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Lumped circuit model for inductive 
antenna spin‑wave transducers
Frederic Vanderveken1,2*, Vasyl Tyberkevych3, Giacomo Talmelli1,2, Bart Sorée1,4,5, 
Florin Ciubotaru1 & Christoph Adelmann1*

We derive a lumped circuit model for inductive antenna spin-wave transducers in the vicinity of a 
ferromagnetic medium. The model considers the antenna’s Ohmic resistance, its inductance, as well 
as the additional inductance due to the excitation of ferromagnetic resonance or spin waves in the 
ferromagnetic medium. As an example, the additional inductance is discussed for a wire antenna on 
top of a ferromagnetic waveguide, a structure that is characteristic for many magnonic devices and 
experiments. The model is used to assess the scaling properties and the energy efficiency of inductive 
antennas. Issues related to scaling antenna transducers to the nanoscale and possible solutions are 
also addressed.

Ferromagnetic resonance (FMR) and spin waves are precessional collective excitations of the magnetization in 
ferro-, ferri-, or antiferromagnetic media1–3. Historically, FMR has found applications in microwave resonators, 
oscillators, and filters based on Yttrium iron garnet (YIG)4,5. In recent years, much research has been devoted to 
miniaturizing spin-wave and FMR-based devices and structures in the growing field of (nano-)magnonics, with 
potential applications in spintronic computation6–15 and scaled microwave analog systems16–18.

In magnonic devices, FMR or spin waves are excited by microwave electrical signals, employing transduc-
ers between electric (microwave) and magnetic (spin wave) domains. With alternatives based on spin-orbit 
torques19 or magnetoelectrics20–22 only emerging, the vast majority of devices employs inductive antennas as 
transducers. Inductive antennas excite FMR or spin waves using oscillating Oersted magnetic fields generated 
by microwave currents and can also be utilized as a spin-wave detectors that inductively convert spin waves or 
FMR to microwave signals.

For practical applications, the power transmission from the peripheral microwave circuit into the magnetic 
system is of great importance. Historically, microstrip waveguides in combination with insulating ferrite films 
have been used typically in spin-wave devices. For such devices, distributed models of have been formulated that 
describe quantitatively the change in microwave impedance of the microstrip due to the excitation of FMR or 
spin waves3. Recently, micro- and nanomagnonic devices have however frequently used wire or U-shaped induc-
tive antennas connected to coplanar waveguides since such structures can be more easily miniaturized14,18,23–32. 
For such antennas, the microwave behavior is better described by a lumped impedance of the inductive antenna 
and represented by an equivalent circuit. In this framework, the coupling to FMR and the spin-wave system 
can be described by a radiation impedance, in an analogous way to conventional electromagnetic antennas33,34. 
The equivalent circuit can be used to quantitatively assess the spin-wave excitation and as a starting point for 
the design and optimization of inductive antennas. Thus, equivalent circuits are crucial, when such inductive 
antennas are to be included in spin-wave-based microwave or spintronic (logic) systems. This approach can 
ultimately be used in SPICE-like device models to simulate the behavior of magnonic or spintronic systems35,65, 
including peripheral microwave circuits.

Several works have studied the radiation impedance of inductive antennas for particular cases. Ganguly et al. 
first derived the spin-wave resistance and reactance for magnetostatic surface spin waves excited by a micro-
strip with uniform current density by solving the Maxwell equations with appropriate boundary conditions 
in all layers36,37. Subsequent work has addressed gradually more complex structures and presented alternative 
derivations. Emtage reported a derivation based on surface permeabilities38 whereas Kalinikos introduced a 
Green’s function method to determine the spin-wave power and impedance39. Also non-uniform current densities 
were considered40–44, as well as finite dimensions of the magnetic medium3,39,40,42,45. Furthermore, the spin-wave 
radiation impedance has also been derived for forward volume spin waves3,38,39,44–48 as well as backward volume 
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waves3,43,44,46,48,49. Nevertheless, all these approaches require numerical methods to find the impedance and do not 
allow for simple approximate expressions that can be implemented in electrical models and equivalent circuits.

This paper presents an analytical compact lumped element model of an inductive antenna spin-wave trans-
ducer emitting dipolar-exchange spin waves. The model includes magnetic relaxation and can describe arbitrary 
static magnetization orientations. It allows for a complete representation of the transducer as an electric element, 
which can e.g. be used in microwave circuit simulations to improve the impedance matching with a connected 
waveguide. The model is then used to study the consequences of scaling the dimensions of an inductive wire 
antenna and the influence of the magnetic material parameters. Finally, the maximum power transfer from the 
microwave to the magnetic domain is quantified for an inductive wire antenna, and implications of the wire 
antenna and waveguide scaling on the maximum power transfer are discussed.

Lumped equivalent circuit model of inductive antenna spin‑wave transducers
The paper is organized as follows: this section presents the derivation of the equivalent impedance of an arbitrarily 
shaped antenna that is placed in the vicinity of a magnetic material. Thereafter, the impedance model is applied 
in Sec. 3 to the special cases of a magnetic thin film or waveguide and a straight wire antenna, configurations 
that are commonly used in magnonic experiments. Section 4 examines the impedance spectra and the scaling 
behavior of wire antennas on top of a CoFeB waveguide as a concrete example. Finally, Sec. 5 discusses the 
optimum power transfer efficiency from the microwave to the magnetic domain, including for the above special 
case, and the dependence on antenna and waveguide dimensions.

General geometry and model assumptions.  We consider a ferro- or ferrimagnetic medium, in which 
FMR or spin waves can be excited. The static magnetization of the medium and the static magnetic bias field are 
assumed to be parallel. Their orientation with respect to the geometry of the structure and the direction of spin-
wave propagation can be variable and strongly determines the spin-wave properties. The model presented here 
is valid for all configurations. Several common specific cases are discussed below.

FMR or spin waves are excited by an inductive antenna with arbitrary shape and current distribution. The 
microwave current in the antenna generates an oscillating Oersted magnetic field, which interacts with the 
magnetic layer and excites the magnetization dynamics, i.e. FMR or spin waves. Hence, there is a net energy flow 
from the microwave current inside the antenna to the magnetic medium. Our model treats spin waves as linear 
excitations of the magnetization and therefore neglects nonlinear effects. Spin waves in the linear regime are 
weak perturbations of the magnetization and thus carry small amounts of energy. In magnonic device applica-
tions, antenna transducers convert electrical signals to the magnetic domain (and vice versa). For ultralow power 
applications, large energy flows into the spin-wave system are neither required nor desirable. However, even for 
signal conversion, high transducers efficiencies are essential to avoid large losses during transduction and the 
associated large external power requirements of the devices.

For simplicity, the antenna length ℓ is assumed to be much smaller than the wavelength of an electromag-
netic wave at the excitation frequency, i.e. ℓ ≪ �EM . In this limit, the phase of the electric current density along 
the antenna is constant and the transducer can be described by a lumped equivalent circuit rather than by a 
distributed-element model. Hence, the active and reactive parts of the energy flow can be captured in a lumped 
equivalent impedance.

Impedance of an inductive antenna.  A microwave (radio-frequency, RF) current I inside an inductive 
antenna generates an oscillating magnetic Oersted field Ha(r) = ha(r)I that can excite both resonant and non-
resonant (evanescent) spin waves in an adjacent magnetic medium. For typical (nano-)magnonic devices, the 
Oersted field can be calculated in the magnetostatic approximation, which is valid when the structure’s dimen-
sions and the spin-wave wavelength are much smaller than the electromagnetic wavelength in vacuum ( ∼ 10 
cm at GHz frequencies). Then, the influence of the time-varying electric field in the Maxwell equations can be 
neglected and the magnetic field can be calculated by the Biot–Savart law. For an arbitrary current distribution 
J(r) = j(r)I , the magnetic field distribution ha can then be written as

with

the Green’s function of the Laplace equation ∇2
rG(r, r

′) = −δ(r − r′) and δ(r) the Dirac delta function. For 
simple geometries, the magnetic field distribution generated by the antenna ha can also be obtained directly from 
Ampère’s law, ∇r × ha(r) = j(r) together with symmetry considerations, without the use of Eq. (2). Below, in the 
description of the magnetization dynamics, we assume that ha(r) is known. The feedback of the magnetization 
dynamics (FMR or spin waves) on the antenna current distribution is thus neglected in this model.

In addition to the Oersted magnetic field generated by the inductive antenna, magnetization dynamics (e.g. 
FMR or spin waves) also generate a time-varying dipolar magnetic field. Both fields influence the voltage across 
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the antenna via electromagnetic induction, i.e. via an electromotive force (EMF). The impedance of the antenna 
can then be found by the ratio of the voltage across the antenna and the current, i.e. Zeq = V/I . The total voltage 
drop is the sum of EMF contributions and the Ohmic resistance of the antenna. Hence, its equivalent impedance 
can be written as

with R� the Ohmic antenna resistance and Vind the EMF-induced voltage. Here, we neglect electromagnetic 
radiation losses in the nonmagnetic surroundings, which is valid in the magnetostatic limit. However, these can 
be added to the model as an additional impedance contribution33,34.

The EMF-induced voltage originates from the time-varying magnetic fluxes generated by the Oersted and 
dipolar magnetic fields due to FMR or spin waves. By applying Stokes’ theorem to the Maxwell–Faraday equa-
tion, the induced voltage at angular frequency ω = 2π f  can be written as a function of the total flux, leading to

with Sa the surface enclosed by the current loop, � the magnetic flux through this loop, Ca = ∂Sa , and B the 
magnetic induction. Considering the magnetic vector potential A defined by B = ∇ × A , the magnetic flux can 
be written as

For a current distribution J(r) = j(r)I , the line integral can be converted to a volume integral by averaging 
the magnetic vector potential weighted by the current density. This results in

In the Lorenz gauge, the electrical current and the curl of the magnetization M can be interpreted as sources 
of the magnetic vector potential that satisfies the Poisson equation

After substituting this into Eq. (7), the total flux � can be written as the sum of the flux originating from the 
current �0 and the flux originating from the curl of the magnetization �m

with L0 the conventional self-inductance of the antenna and Lm the additional inductance generated by FMR or 
spin waves. The self-inductance is given by

and can be readily calculated when the current distribution is known. To obtain an expression for Lm , the mag-
netic flux needs to be considered. Integration by parts and substitution of Eq. (2) leads to

For linear magnetization dynamics described by the linearized Landau–Lifshitz–Gilbert equation, the 
dynamic magnetization can be written as50
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Here, χ̂ω(r, r′) is the dynamic magnetic susceptibility tensor and ha the dynamic Oersted field. Substitution 
of Eq. (12) into Eq. (11) results in an excess inductance generated by FMR or spin waves that is given by

This is the general expression to determine the spin-wave generated partial inductance introduced in an 
arbitrary shaped conductive wire. Hence, to find Lm , one needs to know the antenna’s field distribution and the 
spin-wave susceptibility. Note that the self-inductance can also be expressed in a similar form

with χ̂0(r − r′) = δ(r − r′)I the vacuum susceptibility and I the identity matrix.
Based on this model, an inductive antenna can therefore be represented by a circuit comprising its Ohmic 

resistance R� , its self-inductance L0 , as well as an additional partial inductance Lm that stems from the coupling 
to the magnetic system. As shown below, Lm = L′m + iL′′m is in general complex because the dynamic magnetic 
susceptibility tensor χ̂ω(r, r′) is complex. The impedance Zm = iωLm can therefore be divided into a resist-
ance Rm = −ωL′′m and a reactance Xm = ωL′m . A schematic of the equivalent circuit is shown in Fig. 1. In this 
equivalent circuit, the radiation resistance Rm describes the dissipation due to spin-wave or FMR excitation and 
can therefore be used to describe the energy transfer between electric and magnetic domains. This will be used 
below to discuss the energy efficiency and the scaling behavior of inductive antennas.

Inductive antenna on top of a ferromagnetic waveguide with uniform magnetization 
dynamics
Additional inductance due to spin‑wave or FMR excitation.  An inductive antenna on top of a ferro- 
or ferrimagnetic thin-film waveguide is a common basic structure in many (nano-)magnonic experiments. We 
therefore apply the above general model to the case of a magnetic waveguide with thickness t. The spin waves 
are assumed to propagate along the x-axis, whereas the z-axis is chosen perpendicular to the waveguide surface. 
We assume that the waveguide thickness t is much smaller than the spin-wave wavelength � , i.e. kt ≪ 1 , with 
k = 2π/� , as this results in uniform magnetization dynamics over the thickness. Furthermore, we also assume 
that there is no lateral mode formation, and the magnetization dynamics are uniform over the width of the wave-
guide. This is realized in narrow waveguides when the spin-wave wavelength is much larger than the waveguide 
width. For wider waveguides, the boundary conditions at its edges leads to the formation of spin-wave modes 
with nonuniform magnetization dynamics over the waveguide width, which are difficult to treat analytically. 
However, for first-order spin-wave modes in sufficiently wide waveguides (with extended thin films as a limit), 
edge effects become again negligible, and the magnetization dynamics become approximately uniform. Hence, 
the analytical calculations are appropriate both for narrow and wide waveguides with widths W so that kW ≪ 1 
or kW ≫ 1 . For waveguides with kW ∼ 1 , mode formation cannot be neglected, and numerical calculations are 
required to assess the inductance of an inductive antenna.

For uniform magnetization dynamics, the integration over the width and thickness directions can be replaced 
by a multiplication with the structure’s cross section

with t the thickness and W the width of the waveguide.
The result can be simplified by writing the expression in reciprocal space. The dynamic susceptibility is 

translationally invariant, i.e. it only depends on the distance between two points r and r′ , and can therefore be 
written as χ̂ω(r, r′) = χ̂ω(r − r′, 0) . Taking the Fourier transform, applying Plancherel’s theorem, and consider-
ing translational invariance results in
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Figure 1.   Lumped equivalent circuit representation of an inductive antenna spin-wave transducer. The 
equivalent circuit consists of an Ohmic series resistance ( R� ), a self-inductance ( L0 ), as well as a radiation 
resistance ( Rm ) and reactance ( Xm ) that capture the power coupling to FMR or spin waves.
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For linear magnetization dynamics, the susceptibility in reciprocal space can be written as

with ωr(k) = 2π fr(k) the spin-wave dispersion relation, Ŵ(k) the spin-wave damping rate, and �̂(k) a tensor 
dependent on the magnetic bias field and wavenumber k. Analytical expressions of these quantities can be found 
in Appendix A.

For low damping, i.e. for Gilbert damping constants α ≪ 1 , Eq. (17) can be further approximated by

Using this approximation, an analytical solution to the integral in Eq. (16) can be found

with kω the wavevector at the spin-wave resonance for angular frequency ω = 2π f  , i.e. ωr(kω) = ω , and 
vg (k) = ∂ωr(k)/∂k the spin-wave group velocity. Note that reciprocal spin-wave propagation was assumed in 
the integration, which means that both propagation directions of excited spin waves ±kω provide equal contribu-
tions to Lm . This is a valid assumption if the waveguide thickness is much smaller than the spin-wave wavelength, 
i.e. kωt ≪ 1.

Equation (19) also takes into account nonresonantly excited (evanescent) spin waves. Furthermore, unlike the 
self-inductance L0 , the spin-wave inductance Lm is generally a complex quantity with both real and imaginary 
parts, i.e. Lm = L′m + iL′′m . The real part leads to a reactance in the equivalent circuit, Xm = ωL′m , whereas the 
imaginary part corresponds to a resistance, Rm = −ωL′′m , as discussed above. Combining the previous results in 
Eq. (4) in the framework of the equivalent circuit in Fig. 1 leads to an impedance of an antenna above a magnetic 
thin film or waveguide of

with Lm given by Eq. (19).

Two‑antenna configurations: Mutual inductance due to propagating spin‑waves.  The above 
derived model can be extended to describe the mutual inductance between two inductive antennas connected 
via a magnetic waveguide. As explained above, the magnetization dynamics generates a dipolar magnetic field 
which induces an additional voltage in the antenna. The magnetization dynamics is not localized near the excit-
ing inductive antenna but spreads over the magnetic medium. This can be interpreted as spin waves that propa-
gate in the magnetic medium away from the source. A second “receiving” inductive antenna that is placed at 
some distance D from the excitation antenna then also feels the dynamic dipolar field associated with the mag-
netization dynamics. Consequently, this field also induces a voltage in the receiving antenna. The interaction 
between the two antennas can be represented by a mutual inductance M . The derivation of M is analogous to 
the above derivation of the additional magnetic inductance Lm . However, here, a space separation D between the 
two antennas should be considered in equation Eq. (15)

In reciprocal space, this leads to a phase accumulation of kD during propagation and gives

Here, k = kr + iki is the wavevector of the propagating spin wave. Effects of magnetic damping are captured 
by the imaginary component of the complex wavevector, resulting in an exponential decay of M with increasing 
inter-antenna distance D. We note that near FMR ( k ≈ 0 ), the mutual inductance becomes equal to the additional 
spin-wave induced inductance of the excitation antenna, i.e. M ≈ Lm.

Radiation impedance of a wire antenna on top of a ferromagnetic narrow waveguide with 
uniform magnetization dynamics.  As a more concrete structure, we now consider a straight wire 
antenna with rectangular cross section at a distance s above a magnetic thin film, as used in various spin-wave 
propagation experiments14,18,23–32. The structure and the geometry of the studied structure are depicted in Fig. 2. 
To simplify the system, we assume a uniform current density inside the antenna, i.e. we neglect the impact of the 
skin effect. This is justified as long as the antenna width or thickness are much smaller than the skin depth 
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δ =
√

ρ
π fµ  at frequency f. Here, ρ is the resistivity of the antenna metal and µ = µ0µr its permeability. For Cu, 

the skin depth is of the order of 1 µ m at GHz frequencies (larger for poorer conductors) and thus the approxima-
tion is acceptable for the nanoscale antennas considered below. The Ohmic resistance of the antenna is then 
described by Pouillet’s law

with ℓ , d, and w the antenna length, thickness, and width, respectively. If the skin effect cannot be neglected, 
an effective area Aeff  based on the current distribution inside the antenna needs to replace dw in Eq. (23). The 
self-inductance for this geometry can be approximated by51

To evaluate the additional inductance Lm in Eq. (16) that originates from the excitation of FMR or spin waves, 
the Oersted field of the antenna, Ha , needs to be determined. A simple analytical expression for Ha can be found 
when two approximations hold: (i) the film thickness t is smaller than the sum of the antenna thickness and the 
separation d + s which, (ii) is in turn assumed to be smaller than the antenna width w, i.e. t ≪ d + s ≪ w . For 
this geometry, the Oersted field inside the magnetic waveguide can be approximated by

with �(x) the rectangular function (defined as 1 for |x| ≤ 1
2 and 0 for |x| > 1

2 ) and êx the unit vector in the 
x-direction. The spatial Fourier transform of this field is given by

When w ≪ s , the Oersted field distribution becomes a sinc-function

Using Eq. (16) and further assuming s ≪ w , the partial spin-wave inductance can then be written as

Multiplying the inductance with the angular frequency results in the spin-wave impedance Zm = Rm + iXm 
with the spin-wave resistance

and the spin-wave reactance

with the complex susceptibility χ̂ω,xx(k) = χ̂ ′
ω,xx(k)− iχ̂ ′′

ω,xx(k) derived in Appendix A.
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Figure 2.   Schematic of the studied geometry: wire antenna (yellow) on top of a ferromagnetic narrow 
waveguide or thin film (blue). The static magnetization inside the waveguide or thin film can take any arbitrary 
direction in the general model.
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Scaling behavior of the spin‑wave impedance of inductive wire antenna transducers
Impedance spectra of inductive wire antenna transducers.  The spin-wave resistance Rm and reac-
tance Xm in Eqs. (29) and (30) are critical parameters that determine the measured signals in magnonic experi-
ments using inductive wire antennas and ferri- or ferromagnetic waveguides. Their scaling behavior is key when 
magnonic devices are miniaturized to the micro- and nanoscale. We therefore discuss here the general behavior 
of Rm and Xm for a concrete example based on a thin CoFeB waveguide, assuming laterally uniform magneti-
zation dynamics. Since both the spin-wave dispersion relations and the susceptibility χ̂ω,xx(k) depend on the 
relative orientations between the static magnetization, the normal to the waveguide plane, and the spin-wave 
wavevector k that points along the waveguide, three different configurations need to be distinguished (cf. Fig. 3): 
(i) the backward-volume configuration with the magnetization and the wavevector both in-plane and parallel; 
(ii) the forward-volume configuration with the magnetization out-of-plane and the wavevector in-plane; and 
(iii) the Damon–Eshbach configuration with the magnetization and the wavevector both in-plane and perpen-
dicular.

In the following, we discuss, as an example, the spectral characteristics of the spin-wave resistance Rm and 
reactance Xm of a wire antenna above a ferromagnetic CoFeB waveguide24,31,52–54 with laterally uniform magneti-
zation dynamics. The used material and geometric parameters are: saturation magnetization Ms = 1.3MA/m ; 
exchange constant Aex = 18 pJ/m ; Gilbert damping α = 0.004 ; static bias field µ0H0 = 50mT ; waveguide width 
W = 1µm ; CoFeB thickness t = 20 nm ; and antenna width w = 300 nm . We focus on the Damon–Eshbach 
and forward-volume configurations as spin waves are only efficiently excited in such geometries by an inductive 
antenna transducer. By contrast, the excitation efficiency of backward-volume spin waves55–57 is much lower since 
the in-plane component of the antenna excitation field is parallel with the static magnetization and thus does 
not generate any torque. Only the much smaller out-of-plane component of the Oersted field can excite spin 
waves in the backward-volume configuration57. While the above approach is also valid for the case where the 
z-component of the Oersted field is not neglected, we omit for simplicity the treatment of the backward-volume 
configuration in the following since the excitation efficiency for this geometry is zero in our approximation.

The resulting spin-wave impedances in the two considered geometric configurations are plotted in Fig. 3. 
Several aspects can be identified from these plots, which are common to both configurations. Below the FMR 
frequency, the spin-wave resistance is zero, whereas the reactance remains nonzero for considerably smaller 
frequencies. This means that, below FMR, no net power transfer takes place from the electric to the magnetic 
domain. Instead, resonant power oscillations between the two domains occur that originate from evanescent 
spin waves. Near FMR (which is broadened by damping), the magnetic resonance conditions are met and net 
power transfer from the electric into the magnetic system occurs. At the same time, the reactance reaches a 
maximum at the FMR frequency.

Above the FMR frequency, the resistance Rm increases further until it reaches a maximum. The maximum is 
due to the interplay of three factors in Eq. (29): the angular frequency ω , the complex part of the susceptibility, 
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Figure 3.   Spin-wave impedance of a 300 nm wide antenna on top of a 1µm wide and 20 nm thick CoFeB 
waveguide (see the text for material parameters) in the (a) Damon–Eshbach and (c) the forward-volume 
configurations. (b) and (d) show the real ( Rm ) and imaginary ( Xm ) components of the complex impedances as 
a function of frequency f in the Damon–Eshbach and forward-volume configurations, respectively. In addition, 
the spin-wave dispersion relations are shown as yellow lines. The FMR frequency is located at zero wavenumber; 
for the parameters considered, it is 1.4 GHz and 8.1 GHz for the forward-volume and Damon–Eshbach 
configurations, respectively.
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and the spectrum of the Oersted field generated by the antenna. At frequencies just above FMR, the susceptibil-
ity and Oersted field spectrum are quasi-constant and the resistance increases linearly with frequency, as it is 
proportional to ω (cf. Eq. (16)). At higher frequencies, and thus also at higher wavenumbers, the Oersted field 
spectrum dominates. This results in strongly damped oscillations and an overall decrease of the resistance at 
higher frequencies.

By contrast, the reactance Xm is strongly reduced above the FMR frequency until it reaches a negative mini-
mum. This decrease with frequency can be attributed to the real part of the susceptibility. At a specific frequency, 
i.e. the frequency for which χ ′(k) = 0 , the reactance becomes zero and no evanescent spin waves are generated. 
Below this frequency, the reactance is positive and has inductive behavior, whereas above this frequency the 
reactance is negative and has capacitive behavior. At even higher frequencies, the Oersted field spectrum also 
becomes dominant for the reactance, which results in damped oscillations and an overall decay.

A comparison of Fig. 3a,b reveals that the impedances for both forward-volume and Damon–Eshbach spin 
waves share the general trends. The main difference lies in the resonance frequency (FMR), which has a value 
of 1.4 GHz in the forward-volume and 8.1 GHz in the Damon–Eshbach configuration, as well as in the mag-
nitude of the spin-wave impedance. For identical CoFeB parameters, the spin-wave resistance and reactance 
are about an order of magnitude larger for the Damon–Eshbach configuration than for the forward-volume 
configuration which is due to differences in the respective susceptibilities and the higher working frequencies 
in the Damon–Eshbach configuration. We remark that impedance values in the backward-volume configura-
tion are again more than one order of magnitude lower than in forward-volume configuration due to the weak 
z-component of the Oersted field that is required to excite spin waves.

Scaling behavior.  In recent years, numerous experiments have been conducted to study spin waves in 
nanoscale magnetic structures15,24,58–60. When such spin waves are excited by inductive antennas, the scaling 
behavior of the spin-wave impedance of the antenna–waveguide system is key to understand the experimental 
signals and their dependence on the device geometry and dimensions. The scaling behavior of the system can 
be divided in two parts: (i) the dependence of the spin-wave impedance on the antenna and waveguide dimen-
sions and (ii) the power transfer between the electrical source and the spin-wave system, which depends on the 
entire equivalent circuit, as represented in Fig. 1. Here, we first discuss (i) whereas (ii) will be addressed in the 
next section. Since the spin-wave impedance is much larger in the Damon–Eshbach configuration than in the 
forward-volume configuration, we focus in the following on the former. However, the above results indicate that 
the two configurations share general trends, the conclusions are also qualitatively valid for spin waves in the 
forward-volume geometry. All results are again based on the CoFeB material parameters listed above.

The three main geometrical parameters of the antenna–waveguide system that influence the spin-wave imped-
ance are the magnetic waveguide thickness t, the waveguide width W, and the antenna width w. Equation (16) 
indicates that, for plane waves, the impedance is simply proportional to the waveguide width W as is the case 
for very wide waveguides and narrow waveguides with a waveguide width in the order of the exchange length. 
For intermediate cases with W comparable to the spin-wave wavelength � , the lateral confinement of the spin 
waves leads to mode formation, which complicates the expressions for the susceptibility and spin-wave excitation 
efficiency. In this case, the spin-wave impedance and the influence of the waveguide width typically needs to 
be determined numerically. Nevertheless, some qualitative predictions can be made by considering the overlap 
integral approach to determine the excitation efficiency of a particular mode. The higher the overlap between 
the Oersted excitation field and the spin-wave mode, the stronger the excitation and thus the larger the spin-
wave resistance. Hence, increasing the waveguide width results in a higher volumetric overlap integral and thus 
higher spin-wave resistances. The influence of the mode profile can be qualitatively captured by a form factor 
that takes into account the effective mode amplitude, for example the profile rms-value instead of its peak value. 
Therefore, the mode formation typically results in a slightly smaller net overlap integral as compared to the 
overlap integral with a plane wave.

By contrast, the influence of the magnetic waveguide thickness t on the spin-wave impedance is more com-
plex. On one hand, Eq. (16) contains a prefactor tW, which indicates that the spin-wave impedance is (linearly) 
increasing with increasing magnetic volume (and therefore also with magnetic waveguide thickness t). However, 
the thickness t also strongly influences the spin-wave dispersion relation and therefore the spin-wave susceptibil-
ity. Figure 4b depicts the spin-wave resistance in the Damon–Eshbach geometry (cf. Fig. 4a) for three different 
magnetic waveguide thicknesses ( W = 1µm , w = 300 nm ). The data clearly indicate that a larger film thickness 
results in a larger spin-wave resistance. As mentioned above, this can be partly ascribed to a larger magnetic 
volume, which can store more magnetic power when the film thickness is increased. In addition, t also affects 
the spin-wave dispersion, leading to a larger spin-wave group velocity (a steeper slope of the dispersion relation) 
for thicker films. This means that for a given frequency, the corresponding spin-wave wavenumbers are lower 
for thicker waveguides. Since the driving Oersted field spectrum has larger values at lower wavenumbers, this 
results in an additional increase of the spin-wave resistance for thicker waveguides. Similar conclusions can be 
drawn for the spin-wave reactance in Fig. 4c. Here, higher waveguide thicknesses also result in increased spin-
wave reactance values originating from the increased magnetic volume and the steeper dispersion relation for 
thicker waveguides.

A third important parameter is the antenna width w. Whereas w does not affect the spin-wave dispersion 
relation and susceptibility, it modifies the driving Oersted field spectrum that determines the overlap integral 
with the magnetization dynamics in Eq. (16). Figure 4d shows the spin-wave resistance for five different antenna 
widths ( W = 1µm , t = 30 nm ). The data indicate that a smaller antenna width results in a larger peak spin-wave 
resistance. This can be understood by considering that the sinc-function that describes the Oersted field spectrum 
becomes broader for smaller antenna widths. For a wide antenna, the sinc-function strongly decays already at 
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small wavenumbers, resulting in a reduced width of the spin-wave resistance peak and, in general, in smaller 
resistances for higher frequencies. A similar reasoning can be made for the spin-wave reactance in Fig. 4e. Here, 
larger antenna width also results in smaller peaks due to the narrower antenna spectrum.

Besides geometrical parameters, the spin-wave impedance also depends on the properties of the waveguide 
material. The saturation magnetization Ms is important as it strongly influences the FMR frequency and the 
spin-wave dispersion relation. A higher saturation magnetization leads to a higher the FMR frequency, thereby 
shifting the impedance curve to higher frequencies and higher values due to the proportionality to ω . In addition, 
an increased Ms also results in a steeper dispersion relation, analogously to an increased waveguide thickness, 
as discussed above. Thus, the effect of an increased Ms is also similar to the effect of increasing the waveguide 
thickness, resulting in higher and broader impedance peaks for higher saturation magnetization values. Another 
important material parameter is the magnetic damping α , which influences the magnetic susceptibility. A larger 
α results in a broader susceptibility spectrum and a smaller susceptibility peak value. Despite the reduction 
of the susceptibility peak value, this does not automatically result in a reduced impedance since the magnetic 
inductance depends on the spectral overlap integral between the susceptibility and the Oersted field (cf. Eq. (16)). 
Hence, the broader the susceptibility and the Oersted field spectrum, the higher the overlap integral and thus 
the spin-wave impedance.
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Figure 4.   Dependence of the spin-wave impedance on the frequency f in the (a) Damon–Eshbach 
configuration for different geometrical antenna and waveguide parameters. (b) Dependence of the spin-wave 
resistance and (c) spin-wave reactance on the magnetic waveguide thickness t ( W = 1µm , w = 300 nm). (d) 
Dependence of the spin-wave resistance and (e) spin-wave reactance on the antenna width w ( W = 1µm , 
t = 30 nm ). The FMR frequency is located at zero wavenumber, i.e. at a frequency of 8.1 GHz for the parameters 
considered.
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Power transmission efficiency of an inductive wire antenna transducer 
on a ferromagnetic narrow waveguide
Above, we have discussed the frequency dependence of the spin-wave impedance on waveguide and antenna 
geometry, as well as on the magnetic material properties. From a spintronic application point of view, a key 
parameter is the power coupling efficiency that describes the ratio of the power that is transferred to the magnetic 
system and the total microwave power that is incident on the antenna transducer.

In a microwave circuit, the power transmission from a source into a load (here the inductive antenna) is 
determined by the matching conditions between source and load impedances. Different matching approaches 
exist. Maximum power dissipation in the load is obtained when the antenna impedance is equal to the complex 
conjugate of the source impedance Zeq = Z∗

S
61. Note that, in this case, the maximum transferred power is half 

of the source power. Zero reflection at the load occurs for Zeq = ZS . By contrast, the maximum power trans-
mission efficiency is obtained for effective open circuit conditions, i.e. for RS ≪ Req , reaching an efficiency of 1 
when RS/Req → 0.

In practice, experiments often utilize a source with a real 50 � or 75 � source resistance, although this no 
necessary condition. A detailed discussion on impedance matching to common 50 � or 75 � microwave instru-
mentation is beyond the scope of the article (see e.g. Refs.62–64) and has been recently addressed for different 
inductive antenna designs65. However, some general power coupling considerations can be made based on the 
equivalent circuit in Fig. 1, which allow for the discussion of the scaling properties of inductive antennas and 
the associated power coupling scaling. The equivalent circuit indicates that power can be dissipated both by 
emission of spin-waves or excitation of FMR ( Pm ) as well as by Ohmic losses in the antenna ( P� ). Both losses 
are proportional to the square of the microwave current in the antenna and thus their ratio does not depend 
on the total power dissipated in the antenna and thus also not on the detailed impedance matching approach. 
Therefore, the power transfer efficiency into the spin-wave system can be expressed as

Here, 0 ≤ ζ ≤ 1 represents the power coupling efficiency into the antenna with respect to the source power, 
which depends on the matching conditions. Under complex conjugate matching conditions (maximum power 
transfer) or for reflectionless matching to a real source impedance, ζ = 1

2 , whereas ζ = 1 near effective open cir-
cuit conditions. However, in any case, the antenna transduction efficiency is limited by the ratio of the spin-wave 
and Ohmic resistances, given by Eqs. (29) and (23), respectively. The scaling behavior of the power transmission 
efficiency of an inductive spin-wave antenna depends thus on the scaling of its Ohmic resistance as well as of its 
spin-wave impedance, as discussed in the previous section.

We now quantitatively assess η in the Damon–Eshbach configuration for an antenna thickness of d = 40 nm , 
using the Cu resistivity of ρ = 17 n�m , as well as the above CoFeB material parameters. We further assume that 
the wire antenna length ℓ is equal to the waveguide width W, which is a lower limit for experimental realizations, 
as well as ζ = 1

2 (maximum power transfer or reflectionless matching to real source power). Figure 5a shows η for 
different antenna widths w. The data indicate that the maximum power coupling efficiency follows the spectral 
behavior of the spin-wave radiation resistance Rm . Note that the Ohmic antenna resistance R� is assumed to 
be frequency independent as the skin effect is neglected. Although Fig. 4b shows that the spin-wave radiation 
resistance Rm increases with decreasing w, especially at high frequencies, the Ohmic antenna resistance R� also 
increases with decreasing w. As a consequence, the power transfer efficiency η decreases with decreasing w due 
to a faster increase of R� , despite the larger bandwidth. By contrast, the magnetic waveguide thickness t only 
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Figure 5.   Power transmission efficiency η into the magnetic system(ζ =
1

2
 , maximum power transfer) in the 

Damon–Eshbach configuration (a) as a function of the inductive antenna width w between 100 nm and 5µm 
( W = 1µm , t = 20 nm ) and (b) as a function of waveguide thickness t between 10 nm and 50 nm ( W = 1µm , 
w = 300 nm ). The FMR frequency at 8.1 GHz is indicated in both graphs as a reference.
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affects Rm and therefore a larger t not only increases Rm but also improves η , as seen from Fig. 5b. Similar effects 
can be found for the dependence on the magnetic material properties, which can be optimized to enhance Rm 
and therefore η . By contrast, changing the waveguide width or the antenna length does not alter the efficiency 
η because the spin-wave and Ohmic resistance are equally proportional to both dimensions. For the chosen 
parameters and nanoscale dimensions, the maximum power transfer efficiency into the spin-wave system is of 
the order of 1 to 3% ( −20 to −15 dB).

These results quantitatively illustrate the scaling behavior of inductive antennas as spin-wave transducers. As 
observed in many experiments, the power transfer efficiency typically decreases when the device dimensions are 
reduced, in particular the antenna width as well as the waveguide thickness. In practice, poor matching between 
the source impedance and the equivalent antenna impedance Zeq in Eq. (20) further reduce the power emitted 
into the spin-wave system. The results in the previous section show that absolute spin-wave radiation resistances 
Rm are of the order of m � . Nonetheless, for the given CoFeB materials parameters, the results indicate that high 
power transfer efficiencies η can be obtained for µm dimensions (antenna widths) when source and antenna 
impedances can be matched, i.e. for Zeq = Z∗

S  , in agreement with a recent report65. For example, η can be as 
high as 11% ( −9.5 dB) for W = ℓ = 5µm , w = 300µm , and t = 20 nm . However, when the antenna width is 
scaled to nm dimensions, η is reduced to 1–3% ( −20 to −15 dB) and below, indicating that wire antennas become 
increasingly inefficient when the bandwidth is increased by reducing their width.

Conclusions
In conclusion, we have derived an equivalent circuit for inductive antennas as transducers between microwave 
currents and FMR or spin waves. Such antennas have been used commonly in magnonic experiments. Fur-
thermore, we have derived analytical equations, assuming an arbitrary antenna shape as well as an arbitrary 
current density, for the different components of the equivalent circuit, which comprises an Ohmic resistance 
R� , a self-inductance L0 , as well as an additional complex partial inductance Lm that stems from the coupling 
to the magnetic system. In addition, both exchange and dipolar interaction have been considered to describe 
the magnetization dynamics. The model has then been used to present a case study for a thin CoFeB waveguide 
with a straight wire antenna on top. Both the spin-wave resistance and reactance have been determined and 
general spectral and geometrical trends have been identified. The results have been used to assess the maximum 
transduction power efficiency for such a system, with a focus on its scaling behavior.

These results have multiple implications when magnonic devices including inductive antennas are scaled to 
nm dimensions. In real-world applications, the power transfer efficiency is a key parameter to determine the 
performance of any magnonic device. As shown above, spin-wave radiation resistances for sub-µm straight 
wire antenna dimensions are of the order of a few 10m� . When the antenna width (and thickness) is scaled, the 
Ohmic resistance can become rapidly an order of magnitude or more larger, leading to a reduced power transfer 
efficiency and to more relative Ohmic power dissipation. In addition, the matching of small antenna impedances 
to conventional 50 � or 75 � sources can be challenging and reduces the available bandwidth considerably. The 
matching can be improved by increasing, e.g. the waveguide width and the antenna length65. While this does not 
affect the power transfer efficiency, it increases the overall resistance (both Ohmic and spin-wave) and can be 
used to match the load impedance better to e.g. 50 � source impedance; however, this also increases the struc-
ture (device) size. We note that analogous arguments apply to the case of the two-antenna mutual inductance 
introduced in “Two-antenna configurations: Mutual inductance due to propagating spin-waves” section and the 
associated equivalent two-port networks.

As mentioned before, the spin-wave impedance is strongly determined by the spectral overlap integral 
between the magnetic susceptibility and the magnetic Oersted field. In the above discussion, a rectangular wire 
has been considered which results in a sinc-like Oersted field in reciprocal space. It is also possible to design 
different antenna shapes such as U-shaped antennas or IDTs, i.e. multiple wire antennas, or envisage even more 
exotic designs, which improve the spin-wave inductance Lm with respect to the straight wire case considered 
here65. In all such cases, the above derived model remains valid and can be applied to study the maximum 
efficiency of a particular antenna design and its scalability. The only parameter that needs to be modified is 
the spectrum of the Oersted in the overlap integral. The equivalent circuit and the model can thus be used to 
determine the coupling efficiency between the microwave source and the antenna (by impedance matching) as 
well as between the antenna and the magnetization dynamics (FMR, spin waves). While it is beyond the scope 
of the paper to discuss the particular spin-wave impedance value for the different antenna designs, the general 
trends and thinking strategies outlined above remain valid for different types of antenna transducers. Therefore, 
this model can be used as the starting point for the design and optimization of antenna transducers for (nano-)
magnonic devices.
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