently, the corrected estimates of the main model will also be es-

timated with artificially too high precision. Relaxing A2 requires a mul-

tivariate model describing the misclassification process, thereby assuming

dependence between the scores. Some possible models might include the

MVP, multivariate-t or multivariate logistic model.





CHAPTER

10 General Conclusions and Further

Research

In this thesis, we have developed Bayesian and frequentist methodologies to

correct for misclassification errors in discrete data. This chapter presents

some general conclusions and topics for further research.

10.1 General conclusions

Statistical analysis of oral health data present quite a challenging task.

Caries experience data have a complex hierarchical structure, i.e. within

each individual there are several teeth each with 4 or 5 surfaces. This

necessitates the application of statistical methods that adequately take into

account the correlated structure of such data. An additional challenge in

the analysis of oral health data is the problem of misclassification error,

especially in the scoring of caries experience, since (dental) examiners are

prone to misclassification.

To reduce the variability in scoring caries experience, the dental exam-

iners involved in the Signal Tandmobielr study were trained at baseline
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and participated in calibration exercises. At the end of these calibration

exercises the examiner consistency in measuring caries experience was eval-

uated. Despite these calibration exercises, they nonetheless seem to have

considerable residual misclassification. This inspired the development of

techniques to correct for potential misclassification errors due to the exam-

iners’ scoring variability. The validation data generated from the calibra-

tion exercises offered us a possibility to estimate correction terms for this

purpose.

In this work, methodologies to correct for misclassification errors when

dealing with possibly corrupted binary, ordinal and count data have been

developed. Chapters 4 and 5 were devoted to the modeling of binary and

ordinal data, taking into account the possible misclassification of the re-

sponse by the dental examiners. The second part of this thesis (Chapters 6

and 7) is focused on models for misclassified count data, whereas the final

part (Chapters 8 and 9), we developed more general methods for misclassi-

fied multivariate binary data. However, the MC-SIMEX (Chapters 8) and

MC-DA (Chapters 9) approaches are computationally intensive compared

to the methodologies developed in the previous chapters.

The main focus of this research has been to identify and describe the

impact of the response misclassification on the covariates’ effect. For ex-

ample, in the Signal Tandmobielr study, it was important to investigate

whether the East-West gradient in the degree of caries experience was gen-

uine or induced by the potential misclassification of the dental examiners.

The results from the various regression models considered here revealed a

significant geographical East-West trend in caries experience despite the

potential misclassification of the response by dental examiners. The cor-

rected estimates of the other risk factors, in general, revealed a stronger

relationship to caries experience compared to the naive estimates.
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10.2 Further Research

Further research could focus on some of the topics considered in this thesis.

We also suggest further refinements in modeling caries data.

In Chapter 5, a misclassification model that takes into account the ordi-

nal nature of the scores has been considered among other misclassification

models. This model assumed a univariate latent continuous scoring scale

that varies from column to column of the misclassification matrix. Further,

it is based on the conditional distributions of the observed response given

the true response for each of the columns. However, this model does not

provide a direct link between these conditional distributions. A possible

extension and topic for further research is to introduce a bivariate ordinal

latent model and derive these conditional distributions. This may provide

a parsimonious way of linking all the columns.

In Chapters 6 and 7, we proposed the ZINB and ZIBB regression model

for modeling unbounded and bounded count data, respectively. However,

the resulting models from the corrected ZINB and ZIBB models are not in

a standard form, as in the case of the Stamey et al. (2004), where a Poisson

model for the infallible counts results into a Poisson distribution for the

fallible counts. Derivation of the analytical expression of the corrected

ZINB (and ZIBB) distribution remains a topic of further research.

A key assumption made when using a validation study to correct for

bias due to misclassification or measurement error is that a measurement

by a gold standard is available in addition to the error-prone measurement.

In this work we assumed that a benchmark scorer (or a gold standard) is

available. However, in the absence of a gold standard, the standard estima-

tion techniques for misclassified data cannot be appropriately determined.

In this case a latent-class approach (Formann, 1994), which is a statisti-

cal technique that allows for estimation of sensitivity and specificity when

there is no gold standard, could be used.

Measurements on caries experience are usually taken at the tooth or

tooth surface level. However, the statistical analysis is most often carried
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out on an aggregated level of the child, i.e. using the dmft(s)-index . The

dmft(s)-index has been criticized by some authors. For example, Birch

(1986) points out that the dmft-index is a too rough measure of caries

experience ignoring the individual characteristic of the teeth. For the dmfs-

index there is a problem that when a tooth is extracted, automatically all

surfaces are assumed to have experienced the disease; clearly an unrealistic

assumption (Benigeri et al., 1998). Determining the actual distribution of

caries experience at the tooth surface, taking into account (a) the complex

hierarchical data structure and (b) the possible misclassification error, is a

topic of further research.

Finally, as described in Chapter 2, the degree of caries experience de-

pends on the diagnostic threshold, i.e. on the level of lesion severity. The

misclassification process will thus vary depending on which level of lesion

severity is used. Any further research in modeling the effect of misclassifica-

tion should assess the effect of the diagnostic thresholds on the relationship

between caries experience and the risk factors.



APPENDIX

A Some theoretical details

This appendix describes some theoretical details supplementing the ex-

planations given in the text. Section A.1 presents the derivatives of the

misclassification model suggested by Albert et al. (1997). In Section A.2

the derivatives of the zero-inflated negative binomial regression with and

without correction for misclassification are given. Section A.3 gives some

technical details regarding the misclassification SIMEX. Finally, in Section

A.4 we describe the Wald Chi-square statistic for testing the difference of

regression coefficients.

A.1 Derivatives of the Albert et al. misclassification

model

The first order derivative of the likelihood resulting from expression (5.9)

with respect to the ζ̃ = (ζ0, ζ0, ζ0)
′-parameters for symmetric and asym-

metric misclassification models.
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A.1.1 Symmetric misclassification models

Symmetric 1p

∂Lm

∂ζ0
= −

∑
a

∑
b

mab




(
I(a 6= b)− 1

)
V + 1

V


 ,

where V = 1 +
∑
c 6=b

g(c|b).

Symmetric 2p

∂Lm

∂ζ0
= −

∑
a

∑
b

mab




(
I(a 6= b)− 1

)
V + 1

V


 ,

∂Lm

∂ζ1
= −

∑
a

∑
b

mab




I(a 6= b)|a− b|V − ∑
c 6=b

|c− b|g(c|b)

V


 .

A.1.2 Asymmetric misclassification models

Asymmetric 3p

∂Lm

∂ζ0
= −

∑
a

∑
b

mab




(
I(a 6= b)− 1

)
V + 1

V


 ,

∂Lm

∂ζ1
= −

∑
a

∑
b

mab




I(a 6= b)(a− b) I(a > b)V − ∑
c 6=b

(c− b) I(c > b)g(c|b)

V


 ,

∂Lm

∂ζ2
= −

∑
a

∑
b

mab




I(a 6= b)(b− a) I(a < b)V − ∑
c 6=b

(b− c) I(c < b)g(c|b)

V


 .
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Asymmetric 4p

∂Lm

∂ζ00
= −

∑
a

∑
b

mab

0

@

“

I(a 6= b) − 1
”

V + 1

V

1

A ,

∂Lm

∂ζ01
= −

∑
a

∑
b

mab I(b > 0)

0

@

“

I(a 6= b) − 1
”

V + 1

V

1

A ,

∂Lm

∂ζ1
= −

∑
a

∑
b

mab

0

B

@

I(a 6= b)(a − b) I(a > b)V −
P

c6=b

(c − b) I(c > b)g(c|b)

V

1

C

A
,

∂Lm

∂ζ2
= −

∑
a

∑
b

mab

0

B

@

I(a 6= b)(b − a) I(a < b)V −
P

c6=b

(b − c) I(c < b)g(c|b)

V

1

C

A
.

A.2 Derivatives of the ZINB regression model

In this section we present the first derivative with respect to (β,γ, τ) for ZINB

regression model as well as the corrected ZINB regression model. Further, we state

the BFGS algorithm.

A.2.1 The ZINB regression model

The first order derivative of the minus log-likelihood of ZINB regression model,

Lz, expression (6.9) with respect to the θ = (β,γ, τ)′-parameters:

∂Lz

∂βj
=





n∑
i=1

(
µi τ

(µi+τ) (1+qi ri)
xij

)
, y = 0,

n∑
i=1

(
1− τ+y

µi+τ

)
τ xij y > 0.

∂Lz

∂γj
=





n∑
i=1

(
1

1+qi ri
zij − 1

1+qi

)
, y = 0,

n∑
i=1

(
qi

1+qi
zij

)
, y > 0.
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∂Lz

∂ log τ
=





n∑
i=1

(
−µi+(µi+τ)/τ log ri

(µi+τ) (1+qi ri)
τ
)

y = 0,

n∑
i=1

(
−1 + τ+y

µi+τ + log(µi+τ
τ ) + ψ(τ)− ψ(τ + y)

)
τ, y > 0,

where µi = ex
′
iβ , ri =

(
µi+τ

τ

)τ
, qi = ez

′
iγ and ψ(x) = δ log Γ(x)

δ x .

A.2.2 The corrected ZINB regression model

The first order derivative of Lc (the total likelihood of the corrected zero-inflated

negative binomial distribution adjusted for misclassification in a pooled manner

or when only one examiner is involved)

Lc(β,γ, τ ;y∗,X,Z,Π) = −
n∑

i=1

log

{
ez

′
iγ+

 

e
x′

iβ+τ
τ

!−τ

1+ez
′
iγ

π(y∗
i |0)

+

K∑
y=1




Γ(τ+y)
“

1+ez
′
iγ
”

 

e
x′

iβ+τ
τ

!−τ

Γ(τ) Γ(1+y)

„

1+e−x′
iβ τ

«y π(y∗
i |y)







.

with respect to the θ = (β,γ, τ)′-parameters:

∂Lc

∂βj
= −

n∑
i=1

(
µiτ

(µi+τ)ri

)
π(y∗

i |0)

(1 + qi)Di
xij

−
n∑

i=1

(
K∑

y=1

τ
(µi+τ)ri

xij Γ(τ + y) (µi − y) π(y∗
i |y)

(1 + qi) (1 + τ/µi)
y
Γ(τ) Γ(1 + y)Di

xij

)
,

∂Lc

∂γj
= −

n∑
i=1

qi (ri − 1) zij π(y∗
i |0)

(1 + qi)
2
riDi

+

n∑
i=1

(
K∑

y=1

qi zij Γ(τ + y)π(y∗
i |y)

(1 + qi)
2
ri (1 + µi τ)

y
Γ(τ) Γ(1 + y)Di

)
,
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∂Lc

∂ log τj
=

n∑
i=1

τ
(µi+τ)ri

(
−µi + (µi + τ) log(µi+τ

τ )
)
π(y∗

i |0)

(1 + qi) Di

−
n∑

i=1

(
K∑

y=1

τ
(µi+τ)ri

Γ(τ + y)π(y∗
i |y)4i

(1 + qi) τ (1 + µi )
y
Γ(τ) Γ(1 + y)Di

)
,

where4i =
{
µi − (µi + τ) log(µi+τ

τ ) + (µi + τ) [−ψ(τ) + ψ(τ + y)]− y
}
, and Di

is the ZINB likelihood of the ith individual.

A.2.3 The BFGS algorithm

The BFGS (Broyden Fletcher Goldfarb Shanno) algorithm is a quasi-Newton

method which was suggested independently by Broyden (1970), Fletcher (1970),

Goldfarb (1970) and Shanno (1970). It is one of the most efficient quasi-Newton

technique for unconstrained optimization:

minf(x), x ∈ <q.

Given the staring point x0 ∈ <q, convergence tolerance ε > 0, and inverse Hessian

approximation H0 ∈ <q×q then this algorithm can be summarized as follows:

k ← 0;

while ‖∇fk‖ > ε;

Carry out a line search in the direction

pk = Hk∇fk;

Set xk+1 = xk + αkpk, where αk is obtained from the line search;

Define sk = xk+1 − xk, yk = ∇fk+1 −∇fk, and ρk = 1
yT

k
sk

;

Compute

Hk+1 = (I − ρksky
T
k )Hk(I − ρkyks

T
k ) + ρksks

T
k

k ← k + 1;

end while.

The BFGS algorithm is implemented using the R function optim, and by choos-

ing method=“BFGS”.
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A.3 Misclassification SIMEX

A.3.1 Existence of Πλ

Given a misclassification matrix Π the existence of the function λ −→ Πλ for

λ ≥ 0 can be solved with the theory of Markov processes: If Π is regarded as

the transition matrix of time continuous Markov discrete process at time t = 1,

then the transition matrix at time λ is given Πλ. The existence of the Πλ is

equivalent to the existence of a Markov process with transition matrix Π at time

t=1. This problem is known as the embedding problem (see e.g. Israel, Rosenthal,

and Wei, 2001; Carette, 1995). For two categories the existence is equivalent to

det(Π) = π00 + π11 − 1 > 0, which should be fulfilled in most practical problems.

For higher dimensions a sufficient condition is that the matrix

log(Π) := Ξ log(Λ)Ξ−1

is a matrix with positive off diagonal elements, where Ξ is the matrix of eigen-

vectors and log(Λ) is the diagonal matrix of logarithms of the eigenvalues. This

condition can be easily checked and will hold in most practical cases. A more

general condition for existence of Πλ which also applies for multiple or negative

eigenvalues is the convergence of the series

∞∑

i=1

(Π− I)i/i!,

which holds, e.g. if all diagonal elements are bigger than 0.5. In that case the

nonnegativity of Πλ has still to be checked. One example for such a matrix is

Π =




0.80 0.15 0.00

0.20 0.70 0.20

0.00 0.15 0.80


 .

Then Ξ · log(Λ) · Ξ−1 has negative components and e.g.

Π1/2 =




0.89 0.09 −0.01

0.12 0.82 0.12

−0.01 0.09 0.89


 .
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The main reason for the problem is that π13 = 0, which leads to the nonexistence

of Πλ for λ < 1, Israel et al. (2001) discuss methods for finding a matrix with

existing roots, which is close to the given matrix. In that example the matrix

Π =




0.77 0.15 0.03

0.20 0.70 0.20

0.03 0.15 0.77




has existing roots. Note that the existence Πλ for λ < 1 is not a condition, which

should hold in general for misclassification matrices. It can also happen that the

matrix Π̂λ does not exist for λ < 1, when Π is estimated by a validation study,

while there is no problem with the true unknown matrix Π. Then we propose to

use the method from Israel et al. (2001) as a useful approximation.

A.3.2 Variance estimation by the method of Stefanski

For a given misclassification matrix and a fixed grid of values λ1, . . . , λm we cal-

culate the variance of the estimators in one simulation sample:

Vsim(λk) := B−1
B∑

b=1

{β̂na

[
(Yi,X

∗
b,i(λk), Zi)

n
i=1

]
− β̂(λk)}2, k = 1, . . .m.

and Vsim(0) := 0 We also use the naive (information matrix) estimation of the

variance for every calculation of the naive estimator, denoted by

V̂naive

(
β̂na

[
(Yi,X

∗
b,i(λk), Zi)

n
i=1

])
:

Vna(λk) := B−1
B∑

b=1

V̂naive

(
β̂na

[
(Yi,X

∗
b,i(λk), Zi)

n
i=1

])
.

Note that V (β̂sim) ≈ V (β̂true)+V (β̂sim−β̂true), and V (β̂sim−β̂true) = − lim
λ→−1

Vna(λ)

(see e.g. Carroll et al., 1995, Chapter 4). Hence, the Stefanski and Cook (1995)

variance estimator is given by

VST = lim
λ→−1

(Vna(λ)− Vsim(λ)) .
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Hence, the variance estimation is given by extrapolating the function

λ −→ Vna(λ)− Vsim(λ)

to λ = −1 by a quadratic extrapolation function. For a detailed description, see

Stefanski and Cook (1995).

A.4 Wald chi-square test

Let any nonsingular set of contrasts of a vector of regression coefficients β be given

by the r columns C1, · · · , Cr of a contrast matrix C. Then var(C ′β) = C ′ΣC,

where Σ is the covariance matrix of β. The Wald Chi-square statistic for testing

the hypothesis C ′β = 0 is given by

WC =
(
C ′β̂

)′ [
C ′Σ̂C

]−1 (
C ′β̂

)
,

where β̂ is the estimate β and Σ̂ is its estimated covariance matrix. The asymptotic

distribution of WC is χ2
r, where r is the rank of C.



APPENDIX

B Simulation results for the double

binomial extensions

Here we present selected simulation results of the double binomial simulation study

described in Section 7.6.1. Table B.1 shows the simulation results for misclassi-

fied binomial regression when the validation is sampled with equal probability for

scoring Y = s, i.e. Pr(Y = s) = 1/(K + 1), whereas Table B.2 shows the simu-

lation results when the validation is sampled with unequal probability for Y = s,

i.e. Pr(Y = s) = [2(K + 1 − s)]/[(K + 1)(K + 2)]. Finally, Table B.3 shows

the results from binomial regression subject to misclassification error when the

validation data is a random sub-sample of the main data.
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Table B.1: Simulation results for binomial regression: K= 8, N = 100 with
moderately varying sensitivity αk and specificity βk around 90%, 95% respectively
for each of the four extensions (E0 corresponds to the basic DB approach). Case
of P (Y = s) = 1/(K + 1) in the validation data. pX is the success probability
of the binary regressor, SDZ is the standard deviation of the normal continuous
regressor.

β0 βX βZ
Ext (pX ,SDZ) Mean(SD) MSE Mean(SD) MSE Mean(SD) MSE

True 0.000(0.031) — −0.998(0.046) — 0.996(0.238) —
E0 (0.5, 0.1) Naive −0.100(0.031) 0.011 −0.849(0.045) 0.024 0.835(0.242) 0.084

Mult 0.001(0.072) 0.005 −0.992(0.082) 0.007 0.982(0.289) 0.084
E0 0.002(0.059) 0.003 −0.999(0.061) 0.004 0.992(0.289) 0.084

True 0.000(0.039) — −0.999(0.051) — 1.001(0.030) —
E0 (0.6, 1) Naive −0.114(0.039) 0.015 −0.806(0.050) 0.040 0.803(0.028) 0.040

Mult −0.005(0.078) 0.006 −0.981(0.082) 0.007 0.982(0.066) 0.005
E0 0.001(0.072) 0.005 −1.002(0.070) 0.005 1.004(0.050) 0.002

True −0.001(0.075) — −1.001(0.095) — 1.000(0.024) —
E0 (0.7, 5) Naive −0.181(0.061) 0.036 −0.475(0.076) 0.282 0.470(0.016) 0.281

Mult −0.032(0.117) 0.015 −0.816(0.145) 0.055 0.812(0.107) 0.047
E0 −0.000(0.121) 0.015 −1.001(0.132) 0.018 0.996(0.072) 0.005

True −0.001(0.130) — −1.001(0.152) — 1.002(0.033) —
E0 (0.8, 10) Naive −0.200(0.089) 0.047 −0.273(0.104) 0.541 0.271(0.010) 0.534

Mult −0.044(0.153) 0.025 −0.624(0.202) 0.183 0.622(0.135) 0.162
E0 −0.001(0.192) 0.035 −0.994(0.208) 0.043 0.997(0.086) 0.007
True 0.001(0.031) — −1.002(0.046) — 1.009(0.236) —

E1 (0.5, 0.1) Naive −0.058(0.031) 0.004 −0.842(0.047) 0.028 0.842(0.238) 0.085
Mult −0.002(0.073) 0.005 −0.991(0.085) 0.007 0.994(0.291) 0.085
E0 0.000(0.059) 0.003 −1.003(0.063) 0.004 1.013(0.289) 0.083
E1 0.003(0.044) 0.002 −1.004(0.060) 0.004 0.997(0.281) 0.080

True −0.000(0.040) — −1.000(0.054) — 1.002(0.031) —
E1 (0.6, 1) Naive −0.066(0.037) 0.006 −0.798(0.051) 0.043 0.794(0.028) 0.044

Mult −0.004(0.076) 0.006 −0.978(0.087) 0.008 0.978(0.069) 0.005
E0 −0.001(0.071) 0.005 −1.003(0.073) 0.005 1.005(0.052) 0.003
E1 0.003(0.049) 0.002 −1.001(0.070) 0.005 0.998(0.040) 0.002

True 0.001(0.072) — −1.001(0.091) — 1.002(0.025) —
E1 (0.7, 5) Naive −0.105(0.057) 0.015 −0.465(0.070) 0.292 0.464(0.016) 0.289

Mult −0.015(0.119) 0.014 −0.811(0.150) 0.058 0.810(0.106) 0.048
E0 0.004(0.125) 0.016 −1.004(0.140) 0.020 1.002(0.071) 0.005
E1 0.014(0.124) 0.026 −1.016(0.131) 0.017 0.996(0.066) 0.004

True 0.000(0.127) — −1.004(0.151) — 1.002(0.033) —
E1 (0.8, 10) Naive −0.118(0.087) 0.021 −0.269(0.099) 0.55 0.268(0.010) 0.538

Mult −0.037(0.155) 0.026 −0.594(0.195) 0.205 0.594(0.134) 0.184
E0 −0.009(0.188) 0.036 −0.992(0.213) 0.045 0.994(0.086) 0.007
E1 0.006(0.172) 0.029 −1.005(0.198) 0.039 1.006(0.051) 0.003

True −0.001(0.032) — −0.999(0.047) — 0.998(0.235) —
E2 (0.5, 0.1) Naive −0.050(0.033) 0.003 −0.897(0.049) 0.013 0.887(0.242) 0.071

Mult −0.003(0.065) 0.004 −0.993(0.077) 0.006 0.988(0.280) 0.078
E0 −0.005(0.055) 0.003 −1.034(0.062) 0.005 1.032(0.283) 0.082
E2 −0.003(0.037) 0.001 −0.998(0.055) 0.003 0.996(0.277) 0.078

True −0.001(0.041) — −1.002(0.055) — 1.002(0.032) —
E2 (0.6, 1) Naive −0.055(0.041) 0.005 −0.865(0.055) 0.022 0.861(0.031) 0.021

Mult −0.004(0.070) 0.005 −0.985(0.079) 0.006 0.985(0.061) 0.004
E0 −0.005(0.069) 0.005 −1.043(0.074) 0.007 1.045(0.051) 0.005
E2 −0.006(0.046) 0.002 −0.993(0.064) 0.004 0.997(0.038) 0.001

Continued on next page
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Table B.1: continued from previous page

β0 βX βZ
Ext (pX ,SDZ) Mean(SD) MSE Mean(SD) MSE Mean(SD) MSE

True 0.002(0.074) — −1.004(0.088) — 1.001(0.025) —
E2 (0.7, 5) Naive −0.082(0.063) 0.011 −0.566(0.076) 0.198 0.562(0.019) 0.194

Mult −0.008(0.108) 0.012 −0.866(0.140) 0.039 0.859(0.100) 0.03
E0 0.006(0.118) 0.014 −1.078(0.129) 0.022 1.072(0.066) 0.009
E2 0.003(0.090) 0.008 −0.998(0.106) 0.011 1.000(0.039) 0.001

True 0.001(0.128) — −1.004(0.144) — 1.003(0.032) —
E2 (0.8, 10) Naive −0.094(0.094) 0.018 −0.338(0.105) 0.454 0.339(0.014) 0.442

Mult −0.026(0.148) 0.023 −0.680(0.194) 0.142 0.683(0.138) 0.122
E0 −0.003(0.189) 0.036 −1.075(0.213) 0.050 1.077(0.078) 0.011
E2 0.014(0.172) 0.030 −1.013(0.192) 0.037 1.00(0.047) 0.002

True −0.001(0.032) — −0.999(0.048) — 1.006(0.227) —
E3 (0.5, 0.1) Naive −0.104(0.033) 0.012 −0.843(0.049) 0.026 0.841(0.227) 0.079

Mult −0.005(0.071) 0.005 −0.990(0.084) 0.007 0.995(0.282) 0.080
E0 −0.001(0.059) 0.003 −1.001(0.064) 0.004 1.008(0.274) 0.075
E3 −0.003(0.037) 0.001 −0.995(0.057) 0.003 1.016(0.271) 0.074

True 0.001(0.039) — −1.002(0.052) — 1.002(0.031) —
E3 (0.6, 1) Naive −0.117(0.038) 0.015 −0.801(0.050) 0.043 0.796(0.029) 0.043

Mult −0.004(0.078) 0.006 −0.980(0.084) 0.008 0.979(0.069) 0.005
E0 0.001(0.074) 0.005 −1.005(0.074) 0.005 1.006(0.053) 0.003
E3 0.003(0.049) 0.002 −1.001(0.066) 0.004 1.002(0.041) 0.002
True 0.005(0.074) — −1.005(0.092) — 1.000(0.024) —

E3 (0.7, 5) Naive −0.183(0.059) 0.039 −0.466(0.073) 0.296 0.462(0.016) 0.290
Mult −0.031(0.117) 0.015 −0.806(0.145) 0.061 0.800(0.100) 0.050
E0 0.002(0.121) 0.015 −1.000(0.135) 0.018 0.994(0.070) 0.005
E3 0.006(0.095) 0.009 −1.004(0.122) 0.015 1.000(0.041) 0.002

True −0.008(0.128) — −0.993(0.145) — 1.005(0.033) —
E3 (0.8, 10) Naive −0.210(0.092) 0.049 −0.257(0.104) 0.553 0.265(0.010) 0.548

Mult −0.058(0.156) 0.027 −0.594(0.188) 0.195 0.605(0.129) 0.176
E0 −0.004(0.195) 0.035 −0.990(0.222) 0.042 1.001(0.087) 0.008
E3 −0.014(0.249) 0.029 −1.009(0.196) 0.039 1.008(0.056) 0.003

True 0.001(0.031) — −1.001(0.047) — 0.986(0.239) —
E4 (0.5, 0.1) Naive −0.214(0.032) 0.047 −0.837(0.048) 0.029 0.810(0.240) 0.089

Mult −0.006(0.082) 0.007 −0.990(0.090) 0.008 0.968(0.297) 0.088
E0 −0.017(0.065) 0.005 −1.008(0.064) 0.004 0.988(0.295) 0.087
E4 0.002(0.041) 0.002 −1.000(0.059) 0.003 0.977(0.283) 0.080

True 0.003(0.038) — −1.003(0.050) — 1.000(0.030) —
E4 (0.6, 1) Naive −0.231(0.038) 0.056 −0.794(0.051) 0.046 0.786(0.029) 0.046

Mult −0.002(0.085) 0.007 −0.986(0.092) 0.009 0.981(0.072) 0.006
E0 −0.006(0.078) 0.006 −1.021(0.077) 0.006 1.017(0.056) 0.003
E4 −0.003(0.053) 0.003 −0.994(0.071) 0.005 1.001(0.042) 0.002

True 0.003(0.075) — −1.005(0.091) — 1.001(0.024) —
E4 (0.7, 5) Naive −0.332(0.060) 0.116 −0.449(0.073) 0.314 0.447(0.015) 0.308

Mult −0.046(0.124) 0.018 −0.815(0.143) 0.057 0.810(0.102) 0.047
E0 0.007(0.131) 0.017 −1.042(0.138) 0.020 1.038(0.073) 0.007
E4 0.007(0.095) 0.009 −1.008(0.115) 0.013 1.004(0.046) 0.002

True 0.005(0.125) — −1.005(0.142) — 1.002(0.032) —
E4 (0.8, 10) Naive −0.360(0.089) 0.141 −0.250(0.102) 0.580 0.254(0.010) 0.560

Mult −0.087(0.160) 0.034 −0.604(0.197) 0.199 0.610(0.134) 0.172
E0 0.009(0.221) 0.036 −1.021(0.264) 0.043 1.032(0.083) 0.008
E4 −0.008(0.179) 0.032 −1.004(0.239) 0.041 1.006(0.059) 0.003
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Table B.2: Simulation results for binomial regression: K= 8, N = 100 with
moderately varying sensitivity αk and specificity βk around 90%, 95% respectively
for each of the four extensions ((E0 corresponds to the basic DB approach). Case
of P (Y = s) descending in s in the validation data. pX is the success probability
of the binary regressor, SDZ is the standard deviation of the normal continuous
regressor.

β0 βX βZ
Ext (pX ,SDZ) Mean(SD) MSE Mean(SD) MSE Mean(SD) MSE

True 0.002(0.031) — −1.002(0.048) — 0.989(0.242) —
E0 (0.5, 0.1) Naive −0.098(0.031) 0.011 −0.854(0.047) 0.024 0.836(0.232) 0.077

Mult (889)† −0.001(0.075) 0.006 −0.994(0.081) 0.007 0.977(0.283) 0.080
E0 0.003(0.062) 0.004 −1.005(0.062) 0.004 0.994(0.278) 0.077

True −0.001(0.038) — −1.000(0.053) — 1.002(0.031) —
E0 (0.6, 1) Naive −0.116(0.037) 0.015 −0.806(0.051) 0.040 0.803(0.029) 0.040

Mult (882)† −0.019(0.080) 0.007 −0.964(0.085) 0.009 0.965(0.069) 0.006
E0 0.002(0.076) 0.006 −1.000(0.072) 0.005 1.003(0.051) 0.003

True 0.004(0.070) — −1.008(0.091) — 1.002(0.024) —
E0 (0.7, 5) Naive −0.177(0.060) 0.037 −0.477(0.074) 0.287 0.470(0.015) 0.282

Mult (869)† −0.134(0.129) 0.036 −0.697(0.153) 0.120 0.691(0.123) 0.112
E0 0.001(0.129) 0.017 −1.008(0.139) 0.019 0.999(0.073) 0.005

True 0.001(0.129) — −1.004(0.147) — 1.002(0.033) —
E0 (0.8, 10) Naive −0.206(0.091) 0.051 −0.268(0.100) 0.552 0.272(0.011) 0.534

Mult (887)† −0.185(0.155) 0.058 −0.453(0.181) 0.336 0.455(0.126) 0.316
E0 0.000(0.195) 0.038 −1.004(0.214) 0.046 0.999(0.092) 0.009

True −0.000(0.031) — −1.000(0.049) — 1.003(0.233) —
E1 (0.5, 0.1) Naive −0.059(0.031) 0.004 −0.842(0.049) 0.027 0.833(0.228) 0.081

Mult (891)† −0.006(0.071) 0.005 −0.990(0.083) 0.007 0.994(0.276) 0.076
E0 0.001(0.062) 0.004 −1.004(0.064) 0.004 1.003(0.275) 0.076
E1 0.001(0.036) 0.001 −1.005(0.058) 0.003 0.974(0.270) 0.073

True −0.000(0.038) — −1.002(0.051) — 1.002(0.031) —
E1 (0.6, 1) Naive −0.068(0.037) 0.006 −0.798(0.051) 0.044 0.792(0.029) 0.045

Mult (888)† −0.022(0.080) 0.007 −0.964(0.081) 0.008 0.963(0.065) 0.006
E0 −0.002(0.074) 0.006 −1.002(0.072) 0.005 1.002(0.051) 0.003
E1 −0.003(0.047) 0.002 −0.998(0.063) 0.004 0.999(0.042) 0.002

True 0.001(0.077) — −1.003(0.093) — 1.001(0.025) —
E1 (0.7, 5) Naive −0.105(0.062) 0.015 −0.467(0.076) 0.293 0.465(0.015) 0.289

Mult (885)† −0.122(0.138) 0.034 −0.678(0.157) 0.130 0.679(0.119) 0.118
E0 0.006(0.133) 0.018 −1.003(0.140) 0.020 0.999(0.073) 0.005
E1 −0.009(0.130) 0.017 −0.988(0.133) 0.018 0.987(0.070) 0.005

True −0.000(0.127) — −1.002(0.146) — 1.002(0.033) —
E1 (0.8, 10) Naive −0.118(0.091) 0.022 −0.268(0.102) 0.55 0.268(0.010) 0.538

Mult (884)† −0.159(0.164) 0.052 −0.452(0.184) 0.337 0.451(0.126) 0.319
E0 0.010(0.225) 0.047 −1.003(0.242) 0.060 1.003(0.090) 0.008
E1 −0.003(0.145) 0.021 −0.998(0.166) 0.028 1.004(0.051) 0.003

True 0.001(0.032) — −1.002(0.047) — 0.997(0.231) —
E2 (0.5, 0.1) Naive −0.047(0.033) 0.003 −0.900(0.048) 0.013 0.889(0.238) 0.068

Mult (878)† 0.001(0.068) 0.005 −0.994(0.077) 0.006 0.976(0.275) 0.076
E0 0.023(0.058) 0.004 −1.037(0.061) 0.005 1.033(0.277) 0.078
E2 −0.001(0.038) 0.001 −0.998(0.054) 0.003 0.989(0.271) 0.073
True −0.001(0.037) — −0.999(0.052) — 1.000(0.031) —

E2 (0.6, 1) Naive −0.056(0.038) 0.004 −0.862(0.053) 0.022 0.858(0.031) 0.021

Mult (876)† −0.015(0.071) 0.005 −0.973(0.079) 0.007 0.972(0.063) 0.005
E0 0.023(0.069) 0.005 −1.041(0.073) 0.007 1.043(0.051) 0.004
E2 −0.007(0.051) 0.003 −0.991(0.065) 0.004 0.994(0.043) 0.003

Continued on next page
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Table B.2: continued from previous page

β0 βX βZ
Ext (pX ,SDZ) Mean(SD) MSE Mean(SD) MSE Mean(SD) MSE

True −0.001(0.075) — −1.000(0.093) — 1.000(0.025) —
E2 (0.7, 5) Naive −0.086(0.062) 0.011 −0.561(0.078) 0.199 0.561(0.018) 0.194

Mult (882)† −0.106(0.124) 0.026 −0.736(0.149) 0.092 0.741(0.122) 0.082
E0 0.035(0.125) 0.017 −1.079(0.136) 0.025 1.078(0.071) 0.011
E2 0.003(0.093) 0.009 −1.007(0.116) 0.014 1.002(0.041) 0.002

True 0.003(0.128) — −1.002(0.150) — 1.002(0.031) —
E2 (0.8, 10) Naive −0.096(0.096) 0.019 −0.335(0.106) 0.455 0.339(0.014) 0.440

Mult (895)† −0.133(0.159) 0.044 −0.520(0.194) 0.269 0.526(0.152) 0.250
E0 0.042(0.192) 0.039 −1.080(0.213) 0.052 1.088(0.082) 0.014
E2 0.001(0.166) 0.027 −1.006(0.185) 0.034 1.003(0.055) 0.003

True 0.000(0.032) — −1.002(0.047) — 0.998(0.239) —
E3 (0.5, 0.1) Naive −0.102(0.032) 0.012 −0.847(0.048) 0.026 0.838(0.241) 0.084

Mult (901)† −0.006(0.075) 0.006 −0.988(0.081) 0.007 0.983(0.286) 0.082
E0 0.002(0.063) 0.004 −1.005(0.062) 0.004 1.004(0.290) 0.084
E3 0.001(0.034) 0.001 −1.000(0.056) 0.003 0.992(0.269) 0.072

True 0.000(0.039) — −1.000(0.051) — 1.001(0.031) —
E3 (0.6, 1) Naive −0.118(0.038) 0.015 −0.799(0.051) 0.043 0.796(0.029) 0.043

Mult(888)† −0.023(0.081) 0.007 −0.962(0.086) 0.009 0.964(0.069) 0.006
E0 0.002(0.077) 0.006 −1.003(0.071) 0.005 1.006(0.054) 0.003
E3 0.003(0.052) 0.003 −0.996(0.063) 0.004 0.997(0.042) 0.002

True −0.001(0.075) — −1.003(0.093) — 1.003(0.025) —
E3 (0.7, 5) Naive −0.189(0.060) 0.039 −0.458(0.072) 0.301 0.463(0.016) 0.292

Mult(888)† −0.148(0.131) 0.039 −0.660(0.149) 0.14 0.662(0.120) 0.131
E0 −0.000(0.131) 0.017 −0.999(0.143) 0.02 1.002(0.077) 0.006
E3 0.001(0.097) 0.009 −0.998(0.123) 0.015 1.000(0.041) 0.002

True −0.002(0.134) — −1.000(0.152) — 1.004(0.032) —
E3 (0.8, 10) Naive −0.201(0.094) 0.049 −0.267(0.105) 0.548 0.265(0.010) 0.546

Mult (877)† −0.183(0.157) 0.057 −0.436(0.181) 0.351 0.437(0.116) 0.334
E0 −0.001(0.201) 0.036 −1.002(0.208) 0.043 0.999(0.090) 0.008
E3 0.005(0.162) 0.026 −1.011(0.188) 0.036 1.006(0.055) 0.003

True −0.001(0.033) — −0.999(0.047) — 0.991(0.237) —
E4 (0.5, 0.1) Naive −0.216(0.034) 0.047 −0.835(0.050) 0.029 0.826(0.245) 0.087

Mult (880)† −0.011(0.086) 0.007 −0.986(0.088) 0.008 0.987(0.300) 0.090
E0 −0.007(0.072) 0.005 −1.005(0.066) 0.004 1.007(0.299) 0.090
E4 0.004(0.048) 0.002 −1.005(0.063) 0.004 0.982(0.287) 0.083

True 0.001(0.038) — −1.003(0.053) — 0.999(0.031) —
E4 (0.6, 1) Naive −0.233(0.038) 0.057 −0.793(0.053) 0.047 0.786(0.029) 0.046

Mult (891)† −0.024(0.084) 0.008 −0.969(0.087) 0.009 0.964(0.069) 0.006
E0 0.005(0.082) 0.007 −1.021(0.080) 0.007 1.018(0.054) 0.003
E4 0.002(0.054) 0.003 −1.004(0.071) 0.005 1.004(0.042) 0.002

True −0.005(0.072) — −0.995(0.090) — 1.001(0.025) —
E4 (0.7, 5) Naive −0.337(0.062) 0.114 −0.446(0.076) 0.308 0.447(0.015) 0.307

Mult (900)† −0.174(0.142) 0.048 −0.660(0.154) 0.136 0.662(0.121) 0.130
E0 0.022(0.148) 0.023 −1.034(0.150) 0.024 1.038(0.079) 0.008
E4 0.001(0.103) 0.011 −1.009(0.123) 0.015 1.001(0.041) 0.002

True −0.007(0.130) — −0.999(0.151) — 1.003(0.032) —
E4 (0.8, 10) Naive −0.358(0.088) 0.131 −0.252(0.098) 0.567 0.254(0.010) 0.560

Mult (875)† −0.235(0.153) 0.075 −0.420(0.176) 0.366 0.417(0.114) 0.356
E0 0.019(0.226) 0.042 −1.033(0.226) 0.050 1.031(0.081) 0.007
E4 −0.002(0.212) 0.028 −0.995(0.225) 0.050 1.007(0.058) 0.003

†Number of simulation samples (over 1000) of which the multinomial approach was estimable
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Table B.3: Simulation results for binomial regression: K= 8, N = 100 with
moderately varying sensitivity αk and specificity βk around 90%, 95% respectively
for E0 (basic DB approach), when the validation data is a random sub-sample of
the main data.

β0 βX βZ

Ext (pX ,SDZ) Mean(SD) MSE Mean(SD) MSE Mean(SD) MSE
True 0.000(0.030) — −1.001(0.046) — 0.992(0.241) —

(0.5, 0.1) Naive −0.101(0.031) 0.011 −0.851(0.046) 0.025 0.832(0.240) 0.083
Mult (227)† −0.016(0.064) 0.004 −0.977(0.074) 0.006 0.934(0.274) 0.079
E0 −0.001(0.059) 0.003 −1.002(0.061) 0.004 0.989(0.285) 0.081

True −0.002(0.038) — −0.999(0.051) — 1.000(0.031) —
(0.6, 1) Naive −0.117(0.037) 0.015 −0.806(0.050) 0.04 0.802(0.030) 0.040

Mult (887)† −0.018(0.072) 0.005 −0.964(0.081) 0.008 0.964(0.067) 0.006
E0 −0.002(0.070) 0.005 −0.999(0.069) 0.005 1.001(0.052) 0.003

True 0.001(0.076) — −1.005(0.091) — 1.002(0.025) —
(0.7, 5) Naive −0.181(0.062) 0.037 −0.473(0.074) 0.289 0.471(0.015) 0.282

Mult (931)† −0.014(0.150) 0.023 −0.908(0.150) 0.032 0.906(0.102) 0.020
E0 0.003(0.124) 0.015 −1.006(0.132) 0.017 1.003(0.071) 0.005

True 0.002(0.127) — −1.007(0.147) — 1.002(0.034) —
(0.8, 10) Naive −0.198(0.090) 0.048 −0.279(0.103) 0.541 0.271(0.011) 0.534

Mult (563)† −0.005(0.237) 0.056 −0.834(0.247) 0.091 0.822(0.173) 0.063
E0 0.001(0.182) 0.033 −1.011(0.205) 0.042 1.004(0.082) 0.007

†Number of simulation samples (over 1000) of which the multinomial approach was estimable
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C Software

In this appendix, we only present some of the selected but important WinBUGS’

programs used for model fitting in this thesis. Provided also are the programs of

the WinBUGS Development Interface (WBDev), which enables the implementation

of user defined functions into the WinBUGS system. The WBDev folder should be

copied to the WinBUGS’ root directory. All the programs can be obtained from

http://med.kuleuven.be/biostat/software/software.htm

C.1 Programs for Chapter 4

Program 4.1 fits the uncorrected random effects logistic model (4.1) predicting

the prevalence of caries experience, controlling for the geographical effect

(see Table 4.2).

Program 4.2 fits the misclassification rates from model (4.8) (see Table 4.5).

Program 4.3 fits the corrected random-effects simple logistic regression model

(4.7) in combination with misclassification model (4.8) predicting the preva-

lence of caries experience (see Table 4.6).
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C.2 Programs for Chapter 5

Program 5.1 fits the random-intercepts multinomial logit model (5.1) predicting

the degree of caries experience, controlling for the geographical effect (see

Table 5.1).

Program 5.2 fits the examiner-specific coefficients ws of the first and second mis-

classification model (5.7), estimated from the corresponding (see Table 5.3).

Program 5.3 fits the corrected random-effects ordinal logistic regression model

(5.5) in combination with the first misclassification model, expression (5.7)

with wj ∼ dbeta(1, 1), predicting the degree of caries experience (see Table

5.5)

Program 5.4 fits the corrected random-effects ordinal logistic regression model

(5.5) in combination with second misclassification model, expression (5.7)

with logit(wj) ∼ N (µw, σ
2
w), predicting the degree of caries experience (see

Table 5.6).

Program 5.5 fits the corrected random-effects ordinal logistic regression model

(5.5) in combination with third misclassification model (5.8) predicting the

degree of caries experience (see Table 5.7).

Program 5.6 fits the corrected random-effects ordinal logistic regression model

(5.5) in combination with fourth misclassification model (5.9) predicting

the degree of caries experience (see Table 5.8).

C.3 Programs for Chapter 6

Program 6.1 fits the Poisson, generalized Poisson (GP), negative binomial (NB)

and Poisson-inverse Gaussian (PIG) distributions (see Table 6.2).

Program 6.2 fits the zero-inflated Poisson (ZIP), zero-inflated generalized Pois-

son(ZIGP), zero-inflated negative binomial (ZINB) and zero-inflated Poisson-

inverse (ZIPIG) Gaussian distributions (see Table 6.3).

Program 6.3 fits the multiple ZINB regression model predicting the dmft-index

(see Table 6.4).

Program 6.4-a is a R program that fits the symmetric and asymmetric misclassi-

fication model from pooled Albert et al.’s approach (see 6.5).
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Program 6.4-b is a WinBUGS program that fits the symmetric and asymmetric

misclassification model from pooled Albert et al.’s approach (see 6.5).

Program 6.5 fits the pooled corrected multiple ZINB regression model predicting

the dmft-index combined with 3p-asymmetric Albert et al.’s misclassifica-

tion model (see Table 6.7).

Program 6.6 fits the examiner-specific corrected multiple ZINB regression model

predicting the dmft-index combined with Albert et al.’s misclassification

model (see Table 6.8).

C.4 Programs for Chapter 7

Program 7.1 fits the distribution of the dmft4,5 with expected frequencies ob-

tained by fitting a beta-binomial (BB) and zero-inflated beta-binomial (ZIBB)

distribution (see Table 7.1).

Program 7.2 fits uncorrected ZIBB regression model fitted to the dmft4,5 (see

Table 7.2).

Program 7.3 fits the pooled corrected ZIBB regression model fitted to the dmft4,5

(see Table 7.11).

Program 7.4 fits the examiner-specific corrected ZIBB regression model fitted to

the dmft4,5 (see Table 7.12).
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