
Supplementary Information 
 

1. Supplementary results and discussion 

Mean unperturbed reach trajectories and muscle activations  

Here, we give a more detailed description of the simulated mean reach trajectories and mean muscle 

activations. The simulated mean trajectories for the circle and bar are slightly curved (Figure 1A) as has 

been observed experimentally [1]. In the obstacle task, there is very little curvature in the first part of 

the reaching trajectory, whereas the motion of the hand was constrained to be on a straight vertical line 

in the simulation to mimic the presence of an obstacle. 95% confidence ellipses show the estimated 

position distribution for the optimal movement trajectory every 10ms (Figure 1A). The simulated hand 

position variability is in line with the minimum intervention principle, i.e. variability in the horizontal 

direction is controlled in the circle but not in the bar task. Since the reaching trajectories are alike for 

the different tasks, the mean tangential hand velocities are similar as well (Figure 1B). They exhibit the 

experimentally observed bell shapes [1], [2] and realistic maximal velocities for this reaching task [3]. 

Finally, the mean muscle activations are similar as well for the three reaching tasks. In the obstacle task 

the uniarticular elbow muscles are coordinated slightly different to match the kinematic task constraint 

for the mean hand trajectory. This potentially explains the slight increase in co-contraction for this task 

as compared to the circle and bar task.  

 

Figure 1 - A) Optimal mean hand trajectories for the three reaching tasks with 95% confidence ellipses every 10ms during 
the movement. B) Optimal tangential hand velocity profiles of the mean reaching movement. C) Mean muscle activations of 
the six different muscles for the different reaching targets. The ‘circle’ (blue) and ‘bar’ (red) activations often overlap. 

Effect of biarticular muscles and muscle properties  

While developing the simulations, we noticed that the arm model and especially muscle properties 

could largely affect the reach trajectories. We therefore decided to explore how the presence of 

biarticular muscles and muscle properties affected simulated unperturbed and perturbed reach 



trajectories and muscle activations. We performed simulations with three models (Figure 2 and Figure 

3). Model 1 (Todorov2003 – 6 muscles) is the model presented in the main text. Model 2 (Todorov2003 

– 4 muscles) was derived from model 1 by removing the biarticular muscles. Model 3 (adapted model 

– 4 muscles) also contained only mono-articular muscles and was derived from a more complex 

musculoskeletal model ([4], [5]). Model 3 differs from models 1 and 2 in its moment arms, muscle-

tendon lengths and maximal isometric muscle forces (Table 1). In addition, the force-length 

relationship in model 3 was shifted such that normalized fiber lengths remained within a plausible 

operating range, i.e. remained below normalized fiber lengths at which huge passive forces would be 

developed, for the full range of motion for the movement. To this aim, we evaluated the force-length 

relationship for 𝑙𝑀,𝑠ℎ𝑖𝑓𝑡𝑒𝑑, where 𝑙𝑀,𝑠ℎ𝑖𝑓𝑡𝑒𝑑 = 0.5𝑙𝑀 + 0.3. 

 

Figure 2 - Unperturbed and perturbed reach trajectories resulting from stochastic optimal controllers of three different models. 



 

Figure 3 - Mean muscle activations during reaching to different targets for the different models 

Removing the biarticular muscles (model 1 → model 2) altered the mean muscle activations but had 

little effect on the reaching trajectories (Figure 2). During unperturbed reaches, the kinematic behavior 

of the models with and without biarticular muscles is strikingly similar (Figure 2, unperturbed 

reaching). Even in the presence of perturbations, reaching trajectories are very similar for both models 

for all three reaching tasks (Figure 2, perturbed reaching). 

Altering the muscle-tendon properties (model 2 → model 3) had a large effect on both mean muscle 

activations and reaching trajectories (Figure 2 and Figure 3). Reaching trajectories were less variable 

for model 3 than for model 2, especially for the bar condition (Figure 2, unperturbed and perturbed 

reaching). Model 3 predicted later corrections to perturbations resulting in an overshoot of the target 

for the circle and bar conditions (Figure 2, perturbed reaching). This overshoot as observed in model 3 

was in agreement with experimental data for the bar condition but not for the circle condition.  

The implementations of all three models can be found in the supplemented code.  

Table 1 - Difference in maximal muscle strength for three models. 

𝐹𝐼𝑆𝑂[𝑁] 

 BRACH LATTRI ANTDEL POSTDEL BIC LONGTRI 

Model 1 572 445 700 382 159 318 

Model 2 572 445 700 382 - - 

Model 3 1143 260 718 525 - - 

 

2. Rigid tendon assumption 

In this section we aim to provide more insight in how the rigid tendon assumption  might have affected 

the results. Note that using rigid tendons resulted in algebraic contraction dynamics and simplified the 



optimal control problems. However, the framework is sufficiently general to consider compliant tendons 

in future work. Adding a compliant tendon in series to the muscle fibers will reduce the compliance of 

the muscle-tendon unit. This will have a large influence on muscle-tendon stiffness when the muscle is 

stiffer than the tendon as in our simulations of standing balance with short-range stiffness, but a small 

influence on muscle-tendon stiffness when the muscle is more compliant than the tendon as in our 

simulations of standing balance and reaching with a Hill-type muscle model. Here,  we illustrate this for 

the soleus muscle. We chose the soleus, as it has a longer and thus more compliant tendon than the other 

muscles we modeled. Therefore, the effect of adding a compliant tendon is expected to be largest for 

this muscle.  

We computed stiffness of the muscle fibers as 𝑘𝑚𝑢𝑠𝑐𝑙𝑒 =
𝜕𝐹𝑚

𝜕𝑙𝑚
cos⁡(𝛼) with 𝐹𝑚 the muscle fiber force, 

𝑙𝑚 the muscle fiber length and 𝛼 the pennation angle; stiffness of the tendon as 𝑘𝑡𝑒𝑛𝑑𝑜𝑛 =
𝜕𝐹𝑇

𝜕𝑙𝑇
  with 𝐹𝑇 

the tendon force, 𝑙𝑇 the tendon length. Stiffness of the muscle-tendon unit was computed as: 𝑘𝑀𝑇 =

(
1

𝑘𝑡𝑒𝑛𝑑𝑜𝑛
+

1

𝑘𝑚𝑢𝑠𝑐𝑙𝑒
)
−1

.  Note that when assuming a rigid tendon 𝑘𝑀𝑇 = 𝑘𝑚𝑢𝑠𝑐𝑙𝑒. 

We first discuss the observations for a soleus Hill-type muscle without short-range-stiffness. In the rigid 

tendon case, the length of both the fiber and tendon is the same for every activation level (Figure 4A – 

length, dotted lines). In the rigid tendon case, 𝑘𝑚𝑢𝑠𝑐𝑙𝑒, and thus 𝑘𝑀𝑇 , increases linearly with muscle 

activation level as the muscle is operating on the ascending limb of the force-length relationship (Figure 

4A - stiffness, green dotted line). In the compliant tendon case, the fiber length decreases for increasing 

activation, changing the operating point of the muscle on the force-length relation, and the tendon length 

increases for increasing activation (Figure 4 A – length, solid lines). As a consequence, 𝑘𝑚𝑢𝑠𝑐𝑙𝑒 (Figure 

4A – stiffness, blue solid line) increases at a superlinear rate with activation level as muscle fiber length 

decreases with increasing activation level shifting the muscle’s operating length to a steeper part of the 

force-length relation in this specific case. However, differences in muscle stiffness when considering a 

compliant instead of a rigid tendon are small Figure 4A – detail MT stiffness). The compliant tendon 

(Figure 4A – stiffness, red solid line) is much stiffer than the muscle fibers (at least factor 6), and as a 

result has a very minor effect on 𝑘𝑀𝑇 (green solid line). In Figure 4A – detail MT stiffness, we see that 

at high muscle activations (above 0.75), muscle-tendon stiffness becomes higher for the compliant than 

for the rigid tendon, because the increase in fiber stiffness due to fiber shortening outweighs the effect 

of the compliant tendon. 

In the extended Hill-type model where we added activation dependent stiffness to the muscle fibers 

modeling short-range-stiffness, the addition of a compliant tendon has a large influence on muscle-

tendon stiffness as the muscle fibers become much stiffer than the tendon due to the added element 

(compare Figure 4 A vs Figure 4B - stiffness). Note that even with the inclusion of a compliant tendon, 

modeling short-range stiffness results in about a five-fold increase in stiffness of the muscle-tendon unit 

at an activation level of 0.5 (Figure 4A vs Figure 4B, detail MT stiffness). We therefore expect 

simulations based on the muscle model with short-range-stiffness to change when including a compliant 

tendon. We speculate that for platform rotations in healthy individuals, postural sway might be lower as 

their strategy is to move the ankle in anti-phase to the platform which should be facilitated by a more 

compliant muscle-tendon unit. For vestibular loss subjects that try to follow the platform motion with 

their body a decrease in muscle-tendon stiffness might lead to lower levels of co-contraction, as it 

becomes less efficient, and higher postural sway. In the simulations of platform translations muscle co-

contraction becomes a less efficient strategy at lower muscle tendon stiffness and would thus decrease 

for both healthy and vestibular loss subjects. This would then lead to an increase in postural sway for 

the translations. 



 

Figure 4 - simulated experiment for an isometric soleus muscle-tendon unit for different activation levels in the case of 
including a compliant tendon (CT) or a rigid tendon (RT) and in case of modelling the Hill-type muscle without (A) or with short-
range-stiffness (B). 

3. Supplementary methods 

Approximate stochastic optimal control  

We formulate predictive simulations of human movement as stochastic optimal control problems of the 

following form: 

𝑚𝑖𝑛
𝒆𝑓𝑓(𝑡),𝑲(𝑡)

 𝐽 = 𝐸[∫ 𝒆𝑇(𝑡)𝒆(𝑡)𝑑𝑡].  (1) 

𝑠𝑢𝑏𝑗𝑒𝑐𝑡⁡𝑡𝑜 𝒙̇(𝑡) = 𝒇(𝒙(𝑡), 𝒆(𝑡),𝒘𝑠𝑦𝑠) 

 𝒆(𝑡) = 𝒆𝑓𝑓(𝑡) ⁡+ 𝑲(𝑡) ∗ 𝒚𝑓𝑏(𝒙(𝑡),𝒘𝑝𝑜𝑙𝑖𝑐𝑦)⁡          

                                                                                

⁡𝒈 (𝒙(𝑡), 𝒆𝑓𝑓(𝑡), 𝑲(𝑡), 𝒚𝑓𝑏(𝑡)) ≥ 0                                                      

l(𝒙(0), 𝒙(𝑡𝑓)) = 0 

(stochastic dynamics)  (2) 

⁡(control⁡policy)⁡(3) 

⁡(4) 

(path⁡constraints)⁡⁡(5) 

(boundary⁡conditions)⁡⁡⁡(6) 

with the deterministic controls consisting of the feedforward excitations 𝒆𝑓𝑓(𝑡)and the time-varying 

linear feedback gain matrix 𝑲(𝑡), 𝒙(𝑡) the stochastic states, 𝒚𝑓𝑏(𝑡) is the stochastic feedback signal, 



𝒆(𝑡) are the total muscle excitations (combination of feedforward and feedback), 𝒘𝑠𝑦𝑠 is Gaussian 

system noise (e.g. motor noise), and 𝒘𝑝𝑜𝑙𝑖𝑐𝑦 is Gaussian noise corrupting the policy (e.g. sensory noise). 

The system and policy noise inject uncertainty into the simulations, resulting in stochastic state 

variables. Consequently, all variables that depend on the state are stochastic as well. The controls, 𝒆𝑓𝑓(𝑡) 

and⁡𝑲(𝑡), are deterministic variables.  

Although the noise sources are Gaussian, the distribution of the stochastic variables are generally non-

Gaussian due to nonlinearities in the dynamics. In the proposed approach, we approximate the state 

distribution as Gaussian. Consequently, we can describe the distribution of the state trajectory by the 

mean state trajectory (𝒙𝑚𝑒𝑎𝑛(𝑡)) and the state covariance trajectory (𝑷(𝑡)). The dynamics of the mean 

state trajectory are approximated by the deterministic (𝒘 = [𝒘𝑠𝑦𝑠, 𝒘𝑝𝑜𝑙𝑖𝑐𝑦] = 0) version of the system 

dynamics 𝒇(∙). The propagation of the state covariance is approximated using the continuous Lyapunov 

differential equations [6], [7], which assume local invariance of the system dynamics around the mean 

trajectory: 

 𝑷̇(𝑡) = 𝑨(𝑡)𝑷(𝑡) + 𝑷(𝑡)𝑨(𝑡)𝑻 + 𝑪(𝑡)𝛴𝑤
′ 𝑪(𝑡) (7) 

 𝑨(𝑡) =
𝝏𝒇

𝝏𝒙
(𝒙(𝒕), 𝒆𝑓𝑓(𝑡), 𝑲(𝑡),𝒘) (8) 

 𝑪(𝑡) =
𝝏𝒇

𝝏𝒘
(𝒙(𝒕), 𝒆𝑓𝑓(𝑡), 𝑲(𝑡),𝒘) (9) 

with 𝛴𝑤
′  the covariance matrix describing Gaussian noise sources. The propagation of the state 

covariance matrix is as in an Extended Kalman Filter [8]. 

The propagation of 𝑷(𝑡) can be interpreted as the change in uncertainty due to the dynamics 

(𝑨(𝑡)𝑷(𝑡) + 𝑷(𝑡)𝑨(𝑡)𝑻) and the injection of uncertainty by the noise sources (𝑪(𝑡)𝛴𝑤
′ 𝑪(𝑡)). The 

dynamics can either act to dissipate uncertainty or to increase uncertainty depending on the system.  

Based on the distribution of the stochastic variables, the constraints can be robustified as well. To this 

aim, the distribution of the constraint equations is approximated based on the assumption of a Gaussian 

state distribution. Hence, the constraint standard deviation is√
𝜕𝑔𝑖

𝜕𝒙
𝑷(𝑡)

𝜕𝑔𝑖

𝜕𝒙

𝑇
 

The constraints are then reformulated as follows: 

 𝑔𝑖 (𝒙(𝑡), 𝒆𝑓𝑓(𝑡), 𝑲(𝑡), 𝒚𝑓𝑏(𝑡)) + 𝛾√
𝜕𝑔𝑖
𝜕𝒙

𝑷(𝑡)
𝜕𝑔𝑖
𝜕𝒙

𝑇

≥ 0 (10) 

with 𝛾 a parameter that defines the chance that the constraint is fulfilled. Due to the use of a Gaussian 

state distribution, even solutions far away of the mean state have a finite chance of occurring and 

therefore it will not be possible to impose the constraints for the entire state distribution. 

Positive definiteness preserving discretization  

The state covariance matrix 𝑷(𝑡) is positive-definite by definition. However, numerical integration can 

destroy this property due to the accumulation of integration errors. Gillis and Diehl noted and addressed 

this issue [9]; they propose a positive-definiteness preserving discretization of the Lyapunov differential 

equation as explained below. The mathematical proof can be found in [9], [10]. 

If direct collocation is applied to transcribe the optimal control problem, the dynamics can be discretized 

into a set of constraint functions 𝐹  and 𝐺 that describe the numerical integration: 

 𝑥𝑘+1 = 𝐹(𝑧𝑘) (11) 



 0 = 𝐺(𝛿;⁡𝑥𝑘 , 𝑧𝑘 , 𝑒𝑘 , 𝑤𝑘) (12) 

with 𝑧𝑘 auxiliary variables defining the state at the collocation points within each integration interval 

and 𝛿 the integration interval. It is shown in [10], [11] that given the discretized dynamics in the above 

form, the continuous propagation of the state covariance matrix can be discretized into the following 

form that guarantees the preservation of positive definiteness: 

 𝑃𝑘+1 = 𝑀𝑘 (
𝜕𝐺

𝜕𝑥
𝑃𝑘

𝜕𝐺

𝜕𝑥

𝑇

+⁡
𝜕𝐺

𝜕𝑤
𝛴𝑤

𝜕𝐺

𝜕𝑤

𝑇

)𝑀𝑘
𝑇 (13) 

 
0 = ⁡

𝜕𝐹

𝜕𝑧

𝑇

−
𝜕𝐺

𝜕𝑧

𝑇

𝑀𝑘
𝑇 

(14) 

For example, in the case of a trapezoidal integration scheme the discretized dynamics (eq. (11) and eq. 

(12)) of a system with continuous dynamics in the general form 𝑥̇ = f(𝑥, 𝑢,w) become: 

𝑥𝑘+1 = 𝑧𝑘 (15) 

0 = 𝑧𝑘 − (𝑥𝑘 +⁡
𝛿

2
(𝑥̇𝑘 + 𝑥̇𝑘+1)) ⇔ 

0 = 𝑧𝑘 − (𝑥𝑘 +⁡
𝛿

2
(𝑓(𝑥𝑘 , 𝑢𝑘 , 𝑤) + 𝑓(𝑧𝑘 , 𝑢𝑘+1, 𝑤))) 

(16) 

Combination with implicit formulation of system dynamics   

Formulating the dynamic equations implicitly, 𝑓𝑖𝑚𝑝(𝑥, 𝑢, 𝑥̇, 𝑤) = 0, rather than explicitly, 𝑥̇ =

𝑓𝑒𝑥𝑝(𝑥, 𝑢, 𝑤) has been shown to improve the efficiency of deterministic optimal control simulations of 

movement [12]. This approach avoids the inversion of near-singular matrices (e.g. the mass matrix in 

multibody systems with bodies of different mass, length and inertia), which is numerically an unstable 

operation and can become an issue for underlying NLP solvers. In practice, when direct collocation is 

applied and the dynamics are formulated implicitly, one can augment the variable space with ‘slack 

controls’ (𝑢𝑥̇) that represent the state derivatives and impose the system dynamics in an implicit manner: 

𝑓𝑖𝑚𝑝(𝑥, 𝑢, 𝑢𝑥̇ , 𝑤) = 0. When using an implicit formulation and a trapezoidal integration scheme, the 

discretized dynamics become:  

 𝑥𝑘+1 = 𝑧𝑘 (17) 

 
0 = 𝑧𝑘 − (𝑥𝑘 +⁡

𝛿

2
(𝑢𝑥̇,𝑘 + 𝑢𝑥̇,𝑘+1)) 

(18) 

 𝑓𝑖𝑚𝑝(𝑥, 𝑢, 𝑢𝑥̇, 𝑤) = 0 (19) 

To formulate the propagation of the state covariance matrix, the sensitivity of the state derivatives with 

respect to the states and noise sources is required (eq. 8 and eq. 9). When the dynamics are formulated 

implicitly these expressions are not readily available. To conserve the possibility to formulate the system 

dynamics implicitly it is required to augment the variable space once again with ‘slack controls’ that 

represent the derivatives of the state derivatives with respect to the state (𝑢𝜕𝑥̇𝜕𝑥) and the noise sources 

(𝑢𝜕𝑥̇𝜕𝑤). We determine those through the following (implicit) constraints that follows from taking the 

partial derivatives to the state x and the noise sources w of eq. 19 and applying the chain rule:  

 
𝜕𝑓𝑖𝑚𝑝(𝑥, 𝑢, 𝑢𝑥̇, 𝑤)

𝜕𝑥
+
𝜕𝑓𝑖𝑚𝑝(𝑥, 𝑢, 𝑢𝑥̇ , 𝑤)

𝜕𝑢𝑥̇
𝑢𝜕𝑥̇𝜕𝑥 = 0 (20) 

 𝜕𝑓𝑖𝑚𝑝(𝑥, 𝑢, 𝑢𝑥̇ , 𝑤)

𝜕𝑤
+
𝜕𝑓𝑖𝑚𝑝(𝑥, 𝑢, 𝑢𝑥̇, 𝑤)

𝜕𝑢𝑥̇
𝑢𝜕𝑥̇𝜕𝑤 = 0 

(21) 

Eq. 20 and eq. 21 can then be combined with the positive definiteness preserving Lyapunov 

discretization. In case of the trapezoidal integration scheme we obtain:  



 
𝜕𝐺

𝜕𝑥
= −𝐼 −

𝛿

2
𝑢𝜕𝑥̇𝜕𝑥,𝑘 (22) 

 𝜕𝐺

𝜕𝑧
= 𝐼 −

𝛿

2
𝑢𝜕𝑥̇𝜕𝑥,𝑘+1 

(23) 

 𝜕𝐹

𝜕𝑧
= 𝐼 

(24) 

 𝜕𝐺

𝜕𝑤
= −

𝛿

2
(𝑢𝜕𝑥̇𝜕𝑤,𝑘 + 𝑢𝜕𝑥̇𝜕𝑤,𝑘+1) 

(25) 

 

Approximate stochastic optimal control framework  

Here, we describe the approximate stochastic optimal control problem for the class of problems we are 

solving in this study. Given the implicit stochastic dynamics: 

𝒇(𝒙(𝑡), 𝒙̇(𝑡), 𝒆𝑓𝑓(𝑡),𝑲(𝑡),𝒘𝑠𝑦𝑠, 𝒘𝑝𝑜𝑙𝑖𝑐𝑦) = 0, with a control policy that is defined within the 

dynamics wherethe controls::  

 𝒆(𝑡) = 𝒆𝑓𝑓(𝑡) ⁡+ 𝑲(𝑡) ∗ (𝒚𝑓𝑏(𝒙(𝑡)) + 𝒘𝑝𝑜𝑙𝑖𝑐𝑦) + 𝒘𝒔𝒚𝒔 (26) 

   

We search the deterministic controls, 𝒆𝑓𝑓(𝑡) and 𝑲(𝑡), and reference trajectory 𝒑𝑟𝑒𝑓(𝑡) that minimize 

the expected control effort J = E[∫ 𝒆𝑇(𝑡)𝒆(𝑡)𝑑𝑡] under some constraints that specify the simulated 

task.  

Using a trapezoidal integration scheme and the theory introduced in previous sections we can write the 

approximate discretized stochastic optimal control as follows when discretizing the time horizon [0 T] 

into N intervals of length δ:  

𝑚𝑖𝑛
𝒆𝑓𝑓,𝑲

 ⁡⁡⁡⁡⁡𝐽 = ∑𝒆𝑓𝑓,𝑘
𝑇 𝒆𝑓𝑓,𝑘

𝑘

+⁡∑𝑡𝑟(𝑲𝑘𝑉𝑎𝑟(𝒚𝑓𝑏,𝑘)𝑲𝑘
𝑇)

𝑘

+∑𝑡𝑟(𝑲𝑘𝛴𝒘𝑝𝑜𝑙𝑖𝑐𝑦
𝑲𝑘
𝑇)

𝑘

 (27) 

𝑠. 𝑡. 
⁡⁡⁡⁡⁡𝒙𝑚𝑒𝑎𝑛,k+1 − (𝒙𝑚𝑒𝑎𝑛,k +⁡

δ

2
(𝒖𝑥̇,𝑘 + 𝒖𝑥̇,𝑘+1)) = 0 

 

(28) 

 

 𝑷𝑘+1 = 𝑴𝑘 ((
𝜕𝑮

𝜕𝒙
)
𝑘
𝑷𝑘 (

𝜕𝑮

𝜕𝒙
)
𝑘

𝑇

+⁡(
𝜕𝑮

𝜕𝒘
)
𝑘
𝛴𝑤 (

𝜕𝑮

𝜕𝒘
)
𝑘

𝑇

)𝑴𝑘
𝑇 (29) 

 𝒇𝑖𝑚𝑝(𝒙𝑚𝑒𝑎𝑛,𝑘 , 𝒆𝑓𝑓,𝑘 , 𝑲𝑘, 𝒖𝑥̇,𝑘) = 0 (30) 

 𝜕𝒇𝑖𝑚𝑝(𝒙𝑚𝑒𝑎𝑛,𝑘 , 𝒆𝑓𝑓,𝑘, 𝑲𝑘 , 𝒖𝑥̇,𝑘, 𝒘)

𝜕𝒙
+
𝜕𝒇𝑖𝑚𝑝(𝒙𝑚𝑒𝑎𝑛,𝑘, 𝒆𝑓𝑓,𝑘 , 𝑲𝑘, 𝒖𝑥̇,𝑘 , 𝒘)

𝜕𝒖𝑥̇
𝒖𝜕𝑥̇𝜕𝑥,𝑘 = 0 (31) 

 𝜕𝒇𝑖𝑚𝑝(𝒙𝑚𝑒𝑎𝑛,𝑘, 𝒆𝑓𝑓,𝑘 , 𝑲𝑘, 𝒖𝑥̇,𝑘 , 𝒘)

𝜕𝒘
+
𝜕𝒇𝑖𝑚𝑝(𝒙𝑚𝑒𝑎𝑛,𝑘 , 𝒆𝑓𝑓,𝑘, 𝑲𝑘 , 𝒖𝑥̇,𝑘, 𝒘)

𝜕𝒖𝑥̇
𝒖𝜕𝑥̇𝜕𝑤,𝑘 = 0 (32) 

 
(
𝜕𝑮

𝜕𝒙
)
𝑘
= −𝐼 −

𝛿

2
𝒖𝜕𝑥̇𝜕𝑥,𝑘; ⁡(

𝜕𝑮

𝜕𝒛
)
𝑘
= 𝐼 −

𝛿

2
𝒖𝜕𝑥̇𝜕𝑥,𝑘+1 (33) 

 (
𝜕𝑭

𝜕𝒛
)
𝑘
= 𝐼;⁡(

𝜕𝑮

𝜕𝒘
)
𝑘
= −

𝛿

2
(𝒖𝜕𝑥̇𝜕𝑤,𝑘 + 𝒖𝜕𝑥̇𝜕𝑤,𝑘+1) (34) 

 
0 = ⁡(

𝜕𝑭

𝜕𝒛
)
𝑘

𝑇

− (
𝜕𝑮

𝜕𝒛
)
𝑘

𝑇

𝑴𝑘
𝑇 (35) 

 
𝑔𝑖(𝒙𝑚𝑒𝑎𝑛,𝑘 , 𝒆𝑓𝑓,𝑘 , 𝑲𝑘 , 𝒑𝑟𝑒𝑓,𝑘) + 𝛾𝑖√

𝜕𝑔𝑖

𝜕𝒙
𝑷(𝑡)

𝜕𝑔𝑖

𝜕𝒙

𝑇
≥ 0⁡⁡⁡𝑤𝑖𝑡ℎ⁡𝑖 = 1…𝑛𝑔. 

 

(36) 



With 𝑴𝑘 a helper variable introduced to avoid the inversion of the matrix (
𝜕𝑮

𝜕𝒛
)
𝑘

𝑇
. Note further that 

through linearization we can write:  

 
𝑉𝑎𝑟(𝒚𝑓𝑏,𝑘) =

𝜕𝒉(𝒙𝑚𝑒𝑎𝑛,𝑘 , )

𝜕𝒙
𝑷𝑘

𝜕𝒉(𝒙𝑚𝑒𝑎𝑛,𝑘 , )

𝜕𝒙

𝑇

 (37) 

Equation (27) can be derived from equation  (1)  since deterministic variables are independent from 

stochastic variables (𝐸[𝑒𝑓𝑓 ∙ 𝑒𝑓𝑏] = 𝐸[𝑒𝑓𝑓] ∙ 𝐸[𝑒𝑓𝑏]), the expected value of the feedback signal is zero 

(𝐸[𝑒𝑓𝑏] = 0), all noise sources are independent, and the variance of deterministic variables, such as the 

feedforward muscle excitations 𝑒𝑓𝑓, is zero (𝑉𝑎𝑟(𝑒𝑓𝑓) = 0): 

𝐸[𝑒2] = 𝐸[𝑒𝑓𝑓
2 ] + 𝐸[𝑒𝑓𝑏

2 ] + 2 ∙ 𝐸[𝑒𝑓𝑓 ∙ 𝑒𝑓𝑏] 

𝐸[𝑒2] = 𝐸[𝑒𝑓𝑓]
2
+ 𝑉𝑎𝑟(𝑒𝑓𝑓) + 𝐸[𝑒𝑓𝑏]

2
+ 𝑉𝑎𝑟(𝑒𝑓𝑏) + 2 ∙ 𝐸[𝑒𝑓𝑓] ∙ 𝐸[𝑒𝑓𝑏] 

𝐸[𝑒2] = 𝐸[𝑒𝑓𝑓]
2
+ 0 + 0 + 𝑉𝑎𝑟(𝑒𝑓𝑏) 

𝐸[𝑒2] = 𝐸[𝑒𝑓𝑓]
2
+ 𝑉𝑎𝑟(𝐾 ∙ 𝑦𝑓𝑏) + 𝑉𝑎𝑟(𝐾 ∙ 𝑤𝑠) + 𝐶𝑜𝑣𝑎𝑟(𝐾 ∙ 𝑦𝑓𝑏 , 𝐾 ∙ 𝑤𝑠) 

𝐸[𝑒2] = 𝐸[𝑒𝑓𝑓]
2
+ 𝑡𝑟(𝐾 ∙ 𝑉𝑎𝑟(𝑦𝑓𝑏) ∙ 𝐾

′) + 𝑡𝑟(𝐾 ∙ 𝛴𝒘𝑠
∙ 𝐾′) + 0 

where 𝐶𝑜𝑣𝑎𝑟(𝐾 ∙ 𝑦𝑓𝑏 , 𝐾 ∙ 𝑤𝑠) = 0 as the noise sources are independent. 

Notes on integration schemes 

When the system dynamics are not known a priori, because the feedback gains that determine the closed-

loop dynamics are optimization variables, we could end up in a situation where the propagation of the 

covariance is inaccurate depending on the chosen discretization scheme. Backward and forward Euler 

integrations schemes are problematic, whereas a trapezoidal integration scheme is more reliable. 

Why a forward Euler scheme is problematic for the propagation of covariance 

In the case of using a forward Euler discretization scheme, eq. 11 and eq. 12 become:  

 𝑥𝑘+1 = 𝑧𝑘 (38) 

 0 = 𝑧𝑘 − (𝑥𝑘 + ⁡𝛿𝑢𝑥̇,𝑘) (39) 

This leads to the following expressions for the positive definiteness preserving Lyapunov 

discretization scheme:  

 𝜕𝐺

𝜕𝑥
= −𝐼 − 𝛿𝑢𝜕𝑥̇𝜕𝑥,𝑘; (40) 

 𝜕𝐺

𝜕𝑧
= 𝐼; ⁡

𝜕𝐹

𝜕𝑧
= 𝐼; (41) 

 𝜕𝐺

𝜕𝑤
= −𝛿𝑢𝜕𝑥̇𝜕𝑤,𝑘 

(42) 

We thus obtain: 

 𝑃𝑘+1 = ((𝐼 + 𝛿𝑢𝜕𝑥̇𝜕𝑥,𝑘)𝑃𝑘(𝐼 + 𝛿𝑢𝜕𝑥̇𝜕𝑥,𝑘)
𝑇 + ⁡𝛿𝑢𝜕𝑥̇𝜕𝑤,𝑘𝛴𝑤𝛿𝑢𝜕𝑥̇𝜕𝑤,𝑘

𝑇) (43) 

 

To demonstrate why a backward Euler scheme might be problematic, we only consider the first in eq. 

44 that describes how the covariance matrix changes due to the dynamics. For this example, let us 

consider that the dynamics describes exponential growth/decay: 𝑥̇ = 𝛼 ∙ 𝑥. If 𝛼 < 0 initial variance of 

the state 𝑥 decreases over time, with a faster decrease of uncertainty with increasing absolute value of 



𝛼. If 𝛼 > 0 initial variance of the state 𝑥 increases over time, with a faster increase of uncertainty with 

increasing absolute value of 𝛼. 

In this case the discrete covariance propagation equation becomes: 

 𝑃𝑘+1 = (1 + 𝛿 ∙ 𝛼)2𝑃𝑘 (44) 

We observe the following problems. 

(1) The uncertainty can be completely eliminated from the system by choosing 𝛼 = ⁡−1/⁡𝛿. 

Although a negative alpha does stabilize the dynamics and uncertainty would asymptotically 

disappear over time, this could result in strong over-estimation of the dissipative features of the 

dynamics. 

(2) When 𝛼 ≪⁡−1/⁡𝛿 and thus we have a strongly dissipative system, uncertainty will accumulate 

strongly. The discrete dynamics do not capture the dissipative feature of the system dynamics 

in this case. One could argue that 𝛿 must be chose smaller, but if 𝛼 is an optimization variable, 

it cannot be verified in advance whether 𝛿 is small enough.  

If for example the objective is to  minimize the uncertainty in the system, the optimization will select 

𝛼 =⁡−1/⁡𝛿 while an 𝛼 ≪⁡−1/⁡𝛿⁡ would in reality be a better solution. 

Why a backward Euler scheme is problematic for the propagation of covariance 

In the case of using a backward Euler discretization scheme, eq. 11 and eq. 12 become (appreciate the 

difference with the forward Euler scheme): 

 𝑥𝑘+1 = 𝑧𝑘 (45) 

 0 = 𝑧𝑘 − (𝑥𝑘 + ⁡𝛿𝑢𝑥̇,𝑘+1) (46) 

This leads to the following equation for the discrete covariance propagation:  

 𝜕𝐺

𝜕𝑥
= −𝐼; (47) 

 𝜕𝐺

𝜕𝑧
= 𝐼 − 𝛿𝑢𝜕𝑥̇𝜕𝑥,𝑘;⁡

𝜕𝐹

𝜕𝑧
= 𝐼; (48) 

 𝜕𝐺

𝜕𝑤
= −𝛿𝑢𝜕𝑥̇𝜕𝑤,𝑘+1 

(49) 

We thus obtain: 

 𝑃𝑘+1 = (𝐼 − 𝛿𝑢𝜕𝑥̇𝜕𝑥,𝑘)
−1(𝑃𝑘 + ⁡𝛿𝑢𝜕𝑥̇𝜕𝑤,𝑘+1𝛴𝑤𝛿𝑢𝜕𝑥̇𝜕𝑤,𝑘+1

𝑇)((𝐼 − 𝛿𝑢𝜕𝑥̇𝜕𝑥,𝑘)
−1)𝑇 (50) 

Again, we ignore the term due to noise and only consider the dynamics term. Let us consider the same 

dynamics as in the previous example: 𝑥̇ = 𝛼 ∙ 𝑥. In this case we find: 

 
𝑃𝑘+1 =

1

(1 − 𝛿 ∙ 𝛼)2
𝑃𝑘 (51) 

In contrast to the forward Euler scheme, there is no finite 𝛼 that would eliminate all uncertainty in a 

single time step. If we choose 𝛼 < 0, we will dissipate uncertainty from the system as is expected. The 

larger the time step 𝛿, the more we will underestimate how much uncertainty is dissipated from the 

system. With smaller step size we approach the true value. If we choose 1 > 𝛿 ∙ 𝛼 > 0 it is clear that 

uncertainty will accumulate, which makes sense. However, we observe again two issues: 

(1) When choosing 𝛿 ∙ 𝛼 = 1 the uncertainty will become infinite at the next time-step. This can 

become an issue during an iterative optimization process where an iteration might bump into 

values that are infinite.   



(2) When 𝛿 ∙ 𝛼 > 2, the system appears to dissipate uncertainty while in reality it should be 

accumulating uncertainty.  

Trapezoidal scheme to solve these integrator stability issues 

In case of a trapezoidal scheme, the same example dynamics 𝑥̇ = 𝛼 ∙ 𝑥 results in the following discrete 

covariance propagation equation: 

 

𝑃𝑘+1 =
(1 +

𝛿
2 ∙ 𝛼)

2

(1 −
𝛿
2
∙ 𝛼)2

𝑃𝑘 (52) 

The behavior (accumulative/dissipative) of the system integrated by this integrator is correct for all 

values of 𝛼. 

If 𝛼 ≫ 0 we still have an accumulation of uncertainty as the asymptote lies at 1 for 
𝛿

2
∙ 𝛼 = +𝑖𝑛𝑓.⁡ 

If 𝛼 < 0 we have a dissipative system.  

There is an asymptote where uncertainty accumulates infinitely quick if  
𝛿

2
∙ 𝛼 = 1 which can still give 

us an issue during optimization. However, current gradient-based optimization algorithms for solving 

nonlinear programs (IPOPT [13], SNOPT [14]) have heuristics implemented that make them relatively 

robust to such problems.  
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