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Abstract

The goal of data mining is to find rules (or hypotheses) that describe non-trivial
relations, patterns or properties of large quantities of data, thus helping in under-
standing the data better. Inductive Logic Programming (ILP) is a relational data
mining technique based on first order logic. Logic provides a powerful yet natural
formalism for representing knowledge, allowing ILP to learn concepts that cannot
be learned using less powerful data mining techniques. However, because of its
high expressivity, the space of all possible hypotheses is also very complex, due
to which the search for good hypotheses becomes a complex task.

One of the most important factors in the execution of ILP algorithms is the
engine underlying the algorithm. This engine is responsible for evaluating can-
didate hypotheses (or queries) on the data, and provides primitives to the ILP
algorithm for guiding the evaluation of queries. In this work, we present different
techniques for optimizing the engines used by ILP algorithms.

We combine two existing, independent, and successful optimization techniques
for query evaluation: the once transformation, which aims to avoid redundant
execution within a single query, and query packs, which avoid redundancy in the
execution of multiple queries.

The general approach to query evaluation is to compile the query to a more
efficient version instead of executing the query directly. We study alternatives to
this approach, and propose a more performant compilation technique, together
with a lazy variant that only compiles parts of queries as they are needed.

Analysis and debugging of query execution is an important part of the devel-
opment of more efficient query execution techniques. We present a trace-based
technique for debugging and analyzing the execution step of ILP algorithms.

We present a study of trading off extra memory for execution time on different
levels of ILP execution. These techniques include predicate tabling and program
specialization, together with more ILP algorithm-specific techniques.
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Chapter 1

Introduction

1.1 Data Mining and Inductive Logic Program-
ming

The amount of information stored in digital media is increasing very rapidly.
The main goal of keeping information is to be able to extract new information
from it: companies are collecting information about the shopping behavior of
their customers, in order to make more effective marketing campaigns; search
engines keep information about previous searches, in order to present person-
alized results; pharmaceutical companies keep information about experiments
performed with newly designed drugs, in order to predict their behavior, . . .
Automatically extracting new information from large sets of data is the goal of
Data Mining (Fayyad, Piatetsky-Shapiro, and Smyth 1996), also referred to as
Knowledge Discovery. Data mining is a relatively recent topic, combining older
techniques such as statistics, databases, and artificial intelligence. The task of
data mining can be two-fold:

• Predictive data mining extracts information that allows to predict a target
attribute of previously unseen data. For example, consider a database of
credit card transactions, containing for each transaction information about
whether it is fraudulent or not. The goal of a predictive data mining task
is to discover rules that can predict if a new transaction is fraudulent.

• Descriptive data mining discovers rules ‘describing’ the data, typically in
the form of interesting patterns. For example, a shop might want to mine
the database of its customers in order to find classes of people with certain
shopping behavior. Such information can help in deciding which products
to allocate close to each other in the shop.

A widely used technique for data mining is attribute-value learning, where
all the data to be analyzed is stored in one table (or ‘relation’). Every row in a
table represents a data instance, and every column an attribute of the data. The

1
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simplicity of this representation has made attribute-value learning a very pop-
ular approach, for which many efficient techniques have been developed in the
past. However, in practice, most data is stored using multiple relations, making
attribute-value learning too limited to discover interesting patterns. Although
under some very restricted conditions, learning over relational data can be re-
duced to attribute-value learning, this transformation is computationally too
expensive for some real-life applications (De Raedt 1998).

A more powerful approach that overcomes these problems is relational data
mining, which uses data stored in multiple tables directly. Not only does this
avoid the (often infeasible) step of transforming data into one giant table, it also
allows to learn rules that are not expressible in attribute-value systems. The
most widely used approach to relational data mining is Inductive Logic Program-
ming (Muggleton and De Raedt 1994), which uses Logic Programming (Kowalski
1974) as its foundation. In ILP, every instance of the data is represented as a
logic program, predicates are used to encode the database relations, and the
rules that have to be learned are expressed as queries (or sets of queries). ILP
also makes it possible to express knowledge about the problem domain using log-
ical predicates, providing a natural and expressive way of encoding knowledge.
These factors make that ILP has been applied in a variety of more complex
domains where classical learning techniques failed. Amongst the target appli-
cation domains of ILP are medical applications (Davis, Burnside, Dutra, Page,
Ramakrishnan, Costa, and Shavlik 2005; Srinivasan, Muggleton, Sternberg, and
King 1996; Lavrač, Džeroski, Pirnat, and Krizman 1993), biology (Page and
Craven 2003), chemistry (Blockeel, Dzeroski, Kompare, Kramer, Pfahringer,
and Van Laer 2004), pharmaceutics (King, Muggleton, Lewis, and Sternberg
1992; Muggleton, King, and Sternberg 1992), software engineering (Bratko and
Grobelnik 1993), aeronautics (Feng 1992), and CAD (Dolsak and Muggleton
1992).

1.2 Motivation and Contributions

Because ILP is based on first order logic, the hypotheses learned by ILP algo-
rithms can represent complex rules. However, because of this powerful represen-
tation, the space of all possible hypotheses is also very complex. ILP algorithms
generally use a generate-and-test approach to search for the target hypothesis:
in each step (also called ‘iteration’) of the algorithm, a set of queries is generated
and evaluated on the data set; the best queries are selected and refined in the
next step of the algorithm, and the process continues until a certain condition
is met. Because of the generate-and-test nature of ILP algorithms, evaluating
all candidate hypotheses on the data typically is the bottleneck of the search
problem. The goal of our work is to optimize this evaluation step by improving
the performance of the engines underlying ILP algorithms. Previous research
has shown that the ILP engine is an important factor in ILP algorithm execu-
tion (Blockeel, Dehaspe, Demoen, Janssens, Ramon, and Vandecasteele 2002).
On one hand, the engine needs to provide primitives allowing the algorithm to
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guide the evaluation process, and on the other hand, the engine itself needs to be
designed for efficient execution. In this text, we present multiple contributions
in this area:

• In the past, different query transformations were developed to improve
ILP execution time. One of the most effective transformations is the once
transformation. Independent of these transformations, the query pack
execution mechanism was developed to optimize the execution of large
sets of similar queries. Both independent optimizations yield significant
speedups. The goal of our first contribution is to develop a new exe-
cution mechanism combining both the once transformation and the query
pack execution mechanism, in order to get the best of both worlds. For
this purpose, we introduce the notion of an adpack.

• Because queries need to be evaluated multiple times, the classical ap-
proach is to compile the query to a more efficient form, and execute the
more efficient version. This approach indeed shows a significant improve-
ment over dynamically interpreting queries. However, compiling a query is
an expensive operation, and experiments point out that the time needed
to compile a query dominates the total time of the evaluation process.
As our second contribution, we present an optimized query interpreta-
tion scheme, which matches the speed of the compile-and-run approach,
without requiring the expensive compilation step.

• As our third contribution, we present control flow compilation, a more
flexible alternative for the compile-and-run approach. Control flow com-
pilation combines a simple compilation step with fast execution. Besides
improved performance, this approach also allows to reuse previously de-
veloped built-in instructions such as those required for execution of query
packs. Moreover, the high degree of flexibility of this new form of com-
pilation allows us to develop a lazy variant of this scheme that compiles
parts of queries only when they are needed. This approach reduces the
total compilation time even more.

Engine optimizations as the ones presented above are typically of a low-level
nature, making them hard to debug. Tracing bugs in these execution mecha-
nisms is made even harder by other factors, including the total size of the code
base of the ILP algorithms. On the other hand, these factors also influence the
feasibility of performing analysis of the ILP execution phase in order to detect
bottlenecks. In our fourth contribution, we present an algorithm-independent
way of performing automated debugging and analysis of ILP execution.

Our final contribution consists of investigating the benefits from trading
memory for execution speed. We look at existing approaches of doing this on
different levels of ILP execution, and make a qualitative comparison with other
techniques that do not sacrifice memory for execution.
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1.3 Organization of the Text

In this chapter (Chapter 1), we briefly introduced Inductive Logic Program-
ming as a relational Data Mining technique, and highlighted some of the prop-
erties of ILP.

In Chapter 2, we present a technical overview of the concepts on which
this text is based. We describe Prolog as a logic programming language, and
discuss its implementation aspects. We also give a more in-depth description
of ILP, together with concrete examples of ILP algorithms. Finally, we discuss
two existing techniques for optimizing ILP execution.

In Chapter 3, we describe a new approach for optimizing ILP query execu-
tion by combining two existing independent techniques. This combination aims
at yielding the advantages of both techniques, thus improving query execution
time.

In Chapter 4, we develop alternatives for the classically used compile-and-
run approach to query evaluation. The goal of these alternatives is to reduce
the compilation time of queries, which encompasses a large share of the total
query execution process.

In Chapter 5, we discuss an algorithm- and engine independent approach
for analyzing and debugging ILP query execution. For debugging, an automated
technique is presented that reduces the total time needed for a bug to expose
to a minimum.

Chapter 6 studies trading off space for time on different levels of ILP exe-
cution. The discussed techniques store previously computed answers of complex
predicates and of queries, such that these can be reused later.

The conclusions of the work presented in this text are given in Chapter 7.
We give a high-level overview of the different techniques, and discuss their com-
bination from a global point of view. We finally suggest possible directions for
future work on the techniques developed throughout this text.

A graphical overview of the different chapters of this text can be seen in
Figure 1.1.

1.4 Bibliographical Note

Some parts of this work have been published before. The following list contains
the key articles. A complete publication list of the author can be found at the
end of this text (page IX).

• Chapter 3: Combining query packs with the once transformation

– R. Tronçon, H. Vandecasteele, J. Struyf, B. Demoen, and G. Jans-
sens, Query optimization: Combining query packs and the once-trans-
formation, Inductive Logic Programming, 13th International Confer-
ence, ILP 2003, Szeged, Hungary, Short Presentations (Horvath, T.
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Chapter 2

Background: From Logic
Programming to Inductive
Logic Programming

In this chapter, we describe the fundamental concepts on which our work is
based. Section 2.1 starts by giving a brief description of the concepts, syntax,
and notational conventions of logic programs as the foundation of Inductive
Logic Programming. In Section 2.2, we look at Inductive Logic Programming
in more detail. Besides the general approach, we briefly discuss two specific
ILP algorithms. Section 2.3 focuses on existing techniques for optimizing ILP
execution, which form the basis of a large part of this work. Finally, we briefly
describe the ACE/hipP data mining system in Section 2.4, which we use as the
implementation platform for our developments.

2.1 Logic Programming

Logic Programming (Kowalski 1974) is a programming paradigm based on first
order logic. The main motivation of logic programming is that by using logic
to describe programs, they become easy to read, write, and maintain. Prolog is
a concrete example of such a logic programming language, which we use as our
platform for this text. We assume that the reader is familiar with Prolog and
logic programming in general. In this section, we give a brief summary of the
terminology and concepts of logic programming and Prolog. More information
on Prolog itself can be found in the multitude of available literature on the
language (Clocksin and Melish 2003; Bratko 2001; Sterling and Shapiro 1994;
O’Keefe 1990). For a more in depth study of logic programming in general
(including theoretical properties etc.), we refer to (Lloyd 1987).

We start by giving the basic syntax of Prolog in 2.1.1. Section 2.1.2 ex-
plains how logic programs are executed. Finally, Section 2.1.3 discusses the

7
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parent(ann,bob).
parent(bob,chris).

ancestor(X,Y) :- parent(X,Y).
ancestor(X,Y) :- parent(X,Z), ancestor(Z,Y).

Figure 2.1: Example logic program.

implementation aspects of logic programming languages.

2.1.1 Syntax

A logic program is built out of a set of predicates, which describe logical relations.
Each predicate is formed by a series of clauses of the form

H: −B1, B2, . . . , Bn.

Such a clause represents the rule ‘If B1 and B2 and . . . and Bn hold, then
H holds’. H is called the head, and B1, . . . , Bn the body of the clause. Each
Bi is a body literal (or literal for short). In the context of executing logic
programs, a literal can also be called a goal. A clause without body literals is
called a fact, and is written as ‘H.’. A set of literals separated by ‘,’ symbols
is called a conjunction. Literals can also be separated by ‘;’ symbols, in which
case we talk about a disjunction. The reading of a disjunction B1;B2 is ‘B1 or
B2’. Figure 2.1 contains an example logic program describing the ancestor
relations in a certain family. The program consists of a predicate ancestor/2
(i.e. a predicate with name ancestor and arity 2), which is defined in terms of
another predicate parent/2. X, Y and Z are variables, and ann, bob and chris
are constants. Variables are always denoted by an uppercase letter or capitalized
word, whereas constants are denoted by an lowercase letter or uncapitalized
word. Together with compound terms (e.g. f(a,X)), variables and constants are
all terms.

2.1.2 Semantics

Logic programs are ‘executed’ by running a query against them. A query has
the same form as the body of a clause, and is denoted by:

?− Q1, . . . , Qn.

Running this query consists in evaluating whether all of its subparts Qi hold in
the logic program. For example, the query

?− ancestor(ann, X).

asks whether or not Ann is an ancestor of someone. Ann is indeed the ancestor
of someone, and the query is therefore said to succeed. Moreover, an answer sub-
stitution is returned stating that this query holds for X=bob (and/or X=chris).
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?- ancestor(bob,A).

□

?- parent(bob,A).

(3) {X/bob, Y/A}

(2) {A/chris}

?- parent(bob,B), ancestor(B,A).

(4) {X/bob,Y/A}

?- ancestor(chris,A).
(2) {B/chris, Y/B}

?- parent(chris,A).

(3) {X/chris, Y/A}

?- parent(chris,C), ancestor(C,A).

✕

(4) {X/chris, Y/A}

✕

Figure 2.2: Execution tree for an example query against the program in Fig-
ure 2.1. The resolved goal and index of the resolving clause is shown, together
with the unifier.

Contrary to the previous query, the query

?− ancestor(chris, X).

fails.
Concretely, the process of executing a query consists of selecting a literal of

the query to resolve, substituting it with the body of one of the clauses in the
logic program whose head matches with the literal, and repeating this process
until no more literals remain (i.e. the query succeeds), or a selected literal
cannot be resolved (i.e. the query fails). The result of such a query execution
can be represented as a tree, where different branches indicate there was a choice
in the clause to resolve the selected literal with. Such a choice is called a choice
point. Whenever one of the branches fails, execution backtracks to the nearest
choice point and tries the alternative branch(es). Prolog provides a built-in
operation !/0, called the cut, which prunes away all the choicepoints up to (and
including) the head of the clause in which the cut appears.

The execution tree for an example query against the program from Figure 2.1
is shown in Figure 2.2. The resolved goal is typeset in bold, and the index clause
with which the goal is resolved is shown together with the resulting unifier.
Prolog always selects the leftmost literal in a query for resolving, and selects
resolving clauses from the program in a top-to-bottom order.

2.1.3 Implementation

A Prolog implementation (also called an engine) is a program that evaluates a
given query against a given logic program. The Warren Abstract Machine (War-
ren 1983) describes a standardized design for implementing Prolog engines. The
WAM proposes an internal memory layout, a compilation scheme for programs
and queries, and a virtual instruction set for executing the compiled programs



10 CHAPTER 2. BACKGROUND

and queries. In the this section, we briefly describe the most important aspects
of the WAM. For an extended explanation of the WAM, we refer to the in-depth
tutorial (Aı̈t-Kaci 1991).

The internal memory layout of the WAM consists of four stacks:

• Heap stack: This is an array of cells containing the data structures
created and used throughout the execution of the program. Cells on the
heap contain a tag indicating which type of value the cell contains (e.g.
variable, term reference, constant, . . . ).

• Environment stack: This stack contains activation records (also called
frames) for every predicate call. Each frame contains amongst others a
set of local (temporary) variables and a pointer to the top of the choice
point stack at activation time.

• Choice point stack: For every choice point created during the execu-
tion process, a record is pushed on this stack. Besides a pointer to the
code of the alternative to be tried upon failure, it also contains a copy of
information of the current activation record, a pointer into the trail stack,
and a pointer into the heap stack. This information is used to restore the
original state upon backtracking.

• Trail stack: Every time a variable is bound, a record is pushed on this
stack. This information is used to undo bindings upon backtracking.

Additionally, the WAM has a series of registers for various purposes: argu-
ment registers (denoted A1, A2, . . . ) for predicate argument passing, temporary
registers (X1, X2, . . . ) for storing results of computations, a program counter
pointing to the instruction being executed, and a continuation pointer pointing
to the code to be executed after the current predicate is finished.

Before executing queries against a logic program, each predicate in the pro-
gram is compiled into a set of instructions. These instructions can be divided
into different types. The most important are:

• Choice instructions: These instructions control the way choice points
are handled in the execution: try* instructions create a choice point,
retry* instructions are executed when a (non-final) alternative of the
choice point is executed, and trust* predicates handle the last alternative
of a choice point (and destroy the choice point).

• Control instructions: These instructions control the aspects involv-
ing the calling of predicates. To call predicates, call and execute are
used (depending on whether or not the environment needs to be saved);
allocate and deallocate build and destroy an activation record; proceed
continues execution after a predicate is finished. Some of these instructions
occur together frequently, and are therefore combined into one instruction.
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This is the case with deallocate and execute, which are combined into
deallex.

• Indexing instructions: The switch on * instructions determine which
code is to be executed, depending on the value of incoming arguments.

• Cut instructions: The gettbreg, puttbreg, getpbreg and putpbreg
instructions handle the procedural aspects of the cut.

• Get & put instructions: These are used to construct and deconstruct
terms on the heap. Besides the get* and put* instructions, there is also
the bldtvar instruction, which builds a new temporary variable on the
heap.

Notice that our description of the WAM above slightly diverges from the
original WAM in some points:

• The original WAM interleaves the choice point stack and the environment
stack, and therefore only uses 3 memory arrays.

• The WAM uses different instructions for handling cut.

• Merged instructions such as deallex are not described in the original
WAM.

• The bldtvar instruction does not exist in the original WAM.

2.2 Inductive Logic Programming

2.2.1 Introduction

We briefly introduced Inductive Logic Programming in Chapter 1 as an ap-
proach to data mining, based on logic programming. We now describe ILP in
more detail.

Given a data set E and background knowledge B of the target problem do-
main. The goal of an ILP algorithm is to find a hypothesis (or set of hypotheses)
that describes the data in E. The hypothesis describing the data is itself a first
order logic formula. The data set E consists of a (large) number of examples,
each of which being a logic program. The background knowledge B describes
knowledge about the target problem domain through predicate definitions. The
background knowledge can therefore be seen as a common set of predicates that
apply to every example in the data set.

In essence, ILP algorithms search through the space of all possible hypothe-
ses (called the hypothesis space) for the target hypothesis. The language bias of
an ILP algorithm imposes constraints on the structure of a hypothesis, narrow-
ing the total (infinite) search space of all possible hypotheses. The language bias
L imposes constraints on the form of valid hypotheses, thus limiting the number
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Q := Initialize
repeat

Remove H from Q
Choose refinements r1, . . . , rk to apply on H
Apply refinements r1, . . . , rk on H to get H1, . . . ,Hn

Add H1, . . . ,Hn to Q
Evaluate Q
Prune Q

until Stop-criterion(Q)

Figure 2.3: Generic ILP Algorithm.

of hypotheses that need to be considered. ILP algorithms search through the
hypothesis space using a generate-and-test approach: hypotheses conforming
to the language bias L are generated, and are then evaluated on the data set.
Evaluating a hypothesis on the data set consists of evaluating it as a query on
every example of the data set. A query Q is said to cover a given example
Ei if the query Q succeeds on the logic program consisting of the example Ei

and background knowledge B. The coverage of a query will be the deciding
factor whether or not the hypothesis represented by the query is ‘good enough’,
either as a final hypothesis, or as a temporary hypothesis to extend further in
later iterations of the algorithm. Because the hypotheses generated by ILP al-
gorithms are used as queries in the evaluation step, we will often use ‘query’ as
a replacement for ‘hypothesis’ throughout this text.

Figure 2.3 shows the generic ILP algorithm as presented in (Muggleton and
De Raedt 1994). Q is a set of candidate hypotheses, hypotheses that currently
best describe the target concept to be learned. In every iteration of the algo-
rithm, a hypothesis is selected from Q, and is extended to yield a new set of
hypotheses. This step is called the refinement step. The size of the refinements
ri depends on the lookahead setting of the algorithm: for a higher lookahead
setting, the refinements will be larger, and the refined hypotheses will therefore
be more complex. The newly generated set of hypotheses is then added to Q,
after which all the candidate hypotheses are evaluated. Depending on how well
certain hypotheses describe the data set, they may or may not be pruned from
Q. This process is repeated until the hypotheses in the queue satisfy a certain
stop criterion.

The algorithm from Figure 2.3 is generic in the Initialize, Remove, Choose,
Prune and Stop-criterion operations. This means that a concrete instance
of this algorithm has to fill in the actual implementation of these steps. We
consider two such instances of ILP algorithms in the next sections: Tilde, a
decision tree learner, and Warmr, a frequent pattern discovery algorithm. For
a more detailed overview of various ILP algorithms, we refer to (Džeroski and
Lavrač 2001).
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Dataset

Background
Knowledge

Examples

ILP Algorithm

Engine

Hypothesis

Language Bias

Figure 2.4: Overview of the ILP data mining process.

An overview of the ILP data mining process is depicted in Figure 2.4. The
dataset, consisting of the background knowledge and the examples, is used by
the ILP algorithm to find a good hypothesis describing the examples. The ILP
algorithm uses the language bias to guide the search through the hypothesis
space. If the hypothesis learned by the algorithm is unsatisfactory, the user can
make changes to the language bias in order to find a better hypothesis. The
typical ILP data mining process therefore consists of different cycles, where an
algorithm is run on the data set with varying settings and language bias.

2.2.2 Tilde

Decision trees are trees containing a test in every internal node of the tree, and
a class in every leaf. The goal of a decision tree is to be able to classify a new
example by applying the tests contained in the nodes of the tree. To classify a
certain example, one performs the test of the root node, and depending on the
outcome of the test, chooses the appropriate branch of the node to continue the
tests. After applying the tests of the subsequent nodes, a leaf with the target
classification of the example is reached. An example decision tree for a simpli-
fied poker game is depicted in Figure 2.5. Classifying the given example results
in a path from the root to a leaf, classifying it as a pair.

The Tilde algorithm (Blockeel and De Raedt 1998) builds first-order deci-
sion trees from a set of given examples. Tilde is a first-order extension of propo-
sitional decision tree learners such as C4.5 (Quinlan 1993) and CART (Breiman,
Friedman, Olshen, and Stone 1984), whose internal node tests are limited to
propositional tests only.

Figure 2.6 shows a high-level description of the Tilde algorithm. At the
core of the algorithm is the Grow-Tree function which, given a set of exam-
ples and an accumulated query covering these examples, builds a decision tree
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card(X,A), card(Y,A), X ≠ Y

card(Z,A), X ≠ Y, X ≠ Z

yes

nothing

pair3 of a kind

no

noyes
card(1,king).
card(2,ace).
card(3,queen).
card(4,king).
card(5,jack).

Figure 2.5: Decision tree for a simplified poker game. The classification of the
given example is indicated by arrows.

function Tilde(E) :
return Grow-Tree(E,true)

function Grow-Tree(E, Q) :
Qr = Refine(Q)
Qb = Optimal-Split(Qr,E)
if Stop-Criterion(Qb, E) :

return leaf(Info(E))
else :

E+ := {e ∈ E | Qb covers e}
E− := {e ∈ E | Qb does not cover e}
Tleft := Grow-Tree(E+,Qb)
Tright := Grow-Tree(E−,Q)
return node(Qb −Q, Tleft, Tright)

Figure 2.6: The Tilde algorithm.
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Example 1 Example 2 Example 3
buys(beer). buys(cheese). buys(beer).
buys(chocolate). buys(bread). buys(cheese).
buys(nuts). buys(wine). buys(nuts).

buys(chocolate). buys(bread).

Pattern Frequency
buys(beer),buys(nuts) 2/3
buys(bread),buys(cheese) 2/3
buys(beer),buys(wine) 0/3

Figure 2.7: Market basket analysis example.

for these examples. This is done by refining the accumulated query, and select-
ing the best query from the resulting set. The selection function Optimal-Split
chooses the query Qb that divides the set of queries into sets that give the best
‘improvement’. By dividing the examples into homogenous sets, the classifica-
tion process will reach a leaf very fast, and therefore Tilde will generate the
smallest trees. After selecting the query with optimal split, a subtree is built
for both outcomes of Qb (i.e. success or failure): for the examples covered by
the query, Qb is further refined in the left subtree; the right subtree will refine
the original query Q further on the remainder of the examples. Both trees are
combined into an internal node with as corresponding test the selected query
Qb minus Q, the query accumulated so far.

Notice that during the execution of Grow-Tree, Refine is applied on
exactly one query, after which the resulting queries are evaluated. Hence, all
the queries evaluated during one iteration of the algorithm will be refinements
of the same query, and will therefore have an identical prefix.

2.2.3 Warmr

Discovering frequently occurring patterns in a large set of data is a very popular
data mining task. One example is market basket analysis, where one analyzes
the purchases of all customers to find out which combination of products are
often bought together. Figure 2.7 shows a concrete basket analysis for a set
of 3 customers. The example also shows three patterns, together with their
frequency (the relative number of examples in the data set the pattern covers).
For example, beer and nuts are often bought together, whereas beer and wine
never occur in one basket.

Warmr (Dehaspe and Toivonen 1999) is an ILP algorithm that discovers
such patterns in a set of examples. It is a first-order upgrade of the propositional
Apriori (Agrawal, Mannila, Srikant, Toivonen, and Verkamo 1996) algorithm.
The goal of Warmr is the following: given a set of examples E and a minimum
support frequency minfreq , find all queries that cover at least minfreq · |E|
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function Warmr(E, minfreq) :
d := 1 # Current level
Q1 := {true} # Candidate queries
F := ∅ # Frequent queries
I := ∅ # Infrequent queries
while not empty(Qd) :

F := F ∪ {Q ∈ Qd | Freq(Q,E) ≥ minsup}
I := I ∪ {Q ∈ Qd | Freq(Q,E) < minsup}
Qd+1 := Refine(Qd,F ,I)
d := d + 1

return F

function freq(Q,E) :
return #{e ∈ E | Q covers e}/|E|

Figure 2.8: The Warmr algorithm.

examples. The high-level Warmr algorithm can be seen in Figure 2.8. The
algorithm proceeds level-wise through the query space. Every level has a set of
generated candidate queries, which are the result from refining queries from the
previous iteration. Based on the frequency of the query, every candidate query
is added to the set of frequent or infrequent queries. The algorithm finishes
when no more frequent queries are found.

The refinement step in Warmr depends on the set of frequent and infrequent
queries found so far. This is because Warmr avoids generating queries that are
either equivalent to previously generated queries, or refinements of infrequent
queries (since those queries will be infrequent as well). However, these extra
checks are computationally very expensive, which makes the refinement step of
Warmr potentially a time-consuming step (contrary to the refinement step of
other algorithms such as Tilde). Another difference with Tilde is that not one
query, but a set of queries is refined during every iteration. This means that the
queries evaluated do not necessarily have an identical prefix, although they do
show similarities, as they typically are descendants of a selected set of queries.

2.3 Optimizing ILP Execution

The run time of the generic algorithm from Figure 2.3 can be approximated by
the following formula:

Trun =
n∑

i=1

|Ri| · Tgen︸ ︷︷ ︸
refinement

+ |Ei| · |Ri| · Texec︸ ︷︷ ︸
evaluation

with n the number of iterations of the ILP algorithm, Trun the (algorithm) run
time of the algorithm, Tgen the average time needed to generate a refinement
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of a query, Texec the time needed to execute a query, |Ri| the number of queries
generated in iteration i, and |Ei| the number of examples to consider in iteration
i (the latter being equal to the total number of examples for Warmr). We call
the component |Ei| · |Ri| · Texec the (query) evaluation time.

Looking at the above formula, one can see that improving the efficiency of
the algorithm can be done on different levels. The impact of the first half of the
formula can be reduced by reducing |Ri|, which is achieved by designing a good
language bias for the target hypotheses. The factor Tgen is usually very small
(with the exception of a few algorithms like Warmr). The second half of the
formula is the most important, as it depends on the total number of examples
|Ei|, which can typically grow very large for real-life data mining problems.
Besides |Ei|, the other factors influencing the evaluation are the number of
candidate queries to be evaluated and the time needed to execute them on the
examples. |Ei| can be reduced by applying sampling techniques on the data
set, thus selecting only a subset of relevant examples (Srinivasan 1999). The
size of |Ri| depends on the language bias, and can be reduced by restricting
the hypothesis space further. Reducing the factor Texec is the main goal of this
work.

The following sections describe two techniques for optimizing query evalu-
ation in the context of ILP data mining. Different optimizations for reducing
the query evaluation time exist. On one hand, there are query transformations
such as the ones from (Costa, Srinivasan, Camacho, Blockeel, Demoen, Jans-
sens, Struyf, Vandecasteele, and Van Laer 2002) which, given a single query,
optimize the evaluation of the query by transforming it into an equivalent query
with better performance. One such transformation is the once transformation,
which we describe in more detail in Section 2.3.1. Another class of techniques
are multi query optimizations (as opposed to single query optimizations). The
fundamental approach for this class of optimizations is the query pack approach,
described in Section 2.3.2.

2.3.1 Once transformation

Because ILP algorithms only use information about the coverage of queries on
an example (i.e. whether a query succeeds or not), and not the actual binding
of the query variables itself, we can cut away all the choice points created during
the evaluation of the query once it is successful. Therefore, we end every query
with a cut, as is illustrated in the query below. In the future, however, we will
omit writing the trailing cut.

Now consider the following query:

?− p(X, Y, Z),

a︷ ︸︸ ︷
q(X, Y, U), r(Y, V),

b︷ ︸︸ ︷
q(X, Z, W), !.

If one knows (e.g. through program analysis) that p/3 grounds its first ar-
gument and leaves its second and third argument independent of each other,
one can see that parts a and b of the query do not share any unbound variables
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function Once-Transform(Q) :
return Once-Transform(Q,∅)

function Once-Transform(Q,V) :
if Q = ∅ :

return ∅
else :

Qresult := ∅
P := Partition-Independent(Q,V)
for each q in P :

(qprefix , qsuffix ) = Split-Prefix(q)
qresult := Once-Transform(qsuffix , V ∪ vars(qprefix ))
Qresult := Qresult ∪ once((qprefix , qresult))

return Qresult

Figure 2.9: Once-transformation.

anymore. This means that the execution of a does not influence the execution
of b: if the calls to q(X,Y,U) and r(Y,V) succeed, and q(X,Z,W) fails, it is useless
to try alternative solutions for q(X,Y,U),r(Y,V), as they have no influence on the
success of q(X,Z,W). Such redundant backtracking can have a big influence on
the total execution time, especially if part a has many solutions. This need-
less backtracking can be avoided by applying the once transformation (Costa,
Srinivasan, Camacho, Blockeel, Demoen, Janssens, Struyf, Vandecasteele, and
Van Laer 2002) on the query. This transformation first identifies all indepen-
dent subparts of a query, and embeds them in a once/1 call. The definition of
once/1 is simply

once(G) :- call(G), !.

meaning that once/1 cuts away all the remaining choice points after the ex-
ecution of its argument has finished. For the above query, this would result
in:

?− p(X, Y, Z), once((q(X, Y, U), r(Y, V))), q(X, Z, W).

Notice that the once is omitted for the last goal, since its choice points will be
cut away by the trailing cut anyway. In this example, once/1 only occurs at
the top level of the query. However, the once transformation can also generate
nested onces to avoid backtracking inside an independent subpart of the query.

A high-level implementation of the once transformation can be seen in Fig-
ure 2.9. The algorithm first partitions the query Q into a set of independent
subparts of the query (assuming that the variables in V do not cause dependen-
cies). For every part, a prefix that grounds variables in the rest of the query
is split off, and the once transformation is called recursively on the remainder.
The recursive call to the once transformation assumes the variables occurring in
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the prefix are ground in the suffix, and therefore disregards all these variables.
Both the prefix and the new suffix are finally combined and embedded in a once,
and the result is added to the transformed query.

Notice that Partition-Independent can be implemented in a way that it
leaves the order of the goals in the query intact, but it can also be implemented
such that goals in a query are reordered to yield more independent parts.

The experiments from (Costa, Srinivasan, Camacho, Blockeel, Demoen, Jans-
sens, Struyf, Vandecasteele, and Van Laer 2002) indicate that applying the once
transformation on queries can result in significant speedups: for certain algo-
rithms and datasets, measurements indicated improvements up to several orders
of magnitude.

2.3.2 Query Packs

Queries generated in a specific iteration of an ILP algorithm are all refinements
of one or more queries from a previous iteration. A consequence of this is that
the generated queries are very similar. Suppose, for example, that the following
query is chosen for refinement

?− p(X, Y), q(Y, Z).

and that the refinements r(Z) and s(Z) are applied to it. This results in the
following queries to be evaluated:

?− p(X, Y), q(Y, Z), r(Z).
?− p(X, Y), q(Y, Z), s(Z).

Executing these queries separately means that the execution of both queries has
a part in common: the call to (p(X,Y),q(Y,Z)) generates the same answers for
the variables X,Y and Z in both queries. To share the execution of these goals,
both queries can be laid out in a disjunction by applying left factoring on the
queries:

?− p(X, Y), q(Y, Z), (r(Z); s(Z)).

While this indeed shares the execution of the common prefix, there is still re-
dundancy: since we are only interested in the success of the queries, we want
to avoid that, after the success of one of the branches of the disjunction, it is
ever executed again. To achieve this, query packs are introduced in (Blockeel,
Dehaspe, Demoen, Janssens, Ramon, and Vandecasteele 2002) as an alternative
kind of disjunction with special semantics: the disjunction ‘cuts away’ every
succeeding branch, thus avoiding it is executed again after success. We denote
a query pack disjunction by ;p. For example, transforming the above set of
queries into a query pack results in:

?− p(X, Y), q(Y, Z), (r(Z);ps(Z)).

A high-level execution algorithm for a query pack is given in Figure 2.10. For
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function Execute-Pack(Q, θ) :
for each σ ∈ Execute-Conj(conj (Q)θ)

for each Qchild ∈ children(Q) :
if Execute-Pack(Qchild , σ) :

children(Q) := children(Q) \ Qchild

if children(Q) = ∅ :
return success

return fail

Figure 2.10: Query pack execution.

?− p(X, Y), q(Y, Z), (r(Z);ps(Z)).

pack_init 1
...
call p/2
...
call q/2
...
pack_try 1

L1: ...
call r/1
pack_success

L2: ...
call s/1
pack_success

Pack Children
1 @L1

@L2

Figure 2.11: Compiled query pack and its pack table.

every solution of the prefix of the pack (a conjunction), the children pack-ors
of the query pack are executed. Every successful child pack is permanently
removed from the set of children from the pack. When the pack has no more
children, success of the pack is propagated upwards.

Pack implementation results (Demoen, Janssens, and Vandecasteele 1999)
indicate that the overhead of a high-level implementation of the query pack
execution mechanism destroys the benefits of the approach. To gain speedups
from query packs, their execution mechanism has to be implemented in the core
of the execution engine. This is done by introducing dedicated WAM choice
instructions for dealing with the special semantics of the query pack disjunc-
tion. For example, the compiled version of the above query pack can be seen
on the left of Figure 2.11. pack init initializes the data structures used during
the execution of the pack. These data structures are needed to keep track of
which branches of the pack still need to be executed. The pack try instruction
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creates a special pack choice point, and starts executing the first child branch
of the pack. Pointers to the code of the different child branches are stored in
a data structure called the pack table, as depicted on the right of Figure 2.11.
After success of a branch, the pack success instruction removes the current
branch from the pack table, and backtracks to the pack choice point, which
then continues with the next branch.

The experiments from (Blockeel, Dehaspe, Demoen, Janssens, Ramon, and
Vandecasteele 2002) indicate that query packs improve the speed of query exe-
cution drastically (typically around an order of magnitude).

2.4 The ACE/hipP Data Mining System

The ACE Data Mining System (ACE 2006) is a combined ILP system for ILP
data mining, developed at the K.U.Leuven. It provides implementations of
several ILP algorithms, including the Tilde and Warmr algorithms described
in Sections 2.2.2 and 2.2.3. The largest part of ACE is written in Prolog, and
works on top of hipP (hipP 2006), a high performance Prolog engine designed
specifically for ILP algorithms.

hipP is a WAM-based Prolog interpreter, implemented in C, and with a
Prolog compiler written in Prolog itself. hipP provides support for several ILP-
specific extensions such as the query packs described in Section 2.3.2.
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Chapter 3

Combining Query Packs
with the Once
Transformation

3.1 Introduction

In the previous chapter, we showed two optimizations for executing queries
in ILP. On one hand, query packs (Section 2.3.2) optimize the execution of
a set of similar queries by sharing the execution of common parts, while on
the other hand query transformations such as the once transformation (Sec-
tion 2.3.1) transform a single query to optimize its execution. Both approaches
were developed independently, and each one yields significant speedups (up to
several orders of magnitude for certain applications). The question therefore
arises whether combining both approaches would give the best of both (ind-
pedendent) worlds with respect to optimizing execution. However, combining
query packs with query transformations is difficult, because query transforma-
tions usually have a negative effect on the structure of the pack. Since the
transformations alter the form of queries (e.g. by reordering goals or by intro-
ducing once/1 predicates), it can be that queries no longer have common parts
of which execution can be shared by a query pack.

In this chapter, we focus on combining query packs with the once transforma-
tion. While there exist several other query transformations (Costa, Srinivasan,
Camacho, Blockeel, Demoen, Janssens, Struyf, Vandecasteele, and Van Laer
2002), the once transformation is the most interesting one to consider, since it
gives the highest speedups yet is the hardest one to combine with the query
pack execution mechanism. In order to combine query packs with the once
transformation, we introduce the concept of an adpack, which is a variant of a
query pack with special support for once transformed queries.

The organization of this chapter is as follows: Section 3.2 starts by explaining
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the intuition behind our proposed approach, by using a simple illustrative exam-
ple. In Section 3.3, we give the definition and the detailed execution mechanism
of adpacks. Section 3.4 illustrates the execution mechanism on an elaborated
example. Techniques for transforming a set of queries into an adpack are dis-
cussed in Section 3.5. Section 3.6 gives an in-depth description of the techniques
used for efficient execution of adpacks. Further optimizations to the basic tech-
niques are briefly discussed in Section 3.7. We then perform an experimental
evaluation of the proposed techniques in Section 3.8, after which we conclude
in Section 3.9.

3.2 Intuition

We start by sketching the intuition behind our approach to combine query packs
with the once transformation through an example.

Suppose that an ILP algorithm has to evaluate the set of queries shown in
Figure 3.1(a). A first observation is that both queries have the calls to p/2 and
q1/2 in common, which results in repeated execution of these goals when the
queries are executed separately. Transforming these queries into a query pack
yields the pack from Figure 3.1(b), which shares the execution of the queries’
common prefix. On the other hand, observe that the calls to q1/2 and q2/2
in the first query do not share any variables with the call to r/2 (under the
assumption that a literal always grounds its free variables). Hence, the execution
of r/2 is independent of its two predecessors, and backtracking to either q1/2
or q2/2 would yield no new solutions to r/2. Applying the once transformation
on this query ensures that execution backtracks directly to p/2 if a solution for
r/2 cannot be found. This is illustrated in Figure 3.1(c). However, while this
avoids redundant execution present in both the original queries, execution of
the common prefix is not shared as in the query pack version.

In a simple attempt to combine query packs with the once transformation,
one can apply the query pack transformation on the once transformed queries
from Figure 3.1(c), which would result in Figure 3.1(d). While this indeed shares
the execution of p/2, the literal q/2 is still executed separately for both queries.

To gain the benefits from both the once transformation and query packs,
we introduce the notion of an adpack. An adpack of a set of once transformed
queries is obtained by constructing a query pack as before, without taking into
account the onces, and then marking the scope of every once by activate/1
and deactivate/1 goals. For our example, this would result in the pack shown
in Figure 3.1(e). Notice that we use ;a as the adpack counterpart of the pack-
or notation ;p. A deactivate/1 goal indicates that all alternatives up to the
corresponding (i.e. with the same identifier as argument) activate/1 goal are
not relevant for finding solutions for the remainder of the current branch. As
in query packs, the adpack-or node cuts away branches when all their children
are successful. Additionally, it also prohibits execution from entering branches
when they are in the scope of a once and their execution has no influence on
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?- p(X,Y), q1(X,A), q2(A,B), r(Y,C).
?- p(X,Y), q1(X,A), s(Y,A).

(a) Original queries.

?- p(X,Y), q1(X,A),
( q2(A,B), r(Y,C)
;ps(Y,A)).

(b) Query pack.

?- p(X,Y), once((q1(X,A), q2(A,B))), r(Y,C).
?- p(X,Y), q1(X,A), s(Y,A).

(c) Once-transformed queries.

?- p(X,Y),
( once((q1(X,A), q2(A,B))), r(Y,C).
;pq1(X,A), s(Y,A)).

(d) Query pack of once transformed queries.

?- p(X,Y), activate(1), q1(X,A),
( q2(A,B), deactivate(1), r(Y,C)
;as(Y,A)).

(e) ADPack: Query pack adorned with
activate/1 and deactivate/1.

Figure 3.1: Different transformations on a set of queries.
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the success of the remainder of the branch.
For example, consider execution of the adpack in Figure 3.1(e). The deac-

tivate for once((q1(X,A),q2(A,B))) first only removes remaining alternatives for
q2, as the other branch with s still needs to be able to backtrack to q1 when
necessary. When r fails, we backtrack to the closest adpack-or node. As long as
s fails, we further explore the alternatives for q1, but without considering the
(q2,r) branch (because of the blocked once). Notice that it is as if the (q2,r)
branch is removed from the pack. This removal is not definitive, and will be
undone as soon as the execution backtracks to a call before the activate (i.e.
before the original once). When s succeeds, the branch is pruned from the
adpack-or, leaving only the (q2,r) branch. This means that the once can now
have its full scope, and the remaining alternatives for q1 are removed. When
execution finally backtracks to p, the (q1,q2,r) branch is executed again, and
the temporary removal is undone.

To summarize, we can say that the success of a branch permanently removes
the branch from the adpack, whereas a deactivate only temporarily removes
a branch from the adpack.

3.3 ADPack Execution

In this section, we describe the high-level execution of adpacks. First, we start
by defining the exact syntax of an adpack.

Definition 1 (ADPack) An adpack is a term of the following form:

ADPack := Subgoal ADPackOr | Subgoal
ADPackOr := ADPack ;aADPack [;aADPack ] +

Subgoal := Literal | activate(ID) | deactivate(ID)
| (SubGoal,SubGoal)

ID := i (with i a natural number)
Literal := a term

Additionally, the adpack should satisfy the following restrictions:

• All activate/1 and deactivate/1 literals occur in pairs. The activate

and deactivate in such a pair have the same unique identification number
as argument.

• For each activate/deactivate pair, both literals should always be a part
of the same path from the root of the adpack to a leaf, with the activate

preceding the deactivate. Additionally, both are not located on the same
branch, and as such are separated by at least one adpack-or1.

1An activate/deactivate pair on the same branch can be replaced by a once/1.
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• activates and deactivates are properly nested: If deactivate(i) comes
before a deactivate(j) on the path from the root of the adpack to a leaf,
then the activate(i) comes after the activate(j) on that path.

An example adpack can be seen in Figure 3.1(e). An adpack consists of sev-
eral conjunctions (branches), grouped together in adpack-ors by ;a. A branch
that does not end with an adpack-or is called a leaf of the adpack.

Execution of an adpack can be described in terms of two phases: forward
execution, where the goals of the adpack are executed, and backtracking, which
occurs when a goal fails or the end of a branch is reached. During the execution
of an adpack, we remember for each branch whether it is open or closed (tem-
porarily disabled), and whether the branch is successful. Initially, every branch
is open and unsuccessful.

The forward execution of an adpack consists of executing the goals on the
branches as normal, except for the two special goals activate/1 and deacti-
vate/1. In these particular cases, the following actions have to be taken:

• activate(Id)
Let DeactBranch be the branch containing the deactivate corresponding
to this activate (i.e. the deactivate with the same Id). If DeactBranch
is still unsuccessful, do the following:

1. Open all branches on the path from the current branch to Deact-
Branch.

2. Remember the current choicepoint, and associate it with this activate.

Finally, continue execution.

• deactivate(Id)
Cut away all choicepoints on this branch, close the current branch, and
continue execution.

When forward execution reaches an adpack-or, the set of children that have to
be tried is determined. This is exactly the set of child branches that are marked
open, but are still unsuccessful. A child of this set is chosen, it is removed
from the set, a choicepoint is created (which enables backtracking such that the
remainder of the set can be executed), and the selected child is executed.

Finally, when a leaf of the adpack finishes, success of the current branch is
registered, all its choicepoints are cut away, and execution backtracks to the
adpack-or node to which this branch belongs.

When backtracking occurs in the WAM, the only thing that has to be done is
restoring a previous state by (amongst others) undoing bindings, and to select
the next alternative to be tried. However, when backtracking to an adpack-or,
more complicated actions have to be taken. We distinguish the following 4 sit-
uations (in order) when backtracking to an adpack-or, with their corresponding
actions:
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1. There is still a branch that has to be tried: Remove the untried branch
from the set of children that have to be tried, and execute it.

2. All branches are successful: Mark success of the branch to which this
adpack-or belongs, cut away all its choicepoints, and backtrack further.

3. All branches are closed or successful: First, the most recent relevant choi-
cepoint has to be determined. This is exactly the corresponding choice-
point (saved during the forward execution) of the last activate on the
parent branch with a corresponding deactivate on a closed, unsuccess-
ful branch. If no such activate is found, the choicepoint of the parent
adpack-or is taken.

If the most recent relevant choicepoint is the previous adpack-or, close
the parent branch, cut away all its choicepoints, and backtrack to the
previous adpack-or. Otherwise, cut away all alternatives up to the most
recent relevant choicepoint, and backtrack to it.

4. There is still an open, unsuccessful branch: Since this branch has been
tried before, it has failed without deactivation or success. No special
actions have to be taken here: backtrack to the previous choicepoint.

A reference implementation of this execution mechanism is available in the form
of the meta-interpreter from Appendix B (page 137).

3.4 Elaborated Example

We now illustrate the execution of adpacks on a larger example, covering most
aspects of the execution. The example adpack and the fact database on which
we run the pack are given in Figure 3.2.

Executing the first branch of the adpack binds the variables X and Y to 1
(due to the calls to a and b). Since the branches containing the deactivates of
activates 1 and 2 are initially unsuccessful, and since all branches are initially
open, the two activate goals on the branch do nothing but remember the
last choicepoint, being the choicepoint of a for both activates. At the end of
the first branch, the first adpack-or is reached, and its first child is chosen for
execution. After the succeeding calls to c and d, the end of the query is reached,
and so the branch is marked as successful (denoted by a dot), and execution
backtracks to the parent adpack-or:

?- a(X), activate(1), activate(2), b(X,Y),
( once(c(Y)), d(Y)
;a e(Y,Z),

( deactivate(2), f(X)
;a g(Y,Z), deactivate(1), d(X) )).

t
-
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?- a(X),b(X,Y), once(c(Y)), d(Y).
?- a(X), once((b(X,Y), e(Y,Z))), f(X).
?- a(X), once((b(X,Y), e(Y,Z), g(Y,Z))), d(X).

(a) Set of 3 once transformed queries

a(1). d(1).
a(2).

e(1,1).
b(1,1). e(2,1).
b(2,1).
b(1,2). f(2).

c(1). g(2,1).
c(2).

(b) Example program

?- a(X), activate(1), activate(2), b(X,Y),
( once(c(Y)), d(Y)
;a e(Y,Z),

( deactivate(2), f(X)
;a g(Y,Z), deactivate(1), d(X) )).

(c) ADPack of the 3 queries

Figure 3.2: Elaborated Example.
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The following branch is executed, resulting in a successful call to e (thus binding
Z to 1) and encountering the next adpack-or. Again, the first branch of the
latter is executed, causing the branch to be closed immediately due to the
deactivate. The next call to f fails, causing execution to backtrack back to
the parent adpack-or:

?- a(X), activate(1), activate(2), b(X,Y),
( once(c(Y)), d(Y)
;a e(Y,Z),

( deactivate(2), f(X)
;a g(Y,Z), deactivate(1), d(X) )).

t
�

-

Execution of the last branch fails immediately due to the call to g, returning exe-
cution to the parent adpack-or. Since all branches of the current adpack-or have
been tried and not all of them are closed, normal backtracking occurs, return-
ing the execution in the parent adpack-or (since e has no alternatives). There,
the same situation arises, resulting in backtracking to the nearest choicepoint,
b(X,Y):

?- a(X), activate(1), activate(2), b(X,Y),
( once(c(Y)), d(Y)
;a e(Y,Z),

( deactivate(2), f(X)
;a g(Y,Z), deactivate(1), d(X) )).

t
�

6

Forward execution now binds Y to 2, and then arrives in the first adpack-or again.
Now, only the second branch is still open for execution (since the first branch is
already successful), and is therefore executed. After calling e (again binding Z to
1), we arrive in another adpack-or with one open branch. Indeed, the first branch
is still closed, because execution didn’t backtrack over activate(2) (the start
of the corresponding once) yet, so the alternative solutions are not interesting
for this branch. Entering the only open branch, execution now reaches the end
of the branch, and so it is marked as successful:

?- a(X), activate(1), activate(2), b(X,Y),
( once(c(Y)), d(Y)
;a e(Y,Z),

( deactivate(2), f(X)
;a g(Y,Z), deactivate(1), d(X) )).

t
�t

6
After backtracking to the parent adpack-or, execution is in an adpack-or where
all branches are closed (or successful). Execution should now backtrack to a
point where an activate opens one of the children branches of this adpack-
or. Since there is no such backtrack point on the parent branch, we close the
parent branch as well, and look higher up in the parent adpack-or for such a
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backtrack point. There, a relevant choicepoint is searched for on the parent
branch again. Since the deactivate of activate 1 lies on a branch that is
already successful, it is not interesting to reactivate this activate. However,
activate 2 still corresponds to an unsuccessful branch. By backtracking to the
choicepoint immediately before activate 2, all the closed branches on the path
from activate(2) to deactivate(2) will be reopened during forward execution.
Therefore, execution backtracks to the call to a(X) (the most recent choicepoint
before the most recent relevant activate, activate(2)):

?- a(X), activate(1), activate(2), b(X,Y),
( once(c(Y)), d(Y)
;a e(Y,Z),

( deactivate(2), f(X)
;a g(Y,Z), deactivate(1), d(X) )).

t
�t

6

Now, forward execution restarts, binding X to 2, executing activate(1) (which
does nothing since it corresponds to a successful branch), then arriving in
activate(2). This activate opens all branches from the corresponding de-
activate up to the current branch. Indeed, this activate corresponds to the
begin of a once, and since we backtracked to a point before the once, backtrack-
ing inside the once is allowed again. After binding Y to 1, execution arrives in
the top-level adpack-or:

?- a(X), activate(1), activate(2), b(X,Y),
( once(c(Y)), d(Y)
;a e(Y,Z),

( deactivate(2), f(X)
;a g(Y,Z), deactivate(1), d(X) )).

t
�t

-

Execution follows the single path of open branches, finally reaching the end of
the last unsuccessful branch, which is now marked as successful. Since all child
branches of the adpack-or are successful, its parent branch is marked for success
also, and execution arrives in the top-level adpack-or. All the latter’s children
are also successful now, and therefore the top-level branch is marked for success,
ending execution of this adpack:

?- a(X), activate(1), activate(2), b(X,Y),
( once(c(Y)), d(Y)
;a e(Y,Z),

( deactivate(2), f(X)
;a g(Y,Z), deactivate(1), d(X) )).

tt
tt
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function Construct-ADPack(Q) :
P := ∅
for each Q ∈ Q

Qonce := Once-Transform(Q)
Qad := Flatten-Onces(Qonce)
P := Merge-In-ADPack(Qad , P)

return Post-Process(P)

Figure 3.3: An algorithm for constructing an adpack, given a set of queries Q.

3.5 Transformation

This section describes how a set of queries generated by an ILP system is trans-
formed into an adpack, before the adpack is evaluated on a set of examples.
We consider two approaches: the approach from Section 3.5.1 applies the once
transformation on each query separately, and then converts this set into an ad-
pack, whereas the approach from Section 3.5.2 proposes a once transformation
that works directly on a query pack of untransformed queries.

3.5.1 Query-based transformation

The query-based transformation works as follows: iterate over the set of given
queries, transform each query with the once transformation, and merge the
transformed query in an accumulating adpack.

The Construct-ADPack algorithm (Figure 3.3) implements this idea. It
takes as input a set of queries Q and starts with an empty adpack P . In each
iteration of the main loop, it applies the once transformation to a query Q from
Q. The resulting query Qonce is then flattened out into Qad , transforming every
once into a conjunction delimited by unique activate/deactivate pairs. Fi-
nally, Qad is added to the accumulator pack P, possibly causing new branching
in the accumulator adpack. A postprocessing step makes sure that consecu-
tive activates with consecutive corresponding deactivates are collapsed into
one activate/deactivate pair, and that activates with their corresponding
deactivates on the same branch are transformed back into onces. A more de-
tailed description of this transformation can be found in (Struyf 2004; Tronçon,
Vandecasteele, Struyf, Demoen, and Janssens 2003).

3.5.2 Pack-based transformation

Because the queries that have to be analyzed by the once transformation have
a lot of goals in common, the analysis is also similar. Moreover, ILP systems
such as ACE use a pack representation internally to represent the set of queries
that are to be evaluated, which needs to be flattened out before it can be used
in the query-based transformation from the previous section.
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function Transform-Pack(P,V) :
Qa = Annotate-Queries(P,V)
Pa = Queries-To-Pack(Qa)
(Pa,S) := Split-Independent(Pa,V)
Presult := ∅
for each Pi in Pa :

(Gprefix,Ptail) := Split-Prefix(Pi)
Pnewtail := Transform-Pack(Ptail, V ∪ vars(Gprefix) )
Presult := Presult ∪Add-Activate-Deactivates(Gprefix ∪ Pnewtail)

Figure 3.4: Algorithm to transform query pack P into an adpack. The variables
V are not taken into account when computing independence classes.

?- p(X), q(Y),
( r(Z)
;p s(X)).

(a) Original pack
P.

?- p(X)-C1, q(Y)-C2, r(Z)-C3.
?- p(X)-C1, q(Y)-C1, s(X)-C1.

(b) Annotated queries Qa.

?- p(X)-C1,
( q(Y)-C2, r(Z)-C3

;p q(Y)-C1, s(X)-C1).

(c) Annotated pack Pa.

Figure 3.5: Example adpack, with every independent sub-pack marked.

In this section, we describe a pack-based once transformation, as an al-
ternative for the query-based transformation described in Section 3.5.1. By
performing the once transformation on a query pack instead of on each query
separately, we avoid redundant parts of the transformation.

A high-level description of the pack-based transformation can be seen in
Figure 3.4. Each iteration in the algorithm consists of two phases: in the first
phase, the incoming query pack is analyzed to determine the independent parts
of the pack (which are packs themselves); the second phase consists of calling
the transformation on every independent part recursively, and embedding every
part in activate/deactivate pairs (one deactivate for every leaf of the sub-
pack).

To partition the pack into independent parts, we annotate each of its goals
with a class, where goals of different classes have independent execution. An
example of such an annotated pack can be seen in Figure 3.5. All goals in
the first query are independent of each other, whereas those of the second are
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function Annotate-Queries(P,V,goals,class,last) :
for each goal i ∈ conj (P) :

goals[i] := goal i
class[i] := i
c := class[min({j | vars(goals[j]) ∩ vars(goal i)\V 6= ∅})]
for last[c] ≤ k ≤ i :

class[k] := c
last[c] := i

if children(P) = ∅ :
return Create-Annotated-Query(goals,class)

else :
return

⋃
Pj∈children(P) Annotate-Queries(Pj ,V,g,class,last)

Figure 3.6: Annotate-Queries.

assigned to the same class by the analysis. Notice how the structure of the
resulting annotated pack differs from the original pack: where the execution of
q(Y) was shared in the original pack, it is now split up because q(Y) belongs
to a different independence class in the two queries contained in the pack. By
generating a list of annotated queries (in Annotate-Queries) and combining
them back into a pack, the result is an annotated pack with goals belonging to
exactly one independence class.

Contrary to the query-based algorithm, the once transformation is integrated
with the adpack transformation algorithm. The Annotate-Queries from Fig-
ure 3.6 implements the once transformation as defined in Figure 2.9 (page 18),
which assumes that every goal grounds its arguments. Annotate-Queries
also assumes that every goal in the pack has an index i, starting from the root
of the pack. Annotate-Queries traverses the pack depth first, keeping track
of the independence class of each goal of the query it is accumulating. The
independence class of each goal is stored in ‘class’, whereas the current query
is accumulated in ‘goals’. As class identifier, we use the index of the first goal
belonging to the class. For every goal in the accumulated query, the first goal
sharing variables with the current goal is determined, and all the goals between
the current goal and the first sharing goal are set to the same independent class.
Finally, when a leaf of a pack is reached, the accumulated query is annotated
with the independence classes, and the process continues for the other queries
in the pack.

We now illustrate the pack-based adpack transformation on the following
pack:
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?- a(X), b(X,Y),
( c(Y), d(Y)
;p e(Y,Z),

( f(X)
;p g(Y,Z), d(X) )).

Applying Annotate-Queries on this pack assigns all goals to the same inde-
pendence class. Therefore, the first step boils down to splitting off the first goal
a(X), and continuing with the remainder of the pack, ignoring the now ground
variable X. Annotating the queries in the second iteration results in the following
annotated pack:

?- b(6X,Y)-C1,
( c(Y)-C1, d(Y)-C1

;p e(Y,Z)-C1,
( f(6X)-C3

;p g(Y,Z)-C1, d(6X)-C4 )).

The variables that have to be ignored are striked out. Splitting up this pack into
independent sub-packs (Split-Independent) yields the following three query
packs:

?- b(6X,Y),
( c(Y), d(Y)
;p e(Y,Z),

( . . .
;p g(Y,Z), . . . )).

?- f(6X) ?- d(6X)

where the ‘. . . ’ denotes an open end, where a transformed (independent) pack
will follow in the final pack. Applying the adpack transformation recursively on
the two packs on the right yields the original packs. After splitting of the first
goal of the pack on the left, the annotation step returns the following annotated
pack:

?- ( c(6Y)-C1, d(6Y)-C2

;p e(6Y,Z)-C1,
( . . .
;p g(6Y,Z)-C1, . . . )).

which splits up in the following packs:

?- c(6Y), . . . ?- d(6Y).
?- e(6Y,Z),

( . . .
;p g(6Y,Z), . . . )).

Applying the adpack transformation recursively on these three packs results
in the same packs. At this point, the packs need to be reassembled, adding
activate/deactivate pairs and onces as necessary. Because the goal c(Y) is
followed by an independent pack, it needs to be embedded in a once/1. The
third pack also has open ends, but these open ends were introduced in an earlier
step, and are therefore left untouched. This yields the following pack:



36
CHAPTER 3. COMBINING QUERY PACKS WITH THE ONCE

TRANSFORMATION

?- ( once(c(Y)), d(Y)
;a e(Y,Z),

( . . .
;a g(Y,Z), . . . )).

After prepending b(X,Y) to this pack, the open ends need to be replaced by f(X)
and d(Y). Since the execution of these goals are independent of the current pack,
they follow a deactivate. We therefore add a deactivate for each open end,
and add a corresponding activate before b(X,Y):

?- activate(1), activate(2), b(X,Y),
( once(c(Y)), d(Y)
;a e(Y,Z),

( deactivate(1), . . .
;a g(Y,Z), deactivate(2), . . . )).

Appending the goals f(X) and d(X), and prepending a(X) to the pack results in
the final pack:

?- a(X), activate(1), activate(2), b(X,Y),
( once(c(Y)), d(Y)
;a e(Y,Z),

( deactivate(1), f(X)
;a g(Y,Z), deactivate(2), d(X) )).

The Annotate-Queries algorithm described above is order preserving:
goals are not reordered to yield more independent parts in the pack. The algo-
rithm can be adapted to reorder goals, at the risk of less sharing of execution
in the pack structure.

3.6 Efficient Execution

As mentioned in Section 2.3.2, previous implementation results suggest that
special execution mechanisms such as query packs have to be implemented in
the internals of the system to yield significant speedups. Therefore, we compile
an adpack to specialized WAM instructions, just as is done in the query packs
approach. The compilation process is discussed in Section 3.6.1. The actual
execution of the newly introduced WAM instructions is covered in 3.6.3, and
makes use of the data structures described in 3.6.2.

3.6.1 Compiling

Each adpack that is to be executed is handed to the compiler, which compiles
it to WAM instructions. This code makes use of six new WAM instructions:

• adpack start initializes all the data structures
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• adpack try performs the forward execution of an adpack-or

• adpack retry handles the backtracking to an adpack-or

• adpack activate and adpack deactivate activate and deactivate parts
of the adpack

• adpack success registers the success of a branch of an adpack-or

The implementation of these instructions is described described in 3.6.3. Besides
code, the compiler also generates information about the structure of the adpack,
and stores this together with the code. When the loader loads the adpack code, it
creates and initializes the adpack datastructures based on this information. We
omit the details on how the adpack structure information is stored in practice.

Compiling the example from Figure 3.2 results in the following WAM code:

1 adpack_start 2 4 3 0x800121
2 allocate 5
3 putpvar Y2 A1
4 call a/1
5 adpack_activate 0
6 adpack_activate 1
7 putpval Y2 A1
8 putpvar Y3 A2
9 call b/2
10 adpack_activate 2
11 adpack_try 1
12 putpval Y3 A1
13 call c/1
14 adpack_deactivate 2
15 putpval Y3 A1
16 call d/1

17 adpack_success
18 putpval Y3 A1
19 putpval Y4 A2
20 call e/2
21 adpack_try 2
22 adpack_deactivate 1
23 putpval Y2 A1
24 call f/1
25 adpack_success
26 putpval Y3 A1
27 putpval Y4 A2
28 call g/2
29 adpack_deactivate 0
30 putpval Y2 A1
31 call d/1
32 adpack_success

Not all information about the execution of the adpack is present in the code
of the adpack. The adpack try instruction looks up information about the
branches belonging to the corresponding adpack-or in a datastructure, and uses
this to determine the location in the code where execution needs to proceed (i.e.
the code of the first branch of the adpack-or). Before jumping to this location,
it creates a choicepoint with adpack retry as alternative. This instruction is
not stored in the code of the adpack itself, as the operations it needs to perform
are independent of its location in the code: while execution in the WAM always
proceeds to the next instruction after a retry* instruction, the adpack retry
uses the adpack datastructures to determine where execution has to proceed.
This is explained in more detail in Section 3.6.3.
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Figure 3.7: Overview of the data structures in the implementation of adpack
execution.
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3.6.2 Data structures

To execute an adpack, we make use of the data structures depicted in Fig-
ure 3.7. These data structures are designed for executing adpacks as efficiently
as possible. The description of these data structures is as follows:

• BranchTable: This table contains for each branch in the adpack the
following information: a flag indicating whether this branch was completed
successfully (success, initially false); a flag indicating whether the branch
can be entered for execution. (open, initially true); the location of the code
block for this branch (code); and finally a reference to the alternatives table
of the adpack-or to which this branch belongs (adpackAltTable).

• ADPackAltTable: Each adpack-or has a corresponding ADPackAlt-
Table. This table contains the number of branches that are still unsuccess-
ful (tosucceed), the number of open, non-successful branches (openns), and
for each of those open, non-successful branches an entry in openBranch
containing its index in the BranchTable.

• ActivateTable: This table contains for each activate/deactivate pair
a flag indicating whether the deactivate has been triggered (deactivated),
the branch on which the deactivate resides (branch), and a reference
to a path in the PathTable (path). The row on which a deactivate is
located in the ActivateTable is the unique identification number of the
activate/deactivate pair (as described in the definition in Section 3.3).

• PathTable: This table contains for each activate/deactivate pair
a sequence of branches describing the path from the activate to the
deactivate. Each path is referenced from an entry in the ActivateTable.

• ActivateStack: Each time an activate is performed, the unique identi-
fication number of the activate/deactivate pair to which this activate
belongs (id) is pushed on the ActivateStack, together with a reference to
the most recent choicepoint at the time the activate is triggered (B).

• ADPackChoicepoint: When an adpack-or is executed, an ADPack-
Choicepoint is created, containing a reference to the previous choicepoint
(prevB), a reference to the previous ADPackChoicepoint (prevADB), a
reference to the ADPackAltTable of this adpack-or (adpackAltTable), the
index of the currently executed branch in the openBranch table of the
corresponding ADPackAltTable (currentBranch, initially 0), and the top
of the ActivateStack at the time the execution of the adpack-or started
(actTOS ). The pointer to the code to be executed upon backtracking to
this choicepoint always points to the adpack retry instruction.

We impose an extra constraint on the unique identification number associated
with each activate/deactivate pair: for each path from the root to a leaf of
the adpack, the identification numbers of the activates on that path should
increase. Numbering the activate/deactivate pairs by depth-first traversal
satisfies this condition.
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3.6.3 Executing the ADPack Instructions

In this section, we present the details of every WAM instruction.

3.6.3.1 adpack start <#adpack-or> <#branches> <#activates> <data>

adpack start indicates that an adpack is executed. This instruction has to
reset all data structures, using information on the total number of disjunctions
(<#adpack-or>), the total number of branches in the adpack (<#branches>), the
total number of activate/deactivate pairs (<#activates>), and the location
of all data structures (<data>). The instruction should ensure that:

• All AltTables have all their children in openBranch[], and that openns
and tosucceed are initialized to the total number of children. The neces-
sary information to do this can be derived from the BranchTable.

• The open flag of all branches in the BranchTable is set to true, and the
success flag to false.

• The ActivateStack is emptied.

• The deactivated flag of all activate/deactivate pairs in the Acti-
vateTable is set to false.

• A dummy ADPackChoicepoint is put on the choicepoint stack.

The implementation of this instruction is omitted, as it can be easily recon-
structed.

3.6.3.2 adpack activate <id>

This instruction activates the activate/deactivate pair <id>, opens the path
from the activate to the deactivate, and pushes a record on the Activate-
Stack.

if (!BranchTable[*ActivateTable[id].path]->success) {
if (ActivateTable[id].deactivated) {

ActivateTable[id].deactivated = false;

/* Open path */
if (!(br=&BranchTable[ActivateTable[id].branch])->open) {

/* Open first branch */
br->open = true;
br->adpackAltTable->openBranch[br->adpackAltTable->

openns++] = ActivateTable[id].branch

/* Open rest of path */
path = ActivateTable[id].path;
while (*path && !(br=&BranchTable[*path])->open) {
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br->open = true;
br->adpackAltTable->openBranch[

br->adpackAltTable->openns++] = *path;
path++;

}
}

}

/* Pop choicepoints of more recent activates */
while ((ActivateStack-1)->id >= id)

ActivateStack--;

/* Push most recent choicepoint */
ActivateStack->id = id;
ActivateStack->B = B;
ActivateStack++;

}

3.6.3.3 adpack deactivate <id>

This instruction registers deactivation of an activate/deactivate pair, and
closes the current branch. The only argument of adpack deactivate is the
unique number of the activate/deactivate pair.

/* Register deactivation */
BranchTable[ADB->adpackAltTable->
openBranches[ADB->currentBranch]].open = false;

ActivateTable[id].deactivated = true;

/* Cut up to previous ADPackChoicepoint */
B = ADB;

Notice that ADB is a register containing a reference to the previous ADPack-
Choicepoint.

3.6.3.4 adpack success

This instruction denotes the end of a branch. It registers success of the current
branch, and backtracks.

/* Register success & decrement #tosucceed */
BranchTable[ADB->adpackAltTable->
openBranches[ADB->currentBranch]].success = true;

ADB->adpackAltTable->tosucceed--;

/* Cut up to previous ADPackChoicepoint */
B = ADB;
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/* Backtrack */
fail;

3.6.3.5 adpack try <id>

The adpack try instruction corresponds to the part from Section 3.3 describing
the forward execution of an adpack-or. This instruction puts an ADPackChoice-
point on the choicepoint-stack, using the first argument of the instruction to de-
termine the corresponding adpackAltTable of the adpack. The currentBranch
field is initialized to 0, the actTOS field is set to the current top of the Activate-
Stack, and the address of the adpack retry instruction is used as alternative
for the choicepoint. Finally, the program counter is set to the code for the first
branch.

/* If there are no open nodes, backtrack */
if (adpackAltTable->openns =< 0)

fail;

/* Make new choicepoint */
prevB = B
B++;
B->prevB = prevB;
B->prevADB = ADB;
B->adpackAltTable = (address of AdpackAltTable #id);
B->currentBranch = 0;
B->actTOS = /* top of */ ActivateStack;
B->alt = @adpack_retry;
ADB = B;

/* Set program counter */
PC = BranchTable[ADB->adpackAltTable->openBranch[0]].code;

3.6.3.6 adpack retry

This instruction handles backtracking to an adpack-or. Using the information
stored in the current ADPackChoicepoint, it is determined which action to take.
The 4 cases correspond to the ones in Section 3.3.

tbl = ADB->adpackAltTable;

/* Temporarily remove branch & set current branch */
if (BranchTable[tbl->openBranches[ADB->currentBranch]].success
|| !BranchTable[tbl->openBranches[ADB->currentBranch]].open) {
tbl->openns--;
tbl->openBranches[ADB->currentBranch] =

tbl->openBranches[tbl->openns]
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}
else {

ADB->currentBranch++;
}

/* Reset stack */
/* top of */ ActivateStack = ADB->actTOS;
if (ADB->currentBranch < tbl->openns) { /* Case 1 */
/* Try another branch */
PC = BranchTable[tbl->openBranches[tbl->currentBranch]].code;

}
else {
ADB = ADB->prevADB;

if (ADB->adpackAltTable->tosucceed == 0) { /* Case 2 */
/* Mark branch as successful */
goto adpack_success;

}
else if (ADB->adpackAltTable->openns == 0) { /* Case 3 */

/* Pop until a non-successful deactivated branch */
while (ActivateStack > ADB->actTOS) {

ActivateStack--; // Pop element
if (ActivateTable[ActivateStack->id].deactivated

&& ! BranchTable[ADB->adpackAltTable->openBranch[
ADB->currentBranch]].success) {

/* Cut & backtrack */
B = ActivateStack->B;
fail;

}
}

/* Close branch */
BranchTable[ADB->adpackAltTable->openBranches[

ADB->currentBranch]].open = false;
B = ADB;
fail;

}
else { /* Case 4 */
B = B->prevB;
fail;

}
}
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3.7 Optimizations

Experiments on ILP applications indicate that activates often come in batches.
Consider the following part of an adpack taken from adpack execution for a real-
life application:

. . . , p(X), activate(1), activate(2), . . . , activate(100), q(X, Y), . . .

After p(X) has succeeded for the first time, 100 activates are executed, and
q(X,Y) is called. If the latter fails, another alternative for p(X) is tried, and the
first activate pops all the later activates one by one from the stack. We have
observed that such a scenario happens frequently in practice. The occurrences
of these batches of activates is inefficient both in time (popping the stack
one by one, plus a different emulator cycle for each activate) and space (all
activate records on the stack have the same choicepoint field).

To avoid this inefficiency, we add a new instruction adpack activate range,
which has as its two arguments the begin and the end of the activate id range.
This of course imposes the extra constraint on the compiler to have a consecutive
numbering on the activates.

Additionally, we store variable-length records on the ActivateStack, where
each record has a backtrack point, a pointer to the previous record, and a vari-
able list of activate id’s which belong to this record. Popping the stack in
adpack activate and adpack activate range can now be simplified to check-
ing the last element of each record, and popping the whole record if its id is
more recent than the id of the current activate. Pushing elements on this
stack can be done in two ways:

• Each time an adpack activate instruction puts something on the stack,
it checks if the choicepoint of the top element is the same as the cur-
rent choicepoint. If so, the activate instruction adds the new activate
(or in the case of adpack activate range, batch of activates) to the
current record. Otherwise, a new record is created and pushed on the
ActivateStack.

• adpack activate always creates a new record on the ActivateStack con-
taining one activate, and adpack activate range stores its batch of
activates in one record. In this case, we assume that the compiler stat-
ically determines which activate instructions can be grouped together.
This means that there is no overhead due to extending records on the stack,
and all the dynamic checks are omitted. The downside of this approach
is that there could be non-consecutive groups of activates that can be
grouped together on the stack (because they share the same most recent
choicepoint at run-time), but that this cannot be detected statically.
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3.8 Evaluation

We evaluate the adpack execution mechanism through various experiments. All
experiments were run on a Pentium III 1.1 GHz with 2Gb of RAM, running
Linux.

Both the query-based transformation and the pack-based transformation
were implemented in the ACE system. Both transformations were implemented
in Prolog. However, the Once-Transform step from the query-based trans-
formation (Figure 3.3, page 32) makes use of the built-in once transformation
from ACE, which is written in C. The adpack compiler itself was implemented
in Prolog as an extension of the hipP compiler. We have implemented the ad-
ditional WAM instructions and required data structures in the hipP engine.

As a first experiment, we compare both adpack transformations by run-
ning Tilde on the Mutagenesis dataset (Appendix A.1), Carcinogenesis (Ap-
pendix A.2), and a version of Bongard (Appendix A.3) with 10000 examples.
After generating a set of queries to be evaluated, Tilde transforms the set into
an adpack, compiles the adpack, and executes it on the examples. In this experi-
ment, we only measure the time needed to transform the queries. The lookahead
setting of Tilde was set to vary between 0 and 2 to compare the transforma-
tion of queries of increasing complexity. The results of this experiment can be
seen in Figure 3.8. Because the pack-based transformation takes advantage of
the similarity of queries, we expected this transformation to be faster than the
query-based transformation. However, contrary to this intuition, the query-
based approach performs better over the whole line of experiments, even with
increasing query sizes. Closer investigation reveals that the major bottleneck of
the pack-based transformation is the Queries-To-Pack step from Figure 3.4.
Transforming the flattened annotated version of every pack (and sub-pack) into
a pack takes 70% of the total pack-based adpack transformation time. This
means that the fact that the once transformation step of the query based ap-
proach is implemented in C is not the reason the pack-based approach is slower
than the query based approach.

To compare the overall performance of adpacks, we compare runs of Tilde
using regular query execution (‘Query’), using once transformed query execution
(‘Once’), using query pack execution (‘Pack’), and finally using adpack execu-
tion (‘ADPack’). For adpack execution, we use the query based transformation,
as this is the fastest alternative. Figure 3.9 shows the results of running Tilde
with different lookahead settings on the same datasets as the previous exper-
iment. For each setting, the graph shows the query execution time ‘Execute’,
the compilation time ‘Compile’ (only relevant for query packs and adpacks, the
other settings use meta-calls) and the transformation time ‘Transform’ (only
relevant for once transformed queries and adpacks). All bars are relative to
the total time for ‘Queries’, which is shown together with the number of refine-
ment steps and the total number of queries evaluated. Above the other bars,
the speedup in execution time over ‘Queries’ is shown. The experiments are
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Figure 3.8: Query-based and pack-based transformation times for running
Tilde on Mutagenesis, Carcinogenesis and Bongard.
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Figure 3.10: Effect of various optimizations on the execution time.

performed for varying values of Tilde’s lookahead parameter.
In all experiments, query pack execution performs better than queries and

the speedup increases as lookahead increases. Similar results were obtained in
(Blockeel, Dehaspe, Demoen, Janssens, Ramon, and Vandecasteele 2002). Ap-
plying the once transformation on queries yields a significant improvement in
execution time for the Carcinogenesis and Bongard data sets (without looka-
head), but the improvement is smaller than that reported in (Costa, Srinivasan,
Camacho, Blockeel, Demoen, Janssens, Struyf, Vandecasteele, and Van Laer
2002) (> 100× for Carcinogenesis). This is due to the fact that the search
strategy of Tilde generates fewer non-deterministic queries than Aleph (Srini-
vasan 2005), the algorithm used in the experiments from the earlier work. Also
note that the performance of the once transformed queries is worse for higher
lookahead values. The reason is that with higher lookahead, larger components
are generated that cannot be partitioned by the once transformation (Struyf
2004).

The execution time of adpacks is better than all other settings, but is close
to query packs in most cases (especially when the once transformation does not
perform well). The best improvement over query packs is obtained on Carcino-
genesis (±10×). For some applications (e.g., Mutagenesis with lookahead ≥
1), the higher transformation2 and compilation times of the adpack version can
make regular query pack execution the best choice (best total time). However,
the proportion of time spent during transformation and compilation decreases
as the number of examples increases as can be seen with the Bongard data set
with 10000 examples.

2The transformation time for adpacks is higher than that of the once transformed queries
because the queries must also be merged in the adpack (cfr. Figure 3.3).
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As a final experiment, we compare the impact of the optimizations intro-
duced in Section 3.7. Figure 3.10 shows the execution time for 6 different ver-
sions of the ADPack execution mechanism on the Mutagenesis dataset, where
each of the versions is formed by using a combination of following changes (each
described in more detail in 3.7):

• Variable-length records (VLR): Store variable-length records on the
ActivateStack. This not a real optimization, just a change of data struc-
ture. This change is needed for the following optimizations.

• Dynamic Grouping (DG): Accumulate activates with the same cor-
responding choicepoint in the top record of the ActivateStack. Only start
a new record if the choicepoint of the activate (or group of activates)
is different than the one of the record on top of the ActivateStack.

• Use activate range (Rng): let the compiler statically group subsequent
activates together, and generate activate range instructions for these
groups.

As can be seen in Figure 3.10, variable-length records are a slightly more ef-
ficient representation for the ActivateStack. The extra checks needed for dy-
namic grouping are not compensated for in execution time in absence of the
grouping of adpack range. This is due to the fact that, when activates
are statically grouped together, the check only has to be performed once for
each group of activates, instead of for each activate separately. Introducing
activate range does not improve execution time in itself, but combined with
dynamic grouping it results in the best execution time. Overall, however, the
difference in execution time of the variations are small.

3.9 Conclusions

In this chapter, we introduced adpacks as an approach to combine query pack
execution with the once transformation. The experiments in Section 3.8 show
that the evaluation of queries benefits from adpack execution, compared to
using only query packs or the once transformation. However, the overhead
caused by transforming a set of queries into an adpack causes query packs to
outperform adpacks in some experiments. Applying the once transformation on
a pack as a whole (instead of each query separately) does not help, because this
transformation relies heavily on the construction of query packs. A possible
remedy for this is to modify the pack structure directly (instead of creating new
packs during the transformation phase). While we expect most of the high-level
transformation algorithm and data structures to be reusable for this, altering
a query pack directly at the engine level requires a significant effort. Another
open issue is the impact of reordering goal literals in the adpack transformation
to yield more independent parts in the adpack, how this affects the structure of
the adpack, and whether or not execution benefits from this. However, note that
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the potential benefit (if any) can not compensate for the high transformation
times at this point.

Avoiding redundant backtracking such as is done by the once transforma-
tion is also the goal of techniques such as backjumping (Gaschnig 1979) and
intelligent backtracking (Bruynooghe and Pereira 1984). These approaches use
run-time checks to determine what parts of the search tree can be pruned.
The run-time overhead of these optimizations make them unsuitable for the
ILP context. However, especially the non-reordering once transformation still
suffers from redundant backtracking sometimes, and a static version of more
advanced backtracking techniques might therefore be interesting. How this is
implemented, and how this can be combined with query pack execution is a
topic for further research.



Chapter 4

Alternatives for
Compile-and-Run

4.1 Introduction

When a set of queries have been constructed dynamically by an ILP algorithm,
they need to be evaluated on a series of examples from a dataset. At least two
approaches of doing this come to mind: either the queries are meta-called di-
rectly for every example, or the queries are first compiled to WAM instructions,
after which the resulting code is executed. Meta-calling consists of passing the
query to call/1, which looks up the code entry point of the top-level functor of
its argument, initializes the argument registers to the values of the arguments
of the functor, and jumps to the entry point of the corresponding predicate.
Retrieving the top-level functor and its arguments for every call introduces over-
head during execution. This overhead becomes even bigger when a conjunction
is meta-called, since this requires for each conjunct that both arguments of the
’,’/2 functor have to be retrieved, and that both arguments have to be in turn
meta-called. The alternative to meta-calling a query is transforming it into
a clause (by using the query as the body and adding a head, e.g. query/0),
and compiling the resulting clause. By compiling this clause, the predicates
that have to be called are computed in advance, and are directly embedded in
the compiled code. Moreover, conjunctions and disjunctions in queries are en-
coded in the code itself: conjunctions are simply sequences of instructions, while
disjunctions are executed using choice instructions (try*, retry*, trust*). Al-
though precomputing all this information introduces an initial overhead, it is
compensated by the large reduction in dynamic overhead when the code is run
multiple times.

Because queries need to be evaluated many times, the compilation approach
has been identified to be the best in the context of ILP in the past (Block-
eel, Dehaspe, Demoen, Janssens, Ramon, and Vandecasteele 2002). Although
compilation requires an initial cost, the repeated execution of the more efficient

51
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code compensates for this. Moreover, in the case of special execution mecha-
nisms such as query packs (Section 2.3.2) and adpacks (Chapter 3), adapting
the meta-call to handle these query packs is difficult and inefficient, and there-
fore compilation is needed (Blockeel, Dehaspe, Demoen, Janssens, Ramon, and
Vandecasteele 2002; Demoen, Janssens, and Vandecasteele 1999). However, ex-
periments indicate that, even though compilation improves the total evaluation
time of queries (i.e. compilation and execution time), the compilation time of-
ten dominates the total time of an ILP run. For example, in the Mutagenesis
and Carcinogenesis experiments depicted in Figure 3.9 (page 47), compilation
consumes the largest part of the query evaluation step for the highest looka-
head settings. This raises the question whether the amount of code that needs
to be compiled can be reduced, whether compilation can be simplified, or even
avoided altogether.

In this chapter, we study alternatives for the compile-and-run approach for
query evaluation. While meta-calling introduces a dynamic overhead, its dy-
namic nature also has advantages over compiled queries. Amongst others, meta-
calling does not require the complex step of constructing the arguments of a goal
before calling it. A first direction we therefore take is fine-tuning the meta-call
and exploiting its advantages, trying to reach the same execution speed as com-
piled code (yet omitting the compilation step). The second approach consists of
simplifying the compilation step, while still keeping the advantages of meta-call
in the generated code. Finally, the amount of code to be compiled is reduced
by only compiling code when it is strictly necessary.

The contributions of this chapter are:

• A specialized meta-call for query execution, implemented as a series of
special WAM instructions. This embedded meta-call provides a fast query
execution mechanism without requiring a compilation step.

• Control flow compilation, which is a hybrid approach between meta-calling
and classical compilation. This scheme incorporates the best of both
worlds: it has the fast execution times of compiled code, without needing
the expensive compilation step (which is a dominating factor in practical
ILP settings). Another advantage is that it is easy to support query packs
in this approach.

• Lazy control flow compilation, which is a Just-In-Time (JIT) version of
the control flow compilation scheme, where unreachable parts of the code
are not compiled. This reduces both the compilation time and the code
size.

An overview of these approaches in terms of execution and compilation is shown
in Figure 4.1.

The organization of this chapter is as follows: In Section 4.2, we investigate
and optimize meta-calling of conjunctive and disjunctive queries. In Section 4.3,
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Figure 4.1: Overview of the query execution mechanisms presented in this chap-
ter.

control flow compilation is introduced and evaluated on both artificial and real
life benchmarks. A lazy variant of this scheme is introduced in Section 4.4. Both
control flow compilation variants are then adapted to a practical ILP setting,
by extending them to the query pack execution mechanism in Section 4.5. This
extension is evaluated on real life ILP benchmarks. Section 4.6 discusses memory
management implementation issues of the approaches described in this chapter.
Finally, we present our conclusions of the described approaches in Section 4.7,
and discuss future work.

4.2 Meta-calling

4.2.1 Specializing the meta-call

Figure 4.2 shows the implementation of call/1 as a built-in instruction metacall.
This instruction fetches the goal to be called from the first argument register,
initializes the argument registers with all arguments of the goal, and then jumps
to the entry point of the code for the top-level functor. When a conjunction
is meta-called, a lot of steps have to be taken: for every conjunction of two
goals, both conjuncts are put in argument registers, and the code for ’,’/2
(Figure 4.3) is executed, which in turn uses meta-call to execute the goals in
both argument registers.

In a first attempt to avoid the overhead of meta-calling conjunctions, we in-
troduce a more specialized approach of meta-calling conjunctive queries. Con-
sider the predicate conj call from Figure 4.4. This special version of call/1
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instruction metacall :
Goal := ARG1

for 1 ≤ i ≤ arity(functor(Goal)) :
ARGi := arg(Goal, i)

CONTP := PC + 1
PC := entry point(functor(Goal))
continue

Figure 4.2: Pseudo-code for the metacall instruction. PC, CONTP, and ARGi

represent the program counter, continuation pointer, and argument registers
respectively.

allocate 3
getpvar Y2 A2
call call/1
putpval Y2 A1
deallex call/1

Figure 4.3: Simplified WAM compiled version of ’,’/2. Support for cut is
omitted.

conj_call((A,B)) :- !,
call(A),
conj_call(B).

conj_call(G) :-
call(G).

Figure 4.4: conj call/1: A specialized call/1 for conjunctive queries.
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Query
?- b, f([g(1), g(2), . . . ,g(60)]).

Program
1 b.
2 b.

...
20 b.
21 f( ) :- fail.

Compiled Query
allocate 2
call b/0
putlist A1
set struct 2
build list 3
set functor g/1
build int 1
...
set struct 2
build list 3
set functor g/1
build int 60
deallex f/1

Figure 4.5: Example program and query.

Experiment Time
Compiled code 94.6
Meta-call (call/1) 10.2
Specialized meta-call (conj call/1) 8.1

Table 4.1: Timings (in µs) for executing the query from Figure 4.5 using different
approaches.

takes advantage of the fact that conjunctions passed to conj call are always
right-linear. This saves an extra indirection when calling the first part of the
conjunction.

Now consider the program and the query from Figure 4.5. The query consists
of a call to a highly non-deterministic predicate b (with 20 clauses), and a
(failing) call with a very large argument. Executing this query on the example
program using the three approaches discussed so far results in the timings from
Table 4.1. We see that the meta-call is faster than the compiled call, and that
the specialized conj call/2 is even faster. The explanation is that the compiled
version of a query first constructs the arguments of its calls on the heap before
calling (as can be seen in the WAM code from Figure 4.5), whereas meta-calling
a goal uses the term which has already been constructed on the heap. In this
case, the (very large) term that is passed as an argument to f/1 is constructed
over and over again in the compiled version, whereas it is never constructed in
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gettbreg A2
switchonterm struct=L1 else=L2 4

L1: get structure A1 ’,’/2 4
unitvar A1 4
allocate 3 4
unipvar Y2 4
puttbreg A2
call call/1 4
putpval Y2 A1 ©
deallex conj call/1 ©

L2: execute call/1 4

Figure 4.6: Compiled WAM code of conj call/1. The 4 and © symbols
indicate the instructions that can be merged into one instruction.

the meta-called versions (as it was already preconstructed when the query was
generated).

One could think that the situation can be easily improved for the compiled
version, by compiling it as if its code where:

?- X = [g(1), g(2), . . . ,g(60)],b, f(X).

However, such a transformation, although correct, can make performance also
worse: if b fails, the term has been constructed in vain. Moreover, the memory
requirement can become arbitrarily larger if this transformation is performed
systematically in a Prolog program.

From these results, we can conclude that compiling a query before executing
it is not a priori the fastest alternative, even without taking into account the
overhead of compilation. However, executing a query using the normal meta-call
or conj call/1 is in practical situations still slower than executing compiled
code. We improve upon this in the following section.

4.2.2 Embedding the meta-call

To get more speedup from a specialized meta-call such as conj call/1, it should
be implemented in the internals of the Prolog system. One could choose to
implement the specialized call completely in the host language of the system.
However, it is easier to implement a series of new WAM instructions, and to
use those to implement conj call. Also, this approach results in the same
performance as implementing the specialized call directly in the host language
of the system.

The WAM compiled version of the conj call/1 predicate from Figure 4.4
can be seen in Figure 4.6. We can now make a new instruction mc switch that
performs all the actions from the instructions labeled with 4, and another new
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L1 mc switch L2 4
L2 mc continueconj L1 ©

Figure 4.7: Compiled WAM code of conj call/1, using specialized instructions.

conjdisj_call((A,B)) :- !,
call(A),
conjdisj_call(B).

conjdisj_call((A;B)) :- !,
( conjdisj_call(A) ; conjdisj_call(B) ).

conjdisj_call(A) :-
call(A).

Figure 4.8: conjdisj call/1: A specialized call/1 for queries consisting of
conjunctions and disjunctions.

instruction mc continueconj that performs the actions of the instructions la-
beled with ©. The remaining (cut-related) instructions are no longer of any
use, and are therefore dropped. Using these instructions, we can make a new
version of conj call, as shown in Figure 4.7. The instruction mc switch distin-
guishes 2 types of terms in the first argument register: a ’,’/2 term and a goal.
In the latter case, the goal is simply called. When the argument is a conjunc-
tion, an environment is allocated, and the first argument of ’,’/2 is called with
the label of mc continueconj (passed through the argument of mc switch) as
its continuation. When execution reaches mc continueconj, the environment
created by mc switch is deallocated, the continuation pointer is restored, and
mc switch is executed with the second argument of ’,’/2. Pseudo-code of the
mc switch and mc continueconj instructions is presented at the end of this
section.

We now extend conj call/2 to a predicate that can handle disjunctions as
well. The resulting predicate is shown in Figure 4.8. Notice that, since the
disjunctions might in turn contain conjunctions in both arguments, we cannot
assume that the first argument of ’;’/2 is a simple goal as we could with ’,’/2.

To implement conjdisj call/1 in the WAM, the mc switch instruction
has to be extended, and an extra instruction mc continuedisj is introduced.
The resulting code can be seen in Figure 4.9. The only extension mc switch
needs is the ability to handle a third type of term in the first argument reg-
ister: a ’;’/2 term. In this case, a choice-point is created with the label of
mc continuedisj (passed through the second argument of mc switch) as an
alternative, after which mc switch is executed on the first argument of ’;’/2.
In mc continuedisj, the choice-point is removed, and mc switch is executed
with the second argument of ’;’/2.

For subsequent goals in a conjunction, the embedded meta-call deallocates
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L1 mc switch L2 L3
L2 mc continueconj L1
L3 mc continuedisj L1

Figure 4.9: Compiled WAM code of conjdisj call/1, using specialized in-
structions.

Query Experiment Timea

Gb Bc Dd Te

5 5 4 3905 Meta-call 2.14
Compile & Run 0.38
Embedded Meta-call 0.36

10 10 4 111110 Meta-call 64.94
Compile & Run 10.82
Embedded Meta-call 13.35

5 5 6 19531 Meta-call 59.20
Compile & Run 9.93
Embedded Meta-call 14.50

aExecution time of the query (in ms.)
bNumber of goals in a branch
cBranching factor of each disjunction
dNesting depth of disjunctions
eTotal number of goals (= G

∑n=D

n=0
Bn)

Table 4.2: Experiments for artificial disjunctions.

the current environment (in mc continueconj), and immediately allocates a
new environment (in mc switch). Such redundancy can be avoided by adding an
extra test: mc continueconj checks the next functor, and skips the deallocate
and allocate if it is again a conjunction. The pseudo-code for the three new
instructions is shown in Figure 4.10.

4.2.3 Evaluation

To compare the embedded meta-call with the normal meta-call and the compile-
and-run approach, we perform a set of artificial experiments. For each artificial
experiment, a query was generated with the following parameters:

• G: the number of goals in a branch,

• B: the branching factor in a disjunction,

• D: the nesting depth of disjunctions.

For example, for the values G = 2, B = 3 and D = 1, the following query is
generated:
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instruction mc switch (ConjLabel,DisjLabel) :
Goal := ARG1

if functor(Goal) = ’,’/2 :
allocate environment(1)
E[0] := arg(Goal, 2)
ConjGoal := arg(Goal, 1)
for 1 ≤ i ≤ arity(functor(ConjGoal)) :

ARGi := arg(ConjGoal, i)
CONTP := ConjLabel
PC := entry point(functor(ConjGoal))

else if functor(Goal) = ’;’/2 :
ARG1 := arg(Goal, 2)
create choicepoint(DisjLabel)
ARG1 := arg(Goal, 1)
PC := PC

else :
for 1 ≤ i ≤ arity(functor(Goal)) :

ARGi := arg(Goal, i)
PC := entry point(functor(Goal))

continue

instruction mc continueconj (SwitchLabel) :
Goal := ARG1

if functor(Goal) = ’,’/2 :
E[0] := arg(Goal, 2)
ConjGoal := arg(Goal, 1)
for 1 ≤ i ≤ arity(functor(ConjGoal)) :

ARGi := arg(ConjGoal, i)
CONTP := PC
PC := entry point(functor(ConjGoal))

else :
ARG1 := E[0]
deallocate environment()
PC := SwitchLabel

continue

instruction mc continuedisj (SwitchLabel) :
pop choicepoint()
PC := SwitchLabel
continue

Figure 4.10: Pseudo-code for the mc switch, mc continueconj and mc contin-
uedisj instructions. PC, CONTP, E and ARGi represent the program counter,
continuation pointer, environment pointer, and argument registers respectively.
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?- a(A,B,C), a(C,D,E), ( a(E,F,G), a(G,H,I)

; a(E,J,K), a(K,L,M)

; a(E,N,O), a(O,P,Q) ).

For G = 1, B = 2 and D = 2, the generated query has nested disjunctions:

?- a(A,B,C), ( a(C,D,E), ( a(E,F,G) ; a(E,H,I) )

; a(C,J,K), ( a(K,L,M) ; a(K,N,O) ) ).

The definition of a/3 was taken to be a( , , ) to minimize the time spent
outside of the query execution. For each generated query, the average spent on
executing the query was measured over a large number of runs. All experiments
(including all other experiments from this chapter) were run on a Pentium III 1.1
GHz with 2 GB main memory running Linux, with a minimum of applications
running. The resulting timings can be seen in Table 4.2. As the results show,
the embedded metacall indeed results in a significant speedup over the original
meta-call (up to 6 times faster). However, except for the first experiment,
classical compiled code is still faster than the embedded meta-call. Therefore, if
a query is executed multiple times (i.e. for different examples), compile-and-run
can outperform execution that uses the embedded meta-call.

4.2.4 Conclusion

We illustrated that meta-call has advantages over compiled code: it does not
require a (costly) compilation step, nor does it need to spend as much time in set-
ting up arguments to goal calls. The dynamic overhead introduced by the meta-
call can be significantly reduced by implementing a specialized version directly
in the internals of the system, yielding up to 6 times faster execution. However,
besides the fact that it cannot always compete with compiled code speed-wise,
implementation of an embedded meta-call suffers from other drawbacks as well.
Compiled code can make use of built-in instructions for optimizing execution
of arithmetic, tests, etc. Extending the embedded meta-call to perform built-in
operations requires adding more checks in the mc switch instruction, which is
cumbersome and slows down the execution, regardless of whether a query con-
tains built-ins or not. Another problem is that it is hard to implement special
execution mechanisms such as query packs using embedded meta-call. Previ-
ous results showed that, for efficient execution of query packs, the structure
of the pack needs to be known beforehand (Blockeel, Dehaspe, Demoen, Jans-
sens, Ramon, and Vandecasteele 2002; Demoen, Janssens, and Vandecasteele
1999). This means that it cannot be integrated with a meta-call that does not
use any form of compilation (or analysis) of the query pack. Moreover, inte-
grating packs with the embedded meta-call would necessitate reimplementing
the complete pack execution mechanism in the embedded meta-call instructions
themselves. These properties make the embedded meta-call less attractive for
further development.
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4.3 Control Flow Compilation

The major reason why meta-call can be competitive with running a compiled
query is that the code for the compiled query contains instructions for setting
up the arguments of the called goals (i.e. the put instructions). These require
costly emulator cycles in compiled code, whereas setting up the arguments for
the meta-called goal happens in the same emulator cycle as the call itself. More-
over, compilation itself is costly due to the non-linear allocation tasks such as
assigning variables to environment slots, managing argument registers, . . .

It would be interesting to combine the advantage of meta-interpretation
(avoiding to set up arguments to goals using put instructions) with a simple form
of compilation without expensive operations such as register allocation. Such
a simple compiler would amongst others have the advantage that it can inline
built-ins, and would be easy to extend. For this purpose, we introduce control
flow compilation. The idea is to generate code for a query which describes the
flow of control, but where the goals themselves are still meta-called, in the sense
that their arguments have been preconstructed on the heap before the execution
has started. The code generated by control flow compilation looks very much
like ordinary code, but it does not contain any instructions related to arguments
of goals nor variables. We illustrate the idea in Section 4.3.1 by a sequence of
steps that will lead to a simplified form of our desired compilation scheme. We
then present the actual control flow compilation technique in Section 4.3.2, and
evaluate it in Section 4.3.3.

4.3.1 Intuition

Consider the query in Figure 4.11(a). We can flatten this query out into a
structure from Figure 4.11(b), containing every literal of the query as one of its
arguments. We can now write a predicate call query/1 which, given the con-
structed term as an argument, executes the original query. The Prolog code for
this program is shown in Figure 4.11(c). Calling the query from Figure 4.11(d)
results in the same execution as executing the original query. Notice how this
code reflects the structure of the query, but calls the individual goals using
meta-call.

Compiling the call query/1 predicate results in the WAM code from Fig-
ure 4.12(a). This block of instructions starts by allocating the environment on
the stack, and putting the argument of the predicate (the query/4 term) into
the second variable slot of the environment, Y2. Then, each group of instructions
labeled with 4 and © represents the call to arg/3, immediately followed by a
call to call/1. Except for the varying integer argument for arg/3 and the call
or deallex instruction in the end, these groups are identical. We can there-
fore merge the instructions labeled 4 and © into new instructions arg call
and arg deallex respectively. These new instructions fetch a given argument
from the structure in Y2, put it in the first argument register for call/1, and
finally either call call/1 (for arg call) or deallocate the environment and ex-
ecute call/1 (for arg deallex). Using these new instructions, the new code
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?− a(X, Y), (b(Y, Z); c(Y, Z)).

(a) Original query.

query(a(X, Y), b(Y, Z), c(Y, Z))

(b) Flattened query structure.

call query(Query) :-
arg(Query,1,G1),
call(G1),
( arg(Query,2,G2),
call(G2)

; arg(Query,3,G3),
call(G3)

).

(c) Generated
call query/1 predicate.

?- Q = query(a(X,Y),b(Y,Z),c(Y,Z)), call query(Q).

(d) Transformed query.

Figure 4.11: Different steps in the argcall transformation.
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allocate 3
getpvar Y2 A1
put int A2 1 4
putpval Y2 A3 4
builtin arg 3 A3 A2 A1 4
call call/1 4
trymeorelse L1
put int A2 2 ©
putpval Y2 A3 ©
builtin arg 3 A3 A2 A1 ©
deallex call/1 ©

L1: trustmeorelsefail
put int A2 3 ©
putpval Y2 A3 ©
builtin arg 3 A3 A2 A1 ©
deallex call/1 ©

(a) Classical WAM code.

allocate 3
getpvar Y2 A1
arg call 1
trymeorelse L1
arg deallex 2

L1: trustmeorelsefail
arg deallex 3

(b) Using arg call and arg deallex.

Figure 4.12: Compiled code for call query/1 from Figure 4.11(c). The 4 and
© symbols indicate the instructions that can be merged into one instruction.

for call query becomes the code in Figure 4.12(b). What remains is only the
control flow of the original query.

Using the ideas above, we develop a query compiler which, given a query,
flattens the query into a term and generates code encoding the control flow of
the original query. This compiler is very simple and lightweight, as all it has to
do is analyze the structure of the query and generate instructions accordingly.
After the code has been emitted, the query can be executed by calling the newly
created predicate with the constructed term as its argument. We have therefore
achieved our goal of combining a simple form of compilation with meta-calling
of goals.

Although the approach described in this section can be implemented and
used in practice (Tronçon, Janssens, and Demoen 2003), we refine it further
in the next section to avoid the need of the query/N structure. Doing so has
several advantages:

• The compilation step no longer needs to construct a query/N structure
for every query.

• During execution of arg call and arg deallex, there are two indirections
that have to be followed to get to the called goal, as is illustrated in
the example in Figure 4.13. Omitting the query/N structure removes
one indirection, and therefore speeds up the arg call and arg deallex
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Environment
stack

Y2

Heap

Query structure

Goalquery/4
a/2
X
Y

Figure 4.13: Memory layout for a query/4 structure. The arg call instruction
needs to follow two indirections to get to a(X,Y).

instructions.

• Extra goals can easily be added to queries after compiling the query, al-
lowing a lazy compilation scheme to be developed.

4.3.2 Control Flow Compilation

As explained in Section 4.3.1, the main idea of control flow compilation is to
compile only the control flow instructions, and to use a special type of meta-call
instruction to actually call the goals. For that purpose, we introduce two new
WAM instructions cf call and cf deallex, whose argument points to a heap
data structure (the goal) that is to be meta-called. Hence, control flow code
only contains the control flow instructions (try*, retry*, . . . ), cf call, and
cf deallex instructions.

For example, control flow compiling the query

query :- a(X,Y), ( b(Y,Z) ; c(Y,Z), d(Z,U); e(a,Y) ).

results in the code in the left part of Figure 4.14. Notice that, because queries
are dynamically generated by the ILP system, the query itself is a term on
the heap, and we use &a(X,Y) to represent the pointer to its sub-term a(X,Y).
On the right of Figure 4.14 is the classical compiled code for the same query.
Before calling each goal, the compiled code first sets up the arguments to the
goal, whereas the control flow compiled code uses a reference to the sub-term
of the query to indicate the goal that is called. The most important aspect is
that the control flow code saves emulator cycles, because it contains no instruc-
tions related to the arguments of the goals that are called. Moreover, the fact
that these kinds of instructions are no longer necessary has other positive con-
sequences: (1) it makes the expensive (non-linear) argument register allocation
step unnecessary, saving compilation time, and (2) it makes it easy to incre-
mentally add new code to existing parts of code. The latter is very interesting
because it makes introducing laziness in the compilation process possible, as
explained in Section 4.4.
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query :- a(X,Y), ( b(Y,Z) ; c(Y,Z), d(Z,U); e(a,Y) ).

Control flow code Compiled code
allocate 2 allocate 4

bldtvar A1
putpvar Y2 A2

cf call &a(X,Y) call a/2
trymeorelse L1 trymeorelse L1

putpval Y2 A1
bldtvar A2

cf deallex &b(Y,Z) deallex b/2
L1: retrymeorelse L2 retrymeorelse L2

putpval Y2 A1
putpvar Y3 A2

cf call &c(Y,Z) call c/2
putpval Y3 A1
bldtvar A2

cf deallex &d(Z,U) deallex d/2
L2: trustmeorelsefail trustmeorelsefail

putpval Y2 A2
put atom A1 a

cf deallex &e(a,Y) deallex e/2

Figure 4.14: Control flow compiled code vs. classical compiled code.
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Compiled code Control Flow code
No Inlining Built-ins Special Built-ins

... ... ... ...
call a/2 cf call &a(X,Y) cf call &a(X,Y) cf call &a(X,Y)
putpval Y2 A1 putarg &X A1
putpval Y3 A2 putarg &Y A2
b smaller A1 A2 cf call &(X<Y) b smaller A1 A2 cf smaller &X &Y
... ... ... ...

Figure 4.15: Built-in inlining for (a(X,Y), X < Y).

Contrary to compiled code, control flow code cannot exist on its own, since it
contains external references to terms on the heap. Therefore, an implementation
must take the following garbage collection issues into consideration: (1) the
terms of a query must be kept alive as long as its control flow compiled code
can be executed; (2) when terms representing goals of a control flow compiled
query are moved to another place in memory, the references in the code must be
adapted as well. The extensions needed for the garbage collector to handle these
issues are discussed in more detail in Section 4.6.2. Another fact that must be
taken into account is that the execution of control flow compiled code can bind
variables in the original term representing the query. This prevents recursive
use of control flow compiled code, and requires the variable bindings to be
undone before calling the query again. However, since control flow compilation
is targeted towards compiling queries, recursive calls do not occur. The variable
bindings caused by the execution of a query are undone by backtracking after
the query finished.

To speed up execution, the classical compilation scheme typically inlines
smaller predicates (such as tests) using dedicated instructions implemented in
the system. This is illustrated by the first column of Figure 4.15: the WAM
compiler emits instructions to initialize the argument registers, and instead
of emitting a call to a (WAM-compiled) ’<’/2 predicate, it emits a built-in
instruction to do the test. Since control flow compilation also emits WAM in-
structions, the same built-ins can be used for control flow compiled code as for
classical compiled code. These built-in instructions typically use argument reg-
isters for their arguments, so the compiler just needs to emit extra instructions
to move data structures on the heap into the correct argument registers. These
are illustrated in the third column of Figure 4.15, where the putarg instructions
move references to data structures on the heap into the relevant argument reg-
isters for the built-in instruction. In the spirit of the cf call instruction, the
extra emulator cycles needed for filling the argument registers can be omitted
by defining special versions of each built-in that, instead of argument registers,
have references to the heap as their parameters. An example of such a built-in
is the cf smaller instruction from Figure 4.15.

Another possible optimization is creating specialized versions of the cf call
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and cf deallex instructions for goals with a fixed arity. For example, goals
with arities smaller than 4 occur very frequently in ILP applications, and we
therefore introduce cf call 4 and cf deallex 4 instructions for calling these
goals. Unfolding the loop to set up all the arguments to the call improves
execution speed.

A final addition to the set of control flow instructions is the cf unifyhead
instruction. This instruction is used whenever parameters need to be passed to
the control flow compiled code. Instead of using an atom query/0 as a head
(cfr. Figure 4.14), any term can be used, possibly containing variables occurring
in the body of the query. Before executing the control flow compiled code of
the body, the instruction cf unifyhead unifies the argument registers with the
variables in the term representing the head of the query.

Figure 4.16 shows pseudo-code for the cf call instruction, the specialized
cf call 4 instruction, the cf smaller builtin, and the cf unifyhead instruc-
tion. A control flow compiler supporting these built-in instructions can be found
in Appendix C.

4.3.3 Evaluation

To evaluate our approach, we added support for control flow code to the hipP
system and implemented a separate control flow compiler for queries. The new
compiler was written in Prolog, as was the existing classical compiler. For the
built-in predicates that are frequently used in ILP applications (e.g. ’<’/2,
’>’/2, ’=’/2, ’\=’/2, . . . ), we implemented special control flow instructions
(such as cf smaller from Figure 4.15), and these built-ins are inlined by the
control flow compiler. The heap garbage collector of hipP was modified to
support control flow compiled code (see Section 4.6.2).

Two kinds of experiments are discussed: the benchmarks in Table 4.3 show
the potential gain in an artificial setting, whereas the results in Table 4.4 are
obtained from a real world application.

The artificial experiment consists of generating the same kind of parameter-
ized queries as in Section 4.2.3. We measure both the time required to compile a
query and to execute it. Table 4.3 shows that control flow compilation is clearly
faster than compile-and-run: the compilation times are one order of magnitude
better, while the execution times also show improvement. The compilation in
the control flow approach is much faster because it does not need to perform
expensive tasks such as assigning variables to environment slots. The better ex-
ecution times are explained by the fact that only one emulation cycle per call is
needed as no arguments have to be put in registers. Doubling the G parameter
more or less doubles the timings. For larger queries, namely for G = 10, B = 10,
D = 4, and for G = 5, B = 5, D = 6, control flow compilation becomes up
to a factor 16 faster than compile-and-run. If the query is executed a sufficient
number of times, meta-call is outperformed by control flow compilation (e.g. for
G = 5, B = 5, D = 4, this number is 15). Since in ILP, each query is run on
thousands of examples, these results indicate that control flow compilation is
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instruction cf call (Struct) :
for 1 ≤ i ≤ arity(functor(Struct)) :

ARGi := arg(Struct, i)
CONTP := PC + 1
PC := entry point(functor(Struct))
continue

instruction cf call 4 (Struct) :
ARG1 := arg(Struct, 1)
ARG2 := arg(Struct, 2)
ARG3 := arg(Struct, 3)
ARG4 := arg(Struct, 4)
CONTP := PC + 1
PC := entry point(functor(Struct))
continue

instruction cf smaller (Ref1, Ref2 ) :
if test smaller(Ref1, Ref2 ) :

PC := PC + 1
continue

else :
fail

instruction cf unifyhead (Struct) :
for 1 ≤ i ≤ arity(functor(Struct)) :

if not unify(ARGi, arg(Struct, i)) :
fail

PC := PC + 1
continue

Figure 4.16: Pseudo-code for the cf call, cf call 4, cf smaller, and
cf unifyhead instructions. PC, CONTP, and ARGi represent the program counter,
continuation pointer, and argument registers respectively.
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Query Experiment Time
Ga Bb Dc Td Comp.e Exec.f

5 5 4 3905 Meta-call - 2.14
Compile & Run 288.0 0.38
Control Flow 30.8 0.20

10 5 4 7810 Meta-call - 4.20
Compile & Run 668.0 0.73
Control Flow 62.6 0.36

5 10 4 55555 Meta-call - 33.68
Compile & Run 6368.0 5.64
Control Flow 457.4 3.15

10 10 4 111110 Meta-call - 64.94
Compile & Run 13876.0 10.82
Control Flow 847.8 5.72

5 5 6 19531 Meta-call - 59.20
Compile & Run 11596.0 9.93
Control Flow 758.0 5.40

aNumber of goals in a branch
bBranching factor of each disjunction
cNesting depth of disjunctions
dTotal number of goals (= G

∑n=D

n=0
Bn)

eCompilation time of the query (in ms.)
fExecution time of the query (in ms.)

Table 4.3: Experiments for artificial disjunctions.
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Dataset Experiment Comp.a Exec.b Total
Mutagenesis Meta-call - 1.43 1.43

Compile & Run 1.30 1.06 2.36
Control Flow 0.21 1.02 1.23

Bongard Meta-call - 24.70 24.70
Compile & Run 4.98 21.34 26.32
Control Flow 0.91 21.18 22.09

Carcinogenesis Meta-call - 108.81 108.81
Compile & Run 17.50 65.30 82.80
Control Flow 2.24 59.51 61.75

HIV Meta-call - 50291.30 50291.30
Compile & Run 1196.54 12918.43 14114.97
Control Flow 191.10 12030.82 12221.92

aTotal compilation time of all queries (in seconds)
bTotal execution time of all queries (in seconds)

Table 4.4: Experiments for conjunctions from a real world application.

the best suited alternative.

The real world experiment consists of running Tilde on the Mutagenesis
(Appendix A.1), Carcinogenesis (Appendix A.2), Bongard (Appendix A.3), and
HIV (Appendix A.4) datasets. During the execution of Tilde, queries are
generated that need to be run on a subset of the examples. These queries
consist only of conjunctions, and every query is executed separately on the
examples. Table 4.4 shows the compilation time and execution time for all
queries in the control flow compilation approach with the corresponding times
of the compile-and-run and the meta-call approach.

In the Tilde runs, control flow compilation gains a factor 5 to 8 over usual
compilation. For all datasets, control flow compiled code also outperforms both
the classical compiled code and the meta-called queries. Meta-call is slower than
control flow compiled code because of the extra emulator cycles spent in testing
the incoming goal upon each call.

We conclude that control flow compilation is the fastest approach for exe-
cuting the queries on these datasets. The main reason for this is that the share
of query compilation in the total execution time of the ILP algorithm is reduced
significantly. Moreover, control flow compiled code contains less instructions,
and therefore saves emulator cycles as well.

The results are more pronounced for the artificial benchmarks than for the
Tilde ones for several reasons. The artificial queries are longer than the typical
Tilde queries. We observed that short queries make the timings unreliable.
During the artificial benchmarks, the time spent in the called goals is very
small, whereas in the Tilde experiments much more time is spent on executing
the called predicates. Therefore, the effect of control flow on the exec timing
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decreases.

4.3.4 Conclusion

The main goal of control flow compilation was to reduce high compilation times,
without slowing down execution itself. Our experiments show that control flow
compilation achieves this goal: compilation times are reduced by an order of
magnitude, while the execution becomes even slightly faster. Moreover, the new
compilation scheme is flexible, and allows for extensions such as lazy compilation
(Section 4.4) and query packs (Section 4.5).

4.4 Lazy Control Flow Compilation

4.4.1 Technology

We observed that, during the execution of ILP algorithms on real-life datasets,
large parts of the queries generated by the query generation process are never
executed. Hence, unnecessary time is spent in compiling this unreachable code.
With a lazy compilation scheme that only compiles code when it is actually
reached, this redundancy can be removed. Control flow compilation is particu-
larly suited for this dynamic kind of code, since existing compiled code can be
extended without needing to alter the latter because of e.g. argument register
allocation (as is the case with classical compilation). In this section, we extend
the control flow compilation approach, and develop a lazy variant.

In (Aycock 2003), lazy compilation is identified as a kind of just-in-time
(JIT) compilation or dynamic compilation, which is characterized as translation
that occurs after a program begins execution. Our lazy variant implicitly calls
the control flow compiler when execution reaches a part of the query that is not
yet compiled. We restrict the discussion in this section to queries with conjunc-
tions and disjunctions; the extension to query packs is presented in Section 4.5.

As before, the query that needs to be evaluated is represented by a term on
the heap. We introduce a new WAM instruction lazy compile, whose argument
is a pointer to the term on the heap that needs compiling when execution reaches
this instruction.

Consider the query

query :- a(X,Y), b(Y,Z).

The initial lazy compiled version of query/0 is

allocate 2
lazy_compile &(a(X,Y),b(Y,Z))

The lazy compile instruction points to a conjunction. Its execution replaces
itself by the compiled code for the first conjunct, namely a cf call, and adds
for the second conjunct another lazy compile instruction, resulting in:
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allocate 2
cf_call &a(X,Y)
lazy_compile &b(Y,Z)

Execution continues with the newly generated cf call instruction. When this
call succeeds, the next lazy compile instruction is executed, after which the
compiled code is identical to code generated without laziness:

allocate 2
cf_call &a(X,Y)
cf_deallex &b(Y,Z)

Notice that lazy compilation overwrites the lazy compile instruction with a
cf instruction, and that when the query has been executed completely for the
first time, the resulting code is the same as the code produced by non-lazy con-
trol flow compilation. If the query did not succeed, a part of the query will
remain uncompiled.

As a second example, consider the lazy compilation of the query from Fig-
ure 4.14 (page 65):

q :- a(X,Y), ( b(Y,Z) ; c(Y,Z), d(Z,U); e(a,Y) ).

Initially, the code is

allocate 2
lazy_compile &(a(X,Y),(b(Y,Z);c(Y,Z),d(Z,U);e(a,Y)))

The lazy compile changes the code to:

allocate 2
cf_call &a(X,Y)
lazy_compile &(b(Y,Z);c(Y,Z),d(Z,U);e(a,Y))

Now, lazy compile needs to compile a disjunction. Where normal (control
flow) compilation would generate a trymeorelse instruction, we generate a
lazy variant for it. The lazy trymeorelse instruction has as its argument the
second part of the disjunction, which will be compiled and executed upon failure
of the first branch. The instruction is immediately followed by the code of the
first branch, which is initially again a lazy compile:

allocate 2
cf_call &a(X,Y)
lazy_trymeorelse &(c(Y,Z),d(Z,U);e(a,Y))
lazy_compile &b(Y,Z)

Execution continues with the lazy trymeorelse: a special choice point is cre-
ated such that on backtracking the remaining branches of the disjunction will
be compiled in a lazy way. To achieve this, the failure continuation of the choice
point is set to a new lazy disj compile instruction, which behaves similarly
to lazy compile. Then, execution continues with the first branch:
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allocate 2
cf_call &a(X,Y)
lazy_trymeorelse &(c(Y,Z),d(Z,U);e(a,Y))
cf_deallex &b(Y,Z)

Upon backtracking to the special choice point created in lazy trymeorelse,
the lazy disj compile instruction resumes compilation, and replaces the cor-
responding lazy trymeorelse by a trymeorelse instruction with the address
of the code to be generated as argument:

allocate 2
cf_call &a(X,Y)
trymeorelse L1
cf_deallex &b(Y,Z)

L1: lazy_retrymeorelse &(e(a,Y))
lazy_compile &(c(Y,Z),d(Z,U))

Here, lazy retrymeorelse (the lazy variant of retrymeorelse) behaves similar
to lazy trymeorelse, but instead of creating a special choice point, it alters
the existing choice point. It is immediately followed by the code of the next
part of the disjunction, which after execution looks as follows:

allocate 2
cf_call &a(X,Y)
trymeorelse L1
cf_deallex &b(Y,Z)

L1: lazy_retrymeorelse &(e(a,Y))
cf_call &c(Y,Z)
cf_deallex &d(Z,U)

Upon backtracking, lazy retrymorelse is overwritten, and a trustmeorelse
is generated for the last branch of the disjunction, followed by a lazy compile
for this branch:

allocate 2
cf_call &a(X,Y)
trymeorelse L1
cf_deallex &b(Y,Z)

L1: retrymeorelse L2
cf_call &c(Y,Z)
cf_deallex &d(Z,U)

L2: trustmeorelsefail
lazy_compile &e(a,Y)

After the execution of the last branch, we end up with the full control flow code.

The amount of code compiled during one step in the JIT compilation process
can be varied to yield different compilation granularities:
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?- a(X), b(Y), X > Y.

a(1).
a(2).
b(1).

Control Flow code
cf call &a(X)
cf call &b(Y)
cf greater int 1 &Y

Figure 4.17: Overly specialized control flow compiled code.

• Per goal: Every time the JIT compiler is called, it compiles exactly one
goal, and then resumes execution. This is the granularity used throughout
the example above.

• Per conjunction: Every time the JIT compiler is called on a query, all
the goals in a conjunction (up to a disjunction) are compiled at once.
This avoids frequent switching between the compiler and the execution by
compiling bigger chunks.

• Per disjunction: All the branches of a disjunction are compiled up to the
point where a new disjunction occurs. This approach is reasonable from an
ILP viewpoint: the branches of a disjunction represent different queries,
and since the success of each query is recorded, all branches will be tried
(and thus compiled) eventually.

Apart from the overhead of switching between compilation and execution,
these approaches might also generate different code depending on the execution
itself. When a goal inside a disjunction fails, the next branch of the conjunction
is executed, and newly compiled code is inserted at the end of the existing code.
When in a later stage the same goal succeeds, the rest of the branch is compiled
and added to the end of the code, and a jump to the new code is inserted.
These jumps cost extra emulator cycles and decrease locality of the code. Lazy
compilation per goal can in the worst case have as many jumps as there are
goals in the disjunctions. Compiling per conjunction can have as many jumps
as there are disjunctions. If a disjunction is completely compiled in one step,
each branch of the disjunction ends in a jump to the next disjunction.

Just as for control flow compilation, special control flow instructions for
built-in predicates can be used in the lazy variant. Care must be taken though:
typically, specialized built-ins are emitted depending on the type of arguments
(e.g. specialized built-ins for unifying arguments with integers); however, as
compilation is now interleaved with execution, arguments of a goal might have
been bound after starting the execution of the query, which could make the
emitted built-in overly specialized, thus generating code that becomes erroneous
after backtracking or when run on another example. Figure 4.17 illustrates this
issue. After having compiled and executed the first two goals, binding X and Y
to 1, the control flow compiler needs to compile (X > Y). Because X is bound to
1, an optimizing compiler emits a specialized test comparing Y to 1. However,
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this code will fail even after selecting a new solution for a/1, although the query
should succeed. The compiler should therefore not emit specialized built-ins
depending on the instantiation and/or type of the arguments, or it should keep
track of the state of the goal arguments in the original query. In our implemen-
tation, we chose for the former approach.

Finally, notice that this lazy control flow compilation can be used to exploit
the incremental nature of a query generation process such as the one from ILP.
By constructing queries with an open end, and letting the compiler generate a
lazy compile instruction for such open ends, these open ends can be instanti-
ated by a later query generation phase. For example, compiling the query

query :- a(X,Y), b(Y,Z), End1.

results in the following code:

allocate 2
cf_call &a(X,Y)
cf_deallex &b(Y,Z)
lazy_compile &End1

The lazy compile is implemented to do nothing if its argument is an unbound
variable, and so the query executes as before. In the following iteration, the
refinement step of the ILP algorithm can now unify the variable End1 with
(c(Z), End2), resulting in the following query:

query :- a(X,Y), b(Y,Z), c(Z), End2.

By instantiating the variable End1, the compiled code for the query becomes

allocate 2
cf_call &a(X,Y)
cf_deallex &b(Y,Z)
lazy_compile &(c(Z),End2)

Executing the query will now only compile the code increment, whereas previ-
ously the whole query needed to be recompiled. However, as the experiments
from Section 4.4.2 show, control flow compilation times are very low, and there-
fore the incremental compilation approach cannot yield any significant speedups
in total query evaluation time with respect to the use of (lazy) control flow com-
pilation.

4.4.2 Evaluation

In this section, we measure the overhead of the new lazy compilation scheme.
The artificial queries from Table 4.5 have no unreachable parts, and as such
provide a worst case for lazy compilation overhead. In practice, queries have
unreachable parts, and so the total overhead of the lazy compilation scheme will
be compensated by the smaller compilation time. The experiments of Table 4.5
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Query Experiment Time
Ga Bb Dc Totald

5 5 4 Per Goal 55
Per Conjunction 34
Per Disjunction 32
No Laziness 28

10 5 4 Per Goal 111
Per Conjunction 60
Per Disjunction 59
No Laziness 59

aNumber of goals in a branch
bBranching factor of each disjunction
cNesting depth of disjunctions
dTotal Compilation + Execution time of the query (in ms.)

Table 4.5: Lazy compilation for several kinds of disjunctions.

use only the first two benchmarks from Table 4.3. The other benchmarks of
Table 4.3 give similar results. Timings are given for the different settings of
lazy compilation. The timings report the time needed for one execution of the
query, thus including the time of its lazy compilation. These timings are then
compared with the time of performing non-lazy control flow compilation of the
query and executing it once1. Lazy compilation per goal clearly has a substantial
overhead, whereas the other settings have a small overhead. We also measured
the execution times for the three lazy alternatives once they are compiled: they
were all equal, and are therefore not included in the table.

The main message here is that the introduction of laziness in the control flow
compilation does not degrade performance much, and that it opens perspectives
for query packs compilation: (1) lazy compilation is fast; (2) in real life bench-
marks, some branches are never compiled due to failure of goals, whereas in our
artificial setting all goals in the queries succeed.

4.5 Lazy Control Flow Compilation for Query
Packs

4.5.1 Technology

So far, we restricted our (lazy) control flow compilation approach to queries
containing conjunctions and ‘ordinary’ disjunctions. However, in the context of
ILP, it is more interesting to optimize the execution of query packs. Since query
packs are essentially a special kind of disjunction, implemented using dedicated

1Notice that these timings are slightly higher than the sum of Comp. and Exec. in
Table 4.3. This is due to the fact that both experiments are run in different circumstances.
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Dataset Unuseda Experiment Comp.b Exec.c Totald

Mutagenesis 17% Compile & Run 0.52 0.11 0.63
Control Flow 0.07 0.10 0.17
Lazy Control Flow - - 0.14

Bongard 51% Compile & Run 1.91 1.17 3.08
Control Flow 0.28 1.15 1.43
Lazy Control Flow - - 1.37

Carcinogenesis 32% Compile & Run 7.39 4.63 12.02
Control Flow 0.81 3.81 4.62
Lazy Control Flow - - 4.34

HIV 74% Compile & Run 209.47 191.68 401.15
Control Flow 27.13 178.53 205.66
Lazy Control Flow - - 186.22

aTotal % of the query code that is never executed
bTotal compilation time of all queries (in seconds)
cTotal execution time of all queries (in seconds)
dTotal query evaluation time (= Comp. + Exec.)

Table 4.6: Experiments for query packs from a real world application.

WAM instructions, we can easily extend control flow compilation to support
query packs by emitting different control flow instructions.

As experiments in Section 4.4 pointed out, the choice of the actual lazy com-
pilation variant does not matter with respect to the overhead introduced (except
for lazy compilation per goal). Because the query pack data structures store
information about all the branches of every disjunction, it is more convenient
to use the lazy compilation variant that compiles one complete disjunction at
once. As explained in Section 4.4, this means that each branch of a disjunction
ends in a jump. This corresponds to the actual implementation of query packs,
where all branches of disjunctions end with a pack try instruction. This means
that lazy compilation of query packs does not introduce extra emulator cycles
because of jump instructions in the code.

Notice that the actual implementation of query packs assumes that the com-
plete structure of the pack is known beforehand, and uses this information to
initialize the query pack data structures. Because the complete structure is no
longer known beforehand, the implementation of query packs needs some mod-
ifications in order to allow incrementally adding new disjunctions to the data
structures.

4.5.2 Evaluation

We evaluate (lazy) control flow compilation for query packs by running Tilde,
and letting it generate query packs instead of conjunctions (as we did for Ta-
ble 4.4). The experiments are performed on the same ILP datasets used in
Table 4.4 (page 70).
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Table 4.6 shows both the total compilation time and the execution time for
compile-and-run and control flow compilation; for lazy control flow compilation,
no distinction can be made, and so the total time for compilation and execution
is given. Additionally, we give for each dataset the amount of query goals that
are never reached by the query execution. Comparing the timings for the query
packs with the timings for the sets of queries in Table 4.4 (page 70), we see that
the query packs are considerably faster.

Comparing control flow compilation with compile-and-run, we see that con-
trol flow compilation is up to an order of magnitude faster than traditional com-
pilation, even though the hipP system already has a compiler that is optimized
for dealing with large disjunctions (Vandecasteele, Demoen, and Janssens 2000)
(in particular for the classification of variables in query packs). The execution
times show the same characteristics as in the experiments with the conjunctions
in Table 4.4: control flow has a faster execution than classical compilation. For
the ILP application, the total time must be considered: the total time of control
flow is up to a factor 3 faster than compile-and-run. Notice that this factor is
higher for the query packs than for the conjunctions. The timings show that,
for our benchmarks, the compilation time in compile-and-run is systematically
larger than the execution time for all the examples such that the impact of
improving the compilation has a larger effect on the total times.

Table 4.5 shows that lazy compilation has some overhead, but it is compen-
sated in all experiments by avoiding the compilation of failing parts in the query
packs. The time gained by not compiling unused parts of queries corresponds
roughly to the measured amount of unreached goals.

The timings indicate that lazy control flow compilation is the best approach
for query packs.

4.6 Memory management issues

In this section, we briefly discuss some memory management issues when dealing
with (lazy) control flow compiled code.

4.6.1 Locality

Because the execution of control flow compiled code needs to fetch the data
for its calls from the heap, the compiled code should be located as close as
possible to the data it consumes, in order to have good locality of data and
therefore to improve caching. This can be achieved by allocating control flow
compiled code on the heap, and by extending the heap garbage collector to
support this new data structure (see Section 4.6.2). Because of the dynamic
nature of lazy compiled code, control flow blocks can be scattered across the
heap during execution; the heap garbage collector moves these blocks closer to
each other during collection, which improves locality.

The locality of the query goals themselves also has an impact on execution
time. During the query generation phase, other data is allocated on the heap,
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Dataset Experiment Comp.a Exec.b

Mutagenesis Compile & Run 0.52 0.11
Control Flow (No Copy) 0.08 0.10
Control Flow (With Copy) 0.07 0.10

Bongard Compile & Run 1.91 1.17
Control Flow (No Copy) 0.33 1.19
Control Flow (With Copy) 0.28 1.15

Carcinogenesis Compile & Run 7.39 4.63
Control Flow (No Copy) 0.70 4.11
Control Flow (With Copy) 0.81 3.81

HIV Compile & Run 209.47 191.68
Control Flow (No Copy) 27.81 193.90
Control Flow (With Copy) 27.13 178.53

aTotal compilation time of all queries, including the time to copy the query (in seconds)
bTotal execution time of all queries (in seconds)

Table 4.7: Impact of locality on execution times

which can lead to a situation where the goal terms of the query (which are used
during execution of the control flow compiled code) are scattered across the
heap. We therefore create a copy of the (possibly scattered) term representing
the complete query before compiling it. This ensures that all the terms used
in the compiled code are allocated together on the heap. The impact of this
copying step is illustrated in Table 4.7, showing the query execution time when
running Tilde on the same datasets as in Table 4.6. Without copying the
goals, the execution time of control flow compiled code becomes slower than
code executed using the classical approach. Copying the term before compiling
it sometimes introduces a slight overhead in some of the smaller benchmarks,
but this is compensated by the gain in execution time.

4.6.2 Extending the garbage collector

As mentioned in Section 4.3.2, the garbage collector needs to be extended in
order to correctly support control flow code: goals referenced from control flow
compiled code need to be kept alive together with the code itself, and the
references in the code need to be modified whenever the goals are relocated.
Additionally, because we choose to keep the control flow code itself on the heap,
the heap garbage collector also needs to take references between control flow
compiled code blocks: if the argument of a choice instruction (try*, retry*, . . . )
points to another block, the collector needs to update this reference whenever
the target block is moved. We therefore introduce modifications of the mark-
and-copy garbage collector of hipP, in order to support lazy compiled control
flow code.

During the marking phase of the garbage collection process, all reachable
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blocks of code and the goals they reference need to be marked. The entry
points of all control flow compiled predicates are added to the root set, and
the marking phase traverses all the code blocks belonging to the predicate by
following references to other blocks in the choice instructions. Terms referenced
by the cf call and cf deallex instructions are also marked, as they need to be
kept alive as long as the code using them is alive. When the scan pointer detects
code blocks during the copying phase, all references to other code blocks (in
the choice instructions) or terms (in the cf call and cf deallex instructions)
are copied to the to-space, and the copied blocks are replaced by forwarding
pointers.

4.7 Conclusions

In this chapter, alternatives for the classical compile-and-run approach for eval-
uating dynamically generated queries were investigated. The main motivation
underlying this investigation was the large share the compilation step takes in
the total query evaluation time. Using an embedded meta-call removes the
need of a costly compilation step of queries altogether, yet it suffers from some
drawbacks: although executing queries using the embedded meta-call is 5 times
faster than with the normal meta-call, execution is sometimes still slower than
compiled code; moreover, extending the meta-call further to support built-in
operations and special execution mechanisms (such as query packs) is very cum-
bersome, and leads to even more slowdowns. Control flow compilation, a hybrid
between meta-calling and compilation, uses a compilation step that is an order
of magnitude faster than classical compilation, without affecting the execution
time. The benefits of control flow compilation versus classical compilation are
clear and are confirmed in the context of real world applications from the ILP
community. Moreover, the lazy variant provides additional speedup in the total
time by not compiling unreached parts of the query.

Traditionally, Prolog implementations have implemented a form of JIT,
where compilation to WAM code or machine code happens at consult time.
YAP (Damas and Costa 2003) goes one step further and compiles a predicate
to abstract machine code at the first call to that predicate. BinProlog (Tarau
1992) switches back and forth between a compiled and an interpreted form of
dynamic predicates, based on the relative frequency of modification and exe-
cution of the predicate. hipP uses a less flexible version of this scheme, and
compiles a dynamic predicate when it is first called. The granularity of these
JIT compilation forms is always a predicate, while control flow compiled code
can have a finer grained granularity up to a literal. On the other hand, control
flow compilation cannot be used for compiling recursive predicates.

YAP, which is used by the Aleph ILP system (Srinivasan 2005), provides
other implementation techniques for speeding up the evaluation of many queries
against many examples. In particular, tabling and dynamic indexing can speed
up the query execution phase considerably. Our control flow compilation scheme
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is orthogonal to these techniques, and can be combined with them. Especially
when tabling is used (see Chapter 6), it is important to spend little time on
compiling the queries, as tabling avoids repeated execution of the same goal (or
prefix of a query). So, we expect that control flow compilation is beneficial in
combination with tabling.

Within the ILP setting, the applications of (lazy) control flow compilation
can be extended further. Extending control flow compilation to support adpacks
(Chapter 3) is straightforward, and we expect this to yield the same speedups
as for query packs. However, introducing laziness requires more work, and the
impact of laziness needs to be investigated. In (Ramon and Struyf 2004), a
technique for efficient theta-subsumption is proposed which uses query pack ex-
ecution. It has to be investigated whether lazy control flow compilation reduces
the compilation time enough in the particular setting that executes the query
pack only once, or that a pure meta-call based approach for the query packs
performs better. Finally, we mentioned in Section 4.4 that lazy control flow
compilation can be used to exploit the incremental nature of queries. Instead of
compiling a refined query from scratch, the compiled code of the original query
can be reused so that only the refinement has to be compiled. Because control
flow compilation is very fast, further exploring this is not very interesting at this
time, but it may be worth investigating this when compilation times do become
significant again.
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Chapter 5

Analyzing and Debugging
Query Execution

5.1 Introduction

The development of new execution mechanisms for ILP happens mainly in the
engine used by the ILP algorithm. These optimized execution strategies typi-
cally require a low level implementation to yield significant benefits. For exam-
ple, the adpack execution mechanism from Chapter 3 required the introduction
of new dedicated WAM instructions, together with a set of new data structures
which these instructions use and manipulate. The embedded meta-call and the
control flow compilation schemes from Chapter 4 also make use of new WAM
instructions, implemented in the core of the system. Because of their low-level
nature, finding bugs in the implementation of these execution mechanisms is
very hard. While tracing bugs in these implementations of execution mecha-
nisms might still be feasible for small test programs, many bugs only appear
during the execution of the ILP algorithm on real life data sets. Several factors
make debugging in this situation difficult:

• The size of the ILP system itself. Real life ILP systems (such as ACE)
often have a very large code base. For example, ACE consists of over
150000 lines of code. This makes it very hard to use standard tracing to
detect bugs.

• The complexity/size of the ILP problem. With large datasets, it can take
a very long time (hours, even days) before a specific bug occurs. When
debugging, one typically performs multiple runs with small modifications
to pin-point the exact problem, and so long run times make this approach
infeasible.

• The high complexity of the hypothesis generation phase. While the eval-
uation of hypotheses is often the bottleneck, some algorithms (such as

83
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rule learners) have a very expensive hypothesis generation phase. For
these algorithms, it can take a very long time for the bug in the execution
mechanism to expose itself, even when the time spent on executing these
queries is small.

• Non-determinacy of ILP algorithms. If an ILP algorithm makes random
decisions, the exact point in time where the bug occurs changes from run
to run. It is even possible that the bug does not occur at all in certain
runs.

Not only do these properties hinder the tracing of bugs, they also pose problems
for analysis of query execution. When developing new execution mechanisms,
analyses of the execution phase of an ILP algorithm can provide very useful
information to guide the development. Such useful analyses include:

• Statistics about the structure of the evaluated queries, such as the average
query length, amount of (ad)pack-ors, maximum number of branches in
(ad)pack-ors, the amount of activate/deactivate pairs, . . .

• The total number of goals called and backtracked to during the execution
of queries, query packs, and adpacks.

• The total memory used by data-structures used while executing (ad)packs.

These statistics not only serve in detecting potential bottlenecks in the execu-
tion of queries, they can also be used to compare various execution mechanisms.
However, similar problems as the ones for debugging query execution mecha-
nisms arise when one wants to gather information about query execution:

• Due to the size of the ILP system, adding the necessary code to perform
the analyses is tedious.

• Gathering statistics from ILP algorithms with a complex hypothesis gener-
ation phase takes a very long time. If one wants to gather extra statistics,
the ILP algorithm has to be run all over again, including the complex
hypothesis generation phases.

• Due to non-determinacy of ILP algorithms, analysis results might differ
from one run to another, making a fair comparison impossible.

An additional problem is that it is impossible to compare execution mechanisms
from different ILP engines. For example, the query pack implementation is only
available in hipP, and can therefore only be used by algorithms implemented
on top of this engine (such as the algorithms from the ACE system). On the
other hand, YAP (Damas and Costa 2003) provides an execution mechanism
based on tabling (see Chapter 6), which can only be used by algorithms built
on top of YAP (e.g. Aleph (Srinivasan 2005)). This means that there is no way
to compare both the query packs approach with the tabling-based approach ob-
jectively, as they are implemented in different engines, each engine performing
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differently. Moreover, if an ILP algorithm is implemented for a specific engine
(or is part of a larger engine-dependent system), it not possible to compare the
performance of different engines for the algorithm in question.

In the past, traces of execution have been used to understand misbehavior of
programs (Ducassé 1999a; Ducassé 1999b) and to profile programs (Jahier and
Ducassé 2002). In this chapter, we present a trace based approach for analyzing
the runs of an ILP algorithm, without modifying the actual implementation of
the algorithms. This approach is an effective algorithm- and engine-independent
approach for easy and fast debugging of the underlying query execution engines,
and provides an easy way to evaluate and compare the impact of different ex-
ecution mechanisms. Moreover, we explain how debugging using these traces
can be simplified by automatically limiting execution to the part causing a bug
to appear. While we mainly focus on analyzing execution mechanisms, these
trace-based approaches can help in analyzing behavior of entire ILP algorithms
as well.

The organization of this chapter is as follows: Section 5.2 discusses the
collection of the run-time information necessary for our trace based approaches.
Section 5.3 then discusses using these traces to allow fast and easy debugging
of query execution. Section 5.4 describes analyzing the gathered information to
monitor the queries and their execution. Finally, we give some conclusions and
future work in Section 5.5.

5.2 Gathering Run-time Information

Consider the generic ILP algorithm from Figure 2.3 (page 12). The target of
engine optimizations as the ones described throughout this work is the Evaluate
step, which takes a set of hypotheses to be evaluated, and evaluates them on
the current dataset. The other steps that characterize the algorithm such as
finding suitable refinements for queries are not important from an engine imple-
mentor’s point of view. However, the latter are the most complex parts of the
algorithm, and encompass most code of the algorithm itself. We extract enough
information from an ILP run necessary to be able to reproduce the Evaluate
step, without running the ILP algorithm itself. More specifically, we only need
to know the queries that the algorithm runs, and on which example each query is
evaluated. How and why these queries were generated and selected is irrelevant
for reconstructing the execution step.

To extract the desired information, we modify the Evaluate step from the
ILP algorithm to record all evaluated queries to a file, which we call the trace of
the algorithm. An example of such a trace after running a modified algorithm
can be seen in Figure 5.1. This trace represents a run of an ILP algorithm
that executed 4 queries: 2 queries that were executed on all 5 examples, and 2
extensions of the first query, which were only executed on the first and the last
example. Notice that this trace is no longer dependent of the concrete algorithm
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query((atom(X,’c’)), [1,2,3,4,5]).
query((atom(X,’h’)), [1,2,3,4,5]).

query((atom(X,’c’),atom(Y,’o’), bond(X,Y)), [1,5]).
query((atom(X,’c’),atom(Y,’c’), bond(X,Y)), [1,5]).

Figure 5.1: Example trace of an ILP run.

% Run all queries from ’Trace’ on ’Dataset’

simulate(Trace, Dataset) :-
read(Trace, Input),
( Input == end_of_file ->

true
;

Input = query(Query, Examples),
evaluate_query(Examples, Query, Dataset),
simulate(Trace, Dataset)

).

% Evaluate a query on a set of examples

evaluate_query([], _, _).
evaluate_query([E|Es], Query, Dataset) :-

load_example(Dataset, E),
(call(Query), fail ; true),
evaluate_query(Es, Query, Dataset).

Figure 5.2: simulate/2: A simple trace simulator.

itself, in the sense that it is just a sequence of queries the algorithm evaluated
on the examples.

The gathered information can now be run through a trace simulator which,
using the example database and background knowledge of the ILP algorithm,
can now simulate the execution step of the ILP algorithm. A trivial trace sim-
ulator is shown in Figure 5.2, and does nothing but run the original queries on
the corresponding examples. Such a simulator is not very useful in itself, except
for debugging purposes (such as described in Section 5.3). However, extending
this trivial simulator can yield more interesting applications, such as the query
analyzers described in Section 5.4.1 and Section 5.4.2.

The information in the trace can be extended even further. While the anal-
yses described in this chapter do not need to know the origin of queries, this in-
formation is useful for the analysis from Chapter 6, where we need to distinguish
the prefix and the refinement of a query. Such information might also be useful
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for other applications, such as debugging or visualizing ILP algorithms, or re-
searching new query representations for incremental query compilation schemes
such as mentioned in Section 4.4.

The sizes of the traces can grow quite large in practice. For example, running
the Tilde algorithm on 4150 examples of the HIV data set results in a trace
of 1113594 queries, encompassing a total of 235 MB. For our purposes, this
does not pose any problems, since the debugging and analyses presented in
this chapter only use sequential access to this data. However, when needing
random access to the trace (e.g. for a visualizing ‘trace browser’), the traces
need smarter storage methods (e.g. building indexes on the traces).

5.3 Debugging Query Execution

When developing optimizations for query evaluation, different execution mech-
anisms are investigated. If a new execution mechanism theoretically yields the
same final results as the existing ones, inconsistencies can be detected by running
the ILP algorithm using each execution mechanism, and comparing the final re-
sults. For example, for Tilde, one can compare the learned decision trees to
determine whether or not two runs are consistent with each other. However,
an inconsistent result only indicates that there is a bug in the execution some-
where, but it does not show where. To be able to determine this, the complete
ILP algorithm has to be run using both the debugger of the host language of
the ILP algorithm (e.g. Prolog), and the debugger of the host language of the
execution engine (e.g. C). Because of the size and complexity of ILP systems,
debugging on both levels simultaneously is very hard and time-consuming in
practice. Moreover, testing execution mechanisms by comparing the output of
the algorithm only works when the algorithm has deterministic behavior: if the
decisions it makes are based on a random factor, the outputs of the algorithm
can (slightly) differ, and comparing runs is not possible. This makes locating
bugs in the implementation of optimizations even harder. Using execution traces
for debugging solves many of these problems: trace execution is deterministic,
and a trace simulator is so small that the focus of the debugging process is
purely on the optimization itself. Moreover, traces can speedup debugging even
more drastically by limiting execution to the part of the trace causing the bug,
as we show in this section.

When two runs of a deterministic ILP algorithm produce different results,
this means that the query evaluation process selected different queries at some
point. If the only difference between both runs is a query optimization scheme,
this means that the optimization caused a query to succeed or fail where it did
not before, meaning there is a bug in the optimization (assuming that optimiza-
tions preserve success or failure of queries). Testing optimizations can therefore
be reduced to comparing the success of query with and without the optimiza-
tions scheme. This can be achieved by simply running the trace through a
simulator that records query successes, and runs every set of queries with and
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without the optimization enabled. Not only can such a simulator detect bugs
this way, it can also pinpoint exactly in which query the bug occurs.

Due to the size of the trace, it might still be that a big part of the execution
needs to be analyzed to find the bug. A bug occurring in a query is often also
dependent on previously executed queries, which means that the trace cannot
just be reduced to a single query to be able to reproduce and locate the bug.
However, because the trace contains all the information determining the exe-
cution, locating a bug through traces can be turned into a data slicing (Chan
and Lakhotia 1998) problem. The goal of data slicing is to take input data (i.e.
a trace) that causes a bug to manifest itself, and reduce this data as much as
possible to yield a smaller subset of data still exposing the bug. The standard
approach to data slicing is simply to use binary search: split your data in two,
test both halves, and continue with the half that still reproduces the bug. How-
ever, binary search might be too coarse-grained to find a bug, and as such fail
to reduce the trace sufficiently. For example, if a bug occurs in the last query
of the trace because of the execution of the first query, neither of both halves
would reproduce the bug. Delta Debugging (Zeller and Hildebrandt 2002) is an
automated data slicing technique that overcomes these issues.

Given a set of data D which causes a bug to appear. We denote this as
test(D) = fail. Dg ⊆ D is a global minimal data slice if

test(Dg) = fail ∧ ∀D′ ⊆ D · (|D′| < |Dg| ⇒ test(D′) 6= fail)

In other words, Dg is the smallest possible subset of the original slice still repro-
ducing the bug. Computing a global minimal data slice is infeasible in practice,
since it requires testing of all 2|D| subsets of D, which has exponential complex-
ity. A less strict condition is the one of the local minimum data slice Dl, for
which no smaller subset exists that exposes the bug:

test(Dl) = fail ∧ ∀D′ ⊂ Dl · test(D′) 6= fail

However, testing whether Dl is indeed a local minimum still requires 2|Dl| tests.
An approximation to the local minimal slice is an n-minimal data slice Dn,
which is a slice for which no n elements can be removed without making the
bug disappear:

test(Dn) = fail ∧ ∀D′ ⊂ Dn · (|Dn| − |D′| ≤ n ⇒ test(D′) 6= fail)

The delta debugging algorithm (Zeller and Hildebrandt 2002), depicted in Fig-
ure 5.3, finds a 1-minimal data slice of D, i.e. a slice for which no one element
can be removed without making the bug disappear. Notice that even smaller
slices might be constructed by removing more than one element. The algorithm
works by dividing the data set in n (more or less) equal subsets, and checking if
one of them still exposes the bug. If so, the process continues with this subset.
If no subset exposes the bug, but a complement of one of the subsets does,
the process continues with the complement and increases granularity (such that
the subsets in the next step are equally large). Otherwise, the granularity is
increased if possible, or the process stops.
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function DDebug(D) :
return DDebug(D,2)

function DDebug(D,n) :
∆n

i=1 := Partition(D,n)
if ∃∆i, test(∆i) = fail :

return DDebug(∆i, 2) – ‘Reduce to subset’

else if ∃∆i, test(D −∆i) = fail :
return DDebug(D −∆i,max (n− 1, 2)) – ‘Reduce to complement’

else if n < |D| :
return DDebug(D,min(|D|, 2n)) – ‘Increase granularity’

else :
return D – ‘Done’

Figure 5.3: DDebug: The Delta Debugging algorithm. Finds a 1-minimal
subset of D that causes the bug to appear.

Step Call Queries Result
1 2 3 4

1 DDebug({1, 2, 3, 4},2) ∆1 • •
√

∆2 • •
√

Increase granularity
2 DDebug({1, 2, 3, 4},4) ∆1 •

√

∆2 •
√

∆3 •
√

∆4 •
√

∆−1
1 • • • ×

Reduce to complement
3 DDebug({2, 3, 4},3) ∆1 •

√

∆2 •
√

∆3 •
√

∆−1
1 • •

√

∆−1
2 • • ×

Reduce to complement
4 DDebug({2, 4},2) ∆1 •

√

∆2 •
√

Done: {2, 4} is 1-minimal

Figure 5.4: Example run of the delta debugging algorithm on a trace with 4
queries.
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Query TraceDataset ILP Algorithm
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Figure 5.5: Overview of the debugging process.

In our case, the data D corresponds to a trace, and every ∆i represents a set
of queries. Testing a ∆i consists of running the trace with queries ∆i through a
trace simulator, and checking the output of the simulator for consistent results.
For example, suppose that we have a query trace with 4 queries exposing a
bug. Applying the delta debugging algorithm on the set of queries in the trace
results in the steps from Figure 5.4. Notice that some tests are repeated: a
smart implementation can memorize tests, and reuse their answers.

In the worst case, the DDebug algorithm needs to perform |D|2+3|D| tests.
However, this worst case seldom occurs in practice. In the optimal case where
there is only one element in the slice causing the bug to appear, the number of
tests is bound by 2 · log2(|D|).

We have implemented and used the delta debugging approach in the devel-
opment of new execution mechanisms in hipP. An overview of the debugging
process can be seen in Figure 5.5. The traces generated by the ILP algorithm
are fed to the delta debugger, which trims it down to a smaller trace. The
resulting trace is then fed into a trace simulator, and the engine (i.e. hipP) can
then be manually debugged using the host language debugger (i.e. gdb).

We implemented two types of delta debuggers, which differ in the type of test
they perform to detect when the execution of a trace exposes a bug. The simplest
type of delta debugger is is one that runs a trace through a trace simulator run in
a separate hipP engine, and checks whether the process terminates successfully
or not. This test can be used for bugs that cause an engine to fail (e.g. due to
a segmentation fault). The second type of test compares the trace execution of
two engines to check for inconsistent results. First, the queries from the original
trace are adorned with extra goals, recording for every query in the trace on
which examples it succeeds. The test of the delta debugger then consists of
calling hipP and running the resulting trace through both a plain trace simulator
(see Figure 5.2) and a simulator with the (buggy) optimization enabled. The
resulting logs of both runs are compared, and if they differ, the test fails.

The delta debugger can be set to use different granularities: it can either
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Trace Granularity Time Tests Resulting Trace
Ita Qub Rc

1 Iterations 16.2s 10 1 137 822
Queries 27.1s 26 1 1 6
Queries◦Iterations 18.9s 24 1 1 6
Examples◦Queries 27.6s 29 1 1 1

2 Iterations 78.0s 53 2 181 10942
Queries 177.3s 157 2 2 236
Queries◦Iterations 120.0s 136 2 2 236
Examples◦Queries 180.4s 171 2 2 2

3 Iterations 138.1s 105 3 398 17235
Queries 360.2s 338 3 3 265
Queries◦Iterations 226.0s 271 3 3 265
Examples◦Queries 371.1s 413 3 3 3

aTotal number of iterations in the trace.
bTotal number of queries in the trace.
cTotal number of query runs necessary to reproduce the bug.

Table 5.1: Delta debugger execution time and number of tests performed for dif-
ferent granularities on three traces, together with statistics about the resulting
traces. Traces are trimmed to the minimal amount of failing Iterations, Queries
or Examples. Combinations of these granularities are denoted by ◦.

choose to find failing iterations in a trace, which gives fast results, but also less
compact traces; it can prune the trace on the level of the queries themselves,
giving a minimal trace; and, it can trim down the number of examples on which
every query is run, reducing the number of times a query needs to be called to
expose a bug.

Table 5.1 shows the execution time of the delta debugger using different
combinations of granularities. For our experiments, we used a trace from a
Tilde run on the Mutagenesis data set, with a lookahead setting of 2. The
trace consists of 53 iterations of the algorithm, encompassing a total of 12908
queries. This trace was modified to get three variants: the first trace triggers
a bug in the last query of the last iteration; the second trace triggers the same
bug, yet only if the first query of the first iteration was executed before the
query containing the bug; the third trace triggers the same bug whenever the
first query and another query from the middle of the trace was executed. For
each of these traces, the delta debugger was run using different granularities.
Combinations of granularities are denoted by ◦, where G1 ◦G2 means applying
delta debugging with granularity G1 on the trace resulting from delta debugging
with granularity G2. The delta debugger successfully minimized all three traces
to the minimal trace needed to reproduce the bug, being a trace of 1, 2 and 3
queries respectively. The results show that applying the delta debugging first on
the level of iterations, and then pruning further on the query level requires less
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% Measure the number and max. length of queries in a trace

analyze(Trace, NbQueries, MaxLength) :-

read(Trace, Input),

( Input == end_of_file ->

NbQueries = 0,

MaxLength = 0

;

Input = query(Query, Examples),

analyze_query(Query, Length),

simulate(Trace, NbQueries1, MaxLength1),

NbQueries is NbQueries1 + 1,

MaxLength is max(Length, MaxLength1)

).

% Measure the length of a query

analyze_query((G,Gs), Length) :- !,

analyze_query(Gs, Length1),

Length is Length1 + 1.

analyze_query(G, 0).

Figure 5.6: analyze/3: A simple query analyzer measuring the total number of
queries evaluated (NbQueries) and the maximum length of queries (MaxLength).

tests than immediately pruning the complete trace on the query level. Pruning
on the iteration level gives a first ‘rough’ version of the trimmed down trace,
after which one can decide to prune further on the query level.

5.4 Query Analysis

To be able to get an insight in the behavior of ILP algorithms with respect to
query execution, knowing the characteristics of the queries and their execution
is particularly interesting. Modifying the ILP system to record all interesting
information is a cumbersome job because of the size of the ILP system. In this
section, we discuss performing execution analysis using the traces gathered in
Section 5.2. Structural query analysis (Section 5.4.1) gives an insight in ILP
algorithms by extracting structural properties from the queries generated by
the algorithm. Structurally analyzing traces not only provides information on
various aspects (such as the average length) of evaluated hypotheses, it can
also be used to analyze the structure of transformed queries, query packs, ad-
packs, . . . and helps getting insight in why certain execution mechanisms per-
form better or worse than others. Dynamic profiling of queries (Section 5.4.2)
provides information on the run-time behavior of query execution mechanisms.
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statistic(nbqueries, [
event(query_begin(AIn, AOut), (

incr_assoc(nbqueries,AIn,AOut)))]).

statistic(maxlength, [
event(query_begin(AIn, AOut), (

put_assoc(length,AIn,0,AOut))),
event(query_goal(Goal,AIn,AOut), (

incr_assoc(length,AIn,AOut))),
event(query_end(AIn, AOut), (

get_assoc(length,AIn,Length),
get_assoc(maxlength,AIn,MaxLength1),
MaxLength is max(Length,MaxLength1),
put_assoc(maxlength,AIn,MaxLength,AOut)))]).

Figure 5.7: Event-based definition of the NbQueries and MaxLength statistics
from Figure 5.6.

5.4.1 Structural Query Analysis

Basically, all a structural query analyzer needs to do is scan through every
query of the trace, while keeping counters for various statistics throughout the
process. For example, measuring both the maximum length and total number
of queries in a trace can be done using the simple analyzer from Figure 5.6
(which is a variant of the base simulator from Figure 5.2, page 86). To collect
more query-level statistics, more counters have to be added to analyze query,
whereas introducing additional global statistics involves extending the top level
analyze predicate. However, the number of interesting statistics quickly grows,
due to which the analyzer quickly becomes hard to maintain. We therefore
propose an event-based approach for designing the trace analyzer. We define a
set of events in the trace, indicating points of interest in the analysis process.
Such events include the start and end of a new query, the occurrence of a single
goal in a query, the occurrence of a pack-or in a query pack, . . . A particular
statistic can then be defined by specifying the actions that have to be taken
at certain events. These actions typically consist of simply incrementing or
resetting counters. Figure 5.7 shows the definition of the 2 statistics measured
in Figure 5.6 as a combination of event actions. The actions are always passed a
current state of counters AIn (here represented as an associative list), and return
a new state AOut. Certain events can also be passed extra arguments, such as is
the case with query goal, which is passed the actual goal to be analyzed. The
actual query analyzer now has to collect all the defined statistics, scan through
the trace, and at every event execute all the necessary code, and finally return
the values of the requested statistics. For example, collecting both statistics
from Figure 5.7 from the trace of Figure 5.1 can be done as follows:
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# Goals 17149
# Queries 7613
Depth 7
Min. Goals per Query 3
Avg. Goals per Query 7.83
Max. Goals per Query 11
Min. Branching Factor 2
Avg. Branching Factor 42.37
Max. Branching Factor 91

Table 5.2: Structural analysis results for a specific query pack

?- analyze_trace(’example.trace’,[nbqueries,maxlength],Result).
Result = [4,3]

We omit the code of analyze trace/4. The analysis can be extended further
by not only keeping simple counters, but by also keeping statistics for every
iteration. For example, a list of all query pack analyses can be maintained
throughout the analysis process, such that reports can be made on a per-pack
basis. A report for a separate query pack looks like Table 5.2.

By defining statistics in terms of events in the trace analysis process, the
code of the analyzer itself can remain simple, and does not need to be modified
whenever we want to measure additional statistics of the trace.

5.4.2 Dynamic Query Profiling

Run-time information of query execution can be used for a variety of purposes:
predicting or explaining behavior of execution mechanisms on a data set, com-
paring different execution mechanisms, detecting bottlenecks in query execution
of data sets in order to identify targets for further optimization, . . .

Trace-based dynamic analysis essentially works by executing all queries from
the trace using the simulator from Figure 5.2, except that the query is first in-
strumented with profiling calls before it is executed. One interesting dynamic
aspect to monitor is the set of inputs of Byrd’s ‘Box Model’ (Byrd 1980) for
every goal of the query. This measures how many times a goal was called or
was backtracked to. This information can be useful in determining how well
execution mechanisms that try to avoid redundant backtracking (such as the
once transformation from Section 2.3.1 or adpacks from Chapter 3) actually
perform. Measuring this can be done by embedding all goal calls in a predi-
cate profile call/2 (Figure 5.8) that calls the query goal and increment the
necessary counters. For example, the query

atom(X, ’c’), atom(Y, ’o’), bond(X, Y).
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profile_call(Goal) :-

increment_call

assert(in_call),

call(Goal),

( in_call ->

retract(in_call)

;

increment_redo

).

profile_call(_) :-

retract(in_call),

fail.

Figure 5.8: profile call/2: Measure the number of calls and redos in a query
goal.

QPacks ADPacks
Examples 13
Min. Call 59452 19296
Avg. Call 447692.23 61240.77
Max. Call 1469595 137569
Tot. Call 5819999 796130
Min. Redo 1205 545
Avg. Redo 7933.31 2411.54
Max. Redo 24084 6348
Tot. Redo 103133 31350

Table 5.3: Collected statistics for a query pack

is transformed into the following query:

profile call(atom(X, ’c’)), profile call(atom(Y, ’o’)),
profile call(bond(X, Y)).

These results can be collected for different variations of queries (or sets of
queries) to compare different execution mechanisms. For example, comparing
the query packs and the adpacks approach this way results in Table 5.3. This
table shows that the goal of adpacks, being to reduce the number of calls, is
indeed reached.

5.4.3 Implementation

An overview of the implementation of both the structural analyzer and the dy-
namic profiler can be seen in Figure 5.9. The structural analyzer works solely on
the query trace, whereas the dynamic profiler needs the dataset to evaluate the
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Query TraceDataset ILP Algorithm

Engine

Query Analyzer

Dynamic
profiler

Structural
analyzer

Engine

HTML
Report

Figure 5.9: Overview of the query analyzer.
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Figure 5.11: Total number of calls to goals in a pack for Query Packs and
ADPacks.

(annotated) queries from the trace on using the engine. For both analyses, the
queries are first transformed into different execution variants (once transformed
queries, query packs, adpacks), and every variant is analyzed both structurally
and dynamically. The resulting information from both analyses are combined
into an HTML report that gives a high-level overview of the ILP algorithm
run, comparing different execution mechanisms, and illustrating the behavior
of the queries over the complete run. Besides tables of measured statistics,
the results are also plotted out like in Figure 5.11. This figure illustrates the
decrease in calls over the whole trace that adpacks provide over query packs.
From the global overview, one can get more detailed information about certain
packs in the trace. For example, the 21st pack from Figure 5.11 shows a peak
in the trace, which can be analyzed closer by requesting the statistics for this
individual pack.

As was mentioned before, the dynamic analysis can also be used to detect
bottlenecks in execution. Figure 5.10 illustrates for the HIV data set the per-
centage of goals of a query pack that are never reached. For the HIV data set,
this runs up to 85% of a pack, which means that the largest part of this query
pack is generated and compiled in vain. This information is useful for the ILP
experts for tweaking the language bias of the data set (which controls the query
generation process) to yield more relevant queries.

5.5 Conclusions

In this chapter, we illustrated a trace based approach to debugging and ana-
lyzing query execution mechanisms for ILP algorithms. Using a trace based
approach yields several advantages in this context:

• The specific workings of the ILP algorithm do not have to be known, as
the traces are algorithm independent, yet provide enough information for
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performing a perfect simulation of the query execution of the algorithm
itself.

• By altering the traces (e.g. reducing the number and size of queries),
execution can be ‘shortcut’, allowing bugs to be exposed very fast without
having to go through the whole trace. Reducing the trace to a minimal
subset that still reproduces the bug can be done automatically through
the use of delta debugging.

• With trace-based execution, time is only spent on the execution of queries.
Therefore, a complex query generation phase of an ILP algorithm does not
affect the total execution time of a trace, and so debugging can be done
faster.

• It is not necessary to have full knowledge of the code base of the ILP
system, which can in practice become very large.

Besides being useful in debugging, the query traces can also be used for analyzing
and comparing query execution mechanisms. Performing a structural analysis
of the trace provides useful information on the number and structure of the
queries executed by a run of an ILP algorithm. The dynamic profiling uses
a source-level transformation on the trace to collect run-time statistics of the
execution. While this approach is flexible and easy to implement, it introduces
significant run-time overhead.

We have used the analysis and debugging techniques described in this chap-
ter extensively during the development of the techniques of the other chapters
in this text. The delta debugging approach made it possible to rapidly trace
bugs in the low level implementation of adpacks (Chapter 3) and control flow
compilation techniques (Chapter 4). The analysis techniques also made it pos-
sible to study the efficiency of tabling techniques compared to the query pack
execution mechanism, as described in Chapter 6.

One application of ILP query traces that was not explored in this chapter
is visualization. Visualizations of query execution help in understanding what
happens in the query execution step of an algorithm on a concrete data set.
Moreover, this approach can also be applied to visualization of ILP algorithms
themselves (instead of just their query execution) by extending the traces to
contain information concerning the other steps from Figure 2.3. Adding even
more algorithm-dependent data can serve in making visualizations for specific
algorithms. The fact that a trace-based visualizer does not need any changes
to the ILP system itself is even more interesting here, because visualizations
typically need to call back to the system to control the execution of algorithms.
The other advantages of traces apply here as well: time-consuming steps can be
avoided, and visualizations are implementation-independent.

In (Jahier and Ducassé 2002), a general trace-based monitor is proposed for
program analysis. This monitor is built around a functional fold-like predi-
cate which accumulates information based on events generated by the program,
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which is similar to the event-based approach we use in our structural analysis.
Their approach does not use explicit traces, but interleaves execution of the
monitor with the execution of the program. Modifying our approach to per-
form analyses online is also possible, but the advantage of not spending time
in the algorithm itself would be lost. Similarly, (Ducassé 1999b) proposes an
on-line approach for debugging using tracers. In the context of debugging ILP
query execution, this approach avoids the need to trace through the ILP system
itself while debugging. However, besides the longer execution times and the
possibility of the bug not occurring when the algorithms are non-deterministic,
automated debugging by slicing the trace is no longer possible.
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Chapter 6

Trading Space for Time

6.1 Introduction

Because the candidate hypotheses generated by an ILP algorithm are refine-
ments of queries from previous iterations, the queries that need to be executed
on the dataset show a lot of similarity. Techniques such as query packs (Sec-
tion 2.3.2) and adpacks (Chapter 3) avoid redundancy in the execution process
by exploiting these similarities in queries. These techniques change the way (sets
of) queries are executed, and as such avoid executing the same goals multiple
times. A different approach to avoiding redundancy is to store computation
results in memory. By remembering answers to single goals, parts of queries,
or even complete queries, repeated execution can be reduced to fetching and
applying the previously computed answers from memory. However, the catch
here is that to be able to reuse answers computed in a previous step, one needs
space to store these answers in memory.

In this chapter, we discuss the possibilities, feasibility, advantages, and dis-
advantages of remembering results of computations at different levels of the
execution of ILP algorithms. Section 6.2 introduces program specialization and
tabled execution, techniques used in the other sections of this chapter. Sec-
tion 6.3 focuses on avoiding recomputation during the execution of predicates
from the background knowledge. Section 6.4 discusses remembering results of
queries and parts of queries. In Section 6.5, we look at some specific ILP al-
gorithms, and try to avoid recomputation by taking advantage of some of their
properties in combination with memory usage. Finally, we present our conclu-
sions in Section 6.6. An overview of the techniques introduced in this chapter
is shown in Table 6.13 (page 124).

101
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6.2 Background: Specialization & Tabling

6.2.1 Top-Down & Bottom-Up Specialization

The idea of specialization is the following: given a program P with inputs S
and D. A specialization of P with respect to S is a program PS such that, for
all input D:

PS(D) = P (S, D)

Input S is called static input (known at specialization time), and D is called
dynamic input (unknown at specialization time).

Consider for example a predicate pow/3, for which pow(X,N,Y) computes XN

and unifies the result with Y. The definition of this predicate is:

pow(X,0,Y) :- !, Y = 1.
pow(X,N,Y) :-

N1 is N - 1,
pow(X,N1,Y1),
Y is Y1 * X.

Specializing this program for a known input N = 3 eliminates the recursive call
in the predicate, resulting in

pow_3(X,Y) :- Y is X*X*X.

By factoring out certain computations from the program (e.g. tests, recursive
calls, . . . ) and replacing computations by their result, specialization generally
increases the speed of the original program. While the resulting program size
is in certain cases smaller than the size of the original program, specialization
might have the exact opposite effect as well (e.g. when unfolding many loops).
This is where the tradeoff in specializing programs lies.

Automated specialization (also called partial evaluation) is a well known
optimization technique (Jones, Gomard, and Sestoft 1994), for which a vari-
ety of approaches have been developed within programming paradigms such
as imperative (Andersen 1993), object-oriented (Dean, Chambers, and Grove
1995), and especially in the context of functional (Weise, Conybeare, Ruf, and
Seligman 1991) and logic programming (Lloyd and Shepherdson 1991; Leuschel
and Bruynooghe 2002). Most specialization techniques for logic programming
are based on the top-down evaluation mechanism (Gallagher 1993), where the
static input is a partially instantiated query. The information from the par-
tially instantiated query is used to eliminate certain computations during the
specialization process. The result of this specialization process is then recorded
in the specialized program, which can then be evaluated using instances of the
initial query. While top-down specialization is driven by (instances of) particu-
lar queries, bottom-up specialization (Vanhoof, De Schreye, and Martens 1999;
Leuschel and Schreye 1996) provides a query-independent approach to program
specialization. Instead of propagating data provided in a query downwards in
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Example 1
father(chris,dirk)
mother(bea,chris)
father(andrew,bea)
mother(anneleen,bea)
greatgrandparent(andrew,dirk)
greatgrandparent(anneleen,dirk)

Example 2
mother(caroline,dina)
father(bob,caroline)
father(andre,bob)
mother(ann,bob)
greatgrandparent(andre,dina)
greatgrandparent(ann,dina)

Background Knowledge
grandfather(X,Y) :- father(X,Z), father(Z,Y).
grandfather(X,Y) :- father(X,Z), mother(Z,Y).
grandmother(X,Y) :- mother(X,Z), father(Z,Y).
grandmother(X,Y) :- mother(X,Z), mother(Z,Y).

Figure 6.1: A data set describing family relationships.

greatgrandparent(X,Y) :- grandfather(X,Z), father(Z,Y)
greatgrandparent(X,Y) :- grandfather(X,Z), mother(Z,Y)
greatgrandparent(X,Y) :- grandmother(X,Z), father(Z,Y)
greatgrandparent(X,Y) :- grandmother(X,Z), mother(Z,Y)

Figure 6.2: Definition of greatgrandparent/2.

a program, this technique propagates information from facts and predicates in
the program upwards, thus precomputing as much relations as possible.

6.2.2 Tabling

Tabled execution is an alternative for classical execution that remembers and
reuses answers to goal calls. When a tabled goal is called, execution first checks
whether answers for that goal have already been computed before. If this is the
case, these answers are returned to the caller, and the goal in question is not
executed. If the goal has not been called before, it is executed, and the resulting
answers are stored in the goal table.

Tabled execution was originally developed in the XSB system (Warren et al.
2005). Since then, other implementations have emerged, such as YapTab (Rocha,
Silva, and Costa 2000) for the YAP system (Damas and Costa 2003). Tabled
execution has been successfully applied in various domains such as program
analysis, model checking, and parsing.
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6.3 Memorizing Background Knowledge

6.3.1 Motivation

Consider the example data set from Figure 6.1, describing family relationships
between people. The data set contains father/2, mother/2, and greatgrand-
parent/2 facts, describing ‘. . . is father/mother/great grandparent of . . . ’ re-
lationships for two families. The background knowledge consists of the defi-
nition of the ‘. . . is grandfather/grandmother of . . . ’ relations, coded in the
grandfather/2 and grandmother/2 predicates. Suppose that we want our ILP
algorithm to learn the definition of the predicate greatgrandparent/2 in terms
of the predicates father/2, mother/2, grandfather/2, and grandmother/2. A
possible solution is the one seen in Figure 6.2.

During the evaluation phase of the ILP algorithm, the predicates grand-
father/2 and grandmother/2 are called repeatedly if candidate hypotheses
contain these relationships (which they should at some point in time if we want
to reach the definition from Figure 6.2). However, because the answer to this
predicate remains the same for a given example over the whole learning run, the
same computations will be performed over and over again. For the toy example
described above, the amount of overhead in calling the background predicates
every time is not so big (only 2 calls to predicates in the data set itself). How-
ever, background knowledge predicates can become quite complex in practical
ILP settings. For example, the background knowledge of the Mutagenesis data
set (Figure A.2, page 134) contains definitions of higher-level molecular struc-
tures such as phenanthrene/1. Calling these predicates is very expensive.

The aim of this section is to study techniques for reducing the time spent
in background knowledge by remembering their answers. The widely used ad-
hoc approach described in Section 6.3.2 and the specialization approaches from
Section 6.3.3 take a data set as input, and transform it into a more efficient
version. By using this more efficient data set, the ILP algorithm performs better
during all of its runs. This is schematically depicted in Figure 6.3, (which is a
modification of the standard ILP process overview from Figure 2.4 on page 13).
The technique of Section 6.3.4, on the other hand, leaves the original data set
unaltered, and dynamically remembers answers to predicates in the background
knowledge at run-time.

6.3.2 Manual precomputation

In practice, whenever a data set contains complex background knowledge pred-
icates, the complex predicates are manually identified, all its answers are pre-
computed for every example, and the precomputed answers are added to the
example. Queries execute faster against the resulting data set, because the an-
swers to the complex background predicates do not need to be computed any
longer. For example, consider the background predicates grandfather/2 and
grandmother/2 from Figure 6.1. Both predicates have exactly one answer for
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Hypothesis
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Bottom-up 
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Manual 
Precomputation
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Figure 6.3: Transforming a data set to a specialized, more efficient version.

Example 1
father(chris,dirk)
mother(bea,chris)
father(andrew,bea)
mother(anneleen,bea)
greatgrandparent(andrew,dirk)
greatgrandparent(anneleen,dirk)

grandfather(andrew,chris)
grandmother(anneleen,chris)

Example 2
mother(caroline,dina)
father(bob,caroline)
father(andre,bob)
mother(ann,bob)
greatgrandparent(andre,dina)
greatgrandparent(ann,dina)

grandfather(andre,caroline)
grandmother(ann,caroline)

Figure 6.4: Dataset from Figure 6.1 with precomputed answers for
grandfather/2 and grandmother/2.
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Example
p(a).
p(b).
q(b).

Background knowledge
r(X) :- p(X), !, q(X).

Figure 6.5: A data set with background knowledge containing cuts.

every example. Adding the answers as facts to the examples results in the new
data set from Figure 6.4. Executing queries against this data set avoids the
need to compute the answers to the background predicates for every call.

This ad-hoc way of selecting predicates and adding their precomputed an-
swers to the data set is very simple and effective. However, when background
predicates contain impure constructs such as cuts, simply computing all answers
top-down is unsafe and yields potentially incorrect results. The data set from
Figure 6.5 has such a background predicate with a cut. A top-down search for
solutions of the query r(X) yields no result, and so no facts are precomputed
for r(X). However, the query r(b) succeeds on the original data set, whereas it
fails on a data set with the answers of r(X) precomputed. Taking the cut into
account requires dynamically checking the call pattern, and creating a special-
ized version for the different possible call patterns of a predicate. For the above
example, this would result in the following specialized version of r/1:

r(X) :- nonvar(X), X = b.

6.3.3 Predicate Specialization

The goal of specializing background knowledge is the same as the precomputa-
tion from Section 6.3.2: for every example in the data set, create new versions
of background knowledge predicates, where parts of the execution of the pred-
icates are precomputed. However, instead of simply computing all answers of
background knowledge predicates, we apply specialization techniques on the
background knowledge. Specializing the data set is done by treating each ex-
ample in the data set as a separate logic program, and applying specialization
on the combination of the example and the background knowledge. The result
is a new example (logic program) containing the data from the original exam-
ple, and specialized versions of background knowledge predicates specific to the
original example.

Because we want to create a specialized version of the data set, independent
of the ILP algorithm that will be used and the queries that will be executed
against the data set, bottom-up (i.e. query-independent) specialization is the
most promising specialization flavor to use for specializing the data set. Bottom-
up specialization is achieved by using a specific bottom-up semantics for logic
programs to infer facts from already inferred facts. For specialization to be
usable in a practical ILP setting, the bottom-up semantics used needs to be
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Answersa Experiment Exec.b Sizec

1 Original 0.21 819
Bottom-up 7.75 4433
Top-down 0.03 2750
Manual precomputation 0.01 877

2 Original 32.73 1837
Bottom-up 4156.20 13948
Top-down × ×
Manual precomputation 0.01 1957

aNumber of answers to the query benzene(X).
bExecution time of the query (benzene(X),fail) (in ms).
cTotal size of the (specialized) example (in bytes).

Table 6.1: Performance and size of two examples from the Mutagenesis data set
after specializing benzene/1.

able to take into account all procedural aspects of Prolog, most importantly
the cut. Several semantics have been proposed that take into account a specific
procedural aspect of Prolog (Proietti and Pettorossi 1991; Debray and Mishra
1988; Spoto 2000). The semantics from (Vanhoof, Tronçon, and Bruynooghe
2003) supports a combination of the procedural aspects of Prolog, including
support for cuts and preservation of order and multiplicity of predicates.

To estimate the potential benefit from applying bottom-up specialization
on background knowledge predicates, we integrated the prototype of the se-
mantics from (Vanhoof, Tronçon, and Bruynooghe 2003) with the bottom-up
specialization framework from (Vanhoof, De Schreye, and Martens 1999), which
initially only supported definite programs. The resulting bottom-up special-
izer was used to specialize the benzene/1 predicate from the Mutagenesis data
set (Appendix A.1). A partial definition of benzene/1 is given in Figure A.2
(page 134). Two examples with varying complexity from this data set were se-
lected as the target of the specialization: the first example consists of 6 atom/4
facts, 6 bond/3 facts, and has exactly one answer for the query benzene(X);
the second example contains 15 atom/4 facts, 16 bond/3 facts, and returns two
answers to the query benzene(X). Both examples were specialized using the
bottom-up specializer. We compare the resulting specialized data set with a
manually preprocessed data set where all answers to benzene/2 were collected
and added to the data set. Additionally, we compare both approaches with a
top-down specialized version of the examples with respect to the call benzene(X).
Because of the presence of cuts, we used the Mixtus (Sahlin 1993) specializer to
specialize the examples, as it supports full Prolog.

Table 6.1 reports on the performance of queries on the original data set,
and compares it with the performance of a manually precomputed version, a
bottom-up specialized version, and a top-down specialized version of the data
set. The performance of an example is tested by querying all solutions of the
predicate benzene(X). The total size of the resulting specialized example is in-
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dicated as well. In the experiments, the bottom-up specializer generates code
that performs worse than the original example. The reason for this is that
the number of clauses explodes by propagating facts upwards, as the code size
increase illustrates. The top-down specializer performs better on the simple
example, but runs out of memory for the second example. The reason here is
that not all tests can be removed at specialization time, and the number of tests
also explodes with increasing complexity of the example. Overall, the resulting
example after manually precomputing answers to benzene(X) performs best.

6.3.4 Predicate Tabling

Precomputing answers for queries beforehand suffers from the fact that the
queries run on the data set by an ILP algorithm are not known beforehand. In
the ad-hoc approach taken in practice (Section 6.3.2), one assumes that pre-
computing the answers to the most general call to the background predicates
is enough. The problem with this is that answers to predicates that are never
called are stored in memory, and that these answers can potentially be incorrect
in the presence of cuts. Taking the cuts into account requires hand-crafting a
specialized version of a predicate for each possible call pattern. Applying spe-
cializers that support cuts (Section 6.3.3) automate this data set preprocessing
step while preserving correctness, but introduces an explosion of derived an-
swers to predicates. Instead of precomputing answers of predicates and adding
them to the data set in advance, one can simply table the complex background
predicates during execution. This approach ensures that only useful answers are
stored and that the answers are correct (assuming that the tabling mechanism
supports cuts), at the cost of a dynamic overhead for every run of the algorithm
(as opposed to the one-time cost of transforming a data set prior to using it).

To compare the performance of tabling with the ad-hoc approach from Sec-
tion 6.3.2, we set up an experiment to run Tilde on the Mutagenesis data set.
Because hipP does not have support for tabling, we used YAP in the experiment.
On the other hand, an implementation for the Tilde algorithm is only available
in the ACE/hipP system. Therefore, we recorded query traces (Chapter 5) of
Tilde runs with various lookahead using the ACE/hipP system, and ran these
traces through a trace simulator written in YAP. During the execution of the
trace on the Mutagenesis data set, all calls to background predicates occurring
in the queries were tabled. The timings of Table 6.2 compare the total time
of executing all queries from the Tilde traces on the original data set, with
the background predicates tabled and untabled respectively. Additionally, the
execution time for running the trace on the data set with manually precom-
puted answers of the background predicates is also shown. The time needed to
precompute all answers for the background knowledge predicates present in the
language bias (benzene/1, phenanthrene/1, . . . ) is also included in the results.
Untabled execution is clearly infeasible: the execution time explodes with more
complex queries, causing the experiment with lookahead setting 2 to last more
than a week. For tabled execution, the experiment with lookahead 1 is faster
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Experiment Preproc.a Executionb

LA0 LA1 LA2
No optimization - 10740 35640 ×c

Tabled execution - 164 161 277
Manual precomputation 683 1 1 21

aTime needed for precomputing all answers to the complex background knowledge predi-
cates (in seconds)

bQuery execution time (in seconds)
cExperiment was canceled after 1 week.

Table 6.2: Tilde execution times for tabled execution on the Mutagenesis
dataset.

than the experiment with no lookahead. This can be explained by the fact that
less solutions of background predicates are required to find an optimal query.
However, Tilde still performs significantly better on the manually precompiled
version of the data set than on the original one with tabled execution.

6.3.5 Conclusions

Different approaches can be used to avoid redundant execution of complex back-
ground predicates during the evaluation of queries. The approach commonly
used in practice is to identify these predicates manually, precomputing all their
answers for every example, and adding these example-specific answers to the
data set. However, this approach is not robust with respect to the occurrence
of cuts in background knowledge. A more general approach consists of applying
specialization techniques on the data set as a whole. Unfortunately, although
these approaches support the use of cuts, both the query-independent bottom-up
specialization technique as the query-directed top-down technique do not scale
well with increasing complexity, making them unusable. Another approach is
leaving the data set unaltered, but tabling the execution of background predi-
cates. The advantage of this approach is that it supports cuts, and that only
the necessary answers are stored in memory. The downside is that there is a
run-time overhead of computing the answers, whereas in the other approaches,
these answers are precomputed prior to executing ILP algorithms.

6.4 Tabling Conjunctions

6.4.1 Introduction

Queries in ILP algorithms generally consist of a prefix and a refinement part.
The prefix is a query from a previous iteration that was selected by the algorithm
for further extension, and the refinement itself is a new conjunction. The set of
evaluated queries is therefore partitioned into sets of queries with an identical
prefix. This means that during the execution of these queries over an example,
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the same answers for the prefix are computed over and over again. To avoid this
recomputation, it makes sense to remember the computed answers to prefixes,
and reuse them when subsequent queries with the same prefix are executed. We
call this approach prefix tabling. Because the answers stored by prefix tabling are
only used within the same iteration of the ILP algorithm, they can be removed
from memory in the next iteration.

Another consequence of the incremental nature described above is that, since
the prefix of a query is itself a query from the previous iterations, each prefix has
been executed before (and either yielded an answer or failed). Remembering the
results of queries can therefore avoid execution of prefixes in the next iterations.
We call this approach query tabling. Because the answers to queries depend
on answers from previous iterations of the ILP algorithm, all answers from the
previous iterations need to be stored in memory as long as there are queries
depending on them. Therefore, contrary to prefix tabling, the extra memory
used for remembering the answers cannot be freed after every iteration.

Recall that query packs (Section 2.3.2) also exploit the incremental nature
of ILP query execution by sharing execution of common prefixes across queries.
The main advantage of query pack execution over storing answers to queries or
prefixes is that query packs do not introduce extra memory overhead for every
example in the data set. The downside is that answers to queries from previous
iterations are not remembered, and that the answers to prefixes have to be re-
computed at every iteration.

In this section, we discuss several approaches to use tabling to store and reuse
answers to queries and their prefixes. The prefix and query tabling approaches
are also presented in (Rocha, Fonseca, and Costa 2005). We make a qualitative
evaluation of the potential benefits of these approaches, and compare them to
query pack execution.

6.4.2 Motivating Example

We illustrate the advantages of prefix tabling, query tabling, and query packs
using the example from Figure 6.6. This example shows the queries executed
in 3 iterations of an ILP algorithm, and two data set examples on which the
queries are executed. Table 6.3 shows for every query in every iteration how
many goals were called or backtracked to.

First, let us consider the execution of the queries on the first example. Exe-
cuting the prefix of the first query of the second iteration (i.e. query 3), which
is a refinement of a query from the first iteration, results in a call and a redo for
a, and 2 calls to b before reaching the solution {X=2,Y=1}. The remainder of
the query execution consists of a call and a redo for c and 2 calls for d, resulting
in a final total of 6 calls and 2 redos for the first query (indicated by the 8 in
the column for query 3 in Table 6.3). However, in the second query, the same
prefix is executed. By remembering the solution to the prefix, execution of the
calls to a and b can be replaced by fetching the solution for the prefix from
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Iteration 1
1 a(X), b(X,Y)
2 m(X), n(X,X)

Iteration 2
3 (a(X),b(X,Y)), c(Y,Z),d(Z)
4 (a(X),b(X,Y)), c(Y,Z),e(Z)

Iteration 3
5 (a(X),b(X,Y),c(Y,Z),d(Z)), f(Z)
6 (a(X),b(X,Y),c(Y,Z),e(Z)), g(Z)

Example 1
a(1). c(1,1). e(2).
a(2). c(1,2). f(2).
b(2,1). d(2). g(2).

Example 2
a(1). c(1,1). d(3). f(15).
b(1,1). c(1,2). d(15). g(15).

... e(3).
c(1,15). e(15).

Figure 6.6: Example query trace.

Example Experiment Query
1 2 1+2 3 4 3+4 5 6 5+6

1 No Optimization 4 1 5 8 8 16 9 9 18
Prefix Tabling 4 1 5 8 4 12 9 9 18
Query Tabling 4 1 5 4 4 8 1 1 2
Query Packs 5 10 12

2 No Optimization 2 1 3 8 8 16 34 34 68
Prefix Tabling 2 1 3 8 6 14 34 34 68
Query Tabling 2 1 3 6 6 12 26 26 52
Query Packs 3 11 51

Table 6.3: Number of calls (including backtracking) for different execution mech-
anisms. For every query from Figure 6.6, its column indicates the total number
of calls and redos for that query. The combined total of calls and redos for all
queries in an iteration is given in the last column of each block.
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memory, and the only calls remaining are the call and redo to c and both calls
to e, resulting in a total of 3 calls and one redo for the second query (instead of
6 calls and 2 redos without reusing the answers from the prefix). Additionally,
remembering the answers to the queries in the first iteration avoids execution
of the prefixes in the second iteration altogether, resulting in a total of 6 calls
and 2 redos for the second iteration (instead of 9 calls and 3 redos when only
the answers for the prefix are remembered).

The third iteration from Figure 6.6 consists of refinements of both queries
from the previous iteration. Consequently, the prefixes of the queries are not
identical, and prefix tabling will therefore not be able to reuse previously com-
puted solutions. Remembering the answers to the full queries from the previous
iteration remedies this, and saves execution of every prefixes.

Transforming the queries from the second iteration of Figure 6.6 in a query
pack results in the following pack:

?- a(X),b(X,Y),c(Y,Z),
( d(Z)
;p e(Z)).

When executing this pack on the first example, the prefix of the queries is
executed only once over the whole iteration, as is the case with prefix tabling.
In the third iteration, the following query pack is executed:

?- a(X),b(X,Y),c(Y,Z),
( d(Z),f(Z)
;p e(Z),g(Z)).

In this case, query pack execution outperforms prefix tabling: because both
prefixes are not identical, prefix tabling is unable to reuse any computed an-
swer, and both prefixes are executed separately for every query; however, the
execution of a, b and c is shared in the query pack, leading to fewer calls for
the third iteration.

Although query tabling outperforms query packs on the first example, this
is not always the case. This is illustrated by the results of running the queries
on the second example from Figure 6.6. In the second iteration, query pack
execution has the advantage that the execution of c in the refinement is shared
between both queries, whereas it is executed separately with the query tabling
approach. The same goes for the prefix of the queries in the third iteration,
where the execution of a, b, and c is shared by query pack execution, whereas
with query tabling only the answers to (a(X),b(X,Y)) are reused during the exe-
cution of both queries.

One can easily see that query pack execution always performs at least as
good as prefix tabling when it comes to the total number of calls to goals: both
approaches execute identical prefixes only once, but query packs can additionally
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exploit the similarity of non-identical prefixes. For query tabling and query
packs, none of the approaches always outperforms the other. Remembering the
answers of queries across iterations can avoid executing prefixes, whereas query
packs always need to execute the prefix at least once. However, by exploiting
similarity in refinements and prefixes, query packs can also provide an advantage
over query tabling in the case where queries are refined with more than one literal
at a time (i.e. with lookahead enabled).

6.4.3 Prefix and Query Tabling

In this section, we describe the approach taken to perform both prefix tabling
and query tabling. This approach conforms to the approach taken in (Rocha,
Fonseca, and Costa 2005), only without tabling the calls to separate goals them-
selves (which is described and analyzed separately in Section 6.3.4). The tabling
of separate goals is left out because it is independent of the actual execution
mechanism of queries (i.e. query tabling or query packs).

Queries which are to be evaluated are of the following form:

?− Prefix (x),Refinement(y) (6.1)

where Prefix and Refinement are both conjunctions, and x and y are the sets
of variables occurring in them respectively. In the first iteration of the ILP
algorithm, Prefix is always empty (true); in the next iterations, Prefix is a query
from the previous iteration, and Refinement is either a goal or a conjunction of
goals, added to the query in the current iteration.

For every query of the form (6.1) to be evaluated, do the following:

1. If no such predicate has been created yet, create a predicate

Pi(x) : − Prefix (x). (6.2)

(where i is a unique identifier for Prefix ), and table the answers for Pi(x).

2. Transform the query into

?− Pi(x),Refinement(y) (6.3)

3. Evaluate the transformed query.

For example, suppose the query

?− a(X, Y), b(Y, Z)

is refined into the following set of queries:

?− (a(X, Y), b(Y, Z)), c(Z, U).
?− (a(X, Y), b(Y, Z)), d(Z, U), e(U).
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(the prefix is put between brackets for notational purposes). The tabling mech-
anism transforms these queries into

?− Pa b(X, Y, Z), c(Z, U) (6.4)
?− Pa b(X, Y, Z), d(Z, U), e(U) (6.5)

and creates a new tabled predicate

Pa b(X, Y, Z) : − a(X, Y), b(Y, Z).

Executing the transformed version of these queries re-uses previously computed
answers of the prefix, thus avoiding redundancy in execution. After having eval-
uated the queries, the newly created predicates and their tables can be cleared,
thus keeping the extra memory usage local to the iteration. We call this ap-
proach prefix tabling.

Prefix tabling can be extended further to yield full query tabling. This is
achieved by transforming the query (6.3) further into

?− Pj(x ∪ y)

where Pj(x ∪ y) is a new tabled predicate, defined as follows:

Pj(x ∪ y) : − Pi(x),Refinement(y) (6.6)

Due to the prefix transformation in the next iteration, one of the tabled full
queries is re-used when executing the prefix of the refined queries. For example,
the transformed queries (6.4) and (6.5) are transformed further into

?− Pa b c(X, Y, Z, U)
?− Pa b d e(X, Y, Z, U)

with the new tabled predicates

Pa b c(X, Y, Z, U) : − Pa b(X, Y, Z), c(Z, U).
Pa b d e(X, Y, Z, U) : − Pa b(X, Y, Z), d(Z, U), e(U).

Suppose the first query is refined in the next iteration into

?− (Pa b(X, Y, Z), c(Z, U)), d(U, V)

The prefix transformation transforms this query into

?− Pa b c(X, Y, Z, U), d(U, V)

which is exactly the tabled predicate created for the full query in the previous
iteration.
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Iteration 1
1 a(X), b(X,Y)

Iteration 2
2 (a(X),b(X,Y)), c(Y).

Example 1
a(1). b(2,1). c(1).
a(2). b(2,2). c(2).

Example 2
a(1). b(2,2). c(3).
a(2). b(2,3).

Figure 6.7: Example query trace.

6.4.4 Once Tabling

We observed that during the execution of queries, many times only the first
solution for a query is used when executing the refinement of the query in a
later iteration. It is therefore worth investigating the performance of a weaker
alternative for the query tabling approach from Section 6.4.3, where the weaker
version only stores one answer for every succeeded query. We call this approach
once tabling.

We start by illustrating the intuition behind once tabling using the exam-
ple from Figure 6.7. After the first iteration of Figure 6.7 finished, the query
succeeded with answers {X=2,Y=1} and {X=2,Y=2} for the two examples re-
spectively. Instead of executing the query from the second iteration on the first
example, we first transform the query to

?− (X = 2, Y = 1 ; a(X, Y), b(X, Y)), c(Y).

This transformed query reuses the previously computed answer to its prefix
by immediately binding the variables to their solution, and using the original
prefix if this solution makes the refinement fail. Executing this transformed
query on the second example indeed avoids the execution of the prefix, as the
query succeeds immediately when calling d after binding Y to 1. For the second
example, the corresponding transformed query is:

?− (X = 2, Y = 2 ; a(X, Y), b(X, Y)), c(Y).

In this case, however, the previously computed solution {X=2,Y=2} of the prefix
does not lead to a solution of the refinement. The prefix therefore has to be
executed as normal.

Once-tabling can be implemented as a simple query transformation. Suppose
again that a query is of the form (6.1):

?− Prefix (x),Refinement(y).

We transform this query into

?− (load solution(i, x) ;Prefix (x)), Refinement(y), save solution(j, x∪ y).
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where i is a unique identifier for Prefix, j a unique identifier for the whole
query. The predicates load solution and save solution store for a given
key the variable bindings of their second argument. The solutions of queries
are stored separately for each example. Executing this transformed query first
retrieves the previously computed solution for the prefix, and then executes the
refinement. If this solution fails to satisfy the refinement, the original prefix is
executed.

A first advantage of the once tabling approach is that the extra memory
required for storing answers to queries is limited to at most one solution per
query. The second advantage is that it is relatively easy to implement this ap-
proach in any system, without necessarily having to resort to tabled execution.
The disadvantage of this approach is that the prefix sometimes needs to be re-
executed, although this extra overhead is compensated for if the majority of the
queries succeed using the first solution of their prefix.

To be able to make a fair comparison between once tabling and the query
tabling approach from Section 6.4.3, we implemented once tabling similarly to
the implementation of query tabling, i.e. by using tabled execution. For every
query of the form (6.1), we create the following predicate:

Pj(x ∪ y) : − once(((Pi(x);Prefix (x)),Refinement(y)))

where i and j are unique identifiers for Prefix and (Prefix,Refinement) respec-
tively. Similar to the predicate (6.6) created for query tabling, this predicate is
also tabled. The query itself is then transformed into

?− Pj(x ∪ y).

With this transformation, only the first answer to every query will be stored in
memory.

For example, a query from the first iteration (without prefix)

?− a(X, Y), b(Y, Z)

is transformed into
?− Pa b(X, Y, Z).

with predicate Pa b tabled, and defined as

Pa b(X, Y, Z) : − once((a(X, Y), b(Y, Z))).

A refinement of this query

?− (a(X, Y), b(Y, Z)), c(Z, U)

is transformed into
?− Pa b c(X, Y, Z, U)

with predicate Pa b c also tabled, and defined as

Pa b c(X, Y, Z, U) : − once(((Pa b(X, Y, Z); a(X, Y), b(Y, Z)), c(Z, U))).
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Experiment Lookahead
0 1 2

No Optimization 390715 1347047 169003392
Prefix Tabling (Local) 296134 937022 9287876
Prefix Tabling (Batched) 296283 937120 9288178
Query Tabling (Local) 105560 542372 4013514
Query Tabling (Batched) 52115 443086 3667033
Once Tabling 103237 777236 69336452
Query Packs 184267 444453 2407452

Table 6.4: Total number of goal calls for running Tilde on Mutagenesis.

6.4.5 Evaluation

The main goal of our evaluation is to see whether the tabling approaches de-
scribed in Sections 6.4.3 and 6.4.4 provide an advantage over the query packs
approach (at the cost of extra memory for storing the answers). To measure this,
we built a prototype for the tabling approaches, based on the implementation
of (Rocha, Fonseca, and Costa 2005). Because the tabling approaches require
support for predicate tabling in the engine, and since this is not available in the
hipP system, the prototype was implemented in YAP. On the other hand, YAP
does not support query pack execution, making it impossible to compare both
approaches based on timing measurements. We therefore estimate the poten-
tial benefit of these techniques by measuring the total number of goals that are
actually called, and comparing these to each other. We do this by tracing and
simulating execution as described in Chapter 5, using trace simulators for hipP
and YAP.

In our experiments, query traces from the Tilde and the Warmr algorithms
with different lookahead settings on both the Mutagenesis and Carcinogenesis
data sets were recorded. These traces were adorned with calls to predicates
recording the number of calls, and the resulting traces were fed to three different
trace simulators: one that executes the queries from a trace in their original
form, one that first applies the tabling transformations on the queries before
executing the queries, and one that executes query packs. YAP provides two
different modes for tabling predicates: local tabling computes the complete table
of a called predicate before continuing execution, while in batched tabling the
table is constructed by need. Batched tabling therefore in theory performs less
calls to predicates than local tabling. However, due to the way YAP handles
the combination of tabling with the cut at the end of each query, answers of a
query sometimes need to be recomputed when the table needs to be completed
further.

The total number of goal calls for the different Tilde runs are shown in
Tables 6.4 and 6.6. As expected, query packs outperform prefix tabling in
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Experiment Lookahead
0 1 2

Prefix Tabling (Local) 37 kB 37 kB 36 kB
Prefix Tabling (Batched) 37 kB 37 kB 36 kB
Query Tabling (Local) 10 MB 15 MB 92 MB
Query Tabling (Batched) 3 MB 6 MB 73 MB
Once Tabling 3 MB 6 MB 73 MB

Table 6.5: Maximum table size for running Tilde on Mutagenesis.

Experiment Lookahead
0 1

No Optimization 62094851 629636203
Prefix Tabling (Local) 17826104 122158703
Prefix Tabling (Batched) 17826104 122157269
Query Tabling (Local) 12878382 52005387
Query Tabling (Batched) 10436092 50486078
Once Tabling 33541719 287747657
Query Packs 17659174 30388904

Table 6.6: Total number of goal calls for running Tilde on Carcinogenesis.

Experiment Lookahead
0 1

Prefix Tabling (Local) 1.5 MB 241 kB
Prefix Tabling (Batched) 1.5 MB 241 kB
Query Tabling (Local) 283 MB 365 MB
Query Tabling (Batched) 25 MB 257 MB
Once Tabling 20 MB 255 MB

Table 6.7: Maximum table size for running Tilde on Carcinogenesis.

Experiment Lookahead
0 1 2

No Optimization 5007638 149930892 2625159941
Prefix Tabling (Local) 1699134 72049883 1180152456
Prefix Tabling (Batched) 1642281 72249388 1181515793
Query Tabling (Local) 6410317 - -
Query Tabling (Batched) 1284685 70777264 -
Query Packs 1367278 36991076 418259748

Table 6.8: Total number of goal calls for running Warmr on Mutagenesis.
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Experiment Lookahead
0 1 2

Prefix Tabling (Local) 2 MB 2 MB 57 MB
Prefix Tabling (Batched) 2 MB 2 MB 57 MB
Query Tabling (Local) 776 MB - -
Query Tabling (Batched) 130 MB 882 MB -

Table 6.9: Maximum table size for running Warmr on Mutagenesis.

all experiments, and query tabling performs better than query packs in the
settings without lookahead. However, with lookahead enabled, query packs start
compensating the prefix recomputation cost by taking advantage of similarity
in the prefix and refinements, and as such outperform query tabling with a
higher lookahead setting. The once tabling approach always performs at least
twice as good as the non-transformed queries. However, in most cases, it is
still outperformed by the other optimizations. Because the tables are cleared in
every iteration, the prefix tabling approach has very limited memory overhead,
as can be seen in Tables 6.5 and 6.7. The total size of the tables used during
once tabling does not differ much from the table sizes of query tabling. This
confirms that execution seldom computes more than one solution for the tabled
prefixes.

The results are even more pronounced when using Warmr, as can be seen
in Tables 6.8 and 6.9. Unfortunately, the machine on which the experiments
were conducted (a Pentium 4 with 2 Gb RAM) ran out of memory for some
experiments due to the size of the tables of the queries. This illustrates that
the tabling approach can become a problem in practice. Tables 6.8 and 6.9 do
not include results of the once table experiments, because these could not be
performed because of a bug in the YAP system at the time of this writing.

6.4.6 Conclusions

The tabling approaches described in this section where aimed at reducing re-
dundancy in execution of prefixes, at the cost of extra memory usage. While the
extra memory cost these approaches induce is still low enough for small data
sets and simple queries, the size of the query tables grows to an unmanageable
amount for more complex experiments. Moreover, a qualitative comparison
shows that query packs outperform the tabling-based approaches for the more
complex experiments, without requiring the extra overhead.
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6.5 Remembering Query Coverage

6.5.1 Introduction

We concluded in Section 6.4 that remembering the answers to all queries in
order to avoid executing them can be effective to reduce the total run time of
an ILP algorithm, yet scales very badly with larger problems. In this section,
we look at two specific ILP algorithms, and briefly describe algorithm-specific
optimizations that also store answers in memory, yet at a much lower cost than
the general tabling scheme from Section 6.4.

6.5.2 Tilde

Consider the evaluation step from Tilde as described in Section 2.2.2. After
having selected the best query from the set of evaluated queries, Tilde parti-
tions the current set of active examples into two sets: the set of examples on
which the selected query succeeds, and the set on which it fails. The algorithm
is then recursively called on both sets, thus creating two subtrees of the current
node. In the left subtree (the one with the examples on which the selected
query succeeds), Tilde refines the selected query further by adding literals to
the query. In the right subtree, Tilde has to find a different best query that
describes the remaining set of examples (i.e. the set of examples that are not
covered by the selected query). However, this means that the same set of queries
(minus the query selected in the previous node) has to be evaluated on all the
examples. Therefore, if the algorithm stores for every query which examples
it covers, it avoids having to execute the execution of the queries in the right
subtree.

We implemented this optimization in query packs implementation of the
hipP engine. For every query pack that is loaded, an extra data structure is
allocated to record the success of the separate queries in the pack. This data
structure stores a bitmap for each example in the data set, where every bit in a
bitmap of an example represents the coverage of a query from the pack on the
example. When a query pack is executed for the first time on a certain example,
it is executed as normal. When a leaf of the pack is reached, the success for the
corresponding query is recorded in the bitmap of the corresponding example.
When the query pack is executed on the same example again, the success of
every query in the bitmap is directly reported to the caller, and the pack is not
executed anymore.

The results of running this implementation on the Mutagenesis, Carcinogen-
esis and HIV data sets can bee seen in Table 6.10. The first experiment consists
of running Tilde on the data set without any optimizations. The second ex-
periment enables the existing right sub-tree (RST) optimization, where Tilde
explores the right branch of the sub-tree first, and reuses the compiled version
of the pack. The final experiment enables the RST optimization and reuses the
answers to the queries as well. The results show that remembering the answers
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Experiment Dataset
Mutagenesis Carcinogenesis HIV

LA0 LA1 LA2 LA0 LA1 LA2 LA0 LA1
No Opt. 0.37 1.38 5.78 0.75 1.48 6.80 35.82 169.52
RST Opt. 0.21 0.70 3.45 0.67 1.25 6.20 20.71 97.99
Reuse Opt. 0.19 0.68 3.32 0.45 0.89 5.63 11.01 41.23

Table 6.10: Total execution time for running Tilde with different optimizations
on different data sets with different lookahead settings (in seconds).

Dataset Examplesa LAb Qc Sized

Mutagenesis 230 0 43 1.3 kB
1 278 7.9 kB
2 1376 38.7 kB

Carcinogenesis 330 0 97 4.2 kB
1 1525 61.6 kB
2 7613 306.8 kB

HIV 4149 0 385 198.5 kB
1 31573 15.6 MB

aTotal number of examples in the data set
bLookahead setting
cMaximum number of queries per pack
dMaximum size of the reuse data structure (=Examples · dQ/8e bytes)

Table 6.11: Memory overhead of the success reuse data structure.

of queries can reduce the total execution time of the ILP algorithm up to 4
times over the normal execution, and up to 2.5 times over the RST optimiza-
tion. The total memory introduced by the extra data structure is shown for
each experiment in Table 6.11. Since the bitmap needs to contain one bit per
query, and every example has one corresponding bitmap, the maximum size is
E · dQ/8e bytes, where E is the number of examples in the data set, and Q the
maximum number of queries that occur in a pack during the whole run. For the
most complex experiment on the largest data set, this size is 15.6 MB.

By implementing the success reuse optimization at the engine level, the
optimization is independent of the ILP algorithm evaluating the query pack.
However, this approach might as well be implemented at the algorithm level,
as only algorithms running the same query pack on the same examples benefit
from this optimization.

6.5.3 Warmr

Consider the example query trace from Figure 6.8. The first query of the first
iteration covers the first example, but does not cover the second example, while
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Iteration 1
a(X).
b(X).

Iteration 2
(a(X)),c(X).
(b(X)),d(X).

Example 1
a(1).
c(2).

Example 2
b(1).
d(2).

Figure 6.8: An example Warmr run.

function ADPack-Disable(D) :
current query := 0
for each b in BranchTable, is leaf(b) :

if current query ∈ D :
BranchTable[b].success := true
alttable := BranchTable[b].adpackAltTable
alttable.tosucceed := alttable.tosucceed - 1
while alttable.tosucceed = 0 and alttable.parent branch :

BranchTable[alttable.parent branch].success = true
alttable := BranchTable[alttable.parent branch].adpackAltTable
alttable.tosucceed := alttable.tosucceed - 1

current query := current query + 1

Figure 6.9: ADPack-Disable: Disable the queries with indexes D in the cur-
rent adpack.

the second query only covers the second example. Suppose that Warmr selects
both queries for further refinement, and refines them into the queries from the
second iteration. When these queries are run on both examples, we already
know that the first query fails on the second example (since it is a refinement
of a failing query from the first iteration), and likewise for the second query
on the first example. This can be avoided by remembering for each query on
which examples its parent query succeeded, and by not executing a query on an
example if its parent query failed on that example. This optimization is trivial to
implement on normal query execution, but requires more work when queries are
executed using query pack execution. Compiling a pack with different queries
for each example introduces significant overhead. We therefore extend the pack
execution implementation to allow disabling certain queries in the pack.

Because the data structures used for adpack execution in Chapter 3 were
designed to allow the (temporary) disabling of branches, it makes sense to reuse
these data structures to implement the dynamic disabling of branches. Using the
adpack execution mechanism in the absence of activate/deactivates is equivalent
to query pack execution. We extend the ADPackAltTalbe from Figure 3.7
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Experiment Dataset
Mutagenesis Carcinogenesis

LA0 LA1 LA2 LA0 LA1
No Optimization 0.718 15.5 107.1 4.1 149.3
Disable Optimization 0.676 9.0 63.0 2.2 71.0

Table 6.12: Query execution time for running Warmr traces with and without
the dynamic query disabling optimization (in seconds).

(page 38) with one extra field: a reference to the parent branch of an adpack-or
in the BranchTable. Using these data structures, it is now possible to write
a function ADPack-Disable that disables queries in an adpack, shown in
Figure 6.9. ADPack-Disable assumes that all the adpack data structures
have been initialized. The parameter D is a list of indexes of queries that have
to be disabled. ADPack-Disable iterates over all leaves of the adpack, and
checks against D if they need to be disabled. If so, the branch is marked as
successful, and we iteratively disable all parent branches until there is another
sibling branch that was not yet disabled. At the end of this process, all branches
belonging only to queries that are disabled are marked as successful, and will
therefore not be executed anymore.

Storing the success of queries on examples can be done similarly as in Sec-
tion 6.5.2. For every example, a bitmap is stored, where a bit represents the
success of a query on the example. As shown in Section 6.5.2, this data structure
does not introduce a lot of extra memory usage.

The optimization described above cannot be implemented exclusively at the
engine level: it requires modifying the Warmr algorithm to keep track of the
parents of the generated queries, and make it disable queries in the adpack
if necessary. To estimate the impact of this optimization without needing to
modify Warmr itself, we record query traces of a Warmr run, and implement
a prototype of this optimization in a simple trace simulator (see Chapter 5).
This trace simulator keeps track of the success or failure of queries during every
iteration. Before executing an adpack on an example, it calls ADPack-Disable
with a list of queries whose parent query failed in the previous iteration on
the same example. Traversing the adpack while closing branches in ADPack-
Disable causes overhead in evaluation time, but this should be compensated
for by not executing these queries. Running the optimizing trace simulator on
various traces of Warmr runs on the Mutagenesis, Carcinogenesis and HIV data
sets and measuring the query evaluation time results in Table 6.12. Disabling
queries improves the evaluation time for all experiments, reaching a speedup
of factor 2. However, these timings only cover the query evaluation time. The
Warmr algorithm has a complex query generation phase, and so the impact of
this optimization will be smaller on the total run time of the Warmr algorithm.
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Level Technique Pro Contra
Background Precomputation Best performance Ad-hoc

Memory No cuts
Specialization Supports cuts Bad performance

Does not scale
Tabling Supports cuts Dynamic overhead

Good performance
Query Prefix tabling Limited tables Does not scale

Query tabling Best performance Does not scale
Once tabling Limited tables Does not scale

Portable Bad performance
Algorithm Tilde Memory

Performance
Warmr Memory

Performance

Table 6.13: Overview of the techniques described. Techniques applied on dif-
ferent levels are independent of each other.

6.5.4 Conclusions

In this section, we presented two optimizations at the ILP algorithm level. By
only remembering whether or not a query succeeds on a given example, both
the Tilde the Warmr algorithm can be optimized by avoiding the execution
of queries that are known to succeed or fail. Contrary to remembering the full
answers to queries as in Section 6.4, storing query coverage information does
not introduce much memory overhead.

6.6 Conclusions

In this chapter, we discussed different techniques for storing execution results
in memory, and reusing them to improve the efficiency of ILP algorithms. A
brief overview of the approaches described can be seen in Table 6.13.

Storing the results for complex background relations as described in Sec-
tion 6.3 is crucial to tackle ILP problems in acceptable time. This is currently
done in an ad-hoc way by manually identifying the complex predicates in the
background knowledge, precomputing their answers, and adding the resulting
facts to the knowledge base. A more general approach is to apply specialization
techniques on the background knowledge beforehand, or by tabling the execu-
tion of these predicates during the execution of the ILP algorithms. Preliminary
experiments show that partial evaluation suffers from control problems: when
the size of an example increases, the total time needed to specialize a back-
ground predicate for an example increases rapidly with increasing complexity of
the example. Bottom-up (query-independent) specialization suffers even more
from control problems, because the number of specialized versions of predicates
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explodes with increasing size of examples. Tabled execution of background
predicates reduces the total execution time significantly. The advantage over
manually tabulated background knowledge is that it only stores the answers
needed during the execution of an algorithm, and that it is safe in the presence
of cuts in predicates (as far as the tabled execution supports cuts). However,
this approach introduces a run-time overhead, and moreover does not measure
up to the total speed of executing learning algorithms on the manually tabulated
version of the data set.

Storing results of queries and sub-queries, and reusing these answers later
when executing refined versions of the queries avoids recomputation during
query execution. Section 6.4 reported that prefix and query tabling indeed avoid
executing large parts of queries, but scale poorly with respect to memory usage
when the data and problem complexity increases. The query packs approach
also aims to avoid similar redundancy, yet does this by defining an alternative
execution scheme instead of storing information. We compared both approaches
by measuring the number of goal calls called when using each approach. From
this experiment, we concluded that query packs perform only slightly worse on
smaller problems, yet perform better on larger problems, without the heavy
memory requirement of having to store information for every example in the
database.

Finally, instead of storing the full answers to queries, more refined memo-
rization schemes can be used for specific algorithms. By only storing the success
of queries on the examples, algorithms like Tilde and Warmr can avoid exe-
cuting queries (or parts of queries) as well. While these techniques also store
information for every example in the data set, the amount of storage needed is
very small, and therefore usable in real-life data sets such as the HIV data set.
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Chapter 7

Conclusions

The main goal of this work was to develop techniques for optimizing the query
evaluation step of ILP algorithms. The most crucial part for query evaluation
is the ILP engine itself, which has to execute a large number of queries a large
number of times. This work was therefore focused on developing techniques to
yield more efficient ILP engines.

7.1 Contributions

This section discusses the various contributions presented in this work.

ADPacks. In Chapter 3, we focused on combining two successful (indepen-
dent) query evaluation techniques, namely query packs and the once transfor-
mation. To achieve this, the notion of an adpack was introduced, which is an
extension for query packs to deal with once transformations. We defined an ex-
ecution mechanism for adpacks, and implemented this execution mechanism in
terms of new WAM instructions. Additionally, two techniques for transforming
a set of queries into an adpack were discussed. Evaluation of the implementation
of this new execution mechanism showed that query pack execution indeed ben-
efits from combining it with the once transformation, as execution time reached
up to a two time decrease compared to the fastest approach, query packs. How-
ever, the time needed to transform a set of queries into an adpack is larger than
the time needed to compile and execute the query, making the new approach
less performant than query packs in some experiments.

Embedded meta-call. Based on the observation that compilation time in
the classical compile-and-run approach for query evaluation dominates the query
evaluation time, we investigated the meta-call in Chapter 4 as an alternative
for query execution that does not require a compilation step. By embedding a
version of the meta-call specialized for query execution in the internals of the
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system, the execution time was improved five-fold over the traditional meta-
call. Although the query execution using the embedded meta-call reaches the
same speeds as that of executing compiled queries, the meta-call suffers from
extendibility problems: combining the embedded meta-call with advanced exe-
cution mechanisms such as query packs or adpacks requires hard-coding these
execution mechanisms in the meta-call itself, and moreover introduces the need
for a preprocessing step, undoing the major advantage of the meta-call.

(Lazy) control flow compilation. Control flow compilation was developed
in Chapter 4 as another alternative to compile-and-run query execution, combin-
ing the meta-call with a simple compilation step. Not only does this approach
improve compilation times with an order of magnitude, it also lends itself well to
extension, and allows reusing built-in instructions such as those used for query
pack and adpack execution. This approach was further extended to yield a lazy
compilation variant, compiling parts of queries only when they are needed. This
approach improved the total query evaluation time even more.

Debugging and Analysis techniques. Chapter 5 discussed trace-based
techniques for analyzing and debugging the query execution of ILP algorithms.
By using static traces recorded during the run of an ILP algorithm, analysis
and debugging can be performed outside of the ILP system, and independent of
the ILP algorithm executing the queries. This eases the development of query
analyses, and speeds up the execution of the analyses. Locating bugs becomes
easier because less code needs to be traced, and other (potentially costly) steps
from the ILP algorithm are skipped. Moreover, the time needed to expose a
bug can be reduced drastically by trimming down the trace, which can be done
automatically by applying the delta debugging algorithm.

Study of space/time tradeoffs. In Chapter 6, we studied the advantages
and disadvantages of storing computed results in memory, such that these re-
sults can be reused in future execution steps. This answer reuse can be done
on different levels. For calls to complex background knowledge predicates, it is
necessary to remember computations for the ILP algorithm to finish in reason-
able time. The current ad-hoc approach, consisting of precomputing all answers
to complex background knowledge predicates in advance, outperforms the more
general approaches where specialization techniques are applied on the data set,
or calls to background predicates are tabled. Tabling the answers to queries and
prefixes only results in less goal calls than query packs for simple experiments.
Moreover, the size of the query tables becomes a problem for the larger exper-
iments. Moreover, query packs save more calls for more complex experiments,
without introducing such a heavy memory requirement. The once tabling ap-
proach aims at providing a tradeoff between storing answers and recomputing
them. However, the memory usage of this approach in practice does not differ
much from the other tabling approaches, yet performs worse. Finally, we showed
that by remembering only the success of queries, Tilde receives a performance
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improvement of up to 2.5 times, whereas the query execution time of Warmr
improves up to a factor of 2. The extra memory requirement of this optimiza-
tion is very small.

7.2 Discussion

Throughout this work, different techniques were proposed that optimize ILP
query execution. These approaches have mostly been presented isolated from
each other. In this section, we give a global discussion of the benefit of these
approaches, and when to apply which technique.

A first dimension in this discussion is the tradeoff between compilation and
no compilation. The embedded meta-call developed in Chapter 4 is a strict
improvement over the classical meta-call, and should therefore be used when-
ever meta-call was previously used for query evaluation. Meta-calling queries is
interesting whenever an ILP algorithm needs to evaluate a query on only a few
examples, as it does not require the initial cost paired with compiling the query.
Moreover, query evaluation using the embedded meta-call can be combined with
the once transformation. The decision of using meta-call instead of compiling a
query first needs to be made by the ILP algorithm itself, based on an estimate
of the cost it takes to meta-call or compile a query.

Control flow compilation provides a strict improvement over the classical
compile-and-run approach: control flow compiling is 10 times faster than clas-
sical compilation, and the code it generates executes at least as fast. When-
ever compilation is involved, it should therefore be replaced with control flow
compilation. However, replacing compile-and-run with control flow compila-
tion in every compilation-based execution mechanism requires some extra work.
Although the instructions generated by the compile-and-run approach can be
reused for control flow compiled code without any modification, a separate com-
piler is necessary. The control flow compiler is a very simple compiler that only
needs to generate code regarding the control flow of queries, as illustrated in Ap-
pendix C. Hence, porting compilation schemes for execution mechanisms from
the original compiler to the control flow compiler does not require much effort.
The lazy variant of control flow compilation improves execution even more, but
requires a larger effort to integrate with existing execution mechanisms. Exe-
cution mechanisms such as query packs and adpacks can no longer assume that
the entire code is loaded at once, which makes the administration for the data
structures used in these approaches harder. Because the data structures of ad-
packs are more complex than those of query packs, we have chosen query pack
execution as the initial target for lazy control flow compilation.

A second discussion is whether to use query packs or adpacks. Although the
query execution part of the adpacks is always better than query pack execution,
the high cost of the transformation step makes the adpack approach slower
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Run time Ranking
Gen. Eval. Many Few

Trans. Comp. Exec.
Meta-call 22222 7 2
Emb. Meta-call 2222 6 1
Tabling 222 4 2
ADPacks (C&R)

... 2 222 2 5 5
Query Packs (C&R) 222 22 3 5
Query Packs (CF) 22 22 2 4
Query Packs (LCF) 2 22 1 3

Table 7.1: Overview of different query evaluation mechanisms, in terms of the
various components of the ILP algorithm run time: the time needed to generate,
evaluate, transform, compile, and execute all queries. Higher numbers represent
more time (and less performance). A global ranking is given for the case where
few or many queries are evaluated.

in some cases. The evaluation of adpacks has been done using the classical
compile-and-run approach. However, combining adpacks with lazy control flow
compilation will make the impact of the transformation time on the total query
evaluation process even more pronounced: the share of the compilation step will
reduce significantly in both approaches, leaving the transformation time with a
bigger share of the total time needed to preprocess queries. Without a better
transformation, adpacks will therefore be outperformed by query packs in some
experiments.

Of the new space/time tradeoffs introduced in Chapter 6, the most interest-
ing optimizations are the algorithm-specific ones. Remembering query coverage
in Tilde at the algorithm level is independent of the execution mechanism
used. However, we implemented this query coverage at the engine level, which
required small changes to the query pack execution mechanism. The second
optimization was the dynamic disabling of queries for Warmr. This approach
relied on the design of the adpack data structures to be able to disable parts of
a pack. The classical data structures for query packs do not cater for this, and
it is therefore not possible to integrate this approach with the standard query
pack implementation.

To conclude this discussion, we present an informal summary of the perfor-
mance of the most important query evaluation techniques in Table 7.1. This
table illustrates for each component of the ILP algorithm run time how much
time the different techniques relatively consume. For example, the embedded
meta-call executes slower than query packs, but is faster than the regular meta-
call. The rightmost part of the table shows how well the different approaches
perform when either few or many queries need to be evaluated. The optimal
approach is to use query packs in combination with lazy control flow compila-
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tion for evaluating many queries, and to use the embedded meta-call if only a
few queries need to be evaluated.

7.3 Further Work

In this section, we present possible directions for future work regarding the
techniques described throughout this text.

ADPacks. The weak point of the adpack approach is the transformation.
To be able to outperform query packs in every experiment, the time needed
to transform a set of queries to an adpack needs to be reduced significantly.
The major bottleneck of the pack based transformation we presented was the
repeated transformation of a set of queries into a query pack. A possible way to
overcome this expensive step is to make the transformation modify the pack in
place. Such a destructive transformation requires a low level implementation,
which is not trivial.

Another interesting direction for further research is investigating the applica-
tion of more ‘advanced’ techniques of avoiding backtracking (such as intelligent
backtracking), and to combine this with query packs.

(Lazy) Control Flow Compilation. We mentioned in Section 7.2 that re-
placing classical compilation with lazy control flow compilation requires some
work. This has been done for query packs, but not yet for the adpacks. The
most difficult part of this conversion is the modification of the data structures
to provide support for incremental loading of goals. We expect lazy control flow
compilation to yield the same speedups for adpacks as it did for query packs.

Incremental Compilation. Lazy control flow compilation makes it possi-
ble to exploit the incremental nature of queries generated by an ILP system,
as was illustrated at the end of Section 4.4 (page 71). Queries can be com-
piled incrementally, such that parts of queries compiled in previous iterations
are reused, and that only the new parts of queries are compiled. This has not
been investigated further, because the total share of query compilation after
introducing control flow compilation was no longer big enough in our experi-
ments for incremental compilation to yield a potential benefit at this time. This
approach would be interesting in situations where the complexity of queries is
much bigger.
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Appendix A

Datasets

A.1 Mutagenesis

The Mutagenesis data set (Srinivasan, Muggleton, Sternberg, and King 1996) is
one of the most frequently used data sets throughout the ILP community. This
database contains descriptions of 230 molecules, for which the the mutagenicity
of the molecules is to be predicted (mutagenicity is the ability to cause DNA to
mutate, which is a possible cause for cancer).

An example of a molecule description from this data set can be seen in
Figure A.1. An atom/4 fact states the name of the atom, the element (e.g. c
for carbon), the type of the atom, and its partial charge. For example, the fact
atom(d1 1,c,22,-0.117) means that atom d1 1 is an aromatic carbon atom
with negative charge -0.117. A bond/3 fact states that there is a bond of a
certain type between 2 atoms. For example, the fact bond(d1 1,d1 2,7) means
that there is an aromatic bond between the atoms d1 1 and d1 2.

The background knowledge of the Mutagenesis data set contains definitions
of higher level sub-molecular structures such as benzene rings, phenanthrene
structures, . . . For example, the definitions of phenanthrene/1 and benzene/1
is shown in Figure A.2. These definitions in turn depend on the definition of
ring6/3 and other auxiliary predicates (interjoin/3 and members bonded/2).
Note that, for efficiency reasons, the most complex predicates in the background
knowledge are usually replaced by their precomputed answers. Except for Chap-
ter 6, we always use this specialized version of the Mutagenesis data set.

The Mutagenesis data set is a relatively small one compared to the other
data sets used throughout this text.

A.2 Carcinogenesis

The Carcinogenesis data set (Srinivasan, King, and Bristol 1999) contains de-
scriptions of 330 molecules, stored in the same format as the Mutagenesis data
set. The data set contains for each molecule information about the carcino-
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pos.

atom(d1_1,c,22,-0.117).
atom(d1_2,c,22,-0.117).
atom(d1_3,c,22,-0.117).
atom(d1_4,c,195,-0.087).
atom(d1_5,c,195,0.013).
atom(d1_6,c,22,-0.117).
atom(d1_7,h,3,0.142).
atom(d1_8,h,3,0.143).
...

bond(d1_1,d1_2,7).
bond(d1_2,d1_3,7).
bond(d1_3,d1_4,7).
bond(d1_4,d1_5,7).
bond(d1_5,d1_6,7).
bond(d1_6,d1_1,7).
bond(d1_1,d1_7,1).
bond(d1_2,d1_8,1).
bond(d1_3,d1_9,1).
bond(d1_6,d1_10,1).
...

Figure A.1: Example of a molecule in the Mutagenesis data set.

phenanthrene([Ring1,Ring2,Ring3]) :-
benzene(Ring1),
benzene(Ring2),
Ring1 @> Ring2,
interjoin(Ring1,Ring2,Join1),
benzene(Ring3),
Ring1 @> Ring3,
Ring2 @> Ring3,
interjoin(Ring2,Ring3,Join2),
\+ interjoin(Join1,Join2,_),
members_bonded(Join1,Join2).

benzene(Ring_list) :-
atoms(6,Atom_list,[c,c,c,c,c,c]),
ring6(Atom_list,Ring_list,[7,7,7,7,7,7]).

atoms(1,[Atom],[T]) :-
atom(Atom,T,_,_),
T \== h.

atoms(N1,[Atom1|[Atom2|List_a]],[T1|[T2|List_t]]) :-
N1 > 1,
N2 is N1 - 1,
atoms(N2,[Atom2|List_a],[T2|List_t]),
atom(Atom1,T1,_,_),
Atom1 @> Atom2,
T1 \== h.

Figure A.2: Excerpt from the background knowledge of the Mutagenesis data
set.
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Figure A.3: A Bongard problem.

triangle(1).
orientation(1,up).
bounding_box(1,1,1,2,2).

square(2).
bounding_box(2,0,0,3,3).

Figure A.4: Example from the Bongard data set.

genicity (i.e. whether or not it causes cancer) of the molecule, obtained from
experiments by the National Institute of Environmental Health Sciences. The
goal of an ILP algorithm is to be able to predict the carcinogenicity of unseen
molecules.

A.3 Bongard

The Bongard data set (De Raedt and Van Laer 1995) is an artificial data set,
based on pattern recognition problems from (Bongard 1970). Every example
in this data set corresponds to a positive or negative drawing, and the goal is
to discover what characterizes a positive drawing. Figure A.3 shows a Bon-
gard problem with 4 examples, where a positive example is characterized by
the presence of a triangle contained inside a square. Each example in the data
set consists of square/1, triangle/1, circle/1 facts, together with the ge-
ometries of their bounded boxes as bounding box/2 facts, and optionally with
information about orientation in the form of orientation/2 facts. For example,
the square and triangle from the leftmost illustration of Figure A.3 is depicted
in Figure A.4. The background knowledge of the Bongard data set consists of
predicates such as inside/2, north of/2, . . . representing the relative positions
of the figures, described in terms of their bounding boxes.
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A.4 HIV

The HIV data set (Kramer, Raedt, and Helma 2001) originates from the De-
velopmental Therapeutics Program (NIH/NCI 2001) of the U.S. Department
of Health and Human Services. The original data set contains a structural de-
scription of 43576 compounds, for which was measured whether or not they were
able to protect human cells from HIV-1 infection. The structural information
about the molecules are stored in a similar format as that of the Mutagenesis
and Carcinogenesis data sets. Throughout this text, we use a trimmed down
version of this data set, consisting of 4150 compounds.



Appendix B

ADPack Meta-interpreter

This appendix contains a Prolog meta-interpreter for the ADPacks execution
mechanism, as defined in Section 3.3 (page 26). Note that the interpreter uses
the hipP-specific built-in predicate ’ $savecp’/1 to retrieve the most recent
choice point, and ’ $cutto’/1 to cut away all choice points up to a given
choice point. To execute the adpack from Figure 3.2(c) (page 29) and list its
successful branches, use the following query:

?- adpack_execute(

[a(X),activate(1), activate(2), b(X,Y),

adpack_or([

branch(br1,[once(c(Y)), d(Y)]),

branch(br2,[e(Y,Z), adpack_or([

branch(br3,[deactivate(2), f(X)]),

branch(br4,[g(Y,Z), deactivate(1), d(X)])])

])

])]),

write(’Success: ’), (success(S), write(S), write(’ ’), fail ; nl).
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%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% ADPack Meta-interpreter

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% Execute an adpack

adpack_execute(Pack) :-

init_datastructures(Pack),

’_$savecp’(B),

adpack_execute(Pack,br0,[],B).

adpack_execute(_).

% Main predicate for executing the adpack.

%

% Argument 1: the adpack datastructure

% Argument 2: the identifier of the branch currently executing

% Argument 3: a list of activate identifiers, paired with the

% current choicepoint at the time of the activate

% Argument 4: the choicepoint of the parent adpack-or of the

% current branch

adpack_execute([activate(Id)|Gs],CurBranch,Activates,ParentCutp) :- !,

deactivate_branch(Id,DeactBranch),

(\+ success(DeactBranch) ->

open_path(DeactBranch,CurBranch),

’_$savecp’(B),

NActivates = [act(Id,B)|Activates]

;

NActivates = Activates

),

adpack_execute(Gs,CurBranch,NActivates,ParentCutp).

adpack_execute([deactivate(_)|Gs],CurBranch,Activates,ParentCutp) :- !,

set_closed(CurBranch),

’_$cutto’(ParentCutp),

adpack_execute(Gs,CurBranch,Activates,ParentCutp).

adpack_execute([],CurBranch,_Activates,ParentCutp) :- !,

set_success(CurBranch),

’_$cutto’(ParentCutp),

fail.

adpack_execute([adpack_or(Branches)],CurBranch,Activates,ParentCutp) :- !,

(

%% Forward execution %%

member(branch(Branch,Goals), Branches),

\+ success(Branch), open(Branch),

’_$savecp’(B),

adpack_execute(Goals,Branch,[],B)

;

%% Backtracking %%

( all_success(Branches) ->

set_success(CurBranch),

’_$cutto’(ParentCutp)

;
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\+ contains_open_branch(Branches),

determine_cutpoint(Activates,ParentCutp,CP),

(CP == ParentCutp ->

set_closed(CurBranch)

;

’_$cutto’(CP)

)

),

fail

).

adpack_execute([G|Gs],CurBranch,Activates,ParentCutp) :-

call(G),

adpack_execute(Gs,CurBranch,Activates,ParentCutp).

% Opens all branches in a path until an already open branch

% is found or the begin branch is reached

open_path(BeginBranch,BeginBranch) :- !.

open_path(CurBranch,BeginBranch) :-

( open(CurBranch) ->

true

;

set_open(CurBranch),

parent(CurBranch,ParentBranch),

open_path(ParentBranch,BeginBranch)

).

% Succeeds if all branches in the list are successful

all_success([]).

all_success([branch(Branch,_)|Branches]) :-

success(Branch),

all_success(Branches).

% Succeeds if the list of branches contains an open,

% unsuccessful branch

contains_open_branch(Branches) :-

member(branch(Branch,_),Branches),

\+ success(Branch),

open(Branch).

% Computes the most recent useful cutpoint to backtrack to

determine_cutpoint([],ParentCutp,ParentCutp).

determine_cutpoint([act(Id,B)|Acts],ParentCutp,Cutp) :-

deactivate_branch(Id,E),

(\+ success(E) ->

Cutp = B

;

determine_cutpoint(Acts,ParentCutp,Cutp)

).
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%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% Datastructures

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

:- dynamic open/1, success/1, deactivate_branch/2, parent/2.

% Initializes the used datastructures

init_datastructures(Pack) :-

init_datastructures(Pack,br0).

init_datastructures([],_) :- !.

init_datastructures([deactivate(Id)|Gs],CurrentBranch) :- !,

assert(deactivate_branch(Id,CurrentBranch)),

init_datastructures(Gs,CurrentBranch).

init_datastructures([adpack_or(Branches)],CurrentBranch) :- !,

(

member(branch(E,G),Branches),

set_open(E),

retractall(success(E)),

assert(parent(E,CurrentBranch)),

init_datastructures(G,E),

fail

;

true

).

init_datastructures([_|Gs],E) :-

init_datastructures(Gs,E).

% Checks and sets different flags of branches

set_open(E) :- once((open(E) ; assert(open(E)))).

set_closed(E) :- retractall(open(E)).

set_success(E) :- once((success(E) ; assert(success(E)))).

% Auxiliary predicate

member(X,[X|_]).

member(X,[_|Ys]) :- member(X,Ys).



Appendix C

Control Flow Compiler

This appendix contains a control flow compiler, written in Prolog. The compiler
is used for compiling queries containing conjunctions and disjunctions to WAM
instructions. For goals with an arity smaller than 4, a specialized instruction is
emitted. The goals true/0 and ’<’/2 are treated as special built-ins.

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% Control Flow Compiler
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% Compile a predicate
cf_compile((Head :- Body),Code) :-

Code = [allocate(2)|Code1],
( atom(Head) ->

Code1 = Code2
;

Code1 = [cf_unifyhead(Head)|Code2]
),
cf_compile(Body,0,Code2,_,[]).

% Compile a conjunction
cf_compile(’,’(A,B),Label,Code,NLabel,NCode) :- !,

cf_compile_goal(A,Code,Code1),
cf_compile(B,Label,Code1,NLabel,NCode).

cf_compile(’;’(A,B),Label,Code,NLabel,NCode) :- !,
Code = [trymeorelse(Label)|Code1],
Label1 is Label + 1,
cf_compile(A,Label1,Code1,Label2,Code2),
Code2 = [label(Label)|Code3],
cf_compiledisj(B,Label2,Code3,NLabel,NCode).
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cf_compile(B,Label,Code,Label,NCode) :-
( cf_builtin(B) ->

cf_compile_goal(B,Code,Code1),
Code1 = [deallocate,proceed|NCode]

;
functor(B,_,Arity),
( Arity =< 4 ->

Code = [cf_deallex_4(B)|NCode]
;

Code = [cf_deallex(B)|NCode]
)

).

% Compile a disjunction
cf_compiledisj(’;’(A,B),Label,Code,NLabel,NCode) :- !,

Code = [retrymeorelse(Label)|Code1],
Label1 is Label + 1,
cf_compile(A,Label1,Code1,Label2,Code2),
Code2 = [label(Label)|Code3],
cf_compiledisj(B,Label2,Code3,NLabel,NCode).

cf_compiledisj(G,Label,Code,NLabel,NCode) :-
Code = [trustmeorelsefail|Code1],
cf_compile(G,Label,Code1,NLabel,NCode).

% Compile a single (non-final) goal
cf_compile_goal(true,Code,Code) :- !.
cf_compile_goal(’<’(A,B),Code,NCode) :- !,

Code = [cf_test_smaller(A,B)|NCode].
cf_compile_goal(A,Code,NCode) :-

functor(A,_,Arity),
( Arity =< 4 ->

Code = [cf_call_4(A)|NCode]
;

Code = [cf_call(A)|NCode]
).

% Goals treated as special builtins
cf_builtin(’<’(_,_)).
cf_builtin(true).
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• R. Tronçon, M. Bruynooghe, G. Janssens, and F. Catthoor, Storage size
reduction by in-place mapping of arrays, Verification, Model Checking and
Abstract Interpretation, Third Int. Workshop, VMCAI 2002, Revised
Papers (Cortesi, A., ed.), vol 2294, Lecture Notes in Computer Science,
pp. 167-181, 2002.
http://www.cs.kuleuven.be/cgi-bin-dtai/publ info.pl?id=38268
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Technieken voor efficiëntere
ILP Data Mining systemen

1 Inleiding

Data Mining [11] is een recente wetenschap die elementen van statistiek, data-
banken en artificiële intelligentie combineert. Data mining tracht ‘regels’ (ook
hypothesen of queries genoemd) te vinden die niet-triviale verbanden, patronen
of eigenschappen van grote hoeveelheden data omschrijven. Dergelijke hypo-
thesen moeten bijdragen tot een beter begrip van de gegevens, en vormen aldus
nieuwe kennis. Verschillende technieken kunnen gebruikt worden om aan data
mining (of, meer algemeen, knowledge discovery) te doen. Inductief logisch pro-
grammeren, of kortweg ILP [16], is een data mining techniek die gebaseerd is op
eerste-orde logica en logisch programmeren. Omwille van zijn logische basis is
ILP een zeer natuurlijke maar krachtige techniek, in vergelijking met de andere
gangbare data mining aanpakken.

Niettegenstaande de kracht van het formalisme en de reeds behaalde succes-
sen, kampt de techniek met een aantal problemen. Aangezien de af te leiden hy-
pothesen willekeurige eerste-orde logische formules kunnen zijn, is de zoekruimte
naar een geschikte hypothese in principe oneindig groot. Dit legt zware eisen
op aan de efficiëntie van de het systeem onderliggend aan de ILP algoritmen.

In dit werk ontwikkelen we verschillende technieken die de efficiëntie van ILP
systemen verbeteren:

• In het verleden werden verschillende query-transformaties ontwikkeld die
de uitvoeringstijd van ILP algoritmen verbeteren. Één van de meest doel-
treffende transformaties is de once-transformatie. Onafhankelijk van de-
ze transformaties werd het query-pack uitvoeringsmechanisme ontwikkeld
om de uitvoering van verzamelingen gelijkaardige queries te optimaliseren.
Beide onafhankelijke technieken zorgen voor significante verbeteringen in
efficiëntie. Het doel van onze eerste bijdrage is om een nieuw uitvoerings-
mechanisme te ontwikkelen dat de once-transformatie en query-packs in-
tegreert, met als doel de voordelen van beide aanpakken te verkrijgen.
Hiertoe voeren we de notie van een adpack in.

• Omdat queries in ILP moeten meerdere malen moeten uitgevoerd wor-
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den, is de klassieke aanpak om een query eerst naar een efficiëntere ver-
sie te compileren, en deze versie vervolgens uit te voeren. Desondanks
het feit dat deze aanpak significante verbeteringen oplevert, blijkt uit ex-
perimenten dat de compilatiestap het grootste aandeel heeft in query-
evaluatietijd. Als tweede bijdrage ontwikkelen we een geoptimaliseerd
query-interpretatieschema, hetwelk geen compilatiestap vereist om que-
ries efficiënt uit te voeren.

• Als derde bijdrage ontwikkelen control-flow compilatie, een flexibeler alter-
natief voor de compileren-en-uitvoeren aanpak. Deze techniek combineert
een eenvoudige compilatiestap met een efficiënte uitvoering. Naast een
betere performantie laat deze techniek eveneens toe om query-pack uit-
voering te ondersteunen. De flexibiliteit van dit nieuwe compilatieschema
laat toe om een luie variant te ontwikkelen, die delen van queries slechts
compileert wanneer deze gebruikt worden, wat de totale evaluatietijd nog
meer verbetert.

Optimalisaties zoals diegenen die hierboven beschreven zijn gebeuren typisch
op een laag niveau, wat het moeilijk maakt om fouten in de implementatie van
deze technieken op te sporen. Het debuggen van deze uitvoeringsmechanismen
worden daarenboven bemoeilijkt door verschillende andere factoren, zoals niet-
determinisme van ILP algoritmen. Anderzijds bëınvloeden deze factoren ook de
haalbaarheid van het uitvoeren van analyses van ILP uitvoering. In onze vierde
bijdrage beschrijven we een algoritme-onafhankelijke manier om automatisch te
debuggen en analyses van ILP uitvoering te doen.

Onze laatste bijdrage bestaat uit het onderzoeken van het inruilen van ge-
heugen voor uitvoeringssnelheid. We bespreken bestaande technieken om dit
te verwezenlijken op verschillende niveaus van een ILP algoritme, en maken
een qualitatieve vergelijking met andere technieken die geen geheugen opofferen
voor uitvoering.

Deze tekst is als volgt gestructureerd: in Sectie 2 geven we een korte be-
schrijving van de begrippen en achtergrond waarop in deze tekst gesteund wor-
den; in Sectie 3 bespreken we adpacks, een combinatie van query-packs en de
once-transformatie; Sectie 4 beschrijft de ingebedde meta-call en control-flow
compilatie met zijn uitbreidingen als alternatief voor de klassieke compileren-
en-uitvoeren aanpak; Sectie 5 handelt over een algoritme- en systeemonafhan-
kelijke aanpak voor het analyseren en debuggen van ILP algoritmen; Sectie 6
bespreekt technieken die geheugen inruilen voor betere uitvoeringstijden; ten-
slotte concluderen we in Sectie 7.

2 Inleidende begrippen en achtergrond

Logisch programmeren is een programmeerparadigma, gebaseerd op eerste-orde
logica. Een logisch programma bestaat uit een aantal relaties (of predikaten)
en feiten, en wordt uitgevoerd door queries uit te voeren tegen het programma.
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De bekendste logische programmeertaal is Prolog, wat de taal zal zijn die we
doorheen dit werk zullen gebruiken. Implementaties van Prolog zijn typisch
gebaseerd op de Warren Abstract Machine (kortweg WAM), een ontwerp van
een virtuele machine met instructies die gericht zijn naar het uitvoeringsmecha-
nisme van logische queries. Queries worden gecompileerd naar deze efficiënte
instructies, dewelke vervolgens uitgevoerd worden in de virtuele machine.

Inductief logisch programmeren (kortweg ILP) is een data mining techniek
die gebaseerd is op logisch programmeren. Het doel van een ILP algoritme is
om een hypothese (of verzameling hypothesen) te vinden die de gegevens uit een
gegeven dataset best omschrijft. De hypothese die de gegevens beschrijft is een
eerste-orde logische formule. De gegevens bestaan uit een groot aantal voorbeel-
den, waarbij elk voorbeeld voorgesteld wordt door een logisch programma. De
achtergrondkennis beschrijft kennis over het probleemdomein door middel van
predikaatdefinities, en vormt zo een verzameling predikaten die gelden voor elk
voorbeeld uit de dataset. ILP algoritmen gebruiken een genereer-en-test aanpak
om te zoeken naar geschikte hypothesen: tijdens elke iteratie van het algorit-
me worden een aantal kandidaatshypothesen gegenereerd, dewelke geëvalueerd
worden op de dataset door ze als queries uit te voeren. Op basis van deze
evaluatie selecteert het algoritme de beste hypothese(n), breidt deze in de vol-
gende iteratie uit (door delen toe te voegen aan de hypothese(n)), en evalueert
de uitbreidingen. Dit proces herhaalt zich tot een bevredigende hypothese ge-
vonden is. Welke hypothesen geselecteerd worden, en wanneer een hypothese
bevredigend is om te eindigen, hangt af van algoritme tot algoritme.

Concrete voorbeelden van ILP algoritmen zijn Tilde en Warmr. Tilde
leert eerste-orde beslissingsbomen, terwijl Warmr frequente patronen uit gege-
vens afleidt. Een voorbeeld van een ILP systeem dat deze (en andere) algorit-
men implementeert is ACE [1], hetwelk gebouwd is bovenop hipP, een efficiënte
Prolog implementatie met speciale voorzieningen voor ILP. Voorbeelden van be-
kende datasets zijn Mutagenesis [19], Carcinogenesis [18], en Bongard [8]. Naast
deze datasets gebruiken we ook nog de grotere HIV [15] dataset.

Omdat tijdens elke iteratie van een ILP algoritme een groot aantal queries
moet uitgevoerd worden op een groot aantal voorbeelden uit de dataset, is de
evaluatiestap van het algoritme typisch de flessenhals van ILP uitvoering. Daar-
om werd er in het verleden reeds aandacht geschonken aan het optimaliseren
van query-uitvoering binnen ILP. We bespreken hier twee belangrijke optimali-
satietechnieken.

Een query kan meestal opgedeeld worden in verschillende onafhankelijke
stukken die elkaars uitvoering niet bëınvloeden. Dit betekent dat, wanneer
een bepaald deel van de query faalt, er mogelijk tevergeefs gebacktracked wordt
over alternatieven van onafhankelijke delen. Om deze redundantie te vermijden
werd de once-transformatie [6] ontwikkeld. Deze transformatie snijdt alterna-
tieven van queries weg van zodra er geweten is dat deze geen invloed meer zullen
hebben op de rest van de uitvoering van de query. Dit wegsnijden wordt gedaan
door de onafhankelijke delen in te bedden in een once/1 predikaat.

Aangezien de queries die uitgevoerd moeten worden verfijningen zijn van
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een andere query, zal het begin (prefix) van de uit te voeren queries gemeen-
schappelijk zijn. Wanneer men de queries als groep beschouwt, kan men de
uitvoering versnellen door er enerzijds voor te zorgen dat het gemeenschappelij-
ke prefix slechts één keer uitgevoerd wordt, en dat er anderzijds niet meer over
een query gebacktracked wordt wanneer die slaagt. Zulke groepen van queries
noemt men query-packs [3]. Query-packs worden gëımplementeerd door specia-
le WAM-instructies, die gebruik maken van extra datastructuren die bijhouden
welke delen van query-packs nog uitgevoerd dienen te worden.

3 Combineren van query-packs met de once-
transformatie

3.1 Inleiding

Query-packs en de once-transformatie werden onafhankelijk van elkaar bestu-
deerd, en zorgen elk voor significante verbeteringen in uitvoeringstijd. Daarom
lijkt het interessant om beiden te combineren. Het is echter niet triviaal om
beide aanpakken in hun oorspronkelijke vorm te combineren: door de herorde-
ning die de once-transformatie op elke query apart uitvoert kan het zijn dat de
verzameling queries minder gemeenschappelijke delen zullen hebben, en dat het
effect van uitvoering in query-packs voor een stuk ongedaan gemaakt wordt. In
deze sectie combineren we de once-transformatie met query-packs, en voeren
hiertoe adpacks in, een nieuwe variant van query-packs.

3.2 ADPacks

ADPacks hebben dezelfde vorm van klassieke query-packs, maar bevatten speci-
ale controlestructuren om de once te integreren, namelijk activate/deactivate
paren. Zulk een paar duidt het begin en het einde van een once in de oorspron-
kelijke query aan.

Intüıtief betekent het voorkomen van een deactivate/1 dat alle resteren-
de alternatieven van doelen die tussen de deactivate en zijn overeenkomstige
activate liggen niet meer nuttig zijn voor het al dan niet succesvol uitvoeren
van de doelen die na de deactivate komen. Een deactivate zal daarom de
tak waar hij op ligt tijdelijk uit de pack verwijderen, tot op het ogenblik dat de
uitvoering alternatieven probeert die voor de overeenkomstige activate liggen.

3.3 Uitvoering

De uitvoering van een adpack (net zoals de uitvoering van een gewone query
of een query-pack) kan opgesplitst worden in twee fazen: de voorwaartse uit-
voering, en het backtracken (wanneer een bepaald doel faalt, en er een nieuw
alternatief voor een eerder doel geprobeerd moet worden). Tijdens de uitvoe-
ring houden we van elke vertakking van een adpack-or bij of die open of gesloten
is, en of die succesvol of nog niet succesvol is. Intüıtief betekent ‘succes’ dat
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een tak nooit meer geprobeerd moet worden, en ‘gesloten’ dat een tak tijdelijk
niet geprobeerd moet worden. Het belangrijkste deel van de uitvoering is het
backtracken, waarbij er moet bepaald worden welke delen van de query irrele-
vant zijn om naar te backtracken, en geen nieuwe oplossingen zullen bieden. Dit
wordt bepaald aan de hand van gegevens over de structuur van de adpack, en
extra informatie bijgehouden tijdens de voorwaartse fase.

Eerder onderzoek [3] wijst uit dat, om een gespecialiseerd uitvoeringsmecha-
nisme zoals dat van query-packs ten volle te kunnen benutten, het gëımplementeerd
moet worden in de kern van het systeem zelf. Net zoals bij query-packs compile-
ren we daarom adpacks naar gespecialiseerde WAM instructies. Deze instructies
maken gebruik van nieuwe datastructuren die ontworpen zijn voor efficiënte uit-
voering van adpacks.

3.4 Transformatie

Alvorens de queries gegenereerd door een ILP algoritme uitgevoerd kunnen wor-
den met het adpack uitvoeringsmechanisme, dient de verzameling queries om-
gezet te worden in een adpack structuur. We beschouwen twee alternatieven om
dit te bekomen:

• De query-gebaseerde adpack transformatie itereert over de verzameling van
queries, voert de once-transformatie op elke query uit, en integreert de
resulterende query in een accumulerende adpack.

• De pack-gebaseerd adpack transformatie vertrekt van een query-pack, en
voert de once-transformatie rechtstreeks op de pack structuur uit. De mo-
tivatie achter deze aanpak is dat het uitvoeren van de once-transformatie
op elke query afzonderlijk voor redundantie zorgt (omwille van de gelijk-
aardigheid van de queries).

3.5 Evaluatie

Als eerste experiment vergelijken we de query-gebaseerde adpack-transformatie
met de pack-gebaseerde transformatie. Beide transformaties werden in het ACE
systeem gëımplementeerd, en werden toegepast in Tilde. Metingen op de Mu-
tagenesis, Carcinogenesis en Bongard datasets tonen aan dat, ondanks het her-
haaldelijk transformeren van dezelfde delen van queries, de query-gebaseerde
transformatie beter presteert dan de pack-gebaseerde transformatie. De zwaar-
ste factor in de pack-gebaseerde adpack transformatie is het herhaaldelijk trans-
formeren van een verzameling queries naar een query-pack.

Om het adpack-uitvoeringsmechanisme te evalueren voeren we Tilde uit op
de drie bovenvermelde datasets, en laten hierbij de complexiteit van de queries
variëren. De adpack uitvoeringstijd is effectief kleiner dan query-pack uitvoe-
ring en uitvoering van once-getransformeerde queries, maar ligt tevens dicht bij
de uitvoeringstijd van query-packs. De grootste winst werd behaald bij de Car-
cinogenesis dataset (±10 keer sneller dan query packs en 40 keer sneller dan de
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once-transformatie). De totale tijd nodig om een verzameling queries te trans-
formeren naar een adpack is echter zo hoog dat in een aantal gevallen de totale
uitvoeringstijd van Tilde trager is dan deze van query-packs.

3.6 Conclusies

Experimenten tonen aan dat de evaluatie van queries voordeel heeft bij het
nieuwe adpacks uitvoeringsmechanisme, in vergelijking met enkel query-packs
of enkel de once-transformatie toe te passen. De uitvoering van adpacks was in
de experimenten tot een factor 10 sneller dan query-packs, en tot 50 keer sneller
dan de once-transformatie. De complexiteit van de adpack-transformatie weegt
echter zwaar door op de totale uitvoeringstijd. Een potentiële aanpak om dit te
voorkomen is de pack-gebaseerde transformatie rechtstreeks in de kern van het
systeem te implementeren.

Andere technieken die overtollig backtracken proberen te vermijden (zoals
backjumping [12] en intelligent backtracking [4]) maken gebruik van dynamische
tests om delen van de zoekruimte te vermijden. Hoewel de extra kost van
dergelijke tests niet geschikt zijn voor de ILP context, zou het interessant zijn om
statische versies van deze uitvoeringsmechanismen te ontwikkelen in de context
van query-uitvoering.

4 Alternatieven voor compileren-en-uitvoeren

4.1 Motivatie

Wanneer een verzameling queries dynamisch uitgevoerd dient te worden op een
verzameling gegevens, zijn er minstens twee aanpakken om dit te doen: ofwel
worden de queries worden onmiddellijk uitgevoerd d.m.v. de meta-call, die de
query interpreteert, ofwel worden ze eerst gecompileerd naar efficiënte WAM
instructies. Het grote nadeel van de eerste aanpak is dat deze dynamische tests
moet doen bij elke uitvoering van de query, terwijl de tweede aanpak een groot
deel van deze tests op voorhand doet tijdens de compilatiestap. Aangezien que-
ries in ILP een groot aantal keer uitgevoerd dienen te worden, werd de laatste
aanpak als de beste bevonden in het verleden [3]. Niet alleen wordt de initiële
compilatiestap van deze aanpak meer dan gecompenseerd door de uitvoering van
de snellere code, speciale uitvoeringsmechanismen zoals query-packs en adpacks
hebben deze compilatiestap nodig om efficiënt te kunnen uitvoeren. Als we
echter de totale evaluatietijd van query-packs bekijken, zien we dat de compila-
tietijd relatief veel tijd in beslag neemt, en soms zelfs even veel als de uitvoering
van de query zelf. Hierdoor kan de vraag gesteld worden of de hoeveelheid code
die gecompileerd moet worden kan verminderd worden, of de compilatiestap kan
vereenvoudigd worden, of zelfs gewoon vermeden worden.

In dit deel bestuderen we alternatieven voor compileren-en-uitvoeren, en
trachten we het aandeel van compilatie in het evaluatieproces te verlagen.
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4.2 (Ingebedde) meta-call

Het grote nadeel van de meta-call is de dynamische overhead die deze introdu-
ceert door tests te doen tijdens elke uitvoering van een query. We kunnen echter
een experiment opstellen waarbij gecompileerde code veel trager uitvoert dan
de meta-call, wat verklaard kan worden door het feit dat gecompileerde code
steeds de argumenten van zijn op te roepen doelen moet construeren alvorens
de oproep te doen, terwijl bij meta-call de argumenten reeds op voorhand ge-
construeerd zijn. Dit voordeel motiveert het onderzoek naar het optimaliseren
van de meta-call.

Gebruik makend van de veronderstelling dat queries rechts-lineair zijn kun-
nen we een kleine meta-vertolker schrijven die gespecialiseerd is voor het uitvoe-
ren van conjunctieve queries. Deze meta-vertolker voert essentieel de gewone
meta-call uit, behalve dat deze extra tests vermijdt door veronderstellingen te
maken over de vorm van de query die uitgevoerd wordt. Experimenten tonen
aan dat deze vertolker inderdaad een versnelling oplevert t.o.v. de klassieke
meta-call, maar toch nog steeds veel trager is dan gecompileerde code. We kun-
nen deze meta-vertolker echter rechtstreeks in het systeem implementeren, wat
ons een ingebedde meta-call oplevert.

Wanneer we compileren-en-uitvoeren en de meta-call vergelijken met de in-
gebedde meta-call, constateren we dat de ingebedde meta-call de uitvoeringstijd
van gecompileerde code benadert. Gecompileerde code is echter in een aantal
gevallen nog steeds sneller dan de ingebedde meta-call. De ingebouwde meta-
call aanpak heeft bovendien nog een aantal andere nadelen. gecompileerde code
kan gebruik maken van ingebouwde operaties voor arithmetiek; de ingebouwde
meta-call uitbreiden om deze ingebouwde operaties uit te voeren vereist het uit-
breiden van de ingebedde implementatie, wat niet alleen hinderlijk is, maar de
uitvoering ook zal vertragen. Een ander probleem is dat het zeer moeilijk is om
speciale uitvoeringsmechanismen zoals query-packs en adpacks te implemente-
ren met behulp van meta-call alleen. Om ze efficiënt te kunnen uitvoeren, moet
de structuur van packs moet op voorhand gekend zijn, wat betekent dat het
niet mogelijk is om query-packs te implementeren met een meta-call die geen
voorverwerkingsstap heeft. Bovendien vereist het integreren van query-packs
met de ingebedde meta-call dat heel het uitvoeringsmechanisme volledig terug
gëımplementeerd moet worden, rechtstreeks in het systeem. Deze eigenschap-
pen maakt de ingebedde meta-call minder aantrekkelijk voor verdere uitwerking
in de context van ILP.

4.3 Control-flow compilatie

Het grote voordeel van de meta-call methode t.o.v. compilatie en uitvoering
is het feit dat meta-call geen extra (dure) emulatorcycli nodig heeft om de
oproep op te bouwen alvorens hem uit te voeren; dit gebeurt allemaal in dezelfde
emulatorcyclus. Daarom lijkt het interessant om dit voordeel te combineren met
een simpele vorm van compilatie die geen complexe taken als registerallocatie
moet uitvoeren.
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We introduceren control-flow compilatie, een hybride vorm van compilatie
en meta-call. Het grote verschil met gewone compilatie zijn de gegenereer-
de instructies voor het opzetten en oproepen van doelen. Terwijl de gewone
compilatie put en call instructies hiervoor genereert, wordt in control-flow
compilatie een nieuwe cf call instructie gegenereerd. Deze instructie heeft als
argument een referentie naar een term in het geheugen die opgeroepen moet
worden. Dit betekent dat de enige instructies die overblijven instructies zijn die
gerelateerd zijn aan de ‘control-flow’ (proberen van alternatieven) van de query,
en de nieuwe cf call instructies. Deze nieuwe instructies zorgen ervoor dat de
emulatorcycli die vroeger nodig waren om de argumenten bij oproepen in ge-
compileerde code op te zetten niet langer nodig zijn. Bovendien is de compilatie
naar control-flow gecompileerde code zeer eenvoudig (aangezien er niet langer
aan registerallocatie gedaan moet worden), en wordt het eenvoudig om achteraf
code toe te voegen aan bestaande gecompileerde code, wat interessant is voor
luie compilatie. Net zoals bij klassiek gecompileerde code kunnen (dezelfde)
ingebouwde instructies gebruikt worden voor veel voorkomende operaties.

In tegenstelling tot klassiek gecompileerde code kan control-flow gecompi-
leerde code niet op zichzelf bestaan, aangezien het directe referenties naar het
geheugen bevat. De garbage collector van het systeem moet hiermee rekening
houden door alle termen van een query levend te houden zolang de overeenkom-
stige gecompileerde code levend is, en door de nodige referenties in de code aan
te passen wanneer termen van plaats veranderen in het geheugen. Een ander feit
dat in rekening gehouden moet worden is dat control-flow gecompileerde code
termen in het geheugen aan waarden kan binden, en er bijgevolg geen recursieve
oproepen kunnen gebeuren. Aangezien recursieve oproepen niet voorkomen in
queries, vormt dit echter geen probleem in praktijk.

Het control-flow compilatieschema werd eerst en vooral geëvalueerd door
artificieel gegenereerde queries te compileren en uit te voeren, waarbij queries
volgens verschillende parameters (het aantal doelen per query, het aantal vertak-
kingen per disjunctie, . . . ) gegenereerd werden. Binnen deze artificiële context
werd de compilatietijd telkens met minstens één grootteorde gereduceerd. De
uitvoeringstijd van de control-flow gecompileerde code was bovendien ook steeds
iets beter dan de uitvoering van de klassiek gecompileerde tijd (tot dubbel zo
snel).

Vervolgens werd control-flow compilatie getest binnen een meer praktische
ILP toepassing. Het Tilde algoritme werd toegepast op de Mutagenesis, Car-
cinogenesis, Bongard, en HIV datasets. Hier was control-flow compilatie 5 tot
8 keer sneller dan klassieke compilatie, en bleef de uitvoeringstijd van de ge-
genereerde code in beide aanpakken ongeveer even groot. Globaal gezien is
control-flow compilatie dus de beste aanpak.

4.4 Luie control-flow compilatie

Zoals reeds eerder aangehaald is compilatie een complexe taak die relatief veel
tijd kost. Control-flow compilatie reduceert deze compilatietijd al sterk, maar
desondanks blijft het nog steeds een belangrijk aandeel hebben in de totale tijd
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nodig voor het evalueren van queries: afhankelijk van de dataset kan control-flow
compilatie in praktijk tot een kwart van de totale tijd in beslag nemen. Wanneer
we de uitvoering van query-packs bekijken, zien we dat er regelmatig bepaalde
doelen van query-packs falen op elk voorbeeld. Dit betekent dat het deel dat op
zo een doel volgt nooit uitgevoerd wordt, en dus tevergeefs gecompileerd werd.
In dit deel reduceren we de totale compilatietijd nog meer door enkel stukken
van de query te compileren die effectief uitgevoerd worden. Hiervoor gebruiken
we luie compilatie [2], een vorm van just-in-time (JIT) compilatie. Deze luie
compilatie zorgt er voor dat de compiler pas opgeroepen wordt wanneer er een
stuk van de query bereikt wordt dat nog niet gecompileerd geweest is. Omwille
van zijn flexibiliteit en snelheid gebruiken we hiervoor de control-flow compila-
tie. We beperken ons tot luie compilatie van conjunctieve queries. Disjuncties
worden in Sectie 4.5 behandeld als query packs.

Luie compilatie zoals we die beschreven hebben compileert doel per doel.
Hierdoor wordt na de uitvoering van elk doel steeds terug naar de compiler
overgeschakeld. We hebben ook andere granulariteiten gëımplementeerd en
geëvalueerd. Experimenten tonen aan dat de aanpakken met grotere granu-
lariteit inderdaad veel beter presteren dan per doel te compileren. Onderling
verschillen de grofkorrelige varianten echter niet zo veel.

4.5 Luie control-flow compilatie voor query-packs

Tot nu toe hebben we ons beperkt tot luie compilatie van queries met dis-
juncties. In praktijk zijn het echter de query-packs die interessant zijn. Het
essentiële verschil tussen gewone disjuncties en query-packs zijn de instructies
die gegenereerd worden voor het uitvoeren van de disjunctie. Daarom is het
uitbreiden van de control-flow compiler om query-packs te ondersteunen geen
al te zware taak. Het zwaarste werk is het aanpassen van de datastructuren die
door de uitvoering gebruikt worden, aangezien die er van uit gaan dat de totale
structuur op voorhand gekend is (wat niet langer het geval is).

Ter evaluatie vergelijken we eerst luie compilatie met gewone control-flow
compilatie op een reeks artificieel gegenereerde queries van dewelke de doelen
steeds slagen. Aangezien alle doelen slagen, meet dit experiment enkel de extra
kost die gëıntroduceerd wordt door de luiheid. De effectieve metingen tonen
aan dat de uitvoeringstijd ongeveer gelijk is, en dat de extra overhead van luie
compilatie voor gewone queries dus verwaarloosbaar is. Na de artificiële experi-
menten werd de aanpak ook geëvalueerd op concrete datasets. Het belangrijkste
experiment hiervan is het uitvoeren van Tilde op de Mutagenesis, Carcinoge-
nesis, en Bongard datasets. Wanneer we control-flow compilatie met klassieke
compilatie vergelijken zien we dat de control-flow compilatie en de uitvoering
van zijn gegenereerde code tot een factor 5 sneller is dan klassieke compila-
tie Hoewel luie compilatie sneller is dan control-flow compilatie, is het verschil
tussen deze twee aanpakken minder uitgesproken.
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4.6 Conclusies

We concluderen dat control-flow compilatie voor query-packs een aanzienlijke
verbetering is tegenover klassieke compilatie van query-packs. De luie variant
van control-flow compilatie is in de meeste gevallen sneller dan gewone control-
flow compilatie, maar het verschil is niet altijd zo groot. We verwachten dat dit
verschil groter wordt wanneer de huidige garbage collector uitgebreid wordt om
control-flow gecompileerde code te ondersteunen.

5 Query uitvoering analyseren en debuggen

Het ontwikkelen van nieuwe uitvoeringsmechanismen in ILP speelt zich vooral
af in de motor gebruikt door het ILP algoritme. Deze geoptimaliseerde uitvoe-
ringsstrategieën vereisen typisch een laag-niveau implementatie om significante
verbeteringen voort te brengen. Bijvoorbeeld, het adpack uitvoeringsmecha-
nisme uit Sectie 3 vereist nieuwe WAM instructies, gepaard met bijhorende
datastructuren. De ingebedde meta-call en control-flow compilatieschemas uit
Sectie 4 maken eveneens gebruik van nieuwe WAM instructies, gëımplementeerd
in de kern van het systeem. Het lage niveau van deze implementaties maakt
het ontdekken van bugs in deze uitvoeringsmechanismen zeer moeilijk. Hoewel
debuggen nog haalbaar is voor kleinere testprogramma’s, komen vele bugs pas
aan de oppervlakte wanneer een ILP algoritme op een grote dataset uitgevoerd
wordt. Verschillende factoren maken debuggen in dit geval moeilijk: de om-
vang van de broncode van het ILP systeem maakt het moeilijk om standaard
traceertechnieken te gebruiken; de complexiteit van het ILP probleem, zorgt
ervoor dat het lang kan duren eer een fout zich manifesteert; de complexiteit
van de hypothese-generatiefase bij algoritmen als Warmr vertragen het geheel
nog meer, desondanks het feit dat er weinig tijd in de uitvoering zelf gebeuren;
bij niet-deterministische ILP algoritmen kan het ogenblik wanneer een fout zich
manifesteert veranderen van uitvoering tot uitvoering.

Deze eigenschappen verhinderen niet enkel het opsporen van bugs, ze schep-
pen ook problemen voor het analyseren van query uitvoering. Bij het ontwik-
kelen van nieuwe uitvoeringsmechanismen kunnen dergelijke analysen nuttige
informatie verschaffen om verdere ontwikkelingen te sturen, om flessenhalzen
te detecteren, en om uitvoeringsmechanismen te vergelijken. Hierbij doen zich
echter gelijkaardige problemen voor als bij het debuggen. Een bijkomend pro-
bleem is dat het onmogelijk is om uitvoeringsmechanismen van verschillende
ILP motoren te vergelijken.

In het verleden werden uitvoeringssporen gebruikt om fouten in programma’s
te detecteren [9, 10] en om performantie van programma’s te meten [13]. In dit
deel werken we een spoorgebaseerde aanpak uit voor het debuggen en analyseren
van ILP algoritmen, zonder de eigenlijke implementatie van de algoritmen te
moeten aanpassen. Deze aanpak is algoritme- en motoronafhankelijk, en laat toe
om snel en gemakkelijk te debuggen. We leggen bovendien uit hoe het debuggen
kan vereenvoudigd worden door de uitvoering automatisch te beperken tot het
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deel dat de fout veroorzaakt.

5.1 Verzamelen van uitvoeringsinformatie

Het doel van ILP motoroptimalisaties zoals beschreven in dit werk is de eva-
luatiestap van het ILP algoritme. De andere stappen die het algoritme karak-
teriseren (zoals het vinden van goede verfijningen) zijn niet belangrijk uit het
oogpunt van een motor-ontwikkelaar. Desondanks zijn deze laatsten toch de
stappen die het meeste code in beslag nemen in de implementatie van een ILP
algoritme. We extraheren genoeg informatie van een ILP uitvoering om de eva-
luatiestap te kunnen reproduceren, zonder daarbij het ILP algoritme volledig
te moeten uitvoeren. We hebben meer bepaald enkel de queries nodig die het
algoritme uitvoert, en op welke voorbeelden deze uitgevoerd worden; hoe deze
queries bekomen werden is onbelangrijk voor de uitvoering.

Om de nodige informatie te extraheren passen we de evaluatiestap aan zo-
dat die al de geëvalueerde queries in een bestand opslaat, hetwelk we het spoor
van het algoritme noemen. Dit spoor is onafhankelijk van het algoritme zelf,
aangezien het enkel een lijst van queries bevat. Het spoor kan nu in een een-
voudige spoor-simulator ingeladen worden, die de evaluatiestap volledig kan
reproduceren. We bespreken in de volgende secties verschillende soorten spoor-
simulatoren, die gebruikt worden voor het debuggen en analyseren van de eva-
luatiestap.

5.2 Debuggen van query uitvoering

Tijdens het ontwikkelen van optimalisaties voor query evaluatie worden ver-
schillende uitvoeringsmechanismen onderzocht. In het geval dat een nieuw uit-
voeringsmechanisme de uiteindelijke resultaten van een ILP algoritme hoort te
bewaren, kunnen inconsistenties in het nieuwe mechanisme ontdekt worden door
het ILP algoritme uit te voeren met en zonder de optimalisatie, en de resultaten
te vergelijken. Deze vergelijking kan echter enkel zeggen of er een fout zit in
het algoritme, maar niet waar. Om de exacte plaats te vinden van de fout moet
de debugger van de taal van het ILP algoritme (bv. Prolog) on de debugger
van de taal van de motor (bv. C) gebruikt worden, wat bemoeilijkt wordt door
de grootte van het ILP systeem. Een ander probleem is dat deze aanpak enkel
werkt als het algoritme volledig deterministisch is. Het gebruik van uitvoe-
ringssporen te gebruiken om te debuggen lost veel van deze problemen op: de
uitvoering van een spoor is deterministisch, en de broncode van een simulator is
zo klein dat het debugging proces kan toegespitst worden op de optimalisaties
van de motor zelf.

Door een spoor te laten uitvoeren door een spoorsimulator zowel met als
zonder een bepaalde optimalisatie, kan gedetecteerd worden welk stuk van de
uitvoering een inconsistent resultaat oplevert: door het al dan niet slagen of
falen van elke query in het spoor te onthouden, en het resultaat te vergelijken
met een uitvoering van het spoor zonder de optimalisatie kan gezien worden
welke query een fout veroorzaakt. Door de grootte van het spoor kan het echter
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nog zijn dat een groot deel van de uitvoering moet doorlopen worden eer de
fout zich manifesteert. Aangezien het spoor alle informatie bevat om de uit-
voering te simuleren, kunnen we het lokaliseren van een fout in het spoor in
een data-slicing [5] probleem omvormen. Het doel van data-slicing is om een
verzameling gegevens te reduceren tot de kleinste deelverzameling die een fout
doet voorkomen. Hoewel de standaard techniek voor data-slicing inhoudt om
de verzameling gegevens steeds te halveren, en enkel de helft te houden die de
fout veroorzaakt, kampt deze aanpak met het probleem dat binair zoeken soms
te grofkorrelig is om een spoor te reduceren. Delta-debuggen [22] is een auto-
matische data-slicing techniek, die dit probleem vermijdt. Dit algoritme past
de granulariteit aan tijdens zijn uitvoering, en maakt combinaties van deelver-
zamelingen van gegevens, teneinde een zo minimaal mogelijk spoor te bekomen.

De delta-debug aanpak werd gebruikt tijdens het ontwikkelen van nieuwe
uitvoeringsmechanismen in hipP. Hiertoe werden twee soorten delta-debuggers
gemaakt, die beiden een spoor gegenereerd door een ILP algoritme reduceren
tot een kleiner spoor dat een fout doet manifesteren. De twee delta debuggers
verschillen in de test die ze uitvoeren om te bepalen of er al dan niet een fout in
het spoor zit. De meest eenvoudige debugger controleert of de uitvoering van
het spoor succesvol eindigt. Dit is nuttig voor het opsporen van bugs die de
motor doen falen (zoals segmentatie-fouten). De tweede delta-debugger verge-
lijkt de uitvoering van het spoor tussen twee motoren (één mét, en één zonder
de optimalisatie), en controleert of de queries uit beide sporen overeenkomstige
resultaten bekomen. Beide delta-debuggers kunnen ingesteld worden om fijn-
of grofkorrelig naar fouten te zoeken.

5.3 Query analyse

Om een inzicht te krijgen in het gedrag van ILP algoritmen in termen van query
uitvoering, is het interessant om de karakteristieken van queries en hun uitvoe-
ring te kennen. Een ILP systeem aanpassen om alle interessante informatie
te verzamelen is een zware taak. In dit deel bespreken we het analyseren van
query uitvoering door middel van sporen. Structurele query-analyse biedt een
inzicht in ILP algoritmen door de structurele eigenschappen van gegenereerde
queries te onderzoeken. Dit kan onder andere helpen om de performantie van
uitvoeringsmechanismen te verklaren. Dynamisch analyseren van queries biedt
informatie over het run-time gedrag van query uitvoeringsmechanismen.

Een structurele query-analyse moet in principe door elke query van het spoor
lopen, en tijdens dit proces verschillende statistieken bijhouden. Dit kan beko-
men worden door een eenvoudige spoorsimulator uit te breiden, zodat deze de
nodige informatie bijhoudt. Wanneer het aantal statistieken oploopt wordt der-
gelijke simulator echter moeilijk te onderhouden. Dit kan vermeden worden
door een gebeurtenis-gebaseerde analyse te ontwikkelen. We definiëren een ver-
zameling gebeurtenissen in een spoor, zoals bv. het begin van een query, het
einde van een query, en het begin van een iteratie. Statistieken kunnen dan
gedefinieerd worden in termen van de acties die genomen moeten worden bij
het optreden van een gebeurtenis. Deze acties doen bewerkingen op een lijst
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van tellers, die onderling doorgegeven wordt. De spoorsimulator moet dan enkel
het spoor doorlopen, en bij elke gebeurtenis alle acties ondernemen die opge-
legd worden door de statistieken. Hierdoor kan de spoorsimulator erg eenvoudig
gehouden worden.

Informatie over de uitvoering van queries kan gebruikt worden voor allerlei
doelen: het gedrag van uitvoeringsmechanismen voorspellen of verklaren, verge-
lijken van uitvoeringsmechanismen, ontdekken van flessenhalzen tijdens query
uitvoering, . . . Spoorgebaseerde dynamische analyse van uitvoering voert alle
queries van een spoor uit, nadat elke query getransformeerd werd zodat die dy-
namische informatie opslaat. Interessante informatie is bijvoorbeeld het aantal
keer dat een bepaald doel uitgevoerd werd.

Zowel de structurele als de dynamische analyse werd gëımplementeerd en
gebruikt tijdens de ontwikkeling van nieuwe uitvoeringsmechanismen in hipP.
Informatie uit beide analysen wordt samengebracht in één HTML rapport dat
een overzicht geeft over de uitvoering van het ILP algoritme op de specifieke
dataset.

5.4 Conclusies

In dit deel hebben we spoorgebaseerde aanpakken beschreven voor het debuggen
van query-uitvoeringsmechanismen in ILP. Het gebruik van een spoorgebaseerde
aanpak heeft verschillende voordelen in deze context:

• De werking van specifieke ILP algoritmen moet niet gekend zijn, aangezien
de sporen algoritme-onafhankelijk zijn.

• Door de sporen aan te passen kan de uitvoering gereduceerd worden tot
het deel van de uitvoering dat een fout veroorzaakt, zodat fouten heel snel
opgespoord kunnen worden.

• Bij spoorgebaseerde uitvoering wordt er uitsluitend tijd gespendeerd aan
de uitvoering van queries. Complexe generatiefasen van ILP algoritmen
hebben dus geen invloed op de totale uitvoeringstijd van een spoor, zodat
debuggen sneller kan gebeuren.

• Het is niet nodig om volledige kennis te hebben van de broncode van het
ILP systeem.

Een spoorgebaseerde aanpak is ook nuttig in de context van het analyseren van
query-uitvoering. Deze analyse biedt nuttige informatie over het aantal en de
structuur van de queries. Dynamische analyse gebruikt transformeert queries
alvorens ze uit te voeren, zodat er informatie over de uitvoering geregistreerd
wordt tijdens de uitvoering zelf.

Deze aanpakken werden gebruikt tijdens de ontwikkeling van de verschillende
technieken beschreven in dit werk. De delta-debugtechniek maakte het moge-
lijk om snel fouten op te sporen in de laag-niveau implementatie van adpacks
(Sectie 3) en control-flow compilatie (Sectie 4). De analyse-technieken maakten
het ook mogelijk om de tabelleringstechnieken uit Sectie 6 te evalueren.
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Een toepassing van sporen die niet verkend werd in dit deel is visualisatie.
Visualisaties van query-uitvoering kan helpen begrijpen wat er gebeurt in de
evaluatiestap van ILP algoritmen. Deze aanpak kan bovendien uitgebreid wor-
den om volledige ILP algoritmen zelf te visualiseren, zonder het ILP systeem
drastisch aan te moeten passen.

6 Afwegen van tijd en ruimte

6.1 Inleiding

Omdat de kandidaatshypothesen gegenereerd door een ILP algoritme verfijnin-
gen zijn van queries uit vorige iteraties, is de uitvoering van queries gelijkaardig.
Technieken zoals query-packs en adpacks vermijden redundantie in de uitvoering
door de manier waarop queries uitgevoerd worden aan te passen. Een andere
aanpak om redundantie te vermijden is door resultaten van de uitvoering op te
slagen en te hergebruiken in latere stappen. In dit deel bespreken we het me-
moriseren en hergebruiken van berekende antwoorden op verschillende niveaus
van ILP uitvoering.

Voor de technieken ontwikkeld in dit deel gebruiken we twee bestaande tech-
nieken: specialisatie en tabelleren.

Specialisatie is een transformatietechniek die, gegeven een programma en een
deel van zijn invoer (de statische invoer), een nieuw programma genereert dat
dezelfde uitvoer geeft als het oorspronkelijke programma, maar waar berekenin-
gen afhankelijk van de statische invoer voorberekend zijn. Hierdoor voert het
resulterende programma sneller uit dan het oorspronkelijke programma. Au-
tomatische specialisatie is een gekende optimalisatietechniek [14], waar in het
verleden een variëteit aan aanpakken voor ontwikkeld werden. In de context van
logisch programmeren zijn de meeste technieken gebaseerd op het top-down prin-
cipe, waar informatie van een partieel gëınstantieerde query gepropageerd wordt
door het programma. Een andere, query-onafhankelijke techniek is bottom-up
specialisatie, waar informatie uit de feiten van een programma naar boven ge-
propageerd wordt.

Tabelleren is een uitvoeringstechniek waar de antwoorden van oproepen naar
doelen onthouden worden, en bij volgende oproepen hergebruikt worden.

6.2 Memoriseren van achtergrondkennis

Wanneer de achtergrondkennis van een dataset complexe predikaten bevat, kan
het uitvoeren van queries veel tijd in beslag nemen, aangezien deze predikaten
herhaaldelijk uitgevoerd zullen worden. Daarom worden alle antwoorden voor
deze predikaten op voorhand berekend voor elk voorbeeld. Deze ad-hoc manier
van voorverwerking van een dataset is simpel en effectief, maar kan echter foute
resultaten opleveren in de aanwezigheid van cuts in de predikaten.
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Als alternatief voor het ad-hoc voorberekenen van antwoorden passen we
specialisatie-technieken toe op de achtergrondkennis en de dataset. Aangezien
de queries die gebruikt zullen worden niet op voorhand gekend zijn, is bottom-
up specialisatie de interessantste aanpak. Elk voorbeeld uit de dataset wordt
samen met de achtergrondkennis als logisch programma gespecialiseerd, en de
nieuwe voorbeelden vormen de gespecialiseerde dataset. Het voordeel van deze
aanpak is dat deze robuust is tegen de aanwezigheid van cuts. Om deze aanpak
te evalueren hebben we een prototype van de semantiek uit [21] gëıntegreerd
met het raamwerk voor bottom-up specialisatie van [20]. Experimenten tonen
echter aan dat een bottom-up gespecialiseerde dataset slechter presteert dan
de originele dataset. De verklaring hiervoor is dat het aantal logische zinnen
drastisch stijgt wanneer het aantal predikaten in de achtergrondkennis groter
wordt. Een top-down gespecialiseerde versie van een dataset presteert beter,
maar blijft trager dan een manueel gespecialiseerde dataset. Bovendien heeft
het specialisatieproces snel te kampen met geheugenproblemen.

Als tweede alternatief onderzoeken we getabelleerde uitvoering van de ach-
tergrondpredikaten. In plaats van een dataset voor te verwerken, worden de
antwoorden van de achtergrondpredikaten getabelleerd tijdens hun uitvoering,
waardoor ze slechts éénmalig berekend moeten worden. Aangezien er tabelle-
ringsmethoden bestaan die de cut in rekening brengen, is deze techniek robuust
voor onpure constructies in de predikaten. Het voordeel van deze aanpak is dat
de oorspronkelijke dataset onveranderd kan blijven, en dat enkel de antwoor-
den onthouden worden van predikaten die effectief opgeroepen worden. Het
nadeel is dat de antwoorden van deze predikaten bij elke uitvoering van een
ILP algoritme één keer moeten berekend worden. Experimenten tonen aan dat
getabelleerde uitvoering inderdaad significante verbeteringen oplevert. Manueel
voorverwerkte datasets zijn echter nog steeds tot twee ordegrootten sneller dan
getabelleerde uitvoering.

6.3 Conjuncties tabelleren

Queries gegenereerd door een ILP algoritme bestaan uit een prefix en een verfij-
ning, waarbij het prefix een query uit de vorige iteratie is. Wanneer verfijningen
van éénzelfde query uitgevoerd worden, zullen voor elke query dezelfde ant-
woorden herberekend worden voor hun gedeeld prefix. Om dit te vermijden
kunnen de antwoorden voor de verschillende prefixen onthouden worden, zodat
deze bij volgende queries hergebruikt kunnen worden. Deze aanpak noemen we
prefix-tabellering. Een ander gevolg van de incrementele aard van queries is dat,
aangezien het prefix van een query een query uit de vorige iteratie is, de ant-
woorden voor het prefix reeds in de vorige iteratie berekend zijn. Wanneer de
antwoorden van volledige queries onthouden worden, hoeft het prefix dus nooit
uitgevoerd worden. We noemen deze aanpak query-tabellering. Zowel prefix-
als query-tabellering werden beschreven in [17].

Experimenten tonen aan dat in veel gevallen enkel het eerste antwoord van
een query gebruikt wordt bij het uitvoeren van een verfijning. We voeren daarom
once-tabellering in. Deze aanpak bewaart enkel de eerste oplossing van een
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query, met als doel de totale opslagruimte benodigd voor het onthouden van
oplossingen beperkt blijft.

Merk op dat query-packs ook de incrementaliteit van queries uitbuiten. Het
voordeel van deze aanpak is dat deze geen extra geheugeneisen stelt voor het
opslaan van oplossingen. Het nadeel is dat sommige oplossingen van prefixen
nog steeds herberekend moeten worden.

We voeren een vergelijkend experiment uit om de verschillende aanpakken
tegen elkaar af te wijken. De aanpakken vergelijken op basis van hun tijdsper-
formantie is echter niet mogelijk: hipP ondersteunt wel query-packs maar geen
tabellering, terwijl YAP [7] wel tabellering ondersteunt maar geen query-packs.
Als experiment meten we daarom het aantal opgeroepen doelen, en maken hier-
voor gebruik van een spoor van Tilde uitvoering op de Mutagenesis en Carci-
nogenesis dataset. De gemeten resultaten tonen aan dat prefix-tabellering over
de ganse lijn minder goed is dan query-packs. Query-tabellering presteert beter
in het geval van eenvoudige queries, maar verliest van query-packs wanneer de
queries complexer worden. Een bijkomend probleem is dat, bij grotere experi-
menten, de query-tabellering niet succesvol tot een einde komt omwille van een
tekort aan geheugen. Once-tabellering is altijd beter dan niet-geoptimaliseerde
uitvoering, maar is in de meeste gevallen minder goed dan de andere aanpak-
ken. De totale geheugenwinst die deze aanpak boekt ten opzichte van query-
tabellering is bovendien niet groot.

Uit de uitgevoerde experimenten concluderen we dat, hoewel query-tabellering
beter presteert dan query-packs voor kleinere experimenten, deze aanpak snel te
kampen krijgt met een geheugenprobleem, en dat bovendien query-packs voor
grotere experimenten minder doelen moeten oproepen.

6.4 Memoriseren van query dekking

We concludeerden eerder dat het onthouden van antwoorden van queries tot
betere performantie kan leiden, maar dat deze aanpak zeer slecht scaleert bij
grotere problemen. In dit deel bekijken we twee algoritme-specifieke optimali-
saties die eveneens antwoorden in het geheugen opslaan, maar tegen een veel
lagere kost dan de aanpakken uit Sectie 6.3.

Na het selecteren van de beste query uit de verzameling geëvalueerde queries,
splitst Tilde de voorbeelden op in voorbeelden die slagen en de voorbeelden die
falen op de geselecteerde query. Het algoritme wordt dan recursief opgeroepen
op beide verzamelingen. Voor de negatieve voorbeelden moet Tilde een andere
beste query vinden, wat betekent dat dezelfde queries zullen geëvalueerd worden
op alle voorbeelden. Als het algoritme bijhoudt voor welke voorbeelden welke
query slaagt, kan het oproepen van de queries voor de negatieve voorbeelden
vermeden worden. Wanneer we deze optimalisatie evalueren op de Mutagenesis,
Carcinogenesis en HIV datasets, merken we dat de uitvoering tot 2.5 keer sneller
is dan zonder de optimalisatie. De geheugenvereisten voor deze aanpak blijven
daarenboven zeer beperkt.

Warmr selecteert in elke iteratie verschillende queries voor uitbreiding.
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Wanneer echter een geselecteerde query op een bepaald voorbeeld faalde tij-
dens een iteratie, zal zijn verfijning ook falen in de volgende iteratie. Wanneer
onthouden wordt tijdens elke iteratie welke queries op welke voorbeelden fa-
len, kan de uitvoering van uitgebreide queries vermeden worden wanneer op
voorhand geweten is dat deze zullen falen. Hoewel het verhinderen van uit-
voering van een query eenvoudig is wanneer geen query-optimalisaties gebruikt
worden, is dit minder triviaal in aanwezigheid van query-packs. We breiden
daarom het query-pack mechanisme uit met de mogelijkheid om bepaalde que-
ries uit packs uit te schakelen. Aangezien de datastructuren ontwikkeld voor
adpacks zich goed tot het uitschakelen van queries lenen, gebruiken we hiervoor
adpacks. Wanneer we deze optimalisatie uitvoeren op de Mutagenesis, Carcino-
genesis en HIV datasets, merken we dat deze optimalisatie de query uitvoering
tot meer dan 2 keer versnelt. Deze meting geldt echter enkel voor de query
uitvoeringstijd; aangezien Warmr een complexe query-generatiefase heeft deze
optimalisatie een kleinere impact.

6.5 Conclusies

In dit deel bestudeerden we verschillende technieken waarbij uitvoerresultaten
onthouden en hergebruikt werden, teneinde de efficiëntie van ILP algoritmen
te verhogen. Het opslaan van resultaten van complexe predikaten uit de ach-
tergrondkennis is noodzakelijk om het ILP algoritme binnen redelijke tijd te
laten uitvoeren. De standaard aanpak hiervoor is om de dataset op voorhand te
verwerken, en manueel voor elk voorbeeld alle oplossingen te berekenen. Een al-
ternatieve aanpak is om specialisatie toe te passen op de achtergrondkennis, wat
als voordeel heeft om overweg te kunnen met cuts, maar helaas de omvang van
de dataset sterk doet stijgen, en daardoor zeer slecht presteert. Getabelleerd
uitvoeren van achtergrondpredikaten presteert beter, maar is nog steeds twee
ordegrootten trager dan het uitvoeren op een manueel voorverwerkte dataset.
Het opslaan van antwoorden van queries en hun prefixen kan herberekeningen bij
het uitvoeren van queries vermijden. Deze aanpakken hebben echter het nadeel
dat ze hoge geheugeneisen stellen, waardoor ze niet bruikbaar zijn bij grotere
ILP problemen. Net zoals deze technieken buiten query-packs de gelijkaardig-
heid van queries uit, maar doen dit zonder de hoge geheugenkost. Metingen
tonen aan dat, voor grotere problemen, query-packs zelfs beter presteren dan
de tabelleringstechnieken. In plaats van volledige antwoorden van queries op te
slaan, kan informatie over het al dan niet slagen of falen van een query gebruikt
worden om uitvoering te versnellen. Zowel voor Tilde als voor Warmr zorgt
een dergelijke optimalisatie voor aanzienlijke verbetering in query-evaluatietijd.

7 Conclusies

Het doel van dit werk was het ontwikkelen van technieken om de query-evalua-
tiestap van ILP algoritmen te optimaliseren. Het meest cruciale onderdeel van
query-evaluatie is de ILP motor, die een hoog aantal queries veelvuldig moet
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uitvoeren. In dit werk hebben we ons daarom toegespitst op technieken voor
meer performantere ILP motoren.

We bespreken kort de mogelijke richtingen voor toekomstig werk in verband
met de technieken beschreven in dit werk.

ADPacks. Het grote knelpunt van de adpacks aanpak is de transformatiestap.
Om globaal beter te kunnen presteren dan query-packs moet de transformatie-
tijd nodig om queries om te zetten in een adpack drastisch verminderd worden.
Een mogelijke aanpak hiervoor is om de transformatie volledig in de kern van
het systeem te implementeren. Een ander interessant spoor om te verkennen is
het integreren van geavanceerde backtracking-technieken met query-packs.

(Luie) control-flow compilatie. Het integreren van luiheid in het compila-
tieproces vereist aanpassingen aan de datastructuren gebruikt voor de uitvoe-
ring. We hebben deze aanpassingen gedaan voor query-packs, maar dit dient
ook nog gedaan te worden voor adpacks. We verwachten dat de versnelling die
luie control-flow compilatie teweegbrengt bij adpacks vergelijkbaar zal zijn als
die van query-packs.

Incrementele compilatie. Luie control-flow compilatie maakt het mogelijk
om de incrementele aard van queries nog meer uit te buiten. Gecompileerde
query-packs kunnen rechtstreeks uitgebreid worden, zodat tijdens de uitvoering
van de volgende iteratie enkel de nieuwe delen van de query-pack gecompileerd
moeten worden. Dit werd nog niet uitgewerkt, omdat de totale compilatietijd
van control-flow compilatie momenteel te laag ligt om significante verbetering
te kunnen brengen. Dit kan wel interessant zijn in situaties waar compilatietijd
de query-uitvoeringstijd overheerst.
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