
ARENBERG DOCTORAL SCHOOL
Faculty of Engineering Science

Formal Reasoning about
Hardware Capability
Architectures

Thomas Van Strydonck

Dissertation presented in partial
fulfillment of the requirements for the

degree of Doctor of Engineering
Science (PhD): Computer Science

June 2022

Supervisors:
Prof. dr. D. Devriese
Prof. dr. ir. F. Piessens

Formal Reasoning about Hardware Capability
Architectures

Thomas VAN STRYDONCK

Examination committee:

Prof. dr. ir. B. Puers, chair

Prof. dr. D. Devriese, supervisor

Prof. dr. ir. F. Piessens, supervisor

Prof. dr. B. Jacobs

Prof. dr. M. Denecker

Dr. L. Daniel

Prof. dr. P. Sewell

(University of Cambridge, Cambridge, UK)

Prof. dr. D. Dreyer

(MPI-SWS, Saarbrücken, Germany)

Dissertation presented in partial ful-

�llment of the requirements for the

degree of Doctor of Engineering

Science (PhD): Computer Science

June 2022

© 2022 KU Leuven – Faculty of Engineering Science
Uitgegeven in eigen beheer, Thomas Van Strydonck, Celestijnenlaan 200A box 2402, B-3001 Leuven (Belgium)

Alle rechten voorbehouden. Niets uit deze uitgave mag worden vermenigvuldigd en/of openbaar gemaakt worden door
middel van druk, fotokopie, microfilm, elektronisch of op welke andere wijze ook zonder voorafgaande schri�elijke
toestemming van de uitgever.

All rights reserved. No part of the publication may be reproduced in any form by print, photoprint, microfilm, electronic
or any other means without wri�en permission from the publisher.

Preface

Many people contributed to this PhD in various ways, both directly in a technical

sense and indirectly in an emotional one. I would like to spend some time here to

acknowledge the people that helped me realize this thesis.

First, I want to thank my supervisors, Dominique and Frank, for making the

following paragraph incredibly easy to write. Both Dominique and Frank are

technically exceptionally strong researchers, whose expertise and insight helped me

out tremendously throughout this doctorate. I am especially thankful to Dominique

for almost literally dragging me over the �rst obstacles at the start of my research

career, when I had no idea what I was doing. In spite of their busy agendas, both

Dominique and Frank were always approachable, and made time whenever I needed it

most. They taught me rigid and exact thinking, but also a healthy dose of pragmatism

when it counted. I learned a lot during this PhD thanks to you two, and will be able

to bank on this invaluable experience for years to come!

I am grateful to the local members of my jury; Bart Jacobs, Marc Denecker, Lesly-

Ann Daniel, and the external jury members Peter Sewell and Derek Dreyer, for their

willingness to spend their time on my dissertation, and for the helpful suggestions

and feedback they provided. I thank Bob Puers for chairing the jury. More generally,

I want to thank the reviewers I was assigned over the years for keeping me grounded,

and for o�ering helpful directions for improvement and future research. My thanks go

out to the Research Foundation – Flanders (FWO) for believing in my research project

and supporting it �nancially. I hold a PhD Fellowship from the Research Foundation -

Flanders (FWO).

Next, I want to thank my collaborators on the di�erent research projects presented

here. I am very grateful to Lars Birkedal for hosting me at Aarhus University for a

�ve-month stay, and being very warm, welcoming and helpful, in spite of the di�cult

Covid circumstances. You made me feel right at home in Denmark! I also thank Aïna,

Armaël, Alix, and Amin for the smooth and pleasant collaboration, showing me the

Iris ropes and for accepting me despite the lack of A’s in my initials. Thank you to

i

ii PREFACE

the entire research group at Aarhus University for making the stay as enjoyable as

it was. I extend my gratitude to David, Jen, and Leonardo from the University of

Birmingham for their help and expertise during the collaboration on the TEE work. I

am also thankful to Job for our collaboration on the same project; your professional

approach to coding (and CPL projects!) and easy-going nature were very pleasant

to work with. Besides research, I also enjoyed some great collaborations as part of

my teaching assistant duties. There, I was inspired by the competence and teaching

skills of various peers: Roald, Ingmar, Simon, Andreas,

I want to thank my colleagues in Leuven for the years we spent together and the

interesting discussions we had (both scienti�c and non-scienti�c). First and foremost,

the 2.34-gang, whom I spent most time with; Kobe for teaching me about the value

of noise-canceling headphones, but also sparking my interest into TEEs, Bob for

showing me the programming ropes and bestowing me with the gift of his con�g

�les, Twinant for teaching me about typesetting (and allowing me to steal his fonts

for this document), Majid for putting up with us, Matteo whose visit was short-lived

but well-scented, and then my sports buddies, Yana and Stef from 2.34v2. I thank

my new o�ce mates of the 3.127; Andreas, Antoine, Elias, Emiel, Gilang, and Joris

for the relaxed atmosphere and random developments throughout the day. I am

indebted to the good people of the lunch group (which includes the aforementioned

colleagues) for the enjoyable times we shared, as well as to some other colleagues for

discussions that did not necessarily take place around a lunch table: Márton, Victor,

Neline, Gertjan, Vincent, Jonathan, Hans, Koen, Steven, Sander, Annick, Kim, Vik,

Katrien, Justus, JT, Nima, The DistriNet business o�ce (Annick, Katrien, An) and

the people of the secretariat perhaps deserve the largest gratitude, for keeping our

entire operation rolling smoothly and always being helpful and responsive. Thank

you!

Lastly, I express immense gratitude to my family and friends: without the blissful

moments we shared as a foundation, none of this thesis would have materialized.

Special thanks to my mom for caring—I know you will be sleeping more soundly

now that this is over —and to both my parents for their invaluable advice, and

unconditional love and support throughout. Quero agradecer especialmente à minha

namorada, Cat, pelo seu amor e apoio; a tua presença na segunda parte do meu

doutoramento tornou-a inesquecível!

Thomas Van Strydonck

P.S.: Thanks to Wessel and Annelies for proofreading the below ACROSTIC
1
, and the

thrilling ride that follows. In this context, I want to acknowledge LATEX in general and

TikZ in particular for showing me the limits of my patience and persistence.

1
Oops, I did not mean to write Capitals here... Johnny Cash and Dolly Parton would be disappointed.

PREFACE iii

Muscat Kampala

Bucharest

TRAPPIST-1e

Dushanbe

Moscow

Kiev

Gustavia

Dodoma

Sanaá

Bangkok

Islamabad

Reykjavík

Windhoek

Lomé

Muscat

Vientiane

Cardi�

New Delhi

Riga

Beirut

Maseru

HD 49674 b

Sanaá

Muscat

1652 Hergé

Jakarta

Yaren Nuku’alofa

Hanga Roa

Kigali

Panama City

Quito Tiraspol

4486 Mithra

Port of Spain

Tegucigalpa

Cairo

1633 Chimay

Phnom Penh

Monrovia

Muscat

Jamestown

1383 Limburgia

1276 Ucclia

Tunis

Budapest

Tehran

Stanley

Kigali

Ankara

1565 Lemaître

Sukhumi

Bucharest Moscow

Tallinn

Kabul

Port Vila Muscat

Nassau Addis Ababa

Tripoli

Banjul

Dublin

Nouméa

TRAPPIST-1d

Tirana

Muscat

Washington D.C.

Ashgabat

Castries 3936 Elst

Port-au-Prince

Dili

Hanga Roa

2973
P
aola

San
aá Libreville

2816
P
ien

M
uscat

1052
B

elgica

T
R

A
P
P
IST

-1g

P
ort-au-P

rin
ce

D
ili

N
gerulm

ud

A
bu

D
h
abi

B
uch

arest
M

uscat

M
oscow

M
uscat

K
ath

m
an

du

San
Salvador

1294
A

n
tw

erpia

C
open

h
agen

T
órsh

avnM
alaboA
sm

ara
A

m
sterdam

M
uscat

M
ata-U

tu
B

asseterre

T
R

A
P
P
IST

-1f

E
l A

aiún
9205

E
ddyw

ally

B
agh

dad
D

jibouti
H

D
49674

E
piskopi C

an
ton

m
en

t

V
aduzSan

aá

K
igali

iv PREFACE

P

P

ELE

P

ELE

P

P

Dec
201

4
27

.6
0

P

P

P

P

P

P

P

Z
U
I

L

Z U I L

HOB
K

Z U I L

ELE

K
ap

el
dr

ee
f

K
ap

el
dr

ee
f

K
ap

el
dr

ee
f

T
E

C
H

N
IS

C
H

E
 D

IE
N

S
T

E
N

W
IL

LE
M

 D
E

 C
R

O
Y

LA
A

N
 6

0A
 3

00
1

H
E

V
E

R
LE

E

D
IR

E
C

T
IE

T
E

L.
01

6/
32

 2
0

80
 F

A
X

.0
16

/3
2

29
 8

2

A
C
K
N
O
W
LE
D
G
E
M
E
N
T
S

T
ha

nk
 y

ou
 to

 th
e

K
U

 L
eu

ve
n

C
A

D
O

ffi
ce

 fo
r

pr
ov

id
in

g
m

e
w

ith
 th

is
 b

ea
ut

ifu
l b

lu
ep

rin
t.

T
ha

nk
 y

ou
 to

 M
ar

tij
n

fo
r

he
lp

in
g

m
e

se
le

ct
 a

 c
ol

or
 p

al
et

te
.

⠥
⠝
⠞
⠊
⠇
⠀
⠞
⠓
⠑
⠀
⠞
⠕
⠕
⠇
⠀
⠊
⠎
⠀
⠁
⠉
⠟
⠥
⠊
⠗
⠑
⠙

⠞
⠓
⠊
⠎
⠀
⠃
⠇
⠥
⠑
⠏
⠗
⠊
⠝
⠞
⠀
⠎
⠓
⠕
⠥
⠇
⠙
⠀
⠃
⠑
⠀
⠗
⠑
⠞
⠊
⠗
⠑
⠙

Abstract

Our modern society increasingly relies upon computing devices for its proper

functioning. With their increased presence, the number of interactions between

di�erent software components also increases. To secure this interaction and contain

the impact of bug exploits (both malicious and accidental in nature), some form of

security primitive to enforce the interface between di�erent components is required.

In this dissertation, we study hardware capabilities as a possible solution to this

problem. Capabilities are hardware-enforced, bounds-checked pointers that carry

permissions. They are an assembly-level hardware primitive that allows for �ne-

grained spatial protection within components, and lightweight compartmentalization

between components. They have been researched since the 60s, but have recently

seen renewed interest thanks to the CHERI project at the University of Cambridge.

Given their low-level and �exible nature, writing correct and secure capability-

manipulating programs is di�cult. To remedy this problem, this thesis studies

methods to reason formally about the security o�ered by capabilities. We capture

these guarantees in a form of general security contract for a capability machine,

which we call a universal contract. This universal contract describes how capabilities

limit the power of arbitrary, untrusted code. Thus, it enables us to verify whether

concrete application code satis�es certain properties of interest, even in the presence

of arbitrary untrusted code.

In the �rst chapters of this thesis, we illustrate this approach in various settings. We

introduce formal, mechanized models of di�erent capability machines that leverage

intra-language universal contracts to reason about concrete assembly code.

The �rst model, Cerise, illustrates how one can reason about the spatial protection

and compartmentalization provided by a vanilla capability machine. To illustrate

the model, we verify a counter that depends on encapsulation of private state and a

heap-based calling convention that uses dynamic memory allocation. We also verify

an example of dynamic sealing, illustrating that hardware capabilities are su�ciently

powerful to implement design patterns from the object capability literature at the

v

vi ABSTRACT

assembly level.

Next, support for e�ects in the form of Memory-Mapped I/O (MMIO) is added to

the Cerise model. Compartmentalization o�ered by capabilities is used to build

lightweight, nestable security wrappers around I/O devices. The wrappers enable

layered enforcement of full-system safety properties on MMIO traces admitted by

the capability machine. Interestingly, di�erent layers of wrappers can be veri�ed

under di�erent attacker models, and the results obtained by verifying layers closer

to the hardware can be reused when verifying higher layers. This nesting and the

ensuing opportunities for veri�cation are di�cult to achieve e�ciently on commodity

hardware. To illustrate the model, we verify two examples in a three-layer system

of wrappers, where each layer reuses results from the previous one and considers a

more re�ned attacker model.

The last instance of universal contracts we focus on is in e�ciently supporting a

form of enclaved execution on top of capability hardware; a combination that had not

been achieved before. Enclaved execution is a popular mechanism for dynamically

creating Trusted Execution Environments (TEEs) called enclaves. Enclaves are

isolated execution contexts that protect integrity and con�dentiality of software

inside the enclave (even against compromised system software) and that support

attestation. We demonstrate a novel, bottom-up design for �exible enclaves on top

of a capability machine and present three di�erent implementations of the design,

providing preliminary performance benchmarks. Pinpointing the correct formal

treatment of enclaved execution as a universal contract is ongoing work, and discussed

in the conclusion chapter.

Reasoning about code at the assembly level is hard and error-prone. In the �nal

content chapter, we therefore shift our focus from intra-language assembly-level

reasoning to reasoning about secure compilation to capability architectures. The

standard criterion of full abstraction is used to instantiate secure compilation, and a

compiler from separation-logic-veri�ed C-like code to C-like code with support for so-

called linear capabilities (a non-duplicable type of capability) is proven fully abstract.

The intuition behind the compiler is that the linear separation logic resources can be

rei�ed and represented by linear capabilities at the target level. The full abstraction

proof roughly implies that attacks that are possible on the target-level capability

architecture must have already been possible at the veri�ed source level, i.e. the

compiler did not create additional security issues not present at the source level. In

the long run, the hope is to support a form of gradual veri�cation, where security-

critical parts of C codebases can be veri�ed and compiled with this compiler, in such

a way that security guarantees are upheld in the presence of buggy or untrusted code.

Beknopte samenva�ing

Onze moderne samenleving boogt in toenemende mate op computerapparaten voor

haar goede werking. Met hun verhoogde aanwezigheid neemt ook het aantal

interacties tussen verschillende softwarecomponenten toe. Om deze interacties te

beveiligen en de impact van bug-exploits (zowel kwaadaardig als accidenteel van

aard) te beperken, is een soort beveiligingsprimitief vereist om de interface tussen

verschillende componenten te handhaven.

In dit proefschrift bestuderen we hardware capabilities als mogelijke oplossing voor

dit probleem. Capabilities zijn pointers die inherent permissies bevatten, waarvan de

grenzen door de hardware afgedwongen worden. Ze zijn een hardwareprimitief op

assembleertaalniveau dat voorziet in een �jnkorrelige spatiale bescherming binnen

componenten, en een e�ciënte compartimentering tussen componenten. Ze worden

al sinds de jaren 60 onderzocht, maar verkregen recent hernieuwde belangstelling

dankzij het CHERI project aan de Universiteit van Cambridge.

Gezien hun weinig abstracte en �exibele karakter is het moeilijk om correcte en

veilige programma’s te schrijven die capabilities manipuleren. Om dit probleem te

verhelpen bestudeert dit proefschrift methoden om formeel te redeneren over de

beveiliging die geboden wordt door capabilities. We leggen deze garanties vast in

een vorm van algemeen veiligheidscontract voor een capability machine dat we een

universeel contract noemen. Dit universele contract beschrijft hoe capabilities de

macht van willekeurige, onvertrouwde code inperken. Het stelt ons bijgevolg in staat

om te veri�ëren of de concrete code van een applicatie aan bepaalde interessante

eigenschappen voldoet, zelfs in de aanwezigheid van willekeurige onvertrouwde code.

In de eerste hoofdstukken van dit proefschrift illustreren we deze benadering in

verscheidene situaties. We introduceren formele, gemechaniseerde modellen van

verschillende capability machines die gebruik maken van universele contracten voor

één taal om te redeneren over concrete assembleertaalcode.

Het eerste model, Cerise, illustreert hoe men kan redeneren over de spatiale

bescherming en compartimentering die een doorsnee capability machine biedt.

vii

viii BEKNOPTE SAMENVATTING

Om het model te illustreren veri�ëren we een teller die afhankelijk is van de

encapsulatie van zijn private state, en een calling conventie op de heap die gebruik

maakt van dynamische geheugenallocatie. We veri�ëren ook een voorbeeld van

dynamisch sealen, wat illustreert dat hardware capabilities voldoende krachtig zijn

om ontwerppatronen uit de literatuur over object capabilities op assembleertaalniveau

te implementeren.

Vervolgens wordt ondersteuning voor e�ecten in de vorm van Memory-Mapped I/O

(MMIO) toegevoegd aan het Cerise-model. De compartimentering die capabilities

bieden wordt gebruikt om e�ciënte, nestbare beveiligingswrappers rond I/O-

apparaten te construeren. De wrappers maken het mogelijk om verschillende lagen

van safety-eigenschappen voor het volledige systeem af te dwingen over de MMIO-

traces van de capability machine. Interessant genoeg kunnen verschillende, gelaagde

wrappers worden geveri�eerd onder verschillende modellen van aanvallers, en de

resultaten die worden verkregen door het veri�ëren van lagen die zich dichter bij de

hardware bevinden, kunnen worden hergebruikt bij het veri�ëren van hogergelegen

lagen. Deze nesting en de daaruit voortvloeiende mogelijkheden voor veri�catie zijn

moeilijk e�ciënt te realiseren op hedendaagse standaardhardware. Om het model te

illustreren veri�ëren we twee voorbeelden in een systeem van wrappers bestaande uit

drie lagen, waarbij elke laag de resultaten van de vorige hergebruikt en een ver�jnder

model beschouwt voor de aanvaller.

De laatste instantiatie van universele contracten waar we ons op richten, is het e�ciënt

ondersteunen van een vorm van enclaved executie bovenop capability hardware; een

combinatie die nog niet eerder gerealiseerd was. Enclaved executie is een populair

mechanisme voor het dynamisch creëren van Trusted Execution Environments

(TEEs), ook wel enclaves genoemd. Enclaves zijn geïsoleerde uitvoeringscontexten

die de integriteit en vertrouwelijkheid van software binnen de enclave beschermen

(zelfs tegen gecompromitteerde systeemsoftware) en die ondersteuning bieden voor

attestatie. We demonstreren een nieuw, bottom-up ontwerp voor �exibele enclaves

bovenop een capability machine en presenteren drie verschillende implementaties

van dit ontwerp, vergezeld van eenvoudige prestatiebenchmarks. Het bepalen van

de juiste formele behandeling van enclaved executie als een universeel contract is

lopend werk, en wordt besproken in het conclusiehoofdstuk.

Redeneren over code op assembleertaalniveau is moeilijk en leidt dikwijls tot fouten. In

het laatste inhoudelijke hoofdstuk verleggen we daarom onze focus van redeneren op

assembleertaalniveau (i.e., binnenin één taal) naar redeneren over veilige compilatie

naar capability architecturen. Het standaardcriterium van full abstraction wordt

gebruikt om veilige compilatie te instantiëren, en een compiler van C-achtige code

die in separation logic geveri�eerd is, naar C-achtige code met ondersteuning voor

zogenaamde lineaire capabilities (een niet-dupliceerbaar type capabilities), wordt fully

abstract bewezen. De intuïtie achter de compiler is dat de lineaire separation logic

resources kunnen worden gereï�ceerd en gerepresenteerd door lineaire capabilities

BEKNOPTE SAMENVATTING ix

in de targettaal. Het full abstractionbewijs impliceert ruwweg dat aanvallen die

mogelijk zijn op targettaalniveau in de capability architectuur al mogelijk moeten

zijn geweest op het geveri�eerde brontaalniveau, i.e. de compiler creëerde geen extra

veiligheidsproblemen die niet ook al aanwezig waren op het brontaalniveau. Op

de lange termijn is de hoop om een vorm van graduele veri�catie te ondersteunen,

waarbij delen van codebases in C die kritiek zijn voor de veiligheid kunnen worden

geveri�eerd en gecompileerd met deze compiler, zodanig dat veiligheidsgaranties

kunnen worden afgedwongen in aanwezigheid van buggy of onvertrouwde code.

Contents

Abstract v

Beknopte samenva�ing vii

Contents xi

List of Figures xiii

List of Tables xvii

1 Introduction 1
1.1 Capability machines . 3

1.2 Formal reasoning about capability code 12

1.3 Secure compilation to capability architectures 16

1.4 Contents of the thesis . 19

2 Cerise: Program Verification on a Capability Machine in the Pres-
ence of Untrusted Code 23
2.1 Introduction . 24

2.2 Programming with capabilities . 28

2.3 Operational semantics of a capability machine 39

2.4 Program logic . 43

2.5 Reasoning about Untrusted Code in Cerise 53

2.6 Reasoning with capabilities: two examples 61

2.7 Dynamic Memory Allocation and Closures 69

2.8 Case study: a Library Implementing Dynamic Sealing and a Client . . 82

2.9 Discussion and Perspectives . 90

2.10 Related work . 92

3 Proving full-system security properties under multiple a�acker
models on capability machines 97

xi

xii CONTENTS

3.1 Introduction . 98

3.2 A simple capability machine with MMIO support 103

3.3 Example wrappers . 107

3.4 Proving The Security Objectives . 116

3.5 Related Work . 128

3.6 Conclusion and Future Work . 131

4 CHERI-TrEE: Flexible enclaves on capability machines 133
4.1 Introduction . 135

4.2 Background . 137

4.3 The design of CHERI-TrEE . 139

4.4 Implementation . 151

4.5 Evaluation . 155

4.6 Further extensions and future work 160

4.7 Related Work . 161

4.8 Conclusion . 163

4.A Appendix: Comparison to Piccolo . 163

5 Linear Capabilities for Fully Abstract Compilation of Separation-
Logic-Verified Code 167
5.1 Introduction . 169

5.2 Compiler Illustration . 173

5.3 Source and Target Languages . 176

5.4 Inference Rules and Compilation by Example 185

5.5 Full Abstraction . 198

5.6 Proving security: the back-translation 208

5.7 Simulation Relations . 224

5.8 Discussion and future work . 230

5.9 Related work . 233

5.10 Conclusion . 235

6 Future Work and Conclusions 237
6.1 Formal reasoning about capability machines 238

6.2 Secure compilation . 245

6.3 Conclusion . 246

Bibliography 249

List of Publications 267

List of Figures

1.1 Typical �elds and authority of a memory capability. 7

1.2 High-level set-up involved when reasoning about trusted Application

Code that interacts with Untrusted Code. 14

1.3 High-level overview of how security is proven for a speci�c compiler. 18

2.1 Representation of a pointer in a standard architecture vs. a capability

machine. 25

2.2 Two scenarios where a (trusted) component interacts with its

(untrusted) context. 28

2.3 Program sharing a bu�er with possibly adversarial code. 33

2.4 Program implementing a secure counter. 37

2.5 Base de�nitions for the machine’s words, state, and instructions. . . 40

2.6 Operational semantics: execution of a single instruction. 41

2.7 Operational semantics: auxiliary de�nitions. 42

2.8 The syntax of our program logic. 44

2.9 Speci�cations for the machine instructions subseg, load and store
and for the rclear macro. 48

2.10 Logical relation de�ning “safe to share” and “safe to execute” values. 53

2.11 A simple malloc subroutine. 72

2.12 Heap-based calling convention. 74

2.13 Memory layout dynamically created by the calling convention. 75

2.14 Program passing a read-only capability to unknown callee. 79

2.15 High-level pseudo-code for the implementation of the interval library

and its client. 83

2.16 Speci�cations of seal and unseal. 85

2.17 In-memory representation of an empty dictionary linked list and a

dictionary linked list with three values E1, E2 and E3. 86

3.1 An example architecture of nested parapass-through wrappers around

the peripherals. 100

xiii

xiv LIST OF FIGURES

3.2 Four example attacker models, which could be used for analysing

security of the system in Figure 3.1. 100

3.3 Machine words, machine state and instructions. 103

3.4 Permission lattice. 104

3.5 Operational semantics: instruction semantics. 105

3.6 Operational semantics: reduction steps. 106

3.7 De�nitions involved in the �rst example. 108

3.8 The di�erent security objectives that the stakeholders wish to enforce

in the �rst example . 108

3.9 The memory layout from the point of view of wrappers 0, 1 and 21. . 110

3.10 The �ow of control and a few representative register states when

jumping to the adversary in the execution of the motivating example. 111

3.11 The code for wrapper0’s write closure. 112

3.12 The set-up code for wrapper0. 113

3.13 The code for wrapper1’s read closure. 114

3.14 De�nitions involved in the second example. 116

3.15 Three main properties of �lter_full and �lter_val. 117

3.16 Figure illustrating the interaction of the di�erent resources in the

invariants invs(G) of an arbitrary wrapper G 119

3.17 Overview of when di�erent invariants need to hold when invoking

wrapper21 in our �rst example. 121

3.18 Logical relations describing capability safety. 125

4.1 Memory and TCB state after initialization of an enclave encl. 143

4.2 Combination of di�erent secure communication primitives. 147

5.1 A usage model of our compiler. 171

5.2 Motivating example: a veri�ed function 5 interacts with an untrusted

context function 6. 173

5.3 Grammar describing our separation logic and the source and target

languages. 177

5.4 Rules illustrating the target language operational semantics and its

linear aspects. 184

5.5 Illustrative example: conditionally add 1 to the second element of a

length-2 array or its negation. 187

5.6 Separation logic proof of the function given in the illustrative example. 187

5.7 Structural separation logic rules that can be extended to compilation

rules. 188

5.8 Inference rules de�ning gs
CompileType

gt. 189

5.9 Inference rules de�ning gs
def
E . 189

5.10 Basic separation logic rules that can be extended to compilation rules. 190

5.11 Higher-level separation logic rules that can be extended to compilation

rules. 194

LIST OF FIGURES xv

5.12 Compilation rules for generating outcall stubs. 197

5.13 Illustration of how contextual equivalence can express a robust safety

property. 201

5.14 Illustration of how contextual equivalence can enforce contracts. . . 201

5.15 Illustration of how contextual equivalence can enforce a con�dential-

ity property. 202

5.16 Translation of Jung et al. [77]’s example3_down function to our setting. 202

5.17 Correctness proof outline. 207

5.18 Security proof outline. 207

5.19 Example implementation of a main function wrapping f from Figure 5.5. 208

5.20 Illustrative example: naive back-translation of a context that imple-

ments add1. 210

5.21 Separation logic proof of the body of add1bt from the naive back-

translation example. 212

5.22 Illustration of the general three-phase structure of back-translation

rules. 214

5.23 Excerpt from the separation logic proof of the body of add1 from the

naive back-translation example. 217

5.24 Illustrative example: back-translating a context that implements add1. 218

5.25 Separation logic proof of the body of add1bt from the back-translation

example. 219

5.26 Examples of di�erent classes of misbehaving implementations of add1. 221

5.27 Back-translation of line 2 of add1 with and without nested pointers. . 224

5.28 Visual representation that illustrates the decomposition of '. 225

5.29 Visual representation that illustrates the decomposition of (. 228

List of Tables

4.1 Cycle count of EInitData. 156

4.2 Execution times in our macro benchmark. 158

4.3 Implementation results for the Proteus processor and its variants. . . 158

4.4 Full implementation results for the Proteus processor and its variants. 164

xvii

Chapter 1

Introduction

With each passing year, our modern society relies more heavily upon computing

devices for its proper functioning. As machines permeate all aspects of our daily lives,

their size decreases and their applicability broadens in scope, moving beyond the

classical mainframe and desktop models, and into novel modes of use, such as cloud

computing, embedded devices and the internet of things. Along with this increased

presence, the number of scenarios in which multiple distrusting parties need to have

their software interact securely has rapidly increased as well. This interaction either

takes place over a network, or within the same machine, and needs to be secured

e�ciently. Even within a single trust domain, there is a need for fault isolation: if

the software or hardware running on a certain node contains mistakes (commonly

referred to as bugs), errors can propagate to di�erent parts of the system. These errors

should be isolated, i.e. their scope should be limited to the component in which the

error occurred, no matter whether it was caused by regular execution or triggered by

an attacker.

Consequently, a security primitive to protect the interfaces between di�erent

components is required. Compartmentalization is an important aspect of protection;

by identifying di�erent compartments and isolating them at runtime, both within

and between trust domains, the attack surface can be decreased, and the impact of

bugs limited. Additionally, measures to enforce security properties of interest at

component boundaries are often also required. For example, photo editing software

might want to revoke access to an image bu�er after an untrusted plug-in has

applied a transformation to it, or an assembly function might want to enforce that a

function it calls cannot return to a di�erent function. In this dissertation, we interpret

protection very broadly: any security primitive that aids in compartmentalizing

di�erent components and/or can be used to enforce properties of interest at component

1

2 INTRODUCTION

boundaries is considered a protection primitive. Many existing primitives �t under

this wide umbrella: software-based fault isolation (SFI), hardware security features like

enclaves, process-based isolation, type systems and veri�cation, etc. Each primitive

has its own advantages and disadvantages.

Ideally, a protection primitive satis�es the following properties:

• Flexibility: The primitive should provide economy of mechanism [135], i.e. it

should be applicable in many scenarios, all the while being implemented by

simple mechanisms. The ability to provide �ne-grained protection increases

�exibility. Typically, low-level primitives enable greater �exibility by allowing

the de�nition of bespoke, higher-level primitives in terms of themselves. On

the other hand, higher-level primitives are more portable across architectures,

contributing to our next point.

• Backwards Compatibility: Better compatibility with existing Instruction Set

Architectures (ISAs), binary-level codebases, source languages and compilers

makes companies more likely to transition to the new protection primitive. The

abstraction layer that the protection primitive is de�ned at in�uences how its

backwards compatibility can be ensured.

• Cost: To allow for general adoption, the cost related to the use of the primitive

should not be prohibitive, both in terms of runtime e�ciency as well as in terms

of other resources (hardware cost, energy consumption, additional developer

e�ort, latency, etc.).

• Limited Trust: The primitive should not unduly increase the attack surface,

usually speci�ed in terms of the trusted computing base (TCB), i.e. the collection

of hardware and software of which correct operation is required for security

guarantees to hold.

In this thesis, we will focus on a speci�c primitive, namely hardware capabilities, a

type of bounds-checked pointer that carries permissions. Capabilities are supported

on a special type of ISA called a capability machine. Due to the bounds checking

and the fact that capabilities are unforgeable, capability machines can guarantee a

type of spatial memory safety. By adding a form of controlled invocation between

components, an e�cient and �exible form of �ne-grained compartmentalization can

be built on top of this memory safety. Within the capability machine design space,

we draw most inspiration from the recent CHERI capability machine [176]. As we

will discuss, CHERI satis�es the majority of the desired properties above.

Within the context of hardware capabilities and CHERI, the two main research

directions explored in this dissertation are as follows:

1. Given their �exibility and low-level nature, writing correct and secure code that

makes use of capabilities is di�cult. This di�culty creates opportunities for

CAPABILITY MACHINES 3

formal reasoning techniques. How can we formally reason about programs

manipulating capabilities, even in the presence of arbitrary, untrusted attackers?

How does introducing new features to the capability machine change the formal

reasoning?

2. Both writing code at the assembly-level and reasoning about it is hard and

error-prone. Can we instead build a secure compiler that targets a capability

machine architecture, allowing us to program and reason at a higher level of

abstraction?

In the remainder of this chapter, Section 1.1 �rst provides more background

information on capability machines, particularly their philosophy and appeal. Next,

Section 1.2 delves into the �rst research direction and discusses how one can reason

about code protection in a generic way, making use of so-called universal contracts, and

what instantiations of universal contracts we will consider. Section 1.3 then discusses

the second research direction. It speci�es what we mean by secure compilation in this

thesis, and lifts the notion of universal contracts to a cross-language setting. Finally,

Section 1.4 summarizes by providing an outline of the following chapters.

1.1 Capability machines

Capability machines are an instantiation at the ISA level of the capability-based

security philosophy [105], which spans both lower and higher levels of abstraction.

Section 1.1.1 �rst discusses this general notion of capability-based security, after

which Section 1.1.2 discusses capability machines, and Section 1.1.3 discusses CHERI

speci�cally.

1.1.1 Capability-based security

Capability-based security is a philosophy for designing secure systems and pro-

gramming languages that relies on a primitive called capability. Generally speaking,

capabilities are a type of unforgeable token or key that inherently carries the authority

to access resources (e.g. segments of memory, �les, I/O devices, sockets, library

APIs, . . .). Unforgeable here means that capabilities cannot be created out of thin

air, but must rather be derived from more potent capabilities, a property known as

capability monotonicity. Thus, each component’s authority decreases monotonically

(i.e., can never increase) in the absence of communication: passing capabilities over

communication channels between di�erent components is the only way of sharing

authority.

4 INTRODUCTION

Capabilities hence explicitly represent a subject-centric notion of authority, as opposed

to more classical object-centric notions where authority over a resource is either

governed by the resource itself or by a trusted centralized party (as with e.g. access

control lists or �le permissions). Without a proper capability to do so, no resources

can be accessed. In other words, capabilities avoid ambient authority, a type of

omnipresent authority held by many components, that can be exercised without

requiring an explicit capability to do so. Global variables are an example of ambient

authority.

The appeal of explicitly representing and delegating authority in this way is that

applications become easier to compartmentalize and audit for security, and �exible,

powerful design patterns emerge. We discuss these advantages in some more

detail below. Examples of capability systems are Capsicum [172], EROS [139] and

CHERI [176]. Examples of capability-based languages are E [105], Pony [35] and

Wyvern [112].

One of the main motivators for capability-based security is the Principle Of Least

Authority (POLA), also called Principle Of Least Privilege [135]: it stipulates that each

component should only possess direct authority over those resources it requires

for its proper and legitimate functioning. For example, a user application that

solely requires access to directories under a certain path should not be provided

with authority to access the entire �le system. Implementing POLA becomes far

simpler in a capability setting, because capabilities explicitly represent authority,

thereby avoiding ambient authority, and because they can carefully be handed out on

a need-to-know basis. Adhering to POLA decreases the coupling between di�erent

components and increases compartmentalization, making components easier to audit

and increasing their security. As a side bene�t, this principle reduces the impact

of so-called confused deputy attacks; attacks where a bug in a component causes it

to (accidentally or maliciously) misuse its authority. A bug in the aforementioned

POLA-compliant user application can only lead to abuse under the path it has received

authority for, as opposed to the entire �le system.

The Principle of Intentional Use is a second principle that is satis�ed by capabili-

ties [107]. It further reduces the risk of confused deputy attacks. This principle

dictates that any component must express its intent to exercise authority explicitly:

for example, a call into a �le system library should require a capability to access

the appropriate part of the �le system, and at the assembly level, ISA instructions

must explicitly provide capabilities for memory as arguments. This principle makes

confused deputy attacks harder to execute, since an attacker needs to trick its victim

into misusing a speci�c capability, rather than tricking the victim into exercising its

general authority.

Lastly, in order to prevent di�erent components from accessing each other’s

capabilities a mechanism to limit the scope of capability authority is required. In other

CAPABILITY MACHINES 5.

words, a controlled form of non-monotonicity needs to be supported, such that the

accessible set of capabilities can be swapped during a context switch. Additionally,

a form of controlled invocation is desired, such that not all components can freely

invoke one another, as this constitutes a form of ambient authority. Thirdly, �exibility

of the system is improved if the right to invoke other components is made transferable.

The capability-style solution to all of these concerns is to provide support for object

capabilities: a special type of unforgeable, transferable reference that represents the

rei�ed authority to invoke (part of) the interface of another object or component.

Closures and software objects are two ways of implementing object capabilities. Note

that treating objects like capabilities brings other bene�ts related to compositional,

object oriented design [105], which we will not be focusing on in this introduction.

Faithfully adhering to the capability philosophy makes a system or language capability

safe, and renders it impossible for a component to access any resource without a

proper capability to do so. At the systems level, commodity operating systems often

do not achieve capability safety, because they do not break up authority to access e.g.

the �le system, and do not handle authority as a �rst class citizen, allowing processes

to share it in restricted ways.

At the language level, note that many (statically or dynamically) type-safe languages

(e.g. Java or Rust) are memory safe, but not capability-safe: they enforce memory

safety (through a type system, garbage-collection, dynamic bounds checking, etc.)

but they do allow arbitrary external libraries to be imported and invoked, without

requiring object capabilities to do so. This increases the trusted computing base of

any code and makes auditing for security more di�cult, since the code needs to be

inspected to �nd out its concrete dependencies. Thus, memory safety can be seen as

a weaker, memory-only approach to capability safety. Even here, many backdoors in

existing safe languages undermine the provided safety guarantees. For example, Rust’s

unsafe construct, Foreign Function Interfaces (FFIs), Java’s re�ection, and Haskell’s

unsafePerformIO all provide di�erent forms of ambient authority and potentially

undermine their respective type system’s guarantees.

1.1.2 Capability machines

Capability machines are a speci�c type of ISA that implements support for hardware

capabilities
1
, the primitive of interest in this dissertation. Capabilities are a low-level,

�exible primitive that represents hardware-enforced, bounds-checked authority to

access system resources. The main appeal of capabilities is that they allow for �ne-

grained memory protection and compartmentalization, as we will discuss below. They

additionally satisfy the principle of intentional use, because ISA instructions that

1
Further mentions of “capabilities” refer to this speci�c variant.

6 INTRODUCTION

manipulate system resources require the proper authority of capabilities in their

argument registers.

In the 1960s, Dennis and Van Horn [42] were the �rst to de�ne a notion of capability.

The book of Levy [94] provides a more general historical introduction
2
. The �eld

has a rich history with many research and industry projects, but never saw general

adoption. Over the last decade however, Cambridge’s Capability Hardware Enhanced

RISC Instructions (CHERI) project [175] has renewed interest into the technology, and

paved a path towards practical usage. One reason for this turnaround was mentioned

in the introduction: the growing importance of security alongside performance,

necessitated by an increasing number of software interactions. Recently, Arm has

taken a keen interest in the CHERI project, and announced the Morello prototype, an

experimental capability board that augments an Armv8-processor with CHERI-like

extensions [12, 11]. In a recent research paper, Intel demonstrated a probabilistic take

on capabilities [91].

Capabilities can be used to protect various types of resources:

• Memory capabilities are the most primitive type of capability, authorizing

certain memory operations (e.g. reading r, writing w, executing x, or

combinations thereof) within a hardware-enforced, bounds-checked memory

region. Figure 1.1 illustrates the �elds typically present in a memory capability:

the capability permits exercising permissions perm on a memory segment from

address base to end, and currently points to address addr .

• Enter capabilities (also called sentry capabilities [175]) represent the right to

invoke a procedure, potentially in another trust domain [28]. They cannot be

executed directly and disallow regular reads or writes to their address range.

They can only be jumped to, causing the enter capability to transition into

an executable memory capability. The resulting capability is loaded into the

program counter (pc) register, e�ectively causing a context switch to occur.

In other words, enter capabilities are an instantiation of object capabilities

comparable to closures in high-level languages.

• I/O capabilities protect access to speci�c devices or �les. In case the ISA supports

Memory-Mapped I/O (MMIO), I/O capabilities can be represented by regular

memory capabilities.

Some architectures support variants of the above capabilities (e.g. non-duplicable

memory capabilities called linear capabilities [144]), or entirely di�erent capabilities

(e.g. sealing capabilities for the symbolic encryption of other capabilities [175]), which

we will introduce throughout the text as required.

2
Some of the capability machines described in this book, e.g. the one by Dennis and Van Horn, are not

implemented in the ISA, but rather, consist of a supervisor- or hypervisor-level software implementation.

Nevertheless, there are large similarities between both styles of implementation at this level of abstraction.

CAPABILITY MACHINES 7

Memory

end

base

addr

I
n

c
r
e
a
s
i
n

g
A

d
d

r
e
s
s
e
s

perm base end addr

Memory Capability

Figure 1.1: Typical �elds and authority of a memory capability.

One of the main selling points of capability machines is that they provide a

deterministic form of spatial memory safety: memory capabilities track bounds

and permissions on (subranges of) allocated pieces of memory, and they prohibit

accesses to memory that fall outside of these bounds. This prevents e.g. bu�er

overreads and -writes by construction. On the other hand, temporal memory safety

disallows dereferencing pointers to freed memory (so-called dangling pointers) or

uninitialized memory and is harder to guarantee on a capability machine. However,

enforcing it is equally critical, since temporal violations allow attackers to copy or

manipulate the victim’s capabilities and hence its authority. One line of research

has investigated low-overhead ways of guaranteeing temporal heap safety in CHERI

through parallelizable revocation sweeps [182, 55], whereas other capability machines

have tried to incorporate temporal safety by design, by including identities that are

bound to an allocation’s lifetime into the capability metadata [106, 134].

Guaranteeing memory safety (both spatial and temporal) in low-level languages is an

important issue for which tools and solutions exist but are insu�ciently employed:

Microsoft reports that over the last decade, ~70% of annually �led CVEs (Common

Vulnerabulity Exposures, a type of bug report) across their products were caused by

memory safety issues [153], and Apple reports consistent numbers around 60% for

consecutive versions of macOS and iOS [82]. Microsoft estimates that in 2019, at least

31% of the reported vulnerabilities in their products would be prevented by applying

the type of spatial memory safety found in CHERI, and at least 67% by including

temporal safety [75].

On top of this (spatial) memory safety, enter capabilities can provide support for

lightweight compartmentalization. When jumping to an enter capability, the caller

causes an intra-address-space domain transition to the trust domain of the callee. This

domain transition can be implemented without requiring intervention of a centralized

authority [see e.g. 94, chapter 4], and hence incurs less overhead than a process-level

8. INTRODUCTION

context switch on a commodity architecture. Hence, enter capabilities allow for a

move away from virtual memory as a coarse-grained security primitive, replacing

it with �ne-grained components in scenarios with complex interactions between

di�erent stakeholders. An example application is kernel protection, where enter

capabilities can help reimplement a monolithic single-protection-domain kernel in a

compartmentalized way.

The security properties we discussed are predicated on the unforgeability of

capabilities: an attacker that can create capabilities out of thin air (i.e. in a non-

monotonic way) can undermine capability safety. At the same time, unforgeability

provides inherent security bene�ts as well, because it allows distinguishing between

code and data, thereby making e.g. control-�ow hijacking more di�cult. Di�erent

capability machines ensure unforgeability in di�erent ways: either a hardware tag

bit denotes whether a memory location corresponds to a capability (as is the case

in CHERI), or the capability’s metadata �elds are stored separately in protected

shadow memory and indexed by either the pointer’s address (e.g. in Hardbound [43]

or Intel MPX [117], although the latter is arguably not a capability system) or a pointer

identity stored with the pointer itself (as is the case in HeapCheck [134]). The di�erent

solutions trade o� between the desired protection properties we mentioned in the

introduction: backwards compatibility with existing binaries and ISAs, support for

temporal memory safety, runtime overhead, spatial locality, virtual memory size and

�ne-grainedness of protection; Saileshwar et al. [134] provide a high-level discussion.

1.1.3 CHERI

Throughout the thesis, we will use formal models of various capability machines, all

of which draw inspiration from the CHERI capability machine. For this reason, and

because CHERI is spearheading the new wave of capability machines, this subsection

brie�y focuses on CHERI speci�cally. The discussion here will be restricted to the

high-level concepts and design philosophy underlying CHERI [174], as Chapter 2 in

particular provides a gentle introduction to the more technical aspects of the semantics

and models we use, and how to program in them.

The aim of CHERI is to extend existing ISAs with support for capabilities, obtaining the

bene�ts of �ne-grained memory protection and compartmentalization we mentioned

in Section 1.1.2. However, CHERI additionally considers performance and backwards

compatibility as important design constraints that must be met if a capability machine

is to see large-scale practical adoption. This gives rise to a careful design process,

where di�erent trade-o�s must be made.

Initially, CHERI was a speci�cation for 256-bit architectural capabilities on the 64-bit

MIPS architecture. In the meantime, the same protection mechanisms have also

been applied to other RISC architectures: to 32/64-bit RISC-V and to an experimental

CAPABILITY MACHINES 9

version of 64-bit ARMv8-A (as part of the Morello project mentioned above [11]),

demonstrating portability of the protection model [175]. As part of this expansion to

di�erent architectures, a compressed capability format in �oating point style called

CHERI Concentrate was developed to decrease memory footprint and hence increase

practical applicability [179]. This resulted in compressed 128-bit capabilities on 64-bit

architectures (CC128) and 64-bit capabilities on 32-bit architectures (CC64).

For each variant of CHERI, a formal speci�cation in the Sail ISA speci�cation

language [13] has been written [14, 132, 18]. The Sail models can be used to generate a

C or OCaml emulator for the processor, to validate processor implementations against,

and they can be exported to de�nitions in various proof assistants. They have proven

useful in the past to verify various security properties of interest over the full-scale

CHERI variants [110, 18]. Section 2.10.3 discusses the relationship to our models and

proofs in more detail.

CHERI is a tag-based capability machine; metadata is stored in-band (i.e., adjacent

to the raw pointer data), and capabilities are protected using a single, unforgeable

tag bit, that denotes whether a speci�c capability-aligned memory region contains

a capability or not. Since currently no DRAM memory with built-in tag bits exists,

CHERI stores tags in a separate shadow region of main memory. However, since

caches can more easily be widened, tag bits are threaded through the cache hierarchy,

avoiding split data and tag caches. By compressing the shadow tag region and

organizing it in a hierarchical way, while also introducing a bottom-level cache for

tags that further exploits spatial and temporal tag locality, DRAM tra�c overhead

caused by tags was reduced to < 5% on pointer-intensive workloads, and < 1% on

most regular workloads [74].

All CHERI capabilities are of the memory capability format presented in Figure 1.1,

with an additional otype (object type) �eld that is used for sealing, which will be

explained in Chapter 4. In other words, no special type of capabilities for I/O is

provided, as these are subsumed by memory capabilities through the use of MMIO.

Enter capabilities are implemented by having memory capabilities take on a special

sentry permission e, similar to the historic M-Machine [28].

We now discuss the two aforementioned design principles for CHERI, backwards

compatibility and performance, in more detail.

First, to support backwards compatibility, CHERI follows an incremental deployment

philosophy: existing compiled codebases should be able to run unaltered on top

of CHERI hardware and bene�t from coarse-grained protection, and critical parts

can be gradually recompiled to bene�t from more �ne-grained memory protection.

One of the main motivators for this philosophy is the existence of large, compiled

C/C++ codebases made up of systems code (for e.g. kernels or language runtimes).

For this approach to work, good tooling support is required: the compiler should for

10 INTRODUCTION

example be able to use source-level information to transform references in the source

language into capabilities at the target level, while requiring only minimal rewrites

for edge cases at the source level. To this end, the Clang/LLVM-compiler [64] has

been extended to provide support for the architectures that CHERI runs on.

To have the choice of �ne- versus coarse-grained protection in the back-end, two

di�erent sets of load and store instructions are present: one where an o�set is loaded

into a general purpose register and a coarse-grained data capability present in the DDC

(Default Data Capability) register grants the necessary authority, and an alternative

�ne-grained set of instructions where an authorizing capability is directly provided

in a general purpose register. Supporting both sets of load and store instructions does

not waste opcode space in CHERI-RISCV (where opcode space is more limited than

in CHERI-MIPS), since a mode bit �ag on the pc capability is used to select between

both sets of encodings for the di�erent load and store instructions.

When running compiled legacy code, the DDC approach can be used to compart-

mentalize the unaltered component as a whole, whereas during recompilation pure

capability code can be generated to replace all pointers by proper capabilities, so that

the more �ne-grained set of instructions can be used. A hybrid code approach also

exists, where static information or programmer annotations are used by the compiler

to only protect some speci�c pointers. This is mostly useful in code that bridges

between pure capability and legacy code, for example when converting between the

ABIs (Application Binary Interfaces) of pure capability and legacy code. Orthogonal

to these considerations, explicit compartmentalization using enter capabilities can

also be applied by the compiler.

In order to further improve backwards compatibility, CHERI is designed as a

hybrid capability machine, in the sense that it supports virtual memory alongside

architectural capabilities. This allows conventional software that relies upon this

feature to run unaltered on CHERI. If virtual memory is present and enabled, capability

authority is interpreted as a virtual address range within the active page table

mappings. Currently, page tables are implemented in a non-capability-aware way:

any software with su�cient permissions to change page mappings can install any

mapping from virtual to physical memory, without having to demonstrate authority to

access said memory. However, a proposal to re�ne this and replace physical addresses

with physical capabilities in page table entries exists [175, section D.14.4].

To illustrate backwards compatibility, the FreeBSD operating system [145] was �rst

run on CHERI unmodi�ed [180]. It was then gradually adapted to provide pure

capability support to user processes through an ABI adapter called CheriABI, requiring

only minor changes to the operating system itself [39].

Concerning the second design principle of performance, CHERI manages to keep

overhead relatively low. On CHERI-MIPS (with 256-bit capabilities and without

CAPABILITY MACHINES 11

optimized tag storage and caching), capability-protected code incurred an overhead of

≤ 20% on pointer-intensive benchmarks compared to unaltered MIPS code running on

the same processor [180]. In the meantime, the transition to 128-bit capabilities has

reduced memory footprint and cache pressure. Optimized tag handling has reduced

DRAM overhead, as previously described. Comparing unoptimized CHERI-MIPS

to BERI (the processor CHERI-MIPS is an extension of) showed a clock frequency

reduction of 8.1% and an increase in logical elements of 32% [180].

Although these numbers have likely been improved in consecutive versions and

implementations of CHERI, their utility is limited for 2 reasons. First, they were

obtained from an FPGA model of CHERI, not a physical chip implementation. Second,

these numbers re�ect the micro-costs associated with CHERI, but neglect the macro-

bene�ts. The protection and compartmentalization that CHERI provides allows

applications to be implemented di�erently, reducing e.g. the required number of

costly domain switches or run-time checks.

The ARM Morello project will close this knowledge gap. First, it provides the �rst

physical processor running CHERI protection. Second, it promises to deliver the

software models required to test the true, practical overhead incurred by real-world

applications running on CHERI. Large companies like Google and Microsoft have

committed themselves to writing software for the Morello platform [12]. This will

help overcome one of the biggest hurdles in hardware design: the cyclic dependency

between novel hardware and software models developed for this hardware. Without

practical hardware implementations, software developers are reluctant to invest

su�cient funds and manpower into corresponding software models. Without software

models to develop hardware for, it is di�cult to demonstrate the utility of the hardware

implementation.

To summarize, CHERI’s protection characteristics can be decomposed as follows in

terms of the four desirable protection properties mentioned in the introduction:

• Flexibility: Capabilities are a very low-level, �ne-grained and general-purpose

primitive. Their utility has been demonstrated across architectures.

• Backwards Compatibility: Legacy binary code can run on CHERI unaltered.

When recompiling source code, CHERI allows for incremental deployment, in

order to apply its �ne-grained protection gradually.

• Cost: We discussed the cost of extending the BERI processor to implement an

unoptimized version of CHERI-MIPS above. The Morello project will provide

us with more accurate estimates of CHERI’s real world cost, in terms of runtime

overhead, but also hardware and energy cost, and developer overhead.

• Limited Trust: CHERI has so far been added to RISC architectures, as a

relatively small set of ISA instructions. This provides us with a small TCB.

However, since capabilities are a low-level primitive, using them to write correct

12. INTRODUCTION

and secure applications is di�cult. Good tooling support (compiler, higher-level

languages, . . .) is hence required, and CHERI programs are good candidates for

veri�cation, as we will discuss in this thesis.

1.2 Formal reasoning about capability code

How can we be sure that the security claims made by the designers of CHERI and other

capability machines hold up? In large part, this question is answered by proving that

the machine is indeed capability safe, i.e. that there is no way to escalate capability

authority. We did not have the reasoning tools and techniques to do this when

capabilities were invented in the 60s, but in the meantime, formal methods have been

developed that allow us to prove capability safety.

For practical purposes however, reasoning about safety of a capability machine does

not su�ce: the end goal is to reason about the behavior of concrete code of interest,

and how it can satisfy properties of interest in the presence of untrusted code. The

reason we can sensibly reason about concrete code is that capability safety provides

an upper limit that restricts the behavior of the untrusted code. It guarantees that no

matter what untrusted code the concrete application code runs against, this code can

never escalate its privileges to trivially compromise security. In this sense, capability

safety can be seen as a universal contract [162] that restricts the authority of arbitrary

adversarial code, enabling modular veri�cation of concrete code.

Abstracting away from our capability setting, a universal contract is a formal

expression of the restrictions that some protection primitive places on arbitrary,

untrusted code. It is universal in the sense that it holds for any code that the protection

primitive is applied to. The contract terminology indicates that a certain upper

bound on the behavior of untrusted code is captured and enforced. Given our broad

interpretation of protection, the applicability of universal contracts is equally broad.

A few examples are as follows:

• Polymorphic functions in System F [63] cannot inspect type variables, satisfying

a form of parametricity [169]. Wadler’s free theorem terminology has a similar

meaning to our universal contracts.

• Haskell code that does not make use of the I/O monad or unsafe functions is

guaranteed to be side-e�ect-free.

• On a capability system, if a component has no access to a capability to conduct

I/O with, invoking this component will not cause side e�ects.

We provide further discussion of universal contracts throughout the following

chapters, particularly in Section 2.10.4.

FORMAL REASONING ABOUT CAPABILITY CODE 13

Section 1.2.1 now describes a general template methodology for reasoning about

concrete code in the presence of untrusted code, which we will follow. This template

demonstrates the role universal contracts play in the bigger picture. Section 1.2.2

discusses the meaning of universal contracts in our capability machine setting, and

outlines the di�erent protection properties we will formalize through universal

contracts within this dissertation.

1.2.1 Template for formal reasoning about mixed-trust sys-
tems

Figure 1.2 illustrates a common series of steps involved when formally verifying

properties of interest for concrete code that interacts with arbitrary, untrusted code.

This schema transcends our speci�c capability setting: it applies to any low- or high-

level setting in which known code that can be veri�ed with a program logic interacts

with untrusted code that has its authority restricted by some protection primitive

[see e.g. 152, 78, 142, 136].

The reasoning occurs in three di�erent steps. First, any initial conditions of the system

(e.g. the state of memory and registers, the state of hardware) are translated from

the physical domain to conditions in the logical domain (1). Then, a program logic

along with universal contracts is used to reason about the execution of the program

in the logical domain (2). The result will be some statement in the logic (e.g. in

the form of a Hoare triple), saying that the code satis�es a property of interest. To

transport this statement back from the logical to the physical domain, a soundness

(sometimes also called adequacy) property is required (3), which states that claims

that the logic makes about physical execution, actually hold true for the execution in

the physical domain. The rest of this section describes step 2 in more detail.

To perform reasoning in the logical domain, a program logic is built to reason about

concrete code, and a semantic model (typically a logical relations model, see e.g. [128])

is built to capture the guarantees provided by the universal contract. Once the notion

of universal contract has been de�ned, a well-known type of theorem called the

Fundamental Theorem of Logical Relations (FTLR, cfr. Figure 1.2) is used to prove that

the universal contract is indeed satis�ed for arbitrary code. To be precise, in order for

the fundamental theorem to apply, the untrusted code is still required to satisfy some

syntactic well-formedness property (e.g. well-typedness in a certain syntactic type

system, not having access to certain system resources or capabilities, requiring some

hardware TCB to be set up correctly, . . .). The fundamental theorem hence proves

that code satisfying this syntactic property also satis�es the semantic logical relation.

It is convenient for the semantic model to reuse judgments from the program logic (e.g.

Hoare triples or weakest preconditions) in its de�nition. This enables incorporation

14. INTRODUCTION

Application Code Untrusted Code

Calls

Program Logic Universal Contract

Physical Domain

Logical Domain

Uses

1 32 2 FTLR

1 Initial Conditions 2 Reasoning 3 Soundness

Figure 1.2: High-level set-up involved when reasoning about trusted Application

Code that interacts with Untrusted Code.

of proofs or invariants for concrete code into universal reasoning when concrete code

calls untrusted code, and allows doing the opposite when untrusted calls concrete

code. This also allows reuse of e.g. Hoare triples proven in the program logic in

the proof of the FTLR. Lastly, because judgments of the program logic are reused

in universal contracts, the soundness statement of the program logic can be used to

transport proofs involving both concrete and untrusted code back to the physical

domain in step 3 .

1.2.2 Outline: the di�erent protection mechanisms and uni-
versal contracts we consider

In our setting, the protection primitive that gives rise to a universal contract will

always be some variant of capabilities. The spatial protection and compartmental-

ization that capabilities provide, naturally enables intra-address-space protection

in the presence of untrusted code. In this sense, the universal contract can be

seen as an expression of the capability safety of the modeled capability ISA. The

capability machine models employed in this thesis are simple, to allow prototyping

novel concepts required for formal reasoning. As we will discuss in Chapter 6, we

hope to introduce more automation and extend the complexity of our models to

realistic capability machines in future work.

We now discuss the di�erent protection mechanisms and corresponding instantiations

of the universal contract philosophy that arise throughout the thesis.

First, Chapter 2 provides a gentle introduction to the thesis, describing Cerise: the

combination of an operational semantics, a program logic and universal contracts

(with FTLR) for a basic capability machine. The semantics only supports two types of

FORMAL REASONING ABOUT CAPABILITY CODE 15

capabilities: regular memory capabilities, and enter capabilities that are encoded as

memory capabilities with an e permission. The universal contract is formalized as a

logical relation that captures the spatial protection provided by memory capabilities,

and the compartmentalization provided by enter capabilities. As an example of the

type of reasoning possible in Cerise, consider an application that contains a trusted

and an untrusted compartment. The untrusted code solely has object capabilities

to invoke the trusted code, and will notably not receive any (direct or indirect)

memory capabilities to the local state of the trusted compartment. This syntactic

condition ensures that the FTLR applies. Compartmentalization then allows the

trusted compartment to uphold arbitrary invariants over its encapsulated local state,

while interacting with the untrusted code.

Cerise is in fact a simpli�ed version of a more complicated model we developed in

prior research [62], which included two additional types of capabilities, namely local

and uninitialized capabilities. Local capabilities were already present in CHERI, but

the concept of uninitialized capabilities was original to this work. This work has not

been included in this thesis. I discuss the publication details and my contribution

in more detail in Section 1.4. The goal of the work was to guarantee a type of stack

safety (more precisely, local state encapsulation of stack frames and well-bracketed

control �ow) within a single address space on a capability machine, without requiring

a trusted stack manager to handle calls between di�erent trust domains. To this end,

the universal contract described how local capabilities allowed for a form of revocable

memory access on top of spatial memory safety, and how uninitialized capabilities

additionally enforced a write-before-read memory discipline.

Next, Chapter 3 studies the addition of e�ects, in the form of Memory Mapped I/O

(MMIO), to the simple Cerise model. The universal contract remains largely unaltered,

except for the fact that untrusted code cannot get direct access to capabilities that

provide access to MMIO (or at least some privileged MMIO regions). We use this model

to reason about encapsulation of security wrappers around MMIO devices, and how

they can guarantee safety properties over interaction traces with the environment

of the capability machine. Using capabilities, it is possible to nest these security

wrappers in a lightweight way without the need for address-space-based isolation.

Chapter 4, in turn, builds a lightweight notion of enclaves (also known as Trusted

Execution Environments or TEEs) on top of our capability machine. Enclaves are

isolated execution contexts that protect integrity and con�dentiality of software

inside the enclave (even against compromised systems software) and that support

attestation. Our enclave design requires sealed capabilities to be added to the set of

capabilities present in Cerise. These capabilities can be used to implement a form of

symbolic encryption, enabling secure communication. Additionally, a hash is required

to compute enclave identities; digests of memory regions. This chapter does not yet

discuss how we formally model enclaves in Cerise, or how we capture the meaning of

trusted execution in a universal contract. This is currently ongoing research, which

16. INTRODUCTION

the future work in Section 6.1.1 provides some more insight into.

Finally, Chapter 5 takes a di�erent, cross-language approach to reasoning, and

studies capability machines as a target for veri�ably secure compilation. Concretely,

the compiler translates separation-logic-veri�ed C-like code into lower-level C-

like code with support for so-called linear capabilities; a type of capabilities that

cannot be duplicated. The intuition behind the compiler is that the a�ne separation

logic resources for memory can be rei�ed during compilation, and represented by

semantically similar linear capabilities at the target level. The source-level separation

logic contracts are enforced as a property at the target level by a combination of spatial

memory safety from regular capabilities, revocation allowed by linear capabilities and

contract checking stubs at the boundaries between trusted and untrusted code. Since

this chapter reasons vertically (cross-language) about the security of the compiler,

as opposed to horizontally (intra-language) in the previous chapters, the form of the

universal contract di�ers from what we discussed in Section 1.2.1. In the next section,

we discuss the general reasoning involved in secure compilation, and how this secure

compiler establishes a cross-language universal contract.

1.3 Secure compilation to capability architectures

In this section, we �rst describe a general notion of secure compilation and outline the

high-level reasoning involved in the secure compilation proofs of Chapter 5. We also

relate the universal contracts from last section to this notion of secure compilation.

Secure compilation is concerned with formally proving that a given compiler preserves

security properties of interest from the source to the target language. At a more

fundamental level, it also seeks the right security properties to formalize compiler

security with, evaluates the usefulness of di�erent properties and investigates how

di�cult the ensuing security proofs are. There is a consensus among researchers that

no single best approach to secure compilation exists, but rather, that di�erent secure

compilation criteria are best applied in di�erent circumstances.

Initially, Abadi proposed full abstraction [1], a now standard way of instantiating

secure compilation [see e.g., 2, 57, 121, 108, 45, 144]. Patrignani et al. [122] provide

a good survey of the research on the topic. Full abstraction is the notion of secure

compilation we employ in Chapter 5, and will be de�ned in more detail there.

Intuitively, it states that any attack that is possible on a compiled target program,

must have already been possible on the original source program. In other words, the

compiler is not allowed to introduce new attack vectors, and can hence not increase

the power of the attacker. More concretely, a successful attack is formalized as the non-

satisfaction of contextual equivalence, a binary notion of observational equivalence

where two programs are considered equivalent if and only if no adversarial context

SECURE COMPILATION TO CAPABILITY ARCHITECTURES 17

exists that can distinguish the two. A compiler is fully abstract if it preserves (source-

to-target) and re�ects (target-to-source) contextual equivalence. The former captures

the above intuition, whereas the latter is a form of compiler correctness.

Although full abstraction has seen a lot of use, it comes with certain trade-o�s and

is not unconditionally the best criterion to apply in any given scenario. This has

to do with the fact that the exact property that is preserved from the source to the

target language (and re�ected from the target to the source) is only implicitly present

in the de�nition: it is embedded in the above notion of contextual equivalence, and

determined by what the context can and cannot observe. This has the advantage

of not requiring explicit formalization of the property one intends to preserve and

avoiding the de�nition of additional relations between e.g. values or e�ects in source

and target languages, but it has disadvantages as well.

First, it potentially preserves security-irrelevant equivalences, if the observational

model in the target language is overly strong. A classical example is fully-abstract

compilation to an assembly language where a context can observe the size of a

program, which might not be security-relevant, but now has to be hidden from

the attacker. Preserving additional equivalences not only comes at the cost of a

harder proof, but potentially at a runtime cost as well, if the target language enforces

properties of interest using dynamic checks rather than a type system or program logic.

Second, the converse situation occurs if the observational model in the source language

is too weak. For example, naively proving full abstraction for a source language that

supports C-style unde�ned behavior is di�cult, since optimizing compilers often re�ne

unde�ned behavior to improve performance. Third, because program equivalence

is only de�ned horizontally, compilers that invalidate simple properties (e.g. safety

properties such as “programs can never output false”) from the source to the target

language can still qualify as fully abstract [125]. This last argument seems of mostly

theoretical importance, since fully abstract compilers in the literature often make

use of vertical proof techniques (e.g. cross-language logical relations or simulation

relations) to prove the horizontal contextual equivalences, avoiding such pitfalls.

Given these criticisms, parallel research has investigated a whole lattice of secure

compilation criteria, stated as di�erent forms of robust preservation of hyperproperties

(sets of sets of program execution traces) [4]. This research uses trace-based semantics

in order to provide an intentional, explicit account of the properties that secure

compilation preserves. No practically useful relationship between full abstraction and

hyperproperty preservation has been demonstrated at the time of writing, although

Abate et al. [4] showed that some of their criteria imply full abstraction, and Abate et al.

[5] derived a criterion that subsumes both full abstraction and robust hyperproperty

preservation. However, the practicality of this criterion remains to be illustrated. Other

criteria have been proposed as well, including modular [123] and probabilistic [2]

variants of full abstraction, trace-preserving compilation [125], and variants that allow

for static and dynamic compromise of components [76, 3].

18 INTRODUCTION

Target Context Compiled Program

Link

Source Context Source Program

Link

Target Language

Source Language

Behavioral

Equivalence

Back-Translation Compilation

Figure 1.3: High-level overview of how security is proven for a speci�c compiler: a

Source Program and its compilation Compiled Program and a Target Context are

given. A Source Context has to be constructed such that an appropriate behavioral

equivalence exists between source and target code.

What most of these approaches have in common, is that security is proven by

demonstrating that an attacker context has no more power in the target language

than in the source. This is achieved by means of a so-called back-translation: a target-

to-source transformation, either of the target context directly, or of its trace semantics.

The back-translation operates as a dual to compilation, and aims to represent the

target-level attacker in the source semantics. Figure 1.3 illustrates this abstract view

of a secure compilation proof involving a back-translation: a Source Context needs

to be constructed that guarantees behavioral equivalence between source and target

code. The intuition is that if such a context can be constructed, then all possible

attacks that can be performed in the target language could already be performed

in the source language as well, meaning that the compiler preserved the security

properties of interest. The chosen secure compilation criterion and proof technique

can place further constraints on the back-translation (e.g. whether it can depend on

the Compiled Program) and on the notion of behavioral equivalence (e.g. its arity;

how many Source Programs have to considered simultaneously).

Interestingly, the notion of behavioral equivalence in Figure 1.3 gives rise to the

following cross-language notion of universal contracts: arbitrary, untrusted target-

language contexts can be represented by some behaviorally equivalent source-level

representation in the source language. This might not seem like a real contract at

�rst, but it implies that the back-translated target context can be interpreted as a

source-language speci�cation of the target context. In the compiler of Chapter 5, the

universal contract interpretation becomes more explicit, since the back-translation

translates the protection mechanism of capabilities to code that is veri�ed against an

actual contract (in separation logic). This contract is a generally applicable correctness

contract that represents the authority carried by capabilities in the original target-

level code, and which all back-translated code is veri�ed against. In other words, this

contract captures the guarantees we obtain from the semantics of (linear) capabilities.

CONTENTS OF THE THESIS 19.

1.4 Contents of the thesis

Having provided an overview of the reasoning techniques involved in the coming

chapters throughout the previous sections, Section 1.4.1 brie�y enumerates the

contents and motivation of each chapter. Then, Section 1.4.2 lists the work that

has not been included into the thesis.

1.4.1 Included contents

Chapter 2 presents the Cerise capability machine, its program logic and universal

contracts, and discusses the examples we veri�ed in it. The Cerise model represents a

least common denominator, that can be extended in various ways to prototype formal

reasoning techniques for di�erent capability features. To illustrate the model, we

verify a counter that depends on encapsulation of private state and a heap-based

calling convention that uses dynamic memory allocation. We also verify an example of

dynamic sealing [152], illustrating that hardware capabilities are su�ciently powerful

to implement design patterns from the object capability literature at the assembly

level.

Next, Chapter 3 adds MMIO to the Cerise model, and discusses how this allows

veri�cation of potentially nested, lightweight security wrappers. The wrappers enable

layered enforcement of full-system safety properties on MMIO traces admitted by

the capability machine. Interestingly, di�erent layers of wrappers can be veri�ed

under di�erent attacker models, and the results obtained by verifying layers closer

to the hardware can be reused when verifying higher layers. This nesting and the

ensuing opportunities for veri�cation are di�cult to achieve e�ciently on commodity

hardware. To illustrate the model, we verify two examples in a three-layer system

of wrappers, where each layer reuses results from the previous one and considers a

more re�ned attacker model.

Chapter 4 introduces sealed capabilities to the model, and illustrates how enclaves

can be built on top of capability hardware in a �exible, bottom-up way. The

chapter discusses our novel capability-based enclave design, culminating in three

implementations: two implementations on top of RISC-V architectures and one on

top of ARM Morello. As mentioned, the formal treatment of enclaved execution is

ongoing work and is discussed in Section 6.1.

Chapter 5 shifts the focus from intra-language to cross-language reasoning, and

discusses a full abstraction proof for a secure compiler from veri�ed C-like code to

C code with support for linear capabilities. In the long run, the hope is to support

a form of gradual veri�cation, where security-critical parts of C codebases can be

20. INTRODUCTION

veri�ed and compiled with this compiler in such a way that security guarantees are

upheld in the presence of buggy or untrusted code.

Finally, Chapter 6 o�ers conclusions and general perspectives about the work. Notably,

it brie�y summarizes ongoing e�orts to place the implementation e�orts from

Chapter 4 onto formal footing, sketching how logical relations can be used to reason

about enclaved execution. Additionally, it discusses ways to lift the abstraction level

at which we reason from assembly to a higher level of abstraction.

The papers included in Chapters 2 to 5 have generally not seen their contents altered

compared to the original publications. The majority of changes that were made to the

papers were esthetical, to �t the �gures and text within the adjusted margins of the

thesis, and to provide the di�erent chapters with a somewhat uni�ed presentation

style (references to �gure/section names, capitalization, . . .). Additionally, some

minor typos and errors were corrected. A few minor additions have been made

to the contents, usually to further clarify speci�c points compared to the original

publications. These minor changes (if any) will be highlighted at the start of each

chapter.

1.4.2 Omi�ed work

The aforementioned work on the formal treatment of stack safety on a capability

machine with local and uninitialized capabilities was omitted in favor of the

Cerise work. The reason is that the Cerise paper was derived from this work and

provides a more general, didactic introduction to reasoning about capability machines.

Concretely, the publications related to stack safety are two-fold. First, a thesis student

of mine implemented the concept of uninitialized capabilities in the formal CHERI-

MIPS Sail model and published the design on arXiv:

Sander Huyghebaert, Thomas Van Strydonck, Steven Keuchel, and Dominique

Devriese. Uninitialized capabilities. arXiv: 2006.01608 [cs]

Second, we published a POPL paper describing the formal treatment of these

capabilities as a tool to guarantee stack safety in a more complicated version of

the Cerise model:

Aïna Linn Georges, Armaël Guéneau, Thomas Van Strydonck, Amin Timany,

Alix Trieu, Sander Huyghebaert, Dominique Devriese, and Lars Birkedal. E�cient

and provable local capability revocation using uninitialized capabilities. Proceedings

of the ACM on Programming Languages, 5(POPL):6:1–6:30, Jan. 2021

I was not the principal researcher of this work, but I contributed to it as part of a

�ve-month research visit to the research group of Lars Birkedal at Aarhus university.

My main contributions were in helping to develop the program logic, verify the FTLR

and set up the examples.

https://arxiv.org/abs/2006.01608

CONTENTS OF THE THESIS 21

Lastly, another thesis student of mine published a workshop paper on a variant of

capabilities called borrowed capabilities, a novel alternative for revoking authority on

a capability machine:

Thijs Vercammen, Thomas Van Strydonck, and Dominique Devriese. Borrowed

capabilities: �exibly enforcing revocation on a capability architecture. Workshop

on the Security of Software/Hardware Interfaces (SILM), 2021

Borrowed capabilities constitute another point in the capability revocation design

space, next to linear and local capabilities. Their semantics are similar to the notions

of ownership and borrowing in substructural type systems like Rust’s.

Chapter 2

Cerise: Program Verification
on a Capability Machine in
the Presence of Untrusted
Code

Publication Data

This paper is currently in submission at the Journal of the ACM (JACM). Its publication

data are as follows:

Aïna Linn Georges, Armaël Guéneau, Thomas Van Strydonck, Amin Timany,

Alix Trieu, Sander Huyghebaert, Dominique Devriese, and Lars Birkedal. Cerise:

program veri�cation on a capability machine in the presence of untrusted code. In

Submission

It is derived from the previously mentioned paper about a secure calling convention

employing local and uninitialized capabilities that was accepted at POPL, but is

more accessible and contains novel examples. The Cerise work was hence included

in the latter paper’s stead. Additionally, this paper is helpful in understanding the

foundations of the formal reasoning we require in Chapters 3 and 4 of this dissertation,

where we will reason about additional features on top of the ones presented here.

As with the secure calling convention research, I am not the principal author of this

work. My contribution to this speci�c paper is limited to the proofs about the capability

23

24. CERISE: PROGRAM VERIFICATION ON A CAPABILITY MACHINE

machine itself; I helped set up the program logic for the machine, and assisted in

proving its fundamental theorem. I did not contribute to the novel examples worked

out here (although I did help proofread the corresponding sections).

A prior, more limited, French version of this paper has been peer-reviewed and

presented at Journées Francophones des Langages Applicatifs (JFLA):

Aïna Linn Georges, Armaël Guéneau, Thomas Van Strydonck, Amin Timany,

Alix Trieu, Dominique Devriese, and Lars Birkedal. Cap’ ou pas cap’ ?: Preuve de

programmes pour une machine à capacités en présence de code inconnu. French.

In Journées Francophones des Langages Applicatifs 2021. Institut de Recherche en

Informatique Fondamentale, Apr. 2021

Abstract

A capability machine is a type of CPU allowing �ne-grained privilege separation using

capabilities, machine words that represent certain kinds of authority. We present a

mathematical model and accompanying proof methods that can be used for formal

veri�cation of functional correctness of programs running on a capability machine,

even when they invoke and are invoked by unknown (and possibly malicious) code. We

use a program logic called Cerise for reasoning about known code, and an associated

logical relation, for reasoning about unknown code. The logical relation formally

captures the capability safety guarantees provided by the capability machine. The

Cerise program logic, logical relation, and all the examples considered in the paper

have been mechanized using the Iris program logic framework in the Coq proof

assistant.

The methodology we present underlies recent work of the authors on formal reasoning

about capability machines [62, 143, 160], but was left somewhat implicit in those

publications. In this paper we present a pedagogical introduction to the methodology,

in a simpler setting (no exotic capabilities), and starting from minimal examples.

We work our way up to new results about a heap-based calling convention and

implementations of sophisticated object-capability patterns of the kind previously

studied for high-level languages with object-capabilities, demonstrating that the

methodology scales to such reasoning.

2.1 Introduction

A capability machine is a type of CPU that enables �ne-grained memory compart-

mentalization and privilege separation through the use of capabilities. This type of

hardware architecture has been studied since the 1960’s [42, 94], and in particular more

INTRODUCTION 25

char* p = malloc(10);

Standard CPU Capability machine

0xFF18CE0 base: 0xFF18CE0
end: 0xFF18CEA
addr: 0xFF18CE0

perm: rw

1 capability/1 word

Figure 2.1: Representation of a pointer in a standard architecture vs. a capability

machine. A capability is similar to a pointer with extra meta-data.

recently as part of the CHERI project [175]. Capability machines o�er �ne-grained

and scalable privilege separation at the hardware level and they are a compelling

target for secure compilation [144, 51, 162, 32].

Capability machines distinguish, at the level of hardware, between machine integers

and capabilities; and a capability can be understood as a pointer with associated

metadata, cfr. Fig 2.1. A machine word containing an integer value can only be used

for numerical computations and cannot be used as a pointer to access memory. On

the other hand, a machine word containing a capability can be used to access a given

portion of memory, depending on the metadata contained in the capability. We also

say that the capability has authority over some fragment of memory.

A capability thus corresponds to a native machine value, and can be stored in a CPU

register or in memory. While this might seem wasteful due to the amount of extra

metadata that needs to be carried around, for realistic capability machines a lot of

work has been dedicated to the design of compressed representations for capabilities,

see, e.g., [179, 28]. In this paper, we will abstract from these details and represent

capabilities in their uncompressed form, as a tuple carrying the metadata.

A capability machine guarantees the integrity of capabilities: one cannot create fresh

capabilities out of thin air or modify the metadata of existing capabilities in arbitrary

ways. For instance, CHERI associates tags to machine words to identify whether they

represent a capability or an integer. Such a tag bit is checked and set by the machine,

and is not directly accessible by software. More generally, new capabilities can only

be derived from existing capabilities using a restricted set of operations provided

by the machine. As such, all capabilities on the system are recursively derived from

the full-authority capabilities that are initially provided to software at boot time.

Intuitively, the machine ensures that a given program cannot forge capabilities and

26 CERISE: PROGRAM VERIFICATION ON A CAPABILITY MACHINE

obtain more authority than it held previously, a property sometimes referred to as

capability monotonicity [110].

Capabilities therefore allow a piece of code to interact securely with untrusted third-

party code, even within the same address space, by restricting the set of capabilities

the untrusted code (transitively) has access to. In a system composed of mutually

untrusted components (which might even contain malicious code), capabilities provide

a way of enforcing that the overall system nevertheless satis�es some security

properties.

Note, however, that capabilities are low-level, �exible, building blocks, which operate

at the level of the machine code and whose metadata “just” triggers some additional

runtime checks by the machine. This means that the properties we can actually

enforce using capabilities crucially depend on how we use capabilities: the variety of

properties that can be enforced stems from how one can use and combine capabilities.

In this paper we show how we can formally prove that security properties are enforced

for some known veri�ed code, even when that code is linked with unveri�ed untrusted

third-party code. Our model of interaction between the known and unknown code

is very simple: we assume the code is in the same address space and that control

is transferred from one to the other using an ordinary jump instruction. We focus

on a restricted subset of the capabilities present in the CHERI architecture (using

only “normal” read/write capabilities and a kind of so-called sentry capabilities,

which provide a basic form of encapsulation, see Section 2.2.4). Because the security

properties we consider hold even in the presence of unveri�ed unknown code, they

are sometimes referred to as robust safety properties [152]. The security properties we

focus on are centered around memory compartmentalization, in particular, local state

encapsulation. We consider a range of examples, starting with very basic examples

(sharing a bu�er with some unknown code), through implementations of closures with

encapsulated state, and end up with a quite sophisticated low-level implementation

of an interval library, for which we show that certain representation invariants are

preserved, even when interacting with unknown code.

We proceed as follows:

• We �rst explain informally how one can program with capabilities and use

capabilities to enforce memory compartmentalization (Section 2.2).

• We then introduce the formal operational semantics of a simple capability

machine with sentry capabilities (Section 2.3).

• We de�ne the Cerise program logic which can be used to formally verify the

correctness of programs running on the capability machine. Our program logic

is de�ned by instantiating the Iris framework [80], which provides an expressive

separation logic with powerful reasoning principles, including, in particular,

the notion of a logical invariant (Section 2.4).

INTRODUCTION 27

• We de�ne, using our program logic, the speci�cation of what a “safe” capability

and a “safe” program is. Intuitively, a capability (respectively, a program) is

“safe” if it cannot be used to invalidate an invariant at the logical level. Hence,

safe capabilities can be shared freely with unknown code. Safety of a capability

is de�ned in the program logic as a unary logical relation (Section 2.5).

• We show that if a program only has access to “safe” values, then running

the program itself is also “safe”. This is a global property of the capability

machine, expressing its capability safety: it is not possible to increase one’s

authority beyond what was available initially, independently of the sequence of

instructions that one executes (Section 2.5). Concretely, the theorem takes the

form of a contract that holds for arbitrary code,
1

and which can be combined

in the program logic with manual proofs for trusted code. The last piece of

the puzzle is then a so-called Adequacy theorem (Section 2.4), which relates

invariants established in the program logic to the operational semantics of

the machine. Given a concrete scenario (typically, a complete system mixing

known veri�ed code with unknown untrusted code), this makes it possible to

obtain a theorem about the execution of the system which only depends on the

operational semantics of the machine (not on the program logic).

• In Section 2.6 we then return to the examples from Section 2.2 and show how

to use Cerise to formally prove that the desired memory compartmentalization

results really do hold.

• In Section 2.7 we consider more sophisticated examples, which involve

dynamic memory allocation. We focus on the low-level implementation of

ML-like programs, and introduce a heap-based calling convention for closures

implementing ML functions. We extend the earlier Adequacy theorem to

account for dynamically allocated memory.

• In Section 2.8 we demonstrate how to use our methodology to establish

correctness of object capability patterns (OCPs) from the literature. In particular,

we consider the OCP of dynamic sealing, as presented by [152] in the context

of a high-level language and we demonstrate that Cerise can be used to prove

similar results about a low-level implementation of their example.

• Section 2.9 o�ers some perspectives on the relevance of our technical

contributions and how we envision them being used in the development of

secure systems.

• Finally, we discuss related work in Section 2.10.

This paper pedagogically introduces and explains the methodology underlying a

sequence of recent research papers [142, 143, 62, 160], in the form of the Cerise

program logic, but also contributes new material. The operational semantics, program

logic and logical relation discussed in Sections 2.3, 2.4 and 2.5 are based on those used

1
Because it holds for arbitrary code, we sometimes refer to this as a universal contract.

28 CERISE: PROGRAM VERIFICATION ON A CAPABILITY MACHINE

(a) Scenario 1: passing

control to untrusted code

(b) Scenario 2: being called

by untrusted code (possibly

many times)

Figure 2.2: Two scenarios where a (trusted) component interacts with its (untrusted)

context. The trusted component is represented with a plain background, while the

untrusted context is represented with a red dotted background.

by [62] (but we have removed local and uninitialized capabilities as well as Kripke

indexing for simplicity and instead added much more extensive explanations and

proofs). Sections 2.2 and 2.6 are new; they provide a clear and accessible introduction

to capability machine programming and our reasoning tools. The examples in

Sections 2.7-2.8 are also new and represent a non-trivial veri�cation e�ort.

The results and examples presented here have been fully formalized in Coq, and

are available online: https://github.com/logsem/cerise. The development can

also be viewed online at https://logsem.github.io/cerise/journal/; we use

circled numbers such as 1 to link directly to corresponding Coq formal statements in

the following.

2.2 Programming with capabilities

Let us give a taste of how one might use capabilities when writing programs with the

goal of enforcing some additional memory protection or encapsulation guarantees.

We consider a fairly simple but quite general adversarial model, where we wish to

verify the correctness of a known component interacting with a possibly adversarial

third-party component whose code is unveri�ed and untrusted.

In this section we detail two concrete example programs, which use capabilities in

two di�erent scenarios. In the �rst scenario, illustrated in Figure 2.2a, we consider a

program that eventually passes control to the untrusted third-party code, but uses

capabilities to protect a region of memory containing some secret data from being

accessed by the untrusted code. In the second scenario (Figure 2.2b), we consider the

case of a veri�ed component being called by the third-party code. The goal is then

for the veri�ed component to use capabilities to protect (or “encapsulate”) a piece of

https://github.com/logsem/cerise
https://logsem.github.io/cerise/journal/
https://logsem.github.io/cerise/journal/index.html

PROGRAMMING WITH CAPABILITIES 29.

private memory, which it may access during its execution, but which should remain

inaccessible to the unveri�ed code.

2.2.1 Anatomy of a capability (in our model)

We are interested in a subset of the capabilities available in a CHERI capability

machine. We thus work with a simpli�ed machine model, featuring basic capabilities

that are used to give access to a range of memory, as well as so-called “sealed entry”

capabilities (abbreviated as “sentry” capabilities [175, §3.8]) that provide encapsulation

features. The sentry capabilities were also called “enter” capabilities in earlier work,

e.g., in the M-Machine by [28].

Concretely, we model capabilities as 4-tuples (?, 1, 4, 0). In actual hardware,

capabilities are encoded as �xed-size binary words, but here we abstract over their

concrete representation.

Capability: (?, 1, 4, 0)
? ∈ {o, ro, rx, rw, rwx, e} permission

1 ∈ Addr base address

4 ∈ Addr end address

0 ∈ Addr current address

A capability (?, 1, 4, 0) represents a machine word that can be used to access memory

within the region [1, 4) delimited by its base address 1 and end address 4 . The

permission ? speci�es what is possible to do within this memory range: permission o

speci�es that the capability actually gives no access rights, ro grants read-only access

to memory, rx grants the right to read and execute the contents of the memory,

rw gives read and write access, and rwx gives read, write, and execute access.

Capabilities with permission e behave a bit di�erently (they are used to provide

a form of encapsulation), and will be explained later in Section 2.2.4.

A capability is meant to be used as a pointer, and thus additionally points to a speci�c

address 0 (typically, but not necessarily, belonging to the range [1, 4)). Each time

the capability is used to access memory, the machine will automatically check that

0 is between bounds 1 and 4 , and that the access is permitted according to ? . From

a capability (?, 1, 4, 0) it is easy to derive another capability (?, 1, 4, 0′) pointing to a

di�erent address 0′ also within range [1, 4) – in other words, while a capability points

to a speci�c address, it really holds authority over the whole region delimited by its

beginning and end address.

Note that, on a capability machine, machine words can represent not only binary-

encoded capabilities, but also traditional �xed-size integers. However, unlike on a

traditional computer architecture, integers cannot be used as pointers. In other words,

30 CERISE: PROGRAM VERIFICATION ON A CAPABILITY MACHINE

without holding a capability, one cannot access memory at all. In this paper, we rely

on di�erence in notation to distinguish between capabilities and integers. In actual

hardware, this is done by associating an extra one-bit tag to each word to distinguish

capabilities from integers.

2.2.2 Sometimes, failure is a good thing

It is worth pointing out a sometimes counter-intuitive aspect of reasoning about

security of programs running on a capability machine, especially for readers with

a background in reasoning about safety in higher-level languages. For a high-level

language, program safety can be seen as the absence of unde�ned behavior or runtime

errors. For instance, an out-of-bounds array access is unde�ned behavior in C, and

it leads to a runtime error, such as raising an exception, in memory-safe languages

such as Rust or OCaml. We are instead interested in security properties for which a

runtime failure can actually be considered a good thing.

Generally speaking, a low-level machine has many cases where it can fail at runtime,

stopping the normal course of execution. In a standard (non-capability) machine, this

can happen, e.g., if the machine attempts to execute an invalid instruction which

cannot be decoded. The addition of capabilities only adds more possibilities for

runtime faults: each time a capability is used, the capability machine will check that

it has adequate permission and bounds, and raise a runtime fault otherwise.

Now, the point is that, from a security perspective, these additional runtime faults are

a good thing. Using these additional checks, the capability machine turns dangerous

behavior (out-of-bounds accesses leading to bu�er over�ow attacks, etc.) into proper

faults before they can cause damage. Thus, for our purposes, it is always safe for the

machine to fail: it means that an illegal operation may have been attempted, and the

execution has been stopped in response.

Of course, when writing concrete programs, we will typically want to verify that we

do not involuntarily trigger faults, as this would make our programs less useful. But

when interacting with adversarial code, this is a possibility that we have to take into

account anyway: we cannot prevent unknown code from shooting itself in the foot,

e.g. by trying to access memory it does not have a valid capability for, or by decoding

illegal instructions.

To sum up, in this work we reason about security properties that are not violated in

the case of machine failure. This includes, for example, integrity of private data: no

data can be compromised if the machine stops running. It is therefore useful to keep

in mind that we consider failure to be trivially safe!

PROGRAMMING WITH CAPABILITIES 31.

2.2.3 Restricting access to memory by constraining available
capabilities

Consider Scenario 1 from Figure 2.2a: how can one write a program which passes

control to untrusted code while protecting some secret data? That is, we wish to write

a program that sets up capabilities so that its secrets are preserved even after it runs

untrusted code.

The key intuition is that, at any point of the execution, one can only access the part

of memory that is accessible using the currently available capabilities. In other words,

the authority of a running program comes from the set of capabilities which are

transitivitely reachable from the CPU registers.

This is illustrated below, in a scenario where the pc register (“program counter”)

contains a capability with permission rx pointing to some memory region (containing

the code of the program being executed), and register r1 contains a capability with

permission rw, pointing to a region of memory, which itself contains a rw capability

pointing to another memory region. The collection of the “hatched” memory regions

corresponds to the overall subset of memory accessible by the program.

rx

pc
42

r0
rw

r1
...

registers

rw

memory

If one wishes to reduce the set of available memory or its associated access rights—for

instance to protect secrets from being leaked to an adversary—then it is be enough

to constrain the capabilities currently available. This can be done in a few di�erent

ways.

First, one can simply remove a capability from registers in order to remove access

to the memory it was giving access to. For instance, after executing the instruction

“mov r1 0”, which overwrites the contents of register r1 with the integer 0, one loses

access to the memory regions which were previously accessible from the capability

stored in that register.

32 CERISE: PROGRAM VERIFICATION ON A CAPABILITY MACHINE

rx

pc
42

r0
0

r1
...

registers

memory

Alternatively, it is possible to restrict the range of a capability to point to a smaller

memory region. This changes the set of accessible memory to a subset of what was

previously available. For instance, starting from our initial scenario and running

the instruction “subseg r1 a0 a1” will change the range of the capability stored

in register r1 to [00, 01). (The machine will check that [00, 01) is indeed included in

the range of the original capability.) In our example scenario (illustrated below), we

then only keep the beginning of the region accessible from r1, and this entails that

the third region of memory becomes inaccessible, since it was only reachable from a

capability stored at the end of the region accessible from r1.

rx

pc
42

r0
rw

r1
...

registers

00 01
memory

Finally, one can restrict the permission of a capability to a permission that grants

less access rights. For instance, running the instruction “restrict r1 RO” in our

initial scenario modi�es the capability stored in r1 to only grant read-only access to

its corresponding memory region. Note that we still have read-write access to the

last memory region, as we can still read the capability (with permission rw) pointing

to it.

rx

pc
42

r0
ro

r1
...

registers

rw

memory

Example: sharing a sub-bu�er with unknown code Using some of the

mechanisms detailed above, we can implement a very simple program that shares a

PROGRAMMING WITH CAPABILITIES 33.

; initially, PC = (RWX, code, end, code)
; r0 = (unknown) pointer to the continuation
code:

mov r1 PC ; r1 = (RWX, code, end, code)
lea r1 [data-code] ; r1 = (RWX, code, end, data)
subseg r1 [data] [data+3] ; r1 = (RWX, data, data+3, data)
jmp r0 ; jump to unknown code: we give it read-write

; access to the first 3 words of the data,
; but not the secret value

data:
; the first 3 data words contain public data that will be passed
; to the unknown code (the "Hi" string)
’H’, ’i’, 0,
; they are followed by secret data (the integer 42)
42

end:

Figure 2.3: Program sharing a bu�er with possibly adversarial code.

bu�er with unknown, possibly adversarial, code while using capabilities to protect

some data that would otherwise be vulnerable to bu�er over�ow attacks.

The assembly code for the program is shown in Figure 2.3. It consists of a code

section containing the instructions of the program, followed by some data which (for

simplicity) we simply assume to be statically allocated. The data section holds the

zero-terminated string "Hi", which we wish to share with the untrusted code, and

the integer 42 which represents our secret data.

Initially, we assume the program counter to contain a rwx capability for the whole

region holding our program. This capability serves two purposes: it allows the

machine to execute our program, but can also be manipulated by the program itself

to derive a capability pointing to its own data. By convention, the register r0 is

assumed to contain a pointer to the continuation of the program, i.e. other code that

the program will pass control to after it is done executing. As no assumption is made

about the contents of r0, it is conservatively assumed to point to unknown, arbitrary

code.

Our program executes as follows: it �rst loads the capability held by the program

counter into register r1. Then, using the lea instruction, it changes the “current

address” of the capability to point to the data label (lea modi�es a capability by

adding an o�set to its “current address”). In assembly programs, we use the brackets

notation [...] to denote an arithmetic expression that is computed statically when

assembling the program.

34. CERISE: PROGRAM VERIFICATION ON A CAPABILITY MACHINE

At this point, the capability held in r1 points to the start of the "Hi" string, but has

(rwx) authority over the whole code and data section. This capability would be

unsafe to share with the untrusted code, as they could simply use lea to increment

the capability’s current address past the end of the string, and obtain a valid capability

to the secret value (thus performing a basic “bu�er over�ow” attack). To prevent this

from happening, we use the subseg instruction to obtain a capability whose range

of authority is restricted to the sub-bu�er holding the "Hi" string. Finally, we pass

control to the untrusted code by using the jmp instruction, loading the contents of

register r0 into pc.

This example illustrates that even a basic mode of use of capabilities (restricting them

appropriately) can easily prevent bu�er over�ow attacks. In Section 2.6.1, we show

how we can formally prove that, for any untrusted code, the value of the secret data

will be equal to 42 at every step of the execution, including after control has been

passed to the untrusted code. We have also developed a relational model, which can

be used to prove that the secret value cannot even be read by the unknown code, but

the details of this relational model are out of scope of this paper.

2.2.4 Securely encapsulating code and private capabilities

The previous example illustrates how to restrict available capabilities to prevent an

adversary from accessing secret data. However, what if we additionally want our

program to be called back by the untrusted code, as in Scenario 2.2b? In that case,

when the trusted code gets invoked again we would like to recover access to the

capabilities it previously had to its private state.

This is unfortunately not achievable with the capabilities that we have described so

far. If we remove capabilities to private memory before passing control to untrusted

code, then there is no way for us to get them back later on: the only capabilities we

will get access to in a further invocation are capabilities the untrusted code itself has

access to.

Sentry capabilities provide this missing feature. They implement a form of

encapsulation that resembles the use of closures with encapsulated local state in

high-level languages, and they allow implementing compartments which encapsulate

private state and capabilities but can be called from untrusted code. From a security

perspective, sentry capabilities allow setting up protection boundaries: the code

executing before and after an invocation of a sentry capability has di�erent authority

and thus represent distrusting components. We denote sentry capabilities with

permission e (for “Enter”, a terminology originating from the M-machine [28]).

One typically creates a sentry capability pointing to a region of memory describing a

compartment containing executable code and local state (or private capabilities to that

PROGRAMMING WITH CAPABILITIES 35.

local state). A sentry capability is opaque: it cannot be used to read or write to the

memory region it points to, and it cannot be modi�ed using restrict or subseg. It

can thus be safely shared with untrusted third-parties: they will not be able to access

the encapsulated code and data. In the �gure below, the memory region pointed to by

r1 (hatched in gray) is not accessible for either reading or writing.

rx

pc
42

r0
e

r1
...

registers

memory

The only possible operation is to “invoke” the sentry capability using the jmp
instruction, thus passing control to the code held in the region pointed to by the

capability (in other words, “running” the compartment). When jmp is called on a

sentry capability, it turns the capability into a capability with permission read-execute

(rx) over the same memory region, and puts it into the program counter register pc.
This simultaneously runs the encapsulated code, and gives access to the data and

capabilities stored there, which were previously inaccessible. Running instruction

jmp r1 on the scenario of the previous �gure leads to the machine state shown below.

rx

pc
42

r0
e

r1
...

registers

memory

Register pc now contains an rx capability to the previously opaque region, meaning

that code contained in that region can execute. Furthermore, it may access other

capabilities stored in that region, which can in turn be used to transitively access

other private regions of memory.

Example: a counter compartment To illustrate the use of sentry capabilities, let

us consider the example of a simple secure compartment implementing a counter. An

instance of the counter holds a private memory cell containing the current (integer)

value of the counter. Every time the code in the counter’s compartment is invoked,

it increases the value stored in the memory cell. Using a sentry capability, one can

expose the counter to an untrusted context, without giving it direct access to the

counter value.

36. CERISE: PROGRAM VERIFICATION ON A CAPABILITY MACHINE

It is worth pointing out that this is similar to the use of closures encapsulating

local state in high-level languages. Typically, a similar counter program could

be implemented in a high-level language as follows, using a function closure to

encapsulate a reference holding the counter value.

let G = ref 0 in (_(). G := !G + 1; !G)

As before, our actual counter program is implemented in assembly, and its code

appears in Figure 2.4. Its implementation is divided into two parts. First, the code

starting at label init (and ending at code) is used to set up the counter compartment;

it is intended to run only once at the beginning of the program. Then, the region

between code and end corresponds to the contents of the counter compartment itself,

including its executable code (between code and data) and private data (between

data and end).

The role of the initialization code is to create a sentry capability encapsulating the

code–end region, and then pass control to the (untrusted) context, giving it access

to the newly created sentry capability. Additionally, the initialization code stores at

address data a capability giving read-write access to the compartment’s region, and

pointing to the counter’s value at address data+1.

One might wonder why we have this extra indirection to the counter’s value through

the capability in data. Recall that after calling jmp on a sentry capability, the program

counter is only provisioned with an rx capability. For the counter code to be able to

actually increment the counter value (at address data+1), it needs to have write access

to it. The additional rwx capability stored at address data by the initialization code

is thus used to “promote” read access on the compartment’s region into read-write

access to that same region.

The code of the counter’s compartment can then run many times, once each time

the context chooses to invoke the sentry capability it got from the initialization code.

At each invocation, the counter’s implementation (at address code) reads the rwx

capability stored in the data section, uses it to increment the value of the counter, and

passes control back to its caller.

Let us walk through the details of the code. The initialization code is assumed to

run starting with a program counter giving rwx access over the whole program

region. The �rst four instructions derive, from the program counter, rwx capabilities

pointing to addresses data and data+1. Then, using the store instruction, the

capability (rwx, init, end, data+1) is stored at address data. Next, after using lea
and subseg to adjust the address and bounds of the capability, a sentry capability

is created pointing to the compartment’s region [code, end). This is done using the

restrict instruction, turning a capability with permission rwx into a capability

with permission e. Register r2 is then cleared, to make sure that the rwx capability

PROGRAMMING WITH CAPABILITIES 37

; initially, PC = (RWX, init, end, init)
; r0 = (unknown) pointer to the context
init:

mov r1 PC ; r1 = (RWX, init, end, init)
lea r1 [data-init] ; r1 = (RWX, init, end, data)
mov r2 r1 ; r2 = (RWX, init, end, data)
lea r2 1 ; r2 = (RWX, init, end, data+1)
store r1 r2 ; mem[data] <- (RWX, init, end, data+1)
lea r1 [code-data] ; r1 = (RWX, init, end, code)
subseg r1 [code] [end] ; r1 = (RWX, code, end, code)
restrict r1 E ; r1 = (E, code, end, code)
mov r2 0 ; r2 = 0
jmp r0 ; jump to unknown code: we only give it access

; to an enter capability pointing to ’code’
; when ’code’ gets executed from the E capability,
; PC = (RX, code, end, code)
; r0 = (unknown) return pointer to the continuation
code:

mov r1 PC ; r1 = (RX, code, end, code)
lea r1 [data-code] ; r1 = (RX, code, end, data)
load r1 r1 ; r1 = (RWX, init, end, data+1)
load r2 r1 ; r2 = <counter value>
add r2 r2 1 ; r2 = <counter value> + 1
store r1 r2 ; mem[data+1] <- <counter value> + 1
mov r1 0 ; r1 = 0
jmp r0 ; return to unknown code

data:
0xFFFF, ; will be overwritten with (RWX, init, end, data+1), i.e.

; a read-write capability to the counter value
0 ; our private data: the current value of the counter

end:

Figure 2.4: Program implementing a secure counter.

38 CERISE: PROGRAM VERIFICATION ON A CAPABILITY MACHINE

pointing to the counter value is not leaked to the context. Finally, the initialization

code jumps to the pointer in r0, which by convention points to the context.

The compartment’s code (starting at address code) then gets executed each time the

context invokes the sentry capability. Because we have only shared a sentry capability

(e, code, end, code) with the context, we know that when the compartment gets

executed, the program counter must contain (rx, code, end, code). By reading the

program counter, the �rst two instructions of the code then derive an rx capability

pointing to address data, and use it (with load) to read the capability that was

stored there, granting rwx access to data+1. The subsequent load, add and store
instructions use this second capability to increment the value of the counter. Finally,

before returning to the context by jumping to r0, the program takes care of clearing

register r1, overwriting its contents with 0. This is quite crucial, as otherwise an

rwx capability would be leaked to the context, giving it direct access to the counter’s

private state!

To sum up, our example program carefully selects which capabilities it shares with

unknown code, and leverages the encapsulation properties of sentry capabilities

provided by the machine. Consequently, it should seem clear, at least informally,

that the integrity of the counter’s value is guaranteed through the execution. More

precisely, we should be able to formally prove some invariant about it: for instance,

that it is nonnegative at every step of the execution, for any untrusted context. In

Section 2.6.2, we show in more detail how to formally establish this property.

In this section, we have showcased how one might program with capabilities in order

to obtain security guarantees, and make it possible to interact with adversarial code

while protecting private data and invariants.

In the rest of this paper, we show how we can make the intuitions that we have

developed so far more precise, and formally prove capability safety for machine code

programs that interact with untrusted code. Namely:

• We expect to have some concrete known code, which has some private data

and invariants, and interacts with untrusted code.

• We formally de�ne the operational semantics of the capability machine that

we consider (Section 2.3). This precisely de�nes the behavior of the machine

on which the rest of our framework is built.

• Then we develop (Section 2.4) a program logic which supports formally verifying

correctness properties about known code. Given some veri�ed known code, we

would then like to be able to conclude some result about a complete execution of

the machine, when it runs a combination of the known code and some arbitrary

untrusted code.

• To that end we need a way of formally capturing the fact that the machine

OPERATIONAL SEMANTICS OF A CAPABILITY MACHINE 39.

e�ectively restricts the behavior of arbitrary code at runtime, by limiting the

capabilities it has access to. We do this (Section 2.5) by de�ning a logical relation

capturing “capability safety” of arbitrary code.

• By combining the Adequacy theorem of our program logic and the Fundamental

theorem of our logical relation, we can prove safety of concrete examples

(Section 2.6) and obtain theorems about complete executions of the machine.

2.3 Operational semantics of a capability machine

The very basis of our framework is a formal description of the capability machine we

consider: which instructions it supports, and its behavior when it runs and executes

programs. Technically speaking, this description corresponds to the operational

semantics of the machine, upon which the program logic described next in Section 2.4

is built.

Our capability machine draws inspiration from CHERI [175], albeit in a simpli�ed

form, and only covers a subset of the features found in CHERI machines. Compared to

a realistic CHERI machine, we consider a number of simpli�cations: our instruction

set is minimal, our machine does not have virtual memory or di�erent privilege levels,

machine words can store unbounded integers, every instruction can be encoded in a

single machine word, we do not consider memory alignment issues, and we abstract

away from the binary encoding of capabilities. Nevertheless, our semantics does

capture many of the aspects that make reasoning about machine code programs

challenging: our machine has a �nite amount of memory, a �xed number of registers,

and there are no distinctions between code and data nor structured control �ow for

programs, owing to the fact that program instructions are simply encoded and stored

in memory as normal integers.

Figure 2.5 gives the basic de�nitions that will play a role in the operational semantics of

machine instructions. The set of memory addresses Addr is �nite, and corresponds to

the integer range [0,AddrMax]. A memory wordF ∈ Word is either an (unbounded)

integer or a capability 2 . Capabilities are of the form (?, 1, 4, 0), giving access to

the memory range [1, 4) with permission ? , while currently pointing to 0. The

permissions ? are ordered according to the lattice appearing at the top-right of the

�gure, inducing a bottom-to-top partial order 4 on permissions. There are six di�erent

permissions; the null (o), read-only (ro), enter (e), read-write (rw), read-execute (rx)

and read-write-execute (rwx) permissions.

The state of the machine is modeled by the semantics as a pair of an execution state

B and a con�guration i . An execution state �ag indicates whether the machine

is presently running (Running), has successfully halted (Halted), or has stopped

execution by raising an error (Failed). A con�guration i contains the state of the

40. CERISE: PROGRAM VERIFICATION ON A CAPABILITY MACHINE

0 ∈ Addr , [0,AddrMax]
? ∈ Perm ::= o | e | ro | rx | rw | rwx

2 ∈ Cap , {(?,1, 4, 0) | 1, 4, 0 ∈ Addr}
F ∈ Word , Z + Cap
reg ∈ Reg , RegName→Word

< ∈ Mem , Addr→Word

B ∈ ExecState ::= Running | Halted | Failed
i ∈ ExecConf , Reg ×Mem

rwx

rw rx

ro e

o

Lattice de�ning the 4
relation.

(We have ?1 4 ?2 if there is a path going up from ?1 to ?2 in the diagram.)

A ∈ RegName ::= pc | r0 | r1 | . . . | r31 d ∈ Z + RegName

8 ::= jmp A | jnz A A | mov A d | load A A | store A d | add A d d | sub A d d |
lt A d d | lea A d | restrict A d | subseg A d d | isptr A A | getp A A |
getb A A | gete A A | geta A A | fail | halt

Figure 2.5: Base de�nitions for the machine’s words, state, and instructions.

registers i.reg and the memory i.mem. A register �le reg consists of a map from

register names A to machine words, while the memory< maps addresses to words.

Next, Figure 2.5 shows the list of instructions of our machine. An instruction 8

typically operates on register names A , but can also sometimes take integer values as

parameters; d denotes an instruction parameter which can be either a register name

or a constant integer. Our machine features general purpose registers (r0 – r31), on

top of the pc register, which points to the address in memory where the currently

executing instruction is stored. (Technically speaking, pc must point to a memory

cell containing an integer which can be successfully decoded into an instruction.) pc
should therefore always contain a capability with at least permission rx; in any other

case, the machine fails immediately.

Figure 2.6 de�nes the small-step operational semantics for the capability machine. The

rule ExecSingle describes how a single instruction gets executed. An execution step

requires an executable and in-bounds capability in the pc register, and fails otherwise.

It expects the memory cell pointed to by the capability to store an integer I, decodes

it into an instruction and executes the instruction on the current state i ; the new

con�guration is denoted Jdecode(I)K(i). The table making up most of Figure 2.6

de�nes the operational behavior J8K(i) for each instruction 8 of the machine.

The auxiliary functions present in Figure 2.6 are de�ned in Figure 2.7. Most

instructions use the auxiliary function updPC to increment the pc register after

OPERATIONAL SEMANTICS OF A CAPABILITY MACHINE 41

ExecSingle

(Running, i) →


Jdecode(I)K(i) if i.reg(pc) = (?, 1, 4, 0) ∧ 1 ≤ 0 < 4 ∧

? ∈ {rx, rwx} ∧ i.mem(a) = I
(Failed, i) otherwise

8 J8K(i) Conditions

fail (Failed, i)
halt (Halted, i)

mov A d updPC(i [reg.A ↦→ F]) F = getWord(i, d)

load A1 A2 updPC(i [reg.A1 ↦→ F]) i.reg(A2) = (?,1, 4, 0) andF = i.mem(0)
and 1 ≤ 0 < 4 and ? ∈ {ro, rx, rw, rwx}

store A d updPC(i [mem.0 ↦→ F]) i.reg(A) = (?,1, 4, 0) and 1 ≤ 0 < 4 and

? ∈ {rw, rwx} andF = getWord(i, d)

jmp A
(Running,
i [reg.pc ↦→ newPc]) newPc = updatePcPerm(i.reg(A))

jnz A1 A2

if i.reg(A2) ≠ 0

then (Running,
i [reg.pc ↦→ newPc])

else updPC(i)

newPc = updatePcPerm(i.reg(A1))

restrict A d updPC(i [reg.A ↦→ F])
i.reg(A) = (?,1, 4, 0) and

? ′ = decodePerm(getWord(i, d))
and ? ′ 4 ? andF = (? ′, 1, 4, 0)

subseg A d1 d2 updPC(i [reg.A ↦→ F])

i.reg(A) = (?,1, 4, 0) and for 8 ∈ {1, 2},
I8 = getWord(i, d8) and I8 ∈ Z and

1 ≤ I1 and 0 ≤ I2 ≤ 4 and

? ≠ e andF = (?, I1, I2, 0)

lea A d updPC(i [reg.A ↦→ F])
i.reg(A) = (?,1, 4, 0) and

I = getWord(i, d) and

? ≠ e andF = (?,1, 4, 0 + I)

add A d1 d2 updPC(i [reg.A ↦→ I]) for 8 ∈ {1, 2}, I8 = getWord(i, d8)
and I8 ∈ Z and I = I1 + I2

sub A d1 d2 updPC(i [reg.A ↦→ I]) for 8 ∈ {1, 2}, I8 = getWord(i, d8)
and I8 ∈ Z and I = I1 − I2

lt A d1 d2 updPC(i [reg.A ↦→ I])
for 8 ∈ {1, 2}, I8 = getWord(i, d8) and

I8 ∈ Z and

if I1 < I2 then I = 1 else I = 0

getp A1 A2 updPC(i [reg.A1 ↦→ I]) i.reg(A2) = (?, _, _, _) and

I = encodePerm(?)
getb A1 A2 updPC(i [reg.A1 ↦→ 1]) i.reg(A2) = (_, 1, _, _)
gete A1 A2 updPC(i [reg.A1 ↦→ 4]) i.reg(A2) = (_, _, 4, _)
geta A1 A2 updPC(i [reg.A1 ↦→ 0]) i.reg(A2) = (_, _, _, 0)

isptr A1 A2 updPC(i [reg.A1 ↦→ I]) if i.reg(A2) = (_, _, _, _)
then I = 1 else I = 0

_ (Failed, i) otherwise

Figure 2.6: Operational semantics: execution of a single instruction.

42 CERISE: PROGRAM VERIFICATION ON A CAPABILITY MACHINE

updPC(i) =
{
(Running, i [reg.pc ↦→ (?,1, 4, 0 + 1)]) if i.reg(pc) = (?,1, 4, 0)
(Failed, i) otherwise

getWord(i, d) =
{
d if d ∈ Z
i.reg(d) if d ∈ RegName

updatePcPerm(F) =
{
(rx, 1, 4, 0) ifF = (e, 1, 4, 0)
F otherwise

Figure 2.7: Operational semantics: auxiliary de�nitions.

their proper operations. Because the address space is �nite, pointer arithmetic such

as incrementing pc can result in illegal addresses. To avoid notational clutter, we will

always write as if arithmetic operations succeed, and consider that otherwise the

machine transitions to a Failed state. The auxiliary function getWord is used to get

the value corresponding to the argument d of an instruction: either its corresponding

integer value if it is an immediate integer, or the contents of the corresponding register

if it is a register name. The auxiliary function updatePcPerm is used in the de�nition

of the behavior of the jmp and jnz instructions to unseal sentry capabilities. As

mentioned previously, an additional e�ect of these jump instructions is to unseal

sentry (e) capabilities into rx capabilities.

We now describe the semantics of the instructions of the machine, as formally de�ned

in the table of Figure 2.6. The fail and halt instructions stop the execution of the

machine, in the Failed and Halted state respectively. mov A d copies d (either an

immediate value or the contents of the corresponding register name) into register

A . The instructions load and store allow reading and writing memory: load A1 A2
reads the value pointed to by the capability in A2 provided it has the permission r

and points within its bounds; store A d stores d to the location pointed to by the

capability in A provided it has thew permission and points within bounds. The jmp and

jnz instructions correspond to an unconditional and conditional jump respectively,

thus loading the provided capability into pc. Using updatePcPerm, in the case of

a sentry (e) capability, they unseal it into a rx capability �rst. Three instructions

allow deriving new capabilities from existing ones. restrict A d allows restricting

the permission of a capability (where d provides an integer encoding of the desired

permission), provided it is less permissive than the current permission according

to 4. subseg A d1 d2 restricts the range of authority of the capability stored in A ,

provided it is a subset of the current range of the capability. lea A d modi�es the

current address of the capability in A , by adding to it the integer o�set d . As should

be expected, subseg and lea fail for sentry capabilities. Arithmetic operations are

provided by the add, sub and lt instructions, which implement addition, subtraction,

and comparison on integers, respectively. Finally, a number of instructions allow

PROGRAM LOGIC 43.

inspecting machine words and capabilities. isptr can be used to query whether a

machine word is an integer or a capability, and getp, getb, gete, and geta return

the di�erent parts of a capability (permission, bounds and address). (More precisely,

getp returns an integer encoding the permission, as given by encodePerm.) If any of

the capability checks for an instruction are not satis�ed, the machine fails.

An important aspect of our operational semantics is how it explicitly accounts for

errors: when a capability check fails (for instance when a program tries to use a

capability outside of its range), the semantics does not get stuck (meaning that it

would not be able to reduce): instead, it explicitly transitions to a state with the Failed
execution state �ag.

2.4 Program logic

The operational semantics presented in the previous section formally de�ne the

behavior of our machine when it runs and executes code. Based on that, we expect to

be able to formally verify concrete programs running on the machine.

The most direct approach would be to manually establish properties of sequences of

reduction steps, based on the sole de�nition of the operational semantics. We do not

follow this approach, because it would quickly become very tedious even for simple

programs.

Instead, we draw from previous research in program logics and separation logic, and

de�ne Cerise: a program logic which provides a convenient framework in which to

modularly reason about programs running on our machine. Indeed:

• It is typically more convenient to devise a system of proof rules for programs,

rather than work directly at the level of abstraction provided by the bare

operational semantics. Such rules form a program logic, which can be proved

sound according to the operational semantics, and then can be used to verify

properties of concrete programs.

• Separation logic, a family of program logics, has been widely used to reason

about programs manipulating shared mutable state (such as memory). On our

capability machine, not only do all programs access a mutable shared memory,

but programs are themselves represented as unstructured data in memory; so

the use of separation logic is particularly called for. Separation logic enables

modular reasoning about programs that operate only on a sub-part of the global

state, allowing them to be freely composed with programs that operate on a

disjoint part of the state.

The �rst step is to consider what part of the machine state should be described by

44. CERISE: PROGRAM VERIFICATION ON A CAPABILITY MACHINE

%,& ∈ iProp ::=

True | False | ∀G . % | ∃G . % | . . . higher-order logic

| % ∗& | % −∗ & | qp q | � % | ⊲ % separation logic

| a ↦→ F | A Z⇒ F | ®0 ↦→ ®; machine resources

| % invariants

| 〈%〉 → 〈B .&〉 | {%} {B .&} | {%} • program logic

Figure 2.8: The syntax of our program logic.

separation logic assertions. Here, the machine state consists of both the machine

memory and the machine registers. Indeed, it is useful to modularly reason about

programs operating on both a subset of memory and a subset of the available registers.

Technically speaking, we build the Cerise program logic on top of the Iris framework

[80], which provides us with additional useful features, such as invariants. In the

following we introduce both the basic separation logic assertions describing the

machine state and additional features inherited from Iris (Section 2.4.1). Then, we

describe the rules that are used to specify the execution of machine instructions and

programs (Section 2.4.2).

Note that the program logic is, in a sense, only a technical device. The end goal

is to obtain theorems that only refer to reductions in the operational semantics of

our machine. To that end, we present (Section 2.4.3) an Adequacy theorem for our

logic, which allows us to “extract” a correctness theorem expressed in terms of the

operational semantics of the machine from a proof established in the program logic.

2.4.1 Basic resources

Figure 2.8 shows the syntax of our Cerise program logic based on Iris. We write

iProp for the universe of propositions. These feature the standard connectives of

higher-order logic and separation logic, including the separating conjunction ∗ and

the magic wand −∗ (read as an implication). The proposition qp q asserts that the pure

proposition q holds, where q is a proposition from the meta logic.

Iris assertions can be divided in two categories: ephemeral assertions and persistent

assertions. Ephemeral assertions describe facts or resources that are available at a

given point but might become false or unavailable later. Persistent assertions describe

facts that never cease to be true. The assertion � % , read “persistently %”, is persistent,

and asserts ownership over resources whose duplicable part satis�es % . In other words,

� % is like % except that it does not assert any exclusive ownership over resources.

PROGRAM LOGIC 45

As the knowledge associated with a persistent assertion can never be invalidated,

persistent assertions can be freely duplicated.

The modality ⊲ % expresses (roughly) that the assertion % holds after one “logical

step” of execution. In this paper, we mainly use it to de�ne recursive predicates

using guarded recursion. It is not necessary to understand how the modality behaves

in detail and the reader can safely ignore it for the most part and just recall that it

supports an abstract accounting of execution steps.

Our logic includes resources (predicates) that describe parts of the current state of the

machine. The assertion a ↦→ F expresses that the memory cell at address a contains

the machine word F . Furthermore, this assertion should be read as giving unique

ownership over location a, giving the right to freely read and update the corresponding

memory cell. Similarly, the assertion A Z⇒ F asserts ownership of a CPU register A

containing the word F . We write ®0 ↦→ ®; for the ownership of contiguous memory

cells at addresses ®0 containing
®; .

A key feature of the logic is the notion of an invariant. The assertion % asserts that %

should hold at all times, now and for every future step of the execution (where % can

be any separation logic assertion). An invariant is a persistent assertion. An invariant

% can be created (or “allocated”) by handing over the resources for % , turning them

into % . Then, whenever we know that % holds, we can get access to the resources

% held in the invariant, but only for the duration of one program step. Indeed, since

the invariant must hold at every step of the execution, when accessing its resources,

one needs to show that it holds again no later than one program step after. A more

precise rule for accessing invariants is given next in Section 2.4.2 (rule Inv).

2.4.2 Program specifications

The predicates for machine resources we just presented allow describing the state

of the machine. Our logic, moreover, includes assertions that can be used to specify

machine executions, similar to Hoare triples used in program logics for high-level

languages. Because we work with a low-level machine (where code is located in

memory), we distinguish between three di�erent types of program speci�cations:

〈%〉 → 〈B .&〉 single instruction

{%} {B . &} code fragment

{%} • complete safe execution.

In each case, % and& are separation logic assertions describing the state of the machine

(registers and memory). % corresponds to a pre-condition, & a post-condition, and B

binds in & the corresponding execution state (of type ExecState, see Figure 2.5).

46 CERISE: PROGRAM VERIFICATION ON A CAPABILITY MACHINE

Informally, 〈%〉 → 〈B .&〉 holds if, starting from a machine state satisfying % , the

machine can execute one step of computation, and reach a state satisfying & in an

execution state B . The predicate {%} {B . &} holds if, starting from a state satisfying

% , then the machine can diverge (i.e. loop) or reach a state satisfying& in an execution

state B . This is typically used to describe the execution of a code fragment. Finally,

{%} • holds if, starting from a machine state satisfying % , then the machine loops

forever or runs until completion, ending in either a Halted or Failed state. In this case,

we say that the initial con�guration described by % is safe. (Not every con�guration is

safe: the resources in % describing registers and memory must su�ce for the machine

to run and execute the code pointed to by pc: we do not have {?2 Z⇒ F} • in

general.)

Additionally, these three speci�cations require the logical invariants to be preserved at

every step of the execution. This requirement is implicit in the de�nition of invariants,

but it is a crucial reasoning principle that we will leverage.

Echoing back to Section 2.2.2, note that our program speci�cation for a complete

safe execution allows the program to fail (or diverge). Indeed, we will capture the

preservation of security properties by preserving invariants throughout execution

and having the machine fail is both �ne (invariants are trivially preserved when the

machine ends up in a failure state) and unavoidable (we cannot prevent unknown

code from triggering a capability check failure). Similar considerations apply for

divergence.

Notations In the rest of the paper, we will rely on a couple of additional notations

when writing program speci�cations. Because we often want to reason about the

case where an instruction (or program fragment) does not fail, we write 〈%〉 → 〈&〉
(respectively {%} {&}) to denote a resulting execution state equal to Running:

〈%〉 → 〈&〉 , 〈%〉 →
〈
B . B = Runningp q ∗&

〉
{%} {&} , {%}

{
B . B = Runningp q ∗&

}
.

When writing pre- and post-conditions, we will often need to include a points-to

resource describing the contents of the pc register. We introduce a short-hand notation

for that purpose, and writeF ; % to assert % and additionally that pc is set toF :

F ; % , pc Z⇒ F ∗ %

Using these two notations, the speci�cation for a single instruction, in a case where it

does not fail, is written as 〈F0; %〉 → 〈F1;&〉 (typically, we haveF1 = F0+1, except in

the case of the jmp and jnz instructions, or when explicitly writing to the pc register).

PROGRAM LOGIC 47.

Properties Our program speci�cations satisfy the well-known “frame rule” of

separation logic, which permits local reasoning, and asserts that it is always possible

to extend a speci�cation by adding arbitrary resources not accessed by the program.

FragFrame

{%} {B .&}
{% ∗ '} {B .& ∗ '}

StepFrame

〈%〉 → 〈B .&〉
〈% ∗ '〉 → 〈B .& ∗ '〉

FullFrame

{%} •

{% ∗ '} •

Program speci�cations can also be composed using sequencing rules. In order

to establish a speci�cation of the form {%} {B .&}, one typically uses single-

instructions rules (〈'〉 → 〈B . (〉) in a sequence, one for each instruction of the relevant

code block. Speci�cations for two program fragments that follow each other can also

be combined to obtain a speci�cation for the sequence of the two fragments. We

prove general sequencing rules for our three kind of speci�cations; for simplicity, we

only reproduce here restricted rules that deal with successful executions (relying on

the notations introduced before):

SeqFrag

{%} {&} {&} {'}
{%} {'}

SeqFull

{%} {&} {&} •

{%} •

StepFull

〈%〉 → 〈&〉 {&} •

{%} •

StepFrag

〈%〉 → 〈&〉 {&} {'}
{%} {'}

When reasoning about a single execution step, one can additionally access resources

held in known invariants. This is done using the Inv rule, given below:
2

Inv

〈% ∗ ⊲'〉 → 〈B . & ∗ ⊲'〉
' ` 〈%〉 → 〈B . &〉

Example specifications As illustrative examples, Figure 2.9 shows speci�cations

for the subseg, load and store instructions, as well as the rclear macro which is

used to clear the contents of a number of speci�ed registers. The �rst rule shows a

speci�cation for the subseg instruction. It states that if the program counter contains

a capability pointing to a memory location 0pc , if that location contains an integer

= which decodes into subseg A I1 I2, and if the register A contains a capability,

then assuming that the program counter is valid (ValidPC(...)) and that I1 and I2 are

2
For clarity of the presentation, we choose to omit additional details related to Iris invariant namespaces

and masks. We refer to the Coq development for the full details 2 .

https://plv.mpi-sws.org/coqdoc/iris/iris.base_logic.lib.invariants.html#inv_alloc

48 CERISE: PROGRAM VERIFICATION ON A CAPABILITY MACHINE

ValidPC(?pc, 1pc, 4pc, 0pc)
ValidSubseg(?,1, 4, I1, I2) decode(=) = subseg A I1 I2〈
(?pc, 1pc, 4pc, 0pc) ; 0pc ↦→ = ∗ A Z⇒ (?, 1, 4, 0)

〉
→〈

(?pc, 1pc, 4pc, 0pc + 1) ; 0pc ↦→ = ∗ A Z⇒ (?, I1, I2, 0)
〉

ValidPC(?pc, 1pc, 4pc, 0pc)
¬ValidSubseg(?, 1, 4, I1, I2) decode(=) = subseg A I1 I2〈

(?pc, 1pc, 4pc, 0pc) ; 0pc ↦→ = ∗ A Z⇒ (?, 1, 4, 0)
〉
→〈

B . B = Failedp q ∗
(
(?pc, 1pc, 4pc, 0pc) ; 0pc ↦→ = ∗ A Z⇒ (?, 1, 4, 0)

)〉
ValidPC(?pc, 1pc, 4pc, 0pc) ValidLoad(?,1, 4, 0) decode(=) = load dst src〈
(?pc, 1pc, 4pc, 0pc) ; 0pc ↦→ = ∗ dst Z⇒ − ∗ src Z⇒ (?, 1, 4, 0) ∗ 0 ↦→ F

〉
→〈

(?pc, 1pc, 4pc, 0pc + 1) ; 0pc ↦→ = ∗ dst Z⇒ F ∗ src Z⇒ (?,1, 4, 0) ∗ 0 ↦→ F
〉

ValidPC(?pc, 1pc, 4pc, 0pc) ValidStore(?, 1, 4, 0) decode(=) = store dst src〈
(?pc, 1pc, 4pc, 0pc) ; 0pc ↦→ = ∗ dst Z⇒ (?,1, 4, 0) ∗ src Z⇒ F ∗ 0 ↦→ −

〉
→〈

(?pc, 1pc, 4pc, 0pc + 1) ; 0pc ↦→ = ∗ dst Z⇒ (?,1, 4, 0) ∗ src Z⇒ F ∗ 0 ↦→ F
〉

∀8 ∈ [0, =), ValidPC(?, 1, 4, 08) = = length(rclear_instrs ;){
(?,1, 4, 00);∗A ∈; A Z⇒ − ∗∗8∈[0,=) 08 ↦→ (rclear_instrs ;) [8]} {
(?,1, 4, 0=);∗A ∈; A Z⇒ 0 ∗ ∗8∈[0,=) 08 ↦→ (rclear_instrs ;) [8]}
ValidPC(?pc, 1pc, 4pc, 0pc) , rx 4 ?pc ∧ 1pc ≤ 0pc < 4pc
ValidSubseg(?, 1, 4, I1, I2) , ? ≠ e ∧ 1 ≤ I1 ∧ 0 ≤ I2 ≤ 4
ValidLoad(?,1, 4, 0) , ro 4 ? ∧ 1 ≤ 0 < 4

ValidStore(?, 1, 4, 0) , rw 4 ? ∧ 1 ≤ 0 < 4

rclear_instrs ; , map (_A . encode(move A 0)) ;

Figure 2.9: Speci�cations for the machine instructions subseg, load and store and

for the rclear macro that sets a given list of registers to zero. Changes to the machine

state are highlighted in red.

PROGRAM LOGIC 49.

valid new bounds (ValidSubseg(...)), the machine successfully increments the program

counter and restricts the capability held in register A with new bounds I1 and I2.

The second rule is also a speci�cation for subseg, but in a case where it fails a bound

check, i.e. ValidSubseg(?,1, 4, I1, I2) does not hold. (For instance, when the new

bounds I1 and I2 would allow accessing more memory than what is available through

the original capability.) Then, the rule does give us a speci�cation for an execution

step, but with a resulting execution state of Failed, meaning that the execution cannot

continue afterwards.

The third and fourth rules give speci�cations for the load and store instructions

(in non-failing cases). The speci�cation for load states that load dst src loads a

word from memory pointed to by a capability in register src and stores its contents in

register dst. The speci�cation for store states that store dst src reads a word from

the src register and writes it into the memory location pointed to by the capability in

dst.

Note that these speci�cations for subseg, load and store are not in fact the most

general speci�cations for these instructions. They assume that some side-conditions

hold, and specify the behavior of the instruction in the case of either a “normal”

successful execution, or a failing one. These speci�cations are typically useful for

reasoning about the correctness of a concrete program. We have also proved in Coq

(e.g., 3 for the subseg instruction) “most general” speci�cations, covering in one

lemma all possible cases for a given instructions. These are useful for deriving the

more speci�c rules shown previously. Furthermore, we use them directly in the proof

of the Fundamental Theorem (Theorem 2.2), for specifying the behavior of arbitrary

instructions that might or might not fail.

The last rule of Figure 2.9 shows a derivable speci�cation for a program composed of

several instructions, the rclear macro. This macro (meaning, a small program that

is typically inserted inline as part of a larger program) clears a number of registers

by setting their content to 0. It is parameterized by a list ; of register names, and its

code consists of a sequence of instructions move A 0 for each register name A in ; . We

state rclear’s speci�cation using the program speci�cation for code fragments. This

speci�cation is provable using the basic reasoning rules for move. It requires that

the body of the macro (“rclear_instrs ;”) is laid out contiguously in memory range

[00, 0=), while the program counter initially points to 00. When the program counter

eventually points to 0= , the address immediately after the macro’s instructions, then

all the registers in ; have been cleared and now contain 0. (The “big star”∗ denotes

an iterated separating conjunction, here over the registers A in list ; .)

https://logsem.github.io/cerise/journal/cap_machine.rules.rules_Subseg.html#wp_Subseg

50. CERISE: PROGRAM VERIFICATION ON A CAPABILITY MACHINE

2.4.3 Adequacy theorem

After establishing program speci�cations and properties at the level of our program

logic, we ultimately want to transfer these results into properties of a program

execution at the level of the operational semantics of the bare machine. Generally

speaking, we prove using the rules of the Iris logic a statement of the form % ` & ,

where % and & are Iris propositions (read “& holds assuming invariant %”). From this,

we want to deduce that some mathematical proposition Φ holds (as a Coq proposition,

in our case), where Φ describes some property of the machine execution expressed in

terms of its operational semantics.

Because we are interested in establishing invariants about a program execution, we

typically want to obtain in Φ that at every step of the execution, the state of the

machine satis�es an invariant corresponding to the Iris assertion % .

Deriving mathematical facts from Iris proof derivations is made possible thanks to the

so-called adequacy theorem of Iris 4 . This theorem has a very general but intricate

statement. In this section, we describe a simpler but more specialized adequacy

theorem for our capability machine, which we can use to reason about the examples

introduced in Section 2.2. (We also describe in Section 2.7 a more advanced adequacy

theorem, suitable for reasoning about programs such as the case study of Section 2.8.)

This specialized adequacy theorem is itself established on top of the general Iris

adequacy theorem. When it applies, it is more convenient to use; but in the general

case, it is always possible to directly leverage the general adequacy theorem.

We now present our specialized adequacy theorem. We �rst de�ne a notion of memory

invariant (De�nition 2.1), which corresponds to a predicate over a �nite subset of the

machine memory. Typically, we will consider predicates of the form: “the value at

this speci�c memory address holds a positive integer” (for instance, the value of the

counter of Section 2.2.4). A memory invariant is given by a predicate � over machine

memory and a set of addresses � (the “domain” of the invariant); we then require

that � is not impacted by changes outside of � .

De�nition 2.1 (Memory invariant 5). We say that � is a memory invariant over � if

� is a predicate over machine memory, � a �nite set of addresses, and:

∀<<′. (∀0 ∈ �. <(0) =<′(0)) =⇒ � (<) ⇔ � (<′).

We now present the statement of our specialized adequacy theorem; we explain the

ingredients in the theorem statement below. Given a memory invariant � over a set

� , our adequacy theorem (Theorem 2.1) can be used to show that � indeed holds of

the memory at every step of the execution, provided we can show that it holds as an

invariant in Iris.

https://plv.mpi-sws.org/coqdoc/iris//iris.program_logic.adequacy.html#wp_invariance
https://logsem.github.io/cerise/journal/cap_machine.examples.template_adequacy.html#memory_inv

PROGRAM LOGIC 51

Theorem 2.1 (Adequacy 6). Given a memory invariant � over � , a memory fragment

prog : [1, 4) → Word, a memory fragment adv : [1adv, 4adv) → Word, an initial

memory mem, and an initial register �le reg, assuming that:

1. the initial state of memory mem satis�es:

prog] adv ⊆ mem � ⊆ dom(prog) = [1, 4)

2. invariant � holds of the initial memory:

� (mem)

3. the adversary region contains no capabilities:

∀0 ∈ dom(adv). adv(0) ∈ Z

4. the initial state of registers reg satis�es:

reg(pc) = (rwx, 1, 4, 1), reg(r0) = (rwx, 1adv, 4adv, 1adv),
reg(A) ∈ Z otherwise

5. the proof in Iris that the initial con�guration is safe given invariant � :

∀reg,

∃<,∗(0,F) ∈< 0 ↦→ F ∗ dom(<) = �p q ∗ � (<)p q

`


(rwx, 1, 4, 1);

r0 Z⇒ (rwx, 1adv, 4adv, 1adv) ∗
∗(A,E) ∈reg,
A∉{pc,r0 }

A Z⇒ I ∗ I ∈ Zp q ∗

∗(0,I) ∈adv 0 ↦→ I ∗ I ∈ Zp q ∗
∗(0,F) ∈prog,

0∉�

0 ↦→ F


 •

Then, for any reg
′
, mem

′
, if (reg,mem) −→∗ (reg′,mem

′), then � (mem
′).

Theorem 2.1 establishes that, starting from an initial machine state (reg,mem), any

subsequent machine state (reg′,mem
′) satis�es � (mem

′). This is subject to a number

of conditions, in particular about the initial state of the machine.

First, the initial memory must be provisioned with relevant code and data. This means

that the program that we wish to verify (both its code and data) given by memory

fragment prog : [1, 4) →Word should be included in the initial memory. Moreover,

some additional “adversarial code” given by adv : [1adv, 4adv) → Word should be

included in the initial memory. Indeed, we are not only interested in reasoning

about the execution of our veri�ed program in isolation, but also its interaction

with unveri�ed, possibly adversarial code. The initial memory mem should therefore

include prog and adv, in disjoint regions. Furthermore, the domain of the invariant

� should be included in the program’s region [1, 4). The intent is that � speci�es an

https://logsem.github.io/cerise/jfp/cap_machine.examples.template_adequacy.html#with_adv.template_adequacy

52. CERISE: PROGRAM VERIFICATION ON A CAPABILITY MACHINE

invariant about some private data of the veri�ed program, and thus should not depend

on other parts of memory.

Second, as should be expected, the invariant � must hold of the initial memory mem.

Third, the adversary memory adv is required not to contain any capabilities. This

conservatively ensures that adv does not contain any “rogue” capability that would

give undesired access to the veri�ed program’s private state. No further assumption is

made about adv, which is thus free to contain arbitrary code (i.e. instructions encoded

as integers). Furthermore, note that the absence of capabilities in adv does not mean

that code in adv will not be able to access memory at all: at runtime, it will still get

access to a capability to its own region through the program counter pc.

Then, the initial register �le reg should be provided with a rwx capability to the

veri�ed program in pc (meaning that it executes �rst), and a capability to the unveri�ed

code in register r0 (as we have seen in Section 2.2, by convention r0 holds the pointer to

a program’s continuation). Other registers are conservatively required not to contain

any capabilities.

Finally, one needs to establish at the level of the program logic that the program is safe

to run under invariant � . Concretely, one needs to prove a speci�cation for a complete

safe execution (of the form {%} •), given “points-to” resources in the pre-condition

that correspond to the initial state of registers and memory. In particular, we get

access to points-to resources for the adversary region (along the fact that they contain

integers) and points-to resources for the region containing the program to execute.

Note that no resources are given for the domain of � as part of the initial resources

for the complete-execution speci�cation. Instead, these resources are part of the

logical invariant under which the speci�cation must be established (inside . . .). This

corresponds to the intuition that these resources should only be modi�ed in a way

that preserves invariant � . This logical invariant therefore speci�es that there exists

a subset of memory <, which covers the memory region de�ned by � , such that

the invariant holds the corresponding points-to resources and such that � (<) holds,

i.e. the memory invariant � holds of this memory subset. (Recall from Section 2.4.1

that qp q denotes an Iris proposition that asserts that the mathematical proposition q

holds.)

The reader may be surprised to notice that the region containing “adversarial” code

has no special status. Indeed, it simply corresponds to a memory region containing

(a priori unknown) integers. Nevertheless, remember that we ultimately want our

program to be able to pass control to the unknown adversary code by jumping to

the capability in r0, as we have seen our example programs do. This means we need

to have a way of reasoning about “what it will do”, at least to ensure that it will not

break our program’s invariants.

REASONING ABOUT UNTRUSTED CODE IN CERISE 53.

V(F)



V(I),V(o,−,−,−) , True

V(e, 1, 4, 0) , ⊲ � E(rx, 1, 4, 0)
V(rw/rwx, 1, 4,−) , ∗0∈[1,4) ∃F, 0 ↦→ F ∗ V(F)

V(ro/rx, 1, 4,−) , ∗0∈[1,4) ∃%, ∃F, 0 ↦→ F ∗ % (F) ∗
⊲� (∀F, % (F) −∗ V(F))

E(F) , ∀reg,
{
F ;∗(A,E) ∈reg,A≠pc A Z⇒ E ∗ V(E)

}
 •

Figure 2.10: Logical relation de�ning “safe to share” and “safe to execute” values.

In the next section, we show how to reason about whether unknown code can be

considered “safe to execute”, so that we can pass control to it while preserving

previously established invariants.

2.5 Reasoning about Untrusted Code in Cerise

Code running on a capability machine is constrained by the set of capabilities it has

access to. This is a crucial idea for reasoning about adversarial code. Whatever code

the machine is running, if this code does not have access to a capability for, e.g.,

writing to a memory region, then it will not be able to modify memory in that region.

In other words, one can prove a theorem describing the behavior of arbitrary code

depending only on the capabilities it has access to.

One major technical contribution of this work is to formulate and mechanize such a

theorem. Speci�cally, we are concerned with the preservation of invariants established

in the program logic. We will thus give a de�nition of which machine words that are

“safe” to share with unknown code. Informally, a word is safe if it cannot be used to

break any previously established logical invariants. We will then prove that, as long

as some arbitrary code only has access to safe machine words, its execution indeed

preserves logical invariants.

Interestingly, we can establish this result while staying within the framework of the

Cerise program logic exposed in the previous section. This illustrates the generality

of said program logic: verifying speci�cations for known programs or specifying the

behavior of arbitrary code are only two of its possible applications.

2.5.1 Logical Relation

Our formal de�nition of what makes a machine word safe, meaning “safe to share

with unknown code”, appears in Figure 2.10. It takes the form of a unary logical

54. CERISE: PROGRAM VERIFICATION ON A CAPABILITY MACHINE

relation, de�ning simultaneously the notions of a machine word that is “safe to share”

(V) and “safe to execute” (E). The names V and E originate from the tradition of

logical relations, corresponding respectively to the “value relation” and the “expression

relation”, although this interpretation is perhaps less obvious in the setting of low-level

machine code. We explain the de�nition in detail below. The intuition is that:

• A value which is safe to share only gives transitive access to other values that are

safe to share, or code that is safe to execute (in the case of a sentry capability).

• A value which is safe to execute allows the machine to run while preserving

logical invariants (by de�nition of {·; ·} •), provided the registers contain

safe values.

Technically speaking, this informal de�nition is circular. Luckily, we can de�ne it

properly with the help of the “later” modality ⊲. Iris provides us with a �xed-point

operator that only requires recursive occurences to be guarded under a ⊲, and we use

that to formally de�neV and E. Except for this technical requirement, the reader

can in practice ignore the use of ⊲ here.

Let us more closely examine the de�nition ofV , which is de�ned by case analysis on

the shape of the given machine wordF . IfF is an integer (I), then it is always safe to

share, since it cannot be used to access memory. Similarly, opaque capabilities with

permission o are always safe as they also do not give access to memory.

A sentry capability e is safe to share if the code it encapsulates is safe to execute.

Such a capability can be invoked at any moment and possibly several times: this is

expressed through the use of the persistently modality �. Technically speaking, this

means that the property E(rx, 1, 4, 0) must be established by only relying on persistent

resources (typically, logical invariants) that will remain “available” throughout the

entire execution.

A read-write capability rw or rwx gives read and write access to the memory region in

its range. It is therefore safe as long as the words stored in the corresponding memory

region are safe, and continue to be so when the memory gets modi�ed. We thus say

that it is safe when we have an invariant for each memory cell in the capability’s

region, which asserts ownership over the corresponding memory points-to resource,

and asserts validity of its contents.

Finally, a capability with permission ro/rx cannot be used by unknown code to

modify the memory words in its range. Therefore, these words can obey any property

% as long as it entails safety (V). Intuitively, the words in the interval have to be safe

to share, because the adversary can read them. But since the adversary cannot modify

them, it is possible to guarantee a stronger invariant about them. For instance, % (F)
could be the predicate “F = 42”, describing that a value in the range stays equal to

the integer 42.

REASONING ABOUT UNTRUSTED CODE IN CERISE 55

Notice that this de�nition of safety does not distinguish between capabilities with

permission ro and rx, or rw and rwx. This seems to strangely imply that permissions

with the execute bit x have no additional expressive power over permissions without

the execute bit. And indeed, in terms of our model—which “only” captures the ability

to break memory invariants—their expressive power is the same!
3

The crux of our

main theorem (presented in the next sub-section) is that executing arbitrary code

does not produce capabilities with more access to memory than was available before.

Thus, being able to execute code within a memory region does not yield additional

access to memory compared to what was available by simply reading the memory

region (it only leads to additional machine behaviors).

Is this definition of safety trivial? One might wonder whether the de�nition in

Figure 2.10 is trivial, meaning that any machine word F will in fact be considered

safe. This is thankfully not the case; let us illustrate concrete cases where a memory

wordF is not considered safe to share with unknown code.

At a high level, E is not trivial because establishing E(F) requires proving that a

full execution of the machine, starting from F , preserves logical invariants. This

requirement is not explicit in the de�nition, but comes from the de�nition of the

Cerise program logic. The de�nition ofV(F) is also not trivial because, e.g., in the

case of an rw capability, it requires the memory points-to 0 ↦→ − predicate to be

part of a speci�c invariant, ∃F, 0 ↦→ F ∗ V(F) . Since the resource “0 ↦→ −” is not

duplicable, there can be only one resource 0 ↦→ −, which cannot be simultaneously

part of two di�erent invariants. Memory cells whose contents evolve according to an

invariant more speci�c (less permissive) than the one above thus cannot be associated

with a safe capability (according toV).

What is a concrete example of a capability which is not safe? Let us consider a memory

cell at address G initialized to 0. Let us assume the following Iris invariant: G ↦→ 0 .

This invariant expresses that G will contain the integer 0 for the rest of the execution.

Then, a capability (rw, G, G + 1, G) is not safe to share with an adversary. Indeed,

an adversary could use such a capability to write an arbitrary value at address G ,

thus invalidating the Iris invariant. (However, (ro, G, G + 1, G) would be safe.) A bit

more formally speaking, it is not possible to prove V(rw, G, G + 1, G), because it is

not possible to create the invariant ∃F, G ↦→ F ∗ V(F) , as the resource for the

memory cell G is already part of the invariant G ↦→ 0 , and cannot be extracted to

create a di�erent invariant.

Similarly, one cannot prove E for a code fragment that writes another value than 0 at

address G (after getting access to it through the pc register), because the proof would

not be able to guarantee that the Iris invariant related to G is preserved at every step.

3
Having read-only permission over a region also allows one to simply copy the contents of the region

into any other read-execute region and execute them here.

56. CERISE: PROGRAM VERIFICATION ON A CAPABILITY MACHINE

2.5.2 Fundamental Theorem

The Fundamental Theorem of our Logical Relation (Theorem 2.2) (hereafter, FTLR)

establishes that any capability that is “safe to share” (inV) is in fact “safe to execute”

(in E). In other words, if a capability only gives transitive access to safe capabilities,

then it is safe to use it as a program counter capability and execute it: it will not be

able to gain extra authority over memory or break any invariants. Importantly, this

theorem is independent of the code that the capability points to, even though it is

this code that will be executed. Hence the result applies to arbitrary code and we

sometimes refer to it as a universal contract because of this.

Theorem 2.2 (FTLR 7). Let ? ∈ Perm, 1, 4, 0 ∈ Addr. IfV(?,1, 4, 0), then E(?,1, 4, 0).

This is a non-trivial theorem, the proof of which requires checking all the possible

cases of the semantics of each instruction of the machine. Indeed, one needs to check

that there is no way for some machine instruction to create capabilities with further

authority than what was available. This could, for example, happen if some runtime

checks were missing, making it possible to create a capability (rw, 1, 4 + 1, 0) from

a capability (rw, 1, 4, 0). One can imagine how this would break expected security

guarantees, and reveal a design or implementation bug of the machine. Therefore,

another informal interpretation of the fundamental theorem is that it expresses that

the capability machine “works well” or that it is capability safe.

The fundamental theorem provides a universal security property satis�ed by unknown

code, and gives us a way of verifying the correctness of known code that includes

calls to possibly malicious code. To sum up, our logical relation characterizes the

interface between a piece of veri�ed code which wishes to preserve invariants on

some internal state, and “external” arbitrary code whose accessible, safe capabilities

have been su�ciently restricted.

It is important to note that the distinction between “known” and “adversary” code only

exists at the logical level: there is no such distinction at runtime. We can have two

components that have been veri�ed separately, and that do not mutually trust each

other. In this case, from the point of view of each component, the other component is

considered as being the adversary.

Rules for program verification. From the general statement of the FTLR, we

can derive two corollaries, which can be used to instantiate our adequacy theorem

(Theorem 2.1) with a program that passes control to an unknown adversarial code

region.

https://logsem.github.io/cerise/journal/cap_machine.fundamental.html#fundamental_cap

REASONING ABOUT UNTRUSTED CODE IN CERISE 57

Corollary 2.1 (Unknown integers are safe 8). For< : [1, 4) →Word,

∗
(0,I) ∈<

0 ↦→ I ∗ I ∈ Zp q −∗ V(?,1, 4, 0)

Corollary 2.1 can be used to trade ownership over a memory region of integers to

the knowledge that a capability over this region is safe.
4

Since integers can encode

program instructions, we can typically use this rule to reason about a memory region

containing an (unknown) program. The rule follows directly from the de�nition of

V for values of ? di�erent from e; when ? = e, an additional application of the FTLR

(Theorem 2.2) is required.

Notice that the pre-condition of the rule matches the resources that one gets in the

Adequacy theorem (Theorem 2.1) for the adversary region. When using the Adequacy

theorem, we will thus be able to conclude that capabilities pointing to the adversary

region are safe.

Corollary 2.2 (Jump to a safe word 9).

V(F) −∗
⊲∀reg.

{
updatePcPerm(F);∗(A,E) ∈reg,A≠pc A Z⇒ E ∗ V(E)

}
 •

Corollary 2.2 gives us a speci�cation for the execution of the machine after a jump

to an unknown word F , assuming that F is safe. Recall that updatePcPerm(F)
corresponds to the value of the program counter after jumping toF (see the machine

semantics in Figure 2.6). The full execution speci�cation in the conclusion of the rule

requires that the machine registers contain safe values: indeed, we must only share

safe words with unknown code.

An important application of Corollary 2.2 is to reason about the last instruction

of a program encapsulated in a sentry (e) capability, where it “returns” and passes

control to its caller by calling jmp on the (unknown but safe) return pointer held in

r0. In this scenario, the return pointer provided by the caller is unknown but safe, so

Corollary 2.2 gives us a speci�cation for the continuation of the program.

Additionally, Corollary 2.2 is typically used in combination with Corollary 2.1 when

instantiating the Adequacy theorem. Indeed, in order to prove the complete safe

execution speci�cation required by the theorem, one typically needs to justify that

one can jmp and pass control to an adversary region, given the resources granted by

the Adequacy theorem.

4
We simplify the presentation here a bit and omit a view shift from the statement of Corollary 2.1. See

the Coq development for the exact formal statement 8 .

https://logsem.github.io/cerise/journal/cap_machine.logrel.html#region_integers_alloc
https://logsem.github.io/cerise/journal/cap_machine.fundamental.html#jmp_to_unknown

58 CERISE: PROGRAM VERIFICATION ON A CAPABILITY MACHINE

2.5.3 Proving the fundamental theorem

To give a more in-depth perspective of the ideas behind the Fundamental Theorem,

we detail in this sub-section one of the interesting cases of its proof. This sub-section

can be safely skipped on a �rst read.

Proof. (FTLR) We begin by unfolding the de�nition of E.

∀reg.
{
(?,1, 4, 0);∗(A,E) ∈reg,A≠pc A Z⇒ E ∗ V(E)

}
 •

We proceed by Löb induction. The Löb rule is a powerful reasoning principle, which

Cerise inherits from Iris, and which states that (in any context &), if from ⊲ % we can

derive % , then we can also derive % without any assumptions.

Löb

& ∧ ⊲ % ` %
& ` %

The idea of the rule is that “after we do some work”, we will be able to remove the

⊲ modality from the assumption, and reach the conclusion. In our case, this means

reasoning about one step of execution, for one instruction. Intuitively, if we show

that our property holds for the execution of one arbitrary instruction, then it must

hold for a sequence of many instructions.

We thus let:

IH , ∀?,1, 4, 0.V(?, 1, 4, 0) −∗
∀reg.

{
(?,1, 4, 0);∗(A,E) ∈reg,A≠pc A Z⇒ E ∗ V(E)

}
 •

and assume ⊲ IH; we then wish to show IH.

First, we consider the case where (?,1, 4, 0) is not a valid program counter (for

instance, if it contains a non-executable capability, or an integer). Then the machine

con�guration will step into a Failed con�guration. In that case, any full execution

speci�cation ({·; ·} •) trivially holds, and we are done.

In the case where (?, 1, 4, 0) is a valid program counter, we will have to execute the

next instruction of the program, pointed to by 0. For (?, 1, 4, 0) to be a valid program

counter, the following needs to hold:

? ∈ {rx, rwx} (2.1)

1 ≤ 0 < 4 (2.2)

From (2.1), we can infer thatV(?,1, 4, 0) will unfold to (at least) the following:

∗0∈[1,4) ∃%, ∃F, 0 ↦→ F ∗ % (F) ∗ ⊲� ∀F, % (F) −∗ V(F)

REASONING ABOUT UNTRUSTED CODE IN CERISE 59

Since we know that 0 is an address in the range [1, 4) (2.2), we can in particular

infer that there exists a predicate % such that ⊲� ∀F, % (F) −∗ V(F), for which the

following invariant holds:

∃F, 0 ↦→ F ∗ % (F) (2.3)

Ownership over 0 ↦→ F is in fact required in order to apply any rule of the program

logic (we need to be able to access memory for the instruction pointed to by pc). We

will therefore �rst open the invariant (2.3) to get access to that resource.

Recall the invariant opening rule Inv (Section 2.4.2). According to that rule, we can

get access to the resources held inside the invariant now, as long as we give them

back after one execution step. Since we wish here to reason about the execution of a

single instruction, this is a perfectly good deal.

Once the invariant has been opened, the following propositions are added to our

assumptions, for some wordF (technically speaking, the Iris context also tracks the

fact that these facts come from an invariant and must be given back next, but we

choose to hide these details):
5

0 ↦→ F (2.4)

⊲ % (F) (2.5)

Because pc points to 0, and address 0 contains the wordF ,F should correspond to

the (encoding of the) instruction to execute now. We thus reason by case analysis on

decode(F).

This leads to as many cases as there are instructions in the machine. We will now

detail a sub-case for the load instruction, which is one of the interesting cases. Many

of the other cases are similar in nature.

Case: decode(F) = load Adst Asrc .

We consider here the case where Adst and Asrc are two di�erent registers, both di�erent

from pc. We also only consider the case where Asrc contains a capability, which we are

permitted to load from. In other words, our goal is as follows:
6

⊲ IH ∗ 0 ↦→ F ∗ ⊲ % (F)

`
(?, 1, 4, 0);

∗(A,E) ∈reg,A≠pc,Adst ,Asrc A Z⇒ E ∗ V(E)
∗ Adst Z⇒ F ′ ∗ V(F ′)
∗ Asrc Z⇒ (? ′, 1 ′, 4 ′, 0′) ∗ V(? ′, 1 ′, 4 ′, 0′)

 •

5
Notice that we directly get 0 ↦→ F rather than ⊲0 ↦→ F, due to the fact that memory points-to are

timeless.

6
We again omit details involving masks and update modalities, and refer to the Coq formalization for

the full details.

60. CERISE: PROGRAM VERIFICATION ON A CAPABILITY MACHINE

As stated, we assume that (? ′, 1 ′, 4 ′, 0′) permits us to load from 0′. We can thus infer

the following two properties:

? ′ ∈ {ro, rx, rw, rwx} (2.6)

1 ′ ≤ 0′ < 4 ′ (2.7)

Just like before, we can from V(? ′, 1 ′, 4 ′, 0′) conclude that the following invariant

holds, where % ′ is a predicate such that ⊲� ∀F, % ′(F) −∗ V(F):

∃F, 0′ ↦→ F ∗ % ′(F) (2.8)

We consider the (more interesting) case where 0 ≠ 0′. We can thus open the invariant

(since it has not been opened already), meaning that we have for some wordFBA2 the

following (again, plus some invariant-tracking resources not shown here):

0′ ↦→ FBA2 (2.9)

⊲ % ′(FBA2) (2.10)

With these assumptions, we now have all the necessary resources to take a step in

the program logic, using the rule for the load instruction (Figure 2.9). A feature of

single-instruction rules of our program logic is that they include a built-in ⊲ modality.

In other words, after applying a single-instruction rule, we are “one execution step

later”, and we can remove one occurrence of ⊲ for each assumption of our context.

In particular, this means that we can turn ⊲ IH into IH, and similarly for % (F) and

% ′(FBA2). We now have to show:

IH ∗ 0 ↦→ F ∗ % (F) ∗ 0′ ↦→ Fsrc ∗ % ′(Fsrc)

`
(?, 1, 4, 0 + 1);

∗(A,E) ∈reg,A≠pc,Adst ,Asrc A Z⇒ E ∗ V(E)
∗ Adst Z⇒ FBA2
∗ Asrc Z⇒ (? ′, 1 ′, 4 ′, 0′) ∗ V(? ′, 1 ′, 4 ′, 0′)

 •

We now have direct access to IH (our initial goal) as an assumption, so the proof is

nearly done. Before we can invoke IH and conclude the goal, we must do two things:

(a) close all the open invariants (as required by the invariant opening rule), and (b)

show that the contents of all registers satis�esV (required by the de�nition of IH).

(We actually need to show (b) before addressing (a), as we will make use of resources

from the open invariants.)

Addressing (b), we already know that the contents of registers satisfyV for all registers

except for Adst—the only register whose contents were changed by the instruction. We

must thus prove V(FBA2). Luckily, FBA2 is not a completely arbitrary word: it was

accessible from available memory, so it must be safe as well. More precisely, from the

invariant about 0′ (previously opened), we know that % ′(FBA2) holds, and furthermore

we know that:

� ∀F, % ′(F) −∗ V(F)

REASONING WITH CAPABILITIES: TWO EXAMPLES 61.

Owing to the fact that V(·) is persistent, we can shave o� the � modality, and

conclude thatV(FBA2) holds, concluding the proof of (b).

Finally, addressing (a) is straightforward, since we did not change the contents of

memory at either address 0 or 0′. We can therefore close the invariants again, by

giving up the same resources as we initially got from opening them, concluding the

proof of (a) and thus the case of the proof for load.

In the proof sketch above, we followed one speci�c subcase of the proof for the load
instruction. In the complete proof, we must go through all the possible cases of the

semantics for the instruction. In some cases, the machine fails which terminates the

proof easily (for instance, if the capability in Asrc does not in fact allow reading memory,

or if Asrc does not in fact contain a capability). In some other cases, the machine does

not fail, and the proof is similar to the case highlighted here but slightly di�erent (for

instance when Adst and Asrc are the same register).

The proofs for the other instructions of the machine follow a similar pattern. In

particular, in the store case, the register state is not modi�ed except for the pc
register, but memory is modi�ed. As such, closing the invariants is not as easy since

we need to establish that the stored word is at least safe. This is established by using

the fact that we assumed that the register only contains safe words. The case of

the restrict, subseg and lea instructions require showing that a capability with

smaller authority remains in the value relationV , and the jmp, jnz and mov cases

show that pc (or other registers) can be updated with arbitrary safe words. The other

remaining cases are rather trivial, as they all only change a register state to an integer,

which is always safe. �

2.6 Reasoning with capabilities: two examples

In this section, we return to the motivational examples introduced in Section 2.2, and

show how to prove that they enforce the desired properties, using Cerise’s reasoning

tools, laid out in the previous sections.

2.6.1 Sharing a sub-bu�er with an unknown adversary

code: mov r1 PC
lea r1 [data-code]
subseg r1 [data] [data+3]
jmp r0

data: ’H’, ’i’, 0, ; public
secret: 42 ; secret
end:

Let us recall (on the right) the code for our

bu�er-sharing program, previously introduced

in Figure 2.3. The labels code, data, secret
and end denote addresses in memory. We wish

to prove formally that the program can share

the data between addresses data and secret

62 CERISE: PROGRAM VERIFICATION ON A CAPABILITY MACHINE

(excluded), while protecting the integrity of

the data at address secret.

Using the reasoning rules from our program logic, we can �rst prove a speci�cation

for the program, specifying its behavior from its �rst instruction up until the �nal

jmp. The corresponding speci�cation is as follows, where code_instrs is the list of

integers corresponding to the encoded instructions of the program, i.e., code_instrs =

map encodeInstr [mov r1 pc; . . . ; jmp r0].

Lemma 2.1 (Program speci�cation 10).{
(rwx, code, end, code); r0 Z⇒ Fadv ∗ r1 Z⇒ − ∗

[code, data) ↦→ code_instrs

}
 {

updatePcPerm(Fadv);
r0 Z⇒ Fadv ∗ r1 Z⇒ (rwx, data, secret, data) ∗
[code, data) ↦→ code_instrs

}
One can read from the speci�cation that executing the program will store in r1 an

rwx capability to the memory segment between addresses data and secret (our

“bu�er”), and pass control to the wordFadv found in register r0.

Proving this speci�cation is easy: it is enough to successively apply the program logic

rule of each individual instruction found in the program.

This speci�cation shows that the program ultimately jumps to the word initially

passed in register r0, but does not describe what happens after, in the case where this

word points to a region containing unknown code. For this, we use the reasoning

principles from Section 2.5.2 (built on top of the Fundamental Theorem), and derive

a speci�cation for a complete execution of the machine, see Lemma 2.2 below. The

lemma speci�es that, starting by executing our program, and given that r0 contains

a capability to a region containing unknown integers, then the machine is safe to

run. Notice that we do not assume a points-to resource for the secret data: instead,

this points-to will be part of an invariant—specifying that it contains the same secret

value at every step—and we do not need to access that here.

Lemma 2.2 (Full execution speci�cation 11).
(rwx, code, end, code);

r0 Z⇒ (rwx, 1adv, 4adv, 1adv) ∗
r1 Z⇒ − ∗
∗ (A,E) ∈reg,
A∉{pc,r0,r1 }

A Z⇒ I ∗ I ∈ Zp q ∗

[code, data) ↦→ code_instrs ∗
[data, secret) ↦→ [′H′; ′i′; 0] ∗
∗(0,I) ∈adv 0 ↦→ I ∗ I ∈ Zp q


 •

Proof. By Lemma 2.1, the frame rule FragFrame and the sequence rule SeqFull, it

https://logsem.github.io/cerise/journal/cap_machine.examples.buffer.html#buffer_spec
https://logsem.github.io/cerise/journal/cap_machine.examples.buffer.html#buffer_full_run_spec

REASONING WITH CAPABILITIES: TWO EXAMPLES 63

su�ces to show the following goal, which corresponds to a speci�cation about the

execution of the machine after the execution of the veri�ed code:

Goal:


(rwx, 1adv, 4adv, 1adv);

r0 Z⇒ (rwx, 1adv, 4adv, 1adv) ∗
r1 Z⇒ (rwx, data, secret, data) ∗
∗ (A,E) ∈reg,
A∉{pc,r0,r1 }

A Z⇒ I ∗ I ∈ Zp q ∗

∗(0,I) ∈adv 0 ↦→ I ∗ I ∈ Zp q ∗
[code, data) ↦→ code_instrs ∗
[data, secret) ↦→ [′H′; ′i′; 0]


 •

We now rely on the reasoning rules derived from the Fundamental Theorem

(Section 2.5.2). First, from the fact that the adversary region adv does not contain

capabilities, we get using Corollary 2.1 that any capability on that region is safe,

in particular we have V(rwx, 1adv, 4adv, 1adv). Then, from Corollary 2.2 we get a

speci�cation for the execution of the machine starting fromV(rwx, 1adv, 4adv, 1adv)
(recall that updatePcPerm is the identity on non-e capabilities):

Fact: ∀reg.
{
(rwx, 1adv, 4adv, 1adv);∗(A,E) ∈reg,A≠pc A Z⇒ E ∗ V(E)

}
 •

From this fact, we can prove our goal provided that we show that the contents of all

machine registers satisfyV . For registers other than r0 and r1, this holds by de�nition

ofV , as we know they only contain integers. Register r0 contains a capability to the

adversary region, which we have already proved to be safe using Corollary 2.1. Finally,

register r1 contains the capability pointing to the public bu�er. We can again leverage

Corollary 2.1 to obtainV(rwx, data, secret, data) from the memory points-to for the

bu�er ([data, secret) ↦→ [′H′;′ i′; 0]), thus concluding the proof. �

Finally, from Lemma 2.2, established in the program logic, we wish to obtain a �nal

result in terms of the operational semantics of the machine. The toplevel end-to-end

theorem that we obtain is shown in Theorem 2.3. We consider a machine whose

memory is initially loaded with our program and unknown adversarial code, and that

starts by executing our veri�ed code. The theorem establishes that the adversary will

not be able to tamper with the value held at address secret: at every step of the

execution, it will be unchanged and equal to 42.

Theorem 2.3 (End-to-end theorem: integrity of the secret data is preserved 12).
Starting from an initial state of the machine (reg,mem) where:

• prog] adv ⊆ mem, for adv : [1adv, 4adv) → Word and prog : [code, end) →
Word

• the contents of prog correspond to the encoded instructions and program data;

• the adversary memory contains no capabilities: ∀0.adv(0) ∈ Z;

https://logsem.github.io/cerise/journal/cap_machine.examples.buffer.html#adequacy

64 CERISE: PROGRAM VERIFICATION ON A CAPABILITY MACHINE

• the initial state of registers satis�es:

reg(pc) = (rwx, code, end, code),
reg(r0) = (rwx, 1adv, 4adv, 1adv),
reg(A) ∈ Z otherwise;

Then, for any reg
′
, mem

′
, if (reg,mem) −→∗ (reg′,mem

′), then mem
′(secret) = 42.

Proof. We �rst invoke Theorem 2.1, choosing the memory invariant � and its domain

� to be the invariant �buf and domain �buf de�ned below, asserting that the value at

address secret is equal to 42:

�buf , _<. <(secret) = 42

and �buf = {secret}.

Most side-conditions of the adequacy theorem can be easily discharged. What remains

is the following speci�cation in Iris:

∃<,∗(0,F) ∈< 0 ↦→ F ∗ dom(<) = �buf

p q ∗ �buf (<)p q

Goal: `


(rwx, code, end, code);

r0 Z⇒ (rwx, 1adv, 4adv, 1adv) ∗∗(A,E) ∈reg,
A∉{pc,r0 }

A Z⇒ I ∗ I ∈ Zp q ∗

∗(0,I) ∈adv 0 ↦→ I ∗ I ∈ Zp q ∗
∗(0,F) ∈prog,

0∉�buf

0 ↦→ F


 •

We can simplify this goal by unfolding the de�nition of �buf , �buf , prog and massaging

the goal to extract relevant points-to resources. The goal then becomes:

secret ↦→ 42

Goal: `


(rwx, code, end, code);

r0 Z⇒ (rwx, 1adv, 4adv, 1adv) ∗
r1 Z⇒ − ∗
∗ (A,E) ∈reg,
A∉{pc,r0,r1 }

A Z⇒ I ∗ I ∈ Zp q ∗

[code, data) ↦→ code_instrs ∗
[data, secret) ↦→ [′H′; ′i′; 0] ∗
∗(0,I) ∈adv 0 ↦→ I ∗ I ∈ Zp q


 •

Note how the points-to resource for the secret address is held as part of the invariant,

asserting that it contains the value 42 at each step. This simpli�ed goal now follows

from the full execution speci�cation established earlier in Lemma 2.2 by applying the

rule FullFrame, which concludes the proof. �

REASONING WITH CAPABILITIES: TWO EXAMPLES 65.

2.6.2 Creating a closure around local state

Let us now come back to the example introduced in Section 2.2.4, whose code is

reproduced below. In this example, the control �ow is somewhat more involved, as we

have two separate pieces of known code that run at di�erent times. The initialization

code between init and code runs �rst, and creates a sentry capability before passing

control to the unknown code. The code and data located between code and end are

encapsulated in the sentry capability created by the initialization code. Because the

sentry capability is exposed to the unknown code, the code it encapsulates may be

invoked several times, incrementing the value of the counter each time.

We wish to prove formally that the value of the counter is correctly encapsulated. We

prove that it remains non-negative at every step: starting from zero, it can only get

incremented by the code routine encapsulated in the sentry capability.

init:
mov r1 PC
lea r1 [data-init]
mov r2 r1
lea r2 1
store r1 r2
lea r1 [code-data]
subseg r1 [code] [end]
restrict r1 E
mov r2 0
jmp r0

code:
mov r1 PC
lea r1 [data-code]
load r1 r1
load r2 r1
add r2 r2 1
store r1 r2
mov r1 0
jmp r0

data:
; will be:
; (RWX, init, end, data+1)
0xFFFF,
0 ; counter value

end:

Using the rules of our program logic, we can �rst prove a speci�cation for the

initialization code, shown in Lemma 2.3. This speci�cation describes the behavior

of the code between init and code, where init_instrs denote the corresponding list of

encoded instructions.

Lemma 2.3 (Speci�cation for the initialization code 13).{
(rwx, init, end, init); r0 Z⇒ Fadv ∗ r1 Z⇒ − ∗ r2 Z⇒ − ∗

data ↦→ − ∗ [init, code) ↦→ init_instrs

}
 updatePcPerm(Fadv);

r0 Z⇒ Fadv ∗ r1 Z⇒ (e, code, end, code) ∗ r2 Z⇒ 0 ∗
data ↦→ (rwx, init, end, data + 1) ∗
[init, code) ↦→ init_instrs



https://logsem.github.io/cerise/journal/cap_machine.examples.minimal_counter.html#counter_init_spec

66 CERISE: PROGRAM VERIFICATION ON A CAPABILITY MACHINE

From this speci�cation, one can read that running the initialization code will store

in register r1 a sentry capability to [code, end), and write at address data an rwx

capability pointing to the location holding the counter value. The initialization code

then passes control to the unknown wordFadv stored in r0.

We can also use the program logic rules to prove a speci�cation for the code routine in

[code, data) which increments the counter, and which will run each time the sentry

capability is invoked. The speci�cation appears in Lemma 2.4, where code_instrs

refers to the list of encoded instructions for the routine.

Lemma 2.4 (Speci�cation for the increment routine 14).

[code, data) ↦→ code_instrs ,

data ↦→ (rwx, init, end, data + 1) , ∃=. (data + 1) ↦→ = ∗ = ≥ 0
p q

` {(rx, code, end, code); r0 Z⇒ Fcont ∗ r1 Z⇒ − ∗ r2 Z⇒ −}
{updatePcPerm(Fcont);∃=. r0 Z⇒ Fcont ∗ r1 Z⇒ 0 ∗ r2 Z⇒ =}

This speci�cation assumes a number of Iris invariants, describing the contents of

the [code, end) memory region. Indeed, because the increment routine is invoked by

unknown code, it cannot make many assumptions about the state of the machine.

The only thing that it can assume is that previously established invariants still hold

(because, by de�nition, capability-safe unknown code has to preserve invariants).

The speci�cation thus assumes, as invariants: 1) that the region [code, data) contains

the code of the routine; 2) that data contains the rwx capability to the counter value

previously stored there by the initialization code, and �nally 3) that the counter value

(at address data + 1) is a non-negative integer.

The speci�cation asserts that the routine can run, starting with pc containing an rx

capability to the [code, end) region, while preserving the invariants. (In particular,

this means that incrementing the counter indeed preserves the fact that it is a non-

negative integer.) Recall that the rx permission in pc corresponds to what one gets

after jumping to a sentry capability.

Finally, we prove as before a speci�cation proving safety of complete executions,

starting from the initialization code, then followed by the execution of unknown code,

including its possible invocations of the sentry capability. This speci�cation appears

below in Lemma 2.5.

https://logsem.github.io/cerise/journal/cap_machine.examples.minimal_counter.html#counter_code_spec

REASONING WITH CAPABILITIES: TWO EXAMPLES 67

Lemma 2.5 (Full execution speci�cation 15).

∃=. (data + 1) ↦→ = ∗ = ≥ 0
p q

`


(rwx, init, end, init);

r0 Z⇒ (rwx, 1adv, 4adv, 1adv) ∗ r1 Z⇒ − ∗
r2 Z⇒ − ∗∗ (A,E) ∈reg,

A∉{pc,r0 ..r2 }
A Z⇒ I ∗ I ∈ Zp q ∗

[init, code) ↦→ init_instrs ∗
[code, data) ↦→ code_instrs ∗ data ↦→ − ∗
∗(0,I) ∈adv 0 ↦→ I ∗ I ∈ Zp q


 •

Proof. By using Lemma 2.3 (the speci�cation for the initialization code), the frame

rule FragFrame and sequence rule SeqFull, it is enough to show the following goal,

which speci�es the execution of the machine after the initialization code has run:

∃=. (data + 1) ↦→ = ∗ = ≥ 0
p q

Goal: `


(rwx, 1adv, 4adv, 1adv);

r0 Z⇒ (rwx, 1adv, 4adv, 1adv) ∗
r1 Z⇒ (e, code, end, code) ∗ r2 Z⇒ 0 ∗
∗ (A,E) ∈reg,
A∉{pc,r0 ..r2 }

A Z⇒ I ∗ I ∈ Zp q ∗

[init, code) ↦→ init_instrs ∗
[code, data) ↦→ code_instrs ∗
data ↦→ (rwx, init, end, data + 1) ∗
∗(0,I) ∈adv 0 ↦→ I ∗ I ∈ Zp q


 •

We then allocate two new invariants, one containing the code of the sentry capability,

the other the points-to resource at address data.

[code, data) ↦→ code_instrs , data ↦→ (rwx, init, end, data + 1) ,
∃=. (data + 1) ↦→ = ∗ = ≥ 0

p q

Goal: `


(rwx, 1adv, 4adv, 1adv);

r0 Z⇒ (rwx, 1adv, 4adv, 1adv) ∗
r1 Z⇒ (e, code, end, code) ∗ r2 Z⇒ 0 ∗
∗ (A,E) ∈reg,
A∉{pc,r0 ..r2 }

A Z⇒ I ∗ I ∈ Zp q ∗

[init, code) ↦→ init_instrs ∗
∗(0,I) ∈adv 0 ↦→ I ∗ I ∈ Zp q


 •

From Corollary 2.1 and the fact that the adversary region adv does not contain

capabilities, we get that any capability on that region is safe, and therefore that

V(rwx, 1adv, 4adv, 1adv) holds. From Corollary 2.2, we get that a full execution starting

from (rwx, 1adv, 4adv, 1adv) is safe:

Fact: ∀reg.
{
(rwx, 1adv, 4adv, 1adv);∗(A,E) ∈reg,A≠pc A Z⇒ E ∗ V(E)

}
 •

https://logsem.github.io/cerise/journal/cap_machine.examples.minimal_counter.html#counter_full_run_spec

68 CERISE: PROGRAM VERIFICATION ON A CAPABILITY MACHINE

In combination with rule FullFrame, this fact allows us to conclude the proof, provided

we can prove safety of values stored in all registers. We have already proved the

capability in r0 to be safe. Registers r2 to r31 contain integers, so they are safe by

de�nition ofV . Safety of the sentry capability created by the initialization code and

stored in r1 remains to be proven.

Goal:

[code, data) ↦→ code_instrs , data ↦→ (rwx, init, end, data + 1) ,
∃=. (data + 1) ↦→ = ∗ = ≥ 0

p q

` V(e, code, end, code)

By de�nition ofV and E, this goals unfolds to the following:

Goal:

[code, data) ↦→ code_instrs , data ↦→ (rwx, init, end, data + 1) ,
∃=. (data + 1) ↦→ = ∗ = ≥ 0

p q

` ⊲� ∀reg,
{
(rx, code, end, code);∗(A,E) ∈reg,A≠pc A Z⇒ E ∗ V(E)

}
 •

For technical reasons, we can shave o� the later modality (⊲) in front of the goal

(we refer to the Coq formalization for more details). The persistent modality (�) is

more interesting: it expresses the fact that safety of the callback should only depend

on persistent assumptions. This corresponds to the fact that the callback may be

invoked several times, in future execution states and because of this it cannot rely on

non-persistent assumptions that only hold at the callback’s creation time. Fortunately,

invariants are persistent, so they remain available for proving the callback’s safety.

Then, let us nameF0 the contents of register r0: we get to assumeV(F0) (as for the

contents of other registers). By using Lemma 2.4 (the speci�cation for the increment

routine) with rules FragFrame and SeqFull, it is enough to prove the following goal,

which asserts safety of the execution after passing control back to unknown code by

jumping toF0:

Goal: `
{
updatePcPerm(F0);

∃=. r0 Z⇒ F0 ∗ r1 Z⇒ 0 ∗ r2 Z⇒ = ∗
∗(A,E) ∈reg,A∉{pc,r0,r1,r2 } A Z⇒ E ∗ V(E)

}
 •

Informally, the increment routine returns to the unknown code by passing control to

some unknown word provided in r0: it is safe to do so, since such word can be assumed

to be itself safe. Formally speaking, we knowV(F0), so we apply Corollary 2.2 which

concludes the proof. �

Similarly to the previous example, we derive from Lemma 2.5 a toplevel theorem which

only refers to the operational semantics of the machine, shown below in Theorem 2.4.

We consider a machine initially loaded with our program and unknown adversarial

code. The theorem establishes that the value of the counter is properly encapsulated:

at every step of the execution, it will be a non-negative integer.

DYNAMIC MEMORY ALLOCATION AND CLOSURES 69.

Theorem 2.4 (End-to-end theorem: integrity of the counter value is preserved 16).
Starting from an initial state of the machine (reg,mem) where:

• prog]adv ⊆ mem, for adv : [1adv, 4adv) →Word and prog : [init, end) →Word

• the contents of prog correspond to the encoded instructions and program data;

• the adversary memory contains no capabilities: ∀0.adv(0) ∈ Z;
• the initial state of registers satis�es:

reg(pc) = (rwx, init, end, init),
reg(r0) = (rwx, 1adv, 4adv, 1adv),
reg(A) ∈ Z otherwise;

Then, for any reg
′
, mem

′
, if (reg,mem) −→∗ (reg′,mem

′), then
mem

′(data + 1) ≥ 0.

Proof. We invoke Theorem 2.1, with invariant and domain �cnt and �cnt de�ned as

follows:

�cnt , _<.<(data + 1) ≥ 0

and �cnt = {data + 1}

The main step of the proof is to show that the full execution speci�cation for the initial

machine con�guration holds, as stated by the theorem. After some basic unfolding

of de�nitions, it is easy to show that it follows from the speci�cation we previously

established in Lemma 2.5. �

2.7 Dynamic Memory Allocation and Closures

In the previous sections, we have shown how to use capabilities for memory protection

and compartmentalization in the setting of relatively simple scenarios. In particular,

the examples that we have presented so far only relied on memory allocated statically

as part of the initial program region.

We now investigate how we can use and reason about more complicated programming

patterns. More precisely, we show how we can implement features found in higher-

level languages, such as dynamic memory allocation and function calls which

guarantee encapsulation of local variables. Additionally, we implement an assert
routine which we use to formally express properties about dynamically allocated

memory.

This section focuses on presenting the aforementioned higher-level building blocks

(§2.7.1–2.7.3), an updated adequacy theorem that incorporates the use of these

components (§2.7.4), then followed by a simple illustrative example (§2.7.5). In

https://logsem.github.io/cerise/journal/cap_machine.examples.minimal_counter.html#adequacy

70. CERISE: PROGRAM VERIFICATION ON A CAPABILITY MACHINE

Section 2.8, we then apply them to build a larger, more signi�cant case study,

demonstrating how these building blocks can work at scale.

2.7.1 Dynamic memory allocation as a library routine

We show how dynamic memory allocation can be implemented as a library, for which:

1) we prove an Iris speci�cation making it usable from veri�ed code, and 2) we show

that it is safe to share with untrusted code, so that an adversary can also use the

library to allocate memory for its own uses.

Note that this task is made easier by the fact that we do not attempt to provide a way

of deallocating memory. As such, memory provided by the allocation routine is never

reclaimed. We leave deallocation for future work, as it likely requires a signi�cantly

more complex runtime mechanism to ensure that no dangling capabilities remain

pointing to previously allocated memory regions [182, 55].

Concretely, we implement our allocator library as a simple bump-pointer allocator.

The library provides a malloc entry point, to be called with an integer argument =,

which works as follows:

1. the routine encapsulates a contiguous region of memory [1, 4), as well as a

capability (rwx, 1, 4, 0) where the interval [1, 0) represents already allocated

memory, and [0, 4) represents memory that can still be allocated;

2. the routine checks that the input size = is strictly positive;

3. if 0+= is greater than 4 , the routine fails (there is not enough memory available);

4. otherwise, it then records that memory has been allocated by updating its

internal capability to (rwx, 1, 4, 0 + =), and returns to the caller the capability

(rwx, 0, 0 + =, 0).

Figure 2.11 outlines the code for our simple malloc implementation. The code assumes

that it is stored in memory in an interval [1<, 1mid) and that 1mid points to a capability

(rwx, 1mid, 4<, 0) giving access to: itself (so it can be updated), and the memory

pool (between address 1mid + 1 and 4<). For simplicity, we assume that the non-

allocated memory is already initialized to 0. These requirements are represented by

the following invariant 17 :

mallocInv(bm, em) ,

∃1mid, 0, [1<, 1mid) ↦→ malloc_instrs ∗
1mid ↦→ (rwx, 1mid, 4<, 0) ∗
[0, 4<) ↦→ [0 · · · 0] ∗
1mid < 0 ≤ 4<p q

The core property of our safe malloc is that is does not hand out the same addresses

https://logsem.github.io/cerise/journal/cap_machine.examples.malloc.html#malloc_inv

DYNAMIC MEMORY ALLOCATION AND CLOSURES 71

across multiple dynamic allocations. This can be expressed elegantly in separation

logic, by specifying that malloc hands out points-to resources for the allocated

memory. Indeed, points-to resources (0 ↦→ F) express full ownership over the data

at address 0: possessing a resource 0 ↦→ F guarantees that one is the only owner of

address 0.

Consequently, remark that the invariant holds memory points-to for the region

corresponding to non-allocated memory (between 0 and 4<), but not for the memory

that has already been allocated (between 1mid + 1 and 0): these resources have been

handed out to previous callers of the library.

We show below the speci�cation for malloc 18 . First, note that because malloc can

fail if it runs out of memory or is given a wrong size, the speci�cation documents

that the resulting execution state is either Running or Failed. In the case where it

does not fail, we can read that malloc hands out points-to resources for the allocated

range in its post-condition: this expresses the fact that no piece of code but the caller

of malloc can access the newly allocated memory.

mallocInv(bm, em)

`
{
(rx, 1<, 4<, 1<);

A0 Z⇒ F0 ∗ A1 Z⇒ = ∗
A2, A3, A4 Z⇒ −

}
 

B .

B = Runningp q∗ pc Z⇒ updatePcPerm(F0) ∗
∃10, 40, 10 + = = 40

p q ∗
r0 Z⇒ F0 ∗
r1 Z⇒ (rwx, 10, 40, 10) ∗∗0∈[10,40) 0 ↦→ 0 ∗
r2, r3, r4 Z⇒ 0

∨ B = Failedp q


The malloc routine can furthermore be encapsulated using a sentry capability, which

can be shown to be safe to share with an adversary (Lemma 2.6).

Lemma 2.6 (malloc is safe 19). mallocInv(1<, 4<) −∗ V(e, 1<, 4<, 1<)

The proof is comparable to the proof thatV(e, code, end, code) on page 68. It relies

on the malloc speci�cation and the fundamental theorem.

2.7.2 Runtime checks: an assert routine

The �nal end-to-end theorems presented so far in Section 2.6 rely on establishing

that a certain memory location satis�es a given invariant. This requires the relevant

https://logsem.github.io/cerise/journal/cap_machine.examples.malloc.html#simple_malloc_subroutine_spec
https://logsem.github.io/cerise/journal/cap_machine.examples.malloc.html#simple_malloc_subroutine_valid

72 CERISE: PROGRAM VERIFICATION ON A CAPABILITY MACHINE

;; r1: integer determining the number
;; of words to allocate
;;
;; malloc fails if n <= 0 or if it
;; does not have enough space left
;;
;; returns in r1 a capability to the
;; allocated memory
bm:

lt r3 0 r1 ;; check that n > 0
mov r2 pc ;; jmp after fail if
lea r2 4 ;; yes; continue and
jnz r2 r3 ;; fail if not
fail

xm:
mov r2 pc
lea r2 [bmid - xm]
;; r2 = (RWX, bm, em, bmid)
load r2 r2 ;; r2 = (RWX, bmid, em, a)
geta r3 r2
lea r2 r1
;; r2 = (RWX, bmid, em, a+n)

geta r1 r2
mov r4 r2
subseg r4 r3 r1
sub r3 r3 r1
lea r4 r3
mov r3 r2
sub r1 0 r1
lea r3 r1
getb r1 r3
lea r3 r1 ;; r3 = (RWX, bmid, em, bmid)
store r3 r2
;; bmid <- (RWX, bmid, em, a+n)
mov r1 r4 ;; r1 = (RWX, a, a+n, a)
mov r2 0
mov r3 0
mov r4 0
jmp r0

bmid: (RWX, bmid, em, a)
;; ... already allocated memory ...
a:
;; ... free memory ...
em:

Figure 2.11: A simple malloc subroutine.

location is statically allocated in memory and thus known in advance, thus making it

easy to tie it to an Iris invariant.

However, when using our malloc routine, we typically wish to enforce properties

about the contents of dynamically allocated memory locations, whose address is, by

de�nition, not known in advance. To address this issue, we implement an assert
routine, to be linked alongside programs relying on malloc. One can invoke assert
to dynamically test whether the contents of two registers are equal; if the test fails,

assert sets a �ag “assert has failed” at a �xed location in memory.

The idea is then that, to assert that some property holds about a piece of dynamically

allocated memory, one can check dynamically whether it holds using assert. Then,

one can prove that each assert check succeeds (meaning that the property indeed

holds). Consequently, as a property of the whole execution, one gets that, at every

step, the assert �ag (initialized at 0) remains at 0 and is never set to 1 by assert.

The private memory of the assert routine is described by the following invariant 20 :

assertInv(10, 40, a�ag) ,
∃0cap, [10, 0cap) ↦→ assert_instrs ∗

0cap ↦→ (rw, 0�ag, 0�ag + 1, 0�ag) ∗
0cap + 1 = 0�ag ∧ 0�ag + 1 = 40p q

https://logsem.github.io/cerise/journal/cap_machine.examples.assert.html#assert_inv

DYNAMIC MEMORY ALLOCATION AND CLOSURES 73

The address 0�ag denotes the address of the “assert �ag”, which is initialized to 0

and set to 1 by the routine in case of failure. As we are interested in using assert
in programs where we can prove that the equality check succeeds, we establish the

following speci�cation 21 , which asserts in a separate invariant that 0�ag remains at

0. Registers A4 and A5 contain the two integers which are compared by the routine;

we thus require that they are equal.

assertInv(10, 40, 0�ag) , 0�ag ↦→ 0

`
(rx, 10, 40, 10);

r0 Z⇒ F0 ∗
r4 Z⇒ = ∗
r5 Z⇒ =


{
updatePcPerm(F0);

r0 Z⇒ F0 ∗
r4, r5 Z⇒ 0

}
Note that, as opposed to malloc, the assert routine should only be shared with

veri�ed code, which calls it according to the speci�cation above. Were assert shared

with an unknown adversary, the adversary could simply call the routine with two

di�erent integers, setting the �ag to 1, thus invalidating any guarantees established

by veri�ed code. Technically speaking, we cannot prove safety of the assert routine

from the speci�cation above: if we try to prove V(e, 10, 40, 10), then we get that

registers r4 and r5 contain two unknown (valid) words, which could be two di�erent

integers. In that case, we cannot use the speci�cation above, as we would violate the

invariant specifying that 0�ag stays at 0.

2.7.3 A secure heap-based calling convention

We de�ne a heap-based calling convention that uses malloc to dynamically allocate

activation records. An activation record is encapsulated in a closure that reinstates its

caller’s local state, and continues execution from its point of creation. Conceptually,

our heap-based calling convention can be seen as a continuation-passing style calling

convention (one passes control to the callee, giving it a continuation for returning to

the caller). This is similar to the calling convention that was used for instance in the

SML/NJ compiler to implement an extension of Standard ML with call/cc [10] (in the

setting of a traditional computer architecture).

In the setting of a capability machine, our calling convention is furthermore secure in

the sense that it enforces local state encapsulation. In other words, one can use it to

pass control to unknown adversarial code, while protecting local data of the caller,

thanks to the use of sentry capabilities to implement the continuation. Note that this

calling convention does not enforce well-bracketed control �ow (another desirable

property); see [62, 143, 144] for stack-based calling conventions that do.

We provide a call macro implementing the calling convention, invoked as call
target locals params, where target is the name of the register containing a pointer to

https://logsem.github.io/cerise/journal/cap_machine.examples.assert.html#assert_success_spec

74. CERISE: PROGRAM VERIFICATION ON A CAPABILITY MACHINE

; initially, PC = (RWX, code, end, a)
; target = register containing the address to jump to
; locals, params = lists of register names
; locals, params and target are parameters of the macro;
; they are in practice instantiated with concrete values
code:

...
a:

malloc (length locals) ; 1. allocate and store local state
store_locals r1 locals
mov r6 r1
malloc 7 ; 2. allocate region for activation record
mov r0 r1
store act_instr1 ; store the activation code
lea r0 1
...
store act_instr5
lea r0 1
store r0 r6 ; store the capability to locals
lea r0 1

x:
mov r1 pc ; prepare and store the continuation
lea r1 [cont - x]
store r0 r1
lea r0 -6 ; 3. create the return capability
restrict r0 E
rclear RegName\{PC,r0,r1} ∪ params ; 4. clear all registers except parameters
jmp target ; 5. jump to target

cont:
restore_locals r1 locals ; 6. reinstate local state
...

data:
(RO, table, end, table) ; environment table

table:
(E, bm, em, bm) ; entry point to the malloc subroutine
... ; possibly other routines

end:

Figure 2.12: Heap-based calling convention, with a the �rst instruction in the call

macro

the code to invoke, locals is the list of registers whose content corresponds to the

local state to reinstate upon return, and params is the list of registers containing the

parameters to the call (passed to the callee). Its implementation appears in Figure 2.12,

and a representation of the corresponding memory layout in Figure 2.13. (Because

call is de�ned as a macro, its code is used inline as part of a bigger program, here

stored between addresses code and end.)

Before passing control to the callee, the call macro does the following:

DYNAMIC MEMORY ALLOCATION AND CLOSURES 75.

l l_end

locals

rwx

act. code

act act_end

A0 : (e, act, act_end, act)

• •
code endcont

p

dynamically allocated

static code

Figure 2.13: Memory layout dynamically created by the calling convention.

1. Invoke malloc to dynamically allocate a region of memory [;, ;end) to store the

local state from the registers speci�ed in locals.

2. Allocate a region of memory [act, actend) to store the activation record,

composed of: activation code, a capability to the region [;, ;end), and a capability

to the instruction of the program following the call.

3. Create a sentry capability (e, act, actend, act) encapsulating the activation record;

this is capability for returning to the caller which is passed to the callee.

4. Clear all registers except those in params.

5. Jump to target.

When the callee passes back control to the caller by jumping to the continuation, the

code stored in the activation runs �rst. It loads the capability pointing to local state,

and returns to the old program counter set up by the call macro. As the last step, the

macro will �nally:

6. Restore the local state into the relevant registers from the activation record.

We show below the speci�cation for the code of the macro up to step 5 (the jump to the

target address) 22 . Since the malloc routine is invoked by the macro, the speci�cation

relies on the corresponding invariant for malloc. The parameters of the macro are

params, locals and target, respectively denoting the list of registers containing the

parameters to the call, the list of registers containing local state, and the register

containing the capability to jump to. The list of (encoded) instructions act_instrs
denote the concrete instructions making up the activation code (in Figure 2.12 they are

written as act_instr1...act_instr5 23), which are not shown here for simplicity.

The post-condition of the speci�cation describes the state immediately after the jump,

where: the activation record has been allocated and initialized in [act, actend); register

r0 contains an enter capability pointing to the activation record, and the local data

has been copied to a newly allocated region [;, ;end).

https://logsem.github.io/cerise/journal/cap_machine.examples.call.html#call_spec
https://logsem.github.io/cerise/journal/cap_machine.examples.call.html#hw_1

76 CERISE: PROGRAM VERIFICATION ON A CAPABILITY MACHINE

mallocInv(1<, 4<) `
(?, code, end, a);

[a, cont) ↦→ call_instrs ∗
data ↦→ (ro, table, end, table) ∗
table ↦→ (e, 1<, 4<, 1<) ∗
params Z⇒ pws ∗ locals Z⇒ lws ∗ target Z⇒ wadv ∗∗ (A,E) ∈reg,

A∉{pc,target }
A∉params ∪ locals

A Z⇒ E




updatePcPerm(wadv);

∃act, actend, l, ;end, reg′, r0 Z⇒ (e, act, actend, act) ∗
data ↦→ (ro, table, end, table) ∗
table ↦→ (e, 1<, 4<, 1<) ∗
params Z⇒ pws ∗ target Z⇒ wadv ∗ [l, ;end) ↦→ lws ∗
[act, actend) ↦→ act_instrs ++

[(rwx, l, ;end, ;end); (?, code, end, cont)] ∗∗ (A,E) ∈reg′,
A∉{pc,target,r0 }
A∉params

A Z⇒ E


It is then up to the user of the call macro to establish that the capability in r0 is safe

to share with the (possibly unknown) callee. This can be done with the help of the

speci�cation for the activation code 24 , shown next:

`

(rx, act, actend, act);
r1 Z⇒ − ∗ r2 Z⇒ − ∗
[act, actend) ↦→ act_instrs ++

[(rwx, l, ;end, ;end);
(?, code, end, cont)]

 (?, code, end, cont);
r1 Z⇒ − ∗ r2 Z⇒ (rwx, ;, ;end, ;) ∗
[act, actend) ↦→ act_instrs ++

[(rwx, ;, ;end, ;end);
(?, code, end, cont)]


One can read from this speci�cation that the activation code passes control back to the

caller (at address cont), while loading in register r2 a capability to the region holding

the local state, which can be then loaded back into the corresponding registers by the

restore_locals macro (step 6, which we do not detail here).

To sum up, the calling convention presented here allows one to make a “function

call” as one would do in a higher-level language, while protecting local data of the

caller. The code invoked this way can be completely untrusted: in particular, it does

not need to implement the calling convention itself for the local state encapsulation

guarantees to hold. (But of course it might never “return” and pass control back to

the caller.)

https://logsem.github.io/cerise/journal/cap_machine.examples.callback.html#scall_epilogue_spec

DYNAMIC MEMORY ALLOCATION AND CLOSURES 77.

In Section 2.7.5, we demonstrate the use of this heap-based calling convention on a

simple example, showing the interaction of its local state encapsulation guarantees

with read-only capabilities.

2.7.4 Adequacy in the Presence of Dynamically Allocated Mem-
ory

We can now provide an updated version of the adequacy theorem (Theorem 2.1) which

directly incorporates the malloc and assert library routines. Instead of establishing

that a memory invariant is always preserved at each step, the new adequacy theorem

establishes that the �ag held by assert is never modi�ed.

Theorem 2.5 assumes that the malloc and assert routines are loaded in memory

disjoint from both prog and adv. Furthermore, the assert routine must have its

�ag initialized to 0. The veri�ed program prog is given access to both the malloc
and assert routines. The adversary program adv is given access to malloc. We

assume that prog contains the code and a table that has been �lled by a linker with

capabilities giving access to the two routines. Likewise, we assume that adv contains

its program (arbitrary integers) and a table �lled by the linker with the capability to

the malloc routine. Similarly to the �rst adequacy theorem, the theorem states that

if the capability machine starts with the capability pointing to prog in the program

counter, and if it has been proved in the program logic that the machine can run until

completion, then the assertion �ag is never modi�ed.

In what follows, Lemma 2.5 will thus allow us to prove end-to-end theorems saying

that the assertion �ag will still be unset after a full execution. This corresponds to the

end-to-end theorems of Swasey et al. [152] which are also phrased in terms of an assert

primitive (albeit in a high-level language) that untrusted code does not get access

to. Of course, such results remain a bit arti�cial: ultimately, in real systems, we are

not directly interested in the contents of assertion �ags in the system’s memory, but

rather in the system’s interaction with the outside world: network communication,

the content of displays etc. Our approach can be extended to reason about such

properties, but we don’t go into details here. Instead, we refer to Van Strydonck et al.

[160] (Chapter 3 of this thesis), where we have done exactly this extension, by adding

MMIO and external event traces to our operational semantics and using Iris invariants

and ghost state to reason about them. This results in end-to-end theorems that prove

security properties about the external event traces of a system, which we regard as a

more realistic end goal of a veri�cation e�ort.

78 CERISE: PROGRAM VERIFICATION ON A CAPABILITY MACHINE

Theorem 2.5 (Updated adequacy 25). Givenmemory fragments prog : [1, 4) →Word,

malloc : [1<, 4<) → Word, assert : [10, 40) → Word, and for any memory fragment

adv : [1adv, 4adv) →Word, assuming that:

1. the initial state of memory mem satis�es:

prog]malloc] assert] adv ⊆ mem

2. [1<, 4<) contains the malloc routine;

3. [10, 40) contains the assert routine and its �ag at address 0�ag ;

4. the assertion �ag is initially set to 0:

mem(0�ag) = 0

5. prog contains a table linking to malloc and assert:

∃data, table,mem(data) = (ro, table, table + 2, table)
mem(table) = (e, 1<, 4<, 1<)

mem(table + 1) = (e, 10, 40, 10)

6. the only capability in the adversary region is a table linking to malloc :

∃dataadv, tableadv, ∀0 ∈ dom(adv)\{dataadv, tableadv}, adv(0) ∈ Z
adv(dataadv) = (ro, tableadv, tableadv + 1, tableadv)
adv(tableadv) = (e, 1<, 4<, 1<)

7. the initial state of registers reg satis�es:

reg(pc) = (rwx, 1, 4, 1), reg(r0) = (rwx, 1adv, 4adv, 1adv),
reg(A) ∈ Z otherwise

8. the proof in the program logic that the initial con�guration is safe given the

invariants:

∀reg, mallocInv(1<, 4<) , assertInv(ba, ea, 0�ag) , 0�ag ↦→ 0

`



(rwx, 1, 4, 1);

r0 Z⇒ (rwx, 1adv, 4adv, 1adv) ∗
∗(A,E) ∈reg,
A∉{pc,r0 }

A Z⇒ I ∗ I ∈ Zp q ∗

∗ (0,F) ∈prog,
0∉{data,table,table+1}

0 ↦→ F ∗

data ↦→ (ro, table, table + 2, table) ∗
table ↦→ (e, 1<, 4<, 1<) ∗
table + 1 ↦→ (e, 10, 40, 10) ∗∗ (0,I) ∈adv
0∉{dataadv ,tableadv }

0 ↦→ I ∗ I ∈ Zp q ∗

dataadv ↦→ (ro, tableadv, tableadv + 1, tableadv)
∗ tableadv ↦→ (e, 1<, 4<, 1<)



 •

Then, for any reg
′
, mem

′
, if (reg,mem) −→∗ (reg′,mem

′), then mem
′(0�ag) = 0.

https://logsem.github.io/cerise/journal/cap_machine.examples.template_adequacy_ocpl.html#ocpl.ocpl_template_adequacy

DYNAMIC MEMORY ALLOCATION AND CLOSURES 79.

; initially, PC = (RWX, code, end, code)
; r1 = (unknown) pointer to adversary function
code:

malloc 1 ; r1 = (RWX, b, b+1, b) where b is fresh
mov r3 r1 ; r3 = (RWX, b, b+1, b)
mov r4 r1 ; r4 = (RWX, b, b+1, b)
store r3 1 ; b <- 1
restrict r4 RO ; r4 = (RO, b, b+1, b)
call r1 [r3] [r4] ; call macro that jumps to r1, keeps r3 as local

; state and passes r4 as parameter
load r1 r3 ; r1 = 1, as long as b was not changed during call
mov r2 1
assert r1 r2 ; assert (r1 = 1)
halt

data:
(RO, table, end, table) ; environment table

table:
(E, bm, em, bm) ; entry point to the malloc subroutine
(E, ba, ea, ba) ; entry point to the assert subroutine

end:

Figure 2.14: Program passing a read-only capability to unknown callee.

2.7.5 Application: read-only sharing of dynamically allocated
memory

We now present an example program sharing a read-only capability with adversary

code, showcasing the combined use of the malloc (Section 2.7.1) and assert
(Section 2.7.2) routines, the secure calling convention (Section 2.7.3), and exercising

our updated adequacy theorem (Section 2.7.4).

Figure 2.14 shows the implementation of our program of interest. The program

dynamically allocates a region of size 1, into which it stores the integer 1. Next, it

creates a copy of the newly created capability, which is then restricted to read-only

(ro). This restricted capability is shared with an unknown callee, while the original

copy is kept as local state. Upon return, an assert statement checks that the region

indeed still contains 1. We then wish to prove that the �nal assertion always succeeds.

Notice that in this example, control is passed to untrusted code, corresponding to the

�rst scenario in Figure 2.2a. However, we also allow the callee to return, i.e. jump to

a callback. This is achieved using our calling convention to create a secure two-way

boundary between known code and the unknown callee.

80. CERISE: PROGRAM VERIFICATION ON A CAPABILITY MACHINE

In order to prove that the assert statement succeeds, we rely on two facts. First,

the heap-based calling convention guarantees the encapsulation of (rwx, 1, 1 + 1, 1).
Second, sharing (ro, 1, 1 + 1, 1) with unknown code does not threaten the integrity of

1, since ro capabilities cannot be used to write to memory. These two facts are key

when proving the following speci�cation:

Lemma 2.7 (Full execution speci�cation 26).

mallocInv(1<, 4<) , assertInv(ba, ea, 0�ag) , 0�ag ↦→ 0

`


(rwx, data, end, code);

r1 Z⇒ Fadv ∗ V(Fadv) ∗∗(A,E) ∈reg,A∉{pc,r1 } A Z⇒ F ∗
[code, end) ↦→ code_instrs ∗
data ↦→ (ro, table, table + 2, table) ∗
[table, table + 2) ↦→
[(e, 1m, 4m, 1m); (e, 1a, 4a, 1a)]


 •

Proof. We begin by applying program logic rules until we make it to the call to

unknown code. At that point, a (fresh) region has been dynamically allocated and

initialized to 1, and thus we have the following Separation Logic resources:

A2 Z⇒ (rwx, 1, 1 + 1, 1) ∗ 1 ↦→ 1

At the call site, the calling convention creates an activation record, and sets up a

sentry capability as the return pointer in r0. (The “...” on the second line below stands

for the address of the continuation after the call.)

A0 Z⇒ (e, act, actend, act) ∗ (2.11)

[act, actend) ↦→ act_instrs ++[(rwx, ;, ; + 1, ;); (rwx, code, end, ...)] ∗
; ↦→ (rwx, 1, 1 + 1, 1) ∗
r2 Z⇒ 0 ∗
r3 Z⇒ (ro, 1, 1 + 1, 1) (2.12)

Note in particular how the rwx capability pointing to 1 (part of the “local state”) is

only reachable from the capability (pointing to ;) stored in the activation record, while

the ro copy is available in register r3.

The call macro then passes control to the adversary by jumping toFadv . To reason

about this jump, we apply Corollary 2.2 (assuming Fadv is safe). This requires us

to show that all parameters in the current register state are valid. In particular, we

must show that the sentry capability set up by the calling convention (2.11) is safe to

execute, and that the read-only capability (2.12) is safe to share.

The latter is done by allocating an appropriate invariant, which is allowed to be

stronger than the value relation itself, since the capability in question is read-only. To

https://logsem.github.io/cerise/journal/cap_machine.examples.lse.html#roe_spec

DYNAMIC MEMORY ALLOCATION AND CLOSURES 81

this end, we will allocate an invariant that remembers the current integer pointed to

by b, namely 1.

∃F,1 ↦→ F ∗F = 1

That same invariant is then used to prove that (2.11) is safe to execute, in particular

to show that the assert statement succeeds, and hence does not change the assert

�ag. �

From this functional speci�cation, we can instantiate our updated adequacy theorem

(Theorem 2.5) to then derive the following end-to-end theorem about our program.

Theorem 2.6 (End-to-end theorem: the read-only permission guarantees in-

tegrity 27). Starting from an initial state of the machine (reg,mem) assuming that:

• prog] adv]malloc] assert ⊆ mem, where:

adv : [1adv, 4adv) →Word, prog : [code, end) →Word

malloc : [1m, 4m) →Word and assert : [1a, 4a) →Word;

• the contents of prog correspond to the encoded instructions and program data (i.e.

table with capabilities to the malloc and assert subroutines);

• the adversary memory contains no capabilities except a table with a capability to

the malloc subroutine;

• malloc contains the implementation of the malloc subroutine;

• assert contains the implementation of the assert subroutine, with its �ag at

address 0�ag , initialized to 0;

• the initial state of registers satis�es:

reg(pc) = (rx, code, end, code),
reg(r1) = (rwx, 1adv, 4adv, 1adv).

Then, for any reg
′,mem

′
, if (reg,mem) −→∗ (reg′,mem

′), then mem
′(0�ag) = 0.

Proof. We apply the updated adequacy theorem (Theorem 2.5), using the speci�cation

proved in Lemma 2.7. All that remains is to prove the validity of the adversary

capability: V(rwx, 1adv, 4adv, 1adv). This is done in two steps. First, the adversary

linking table is proved valid by applying validity of the malloc subroutine (Lemma 2.6).

Next, the rest of the adversary region is proved valid through the assumption that

it does not contain any other capabilities. The full proof can be found in the Coq

mechanisation. �

https://logsem.github.io/cerise/journal/cap_machine.examples.lse_adequacy.html#roe_adequacy

82 CERISE: PROGRAM VERIFICATION ON A CAPABILITY MACHINE

2.8 Case study: a Library Implementing Dynamic
Sealing and a Client

We have presented so far a variety of smaller examples enforcing interesting

encapsulation properties while interacting with adversarial code. In this section,

we demonstrate that our approach scales up to the veri�cation of a larger case study,

involving not only the building blocks of Section 2.7, but using them to build and

modularly verify a number of libraries built on top of each other.

We take inspiration from the literature on object capability patterns (OCPs) from high-

level languages, a technique that enables programmers to protect the private state

of their objects from corruption by untrusted code. More precisely, we consider the

dynamic sealing OCP as presented by [152]. Dynamic sealing enforces a form of data

abstraction in the absence of static types. It can be implemented as a library providing

pairs of seal/unseal functions, allowing their clients to “seal” private data into opaque

objects which can be safely shared with untrusted code, and later unsealed in order

to get back the original data.

In the context of a high-level language, [152] present a formally veri�ed implementa-

tion of dynamic sealing, equipped with a speci�cation that captures the abstraction

guarantees it provides. The authors then use this dynamic sealing library to build and

verify a library of abstract integer intervals, where the integrity of an interval value

(representing a range [8, 9) with 8 ≤ 9) is protected using dynamic sealing. Finally,

the authors use their veri�ed integer library to establish robust safety of a simple

client program checking integrity of intervals, establishing that an untrusted context

cannot violate the internal invariants of the program and its underlying libraries.

We implement and verify low-level variants of the dynamic sealing OCP, interval

library, and their robustly safe client. This represents a non-trivial amount of code:

our implementation of those three components adds up to 632 machine instructions.

Nevertheless, despite the fact that those libraries are implemented in low-level

assembly code, we are able to give them speci�cations at a level of abstraction similar

to their high-level counterparts.

For ease of reading, we will keep the explanations fairly high-level. We will �rst show

high-level pseudo-code for the implementation of the interval library and its client,

and informally discuss what kind of properties should be enforced. Then, we will

present the key ideas for implementing dynamic sealing on a capability machine, and

then for reasoning about it, in particular how to instantiate its speci�cation to be able

to verify the interval library.

CASE STUDY: A LIBRARY IMPLEMENTING DYNAMIC SEALING AND A CLIENT 83.

interval 28 = __, let (seal, unseal) = makeseal() in
let makeint = _ z1 z2, let x = malloc(2) in

x ← {<8=(z1, z2);<0G (z1, z2)};
seal(x)

in

let imin = _ i, unseal(i) [0] in
let imax = _ i, unseal(i) [1] in
(makeint, imin, imax)

client 29 = let (makeint, imin, imax) = interval() in
let checkint = _ 8, assert(imin(8) ≤ imax(8)) in
(checkint, makeint, imin, imax)

Figure 2.15: High-level pseudo-code for the implementation of the interval library

and its client.

2.8.1 Interval Library and Client

The interval library implements an abstract data type representing intervals. An

interval has a lower and upper bound, which can be extracted via two functions;

imin and imax. An interval is created via a function makeint that takes as input two

integers, and chooses the smallest input as the lower bound, and the largest input

as the upper bound. Crucially, the internal representation of an interval must stay

hidden so as to guarantee its integrity.

We thus use dynamic sealing ([149]) to dynamically enforce data abstraction for the

intervals representation. We detail our implementation of seals in Section 2.8.2. For

now, it su�ces to know that a seal is a pair of functions, seal and unseal, where the

former hides the internal representation of some value, such that only the latter can

expose it.

An interval can be represented as an ordered pair of integers. On the capability

machine, we implement such a pair as a dynamically allocated region of size two,

storing the lower and upper bound of the interval. Then, an interval itself consists of

a capability with read/write authority over the corresponding region of size two. In

Figure 2.15, we depict the high-level implementation of our interval library. Note that

the library implements closures around a fresh seal-unseal pair, used to seal the

aforementioned internal representation of intervals. The low-level implementation

that we formally reason about can be thought of as the result of compiling the high-

level implementation shown in Figure 2.15.

https://logsem.github.io/cerise/journal/cap_machine.examples.interval.html
https://logsem.github.io/cerise/journal/cap_machine.examples.interval_client.html

84 CERISE: PROGRAM VERIFICATION ON A CAPABILITY MACHINE

The same �gure also depicts a client of the interval library. The client exposes four

entry points to the environment: in addition to entries to makeint, imin and imax
from a fresh instance of the interval library, the client also exposes an encapsulated

checkint function that, given an interval, dynamically asserts that the expected

representation invariant holds for the interval, that is, that the minimum of the

interval is indeed smaller than or equal to the maximum of the interval.

When formally verifying the interval library and its client, we will need an invariant

to keep track of each interval created by makeint. The invariant should capture the

properties enforced by the implementation of the interval library. We can already list

the internal properties of an interval intuitively. First and foremost, the lower bound

of an interval must be less than or equal to its upper bound. A perhaps more subtle

property is that intervals are immutable. Thus, we will need to de�ne an invariant that

represents each interval as a dynamically allocated region of size two, which stores

the lower and upper bound, and is immutable. The seal-unseal pair encapsulated

by the library will be used only to seal intervals that adhere to this representation

(satisfy this invariant). Keeping this intuition in mind, let us now explore the technical

implementation of seals.

2.8.2 Dynamic Sealing

Dynamic sealing makes it possible to support data abstraction dynamically. The

function makeseal creates a pair of functions, seal and unseal, where seal is used

to seal a word w into a fresh sealed word f . We will also refer to f as the key to w.

The only way to extract the word w from f is with unseal. The key point is that this

seal-unseal pair supports data abstraction by sealing away or hiding the internal

representation of some value, only known and available to the owner of the associated

unseal function.

Although capability machines such as CHERI include seals as a language primitive,

we show here how we can implement seals in software, as a low-level library. The

library is implemented via a data structure that stores each word sealed through seal,

associating each sealed word with a key. A key in itself does not reveal any details

about the word it is hiding. However, it can provide access to that word, granted one

has the proper authority to unseal it. Only a valid key should grant access to a sealed

word. Keys, and the data structure that uses them, should intuitively satisfy two

properties; (1) the unforgeable nature of keys and (2) the unique association between

a key and the word it seals.

The seal and unseal subroutines respectively perform insertions and lookups in this

underlying data structure. seal takes a word as input, generates a fresh key, and adds

the key value association to the data structure. unseal takes a key as input, checks

CASE STUDY: A LIBRARY IMPLEMENTING DYNAMIC SEALING AND A CLIENT 85

seal spec 30(−, 1B , 4B ,−);
[1B , 4B) ↦→ seal ∗
sealInv ds Φ ∗
r1 Z⇒ E ∗ Φ(E) ∗ · · ·


B :.

B = Runningp q ∗
isSealedWord : E ∗
r1 Z⇒ : ∗ · · ·
∨ B = Failedp q


unseal spec 31(−, 1D, 4D,−);

[1D, 4D) ↦→ unseal ∗
sealInv ds Φ ∗
r1 Z⇒ : ∗ · · ·


B E .

B = Runningp q ∗
isSealedWord : E ∗
r1 Z⇒ E ∗ Φ(E) ∗ · · ·
∨ B = Failedp q


Figure 2.16: Speci�cations of seal and unseal.

that the key is associated to a value in the data structure, in which case it returns the

value.

Reasoning about dynamic sealing

A shared seal-unseal pair can be used to seal any word. In practice, one typically

encapsulates a seal-unseal pair within a library, performing additional checks and

thus ensuring that words that are sealed always satisfy a speci�c property. Then,

whenever one successfully unseals a given key, one gets that the corresponding word

satis�es the chosen property. For instance, the interval library enforces that each

sealed word is a region of size 2, storing the ordered bounds of an interval.

When reasoning about code invoking the dynamic sealing library, one will need

to pick, for each seal-unseal pair, a representation invariant Φ : Word → iProp

describing the values to be sealed/unsealed by the pair
7
. Then, each seal-unseal

pair maintains an Iris invariant sealInv describing the state of the pair itself, namely

the data structure storing the key-values for all sealed entries. Additionally, this

invariant stores the information that each sealed value satis�es Φ.

sealInv ds Φ 32 ,
∃wvals, dataStructure ds wvals
∗∗(−,F) ∈wvals Φ(F)

We require that Φ is persistent, since the representation invariant of a sealed word

should always hold once sealed. The dataStructure predicate describes the state of

the data structure internal to the seal library (see Section 2.8.2 for a formal de�nition).

It asserts that ds can be used to access a data structure storing the key value pairs

denoted by wvals (a sequence of pairs in Addr ×Word). In other words, wvals is

7
An analogous representation invariant is used in the [152]

https://logsem.github.io/cerise/journal/cap_machine.examples.dynamic_sealing.html#seal_spec
https://logsem.github.io/cerise/journal/cap_machine.examples.dynamic_sealing.html#unseal_spec
https://logsem.github.io/cerise/journal/cap_lang.examples.keylist.html#sealLL

86. CERISE: PROGRAM VERIFICATION ON A CAPABILITY MACHINE

0

11 11 + 3 12 12 + 3 13 13 + 3
• E1 • E2 • E3 0

Figure 2.17: In-memory representation of an empty dictionary linked list and a

dictionary linked list with three values E1, E2 and E3.

the complete list of all words that have been sealed so far, each paired with their

associated key.

A sealed word is sealed forever. It is thus possible to persistently remember that a

particular word is an element of wvals. The predicate isSealedWord : E states that the

key : is uniquely associated with the sealed word E . We present the formal de�nition

of isSealedWord in Section 2.8.2.

The functional speci�cations of the seal and unseal subroutines depend on an

instance of the seal invariant sealInv, for a speci�c user-provided predicate Φ. Then,

seal can only be applied to words for which the representation predicate Φ holds.

unseal can fail if a given key is not valid, or if it is not associated with any sealed word,

however if it succeeds, it will return a word for which Φ holds. The speci�cation

of makeseal allocates a fresh sealInv instance, for any Φ chosen by the client of

the library. Figure 2.16 shows speci�cations for seal and unseal (where we omit

low-level administrative details).

Implementing a low-level seal library

We now present the data structure used to implement the low-level seal library. We

implement it as a linked associative list with a twist, next referred to as a linked list

dictionary. The trick is to take advantage of the unforgeable nature of capabilities, and

use the capability to (a subrange of) a list node as a key to that node; the corresponding

value being then stored in the node.

Figure 2.17 shows the in-memory representation of a linked list dictionary storing

three key-value pairs. Each node is implemented as a region of size three, where

the bottom address acts as the key address. To avoid access to sealed values, it is

important that a key does not provide authority over the other parts of a node (the

CASE STUDY: A LIBRARY IMPLEMENTING DYNAMIC SEALING AND A CLIENT 87

value and the next pointer). For instance, the value v1 is uniquely associated to the

capability (rwx, 11, 11 + 1,−).

The linked list dictionary library contains two subroutines, findB 33 and append 34 .

findB expects as input an integer b, searches the linked list for a node of the form

(rwx, 1, 1 + 3,−) and returns the value that the associated node stores. It fails if no

such node exists. append expects a word as input, invokes malloc to dynamically

allocate a new node of size three, stores the input word in the second position of that

node, and then stores that node as the new tail of the linked list. Finally a key can

then be derived from the newly created node; we now explain in more detail how

that is done.

A fresh instance of a seal-unseal pair is created by calling the makeseal subroutine,

which returns a pair of closures encapsulating a new empty linked list dictionary.

Sealing a word w adds it to the dictionary, and returns a restricted capability

representing the key to the linked list dictionary entry. Say for instance that the input

word w is appended to the list in a fresh node (rwx, 1, 1 + 3, 1). The seal subroutine

will then return the key (rwx, 1, 1 + 1,−) (the address pointed to does not matter, and

is here omitted for clarity).

Recall that in the enclosed linked list dictionary, w will be stored at address b + 1,

for which the returned sealed value, or key, does not have authority. This sealed

value is unforgeable. The only way to create it would be to derive it from a

capability (rwx, 1 ′, 4 ′, _) where [1, 1 + 1) ⊆ [1 ′, 4 ′). However, this is impossible

since the appended node is freshly allocated using a safe malloc subroutine, which is

guaranteed to hand out fresh regions upon invocation. Only seal has access to such

a capability, and thus sealed values cannot be forged.

In turn, the unseal subroutine expects a rwx capability of range 1 as input. It

reads its lower bound, searches the enclosed linked list for a node with matching

lower bound, and returns the associated word. Let us consider a continuation of the

previous example. Say that unseal receives (rwx, 1, 1 + 1,−) as input. It begins by

authenticating the key by dynamically verifying its permission to be rwx, and its

size to be 1. Upon validating its permission and range, it then runs findB on the

enclosed linked list dictionary with the integer b, and returns the word stored within

the node (rwx, 1, 1 + 3,−) at address 1 + 1, namely the previously sealed word w. The

authentication guarantees that a key has the same unforgeable authority as when it

was created.

In summary, the seal and unseal subroutines are implemented as follows:

• seal:

1. append the input to the enclosed linked list dictionary

2. restrict the range of the fresh node capability to bottom address of node

https://logsem.github.io/cerise/journal/cap_lang.examples.keylist.html#findb_instr
https://logsem.github.io/cerise/journal/cap_lang.examples.keylist.html#appendb_instr

88. CERISE: PROGRAM VERIFICATION ON A CAPABILITY MACHINE

3. return resulting restricted capability

• unseal:

1. check that permission of input is rwx

2. check that the range of input is 1

3. get the lower bound of input

4. �nd the node in the linked list dictionary with same lower bound

5. return the stored word at that node (fail if no such node exists)

We now have enough ingredients to revisit the predicates used in the previous section

to de�ne the seal invariant. Recall that the dataStructure predicate represents the

state of the data structure internal to the seal library (now de�ned to be a linked

list dictionary), and that the isSealedWord predicate describes a persistently known

association between a sealed word and its key.

dataStructure ds wvals , ∃hd, ds ↦→ hd

∗ isList hd wvals

∗ Exact wvals
isSealedWord k v , ∃wvals, Pref wvals ∗ (k, v) ∈ wvalsp q8

∗ V(rwx, :, : + 1,−)
The head of the linked list dictionary is stored in location ds. isList corresponds to a

standard inductive separation logic predicate for linked lists, with one caveat: it does

not take ownership of the �rst location, i.e. the key address, depicted in each node

of Figure 2.17. An invariant owning this key address will be passed to the adversary

as part of theV relation in the isSealedWord predicate. Since the list monotonically

grows, it is useful to persistently remember any pre�x of the linked list dictionary.

Exact wvals (the authoritative view of the list state) roughly states that wvals is the

full state of the data structure. Pref wvals (the local fragment view) states that wvals

is a pre�x of the data structure. isSealedWord : E , a persistent predicate, states that

the word v has been sealed with a key; a capability with lower bound k. This key is

safe to share, henceV(rwx, :, : + 1,−) holds.

In the next section, we describe how we use the reasoning principles about seal-

unseal to verify our interval library.

2.8.3 Verifying the Interval Library and its Client

The �rst key step is to formally de�ne the representation invariant for an interval.

Recall the intuitive description given in Section 2.8.1: an interval is a capability with

8
In the Coq mechanization, wvals associates the word w to k + 1 rather than k, for technical reasons.

This small discrepancy has otherwise no impact on the rest of the proof.

CASE STUDY: A LIBRARY IMPLEMENTING DYNAMIC SEALING AND A CLIENT 89

authority over a region of size 2, storing the lower and upper bounds of an interval,

and which is immutable.

A �rst thought might be that one can de�ne the representation invariant using two

points-to predicates for the region. However, this does not capture the immutability

of intervals, nor is it persistent. Instead, we use persistent points-to predicates ([167]).

A persistent points-to predicate 0 ↩→ F asserts that address 0 stores the wordF . It

can be used to read from address 0, but not write to it, and as such, is a persistent

resource. This is exactly what we need for our immutable invariants. We formally

de�ne the representation invariant isInterval as follows:

isIntervalInt z1 z2 w 35 , ∃0, F = (rwx, 0, 0 + 2, 0)p q ∗
0 ↩→ z1 ∗ (0 + 1) ↩→ z2 ∗ I1 ≤ I2p q

isInterval 36 , _F, ∃I1 I2, isIntervalInt I1 I2 F
(Note, in particular, that the invariant also captures the property that the lower bound

is less than or equal to the upper bound.) Using properties of persistent points-to

predicates, we can prove the following lemma:

Lemma 2.8 (37).

isIntervalInt z1 z2 w → isIntervalInt z3 z4 w → z1 = z3 ∧ z2 = z4
p q .

Because isInterval is persistent, we can use it as the representation predicate for a

seal-unseal pair, which will thus operate over the following invariant:

sealInv ll isInterval

This seal invariant is allocated by the speci�cation for makeseal, which is invoked

during the creation of an interval library closure.

When sealing a new interval using makeint, we must establish isInterval for the

newly created interval. This requires us to transform the regular points-to predicates

handed out by the malloc speci�cation into persistent points-to predicates, and assert

that indeed<8=(I1, I2) ≤ <0G (I1, I2).

Speci�cations for imin and imax return the respective lower and upper bound of

a sealed interval. The seal invariant guarantees that the sealed word is an interval

according to the representation invariant isInterval. In other words, if imin or imax
succeeds for some word w, we know that w is the key to some associated capability

pointing to the bounds of an interval [;, A]; speci�cally that isIntervalInt ; A F holds.

During the veri�cation of checkint, the speci�cation for imin gives us some value ;

and predicate isIntervalInt ; A F . Similarly, the speci�cation for imax gives us some

value A ′ and predicate isIntervalInt ; ′ A ′ F . Notice that the bounds may be di�erent,

but the sealed word F is the same in each instance. We can thus apply Lemma 2.8

https://logsem.github.io/cerise/journal/cap_lang.examples.interval.html#isInterval_int
https://logsem.github.io/cerise/journal/cap_lang.examples.interval.html#isInterval
https://logsem.github.io/cerise/journal/cap_lang.examples.interval.html#intervals_agree

90. CERISE: PROGRAM VERIFICATION ON A CAPABILITY MACHINE

on the two given instances of isIntervalInt, and use the de�nition of isInterval to

conclude that the given assert statement succeeds, namely that ; ≤ A .

Finally, all that remains is to apply adequacy and prove the following �nal end-to-end

theorem:

Theorem 2.7 (End-to-end theorem: the interval client does not trigger an assertion

failure 38). Starting from an initial state of the machine (reg,mem) in which regions

reserved for the interval library, the seal library, malloc, the assert �ag, the client and
the adversary are all disjoint, and initialized as expected, we have that, for any reg

′
,

mem
′
, if (reg,mem) −→∗ (reg′,mem

′) then mem
′(0�ag) = 0.

2.9 Discussion and Perspectives

In this paper we have introduced Cerise, a program logic for reasoning about a low-

level capability machine. Moreoever, we have shown how Cerise can be used to

de�ne a logical relation for reasoning about unknown code. Thanks to the logical

relation and the fundamental theorem from Section 2.5, Cerise can be used for

robust veri�cation [152, 136], i.e., to verify correctness of software that interacts

with unveri�ed components. The Cerise program logic is the culmination of ideas

used in a sequence of earlier papers [142, 143, 62, 160] and this paper is intended to

give an accessible and didactic introduction to Cerise and the application of Cerise

to program veri�cation in the presence of untrusted code, accompanied with new

results on a heap-based calling convention and implementations of sophisticated

object-capability patterns.

Throughout the paper we have introduced increasingly complex examples, which

demonstrate how �ne-grained abstractions can be implemented on a capability

machine and reasoned about using Cerise. Our examples from Section 2.7 and

Section 2.8 are modeled after examples from a paper about a high-level object

capability language [152]. Because of the more low-level nature of our capability

machine, we had to implement some abstractions ourselves (such as the calling

convention in Section 2.7.3) but we think it is otherwise fair to say that our examples

faithfully represent the examples used by Swasey et al., using the same granularity

of encapsulation and attacker interaction. As such, this paper demonstrates that the

low-level security primitives o�ered by our capability machine are expressive enough

to implement high-level language abstractions, despite the stronger attacker model of

a low-level adversary. At the same time, the examples show that Cerise is expressive

enough to reason about these abstractions.

Cerise is the �rst instantiation of the Iris framework to such a low-level language

and thus this work also demonstrates that the key features of Iris (such as guarded

https://logsem.github.io/cerise/journal/cap_lang.examples.interval_client_adequacy.html#template_adequacy

DISCUSSION AND PERSPECTIVES 91

recursion, ghost state, and invariants) are equally applicable in this low-level setting

as in the high-level settings they were originally intended for.

Of course, while we implement and reason about our examples directly in the

capability machine assembly language, we are not proposing that real software should

all be developed in that way. On the contrary, we think this is only realistic for

low-level code in compiler back-ends [143, 62], operating systems and low-level

security measures [160]. Other software should be developed and reasoned about in a

more abstract setting, which suggests the need for a secure compiler that preserves

high-level security guarantees in a low-level environment. In the context of capability

machines, such compilers have been investigated already, both formally [162, 51],

and practically [32, 131]. While we in this work have shown how to implement and

reason about some high-level programming patterns at a low level, much interesting

work remains to be done to further explore the design of a high-level language whose

security abstractions map well to those o�ered by a capability machine.

An important aspect of the universal contract provided by our logical relation and

fundamental theorem is that it formalizes the security guarantee of our capability

machine without overspecifying implementations of the ISA. The contract speci�es

an authority bound that su�ces to reason about adversarial code, but does not

overly constrain future extensions or optimized implementations of the ISA. This

is similar to how the ISA itself is designed to specify expected behavior that is

su�cient for software authors to reason about their code without preventing CPU

designers from constructing optimized or extended implementations. In fact, we

believe universal contracts o�er a general and powerful approach for formalizing ISA

security guarantees. Such security guarantees are informally stated in informal ISA

speci�cations but they have not yet been incorporated in formal de�nitions of ISAs

[14, 24]. As such, a promising application of universal contracts like the one from

Section 2.5 is to incorporate them into the ISA de�nition to formalize intended ISA

security guarantees.

Finally, it is worth acknowledging that in this paper, we only describe a minimal

capability machine that lacks many features from realistic capability machine ISAs.

Our approach has been extended to support some additional features in the literature

(e.g., local and uninitialized capabilities [62], and MMIO [160]), but other features

are still missing for now (e.g. sealing, interrupts, virtual memory, etc.). In terms of

reasoning, the unary model we have described only supports reasoning about integrity

properties. However, we have implemented a binary model in our Coq development

which can be used to reason about relational properties (e.g., con�dentiality).

92. CERISE: PROGRAM VERIFICATION ON A CAPABILITY MACHINE

2.10 Related work

We now discuss several lines of work related to ours. First, we discuss earlier variants

of Cerise by the authors and colleagues. Then, we discuss work on verifying object

capability patterns in high-level languages, veri�cation of ISA properties in CHERI,

and other applications of universal contracts in the literature.

2.10.1 Earlier variants of Cerise

Earlier variants of Cerise focused on showing how capabilities can be used to

implement a secure, stack-based calling convention [143, 144, 62] and nested security

wrappers (Chapter 3 of this thesis) [160].

Skorstengaard et al. [143] were the �rst to show that capabilities can be used to

implement a secure stack-based calling convention, i.e., a calling convention where

the security guarantees of function calls at the machine code level are faithful to

the high-level notion of a function call. They employed an additional kind of “local”

capabilities and stack clearing to achieve security. Their work follows a similar

methodology as the one described here, that is, they de�ne a logical relation which

characterizes a notion of safety. However, their proofs were not mechanized and the

logical relation was de�ned using a non-trivial concrete model; in contrast we use the

Cerise program logic to de�ne and prove properties about our logical relation, which

means that our development is done at a higher-level of abstraction and thus we, e.g.,

do not have to solve any recursive domain equations. In follow-up non-mechanized

work, Skorstengaard et al. [144] achieved similar security guarantees with a novel

calling convention based on so-called “linear” capabilities; capabilities that can never

be duplicated. Although this calling convention avoids the stack clearing required in

the previous work, linear capabilities come with certain architectural restrictions [see

e.g. 144, §6.2]. An e�cient implementation of linear capabilities has so far not been

demonstrated.

The subsequent work by Georges et al. [62] introduced a new type of capabilities (called

“uninitialized”) to avoid most of the stack clearing from Skorstengaard et al.’s �rst

calling convention, thereby improving runtime e�ciency. Importantly, uninitialized

capabilities do not come with the same architectural hurdles as linear capabilities. As

a second contribution, Georges et al. used Iris to formulate safety as a logical relation

and mechanized their proofs of security.

The aforementioned logical relations of both Skorstengaard et al. and Georges et

al. are more expressive and therefore signi�cantly more complicated than the one

presented here: they permit reasoning about revocation of local/linear/uninitialized

capabilities and well-bracketedness properties of machine-code “function calls”, on

RELATED WORK 93

top of local-state encapsulation. In our present work, object capabilities ensure local

state encapsulation, but we do not enforce calls and returns to be well-bracketed. In

particular, we do not prevent an adversary from invoking a return pointer several

times, or storing return pointers for later use. In other words, our calling convention

implements the kind of function calls one has in a high-level language with control

operators (e.g., call/cc), where calls and returns are not necessarily well-bracketed. (It

is well-known that models of well-bracketed function calls are more involved than

models of not-necessarily-well-bracketed function calls, see, e.g., [6, 50], and here we

opted for the latter, to present a more accessible model, which su�ces for a heap-based

calling convention and for studying low-level implementations of object-capability

patterns.)

In a di�erent line of work, Van Strydonck et al. [160] employed a capability machine

and logical relations model similar to the one presented here, but with additional

support for MMIO, to verify safety properties for small, nestable wrappers around

security-critical devices on a capability architecture. As part of the veri�cation e�ort,

multiple end-to-end security theorems were proven, which state that safety predicates

of interest hold over the trace of IO events admitted by the machine. Here we have

instead focused on demonstrating how a core model (without MMIO support) can be

used to reason about low-level implementations of object-capability patterns.

2.10.2 Verifying object capability pa�erns in high-level lan-
guages

A number of high-level programming languages allow for programming patterns

similar to object capabilities, that enable preserving local state while interacting

with unknown code. Examples are closures, and high-level objects in capability safe

languages.

Devriese et al. [44] pioneered the use of a logical relation to give a semantic

characterization of capability safety (earlier work used a more conservative syntactic

approach based on whether or not objects contain references to each other and

ignored the behaviour of objects). Devriese et al. focused on capability safety for

a core calculus of Javascript, including a notion of observable e�ects, and used an

explicit construction of their logical relation (not a program logic), which was the

inspiration for the capability model by Skorstengaard et al. [143] mentioned above

and for the work by Swasey et al. [152], who presented a program logic which allows

reasoning modularly about object capability patterns in a high-level language. The

methodology of Swasey et al. is close to the one presented here, but in contrast

to Swasey et al. we reason about object capabilities on a low-level machine. For

instance, Swasey et al. de�ne two predicates to describe a reference: a predicate for

“high integrity” locations (ℓ ↩→ E), and one for “low integrity” locations (lowloc ℓ).

94 CERISE: PROGRAM VERIFICATION ON A CAPABILITY MACHINE

The �rst predicate grants exclusive access to the corresponding reference, and is

therefore not safely shareable with an adversary. The second is shareable with an

adversary, but can only be used to read and write “low integrity” values. In our

setting, “high integrity” directly corresponds to the predicate 0 ↦→ F for a memory

location, and “low integrity” corresponds to the invariant used in the de�nition of

V: ∃F, 0 ↦→ F ∗ V(F) . Correspondingly, our de�nitions satisfy similar reasoning

rules to the ones established by Swasey et al.. In particular, we believe that the various

object capability patterns they verify can be implemented and veri�ed in a similar

way in the setting of a capability machine, using the principles presented in this

paper. We demonstrated one such implementation by adapting their dynamic sealing

example in Section 2.8. Additionally, the robust safety theorem of Swasey et al. is

related to our template adequacy theorem with malloc and assert (Theorem 2.5); our

assert �ag plays a role similar to their OK �ag.

2.10.3 Verifying ISA properties in CHERI

Nienhuis et al. [110] formally verify a number of “architectural” properties of CHERI

capability machines. This constitutes a signi�cant mechanization e�ort: the authors

tackle the full generality of a realistic operational semantics for CHERI, which is

signi�cantly more complex than the minimal machine we consider here. The approach

followed by Nienhuis et al. is di�erent from ours: they state the properties they

establish as trace properties, over a trace of “abstract actions” describing the various

capabilities transiting through the machine during the execution. This approach makes

it possible to state the desired properties in a very explicit and concrete fashion. For

instance, the authors state and prove a property of “capability monotonicity”: during

the execution, the authority of available capabilities cannot increase (in other words,

the machine does not allow forging new authority). Intuitively, this seems like a very

reasonable property, required for proper operation of the capability machine. However,

in practice it is more subtle: calls between components (in our case, jumping to an

e-capability) do allow for some restricted form of non-monotonicity. The property

proved by Nienhuis et al. is thus restricted to trace fragments that do not include calls

to a di�erent component. Our methodology is less explicit, but more expressive. In our

setting, the fundamental theorem can be understood as expressing that “the machine

works well”. Its very extensional statement is admittedly harder to understand in

terms of the operational semantics of the machine, but it enables deriving correctness

statements in terms of the operational semantics that do apply to a full execution of

the machine, including calls between an arbitrary number of components.

RELATED WORK 95

2.10.4 Other applications of universal contracts

As mentioned, our fundamental theorem constitutes a universal contract for arbitrary

code, i.e., it allows deriving the guarantee that any adversarial capability is safe

to execute, given validity of said capability. This safety is typically obtained by

syntactically restricting the adversarial capability; e.g., requiring that the adressed

memory only contains integers.
9

Similar notions of universal contracts have been used

for high-level languages (explicitly or implicitly) in the literature. The aforementioned

work of Skorstengaard et al. [143, 144], and Swasey et al. [152] all used a version of

universal contracts, and placed varying syntactic restrictions on adversaries. The

semantic type systems of Jung et al. [78] and Sammler et al. [136] permit similar

reasoning about untrusted code based on a syntactic well-typedness restriction.

The back-translation in the full-abstraction proof by Van Strydonck et al. [162]

(Chapter 5 of this thesis) involved an explicit, universal separation logic contract for

a C-like language with capabilities. Generally, whenever a semantic model is used to

describe semantic guarantees satis�ed by arbitrary code (possibly subject to syntactic

restrictions), and when these guarantees are used in the manual veri�cation of other

code, this can be regarded as an application of a universal contract.

Acknowledgements Thanks to Léon Gondelman and Pierre Pradic for feedback

on earlier drafts of this document.

This work was supported in part by a Villum Investigator grant (no. 25804), Center

for Basic Research in Program Veri�cation (CPV), from the VILLUM Foundation; by

the Research Foundation - Flanders (FWO); and by DFF project 6108-00363 from The

Danish Council for Independent Research for the Natural Sciences (FNU). Thomas

Van Strydonck holds a Research Fellowship of the Research Foundation - Flanders

(FWO). Amin Timany was postdoctoral fellow of the Flemish Research Foundation

(FWO) during parts of this project.

9
Note that instructions are encoded in memory as integers.

Chapter 3

Proving full-system security
properties under multiple
a�acker models on capability
machines

Publication Data

This chapter contains the following paper:

Thomas Van Strydonck, Aïna Linn Georges, Armaël Guéneau, Alix Trieu, Amin

Timany, Frank Piessens, Lars Birkedal, and Dominique Devriese. Proving full-

system security properties under multiple attacker models on capability machines.

Accepted for publication at CSF22, 2022

It explores the addition of MMIO to the Cerise model. Most of the implementation

work was done by me, with help from my co-authors to �nalize everything in a timely

fashion. The same holds true of the writing, where my co-authors made important

contributions and improvements.

97.

98. FULL-SYSTEM SECURITY PROPERTIES UNDER MULTIPLE ATTACKER MODELS

Abstract

Assembly-level protection mechanisms (virtual memory, trusted execution environ-

ments, virtualization) make it possible to guarantee security properties of a full system

in the presence of arbitrary attacker provided code. However, they typically only

support a single trust boundary: code is either trusted or untrusted, and protection

cannot be nested. Capability machines provide protection mechanisms that are more

�ne-grained and that do support arbitrary nesting of protection. We show in this

paper how this enables the formal veri�cation of full-system security properties under

multiple attacker models: di�erent security objectives of the full system can be veri�ed

under a di�erent choice of trust boundary (i.e. under a di�erent attacker model). The

veri�cation approach we propose is modular, and is robust: code outside the trust

boundary for a given security objective can be arbitrary, unveri�ed attacker-provided

code. It is based on the use of universal contracts for untrusted adversarial code: sound,

conservative contracts which can be combined with manual veri�cation of trusted

components in a compositional program logic. Compositionality of the program

logic also allows us to reuse common parts in the analyses for di�erent attacker

models. We instantiate the approach concretely by extending an existing capability

machine model with support for memory-mapped I/O and we obtain full system,

machine-veri�ed security properties about external e�ect traces while limiting the

manual veri�cation e�ort to a small trusted computing base relevant for the speci�c

property under study.

3.1 Introduction

Assembly-level security primitives are a cornerstone of secure systems, and they come

in many forms. CPU-supported security mechanisms like virtual memory, trusted ex-

ecution environments, virtualization, micro-policies or capability machines all o�er a

form of encapsulation, which supports the execution of untrusted code with restricted

authority. Some architectural security mechanisms, such as virtual memory, virtual-

ization or trusted execution environments, are carefully optimized for speci�c security

abstractions, such as processes, virtual machines or enclaves, and provide poor support

for features which fall outside of these abstractions. In this paper, we are interested

in such a feature, which is poorly supported by the most-used security mechanisms:

nested encapsulation. This refers to scenarios where an encapsulated piece of code (e.g.

a user process or virtual machine) further encapsulates a subset of its own code from

the rest of its code. When nested encapsulation is poorly supported by the architectural

primitives, it can only be supported at the cost of additional e�ort, complexity and

a certain performance loss. For example, library OSs like Graphene require host OS

INTRODUCTION 99.

cooperation to implement process isolation [155] and running virtual machines inside

virtual machines requires additional context switches with additional overhead [19].

Contrary to many other primitives, micro-policies [41] and capability machines [94,

28, 176] are designed explicitly for generality and �exibility. In particular, capability

machines o�er good support for nested encapsulation, as we now explain. On a

capability machine, capabilities are used to represent authority explicitly. Di�erent

forms of capabilities represent authority over memory, the authority to invoke

other code, etc. Unprivileged code can easily set up an encapsulation boundary

by constructing an object capability: an opaque capability that can be invoked by

other code and only makes private state available after invocation. This private state

can in turn include other capabilities representing additional authority. An object

capability invocation hence represents a context switch between security domains.

Building on related work in high-level languages [44, 152, 162], Skorstengaard et al.

and Georges et al. have developed a methodology for robust modular veri�cation of

software running on capability machines [142, 62] that supports proving (security)

properties in the presence of untrusted code. The idea is to formalize the hardware-

provided security guarantees in the form of a universal contract: a separation logic

contract that holds for arbitrary, untrusted code on the machine. This universal

contract expresses a form of capability safety: the untrusted code’s authority is

e�ectively bounded by the authority of the capabilities it is given access to. In robust

modular veri�cation, the program logic allows combining manual veri�cation of a

property for certain components with this universal contract for untrusted code to

obtain a full-system proof of the property.

For now, this work has remained restricted to proving arti�cial security properties:

for example the fact that an assertion failure �ag will never be set [62, 143] or

equi-termination of programs [144]. In this paper, we extend this robust modular

veri�cation approach to a capability machine with memory-mapped I/O (MMIO).

Although this is not technically the most complex feature to add, it does allow us to

prove end-to-end system properties that are more interesting and realistic. Contrary

to the arti�cial properties of previous work, our results specify that a security property

holds for the system’s trace of external e�ects, which we believe is the ultimate goal

of veri�cation in many practical settings.

Additionally, we extend the approach to reasoning about nested encapsulation. To

formally verify intended security properties in the presence of nested encapsulation,

we analyze the system several times using di�erent attacker models, corresponding to

di�erent scenarios that the encapsulations are (explictly or implicitly) designed for.
1

1
Although we use terms like attacker model and adversary in this paper, we use the terms as synonyms

for trust model and untrusted code, as we don’t necessarily mean that the corresponding components

are malicious, but perhaps simply faulty or vulnerable to security exploits. We do not distinguish such

100 FULL-SYSTEM SECURITY PROPERTIES UNDER MULTIPLE ATTACKER MODELS

MMIO Peripherals

component21 component22

wrapper21 wrapper22

wrapper1

other code

Figure 3.1: An example architecture of nested parapass-through wrappers around the

peripherals.

MMIO Peripherals

wrapper21 wrapper22

wrapper1

untrusted

(a)

MMIO Peripherals

wrapper21 wrapper22

wrapper1

untrusted

(b)

component22

MMIO Peripherals

component21

wrapper21 wrapper22

wrapper1

untrusted

(c)

component21

MMIO Peripherals

component22

wrapper21 wrapper22

wrapper1

untrusted

(d)

Figure 3.2: Four example attacker models, which could be used for analysing security

of the system in Figure 3.1.

INTRODUCTION 101

To make our approach concrete, we study the equivalent of BitVisor’s parapass-

through virtualization [140], where small wrappers enforce security policies on

the interaction with peripherals. Such wrappers rely on a very small TCB and

lend themselves well to veri�cation. Particularly, we consider scenarios like the

one depicted in Figure 3.1 where di�erent parties install wrappers in a nested

way. For example, a hardware manufacturer could install a wrapper with exclusive

access to certain peripherals and read and write callbacks which other code on

the system can use to interact with the peripherals. The wrapper could restrict

con�guration parameters (perhaps depending on the options purchased from the

device manufacturer) simply by applying a bounds check on values written to a

particular MMIO address. On top of this, a device manufacturer could install a second

wrapper that keeps a counter to enforce a maximum amount of interactions with

a particular device or rate-limit the interactions with a device (by consulting an

external timer device before allowing an interaction). Another realistic policy could

enable an LED whenever a camera device is set to capture mode (for privacy reasons).

More generally, we believe that many interesting policies could be enforced using

nested, unsophisticated low-TCB wrappers. Such policies are directly supported

in our model in a way that appears quite realistic for embedded processors (e.g.

the SAM D5x/E5x [104]), if they were extended with capability machine security

primitives. Figure 3.1 shows a possible architecture with a bottom-level wrapper

wrapper1 around all peripherals, as well as two nested wrappers (wrapper21 and

wrapper22), each consisting of a read and write closure around di�erent peripherals.

On top of these wrappers is the remainder of the code base, which can remain

untrusted and largely unmodi�ed, except that direct writes to peripheral MMIO

addresses need to be replaced with invocations of the wrappers.

A security analysis of nested wrappers should consider di�erent attacker models, for

example the four models depicted in Figure 3.2. In these diagrams, gray components

are treated as untrusted: white components are manually veri�ed for correctness and

security (i.e. proper encapsulation towards the gray components). For example, a

security analysis of wrapper1 could use the leftmost model: only wrapper1 is trusted

and all other code on the system is treated as arbitrary. Because of the machine’s

capability safety, it su�ces to manually verify the wrapper and its encapsulation

to verify the intended property. A second analysis could use the attacker model

of Figure 3.2b: in addition to wrapper1, it relies on the secure wrappers wrapper21

and wrapper22. This second analysis has a larger TCB but can prove the stronger

properties that wrapper21 and wrapper22 enforce. The analysis does not inspect the

code of wrapper1 for this, but relies on a functional contract for it (perhaps provided

by the hardware manufacturer together with wrapper1). Further analyses could use

additional attacker models as depicted in Figure 3.2c and Figure 3.2d.

scenarios and we believe that nested encapsulation is useful for enforcing correctness, as well as security

properties.

102 FULL-SYSTEM SECURITY PROPERTIES UNDER MULTIPLE ATTACKER MODELS

Note that while the system is analyzed several times, we hasten to point out that (1)

only wrapper code is manually veri�ed and (2) no wrapper is veri�ed twice: wrapper1

is veri�ed manually, resulting in a functional correctness contract, which is then

used when manually verifying wrapper21 and wrapper22. The full system properties

are obtained by combining the veri�cation results of each of the wrappers with our

general capability safety theorem. Note also that although wrapper21 and wrapper22

are both trusted in the second attacker model, compositionality of our program logic

still allows us to verify them separately, relying on a contract for each other’s behavior.

This avoids creating unnecessary dependencies when verifying wrappers.

In this paper, we present and explain our approach by considering representative

example wrappers on a model capability machine. A �rst example corresponds roughly

to the �rst two layers of Figure 3.1, with wrappers enforcing a simple bounds check

and a maximum bound on the amount of accesses respectively (i.e. a stateful property).

In this �rst example, we demonstrate that we can modularly reason about independent

wrappers and that the veri�cation e�ort can be shared when they are implemented

according to a �xed code structure. Our second example shows that our approach also

supports more complex properties that consider interactions with several peripherals.

It considers a setup where wrapper22 is replaced with a wrapper wrapper22_bis that

limits the rate at which a certain peripheral is accessed. Wrapper22_bis will only allow

accesses to its peripheral after an external timer device indicates that su�cient time

has passed. It does not follow the same �xed structure as the �rst wrappers and is

veri�ed separately.

To summarize, our contributions are the following:

• We extend the capability machine model, program logic and logical relation

of Georges et al. [62] with memory-mapped I/O and secure enforcement of

I/O properties and reprove their universal contract for arbitrary code on the

machine.

• We demonstrate universal contracts for proving full-system security properties

on e�ect traces in the presence of untrusted code, thus obtaining more

interesting and realistic end-to-end properties.

• We extend the approach to systems with nested encapsulation by analyzing

the same system several times with di�erent attacker models.

• We apply this approach to nested policy enforcement wrappers around

peripherals and obtain machine-checked full-system proofs of the di�erent

stakeholders’ intended properties. Custom separation logic resources and

wrapper speci�cations in so-called HOCAP style allow us to accurately specify

the contracts between wrappers and verify them modularly. We demonstrate

that veri�cation e�ort can be shared for wrappers sharing a �xed code structure.

A SIMPLE CAPABILITY MACHINE WITH MMIO SUPPORT 103

0 ∈ Addr , [0,AddrMax]
? ∈ Perm , o | e | ro | rx | rw | rwx

2 ∈ Cap , {(?, 1, 4, 0) | 1, 4, 0 ∈ Addr}
F ∈ Word , Z + Cap
A ∈ RegName , pc | r0 | r1 | . . . | r31
reg ∈ Reg , RegName→Word

< ∈ Mem , Addr→Word

EventTy , IOWrite | IORead
4 ∈ Event , EventTy × Addr × Z
C ∈ Trace , list Event

i ∈ ExecConf , Reg ×Mem × State × Trace
X ∈ DoneState , Standby | Halted | Failed
` ∈ ExecMode , SingleStep | Repeat ` | Done X
d ∈ Z + RegName

8 ::= jmp A | jnz A A | move A d | load A A | store A d | add A d d | sub A d d |
eq A d d | lt A d d | lea A d | restrict A d | subseg A d d | isptr A A |
getp A A | getb A A | gete A A | geta A A | fail | halt

Figure 3.3: Machine words, machine state and instructions.

All of our proofs have been machine-veri�ed in Coq, using the Iris program logic, and

are available online [161].

3.2 A simple capability machine with MMIO sup-
port

First, we present the operational semantics of our capability machine. Our work

builds upon the work of Georges et al. [62] and, transitively, on that of Skorstengaard

et al. [142, 143]. As such, our presentation here is similar to theirs, though simpli�ed

to �t our purposes. Speci�cally, we do not consider so-called local and uninitialized

capabilities.

Section 3.2.1 presents the operational semantics for a simple capability machine and

Section 3.2.2 explains how we add memory-mapped I/O. The semantics is summarized

in Figures 3.3 to 3.6 with additions for memory-mapped I/O in blue.

104. FULL-SYSTEM SECURITY PROPERTIES UNDER MULTIPLE ATTACKER MODELS

rwx

rw rx

ro e

o

Figure 3.4: Permission lattice.

3.2.1 A simple capability machine

The syntax of capability machine programs is given in Figure 3.3. We consider a

machine with �nite memory bounded by AddrMax. A machine word F ∈ Word is

either an unbounded integer or a capability. A capability is a quadruple (?, 1, 4, 0)
representing a permission ? with authority over range [1, 4) and currently pointing

to address 0. There are six di�erent permissions: opaque (o), enter (e), read-only (ro),

read/execute (rx), read/write (rw) and read/write/execute (rwx). These permissions

are standard, except for the opaque permission which provides no privilege and the

enter permission, inspired by the M-Machine [28], that can be used to build opaque

closures or object capabilities. Enter capabilities are “unsealed” into read/execute

capabilities when jumped to. The capability is then available in the pc register and

can be copied into another register to restore environment variables in the case of a

closure.

Figure 3.6 de�nes the small-step operational semantics of the machine. The machine’s

state consists of an execution mode ` and an execution con�guration i . The mode `

models the machine’s instruction cycle, which loops in�nitely (expressed by Repeat `)

until it reaches a successful done state Done Halted through RepeatHalt or a

failed state Done Failed through RepeatFail. The RepeatSingle rule allows for

the execution of single instructions through the ExecSingle rule. If the execution of

the instruction is successful, i.e. execution in ExecSingle does not fail or halt and

results in a Done SingleStep state, then RepeatStandby allows for another iteration

of the processor’s instruction cycle.

An execution step (ExecSingle) requires an executable, in-range capability (?, 1, 4, 0)
in the pc register. The word I at address 0 is then read and decoded into an instruction

decode(I) which is executed on the current con�guration i to result in a new machine

state Jdecode(I)K(i). Machine instructions 8 operate over registers A or either integers

or registers d . The behavior of instruction 8 in con�guration i is speci�ed by J8K(i)
de�ned in Figure 3.5. Most instructions use the auxiliary function updPC to increment

A SIMPLE CAPABILITY MACHINE WITH MMIO SUPPORT 105.

updPC(i) =

(Done Standby,
i [reg.pc ↦→ (?, 1, 4, 0 + 1)]) if i.reg(pc) = (?,1, 4, 0)

(Done Failed, i) otherwise

getWord(i, d) =
{
d if d ∈ Z
i.reg(d) if d ∈ RegName

updST(i, 4, B) = i [state ↦→ B]
[trace ↦→ i.trace ++ [4]]

8 J8K(i) Conditions

fail (Done Failed, i)
halt (Done Halted, i)

move A d updPC(i [reg.A ↦→ F]) F = getWord(i, d)

load A1 A2 updPC(i [reg.A1 ↦→ F])
i.reg(A2) = (?, 1, 4, 0) and

F = i.mem(0) and 1 ≤ 0 < 4 and

? ∈ {ro, rx, rw, rwx} and 0 ∉ MMIO

load A1 A2
updPC(updST(
i [reg.A1 ↦→ I],
(IORead, 0, I), B))

i.reg(A2) = (?, 1, 4, 0) and

mmioLoad(i.state, 0) = (B, I)
and 1 ≤ 0 < 4 and

? ∈ {ro, rx, rw, rwx} and 0 ∈ MMIO

store A d updPC(i [mem.0 ↦→ F])
i.reg(A) = (?, 1, 4, 0) and 1 ≤ 0 < 4

and ? ∈ {rw, rwx} and

F = getWord(i, d) and 0 ∉ MMIO

store A d
updPC(updST(
i, (IOWrite, 0, I), B))

i.reg(A) = (?, 1, 4, 0) and

mmioStore(i.state, 0, I) = B
and 1 ≤ 0 < 4 and ? ∈ {rw, rwx}
and I = getWord(i, d) and

I ∈ Z and 0 ∈ MMIO

jmp A
(Done Standby,
i [reg.pc ↦→ newPc])

if i.reg(A) = (e, 1, 4, 0)
then newPc = (rx, 1, 4, 0)
otherwise newPc = i.reg(A)

restrict A d updPC(i [reg.A ↦→ F])
i.reg(A) = (?, 1, 4, 0) and

? ′ = decodePerm(getWord(i, d))
and ? ′ 4 ? andF = (? ′, 1, 4, 0)

subseg A d1 d2 updPC(i [reg.A ↦→ F])

i.reg(A) = (?, 1, 4, 0) and for 8 ∈ {1, 2},
I8 = getWord(i, d8) and I8 ∈ Z and

1 ≤ I1 and 0 ≤ I2 ≤ 4 and

? ≠ e andF = (?, I1, I2, 0)

lea A d updPC(i [reg.A ↦→ F])
i.reg(A) = (?, 1, 4, 0) and

I = getWord(i, d) and

? ≠ e andF = (?, 1, 4, 0 + I)
geta A1 A2 updPC(i [reg.A1 ↦→ 0]) i.reg(A2) = (_, _, _, 0)

. . .

_ (Done Failed, i) otherwise

Figure 3.5: Operational semantics: instruction semantics.

106 FULL-SYSTEM SECURITY PROPERTIES UNDER MULTIPLE ATTACKER MODELS

RepeatSingle

(SingleStep, i) → (Done X, i ′)
(Repeat SingleStep, i) → (Repeat (Done X), i ′)

RepeatStandby

(Repeat (Done Standby), i)
→ (Repeat SingleStep, i)

RepeatHalt

(Repeat (Done Halted), i)
→ (Done Halted, i)

RepeatFail

(Repeat (Done Failed), i)
→ (Done Failed, i)

ExecSingle

(SingleStep, i) →


Jdecode(I)K(i) if i.reg(pc) = (?, 1, 4, 0) ∧ 1 ≤ 0 < 4 ∧

? ∈ {rx, rwx} ∧ i.mem(a) = I
(Done Failed, i) otherwise

Figure 3.6: Operational semantics: reduction steps.

the pc register at the end of their executions. Since the address space is �nite, pointer

arithmetic such as 0 + 1 can fail. For ease of reading, we write 0 + : to indicate

successful pointer arithmetic.

Instructions fail and halt respectively terminate the execution in a Failed or Halted
state. move A d copies d (its value if it’s an integer, or its contents if it’s a register) into

A . Memory can be manipulated using the load and store instructions: load A1 A2
reads the value at the address pointed to by the capability in A2 assuming it has read

permission and is within bounds, and copies the value into A1. Similarly, store A d
stores d at the address pointed to by the capability in A assuming it has write permission

and is within bounds. The jmp instruction jumps to a capability, by writing it into

the pc register. As explained earlier, the jmp instruction unseals e capabilities into rx

capabilities before jumping to them. Capabilities can be modi�ed using the restrict,

subseg and lea instructions. restrict can be used to decrease the permission of a

capability according to the permission lattice’s partial order 4. subseg can be used to

decrease the range of authority of a capability, while lea can be used to modify where

a capability points to. As e capabilities are used to encapsulate code and data, they

cannot be modi�ed until they are unsealed, hence the instructions subseg and lea
fail when used with e capabilities. Indeed, e.g. changing the address of an e-capability

could enable Return Oriented Programming (ROP) �avored attacks [138]. Instructions

to read capabilities’ �elds are also provided: geta, getp, getb and gete respectively

read the 0, ? , 1 and 4 �elds of a capability (?, 1, 4, 0). Not shown in Figure 3.5 are

instructions jnz (conditional jump), add, sub (addition and subtraction), eq (equality),

lt (comparison) and isptr to check whether a register contains a capability. Finally,

if none of the above cases apply, the execution falls through to a failed state as shown

on the last row in Figure 3.5.

EXAMPLE WRAPPERS 107.

3.2.2 Adding support for memory-mapped I/O

To allow communication between the CPU and devices, we add support for MMIO.

Those additions are indicated in blue in Figures 3.3 and 3.5. For simplicity, we do

not yet support interrupts; the CPU and devices must poll memory for updates. We

discuss adding interrupts in Section 3.6.

To model MMIO, we assume a set MMIO of addresses reserved for MMIO and augment

execution con�gurations i with a trace C of MMIO events 4 , and an environmental

state B drawn from a set State as shown in Figure 3.3. An event 4 is a triple of a

mode 4.type (read or write), an address 4.addr, and an integer 4.value that is read or

written. The operational semantics of our machine in Figure 3.5 is parameterized by

this set State, MMIO and two operations mmioLoad : (State × Addr) → (State × Z)
and mmioStore : (State×Addr×Z) → State, that model how the state of the devices

reacts to MMIO loads and stores.

Figure 3.5 shows the new behavior of load and store for MMIO addresses. load
will use mmioLoad to get the value at address 0 from the environment and load it

into the register. Similarly, store uses mmioStore to indicate that a value is written

at some address. In both cases, the operations transition the environment’s state and

an IORead or IOWrite event is recorded in the trace.

3.3 Example wrappers

This section details the two examples with nested parapass-through security wrappers

that were described in the introduction. The goal is to illustrate how stakeholders

such as the ones in Figure 3.1 can set up the capability machine to achieve their

security objectives.

3.3.1 Three-layer stateful example with orthogonal wrappers

The �rst system we consider is set up as in Figure 3.1, with an additional bottom-most

wrapper wrapper0. There are hence 3 layers of simple wrappers, where the third

layer contains two disjointly operating wrappers. The proof e�ort for this example

can be shared, since the wrappers share a common structure, as will be discussed

in section 3.4.4. The di�erent wrappers enforce the following concrete invariants,

modelling the kind of real security properties we discussed in the introduction:

• Wrapper0 encapsulates all of MMIO, and creates a read and write closure for

MMIO that higher-level wrappers use. It does not enforce its proper predicate,

i.e. it enforces the trivially true predicate P0 on the trace C in Figure 3.7. We

108 FULL-SYSTEM SECURITY PROPERTIES UNDER MULTIPLE ATTACKER MODELS

c_ls8 , (rwx, d_ls8 , d_e8 , d_ls8)
c_r8 , (e, d_r8 , d_e8 , d_r8)
c_w8 , (e, d_e8 , d_e8 , d_w8)

↑C4 : (Event→ Prop) → (Trace→ Prop) , _%e C . (∀4. 4 ∈ C ⇒ %e (4))
F21 : Trace→ Trace , _C . �lter(_4. 4.addr = 01, C)
F22 : Trace→ Trace , _C . �lter(_4. 4.addr = 02, C)
F2 : Trace→ Trace , _C . �lter(_4. 4.addr ∉ {01, 02}, C)

P0 : Trace→ Prop , __. True

P1 : Trace→ Prop , _C . length(C) < 1000

P21 : Trace→ Prop , _C . ↑C4 (_4, 4.value > 0)
P22 : Trace→ Prop , _C . ↑C4 (_4, 4.value < 0)

LS_genG : list Word→ list Word ,
_Ecust . [c_lsG , c_rpr(G) , c_wpr(G)] ++ Ecust

LS0 : Trace→ list Word , __. [(rw, MMIO1, MMIO4 , MMIO1)]
LS1 : Trace→ list Word , _C . LS_gen

1
([length(C)])

LS21 : Trace→ list Word , __. LS_gen
21
([])

LS22 : Trace→ list Word , __. LS_gen
22
([])

Figure 3.7: De�nitions involved in the �rst example.

Obj-1

init_con�g_1(A0,<0) (A0,<0, ∅, B0) −→∗ (A,<, C, B)
P1 (C)

Obj-21

init_con�g_21(A0,<0) (A0,<0, ∅, B0) −→∗ (A,<, C, B)
P21 (�21 (C)) ∧ F2 (C) = []

Obj-22

init_con�g_22(A0,<0) (A0,<0, ∅, B0) −→∗ (A,<, C, B)
P22 (�22 (C)) ∧ F2 (C) = []

Figure 3.8: The di�erent security objectives that the stakeholders wish to enforce in

the �rst example

EXAMPLE WRAPPERS 109

separate this wrapper from the others, since its implementation deviates: it is

the only wrapper that does not recursively call another wrapper, but rather

accesses MMIO directly.

• Wrapper1 ensures that no more than 1000 MMIO-events (read and write

combined) occur once the capability machine boots. This invariant is expressed

by the predicate P1 on the trace C in Figure 3.7.

• To ensure safety of values sent to their respective peripherals, wrapper21 solely

allows positive values, whereas wrapper22 solely allows negative values. Note

that it would be trivial to extend this to an arbitrary bounds check. This is

expressed by P21 and P22 in Figure 3.7, where ↑C4 (%4) is a predicate on traces

that holds on a trace C i� %4 (4) holds for all events 4 in C .

• We model two di�erent peripherals (e.g. network and display) situated at the

memory-mapped addresses 01 and 02, respectively. Wrapper21 only allows

events destined for address 01, i.e., wrapper21 enforces predicate P21 on a �ltered

view of the general MMIO trace. The �ltering is represented by F21 in Figure 3.7.

Thus wrapper21 enforces P21 ◦ F21 on the MMIO trace. Analogously, wrapper22

enforces P22 ◦ F22. The complement �lter F2 will be used to prove that no

addresses other than 01 and 02 receive MMIO events, by requiring that F2 (C) = [].

The previous description has provided us with su�cient details to de�ne the

veri�cation goals of each stakeholder. These goals are formulated as security

objectives, and summarized in Figure 3.8. Note that wrapper0 does not have any

security objective of its own, since it solely encapsulates MMIO. Obj-1 speci�es

the guarantees that wrapper1 hopes to achieve from veri�cation. Obj-1 states

that if the initial memory <0 and registers A0 constitute a valid con�guration

init_con�g_1(A0,<0) (further explained below), then any execution starting from

the empty trace ∅ and an arbitrary state B0 and taking an arbitrary number of steps

(denoted by −→∗), will result in a con�guration that has a trace C ′ satisfying P1. In

other words, wrapper1 can be sure that P1 will hold on any trace of execution, as long

as the capability machine boots into a con�guration satisfying init_con�g_1.

For the second layer, we get two separate security objectives; Obj-21 and Obj-22. This

models the situation where the two drivers are developed and veri�ed independently

(perhaps by separate developer teams in the same company), relying on a contract

for the other wrapper, rather than its exact code. Otherwise, Obj-21 and Obj-22 are

analogous to Obj-1. They enforce that if the initial memory and register con�guration

is satisfactory, the respective predicates P21 and P22 hold over the network and display

parts of the �nal trace C , i.e. P21 (F21 (C)) and P22 (F22 (C)) hold. Additionally, the

complement �lter F2 guarantees that no events to addresses other than 01 or 02
can ever happen in the system.

The init_con�g predicate above de�nes the assumptions each wrapper makes on the

initial state of memory and registers to make its security objective provable. It ensures

110 FULL-SYSTEM SECURITY PROPERTIES UNDER MULTIPLE ATTACKER MODELS

M
M
I
O
1

M
M
I
O
4

M
M

I
O

R
e
g

i
o

n

s
_
b
0

s
_
e
0

S
e
t
-
u

p
C

o
d

e
0

d
_
r
0

R
e
a
d

W
r
a
p

p
e
r

0

d
_
w
0

W
r
i
t
e

W
r
a
p

p
e
r

0

d
_
l
s
0

d
_
e
0

L
o

c
a
l

S
t
a
t
e

0

wrapper0

a
d
v

_
b
0

a
d
v

_
e
0

A
d

v
e
r
s
a
r
y

0

(
a
)

w
r
a
p

p
e
r
0

l
a
y

o
u

t

L
a
y

o
u

t
0

s
_
b
1

s
_
e
1

S
e
t
-
u

p
C

o
d

e
1

d
_
r
1

R
e
a
d

W
r
a
p

p
e
r

1

d
_
w
1

W
r
i
t
e

W
r
a
p

p
e
r

1

d
_
l
s
1

d
_
e
1

L
o

c
a
l

S
t
a
t
e

1

wrapper1

a
d
v

_
b
1

a
d
v

_
e
1

A
d

v
e
r
s
a
r
y

1

(
b
)

w
r
a
p

p
e
r
1

l
a
y

o
u

t

L
a
y

o
u

t
0+

1

s
_
b
2
1

s
_
e
2
1

S
e
t
-
u

p
C

o
d

e
2
1

d
_
r
2
1

R
e
a
d

W
r
a
p

p
e
r

2
1

d
_
w
2
1

W
r
i
t
e

W
r
a
p

p
e
r

2
1

d
_
l
s
2
1

d
_
e
2
1

L
o

c
a
l

S
t
a
t
e

2
1

wrapper21

L
a
y

o
u

t
2
2

a
d
v

_
b
2

a
d
v

_
e
2

A
d

v
e
r
s
a
r
y

2

(
c
)

w
r
a
p

p
e
r
2
1

l
a
y

o
u

t

F
i
g

u
r
e

3
.9

:
T

h
e

m
e
m

o
r
y

l
a
y

o
u

t
f
r
o

m
t
h

e
p

o
i
n

t
o

f
v
i
e
w

o
f

w
r
a
p

p
e
r
s

0
,
1

a
n

d
2
1
.

V
e
r
i
�

e
d

p
a
r
t
s

o
f

m
e
m

o
r
y

a
r
e

s
h

o
w

n
i
n

g
r
e
e
n

,

r
e
g

i
o

n
s

t
h

a
t

t
h

e
w

r
a
p

p
e
r
’
s

s
e
t
-
u

p
c
o

d
e

a
s
s
u

m
e
s

c
o

r
r
e
c
t
n

e
s
s

c
o

n
t
r
a
c
t
s

f
o

r
a
r
e

s
h

o
w

n
i
n

b
l
u

e
,
a
n

d
a
d

v
e
r
s
a
r
i
a
l

c
o

d
e

i
s

s
h

o
w

n
i
n

r
e
d

.
R

e
d

d
a
s
h

e
d

l
i
n

e
s

i
l
l
u

s
t
r
a
t
e

h
o
w

e
a
c
h

f
o

l
l
o
w

i
n

g
w

r
a
p

p
e
r

i
s

s
i
t
u

a
t
e
d

i
n

t
h

e
a
d

v
e
r
s
a
r
i
a
l

r
e
g

i
o

n
o

f
t
h

e
p

r
e
v
i
o

u
s

w
r
a
p

p
e
r
.

B
l
u

e

d
a
s
h

e
d

l
i
n

e
s

s
h

o
w

h
o
w

a
n

a
b
s
t
r
a
c
t

v
i
e
w

o
f

t
h

e
p

r
e
v
i
o

u
s

m
e
m

o
r
y

l
a
y

o
u

t
i
s

a
s
s
u

m
e
d

i
n

t
h

e
f
o

l
l
o
w

i
n

g
w

r
a
p

p
e
r
.

EXAMPLE WRAPPERS 111

start

Set-up Code 0

Adversary 0

Set-up Code 1

Adversary 1

Set-up Code 21

Set-up Code 22

Adversary 2

pc (rwx, adv_bX, adv_eX, adv_bX)
r1 (e, d_rX, d_eX, d_rX)
r2 (e, d_rX, d_eX, d_wX)

X = 0

X = 1

pc (rwx, adv_b
2
, adv_e

2
, adv_b

2
)

r3 (e, d_r
21
, d_e

21
, d_r

21
)

r4 (e, d_r
21
, d_e

21
, d_w

21
)

r1 (e, d_r
22
, d_e

22
, d_w

22
)

r2 (e, d_r
22
, d_e

22
, d_w

22
)

Figure 3.10: The �ow of control and a few representative register states when jumping

to the adversary in the execution of the motivating example. Black, dotted connectors

indicate register state during the indicated transition. Gray connectors indicate that

the pointed-to registers received the indicated value in the previously executed set-up

code.

that the pc register is initialized correctly, and disallows the adversary’s memory from

containing any capabilities; a conservative assumption made for simplicity reasons,

to avoid a trivial bypass of the encapsulation of trusted components. Additionally,

init_con�g makes assumptions on the initial layout of memory; Figure 3.9 graphically

illustrates these assumptions for wrappers 1 and 21 (22 is analogous). The �gure also

summarizes the di�erent components involved in correctly setting up the wrappers in

each layer before passing control to the adversary. Note that these assumptions imply

di�erent attacker models for the di�erent security objectives, as sketched earlier in

Figure 3.2: adversaries are allowed to arbitrarily instantiate the untrusted parts of the

system, depicted in red, with code.

We now discuss each sub�gure in order, with the aid of Figure 3.10, which illustrates

the control �ow of the running example from machine start-up (at start), until

control is passed to an adversary. The contents of important registers are shown at

key points in execution.

First, Figure 3.9a presents the memory layout from the point of view of wrapper0. As

112 FULL-SYSTEM SECURITY PROPERTIES UNDER MULTIPLE ATTACKER MODELS

1 #1: Load MMIO capability
2 reqint r2 r25
3 move r25 pc
4 lea_a r25 d_ls

0
r26

5 load r25 r25
6 lea_a r25 r2 r26

7 #2: Write MMIO value
8 store r25 r1
9 #3: Clear and return

10 rclear Raux

11 jmp r0

Figure 3.11: The code for wrapper0’s write closure (Write Wrapper 0 in Figure 3.9a).

for all wrappers in our system, the memory layout contains 3 major parts; code for

the wrapper itself, set-up code to initialize the wrapper code, and adversarial code.

The MMIO region represents all of MMIO, and is unique to wrapper0, since no other

wrappers access MMIO directly.

The code of wrapper0 itself consists of a read closure from address d_r
0

to d_w
0
, a

write closure from d_w
0

to d_ls
0

and local state used by the closures, from d_ls
0

to

d_e
0
. As mentioned before, the read and write closures do not enforce any predicate

on the trace; they simply provide read and write functionality to MMIO memory. The

local state consists of a single address, which the set-up code will store a capability

(rw, MMIO1, MMIO4 , MMIO1) for MMIO into. It is hence independent of the current trace,

and given by LS0 (_) in Figure 3.7. This capability provides the read and write closures

of wrapper0 access to all of MMIO. Figure 3.11 demonstrates the code for the write

closure. It makes use of the following macros:

• reqint A Aaux: succeeds i� A contains an integer

• lea_a A d Aaux: absolute version of lea, that makes the capability in A point to

the address corresponding to d .

• rclear A : clears the set of registers A by overwriting them with the value 0.

In order to simplify wrapper invocations, we settled on the following common calling

convention in our examples:

• r0 contains the return address

• r1 contains the value to write in case of a write event, and the value that is read

in case of a read event

• r2 contains the request’s destination MMIO address

• r25-r31 are caller-save auxiliary registers, jointly denoted by the set 'aux

Figure 3.11 starts by loading the MMIO capability from d_ls
0

into r25, and making it

point to the MMIO address in r2. Next, the value in r1 is stored through r25, thereby

writing it to MMIO memory. Note that if r1 is not an integer, or r2 is not an MMIO

address, this operation will fail. Finally, all auxiliary registers are cleared, and the

write closure jumps to its return address in r0.

EXAMPLE WRAPPERS 113

1 #0: Machine boots here
2 #1: MMIO capability
3 move r0 pc
4 lea_a r2 d_ls

0
r1

5 move r1 pc
6 subseg r1 MMIO1 MMIO4
7 store r2 r1
8 #2: Wrapper closures
9 move r1 pc

10 subseg r1 d_r
0
d_e

0

11 move r2 r1
12 lea_a r1 d_r

0
r3

13 lea_a r2 d_w
0
r3

14 restrict r1 e
15 restrict r2 e
16 #3: Adv capability
17 move r0 pc
18 subseg r0 adv_b

0
adv_e

0

19 lea_a r0 adv_b
0
r3

20 #4: Clear, jump to adv
21 rclear '

clr

*

22 jmp r0

*'
clr

= RegName\{pc, r0, r1, r2 }

Figure 3.12: The set-up code for wrapper0 (Set-up Code 0 in Figure 3.9a).

The purpose of the set-up code is to create the previously discussed read and write

closures, and to pass these to Adversary 0 securely. Figure 3.12 lists the concrete set-up

code for wrapper0. When the machine boots, the pc register is assumed to point to

Set-up Code 0 and contains an omnipotent capability granting access to all of memory.

For simplicity reasons, all wrapper code is assumed pre-loaded in memory, but initial

memory cannot contain any capabilities. The set-up code starts by deriving the

previously discussed MMIO capability from the omnipotent pc, and storing it at address

d_ls
0
. Next, it derives the read and write closures from the pc and stores them in r1 and

r2. Lastly, it restricts the omnipotent pc to the adversary region, clears all auxiliary

registers and jumps to the adversary, thereby loading r0 into the pc. Figure 3.10

demonstrates how execution starts in Set-up Code 0, and how, when jumping to

Adversary 0, pc, r1, and r2 are set up as previously described. From the point of view

of wrapper0, the concrete code stored inside Adversary 0 is irrelevant, as capability

safety ensures that no adversary will be able to bypass its read and write closures.

Let us now consider the memory layout for wrapper1 in Figure 3.9b. The layout is

similar to Figure 3.9a, except for the topmost region. Since Set-up Code 0 gets to

execute before passing control to Set-up Code 1, wrapper1 assumes the existence of

a region Layout 0, whose instructions satisfy a contract that captures the behavior

of Set-up Code 0. Consequently, init_con�g_1 in Obj-1 requires the machine to boot

inside the Layout 0 region and pass control to Set-up Code 1 at the end, with the

register state as speci�ed in Figure 3.10. Requiring a contract rather than precise code

makes the di�erent layers more independent, and will, e.g., allow the hardware vendor

to optimize network packet handling without a�ecting any proofs in higher-up layers.

The code for wrapper1 itself is similar in layout, but makes use of more extensive

local state than wrapper0. Concretely, the read and write closures ensure that the

local state always satis�es LS1 in Figure 3.7. LS1 is de�ned in terms of a general local

state LS_genG . LS_genG describes the layout of local state for wrapper G (with G ≠ 0).

It speci�es that the �rst three addresses contain a rwx capability c_lsx for all of local

114 FULL-SYSTEM SECURITY PROPERTIES UNDER MULTIPLE ATTACKER MODELS

1 #Template code
2 read_wrapper(check_read) ,
3 is_addr r2 r25 r26
4 check_read
5 move r25 pc
6 lea_a r25 d_ls

1
r26

7 load r25 r25
8 lea r25 1

9 load r26 r25
10 jmp r26
11

12 read_wrapper_1 ,
13 read_wrapper(check_1)
14

15 #Check: < 1000 events
16 check_1 ,
17 move r25 pc
18 lea_a r25 d_ls

1
r26

19 load r25 r25
20 lea r25 3

21 load r26 r25
22 add r26 r26 1

23 lt r26 r26 1000

24 lea pc r26
25 fail
26 load r26 r25
27 add r26 r26 1

28 store r25 r26

Figure 3.13: The code for wrapper1’s read closure (Read Wrapper 1 in Figure 3.9b).

state, and the read and write closures 2_Apr(G) and 2_Fpr(G) , where pr(G) represents

the layer-below wrapper, which G will call. For example, pr(22) = 1. Having c_lsx

is required because jumping to an e capability in our capability machine results in

a pc with rx permission, which disallows updating the local state. Lastly, LS_genG

takes a list of custom values Ecust as an argument. This allow wrappers to specify

additional local state to aid in enforcing their invariants. In this case, Figure 3.7 de�nes

LS1 , _C . LS_gen
1
([length(C)]), where G = 1 because wrapper1 requires access to its

own local state, and pr(G) = 0 because wrapper1 will call wrapper0 to have it perform

MMIO. Additionally, Ecust = [length(C)], because wrapper1 requires one extra address

to store local state; a counter length(C) that corresponds to the number of MMIO events

performed so far, to compare it to 1000.

Figure 3.13 demonstrates how the read closure of wrapper1 uses local state. It makes

use of a generic read_wrapper template, which we use for any non-bottom-level

wrapper in this example. The template uses a list of instructions check_read to check

whether the wrapper’s predicate (e.g., P1 in this case) would still hold after the next

MMIO event, and update the local state if this is the case. First, the template veri�es

whether r2 is a valid address, and not just any integer. This is done using the is_addr
A Aaux1 Aaux2 macro, which succeeds i� A contains an integer that corresponds to a

memory address. Then, it calls upon the checking instructions. Lastly, it loads 2_A0
from address d_ls

1
+ 1 and jumps to it. For wrapper1 the template is instantiated with

check_1, which checks that P1 holds. These instructions �rst load c_ls1 from d_ls
1
,

then load length(C) from d_ls
1
+ 3, check whether length(C) + 1 < 1000 still holds,

and fail if this is not the case. If the check passes, length(C) + 1 is stored to d_ls
0
+ 3,

ensuring that LS1 holds again after the call to wrapper0.

The set-up code for wrapper1 is very similar to the code we discussed in Figure 3.12.

The only di�erence is that, rather than ensuring that LS0 ([]) holds, the set-up code

EXAMPLE WRAPPERS 115

needs to satisfy LS1 ([]) before jumping to Adversary 1. Figure 3.10 again shows the

state of key registers at that point.

Finally, Figure 3.9c summarizes wrapper21. Wrapper21 again assumes a contract for

lower-level wrappers, that is satis�ed by the region Layout 0+1. This contract captures

the behavior of Set-up Code 0 and 1 combined, i.e., the �rst two steps in Figure 3.10.

Similarly, a new region Layout 22 satis�es a second contract that captures the behavior

of Set-up Code 22. Both contracts appear in the de�nition of init_con�g_21 in Obj-21

and enable more modular code development. We do not discuss wrapper22 separately,

since its layout is the dual of wrapper21. Both wrappers share the same adversary.

The code for wrapper21 itself is similar to the code for wrapper1. It enforces LS21

in Figure 3.7, which is again de�ned in terms of LS_genG . No custom local state is

needed to check P21. The set-up code is also similar, but it jumps to wrapper22 before

control is passed to Adversary 2, as shown in Figure 3.10. This Figure demonstrates

how Set-up Code 21 sets up the closures for wrapper21 in r3 and r4, whereas Set-up

Code 22 (or in this case the assumed contract for Layout 22) sets up its closures in

r1 and r2. Set-up Code 21 uses r1 and r2 to pass the closures for wrapper1 to Set-up

Code 22.

3.3.2 Rate limiting

To demonstrate how the previous example generalizes to support a more complex

property that requires interaction with multiple devices, we implemented and veri�ed

a second example where wrapper22 is replaced by wrapper22_bis; a wrapper that

implements rate limiting. The other wrappers and security objectives remain

unchanged. Concretely, wrapper22_bis relies on a trusted, memory-mapped timer

device, and only allows an IO-event to or from its peripheral (at the same address 02
that wrapper22 used) to occur when a value of 1 has been read from the timer address

0timer beforehand. In other words, wrapper22_bis enforces the predicate P22_bis in

Figure 3.14 on a version of the MMIO trace that has been �ltered through F22_bis.

Here, the function last returns the most recent event in C , if any. In summary, security

objective Obj-22 is replaced by the following (where F2 now also disallows events to

0timer):

Obj-22-bis

init_con�g_22(A0,<0) (A0,<0, ∅, B0) −→∗ (A,<, C, B)
P22_bis(F22_bis(C)) ∧ F2 (C) = []

To correctly enforce P22_bis ◦ F22_bis, wrapper22_bis consists of 2 di�erent types of

closures. First, a read and write closure similar to the ones demonstrated in Figure 3.9,

which clients can use to respectively read from and write to 02 if the last event in

116. FULL-SYSTEM SECURITY PROPERTIES UNDER MULTIPLE ATTACKER MODELS

P22_bis : Trace→ Prop ,
_C . match C with

| [] : True

| C ′ ++ [4] : P22_bis(C ′) ∧
(4.addr ≠ 0timer ⇒ last(C ′) = Some(IORead, 0timer, 1))

F22_bis : Trace→ Trace ,
_C . �lter(_4. 4.addr = 02 ∨ 4.addr = 0timer, C)

LS22_bis : Trace→ list Word ,
_C . LS_gen

22
([if last(C) = Some(IORead, 0timer, 1)

then 1 else 0)])

Figure 3.14: De�nitions involved in the second example.

F22_bis(C) is a timer event that returned 1. Second, a read-only timer closure, which

allows reading from 0timer and returns the read value. To coordinate between these

closures, they share local state that satis�es LS22_bis in Figure 3.14. The three closures

uphold LS22_bis as follows:

• Whenever the timer closure is called, it writes a 1 to the local state if it read a 1,

and 0 otherwise.

• Whenever the regular read or write closure is called, if the event is destined

for address 02, it checks the local state to see if the stored value is 1. If not, the

wrapper fails. If the value is 1, it is consumed and set to 0, and the call is passed

on to wrapper1.

Note that in our current set-up, wrapper22_bis is the sole wrapper that can read (and

write) the timer address, since it requires a view of all MMIO events to 0timer and

02 in F22_bis. Section 3.4.1 will discuss how our approach can be generalized to a

setting where a closure is shared between multiple wrappers, e.g. wrapper21 and

wrapper22_bis.

3.4 Proving The Security Objectives

This section outlines the high-level technical ideas that underlie the proofs of security

objectives such as the ones in Figure 3.8. Intuitively, the proof of each wrapper’s

security objective employs an invariant to state that the objective holds at each step

of execution. Section 3.4.1 discusses how each wrapper’s invariants are formalized in

Iris.

PROVING THE SECURITY OBJECTIVES 117.

valid(�) ,
∃%4 : Event→ Prop. (∀C . � (C) = �lter(%4 , C)) ∧

(∀4 : Event. decidable(%4 (4)))
orthogonal(�1, �2) , ∀C . �1 (�2 (C)) = �2 (�1 (C)) = []

(�lter_full W C ∗ �lter_val W � C ′) −∗ � (C) = C ′

(�lter_val W � C ∗ �lter_val W � ′ C ′) −∗ orthogonal(�, � ′)
(∀� ′. valid(� ′) ∧ orthogonal(�, � ′) → � ′(C) = � ′(C ′)) →
(�lter_full W C ∗ �lter_val W � _) −∗ (�lter_full W C ′ ∗ �lter_val W � � (C ′))

1

2

3

Figure 3.15: Three main properties of the �lter_full and �lter_val abstractions built

on top of the �lter resource algebra in Iris, and de�nition of the auxiliary notions of

validity and orthogonality they require.

Proving that the invariant always holds requires reasoning about 2 di�erent phases

of execution:

1. The wrapper’s concrete closures that we hand-verify should enforce the

invariant, as Section 3.4.2 further explains. Additionally, the concrete Set-up

Code of the wrapper and (speci�cations for) the set-up code of all layer-below

wrappers should respect the invariant. The latter is simple to prove, since set-up

code does not perform IO itself.

2. The arbitrary adversarial code in the Adversary region should be safe to execute,

i.e. have no way of bypassing the wrapper’s closures and breaking the invariant.

Section 3.4.3 discusses how we employ a semantic model to reason about the

safety of unknown code in the capability machine.

In Section 3.4.4 we �nally discuss an approach to sharing the veri�cation e�ort for

wrappers that have a common structure. This is not required for our veri�cation

approach, but it allowed us to reduce the veri�cation e�ort involved in proving the

�rst example.

3.4.1 Invariants to enforce security objectives

In this section, we detail how each wrapper G employs invariants invs(G) to prove

modularly that its security objective Obj-X holds at each step of execution. It is

insu�cient to have an invariant that simply states that the security objective holds

continuously. To be of general use, each wrapper requires three additional types of

reasoning to be possible with its invariant.

First, each wrapper has a view of the physical trace, which is the part of the physical

118. FULL-SYSTEM SECURITY PROPERTIES UNDER MULTIPLE ATTACKER MODELS

trace that it knows about. In our �rst example, wrappers 0 and 1 view the entire trace,

whereas the views of wrappers 21 and 22 consist of all events addressed to 01 and 02,

respectively. A wrapper G will only ever see a subview of the layer-below wrapper

pr(G)’s view. By expressing the view of G in terms of the view of pr(G), the invariant

ensures that all wrappers’ views are indeed recursively views of the actual physical

event trace, obtained through repeated �ltering.

Secondly, in case multiple wrappers G1, . . . , G= have a common layer-below wrapper

pr(G1), it should be possible to modularly reason about events they admit. For example,

we should not have to know anything about the view of G= on the trace, to reason

about the view that G1 has on the trace.

Lastly, the invariant needs to ensure that any local state that the wrapper requires

for its correct operation is enforced on the wrapper’s current view of the trace. For

example, to prove correct operation of wrapper1 in our �rst example, the invariant

must be able to guarantee that the number of MMIO events that wrapper1 keeps track

of, is the number of events in the most up-to-date view of the trace.

In the remainder of this section, we �esh out these three types of reasoning by means of

Figure 3.16, which demonstrates how di�erent aspects of the wrappers’ invariants help

us achieve the desired reasoning. At the end, we showcase some concrete invariants

used in our �rst example. Note that the enforcement of the security objective itself

is trivially expressed by adding the condition %G (CG) to the invariant, as Figure 3.16

shows.

Connecting G1 to pr(G1)

In general, a wrapper G1’s view of the trace is a �ltered view, a subsequence of the

layer-below wrapper pr(G1)’s view. We can connect di�erent layers this way: the

invariant for wrapper G1 in Figure 3.16 owns a resource �lter_val Wpr(G1) �G1 CG1 , which

states that G1’s view on the trace is CG1 and that CG1 is obtained by applying a �lter �G1
to the view tpr(G1) that pr(G1) has. As shown in the bottom of the �gure, this resource

connects to the resource �lter_full Wpr(G1) tpr(G1) in wrapper pr(G1), which represents

the full view. Here, Wpr(G) is simply a name used to distinguish di�erent �ltering

systems. The root wrapper has a view on the entire physical trace, i.e. its invariant

owns a resource �lter_val W id C where id is the identity �lter and C is the physical

trace. Note that top-level wrappers do not require a resource �lter_full W t, since they

do not provide a view on the trace to a higher-level wrapper. When proving Obj-X
for a wrapper G1, G1 and its siblings are the top level wrappers.

PROVING THE SECURITY OBJECTIVES 119

invst,G%G (CG)invP,G

�lter_val Wpr(G) �G CG

�lter_full WG tG

cur_tr WlsG tG cur_tr
′ WlsG tG,invs(G)

invs(pr(G1))

. . .

invs(G1)

. . .

. . . invs(G=)

. . .

Figure 3.16: Figure illustrating the interaction of the di�erent resources in the

invariants invs(G) (consisting of two invariants invP,G and invst,G) of an arbitrary

wrapper G . The bottom of the �gure shows how the invariants of a wrapper pr(G1)
are connected to its layer-above wrappers G1, . . . , G= . Circular connectors represent

an authoritative (i.e. “full”) view of a resource, that one or more fragmentary (i.e.

“partial”) views, represented by claw-shaped connectors , can be connected to. The

connector represents a unique partial view, i.e. it is enforced to be equal to the full

view.

Reasoning modularly about sibling wrappers

In the case where multiple wrappers G1, . . . , G= have a common layer-below wrapper

pr(G1), reasoning about each wrapper’s view can happen modularly if the wrappers

have orthogonal views on the trace, where orthogonality for two �lters � and � ′ is

denoted orthogonal(�, � ′) and de�ned in Figure 3.15. For example, �21 and �22 are

orthogonal in our �rst example, so we can update the view of the trace �21 (C) that

wrapper21 has, without requiring any knowledge of wrapper22’s view �22 (C), and vice

versa. Similarly, we might have multiple wrappers that only write certain ranges of

output values, that only ever read, respectively write values, that always write speci�c

pairs of MMIO values, etc. Note that orthogonality is more �exible than disjointness

since it does not presuppose a notion of intersection, but that it degenerates to the

latter in case we consider �lters that �lter on individual events (as is the case in our

examples).

Given this notion of orthogonality, we de�ned a novel �lter resource algebra (an

Iris construct used to de�ne custom separation logic resources) to reason about

independent, orthogonal updates to a trace. The previous resources �lter_full W t

120 FULL-SYSTEM SECURITY PROPERTIES UNDER MULTIPLE ATTACKER MODELS

and �lter_val W � C are in fact de�ned in terms of this resource algebra. Figure 3.15

de�nes the three most important properties that these two resources satisfy. First,

we de�ne a �lter � to be valid if it �lters the trace by a decidable event predicate

%4 . Property 1 states that C ′ is indeed a view of C through the �lter � . Property 2

states that any two �lter_val resources are guaranteed to be orthogonal. Property

3 then leverages orthogonality to express how we may update traces modularly: if

all orthogonal, valid �lters are una�ected by a trace update, then we can update a

�lter_full and �lter_val without requiring ownership of any other �lters. Figure 3.16

illustrates how the �lters G1, . . . , G= are connected to their common layer-below �lter,

assuming orthogonal �ltering predicates.

The reader might wonder about the case where the views of G1, . . . , G= are not

orthogonal. This case does not occur in our current examples, but Iris o�ers multiple

resource algebras that can be used to reason about di�erent forms of shared views on

the trace. For example, imagine a scenario where a clock closure (similar to the timer

closure in our second example) is shared between wrapper21 and wrapper22_bis, such

that both wrappers can read timestamps from it and enforce their own predicates (e.g.

“at least X seconds have to pass between any two writes to 02”). The wrappers 21 and

22_bis would still require an orthogonal view to know about all events at respectively

01 and 02, but now also a partial view for their reads from 0clock. The partial view

ensures that wrapper22_bis does not need to update its view whenever wrapper21

reads a timestamp from the clock, and vice versa. Iris already contains a monotone

resource algebra, that could allow implementing such partial views.

Incorporating local state

While the security objective %G (CG) has to be satis�ed at each step of execution

(i.e. atomically), the local state can temporarily be out of sync with the trace, e.g.

if a wrapper updates its local state before invoking the layer-below wrapper to

perform IO, or if updating the local state takes multiple instructions. For this reason,

invs(G) consists of two parts: an atomic invariant invP,G , which ensures that the

security objective holds continuously, and a so-called non-atomic invariant [69] invst,G ,

which ensures (among other things) that the local state is satis�ed. The resources

cur_tr WlsG tG and cur_tr
′ WlsG tG in Figure 3.16 enforce that the view of the trace

in both invariants is the same. Figure 3.17 illustrates how both types of invariants

are upheld di�erently when invoking one of wrapper21’s closures: the local state

invariants can temporarily be broken while a lower-level wrapper is executing and

reestablished afterwards, whereas all atomic invariants have to be updated at the

same time, during the instruction that performs the physical MMIO e�ect.

PROVING THE SECURITY OBJECTIVES 121

invP,0 3 3 3 3 		 3 3 3

invst,0 3 3 3 7 7 		 3 3

invP,1 3 3 3 3 		 3 3 3

invst,1 3 3 7 7 7 7 		 3

invP,21 3 3 3 3 		 3 3 3

invst,21 3 7 7 7 7 7 7 		

wrapper0

wrapper1

wrapper21

↑↓↑↓ IO occurs

Figure 3.17: Overview of when di�erent invariants need to hold when invoking

wrapper21 in our �rst example, where		 denotes an invariant being reestablished for

a new view of the trace.

Pu�ing it all together

Given the representation of invP,G in Figure 3.16, we now denote this atomic invariant

with all of its parameters as invP (�G , %G , tpG , Wpr(G) , WlsG , WG). The only new parameter is

the boolean tpG , which denotes whether G is currently considered a top-level wrapper.

This is important to know since, as mentioned, the resource �lter_full WG tG is not

present if G is a top-level wrapper. The arguments Wpr(G) ,WlsG ,WG are omitted if they

are clear from context.

To exemplify the previous discussion, we investigate the atomic invariants involved

in proving Obj-21 (the non-atomic invariants are more tedious and less interesting).

The invariants are as follows:

invP (id, _, False, W0, Wls0, W1) ∗ invP (id, _, False, W1, Wls1, W21)
∗ invP (F21, P21,True, W21, Wls21, _)
∗ ∃C . �lter_val W2 F2 []

The �rst three invariants represent wrappers 0, 1 and 21. Since wrappers 0 and 1 are

the only wrappers in their layer, they apply the identity �lter id to the previous layer’s

trace. The resource �lter_val W0 id C in wrapper0’s invariant is linked to the actual

physical trace. The third invariant, wrapper21’s proper invariant, enforces the �rst

conclusion of Obj-21, through the presence of F21 and P21. Additionally, the fourth

invariant ensures that no other addresses than 01 and 02 receive MMIO events. From

the point of view of the top-level wrapper21 in Figure 3.9c, the third layer is irrelevant,

so the third invariant has tp set to True, whereas non-top-level wrappers 0 and 1

122 FULL-SYSTEM SECURITY PROPERTIES UNDER MULTIPLE ATTACKER MODELS

have it set to False. Also note the _ in place of P0 and P1 in the �rst two invariants,

indicating that wrapper21 does not care what predicate the lower wrappers enforce

when proving its own security objective.

3.4.2 Functional correctness of wrappers

The invariants discussed in the previous section are used to prove two contracts

for every wrapper: a form of functional correctness and a form of security. We will

discuss the proofs of security in more detail in the next section, and the proofs of

correctness now. The correctness contract expresses that when a wrapper is invoked,

it either generates the desired external e�ect or throws an error in case the e�ect

would violate their policy.

These contracts are expressed in terms of a program logic for our capability machine,

which we inherit from Georges et al. [62] and extend with rules for the MMIO cases of

the load and store instructions. The program logic contains the following weakest

precondition assertion:

wp Repeat SingleStep {B .& (B)}

which is read as “repeating the fetch decode execute loop of the capability machine

until it either halts or fails, will produce a �nal state B (Done Failed or Done Halted)

for which & holds”. In terms of wp {}, we can de�ne a form of contract triple

{P} Repeat SingleStep {Q} that we de�ne (roughly) as follows
2
:

∀i. P −∗ (Q −∗ wp Repeat SingleStep {B . i (B)})
−∗ wp Repeat SingleStep {B . i (B)}

In terms of this abstraction, the functional correctness contract of the write closure

of a wrapper G could look roughly as follows (omitting error cases and technical

2
Two caveats: (1) we do not use this abstraction in our Coq development but use the unfolded de�nition

directly and (2) most of our contracts use a variant of this de�nition that allows the program to fail at an

arbitrary point of execution.

PROVING THE SECURITY OBJECTIVES 123

details): 
�lter_val WG (_C . �lter(%4 , C)) C ∗ %4 (IOWrite, 0, E)
∗ pc ↦→ (?F, 1F, 4F, 0F)
∗ r0 ↦→ Fret ∗ r1 ↦→ E ∗ r2 ↦→ 0


Repeat SingleStep
�lter_val WG (_C . �lter(%4 , C)) (C ++ [(IOWrite, 0, E)])
∗ pc ↦→ updatePcPerm(Fret)
∗ r0 ↦→ Fret ∗ r1 ↦→ E ∗ r2 ↦→ 0


where the updatePcPerm function maps e capabilities to their rx counterparts and

leaves other capabilities untouched, and we used the fact that �lters in our current

examples are event-based (cfr. the de�nition of validity in Figure 3.15) to rewrite �G
as (_C . �lter(%4 , C)). This contract expresses that when the write closure is invoked

and the pc contains a capability (?F, 1F, 4F, 0F), with arguments E and 0 and a

return capabilityFret in appropriate registers, then execution will jump back toFret

with unmodi�ed register contents. Additionally, a �lter_val WG (_C . �lter(%4 , C)) C
resource is required to update the �lter_full WG C resource in invP,G using property 3

in Figure 3.15. To prove the orthogonality precondition to this property, %4 needs to

accept the requested external e�ect (IOWrite, 0, E). In the postcondition, an updated

�lter_val resource is returned to express that the e�ect has been performed.

Unfortunately, the above contract does not quite work. The problem is that higher-

level wrappers who wish to invoke a lower-level write closure do not directly own

the necessary resource �lter_val WG (_C . �lter(%4 , C)) C . As we discussed, this resource

is embedded in an invariant invP. Because this invariant is atomic, it must be restored

after every individual instruction, as was already illustrated in Figure 3.17. It is

therefore not possible to extract the resource from the invariant for the duration of

the wrapper invocation.

To solve this problem, we employ the technique of Higher-Order Concurrent

Abstract Predicates (HOCAP) [70, 151]. The client wrapper will not extract the

�lter_val Wpr(G) (_C . �lter(%4 , C)) C resource from its invariant and restore it after

the invocation. Instead, it delegates the work of updating its invariant to the invoked

wrapper, and the invoked wrapper will do this at exactly the right execution step,

namely the step that executes the MMIO write. This means the contract will look as

124. FULL-SYSTEM SECURITY PROPERTIES UNDER MULTIPLE ATTACKER MODELS

follows (again omitting error cases and technical details):

(
∀C . �lter_full WG C ∗ % V

�lter_full WG (C ++ [(�$,A8C4, 0, E)]) ∗&

)
∗ % ∗ pc ↦→ (?F, 1F, 4F, 0F)
∗ r0 ↦→ FA4C ∗ r1 ↦→ E ∗ r2 ↦→ 0


Repeat SingleStep{
& ∗ pc ↦→ updatePcPerm(FA4C)
∗ r0 ↦→ FA4C ∗ r1 ↦→ E ∗ r2 ↦→ 0

}
In this contract, the caller provides a so-called view shift to the wrapper invocation:

a type of logical callback that expresses how the lower-level wrapper pr(G) can

update the client wrapper G ’s invariant for them. View shifts are the reason why, in

Figure 3.17, wrapper0 was capable of immediately reestablishing the atomic invariants

of wrapper1 and wrapper21 when it performed MMIO. Note that the client does not

need to provide their �lter_val WG (_C . �lter(%4 , C)) C resource beforehand, but instead

is allowed to rely on the invoked wrapper’s �lter_full WG C resource in the proof of

the view shift. In this proof, the view shift is allowed to consume additional client

resources % that the caller has to provide at the start of the invocation, and produces

resources & . Note that, since top level wrappers contain no �lter_full WG C resource

that needs to be updated externally, their contracts need not be parameterized by a

view shift. In other words, the same boolean tp we discussed in the previous section

will determine whether a wrapper’s contract is parameterized by a view shift.

If G is neither a top-layer nor a bottom-layer wrapper, then both G and pr(G) are

parameterized by a (di�erent) view shift, and a conversion between both needs to

happen to prove the contract of G . Using the invariant invP,G , we can prove the

following generally applicable view shift lowering lemma, to abstract away most

reasoning related to view shifts when proving contracts:

Theorem 3.1 (View Shift Lowering).

invP ((_C . �lter(%4 , C)), %G , tpG , Wpr(G) , WlsG , WG) −∗
(∀C . �lter_full WG C ∗ % V�lter_full WG (C ++ [4]) ∗&) −∗
(∀C . �lter_full Wpr(G) C ∗ % ∗ %4 (4) ∗ %G (C ++ [4]) ∗
cur_tr

′ Wls,G C V�lter_full Wpr(G) (C ++ [4]) ∗& ∗
cur_tr

′ Wls,G (C ++ [4]))

This theorem states that the view shift that G is parameterized by can be lowered

to one that satis�es the contract for pr(G), if G can provide the additional guarantee

that %4 (G) and %G (C ++ [4]) hold (which is precisely what G checks before admitting

PROVING THE SECURITY OBJECTIVES 125.

E(E) , ∀reg. (R(reg) ∗ pc ↦→ E ∗ ∗(A,F) ∈reg,A≠pc A ↦→ F)
−∗ wp Repeat SingleStep {_.>}

R(reg) , ∗(A,F) ∈reg,A≠pcV(F)

V(F)


V(I),V(o,−) , >
V(e, 1, 4, 0) , � ⊲ E(rx, 1, 4, 0)
V(?,1, 4, 0) , ∗0′∈[1,4) ∃? ′. ? 4 ? ′ ∧

∃F. 0′ ↦→?′ F ∗ V(F)

Figure 3.18: Logical relations describing capability safety. Figure adapted from Georges

et al. [62].

the event anyway), and if G makes pr(G) update the trace in the local state invariant

invst. Recursively applying this theorem allows e�ciently deriving higher-level driver

speci�cations from lower-level ones. Note that view shift lowering accumulates

resources in % and & until the bottom-level driver is reached, at which point all

higher-level invariants invP are updated at once.

3.4.3 A semantic model for capability safety

In this section, we describe how we reason about the fact that unknown adversarial

code satis�es the security objectives. We use a logical relations model to capture the

notion of capability safety, i.e. the universal contract, that the hardware capabilities

provide. Concretely, we will verify that our own wrapper closures are safe to execute,

and that the adversary’s code is safe to execute, starting from safe register states, in

particular states containing the wrappers’ closures.

Since our capability machine builds upon the bare-bones capability machine of

Georges et al. [62], we reuse their logical relation without revocation and its

formalization in Iris, and repeat a simpli�ed version of the separation logic de�nition

in Figure 3.18. Additionally, we reprove their fundamental theorem (Theorem 3.2

below) in the presence of MMIO.

We restrict our explanation of Figure 3.18 to the essentials required to understand

the key concepts behind our proofs. The model consists of three di�erent, mutually

recursive relations:

• The value relationV : Word→ iProp (with iProp the type of propositions in

Iris) de�nes when a word is safe.

• The expression relation E : Word→ iProp de�nes when a capability can safely

be executed in the pc register.

126. FULL-SYSTEM SECURITY PROPERTIES UNDER MULTIPLE ATTACKER MODELS

• The register relation R : Reg → iProp lifts the value relation to an entire

register bank (bar the pc). A register bank is safe if each general purpose

register is safe.

Technically, these relations are well-de�ned by so-called guarded recursion, see [62,

80].

We �rst discuss the de�nition of the value relation. V(F) speci�es an upper bound on

the authority over memory that the wordF carries. Since integers and o-capabilities

do not represent any authority over memory, they are always safe, as expressed by

>. Enter capabilities are safe if it is safe to execute them in the pc after jumping

to them (hence the rx permission). The presence of the persistent modality � and

the later modality ⊲ can be ignored by readers unfamiliar with them. All remaining

capability types have read permission and these capabilities are safe if, for each 0′

in their memory range [1, 4), an Iris invariant (denoted by a boxed assertion) exists

that asserts that memory location 0′ will always contain a safe value. The assertion

0′ ↦→?′ F in the invariant expresses unique ownership of the memory location 0′ with

permission ? ′ and stored wordF . Additionally, this assertion implies that 0′ cannot

be an MMIO location. This ensures that adversaries cannot gain direct access to MMIO

memory and bypass our wrappers. Note that the invariant permits using a ? ′ that is at

least as strong as ? , i.e. ? 4 ? ′. This allows for downgrading of capability permissions

and aliasing of di�erent permissions. Notice that no additional assertions have to be

added to the de�nition ofV(?, 1, 4, 0) for capabilities that carry additional write or

execute authority. The intuitive reason is that the invariant already enforces that any

written value needs to be valid, and that having read authority over a part of memory

su�ces for an adversary to copy code over to a region that it has write-execute

permission over, and execute it there.

Next, we discuss the execution relation E. It states that, given ownership of any

initial register bank reg that satis�es the register relation R, we can safely run the

machine with E in the pc register. The weakest precondition assertion wp uses a

trivial postcondition >, which at �rst sight might seem odd. This su�ces because

Iris’ weakest precondition implicitly enforces that all invariants hold at each step of

execution. Thus, any invariants related to Obj-X that a wrapper might de�ne will

also be enforced through the expression relation by the wp assertion. For example, if

wrapper1 were to set up an invariant that ensures that P1 holds over the current trace

C , i.e. P1 (C), then this invariant is upheld at each step of execution when jumping

to Adversary 1, under two conditions. First, Adversary 1 should be safe to execute.

i.e. E(rwx, adv_b
1
, adv_e

1
, adv_b

1
) holds. Second, to meet the precondition of the

expression relation, Set-up Code 1 has to pass the adversary a safe register block,

which notably requires proving that the read and write closures for wrapper1 are

safe, since they are shown to be located in r1 and r2 when jumping to Adversary 1

in Figure 3.10. This latter condition can be proven relatively straightforwardly from

PROVING THE SECURITY OBJECTIVES 127

the contracts we described in Section 3.4.2. We hence focus on proving the di�erent

adversaries in our examples safe, by leveraging the FTLR (fundamental theorem of the

logical relation).

The fundamental theorem has the following simple statement:

Theorem 3.2 (FTLR). ∀F.V(F) −∗ E(F).

In other words: if a word is safe, it can safely be executed as well. The statement is

identical to Georges et al.’s FTLR, but the proof is slightly di�erent due to the presence

of MMIO.

Through this theorem, it is easy to prove that for each region Adversary X
in Figure 3.9, E(rwx, adv_bX, adv_eX, adv_bX) holds. Since each init_con�g_X
predicate requires initial memory to not contain any capabilities, since integers

are always safe, and since the di�erent set-up codes do not change the adversary’s

memory, V(rwx, adv_bX, adv_eX, adv_bX) holds. The fundamental theorem then

proves the result.

3.4.4 Sharing verification e�ort for fixed-structure wrappers

For wrappers G that satisfy some conditions, we have developed a method in Coq that

requires minimal manual veri�cation e�ort in proving the functional contract and

safety of the closures for these drivers. The conditions are as follows:

• Respect the calling convention described in Section 3.3.

• Enforce their security objective using an atomic invariant of the form

invP (�G , %G , tpG).
• Consist of a single read and write closure, and only jump to the read and write

closures of their layer below driver. The state invariant invst expresses both

ownership of the code forG , and describes the closures for pr(G) in the local state,

and will hence be parameterized by the relevant addresses of both G and pr(G). It

is then denoted as follows: invst (d_r
pr(G) , d_w

pr(G) , d_e
pr(G) , d_rG , d_wG , d_eG).

• Have an implementation that satis�es a speci�c template, which is parameter-

ized by instructions check_read and check_write to check %G ◦�G in respectively

the read and write closures. Wrapper 1 in Figure 3.13 is structured like this, for

example.

If these conditions are satis�ed, the only manual e�ort involved is a proof that

check_read and check_write indeed correctly enforce %G◦�G onG ’s view of the trace, de-

noted by check_spec_read(�G , %G , check_read) and check_spec_write(�G , %G , check_write),
respectively. These conditions are enforced in the local state invariant invst, adding

the parameters %G and �G to it.

128. FULL-SYSTEM SECURITY PROPERTIES UNDER MULTIPLE ATTACKER MODELS

Under the above conditions, we can de�ne simple contracts in the style of Section 3.4.2

for the driver’s read and write closures, that only depend on d_rG , d_eG , d_rG /d_wG ,

and tpG (to determine whether or not a view shift is required in the contract), and are

denoted read_spec(d_rG , d_eG , d_rG , tpG) and write_spec(d_rG , d_eG , d_wG , tpG).

We can then state the following lifting theorem:

Theorem 3.3 (Lifting-theorem-read).

invP (�G , %G , tpG) read_spec(d_r
pr(G) , d_epr(G) , d_rpr(G) , False)

invst (d_rpr(G) , d_wpr(G) , d_epr(G) , d_rG , d_wG , d_eG , �G , %G)
read_spec(d_rG , d_eG , d_rG , tpG)

A similar result holds for the write spec. Note that this theorem is generic in tpG .

It states that if all necessary conditions on the state of a wrapper are met (invst),

and if an invariant enforces � and % on the trace (invP), then we can lift a spec for

the pointed-to wrapper in the previous layer, to the current layer. The bottom-most

wrapper, i.e. wrapper0 in the examples, constitutes the base case in this theorem, and

still has to be manually veri�ed to satisfy read_spec and write_spec, since its code

and local state do not satisfy the template (cfr. Figure 3.11 and LS0 in Figure 3.7).

Finally, we can prove top-level wrapper closures secure using the following theorem:

Theorem 3.4 (Wrapper-safety-read).

read_spec(d_rG , d_eG , d_rG ,True) −∗
V(e,Global, d_rG , d_eG , d_rG)

Again, a similar result holds for the write spec.

Since we have abstracted most reasoning related to wrappers into Theorems 3.3 and

3.4, the check_read and check_write instructions are indeed the only code we need

to hand-verify to ensure wrapper safety. We used this approach to verify the �rst

example. The shape of the local state and the code of the second example is slightly

di�erent, due to the presence of the timer closure, so it did not �t this approach.

However, Theorem 3.4 still applied once the read_spec and write_spec were proven.

3.5 Related Work

Hardware-supported security mechanisms as well as software veri�cation have been

important ingredients of secure system development for a long time [97]. We discuss

the most important lines of related work and how they di�er from our results.

RELATED WORK 129.

One distinguishing feature of our work is that we support robust modular veri�cation.

Robust veri�cation requires underlying programming language or hardware support

to protect veri�ed code from untrusted code. Earlier work has demonstrated how to

robustly verify safety properties in settings where that protection is not nested. For

instance, Sammler et al. [136] and Jia et al. [73] have proposed approaches to robustly

verify safety properties in the presence of untrusted code that is con�ned using some

sandboxing mechanism. Alternatively, Agten et al. [7] have used trusted execution

environments (TEEs) like Intel SGX [37] or Sancus [114] to protect a veri�ed module

from an unveri�ed context, but veri�cation is at the level of C code and their focus is

on proving assertions about the protected module rather than full system properties.

In our approach, protection of veri�ed code is provided by the capability-based

instruction set architecture, and this enables handling of nested protection.

Protecting veri�ed code from unveri�ed code is of course closely related to protecting

trusted system software from untrusted user code. Operating systems, microkernels,

and hypervisors use hardware privilege levels to protect themselves, and hence the

rich line of work on verifying properties of such system-level software can be seen

as an instance of robust modular veri�cation and hence related to our work. Some

important milestones include the veri�cation of the seL4 microkernel [86, 85], and the

veri�cation of Microsoft’s Hyper-V hypervisor [36]. The focus is however on proving

properties (such as functional correctness, or selected safety properties) of the system

software under a single attacker model where all non-privileged code is untrusted.

Like our work, the veri�cation of CertiKOS [29] supports modular (compositional) and

layered veri�cation of device drivers. But an important di�erence is that veri�cation in

CertiKOS is compositional but not robustly modular: only user-level code is isolated at

run time from kernel-level code, and any unveri�ed code at kernel-level becomes part

of the trusted computing base. The journal version of the CertiKOS driver veri�cation

paper [30] also has an extensive overview of other related work on operating system

veri�cation.

The usefulness of being able to nest protection systems has been recognized in the

system security research community, and several systems have been proposed that

support, for instance, nested virtualization [56, 81]. However for none of these systems,

any code-level formal guarantees are provided.

It is the reliance on capabilities as the underlying protection mechanism that enables

arbitrary nesting for our approach. Capability-based architectures have a rich history

[94], and have been proposed as a security foundation for both high-level languages

[99, 143, 152] and assembly languages [28]. The fact that capabilities support nesting

has been observed before, e.g. in Mark Miller’s PhD thesis [105]. It has also been

known for a long time that they provide a great foundation for nestable security

architectures in high-level languages [170]. Over the past decade, capabilities at the

instruction set architecture level have seen renewed interest, largely thanks to the

CHERI project [176]. CHERI is a hybrid architecture that supports capability based

130 FULL-SYSTEM SECURITY PROPERTIES UNDER MULTIPLE ATTACKER MODELS

protection for user-level code and classical memory protection for isolating kernel

and processes. Hence, CHERI does not use the nested encapsulation for wrappers

that we study in this paper. However, CheriRTOS [183], a CHERI-aware real-time

operating system, supports capability-based �ne-grained isolation for device drivers

and would be a candidate implementation platform for our veri�ed wrapper stacks.

Capability-based systems support the enforcement of security properties in the

presence of arbitrary untrusted code in the system through what are typically called

object capability patterns, like the membrane or caretaker patterns [105]. It is only

relatively recently that su�ciently powerful formal reasoning approaches have been

developed that can prove such properties. Devriese et al. [44] proposed a reasoning

approach based on logical relations, (what we now call) universal contracts and the

concept of e�ect parametricity. Swasey et al. [152] developed the �rst program logic,

OCPL, that can compositionally specify and verify the properties enforced by object

capability patterns. Building on these ideas, program logics have been developed

to reason about software in low-level capability-based instruction set architectures

[142, 62]. These logics, as ours, are built in Iris [80], a separation logic framework

for building program logics. Iris integrates, uni�es, and simpli�es a wide variety

of mechanisms for reasoning about programs that can be higher-order, concurrent,

or use mutable state. The results in this paper can be seen as an application and

extension of these logics to prove security properties for multiple stakeholders in a

system with nested encapsulation.

One of the motivations for our approach is the minimization of the Trusted Computing

Base (TCB). The various stakeholders in the system want to ensure their security

objectives while trusting as little other software as possible. The use of small software

modules isolated by some hardware protection mechanism to enforce full-system

security properties has been proposed in multiple guises in the system security �eld.

DriverGuard [31] uses virtualization techniques to implement �ne-grained protection

on I/O through speci�c devices with a small TCB. Para-passthrough virtualization

[140] speci�cally aims to provide full-system guarantees while relying only on a

small piece of software, albeit for only a single attacker model. One could argue that

micro-kernels or hypervisor-based systems are similar. We show that it is possible

to apply this principle at multiple levels in the same system and verify security.

Related to minimization of the TCB is the idea of compartmentalization, breaking a

large program in smaller mutually distrusting parts and relying on some underlying

security mechanism to protect the parts from one another. Juglaret et al. [76] have

studied the formal guarantees provided by a compartmentalizing compiler. They

consider multiple compromise scenarios, where an attacker can compromise di�erent

subsets of program parts, somewhat similar to our consideration of multiple attacker

models. However, they only consider the bene�ts provided by a compartimentalizing

compiler, and do not consider veri�cation.

CONCLUSION AND FUTURE WORK 131

If the full system security objectives to be veri�ed include statements about I/O

through a given device, then necessarily the device driver(s) for that device will need

to be veri�ed. Hence, the approach proposed in this paper veri�es a subset of the

driver stack for a device depending on the attacker model. Device drivers have been

a target of veri�cation in a wide body of related work, using techniques ranging from

model checking (e.g. [17]) to deductive veri�cation (e.g. [127]). The objective of these

veri�cation e�orts is to improve kernel reliability by showing that drivers correctly

use speci�c kernel APIs, or do not have memory safety or concurrency bugs. That

is very di�erent from our objective of verifying that a thin wrapper around a device

enforces a speci�ed security property.

3.6 Conclusion and Future Work

The �ne-grainedness of hardware capabilities, in combination with object capabilities

as a primitive enabling encapsulation, allows for e�cient and safe nesting of wrappers

enforcing security properties without costly context switches. This would be hard

to achieve through conventional, more coarse-grained security primitives. By

capitalizing on capabilities and extending an existing formal model for a capability

machine, we managed to generalize classical robust modular veri�cation to a nested

setting. With nested robust modular veri�cation, a system that consists of multiple

layers is veri�ed robustly several times, each time verifying an increasing number

of layers and enforcing more security objectives, and considering the rest of the

code base as well as the environment untrusted. Crucially, our approach retains the

compositionality of the programming logic and does not require verifying the same

code multiple times, even when proving security objectives for di�erent layers. Our

Iris development provides ease of use when modularly verifying nested wrappers,

only requiring speci�c checking instructions to be veri�ed and lower layer wrappers

proven safe, in order to obtain proofs of safety for an entire stack of wrappers. These

proofs of wrapper safety are essential in proving the di�erent full-system security

properties.

In future work, we wish to extend our basic model of IO, to achieve nested full-system

guarantees in more involved settings. Concretely, we believe it to be possible to

achieve similar guarantees when adding interrupts to the basic capability machine.

This would require formalizing interrupts dynamics, rede�ning the notion of weakest

precondition correspondingly, as well as proving speci�cations for registered interrupt

handlers themselves. Another interesting extension is allowing peripherals to perform

some form of capability-restricted DMA access, as hinted at by Markettos et al. [100].

Additionally, with the advent of modern capability hardware in the form of Arm’s

Morello prototype [11], it will soon become possible to perform practical experiments

132 FULL-SYSTEM SECURITY PROPERTIES UNDER MULTIPLE ATTACKER MODELS

on capability-enabled hardware, thereby obtaining a fair comparison between our

work and similar approaches using di�erent security primitives.

Acknowledgments

We thank the anonymous reviewers for valuable comments and suggestions. This

work was supported in part by a Villum Investigator grant (no. 25804), Center for

Basic Research in Program Veri�cation (CPV), from the VILLUM Foundation; by

the Research Foundation - Flanders (FWO); and by DFF project 6108-00363 from

The Danish Council for Independent Research for the Natural Sciences (FNU). This

research was partially funded by the Research Fund KU Leuven, and by the Flemish

Research Programme Cybersecurity. Thomas Van Strydonck holds a Research

Fellowship of the Research Foundation - Flanders (FWO). Amin Timany was a

postdoctoral fellow of the Flemish research fund (FWO) during parts of this project.

Chapter 4

CHERI-TrEE: Flexible
enclaves on capability
machines

Publication Data

This chapter contains currently unpublished work that we are looking to submit. Its

publication data are as follows:

Thomas Van Strydonck, Job Noorman, Leonardo Alves Dias, Jennifer Jackson,

Robin Vanderstraeten, David Oswald, Frank Piessens, and Dominique Devriese.

CHERI-TrEE: �exible enclaves on capability machines. In Submission

The paper discusses a novel design for enclaved execution atop capability machines.

Additionally, three implementations of the design are demonstrated, and were mainly

contributed to by the following people:

• The formal speci�cation in Sail-CHERI-RISC-V was contributed by my thesis

student, Robin Vanderstraeten, and cleaned up and expanded by me.

• The RTL-implementation in the extensible RISC-V core was implemented by

Job Noorman, where Leonardo Alves Dias and Jennifer Jackson took care of

the FPGA implementation.

• The implementation in ARM Morello was done by Jennifer Jackson.

The writing was a joint e�ort by all collaborators.

133.

134 CHERI-TREE: FLEXIBLE ENCLAVES ON CAPABILITY MACHINES

Compared to the version we submitted, the version included in this thesis has the

following additions:

• Section 4.3.2: more nuanced discussion of trade-o�s between memory sweep

and linear capabilities.

• Section 4.3.3: additional explanation of how our design does not allow reuse of

otypes between enclaves.

• Section 4.3.4: clari�cation that capabilities also help enclaves defend against

API-level attacks.

• Section 4.3.4: further details of how nested enclaves are initialized in our design.

• Section 4.6: further explanation of why we think enclaves in general and CHERI-

TrEE in particular are an interesting target for veri�cation.

Abstract

This paper studies the integration of two successful hardware-supported security

mechanisms: capabilities and enclaved execution. Capabilities are a powerful and

�exible security mechanism for implementing �ne-grained memory access control

and for compartmentalizing untrusted or buggy software components. Capabilities

have a long history, but have gained signi�cant momentum recently, as evidenced

by ARM’s experimental Morello processor that supports the Capability Hardware

Enhanced RISC Instructions (CHERI). Enclaved execution is a popular mechanism

for dynamically creating Trusted Execution Environments (TEEs), called enclaves.

Enclaves are isolated execution contexts that protect integrity and con�dentiality of

software in the enclave (even against compromised system software) and that support

attestation.

Integrating capabilities and enclaved execution in a single processor is challenging

because they overlap partially in their security objectives and a clean integration

should unify the way in which these overlapping objectives are achieved. In addition,

it is not obvious how attestation should interact with capabilities. In this paper, we

propose CHERI-TrEE: a novel design for a processor that cleanly integrates support

for both capabilities and enclaved execution. CHERI-TrEE targets low-end embedded

systems without virtual memory. We show that CHERI-TrEE is greater than the sum of

its parts, by showing how it naturally supports useful features that have traditionally

been hard to support in enclaved execution, like dynamically growing and shrinking

enclaves, non-contiguous and nested enclaves, sharing of memory between enclaves

etc. We implement our proposal both in hardware on a RISC-V processor, as well

as in a small software hypervisor on top of ARM Morello, and evaluate impact on

performance and hardware resources.

INTRODUCTION 135

4.1 Introduction

There is a wide variety of hardware supported mechanisms to securely isolate software,

each with its own strengths and limitations. This paper is about the integration of

two related but fundamentally di�erent such mechanisms: capabilities and enclaved

execution.

Capabilities are unforgeable tokens of authority granting rights to system objects.

They are a powerful security mechanism for implementing �ne-grained access control

and for compartmentalizing untrusted or buggy software components. Capability

machines implement the concept of capabilities at the machine code level: they provide

hardware support for capabilities by de�ning an instruction set architecture (ISA)

that provides access to system memory only through memory capabilities, a kind of

hardware-supported fat pointers. The ISA is designed to make sure that software

can only create capabilities that represent a subset of the authority that the software

already holds, and hence that capabilities are a secure basis for implementing memory

access control and isolation. Next to memory capabilities, capability machines can

support a wide variety of other kinds of capabilities, including for example object

capabilities that can control access to software de�ned objects, or sealing capabilities

that can symbolically encrypt or decrypt other capabilities. Capability machines

have a long history [94], but have gained signi�cant momentum over the last decade

with, for instance, the development of the CHERI system [176], and with the ARM

Morello project [11] that integrates the concepts of CHERI in the widely used ARM

architecture.

Enclaved execution is a security mechanism that supports the run time creation of

enclaves, execution environments for software components that are strongly isolated

and that can attest their identity to other code running either locally on the same

platform or remotely on other platforms. The idea of Enclaved Execution Systems

(EES) is more than a decade old [102], and currently many implementations are

available [113, 88, 25, 38, 114, 90], both in research prototypes, as well as in commercial

systems like Intel’s Software Guard Extensions (Intel SGX).

Capabilities and enclaved execution have been studied for both low-end embedded

systems, and higher-end systems that support virtual memory or virtualization

instructions. In this paper, we focus on low-end embedded systems, similar to CHERI-

RTOS [183] (for capabilities) or Sancus [114] (for enclaved execution). Additionally,

other desirable enclave properties that are largely orthogonal to the integration

of capabilities and enclaves are left out of scope: we do not consider availability

guarantees, hardware-based attacks (cold-boot attacks, malicious DRAM, . . .) or

side-channel attacks (timing or cache-based side-channels, memory bus snooping,

. . .).

136 CHERI-TREE: FLEXIBLE ENCLAVES ON CAPABILITY MACHINES

Problem statement The problem addressed in this paper is how to integrate

capabilities and enclaved execution in a single design. This is challenging because

(1) these mechanisms overlap partially in their security objectives (for instance both

mechanisms provide their own form of controlled invocation) and a clean integration

should unify how these overlapping objectives are achieved, and because (2) it is not

obvious how (remote or local) attestation should interact with capabilities.

To the best of our knowledge, this paper is the �rst to propose a design that cleanly

integrates both mechanisms in a single processor ISA. Roughly speaking, our design

roughly proceeds as follows: enclaved execution is known to be a complex security

mechanism [54], hence we �rst decompose it into a set of maximally independent

primitives. Next, we implement these primitives on top of the state-of-the-art CHERI

capability machine [176, 175], maximally reusing existing CHERI mechanisms. For

instance, enclave isolation reuses standard CHERI object capabilities. The new

mechanisms we introduce are lightweight, orthogonal and contribute features that do

not yet exist in CHERI. They allow (1) obtaining guarantees about exclusive ownership

of a memory region (i.e., no other code on the system has a reference to said memory),

and (2) obtaining sealing capabilities (a private key used to symbolically encrypt or

sign other capabilities) derived from an enclave’s identity.

We demonstrate that the resulting system, CHERI-TrEE, can be used as an EES,

allowing other code on the system to establish trust in an enclave. CHERI-TrEE is

greater than the sum of its parts. Our reuse of existing CHERI features achieves

economy of mechanism and reduces complexity and cost. At the same time, it yields

an EES with novel characteristics like dynamically growing and shrinking enclaves,

non-contiguous enclaves, nested enclaves, sharing of memory between enclaves, etc.

Concretely, in this paper we contribute:

• A decomposition of enclaved execution into more basic primitives.

• The design of CHERI-TrEE, a capability-based ISA extension that supports these

primitives and hence integrates capabilities and enclaved execution.

• A speci�cation and security argument for classic enclaved execution operations

(initialization, unloading, local attestation, secure communication) on top of

CHERI-TrEE.

• An open-source implementation of CHERI-TrEE on top of RISC-V, including

both a Sail speci�cation of the ISA and a hardware implementation on FPGA,

as well as a proof-of-concept implementation on ARM Morello [11]. Our

evaluations and benchmarks are open source.

• An evaluation of the impact on performance and hardware resources of the

extension on the considered platforms.

For reasons of anonymity, we cannot provide the implementation sources during the

review process. Files can be made available to reviewers on request.

BACKGROUND 137

4.2 Background

We implement all required primitives by extending a CHERI-based capability

machine [176]. We thus brie�y recap the background on enclaved execution and

capabilities.

4.2.1 Enclaved execution

Enclaved execution is a security mechanism that enables secure remote computation

[37] with a small Trusted Computing Base (TCB). It supports the runtime creation

of enclaves, software components that are strongly isolated and that can attest their

identity to other code running either locally on the same platform or remotely on other

platforms. A number of variations on this idea have been designed and implemented

by researchers [102, 88, 114, 38, 90], and Intel have commercially implemented the

Software Guard Extensions (Intel SGX). We provide an overview of existing designs

in Section 4.7.

The typical life cycle of an enclave goes as follows: First, untrusted code creates

the enclave and initializes it from a static binary code image (e.g., , a .dll �le). After

initialization, the enclave is supposed to be isolated from all other (non-TCB) software,

and has an enclave identity based on the code image initially loaded. At this point,

interaction with the enclave is possible: the enclave context (untrusted code and/or

other enclaves) can call into the enclave, and the enclave can call out to its context.

Such interactions can be authenticated: the context can get proof of the identity of

an enclave (attestation), and similarly the enclave can get proof about the identity of

other enclaves calling in. Most EESs extend attestations to remote platforms: a remote

party can get proof about the identity of an enclave it is interacting with. Finally, an

enclave can be terminated. Care must be taken to ensure that enclave secrets do not

leak on termination.

Existing EESs vary widely in implementation details of this life cycle. There are

di�erences in the way isolation is implemented, in the interaction with other

isolation mechanisms (like virtual memory), and in how termination is handled.

However, all existing systems face challenges in securely handling natural features,

including: nesting of enclaves, non-contiguous enclaves, dynamic enclave memory

(de-)allocation, e�cient memory sharing between enclaves, the number of supported

enclaves, and so forth.

138. CHERI-TREE: FLEXIBLE ENCLAVES ON CAPABILITY MACHINES

4.2.2 Capability machines and CHERI

Capability machines de�ne an instruction set architecture (ISA) that provides access

to system memory only through memory capabilities, a kind of hardware-supported

fat pointers, i.e. pointers that carry metadata about the bounds within which they are

valid. The ISA is designed to enforce monotonicity of authority: software can only

create capabilities that provide access to a subset of memory that the software initially

had access to. Hence, capabilities are a secure basis for implementing memory access

control and isolation. The base platform that we build our design on is a variant of

CHERI-RISC-V. Capabilities in CHERI-RISC-V can be thought of as pointers (memory

addresses) extended with additional metadata. The metadata relevant for this paper

includes:

• Base and length �elds that de�ne a contiguous range of memory addresses.

• An otype �eld used for sealed capabilities and explained in more detail below.

• A permissions �eld that determines what can be done with the capability (e.g.,

read/write/execute).

For memory capabilities, the address of a capability represents a memory address.

Such a capability can be used in store and load instructions to access that memory

address, provided the address is within the bounds speci�ed by the base and length

�elds, and compliant with the permissions speci�ed in the permissions �eld. The ISA

provides instructions to inspect and modify metadata �elds, but only in ways that

do not increase the authority that a capability carries. For instance, bounds can be

reduced but not expanded.

Besides memory capabilities, CHERI supports other kinds of capabilities, for which the

interpretation of the metadata, and the possible use of the capability varies. Notable

for our purposes are so-called sealed capabilities [176], a type of CHERI capability

that cannot be used in operations like stores and loads, or have its �elds altered; only

reading �elds is allowed. Sealed capabilities are sealed with a speci�c seal (i.e., a

key), represented by a value in the otype �eld. The highest otype value represents an

unsealed capability.

Capabilities can be sealed and unsealed through the CSeal and CUnseal instructions.

The CSeal cd, cs1, cs21
instruction takes unsealed capabilities in cs1 and cs2,

and seals cs1 with the otype in the address �eld of cs2, placing the result in cd. To

avoid arbitrary capabilities being used to seal other capabilities, cs2 must have the

bespoke Permit_Seal permission bit set, which allows it to seal other capabilities

with otypes within its bounds. The CUnSeal cd, cs1, cs2 instruction is the dual

of CSeal; cs1 must now be sealed, and cs2 is required to have the Permit_UnSeal

1
As in the RISC-V and CHERI speci�cations, we use rs1 and rs2 for source and rd for destination

integer registers, while using cs1, cs2, and cd for capability registers throughout this paper.

THE DESIGN OF CHERI-TREE 139.

permission bit set. The otype in the address �eld of cs2 must match the otype of cs1.

The unsealed result is placed in cd.

The purpose of these capabilities in CHERI is dual. First, otypes can be used to

implement e�cient symbolic encryption and signing, using the aforementioned

permission bits. A capability that has both Permit_Seal and Permit_UnSeal bits

set can be used for symmetric encryption, because it can both encrypt (seal) and

decrypt (unseal) messages (capabilities). If a capability carrying the Permit_Seal
permission is made public and a Permit_UnSeal counterpart kept private, we get

public key encryption. The converse set-up results in a digital signature scheme.

Secondly, sealed capabilities can be used to implement secure domain transitions

through the CInvoke cs1, cs2 instruction. If both cs1 and cs2 contain capabilities

with matching otypes and solely cs1 has execute permission, then the two capabilities

are atomically unsealed, and cs1 is installed in the program counter register,

continuing execution from the invoked domain. Together, cs1 and cs2 are said

to constitute a sealed pair, with cs1 the code and cs2 the data capability. Such pairs

can safely be passed to adversarial code, as both capabilities are sealed and can only

be invoked together. To distinguish sealed pairs from other sealed capabilities, a

permission Permit_CInvoke determines whether sealed capabilities can be invoked

together.

4.3 The design of CHERI-TrEE

In this section, we propose a decomposition of the requirements for enclaved execution

into orthogonal properties (Section 4.3.1). These properties serve as a guideline for the

design of CHERI-TrEE, our capability-based EES. Section 4.3.2 considers the CHERI

capability machine as a starting point, and lists for each property whether it can be

enforced through existing capability primitives or whether extensions have to be

de�ned. With this analysis in hand, Section 4.3.3 discusses the concrete instructions

we implement to achieve secure enclaves, as well as pitfalls developers should be

mindful of. Finally, Section 4.3.4 highlights how our bottom-up approach, maximally

reusing the �exibility of architectural capabilities, allows for greater �exibility than

the state of the art.

Capabilities and enclaved execution have been studied both for systems that support

virtual memory, and for systems with a single physical memory address space. This

paper focuses on the latter kind of system. The combination with virtual memory and

address translation brings additional challenges that are left for future work discussed

in Section 4.6.

140. CHERI-TREE: FLEXIBLE ENCLAVES ON CAPABILITY MACHINES

4.3.1 Decomposing enclaved execution into core properties

In our view, the core security properties required to build an EES can be decomposed

into the four categories listed below. Some other properties (e.g., con�dential

deployment [114], secure storage) are also relevant, but not essential to the

construction of a functional EES. The core properties are:

1 Exclusive access: A mechanism to guarantee exclusive access to speci�c memory

areas is required for the secure initialization of an enclave. In principle, the enclave can

be allowed to share its uniquely owned memory once it has been securely initialized,

but few enclaved execution systems support this. For example, Intel SGX relies on

Processor Reserved Memory and the initialization process to guarantee exclusive access,

while Sancus relies on program-counter based access control.

2 Controlled invocation: To avoid reasoning about the correctness and security

of many possible control-�ow paths, enclaves can only be invoked at prede�ned entry

points. Examples are ecalls in Intel SGX and entry points in Sancus. In most systems,

entry points are declared at enclave creation time, but at least conceptually, new entry

points could also be created dynamically.

3 Enclave identities and attestation: To enable multi-enclave/distributed appli-

cations, enclaves and third parties require a mechanism to establish trust in the correct

initialization and execution of another enclave. This authentication process, called

attestation, occurs either locally or remotely. It requires a notion of enclave identity,

usually based on a cryptographic hash of the enclave code and metadata. Locally,

the architecture provides a mechanism to communicate identities and authenticate

enclaves to other code running on the same platform. Remote attestation requires

cryptographic support, either in the form of a public key infrastructure (as in Intel

SGX) or a symmetric key derivation scheme (as in Sancus).

4 Secure communication: A mechanism to securely communicate between two

enclaves, both locally and remotely, is essential to achieve integrity and con�dentiality.

Locally, either CPU registers or shared memory can be used. Because enclaves

might be deinitialized and replaced at any point, encrypting and signing messages

cryptographically is required to ensure integrity and con�dentiality. The e�ciency

of the involved cryptography is performance-critical. To avoid having to sign and

encrypt messages, some EESs have built-in mechanisms to check liveness of the sender

and receiver enclave. Here, time-of-check to time-of-use (TOCTOU) attacks can be

an issue (e.g., for Sancus). For the remote case, the key distribution infrastructure of

attestation can often be reused for secure communication with standard protocols.

5 Secure interruptability: When an enclave’s execution is interrupted, its

register state should not be accessible to untrusted code as this potentially breaks

con�dentiality guarantees o�ered by the enclave. Additionally, the enclave’s register

THE DESIGN OF CHERI-TREE 141

state must be correctly and securely restored after servicing the interrupt.

Because capabilities provide no protection during network transition, the design of

remote attestation and remote secure communication would mostly reuse existing

solutions. The remote aspects of enclaved execution are therefore left for future work

and further discussed in Section 4.6.

4.3.2 Satisfying the security properties

We now discuss how we enforce these properties in our design that builds on

CHERI-RISC-V, reusing CHERI primitives where possible (3) and extending the

TCB otherwise (7). In the remainder of Section 4.3, the TCB is taken to be hardware-

only (except for a small software interrupt handler). However, section 4.4.4 illustrates

that this is not required.

7 Exclusive access at runtime is not supported out-of-the-box in CHERI, so we add

memory sweep functionality to the TCB. During a memory sweep, the TCB checks all

of memory and all architectural registers (including special registers) for the presence

of capabilities that overlap with a given capability. To successfully complete enclave

initialization, the unique ownership of an enclave’s code and data sections need to be

veri�ed through such a sweep. We could have alternatively used linear capabilities [144,

162, 175] for providing exclusive access without a sweep. Admittedly, their design

is complicated by technical concerns related to concurrency and implementation in

hardware (see [144] for a discussion). However, if linear capabilities are only used to

support enclaves, the runtime overhead they cause might be limited. Additionally,

they naturally seem to avoid the denial-of-service attacks that naively implemented

memory sweeps could be abused for, at least as long as the linear capabilities do not

need to be revoked themselves: this would again require a memory sweep. We leave

further investigation of the hurdles involved in implementing linear capabilities and

the trade-o�s versus memory sweeps for future work.

3 Controlled invocation can be implemented using the aforementioned sealed

capability pairs [176]. Concretely, if the enclave only shares sealed capabilities to

speci�c entry points with adversary code, then capability safety ensures that the

enclave cannot be otherwise entered. Alternatively, controlled invocation can be

implemented through so-called enter capabilities [28], which intuitively combine both

the code and data capabilities of a sealed pair into a single capability. This alternative

could have simpli�ed a few aspects of our design, but we did not implement it, as

enter capabilities have only recently been added to CHERI.

7 Enclave identities and attestation are not built into CHERI. The architecture

hence has to use a cryptographic hash function to calculate an enclave’s identity by

142. CHERI-TREE: FLEXIBLE ENCLAVES ON CAPABILITY MACHINES

hashing the code section. Additionally, to enable local attestation, an instruction

needs to be added to securely look up this generated identity.

3 Secure communication can be e�ciently implemented locally through the

symbolic encryption provided by sealed capabilities. Every enclave has a signing

capability cap_sign with otype o_sign in its address and both Permit_Seal and

Permit_UnSeal set. The enclave solely shares the Permit_UnSeal part of this

capability with other code, so that it can exclusively authenticate its messages and

other enclaves can verify them. Although it might seem unintuitive that a capability

(rather than just the integer otype o_sign) is required to verify a signature, without

this capability, recipients of signed values would have no way to remove the signature

and access the payload underneath. Dually, the enclave has an encryption capability

cap_enc with otype o_enc and shares only its Permit_Seal part so that only the

enclave can decrypt messages encrypted with o_enc. We refer to the shared versions

of both capabilities as an enclave’s public keys, and to the full-authority versions as

an enclave’s private keys.

7 Secure interruptability cannot be guaranteed in the presence of an untrusted

interrupt handler: the con�dentiality and integrity of an enclave depend on an

adversarial interrupt handler not being able to read security-critical capabilities (e.g.,

the capability for the data section or cap_sign) from its register state. We resolve this

problem by installing a minimal, trusted interrupt handler that cannot be altered or

bypassed by untrusted code. The handler performs the necessary register sanitization

before passing control to the adversary, and restores the register state on return. This

solution is similar to the security monitor employed in Keystone [90], but our handler

is more limited in scope (e.g., it does not need to manipulate memory protection

state). Although we currently implement interrupt handling in software as a proof-

of-concept, a Sancus-style hardware implementation is entirely feasible.

4.3.3 Fleshing out the design

Having studied how a capability architecture can accommodate secure enclaves at a

conceptual level, we now consider di�erent parts of an enclave’s lifetime and de�ne the

instructions and software measures required to make our design secure in practice. We

study enclave (de)initialization, local attestation, communication between enclaves,

stand-alone memory sweeps and interrupts in more detail. Figure 4.1 serves as a guide

for this section: it provides a schematic to illustrate a single enclave’s initial layout in

memory and the contents of the TCB that keeps track of all registered enclaves.

THE DESIGN OF CHERI-TREE 143

encl code

section

cap_code

c
a
p

_
s
e
a
l
s

r
e
g
_
s
t
a
t
e

encl data

section

cap_data

M
e
m

o
r
y

3 7 eid �

eid + 1

TCB eid counter

C
P

U

o_sign

o_enc

o_entry

spare otype

cap_seals

encl’s entry

Used? Temp? eid Identity

TCB

enclave

table

a
d
d
re

ss

address

>> 2 hash

Figure 4.1: Memory and TCB state after initialization of an enclave encl. All values

relating to encl typeset in blue; notably its identity (�) and eid, code and data sections

cap_code and cap_data, its four assigned otypes and their capability cap_seals. The

reg_state region stores the enclave’s register state during an interrupt. Gray arrows

illustrate how � is obtained by hashing the code section and eid by right-shifting

the otypes. The TCB’s four enclave table �elds indicate whether an entry is in use

(Used?), whether it is temporary (Temp?), and record the enclave’s eid (eid) and

identity (Identity). The TCB does not track the enclave’s memory layout, but solely

guarantees connection between the enclave’s eid and identity. Figure inspired by

Noorman et al. [114].

Initialization

An instruction EInit requests initialization of a new enclave, given unsealed

capabilities cap_code and cap_data for the code and data section. It will:

• Perform a memory sweep to check unique ownership of cap_code and cap_data.

• Allocate a fresh otype o_entry to seal cap_code and cap_data, transforming

them into a sealed pair and ensuring controlled invocation. This otype has to

be spatially and temporally unique to avoid collisions with previously allocated

enclaves and other usages of sealed capabilities.

• Generate fresh signing and sealing otypes o_enc and o_sign and write the

corresponding capabilities cap_enc and cap_sign to the start of cap_data so

that the enclave can set-up its symbolic encryption upon invocation. Again,

both o_enc and o_sign have to be unique in space and time.

• Generate the enclave’s identity by hashing its code section.

• Store this identity in the TCB along with o_enc, o_sign and o_entry so other

parties can verify the identity associated with received sealed capabilities during

local attestation. If the TCB is full, the instruction fails.

One might ask whether o_enc or o_sign could be reused to seal the entry point instead

144 CHERI-TREE: FLEXIBLE ENCLAVES ON CAPABILITY MACHINES

of o_entry. The answer is negative; reusing o_sign would allow adversaries to simply

unseal the enclave’s sealed code and data sections without calling CInvoke, whereas

reusing o_enc would allow the adversary to create their own code section, and use

that to unseal the enclave’s data section by executing CInvoke.

Unfortunately, EInit is di�cult to implement on a RISC ISA like RISC-V where

instructions generally have only one output operand. EInit requires two outputs,

because it has to overwrite both cap_code and cap_data with their now-sealed

variants. To solve this, we split EInit into two separate instructions; EInitCode and

EInitData, which initialize the enclave’s code and data sections in two consecutive

phases.

The EInitCode cd, cs1 instruction is called �rst, with cap_code in cs1. To ensure

that the unsealed cap_code is overwritten by its sealed counterpart, and to avoid

writes to two di�erent registers, cd and cs1 are required to be equal. For e�ciency

reasons, EInitCode does not yet check uniqueness of cap_code but EInitData will

perform a single sweep for cap_code and cap_data simultaneously. Computing the

enclave’s identity is also deferred until EInitData, as adversarial code might still

have access to cap_code. EInitCode will hence generate a temporary TCB entry (to

be later �nalized by EInitData), which does contain the enclave’s otypes but not its

identity (we explain eid below):

3 3 eid Don’t care

EInitCode does generate all three aforementioned otypes. They are represented by

adjacent otypes, to avoid storing all three separately and we reserve an additional

fourth otype, which the enclave can use to e.g., create additional entry points. Because

the four otypes are adjacent and 4-aligned, all but the last 2 bits are shared and these

shared bits constitute enclave identi�er (abbreviated eid, cfr. Figure 4.1) in the TCB.

Note that any enclave otype is e�ciently convertible into the eid by a 2-bit right shift

and the speci�c role of each otype (except for o_entry) is up to software convention.

Figure 4.1 de�nes cap_seals and illustrates where it is stored in cap_data. Once the

eid has been generated, EInitCode seals cap_code with o_entry, writes it to cd and

sets its address to its base (to avoid arbitrary entry o�sets).

To ensure uniqueness of enclave otypes, a hardware counter (TCB eid counter in

Figure 4.1) keeps track of the next eid and will fail to generate more eid’s when the

otype space has been depleted. In case otypes are required for other purposes on the

capability machine, the otype space should be split up.

For proper operation, we assume the otype space available to enclaves to be su�ciently

large. This requirement is currently not met for CHERI Concentrate 64 (CC64), the

compressed 64-bit representation of capabilities that CHERI de�nes for RV32 (32-bit

RISC-V); only 4 bits are available for the otype �eld [179]. To resolve this issue,

THE DESIGN OF CHERI-TREE 145.

the CHERI speci�cation contains a proposal to store otypes of sealed capabilities as

metadata in memory instead of having the otype be in the capability itself [175]. For

RV64 (64-bit RISC-V), 18 bits are available in CHERI Concentrate 128 (CC128), which

poses fewer problems.

After EInitCode, the EInitData cd, cs1, cs2 instruction �nalizes the enclave’s

initialization. It requires a sealed code section cap_code (the result of calling

EInitCode) in cs1, and an unsealed data section cap_data in cs2. As before, cd
and cs2 are required to be equal. The EInitData instruction now:

1. Looks up a temporary entry with eid cap_code’s otype.

2. If found, checks unique ownership of cap_code and cap_data in a single memory

sweep.

3. Veri�es that cap_code does not contain any capabilities. Note that cap_data is

allowed to contain capabilities (including internal references to cap_data and

cap_code themselves), and is therefore not zero-initialized, as in e.g., Sancus.

cap_data is the data part of a sealed pair, and those are not allowed to have

execute permission in CHERI, in order to avoid data and code sections being

used interchangeably. Therefore, execute permission for the cap_data memory

region is lost upon enclave initialization, unless cap_data is allowed to store a

self-referencing executable capability. The capabilities stored in the data section

are software responsibility and of no importance to the architecture.

4. Calculates the enclave’s identity � as the hash of the contents of cap_code,

stores � in the temporary entry for eid, and marks the entry as permanent.

5. Stores the aforementioned cap_seals capability in the �rst address of cap_data.

6. Writes cap_data, sealed with o_entry, to cd.

After successful completion, the enclave has been initialized. Untrusted code can

now invoke the enclave by executing CInvoke on cap_code and cap_data.

Upon �rst invocation, the enclave’s code will initialize any necessary state and enable

symbolic encryption by returning the public parts of its sealing and encryption

keys. The enclave can create a so-called fast entry point at a di�erent o�set to skip

initialization on subsequent invocations (taking care that the initial entry point does

not reinitialize the enclave if it is invoked again).

Deinitialization

To deinitialize an enclave, the TCB can simply remove the entry for this enclave. To this

end, an instruction EDeInit rd, cs1 is provided. The register cs1 takes a capability

with the otype of the target enclave in its address �eld. Success or failure is indicated

by writing 1 or 0 to rd. To prevent arbitrary code from executing EDeInit using e.g.,

146 CHERI-TREE: FLEXIBLE ENCLAVES ON CAPABILITY MACHINES

entry points, cs1 must have both Permit_Seal and Permit_UnSeal permissions

set. Thus, only the enclave itself or parties that were granted access to (subranges

of) cap_seals can deinitialize it. After EDeInit, an enclave can clear sensitive data

(including its seals) and return the capabilities for its code and data section to untrusted

code. As in Sancus, a processor reset is required to deinitialize rogue enclaves. A

processor reset is also required in order to reuse the otypes of decommissioned

enclaves in future initializations; our design currently makes no e�ort to reclaim used

otypes, as this would require additional memory sweeps to reclaim otypes, and more

sophisticated data structures to keep track of the otypes that are currently in use.

Local a�estation

An enclave gets access to another enclave’s entry points and public encryption/signing

keys by e.g., retrieving them from an (untrusted) enclave registry, or by executing

CInvoke on the entry point and receiving the keys or additional entry points as part

of the return value. Regardless of the origin, local attestation requires a way to verify

that an otype corresponds to an enclave of interest. The instruction EStoreId rd,
rs1, cs2 serves this purpose; rs1 takes an otype (any one of the four assigned to an

enclave), and the enclave identity of the corresponding enclave in the TCB (if any)

is written to memory through the capability in cs2. As for EDeInit, a boolean is

written to rd denoting success or failure. Naturally, EStoreId ignores temporary

TCB entries, as these correspond to partly initialized enclaves. Note that when an

enclave calls into another enclave, the callee is not required to attest the caller ahead

of time. Indeed, the caller can pass its public keys along with the arguments, so the

callee can perform local attestation of the caller while processing the call.

Secure communication

Di�erent primitives combine to ensure secure communication between enclaves:

First, any con�dential arguments or return values should be encrypted with the

recipient’s public encryption key. Additionally, as capabilities carry authority, even

non-con�dential capability arguments and return values must be encrypted if their

authority should not be made available to untrusted code. It is important that

Permit_CInvoke is unset on capabilities sealed with these encryption keys, for

a similar reason than why we cannot combine o_sign or o_enc with o_entry (as

explained earlier).

Second, when returning from a call, the callee should sign (part of) the return value to

allow the caller to con�rm that its call was indeed processed by the callee. Conversely,

the callee might also require the caller’s signature to authenticate the caller; the callee

THE DESIGN OF CHERI-TREE 147

seal=o_sign, perms=ro

. . . seal=o_enc . . . arg . . .

reg

mem

Figure 4.2: Combination of di�erent secure communication primitives: argument arg

is encrypted with otype o_enc, then signed with otype o_sign.

could e.g., have a whitelist of allowed enclaves. Lastly, to avoid replay attacks, the

caller can make use of a nonce as part of its requests.

One might wonder how a capability with a single otype �eld can be used for both

encryption and signing at the same time: The solution is indirection as demonstrated

in Figure 4.2: a memory argument arg is �rst encrypted by an in-memory capability

with otype o_enc, which is in turn signed by a capability with otype o_sign, present

in one of the registers. This immediately illustrates one of the pitfalls of secure

communication in our setting: messages are represented by capabilities, rather than

bit-strings. Copying a bit-string corresponds to a deep copy, whereas copying a

capability creates an alias. This is the reason the top-most capability in Figure 4.2

has read-only permission—if it allowed writes, an adversary could take a copy of

the capability, remove the signature on the copy using the public signing key, and

replace the underlying sealed capability with one of their own. This would allow the

adversary to create arbitrary capabilities, signed with a third party’s seal. Similar

concerns are at play when encrypting capabilities.

As the literature shows, it is possible (but di�cult) to construct a wide variety of

secure communication protocols using the primitives (asymmetric encryption, signing,

and nonces) [103]. Because our aim is to introduce a capability-based design for

enclaved execution, not design secure communication protocols on top, we defer the

development of these protocols to future work.

Separate memory sweep

As shown in the following, there is bene�t in o�ering the memory sweep functionality

of CInitData as a stand-alone instruction IsUnique rd, cs1 as well. This

instruction thus performs a memory sweep for the capability in cs1 and uses rd
to indicate success or failure.

148 CHERI-TREE: FLEXIBLE ENCLAVES ON CAPABILITY MACHINES

Interrupt handling

For secure interrupts and system calls, we install a �xed, non-bypassable, trusted

interrupt handler in the RISC-V mtvec register. When an enclave is interrupted,

control passes to the trusted handler. The handler uses the enclave’s data capability

cap_data to save its register state into the reg_state region (cfr. Figure 4.1). Then,

it seals cap_data using a unique, private otype o_handler, places the result in a

prede�ned register, and jumps to the untrusted interrupt handler. For this scheme

to work, cap_data should be present in a �xed register at all times. We use the idc
(invoked data capability) register because it is atomically set to the unsealed data

section when calling into an enclave using CInvoke. Once the untrusted code �nishes

servicing the interrupt, it returns to the trusted handler, which unseals the provided

data section, restores the enclave’s registers (apart from pc) and �nally returns using

the mret instruction. Calling mret simultaneously reenables interrupts and restores

the enclave’s code capability.

The tag of the pc capability stored in the reg_state region e�ectively functions as an

“is interrupted”-�ag: the trusted handler sets it by storing an enclave’s pc at interrupt

time, and unsets it before returning to said enclave. This �ag is used by enclaves to

avoid reentrancy issues: if the tag is enabled when an enclave is invoked, the enclave

simply returns. Additionally, the trusted handler uses the �ag to avoid storing the

registers of a previously interrupted enclave and restoring the registers of a non-

interrupted enclave. Much like Keystone, we leave the extension of our scheme to a

multi-threaded setting (and nested interrupts, attestation of the interrupt handler, and

the delegation of synchronous interrupts and errors to an enclave-private interrupt

handler) to future work.

4.3.4 Flexibility of our bo�om-up design

There are two main reasons for the maximal reuse of existing capability primitives:

First, the additional hardware TCB remains limited. Second, the resulting enclaves do

not rely on the hardware to manage their authority, but are self-governing, resulting in

more �exible software-based design patterns. The cost of this �exibility is establishing

unique ownership at runtime (i.e., the memory sweep) and an increased burden on the

software developer to write correct and secure code. Although capabilities open up

new avenues for application developers to shoot themselves in the foot (e.g. by leaking

authority to an adversary), we hasten to point out that the spatial memory safety they

o�er also mitigates API-level exploits such as the ones identi�ed by Van Bulck et al.

[158]. For example, if an enclave does not share any capabilities pointing into its own

memory with the adversary, then it does not require checks to ensure that pointers

passed in from untrusted memory fall outside of its bounds. Hence, many attacks

THE DESIGN OF CHERI-TREE 149

that depend on the improper implementation of these checks in enclave runtime

implementations are avoided by construction.

Ways in which capability-based enclaves are more �exible than traditional enclaves

include:

Growing, shrinking, nested and non-contiguous enclaves

In state-of-the-art EES, growing and shrinking enclaves is usually either impossible or

prohibitively expensive. Nesting enclaves (i.e., creating an enclave inside an existing

enclave) is impossible, because current hardware protection is de�ned on regions of

memory, disallowing overlap. One motivation for having nested enclaves is that it

would allow for easy virtualization (inside an enclave) of code that itself uses enclaves.

All of these are possible in our design because an enclave’s footprint is not managed

by the TCB, but rather determined by the capabilities it owns. This also implies that

enclaves can have non-contiguous footprints, e.g., to take exclusive ownership of

an MMIO region corresponding to an external device, reported to be impossible in

Sancus [157].

To grow an enclave, we employ the previously introduced IsUnique instruction. An

enclave can request a sweep for a capability provided by untrusted code to verify

unique ownership and add it to the enclave’s memory footprint. In order to shrink, an

enclave simply shares capabilities for part of its footprint with untrusted code. Nested

enclaves can be initialized anywhere inside an enclave’s memory footprint. The only

restriction is that if an external party still holds a sealed pair for an entry point that

overlaps with the nested enclave, the memory sweep will fail. Two solutions are

currently available to enclaves wanting to initialize nested enclaves. First, they can

extend their footprint with memory passed in from the adversary, and instantiate

the new enclave there. Second, enclaves can create a more narrow entry point that

does not overlap with the nested enclave, share it with the adversary, and rely on the

adversary willingly giving up ownership of the initial entry point. In future work,

we intend to experiment with a version of enclave initialization where the enclave’s

initial entry point only covers part of the enclave’s initial memory footprint, such

that a nested enclave can be instantiated in the remainder.

Sharing memory

Sharing memory between enclaves amounts to simply sharing a capability for a

uniquely owned memory region between said enclaves. No encryption is required.

Once enclaves are done sharing memory, there needs to be a way to revoke access to

this memory. For short-term sharing of e.g., arguments in memory, so-called local

150. CHERI-TREE: FLEXIBLE ENCLAVES ON CAPABILITY MACHINES

capabilities [175] (which reside in registers only) could be used. Alternatively, an

enclave can check whether its shared memory has been released using the IsUnique
instruction. Lastly, to share non-con�dential memory that does not contain any

security-critical capabilities, enclaves can simply share a read-only view of said

memory.

Early EDeInit

Once all parties that wish to communicate with an enclave performed local attestation,

there is no need to keep the enclave’s entry in the TCB. This is possible as the TCB

entry does not provide any hardware protection, but serves the purely informative

purpose of linking otypes and enclave identities. Hence, enclaves can prematurely

execute EDeInit to free space and still operate correctly.

Secure communication without liveness checks

One of the most interesting characteristics of inter-enclave communication in our

design is that we do not need to rely on enclave liveness checks (such as the ones

present in Sancus) during secure communication. The caller enclave can invoke

the callee without verifying whether the callee enclave still exists and the callee

returns to the caller without checking its liveness. The reason we can a�ord to omit

these checks is that the alternative, namely both signing and encrypting messages, is

very cheap (taking a single instruction, contrary to non-symbolic solutions), and can

hence be applied by default. The advantages of omitting liveness checks are that the

hardware is simpli�ed and any TOCTOU issues related to checking and then invoking

an enclave are avoided.

Two-way sandbox

Capability enclaves naturally provide a two-way sandbox [95], meaning that other code

running in the same address space is protected from the enclave (preventing attacks

like [96]): enclaves can only manipulate memory they have appropriate capabilities

for.

Dynamic entry points

Traditionally, enclaves either list their entry points at creation time or have standard,

prede�ned entry points. As we reuse sealed pairs to enforce entry points, an enclave

can dynamically create more entry points at runtime by creating a sealed pair.

IMPLEMENTATION 151.

Such dynamically created entry points could be selectively shared with attested

counterparties to avoid the need to re-attest them on subsequent calls. To avoid

mixing parts of di�erent pairs, the enclave either needs to use di�erent otypes for

di�erent entry points or have an entry point identi�er in each data section.

Relocatable enclaves

EInitData does not include the enclave’s base into the hash contrary to hashing in e.g.,

Sancus [114]. Consequently, a deployer is not required to know the memory address

at which an enclave is located beforehand, providing greater ease in deployment.

This does place the requirement of writing Position Independent Code (PIC) on the

developer, but RISC-V has e�cient support for this [171]. Our design decision implies

that multiple instances of the same enclave have the same identity. Fortunately

this poses no security risk, as both enclaves have di�erent otypes and hence are

distinguishable locally. In the remote case, key derivation can include each enclave’s

otype to create di�erent keys.

4.4 Implementation

We now discuss three di�erent implementations of our design from Section 4.3: one

that serves as a speci�cation of the ISA extensions and is written at the instruction

level, abstracting away from the hardware, one RISC-V hardware implementation for

studying performance, and a prototypical implementation on the ARM Morello Fixed

Virtual Platform (FVP) simulator to show commercial feasibility.

4.4.1 Sail specification of the extended ISA

To obtain a more formal account of the architectural extensions proposed in

Section 4.3.3, we created a software implementation of our design in Sail [13].

Sail

Sail is an ISA speci�cation language, used to formalize ISA semantics. On top of

that, Sail models serve various purposes: documentation can easily be generated

from them, emulators (in C and OCaml) can be derived from the source code, and

de�nitions can be exported to various proof assistants to enable reasoning about

properties of the ISA. Sail is heavily used by CHERI researchers to formalize di�erent

architectural implementation, and hence contains an existing formalization of both

152 CHERI-TREE: FLEXIBLE ENCLAVES ON CAPABILITY MACHINES

32-bit and 64-bit CHERI-RISC-V [132], on top of which we implemented extensions

for CHERI-TrEE.

Implementation of CHERI-TrEE in Sail

The Sail implementation of CHERI-TrEE is complete; all previously described

architectural implementation details are included. The implementation inherits

the characteristics of Sail-CHERI-RISC-V: both RV32 and RV64 implementations

are supported in modular fashion, the model does not support split register banks

(instead, a single register bank is shared for both capabilities and integers), and the use

of compressed CHERI Concentrate capabilities is mandatory. For our purposes, we

were most interested in the emulation functionality. Because generating an assembler

from a Sail speci�cation is not yet supported, we also extended CHERI’s fork of the

LLVM compiler to support the newly added instructions. This allowed using the

LLVM toolchain to compile assembly �les into well-formed ELF-binaries that can

be executed by Sail’s C-emulator. We developed basic unit tests to check functional

correctness of each new instruction, as well as a larger scenario test, and ran these on

top of the C-emulator.

4.4.2 Proteus RISC-V CPU framework

To verify and evaluate our design, we implemented the primitives from Section 4.3.3

in hardware. We based our implementation on Proteus, our open-source RISC-V

processor designed with con�gurability and extensibility as its main goals.

Proteus

Heavily inspired by VexRiscv [119], Proteus is designed in SpinalHDL [118], a Scala-

based Hardware Description Language (HDL). It is useful to think of SpinalHDL as an

HDL code generator: Scala is used to generate an HDL description at runtime (using

primitives provided by the SpinalHDL library) and this is then converted to either

Verilog or VHDL. Designs can be simulated using any HDL simulator or synthesized

for FPGAs.

Proteus uses a plugin architecture to con�gure and extend processors. At its core,

Proteus provides pipeline stages and the ability to pass values from one stage to the

next. The logic contained in stages is not �xed but can be con�gured through plugins.

This allows for a lot of �exibility in, for example, the number of pipeline stages

and the supported features (e.g., the RISC-V “M” extension is an optional plugin).

Concretely, our implementation uses a classic 5-stage RISC pipeline consisting of an

IMPLEMENTATION 153

IF (Instruction Fetch), ID (Instruction Decode), EX (Execute), MEM (Memory Access),

and WB (register Write Back) stage. The plugin system also enables the development

of custom extensions without having to alter the core implementation �les. Currently,

Proteus provides plugins to implement in-order pipelines with support for RV32IM

and machine mode. A powerful feature of Proteus is the concept of services, which

allows plugins to provide customization points to other plugins. For example, the

plugin that implements load and store instructions o�ers an interface to intercept

the generated addresses. This is used by one of our CHERI plugins to perform the

necessary permission checks without having to modify the existing plugin.

CHERI Proteus

We extended Proteus with plugins implementing most of version 8 of the CHERI-RISC-

V 32-bit speci�cation [175]. It implements a split register �le, capability manipulation,

implicit memory access through DDC (the Default Data Capability register [175])

and PCC (the Program Counter Capability register [175]), explicit memory access

through capabilities, exception handling, and storing capabilities in memory. To track

capabilities in memory, an on-chip tag table is maintained that stores one tag-bit per

capability-aligned word.

CHERI Proteus is not compliant with the CHERI speci�cation in terms of the memory

representation of capabilities: Instead of compressed capabilities (which are mandatory

for RISC-V), Proteus uses a full-precision representation, which is easier to implement

but causes in-memory capabilities to use 128 bits instead of 64 bits for CHERI-RISC-V

32 bit. This has the advantage that we have ample otype-space for enclave seals

(cfr. Section 4.3.3). This also means we currently cannot take full advantage of the

CHERI compiler toolchain, but are limited to the use of the assembler. However, this

is su�cient to run complex software examples (see Section 4.5.1).

4.4.3 Implementing CHERI-TrEE on Proteus

To implement our detailed design (Section 4.3.3), a number of components have to be

added to the CPU core. To store the TCB state of enclaves, we add a table (EidTable),

in which each entry stores the eid and identity (�) of an enclave. Entries also keep

track of the current state of the enclave, which can be allocated (EInitCode has been

called but EInitData not yet), ready (enclave has been fully initialized), or empty

(the entry does not contain any enclave information). The table provides an interface

to allocate a new entry (which increases the eid counter, see Section 4.3.3), retrieve

an existing entry (used by EInitData), and to �nalize an entry by storing � . When

searching, EidTable iterates through the entries one by one. Note that the size of

the table is parameterized and implemented as a plugin, which allows us to easily

154 CHERI-TREE: FLEXIBLE ENCLAVES ON CAPABILITY MACHINES

create an alternative implementation (e.g., one that stores entries in memory) without

changing the rest of the design. To calculate enclave identities, we use a SHA256

implementation. from the SpinalCrypto library [146].

As EInitData needs access to the memory bus, we decided to implement all new

instructions in the MEM stage of the 5-stage pipeline. All instructions are based on

state machines of varying complexity. EInitCode simply asks EidTable to allocate

a new entry and, if successful, seals its input capability with o_entry (Section 4.3.3).

EInitData is by far the most complex instruction to implement, as it needs to scan

all registers and memory for overlapping capabilities. After performing sanity checks

on its inputs (e.g., whether the code capability corresponds to an entry in EidTable),

it starts by requesting exclusive access to the pipeline. This operation makes sure

that the requesting instruction is the only one executing in the pipeline by �ushing

or invalidating stages containing other instructions. This is necessary to correctly

perform the register scanning as otherwise, copies of registers might be available in

pipeline stages. While having exclusive access, the state machine iterates over all

general purpose and special capability registers to verify that there are no overlaps

with the code or data capability of the enclave.

To scan memory, we iterate over all valid capabilities by using one of the services

of the CHERI plugins. This service accesses the tag storage to produce addresses of

valid capabilities without the need to perform memory loads. Once we encounter

a capability, we load it and perform the overlap check. Having veri�ed that there

are no overlapping capabilities, the hash of the code section is calculated by loading

its contents word-by-word and providing it to the SHA256 block. The result is then

stored in EidTable and the corresponding entry is marked as ready. Finally, the

sealing capability is created and stored at the �rst address of the data section.

EStoreId veri�es that its input capability allows storing a full hash and iterates over

the entries of EidTable to �nd the entry corresponding to the given seal. If it �nds

one and it is marked as ready, the hash is written to memory.

4.4.4 Implementation on ARM Morello

We implemented CHERI-TrEE on the �rst commercial CHERI-enabled processor, ARM

Morello [11], using the FVP simulator. While for Proteus we realized functionality as

an ISA extension, here we show that it is also feasible to implement CHERI-TrEE in

(low-level) software: On Morello, one can use the Exception Level 3 (EL3) monitor

or the EL2 hypervisor to pause (at least in a single-core scenario) an OS running at

EL1 to perform the CHERI-TrEE operations, including the memory sweep. We built a

corresponding small trusted hypervisor at EL2 to implement CHERI-TrEE operations,

de�ning hypervisor calls to trigger an exception to EL2. The inputs are held in the �rst

two registers on entry to EL2, and then passed on as parameters in the handler code.

EVALUATION 155

For the register sweep, all EL1 register values are saved on the EL2 stack following

a hypervisor call. A capability pointing to the stack where register values reside is

passed through to the exception handler function so that the sweep is performed

on the state of EL1 registers. The registers are restored on return, except for the

overwritten return capability/value. Other EL1 registers are either maintained or

transferred to other system registers by the CPU, e.g., the EL1 program counter, which

is also checked as part of the sweep. Our implementation is arranged to closely align

with the Proteus implementation for ease of testing and comparison. Di�erences in

hardware however inevitably lead to deviations, e.g., the BRS instruction on Morello

(CInvoke on Proteus) has a lower bound on the otype, forcing the eid counter to start

at 1 rather than 0.

An additional challenge is presented by the support of virtual memory in ARM Morello:

a malicious OS at EL1 could give up ownership of an enclave capability, but then

re-map another virtual address (and hence di�erent capability) to again point to that

enclave’s physical memory. This issue can be overcome by either fully blocking

changes to the page tables by EL1 (while the enclave is executing) and/or through

appropriate MMU memory permissions and register access restrictions set at EL2.

This is included in the prototype by setting bits in the hypervisor control register to

block manipulation of EL1 system registers that could cause MMU changes. As the

hypervisor is in control of the set up of the page tables for EL1, it is also possible to

make the page table area in memory read only. However, both solutions preclude

integrating the design with a rich OS using virtual memory. Yet, we note that the

CHERI-TrEE design would be a promising candidate to use as the basis for a trusted

OS inside ARM Trustzone, similar to the approach taken by Komodo [54], but with

the shown bene�ts of a capability-based system.

4.5 Evaluation

Next, we evaluate the performance and (hardware) implementation costs of CHERI-

TrEE on di�erent platforms, our Proteus (Sections 4.5.1 and 4.5.2) and ARM Morello

(Section 4.5.3).

4.5.1 Performance on Proteus

To asses the performance impact of our proposed extension on software, we conducted

a number of micro and macro benchmarks. The micro benchmarks quantify the cost

of individual instructions, while the macro benchmark measures the overhead on

a full application consisting of multiple enclaves. Note that the new instructions

EInitCode and EInitData are only used once at enclave initialization time.

156 CHERI-TREE: FLEXIBLE ENCLAVES ON CAPABILITY MACHINES

Micro benchmarks

As EInitCode simply allocates a new entry in EidTable, its runtime only depends

on the current occupation of that table. We measured that executing it with an empty

table takes 4 cycles, and one extra cycle is needed for every non-empty entry at the

beginning of the table (i.e., the second execution takes 5 cycles). For EInitData,

there is a �xed and a variable cost. The �xed part consists of getting exclusive access

over the pipeline and scanning registers for overlapping capabilities. Exclusive access

requires at most one cycle (because EInitData is implemented in the MEM stage,

only the instruction in the WB stage needs to be completed), while one cycle per

register is needed for the scan. The variable cost consists of multiple parts: First,

the entry corresponding to the code capability needs to be looked-up in EidTable.

Second, memory needs to be scanned for overlapping capabilities, which obviously

depends on the memory size. As mentioned in Section 4.4.3, tag-bits are scanned at a

rate of one per cycle, so to get all addresses containing capabilities, the amount of

cycles needed is the memory size divided by the size of a capability (128 bits). Then,

for each capability, a capability load needs to be performed, which takes 4 cycles

(four 32-bit loads, each with a single cycle latency). The last variable part is creating

the enclave’s identity by hashing its code section. Table 4.1 shows the measured

performance of EInitData. The execution time of EStoreId is mostly �xed and

depends on the size of the hash. The only variable part is the index of the hash in

EidTable, as it has to be searched for the correct hash. For the initial enclave, we

measured the execution time to be 19 cycles.

Code size (B)

RAM state 256 512 1024

128+0 8811 9271 10 191

128+100 9211 9671 10 591

256+0 17 003 17 463 18 383

256+100 17 403 17 863 18 783

Table 4.1: Cycle count of EInitData. RAM state is size (in KiB) plus number of valid

capabilities in memory.

Macro benchmark

To measure the performance of a more realistic application, we built a scenario where

two enclaves communicate with each other. A “sensor enclave” provides an entry

point to read the (encrypted and signed) value of a sensor. The “client enclave” attests

the sensor, gets a sensor reading, and performs some operation on the value.

EVALUATION 157

To correctly initialize enclaves, untrusted code starts by setting up a memory allocator

for uniquely-owned memory. Memory is split in two parts: the lower part as “normal”

memory and the upper part as “uniquely-owned” memory. All special capability

registers (e.g., DDC and PCC) are con�gured to only overlap with normal memory

and the only capability for the uniquely-owned part is given to the allocator. When

uniquely-owned memory is allocated, this capability is split to ensure that only a

single capability to the allocation exists.

Untrusted code continues by relocating the code of both enclaves in a uniquely-

owned region and allocating data sections for them. Then, it registers these (using

EInitCode and EInitData) and invokes their initialization routines as described in

Section 4.3.3. After sanity checks, the stack pointer is initialized and stored in the data

section. Enclaves also store their own entry point capabilities to pass them as return

pointers when calling another enclave. As a last step, the public parts of the sign and

encryption seals are derived from the seal stored by EInitData and returned.

To support multiple entry points, enclaves dispatch based on the value in an agreed-

upon register. One speci�c value is used as a “return” entry point, which is invoked

when returning from a call with the return address popped from the stack. The next

step is for the client enclave to attest the sensor: it provides an entry point to receive

the entry capabilities and public seals of the sensor from untrusted code. EStoreId
is used to retrieve the actual identity of the sensor and compare it with the expected

identity stored in the code section of the client. If the identity is correct, the client

stores the entry capabilities and seals of the sensor.

The actual application starts by calling the “use sensor” entry point of the client. The

client creates a bu�er in its data section, storing the nonce and the public part of its

encryption seal in this bu�er and leaving space for the return value. It then encrypts

the capability to this bu�er using the sensor’s encryption seal. It then stores the return

address on its stack and calls the sensor, providing its own entry capabilities as return

pointer. The sensor decrypts the input capability and stores a sensor reading in the

bu�er. Note that because our current implementation does not support the IsUnique
instruction yet, we cannot verify exclusive access to an MMIO device. Therefore, we

simulate such a device by storing an arbitrary value as sensor reading. The sensor

then loads the encryption seal of the caller to encrypt the capability to the bu�er.

This encrypted capability is stored and another capability pointing to this location

is sealed using the sensor’s signing seal and returned to the caller. On return, the

client veri�es the signature and decrypts the returned capability. Then, it checks if

the nonce matches the one passed to the sensor and loads and processes (currently

simply doubling) the returned reading. The processed value is then stored in the input

bu�er to return to the caller.

We ran this scenario on a cycle-accurate Verilator-based [166] simulation of CHERI-

TrEE with 128KiB of RAM. We used a bare-metal system without OS or scheduler

158. CHERI-TREE: FLEXIBLE ENCLAVES ON CAPABILITY MACHINES

Step Runtime (cycles)

Init client 9773

Init sensor 9163

Attestation 384

Sensor use 471

Table 4.2: Execution times in our macro benchmark: The “init” steps include

EInitCode, EInitData, invoking enclave initialization code and preparation (e.g.,

clearing registers). “Sensor use” includes the round-trip from client to sensor enclave.

so that our measurements are completely deterministic. The code size of the client

enclave is 656 bytes, while that of the sensor enclave is 336 bytes. The execution

times of the di�erent steps of our scenario are shown in Table 4.2. For comparison, to

execute an “unprotected” version of our scenario (where no initialization or attestation

is performed and arguments are passed without sealing), we obtained a cycle count

of 79. The initialization of enclaves makes up the bulk of the execution time. The

attestation is cheap, but the overall overhead of the sensor use is large compared to

the unprotected case. However, almost no useful computation is performed in this

scenario, so the relative overhead reduces in more realistic use cases.

4.5.2 Hardware implementation of Proteus

Processor (128 KiB memory)

Area occupation Operating

frequency (MHz)

Dynamic

power (mW)
LUTs Flip-�ops BRAMs DSPs CLBs

Proteus 3054 (1.1%) 1663 (0.3%) 32 (3.5%) - 694 (2.03%) 180 40

CHERI Proteus 8059 (2.94%) 3915 (0.7%) 32 (3.5%) - 1298 (3.79%) 70 23

CHERI-TrEE 12 806 (4.7%) 7514 (1.4%) 32 (3.5%) - 2385 (6.96%) 70 69

Table 4.3: Implementation results for the Proteus processor and its variants on the

Zynq UltraScale+ XCZU9EG-2FFVB1156 FPGA board. All tests with 128 KiB memory.

Percentages indicate area usage relative to total FPGA size.

To quantify the performance and resource requirements of the Proteus processor, we

implemented and ran it using the Xilinx Vivado tools [184] on a Zynq UltraScale+

XCZU9EG FPGA [185]. We extended the Verilog �le generated by SpinalHDL with

support circuitry (e.g., for clocking) and set up constraints and pin connections

for our FPGA board. We considered all variants: Proteus (without capabilities);

the capability-enabled variant CHERI Proteus; and the EES-enabled variant that

also includes capabilities, CHERI-TrEE, cfr. Section 4.3.2. We analyzed the results

regarding commonly used key metrics: area occupation, operating frequency, and

power consumption. Table 4.3 presents the results. In Section 4.A, we also compare

EVALUATION 159

Proteus and variants to the CHERI Piccolo processor developed by the Cambridge

team [173].

First, we evaluated the impact of adding CHERI and CHERI-TrEE functionality, using

128 kB memory in all tests. As can be seen in Table 4.3, the area occupation increases

with the complexity of the processor, i.e., by adding capabilities and CHERI-TrEE

functionality. Compared to Proteus, CHERI Proteus uses more hardware primitives,

such as Look-Up Tables (LUTs) and �ip-�ops, occupying ≈ 1.87× more FPGA area in

terms of Con�gurable Logic Blocks (CLBs). This increase in area occupation can be

mainly attributed to CHERI capabilities and tag-bits, which are implemented with

distributed RAM and, thus, realized as LUTs. Similarly, CHERI-TrEE again uses more

hardware primitives, occupying ≈ 3.44× and ≈ 1.84× more CLBs than Proteus and

its CHERI variant, respectively. In addition to the ISA extensions, this increase can

be mainly attributed to the SHA256 block. All variants use 32 Block Random Access

Memories (BRAMs) due to the identical data memory size of 128 KiB.

Regarding performance, the CHERI Proteus processor and its CHERI-TrEE variant

decrease the maximum clock frequency by ≈ 2.57× compared to Proteus. As expected,

adding capabilities substantially increased the processor’s complexity. This is due to

the CHERI trap and exception handling circuits deployed with logical primitives on

the critical path. We note that we did not speci�cally optimize the hardware design

for maximum clock frequency; thus, substantial improvements are likely possible,

e.g., by adding register stages in the critical path. Finally, CHERI Proteus has a 74%

lower dynamic power consumption than Proteus as it runs at a lower clock frequency.

Conversely, due to its higher resource usage, CHERI-TrEE consumes 69mW, i.e., 72.5%

more.

In summary, our Proteus core and its capability/EES variants scale well and largely

independently of the memory size, requiring ≤ 7% of the total area on our FPGA.

We also deployed the CHERI Proteus and CHERI-TrEE variants on the low-end Arty

A7-35T XC7A35TICSG324-1L FPGA. CHERI Proteus used 28.23% of the total available

area, while CHERI-TrEE occupied 51.57%, which shows that our design can also be

implemented on small FPGAs.

4.5.3 Performance on ARM Morello

The predominant cost of EInitData is the memory sweep. On the Morello FVP, an

EL1 memory sweep by the EL2 hypervisor took about 2.2 billion cycles to sweep a 1 GB

block of DRAM, corresponding to 1.1 s on a single core running at 2 GHz. This includes

overlap checks of 233 capabilities that were detected. A “clean” memory sweep (no

capabilities) is only marginally faster than this, because if the tag-bit is not set, there

is no need for an overlap check. Given that the sweep is performed on 16 bytes at

a time (capabilities are aligned to 16-byte boundaries), this corresponds to approx.

160 CHERI-TREE: FLEXIBLE ENCLAVES ON CAPABILITY MACHINES

33 cycles to check each capability memory location. The EInitCode and EStoreID
operations take signi�cantly fewer clock cycles, and their runtime is proportional

to the number of table entries searched. For a look-up that hits the �rst entry, the

EInitCode operation takes 471 cycles and EStoreID takes 1797 cycles.

4.6 Further extensions and future work

Being a research prototype, CHERI-TrEE allows for various extensions and follow-up

work.

Going from local to remote

CHERI-TrEE currently only supports local attestation. To support remote attestation

and secure remote communication, appropriate cryptographic functionality is

required. For example, we could allow each enclave to govern its own keys for

remote attestation, possibly in the form of a special token capability representing

the key, and add a primitive to perform (e.g., symmetric) encryption and decryption

given an appropriate capability and a key. We expect to be able to reuse a lot of the

key distribution infrastructure of e.g., Sancus.

Added flexibility motivates verification

A disadvantage of the �exibility highlighted in Section 4.3.4 is that it becomes more

di�cult to gain assurance over the security of the system. To clarify, the size of the TCB

in our proposal is not fundamentally larger than in other systems like SGX or Sancus.

However, the �exible nature of our system simply creates more potential pitfalls for

enclave developers (although, as we discussed, capabilities help avoid some API-based

vulnerabilities). We believe that verifying the security of such implementations will

be an interesting challenge to address using formal methods, either using protocol

veri�cation or in a proof assistant. Enclaves in general are already rewarding targets

for veri�cation, since they rely on such a small TCB for their proper functioning

(no language runtime or operating system is trusted). For relatively small enclaved

applications (no library operating systems inside the enclave) on RISC processors

(allowing simple enclave runtimes because of the limited amount of hidden processor

state), obtaining full-system security properties for enclaved code should already be

an achievable goal, and scaling these results is interesting future work.

RELATED WORK 161.

Supporting virtual memory

Related to the issues discussed in Section 4.4.4, integration of CHERI-TrEE with virtual

memory in a more principled way is interesting, as it would allow CHERI-TrEE to

function with a rich OS using virtual memory. One idea is to have physically-addressed

capabilities, which bypass the MMU and carry permission over physical memory

directly. If the operating system cannot map virtual memory to ranges covered by

physically-addressed capabilities, enclaves can be secured in the presence of virtual

memory. Another idea is to place restrictions on page table manipulation (by e.g.,

using capabilities rather than integer addresses as page table entries).

4.7 Related Work

Both trusted computing and capability systems have a very rich history going back

many decades. For trusted computing, an excellent survey is given by Parno et al.

[120], while Maene et al. [98] provide a more up-to-date survey of hardware-supported

systems. For capability systems, Levy [94] covers early systems, and Watson et al.’s

paper on CHERI’s support for compartmentalization [176] discusses more recent

systems.

Our work is most related to the class of systems we called enclaved execution systems.

Flicker [102] was the �rst system to propose the idea of �ne-grained attestation

and secure execution of small pieces of code, isolated even from malicious system

software. Flicker and other early systems [101, 147] were implemented as a small

hypervisor that used the late launch feature of Intel/AMD processors to start a isolated

VM containing the enclave. Later systems relied on hardware extensions to avoid

the use of a hypervisor, further reduce the TCB, and increase security [38, 113].

Intel SGX [37] is a commercial implementation of full support for enclaves. ARM

Trustzone [8] initially only supports a single secure world, which then runs a separate

operating system to support multiple trusted applications in parallel. The third major

commercial system, AMD SEV, isolates complete virtual machines (rather than small

enclaves) from the untrusted OS [9].

The mechanisms of enclaved execution are complex, and both research prototypes

for enclaved execution as well as commercial systems have undergone revisions: For

instance, Intel SGX2 adds support for larger enclave sizes and enclave dynamic

memory management. Sancus 2.0 [114] adds support for con�dential loading.

TrustLite [88] introduces an execution-aware memory protection unit to support

more �exible allocation of memory to embedded enclaves. Tytan [25] adds support

for real-time guarantees. TIMBER-V [178] enables memory sharing for �ne-grained

enclaves by using a tagged memory architecture. By decomposing enclaved execution

162 CHERI-TREE: FLEXIBLE ENCLAVES ON CAPABILITY MACHINES

into simpler primitives that can then be combined in software, our work enable more

�exible implementations of extensions and new features. We are not the �rst to

observe the complexity of enclaved execution, or the usefulness of making it more

extensible and con�gurable: Keystone [90] avoids the �xed set of trade-o�s in existing

systems and improves customization by o�ering a framework for building enclaved

execution systems.

Very recently, Elasticlave [186] proposed a signi�cantly more �exible memory model

for enclaves, and implements it on top of Keystone. Elasticlave enforces a novel

discretionary access control model for memory regions, designed to make common

data sharing patterns e�cient. An important di�erence with our approach is that,

rather than designing a new access control model, we can reuse the capability memory

access control model as used in non-enclave settings. Sanctum [38] shares our goal of

identifying minimal hardware extensions or modi�cations and then combining these

in software but it builds on page table-based isolation rather than capabilities as the

base platform. Komodo [54] also identi�es minimal hardware requirements and then

implements enclave management instructions in a small trusted software monitor

that is formally veri�ed. The prototype is implemented on top of ARM Trustzone.

SANCTUARY [26] uses ARM Trustzone together with the address-space Ccontroller

present in some modern ARM processors to dynamically construct user-space enclaves.

Like Sanctum, Komodo and SANCTUARY do not consider capability-based hardware

primitives to build on.

Most closely related to our work is the concurrent work on the CheriOS capability

operating system described in Esswood’s PhD thesis [53]. The goal of CheriOS is to

achieve high performance in the presence of a strong adversary where not even the

OS is trusted. The CheriOS microkernel is built on a trusted �rmware nanokernel,

which provides the security properties required to implement an EES. As in our work,

remote attestation is out of scope. The nanokernel supports interrupt handling and a

limited form of single-address-space virtual memory, where the OS cannot alter page

tables.

To obtain unique ownership of memory, the nanokernel o�ers reservations; sealed

capabilities that represent a right to uniquely allocate a region of memory, and are

governed by a state machine. Once memory is allocated through one reservation, all

other reservations lose the right to allocate it, until the memory is revoked. In this way,

the owner of the memory can be assured of their unique ownership. Non-allocated

Reservations can be used to create a type of enclaves, called foundations, similar to our

design. Foundations are represented using a foundation ID, which is essentially a read-

only hash of the enclave’s code section. Rather than reusing sealed pairs for the entry

point, the nanokernel creates an entry token. Later invocations can be set up to use

CHERI’s CInvoke mechanism to jump to the enclave directly. The foundation owns

an authority token, an object capability analog to our sealing capabilities, which is

tied to the Foundation ID and can be used to perform both symmetric and asymmetric

CONCLUSION 163

signing and encryption through the nanokernel, as opposed to our sealed capabilities.

In conclusion, both approaches are su�ciently �exible to allow for growing/nested

enclaves and memory sharing between enclaves. The work of Esswood et al. involves

a larger TCB and more software-level abstractions, leading to overhead, but allows

for greater �exibility with respect to revocation and a larger sealing space. The exact

implications of these trade-o�s need to be investigated further.

4.8 Conclusion

In this paper, we investigated how enclaves can be built on a capability machine like

CHERI. Implementing enclaves without duplicating existing functionality was only

possible by decomposing the concept of an EES into a set of orthogonal features.

This decomposition made it clear that we can reuse CHERI’s existing features and

only need to add a limited amount of new features to obtain an expressive EES that

performs well in many respects (see Section 4.5). Even better, the resulting design is

more �exible in important ways (growing/nested/non-contiguous enclaves, sharing

memory, two-way sandboxing, dynamic entry points, etc.). In addition to the design

itself, we believe our decomposition of EESs is useful to analyse the design space and

inform future designs.

4.A Appendix: Comparison to Piccolo

To compare our design to other RISC-V cores, the only other 32-bit processor

implementation providing CHERI capabilities is—to our knowledge—the Bluespec

Piccolo core. Table 4.4 details the main modules of each core.

The non-capability Piccolo is developed by Bluespec [23], while the CHERI Piccolo

variant is developed by Cambridge University [173], both designed in a high-level

hardware description language, Bluespec HDL [154]. Note that neither Piccolo variant

implements extensions for trusted execution. Therefore, we can mainly compare the

di�erent CHERI implementations. Secondly, Piccolo is a commercial-grade processor

with additional functionality, while Proteus is currently a research design. Nonetheless,

we implemented both Piccolo and CHERI Piccolo on the same FPGA as Proteus and

used 128 kB memory in all tests. As Proteus is an RV32IM, we con�gured the Piccolo

variants to the same architecture (by default Piccolo is an RV32ACIMU).

Comparing CHERI Proteus and CHERI Piccolo, our processor uses ≈ 3.31×, ≈ 2.95×,

and ≈ 2.31× fewer LUTs, �ip-�ops, and BRAMs, respectively, while not requiring

dedicated DSP blocks. Di�erent from CHERI Piccolo, CHERI Proteus does not

implement CHERI compressed capabilities and uses BRAMs for the instruction and

164 CHERI-TREE: FLEXIBLE ENCLAVES ON CAPABILITY MACHINES

Processor (128 kB memory)

Area Occupation Operating

frequency (MHz)

Dynamic

power (mW)LUTs Flip-�ops BRAMs DSPs CLBs

Proteus

Machine Timers module 32 128 -

-

48

180 40

Pipeline module 2867 1410 - 641

Data and Instruction memories - - 32 -

Total 3054 (1.1%) 1663 (0.3%) 32 (3.5%) 694 (2.03%)

CHERI Proteus

Machine Timers module 80 128 -

-

37

70 23

Pipeline module 7797 3662 - 1260

Capability Register File 161 - - 21

Data and Instruction memories - - 32 -

Total 8059 (2.94%) 3915 (0.7%) 32 (3.5%) 1298 (3.79%)

CHERI-TrEE

Machine Timers module 80 128 -

-

40

70 69

Pipeline module 12 510 7261 - 2353

Capability Register File 160 - - 20

SHA module 3422 3193 - 839

Data and Instruction memories - - 32 -

Total 12 806 (4.7%) 7514 (1.4%) 32 (3.5%) 2385 (6.96%)

Bluespec Piccolo [23]

CPU module 4807 2583 3 15 835

40 68

Debug module 292 405 - - 183

PLIC+CLINT modules 1810 1194 - - 504

Data and Instruction memories - - 33 - -

Total 10 152 (3.7%) 7986 (1.4%) 36 (3.9%) 15 (0.6%) 1942 (5.67%)

CHERI Piccolo [173]

CPU module 18 347 6464 5 15 3471

120 194

Debug module 471 402 - - 176

PLIC+CLINT modules 1840 1146 - - 467

Tag Controller module 4349 2124 36 - 966

Data and Instruction memories - - 33 - -

Total 26 685 (9.7%) 11 533 (2.1%) 74 (8.1%) 15 (0.6%) 4865 (14.2%)

Table 4.4: Implementation results for the Proteus and Piccolo processors and their

variants on the Zynq UltraScale+ XCZU9EG-2FFVB1156 FPGA, depicting the main

modules within each Core.

data memory, using considerably fewer resources. The dynamic power consumption

is ≈ 8.43× less than CHERI Piccolo. Similarly, for the non-capability versions, Proteus

occupies ≈ 3.32×, ≈ 4.80×, and ≈ 1.12× fewer LUTs, �ip-�ops, and BRAMs than

Bluespec Piccolo. The dynamic power consumption is 1.7× less.

The higher resource usage of both Piccolo variants compared to Proteus can be

partially attributed to higher circuit complexity due to additional components, e.g.,

debug circuitry and interrupt controllers. Besides, CHERI Piccolo uses BRAMs to

implement its (relatively large) Tag Controller module. Finally, as mentioned, CHERI

Proteus does not currently implement compressed capabilities.

Regarding clock frequency, Proteus reaches 180MHz, ≈ 1.29× faster than Bluespec

Piccolo. However, CHERI Proteus is ≈ 1.71× slower than CHERI Piccolo, which could

be due to the fact that Piccolo is already optimized for real-world deployment.

Besides, considering only the actual CPU module of Piccolo cores detailed in Table 4.4,

our Proteus processors use signi�cantly fewer resources than Piccolo: the non-

capability Proteus uses≈ 1.2× fewer CLBs than Bluespec Piccolo, while CHERI Proteus

uses ≈ 2.67× fewer CLBs than its CHERI variant. We note that CHERI-TrEE also uses

fewer resources than CHERI Piccolo despite the additional EES features. In summary,

this comparison shows that even though Proteus is currently a research prototype

and has not gone through extensive optimization cycles, it o�ers a smaller size and

adequate performance when compared to the commercially maintained Piccolo. In

APPENDIX: COMPARISON TO PICCOLO 165

addition, our modular design lends itself to the easy addition of functionality at an

acceptable cost, as evidenced by the CHERI-TrEE implementation on Proteus.

Chapter 5

Linear Capabilities for Fully
Abstract Compilation of
Separation-Logic-Verified
Code

Publication Data

This chapter contains the following paper about secure compilation from veri�ed

C-like code to C-like code with support for linear capabilities:

Thomas Van Strydonck, Frank Piessens, and Dominique Devriese. Linear

capabilities for fully abstract compilation of separation-logic-veri�ed code. Journal

Of Functional Programming, 31(PII S0956796821000022):1–55, Mar. 2021

This paper is an extended version of the following conference paper:

Thomas Van Strydonck, Frank Piessens, and Dominique Devriese. Linear

capabilities for fully abstract compilation of separation-logic-veri�ed code. Proc.

ACM Program. Lang., 3(ICFP), 2019

Full details can be found in the following technical report:

Thomas Van Strydonck, Frank Piessens, and Dominique Devriese. Linear

capabilities for fully abstract compilation of separation-logic-veri�ed code -

technical appendix including proofs and details. 2020. url: https://soft.
vub.ac.be/~dodevrie/seplogic-lincaps-tr20201130.pdf

167

https://soft.vub.ac.be/~dodevrie/seplogic-lincaps-tr20201130.pdf
https://soft.vub.ac.be/~dodevrie/seplogic-lincaps-tr20201130.pdf

168. LINEAR CAPABILITIES FOR FULLY ABSTRACT COMPILATION

Most of the proof labor and writing work were done by me, with indispensable

guidance from Dominique and Frank, especially at the start of the project.

Compared to the published paper, the version included in this thesis has the following

additions:

• Introduction: small clari�cation concerning the e�ciency of linear capabilities

• Section 5.5.2: new section that illustrates, through examples, the guarantees

we get from proving our compiler fully abstract.

• Section 5.8.2: additional discussion of how we could potentially support a richer

separation logic within a single trust boundary.

• Section 5.9: comment about the use of coarse-grained encapsulation, as opposed

to our �ne-grained use of capabilities.

Abstract

Separation logic is a powerful program logic for the static modular veri�cation of

imperative programs. However, dynamic checking of separation logic contracts on

the boundaries between veri�ed and untrusted modules is hard, because it requires

one to enforce (among other things) that outcalls from a veri�ed to an untrusted

module do not access memory resources currently owned by the veri�ed module.

This paper proposes an approach to dynamic contract checking by relying on support

for capabilities, a well-studied form of unforgeable memory pointers that enables

�ne-grained, e�cient memory access control. More speci�cally, we rely on a form

of capabilities called linear capabilities for which the hardware enforces that they

cannot be copied.

We formalize our approach as a fully abstract compiler from a statically veri�ed

source language to an unveri�ed target language with support for linear capabilities.

The key insight behind our compiler is that memory resources described by spatial

separation logic predicates can be represented at run time by linear capabilities. The

compiler is separation-logic-proof-directed: it uses the separation logic proof of the

source program to determine how memory accesses in the source program should be

compiled to linear capability accesses in the target program.

The full abstraction property of the compiler essentially guarantees that compiled

veri�ed modules can interact with untrusted target language modules as if they were

compiled from veri�ed code as well.

This article is an extended version of one that was presented at ICFP 2019 [162].

INTRODUCTION 169

5.1 Introduction

Separation logic is the basis for tools that support sound, modular veri�cation of C

programs, such as VeriFast [72]. However, for such veri�cation to be sound for a

whole program, all modules of the program have to be veri�ed [7].

In this paper, we are concerned with scenarios where veri�ed code interacts with

untrusted code (for example, when installing plugins from the internet). Our goal

is to compile the veri�ed code securely, i.e. in such a way that we can preserve the

guarantees obtained from veri�cation, even under this interaction with untrusted code.

To achieve this, the compiler has to dynamically enforce separation logic contracts

on the boundary between veri�ed and untrusted code.

As a concrete example of our approach, consider a separation-logic-veri�ed video

player that runs locally on a user’s computer and allows for the installation of

untrusted and unveri�ed plug-ins to extend its functionality. An example plug-

in would be a codec (coder-decoder), that includes support for the decompression

of speci�c video encodings before display. The separation logic contract for the

decompression function of this plug-in could, for instance, provide it access to the

bu�er where the compressed video is stored, but forbid it from retaining references

to this bu�er afterwards. The contract for the decompression function might then

informally (we elided functional assertions) look as follows:

void decompress(char∗ b, format f)

//@pre b ↦→ contents_pre ∗ . . .

//@post b ↦→ contents_post ∗ . . .

The decompress function receives a pointer to the bu�er 1, and is supposed to

decompress 1 using the proper codec for format 5 . In the precondition //@pre,

decompress receives ownership of the bu�er’s contents (represented by the points-to

chunk ↦→), so that it can perform decompression in-place (assuming su�cient bu�er

size). In the postcondition //@post, decompress returns ownership over the contents

of this bu�er, and should consequently lose its access to it. However, this revocation of

access is hard to enforce dynamically: an unveri�ed plug-in could e.g. copy and store

the reference to 1 and use it to freely read and write to it later, even after returning

control. Plug-ins can violate their contracts in many other ways: they can deviate

from their speci�ed behavior while they legitimately hold references to the internal

state (e.g. decompress could use the wrong format, or do nothing); they might read

or write outside the intended ranges of the references they are provided with (e.g.

perform a bu�er overread or -write outside of 1’s bounds), or might return incorrect

values. In the current state of the art, separation-logic veri�cation guarantees are not

enforced at run time for partially veri�ed programs.

To perform dynamic checking of separation logic contracts e�ciently, some form of

170 LINEAR CAPABILITIES FOR FULLY ABSTRACT COMPILATION

hardware support for memory protection is required. Agten et al. [7] proposed an

approach for dynamic checking of contracts based on a hardware protection primitive

known as protected module architectures [113, 148, 37]. However, they only provide

run time preservation of integrity guarantees, not of con�dentiality, meaning that

non-veri�ed adversaries could still read data they should not contractually be allowed

to read. Hence, they do not ensure full abstraction: a formal property that is often used

to de�ne secure compilation [1]. This property requires that attacker code interacting

with the compiled code in the target language should not have more power than

arbitrary veri�ed code interacting with the veri�ed source code.

The main contribution of this paper is the development of a fully-abstract compiler

that dynamically enforces separation logic contracts by relying on another kind of

hardware support. Our approach relies on support for capabilities: a well-studied form

of unforgeable memory pointers that are in essence regular pointers, enhanced with

a �eld containing privileges (read, write, execute, . . .) and �elds describing a memory

range these privileges can be exerted on. Capabilities allow for �ne-grained, e�cient

memory access control, and are implemented in special processors called capability

machines [see 94, for an overview]. The CHERI processor [176] is an example of a

recent design for a capability machine.

More speci�cally, we rely on a form of capabilities called linear capabilities. Linear

capabilities are specially treated by the hardware to ensure that they can never be

copied. They are related to, but di�erent from, CHERI’s local capabilities (which can,

essentially, only be stored in registers or on the stack, not in memory). Although we

believe linear capabilities are an elegant and e�cient target feature for implementing

a fully abstract compiler from veri�ed C code, an implementation of linear capabilities

needs to overcome certain hurdles related to concurrency and implementation in

hardware, as we already mentioned in e.g. Section 4.3.2 [144]. For this reason,

an e�cient implementation of linear capabilities has not yet been demonstrated.

However, we believe that given su�ciently appealing use cases, hardware designers

would be incentivized to study and hopefully resolve these implementation obstacles.

Skorstengaard et al. [144] have previously used linear capabilities in the secure calling

convention StkTokens, and an early design for their implementation in CHERI is

given in the latest CHERI ISA Spec [175]. Our compiler only requires basic linear

capabilities with read/write permissions.

The key insight of our approach is that memory resources (described by spatial

separation logic predicates) can be represented at run time as linear capabilities. Hence,

transferring ownership of memory resources to another module on function call or

return can be compiled to passing the corresponding linear capabilities as additional

parameters and/or return values. Compiler-generated stubs, on the boundaries

between veri�ed and unveri�ed code, can then dynamically check separation logic

contracts. However, those linear capabilities cannot simply be substituted for regular

pointers in existing programs, as they behave fundamentally di�erently (because of

INTRODUCTION 171

Separation logic

proof of program

Compiled

program

Annotated

programProgrammer Semi-automatic

veri�cation tool

Compiler

Figure 5.1: A usage model of our compiler.

their hardware-enforced non-duplicability). We can pass them in addition to regular

pointers, but then the di�culty is that every memory access in the original program

(through a regular pointer) needs to happen through an appropriate linear capability

in the compiled program. Since those linear capabilities are not necessarily in one-to-

one correspondence with the regular pointers that the program works with, it is not

clear how the compiler can decide which one to use.

However, for veri�ed programs, this information is apparent from the separation

logic proof of veri�ed code. In that proof, every memory access is justi�ed using a

single memory resource, and by carefully tracking the capability corresponding to

every such resource, we can decide which capability to use. Hence, our compiler

is separation-logic-proof-directed: it requires not simply the raw source code, but a

separation logic proof of this code as input, and uses the information in the proof to

generate correct and secure target code. Although it does not matter to our compiler

where this proof comes from, we envision scenarios as depicted in Figure 5.1, where

the programmer writes a program with contracts and minimal annotations, a semi-

automatic veri�cation tool like VeriFast [71] elaborates these into a full proof, and this

proof is then passed to our compiler. To be clear, only the last (compilation) step is the

topic of this paper, although we sometimes use VeriFast notations in our examples,

for readability.

We clarify upfront that our goal is not gradual veri�cation [7, 16], i.e. we do not support

taking a large codebase, verifying parts of it and securely combining the veri�ed

and unveri�ed parts. Instead, our compiled code can securely interact with arbitrary

untrusted code (e.g., the downloaded plug-ins above). However, our compiled code

will only interact correctly with other code that respects our calling convention: we

only allow linking to untrusted code if it respects our compiled interfaces, i.e. sends

and receives linear capabilities encoding memory resources as extra arguments and

return values when handling incalls from or outcalls to our code.

Moreover, this paper contains but the �rst steps towards a practically applicable

secure compilation scheme, since the power of the separation-logic-veri�ed source

language is limited. Concretely, the source language only consists of simple resources

in the separation logic, has a simple type system and features restrictions on the

separation logic contracts for calls to and from untrusted code. Perhaps most notably,

our source language does not yet support a notion of C-like structures; it does not

support any type of recursive data structures. Additionally, the separation logic does

not support the abstract predicates that would be required to reason about such data

172 LINEAR CAPABILITIES FOR FULLY ABSTRACT COMPILATION

structures. These restrictions and how to alleviate them will be further detailed in

the future work section.

In summary, the contributions of this paper are:

• a novel approach to compile separation-logic-veri�ed C code to linear-capability-

enhanced unveri�ed C code that dynamically checks the contracts at the

boundaries of the veri�ed code; we demonstrate our approach for an essential

separation logic with array resources, and explain how the approach might be

extended to more advanced logics;

• a formalization on a model of C, and a proof that our compiler is fully abstract;

• a new use-case for linear capabilities in capability machines like CHERI.

This paper is structured as follows. The compiler is illustrated in Section 5.2.

Section 5.3 discusses the compiler’s source and target language. Section 5.4 formally

de�nes the separation logic rules and the full compiler. Section 5.5 formally de�nes

full abstraction and discusses our proof approach, motivating the need for a new

target-to-source transformation called the back-translation. This back-translation is

illustrated by means of an example in Section 5.6. Having discussed both an example

of compilation and back-translation, Section 5.7 zooms in on one part of the full

abstraction proof, namely how we simulate source versus target code. Sections 5.8

and 5.9 respectively discuss future and related work. Section 5.10 concludes.

This paper is an extended version of one that was previously published and presented

at ICFP 2019 [162]. The most important additions are:

• A better explanation of how linear capabilities work in the target language

operational semantics (Section 5.3.3).

• The new Section 5.5.4 which explains the role played by two relations ' and (

that relate source and target code in the proof of full abstraction.

• A rewritten Section 5.6 explaining the back-translation in a more complete and

more pedagogical way.

• Finally, a new Section 5.7 which further decomposes the aforementioned

relations ' and (, showcasing how their components respectively prove the

correctness and security directions of full abstraction through simulation.

Nevertheless, in this paper, we have still omitted details and simpli�ed inference rules

to maintain readability and ease of understanding on multiple occasions. Interested

readers can �nd full details and the entire full abstraction proof in a 120-page technical

report submitted as supplementary material [164].

COMPILER ILLUSTRATION 173

5.2 Compiler Illustration

Figure 5.2 illustrates the operation of our compiler with a trivial example in the C-like

syntax (which includes separation logic annotations) we employ. As suggested in the

introduction, the target language of the compiled code is actually again C-like and

not assembly. The reason is that the compilation from C to assembly would require

the (fully-abstract) compilation of many concepts (e.g. function calls, stack accesses)

which are orthogonal to the topic of this paper and in at least one case already covered

elsewhere [144].

The example contains the veri�ed source function 5 , which performs an outcall to

the context identity function 6 and afterwards sets the contents of pointer 0 from 0 to

1. Function 5 only knows 6’s separation logic contract and not its implementation.

To see how function declarations (including separation logic contracts) are compiled,

we look at the function 5 (6 is similar). The void function 5 takes a single argument:

an integer pointer variable 0. The precondition states that 5 receives a memory

resource = to read and write pointer 0 in the heap, where 0 points to the single

element array [0]. The resource can be seen as a (heap) permission. When 5 returns,

its postcondition states that 5 hands back this permission, but 0 will contain the value

1. The veri�cation of 5 proves that 5 upholds this contract.

Having introduced the example, the remainder of this section discusses how we

Veri�ed
Component Outcall Stub Context

Declaration

So
ur

ce

void f(int∗ a)

//@pre n: a ↦→ [0]

//@post n: a ↦→ [1] {
g(a);

a[0] = 1

}

void g(int∗ a)

//@pre n: a ↦→ [0]

//@post n: a ↦→ [0]

Ta
rg
et

int∗ f(int∗0 a,int∗ n) {

n = g
stub

(a,n);

n[0] = 1;

return n

}

int∗ g
stub

(int∗0 a,int∗ n) {

n = g(a,n);

guard(n != null);

guard(length(n) == 1);

guard(a == addr(n));

guard(n[0] == 0);

return n

}

int∗ g(int∗0 a,int∗ n)

Figure 5.2: Motivating example: a veri�ed function 5 interacts with an untrusted

context function 6.

174 LINEAR CAPABILITIES FOR FULLY ABSTRACT COMPILATION

compile it in a separation-logic-proof-directed way. By separation-logic-proof-directed

compilation, we mean that our compiler uses the separation logic proof of the source

program to guide compilation, in order to ensure that the compiled code enforces

the separation logic contracts. Concretely, our compiler combines three separate

techniques to dynamically enforce all information contained in separation logic

contracts:

1. The shape of separation logic resources (i.e. their linearity and bounds, but not

their functional aspects such as contents) is enforced by reifying separation

logic resources to linear capabilities.

2. The contents of these linear capabilities are updated (but not checked) in parallel

with the resources they were rei�ed from by having compiled source statements

manipulate capabilities.

3. The actual checking of all aspects of contracts (i.e. the shape and contents of

separation logic resources originating from adversaries, but also other non-

spatial constraints) is performed by so-called checking functions or stubs at

trust boundaries.

We now further detail these three aspects of proof-directedness in order.

First, we want to enforce the shape of separation logic resources at the target level, i.e.

make sure that resources to access the heap are handled linearly and bounds-checked

at the target level. The reason we care about the semantics of these resources is that

e.g. resource = for address 0 determines whether 5 can access 0’s contents during the

proof, not 0 itself. This fact is re�ected in the compilation, where the heap resource

= is rei�ed into a target-level linear capability int∗ =. Although separation logic

resources exist only conceptually and are not represented in the source language, they

are transformed into real target-level program variables, as concrete instantiations of

the source-level permissions. The semantics of the linear capability = corresponds

very well to the meaning of the heap resource = in the following ways:

• The fact that the rei�ed resource int∗ = is a capability ensures that anyone

owning it cannot read outside of its intended bounds; the single location 0 in

this case.

• The linearity of int∗ = constitutes a guarantee to its owner, that they are the

sole owner of the permission = to access 0.

These rei�ed resources are manipulated in parallel with the source-level resources and

represent the otherwise erased separation logic proof guarantees. The precondition

of 5 mentions that it receives the resource = at the start of execution. This resource is

rei�ed as an extra argument int∗ =. The postcondition of 5 requires the resource = to

be returned, so analogously, the rei�ed version of = is returned in the compilation.

The source-language argument 0, on the other hand, is compiled to a length-0 regular

COMPILER ILLUSTRATION 175.

capability int∗0 0. The length-0 capability type int∗0 denotes a non-linear capability

of type int that cannot be dereferenced (this is in e�ect just an address). The reason

int∗0 0 is kept is for performing address operations and checks, as these non-spatial

manipulations require no separation-logic resources.

Representing both addresses and resources at run time introduces a certain duplication

of information in cases where addresses coincide with the bounds of the resources.

This is the case, for example, in Figure 5.2, where the address 0 always coincides

with the start address of the resource 0 ↦→ [_]. However, in general, there is not

necessarily a one-to-one connection between addresses and resources for them. It is

hence impossible to just discard the pointer int∗0 0 and perform address operations

and checks on the rei�ed resource = directly. For example, the function 5 could

create multiple aliases for 0 through an assignment 1 = 0, and it would not be clear

which address to track in the rei�ed resource. For the same reason, we cannot simply

erase heap resources and compile the source pointer 0 to a linear target pointer 0. In

this case too, it would not be clear what to do when aliases are created for 0. The

problem in both cases is precisely that 0 is not a resource that should be handled

linearly, but a regular non-linear program variable. Compiling both 0 and its aliases

to non-linear length-0 capabilities and separately reifying the resources to linear

capabilities instead, avoids this mismatch. By separately representing addresses and

resources, we can keep our compiler general and uniform. In a subsequent phase, a

compiler with a su�ciently clever static analysis engine could detect duplication of

information and, for example, remove addresses of type int∗0 when their value can

always be recomputed from a corresponding linear capability.

Secondly, the introduction of linear capabilities to represent separation logic resources,

combined with the fact that the capabilities need to have the correct contents when

passed to the context as resources, again requires our compiler to be separation-logic-

proof-directed. The compiler inspects the veri�cation proof to see how a source

statement a�ects the state of the separation logic resources, and mirrors the change

to these resources in the compiled version of this statement. For example, setting

0 to 1 in 5 is compiled to setting the rei�ed resource for 0, =, to 1. The call to 6

now also receives and returns the resource = along with the address 0. In summary,

separation-logic-proof-directedness entails that operations performed on pointers in

the source language are performed on the rei�ed resources corresponding to these

pointer’s resources in the target language, as these resources are what justify these

operations in the separation logic veri�cation in the �rst place.

Thirdly, the interaction between 5 and 6 at the trust boundary of the compiled

component requires a checking function or stub (in this case an outcall stub for the

outcall) that wraps 6 and veri�es that it does indeed uphold its postcondition. This

is necessary since 5 can outcall arbitrary compiled code 6 that might or might not

uphold the contract that 5 expects of 6. The postcondition of 6 says that it returns a

resource = for address 0 with single-element contents 0. These conditions correspond

176. LINEAR CAPABILITIES FOR FULLY ABSTRACT COMPILATION

exactly to the four guard statements in the outcall stub of Figure 5.2. If the veri�ed

component were to export 5 , allowing it to be called by untrusted code, then the

compiled component would additionally contain an incall stub, to verify that 5 ’s

precondition is met at call-time. To simplify the generation of stub functions, and

thereby limit the size of the proofs, we have placed extra restrictions on contracts

of functions at trust boundaries. These restrictions are described in more detail in

Section 5.4.4, and ways to alleviate them are discussed in the future work section.

5.3 Source and Target Languages

The separation logic and the source and target languages are �rst discussed in

Section 5.3.1. Section 5.3.2 then introduces notation to extend source language

programs to source language proofs (as our compiler is separation-logic-proof-

directed). Section 5.3.3 �nally brie�y discusses the operational semantics (including

memory model) of the source and target languages.

In this paper : denotes an integer, idℓ a logical variable, idp a program variable, 5 a

function and = a heap resource. Logical and program variables are considered to have

separate namespaces.

5.3.1 Source and Target Language Definition

The formalization of our separation logic assertions and the source and target

languages is given in order of structural complexity by the BNF grammar in Figure 5.3,

where the notation symbol〈parameter〉 is used for parameterized symbols. The

concrete notation for separation logic annotations and assertions is inspired by the

VeriFast tool [72]. For the features and syntax of the source language, we drew some

inspiration from Clight, one of the intermediate languages used in CompCert [92, 93].

Both the source and target language (i.e. the program domain) build statements

sstm/tstm out of expressions sexp/texp, components scomp/tcomp out of functions

containing statements and programs sprog/tprog out of components. The separation

logic (i.e. the logical domain), used in source function contracts and separation logic

proofs, builds its assertions assert out of symbolic expressions exp. The remainder of

this section discusses the BNF grammar in order.

Types To simplify types, the type bool is embedded in the type int, where 0 is true

and : ≠ 0 is false. The target type gt∗ is assumed linear, requiring value erasure

(i.e. replacing the value with null) whenever such a value is copied (e.g. assigned to

another variable, passed to a function, stored in an array, . . .), whereas the source

type gs∗ is a regular non-linear heap pointer. A type (g, . . . , g), representing length-=

SOURCE AND TARGET LANGUAGES 177

g ::= int | g∗ | (g, . . . , g) | listg (Logical Type)

gs ::= int | gs∗ | (gs, . . . , gs) (Source Type)

gt ::= int | gt∗ | (gt, . . . , gt) | gt∗0 (Target Type)

cexp〈exp〉 ::= : | op1 exp | exp op2 exp | null | (exp, . . . , exp) | exp.:

(Common Expressions)

exp ::= idℓ | cexp〈exp〉 | length(exp) | exp[exp] | ∀idℓ : g . exp | ∃idℓ : g . exp
| repeat(exp, exp) | append(exp, exp) | take(exp, exp, exp) | update(exp, exp, exp)

(Logical Expressions)

sexp ::= idp | cexp〈sexp〉 (Source Expressions)

texp ::= idp | cexp〈texp〉 | addr(texp) | length(texp) (Target Expressions)

cassert〈assert〉 ::= exp | assert ∗ assert | exp ? assert (Common Assertions)

assert ::= = : exp ↦→gs exp array resource

| = : [assertin | exp ≤ idℓ < exp] range resource

| cassert〈assert〉 (Outer Separation Logic Assertion)

assertin ::= exp ↦→gs exp array resource

| [assertin | exp ≤ idℓ < exp] range resource

| cassert〈assertin〉 (Inner Separation Logic Assertion)

sstm ::= skip | idp = malloc(sexp ∗ sizeof (gs)) | foreach(sexp ≤ 8 < sexp){sstm}
| sstm; sstm | if sexp then sstm else sstm | g idp | idp = sexp | (id∗

p
) = 5 (sexp∗)

| guard(sexp) | idp [sexp] = sexp | idp = sexp[sexp] regular statements

| //@split =[sexp] | //@join = = | //@�a�en =

| //@collect =∗ · . . . · =∗ ghost statements

(Source Statements)

tstm ::= skip | idp = malloc(texp ∗ sizeof (gt)) | foreach(texp ≤ 8 < texp){tstm}
| tstm; tstm | if texp then tstm else tstm | g idp | idp = texp | (id∗

p
) = 5 (texp∗)

| guard(texp) | idp [texp] = texp | idp = texp[texp] regular statements

| (idp, idp) = split(idp, texp) | idp = join(idp, idp) built-in functions

(Target Statements)

isfunc ::= g∗
s
5 ((gs id)∗) //@pre assert //@post assert {sstm; return sexp

∗}
(Implemented Source Function)

csfunc ::= g∗
s
5 ((gs id)∗) //@pre assert //@post assert

(Context Source Function)

itfunc ::= g∗
t
5 ((gt id)∗) {tstm; return texp

∗} (Implemented Target Function)

ctfunc ::= g∗
t
5 ((gt id)∗) (Context Target Function)

scomp ::= isfunc
+ //@import csfunc

∗ //@export csfunc
∗

(Source Component)

tcomp ::= itfunc
+ //@import ctfunc

∗ //@export ctfunc
∗

(Target Component)

sprog ::= scomp
+ //@main = id (Source Program)

tprog ::= tcomp
+ //@main = id (Target Program)

Figure 5.3: Grammar describing our separation logic and the source and target

languages.

178 LINEAR CAPABILITIES FOR FULLY ABSTRACT COMPILATION

(= ≥ 0) tuples is present for all three cases. Pointers and arrays are seen as identical

types g∗ in our formalization, for simplicity’s sake.

The target language has an extra type gt∗0 of length-0 non-linear capabilities, used by

the compiler to store the compiled version of the source-level permissionless program

variables. The separation logic has a type listg , which is a type of logical list variables.

These variables are used to represent the contents of source-level arrays in resources.

Expressions Separation logic makes a distinction between program variables idp,

which appear in source programs, and expressions sexp over them on the one hand

and logical (or symbolic) proof-only variables idℓ , which only appear in separation

logic contracts and proofs, and logical expressions 4G? , which are a third type of

expression, on the other hand. Source expressions are the least expressive, allowing

program variables and the common expressions only.

Target expressions texp additionally contain a function addr, which returns the gt∗0-
type address of a gt∗-type value, and a function “length", which returns the length

of the region addressed by a linear capability gt∗. These functions are realistic (since

linear capabilities encode their own length and address information) and needed (for

the contract checks performed in incall and outcall stubs).

Logical expressions contain extra functions to manipulate listg -typed values: a length

function and an indexing construct exp[exp]. Universal and existential quanti�cation

allow constraining elements of non-statically sized logical lists. For readability, we also

provide repeat, append, take and update list constructs, but these can be desugared

to the other logical expression constructs. The repeat(exp
1
, exp

2
) construct returns a

logical exp
1
-length list where each element equals exp

2
, append(exp

1
, exp

2
) appends

lists exp
1

and exp
2
, take(exp

1
, exp

2
, exp

3
) constructs a new list from elements exp

2
up

to (but not including) exp
3

of list exp
1

and update(exp
1
, exp

2
, exp

3
) updates index exp

2

of list exp
1

with exp
3
.

Assertions Assertions are the building blocks of function contracts and separation

logic proofs. Logical expressions exp are assertions, and so is the separating

conjunction ∗ of two assertions. Conditional assertions of the form exp ? assert

express that assert only needs to hold if exp == true can be derived. Lastly, two

types of assertions represent spatial resources: array and range resources. Array

resources exp
1
↦→gs exp2 represent an array at address exp

1
, containing the elements

of list exp
2
. In order to talk about �xed-size array resources, we use the syntax

exp
1
↦→gs [exp12, . . . , exp:2], which desugars to exp ↦→gs ; ∗ ; [8] = exp

8
2
∗ length(;) = :

and was already demonstrated in Figure 5.2.

Range resources [assert | exp
1
≤ idℓ < exp

2
] represent the separating conjunction

of assert for each value from exp
1

to (but not including) exp
2
, where assert usually

depends on idℓ . Range resources can be nested and will be useful for the back-

translation in Section 5.6.

SOURCE AND TARGET LANGUAGES 179.

An alternative design could have made use of a single, primitive points-to resource

0 ↦→p E , representing permissions to access the single value E at address 0, instead of

our array resources. All types of array resources could then be desugared in terms

of this primitive primitive resource as follows: 0 ↦→ ; , [0 + 8 ↦→p ; [8] | 0 ≤ 8 <
length(;)]. This change should not impact the rest of the formalization in any major

way.

Since both types of resources will be rei�ed during compilation, as demonstrated

for array resources in Section 5.2, we have to associate names = with both types.

However, within a named range resource, no more names should occur, as the outer

resource will be rei�ed as a whole. This is the reason for the distinction between

outer and inner resources in the grammar.

Statements Statements in the target correspond one to one to statements in the

source, except for the //@�a�en and //@collect statements, which do not appear in

the target language. The guard statement gets stuck during execution if its condition

evaluates to false. The foreach statement executes its statement for every value of 8

in the given range. The foreach statement could technically be left out, since we have

recursive calls, but it is kept for conciseness. Finally, both source and target language

have array assignment and array lookup statements.

The malloc statement used in the target language does not correspond to the vanilla

malloc function in C. Firstly, it returns a linear capability, not a regular pointer (since

it essentially creates a target-level rei�ed resource). Secondly, it guarantees a fresh

heap location for the allocated variable. This avoids reuse of locations after free;

if any newly allocated location could have been previously used by the context,

it could have kept a reference to it and hereby broken the linearity guarantees.

The target malloc statement hence respects temporal safety, an important desired

property in any capability machine, even for non-linear capabilities [176]. In a

practical implementation, freshness of the malloced heap locations could realistically

be achieved by a form of garbage collection, much like in libgc [68]. Interestingly,

the run time bounds that capabilities inherently provide will allow for more precise

garbage collection, instead of the conservative variant that libgc necessarily employs.

For simplicity reasons, we do not consider free (see Section 5.8 for further discussion).

In addition to these regular statements, there are also ghost statements. These

operate on logical state instead of program state in the source language, and are only

relevant for the construction of the separation logic proof. VeriFast-style syntactic

ghost statements are usually used as hints for a semi-automated proof tool during

construction of the proof. We hence do not technically need them, since, as mentioned

in the introduction, our compiler assumes a full separation logic proof as input (cfr.

Figure 5.1). Instead, we could simply have separation logic rules manipulating ghost

state without requiring corresponding syntactic constructs. For readability reasons in

180 LINEAR CAPABILITIES FOR FULLY ABSTRACT COMPILATION

symbolic executions, and to make the source language correspond better to the target

syntactically, we still use VeriFast-style syntactic ghost statements in this paper. Since

separation logic resources are rei�ed during compilation, ghost statements will have

to be rei�ed as well. Ghost statements and their target-level counterparts will hence

be syntactically di�erent between the source and target languages. We now discuss

each ghost statement.

The source split statement splits a separation logic resource = in two at a given index

sexp. For example, //@split =[1] applied to the array resource = : 0 ↦→ [1, 2, 3]
splits this resource into =′ : 0 ↦→ [1] and =′′ : 0 + 1 ↦→ [2, 3]. When applied

to the range resource = : [assert | 0 ≤ 8 < 3], the same //@split =[1] creates

=′ : [assert | 0 ≤ 8 < 1] and =′′ : [assert | 1 ≤ 8 < 3]. The source join statement is

the inverse of split and merges two adjacent resources into one, e.g. both previous

sets of resources =′ and =′′ are merged into = by //@join =′ =′′. As the resources that

split and join operate on are rei�ed, so are the operations themselves: built-in target

functions to analogously split and join linear capabilities are provided in the target

language.

The source �a�en and collect statements are each other’s inverse and respectively

strip a top-level range resource or create it. This only works for statically-sized range

resources. For example, the resources =′ : 0 + 1 ↦→ [1] and =′′ : 0 + 2 ↦→ [2] can

be combined into = : [0 + 8 ↦→ [8] | 1 ≤ 8 < 3] by the statement //@collect =′ · =′′,
where the · is used to delimit the sequence of resource names for each individual

index of the constructed range resource. Notice again how only the top-level resource

is named. The postcondition in the proof speci�es which exact range resource is

created. Conversely, the statement //@�a�en = creates resources =′ and =′′ from =.

Interestingly, the target language does not contain rei�ed, built-in functions to �atten

or collect linear capabilities. The reason is that ghost statements are the only way

to manipulate resources in the source language, and a �a�en and collect statement

to switch representations are hence required. In the target language however, all

resources are rei�ed to linear capabilities, which can be manipulated by target code.

The �a�en and collect statements can hence be compiled to regular target-level

statements, obviating the need for built-in functions. For example, the e�ect of

//@collect =′ · =′′ could be realized by the compiled code: int∗∗ =; = = malloc(2 ∗
sizeof (int∗)); =[0] = =′; =[1] = =′′.

Functions Two classes of functions exist; implemented and context functions.

Implemented functions consist of both a function declaration and a body. Context

functions solely consist of the declaration that a component expects of this function.

For simplicity, tuple return types (g∗) exist in both source and target language and

every function has to end in a single return statement return exp
∗
. Source language

functions are annotated with separation logic contracts that use the separation logic

assertions mentioned before for pre- and postcondition. As mentioned, contracts are

SOURCE AND TARGET LANGUAGES 181

situated in the separation logic domain and hence range over logical variables idℓ ,

not program variables idp.

Components and programs A sequence of implemented functions that uses context

functions in its function import and export lists is called a component. A sequence of

components with a main function id forms an entire program.

5.3.2 Source Language Proofs

As explained, our compiler is separation-logic-proof-directed, i.e., not a regular source

program, but its separation logic proof is the input to the compiler. In addition to the

grammar de�ning the syntax of source language programs, we need a notation for

separation logic proofs (in this subsection) and a set of inference rules that describe

how to construct such proofs starting from the source code (Section 5.4). Hoare triples

are the building blocks of separation logic rules [129].

Classical separation logic uses Hoare triples of the form {%} 2 {&}. In this paper, they

have a partial correctness semantics: {%} 2 {&} states that given precondition % , either

postcondition& holds after execution of the piece of source code 2 , or 2 diverges [129].

A triple {%} 2 {&} is only provable if there exists a proof tree, constructed from the

individual separation logic rules, that has this triple as the root. In our formalization

of separation logic, however, we split the condition % (and &) into two separate parts,

partly inspired by the approach of VeriFast [168]. These parts are called the symbolic

heap % and the environment W and give rise to the extended Hoare triple notation

{%}W 2 {&}W ′ , stating that if (%,W) holds, then either 2 diverges or (&,W ′) holds after

execution of 2 . If W == W ′, we shorten the Hoare triple notation to {%} 2 {&}. The

two aspects of extended Hoare triples and the triples themselves are de�ned by the

following BNF grammar:

P ::= assert (Symbolic Heap)

W ::= •[idp : exp]∗ (Environment)

2 ::= sstm

| sstm; return sexp (Source Code)

triple ::= {%}W 2 {%}W (Hoare Triple)

We will often use this notation 2 independently, to denote a piece of source (or target)

code.

The two parts, W and % , of separation logic states have the following meaning:

• The environment W maps program variables idp to expressions exp over logical,

proof-level variables idℓ . The environment W hence relates the program domain

to the logical domain.

• The symbolic heap % is a ∗-separated list of assertions representing the symbolic

program state. It is of the same form assert as the contracts described in

182 LINEAR CAPABILITIES FOR FULLY ABSTRACT COMPILATION

Figure 5.3.

Hoare triple syntax is only useful for verifying (parts of) function bodies. In Section 5.4,

we verify entire functions, components and programs. Given any piece of source

code s, be it (part of) a function (body), a component or a program, the notation `s
represents a speci�c, valid separation logic proof tree for s. This proof `s is what our

proof-directed compiler uses as input.

5.3.3 Operational Semantics

We de�ne C-style small-step operational semantics for both the source and target

languages. The operational semantics rules in both languages are of the following

form:

Premise

〈B, ℎ〉 | 2 ↩→ 〈B ′, ℎ′〉 | 2 ′
(RuleName)

The small-step operational semantics ↩→ transform a program state 〈B, ℎ〉 | 2 into a

state 〈B ′, ℎ′〉 | 2 ′, where B is the list of stack frames containing local variables, ℎ the

heap, and 2 a list of partly-executed function bodies, separated by return statements,

where the sequence 2 corresponds to the sequence of stack frames B . A function call

creates a new stack frame and accompanying executing function body and adds them

to B and 2 respectively. A return statement erases one of each. Erroneous programs

get stuck, because no operational semantics rules apply to them. The same happens

for false guard statements.

One special case should be considered; at the very start of execution, 2 is a single,

monolithic source or target program prog. Execution of a full program prog starts o�

by executing the function whose id is given in //@main = id , thereby creating the

�rst stack frame. Since we are interested in the termination behavior of our programs,

rather than their exact output, we require the main function id to have return type

void. Main functions are not allowed to have arguments either. The initial state before

calling the main function is 〈•, •〉 | ?A>6: both the stack and heap are empty, denoted by

•. We say that prog terminates, denoted prog ⇓, if a sequence of small-step transitions

exists that reduces the program to a single return statement with no arguments (i.e.

the original return statement of the main function). We can then de�ne termination

formally as follows:

prog ⇓ , ∃ B, ℎ, 4G?. 〈•, •〉 | prog ↩→∗ 〈B, ℎ〉 | return

Note that termination does not include getting stuck.

The memory model for both source and target languages is location-based, i.e.

addresses are pairs (;, 8) of an opaque location and an index 8 and hence ℎ ∈

SOURCE AND TARGET LANGUAGES 183

(Loc, Index)
�n

⇀ Val. A malloc statement that allocates : units of type g creates a new

location ; in the heap, populated with default values (out of simplicity considerations)

for type g at indexes 0 through : − 1. The default values for pointers is the null

pointer, which implies that it is currently impossible to have a non-nullable pointer

type in the source or target language. A possible solution to avoid this technical

limitation would be to stick closer to the C semantics by not specifying a default value

and making a dereference of an uninitialized pointer unde�ned behavior instead.

Separately malloced variables are hence logically separate.

Source pointer values of type gs∗ follow the heap memory model and are hence

denoted as either null, in case of the null pointer, or pairs (;, 8). Target-level linear

capabilities gt∗, on the other hand, are denoted as either null or ; [0,1] , where [0, 1] is

the closed interval of indexes at location ; that they carry authority over. They do not

need an index 8 , as source pointer arithmetic is compiled to target pointer arithmetic

on length-0 capabilities and not on linear capabilities (see Section 5.2). A capability

value ; [0,1] hence always points to index 0. Target-level length-0 capabilities are

represented by ;8
0
-values, which do not carry any authority, but keep an index 8 for

pointer arithmetic.

The operational semantics for the source language are standard, but those for the

target are not. The two main di�erences between these semantics are discussed in the

following paragraphs, where the target-level semantics are illustrated by means of

some representative rules in Figure 5.4. The rules in this �gure make the simplifying

assumption that B = B , i.e. only a single stack frame is considered, and that 2 consists

of a single source statement. In the following discussion, ℎ[(;, 8) → E] denotes an

update of the existing value of the heap ℎ at location ; and index 8 with value E . For

the stack, B [idp → E] similarly denotes an assignment of the value E to the previously

declared variable idp. The evaluation of exp in stack-frame B is denoted by JexpKB .

The �rst di�erence between the source and target semantics is caused by the linearity

of capabilities, as they cannot be duplicated. When a linear capability ; [0,1] is copied,

the original value is set to null. We call this process linear capability erasure. The

target level judgment E
ValErase

E ′ describes how a target value E is erased into a

result value E ′ by replacing linear capabilities with null pointers. For example:

; [0,1]
ValErase

null (; [01,11]
1

, 5, ;
[02,12]
2

)
ValErase

(null, 5, null)

The rule ArrayLkup in Figure 5.4 describes the operational semantics of target-level

array lookup. It is equivalent to its source-level counterpart, except for the addition

of a
ValErase

judgment. It illustrates how the read value E should be erased inside

the array, by setting ℎ′(;, 0 + =) = E ′.

The rule ArrayMut in Figure 5.4 describes the operational semantics of target-level

array mutation. The sole di�erence with the source-level version is caused by the

184. LINEAR CAPABILITIES FOR FULLY ABSTRACT COMPILATION

Jtexp
1
KB = ; [0,1] Jtexp

2
KB = = ℎ(;, 0 + =) = E

0 ≤ = ≤ 1 − 0 E
ValErase

E ′

B ′ = B [idp → E] ℎ′ = ℎ[(;, 0 + =) → E ′]
〈B, ℎ〉 | idp = texp

1
[texp

2
] ↩→ 〈B ′, ℎ′〉 | skip

(ArrayLkup)

B (idp) = ; [0,1] Jtexp
1
KB = = Jtexp

2
KB = E

0 ≤ = ≤ 1 − 0 texp
2
 s

StoreLinCap
[4=E]

B ′ = B [4=E] ℎ′ = ℎ[(;, 0 + =) → E]
〈B, ℎ〉 | idp [texp1] = texp

2
↩→ 〈B ′, ℎ′〉 | skip

(ArrayMut)

B (idp3) = ; [0,1] JtexpKB = = 1 ≤ = ≤ 1 − 0
B ′ = B [idp1 → ; [0,0+=]] [idp2 → ; [0+=,1]] [idp3 → null]
〈B, ℎ〉 | (idp1, idp2) = split(idp3, texp) ↩→ 〈B ′, ℎ〉 | skip

(Split)

B (idp2) = ; [0,=] B (idp3) = ; [=,1]
B ′ = B [idp1 → ; [0,1]] [idp2 → null] [idp3 → null]
〈B, ℎ〉 | idp1 = join(idp2, idp3) ↩→ 〈B ′, ℎ〉 | skip

(Join)

Figure 5.4: Rules illustrating the target language operational semantics and its linear

aspects.

judgment

texp
2
 s

StoreLinCap
[4=E]

which we illustrate below. This judgment is used to erase any linear capabilities

present in texp
2

that were written into the array ; [0,1] by the ArrayMut operation, to

avoid them being duplicated. The resulting evironment [env] nulls these capabilities

in the current stack frame, as shown by the assignment B ′ = B [env] in the ArrayMut

rule. Additionally, this judgment makes the semantics get stuck if the same linear

capability is used twice in texp
2
.

Generally, texp s

StoreLinCap
[4=E] can be seen as the lifting of E

ValErase
E ′ from

values E to expressions texp. Rather than erasing capabilities inside values E , now

stack variables idp that appear inside texp have to be reassigned in order to erase their

linear capabilities. This is the reason the judgment’s output is not an expression texp
′
,

but rather, a reassignment of these local variables, i.e. an environment [env]. The

judgment texp s

StoreLinCap
[4=E] is used whenever a target operational semantics

rule evaluates and uses texp, and the linear capabilities that are moved in the process

have to be erased. The judgment is therefore also used when e.g. calling functions

using linear arguments or when assigning variables.

INFERENCE RULES AND COMPILATION BY EXAMPLE 185.

More concretely, texp s

StoreLinCap
[4=E] erases the linear capabilities that appear

inside texp by reassigning (in the current stack frame B) local variables idp appearing

inside texp. Notice that solely the linear capabilities that are actually used linearly

should be erased; e.g. idp appearing under an equality or as an argument to the

addr function do not require erasure. The environment [4=E] computes values for

the erased idp by using
ValErase

. For example, assuming Jidp1KB = ;
[01,11]
1

and

Jidp2KB = (; [02,12]
2

, ;
[03,13]
3

), we have:

(idp1, idp2) s

StoreLinCap
[idp1 → null] [idp2 → (null, null)]

addr(idp2) s

StoreLinCap
[]

idp2 .2
s

StoreLinCap
[idp2 → (; [02,12]

2
, null)]

(idp1, idp2).1 s

StoreLinCap
[idp1 → null]

Additionally, s

StoreLinCap
should ensure that a single linear capability is not used

multiple times in the same texp, since this would cause duplication. For example,

assuming the same stack frame as before, we have ¬∃E ′. (idp1, idp1) s

StoreLinCap
E ′,

causing the semantics to avoid duplication by getting stuck.

The second big di�erence between source and target occurs where the built-in

target-level functions join and split are concerned. These ghost statements and

their rei�cation were already discussed in Section 5.3.1. As mentioned, source-level

ghost statements solely have an e�ect on the separation logic proof and are hence

equivalent to skip in the source semantics. In the target, on the other hand, the rei�ed

ghost statements manipulate physical linear capabilities instead. The rules for these

rei�ed ghost statements are given by Split and Join in Figure 5.4. As expected, they

respectively split and join linear capabilities. Notice that both rules erase their source

operands to ensure linearity, by explicitly setting them to null. A use of s

StoreLinCap

is not required, given that the source operands are constrained to be simple program

variables.

5.4 Inference Rules and Compilation by Example

This section introduces the separation logic inference rules that constitute separation

logic proof trees. Because our compiler is separation-logic-proof-directed, the

compilation rules directly derive from these rules, so we present both simultaneously.

The rules we present in this section are syntactic, i.e. presented axiomatically rather

than derived from the operational semantics. While it allowed us to focus more on

the essential points of this paper, this approach has disadvantages. For a discussion

of syntactically versus semantically derived rules, see the future work section. A

186 LINEAR CAPABILITIES FOR FULLY ABSTRACT COMPILATION

relevant selection of rules is spread over Figures 5.7, 5.10, 5.11 and 5.12. The separation

logic rules and the compilation rules are obtained by respectively ignoring and not

ignoring all green text. Compilation of a separation logic proof `s to target code t is

denoted `s t. Other judgments appearing in these �gures are explained as needed

below.

We illustrate the rules using the running example in Figure 5.5. Since our compiler

is separation-logic-proof directed, it receives a proof of the veri�ed component in

Figure 5.5 as input. To keep the example simple and concise, we avoid foreach loops

and range resources, stick to arrays of statically-known size, and we use the �xed-size

array resource syntax discussed in Section 5.3.1. The inference and compilation rules

will still be presented in their general form.

By 5 ’s contract in Figure 5.5, it receives a pointer 0 and a resource < to access a

two-element integer array corresponding to this pointer. For simplicity, 5 leaks the

memory resource< by not handing it back in its postcondition. It adds 1 to either

the second element of 0 or its negation, depending on the �rst element 2 . It will use

an untrusted library function add1 to add the 1. The contract of add1 speci�es that it

takes a pointer 0 and a resource< to access a one-element array corresponding to

0. It returns the value result, equaling the contents of 0 increased by 1, and returns

the same resource from the precondition, now named =, in its postcondition. The

symbolic variable identi�er result is a privileged name, used to denote a function’s

return value(s) in its postcondition (result8 is used in case of multiple return values).

Based on the value of 0’s �rst element 2 , 5 either calls add1 directly, or emulates

adding 1 to the negation by inverting the last element of 0, storing it in a new array 1

and only then calling add1.

There are four types of compilation rules: structural, basic, higher-level and stub

compilation rules. We discuss these classes in the next subsections and illustrate them

using the running example.

5.4.1 Structural Rules

Structural rules are rules that build more complex proofs from simpler proofs. They

are more involved in the construction of the separation logic proof itself than in the

proof-directed aspects of the compilation and therefore have very straightforward

compilation rules. The structural rules are ConseqPost, Frame, Seq and If, presented

in Figure 5.7.

The consequence and frame rules ConseqPost and Frame are pure proof glue

rules that allow altering proofs and do not in�uence the compiled program. The

INFERENCE RULES AND COMPILATION BY EXAMPLE 187

Veri�ed Component Context Declaration

So
ur

ce

1 int f(int∗ a)

2 //@pre m: a ↦→int [c,a1]

3 //@post result == (c == 0 ? a1 + 1 : −a1 + 1) {
4 int res; int c; c = a[0];

5 //@split m[1];

6 if c == 0

7 then {res = add1(a + 1)}

8 else {int∗ b; int a1; a1 = (a + 1)[0];

9 b = malloc(1 ∗ sizeof(int));

10 b[0] = −a1;

11 res = add1(b)};

12 return res }

1 int add1(int∗ a)

2 //@pre m: a ↦→int [a1]

3 //@post n: a ↦→int [a1] ∗ result == a1 + 1

Ta
rg
et

1 int fcomp(int∗0 a,int∗ m){

2 int res; int c; c = m[0];

3 int∗ m1; int∗ m2; m1,m2 = split(m,1);

4 if c == 0

5 then {int∗ r1; res,r1 = add1comp(a + 1,m2)}

6 else {int∗0 b; int a1; a1 = m2[0];

7 int∗ l; l = malloc(1 ∗ sizeof(int));

8 b = addr(l);

9 l[0] = −a1;

10 int∗ r2; res,r2 = add1comp(b,l)};

11 return res }

1 (int,int∗) add1(int∗0 a,int∗ m)

Outcall Stub

1 (int,int∗) add1comp(int∗0 a,int∗ m){

2 int∗0 a
pre

; int a
pre

1
;

3 a
pre

= addr(m); a
pre

1
= m[0];

4 int result; int∗ n;

5 (result,n) = add1(a,m);

6 guard(n!=null); guard(length(n) == 1);

7 int∗0 a
post

; int a
post

1
;

8 a
post

= addr(n); a
post

1
= n[0];

9 guard(result == a
post

1
+ 1);

10 guard(a
post

== a); guard(a
post

1
== a

pre

1
);

11 return (result,n) }

Figure 5.5: Illustrative example: conditionally add 1 to the second element of a length-2

array or its negation.

1 {< : 0 ↦→int [2, 01] }• [0:0]
2 int res;

3 {< : 0 ↦→int [2, 01] }• [0:0] [res:0]
4 int c; c = a[0];

5 {< : 0 ↦→int [2, 01] }• [0:0] [res:0] [2 :2]
6 //@split m[1];

7

{<1 : 0 ↦→int [2]
∗<2 : 0 + 1 ↦→int [01] }• [0:0] [res:0] [2 :2]

8 if c == 0

9 then

10 {<2 : 0 + 1 ↦→int [01] ∗ 2 == 0}• [0:0] [res:0]
11 {res = add1(a + 1)}

12 {2 == 0 ∗ G == 01 + 1}• [res:G]
13 else

14 {<2 : 0 + 1 ↦→int [01] ∗ 2 != 0}• [0:0] [res:0]
15 {int∗ b; int a1;

16

{<2 : 0 + 1 ↦→int [01]
∗ 2 != 0}• [0:0] [res:0] [1:null] [01 :0]

17 a1 = (a + 1)[0];

18 {2 != 0}• [res:0] [1:null] [01 :01]
19 b = malloc(1 ∗ sizeof(int));

20 {2 != 0 ∗ ; : ~ ↦→int [0] }• [res:0] [1:~] [01 :01]
21 b[0] = −a1;

22 {2 != 0 ∗ ; : ~ ↦→int [−01] }• [res:0] [1:~]
23 res = add1(b)};

24 {2 != 0 ∗ G == −01 + 1}• [res:G]
25 {G == (2 == 0 ? 01 + 1 : −01 + 1) }• [res:G]
26 return res

27 {result == (2 == 0 ? 01 + 1 : −01 + 1) }•
Figure 5.6: Separation logic proof of the function given in the illustrative example.

188 LINEAR CAPABILITIES FOR FULLY ABSTRACT COMPILATION

{%}W 2 {&}W ′ ?

dom(Wpost) ⊆ dom(W ′) `& ⇒ &post

∀G ∈ dom(Wpost). & `W ′(G) == Wpost (G)
(ConseqPost)

{%}W 2 {&post}Wpost ?

{%}W 2 {&}W ′ ?

CN(') = = = fresh

Ws = W] Wframe W ′
s
= W ′] Wframe

(Frame)
{% ∗ '}Ws 2 {& ∗ '}W ′s ?

{%}W sstm1 {&}W ′ ?1
{&}W ′ sstm2 {'}W ′′ ?2
(Seq)

{%}W sstm1; sstm2 {'}W ′′ ?1; ?2

{% ∗ sexpW }W sstm1 {&}W ′ ?1

{% ∗ !sexpW }W sstm2 {&}W ′ ?2

(If)
{%}W if sexp then sstm1 else sstm2 {&}W ′

 if sexp then p1 else p2

Figure 5.7: Structural separation logic rules that can be extended to compilation rules.

consequence rule ConseqPost allows weakening of both the symbolic heap and

the environment in the postcondition of a separation logic triple, in order to link

it to a subsequent triple. The judgment assump ` cond denotes that the boolean

condition cond holds under the assumptions in assump. In fact, we also need a dual

rule ConseqPre that allows strengthening the precondition of a separation logic triple.

The rules ConseqPre and ConseqPost combine to form the full consequence rule

Conseq. Our full Conseq rule also allows renaming outer separation logic resources

= and manipulating conditional assertions. Both these operations will in�uence the

compiled code ? , but are omitted for brevity.

The frame rule is a classical separation logic rule. It allows neglecting a redundant part

of the symbolic heap and the environment in order to simplify the separation logic

state. The function CN(') returns all resource names that appear in the separation

logic assertion '. We require these names to be fresh, to avoid name clashes. The

sequence and conditional rules Seq and If describe proofs for the sequencing and

conditional source statements, respectively. If all applications of these four structural

proof rules are left implicit in a function body’s separation logic proof, the proof tree

can be represented as a symbolic execution [168]. Such a symbolic execution of the

body of 5 is used in Figure 5.6 to illustrate the rules in this subsection and the next.

The Conseq rule is used to omit information that is no longer useful as quickly as

possible in order to keep the proof concise. Examples are the resource <1 that is

dropped after line 7 and the environment entry [0 : 0] that is omitted after line 16.

Consequence is also used to reshape postconditions to match the conditions required

by a di�erent rule: Conseq uni�es e.g. the symbolic heaps on lines 12 and 24 by

weakening them to the symbolic heap on line 25. Because of this uni�cation, the If

rule becomes applicable.

The If rule obviously creates the separation logic triple for the if-statement on lines

INFERENCE RULES AND COMPILATION BY EXAMPLE 189

8-24. Notice how the If rule introduces 2 == 0 and 2 != 0 in the symbolic heaps on

lines 10 and 14, respectively.

5.4.2 Basic Rules

Basic rules construct a proof triple from the ground up for a single non-sequenced

source statement. They are the elementary building blocks of the symbolic execution

in Figure 5.6 and the workhorses of the separation-logic driven compiler. The rules

are named after the source statements they create a proof for, i.e. Skip, Malloc, For,

Flatten, Collect, Split (has 2 versions: one for range resources and one for array

resources), Join (again has 2 versions), VarDecl, VarAsgn, ArrayMut, ArrayLkup,

Guard, FApp and Return. A representative selection is presented in Figure 5.10.

In the following descriptions of the inference rules, sexpW denotes sexp where each

program variable idp is substituted by W (idp) (implicitly requiring that idp ∈ 3><(W)).
Also note that compilation is the identity for expressions sexp, since the variables

that represent pointers contained in sexp are automatically converted to address

capabilities by the compilation.

The auxiliary judgments gs
CompileType

gt, which compiles a source type gs to the

corresponding target type gt, and gs
def
E , which returns the default value E for the

type gs, are �rst de�ned in Figures 5.8 and 5.9 respectively.

(CompileInt)
int

CompileType
int

(CompileSrcPtr)
g∗

CompileType
g∗0

g1
CompileType

g ′
1

. . . g:
CompileType

g ′
:

(CompileTuple)
(g1, . . . , g:)

CompileType
(g ′

1
, . . . , g ′

:
)

Figure 5.8: Inference rules de�ning gs
CompileType

gt.

(DefInt)
int

def
0

(DefPtr)
g∗

def
null

g1
def

def1 . . . g:
def

defk

(DefTuple)
(g1, . . . , g:)

def
(def1, . . . , defk)

Figure 5.9: Inference rules de�ning gs
def
E .

190 LINEAR CAPABILITIES FOR FULLY ABSTRACT COMPILATION

g
def
E g

CompileType
g ′ =, idℓ fresh

idp ∈ dom(W) W ′ = W [idp : idℓ]
(Malloc)
{sexpW > 0}W idp = malloc(sexp ∗ sizeof (g))

{= : idℓ ↦→g repeat(sexpW , E)}W ′

g ′∗ =; = = malloc(sexp ∗ sizeof (g ′));

idp = addr(=)

(Guard)
{%} guard(sexp) {% ∗ sexpW }

 guard(sexp)

=′, =′′ fresh g
CompileType

g ′

(Split)
{= : exp

a
↦→g ;

∗ length(;) == exp
l
∗ 0 < sexpW < exp

l
}W

//@split =[sexp] {=′ : exp
a
↦→g take(;, 0, sexpW)

∗ =′′ : (exp
a
+ sexpW) ↦→g take(;, sexpW , expl)}W

 g ′∗ =′;g ′∗ =′′; {=′, =′′} = split(=, sexp)

idp ∈ dom(W)
W ′ = W [idp : sexpW]
(VarAsgn)
{}W idp = sexp {}W ′
 idp = sexp

idp ∉ dom(W) g
def
E

g
CompileType

g ′ W ′ = W [idp : E]
(VarDecl)

{}W g idp {}W ′ g ′ idp

{%}W sstm {&}W ′ ?

CN(&) = =
(Return)
{%}W sstm; return {sexp}
{& ∗ result == sexpW ′}W ′
 ?; return (sexp, =)

(ArrayMut)
{= : idp,W ↦→ exp ∗ length(exp) == exp

l

∗ 0 ≤ sexp
1,W < exp

l
}W

idp [sexp1] = sexp
2

{= : idp,W ↦→ update(exp, sexp
1,W , sexp2,W)}W

 =[sexp
1
] = sexp

2

Σ(5) = {PRE5 , POST 5 , idarg} PRE5 ≈Names PRE

POST5 ≈Names POST id ∈ dom(W) W ′ = W [id : idres]
[substpre] = [idarg ↦→ sexpW] [substpost] = [substpre] [result ↦→ idres]

idres, = fresh CN(PRE) =< POST
resDecl

g= =

(FApp)
{PRE[substpre]}W id = 5 (sexp) {POST [substpost]}W ′

 g= =; {id, =} = 5comp (sexp,<)

Figure 5.10: Basic separation logic rules that can be extended to compilation rules.

INFERENCE RULES AND COMPILATION BY EXAMPLE 191

The remainder of this section consists of a discussion of the depicted basic separation

logic rules and compilation rules. Separation logic rules are illustrated by referencing

lines from Figure 5.6. Compilation rules are illustrated using a combination of source

code lines from Figure 5.6 and lines from the compiled veri�ed function 5comp in

Figure 5.5.

The Malloc rule assigns a fresh logical variable idℓ to idp in W and creates a new array

resource=, consisting of the default value E repeated sexpW times. In the corresponding

Malloc compilation rule, the variable g ′∗ = is declared and assigned the malloced

linear capability, i.e. the resource corresponding to idp in the source language. This

target-level assignment to the variable = clearly makes it the rei�ed version of the

source resource = (also freshly introduced by the rule). As idp is itself merely a

permissionless address on the target level, we assign it using the addr function,

maintaining the correspondence between 0 and = from the separation logic proof.

The Malloc rule is demonstrated on lines 18-20, where a new resource ; is created.

Lines 18-20 are compiled to lines 7-8 in 5comp.

The Split and Join rules for both array resources and range resources are dual, with

the di�erence that Split has to check whether the given splitting index to split on

is in bounds, whereas Join has to check memory adjacency of the two resources it

is given. Given the similarities, only the array version of the split rule is detailed in

Figure 5.10. Notice how this rule indeed performs the same operation on separation

logic resources that the target operational semantics rule Split in Figure 5.4 performed

on linear capabilities. Consequently, the Split compilation rule simply mirrors the

source level split statement in the target language, using the built-in split operation

on the corresponding rei�ed linear capabilities. The Split rule is demonstrated on

lines 5-7, where resource< is split. Lines 5-7 are compiled to line 3 in 5comp.

The rule VarDecl and VarAsgn prove variable declaration and assignment,

respectively. Their compilation rules are straightforward, apart from the change

in type in VarDecl. The VarDecl rule is demonstrated on e.g. lines 1-3, which

compile to the �rst declaration on line 2 in 5comp.

The rules ArrayMut and ArrayLkup are very similar, so Figure 5.10 only shows the

former. The mutation of source arrays is again compiled to the same action on the

corresponding rei�ed resource. Both rules are demonstrated on lines 20-22 and lines

16-18, respectively. The ArrayMut rule enforces the logical address of the resource =

to be exactly equal to idprog,W , rather than allowing for some additional o�set, out of

simplicity considerations (ArrayLkup enforces something similar). For this reason,

line 17 contains (0 + 1) [0] and not 0[1]; (0 + 1)W equals the logical address of the

resource<2, whereas 0W does not. These lines respectively compile to lines 9 and the

end of line 6 in 5comp.

192 LINEAR CAPABILITIES FOR FULLY ABSTRACT COMPILATION

The Guard rule adds the asserted conditions to the symbolic heap and compilation is

the identity.

Function application FApp is the most intricate basic rule. The variable Σ denotes

a component-wide function environment that contains the contract and argument

names for each function 5 (including imported functions). The caller does not need

to match the called function’s contract exactly: we can allow outer resource names

to di�er. That is why the relation ≈Names is used, to enforce equality up to resource

names of pre- and postcondition. In the caller’s pre- and postcondition PRE and

POST , the concrete logical expressions sexpW used in the function call are substituted

for the arguments idarg, instantiating the callee’s contract with the caller-provided

arguments. Additionally, in the caller’s postcondition, the privileged result variables

are substituted with fresh logical variables idres, linked to id in W ′. Fresh resource

names = are required to avoid name clashes.

Given this rule, the FApp compilation can now be discussed. The resource names< in

PRE will be rei�ed and are extracted using the function CN. The resource names = in

POST have to be fresh and will hence need to be declared in the compiled code �rst,

before rei�cation. We use an auxiliary judgment assert
ResDecl

g= = that extracts

all resource names = in assert and pairs them with their rei�ed types g= in target-

level declarations g= =. This judgment extracts the correct names = from POST and

immediately tells us what declarations g= = to create. The compiled function call

contains the rei�ed versions of the precondition resources< as extra arguments and

receives the rei�ed postcondition resources = as extra return values. The reason each

function 5 is renamed to 5comp during compilation is related to incall and outcall stubs

and will become more clear in Section 5.4.4.

The FApp rule is illustrated on lines 10-12 and lines 22-24. For lines 10-12 for example,

[substpre] == [0 ↦→ 0+1] and [substpost] == [0 ↦→ 0+1] [result ↦→ G], where [res : G]
is substituted in the environment after the call. Given these substitutions, we can see

that the preconditions indeed only di�er in the chunk names<2 versus<; hereby

satisfying ≈Names. The same holds for the postconditions (where the returned resource

has already been omitted by Conseq on line 12). Lines 10-12 are hence compiled to

line 5 in 5comp, where add1comp denotes the outcall stub for add1.

The Return rule forms a special case because return is not a source statement; it

appears exactly once at the end of each function body. Since Seq can only sequence

source statements, the Return rule has to manually construct a new proof from a

previous one. Conceptually, however, Return is a basic rule. Given a proof of sstm,

the Return rule introduces the privileged A4BD;C logical variables to the symbolic heap,

equaling the returned expressions. The return compilation rule produces a target

return statement, which additionally returns all rei�ed resources =. The Conseq rule

reshapes the contract& after the return into the function body’s postcondition (in this

INFERENCE RULES AND COMPILATION BY EXAMPLE 193

phase, leaking resources is disallowed, because the set of rei�ed resources = is already

�xed). Lines 25-27 demonstrate the return rule and are compiled to line 11 in 5comp. No

returned variables are added because 5 leaks its resources. Notice that line 27 follows

from Return’s postcondition {G == (2 == 0 ? 01 + 1 : −01 + 1) ∗ result == G} by the

Conseq rule.

5.4.3 Higher-Level Rules

Given a separation-logic proof of a function’s body, constructed as in the previous

subsections, we now introduce rules that de�ne the notion of separation logic proof `
for entire functions, components and source programs, as these higher-level structures

are what we are most interested in compiling. The higher-level rules are ImplFVerif,

ContFVerif, CompVerif and ProgVerif, presented in Figure 5.11 and discussed

below. For all compilation-related judgments
X

, we de�ne the following tuple-based

shorthand: ` B8
X
C8 , ∀8 . ` B8

X
C8 .

First, we have the rules for implemented functions ImplFVerif and context functions

ContFVerif. The main di�erence between these rules is that ContFVerif does not

reference any function body, as expected, whereas ImplFVerif requires a proof of

the function body to construct a function proof `. The precondition environment of

this proof is [idarg : idarg], since our separation logic contract preconditions always

implicitly map the function arguments idarg to logical variables of the same names

idarg. Non-coincidentally, this environment is the starting environment in Figure 5.6.

This initial environment explains how we can allow function contracts to be entirely

logical assertions, but still reference function arguments idarg.

The corresponding compilation rules both use an auxiliary judgment sfunc
Decl

tfunc that compiles a function declaration sfunc to a declaration tfunc by reifying

all resources in the given pre- and postcondition into arguments and return values

respectively, and compiling existing argument and return types using
CompileType

.

The rule ImplFVerif also changes any implemented function 5 ’s name to 5comp during

compilation, again for stub-related reasons explained in Section 5.4.4. The proof of

Figure 5.6 su�ces to construct a proof ` of 5 using ImplFVerif, which can then be

compiled to the target-level function 5comp in Figure 5.5. The declaration of add1, on

the other hand, is compiled to the declaration of add1 using ContFVerif.

The component veri�cation rule CompVerif allows veri�cation and compilation

of entire components. A component scomp has a proof ` scomp if it is well-formed

(denoted by `WF scomp, which includes some restrictions mentioned in Section 5.4.4)

and if all its implemented and (exported and imported) context functions have proofs.

A compiled component is constructed from the compilation of its functions. The

compilation rules
Incall

and
Outcall

both subsume the ContFVerif rule, and

194 LINEAR CAPABILITIES FOR FULLY ABSTRACT COMPILATION

isfunc = g
ret
5 (g

arg
idarg)//@pre PRE //@post POST {sstm; return sexp}

isfunc
Decl
{g ′

ret
, g

post
} 5 (g ′

arg
idarg, gpre <)

{PRE}[idarg:idarg] sstm; return sexp {POST }W ?1; return {texp, =}
(ImplFVerif)

` isfunc {g
′
ret
, g

post
} 5comp (g ′arg idarg, gpre <)

{?1; return {texp, =}}

csfunc = g
ret
5 (g

arg
idarg)//@pre PRE //@post POST

csfunc
Decl
{g ′

ret
, g

post
} 5 (g ′

arg
idarg, gpre <)

(ContFVerif)
` csfunc {g ′

ret
, g

post
} 5 (g ′

arg
idarg, gpre <)

scomp = isfunc//@import csfunc
i
//@export csfunc

e

`
WF

scomp ` csfunc
i

Outcall
ctfunc

i
, stubout

` isfunc itfunc ` csfunc
e

Incall
ctfunc

e
, stubin

(CompVerif)
` scomp (itfunc stubout stubin) //@import ctfunc

i
//@export ctfunc

e

sprog = scomp //@main = id `
WF

sprog ` scomp tcomp

(ProgVerif)
` sprog tcomp //@main = id

Figure 5.11: Higher-level separation logic rules that can be extended to compilation

rules.

additionally generate the incall and outcall stubs for exported and imported functions,

respectively. Both these rules are discussed in the next subsection.

As an example, given the proofs of 5 and add1 constructed in the previous paragraph,

the CompVerif rule proves the source component in Figure 5.5, which has 5 as an

internal function, an empty export list and the declaration of add1 as the import

list. The source component is compiled to the target component in the bottom half

of Figure 5.5, where add1comp is the outcall stub resulting from the application of

Outcall

on add1. In a real-life setting, we would have made 5 callable by including

it in the export list of the source component, such that an incall stub 5 would have

been created by
Incall

as well. We omitted this detail for simplicity’s sake.

Finally, the program veri�cation rule ProgVerif allows veri�cation and compilation

of entire programs. A program sprog has a proof ` sprog if it is well-formed (`WF sprog,

which e.g. states that every imported function should be exported by another

INFERENCE RULES AND COMPILATION BY EXAMPLE 195

component) and if all of its components have a proof. The compilation of a program

is constructed from the compilations of its components.

5.4.4 Stub Compilation

As illustrated in Section 5.2, we require checking functions or stubs in our compiled

code to enforce separation logic contracts at trust boundaries, both when receiving

an untrusted incall to an exported function and performing an outcall to an untrusted

imported function. A veri�ed component of course trusts itself, requiring no stubs

when internal calls are performed, as no trust boundary is crossed. We call functions

that require the generation of stubs during compilation, i.e. functions that are imported

or exported by any module, boundary functions.

This section discusses how our compiler generates outcall stubs speci�cally, by means

of the Outcall compilation rule in Figure 5.12. The Incall compilation rule that

generates the incall stubs for exported functions is an analogous but simpler version

of Outcall and hence not detailed. No Outcall or Incall separation logic rule exists,

since stubs are not part of the source code; separation logic contracts are enforced at

trust boundaries by the separation logic proof itself.

The Outcall rule generates the outcall stubs for a component’s imported functions by

de�ning the previously mentioned compilation rule csfunc
Outcall

ctfunc, stuboutcall
that both compiles a context function csfunc to ctfunc using ContFVerif and

generates an outcall stub stuboutcall for it. The latter is a wrapper around the outcall

to 5 and rei�es 5 ’s postcondition in the form of guard statements that check, after 5

has returned, whether it has upheld its postcondition.

Before generating outcall stubs for imported boundary functions, we make three

assumptions on the form of the contracts of boundary functions. These assumptions

allow us to easily generate both types of stubs by means of contract rei�cation.

First, we only allow �xed-size, non-conditional array resources = : exp ↦→
[exp

1
, . . . , exp:] to appear in boundary function contracts. This allows us to do

away with quanti�cation in boundary contracts, making the rei�cation of conditions

in stubs easier, since every condition ranges over a predetermined set of variables.

Since boundary contracts do not contain nested or conditional resources, pre- and

postcondition symbolic heaps PRE and POST are separable into a spatial heap< : PREs

or = : POST s, consisting of a sequence of separating-conjunction separated �xed-size

array resources (whose names = and< we externalize in our notation), and a pure

heap PREp or POSTp, consisting of pure conditions. The Outcall rule will make

handy use of this separability. Possible measures to weaken this restriction are future

work.

196. LINEAR CAPABILITIES FOR FULLY ABSTRACT COMPILATION

Second, we require boundary functions to have linear contracts, in the sense that

all argument names, all logical variable names in PREs and POST s and the set of

names result must be mutually distinct and cannot contain duplicates. This makes

any otherwise implicit conditions in PREs and POST s explicit in PREp and POSTp, and

hence easier to check. This assumption can be made without loss of generality, as

non-linear contracts can easily be linearized. For example, the programmer-written

contract for add1 in Figure 5.5 is linearized to:

//@pre< : 0pre ↦→int [0pre
1
] ∗ 0pre == 0

//@post = : 0post ↦→int [0post
1
] ∗ result == 0post

1
+ 1

∗ 0post == 0 ∗ 0post
1

== 0
pre

1
.

Lastly, we require boundary functions not to introduce any new logical variables

(except for A4BD;C) in their pure heaps PREp and POSTp. This will make the constraints

in PREp and POSTp easier to reify into program-level guards, as all their logical

variables either correspond to arguments, result variables or spatial values in the

symbolic heap. For example, in the above linearized contract we can easily access

the values for 0, 0pre, 0
pre

1
, 0post, 0

post

1
and result in the compiled code. The restrictions

imposed by these last two assumptions are included as part of the component well-

formedness `WF scomp in CompVerif.

An outcall stub then needs to generate code in order to check any constraints present

in the untrusted function’s postcondition POST .

We �rst investigate what information from< : PREs and = : POST s we need to reify

to be able to check POST . Both < : PREs and = : POST s are linear and hence use

fresh variable names that can reappear in conditions in POSTp. These variables hence

need to be rei�ed, i.e. declared and assigned the right values, so they can be used

when reifying POSTp’s conditions. Additionally, any constraints present in the linear

spatial heap = : POST s need to be checked in the target language. Remember that an

outcall stub solely checks the postcondition. The only information to check is that

none of the rei�ed resources = can be null, together with the fact that each rei�ed

resource = has its correct �xed length : . Both these checks need to be performed

by a guard statement for each =. We need a way to reify the aforementioned checks

check, declarations decl and assignments assign for a given spatial assertion asserts

(i.e. < : PREs or = : POST s). This is the function of the auxiliary compilation rule

asserts s
(check, decl, assign), de�ned by ResourceReify and SepConjCReify in

Figure 5.12. The checks generated for< : PREs are simply discarded.

Next, we investigate what information from PREp and POSTp we need to reify to

check POST . Neither one is allowed to introduce fresh variables, due to the third

assumption we made above. Therefore, no declarations or assignments will be rei�ed;

only checks. Since outcall stubs only check postconditions, we can disregard PREp.

INFERENCE RULES AND COMPILATION BY EXAMPLE 197

(ConditionReify)
exp

p
guard(exp)

�
p
21 � ′

p
22

(SepConjPReify)
� ∗ � ′

p
21; 22

g
CompileType

g ′

check = (guard(= != null); guard(length(=) == :))
decl = (g∗0 G ; g ′ G1; . . . ; g ′ G:)

assign =

(G = addr(=);G1 = =[0]; . . . ; G: = =[: − 1])
(ResourceReify)
= : G ↦→g [G1, . . . , G:] s

(check, decl, assign)

�
s
(21, 31, 01)

� ′
s
(22, 32, 02)

(SepConjCReify)
� ∗ � ′

s
(21; 22, 31;32, 01;02)

58 = g
′
ret
5 (garg idarg)

//@pre< : PREs ∗ PREp //@post = : POST s ∗ POSTp

?8 = {g ′ret, gpost} 5 (g ′arg idarg, gpre <) ` 58 ?8
< : PREs s

(_, 3pre, 0pre) = : POST s s
(cspost, 3post, 0post)

POSTp p
cp

post

stuboutcall =



{g ′
ret
, gpost} 5comp (g ′arg idarg, gpre <){

3pre;0pre;g
′
ret

result;gpost =;

(result, =) = 5 (idarg,<);
cspost;3post;0post; cppost;

return (result, =)}


(Outcall)

` 58
Outcall

?8 , stuboutcall

Figure 5.12: Compilation rules for generating outcall stubs

All constraints present in POSTp can simply be rei�ed to guard statements over the

identical constraints, due to the three form assumptions on contracts we made above

and since we already declared and assigned all variables occurring in these constraints

when we rei�ed< : PREs and = : POST s in the previous paragraph. The auxiliary

compilation rule assertp p
check, de�ned by ConditionReify and SepConjPReify

in Figure 5.12, generates these checks check when given a pure assertion assertp (i.e.

POSTp in this case).

The Outcall compilation rule in Figure 5.12 integrates
s
,

p
and ContFVerif

to create the outcall stub BCD1outcall. Precondition-related declarations 3pre and

assignments 0pre happen before the function call to 5 , since the rei�ed resources

< might be altered by 5 . Postcondition-related declarations 3post, assignments 0post
and checks cspost and cp

post
happen after the call.

198 LINEAR CAPABILITIES FOR FULLY ABSTRACT COMPILATION

The reason the rule ImplFVerif renamed every function 5 to 5comp had everything to

do with stubs. First of all, any incall stub generated for an exported source function 5

can now simply be called 5 and internally call the compiled target function 5comp, so

that the names of a component’s exported functions do not change during compilation.

Conversely, outcall stubs for imported functions 5 are named 5comp as well, as Outcall

demonstrates, so that the FApp rule does not need to know whether an internal or

imported function is being called in order to derive the compiled function’s name.

The outcall stub add1comp for add1 in Figure 5.5 gives an example of the generated stub

BCD1outcall in the Outcall compilation rule (compiled using the linearized contract

above). As always, the stub has the same declaration (bar function name) as the

function add1 it wraps. The declarations 3pre can be found on line 2 and the

assignments 0pre on line 3. The declarations 3post are generated on line 7, assignments

0post on line 8 and checks cspost and cp
post

on line 6 and lines 9-10, respectively.

5.5 Full Abstraction

This section summarizes the full abstraction proof for the compiler presented in

Section 5.4. The full abstraction proof by itself takes up roughly 80 pages in the

technical report, and is therefore too long and detailed to include in this paper. This

section and Sections 5.6 and 5.7 hence summarize the essential concepts in an example-

driven fashion, after which the reader should be able to digest the technical report,

should they wish to read it.

In the following, notions relating to the source and target language are typeset

in green and pink respectively. The �rst Subsection 5.5.1 formally de�nes both

directions of full abstraction. Section 5.5.2 discusses why proving full abstraction

for our compiler is useful, by highlighting interesting properties that our compiler

preserves. Subsection 5.5.3 motivates the need for a back-translation and illustrates

how both directions of full abstraction can be proved by proving equi-termination

between source and target code. Subsection 5.5.4 further reduces these proofs of

equi-termination to a proof of relatedness under speci�c adequate relations between

source and target code.

5.5.1 Full Abstraction Definition

To de�ne our notion of full abstraction, we require a notion of behavioral equivalence.

As is standard in the literature, we de�ne behavioral equivalence to be contextual

equivalence [1, 121, 108, 45]. Terms G and G ′ are contextually equivalent, denoted

G 'ctx G ′, if ∀� : � [G] ⇓ ⇔ � [G ′] ⇓ where ⇓ denotes termination of execution and �

FULL ABSTRACTION 199.

is any program context with a hole that G and G ′ can be plugged into. Both G and G ′ are

either source or target components in our case. A context � consists of two parts in

both source and target languages: a component context ℭs or ℭt, which is a sequence of

components, and a main function identi�er, denoted by the metavariable id, identifying

the main function to execute when starting program execution. A context is hence

denoted (ℭ, id) and an entire program ℭ[G]//@main = id . In our source language,

the notion of plugging from the contextual equivalence de�nition above also requires

(in addition to the program well-formedness constraints denoted by `
WF

scomp in

Figure 5.11 in the previous section) that given the source component proof ` s and

the context (ℭs, id), a program proof `ℭs [s]//@main = id exists. The notion of

plugging in the target language solely requires program well-formedness, expressed

by a similar judgment `
WF

tcomp for target programs, de�ned in the technical report.

Full abstraction is then de�ned as the re�ection and preservation of contextual

equivalence 'ctx [1]. Given source components s and s′ and target components

t and t′, we have that compilation is fully abstract i� ` s t and ` s′ t′ implies

that (t 'ctx t′⇔ s 'ctx s′). This statement depends on the chosen proofs ` of s and

s′, but has to hold for any such choice. Notice how our formulation of full abstraction

does not make a distinction between code that gets stuck and code that diverges. In

other words, diverging source code could in theory be compiled to target code that

gets stuck. This is, however, not a real concern; since our compiler does not alter

control �ow, it should be easy to prove that it preserves divergence and stuck-ness

individually, if so desired.

Fully abstract compilation proofs are usually split up in a correctness proof direction⇒
that states (by contraposition) that non-equivalent source programs should yield non-

equivalent target programs and a security proof direction⇐ that (by contraposition)

states that any non-equivalence in the target programs should already have been

there in the source programs, and hence attackers have no more power in the absence

of contracts than they do in their presence. Both proof directions are summarized by

the following equations:

∀ s, s′, t, t′. ` s t ∧ ` s′ t′⇒ (t 'ctx t′⇒ s 'ctx s′) (Correctness)
∀ s, s′, t, t′. ` s t ∧ ` s′ t′⇒ (t 'ctx t′⇐ s 'ctx s′) (Security)

5.5.2 The Guarantees O�ered by Full Abstraction

This section illustrates the meaning of the Security direction of the compiler full-

abstraction proof. Concretely, we show a few examples for which the full abstraction

proof implies preservation of some safety and con�dentiality properties. Note that we

assume the equivalence of the source programs in this section, based on an intuitive

200. LINEAR CAPABILITIES FOR FULLY ABSTRACT COMPILATION

understanding of our separation logic; in this paper, we have not developed any tools

to reason about contextual equivalence of veri�ed source programs, as this issue is

mostly orthogonal to secure compilation.

We discuss examples where preservation of useful safety and con�dentiality properties

follows from our results, not necessarily strictly from the full abstraction property

alone. In other words, some results are also based on relatively basic inspection

of the compiler and proof structure, in addition to full abstraction of the compiler.

Consequently, we cannot use these examples to link full abstraction to the alternative

secure compilation criteria of Abate et al. [4]. Additionally, for reasons of simplicity,

in this section we will assume the stronger type of contextual equivalence that

distinguishes between terminating and stuck programs and that was discussed in the

previous section.

First, under the above assumptions about contextual equivalence, the full abstraction

proof is su�ciently powerful to show preservation of some robust safety proper-

ties [152], a class of unary security properties that express safety of a program

interacting with an untrusted context. Concretely, following Swasey et al. [152],

guard statements can be used to encode desirable safety properties that should hold at

certain points during execution
1
. If one can show the equivalence of programs that are

identical up to guard statements in the source language, meaning that no (accessible)

guard statements fail, then our compiler will ensure that the corresponding compiled

programs are still equivalent under an arbitrary target context.

This, however, is insu�cient to prove preservation of the robust safety property

encoded by the guard: the compiler might well map all terminating programs to

diverging programs and vice versa, preserving full abstraction in the process. This

horizontal view of equivalence is a well-known limitation of using full abstraction, that

we already discussed in Section 1.3. As we discussed there, we need vertical knowledge

to be able to use full abstraction in practice. Luckily, this vertical relationship between

source and target programs is often present in the full abstraction proof. In our

case, the vertical equi-termination result from Figure 5.18 su�ces to know that our

compiler will not misbehave in this way, and that the robust safety property encoded

by the guard is indeed preserved.

Figure 5.13 illustrates this approach for a simple program that demonstrates that an

adversary (represented by a context function 6 with a trivial precondition) cannot

change the value of encapsulated stack variables. This is expressed by checking, using

a guard statement, that the value of local variable G has not changed across the call to

6. Similar results hold for heap-allocated variables, and in more complicated settings

with richer interactions with 6, as long as the variable is not passed to the untrusted

context. This example illustrates that our compiler upholds the integrity guarantees

1
Note that we do not require guard statements to express robust safety, but failure is a simple way of

creating a context-visible side-e�ect.

FULL ABSTRACTION 201

of the separation logic frame rule of Figure 5.7; 6 can only alter the values of variables

mentioned in its contract. Note that our frame rule is somewhat non-standard, in

that it also allows framing parts of the environment W . In this case, [G : 0] is framed.

For heap-allocated variables, the framing would be more standard, as the regular

points-to chunk W (G) ↦→ 0 would be framed o� (along with parts of W).

Program 1 'ctx Program 2 Context
void f()

//@pre true

//@post true {
int x = 0;

g();

guard(x == 0)

}

void f()

//@pre true

//@post true {
int x = 0;

g()

}

void g()

//@pre true

//@post _

Figure 5.13: Illustration of how contextual equivalence can express a robust safety

property: equivalence of Program 1 with guard statements and Program 2 without

them speci�es that the guard never fails. The integrity of local variable G is hence

upheld.

Program 1 'ctx Program 2 Context
void f()

//@pre true

//@post true {
int x = g();

guard(x == 0)

}

void f()

//@pre true

//@post true {
int x = g();

}

void g()

//@pre true

//@post result == 0

Figure 5.14: Illustration of how contextual equivalence can enforce contracts:

equivalence of Program 1 with guard statements and Program 2 without them

speci�es that the guard never fails, and hence the postcondition holds.

As an additional form of robust safety, functional aspects of contracts are also

preserved. This can be demonstrated by providing 6 with a contract that states

that, for example, its return value is equal to 0, and checking this condition in one of

two programs but not the other, cfr. Figure 5.14.

The aforementioned contract checking work of Agten et al. [7] was already capable

of preserving robust safety properties as part of their veri�ed component hardening

transformation. However, they lacked support for binary properties, notably 2-

hypersafety properties such as con�dentiality. Figure 5.15 shows a simple example of

how contextual equivalence can be used to specify con�dentiality of the local stack

frame. Similar results hold for heap-allocated variables, and richer interactions with

the context. Concretely, the example illustrates that full abstraction enforces the

con�dentiality aspects of the frame rule from Figure 5.7; variables that are not present

202 LINEAR CAPABILITIES FOR FULLY ABSTRACT COMPILATION

in the contract of an untrusted function (6 in this case), should not be able to in�uence

its execution.

Program 1 'ctx Program 2 Context
void f()

//@pre true

//@post true {
int x = 0;

g()

}

void f()

//@pre true

//@post true {
int x = 1;

g()

}

void g()

//@pre true

//@post _

Figure 5.15: Illustration of how contextual equivalence can enforce a con�dentiality

property: equivalence of Program 1 and Program 2 speci�es that the value of local

variable G cannot in�uence context behavior.

Program Context
void example3_down(int∗ x)

//@pre n: x ↦→int [x1]

//@post n: x ↦→int [x2] {
∗x = 42; //This write is redundant

f();

∗x = 13

}

void f()

//@pre true

//@post true

Figure 5.16: Translation of Jung et al. [77]’s example3_down function to our setting.

This example illustrates a compiler optimization where a redundant write to the local

variable G can be removed, because the function 5 is not granted access to G .

One use case for our fully abstract compiler is that we can prove that sound compiler

optimizations in the source language (i.e., source-level equivalences), do not create

additional vulnerabilities in the target language. The type of source-level equivalences

that Jung et al. [77] prove for simple compiler optimization passes in Rust, could be

fed to our compiler (after translation to our veri�ed C setting), to prove that the same

equivalences hold when using linear capabilities. Hence, the source-level optimization

did not create additional target-level vulnerabilities. As an example, Figure 5.16 shows

a translation of Jung et al.’s example3_down-function to our setting. Because our

languages lack closures, we consider 5 to be a regular, statically known, context

function.

Just as in Jung et al.’s setting, this program is contextually equivalent to one where

the �rst write has been removed. Since our compiler is fully abstract, we know that

this dead store elimination will not introduce additional vulnerabilities at the linear

capability level. Di�erences with the Rust setting are that we do not have a notion

of unsafe code at the source level (our notion of unsafety comes from lowering the

abstraction level during compilation), and that we do not currently support shared,

FULL ABSTRACTION 203.

read-only resources for memory, nor do we have the RustBelt-style lifetimes required

to support shared borrows in our logic [78].

In Section 5.9, we speculate about the fact that the proof techniques we use should

allow proving preservation of higher-arity security properties as well. We have not

yet thought of potential use cases for this stronger result.

5.5.3 Full Abstraction as Source-to-Target Equi-Termination

We �rst dissect the Correctness direction above. To prove s 'ctx s′, we need to

prove (by de�nition) that ℭs [s]//@main = id ⇓ ⇔ ℭs [s′]//@main = id ⇓, given

any source context (ℭs, id) such that we can construct proofs `ℭs [s]//@main = id

and `ℭs [s′]//@main = id from ` s and ` s′. If we can prove that veri�ed code and

its compilation equi-terminate, i.e. if it holds for any contexts (ℭs, id) and (ℭt, id) and

any components s and t (with ` s t) that:

`ℭs [s]//@main = id ℭt [t]//@main = id ⇒
(ℭs [s]//@main = id ⇓ ⇔ ℭt [t]//@main = id ⇓) (Comp-m)

then we can prove s 'ctx s′. The reason is that we know from t 'ctx t′ that

ℭt [t]//@main = id and ℭt [t′]//@main = id equi-terminate, and hence that:

ℭs [s]//@main = id ⇓ ⇔ ℭt [t]//@main = id ⇓ ⇔
ℭt [t′]//@main = id ⇓ ⇔ ℭs [s′]//@main = id ⇓.

We would like to repeat the above process for the Security direction, i.e. prove

t 'ctx t′ through some form of equi-termination between source and target code. To

prove t 'ctx t′, we need to prove (by de�nition) that

ℭt [t]//@main = id ⇓ ⇔ ℭt [t′]//@main = id ⇓

given any target context (ℭt, id) and source component proofs ` s and ` s′. There

is, however, one problem: since we start from a target context (ℭt, id) rather than a

source context (ℭs, id), we cannot use our compiler to construct an equi-terminating

source program for us. Simply inverting the compilation function is impossible, since

it is not a bijection; the compiler’s range is a strict subset of the target language.

Hence, we need a new transformation, this time from target to source, to create

equi-terminating source code, starting from any target-context (ℭt, id) and a source

component proof ` s. This target-to-source code transformation is called the back-

translation, denoted ` s, (ℭt, id)
b
`ℭs [s]//@main = id , and is a standard tool in

full abstraction proofs. The proof ` s is necessary because the back-translated context

(ℭs, id) needs to result in a sound program proof `ℭs [s]//@main = id (since s 'ctx s′
requires veri�ed code). To back-translate individual target statements tstm, no such

proof is required and we hence simply write tstm
b
` sstm.

204 LINEAR CAPABILITIES FOR FULLY ABSTRACT COMPILATION

Having introduced a back-translation, we can repeat the process used to prove

Correctness. If we can prove that target code and its back-translation equi-

terminate, i.e. if it holds for any contexts (ℭs, id) and (ℭt, id) and any components s
and t (with ` s t) that:

` s, (ℭt, id)
b
`ℭs [s]//@main = id ⇒

(ℭs [s]//@main = id ⇓ ⇔ ℭt [t]//@main = id ⇓) (BT-m)

Then t 'ctx t′. The reasoning is analogous to the one for Correctness above.

For the sake of brevity, we introduce short notations for the compilation of general

source code s and the back-translation of target contexts ℭt:

• The target code J` sK denotes the result t of the compilation `s t.

• The source context (without proof) 〈〈` s, (ℭt, id)〉〉 denotes the context ℭs in the

back-translation ` s, (ℭt, id)
b
`ℭs [s]//@main = id . To avoid notational

clutter, we usually simply write 〈〈ℭt〉〉 when ` s is clear from context.

5.5.4 Proof Decomposition: Relational View

This subsection provides a more detailed account of the proofs of Correctness
and Security by further decomposing their proof obligations Comp-m and BT-m
from the previous subsection. The proof schemata in Figures 5.17 and 5.18 (inspired

by the schemata of Devriese et al. [45]) illustrate this decomposition graphically. The

equi-termination in both Comp-m and BT-m is proved by using two auxiliary relations

' and (, for the correctness and security directions of full abstraction, respectively.

Both ' and (are binary relations that relate source language states to target language

states during execution. These states are of the same form as the program states in

the operational semantics; 〈B, ℎ〉 | 2 . Again, 2 is either a sequence of partially executed

function bodies, or an entire program.

These relations internally make use of simulation relations [see e.g. 34], to capture the

lock-step execution of source and target code. However, ' and (are not technically

simulation relations themselves (see Section 5.7). In this section, we consider both

relations to be black boxes.

One important caveat should already be made regarding the source language states:

since our compilation is separation-logic-driven, the target language states mirror the

states of the separation logic proof in the source language, and not just the states of

the executing source code itself. For example, at any given point during execution of

code and its compilation, the linear capabilities present in the heap and stack in the

target language will correspond to the separation logic resources present in the proof

of the current source code. An analogous argument holds for the back-translation; the

FULL ABSTRACTION 205.

linear capabilities in the target language are re�ected as separation logic resources in

the source language at any point during execution, and hence require the inclusion

of a proof into the source-language states.

As an example of why raw, unveri�ed source code does not su�ce to de�ne ' (or (),

consider the following single-statement veri�ed source program ` s :

{= : 0 ↦→int [2]}• [0:0] a[0] = 3 {= : 0 ↦→int [3]}• [0:0]
and its compilation J` sK ≡ n[0] = 3. In the correctness setting, i.e. when relating

` s and J` sK through ', we need to relate the contents of the linear capability = in

the target to the separation logic resource = in the source. If we solely used the raw

source code without proof as the source state in ', i.e. the program a[0] = 3, then it

would be impossible to know what part of the source heap the target linear capability

= corresponds to, because we erased the connection between = and 0 by erasing the

veri�cation proof. Additionally, if ' would not constrain the contents of both to

correspond and be equal to the single element 2 (in the target-level stack and the

separation logic proof, respectively), simulation would get stuck if e.g. a conditional

statement were encountered that checked whether 0[0] == 2 in the source language

(and hence whether =[0] == 2 in the target). Of course, in addition to enforcing

this correspondence between source proof and target-level capabilities, ' and (will

also need to relate the concrete stack and heap in the source language to the current

logical state in the precondition. More details about this can be found in the technical

report.

In order to relate source and target states as they execute, we need a notion of

separation logic proof that evolves along with the executing source code. We obtain

this by lifting the source-level operational semantics to the veri�ed source code. This

new lifted operational semantics is detailed in the technical report. The de�nition

relies on the property of proof preservation (the analogue to type preservation in type

systems, see e.g. [128]). The property states the following: if we have a transition

〈s, h〉 | c ↩→ 〈s′, h′〉 | c′ in the non-lifted operational semantics, and proofs ` c, then

the resulting program c′ is also provable, i.e. we can construct proofs ` c′. Using this

lemma, the lifted operational semantics essentially lets veri�ed programs ` c step to

` c′.

To better understand the lifted semantics, let us consider the execution of ` s and J` sK
in the above example. Assuming appropriate stacks and heaps, both s (the source

program without proof) and J` sK evaluate to a single skip statement in one step (cfr.

the ArrayMut rule in Figure 5.4). Proof preservation updates the proof of ` s to a

proof of the resulting skip statement:

{= : 0 ↦→int [3]}• [0:0] skip {= : 0 ↦→int [3]}• [0:0]
Note how we have “executed” the precondition of ` s to match the now executed

array mutation.

206 LINEAR CAPABILITIES FOR FULLY ABSTRACT COMPILATION

Now that we understand how ' and (relate source states of the form 〈s, h〉 | ` c
(where ` c is either a monolithic, veri�ed source program or a sequence of veri�ed,

partially executed function bodies) with target states of the form 〈s, h〉 | c, let us

take a close look at Figures 5.17 and 5.18. Note how their visual similarity illustrates

the similarities between the two proof directions. For compactness’ sake, the main

function speci�cation //@<08= = 83 has been left out of the source and target program

descriptions in both schemata, for example abbreviating ` ℭs [s]//@main = id to

` ℭs [s] and ℭt [t]//@main = id to ℭt [t]. The proof steps are denoted by arrows⇒,

where a XXX denotes a given and ??? a proof obligation. The contextual equivalence

we need to prove has been boxed, and is situated across from the given contextual

equivalence. The proof in both proof schemata starts at the left side of the dashed

???

=⇒ and traces the entire circle before arriving at its right side. For both correctness

and security, all proof steps⇒ are explained by either the de�nition of contextual

equivalence 'ctx, or one of a set of three auxiliary lemmas. These three lemmas are

similar between correctness and security and numbered (1), (2) and (3) in both. Notice

how the number-annotated proof steps, considered in isolation, indeed constitute a

decomposition of the proof obligations Comp-m and BT-m in the respective �gures.

For example, starting from the top left corner in Figure 5.17, consecutively applying

(1), (2) and (3) and ending up in the bottom left corner, corresponds to the left-to-right

implication in Comp-m. Starting from the bottom right and moving upwards results

in the right-to-left implication direction. We now discuss the role of both contextual

equivalence and the three lemmas in order.

The arrows annotated with 'ctx and 'ctx denote an application of the de�nition

of source- and target-level contextual equivalence, respectively. The universal

quanti�cation over (well-formed) contexts (ℭs, id) and (ℭt, id) is left implicit in

the unfolding of the de�nition. For correctness (and similarly for security), the

implication in the proof obligationℭs [s] ⇓
???

=⇒ ℭs [s′] ⇓ is su�cient to prove contextual

equivalence in the source language. The other direction follows by symmetry.

The Coherence lemma (1) states that source programs in the regular operational

semantics (i.e. without their proofs) and the same source programs in the lifted

operational semantics (i.e. including their proofs) equi-terminate. This lemma allows

adding proofs to source programs and conversely stripping them away, all the while

preserving termination. This conversion is necessary since 'ctx is de�ned using the

regular operational semantics, whereas the relations (and ' make use of the lifted

semantics.

The Compatibility (2) and Adeqacy (3) lemmas are used in combination

to prove equi-termination between a source program and its compilation in the

correctness case, and between a target program and its back-translation in the security

case. Compatibility proves that any source program and its compilation are related

by ' under the empty stack and heap for correctness, and that any target program

FULL ABSTRACTION 207.

s '???
ctx

s′

ℭs [s] ⇓ ℭs [s′] ⇓
???

'ctx

` ℭs [s] ⇓ ` ℭs [s′] ⇓

(1) (1)

J`ℭsK
[
J` sK

]
⇓ J`ℭsK

[
J` s′K

]
⇓XXX

(2)+(3) (2)+(3)

JsK 'XXX
ctx

Js′K

'ctx

(1) ` sprog ⇓ ⇔ sprog ⇓
(Coherence)

(2) `ℭs [s]//@main = id

J`ℭsK
[
J` s′K

]
//@main = id

⇒

(〈•, •〉 | `ℭs [s]//@main = id) '
(〈•, •〉 | J`ℭsK

[
J` sK

]
//@main = id)

(Compatibility)

(3) (〈•, •〉 | ` sprog) ' (〈•, •〉 | tprog) ⇒
` sprog ⇓ ⇔ tprog ⇓

(Adeqacy)

Figure 5.17: Correctness proof outline.

s 'XXX
ctx

s′

〈〈ℭt〉〉[s] ⇓ 〈〈ℭt〉〉[s′] ⇓
XXX

'ctx

` 〈〈ℭt〉〉[s] ⇓ ` 〈〈ℭt〉〉[s′] ⇓

(1) (1)

ℭt

[
J` sK

]
⇓ ℭt

[
J` s′K

]
⇓???

(2)+(3) (2)+(3)

JsK '???
ctx

Js′K

'ctx

(1) ` sprog ⇓ ⇔ sprog ⇓
(Coherence)

(2) ` s, (ℭt, id)
b

`〈〈ℭt〉〉[s]//@main = id

⇒

(〈•, •〉 | `〈〈ℭt〉〉[s]//@main = id) (
(〈•, •〉 | ℭt

[
J` sK

]
//@main = id)
(Compatibility)

(3) (〈•, •〉 | ` sprog) ((〈•, •〉 | tprog) ⇒
` sprog ⇓ ⇔ tprog ⇓

(Adeqacy)

Figure 5.18: Security proof outline.

208. LINEAR CAPABILITIES FOR FULLY ABSTRACT COMPILATION

and its back-translation are related by (under the empty stack and heap for security.

Adeqacy �nishes the combined equi-termination argument by stating that source

and target programs related by (or ' equi-terminate (from the empty stack and

heap). The proof of Adeqacy follows straightforwardly from the fact that (and '

internally make use of simulation relations. This will be clari�ed further in Section 5.7.

5.6 Proving security: the back-translation

Similarly to how Section 5.4 introduced compilation using Figure 5.5, this section

will introduce the back-translation by means of an example, that builds on top of the

compilation example. The goal of this section is to illustrate how the back-translation

of this example satis�es one speci�c instance of BT-m from the previous section, in

the process highlighting the key concepts behind the back-translation. Concretely,

we will back-translate a target-level implementation of the context function add1

from Figure 5.5 and provide intuitions for why the back-translation and the original

implementation equi-terminate. The concrete implementation of add1 that we will

back-translate is given in the bottom-right of Figure 5.20.

Let us identify what concrete instance of BT-mwe have to prove here. The veri�cation

of f from Figure 5.5 acts as our veri�ed component ` s = ` (f //@import add1).
Note the slight abuse of notation, where we use the name of a function (f) for its

entire implementation. Consequently, fcomp and add1comp together act as our compiled

target component t = J` sK = fcomp add1comp //@import add1 . Our target context

(ℭt, id) then consists of the target function add1’s implementation in Figure 5.20 and

an arbitrary choice for the main function id.

Since the main function in our formalization is not allowed to have arguments, needs to

have void as its return type, and needs to be exported by some component, we cannot

have fcomp nor add1 as a main function. Instead, we could for example add an exported

function main to ` s, solely serving as a wrapper for f , with an implementation as

shown in Figure 5.19.

1 void main()

2 //@pre true

3 //@post true {
4 int∗ a; a = malloc(2 ∗ sizeof(int));

5 a[0] = 0; a[1] = 1;

6 int res; res = f(a);

7 return }

Figure 5.19: Example implementation of a main function wrapping f from Figure 5.5.

PROVING SECURITY: THE BACK-TRANSLATION 209.

This function main is compiled by our compiler to a function maincomp, and since it is

an exported function, an incall stub (without guard statements, since the precondition

of main is true) main is generated, which is the target main function and would in turn

have to be back-translated as well. However, to not needlessly clutter our example,

we simply assume the main function in both source and target languages to be called

main, respectively main, and do not explicitly represent or back-translate this main

function anywhere.

In other words, (ℭt, id) = ((add1 //@export add1), main), where we will not

explicitly write main in t. Notice how t and (ℭt, id) together form a sound

target-program, as required by the de�nition of contextual equivalence t 'ctx t′ in

Section 5.5.3. To prove this speci�c instance of (BT-m), we have to back-translate

the example context (ℭt, id) to a context (ℭs, id) such that `ℭs [s]//@main = id is a

valid separation logic proof, and ℭs [s]//@main = id and ℭt [t]//@main = id equi-

terminate. As we will see, ℭs will contain both a back-translation add1bt of add1 and

a back-translation add1 of the outcall stub add1comp, resulting in the source context

(ℭs, id) = (〈〈ℭt〉〉, id) = ((add1 add1bt //@export add1), main)

where, again, we will not explicitly write main in ` s.

Notice how the implementation of the context function add1 in Figure 5.20 upholds the

source-level contract that the veri�ed component ` s expects of add1 in Figure 5.5: it

reads the �rst element of resource<, increments and returns it, together with resource

<, without altering the address of< or its contents. The context (ℭt, id) is not required

to behave properly like this! It might also add 2 instead, change the contents of the

resource<, etc., e�ectively ignoring the expectations of ` s and causing execution

to get stuck at the guard statements of the outcall stub add1comp. This extra freedom

of the target context to misbehave, and the requirement for guard statements to

detect such misbehavior, is at the core of the full abstraction proof: the security proof

direction states that we can reinterpret (i.e. back-translate) even possibly misbehaving

contexts as equi-terminating, veri�ed source contexts that are incapable of breaking

the veri�cation guarantees of ` s. Section 5.6.3 will further illustrate this point, by

brie�y demonstrating the back-translations of a few misbehaving implementations of

add1.

The remainder of this section introduces the back-translation incrementally,

introducing key concepts gradually. First, Section 5.6.1 starts o� with a naive

backtranslation of add1 that does not generalize to arbitrary code. After pointing

out some problems in generalizing this back-translation, Section 5.6.2 introduces a

version that works for any target code not using nested pointer types (such as int∗∗)
in the target language. As mentioned, Section 5.6.3 brie�y investigates the back-

translation of misbehaving contexts. Finally, Section 5.6.4 sketches what the most

general back-translation looks like by investigating the back-translation of nested

pointers.

210. LINEAR CAPABILITIES FOR FULLY ABSTRACT COMPILATION

5.6.1 Naive back-translation

This subsection constructs a naive version of the back-translation of add1 from

Figure 5.20, and discusses the results in the Source row of this same �gure. The

back-translation is naive because it assumes a statically-known size of 1 for all target

capabilities (the naive assumption), and does not support back-translating nested

pointer types. These assumptions are unproblematic for add1.

Outcall Stub Context

So
ur

ce
(b
ac
k-
tr
an

sl
at
io
n)

1 int add1(int∗ a)

2 //@pre m: a ↦→int [a1]

3 //@post n: a ↦→int [a1] ∗ result == a1 + 1 {
4 int∗ m; m = a;

5 int∗ a
pre

; int a
pre

1
;

6 a
pre

= m; a
pre

1
= m[0];

7 int result; int∗ n;

8 (result,n) = add1
bt

(a,m);

9 guard(n != null);

10 int∗ a
post

; int a
post

1
;

11 a
post

= n; a
post

1
= n[0];

12 guard(result == a
post

1
+ 1);

13 guard(a
post

== a); guard(a
post

1
== a

pre

1
);

14 return result }

univ_contr
int∗0 (G) , true

univ_contr
int
(G) , true

univ_contr
int∗ (G) , (G != null) ?

= : G ↦→int [;1]

1 int add1
bt

(int∗ a, int∗ m)

2 //@pre univ_contr
int∗0 (a) ∗ univ_contr

int∗(
m)

3 //@post univ_contr
int

(result1) ∗
4 univ_contr

int∗(result2) {
5 int b;

6 guard(m != null);

7 b = m[0];

8 return (b + 1,m) }

Ta
rg
et

1 (int,int∗) add1comp(int∗0 a,int∗ m)

2 int∗0 a
pre

; int a
pre

1
;

3 a
pre

= addr(m); a
pre

1
= m[0];

4 int result; int∗ n;

5 (result,n) = add1(a,m);

6 guard(n!=null); guard(length(n) == 1);

7 int∗0 a
post

; int a
post

1
;

8 a
post

= addr(n); a
post

1
= n[0];

9 guard(result == a
post

1
+ 1);

10 guard(a
post

== a); guard(a
post

1
== a

pre

1
);

11 return (result,n) }

1 (int,int∗) add1(int∗0 a,int∗ m){

2 int b;

3 b = m[0];

4 return (b + 1,m)}

Figure 5.20: Illustrative example: naive back-translation of a context that implements

add1.

We �rst de�ne the back-translation of types and expressions. Target types that can

result from compilation of source types, i.e. int, length-0 capabilities gs∗0 and tuples

(g∗
t
), are simply back-translated inversely to how they are compiled. However, linear

capabilities are rei�ed resources and did not originally exist in the source language,

so we have to come up with a way to represent them.

Target linear capabilities ; [0,1] inherently contain both an address ; and a length1−0+1,

PROVING SECURITY: THE BACK-TRANSLATION 211

as discussed in Section 5.3.3. To extract these, the target language contains built-in

addr and length functions. Pointers in the source language are of the form (;, 8), are

non-linear and do not have built-in length information and the source language does

not have (or need) addr or length functions. Fortunately, the naive back-translation

assumes all target pointers to have a statically-known length of 1, so there is no need

to keep any length information in the source language. It is hence possible to simply

back-translate linear capabilities of type g∗ to source-level pointers g ′∗, where g ′ is

obtained by recursively back-translating g . The pointer g ′∗ simultaneously represents

the back-translated address, since g ′∗ is non-linear and allows for pointer arithmetic.

Both the length and the address information of each capability are hence retained

during back-translation. These back-translations of target types are formalized by

the judgment g
InvCompileType

g ′, dual to g
CompileType

g ′ from Section 5.4.2, that

recursively back-translates target types as follows:

(InvCompileInt)
int

InvCompileType
int

g ′
InvCompileType

g

(InvCompileSrcPtr)
g ′∗0

InvCompileType
g∗

g1
InvCompileType

g ′
1

. . . g:
InvCompileType

g ′
:

(InvCompileTuple)
(g1, . . . , g:)

InvCompileType
(g ′

1
, . . . , g ′

:
)

g
InvCompileType

g ′

(InvertCapability)
g∗

InvCompileType
g ′∗

Section 5.6.2 will scrap the naive assumption and will therefore have to introduce a

more involved back-translation for pointer types, retaining length information.

Unfortunately, the back-translated linear capabilities will not automatically behave

linearly. Therefore, our back-translation needs to simulate their linear behavior. Extra

statements have to be added during the back-translation to imitate the target-language

erasure of capabilities. For example, when back-translating the assignment G = ~ with

y of type int∗, an erasure assignment ~ = null will be added in the source. Similarly,

once we support back-translating nested pointers in Section 5.6.4, back-translating

the assignment G = =[2] with = of target type int∗∗ produces an erasure assignment

=[2] = null in the source. Additionally, since the target language gets stuck when the

same target capability is used twice in one statement, the back-translation then has

to arti�cially get stuck as well. For example, when back-translating the assignment

G = (~,~), with~ as before, the source language needs to add a statement guard(false)
to ensure equi-termination.

The back-translation of expressions texp, denoted texp
b
, is now easy to de�ne, since

target and source expressions only di�er in the addr and length functions mentioned

before. The back-translation hence maps addr(texp) to texp
b

(the pointer doubles

as address, since it is copyable) and length(texp) to (texp
b
!= null) (all non-null

capabilities are assumed to have length one, whereas null has length 0). All other

212 LINEAR CAPABILITIES FOR FULLY ABSTRACT COMPILATION

cases proceed structurally.

With these prerequisites out of the way, we can examine the back-translation ℭs of

the target context ℭt, shown in the top row of Figure 5.20. As mentioned, this back-

translation consists of two separate parts; the expected back-translation add1bt of the

target function add1 on the right, but also a back-translation add1 of the previously

generated stub add1comp on the left. Conceptually, the universal contract of add1bt

captures how the use of linear capabilities in the target language restricts the behavior

of the context function add1, whereas guards in add1 will enforce further functional

conditions that f expects of add1. The function add1 is derived from add1bt, using a

separate back-translation for stubs that we will motivate below. First, let us investigate

how regular target functions such as add1 are back-translated.

1

{univ_contr
int∗0 (0)

∗ univ_contr
int∗ (<) }• [0:0] [<:<]

2 int b;

3 {∼}• [0:0] [<:<] [1:0]

4

{univ_contr
int∗0 (0) ∗ univ_contr

int∗ (<)
∗ univ_contr

int
(1) }• [0:0] [<:<] [1:1]

5

{true ∗ (< != null) ?<
chunk

:< ↦→int [;1]
∗ true}• [0:0] [<:<] [1:1]

6 guard(m != null);

7 {<chunk
:< ↦→int [;1] ∗ 0 < 1}• [0:0] [<:<] [1:1]

8 b = m[0];

9 {∼}• [0:0] [<:<] [1:;1]

10

{univ_contr
int∗0 (0) ∗ univ_contr

int∗ (<)
∗ univ_contr

int
(1) }• [0:0] [<:<] [1:1]

11 return (b + 1,m)

12 {univ_contr
int
(result1) ∗ univ_contr

int∗ (result2) }•

int b;
b

b = m[0];
b

return (b + 1,m)
b

Figure 5.21: Separation logic proof of the body of add1bt from the naive back-

translation example.

Essentially, our goal is to understand Figure 5.21: the back-translation equivalent of

the proof of fcomp in Figure 5.6. The notation ∼ is used to denote an unaltered symbolic

heap. A �rst question is what the separation-logic contract of the back-translated

function add1bt should be. The desired contract is the one ` s expects for add1 in

Figure 5.5, so that the resulting source program ℭs [s]//@main = id has a sound

veri�cation. However, since the target context add1 can freely misbehave as we saw

earlier, proving this contract will in general be impossible. Additionally, if the context

contains functions that are not imported by ` s, there are no restrictions on their

contract whatsoever.

The solution is to employ the most general admissible contract for the backtranslation

and adapt it to the expected contract separately (see below). This contract will

PROVING SECURITY: THE BACK-TRANSLATION 213

express the permissions associated with target-language capabilities as separation

logic resources in the source. Combining the resources represented by all arguments

of a back-translated function gives us its precondition and the resources represented

by its result are the postcondition. We call this type of contract a universal contract and

de�ne it in the next paragraph. Lines 2-3 of add1bt in Figure 5.20 show the universal

contract for 0331bt.

Universal contracts univ_contrgt are predicates on logical expressions exp. They are

indexed by the target type gt of idp, since this type determines the target-language

permissions associated with the variable. Universal contracts are separation logic

assertions and hence cannot take program variables like idp as a direct argument.

The universal contract for a program variable idp of type gt is obtained by applying

univ_contrgt to the variable’s logical interpretation W (idp).

We now present a simpli�ed de�nition for universal contracts, which we will expand

upon in Sections 5.6.2 and 5.6.4:

De�nition 5.1 (univ_contrgt (exp)).

univ_contrgt (exp) , true if gt = int or gt = gs∗0
univ_contr(g1,...,g:) (exp) , univ_contrg1 (exp.1) ∗ . . . ∗ univ_contrg: (exp.:)

univ_contrgt∗ (exp) , (exp != null) ? ∃;1 . = : exp ↦→gs [;1]
given that gt

InvCompileType
gs and = fresh

The case for target-capabilities gt∗ is the only non-trivial one. It states that a linear

capability is either the null-pointer, or that it has length one (per the naive assumption

made before) and allows access to its unspeci�ed contents ;1.

Universal contracts are now used to back-translate each target-level statement to a

block of veri�ed source code. Both the separation-logic pre- and postcondition of such

blocks consist of the separating conjunction of universal contracts for all declared

target-level program variables. The universal contract will hence monotonically

increase throughout the proof; if a tstm declares a set of variables Vtstm, if variables

Vpre were previously declared and if tstm
b
` sstm holds, then sstm has as contract

(omitting type subscripts)

{univ_contr(Wpre (Vpre))}Wpre sstm {univ_contr(Wpost (Vpre ∪ Vtstm))}Wpost
One of the main e�orts in de�ning the back-translation is proving that the above

Hoare triple indeed holds for all single-statement back-translation rules. Figure 5.21

demonstrates this block-level proof; the three statements (including return) of add1

are back-translated to the three annotated blocks on lines 1-4, 4-10 and 10-12 in the

proof.

These separate proof blocks o�er the advantage that the back-translation can be

214 LINEAR CAPABILITIES FOR FULLY ABSTRACT COMPILATION

proven modularly, on a block-per-block basis, since we already know that the

last block’s postcondition and the next blocks’s precondition will correspond. At

the start of function execution, only the arguments idarg have been declared; the

precondition of a back-translated function is hence univ_contr(idarg), as demonstrated

on line 1 of Figure 5.21. The postcondition is an exception, since the caller only

cares about the privileged result variables and resources over them. The universal

postcondition is hence univ_contr(result), as demonstrated on line 12 of Figure 5.21.

This postcondition is achieved through Conseq once the function’s body (without

the return statement) is proven.

Since each back-translated block of code has to start and end in a universal contract,

each block consists of three separate phases. These three phases are summarized in

Figure 5.22. To illustrate this �gure, we investigate the back-translation of the array

lookup on line 2 in add1, i.e. the middle block on lines 4-10 in Figure 5.21.

{univ_contr(Wpre (Vpre))}Wpre
[guard statements, ghost resource

deconstruction]

{concrete_pre}Wpre
[core statement]

{concrete_post}Wpost
[Conseq, ghost resource aggregation]

{univ_contr(Wpost (Vpre ∪ Vtstm))}Wpost

1 Concretization

2 Rule Application

3 Universalization

Figure 5.22: Illustration of the general three-phase structure of back-translation rules.

First, to match the precondition of the ArrayLkup separation logic rule, we need a

resource di�erent from the null pointer, and we need to know that our index (0 here)

is within the bounds of our array. This last fact follows automatically from the naive

assumption. Since the universal contract does not provide us guarantees about the

pointer< not being null, lines 4-7 add this condition through a guard and derive the

necessary preconditions for ArrayLkup using Conseq. Failing this inserted guard

statement would make the back-translated program get stuck. This is desired behavior,

preserving equi-termination, since the target operational semantics would also get

stuck in this faulty case. To summarize, this �rst phase, called Concretization in

Figure 5.22, starts from the universal contract and transforms it into the precondition

concrete_pre of the separation logic rule we actually want to apply. As we will discuss

in Section 5.6.2, this phase will also include transformations on ghost resources in the

general case.

Second, the core rule ArrayLkup is applied on lines 7-9, leaving us with the concrete

postcondition concrete_post. This second phase is called Rule Application in

PROVING SECURITY: THE BACK-TRANSLATION 215

Figure 5.22. Finally, on lines 9-10, Conseq is applied to forget the information

added through the guard statement and the array lookup, making the postcondition

universal again. This third phase is called Universalization in Figure 5.22 and

transforms concrete_post back into a universal contract. As with Concretization,

transformations on ghost resources can be required in more complex cases. In

general, it is non-trivial to see that the Conseq rule will always su�ce to prove

Universalization. In the technical report, this fact is proven for each back-translation

rule individually, by making use of Theorems 5 and 6.

The back-translations of other statements follows the same structure of Figure 5.22.

For some simple statements, the �rst phase might be empty. Such is the case for e.g.

the return block on lines 10-12 of Figure 5.21.

The aforementioned simulation of linearity in the source language has so far been

swept under the rug in this discussion. Concretely, the Universalization phase

inserts erasure statements for linear capabilities, whereas the Concretization phase

makes sure that guard(false) statements are inserted when linear capabilities would

otherwise be duplicated.

We can now back-translate regular target functions, but the resulting universal

contracts do not match the concrete contracts that the source context ` s expects,

e.g. the contract for add1 in Figure 5.5 does not match the universal contract of

add1bt in Figure 5.20. When f performs an outcall to add1, the gap between the

preconditions of add1 and add1bt needs to be bridged: the back-translated argument

< needs to be constructed and the universal contracts univ_contr of< and 0 need to

be satis�ed, starting from the concrete precondition of add1. Conversely, when add1

returns control to f afterwards, we need to �nd a way to transform the universal

postcondition of add1bt into the concrete postcondition of add1 that f expects.

When we had a similar mismatch between guarantees and expectations on trust

boundaries during compilation, we introduced stubs to enforce contracts at the target

level. Enforcing a contract is exactly what we need to do here, but now at the source

level. We therefore reexamine the outcall stub add1comp (semi-transparently repeated

in Figure 5.20) that ` s generates for add1, based on the contract it expects add1 to

uphold. This outcall stub contains rei�ed checks (i.e. the guard statements on line

6 and lines 9-10) enforcing all conditions present in the postcondition of add1. In

other words, if we can somehow back-translate the outcall stub add1comp and insert

it between f and add1bt, the back-translated guard statements should correctly add

the missing concrete conditions to add1bt’s universal postcondition. Additionally, but

less crucially, this back-translated outcall stub will have to connect the arguments

and preconditions of the two functions. Given that the back-translated outcall stub

needs to convert add1bt’s universal postcondition into f ’s concrete one and vice versa

for preconditions, the back-translation cannot make use of universal contract blocks,

as it did for add1bt. Stubs hence make use of an alternative, second, back-translation,

216. LINEAR CAPABILITIES FOR FULLY ABSTRACT COMPILATION

which does retain concrete information across back-translated statements.

The back-translated outcall stub, called add1 to match the name used by f , is shown

in the top left corner of Figure 5.20. It mostly consists of straightforward back-

translations of the individual statements of add1comp, with a few caveats, mainly

caused by the fact that f is a regular veri�ed source function, whereas add1comp is a

back-translated function that mimics a target function. The non-obvious aspects are

the following:

• Notice how the guard statement checking the length of = on line 6 of add1comp

is absent on line 9 of add1. This discrepancy is caused by the naive assumption,

which allows us to know beforehand that = has length 1. This distinction

between the functions is a clear hint that our current back-translation schema

is not su�ciently general. It will naturally disappear in the next section, when

we lift the naive assumption.

• A proof of the contract of add1 needs to be constructed, to prove soundness

of the back-translation. Contrary to the regular back-translation, no universal

contract blocks are created for each back-translated statement, since we want to

make a non-modular proof. This implies that only the Rule Application phase

for each back-translated block is kept. An example symbolic execution of the

interesting part of add1, describing how the back-translated guard statements

transform a universal contract into a concrete postcondition, can be found in

Figure 5.23.

• The function f is unaware of the back-translated rei�ed resource<, whereas

add1bt expects < as an argument. This value hence has to be declared and

assigned on line 4 of add1, using the information about the logical resource<

present in the precondition.

• The back-translated guard statements in add1 guarantee equi-termination

between source and target language when add1bt misbehaves, since they mirror

the guards in the target-level outcall stub add1comp.

Because the example’s back-translation (including source-level stubs) forms a

sound separation-logic proof and closely mimics the target language, this concrete

instantiation of equation (BT-m) will indeed hold, as we set out to illustrate at the

start of this section.

5.6.2 The regular back-translation

In this section, we generalize the back-translation of add1, introduced in Section 5.6.1,

by lifting the naive assumption made there. Concretely, we discard the assumption

that each target-level linear capability should have size one, and extend the back-

translation to allow for linear capabilities of arbitrary size. In fact, the size of linear

PROVING SECURITY: THE BACK-TRANSLATION 217.

1 (. . .)
2 (result,n) = add1

bt
(a,m);

3

{univ_contr
int∗0 (result)

∗ univ_contr
int∗ (=, 1)

}• [0:0] [0pre
1

:01] [result:result] [=:=]
4 guard(n != null);

5 {true ∗ =chunk : = ↦→int [;1] }[∼]
6 int∗ a

post
; int a

post

1
;

7
{=

chunk
: = ↦→int [;1] }[∼] [0post :0] [0post

1
:0]

8 a
post

= n; a
post

1
= n[0];

9
{=

chunk
: = ↦→int [;1] }• [∼] [0post :=] [0post

1
:;1]

10 guard(result == a
post

1
+ 1);

11 guard(a
post

== a); guard(a
post

1
== a

pre

1
);

12

{=
chunk

: = ↦→int [;1] ∗ result == ;1 + 1
∗ = == 0 ∗ ;1 == 01 }[∼]

13

{=
chunk

: 0 ↦→int [01] ∗
result == 01 + 1}[result:result]

14 return result

15

{= : 0 ↦→int [01] ∗
result == 01 + 1}[result:result]

Figure 5.23: Excerpt from the separation logic proof of the body of add1 from the

naive back-translation example.

capabilities may not be statically determined, and we have to take this into account

in the back-translation. For example, add1 might be invoked by other functions than

f , which may hand it a capability < with an arbitrary size. The current universal

contract for< in Figure 5.20 clearly does not allow for this case.

In addition to this �rst generalization, we will reformulate the de�nition of universal

contracts to use range instead of array resources. This reformulation is required for the

back-translation of nested pointers, the discussion of which we defer to Section 5.6.4.

The back-translation of our example-context, add1, is updated to re�ect both changes.

The results are presented in Figures 5.24 and 5.25, which generalize Figures 5.20

and 5.21 respectively. We �rst revisit the back-translation of types and expressions,

before rede�ning universal contracts.

Now that linear capabilities ; [0,1] are no longer assumed to always have length

1 in the target language, an information discrepancy between source and target

pointers arises. The naive back-translation of target pointers to source pointers in

the InvertCapability rule made us forget their length 1 − 0 + 1. We add length

information to back-translated pointers by introducing a form of fat pointer scheme.

We back-translate each linear capability of type g∗ to a pair (g ′∗, int). The �rst element

g ′∗ is a pointer to contents of type g ′ (the recursive back-translation of type g). Again,

g ′∗ simultaneously represents the pointer’s address. The second int element is the

externalized length of the capability. The null-pointer null is back-translated to the

fat pointer (null, 0). In summary, we update the judgment g
InvCompileType

g ′, by

rede�ning its InvertCapability rule as follows:

g
InvCompileType

g ′

(InvertCapability)
g∗

InvCompileType
(g ′∗, int)

218. LINEAR CAPABILITIES FOR FULLY ABSTRACT COMPILATION

The simulation of linear behavior in the source language remains mostly unaltered.

The only di�erence is that linear erasure should now make use of fat pointers. When

e.g. back-translating the assignment G = =[2] with = of target type int∗∗ from before,

an erasure assignment =[2] = (null, 0) has to be added in the source (remember that

(null, 0) is the fat null-pointer).

The back-translation of expressions also largely remains the same, except for the

length and address functions, which we created our fat pointer scheme for. The

back-translation hence maps addr(texp) to texp
b
.1 (the address is the �rst part of the

fat pointer), length(texp) to texp
b
.2 (the length is the second part of the fat pointer)

and =D;; to (null, 0) (as mentioned before). All other cases are still the identity.

We now examine the updated back-translation add1bt of add1 in Figures 5.24 and 5.25.

The di�erences with Figure 5.20 have been highlighted in Figure 5.24.

Outcall Stub Context

So
ur

ce
(b
ac
k-
tr
an

sl
at
io
n)

1 int add1(int∗ a)

2 //@pre m: a ↦→int [a1]

3 //@post n: a ↦→int [a1] ∗ result == a1 + 1 {
4 (int*,int) m; m = (a,1);

5 int∗ a
pre

; int a
pre

1
;

6 a
pre

= m.1; a
pre

1
= m.1[0];

7 //@collect m

8 int result; (int*,int) n;

9 (result,n) = add1
bt

(a,m);

10 guard(n != (null,0)); guard(n.2 == 1);

11 //@�atten n
chunk

;

12 int∗ a
post

; int a
post

1
;

13 a
post

= n.1; a
post

1
= n.1[0];

14 guard(result == a
post

1
+ 1);

15 guard(a
post

== a); guard(a
post

1
== a

pre

1
);

16 return result }

univ_contr
int∗0 (G) , true

univ_contr
int
(G) , true

univ_contr
int∗ (G) , (G != (null, 0)) ? ∃; .

(= : [G.1 + 8 ↦→int ; [8] | 0 ≤ 8 < length(;)]
∗ length(;) == G.2)

1 (int,(int*,int)) add1
bt

(int∗ a, (int*,int) m)

2 //@pre univ_contr
int∗0 (a) ∗ univ_contr

int∗(m)

3 //@post univ_contr
int

(result1) ∗
4 univ_contr

int∗(result2) {
5 int b;

6 guard(m != (null,0)); guard(0 ≤ 0 < m.2);

7 //@split m
chunk

[1]; //@�atten m
0

chunk
;

8 b = m.1[0];

9 //@collect m
0,�at

chunk
; //@join m

0

chunk
m

1+
chunk

;

10 return (b + 1,m) }

Figure 5.24: Illustrative example: back-translating a context that implements add1.

The di�erences with Figure 5.20 have been highlighted.

A �rst thing to note is the introduction of the guard statements on line 10 of add1 and

line 6 of add1bt. Since we discarded the naive assumption, we have to manually check

whether add1bt returns a capability of size 1 as speci�ed by the contract of add1. In

this way, these guards reintroduce length information to the universal contract. With

the addition of this length guard, add1 now re�ects all guard statements of add1comp,

as expected.

Secondly, fat pointers cause minor di�erences. Lines 4, 6, 8, 10 and 13 of add1 and

lines 1, 6 and 8 of add1bt have been adjusted to accommodate the fat pointer scheme.

Finally, as mentioned, the pointer case in the universal contracts on lines 2-3 of add1bt

PROVING SECURITY: THE BACK-TRANSLATION 219

1

{univ_contr
int∗0 (0)

∗ univ_contr
int∗ (<) }• [0:0] [<:<]

2 int b;

3 {∼}• [0:0] [<:<] [1:0]

4

{univ_contr
int∗0 (0) ∗ univ_contr

int∗ (<)
∗ univ_contr

int
(1) }• [0:0] [<:<] [1:1]

5

{true ∗ (<.1 != (null, 0)) ? (length(;) ==<.2
∗<

chunk
: [<.1 + 8 ↦→int ; [8] | 0 ≤ 8 < length(;)])

∗ true}• [0:0] [<:<] [1:1]
6 guard(m != (null,0)); guard(0 ≤ 0 < m.2);

7

{<
chunk

: [<.1 + 8 ↦→int ; [8] | 0 ≤ 8 < length(;)]
∗ length(;) ==<.2 ∗ 0 <<.2}• [0:0] [<:<] [1:1]

8 //@split m
chunk

[1]; //@�atten m
0

chunk
;

9

{<0,�at

chunk
:<.1 ↦→int ; [0]

∗<1+
chunk

: [<.1 + 8 ↦→int ; [8] | 1 ≤ 8 < length(;)]
∗ length(;) ==<.2 ∗ 0 <<.2}• [0:0] [<:<] [1:1]

10 b = m.1[0];

11 {∼}• [0:0] [<:<] [1: ; [0]]
12 //@collect m

0,�at

chunk
; //@join m

0

chunk
m

1+
chunk

;

13

{<
chunk

: [<.1 + 8 ↦→int ; [8] | 0 ≤ 8 < length(;)]
∗ length(;) ==<.2}• [0:0] [<:<] [1:1]

14

{univ_contr
int∗0 (0) ∗ univ_contr

int∗ (<)
∗ univ_contr

int
(1) }• [0:0] [<:<] [1:1]

15 return (b + 1,m)

16 {univ_contr
int
(result1) ∗ univ_contr

int∗ (result2) }•

int b;
b

b = m[0];
b

return (b + 1,m)
b

Figure 5.25: Separation logic proof of the body of add1bt from the back-translation

example.

has been adjusted to allow non-statically sized capabilities, and to use range resources.

The new de�nition looks as follows:

De�nition 5.2 (univ_contrgt (exp)-bis).

univ_contrgt (exp) , true if gt = int or gt = gs∗0
univ_contr(g1,...,g:) (exp) , univ_contrg1 (exp.1) ∗ . . . ∗ univ_contrg: (exp.:)
univ_contrgt∗ (exp) , exp != (=D;;, 0) ?
∃; . (= : [exp.1 + 8 ↦→gs ; [8] | 0 ≤ 8 < length(;)] ∗ length(;) == exp.2)
given that gt

InvCompileType
gs and = fresh

The case for target-capabilities gt∗ now states that a linear capability is either the fat

null-pointer (null, 0), or that we have a range resource that allows us to access each

element ; [8] of the capability (without knowing anything about the value of ; [8], hence

the existential quanti�cation over ;), where exp.1 is the capability’s address and exp.2

its length. The fat-pointer scheme appears here, because the universal contracts are

220 LINEAR CAPABILITIES FOR FULLY ABSTRACT COMPILATION

used to describe the permissions associated with back-translated gt∗-typed variables

idp, and these back-translated variables are fat pointers. Again, the Conseq rule will

allow us to introduce or eliminate the universal quanti�cation.

Note that if we solely wanted to support non-statically sized capabilities, we might as

well have de�ned the gt∗-case as follows:

exp != (=D;;, 0) ? ∃; . (= : exp.1 ↦→gs ; ∗ length(;) == exp.2)

However, this formulation would not be su�ciently general to handle the back-

translation of nested pointers in Section 5.6.4, since it does not allow for nested

universal contracts. Speci�cally, when back-translating nested linear capabilities,

each element of the back-translated capability is again a pointer whose permissions

are described by a universal contract. This will require a recursive universal contract

call inside the range resource in the pointer case above.

The use of range resources in universal contracts necessitates some changes in the

di�erent back-translation phases of Figure 5.22. Since the separation logic rules that

are applied in the Rule Application phase require array resources in their pre- and

postcondition, we need to convert the range resources from the universal contract to

array resources before applying the rule, and back afterwards. This is what happens

on lines 7 and 9 of add1bt in Figure 5.24; the resource we have for the fat source pointer

< is a range expression, but we need an array resource to apply ArrayLkup on line 8.

Afterwards, we need a range resource again to satisfy the universal contract. Lines

7-13 in Figure 5.25 perform this conversion between array and range resources in

both directions. A length-1 range resource<0

chunk
(not explicitly shown) is split from

<chunk and �attened to the array resource<
0,�at

chunk
on lines 7-9. The rule ArrayLkup

can now be applied on lines 9-11. Afterwards, the resource is recollected to reobtain

the range resource<0

chunk
and rejoined to the rest of the range resource on lines 11-13.

In other words, the Concretization phase for each back-translated statement uses

split and �atten statements to convert range resources to array resources, and the

Universalization phase will use collect and join statement to do the inverse.

A similar conversion between array and range resources is now required in the back-

translated stub add1, since the function f uses array resources, whereas add1comp

uses range resources. Lines 7 and 11 of add1 switch between the two representations,

similarly to lines 7-13 of Figure 5.25. Line 11 of add1 can simply be inserted (together

with the new guard on line 10) into the proof of Figure 5.23 to make it go through

with the new de�nition of universal contracts.

In the general case, lines 7 and 11 of add1 will not su�ce to convert between a range

and array representation of resources. The reason for this is that the universal contract

consists of a range resource containing length-1 array resources. If, e.g., the resource

< in the precondition of add1 were to have a length greater than 1, split statements

would be required before the collect on line 7 of add1. The technical report de�nes

PROVING SECURITY: THE BACK-TRANSLATION 221.

procedures to perform this conversion in the general case.

5.6.3 Back-translating misbehaving contexts

Having de�ned a more general back-translation, this section brie�y investigates

how the back-translation handles alternative, misbehaving implementations of add1.

Notice that swapping out the implementation of add1 does not a�ect the back-

translated stub add1. These misbehaving target contexts will always get stuck; either

due to a failing guard statement or due to the operational semantics. Since these

alternative implementations of add1 and their back-translations have to satisfy a

speci�c equi-terminating instance of BT-m, their back-translation should get stuck as

well. The di�erent types of misbehavior are listed in Figure 5.26, and illustrated by

means of a possible implementation of the body of add1. They can be subdivided into

three main categories; functional misbehavior, out of bounds accesses and breaking

the restrictions of linearity. We now discuss these in order.

First, add1 functionally misbehaves when it does not satisfy one or more non-spatial

conditions that f expects add1 to uphold in its postcondition. This will cause the

failure of one or more guard statements in both add1 and add1comp, ensuring equi-

termination. In the concrete example from Figure 5.26, the variable 1 is decremented

Type of
Misbehavior

Example Body

Functional

int b;

b = m[0];

return (b − 1,m)

Out of bounds

int b;

b = m[1];

return (b + 1,m)

Breaching linearity:

• Storing

int b;

b = m[0];

int∗ n; n = m;

return (b + 1,m)}

• Duplicating

int b;

b = m[0];

(int∗,int∗) n; n = (m,m);

m = n.1;

return (b + 1,m)

Figure 5.26: Examples of di�erent classes of misbehaving implementations of add1.

222 LINEAR CAPABILITIES FOR FULLY ABSTRACT COMPILATION

instead of incremented, causing the guard statement on line 14 of add1 in Figure 5.24

and the corresponding guard on line 9 of add1comp in Figure 5.5 to fail. Similarly, the

example could have set the value of<[0] to 0 before returning, reduced the bounds

of< or tried to return a di�erent linear capability altogether, each time making a

di�erent pair of guard statements fail.

Secondly, out of bounds accesses happen when add1 reads from or writes to linear

capabilities outside their intended bounds. The example in Figure 5.26 contains a

read from index 1 of<, causing ArrayMut from Figure 5.4 to get stuck when fcomp

provides a value for < with a length of 1. On the source level, the second guard

statement on line 6 of add1bt in Figure 5.24 (now enforcing 0 ≤ 1 < <.2) would ensure

equi-termination.

Lastly, add1 can try to breach linearity guarantees and keep a copy of the linear pointer

<, either by trying to store it for later use, or by using multiple copies of< in one

statement, thereby trying to duplicate<.

The storing example in Figure 5.26 stores the value of< in = for later use. Currently,

= in this example is modeled as local state for simplicity reasons. However, it would

be more useful for a malicious context to store linear capabilities in context-global

state. Our target language model does not include such global state, but it could be

simulated by passing global state around using an additional parameter.

The third line of the example is back-translated to (int∗,int) n; n = m; m = (null,0).

The last statement emulates erasure and ensures that both the �rst guard statement

on line 10 of add1 and the corresponding guard in add1comp fail. Notice that, if the

postcondition of add1 did not require the return of the resource =, then the guard

statements on line 10 of add1 would not have been generated, and the storing example

would not have been problematic.

The duplication example in Figure 5.26 duplicates the value of< in =, before perhaps

storing it for later use or causing aliasing in the return value. The third line of

the example is back-translated to ((int∗,int),(int∗,int)) n; guard(false); n = (m,m); m =

(null,0). Remember that a guard(false)-statement is inserted when back-translating

code that attempts to duplicate a linear capability. The guard statement ensures

equi-termination, emulating the target-level semantics getting stuck.

5.6.4 Back-translating nested pointers

The back-translation in Section 5.6.2 did not yet support back-translating nested

pointer types. This section will �ll this gap, by de�ning universal contracts for back-

translated, nested pointers and investigating how they are used in statements. Notice

that back-translated nested pointers can never appear in the universal contracts of

PROVING SECURITY: THE BACK-TRANSLATION 223

back-translated boundary functions, since Section 5.4.4 required boundary function

contracts to solely contain array resources, which cannot result in nested pointers

after compilation. Although alleviating this restriction is future work, this currently

means that the conversion between range and array resources in back-translated

stubs does not need to be generalized in this section.

We now investigate what the universal contract for a back-translated pointer of target

type int∗∗ looks like. The general case can easily be derived from this, but contains

some additional uninteresting clutter, to do with resource names =. The gt∗-case of

the universal contracts from Section 5.6.2 contains a range resource

= : [exp.1 + 8 ↦→gs ; [8] | 0 ≤ 8 < length(;)]

that in turn contains array resources to access each individual element of the pointer

represented by exp. Unfortunately, this does not represent the permissions carried

by nested pointers. The reason is that ; [8] itself is not necessarily a permissionless

value with universal contract true, but rather a value of a type that carries its own

permissions, again described by a universal contract. In our case where gt∗ = int∗∗
and int∗∗

InvCompileType
((int∗, int)∗, int), the logical list element ; [8] represents

a value of type (int∗, int), that we should again de�ne an inner universal contract

for, using a range resource. The only di�erence between the outermost and inner

universal contracts was highlighted in Section 5.3.1 already; the nested universal

contracts do not require chunk names, as range resources are rei�ed as a whole during

compilation.

Given these observations, we can de�ne universal contracts for int∗∗-pointers as

follows:

De�nition 5.3 (univ_contr
int∗∗ (exp)).

univ_contr _innerint∗ (exp) , exp != (=D;;, 0) ?
∃; . ([exp.1 + 9 ↦→int ; [9] | 0 ≤ 9 < length(;)] ∗ length(;) == exp.2)

univ_contr
int∗∗ (exp) , exp != (=D;;, 0) ? ∃; . (= : [exp.1 + 8 ↦→(int∗,int) ; [8] ∗

univ_contr _innerint∗ (; [8]) | 0 ≤ 8 < length(;)] ∗ length(;) == exp.2)
given that = fresh

The interesting aspects have been highlighted; notice the nesting of the inner contracts

univ_contr _innerint∗ inside the outer contract univ_contr
int∗∗ and the single range

resource name =. This nested contract structure would not have been possible using

a single resource name = if universal contracts used array resources instead. This is

the motivation for the reformulation in terms of range resources in Section 5.6.2. The

above structure is easily generalized to arbitrary target types gt, by allowing inner

contracts to contain more deeply nested inner contracts.

224. LINEAR CAPABILITIES FOR FULLY ABSTRACT COMPILATION

Excerpt from Figure 5.24

5 int b;

6 guard(m != (null,0)); guard(0 ≤ 0 < m.2);

7 //@split m
chunk

[1]; //@�atten m
0

chunk
;

8 b = m.1[0];

9 //@collect m
0,�at

chunk
; //@join m

0

chunk
m

1+
chunk

;

Back-translation of int∗ b; b = m[0]

1 (int∗,int) b;

2 guard(m != (null,0)); guard(0 ≤ 0 < m.2)

3 //@split m
chunk

[1]; //@�atten m
0

chunk
;

4 b = m.1[0]; m.1[0] = null;

5 //@collect m
0,�at

chunk
; //@join m

0

chunk
m

1+
chunk

;

Figure 5.27: Back-translation of line 2 of add1 with and without nested pointers.

The back-translation of statements containing nested pointers happens very similarly

to the non-nested examples we saw before, except that more intricate emulation of

linearity in the source language is often required. To illustrate this, we rewrite line

2 of add1 in Figure 5.20 with< now of type int∗∗, obtaining int∗ b; b = m[0]. This

line gets back-translated to the code on the right in Figure 5.27. Notice how small

the di�erences with the original back-translation on the left are: only lines 1 and

4 di�er, because 1 is now a linear value itself, instead of a duplicable integer. The

proof is also very similar to the one from Figure 5.25, except that on line 10 of this

�gure, we would need to consume the inner universal contract for<.1 at index 0 to

derive that the new value of 1 satis�es the universal contract of its type int∗. Since

universal contracts are linear, we need the erasure of<.1[0] on line 4 of Figure 5.27

to re-establish the universal contract of<.1 at index 0 afterwards.

5.7 Simulation Relations

This section takes the black-box relations for correctness and security, ' and (, from

Section 5.5.4, and decomposes both in Sections 5.7.1 and 5.7.2 respectively. Formulated

di�erently, this section provides more details on how to prove the Adeqacy proof

step in Figures 5.17 and 5.18.

5.7.1 Decomposing R

We decompose ' �rst, since its decomposition is easier. The reason is that the proof

of Comp-m only involves compiled components, whereas BT-m requires simulating

both compiled and back-translated components.

To illustrate this section, we need a source program and its compilation. We assume

the source component from Figure 5.5 as our veri�ed source component ` s, and an

arbitrary veri�able source context (ℭs, id) that implements and exports add1, with

the main function main from Figure 5.19 as our main function id. Again, we ignore

SIMULATION RELATIONS 225

'comp StubsOK 'comp

add1` f

add1comp add1 add1
out

comp
fcomp

J` ℭsK J` sK

` ℭs s //@main = id

'

J` ℭsK J` sK //@main = id

is decomposed as followsThis statement

Figure 5.28: Visual representation that illustrates the decomposition of ' (inspired by

the schemata of Devriese et al. [45]).

the actual implementation of main and its compilation main in respectively ` s and

t to avoid uninteresting clutter. Including compiled components, we then have the

following (we repeat the same notational abuse from Section 5.6 where the names of

functions can be used to represent their entire implementation):

s = f //@import add1

(ℭs, id) = ((add1 //@export add1), main)
J` sK = fcomp add1

out

comp
//@import add1

(ℭt, id) = (J` ℭsK, id) = ((add1 add1comp //@export add1), main)

The lower two lines follow from the CompVerif rule of our compiler in Figure 5.11.

Note how we added the superscript out to the generated outcall stub add1
out

comp
, to

distinguish it from the compiled context function add1comp. The context function

add1 is the generated incall stub.

The statement we need to prove as part of Compatibility is shown on the left in

Figure 5.28. The right side of this �gure shows how this statement, once proven,

implies equi-termination of our source and target programs, or in other words,

proves Adeqacy. We now focus on explaining this right part.

When simulating our compiled code, a distinction has to be made between execution

within the individual source components s and ℭs, and execution when an outcall

stub is called or is being returned from, i.e. when a transition between s and ℭs (or

back) occurs. Notice that an outcall stub is always called �rst, and then execution

transitions to the incall stub of the component that is being called. When returning,

the order is inverted. In general, we will refer to this sequence of either two calls or

two returns as a component switch.

The reason' (and () is not a simulation relation itself (as we mentioned in Section 5.5.4)

226 LINEAR CAPABILITIES FOR FULLY ABSTRACT COMPILATION

is that ' does not consider states to be related during in- or outcalls, but rather consists

of two separate parts; an actual simulation relation 'comp and a connecting lemma

StubsOK to link up di�erent instances of 'comp across component switches.

First, ' consists of a simulation relation 'comp that relates source code to its

compilation and models how the compiler produces equi-terminating code in the

target language. The relation 'comp is solely used to reason within a single domain

of trust, i.e. within a single source and target component (hence the comp subscript)

during execution. The simulation halts right before a component switch occurs. More

concretely, the technical report proves that 'comp satis�es the following de�nition

of a forward, strong simulation relation (inspired by the de�nition of a Simulation

relation with multiple matching steps in Chlipala [34]):

De�nition 5.4 (source-to-target forward simulation relation). Given a relation

'comp relating source states st = 〈s, h〉 | ` c to target states st = 〈s, h〉 | c . If the

following 2 properties hold, then 'comp is a source-to-target forward simulation relation:

1. The �rst property is used to guarantee equi-termination in the proof ofAdequacy,

when we know that the source program terminates:

∀%,&, s, h, s, h, c. (〈s, h〉 | {%} return {&}) 'comp (〈s, h〉 | c) ⇒ c = return

It states that a terminated source statement (i.e. a single return statement) must

correspond to a terminated target statement.

2. The second property is the inductive part of the simulation relation:

∀ st, st, st′. st 'comp st ∧ st ↩→ st′⇒ ∃ st′. st ↩→+ st′ ∧ st′ 'comp st′

Note that this condition requires the target operational semantics ↩→ to perform

at least one step, denoted ↩→+. Remember that the source level makes use of the

lifted operational semantics.

Second, ' also requires proving a connecting lemma StubsOK. This lemma essentially

states that if the source and target states are related by 'comp before a component

switch, they will still be related after the switch, and 'comp can hence continue

simulating. Additionally, StubsOK does not allow target code to get stuck while

executing code in an in- or outcall stub, since source code does not have any stub

code to execute, and this would otherwise break equi-termination. Fortunately, ' only

relates correctly-behaving programs that live up to their contracts, and the guards

will never fail. The situation will be di�erent in the security direction, where we

consider potentially misbehaving contexts.

Skipping the execution of the main functions main and main that simply perform

set-up and pass control to f and fcomp, the right side of Figure 5.28 now ensures

equi-termination as follows; execution starts o� on the far right in the function f

(fcomp in the target), and 'comp simulates (using the second property in the above

SIMULATION RELATIONS 227

de�nition) until fcomp is about to perform an outcall to add1
out

comp
. At this point, the

StubsOK lemma is applied, guaranteeing us that we can bypass the stubs add1
out

comp
and

add1 in the middle and resume simulation under 'comp at the left side, in the function

add1 (add1comp in the target). Once add1 is about to return, the StubsOK lemma is

again applied to make the inverse transition back to f . When execution terminates in

main at the source level, the �rst property in the above de�nition is applied, thereby

proving that the target program has also terminated (in main in this case).

5.7.2 Decomposing S

Having expanded our toolbox in the previous section, we now study the decomposition

of the relation (. As stated before, this decomposition is slightly more involved, since

both compiled and back-translated components are present in the statement of BT-m.

To illustrate this section, we reuse the example described in the introduction of

Section 5.6 (including the main function de�ned there, the fact that we keep the main

functions implicit, and the abuse of notation for functions). To reiterate, we had the

following:

s = (f //@import add1)
(ℭt, id) = ((add1 //@export add1), main)

J` sK = fcomp add1comp //@import add1

(ℭs, id) = (〈〈ℭt〉〉, id) = ((add1 add1bt //@export add1), main)

Figure 5.29 is similar to Figure 5.28, showing the Compatibility statement on the

left and how it implies adequacy on the right. We now focus on explaining this right

part.

In this case, we need to make a distinction between not two, but four di�erent modes

of execution. First o�, there are two di�erent regular, intra-component modes of

execution; either execution is happening within the source component s and its

compilation, or within the component ℭt and its back-translation. Furthermore, two

di�erent transitions can now be made; either s performs an outcall to the context, or

the context performs an incall to s. Since f is not an exported function, this second

scenario cannot occur in our simple example. Unlike in Section 5.7.1, incalls and

outcalls do not occur in pairs, since the target context does not result from compilation

and hence does not generate its own stubs. Another distinction with Section 5.7.1 is

that in- and outcalls now execute code in both the source and target languages, since

stubs such as add1comp are back-translated into the source context.

Again, (as introduced in Section 5.5.4 was not really a simulation relation, but rather

consisted of the four aforementioned parts: two simulation relations 'comp and (comp

228 LINEAR CAPABILITIES FOR FULLY ABSTRACT COMPILATION

(comp

Incall,

Outcall
'comp

add1bt` add1 f

〈〈ℭt〉〉

add1 add1comp fcomp

J` sK

` 〈〈ℭt〉〉 s //@main = id

(

ℭt J` sK //@main = id

is decomposed as followsThis statement

Figure 5.29: Visual representation that illustrates the decomposition of ((inspired by

the schemata of Devriese et al. [45]).

(with 'comp as de�ned before) and two connecting lemmas Incall and Outcall.

First, (consists of two di�erent simulation relations 'comp and (comp, both used to

reason within a single domain of trust, i.e. halting before a component switch. The

relation 'comp, discussed in the previous section, is used to reason about code and

its compilation. On the other hand, the relation (comp relates target code to its back-

translation, and models how the back-translation produces equi-terminating code in

the source language.

Since (comp performs a target-to-source simulation of back-translated code in terms of

target code, whereas 'comp performed source-to-target simulation of compiled code

in terms of the original source code, the technical report de�nes a second, di�erent

notion of forward, strong simulation relation. The relation (comp is then proven to

satisfy this notion. The second version of simulation we use is de�ned as follows

(again inspired by the de�nition of a Simulation relation with multiple matching steps

in Chlipala [34]):

De�nition 5.5 (target-to-source forward simulation relation). Given a relation

(comp relating source states st = 〈s, h〉 | ` c to target states st = 〈s, h〉 | c . If the

following 2 properties hold, then (comp is a target-to-source forward simulation relation:

1. The �rst property is used to guarantee equi-termination in the proof ofAdequacy,

when we know that the target program terminates:

∀ s, h, c, s, h. (〈s, h〉 | c) (comp (〈s, h〉 | return) ⇒ ∃ %,&. c = {%} return {&}

It states that a terminated target statement (i.e. a single return statement) must

correspond to some valid proof of a terminated source statement.

SIMULATION RELATIONS 229

2. The second property is the inductive part of the simulation relation:

∀ st, st, st′. st (comp st ∧ st ↩→ st′⇒ ∃ st′. st ↩→+ st′ ∧ st′ (comp st′

Note that this condition again requires the source operational semantics ↩→ to

perform at least one step, denoted ↩→+. Remember that the source level makes use

of the lifted operational semantics.

Second, (also requires proving two connecting lemmas Incall and Outcall, used

for incalls and outcalls respectively. The Outcall lemma states that if 'comp holds

in the veri�ed component s, we can perform an outcall to the context, and after

executing the outcall stubs in both source and target language, (comp will hold in

the context. Similarly, when returning from the outcall, 'comp will still hold in s. A

crucial di�erence with last section, is that execution is now allowed to get stuck in the

outcall stubs, as long as it gets stuck in both source and target language, preserving

equi-termination. The Incall lemma makes similar claims, but for incalls.

The right side of Figure 5.29 illustrates the decomposition of (. Interestingly, note how

add1comp is part of the compiled, veri�ed component in the target language, whereas

its back-translation add1 is part of the source context. Equi-termination is proved as

follows (again ignoring the execution of the main functions main and main in our

example); execution starts o� on the far right in the function f (fcomp in the target),

and 'comp simulates (similarly to what we saw in the previous subsection) until f and

fcomp are about to perform an outcall to the pair of outcall stubs add1 and add1comp.

In order to be able to apply the Outcall lemma here (and similarly for Incall), both

the source and target code must reach their respective outcalls to add1 and add1comp

simultaneously during simulation (and similarly, return from them simultaneously).

This follows easily from the de�nitions of 'comp and (comp in the technical report.

Consequently, the Outcall lemma can be applied, guaranteeing that either execution

gets stuck in both stubs, or we can bypass the stubs in the middle and resume

simulation under (comp at the left side, in the function add1bt (add1 in the target).

Once add1bt is about to return, the Outcall lemma is again applied to make the inverse

transition back to f .

Proof Conclusion In the previous Sections 5.5, 5.6 and 5.7, we discussed the main

intuitions behind the full abstraction proof of our compiler, including the back-translation,

in an example-driven way. These sections should provide the reader with su�cient

anchoring points to understand the full proof in the aforementioned technical report

[164], in case they are interested in the more formal and detailed approach.

230 LINEAR CAPABILITIES FOR FULLY ABSTRACT COMPILATION

5.8 Discussion and future work

This section �rst provides more detail on two challenges in making our compiler more

broadly applicable, and subsequently discusses the bene�ts of semantically deriving

our separation logic rules, instead of stating them syntactically.

5.8.1 Gradual Verification

Function signatures are modi�ed by our compiler, as apparent from its de�nition in

Section 5.4: additional parameters and/or return values that represent the memory

resources that are transferred are added. Additional e�ort is hence still required by

third-party developers to produce code that follows our target-level calling convention.

Two scenarios are possible.

First of all, a developer could write veri�ed code themselves and compile it using our

compiler, gaining the same secure compilation guarantees that our compiled code

does. Although this could be realistic in some settings, it goes against our original

goal of allowing interaction of our compiled code with arbitrary, non-veri�ed attacker

code.

Secondly, the developer could write unveri�ed code in the target language. This code

must then be written to call and be called with the modi�ed function signatures. This

might be realistic for applications like the video player with codec plugin described in

the introduction. However, we would also like to support a form of gradual veri�cation,

where we can take a large, unveri�ed codebase, verify the critical parts and securely

combine them with the rest. This type of use case is currently only supported when

boundary functions solely use integer arguments and return values and do not receive

or return memory resources, since the declaration of such functions is not altered

during compilation. Even with this strong restriction, our strong security results

might still be useful in some scenarios.

We plan to explore two ideas for extending our approach to large, partially-veri�ed

codebases: either based on the use of an automatic veri�er on the unveri�ed code,

like Smallfoot [21], Space Invader [48, 20], Infer [27] or SLAyer [22], or on a kind

of universal contract for unveri�ed code in terms of a pure predicate similar to the

lowval predicate of Swasey et al. [152]. Such an approach could be valuable in practice,

as many large code bases contain small, isolated components whose security is of

high value and for which the veri�cation e�ort might be realistic and cost-e�ective.

DISCUSSION AND FUTURE WORK 231

5.8.2 Extending the Source Language

A second direction we want to expand our work in, is to extend the compiler itself.

As mentioned in the introduction, this paper contains but the �rst steps towards

a practically applicable secure compilation scheme. Notably, the source language

only consisted of simple resources in the separation logic, had a simple type system

and featured restrictions on the form of boundary contracts. We now discuss some

ideas for extensions in these three directions in order. We do believe all suggested

extensions to be within reach.

Resources In this paper, we support only two kinds of spatial predicates, describing

array and range resources. We believe our approach can be extended to a more

general form of predicates, by relying on a notion of capability sealing. Support

for such predicates would also allow us to formalize memory de-allocation, i.e., a

free-statement. The di�cult part in supporting free is that the authority to deallocate

a block of memory needs to be represented separately from the authority to access

the memory (i.e. our array points-to predicate). This is because the latter can be

subdivided, but the former should not be, since most memory allocators rely on the

entire block being deallocated together. To accommodate this, separation logics like

VeriFast represent the authority to deallocate memory with a special malloc resource

abstract predicate. We could do the same and compile this resource in the same way

as the discussed general predicates.

Type system As mentioned in the introduction, the most obvious feature missing

from the source language is support for recursive data types, e.g. in the form of C-like

structs. We believe the type system will scale in parallel with the introduction of

resources to represent more complex permissions, e.g. struct types would be introduced

in parallel with the general predicate resources discussed above. The general resource

rei�cation principles demonstrated in the current submission would remain the same.

Boundary contract restrictions Loosening boundary contract restrictions

corresponds to loosening the constraints on calls to untrusted code. It seems possible

to allow non-�xed-length array resources and range resources to appear in boundary

contracts, by reifying (nested) foreach loops in our stubs, given some proof changes.

Rei�cation of foreach loops could also be used to allow quanti�ers over �nite domains

in boundary contracts (although e�ciency remains an open question here).

Supporting a more intricate logic internally Another thing we intend to

investigate, is whether we can support a richer logic within trusted components,

232 LINEAR CAPABILITIES FOR FULLY ABSTRACT COMPILATION

while retaining the current, more limited expressivity in the boundary contracts.

For example, the popular Iris separation logic [80] supports invariants and custom

ghost state, which we might want to use internally, but not share with the adversary

through boundary functions, as this would likely require us to reify all involved

logical constructs (e.g. masks and view shifts). One idea is to introduce a second

type of internal points-to chunk that cannot be shared with untrusted code, nor

mentioned in boundary contracts. This new type of points-to chunk would enjoy the

full expressivity of the logic, but could only be used privately, whereas the pre-existing

points-to chunk would only be usable in logical expressions of limited expressivity

(e.g. it could not appear inside invariants), but could be mentioned in boundary

contracts. Separation logic state corresponding to internal points-to chunks might

then be safely erasable by the compiler, at the cost of copying internal values over

from internal non-linear capabilities to external linear capabilities when internal state

needs to be shared with the adversary. The viability of this approach remains to be

investigated.

5.8.3 Semantic Separation Logic Rules

The separation logic rules presented in Section 5.4 are syntactic in nature; they are

presented as axioms in the logic, without any formal justi�cation. In other words, they

are assumed to be part of the trusted computing base (TCB) of the source language. To

decrease the TCB and make our approach more foundational, it would be worthwhile

to lift these rules out of the TCB. There are two ways to do so:

• Perform a proof of adequacy for our current rules, proving that the syntactic

rules are adequate with respect to the operational semantics.

• Derive the rules semantically from the operational semantics, on top of some

appropriate program logic. Preferably, this program logic would contain a built-

in proof of adequacy for any Hoare triples derived this way. For example, the

Iris program logic framework [79, 80, 89] (and corresponding proof assistant,

implemented in Coq, in case we mechanize our results) would likely be a good

�t to perform these derivations in, as it has proofs of adequacy for its weakest

precondition judgment.

The advantage of deriving rules semantically over our current approach seems to

be two-fold; it would be possible to derive a back-translation that does not have to

be syntactic in nature, and the Concretization phase in Figure 5.22 is likely not

required. We brie�y discuss both advantages in the following two paragraphs.

Because of the syntactic nature of our separation logic rules, it is currently impossible

to “look under the hood" and derive what we call a semantic back-translation. By

semantic back-translation, we mean a back-translation where not each individual

RELATED WORK 233

back-translated statement is proven to preserve universal contracts by a derived

separation logic rule, but rather, it su�ces to prove that the overall back-translated

code respects universal contracts (similar to the proofs of semantic type safety in

RustBelt [78] or the semantic proofs of wrapper contracts that Sammler et al. [136]

use). In this setting, we would still have some notion of “universal contract", but now

de�ned in terms of some underlying base logic. It is not unlikely, however, that it

would still be easiest to derive semantic veri�cation rules for individual code blocks

based on universal contracts, as we currently do, rather than try to construct an

end-to-end proof of a function’s universal contract directly. This would need to be

investigated further.

As for the necessity of the Concretization phase in Figure 5.22; this too has to

do with the fact that our separation logic rules are derived syntactically. What we

illustrate in Figure 5.22 is essentially a syntactic derivation of a proof rule for the back-

translation of each type of target statement that operates on the shapes of resources

(i.e. universal contracts), instead of using some concrete pre- and postcondition

like the rules we presented in Section 5.4. This new, universal rule is derived by

proving that each back-translated block can be proven to respect a contract that

consists of universal contracts of local variables. If our rules were to be derived

semantically, it would be possible to derive these rules in a more direct way, without

going through the concrete syntactic-style rules. It seems likely that we would be

able to use information from the operational semantics themselves, instead of using

the explicit “guard" statements in the Concretization phase, to derive rules that

operate on universal contracts. This would reduce the Concretization phase to only

inserting a “guard(false)" statement to simulate linearity where necessary.

5.9 Related work

Our work builds on three research lines with a long and rich history: capability

machines, separation logic and full abstraction. It is not feasible to give complete

surveys of these three research lines here, so we just provide some pointers to key

papers. For an excellent introduction to separation logic and references, we refer to

O’Hearn [116].

Capability machines have been studied for decades. Levy [94] provides a good survey

of early systems. With the increased need for security and �ne-grained protection,

there is a renewed interest in these machines, or in generalizations where the hardware

can track even more metadata. Two in�uential recent systems are the CHERI system

developed in Cambridge [176, 33], and the SAFE machine developed within the

CRASH/SAFE project [87, 41, 40]. Linear capabilities have already been implemented

in the latter. Skorstengaard et al. [144] have used them in a secure calling convention

234 LINEAR CAPABILITIES FOR FULLY ABSTRACT COMPILATION

StkTokens, and an early design for their implementation in CHERI is in the latest

CHERI ISA Spec [175].

To formalize secure compilation, we use the property of fully abstract compilation

[1], like many previous results [e.g., 2, 57, 121, 108, 45, 144]. We refer to Patrignani

et al. [122] for an overview of the �eld. Recent research has investigated other formal

characterisations of secure compilation: robust safety preservation [152, 124], trace-

preserving compilation [125] and robust hyperproperty preservation [60]. Although

we only prove fully abstract compilation, it is important to understand that most of

our proof consists of the construction of the back-translation and its properties, and

those parts could be immediately reused to prove many of the alternative properties.

The fact that our back-translation depends just on the context, not on the compiled

program, suggests that our compiler actually also satis�es the property that Garg

et al. [60] call Relational Hyperproperty Preservation (RrHP). Technically, our

backtranslation and its use of universal contracts is reminiscent of the use of universal

types and universal embeddings in previous work [108, 45].

Our work is also related to the body of work on contract enforcement, where the

enforcement of higher-order contracts, and the assignment of blame on contract

violations has received signi�cant attention. A recent Functional Pearl [46] provides

an in-depth discussion of this line of work. Bader et al. [16] recently demonstrated

how dynamic checking of Hoare logic contracts can be obtained using the general

AGT framework for gradual typing [59].

Directly related to our work are other approaches to dynamic checking of separation

logic. The main challenge for such dynamic techniques is the enforcement of framing.

Nguyen et al. [109] use a heap coloring technique and run time checks at every method

invocation and �eld access in unveri�ed code to check framing. The performance

overhead of this approach is substantial, and it is limited to safe languages such as Java.

Agten et al. [7] were the �rst to propose a contract checking approach for C, but, as we

discussed in the Introduction, their approach is not fully abstract, it only guarantees

integrity: safety properties expressed in separation logic assertions within a veri�ed

module are guaranteed to hold at run time in the presence of an unveri�ed context,

but con�dentiality properties are lost. Building further on Agten et al. [7]’s work, van

Ginkel et al. [156] developed a separation-logic-based speci�cation language for Intel

SGX enclaves, that allows the automatic generation of contract checking functions

at the enclave’s trust boundaries. The contract checking approach of van Ginkel

et al. [156] can be translated to the capability domain as a coarse-grained approach

where a single CHERI compartment would be used to encapsulate one trust domain,

rather than having �ne-grained linear capabilities. This will work best for simple

component interfaces that few complex data structures pass through, as any pointers

passed through the interface need to be deep-copied.

CONCLUSION 235

Lastly, the notion of universal contracts introduced here has implicitly been used

by other papers to describe the most general constraints that arbitrary adversarial

code satis�es. More concretely, Skorstengaard et al. [142, 144] encode the guarantees

obtained when executing adversarial assembly code in the fundamental theorem

of their logical relations. The semantic type systems de�ned by Jung et al. [78]

and Sammler et al. [136] are similarly used to specify the behavior of arbitrary

untrusted code. The lowval predicate, used to describe safely shareable values,

de�ned by Swasey et al. [152], again serves a similar purpose. More generally, the

guarantees obtained when syntactically restricting adversaries can be seen as an

instance of parametricity. Note that parametricity should be interpreted broadly here

to refer to the use of logical relations to describe semantic properties that follow from

syntactic restrictions in the language. This includes not just System F’s parametric

polymorphism [130], but also many other semantic properties like sequentiality in

PCF [141], capability safety in object capability languages [142, 152] or purity in

dependently-typed languages with e�ects [126].

5.10 Conclusion

We have explored a fundamentally new approach for the dynamic checking of

separation logic contracts. Our approach relies on hardware support for linear

capabilities, a form of unforgeable and non-copyable memory pointers. A proof-

directed compiler represents separation logic memory resources as linear capabilities

and relies on the information in the proof to compile source code pointer dereferences

to dereferences of the correct linear capability. We formalized and proved the

correctness of our approach by showing that our compiler from veri�ed source

code to unveri�ed target code is fully abstract.

Acknowledgements

This research is partially funded by the Research Fund KU Leuven, by the Research

Foundation - Flanders (FWO) under grant number G0G0519N and by the Air Force

O�ce of Scienti�c Research under award number FA9550-21-1-0054. Thomas Van

Strydonck holds a PhD Fellowship of the Research Foundation - Flanders (FWO).

Chapter 6

Future Work and Conclusions

I believe that capabilities represent a next step in the security arms race between

attackers and defenders, and will raise the security bar at the lowest levels of

abstraction. They complement the advantages of process-based isolation, and have the

potential to relieve the process abstraction of its role as a clunky security primitive in

applications where more �ne-grained security is desired. In a world where code bases

increase in size and software interaction and networking consistently become more

important, protection primitives that provide �ne-grained compartmentalization and

spatial memory safety at a low performance overhead steadily grow more appealing.

The timing seems right, and the CHERI machine o�ers a seemingly low-overhead

implementation of hardware capabilities, avoiding the complexity and ine�ciency

issues that prevented adoption of capability architectures in the 70s [181].

That being said, the practical applicability of capabilities remains to be thoroughly

tested. The CHERI project has already contributed an impressive software stack as

part of the research endeavors, but industry has not been able to experiment with

capabilities yet. Hence, the interest from multiple hardware vendors, led by Arm and

their Morello project, is a big step forward towards the validation and (hopefully)

adoption of capabilities. These projects have the potential to break the cycle of chicken

and egg that plagues hardware primitives and tooling based on these new primitives:

by providing a hardware platform to code for and by involving software giants in the

project, capabilities will receive the shot at validation they missed out on historically.

Along with the practical adoption, capabilities present many exciting opportunities

for formal research, a fact that this PhD thesis aims to exemplify. The explicit

representation of authority makes capabilities very �exible as a security primitive, but

does render it all the more important and di�cult to ensure that code manipulating

them executes correctly and securely. We experienced this trade-o� �rst hand while

237

238 FUTURE WORK AND CONCLUSIONS

designing the secure interrupts and the local attestation mechanism in Chapter 4, and

while developing code to use these features. In conclusion, capabilities are a prime

candidate for formalization of security guarantees.

Within this formal realm, the universal contract approach we demonstrated seems

particularly promising, since it permits us to reason about both trusted and untrusted

code, and their interaction across trust domains. This allows deriving whole-

system guarantees while only verifying a small, security-critical part of the system,

as Chapter 3 illustrated. If performed on a real-world capability architecture, this

would immediately result in hard guarantees that only require minimal veri�cation

e�ort. Through secure compilation techniques, the level at which the programming

and reasoning occurs can be lifted from tedious, low-level assembly to more abstract

source languages. The end goal would be to obtain whole-system security guarantees

for a realistic capability architecture, while only requiring veri�cation of a smaller

piece of relatively high-level security-critical source code.

In the rest of this section, we summarize our accomplishments in these two research

directions that were also highlighted in the introduction: formal reasoning about

capability machines and secure compilation to capability back-ends. We take a step

back to draw conclusions for each, and discuss the future prospects of the work. We

do not repeat conclusions for individual chapters, and attempt to focus on the bigger

picture. Section 6.1 concludes the work on formal reasoning about capability machines,

and focuses on scaling universal contracts to more realistic architectures with complex

features. Special attention goes to formal reasoning about enclaved execution, as this

ongoing work aims to formally underpin the work presented in Chapter 4. Section 6.2

then discusses the chapter on secure compilation to capability architectures, and

ponders the types of source languages one might want to compile securely to capability

machines. Finally, Section 6.3 provides some high-level perspectives as a parting

conclusion to the thesis.

6.1 Formal reasoning about capability machines

Chapters 2 and 3 illustrated the Cerise framework for formal reasoning about

capability architectures, and showed how it can be extended to accommodate new

features (MMIO in this case) with relatively limited e�ort. Chapter 4 introduced

the conceptual building blocks to implement enclaved execution on a capability

architecture, but did not yet formalize the security arguments that were presented.

Section 6.1.1 below will discuss the addition of enclaved execution to the Cerise model

in more detail. In other work I was involved in that was not included in this thesis,

Georges et al. [62] have also used an extension of Cerise to reason about stack safety,

to wit, well-bracketed control �ow and local state encapsulation.

FORMAL REASONING ABOUT CAPABILITY MACHINES 239

When reasoning formally about capability code, we are both interested in developing

a program logic to reason about concrete code, as well as developing a methodology

for reasoning about unknown, untrusted code. To do the latter, the Cerise model

and its extensions make heavy use of the previously described universal contract

methodology: a security contract for untrusted code is de�ned, that semantically

captures an upper limit of the behavior that untrusted code might exhibit. As the

name suggests, this contract holds over arbitrary untrusted code, and in the case of a

capability machine, is essentially a speci�cation of the capability safety guaranteed

by the ISA.

Our current work has mostly explored novel formalizations of universal contracts that

capture di�erent notions of capability-based protection, and ways of reasoning about

concrete code interacting with these contracts. To do this, concrete reasoning has to

interface with the meta-theorems (such as the fundamental theorem) proven about

the capability ISA. One thing we have not yet focused on is scaling this methodology;

the end goal of this research is to extend the current approach to realistic (capability)

architectures. We now expand upon the discussion from Section 2.9 and discuss three

di�erent directions of future research required to achieve this goal: proof automation,

using more realistic models, and support for additional features. Extending the

methodology to more abstract source languages is a fourth type of scaling, which is

discussed in the next section.

Proof automation

Our models so far consisted of simple capability machines with concise operational

semantics (on the order of dozens of instructions). In these models, performing most of

the reasoning manually is feasible, though already laborious. That being so, we have

developed a naive symbolic executor in Coq for the veri�cation of straight-line (no

jumps), concrete machine code. This cuts down on a lot of reasoning, but still requires

the triples for single machine instructions to be derived manually. To scale our models

to realistic ISAs, we will need automation both at the level of concrete (potentially

non-straight-line) code, as well as in the derivation of triples for instructions. The

goal of automation is to cut down on the tedious parts of reasoning, to allow focusing

attention on the inherently di�cult aspects that require human intervention.

Additionally, real-life ISAs undergo frequent changes, both in the design phase as

e.g. Bauereiss et al. [18] report for the Morello project, as well as when instructions

or features are added. Automation is hence necessitated by maintainability; it helps

minimize the e�ort required to reprove formal results under such changes. As

noted by Huyghebaert et al. [66], maintainable universal contracts could be used as

speci�cations for the security guarantees o�ered by ISAs, as a supplement to the

240 FUTURE WORK AND CONCLUSIONS

formal speci�cation of the ISA semantics. This would improve over the state of the

art, where security guarantees are usually speci�ed in prose.

In the literature, multiple projects have already started investigating solutions to

di�erent facets of automated reasoning about ISAs. First, the aforementioned works of

Nienhuis et al. [110] and Bauereiss et al. [18] illustrate di�erent degrees of automation

when proving intra-protection-domain monotonicity of capability authority on the

full-scale Sail models (after extraction to Isabelle/HOL [111]) of respectively CHERI-

MIPS (6k LoS) and ARM Morello (62k LoS in ASL, Arm’s Architecture Speci�cation

Language, before extraction to Sail). In both cases, their proofs make use of an abstract

semantics, which de�nes traces of interactions with memory and registers that satisfy

some security properties. Each instruction is proven to satisfy such an abstract trace,

and the security properties that hold over the abstract trace are in turn proven to imply

capability monotonicity, completing the proof. Second, the Katamaran tool de�nes a

framework for the generation of sound symbolic-execution-based veri�ers [84, 83].

This methodology has been instantiated to Sail
1
, and its automation is illustrated on

a simple capability machine ISA called MinimalCaps [66]. Although this approach is

yet to be illustrated on a full-scale ISA, it shows promise both for the veri�cation of

capability safety (in the style of the fundamental theorems shown in this thesis) as

demonstrated by MinimalCaps, as well as for the veri�cation of concrete code. Lastly,

Islaris is a tool that combines the Isla symbolic executor for Sail [15] with automated

reasoning about execution traces in Iris to verify concrete Armv8-A and RISC-V

machine code running on top of the full Sail model, including system features [137].

Using more realistic models

All of these approaches aim for maximally realistic models: they avoid de�ning new,

bespoke models for the operational semantics, since these would take a lot of time

to craft, and because their validity with respect to the actual processor speci�cation

cannot easily be established. Instead, they start from complete, authoritative models

de�ned in the Sail language, that have themselves been validated against the

architectures they model. For example, Bauereiss et al. [18] report that the ASL-

to-Sail translation of the Morello model was validated by comparing Sail’s generated

C simulator to an internal Arm test suite. Conversely, Isla was used to generate

additional test cases from the Sail speci�cation automatically. As another example, the

CHERI-RISC-V model internally makes use of a RISC-V model that has been adopted

by the RISC-V Foundation as the o�cial, formal RISC-V speci�cation that other

implementations are compared against [133]. Additionally, the emulators resulting

from these Sail models have been used to successfully boot various operating systems,

as a practical form of validation [14]. It would hence make sense for the Cerise

1
At the moment, speci�cations are written in µSail, a deep embedding in Coq of a subset of Sail, but

the goal is to perform automatic extraction from Sail in the future.

FORMAL REASONING ABOUT CAPABILITY MACHINES 241

approach to be applied to one of the authoritative Sail models in the future, possibly

through one of the automation methodologies outlined above.

Supporting missing features

As a last future work track, we would like to explore the formalization of missing

features in the Cerise model. Some of the real-world features that we have not

explored are virtual memory and address translation, Direct Memory Access (DMA),

interrupts and concurrency (including di�erent memory models). Simply trying to

implement some of these features in a capability setting is already challenging on its

own; for example, the CHERI ISA spec has not yet settled on the best way to combine

capabilities and DMA while staying true to the capability philosophy, and the same

holds true for capabilities and virtual memory [175]. Once we decide on a satisfactory

capability-style design, we can attempt to formally integrate these features into the

Cerise model. As part of this last track, we are currently exploring di�erent ways to

model the enclaved execution design from Chapter 4 in the formalism of Cerise. The

following subsection discusses the high-level concepts underlying this work.

In parallel, we would also like to test the applicability of the Cerise methodology to

di�erent architectures and security primitives. For example, in ongoing work Sander

Huyghebaert and collaborators are formalizing the guarantees of RISC-V’s PMP

(Physical Memory Protection) feature as a universal contract, and using Katamaran

to prove the fundamental theorem.

6.1.1 A formal account of enclaved execution

The Cerise work allowed reasoning about spatial memory safety and compartmental-

ization, but in order to reason about enclaved execution, we need to extend it with

support for secure communication, attestation (both local and remote) and temporal

memory safety. The latter is required in order to guarantee unique ownership of

the enclave’s memory footprint at the start of execution. The following subsections

sketch the high-level ideas behind all three required extensions.

Secure communication

Sealed capabilities can be added to Cerise to symbolically encrypt local communication.

Since encryption is inherently symbolic, we do not need to make any simplifying

assumptions about the cryptographic primitives involved in local attestation. Hence,

the unknown code running on the capability machine automatically corresponds to a

standard Dolev-Yao attacker [49]. To model sealed capabilities, we draw inspiration

242 FUTURE WORK AND CONCLUSIONS

from the work of Sumii and Pierce [150] on binary logical relations for a cryptographic

lambda calculus. They de�ned a relational environment i ; a mapping from individual

keys (otypes in our case) to relations over sealed values. All values sealed with a

key : are required to be related by i (:), ensuring that valid functions cannot unseal

non-related values.

We consider the unary case �rst, but extension to the binary case should be reasonably

straightforward. In our case, each individual otype can be linked to a predicate

% : Cap→ iProp (with iProp the universe of Iris propositions) over machine words,

that speci�es what words can be sealed with that speci�c seal. Consequently, any

capabilities that are sealed with this seal and later unsealed, are required to uphold

% . For example, assume that for an enclave’s signing seal o_sign it holds that %sign ,

_2. 2 = (?, 1, 1 + 1, 1) ∗ ∃=. 1 ↦→ 2 · = , i.e. all signed capabilities point to a single,

even integer value in their range. Then, receiving a capability signed with o_sign

allows one to derive that its single-value contents must be even. A notion of causality

between messages can be embedded into these predicates by using e.g. nonces. To

link o_sign to the correct enclave’s %sign, reasoning about attestation will be required,

as we discuss in the next subsection.

To encrypt remote communication, more standard cryptographic primitives must

be added to Cerise. Since the remote case was not yet considered in Chapter 4, the

design has to �rst be extended to allow linking ownership of the private parts of

otypes to access to cryptographic keys for remote communication. Once this has

been achieved, similar predicates can be de�ned that constrain the values encrypted

or signed by speci�c cryptographic keys. Assumptions will need to be made to map

the cryptographic primitives onto a symbolic model of cryptography, or alternatively,

a probabilistic model in the style of Abadi and Plotkin [2] will need to be considered.

The MMIO-infrastructure developed in Chapter 3 can likely be reused to verify that

messages that are signed with a speci�c cryptographic key and sent onto the network,

satisfy a certain desired protocol. The fact that properties can be enforced over

observable e�ects makes the remote case ultimately more useful than the local one,

but both cases seem to be similar on a technical level.

A�estation

From an abstract point of view, attestation enables the attesting party (either a local

or remote entity) to know that the attested code will behave in a predictable, desired

way during future interactions. As is often the case in the literature, there are two

di�erent methods to phrase this property: by explicitly stating what the set of desired

behaviors is in terms of a protocol, and proving that the admitted behaviors satisfy

the protocol, or by relating the behavior of the enclaved code to code that is known to

admit correct behavior. This last technique is essentially a form of secure compilation.

FORMAL REASONING ABOUT CAPABILITY MACHINES 243

Whichever approach we choose, to the best of our knowledge, no whole-system proofs

about attestation have been realized at the level of the machine’s semantics.

For the protocol-based approach, the otype predicates we described in the last section

can be used as protocol speci�cations during local attestation. Protocols %sign and

%enc can be attached to respectively the signing and encryption seal of an enclave.

Local attestation then aims to verify that a given otype > indeed corresponds to the

signing or encryption otype of an enclave of interest, such that %sign and %enc can be

used to reason about capabilities sealed with > . This link can be made, because the

attesting party knows the enclave identity for the enclave, and can use the EStoreId
instruction to check whether > matches the expected identity. If a match is found and

if the hash function is assumed to be collision-free, then the enclave must have been

initialized correctly, and the predicates %sign and %enc can be used in reasoning. Of

course, the enclave’s concrete code will have to be proven to always uphold %sign and

%enc for its signing and encryption seal, and the fundamental theorem will need to

reason about the safety of enclaves that respect these predicates.

For the remote case, additional machinery is required: as mentioned in the last

section, MMIO traces can be reused to specify enclave behavior. The rest of the

reasoning should then be quite similar to the local case, where certain protocols

can be connected to cryptographic keys for remote communication. All messages

sent using this key need to satisfy the protocol. In other words, any code that has

access to the cryptographic key (i.e. the code that has access to the private parts of

the sealed capabilities) needs to be veri�ed to uphold this protocol. Again, under

the no-collision-assumption, this allows us to derive information about the correct

initialization and future communication of an enclave, once remote attestation is

successful.

We now brie�y consider the secure compilation approach. In this space, Noorman

et al. [115] have de�ned a property called authentic execution and provided a semi-

formal proof sketch that their applications running on the Sancus TEE respect a

unary version of this property. Concretely, they require the input-output behavior of

enclaved, compiled MSP430 code to contextually re�ne the input-output behavior of

the original C source code. All traces observed in practical execution should already

have been observable while running the deployed code in a setting where no notion of

enclaves or a network attacker exists. Their proof does consider replay and reordering

attacks on messages sent between di�erent enclaves, as part of a Dolev-Yao attacker

model, but starts from the assumption that attestation has happened successfully and

assumes a correct compiler. We would like to go one step further, and reason about

the attestation process itself, and how one can reconstruct information about the

executing code from successful attestation, as well as mechanize the whole proof.

To avoid the complexities of working with C code, and the orthogonal aspects involved

in proving the compilation secure, another option is to de�ne overlay semantics in

244 FUTURE WORK AND CONCLUSIONS

the style of Skorstengaard et al. [144]; a second reinterpreted semantics for the same

machine, that inherently provides the properties we want the secure compiler to

preserve. This has the advantage that the source code stays close to the machine level,

while the resulting compiler might still be reusable in a future secure compilation

chain. In our case, the source language should o�er inherently secure notions of

enclaves, enclave identity and attestation.

Temporal memory safety

As mentioned in Chapter 4, at least two di�erent approaches exist that guarantee

unique ownership of memory capabilities at enclave initialization time: a memory

sweep to �nd overlapping capabilities, and the use of linear (non-duplicable)

capabilities. The literature provides inspiration on how to formalize the reasoning in

either approach.

For the memory sweep, we draw inspiration from the work of Hur and Dreyer [65].

They have illustrated how one can reason about garbage collection in the context of

logical relations by employing a logical memory layer on top of the physical memory,

that is una�ected by garbage collection. In the logical memory, pointers are never

deallocated or moved, preserving monotonicity of the logical relations. A mapping

between logical and physical memory is tracked, along with a notion of satisfaction

of a physical memory by a logical view of it. Under the assumption that the garbage

collector respects this satisfaction relation, one can continue to reason about code

using abstract, logical addresses, even in the presence of periodic garbage collector

activations.

The idea would be to model our memory sweep in a similar fashion, where the

mapping from logical to physical addresses is the identity (since we will not be

moving capabilities in memory), except for a version number that tracks which

logical version each physical address is currently at. Each logical address contains an

additional version number to indicate what version it is, and an invariant is enforced

that guarantees that only the current version will ever be reachable through separation

logic resources for the logical registers. When a new enclave is initialized and the

memory sweep �nishes successfully, meaning that no aliases of the enclave’s memory

footprint are in circulation, then the version of the logical address is increased, and

new logical separation logic resources can be created for said memory. Since we

know the memory sweep was successful and the old physical memory was hence

unreachable (apart from the copy used to initiate the memory sweep), this operation

will respect the correspondence between logical and physical memory.

For the alternative approach with linear capabilities, we can draw inspiration from

the StkTokens work of Skorstengaard et al. [144]. Although this development has not

been mechanized, it provides a logical relation for a capability machine containing

SECURE COMPILATION 245

linear capabilities. It seems likely that modeling linear capabilities in the Cerise model

would be more concise than the formalization of Skorstengaard et al., since linearity

is easily modeled in a separation logic, and Iris helps avoid many of the technical

details involved in the de�nition of Worlds. At a technical level, linear capabilities

would cause the logical relation to no longer be persistent, since theV relation would

then need to express non-duplicable ownership of linear capabilities.

6.2 Secure compilation

Although the formal reasoning as outlined in the previous section provides whole-

system security guarantees over systems code or other security-critical code in the

presence of untrusted adversaries, the fact that it requires code to be written and

reasoned about at the assembly level is often impractical. In order to allow reasoning

in a more abstract source language, researching secure compilation to capability

architectures is required.

The backwards compatibility of existing source languages and their compilers

is important to achieve general adoption in a top-down way. Conversely, the

development of new, intermediate languages with increasingly high-level abstractions

that provide bottom-up support for capabilities and �t this new back-end well is also

an important goal. Another advantage to the latter approach is the possibility of

proving compiler security for a relatively simple compiler, rather than a multi-pass,

real-world project consisting of millions of LoC.

Chapter 3 could potentially be used as the basis for a source language in the bottom-up

approach: since para-passthrough wrappers have real-world use in e.g. hypervisors

[140], it would be useful to develop a more abstract language (with functions, variables

and types rather than registers and capabilities) to develop these security wrappers in.

This could provide programmers with immediate formal bene�ts, and constitute a �rst

step towards general source-level abstractions that grant whole-system guarantees.

Our goal here is similar to the whole-system correctness results that Erbsen et al. [52]

demonstrate for a small, embedded RISC-V system and a compiler from Bedrock2,

a minimal, C-like language, to RISC-V assembly. However, owing to the protection

of capabilities and the universal contracts that model them, we would only require

veri�cation of the security-critical software components, not the whole code base.

One di�erence with Erbsen et al. is that we do not explicitly verify the processor’s

implementation versus its formal speci�cation, but rather, start from authoritative,

formal ISA models and leave the CPU’s veri�cation out of scope, as a responsibility

for the chip manufacturer.

Chapter 5 can be seen as an instantiation of the broader goal of secure compilation,

with separation-logic-veri�ed C-like code as a source language, where we prove that

246 FUTURE WORK AND CONCLUSIONS

the source language’s separation logic resources can be represented fully abstractly by

linear capabilities in the target language. Section 5.8 already contained an extensive

conclusion discussing the compiler.

As an additional remark, we note that the secure compiler from Chapter 5 can

likely be split into two separate compiler passes. A �rst pass would enforce the

functional aspects of the separation logic contracts at trust boundaries and compile

from our veri�ed C-like language to an intermediate C-like language with capabilities

where untrusted components can only have a universal separation logic contract.

Conceptually, this is similar to Swasey et al. [152]’s lowval predicate, or to a typed

version of Sammler et al. [136]’s sandboxes, where sandboxed untrusted code is only

allowed to interact with trusted code at the any type (a sort of unitype containing

all values). A second pass would simply erase the contracts to arrive at the original

target language.

Carefully performing this separation of passes might have resulted in a simpler

and more reusable compiler security proof. Notably, since the �rst compiler pass

involves both a veri�ed source and target, if we were to mechanize our development

as discussed in Section 5.8.3, then adequacy of the separation logic might help simplify

the proofs. Additionally, it might be possible to formalize the simulation relations

for the �rst pass as contextual re�nements in the style of ReLoC [58], such that

correctness and security can be proven within the logic itself.

6.3 Conclusion

In an ideal scenario, the Morello project is highly successful and proves once and

for all that capabilities are viable security primitives, both in terms of cost and as a

programming model. Capability architectures are widely adopted by di�erent vendors,

and integrated into a variety of existing architectures. In this case, there are multiple

grand opportunities for formal research. First, as we described before, the security

features of these novel architectures need to be formalized. Researchers need to

investigate the best way to model these features and verify code that uses them,

as well as ways to scale the size of the modeled architectures and codebases. The

former was the subject of Chapters 2 to 4, whereas the latter was brie�y discussed in

Section 6.1.

Secondly, research needs to be conducted into compilers from existing and novel

source languages to these new back-ends, and into ways of proving them secure.

Historically, CHERI has focused on backwards compatibility with C and C++ code

bases, because large bodies of code (especially systems code) have been written in

these languages, and they are considered archetypal unsafe languages. The abundance

of C/C++ systems code is one of the reasons CHERI-support was introduced into the

CONCLUSION 247

Clang compiler �rst. For example, the FreeBSD operating system that now runs on top

of CHERI, was written in C. This is one of the reasons we studied secure compilation

from veri�ed C-like code in Chapter 5.

Other, safe, languages are being considered as compiler source languages as well.

Notably, a capability-style extension of WebAssembly has been proposed in order

to enforce memory safety within sandboxes [47] and Wei Sheng Sim [177] adapted

the Rust-LLVM compiler to work with a CHERI back-end as part of their master’s

thesis. Alternatively, as we hinted at in Section 6.2, building bottom-up abstractions

on top of the existing back-end is a viable alternative to more easily achieve veri�able

whole-system guarantees for a language that allows, for example, the development of

security wrappers. These whole-system guarantees for relatively low-level languages

would be especially interesting for the development of systems and operating system

software, as well as security-critical applications.

Even if the results of the Morello project turn out to be less unanimously positive,

there is merit to this work. The general universal contract methodology as described

in Section 1.2 applies at di�erent levels of abstraction (higher-level examples are

e.g. the OCPL logic [152], or applications of parametricity) and for di�erent ISAs

and security primitives (e.g. RISC-V PMP, virtual memory protection). Additionally,

capabilities need not be implemented at the hardware level, as the OCPL logic and

many other existing capability systems and languages illustrate. I therefore believe

that many of the insights gathered in this thesis could be applied in these other

settings as well.

Bibliography

[1] Martín Abadi. Protection in programming-language translations. In Secure

Internet programming, pages 19–34. Springer-Verlag, 1999.

[2] Martín Abadi and Gordon D. Plotkin. On protection by layout randomization.

ACM Trans. Inf. Syst. Secur., 15(2):8:1–8:29, 2012.

[3] Carmine Abate, Arthur Azevedo de Amorim, Roberto Blanco, Ana Nora Evans,

Guglielmo Fachini, Catalin Hritcu, Théo Laurent, Benjamin C. Pierce, Marco

Stronati, and Andrew Tolmach. When good components go bad: formally

secure compilation despite dynamic compromise. In Proceedings of the 2018

ACM SIGSAC Conference on Computer and Communications Security, CCS ’18,

1351–1368. Association for Computing Machinery, 2018.

[4] Carmine Abate, Roberto Blanco, Deepak Garg, Catalin Hritcu, Marco

Patrignani, and Jérémy Thibault. Journey beyond full abstraction: exploring

robust property preservation for secure compilation. In 2019 IEEE 32nd

Computer Security Foundations Symposium (CSF), pages 256–25615, 2019.

[5] Carmine Abate, Matteo Busi, and Stelios Tsampas. Fully abstract and robust

compilation: and how to reconcile the two, abstractly. In Hakjoo Oh, editor,

Programming Languages and Systems - 19th Asian Symposium, APLAS 2021,

Proceedings, volume 13008 of Lecture Notes in Computer Science, pages 83–101.

Springer, 2021.

[6] Samson Abramsky, Kohei Honda, and Guy McCusker. A fully abstract game

semantics for general references. In Thirteenth Annual IEEE Symposium on

Logic in Computer Science, pages 334–344. IEEE Computer Society, 1998.

[7] Pieter Agten, Bart Jacobs, and Frank Piessens. Sound modular veri�cation

of C code executing in an unveri�ed context. In Symposium on Principles of

Programming Languages, POPL ’15, pages 581–594. ACM, 2015.

[8] Tiago Alves and Don Felton. TrustZone: integrated hardware and software

security. ARM white paper, 3(4):18–24, 2004.

249

250 BIBLIOGRAPHY

[9] AMD. AMD SEV-SNP: strengthening VM isolation with integrity protection

and more. White paper, Jan. 2020.

[10] Andrew W. Appel. Compiling with Continuations. Cambridge University Press,

1992.

[11] Arm Limited. Arm architecture reference manual supplement - morello for

a-pro�le architecture. https://developer.arm.com/documentation/
ddi0606/latest, 2020. [Online; accessed 14-02-2022].

[12] Arm Limited. ARM morello program. https : / / www . arm . com /
architecture/cpu/morello, 2019. [Online; accessed 21-02-2022].

[13] Alasdair Armstrong, Thomas Bauereiss, Brian Campbell, Shaked Flur, Jon

French, Kathryn E. Gray, Gabriel Kerneis, Neel Krishnaswami, Prashanth

Mundkur, Robert Norton-Wright, Christopher Pulte, Alastair Reid, Peter

Sewell, Ian Stark, and Mark Wassell. The Sail instruction-set architecture

(ISA) speci�cation language, 2013–2019.

[14] Alasdair Armstrong, Thomas Bauereiss, Brian Campbell, Alastair Reid,

Kathryn E. Gray, Robert M. Norton, Prashanth Mundkur, Mark Wassell,

Jon French, Christopher Pulte, Shaked Flur, Ian Stark, Neel Krishnaswami,

and Peter Sewell. ISA semantics for ARMv8-a, RISC-v, and CHERI-MIPS.

Proceedings of the ACM on Programming Languages, 3(POPL):71:1–71:31, Jan.

2019.

[15] Alasdair Armstrong, Brian Campbell, Ben Simner, Christopher Pulte, and Peter

Sewell. Isla: integrating full-scale isa semantics and axiomatic concurrency

models. In Alexandra Silva and K. Rustan M. Leino, editors, Computer Aided

Veri�cation, pages 303–316. Springer International Publishing, 2021.

[16] Johannes Bader, Jonathan Aldrich, and Éric Tanter. Gradual program

veri�cation. In Veri�cation, Model Checking, and Abstract Interpretation,

Lecture Notes in Computer Science. Springer International Publishing, 2018.

[17] Thomas Ball, Ella Bounimova, Rahul Kumar, and Vladimir Levin. SLAM2:

static driver veri�cation with under 4% false alarms. In Roderick Bloem and

Natasha Sharygina, editors, International Conference on Formal Methods in

Computer-Aided Design, pages 35–42. IEEE, 2010.

[18] Thomas Bauereiss, Brian Campbell, Thomas Sewell, Alasdair Armstrong,

Lawrence Esswood, Ian Stark, Graeme Barnes, Robert N. M. Watson, and

Peter Sewell. Veri�ed security for the morello capability-enhanced prototype

arm architecture. In Programming Languages and Systems, pages 174–203.

Springer International Publishing, 2022.

[19] Muli Ben-Yehuda, Michael D. Day, Zvi Dubitzky, Michael Factor, Nadav Har’El,

Abel Gordon, Anthony Liguori, Orit Wasserman, and Ben-Ami Yassour. The

turtles project: design and implementation of nested virtualization. In OSDI.

USENIX Association, Oct. 2010.

https://developer.arm.com/documentation/ddi0606/latest
https://developer.arm.com/documentation/ddi0606/latest
https://www.arm.com/architecture/cpu/morello
https://www.arm.com/architecture/cpu/morello

BIBLIOGRAPHY 251

[20] Josh Berdine, Cristiano Calcagno, Byron Cook, Dino Distefano, Peter W.

O’Hearn, Thomas Wies, and Hongseok Yang. Shape analysis for composite

data structures. In International Conference on Computer Aided Veri�cation,

pages 178–192. Springer, 2007.

[21] Josh Berdine, Cristiano Calcagno, and Peter W. O’Hearn. Smallfoot: modular

automatic assertion checking with separation logic. In Formal Methods for

Components and Objects. International Symposium on Formal Methods for

Components and Objects, Lecture Notes in Computer Science, pages 115–137.

Springer, Berlin, Heidelberg, 2005.

[22] Josh Berdine, Byron Cook, and Samin Ishtiaq. SLAyer: memory safety for

systems-level code. In Computer Aided Veri�cation, pages 178–183. Springer,

2011.

[23] Bluespec. Bluespec company. https : / / bluespec . com/, 2003. [Online;

accessed 20-07-2021].

[24] Thomas Bourgeat, Ian Clester, Andres Erbsen, Samuel Gruetter, Andrew

Wright, and Adam Chlipala. A multipurpose formal RISC-V speci�cation, Apr.

2021. arXiv: 2104.00762 [cs].

[25] Ferdinand Brasser, Brahim El Mahjoub, Ahmad-Reza Sadeghi, Christian

Wachsmann, and Patrick Koeberl. TyTAN: tiny trust anchor for tiny devices. In

Design Automation Conference, DAC ’15, pages 1–6. Association for Computing

Machinery, June 2015.

[26] Ferdinand Brasser, David Gens, Patrick Jauernig, Ahmad-Reza Sadeghi, and

Emmanuel Stapf. SANCTUARY: ARMing trustzone with user-space enclaves.

In NDSS, 2019.

[27] Cristiano Calcagno, Dino Distefano, Jérémy Dubreil, Dominik Gabi, Pieter

Hooimeijer, Martino Luca, Peter O’Hearn, Irene Papakonstantinou, Jim

Purbrick, and Dulma Rodriguez. Moving fast with software veri�cation. In

NASA Formal Methods Symposium, pages 3–11. Springer, 2015.

[28] Nicholas P. Carter, Stephen W. Keckler, and William J. Dally. Hardware

Support for Fast Capability-based Addressing. In International Conference

on Architectural Support for Programming Languages and Operating Systems,

pages 319–327. ACM, 1994.

[29] Hao Chen, Xiongnan (Newman) Wu, Zhong Shao, Joshua Lockerman, and

Ronghui Gu. Toward compositional veri�cation of interruptible OS kernels

and device drivers. In Chandra Krintz and Emery Berger, editors, Proceedings

of the 37th ACM SIGPLAN Conference on Programming Language Design and

Implementation, PLDI 2016, pages 431–447. ACM, 2016.

[30] Hao Chen, Xiongnan (Newman) Wu, Zhong Shao, Joshua Lockerman, and

Ronghui Gu. Toward compositional veri�cation of interruptible OS kernels

and device drivers. J. Autom. Reason., 61(1-4):141–189, 2018.

https://bluespec.com/
https://arxiv.org/abs/2104.00762

252 BIBLIOGRAPHY

[31] Yueqiang Cheng, Xuhua Ding, and Robert H. Deng. Driverguard: virtualization-

based �ne-grained protection on I/O �ows. ACM Trans. Inf. Syst. Secur.,

16(2):6:1–6:30, 2013.

[32] David Chisnall, Brooks Davis, Khilan Gudka, David Brazdil, Alexandre

Joannou, Jonathan Woodru�, A. Theodore Markettos, J. Edward Maste,

Robert Norton, Stacey Son, Michael Roe, Simon W. Moore, Peter G. Neumann,

Ben Laurie, and Robert N. M. Watson. CHERI JNI: Sinking the Java Security

Model into the C. In International Conference on Architectural Support for

Programming Languages and Operating Systems, pages 569–583. ACM, 2017.

[33] David Chisnall, Colin Rothwell, Robert N. M. Watson, Jonathan Woodru�,

Munraj Vadera, Simon W. Moore, Michael Roe, Brooks Davis, and Peter G.

Neumann. Beyond the PDP-11: architectural support for a memory-safe C

abstract machine. In Proceedings of the Twentieth International Conference

on Architectural Support for Programming Languages and Operating Systems,

ASPLOS ’15, pages 117–130, 2015.

[34] Adam Chlipala. Formal reasoning about programs. 2017. url: http://adam.
chlipala.net/frap.

[35] Sylvan Clebsch, Sophia Drossopoulou, Sebastian Blessing, and Andy McNeil.

Deny capabilities for safe, fast actors. In Proceedings of the 5th International

Workshop on Programming Based on Actors, Agents, and Decentralized Control,

1–12. Association for Computing Machinery, 2015.

[36] Ernie Cohen, Markus Dahlweid, Mark A. Hillebrand, Dirk Leinenbach,

Michal Moskal, Thomas Santen, Wolfram Schulte, and Stephan Tobies. VCC:

A practical system for verifying concurrent C. In Theorem Proving in Higher

Order Logics, volume 5674 of Lecture Notes in Computer Science, pages 23–42.

Springer, 2009.

[37] Victor Costan and Srinivas Devadas. Intel SGX explained. IACR Cryptol. ePrint

Arch., 2016(86):1–118, 2016.

[38] Victor Costan, Ilia A. Lebedev, and Srinivas Devadas. Sanctum: minimal

hardware extensions for strong software isolation. In Thorsten Holz and

Stefan Savage, editors, 25th USENIX Security Symposium, USENIX Security 16,

pages 857–874. USENIX Association, 2016.

[39] Brooks Davis, Robert N. M. Watson, Alexander Richardson, Peter G. Neu-

mann, Simon W. Moore, John Baldwin, David Chisnall, Jessica Clarke,

Nathaniel Wesley Filardo, Khilan Gudka, Alexandre Joannou, Ben Laurie,

A. Theodore Markettos, J. Edward Maste, Alfredo Mazzinghi, Edward Tomasz

Napierala, Robert M. Norton, Michael Roe, Peter Sewell, Stacey Son, and

Jonathan Woodru�. Cheriabi: enforcing valid pointer provenance and

minimizing pointer privilege in the posix c run-time environment. In

Proceedings of the Twenty-Fourth International Conference on Architectural

http://adam.chlipala.net/frap
http://adam.chlipala.net/frap

BIBLIOGRAPHY 253

Support for Programming Languages and Operating Systems, ASPLOS ’19,

379–393. Association for Computing Machinery, 2019.

[40] Arthur Azevedo de Amorim, Nathan Collins, André DeHon, Delphine

Demange, Catalin Hritcu, David Pichardie, Benjamin C. Pierce, Randy Pollack,

and Andrew Tolmach. A veri�ed information-�ow architecture. Journal of

Computer Security, 24(6):689–734, 2016.

[41] Arthur Azevedo de Amorim, Maxime Dénès, Nick Giannarakis, Catalin

Hritcu, Benjamin C. Pierce, Antal Spector-Zabusky, and Andrew Tolmach.

Micro-policies: formally veri�ed, tag-based security monitors. In 2015 IEEE

Symposium on Security and Privacy, SP 2015, pages 813–830. IEEE Computer

Society, 2015.

[42] Jack B. Dennis and Earl C. Van Horn. Programming Semantics for Multipro-

grammed Computations. Commun. ACM, 9(3):143–155, Mar. 1966.

[43] Joe Devietti, Colin Blundell, Milo M. K. Martin, and Steve Zdancewic.

Hardbound: architectural support for spatial safety of the c programming

language. SIGPLAN Not., 43(3):103–114, 2008.

[44] Dominique Devriese, Lars Birkedal, and Frank Piessens. Reasoning about

object capabilities with logical relations and e�ect parametricity. In IEEE

European Symposium on Security and Privacy, EuroS&P 2016, pages 147–162.

IEEE, 2016.

[45] Dominique Devriese, Marco Patrignani, and Frank Piessens. Fully-abstract

compilation by approximate back-translation. In Symposium on Principles of

Programming Languages, POPL 2016, pages 164–177, 2016.

[46] Christos Dimoulas, Max S. New, Robert Bruce Findler, and Matthias Felleisen.

Oh lord, please don’t let contracts be misunderstood (functional pearl). In

International Conference on Functional Programming, ICFP 2016, pages 117–131,

2016.

[47] Craig Disselkoen, John Renner, Conrad Watt, Tal Gar�nkel, Amit Levy, and

Deian Stefan. Position paper: progressive memory safety for webassembly. In

Proceedings of the 8th International Workshop on Hardware and Architectural

Support for Security and Privacy, HASP ’19. Association for Computing

Machinery, 2019.

[48] Dino Distefano, Peter W. O’Hearn, and Hongseok Yang. A local shape analysis

based on separation logic. In Holger Hermanns and Jens Palsberg, editors, Tools

and Algorithms for the Construction and Analysis of Systems, 12th International

Conference, TACAS 2006, volume 3920 of Lecture Notes in Computer Science,

pages 287–302. Springer, 2006.

[49] Danny Dolev and Andrew C. Yao. On the security of public key protocols.

IEEE Transactions on Information Theory, 29(2):198–208, 1983.

254 BIBLIOGRAPHY

[50] Derek Dreyer, Georg Neis, and Lars Birkedal. The impact of higher-order

state and control e�ects on local relational reasoning. J. Funct. Program., 22(4-

5):477–528, 2012.

[51] Akram El-Korashy, Stelios Tsampas, Marco Patrignani, Dominique Devriese,

Deepak Garg, and Frank Piessens. CapablePtrs: Securely compiling partial

programs using the pointers-as-capabilities principle. In 34th IEEE Computer

Security Foundations Symposium, CSF 2021, pages 1–16. IEEE, 2021.

[52] Andres Erbsen, Samuel Gruetter, Joonwon Choi, Clark Wood, and Adam

Chlipala. Integration veri�cation across software and hardware for a simple

embedded system. In Proceedings of the 42nd ACM SIGPLAN International

Conference on Programming Language Design and Implementation, PLDI 2021,

604–619. Association for Computing Machinery, 2021.

[53] Lawrence Esswood. CheriOS: Designing an untrusted single-address-space

capability operating system utilising capability hardware and a minimal

hypervisor. PhD thesis, University of Cambridge, 2020.

[54] Andrew Ferraiuolo, Andrew Baumann, Chris Hawblitzel, and Bryan Parno.

Komodo: using veri�cation to disentangle secure-enclave hardware from

software. In Proceedings of the 26th Symposium on Operating Systems Principles,

pages 287–305. ACM, 2017.

[55] Nathaniel Wesley Filardo, Brett F. Gutstein, Jonathan Woodru�, Sam Ainsworth,

Lucian Paul-Trifu, Brooks Davis, Hongyan Xia, Edward Tomasz Napierala,

Alexander Richardson, John Baldwin, David Chisnall, Jessica Clarke, Khilan

Gudka, Alexandre Joannou, A. Theodore Markettos, Alfredo Mazzinghi, Robert

M. Norton, Michael Roe, Peter Sewell, Stacey Son, Timothy M. Jones, Simon W.

Moore, Peter G. Neumann, and Robert N. M. Watson. Cornucopia: Temporal

safety for CHERI heaps. In IEEE Symposium on Security and Privacy. IEEE,

May 2020.

[56] Bryan Ford, Mike Hibler, Jay Lepreau, Patrick Tullmann, Godmar Back, and

Stephen Clawson. Microkernels meet recursive virtual machines. In Karin

Petersen and Willy Zwaenepoel, editors, USENIX Symposium on Operating

Systems Design and Implementation, pages 137–151. ACM, 1996.

[57] Cédric Fournet, Nikhil Swamy, Juan Chen, Pierre-Évariste Dagand, Pierre-

Yves Strub, and Benjamin Livshits. Fully abstract compilation to JavaScript. In

Symposium on Principles of Programming Languages, POPL ’13, pages 371–384,

2013.

[58] Dan Frumin, Robbert Krebbers, and Lars Birkedal. ReLoC: a mechanised

relational logic for �ne-grained concurrency. In Proceedings of the 33rd Annual

ACM/IEEE Symposium on Logic in Computer Science, pages 442–451, 2018.

[59] Ronald Garcia, Alison M. Clark, and Éric Tanter. Abstracting gradual typing.

In Principles of Programming Languages, pages 429–442. ACM, 2016.

BIBLIOGRAPHY 255

[60] Deepak Garg, Catalin Hritcu, Marco Patrignani, Marco Stronati, and David

Swasey. Robust hyperproperty preservation for secure compilation (extended

abstract), 2017. arXiv: 1710.07309.

[61] Aïna Linn Georges, Armaël Guéneau, Thomas Van Strydonck, Amin Timany,

Alix Trieu, Dominique Devriese, and Lars Birkedal. Cap’ ou pas cap’ ?: Preuve

de programmes pour une machine à capacités en présence de code inconnu.

French. In Journées Francophones des Langages Applicatifs 2021. Institut de

Recherche en Informatique Fondamentale, Apr. 2021.

[62] Aïna Linn Georges, Armaël Guéneau, Thomas Van Strydonck, Amin Timany,

Alix Trieu, Sander Huyghebaert, Dominique Devriese, and Lars Birkedal. E�-

cient and provable local capability revocation using uninitialized capabilities.

Proceedings of the ACM on Programming Languages, 5(POPL):6:1–6:30, Jan.

2021.

[63] Jean-Yves Girard. Une extension de l’interpretation de gödel a l’analyse, et son

application a l’elimination des coupures dans l’analyse et la theorie des types.

In Studies in Logic and the Foundations of Mathematics. Volume 63, pages 63–92.

Elsevier, 1971.

[64] LLVM Developer Group. Clang: a c language family frontend for llvm. https:
//clang.llvm.org/, 2007. [Online; accessed 18-02-2022].

[65] Chung-Kil Hur and Derek Dreyer. A kripke logical relation between ml and

assembly. In Proceedings of the 38th Annual ACM SIGPLAN-SIGACT Symposium

on Principles of Programming Languages, POPL ’11, 133–146. Association for

Computing Machinery, 2011.

[66] Sander Huyghebaert, Steven Keuchel, and Dominique Devriese. Semi-automatic

veri�cation of isa security guarantees in the form of universal contracts.

Workshop on the Security of Software/Hardware Interfaces (SILM), 2021.

[67] Sander Huyghebaert, Thomas Van Strydonck, Steven Keuchel, and Dominique

Devriese. Uninitialized capabilities. arXiv: 2006.01608 [cs].

[68] Gianluca Insolvibile. Garbage collection in C programs. Linux J., 2003(113):7,

Sept. 2003.

[69] Iris Team. The Iris documentation and Coq development. 2021. url: https:
//iris-project.org.

[70] Bart Jacobs and Frank Piessens. Expressive modular �ne-grained concurrency

speci�cation. In ACM SIGPLAN-SIGACT Symposium on Principles of Program-

ming Languages, POPL ’11, 271–282. Association for Computing Machinery,

2011.

[71] Bart Jacobs and Frank Piessens. The VeriFast program veri�er. CW Reports,

2008.

https://arxiv.org/abs/1710.07309
https://clang.llvm.org/
https://clang.llvm.org/
https://arxiv.org/abs/2006.01608
https://iris-project.org
https://iris-project.org

256 BIBLIOGRAPHY

[72] Bart Jacobs, Jan Smans, and Frank Piessens. A quick tour of the VeriFast

program veri�er. In Programming Languages and Systems. Volume 6461,

Lecture Notes in Computer Science, pages 304–311. Springer Berlin Heidelberg,

2010.

[73] Limin Jia, Shayak Sen, Deepak Garg, and Anupam Datta. A logic of programs

with interface-con�ned code. In 2015 IEEE 28th Computer Security Foundations

Symposium, pages 512–525, 2015.

[74] A. Joannou, J. Woodru�, R. Kovacsics, S. W. Moore, A. Bradbury, H. Xia,

R. N. M. Watson, D. Chisnall, M. Roe, B. Davis, E. Napierala, J. Baldwin,

K. Gudka, P. G. Neumann, A. Mazzinghi, A. Richardson, S. Son, and A. T.

Markettos. E�cient Tagged Memory. In IEEE International Conference on

Computer Design (ICCD). IEEE, Nov. 2017.

[75] Nicolas Joly, Saif ElSherei, and Saar Amar. Security analysis of CHERI ISA.

https://github.com/microsoft/MSRC- Security- Research/blob/
master/papers/2020/Security%20analysis%20of%20CHERI%20ISA.
pdf, 2020. [Online; accessed 15-02-2022].

[76] Yannis Juglaret, Catalin Hritcu, Arthur Azevedo De Amorim, Boris Eng, and

Benjamin C. Pierce. Beyond good and evil: formalizing the security guarantees

of compartmentalizing compilation. In 2016 IEEE 29th Computer Security

Foundations Symposium (CSF), pages 45–60, 2016.

[77] Ralf Jung, Hoang-Hai Dang, Jeehoon Kang, and Derek Dreyer. Stacked

borrows: an aliasing model for rust. Proc. ACM Program. Lang., 4(POPL),

2019.

[78] Ralf Jung, Jacques-Henri Jourdan, Robbert Krebbers, and Derek Dreyer.

RustBelt: securing the foundations of the Rust programming language. Proc.

ACM Program. Lang., 2(POPL):66:1–66:34, Dec. 2017.

[79] Ralf Jung, Robbert Krebbers, Lars Birkedal, and Derek Dreyer. Higher-order

ghost state. In International Conference on Functional Programming, ICFP 2016,

256––269. Association for Computing Machinery, 2016.

[80] Ralf Jung, Robbert Krebbers, Jacques-Henri Jourdan, Ales Bizjak, Lars Birkedal,

and Derek Dreyer. Iris from the ground up: A modular foundation for higher-

order concurrent separation logic. J. Funct. Program., 28:e20, 2018.

[81] Bernhard Kauer, Paulo Veríssimo, and Alysson Neves Bessani. Recursive

virtual machines for advanced security mechanisms. In IEEE/IFIP International

Conference on Dependable Systems and Networks Workshops, pages 117–122.

IEEE Computer Society, 2011.

[82] Paul Kehrer. 2021 in memory unsafety - Apple’s operating systems. https:
/ / langui . sh / 2021 / 12 / 13 / apple - memory - safety/, 2021. [Online;

accessed 15-02-2022].

https://github.com/microsoft/MSRC-Security-Research/blob/master/papers/2020/Security%20analysis%20of%20CHERI%20ISA.pdf
https://github.com/microsoft/MSRC-Security-Research/blob/master/papers/2020/Security%20analysis%20of%20CHERI%20ISA.pdf
https://github.com/microsoft/MSRC-Security-Research/blob/master/papers/2020/Security%20analysis%20of%20CHERI%20ISA.pdf
https://langui.sh/2021/12/13/apple-memory-safety/
https://langui.sh/2021/12/13/apple-memory-safety/

BIBLIOGRAPHY 257

[83] Steven Keuchel, Sander Huyghebaert, Georgy Lukyanov, and Dominique

Devriese. Katamaran project. https://katamaran-project.github.io/,

2020. [Online; accessed 22-03-2022].

[84] Steven Keuchel, Georgy Lukyanov, and Dominique Devriese. Katamaran:

semi-automated veri�cation of ISA speci�cations. June 2020. url: https:
//pldi20.sigplan.org/details/rems-deepspec-2020/7/Katamaran-
semi-automated-verification-of-ISA-specifications.

[85] Gerwin Klein, June Andronick, Kevin Elphinstone, Gernot Heiser, David Cock,

Philip Derrin, Dhammika Elkaduwe, Kai Engelhardt, Rafal Kolanski, Michael

Norrish, Thomas Sewell, Harvey Tuch, and Simon Winwood. Sel4: formal

veri�cation of an operating-system kernel. Commun. ACM, 53(6):107–115,

2010.

[86] Gerwin Klein, Kevin Elphinstone, Gernot Heiser, June Andronick, David

Cock, Philip Derrin, Dhammika Elkaduwe, Kai Engelhardt, Rafal Kolanski,

Michael Norrish, Thomas Sewell, Harvey Tuch, and Simon Winwood. Sel4:

formal veri�cation of an OS kernel. In Jeanna Neefe Matthews and Thomas E.

Anderson, editors, ACM Symposium on Operating Systems Principles 2009,

pages 207–220. ACM, 2009.

[87] Thomas F. Knight, Jr., André DeHon, Andrew Sutherland, Udit Dhawan, Albert

Kwon, and Sumit Ray. SAFE ISA (version 3.0 with interrupts per thread), 2012.

[88] Patrick Koeberl, Ste�en Schulz, Ahmad-Reza Sadeghi, and Vijay Varadharajan.

TrustLite: a security architecture for tiny embedded devices. In European

Conference on Computer Systems, EuroSys ’14, pages 1–14. ACM, Apr. 2014.

[89] Robbert Krebbers, Ralf Jung, Aleš Bizjak, Jacques-Henri Jourdan, Derek Dreyer,

and Lars Birkedal. The essence of higher-order concurrent separation logic. In

Hongseok Yang, editor, Programming Languages and Systems, pages 696–723.

Springer Berlin Heidelberg, 2017.

[90] Dayeol Lee, David Kohlbrenner, Shweta Shinde, Krste Asanovic, and Dawn

Song. Keystone: an open framework for architecting trusted execution

environments. In Angelos Bilas, Kostas Magoutis, Evangelos P. Markatos,

Dejan Kostic, and Margo I. Seltzer, editors, EuroSys ’20: Fifteenth EuroSys

Conference 2020, 38:1–38:16. ACM, 2020.

[91] Michael LeMay, Joydeep Rakshit, Sergej Deutsch, David M. Durham, San-

tosh Ghosh, Anant Nori, Jayesh Gaur, Andrew Weiler, Salmin Sultana,

Karanvir Grewal, and Sreenivas Subramoney. Cryptographic capability

computing. In MICRO-54: 54th Annual IEEE/ACM International Symposium on

Microarchitecture, MICRO ’21, 253–267. Association for Computing Machinery,

2021.

https://katamaran-project.github.io/
https://pldi20.sigplan.org/details/rems-deepspec-2020/7/Katamaran-semi-automated-verification-of-ISA-specifications
https://pldi20.sigplan.org/details/rems-deepspec-2020/7/Katamaran-semi-automated-verification-of-ISA-specifications
https://pldi20.sigplan.org/details/rems-deepspec-2020/7/Katamaran-semi-automated-verification-of-ISA-specifications

258 BIBLIOGRAPHY

[92] Xavier Leroy. Formal certi�cation of a compiler back-end or: programming a

compiler with a proof assistant. InConference Record of the 33rd ACM SIGPLAN-

SIGACT Symposium on Principles of Programming Languages, POPL ’06, 42–54.

Association for Computing Machinery, 2006.

[93] Xavier Leroy, Sandrine Blazy, Daniel Kästner, Bernhard Schommer, Markus

Pister, and Christian Ferdinand. CompCert - a formally veri�ed optimizing

compiler. In ERTS 2016: Embedded Real Time Software and Systems, 8th European

Congress. SEE, Jan. 2016.

[94] Henry M. Levy. Capability-Based Computer Systems. en. Digital Press, 1984.

[95] Yanlin Li, Jonathan McCune, James Newsome, Adrian Perrig, Brandon Baker,

and Will Drewry. Minibox: a two-way sandbox for x86 native code. In 2014

USENIXAnnual Technical Conference (USENIXATC 14), pages 409–420. USENIX

Association, June 2014.

[96] Aravind Machiry, Eric Gustafson, Chad Spensky, Christopher Salls, Nick

Stephens, Ruoyu Wang, Antonio Bianchi, Yung Ryn Choe, Christopher Krügel,

and Giovanni Vigna. BOOMERANG: Exploiting the Semantic Gap in Trusted

Execution Environments. In NDSS, 2017.

[97] Donald MacKenzie and Garrel Pottinger. Mathematics, technology, and trust:

formal veri�cation, computer security, and the U.S. military. IEEE Ann. Hist.

Comput., 19(3):41–59, 1997.

[98] Pieter Maene, Johannes Götzfried, Ruan de Clercq, Tilo Müller, Felix Freiling,

and Ingrid Verbauwhede. Hardware-based Trusted Computing Architectures

for isolation and attestation. IEEE Transactions on Computers, 67(3):361–374,

Mar. 2018.

[99] Sergio Ma�eis, John C. Mitchell, and Ankur Taly. Object capabilities and

isolation of untrusted web applications. In 31st IEEE Symposium on Security

and Privacy, S&P 2010, pages 125–140. IEEE Computer Society, 2010.

[100] A. Theodore Markettos, John Baldwin, Ruslan Bukin, Peter G. Neumann,

Simon W. Moore, and Robert N. M. Watson. Position paper: defending direct

memory access with CHERI capabilities, 2020.

[101] Jonathan M. McCune, Yanlin Li, Ning Qu, Zongwei Zhou, Anupam Datta,

Virgil D. Gligor, and Adrian Perrig. Trustvisor: e�cient TCB reduction

and attestation. In 31st IEEE Symposium on Security and Privacy, S&P 2010,

pages 143–158. IEEE Computer Society, 2010.

[102] Jonathan M. McCune, Bryan Parno, Adrian Perrig, Michael K. Reiter, and

Hiroshi Isozaki. Flicker: an execution infrastructure for TCB minimization. In

Joseph S. Sventek and Steven Hand, editors, Proceedings of the 2008 EuroSys

Conference, pages 315–328. ACM, 2008.

[103] Alfred Menezes, Paul C. van Oorschot, and Scott A. Vanstone. Handbook of

Applied Cryptography. CRC Press, 1996.

BIBLIOGRAPHY 259

[104] Microchip Technology Inc. SAM D5x/E5x Family Data Sheet. en, 2019.

[105] Mark S. Miller. Robust Composition: Towards a Uni�ed Approach to Access

Control and Concurrency Control. PhD thesis, Johns Hopkins University, 2006.

[106] Santosh Nagarakatte, Milo M. K. Martin, and Steve Zdancewic. Watchdog:

hardware for safe and secure manual memory management and full memory

safety. In 2012 39th Annual International Symposium on Computer Architecture

(ISCA), pages 189–200, 2012.

[107] Peter G. Neumann. Fundamental Trustworthiness Principles in CHERI. en. In

New Solutions for Cybersecurity. Jan. 2018.

[108] Max S. New, William J. Bowman, and Amal Ahmed. Fully abstract compilation

via universal embedding. In International Conference on Functional Program-

ming, ICFP 2016, pages 103–116, 2016.

[109] Huu Hai Nguyen, Viktor Kuncak, and Wei-Ngan Chin. Runtime checking for

separation logic. In Veri�cation, Model Checking, and Abstract Interpretation,

9th International Conference, pages 203–217, 2008.

[110] Kyndylan Nienhuis, Alexandre Joannou, Thomas Bauereiss, Anthony Fox,

Michael Roe, Brian Campbell, Matthew Naylor, Robert M. Norton, Simon W.

Moore, Peter G. Neumann, Ian Stark, Robert N. M. Watson, and Peter Sewell.

Rigorous engineering for hardware security: formal modelling and proof in

the CHERI design and implementation process. In Proceedings of the 41st IEEE

Symposium on Security and Privacy (SP), May 2020.

[111] Tobias Nipkow, Lawrence C. Paulson, and Markus Wenzel. Isabelle/HOL — A

Proof Assistant for Higher-Order Logic, volume 2283 of LNCS. Springer, 2002.

[112] Ligia Nistor, Darya Kurilova, Stephanie Balzer, Benjamin Chung, Alex Potanin,

and Jonathan Aldrich. Wyvern: a simple, typed, and pure object-oriented

language. In Proceedings of the 5th Workshop on MechAnisms for SPEcialization,

Generalization and InHerItance, pages 9–16, 2013.

[113] Job Noorman, Pieter Agten, Wilfried Daniels, Raoul Strackx, Anthony Van

Herrewege, Christophe Huygens, Bart Preneel, Ingrid Verbauwhede, and

Frank Piessens. Sancus: Low-cost trustworthy extensible networked devices

with a zero-software Trusted Computing Base. In USENIX Security Symposium,

pages 479–494, 2013.

[114] Job Noorman, Jo Van Bulck, Jan Tobias Mühlberg, Frank Piessens, Pieter

Maene, Bart Preneel, Ingrid Verbauwhede, Johannes Götzfried, Tilo Müller,

and Felix Freiling. Sancus 2.0: a low-cost security architecture for iot devices.

ACM Trans. Priv. Secur., 20(3):7:1–7:33, July 2017.

[115] Job Noorman, Tobias Mühlberg, and Frank Piessens. Authentic execution of

distributed event-driven applications with a small tcb. eng. In volume 10547,

pages 55–71. Livraga, G, Springer; Heidelberg, DE, 2017.

260 BIBLIOGRAPHY

[116] Peter W. O’Hearn. A primer on separation logic (and automatic program

veri�cation and analysis). In Software Safety and Security - Tools for Analysis

and Veri�cation, pages 286–318. 2012.

[117] Oleksii Oleksenko, Dmitrii Kuvaiskii, Pramod Bhatotia, Pascal Felber, and

Christof Fetzer. Intel MPX explained: A cross-layer analysis of the Intel MPX

system stack. Proc. ACM Meas. Anal. Comput. Syst., 2(2), 2018.

[118] Charles Papon. SpinalHDL, A Scala based HDL. https://github.com/
SpinalHDL/SpinalHDL, 2015. [Online; accessed 10-02-2022].

[119] Charles Papon. VexRiscv, A FPGA friendly 32 bit RISC-V CPU implementation.

https://github.com/SpinalHDL/VexRiscv, 2017. [Online; accessed 10-

02-2022].

[120] Bryan Parno, Jonathan M. McCune, and Adrian Perrig. Bootstrapping trust in

commodity computers. In 31st IEEE Symposium on Security and Privacy, S&P

2010, pages 414–429. IEEE Computer Society, 2010.

[121] Marco Patrignani, Pieter Agten, Raoul Strackx, Bart Jacobs, Dave Clarke, and

Frank Piessens. Secure compilation to protected module architectures. ACM

Trans. Program. Lang. Syst., 37(2), Apr. 2015.

[122] Marco Patrignani, Amal Ahmed, and Dave Clarke. Formal approaches to

secure compilation: a survey of fully abstract compilation and related work.

ACM Comput. Surv., 51(6):125:1–125:36, Feb. 2019.

[123] Marco Patrignani, Dominique Devriese, and Frank Piessens. On modular and

fully-abstract compilation. In 2016 IEEE 29th Computer Security Foundations

Symposium (CSF), pages 17–30, 2016.

[124] Marco Patrignani and Deepak Garg. Robustly safe compilation or, e�cient,

provably secure compilation, 2018. arXiv: 1804.00489.

[125] Marco Patrignani and Deepak Garg. Secure compilation and hyperproperty

preservation. In Computer Security Foundations Symposium, pages 392–404.

IEEE, Aug. 2017.

[126] Pierre-Marie Pédrot, Nicolas Tabareau, Hans Jacob Fehrmann, and Éric Tanter.

A reasonably exceptional type theory. Proceedings of the ACM on Programming

Languages, 3(ICFP):108:1–108:29, July 2019.

[127] Willem Penninckx, Jan Tobias Mühlberg, Jan Smans, Bart Jacobs, and

Frank Piessens. Sound formal veri�cation of linux’s USB BP keyboard driver.

In Alwyn Goodloe and Suzette Person, editors, NASA Formal Methods,

volume 7226 of Lecture Notes in Computer Science, pages 210–215. Springer,

2012.

[128] Benjamin C. Pierce. Types and Programming Languages. MIT Press, 2002.

656 pages. Google-Books-ID: ti6zoAC9Ph8C.

https://github.com/SpinalHDL/SpinalHDL
https://github.com/SpinalHDL/SpinalHDL
https://github.com/SpinalHDL/VexRiscv
https://arxiv.org/abs/1804.00489

BIBLIOGRAPHY 261

[129] John C. Reynolds. Separation logic: a logic for shared mutable data structures.

In Logic in Computer Science, pages 55–74. IEEE, 2002.

[130] John C. Reynolds. Types, abstraction, and parametric polymorphism. In

Information Processing, pages 513–523. North Holland, 1983.

[131] Alexander Richardson. Complete Spatial Safety for C and C++ Using CHERI

Capabilities. en. PhD thesis, University of Cambridge, Computer Laboratory,

2020.

[132] Sail-CHERI-RISC-V, CHERI-RISC-V model in Sail. https://github.com/
CTSRD-CHERI/sail-cheri-riscv, 2019. [Online; accessed 10-02-2022].

[133] Sail-RISC-V, RISC-V model in Sail. https://github.com/CTSRD-CHERI/
sail-riscv, 2019. [Online; accessed 23-03-2022].

[134] Gururaj Saileshwar, Rick Boivie, Tong Chen, Benjamin Segal, and Alper

Buyuktosunoglu. Heapcheck: low-cost hardware support for memory safety.

ACM Trans. Archit. Code Optim., 19(1), 2022.

[135] Jerome H. Saltzer and Michael D. Schroeder. The protection of information in

computer systems. Proceedings of the IEEE, 63(9):1278–1308, 1975.

[136] Michael Sammler, Deepak Garg, Derek Dreyer, and Tadeusz Litak. The

high-level bene�ts of low-level sandboxing. Proc. ACM Program. Lang.,

4(POPL):32:1–32:32, 2020.

[137] Michael Sammler, Angus Hammond, Rodolphe Lepigre, Brian Campbell,

Jean Pichon-Pharabod, Derek Dreyer, Deepak Garg, and Peter Sewell. Islaris:

veri�cation of machine code against authoritative ISA semantics. In 43rd ACM

SIGPLAN Conference on Programming Language Design and Implementation,

2022.

[138] Hovav Shacham. The geometry of innocent �esh on the bone: return-into-libc

without function calls (on the x86). In Proceedings of the 14th ACM Conference

on Computer and Communications Security, CCS ’07, 552–561. Association for

Computing Machinery, 2007.

[139] Jonathan S. Shapiro, Jonathan M. Smith, and David J. Farber. Eros: a fast

capability system. SIGOPS Oper. Syst. Rev., 33(5):170–185, 1999.

[140] Takahiro Shinagawa, Hideki Eiraku, Kouichi Tanimoto, Kazumasa Omote,

Shoichi Hasegawa, Takashi Horie, Manabu Hirano, Kenichi Kourai, Yoshihiro

Oyama, Eiji Kawai, Kenji Kono, Shigeru Chiba, Yasushi Shinjo, and Kazuhiko

Kato. BitVisor: a thin hypervisor for enforcing I/O device security. In ACM

SIGPLAN/SIGOPS International Conference on Virtual Execution Environments,

VEE ’09. ACM, Mar. 2009.

[141] Kurt Sieber. Reasoning about sequential functions via logical relations.

Applications of categories in computer science, 177:258–269, 1992.

https://github.com/CTSRD-CHERI/sail-cheri-riscv
https://github.com/CTSRD-CHERI/sail-cheri-riscv
https://github.com/CTSRD-CHERI/sail-riscv
https://github.com/CTSRD-CHERI/sail-riscv

262 BIBLIOGRAPHY

[142] Lau Skorstengaard, Dominique Devriese, and Lars Birkedal. Reasoning

about a machine with local capabilities - provably safe stack and return

pointer management. In Programming Languages and Systems - 27th European

Symposium on Programming, ESOP 2018, pages 475–501, 2018.

[143] Lau Skorstengaard, Dominique Devriese, and Lars Birkedal. Reasoning about

a machine with local capabilities: Provably safe stack and return pointer

management. ACM Transactions on Programming Languages and Systems,

42(1):5:1–5:53, Dec. 2019.

[144] Lau Skorstengaard, Dominique Devriese, and Lars Birkedal. StkTokens:

Enforcing well-bracketed control �ow and stack encapsulation using linear

capabilities. Proc. ACM Program. Lang., 3(POPL):19:1–19:28, Jan. 2019.

[145] Open source project. The freebsd project. https://www.freebsd.org/,

1993. [Online; accessed 18-02-2022].

[146] SpinalHDL, Cryptography libraries. https://github.com/SpinalHDL/
SpinalCrypto, 2017. [Online; accessed 10-02-2022].

[147] Raoul Strackx and Frank Piessens. Fides: selectively hardening software

application components against kernel-level or process-level malware. In

Ting Yu, George Danezis, and Virgil D. Gligor, editors, the ACM Conference on

Computer and Communications Security, CCS’12, pages 2–13. ACM, 2012.

[148] Raoul Strackx, Frank Piessens, and Bart Preneel. E�cient isolation of

trusted subsystems in embedded systems. en. In Security and Privacy in

Communication Networks, Lecture Notes, pages 344–361. Springer, Berlin,

Heidelberg, Sept. 2010.

[149] Eijiro Sumii and Benjamin C. Pierce. A bisimulation for dynamic sealing. In

Neil D. Jones and Xavier Leroy, editors, Proceedings of the 31st ACM SIGPLAN-

SIGACT Symposium on Principles of Programming Languages, POPL 2004,

pages 161–172. ACM, 2004.

[150] Eijiro Sumii and Benjamin C. Pierce. Logical relations for encryption. English.

Journal of Computer Security, 11(4):521–554, 2003.

[151] Kasper Svendsen, Lars Birkedal, and Matthew Parkinson. Higher-order

concurrent abstract predicates.Modular speci�cation and veri�cation for higher-

order languages with state:108, 2012.

[152] David Swasey, Deepak Garg, and Derek Dreyer. Robust and compositional

veri�cation of object capability patterns. Proc. ACM Program. Lang., 1(OOP-

SLA):89:1–89:26, Oct. 2017.

[153] Gavin Thomas. A proactive approach to more secure code. https://msrc-
blog.microsoft.com/2019/07/16/a-proactive-approach-to-more-
secure-code/, 2019. [Online; accessed 15-02-2022].

https://www.freebsd.org/
https://github.com/SpinalHDL/SpinalCrypto
https://github.com/SpinalHDL/SpinalCrypto
https://msrc-blog.microsoft.com/2019/07/16/a-proactive-approach-to-more-secure-code/
https://msrc-blog.microsoft.com/2019/07/16/a-proactive-approach-to-more-secure-code/
https://msrc-blog.microsoft.com/2019/07/16/a-proactive-approach-to-more-secure-code/

BIBLIOGRAPHY 263

[154] Tools for BlueSpec HDL. https://github.com/B-Lang-org/bsc, 2020.

[Online; accessed 10-02-2022].

[155] Chia-Che Tsai, Kumar Saurabh Arora, Nehal Bandi, Bhushan Jain, William

Jannen, Jitin John, Harry A. Kalodner, Vrushali Kulkarni, Daniela Oliveira,

and Donald E. Porter. Cooperation and security isolation of library OSes

for multi-process applications. In European Conference on Computer Systems,

pages 1–14. Association for Computing Machinery, Apr. 2014.

[156] Neline van Ginkel, Raoul Strackx, and Frank Piessens. Automatically generat-

ing secure wrappers for SGX enclaves from separation logic speci�cations.

In Bor-Yuh Evan Chang, editor, Programming Languages and Systems,

pages 105–123. Springer International Publishing, 2017.

[157] Jo Van Bulck, Job Noorman, Jan Tobias Mühlberg, and Frank Piessens. Secure

resource sharing for embedded protected module architectures. eng. In

volume 9311, pages 71–87. Akram, RN, Springer, 2015.

[158] Jo Van Bulck, David Oswald, Eduard Marin, Abdulla Aldoseri, Flavio D. Garcia,

and Frank Piessens. A tale of two worlds: assessing the vulnerability of enclave

shielding runtimes. In Proceedings of the 2019 ACM SIGSAC Conference on

Computer and Communications Security, CCS ’19, 1741–1758. Association for

Computing Machinery, 2019.

[159] Thomas Van Strydonck, Dominique Devriese, and Frank Piessens. Linear

capabilities for modular fully-abstract compilation of veri�ed code. Principles

of Secure Compilation (PriSC), 2018.

[160] Thomas Van Strydonck, Aïna Linn Georges, Armaël Guéneau, Alix Trieu,

Amin Timany, Frank Piessens, Lars Birkedal, and Dominique Devriese. Proving

full-system security properties under multiple attacker models on capability

machines. Accepted for publication at CSF22, 2022.

[161] Thomas Van Strydonck, Aïna Linn Georges, Armaël Guéneau, Alix Trieu,

Amin Timany, Frank Piessens, Lars Birkedal, and Dominique Devriese. Proving

full-system security properties under multiple attacker models on capability

machines: coq mechanization, Sept. 2021.

[162] Thomas Van Strydonck, Frank Piessens, and Dominique Devriese. Linear

capabilities for fully abstract compilation of separation-logic-veri�ed code.

Proc. ACM Program. Lang., 3(ICFP), 2019.

[163] Thomas Van Strydonck, Frank Piessens, and Dominique Devriese. Linear

capabilities for fully abstract compilation of separation-logic-veri�ed code.

Journal Of Functional Programming, 31(PII S0956796821000022):1–55, Mar.

2021.

https://github.com/B-Lang-org/bsc

264 BIBLIOGRAPHY

[164] Thomas Van Strydonck, Frank Piessens, and Dominique Devriese. Linear

capabilities for fully abstract compilation of separation-logic-veri�ed code -

technical appendix including proofs and details. 2020. url: https://soft.
vub.ac.be/~dodevrie/seplogic-lincaps-tr20201130.pdf.

[165] Thijs Vercammen, Thomas Van Strydonck, and Dominique Devriese. Bor-

rowed capabilities: �exibly enforcing revocation on a capability architecture.

Workshop on the Security of Software/Hardware Interfaces (SILM), 2021.

[166] Verilator, the fastest Verilog/SystemVerilog simulator. https : / / www .
veripool.org/verilator/, 1994. [Online; accessed 10-02-2022].

[167] Simon Friis Vindum and Lars Birkedal. Contextual re�nement of the michael-

scott queue (proof pearl). In Catalin Hritcu and Andrei Popescu, editors, CPP

’21: 10th ACM SIGPLAN International Conference on Certi�ed Programs and

Proofs, pages 76–90. ACM, 2021.

[168] Frédéric Vogels, Bart Jacobs, and Frank Piessens. Featherweight VeriFast.

Logical Methods in Computer Science, 11(3), 2015.

[169] Philip Wadler. Theorems for free! In Proceedings of the fourth international

conference on Functional programming languages and computer architecture,

pages 347–359, 1989.

[170] Dan S. Wallach, Dirk Balfanz, Drew Dean, and Edward W. Felten. Extensible

security architecture for java. In Michel Banâtre, Henry M. Levy, and William

M. Waite, editors, Proceedings of the Sixteenth ACM Symposium on Operating

System Principles, pages 116–128. ACM, 1997.

[171] Andrew Waterman, Yunsup Lee, David A Patterson, and Krste Asanovic. The

RISC-V Instruction Set Manual, Volume I: Base user-level ISA. Technical report,

2011.

[172] Robert N. M. Watson, Jonathan Anderson, Ben Laurie, and Kris Kennaway.

Capsicum: practical capabilities for UNIX. In 19th USENIX Security Symposium

(USENIX Security 10), 2010.

[173] Robert N. M. Watson, Simon W. Moore, Peter Sewell, and Peter Neumann.

Capability Hardware Enhanced RISC Instructions (CHERI). https://www.cl.
cam.ac.uk/research/security/ctsrd/cheri/, 2021. [Online; accessed

20-07-2021].

[174] Robert N. M. Watson, Simon W. Moore, Peter Sewell, and Peter G. Neumann.

An Introduction to CHERI. Technical report UCAM-CL-TR-941, University of

Cambridge, Computer Laboratory, Sept. 2019.

https://soft.vub.ac.be/~dodevrie/seplogic-lincaps-tr20201130.pdf
https://soft.vub.ac.be/~dodevrie/seplogic-lincaps-tr20201130.pdf
https://www.veripool.org/verilator/
https://www.veripool.org/verilator/
https://www.cl.cam.ac.uk/research/security/ctsrd/cheri/
https://www.cl.cam.ac.uk/research/security/ctsrd/cheri/

BIBLIOGRAPHY 265

[175] Robert N. M. Watson, Peter G. Neumann, Jonathan Woodru�, Michael Roe,

Hesham Almatary, Jonathan Anderson, John Baldwin, Graeme Barnes,

David Chisnall, Jessica Clarke, Brooks Davis, Lee Eisen, Nathaniel Wesley

Filardo, Richard Grisenthwaite, Alexandre Joannou, Ben Laurie, A. Theodore

Markettos, Simon W. Moore, Steven J. Murdoch, Kyndylan Nienhuis, Robert

Norton, Alexander Richardson, Peter Rugg, Peter Sewell, Stacey Son, and

Hongyan Xia. Capability Hardware Enhanced RISC Instructions: CHERI

Instruction-Set Architecture (Version 8). Technical report UCAM-CL-TR-951,

University of Cambridge, Computer Laboratory, Oct. 2020.

[176] Robert N.M. Watson, Jonathan Woodru�, Peter G. Neumann, Simon W. Moore,

Jonathan Anderson, David Chisnall, Nirav Dave, Brooks Davis, Khilan Gudka,

Ben Laurie, Steven J. Murdoch, Robert Norton, Michael Roe, Stacey Son, and

Munraj Vadera. CHERI: A Hybrid Capability-System Architecture for Scalable

Software Compartmentalization. In IEEE Symposium on Security and Privacy,

pages 20–37, 2015.

[177] Nicholas Wei Sheng Sim. Strengthening memory safety in Rust: exploring CHERI

capabilities for a safe language. Master’s thesis, University of Cambridge, 2020.

[178] Samuel Weiser, Mario Werner, Ferdinand Brasser, Maja Malenko, Stefan

Mangard, and Ahmad-Reza Sadeghi. TIMBER-V: tag-isolated memory bringing

�ne-grained enclaves to RISC-V. In 26th Annual Network and Distributed

System Security Symposium, NDSS 2019. The Internet Society, 2019.

[179] Jonathan Woodru�, Alexandre Joannou, Hongyan Xia, Anthony C. J. Fox,

Robert M. Norton, David Chisnall, Brooks Davis, Khilan Gudka, Nathaniel

Wesley Filardo, A. Theodore Markettos, Michael Roe, Peter G. Neumann,

Robert N. M. Watson, and Simon W. Moore. CHERI concentrate: practical

compressed capabilities. IEEE Trans. Computers, 68(10):1455–1469, 2019.

[180] Jonathan Woodru�, Robert N. M. Watson, David Chisnall, Simon W. Moore,

Jonathan Anderson, Brooks Davis, Ben Laurie, Peter G. Neumann, Robert

Norton, and Michael Roe. The CHERI capability model: Revisiting RISC in

an age of risk. In 2014 ACM/IEEE 41st International Symposium on Computer

Architecture (ISCA), pages 457–468, 2014.

[181] Jonathan D. Woodru�. CHERI: A RISC capability machine for practical

memory safety. Technical report, University of Cambridge., 2014.

[182] Hongyan Xia, Jonathan Woodru�, Sam Ainsworth, Nathaniel W. Filardo,

Michael Roe, Alexander Richardson, Peter Rugg, Peter G. Neumann, Si-

mon W. Moore, Robert N. M. Watson, and Timothy M. Jones. CHERIvoke:

Characterising pointer revocation using CHERI capabilities for temporal

memory safety. In IEEE/ACM International Symposium on Microarchitecture.

ACM, Oct. 2019.

266 BIBLIOGRAPHY

[183] Hongyan Xia, Jonathan Woodru�, Hadrien Barral, Lawrence Esswood,

Alexandre Joannou, Robert Kovacsics, David Chisnall, Michael Roe, Brooks

Davis, Edward Napierala, John Baldwin, Khilan Gudka, Peter G. Neumann,

Alexander Richardson, Simon W. Moore, and Robert N. M. Watson. CheriRTOS:

A capability model for embedded devices. In 2018 IEEE 36th International

Conference on Computer Design (ICCD), pages 92–99, Oct. 2018.

[184] Xilinx. Vivado. https://www.xilinx.com/products/design-tools/
vivado.html, 2012. [Online; accessed 13-07-2021].

[185] Xilinx. Zynq UltraScale+ MPSoC data sheet. https://www.xilinx.com/
support / documentation / data _ sheets / ds891 - zynq - ultrascale -
plus-overview.pdf, 2021. [Online; accessed 20-07-2021].

[186] Jason Zhijingcheng Yu, Shweta Shinde, Trevor E Carlson, and Prateek Saxena.

Elasticlave: an e�cient memory model for enclaves. In 31st USENIX Security

Symposium (USENIX Security 22). USENIX Association, Aug. 2022.

https://www.xilinx.com/products/design-tools/vivado.html
https://www.xilinx.com/products/design-tools/vivado.html
https://www.xilinx.com/support/documentation/data_sheets/ds891-zynq-ultrascale-plus-overview.pdf
https://www.xilinx.com/support/documentation/data_sheets/ds891-zynq-ultrascale-plus-overview.pdf
https://www.xilinx.com/support/documentation/data_sheets/ds891-zynq-ultrascale-plus-overview.pdf

List of Publications

Journal Papers

Thomas Van Strydonck, Frank Piessens, and Dominique Devriese. Linear capabilities

for fully abstract compilation of separation-logic-veri�ed code. Journal Of Functional

Programming, 31(PII S0956796821000022):1–55, Mar. 2021

Conference Papers

Thomas Van Strydonck, Frank Piessens, and Dominique Devriese. Linear capabilities

for fully abstract compilation of separation-logic-veri�ed code. Proc. ACM Program.

Lang., 3(ICFP), 2019

Aïna Linn Georges, Armaël Guéneau, Thomas Van Strydonck, Amin Timany, Alix

Trieu, Sander Huyghebaert, Dominique Devriese, and Lars Birkedal. E�cient and

provable local capability revocation using uninitialized capabilities. Proceedings of the

ACM on Programming Languages, 5(POPL):6:1–6:30, Jan. 2021

Thomas Van Strydonck, Aïna Linn Georges, Armaël Guéneau, Alix Trieu, Amin

Timany, Frank Piessens, Lars Birkedal, and Dominique Devriese. Proving full-system

security properties under multiple attacker models on capability machines. Accepted

for publication at CSF22, 2022

Technical Reports

Thomas Van Strydonck, Frank Piessens, and Dominique Devriese. Linear capabilities

for fully abstract compilation of separation-logic-veri�ed code - technical appendix

267

268 LIST OF PUBLICATIONS

including proofs and details. 2020. url: https://soft.vub.ac.be/~dodevrie/
seplogic-lincaps-tr20201130.pdf

Sander Huyghebaert, Thomas Van Strydonck, Steven Keuchel, and Dominique

Devriese. Uninitialized capabilities. arXiv: 2006.01608 [cs]

Workshop Papers

Thomas Van Strydonck, Dominique Devriese, and Frank Piessens. Linear capabilities

for modular fully-abstract compilation of veri�ed code. Principles of Secure Compilation

(PriSC), 2018

Thijs Vercammen, Thomas Van Strydonck, and Dominique Devriese. Borrowed

capabilities: �exibly enforcing revocation on a capability architecture. Workshop on

the Security of Software/Hardware Interfaces (SILM), 2021

Aïna Linn Georges, Armaël Guéneau, Thomas Van Strydonck, Amin Timany,

Alix Trieu, Dominique Devriese, and Lars Birkedal. Cap’ ou pas cap’ ?: Preuve

de programmes pour une machine à capacités en présence de code inconnu. French.

In Journées Francophones des Langages Applicatifs 2021. Institut de Recherche en

Informatique Fondamentale, Apr. 2021

In Submission

Aïna Linn Georges, Armaël Guéneau, Thomas Van Strydonck, Amin Timany, Alix

Trieu, Sander Huyghebaert, Dominique Devriese, and Lars Birkedal. Cerise: program

veri�cation on a capability machine in the presence of untrusted code. In Submission

Thomas Van Strydonck, Job Noorman, Leonardo Alves Dias, Jennifer Jackson, Robin

Vanderstraeten, David Oswald, Frank Piessens, and Dominique Devriese. CHERI-TrEE:

�exible enclaves on capability machines. In Submission

https://soft.vub.ac.be/~dodevrie/seplogic-lincaps-tr20201130.pdf
https://soft.vub.ac.be/~dodevrie/seplogic-lincaps-tr20201130.pdf
https://arxiv.org/abs/2006.01608

FACULTY OF ENGINEERING SCIENCE
DEPARTMENT OF COMPUTER SCIENCE

DISTRINET
Celestijnenlaan 200A box 2402

B-3001 Leuven
https://www.distrinet.cs.kuleuven.be

https://www.distrinet.cs.kuleuven.be

	Abstract
	Beknopte samenvatting
	Contents
	List of Figures
	List of Tables
	Introduction
	Capability machines
	Formal reasoning about capability code
	Secure compilation to capability architectures
	Contents of the thesis

	Cerise: Program Verification on a Capability Machine in the Presence of Untrusted Code
	Introduction
	Programming with capabilities
	Operational semantics of a capability machine
	Program logic
	Reasoning about Untrusted Code in Cerise
	Reasoning with capabilities: two examples
	Dynamic Memory Allocation and Closures
	Case study: a Library Implementing Dynamic Sealing and a Client
	Discussion and Perspectives
	Related work

	Proving full-system security properties under multiple attacker models on capability machines
	Introduction
	A simple capability machine with MMIO support
	Example wrappers
	Proving The Security Objectives
	Related Work
	Conclusion and Future Work

	CHERI-TrEE: Flexible enclaves on capability machines
	Introduction
	Background
	The design of CHERI-TrEE
	Implementation
	Evaluation
	Further extensions and future work
	Related Work
	Conclusion
	Appendix: Comparison to Piccolo

	Linear Capabilities for Fully Abstract Compilation of Separation-Logic-Verified Code
	Introduction
	Compiler Illustration
	Source and Target Languages
	Inference Rules and Compilation by Example
	Full Abstraction
	Proving security: the back-translation
	Simulation Relations
	Discussion and future work
	Related work
	Conclusion

	Future Work and Conclusions
	Formal reasoning about capability machines
	Secure compilation
	Conclusion

	Bibliography
	List of Publications

