
Instituut voor

Kern- en Stralingsfysica

Departement natuurkunde en sterrenkunde

Faculteit Wetenschappen

KATHOLIEKE UNIVERSITEIT

Electromagnetically induced transparency

for single gamma photons

Promotor: Proefschrift ingediend tot
Prof. Dr. J. Odeurs het behalen van de graad van

doctor in de wetenschappen
door

Stijn Gheysen

2006



De auteur is aspirant van het Fonds voor Wetenschappelijk Onderzoek - Vlaanderen



Dank aan allen die hun licht hebben laten schijnen op dit werk.
Jullie veelkleurig spectrum leeft voort in deze woorden en symbolen.

“And the disciples had not seen Jesus because of the great light in
which he was, or which was about him; for their eyes were

darkened because of the great light in which he was. But they saw
only the light, which shot forth many light-rays. And the

light-rays were not like one another, but the light was of divers
kind, and it was of divers type, from below upwards, one [ray]

more excellent than the other, ..., in one great immeasurable glory
of light; it stretched from under the earth right up to heaven.”

Pistis Sophia1

1gnostic manuscript, 250-300 AD, translated by G. S. R. Mead, 1921
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Introduction

The quest for nuclear EIT

According to the title, this thesis should deal with electromagnetically induced
transparency (or: EIT) in the domain of gamma photons and nuclei. But
maybe the title should have started with “The (long and painful) quest for
...”, making it, however, too long and less appealing. With this introductory
section, we just want to warn the reader that we have not found the holy grail.
However, the quest itself has been gratifying.
The holy grail in this work is embodied by the realization of EIT in the nu-
clear realm. EIT is a well-known phenomenon in quantum optics, where it is
commonly observed in a three-level Λ-scheme as a transparency window in the
absorption spectrum of resonant radiation. More details about this ‘optical’
EIT and a blueprint for implementation in nuclear schemes are discussed in
chapter 2.
From a chronological point of view, the quest starts with a series of Mössbauer
experiments on a FeCO3 single crystal, presented in chapter 1. The 57Fe nuclei
in this crystal experience a hyperfine level crossing at T ≈ 31K in the first ex-
cited state, which makes it a potential candidate for the investigation of nuclear
three-level systems. This was recognized already more than ten years ago, when
our group performed Mössbauer experiments on a FeCO3 powder [1]. At the
level crossing, a reduced absorption was observed that could not be explained
at that time. Now, a first analysis of the Mössbauer spectra for a single crystal
is again showing an important misfit, in the form of less absorption at the level
crossing than expected.
These experimental results seem to long for an interpretation in terms of EIT.
To that purpose we develop two models that take into account a mixing in-
teraction between the crossing levels and that treat the resonant scattering of
gamma radiation in a semiclassical way. These models, which are designated as
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2 Introduction

the Blume-Kistner and the Maxwell-Schrödinger model, are discussed in chap-
ter 3 along with their application to the analysis of the experimental data.
Because in this thesis we emphasize the single-photon nature of the nuclear
scattering process, in chapter 4 we take it one step further and consider a fully
quantum mechanical approach to the resonant scattering in an ensemble of Λ-
type nuclei. This model is nowadays referred to as the ‘coherent path model’
and is based on the work of Heitler, Harris and Hoy. The results obtained are
compared with the semiclassical solutions, yielding some interesting fundamen-
tal questions concerning the nature of nuclear (multiple) scattering.
Transparency is not the sole feature of EIT. It is also accompanied by a slow
group velocity of the transmitted radiation, which has led to some famous slow
light experiments. The last chapter is devoted to a discussion of the timing
properties of the transmitted gamma radiation, including an estimate of its
group velocity.
But first, as a prelude, we want to sketch the background in which the second
part of the title (“... single (gamma) photons”) should be envisioned.

The photon

All the fifty years of conscious brooding have brought me no closer
to the answer to the question, “What are light quanta?” Of course
today every rascal thinks he knows the answer, but he is deluding

himself.
Albert Einstein [2]

The photon concept is deeply interwoven with the history of quantum me-
chanics and the interpretation of the particle-wave duality. Arthur Zajonc
formulates this even more boldly, stating that the history of light is entwined
with that of the ‘mind’ [3].
Light and light phenomena have always had an important role in man’s un-
derstanding of the world to which he is born. From its mythical and religious
perceptions to the empirical observations, the concept of light indeed reflects
the human state of mind. We should, therefore, not be surprised to witness the
revival of the idea of light consisting of light particles, photons, in our present,
materialistic world view, although this was certainly not intended by its two
main protagonists, Planck and Einstein.
Because light can only be observed indirectly, i.e. in its interaction with mat-
ter, it also adopts some properties of these massive particles. The quantization
of light and the picture of a photon as a localized particle should hence be un-
derstood as emerging properties from the detection mechanism, not necessarily
inherent to light itself, although many physicists seem to have assigned to them
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an ontological status.
It is one of the major breakthroughs of quantum mechanics that has taught us
the importance of the measurement itself. The fact that we, as an observer,
determine a priori the set of possible final states onto which the state of the
measured system is projected, has deep repercussions regarding the interpreta-
tion of so-called hard, empirical evidence. It reminds us the words of Einstein,
who warned us that “the human mind has first to construct forms indepen-
dently before we can find them in things.”

According to the modern quantum theory of light [4,5], the notion of a pho-
ton appears as the single-mode excitation of the electromagnetic field, bearing
more resemblance with concepts as phonons, plasmons or polaritons than with
electrons or protons. Although this theory has achieved remarkable agreement
with experiments, it has to deal with severe formal problems such as the renor-
malization procedure [6].
Another very promising theory capable of addressing the fundaments of light
is formulated in (linear) stochastic electrodynamics or (L)SED [7]. The central
premise of SED is that the quantum behavior of otherwise classical particles
is a result of its interaction with the vacuum field [8]. This zero-point field,
or empty photon mode of the electromagnetic field, now plays a major role
in the development of the usual quantum formalism, reducing its postulates
to predictions of a more general, underlying theory. This vacuum field ensues
from the classical Maxwell equations in a natural way, i.e. as a solution of the
source-free equations, instead of the usual gauged null solution. Nequaquam
vacuum2 ...
Hence, SED re-enthrones the classical Maxwell equations, along with their wave
description of light. Although they share some common ideas, SED can not
be treated on the same footing as ordinary semiclassical theories, which only
combine the quantum description of matter with the classical equations of ra-
diation.
Nevertheless, in this work we rely on both quantum and semiclassical theories
as they have proven to provide a very useful mathematical formalism. From the
conceptual or interpretational level, however, we should keep an open mind, un-
constrained from traditional thinking, and realize that quantum theory might
not have the final word.

2(can be translated as “there is no empty space”) inscription found on the tomb of Chris-

tian Rosenkreutz, in Fama Fraternitatis (1614),
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Single photons

In the last five years research on single photons has become immensely popu-
lar. It is not only the interest in the fundamental properties of single photon
states, but especially the promising features with respect to quantum state en-
gineering [9,10] that drives this research effort. It is shown that most quantum
computing schemes that work by means of linear optics as well as schemes for
quantum cryptography, see e.g. [11, 12], require sources of single photons.
A variety of single photon sources has already been investigated. For an
overview and comparison of the state-of-the-art techniques we refer to [13].
Also, the open-access journal New Journal of Physics has devoted an entire
issue on single photon research [14]. The different single-photon sources can
still address only a part of the ideal source implementation, i.e. the creation
of exactly one photon, at precisely the time required and with a convenient
spatio-temporal shape. It can also be desirable to produce trains of single pho-
tons at high repetition rates.
In this work a very simple source of single photons is considered, i.e. radioac-
tive nuclei embedded in a solid material. Some single-photon characteristics of
this radioactive source are discussed in section 2.2 and 4.2.3. It is clear that this
source of single photons does not provide photons ‘on demand’ and also their
spatio-temporal shape is restricted to the decay mode of the emitting nucleus.
But, perhaps these (initial) features can be modified, or even controlled, by
allowing the photons to interact with a nuclear medium that is able to reshape
or fine tune them depending on the envisioned application.
The study of these nuclear systems contributes to the single-photon research in
a very original way, by exploiting the advantage of an easily achievable single-
photon source and truly single-photon events.

Photon wave function

First of all, although it is a very interesting field of study, this work is not about
the philosophical interpretations of fundamental quantum concepts. With the
following discussion we only hope to put things in the right perspective.
With the term ‘wave function’ we do not necessarily mean a function that
satisfies the quantum mechanical ‘wave’ equations, rather we are referring to a
complex vector function of space and time coordinates r and t that describes
the quantum state of a single photon.
For massive particles, the coordinate representation of the wave function, φ(r, t)
is defined as the projection of the state vector |ψ〉 on the eigenstates |r〉 of the
position operator r̂

φ(r, t) = 〈r|ψ〉. (1)
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In the quantum description of photons, however, this approach does not work
due to the lack of a well-defined position operator r̂, which arises from the
difficulties with the localizability of the photon. According to Bialynicki-Birula
[15], this can be circumvented by using any function of r that adequately
describes photon states. He states that “all that really should matter is that the
wave function be precisely defined and that its interpretation be not extended
beyond the limits of its applicability”. Also, “it should be pointed out that
in relativistic quantum theory, even for particles with nonvanishing rest mass,
the position operator and the localization associated with it do not live up
to our nonrelativistic expectations”, i.e. they also experience some degree of
nonlocalizibility, similar to photons.
A useful approach to the photon wave function in our case, which is the emission
and detection of single gamma photons, is found in the work of Glauber [16]
and Scully and Zubairy [17]. It boils down to the following quote:

What is a photon and where is it? A photon is what a
photodetector detects and a photon is where the photodetector

detects it.
Roy J. Glauber

In resonant fluorescence experiments involving nuclei and gamma photons, the
latter are commonly detected by means of a proportional counter. The de-
tection principle is based on the ionization of (gas) atoms, which produces a
detectable current. In this process the ionizing photon is destroyed. Therefore,
the probability that a photon ionizes a detector atom at position r and between
times t and t + dt is proportional to w(r, t)dt [17] with

w(r, t) = |〈ψf |E(+)(r, t)|ψi〉|2, (2)

where |ψi〉 and |ψf 〉 are the initial and final state of the photon field. The
photon is annihilated by the positive frequency part of the electric field operator

E(+)(r, t) =
∑

k,λ

Ekελ
k
ak,λei(k.r−ωkt), (3)

where Ek = (~ωk/2ε0V )1/2, ελ
k

a unit polarization vector, belonging to polar-
ization state λ, and ak,λ the annihilation operator of a photon with wave vector
k and polarization λ.
If |ψi〉 corresponds to a single photon state, designated by |ψγ〉, then |ψf 〉 can
only coincide with the vacuum state |0〉. Hence, the function

ψ(r, t) = 〈0|E(+)(r, t)|ψγ〉 (4)

can be interpreted as a single photon wave function.
It must be emphasized that in this approach the space and time dependent
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wave function only emerges from the photon interaction with a detector atom.
This model is very suitable for our purpose, especially in the case of the coher-
ent path model of chapter 4, but should not be taken any further.

Remark 1: If |ψf 〉 is unknown and a statistical average is taken over |ψi〉,
then the probability w(r, t) can be recast as

w(r, t) = 〈E(−)(r, t)E(+)(r, t)〉, (5)

which equals the average light intensity at point r and time t and is also closely
related to the first-order coherence function

G(1)(r1, r2; t1, t2) = 〈E(−)(r1, t1)E
(+)(r2, t2)〉. (6)

Remark 2: The appearance of only the positive frequency part of the electric
field in the expression of the photon wave function bears a deeper meaning.
Plane wave solutions of the Maxwell wave equations in free space can have a
positive or a negative frequency part

e−iωt+kr or e+iωt−kr, (7)

respectively. According to relativistic quantum mechanics [18], solutions with
positive frequency correspond to particles, while the negative frequency solu-
tions correspond to antiparticles. But photons have no antiparticles, or, for-
mulated in another way, they are considered identical. Therefore, the negative
frequency part contains no additional information and can be discarded as re-
dundant. Using only the positive frequency part, it is possible to construct a
Schrödinger-type of wave equation, which is similar to the Dirac equations for
the neutrino, see e.g. [15,17,19] leading to the assertion that it can be identified
with the true photon wave function.



Chapter 1

FeCO3 Mössbauer

experiments

In this chapter we first give a detailed description of the FeCO3 or mineral
siderite crystal, from the low energy crystallographic to the high energy nuclear
structure. In a second part we describe the experimental setup and present
the Mössbauer spectra that have been obtained under different experimental
conditions.

1.1 Siderite crystal

Ferrous carbonate or FeCO3, naturally occurring as the mineral siderite, chem-
ically belongs to the carbonate group and structurally to the calcite (CaCO3)
subgroup (hexagonal space group R3c). The basic anionic CO2−

3 complex of
carbonates consists of an equilateral triangle of oxygen atoms in coordination
bonds with the central carbon atom. The threefold symmetry of the triangular
carbonate groups explains the trigonal symmetry that many members of this
class possess.

Cations with small ionic radius (Ni, Mg, Zn, Co, Fe, Mn and Ca) are
generally incorporated into carbonates having a rhombohedral unit cell. Its
structure can be visualized as a cubic lattice which has been contracted along a

5



6 CHAPTER 1 FeCO3 Mössbauer experiments

Figure 1.1: Illustration of the crystal structure of FeCO3 [20]. The vertical axis
is the trigonal and optical axis of the crystal. The central Fe2+ ion has 6 nearest
neighbors, three in the plane above and three in the plane below. The six next-
nearest neighbors lie in the plane containing the central ion.

body diagonal, as illustrated in Fig. 1.1. The diagonal of deformation becomes
the prominent axis of symmetry.
A rhombohedron consists of 6 equal rhombi or quadrilateral, ‘diamond’-shaped
planes. Hence, it is completely parameterized by an opening angle α and side
a. Descriptions of rhombohedral carbonates are usually given in terms of a
triple hexagonal cell. Fig. 1.2 shows the relationship between the steep, true
rhombohedral unit cell (a = 5.83 Å, α = 47◦45′), the morphologic (or cleavage)
cell (axial ratios a : c = 1 : 0.819) and the hexagonal unit cell (a = 4.72 Å,
c = 15.45 Å) [22].
All crystals in the calcite group show a perfect rhombohedral cleavage to which,
historically, the indices {1011} have been assigned. These are the crystal faces
of the morphologic cell in Fig. 1.2. Also the axial ratios are still expressed
in this morphologic unit cell axis system. From these ratios one can derive
the angle of the c − axis (or ‘axis of highest symmetry’ or ‘optical axis’) with
respect to the {hkil} cleavage plane according to [21]

β =
π

2
− arctan

(
c(h + k)

l cos φ

)
(1.1)

Substituting the values for the case of FeCO3, the angle of the c-axis with the
{1011} is calculated1 to be β = 46◦36′. This angle will come into play when
considering the orientation of the crystal with respect to non-scalar external

1In the hexagonal system, the negative end of the a3 axis is taken as φ = 0◦. According

to this definition φ = 30◦ for {h0hl} planes.
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true rhombohedral unit cell

hexagonal unit cell

morphologic cell

Figure 1.2: Relation of the steep, true unit cell to the cleavage rhombohedron
(morphologic cell). The hexagonal cell is also shown. [21]

fields, see the discussion of the experimental geometry in section 1.2.
Natural siderite is usually impure, with impurities quoted up to 17%, see

table 1.1, mainly Mg and Mn, possibly Ca and Zn. All of them are chem-
ically equivalent with Fe. Because the Mg and Mn ions have similar ionic
radii (0.072 nm and 0.083 nm respectively, compared with 0.078 nm of the Fe
ion [30]), they are expected to be found on substitutional sites. Complete series
of FexMg1−xCO3 and FexMn1−xCO3 are possible [21]. MgCO3 or magnesite
and MnCO3 or rhodochrosite are also commonly found in nature; once the Fe
exceeds 50% of the metal content, it is called siderite. A Ca ion has a larger
radius (0.100 nm [30]) and will not easily substitute for Fe. It is well docu-
mented, however, that calcite can appear as a coexisting carbonate species, in
the siderite crystal structure [21].

The chemical composition of our siderite crystal has been obtained through
an atomic absorption spectroscopy study [31]. Expressed in atomic proportions,
the total cation content of the sample is 84.2% Fe, 8.1% Ca, 6.4% Mn with small
traces (< 1%) of Na, Al, Mg, K and Sr.

1.1.1 Electronic structure

Before discussing any nuclear properties, we take a brief and heuristic look into
the electronic structure of FeCO3, as summarized in Fig. 1.3. As they give
rise to the electric field gradient (efg), an antiferromagnetic hyperfine field and
relaxation effects, knowledge of these electronic levels is of paramount impor-
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Table 1.1: Overview of ‘recent’ hyperfine studies of FeCO3. The composition of
the samples is recalculated to atomic proportions for ease of comparison. B (Bsat)
is the (saturated) magnetic hyperfine field, ∆ is the quadrupole splitting, IS is the
isomer shift and f the recoilless fraction. These parameters are considered in more
detail further in this chapter. RT stands for ‘room temperature’ (≈ 293 K).

purity Néel temper-

ature

hyperfine fields ref.

powder (Bokal USSR

deposit)

∼ 35K - [23]

Fe0.83Mn0.05R
2
0.12

(Roxbury, US)

∼ 38K - [24]

powder (Kokai-do, Ko-

rea)

- B4.2K = 17(1.5)T

∆RT = 1.87(1)mm/s

∆77K = 2.1(1)mm/s

IS=1.38(2)mm/s

[25]

Fe0.79Mg∼0.1R∼0.1 - - [26]

Fe∼0.95Mn∼0.045 38.4(2)K Bsat = 18.4(2)T

∆<38K = 2.06(3)mm/s

IS=1.36(3)mm/s

[27]

- (artificially grown) 38.3(3)K Bsat = 18.4(3)T

∆4.2K = 2.02(3)mm/s

[28]

Fe0.95Mn0.045Mg0.005

(Ivigtut, Greenland)

39.3(5)K ∆RT = 1.770(4)mm/s

ISRT =1.002(4)mm/s

[29]



1.1 Siderite crystal 9

tance for further analysis and discussion of the Mössbauer spectra.
Applying Hund’s rules to the [Ar]3d6 ground state electron configuration of
the Fe2+ free ion yields a 5D ground state. In a crystal lattice, the Fe2+ ions
are subjected to electric fields originating from the ligands, giving rise to a
so-called ‘crystal field’ [32, 33]. The crystal field in FeCO3 is predominantly
cubic, splitting the 5D ground state into an orbital doublet 5E and a triplet
5T2, separated by ∼ 1.25 eV [20,34]. The next largest perturbation is a trigonal
distortion of the crystal field, which splits the 5T2 state into an orbital singlet
5A1 and a lower lying 5E doublet state (split by ∼ 200meV). A detailed the-
oretical study of the 5D ground state splitting [35] shows that the 5E excited
state should be taken into account to obtain more accurate level splittings and
level admixtures. In our low temperature case however, we can easily neglect
the influence of the 5E excited state, as was also done in [20,28,34,36]. Then,
the 5T2 state can be shown to be equivalent to a 5P state with the eigenstates
of L̂z and Ŝz (|ml,ms〉) as basis functions. The spin-orbit coupling splits the
5E ground state further into 5 equally spaced doublets (split by ∼ 13meV).
The lowest doublet has the |1,−2〉 and | − 1, 2〉 basis functions, while the ba-
sis functions of the first excited doublet are linear combinations of |1,−1〉 and
| − 1, 1〉. The presence of an exchange interaction3 however, lifts this two-fold
degeneracy (in a molecular field approximation), which results in a splitting of
the order of 6meV [36].
In summary, the first 4 lowest-lying states of the Fe2+ ion in FeCO3 can be
roughly approximated by the following |ml,ms〉 states (in order of increasing
energy): | − 1, 2〉, |1,−2〉, | − 1, 1〉 and |1,−1〉.

1.1.2 Electric field gradient

The efg appears as a second order correction term in the description of the
electrostatic field generated by the electron cloud at the position of the nucleus.
It gives rise to the quadrupole hyperfine interaction, which is treated in section
1.1.4. The efg can be expressed as (the expectation value of) a traceless tensor
operator of rank 2 [37]4:

V̂ij(r) = − eN

4πε0

xixj − r3δij

r5
(1.2)

with eN the electronic charge of the unit cell and xi/j the Cartesian coordinates
of the valence electron. In general, one chooses a principal axis system (or PAS)

3Within the same hexagonal (0001) layer the iron spins interact ferromagnetically, inter-

layer interactions are antiferromagnetic [24].
4In [37] the efg is defined in cgs-units and already evaluated in electron space.
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5
D

5
E

5
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Figure 1.3: Electronic levels of Fe2+ for successive inclusion of cubic, trigonal, spin-
orbit and exchange interactions, taking into account the approximations discussed in
the body text.

such that the efg expressions are reduced to only 2 parameters, i.e. Vzz and η
(together with the 3 Euler angles of the PAS this makes the 5 free parameters
associated with a rank 2 traceless operator). η is the asymmetry parameter,
which is a measure of the deviation of axial symmetry:

η =
Vxx − Vyy

Vzz
. (1.3)

The PAS is defined such that |Vzz| ≥ |Vxx| ≥ |Vyy| and thus 0 ≤ η ≤ 1.
In order to find the efg, this tensor operator should be evaluated in electron
space Vij = 〈ψe|V̂ij |ψe〉. Using the low-lying electron levels obtained in the
previous section, we find5 that Vzz = (eN/4πε0)(2/5)〈r−3〉 and Vxx = Vyy =

5Assuming that the electron wave functions be separable into a product of a radial function

and a spherical harmonic: ψe(r) = (U(r)/r)Y L
mL

(θ, φ), then 〈r−3〉 =
∫
∞

0
U(r)r−3dr [38].

Values for 〈r−3〉 can be calculated by Hartree-Fock or Density Functional Theory methods,

or can be found by comparison with experimental data. Expressions for Y L
mL

are found

in [39].
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(−eN/4πε0)(1/5)〈r−3〉, which means that η = 0. This could already be ex-
pected from symmetry considerations as the trigonal axis in FeCO3 implies
an axially symmetric efg along this axis. An estimate of the value of Vzz is
calculated by combining the experimental value of the quadrupole splitting
∆ ≈ 1.80mm/s (see section 1.3 for a definition of ∆ and the experimental re-
sults) with the nuclear quadrupole moment of Q = 0.16 b obtained in [40]. We
find that Vzz = 10.82 × 1021V/m2.
It can be further shown that all sublevels of the 5E ground state produce the
same efg.

This line of reasoning of course only applies for a perfect FeCO3 crystal,
without impurities. The 6.4% Mn content on substitutional lattice sites, how-
ever, can disturb the axial efg at the Fe site. Ab initio calculations [41] show
that a Mn impurity can have a small, but non-negligible influence on the efg.
In order to estimate this effect, one Fe is replaced with Mn in different cubic
lattices, and then Vzz is calculated. Three different cases are considered. First,
in an AuCu3 fcc lattice, with Fe instead of Cu, the non-Fe ion leads to the
presence of an axially symmetric efg at the Fe positions (labelled by ‘XFe3’).
Second, if one stacks two Fe bcc lattices on top of each other and replace the
middle layer of Fe with another ion, then this impurity induces two different
axial efg’s at two distinguishable Fe positions, i.e. Fe in the center of the cube
(‘X-Fe-c’) and Fe located at the border faces (‘X-Fe-b’). In Fig. 1.4 these values
are plotted for different impurities (elements of the fourth period). It is seen
that the change of Vzz upon addition of Mn is of the order of 1 × 1021 V/m2,
which is about 10% of the Vzz value in FeCO3.
A Mn content of 6.4% means that, in the mean, one out of sixteen Fe ions
is replaced by a Mn ion. If the Gaussian spread on this distribution would
be small6, then there is a 75% chance of having one Mn in the twelve nearest
and next-nearest neighbors of Fe in the FeCO3 crystal lattice, as shown in Fig.
1.1. The chance of having two or more Mn is much smaller. If one of the six
nearest neighbors of Fe is replaced by Mn, the axial symmetry is broken. The
magnitude of the altered efg is the same for all six sites, but the orientation
differs. The same arguments hold for the next-nearest neighbors.
These observations will play an important role when analyzing and discussing
the experimental results.

6The probability distribution of the ratio of Mn over Fe is most likely Gaussian, but we

ignore the line width of this distribution.
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Figure 1.4: Ab initio calculated values of the Vzz component of the efg for the
three different cases discussed in the body text.

1.1.3 Magnetic hyperfine field

The magnetic hyperfine field B has three main contributions, i.e. an orbital
(Borb), a spin dipolar (Bdip) and a Fermi contact contribution (BF ). The
expression of the magnetic hyperfine field operator (in cgs-units) is given by
[42]:

B̂ = B̂orb + B̂dip + B̂F , (1.4)

= −2µB

~

L̂

r3
− 2µB

~

(
3(Ŝ.r)r

r5
− Ŝ

r3

)
− 2µB

8

3
π Ŝδ̂(r), (1.5)

with L̂ and Ŝ the orbital momentum and spin operator, µB the Bohr magne-
ton and δ̂(r) the Dirac delta function operator. Previous studies have shown
that the Fe2+ magnetic moments point along the c-axis [23]. If we choose
the c-axis as quantization axis, then the magnetic field description is limited
to its z-component. Evaluated in the | − 1, 2〉 electron ground state we find
B = (µB)(18/5)〈r−3〉 + BF , with BF = −(32πµB/3)|ψe(0)|2. The magnetic
field generated by the |1,−2〉 first excited state, however, is equal in magnitude
but opposite in sign7.
It is known that FeCO3 is paramagnetic at high temperatures, but shows an an-
tiferromagnetic behavior below the Néel temperature of TN ≈ 38K (see Table
1.1 for experimental values of TN ). At low temperatures, spins of the neighbor-

7The Fermi contact field also changes sign as the |ms = −2〉 valence state polarizes the

spin of the s orbitals in the same but opposite way as does the |ms = 2〉 state.
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ing Fe ions order in an antiparallel way while the next-nearest neighbors order
in a parallel way. This means that, perpendicular to the c-axis, ferromagnetic
sheets are antiferromagnetically aligned with one another (see also Fig. 1.1).
Furthermore, the magnetic hyperfine field displays a particular temperature
dependence, which can be seen in Fig. 1.7. This is explained by fluctuations
between the two low-lying electronic states, which respectively give +B and
−B and the same efg [28]. In the antiferromagnetic state the energetically low-
est state is more likely to be occupied than the higher state. If P1 and P2 are
the occupation numbers of the low and high state respectively (P1 + P2 = 1),
the net magnetic hyperfine field Bnet at the nucleus is given by [28]

Bnet = P1B + P2(−B). (1.6)

The relaxation rates W12 (W21) from the low state to the high state (and vice
versa) may be determined by the relationship W12/W21 = P2/P1. Above TN ,
there is no net magnetic field, so P1 = P2 and the relaxation rates are equal. For
decreasing temperature, as P1 > P2, there is an increasing magnetic field. An
intuitive explanation is that the relaxation rate W12 decreases and, therefore,
the nucleus starts to ‘feel’ the magnetic field during a precession period (given
by its Larmor frequency). The temperature dependence of these relaxations
and the effect on the magnetic hyperfine field will be discussed later, while
analyzing the experimental data.

1.1.4 Hyperfine interaction

At the smallest scale of the energy spectrum, the interaction of both the nuclear
electric quadrupole moment Q with the efg and the nuclear magnetic dipole
moment µ with the magnetic field generated by the electron cloud has to be
considered. The combination of these two interactions is referred to as the
hyperfine interaction, which is of the scale of µeV. A general expression of the
hyperfine Hamiltonian is given by

Ĥ = −µ

~
Î.B̂hf −

∑

q

√
4π

5

eQ

I(2I − 1)~2
Î2Y 2

q (θI , φI)V̂
2
q (1.7)

with I (Î) the nuclear spin (operator) and V̂ 2
q (θI , φI) the efg tensor operator

expressed in spherical tensor form with (θI , φI) the spherical coordinates of the
nuclear spin.
In the case of a pure FeCO3 crystal, the efg is axially symmetric along the
trigonal c-axis. Because the magnetic moments point along the c-axis, they
generate a collinear magnetic hyperfine field. It is argued, however, that, in a
natural, impure FeCO3 crystal, this simple picture can be disturbed, leading
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to a (small) deviation of axial symmetry. Therefore, we are retaining the non-
axial components in expression (1.7).
The Hamiltonian can be further simplified by choosing the PAS of the efg as
our reference axis system. The principle axis system of the magnetic hyperfine
field operator B̂hf can be specified in the efg PAS by the Euler angles (α, β, γ).
In general, transformation of a spherical tensor Tn of rank n from an A1 to an
A2 coordinate system is given by [43]

Tn
q (A2) =

n∑

q′=−n

Dn
q′q(α, β, γ)Tn

q′(A1) (1.8)

with the Wigner rotation matrix elements

Dn
q′q(α, β, γ) = e−iαq′

dn
q′q(β)e−iγq, (1.9)

and dn
q′q(β) the d functions8. Applying Eq. (1.8) to B̂, we find the three field

components9 B̂1
0 = cos β B̂ and B̂1

±1 = e±iα sinβ B̂/
√

2 with B̂ the magnetic

field operator in its own PAS (having only a B̂z component). The hyperfine
Hamiltonian is now written as:

Ĥ = −µB̂

I~

[
cos β Îz +

1

2
sinβ

(
Î+eiα + Î−e−iα

)]

+
eQV̂zz

4I(2I − 1)~2

[(
3Î2

z − Î2
)

+
η

2

(
Î2
+ + Î2

−

)]
, (1.10)

with Î± the nuclear spin raising/lowering operators. The first part of each
interaction term is axially symmetric, while β and η parameterize the deviation
of axial symmetry10. An obvious choice of nuclear basis is the set of |I,mI〉
states, which are eigenfunctions of the Î2 and Îz operators. In the case of axial
symmetry, these states are also eigenfunctions of Ĥ.
If β 6= 0 and/or η 6= 0, the non-axially symmetrical part of the magnetic dipole
term will mix |mI〉, |m′

I〉 states with |mI − m′
I | = 1, whereas the quadrupole

term will mix states with |mI − m′
I | = 2. Therefore, from hereon, we will

speak of this non-axially symmetrical part of the hyperfine Hamiltonian as the
mixing interaction. In the most general case, no analytical solution for the

8Expressions for the d-functions are found in many textbooks. Those most relevant in

this work are listed in appendix B.
9The γ-dependence can be completely removed by applying a suitable unitary transfor-

mation.
10If η = 0, then α = 0 because of axial symmetry.
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eigenvalues and eigenvectors of this Hamiltonian is possible and we have to
rely on numerical simulations11.

Collinear magnetic field (β = 0)

Luckily, the most important case in our study can be solved analytically. This
is the case of the 57Fe Mössbauer nuclear scheme, involving the Ig = 1/2 and
Ie = 3/2 nuclear states (and as long as β = 0).
The ground state hyperfine levels are the eigenvectors of the Ig = 1/2 hyperfine
Hamiltonian. The |mI = −1/2〉 and |mI = 1/2〉 states are easily identified as
such, having energies

EmI
= ~ωL,gmI + ~ωQ

(
3m2

I − I(I + 1)
)

(1.11)

where we have introduced the Larmor frequency ωL,g = −µgB
I~

of the ground

state and the quadrupole frequency ωQ = eQVzz

4I(2I−1)~ . The electronic operators B̂

and V̂zz are evaluated in electron space, of course, yielding B = 〈ψe|B̂|ψe〉 and
Vzz = 〈ψe|V̂zz|ψe〉. Note that only the magnetic field splits the |mI = ±1/2〉
states (by ~ωL).
The solution to the first excited nuclear level is less straightforward. The
matrix representation of the I = 3/2 Hamiltonian in the |I = 3/2,mI =
3/2,−1/2,−3/2, 1/2〉 basis states (mind the order!) is

H = ~




3
2ωL,e + 3ωQ

√
3ηωQ 0 0√

3ηωQ − 1
2ωL,e − 3ωQ 0 0

0 0 − 3
2ωL,e + 3ωQ

√
3ηωQ

0 0
√

3ηωQ
1
2ωL,e − 3ωQ


 .

(1.12)
This particular block matrix form is chosen to highlight that only states belong-
ing to the same class are mixed, i.e. states that are related by |mI − m′

I | = 2.
The calculation of the eigenvalues and eigenvectors of these 2×2 Hamiltonians

11More exactly: polynomial equations higher than fourth degree are incapable of algebraic

solutions in terms of a finite number of rational operations and root extractions (Abel’s

impossibility theorem) [44].
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yields:

∣∣∣∣∣±
3̃

2

〉
=

1√
3η2 + R2

±3/2

(√
3η

∣∣∣∣±
3

2

〉
+ R±3/2

∣∣∣∣∓
1

2

〉)
(1.13)

with E± 3̃
2

= ~ωQ

(
R±3/2 + w∓1/2

)
(1.14)

∣∣∣∣∣±
1̃

2

〉
=

1√
3η2 + R2

±1/2

(√
3η

∣∣∣∣∓
3

2

〉
+ R±1/2

∣∣∣∣±
1

2

〉)
(1.15)

with E± 1̃
2

= ~ωQ

(
R±1/2 + w±1/2

)
(1.16)

where we have introduced the following parameters:

R±3/2 =
w∓1/2 − w±3/2

2
+

√(
w±3/2 − w∓1/2

2

)2

+ 3η2 (1.17)

R±1/2 =
w±1/2 − w∓3/2

2
−

√(
w∓3/2 − w±1/2

2

)2

+ 3η2 (1.18)

w±3/2 =
± 3

2ωL,e + 3ωQ

ωQ
(1.19)

w±1/2 =
± 1

2ωL,e − 3ωQ

ωQ
(1.20)

In the case of a small deviation of axial symmetry such that
η ¿

(
w±3/2 − w∓1/2

)
/(2

√
3) we find that

E± 3̃
2

≈ ~ωQ

(
w±3/2 +

3η2

w±3/2 − w∓1/2

)
+ O(η4). (1.21)

Similar expressions can be obtained for E± 1̃
2

and the corresponding eigenvec-

tors. This means that the non-axial perturbation is limited to an η2 influence on
the original levels. For example, in the case of η = 5% and w±3/2−w∓1/2 ≥ 1/4
the effect of the perturbation on the energy is smaller than (1/w±3/2)%. These
conditions will be valid in most cases.
However, a special case exists where this line of reasoning is not applicable. Let
us consider the condition when ωL = 3ωQ. Then, w−3/2 = w1/2 or the | − 3/2〉
and |1/2〉 unperturbed levels are accidentally degenerate. They experience a
so-called level crossing. It is straightforward to find that a small non-axial per-
turbation changes their energies in first order: E− 3̃

2

= ~ωQ

(
w−3/2 +

√
3η

)
and

E
+ 1̃

2

= ~ωQ

(
w+1/2 −

√
3η

)
. Moreover, the perturbation mixes the crossing
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levels completely and independently of the value of η:

∣∣∣∣∣−
3̃

2

〉
=

1√
2

(∣∣∣∣−
3

2

〉
+

∣∣∣∣
1

2

〉)
, (1.22)

∣∣∣∣∣
1̃

2

〉
=

1√
2

(∣∣∣∣−
3

2

〉
−

∣∣∣∣
1

2

〉)
. (1.23)

The |3/2〉 and | − 1/2〉 levels, however, have a large energy difference (6ωQ)
and thus are not affected by the non-axial perturbation.

Remark In this section we have deduced the eigenvalues and eigenstates of
the full hyperfine Hamiltonian, including a non-axial component of the efg.
Working in the basis of these eigenstates implicitly takes into account the mix-
ing interaction. In section 3.2 and chapter 4, however, the mixing interaction
is treated on a same footing as the gamma-nucleus interaction, in the basis of
eigenstates of the axial hyperfine Hamiltonian.

Noncollinear magnetic field (β 6= 0)

The deviation of the magnetic field vector from the c-axis can have its origin
in crystal imperfections or in the specific geometry of an externally applied
magnetic field.
It makes little sense to deal with this problem in a general way other than with
numerical methods. We can, however, find a good analytical approximation
in the following special case. If two levels are (nearly) degenerate and β is
small, then the influence of the perpendicular part of the magnetic field can be
approximated by applying perturbation theory [45] in this two-level system.
Let us consider the two cases that are most relevant to this thesis. If there is
only an (axially symmetric) efg present, e.g. above TN of an antiferromagnetic
material, then all ±m levels are degenerate. According to the Hamiltonian in
Eq. (1.10), the | ± 1/2〉 levels of both the ground and excited state of 57Fe are
affected in first order, while the | ± 3/2〉 levels only in third order. For small
β the latter can be neglected. From a first order perturbation calculation, we
learn that the | ± 1/2〉 levels are fully mixed

∣∣∣∣∣
1̃

2

〉
=

1√
2

(
eiα

∣∣∣∣
1

2

〉
+

∣∣∣∣−
1

2

〉)
, (1.24)

∣∣∣∣∣−
1̃

2

〉
=

1√
2

(
eiα

∣∣∣∣
1

2

〉
−

∣∣∣∣−
1

2

〉)
, (1.25)
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with an energy difference E 1̃
2

− E− 1̃
2

= |2W 1
2
,− 1

2
| with

W 1
2
,− 1

2
=

~ωL,g

2
sinβ for the ground state and (1.26)

W 1
2
,− 1

2
=

~ωL,e

2
sinβ for the excited state. (1.27)

If there is a combination of an efg and a magnetic hyperfine field, e.g. below TN ,
then it is possible that some states are accidentally degenerate. This is the case
for the | − 3/2〉 and |1/2〉 levels in the excited state of 57Fe, when ωL = 3ωQ.
Then, it can be shown by a second order perturbation calculation that the
crossing levels are fully mixed (as expressed in Eq. (1.22) and Eq. (1.23),
but the first states have now an additional factor exp 2iα) and E− 3̃

2

− E 1̃
2

=

|2W− 3
2
, 1
2
| with

W− 3
2
, 1
2

=

√
3~ωL

2
sin2 β. (1.28)

So, a small non-axial component of the magnetic field only has a sin2 β effect
on the energy of the crossing levels.
In section 3.1.2 simulations show that in order to have an observable
(| − 3/2〉,|1/2〉) level splitting, i.e. of the order of the inverse life time of the
excited states, a strong magnetic field (⊥ c-axis) should be applied. In that
case, however, not only the crossing levels are mixed, but all levels show an
appreciable degree of admixture.

1.2 Mössbauer spectroscopy

Mössbauer spectroscopy is a very successful technique applied by a worldwide
and interdisciplinary group of researchers who are interested in harvesting en-
vironmental information at the nuclear level. At the heart of the technique
lies the so-called Mössbauer effect, named after its discoverer Rudolf L. Möss-
bauer [46]. The Mössbauer effect is an elastic process of (gamma) photon emis-
sion and absorption without observable recoil of the nucleus/nuclei involved.
The probability for a recoil-free emission and absorption is given by the Debye-
Waller [47] or Lamb-Mössbauer factor [48]:

f = exp

[
− ER

kTD

(
3

2
+

π2T 2

T 2
D

)]
(T ¿ TD), (1.29)

with k the Boltzmann constant. This expression quantifies the knowledge
that the recoil-free fraction: (a) decreases with increasing gamma energy Eγ

(ER = E2
γ/(2mc2), (b) increases with increasingly rigid interatomic bonds
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(through the Debye temperature TD) and (c) increases with decreasing temper-
ature T . Although the standard mathematical framework describing the Möss-
bauer effect gives satisfactory results, it can be argued that its semi-empirical
ways are not completely convincing12 and that more fundamental research is
needed, with emphasis on its relation to the zero-point oscillations [49,50].
There has been some controversy in deducing the Lamb-Mössbauer factor in
FeCO3. Goldanski et al. [51] first reported a highly anisotropic f , which was
explained as the Goldanski-Karyagin effect. This has later been refuted by the
work of Housley et al. [26,52], which correctly included the polarization depen-
dence of the absorption lines. The most recent values of the Lamb-Mössbauer
factor in FeCO3 are fk‖c = 0.72(2) and fk⊥c = 0.75(2) (at 300K) [29], which
confirm the lack of spatial anisotropy.

Experimental setup

a

b

c

d

e

e

f

B
e

k

Figure 1.5: The Mössbauer experimental setup consists of: (a) radioactive source
(small black disk on top of rod), (b) transducer, (c) crystal (shaded area), (d) cold
finger, (e) external magnet (here represented by Helmholtz coils) and (f) detector.
For more details, see body text.

In Fig. 1.5 the experimental setup is sketched. A conventional Mössbauer
setup always includes a radioactive source (a) (here: 57Co in Rh matrix) that is
mounted on a transducer (b). The linear vibrations, which vary in this case be-
tween −7mm/s and +7mm/s, Doppler shift the energy of the emitted gamma
radiation. This allows for a resonant scan of the hyperfine energy structure of

12For example, the Mössbauer effect occurs without thermal Doppler broadening, whereas

the non-elastic scattering exhibits the expected thermal broadening.



20 CHAPTER 1 FeCO3 Mössbauer experiments

the sample under investigation (c).
As shown in Fig. 1.5, our setup additionally features a cold finger (d) and
external magnet (e). The sample is mounted on top of the cold finger, which
is temperature controlled by a helium flow cryostat. The temperature was
stabilized to 0.1K and calibrated at the boiling point of liquid nitrogen. In
principle, the cold finger allows operating temperatures down to 4.2K. Both
transducer and cold finger are firmly attached to the cryostat that houses a
4.4T superconducting magnet. Finally, a Kr gas proportional counter (f) de-
tects the transmitted radiation.
The signal processing setup has a standard configuration. The amplified signal
from the proportional counter is retained if it passes through a single channel
analyzer, set at 14.4 keV. The output signal of the single channel analyzer is
then stored in a ‘Mössbauer data system’ where it is combined with the signal
of the clock, which drives the transducer. In this way the number of gamma
counts (or gamma intensity I) is recorded as a function of the transducer ve-
locity v.

c
k

c

k

a) perpendicular geometry b) parallel geometry

Figure 1.6: Two geometries are studied: the incident radiation k is perpendicular
(a) and k is parallel to the c-axis (b) (the shaded box on the left represents the
detector).

As we are dealing with a single crystal with a preferential direction (c-
axis), we can define the direction of the incident source radiation k and the
direction of the external magnetic field Be with respect to this c-axis. As shown
in Fig. 1.5, the external magnetic field is always perpendicular to the plane
spanned by (k,c-axis). The angle (θ) between the incident radiation and the
c-axis can be varied by a rotation around the cold finger axis, as shown in Fig.
1.6. Two geometries are studied, i.e. the ‘parallel geometry’ (θ = 0) and the
‘perpendicular geometry’ (θ = π/2). Note that because the angle of the c-axis
to the crystal surface (cleavage plane) is ≈ 45◦ (see section 1.1), the effective
thickness of the crystal is the same in both geometries.
In all but the last experiment, no external magnetic field is applied.
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1.3 Mössbauer spectra

Two FeCO3 crystals have been studied: one has a physical thickness of d =
168µm, the other has d = 64µm. A dimensionless effective optical thickness
can be defined as

Te = σ0fχρ
d

sin (β + θ)
, (1.30)

with σ0 the maximal resonant absorption cross-section, f the recoil-free frac-
tion, χ the isotopic enrichment or natural isotopic abundance of 57Fe and ρ the
concentration of Fe in the crystal. Because the radiation is incident at an angle
π − (β + θ) (with β given by Eq. (1.1)) with respect to the crystal surface,
the distance travelled through the crystal is larger than for normal incidence.
According to its definition, Te is the number of resonant scattering events that
take place during the propagation of the gamma radiation through the crystal.
The value of Te for the d = 168µm FeCO3 crystal, taking into account the
geometry of the setup, the measured impurity percentages and the general pa-
rameters of 57Fe as summarized in Appendix A, is calculated to Te = 7.9 ≈ 8,
while the thinner crystal has a value of Te = 3. In the remainder of this thesis
we distinguish both crystals by their effective thickness value.

1.3.1 A first analysis

The presentation of the measured Mössbauer (velocity) spectra in the next
section already includes a first, crude analysis. The data are fitted with the
Recoil program [53], using the ‘Lorentzian absorption profile’ procedure. This
fitting procedure simply tries to find a best fit f(v) by fitting each absorption
line i with a Lorentzian profile Li(v):

f(v) = BG −
∑

i

Li(v) (1.31)

with

Li(v) =
Ai

π

Γi

(v − vi)2 + Γ2
i

(1.32)

where BG is the spectral background, Ai is the area, vi the resonance velocity
and Γi the half width of the absorption line.
The number of free parameters can be considerably reduced by taking into
account two physics ‘rules’. First, according to parity invariance, the (mg,me)
and (−mg,−me) transitions are equal in all of their properties. Here, this
means that they have the same A and Γ. Second, the positions of the absorp-
tion lines vi are not random, but are related through the underlying hyperfine
interaction physics (see section 1.1.4).
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Above 38K, FeCO3 is paramagnetic, so the nuclei only experience an efg. If
we assume, for now, that the efg is axially symmetric (η = 0), then, according
to Eq. (1.10), the Ie = 3/2 excited state of 57Fe is split in two two-fold degen-
erate levels |me = ±3/2〉 and |me = ±1/2〉, while the Ig = 1/2 ground state is
unaffected. In order to have a resonant absorption, the v-modulated energy of
the source photon E(v) = Eγ(1+v/c) should match the energy difference of an
excited level |me〉 and ground level |mg〉 of the absorber. Then, the resonance
velocity is given by:

vme,mg
= IS +

c

Eγ

[
~ωQ

(
3m2

e − 15/4
)]

, (1.33)

with IS the isomer shift13 (already expressed in units of velocity). The efg
splitting ∆ of the excited state in terms of the transducer velocity is defined
by

∆ =
c

Eγ
6~ωQ. (1.34)

Below 38K, FeCO3 becomes antiferromagnetic (see section 1.1.3) and all |m〉
are affected. For now, we assume that the magnetic hyperfine field is collinear
with the efg (as should be the case in pure FeCO3). If we define the parameters

βg =
c

Eγ
~ωL,g and βe = − c

Eγ
~ωL,e, (1.35)

then the resonance velocity of a (me,mg) transition is given by

vme,mg
= IS +

∆

6

(
3m2

e − 15/4
)

+ βeme + βgmg. (1.36)

According to their definition and using the values in Appendix A, it can be seen
that βe and βg are related by βg = 1.7516βe. The choice of the parameters
∆, βg and βe becomes clear when we draw the expected hyperfine level scheme
in Fig. 1.7 as a function of temperature (and hence, as a function of magnetic
hyperfine field). The shaded rectangle shows the level crossing, which occurs
at βe = ∆/2 or T ≈ 31K.
Because we are dealing with single crystals, the orientation of the radiation

wave vector with respect to the crystal axes should be taken into account. If
(0, θ, φ) are the Euler angles that describe the orientation of k in the crystal
axis system (e.g. the PAS of the efg), then the components in a multipole ex-
pansion of the electromagnetic field transform according to Eq. (1.8). The elec-
tromagnetic interaction of the 57Fe nucleus with gamma radiation has mainly

13The isomer shift arises from the difference in the electronic environment of the source

and absorber nuclei, which can alter the nuclear energies.
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Figure 1.7: The hyperfine levels of 57Fe as a function of temperature. The param-
eters ∆, βg and βe are defined in the body text. γ represents the gamma transition.

a magnetic dipole (M1) character. Therefore, the interaction Hamiltonian Hσ,
for a particular polarization σ, can be written as

Hσ
M1 =

1∑

∆m=−1

D1
∆m,σ(−φ,−θ, 0)H(∆m), (1.37)

where H(∆m) designates the electromagnetic interaction that induces a ∆m
transition. A more general derivation is presented in section 3.1. Explicit
expressions for interaction with σ = ±1 polarized radiation are given by

H+
M1 = cos2

θ

2
eiφ H+(∆m = +1) +

1√
2

sin θH+(∆m = 0)

+ sin2 θ

2
e−iφ H+(∆m = −1) (1.38)

H−
M1 = sin2 θ

2
eiφ H−(∆m = +1) − 1√

2
sin θH−(∆m = 0)

+ cos2
θ

2
e−iφ H−(∆m = −1) (1.39)
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This means that in the parallel geometry (θ = 0) each polarization can induce
only one transition according to ∆m = σ, whereas if θ 6= 0 each polarization
induces three ∆m transitions. So in general, there are six possible gamma
transitions (me,mg) between the Ie = 3/2− and Ig = 1/2− states. According
to the parity invariance, these six lines can be grouped in three doublets. These
doublets, their splittings ∆vi and center shifts CSi are identified as (see also
Fig. 1.12):

doublet 1: (3/2, 1/2) − (−3/2,−1/2) with ∆v1 = 3βe + βg, CS1 = IS + ∆/2

doublet 2: (1/2, 1/2) − (−1/2,−1/2) with ∆v2 = βe + βg, CS2 = IS − ∆/2

doublet 3: (1/2,−1/2) − (−1/2, 1/2) with ∆v3 = βg − βe, CS3 = IS − ∆/2

Because βe and βg are related to each other, all ∆vi’s are fixed as soon as
one doublet is fitted14. One is led to assume that the center shifts CSi of
the doublets are also fixed if IS and ∆ are obtained from a room tempera-
ture spectrum. However, it is known that (the measured) IS and ∆ are both
temperature dependent. The center of gravity of the absorption lines gains a
shift in addition to the isomer shift, which is positive for decreasing crystal
temperature. This is explained by a difference in the second order Doppler
shift between source and absorber [54, 55]. A detailed theory of the tempera-
ture dependence of the efg, however, is not yet found, but most data can be
described by a T 3/2 dependence [56], giving a larger efg for decreasing temper-
ature. Because of this temperature dependence, the values of IS and ∆ can
only be fixed over a relatively small temperature interval. They are considered
temperature independent over the range of our low temperature spectra, which
was ∆T ≈ 20K.
In summary, taking into account the above arguments, the fit function f(v)
now reads as the sum of three Lorentzian doublets:

f(v) = BG −
3∑

i=1

Ai

2π

(
Γi

(v − (CSi − ∆vi))2 + Γ2
i

+
Γi

(v − (CSi + ∆vi))2 + Γ2
i

)
.

(1.40)
The application of ‘basic’ physics knowledge has reduced the number of fit
parameters15 from 19 to 10: the background BG, the area Ai and half width
Γi of each doublet, the isomer shift IS, the quadrupole splitting ∆ and the
magnetic hyperfine splitting βg (or βe).

14There is of course another way of taking advantage of this knowledge: all doublets can

be fitted simultaneously with the above constraints on their splittings. However, this way of

fitting is not accounted for in the Recoil program.
15This is in the case of a nonparallel geometry. In the parallel geometry the number of fit

parameters is reduced from 13 to 8.
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1.3.2 Te=8, no external magnetic field

In this section we present the measured Mössbauer spectra of the Te = 8 crystal
without the application of an external magnetic field. In the next section we
treat the case with external field. Fig. 1.8 shows the Mössbauer spectra for both
geometries at room temperature (RT). The results are summarized in Table 1.2.
We have used the common notation where π designates the (±3/2,±1/2) high
energy transition and σ the (±1/2,±1/2) low energy transition. All values
are given in units of mm/s, but can easily be transformed to eV units by
multiplication with Eγ/c.
It should be noticed that the errors (1 standard deviation) presented in Table
1.2, and estimated by the Recoil program, are too small. This is obvious from
the fact that the IS and ∆ for both geometries should coincide.
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Figure 1.8: Mössbauer spectra of FeCO3 (Te=8) at RT and for both perpendicular
and parallel geometry. The solid line gives the best Lorentzian fit.

The same RT Mössbauer experiment on FeCO3 has been reported in [26,
29, 51]. These papers were mainly concerned with the asymmetry in the areas
of the π and σ lines, their change with geometry and the (an)isotropy of f ,
see also section 1.2. A detailed calculation in [52] shows that the area ratio
Aπ/Aσ depends on the geometry (angle θ) and the effective thickness Te of the
single crystal. In Fig. 1.9 these theoretical curves for Aπ/Aσ, in the case of
a perfect single crystal, are drawn together with the experimentally deduced
values. It is seen that there is a considerable mismatch between theory and
experiment, except for the results of [29]. This implies that (1) the errors on the
experimental values are not well estimated and/or (2) both the FeCO3 sample
in [26] and our sample are no perfect crystals. In [26] the authors designate the



26 CHAPTER 1 FeCO3 Mössbauer experiments

Table 1.2: Best fit values of the FeCO3 (Te = 8) Mössbauer spectra at room
temperature to the fit model described in section 1.3.1.

θ IS (mm/s) ∆ (mm/s) Γπ (mm/s) Γσ (mm/s) Aπ/Aσ

π/2 1.233(1) 1.825(2) 0.216(1) 0.213(1) 0.634(2)

0 1.228(1) 1.783(2) 0.220(1) 0.175(1) 1.783(6)

microscopic inhomogeneities (about 10% Mg cation content) as the culprit that
causes distributions of isomer shifts and efg magnitudes, nonzero efg asymmetry
parameters and a deviation of the principal axis of the efg from the optical axis.
For the moment, we acknowledge the fact that we are dealing with an imperfect
crystal, as was also clear from the chemical analysis, but we postpone an in-
depth discussion to section 3.1.4.

Another interesting result of these RT spectra is that this experiment, as
well as previous ones, shows the particular feature that the line widths Γπ and

Γσ in both geometries are more or less equal, except for Γ
‖
σ. This cannot be

understood from straightforward physics principles, like relaxation broadening
(which would affect the π(σ) lines for both geometries analogously) or plain
thickness broadening (which would primarily broaden the line with highest
intensity). This issue is addressed again in section 3.1.4 when we apply a
thickness and polarization dependent model to the data.

Figs. 1.10 and 1.11 show the Mössbauer spectra for temperatures below
TN . In Fig. 1.12 a close-up of the spectrum at T = 31K is shown, where the
absorbtion lines are related to the transitions in the 57Fe hyperfine structure.
The values of the parameters deduced from the fits are graphically presented
in Fig. 1.13. The center shifts are not displayed because they were held fixed
for all (low temperature) spectra at CS1 = 2.34mm/s and CS2 = CS3 =
0.31mm/s. In the perpendicular geometry, we first fit the splitting of doublet
2 because its absorption lines are best resolved. Then, ∆v1 and ∆v3 are cal-
culated according to the model outlined in section 1.3.1. Due to the absence
of the second doublet in the parallel geometry, the splitting of the first dou-
blet is taken as a reference. Both are shown in the upper left part of Fig.
1.13. In the same figure, the reduced χ2 of each spectrum is given as a mea-
sure of the goodness-of-fit16. These χ2-values give us an idea of how good the
model can describe the experimental data. Clearly, for T = 29/31K the dis-

16In section 3.1.3 a more detailed overview of the χ2 theory is presented.
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Figure 1.10: Mössbauer spectra of FeCO3 (Te=8) at different temperatures and
for both perpendicular and parallel geometry. The solid line gives the best Lorentzian
fit.
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Figure 1.11: Mössbauer spectra of FeCO3 (Te=8) at different temperatures and
for both perpendicular and parallel geometry. The solid line gives the best Lorentzian
fit.
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Figure 1.12: Close-up of the Mössbauer spectra of FeCO3 (Te=8) at T = 31 K.
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crepancy between experiment and theory is the largest. At the level crossing
(v ≈ −0.16mm/s) the difference between the predicted Lorentzian fit and the
experimental data amounts to 25% of the absorption line. There is less ab-
sorption observed than predicted by the fit. Therefore, we can say that the
absorption line has become (partially) transparent. This transparency is the
core of this thesis and will be addressed in great detail in the following chapters.
A few other, interesting remarks can be deduced from the spectra and their
first analysis:

• In Fig. 1.13 both splittings of the reference doublets ∆v2 and ∆v1, in
the case of perpendicular and parallel geometry respectively, display a
similar temperature dependence, which is in agreement with the tem-
perature dependence reported in [28]. For decreasing temperatures, the
magnetic hyperfine field reaches a saturation value. At 18K, we deduce

that B⊥
18K = 17.98(2)T and B

‖
18K = 17.96(2)T, which fall within a 2σ

interval of the B≈18K = 18.3(3)T value reported in [28].

• In Fig. 1.13 the widths of the three doublets vary widely, although they
involve transitions to the same nuclear excited state, embedded in a par-
ticular chemical environment. In the parallel case, it is seen that even the
temperature behavior of the doublets is quite different. An explanation of
this phenomenon is given in terms of fluctuating hyperfine fields [57,58].
As the Larmor frequency of the doublets differs, they respond in a differ-
ent way to a fluctuating magnetic field (see also section 1.1.3). Doublet 1
has the highest Larmor frequency and hence is most strongly influenced
by a change in the magnetic field. It ‘feels’ a more blurred magnetic field,
which causes a larger line width than for the other doublets.

• The areas of the doublets remain more or less constant in this low-
temperature interval. Because the area of a Mössbauer absorption line
depends on the effective thickness Te, the angle of incidence θ and the
magnetic quantum numbers of the levels involved (see e.g. [26]), it is
expected that this value is temperature independent.

1.3.3 Te=8, with external magnetic field

First, a series of Mössbauer spectra with externally applied magnetic field and
in the parallel geometry is recorded at RT, which is presented in Fig. 1.14.
The magnetic field is applied perpendicularly to the crystal optical axis (= the
z−axis of the efg), and thus will mix and split the m-states according to Eq.
(1.24) and Eq. (1.26). The field fully mixes the |1/2〉 and | − 1/2〉 degenerate
levels of the ground and excited state, while the |3/2〉 and |−3/2〉 levels remain
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Figure 1.13: Graphical presentation of the fit results of the Mössbauer spectra of
Fig. 1.10 and Fig. 1.11. The top left figure shows the temperature dependence of the
splitting of the two reference doublets. The top right figure gives the values of the
reduced χ2 of each fit. The deduced line widths and areas of the Lorentzian doublets
for both geometries are displayed in the bottom figures.



1.3 Mössbauer spectra 33

quasi unaffected. Therefore, we fit the π absorption line with 1 Lorentzian dou-
blet, with a center shift equal to the case without magnetic field and with a
splitting ∆v1 = ∆vg where ∆vg is defined as the energy difference of the mixed
ground levels. The σ absorption line is fitted with 2 Lorentzian doublets. We
choose the doublets so that both have the center shift of the unperturbed σ
line and splittings of ∆v2 = ∆vg + ∆ve and ∆v3 = ∆vg − ∆ve where ∆ve is
defined as the energy difference of the mixed excited levels.
As the π line only consists of one doublet, it is expected to give the most
accurate fit values. The values of the doublet splitting ∆v1 are: ∆v1(1T) =
0.13(3)mm/s, ∆v1(2T) = 0.21(2)mm/s and ∆v1(3T) = 0.31(1)mm/s. From
the Hamiltonian given in Eq. (1.10) we can relate the splitting of the mixed
states to the magnetic field component perpendicular to the nuclear quantiza-
tion axis: Be = ∆v1/0.1088, which yields Be = 1.19(27)T, Be = 1.93(18)T
and Be = 2.85(9)T respectively. These values are in good agreement with the
values of the applied magnetic field.

In Fig. 1.15 we compare the Mössbauer spectra at T = 31K without
external magnetic field and with a perpendicular external magnetic field of
Be = 4T. Although the number of counts is rather low, and thus the statistical
error high, we clearly see the appearance of two extra absorption lines at v ≈
−1mm/s and v ≈ 2mm/s. From the simulation in section 3.1.2 we know that
there should also be a third one at v ≈ 3mm/s.
The aim of this experiment is to see whether or not the absorption at the
level crossing is increased or decreased upon application of the magnetic field.
However, no appreciable change is observed. Only a small increase in line width
is worth mentioning.

1.3.4 Te=3

The FeCO3 single crystal with Te=3 originates from a different mother crystal
than the Te=8 crystal. Some dark spots with diameter less than 0.5 mm are
visible on the crystal surface. Presumably these are oxides. Their influence
on the Mössbauer spectra in Fig. 1.16 is minimal. Only at v = −4mm/s and
v = 5mm/s there is a small signal of possible different lattice sites.
The results of the fits are presented in table 1.3. The area ratios of the ab-
sorption lines are also shown in Fig. 1.9. They deviate even more from the
theoretical curves than the Te = 8 case. The line widths of the π and σ ab-
sorption lines are similar, in contrast with the Te = 8 spectra, but the lines in
the perpendicular geometry have larger line widths. There has been a two year
time elapse between the recording of the spectra in both geometries. A small
change in the experimental setting has probably lead to additional, random
vibrations and an increased line broadening.
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Figure 1.14: Mössbauer spectra of FeCO3 (Te=8) at RT for different values of an
externally applied magnetic field Be. The solid line gives the best Lorentzian fit.
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Figure 1.15: Mössbauer spectra of FeCO3 at T = 31 K with an externally applied
magnetic field Be. The solid line gives the best Lorentzian fit.

As in the Te = 8 case, Mössbauer spectra were recorded for different temper-
atures below TN . These spectra, however, do not add insight to the main study
of this thesis and are, therefore, not shown. Only the spectrum at T = 31K
is retained and shown in the lower half of Fig. 1.16. The misfit at the level
crossing is still present but is less pronounced than for the Te = 8 spectrum at
T = 31K. We estimate a 10% deficit of absorption at the level crossing, with
respect to the predicted Lorentzian absorption line shape. This smaller deficit
can be due to different conditions inside both crystals or, if both crystals are to
a high degree equivalent, to a transparency effect that is thickness dependent.

1.4 Saturation

Before embarking on our in-depth study of the measured reduction of absorp-
tion, it is necessary to refute the hypothesis of saturation as a sufficient expla-
nation. We must, however, make a distinction between the two geometries. As
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Figure 1.16: Mössbauer spectra of a FeCO3 single crystal (Te = 3), at RT in
perpendicular and parallel geometry (top figure) and at T = 31 K in parallel geometry
(bottom figure). The solid line gives the best Lorentzian fit.
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Table 1.3: Best fit values of the FeCO3 (Te=3) Mössbauer spectra at room tem-
perature to the fit model described in section 1.3.1.

θ IS (mm/s) ∆ (mm/s) Γπ (mm/s) Γσ (mm/s) Aπ/Aσ

π/2 1.225(1) 1.773(3) 0.215(3) 0.222(2) 0.57(1)

0 1.212(2) 1.813(4) 0.173(3) 0.189(3) 1.64(4)

shown in section 1.3.1, in the perpendicular geometry, each polarization state of
the incident radiation can induce all three ∆m transitions. Hence, at the level
crossing, the interaction strength of each polarization state has doubled with
respect to a noncrossing situation. This can be seen as radiative interaction
with an absorber that has doubled its thickness. However, due to saturation,
a doubling of the thickness does not automatically yield a doubling of the ab-
sorption. There is always less absorption, but how much less depends on the
initial thickness of the absorber. In section 3.1.2 we show that for Te = 8 the
effect of saturation is already important. Moreover, the reduced absorption in
the perpendicular geometry can even be quantitatively explained in a model
that includes thickness effects.
Things are quite different in the parallel geometry. Now a polarization state
that can induce one of the transitions involved in the level crossing, cannot
induce the other one, even if the levels cross. It is clear that in this case
no doubling of the interaction strength occurs. Therefore, the hypothesis of
saturation as sole responsible for the reduced absorption is not tenable.

1.5 Conclusions

We have performed Mössbauer spectroscopy on two FeCO3 single crystals in
different experimental settings. The data are analyzed by applying the knowl-
edge on the hyperfine structure of the 57Fe nucleus in FeCO3, which has been
gathered in the first part of this chapter. The chemical analysis has revealed
that we are not dealing with perfect crystals and hence, should take the influ-
ence of impurities into consideration.
The experimental data are presented along with a fit based on Lorentzian
absorption profiles. The results obtained in this method of fitting are quite
satisfying, except at the level crossing. For both geometries, a reduced absorp-
tion is observed, clearly at odds with our first way of analyzing, although the
procedure followed is commonly applied.
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From the results of that first analysis we have learned that the height of the
absorption line of the crossing levels is less than the sum of the doublet partners
off crossing. One is quickly led to assume this to be a saturation effect due to
the crystal thickness. However, because the saturation mechanism does not give
a satisfactory answer, the quest for understanding must continue. Very soon
after the experimental results, it was acknowledged that the observed trans-
parency bears close resemblance with the effect of electromagnetically induced
transparency.



Chapter 2

Electromagnetically

Induced Transparency

The induced transparency may be viewed as resulting from a
combination of the AC-Stark splitting and the interference

between the two dressed states which are created by the coupling
laser.

in [59]

2.1 EIT in quantum optics

It is difficult to do justice to the wealth of papers that have dealt with the
phenomenon of EIT since the nineties of the 20th century. We are fully aware
that the following selection of cited papers merely gives a limited view on the
subject. A more complete list of references can be found in the recent overview
paper by Fleischhauer, Imamoglu and Marangos [60].

2.1.1 Transparency

An interesting finding along our path through EIT-related literature is that the
phenomenon of EIT is known by multiple faces and names. The label of ‘EIT’

39
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has been given at the beginning of its blooming era in the early nineties [59].
An empirical definition of EIT, which is now widely accepted, goes as follows:
EIT is the effect of rendering an otherwise opaque medium, transparent for a
resonant ‘probe’ electromagnetic field, through the coherence induced by a sec-
ond, ‘drive’ field.
The archetypical Λ-scheme1 representation of the actors in this definition is
given in the left part of Fig. 2.1. A probe field, labelled by its Rabi frequency2

Ωp, is in resonance with the |1〉 → |2〉 atomic transition. The drive field Ωd

couples |2〉 with |3〉. State |3〉 is sometimes called the ‘coupling state’. In the
text-book case, |1〉 is a ground state, |2〉 is an excited state (with decay rate
γ2) and |3〉 is a metastable state (such that γ3 << γ2).
Digging a little deeper in older papers reveals that the effect was already stud-
ied in the seventies as ‘holes in spectral lines’ [61] and ‘nonabsorbing atomic
coherences’ [62, 63]. In a more subtle way, ‘decay interference’ [64] and ‘dy-
namical suppression of spontaneous emission’ [65] are also manifestations of
the same physics. Moreover, these studies gave the impetus to the develop-
ment of the ‘lasing without inversion’ theories [66–68]. These different names
strongly suggest there is a unifying principle underlying EIT, which, however,
can be approached from different directions. We briefly discuss the two most
relevant points of view, which somehow can be related to the left and right
part of Fig. 2.1 respectively.

Coherent population trapping

In his excellent review paper [69], Harris pinpoints the essence of EIT to the
coherent trapping of population or the creation of a ‘dark’ state. It can be
shown [70] that the Hamiltonian of a Λ system has an eigenstate |d(t)〉, the
dark state, of the form

|d(t)〉 = cos θ(t)|1〉 − sin θ(t)|3〉, (2.1)

with tan θ(t) = Ωp(t)/Ωd(t) and Rabi frequencies that could be time-dependent,
e.g. in the case of pulsed laser fields. Once an atom has evolved into this dark
state |d〉, it can no longer be excited by the probe field to |2〉, hence, it is
trapped. Because this trapping process takes time, it has been argued that the
front edge of the probe pulse, together with the drive field, creates the coher-
ence, which, subsequently, induces the transparency for the bulk of the pulse.

1A Λ-scheme is a particular form of a three-level system where the levels are connected

by two fields according to the Greek capital Λ.
2The Rabi frequency is a measure of the transition strength and is proportional to the

product of the transition matrix element and the EM field amplitude.
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This point of view also provides an explanation why the relaxation rate γ2 does
not play a crucial role, while γ3 does. The dark state itself does not depend
on |2〉, and, therefore, not on the value of γ2, but the time of creation of the
dark state can be shortened3 by a large γ2 [71]. Decay of the coupling state
|3〉, however, directly affects the dark state, which loses its stable character and
leaks back into the bright state4, leading to absorption of the probe field. In
section 3.2.3, we will show that the ratio γ3/γ2 is a key factor in determining
the induced transparency.
The principle of lasing without inversion is also easily understood within this
dark state approach. If the initial state is prepared such that it coincides with
the dark state, then absorption is cancelled, but the stimulated emission from
the excited state |2〉 (via excitation of the coupling state |3〉) still can exhibit
gain [72].

2Wd

Wp

Wd

Wp

g2

g3

|1〉
|1〉

|2〉

|3〉

|2̃〉

|3̃〉

Figure 2.1: Left: a typical three-level Λ-scheme where a probe field Ωp connects
levels |1〉 and |2〉 while the driving field Ωd connects levels |2〉 and |3〉. Right: a
three-level scheme equivalent to the Λ-scheme, but with the action of the driving
field implicitly present in the mixed levels |2̃〉 and |3̃〉.

Quantum interference and phase

The second picture is usually taken to illustrate EIT in case of a DC driving
field. Then, the induced transparency can be explained as (destructive) quan-
tum interference. Quantum mechanics requires that two paths that originate

3This is irrespective of the adiabatic condition, which is the condition on the time-

dependent electromagnetic field(s) such that the state vector of the system remains nearly

equal to an eigenvector of the Hamiltonian (here the dark state).
4The ‘bright state’ is given by sin θ(t)|1〉 + cos θ(t)|3〉. This state can interact with |2〉

and, hence, lead to absorption of probe radiation.
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from one particular state and result in the same end state, must interfere. In
this case, the driving field mixes the states |2〉 and |3〉, giving rise to two new
levels5 that are superpositions of the unperturbed levels, as given in Eqs. (1.22)
and (1.23). The energy difference between these levels is known as the Stark
shift.
The (scattering) process of absorption and emission of the probe field now can
occur via two intermediate quantum paths (with amplitude A1 and A2). The
probability I for such a process to occur is, in a crude way, given by

I = |A1 + A2|2 = |A1|2 + |A2|2 + 2<(A1A
∗
2) (2.2)

where the last term is the interference term and can, in the extreme case,
result in a doubling or complete cancelling of I. In this interference picture,
the question of phases arises in a natural way. Only when A1 and A2 have an
arbitrary, but fixed, phase, the interference term does not vanish [17]. This
phase could be varying in time, e.g. in short laser pulses, or varying in space.
The latter can happen when dealing with multiple scattering in thick media.
The amplitudes for each individual scattering can have a fixed phase, but the
phase could vary between two scattering processes. This could be the case when
inhomogeneities are the source of the driving (or mixing) interaction, inducing
a random, space-dependent phase. This problem is tackled in more detail in
section 3.1.7.

Susceptibility

There is a more quantitative way of describing the induced transparency. The
response of a medium, i.e. the polarization P , to a (probe) electromagnetic
field E is given by P = χE and thus straightforwardly characterized by the
linear susceptibility χ(ω) = χ′(ω)+ iχ′′(ω). For the Λ-system of Fig. 2.1 it can
be shown that [73]

χ(ω) ∝ iδ + γ3/2

(iδ + γ2/2) (iδ + γ3/2) + |Ωd|2
(2.3)

with δ = ω−ω2 the detuning of the probe field. The imaginary part χ′′(ω) gives
the absorption, whereas the real part χ′(ω) describes the dispersive properties
of the medium. Both parts of the susceptibility are illustrated in Fig. 2.2 in the
case of γ3 = γ2/100 for Ωd = 0 and Ωd = γ2. It is seen that the largest reduction
in absorption occurs at exact resonance, where complete transparency can be
obtained when γ3 = 0. The width of the transparency window is determined
by Ωd.

5These levels are eigenstates of the driving field interaction Hamiltonian.



2.1 EIT in quantum optics 43

-1

 0

 1

 2

-5 -3 -1  1  3  5

δ / γ2

in
te

ns
ity

Ωd=0

-5 -3 -1  1  3  5

-1

 0

 1

 2

δ / γ2

intensity

Ωd=γ2

χ′′χ′′
χ′χ′

Figure 2.2: Real (χ′) and imaginary (χ′′) parts of the susceptibility, given in Eq.
(2.3), for γ3 = γ2/100 and two values of the driving Rabi frequency Ωd.

2.1.2 Delay

At resonance, the real part of the susceptibility, χ′(ω), vanishes and shows
a steep slope. Both of these properties are intimately connected with the
interesting timing characteristics of an EIT medium. The index of refraction
n is related to the susceptibility by [74]

n(ω) = (1 + χ′(ω) + iχ′′(ω))
1
2 . (2.4)

Therefore, at resonance, the refractive index equals unity, which means that
the phase velocity vp of the wave packet propagating through the medium
equals that in vacuum. However, the transparency is accompanied by a steep
variation with frequency of χ′(ω), and hence of n(ω). This strongly influences
the velocity of the envelope of a wave packet, i.e. the group velocity vg, which
is defined by [75]

vg(ω) ≡
(

dω

dk

)

k0

=

(
c − ω dn

dk

n(ω) + ω dn
dω

)

k0

, (2.5)

see also chapter 5 for a more detailed discussion of vg. If the medium is not
strongly dispersive, vg may be considered as the velocity at which the field
energy is propagating [74]. However, in regions of anomalous dispersion, e.g.
in a medium with a gain doublet [76, 77], vg can exceed the velocity of light
(‘superluminal’) or even become negative. In such cases the group velocity
concept has lost its physical significance.
In an EIT medium with N atoms and an atom-field interaction constant g, the
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group velocity has been calculated as [78]

vg(ω) ≈ c

1 + g2N
|Ωd|2

, (2.6)

in the case that γ3 = 0. It is clear that vg can be made much smaller than
c by increasing the atomic density or by decreasing the power of the driving
field. In their famous experiment Hau and coworkers [79] succeeded in slowing
down a light pulse to vg = 17m/s. Moreover, by using a dense, ultracold
gas, they could localize the pulse entirely in the medium. Recently, research
groups [80–82] have established optical storage, where the probe field is written
and stored in the atomic coherence and released (or: read out) on command.

2.2 EIT in the nuclear domain

The field of research that is dealing with the interaction of matter with gamma
radiation is nowadays called nuclear quantum optics [83] or quantum nucleonics
[84]. Although this research is closely connected to the vast field of quantum
optics, adopting this new name is a clear statement of its distinctiveness, of
having a ‘mind’ of its own.
But can (optical) EIT schemes be implemented in the nuclear domain? And
does the reduction of absorption observed in the FeCO3 Mössbauer experiment
constitute a first proof of this nature? These are the main questions that we
seek to answer in the remainder of this thesis. Let us first address them in this
section in a semantic way.

2.2.1 Radioactive source radiation as probe field

In nuclear quantum optics, we have to face a less appealing aspect, being the
very low resonant cross section for photon-matter interaction (in the order of
10−18 cm2). This is one of the main reasons why there are still no gamma ray
lasers (grasers) available today [85]. These low cross sections makes the creation
of population inversion virtually impossible. There are some very nice sugges-
tions to circumvent this problem, like there is the concept of lasing without
inversion. But up till now, no physical implementation in the nuclear domain,
as suggested in e.g. [86], has survived the harsh confrontation with reality.
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Single photon source

In the meantime, we have to rely on the use of a radioactive source instead of a
laser. The radiation of this radioactive source lacks the coherence of the laser
field. However, there is more than meets the eye. Although the radioactive
source emits its radiation in a statistical and uncorrelated manner, we show
that the entire process from source emission to detection can be considered
coherent, due to its single photon nature.

57

Co

57

Fe

7/2
-

5/2
-

3/2
-

1/2
-

271.79 d

8.7 ns

98.1 ns

EC

g 122 keV

g 14.4 keV

99.8%

Figure 2.3: Partial decay scheme of 57Co. The I = 7/2− ground state of 57Co
decays via electron capture (EC) to the I = 5/2− excited state of 57Fe. This state
decays to the I = 1/2− ground state in a two-photon cascade, where the 14.4 keV
gamma is commonly used in Mössbauer spectroscopy.

The radioactive source contains radioactive nuclei, e.g. 57Co, that decay
and thereby release one or more gamma photons. The decay scheme of 57Co
is illustrated in Fig. 2.3. Its two-photon cascade (in 57Fe) is very interesting
for timing measurements, see section 5.3. This radiative decay is nothing more
than spontaneous emission. That is why the photons are emitted one by one,
completely uncorrelated. Furthermore, we dedicate a separate section (see be-
low) to show that the statistical mixture of emitted photons is unpolarized.
Another obvious difference between the radiation fields of quantum optics and
nuclear quantum optics is that the latter deals with short wavelength or high
energy radiation (of the order of 10 keV and more). Each gamma photon carries
at least 104 times more energy than an optical photon. This has an immedi-
ate impact on the detection mechanism. Due to their high ionizing power no
special noise reducing technique, like, e.g., balanced homodyne detection [87],
is needed to detect single gamma photons.
Because the complete process of emission by the source, scattering by an ab-
sorber and detection can be treated at the single photon level, and this single
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photon has a coherence length far larger than the dimensions of the experimen-
tal setup6, it is clear that this is a coherent physical process.

Unpolarized photon source

In order to predict selection rules and calculate transition amplitudes correctly,
we must be sure about the polarization of the source radiation. In the used
radioactive source, the 57Co nuclei are embedded in a Rh matrix, without
hyperfine field or electric field gradient. This means that there is no (known)
preferred polarization axis to project the nuclear states onto. We are, therefore,
allowed to choose any axis, which we denote as zN . Another way of describing
this situation is stating that all nuclear magnetic sublevels |mN

I 〉 are degenerate.
In Fig. 2.4 the levels are drawn for the 14.4 keV transition in 57Fe, going from
a Ie = 3/2 excited state to a Ig = 1/2 ground state.

m=-1/2 m=1/2

m=-3/2 m=-1/2 m=1/2 m=3/2
I =3/2e

I =1/2g

Figure 2.4: Allowed magnetic dipole transitions in 57Fe, with ∆m = −1 (solid
line), ∆m = 0 (dashed line) and ∆m = 1 (dotted line).

In general, spontaneous emission to the ground state can occur obeying
the selection rules for magnetic dipole transitions, so ∆mI = 0,±1. Angular
momentum is conserved by transfer of the angular momentum l = 1 to the
photon. When ∆mI = +1, a photon with ml = −1 is emitted to preserve the
projection of angular momentum. The same rule, of course, applies to the two
other cases. Because all degenerate magnetic sublevels are equally populated,
the three transitions have equal probabilities.
At this moment nothing more can be said about the spin of the photon than
that, along its propagation direction k, only two states are possible7, |σ = ±1〉.
We say that a photon in state |σ = +1〉 is right circularly polarized (or short:

6The coherence length of a photon emitted in the decay of a nucleus can be estimated by

∆l ≈ cτ , with τ the lifetime of the decaying nuclear state, hence ∆l ≈ 42 m.
7This is unlike other spin 1 particles, which have three different projections on any quan-
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a σ+ photon) and a photon in state |σ = −1〉 left circularly polarized (or short:
a σ− photon). This convention corresponds to the way the electric field vector
is rotating in the plane perpendicular to k, as seen by an observer travelling in
the direction of the field.
The photon states |ml〉 can be expressed either in the nuclear axis system
(|mN

l 〉) or in a photon axis system (|mp
l 〉). If we define θ as the angle between

the photon propagation direction k and the nuclear quantization axis zN , a
transformation from the nuclear system (N) to the photon system (P ) is given
by [43]:

|mp
l 〉 = D(0, θ, 0)|mN

l 〉 (2.7)

where D(0, θ, 0) denotes the rotation matrix operator. We can express this in
the new basis (|σ = ±1〉):

|mp
l 〉 =

∑

σ

〈σ|D(0, θ, 0)|mN
l 〉|σ〉 (2.8)

=
∑

σ

d1
σ,mN

l
(θ)|σ〉 (2.9)

The full expressions are:

|mp
l = 1〉 = cos2

θ

2
|σ = +1〉 + sin2 θ

2
|σ = −1〉 (2.10)

|mp
l = 0〉 =

sin θ√
2

(|σ = +1〉 − |σ = −1〉) (2.11)

|mp
l = −1〉 = sin2 θ

2
|σ = +1〉 + cos2

θ

2
|σ = −1〉 (2.12)

It is seen that if θ = 0, the state |mp
l = 0〉 is totally suppressed and only

pure |σ〉 states remain. As there is no preferred direction in our source, we
can always choose zN = k. This means that, along its propagation direction,
the source photon is either right or left circularly polarized (σ+ or a σ−). For
an ensemble of photons emitted by a radioactive source each polarization has
the same probability. This equal mixture of circularly polarized photons cor-
responds to the definition of unpolarized radiation.

Finally, the ‘tuning’ of the frequency of the gamma photons to match the
absorber frequencies can be easily controlled. The source is Doppler shifted by
mounting it on a velocity drive. Typical velocities of the order of a few mm/s
are sufficient to scan the complete hyperfine energy structure.

tization axis. This is related to the fact that light has no mass, and cannot stand still [88].
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2.2.2 Mixing interaction as driving field

In optical EIT the driving field is used to couple the excited state to a (metastable)
state other than the ground state. In order for this coupling state to be a lower
lying excited nuclear state or a ground state, a second gamma field is needed.
As pointed out in the previous paragraphs, for now, only a radioactive source
is available. However, if the combination of two radioactive sources is exper-
imentally feasible, the random nature of gamma photon emission would lead
to a random overlap of probe and drive field. It is clear that the concept of
‘matched pulses’8 [89] would completely lose its value.
If this coupling state is a member of the same (hyperfine) multiplet as the ex-
cited state, then one can apply a radio-frequent (rf) field, a magnetic field or
take advantage of internal (hyperfine) fields. The effect of a strong rf-field on
the Mössbauer absorption has been studied theoretically by Gabriel [90] and
experimentally investigated by Vagizov [91] and Tittonen and coworkers [92].
These experiments have demonstrated a Stark shift of the driven nuclear lev-
els.
The other two possible coupling fields are DC fields (with zero frequency).
Hakuta and coworkers were the first to show experimentally that a DC field in
atomic hydrogen can be used to create EIT [93, 94]. More recently, the appli-
cation of an rf-field [95] and of an internal or external magnetic field [96, 97]
has been suggested to induce transparency for gamma photons. It has also
been shown [98] that the application of a DC magnetic field is equivalent to an
rf-field by treating the first in a rotating frame. An overview of modification of
Mössbauer spectra under the action of different kinds of electromagnetic fields
is given in [99].
In this thesis, we suggest that the role of the driving field is played by a non-
axially symmetrical electric field gradient9.

2.2.3 Relaxation

If we choose the coupling state as belonging to the same multiplet as the excited
state, we must acknowledge the consequence it bears for the relaxation rate.
These states both originate from the same nuclear excited state, which means
that they have equal decay rates. A hint to understand the importance of this
is presented by Berman in [65]. He shows that the level scheme, which gives
rise to suppression of spontaneous emission, is isomorphic to a three-level Λ-

8Matched pulses have the same pulse envelopes in time domain.
9Actually, it is sufficient to have an interaction that breaks the axial symmetry, inducing

transitions between nuclear magnetic sublevels. Which sublevels are mixed depends on the

specific type of interaction, as explained in section 1.1.4.
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scheme, and hence can be explained in terms of coherent population trapping.
However, this isomorphism only applies when the ground and coupling state
are both metastable.
In this thesis, we show on several occasions that the interference term vanishes
if the coupling state has the same decay rate as the excited state, greatly
reducing the transparency effect.

2.2.4 Optically thick media

To understand propagation in an optically (or refractively) thick
medium, one must understand not only how the electromagnetic
fields drive the atoms, but also how the atoms drive the fields.

S. E. Harris in [69]

In most text-books and papers that deal with (optical) EIT the problem is re-
stricted to the interaction of fields with ensembles of single atoms. The reason is
that most optical experiments are performed in gases and thus multiple scatter-
ing processes can indeed be discarded. In nuclear quantum optics, however, the
nuclei are closely packed in a crystal. Although the interaction cross-section
is very small (≈ 10−18 cm2), the huge number of possible scattering centers
(≈ 1018) means that multiple scattering cannot be neglected. Therefore, we
should follow the advice in Harris’s quote. In chapters 3 and 4 we construct
models that explicitly take into account the dependence of the transmitted ra-
diation on the thickness of the nuclear medium. In order to compare with the
results of optical EIT, we can always consider the limit of a very thin absorber.

2.2.5 Previous work on EIT with gamma photons

Prior to this work, two papers have tried to give an explanation to the observed
reduction in absorption in these FeCO3 crystals in terms of EIT. Both papers
assume that a non-axial component of the hyperfine field lies at the origin of
the mixing interation.
First, in [96] a simple model is constructed by use of the density matrix for-
malism. Eventually, the ”absorption coefficient of gamma radiation D” is cal-
culated as:

D = <
(

γ + γs + iωv

(γ + γs + iωv)
2

+ |Ω|2

)
, (2.13)

with γ (γs) the decay rate of the excited state in the absorber (source), ωv the
Doppler shifted frequency of the incident radiation and Ω the strength of the
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mixing interaction. We can prove, however, that

D =
1

2

γ + γs

(γ + γs)
2

+ (ωv + Ω)
2 +

1

2

γ + γs

(γ + γs)
2

+ (ωv − Ω)
2 , (2.14)

which is no more than the sum of two Lorentzian absorption lines, shifted with
+Ω and −Ω respectively. One can then wonder if this result really can be
interpreted as a manifestation of EIT, as known in quantum optics, since there
is clearly no interference present.

In the second paper [98] it is postulated that, in a thin absorber limit, ”the
absorption behavior is governed by”

γ/2

δ1 + iγ/2
+

γ/2

δ2 + iγ/2
=

∣∣∣∣
γ/2

δ1 + iγ/2

∣∣∣∣ eiφ1 +

∣∣∣∣
γ/2

δ2 + iγ/2

∣∣∣∣ eiφ2 (2.15)

with δi = ω−ωi, ωi the frequency of an excited, mixed state (and ω1/2 = ω0±Ω,
see above) and tan φi = −γ/(2δi). If the frequency is tuned to the center of the
split levels (ω = ω0), then δ1 = −δ2 = −Ω and the two terms contribute with
an opposite phase φ1 = −φ2 = arctan(γ/(2Ω)). This has been identified as the
destructive interference leading to EIT10. However, in the next chapter we also
derive the absorption in this thin absorption limit, which is proportional to the
imaginary part of Eq. (2.15), but show that this also exactly equals a sum of
two Lorentzian absorption lines. Actually, any absorption to two closely lying
states yields such oppositely phased terms. This only results in a reduction of
absorption due to the off-resonance condition.

2.3 Conclusions

We have first presented different views on the EIT phenomenon as it is known
in the ‘low frequency’ domain of quantum optics. Its main features are the
reduction of absorption in a resonant medium and the change of the refractive
index of the medium, yielding very slow pulse group velocities. Then, we have
tried to extrapolate the common Λ-scheme, which gives rise to EIT, to the realm
of gamma optics. Indeed, there are strong similarities with the level crossing
scheme in FeCO3, if there is also some kind of mixing interaction present.
However, the fact that the mixed nuclear states have equal decay rates seriously

10Furthermore, it was argued that, if Ω >> γ, then φ1 → π/2 and φ1 → −π/2. This

statement is not correct because for γ/Ω → 0, φ1 → 0 ← φ2, which simply means that the

incident radiation will no longer interact with these levels.
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compromises the nuclear EIT effect. This was not explicitly recognized in the
first papers on nuclear EIT, although a simple analysis of those early results
reveals that no true interference is present in this nuclear case. Does this then
mean that ideas about nuclear EIT are a waste of time? And how must the
observed spectra be interpreted? Is the presence of interference really necessary
for a consistent understanding? These questions are addressed in detail and
lay out the foundations for the next chapters.





Chapter 3

Semiclassical models

Although different versions exist [100], the distinctive feature of a semiclassical
theory is that it treats matter quantum mechanically, while the electromag-
netic field is treated classically. There are two very valuable approaches to our
nuclear resonant scattering problem that fall in the category of semiclassical
theories. The first is based on the work of Blume and Kistner [101]. A detailed
application of their model to our case is given in the next section. The second
semiclassical approach is sometimes called the Maxwell-Schrödinger formalism.
Density matrix equations are applied for obtaining the macroscopic polarization
of the medium, which is then used to solve the Maxwell equations. A resume
of this method and a sketch of its equivalence with the first is addressed in the
second part of this chapter.

3.1 Approach based on Blume-Kistner model

For more details on the approach first developed by Blume and Kistner we refer
to [101–103]. We just mention the results that are relevant for our case.
The propagation equation for a classical plane wave with amplitude A(ω) along
the z axis is given by (

∇2 + n2k2
)
A(ω, z) = 0, (3.1)

which has the solution
A(ω, z) = einkzA(ω, 0), (3.2)

where the magnitude k of the wave vector in vacuum, k, is related to the fre-
quency ω of the incident plane wave through k = ω/c. The influence of the

53
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medium on the radiation wave is completely absorbed in the refractive index n.
In this case, n does not depend on A(ω, z) and, hence, this plane wave solution
corresponds to a linear approximation of the full Maxwell wave equations. The
linear approximation is justified by the weak interaction of the gamma radia-
tion with the nuclei.
In general, n is a complex, non-Hermitian and frequency dependent matrix
ñ(ω). The real part describes the change of polarization and the change in
phase, while the imaginary part accounts for the (polarization dependent) ab-
sorption.
The index of refraction is given by [104]:

ñ(ω) = 1̃ +
2π

k2
ρf̃(ω) (3.3)

where 1̃ is the 2 × 2 unit matrix, ρ the atomic volume density and f̃(ω) the
coherent forward scattering amplitude. This amplitude is, in general, a 2 × 2
matrix, since a scattering process can change the polarization of the incident
radiation. In this treatment we choose to express f̃(ω) in a basis of left (σ−)
and right (σ+) circular polarization.

Forward scattering contains two contributions, scattering from electrons f̃e(ω)

and resonant scattering from nuclei f̃n(ω). Scattering from electrons, however,
is essentially constant over the frequency range where nuclear resonant scatter-
ing is important [105]. Therefore, f̃(ω) can be expressed as f̃(ω) = f̃e + f̃n(ω).
In the case of the 14.4 keV gamma ray scattering in 57Fe, the influence of the
electronic scattering is limited to a reduction of the overall absorption by a
factor exp(−µed), with µe the electronic absorption factor and d the physical
thickness of the medium [106]. This electronic contribution is not relevant for
the remainder of the calculations and is, therefore, omitted from the following
equations. We also drop the ‘n’ subscript from the notation of the forward
scattering amplitude.
An expression for the matrix elements of f̃(ω) in the notation of Blume and
Kistner is given by:

f̃σ′σ(ω) =

(
−kV fLM

2πc~

)
1

2Ig + 1

∑

mg,me

〈kσ′mg|H|me〉〈me|H|kσmg〉
ω −

(
ωme

− ωmg

)
+ iγ

2

, (3.4)

with V the volume in which the radiation is normalized and γ the total width
of the excited state1. This is the coherent2 resonant scattering amplitude for a
plane wave with polarization σ to a plane wave with polarization σ′, absorbed

1If τ is the lifetime of the excited state, then its width is defined by γ = τ−1.
2In order to have a coherent scattering process, the initial and final nuclear state must be

the same.
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by a nucleus from a ground state |Igmg〉 (with frequency ωmg
) to an excited

state |Ieme〉 (with frequency ωme
) and re-emitted to |Igmg〉. The Hamiltonian

H describes the interaction between the electromagnetic field and the nucleus.
Here, an average over the ground states |mg〉 is made, with the assumption that
they are equally populated. By including the recoil-free or Lamb-Mössbauer
fraction fLM , it is assumed that the energy of the incident photon is close to
resonance.
The above expression also assumes that the nuclear levels can be described by
a well-defined magnetic quantum number m. As we are especially interested
in the case were this is no longer true (in the case of a non-axially symmetrical
interaction), Eq. (3.4) should be modified. This implies a transformation
of basis, i.e. expressing the true eigenstates |n〉 as a linear combination of
magnetic substates (as prescribed in [101]):

|n〉 =
∑

m

〈m|n〉|m〉. (3.5)

The amplitude for coherent forward nuclear scattering now expands to

f̃σ′σ(ω) =

(
−kV fLM

2πc~

)
1

2Ig + 1

∑

ng,ne

∑

mg,me

∑

m′
g,m′

e

〈ng|mg〉〈m′
g|ng〉

×〈ne|me〉〈m′
e|ne〉

〈kσ′mg|H|me〉〈m′
e|H|kσm′

g〉
ω −

(
ωne

− ωng

)
+ iγ

2

. (3.6)

The matrix elements 〈me|H|kσmg〉 are given by [101]:

〈me|H|kσmg〉 = 2π

√
~c

V k

∑

LM

iL
√

2L + 1D(L)
M,σin

(α, β, γ)C(IgLIe;mgMme)ML

(3.7)
Here is a list with the meaning of all variables:

L,M : magnetic 2L pole with M=-L,...,L

C(...) : Clebsch-Gordan coefficient

D(L)
M,σin

(α, β, γ) : rotation matrix with (α, β, γ) Euler angles describing

the radiation axis in the nuclear principal axis system

ML : strength of the magnetic 2L pole (|ML|2 = γr

8πk ,

and γr the radiative decay rate)

Values for the rotation matrix elements and the Clebsch-Gordan coefficients
that are relevant in our case, are listed in Appendix B.
With ñ(ω) now completely defined in terms of fσ′σ(ω) and simplifying the
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matrix exponential in Eq. (3.2) to a normal matrix form, the solution for the
amplitude of the forward scattered plane wave is given by:

(
A+(ω, z)

A−(ω, z)

)
= eikzS̃(ω, z)

(
A+(ω, 0)

A−(ω, 0)

)
(3.8)

where the scattering matrix S̃(ω, z) is calculated as

S̃(ω, z) =
e(a+d)/2

D

×
(

D cosh
(

D
2

)
+ (a − d) sinh

(
D
2

)
2b sinh

(
D
2

)

2c sinh
(

D
2

)
D cosh

(
D
2

)
+ (d − a) sinh

(
D
2

)
)

(3.9)

with

a = i
2π

k
ρz f++(ω) , b = i

2π

k
ρz f+−(ω),

c = i
2π

k
ρz f−+(ω) , d = i

2π

k
ρz f−−(ω) (3.10)

and D =
√

(a − d)2 + 4bc. Notice that expression (3.9) exactly matches the
expression for the scattering matrix obtained in [107,108].
As is discussed in section 2.2, an unpolarized radioactive source can be treated
as a statistical mixture of right and left handed circular polarization. Therefore,
in this basis, the vector of the incident wave has only 1 component. In the
case of regular Mössbauer spectroscopy, the amplitude of this incident wave
component A±(ω, 0) is Lorentzian3:

A±(ω, 0, v) =
1√
2

γr/2

ω − ωv + iγ
2

(3.11)

This frequency profile originates from the exponential lifetime decay of the
excited nuclei in the source. It is centered around the Doppler shifted frequency
ωv = ωγ(1 + v/c) and has an amplitude proportional to the radiative width.
The factor (2)−1/2 stems from the equal amount of both field polarizations.
Finally, the measurable time-integrated Mössbauer intensity as a function of
transducer velocity is given by I(v) = I+(v) + I−(v) with

I±(v) =
1

2π

∫ ∞

−∞
dω

(
|S±+(ω, z)A+(ω, 0, v)|2 + |S±−(ω, z)A−(ω, 0, v)|2

)
.

(3.12)

3This is a valid approximation if the source is thin (Te << 1) and, hence, does not

experience thickness broadening.
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3.1.1 Three-level system

It is straightforward to substitute all variables in the above expressions and
perform basic mathematical operations in order to simulate different experi-
mental cases. This is done in the next section. But first, we would like to focus
on the special case of level crossing and deal with it in an analytical way. We
limit the following treatment to the three nuclear levels involved in the level
crossing/mixing transition4, i.e. the |mg = −1/2〉 ≡ |1〉 ground state and the
|me = 1/2〉 ≡ |2〉 and |me = −3/2〉 ≡ |3〉 excited states. In section 1.1.4 it is
shown that either a magnetic field or an efg can mix the two excited states,

giving rise to two fully mixed states | 1̃2 〉 ≡ |2̃〉 and | − 3̃
2 〉 ≡ |3̃〉. The mixed

levels have an energy difference of 2~Ω, with Ω the strength of the mixing (ex-
pressed in frequency units) and depending on the type of mixing interaction.
For example, in the case of a non-axial efg, using Eq. (1.10), we find that
Ω =

√
3ηωQ. In this nuclear system of mixed levels, gamma radiation with

a particular circular polarization can scatter on both levels simultaneously, if
they fall within the line width of the incident radiation.
This property of indistinguishable quantum paths makes the level mixed scheme
a very promising system to investigate quantum interference effects at the nu-
clear level.

1

2

3

+ + +=

2W

+ + + +- - - -

S̃

S++ S−− S−+ S+−

Figure 3.1: Schematical representation of scattering in a three-level system with

mixed states |2̃〉 and |3̃〉. The four possible scattering paths are explicitly drawn.

The full picture, with all possible scattering processes, is illustrated in Fig.
3.1. The absorption and emission to and from both excited states can occur
through two channels, i.e. with right or left circular polarization. Without
mixing, however, the absorption and emission process should occur with the
same polarization.
According to Eq. (3.6), the forward scattering amplitude in this three-level

4As long as the distance to all other transitions is larger than γ, this simplification has

no ramifications for an extrapolation to the real case.
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system is given by

fσ′σ(ω) ∝ 〈2̃|Hσ′ |1〉〈1|Hσ|2̃〉
ω −

(
ω2̃ − ω1

)
+ iγ

2

+
〈3̃|Hσ′ |1〉〈1|Hσ|3̃〉

ω −
(
ω3̃ − ω1

)
+ iγ

2

. (3.13)

If we introduce the definition of a magnetic dipole transition matrix element
µij = 〈i|H|j〉 and substitute Eq. (1.22) and (1.23) into Eq. (3.13), we find an
explicit expression for the forward scattering amplitude matrix elements:

f++(ω) ∝ |µ21|2
2

L+(ω) f−−(ω) ∝ |µ31|2
2

L+(ω) (3.14)

f+−(ω) ∝ µ21µ13

2
L−(ω) f−+(ω) ∝ µ31µ12

2
L−(ω) (3.15)

with

L± =
1

ω − ω0 − Ω + iγ/2
± 1

ω − ω0 + Ω + iγ/2
, (3.16)

where we have defined that ω2̃ − ω1 ≡ ω0 − Ω and ω3̃ − ω1 ≡ ω0 + Ω. The
scattering amplitudes clearly consist of a sum (or difference) of two Lorentzian
line shapes, which are centered around the frequencies of the mixed levels and
are in anti-phase in the case of the polarization changing amplitudes.
These sums at the level of amplitudes could lead to interference phenomena.

To keep things analytical and simple, we consider the thin absorber limit
(Te << 1). Then, only the first term in the Taylor expansion of the exponent
in Eq. (3.2) is retained:

(
A+(ω, z)

A−(ω, z)

)
= eikz

(
1̃ + i

2π

k
ρzf̃(ω)

) (
A+(ω, 0)

A−(ω, 0)

)
. (3.17)

Substituting Eq. (3.14) and Eq. (3.15) we find

(
A+(ω, z)

A−(ω, z)

)
= eikz

[
1̃ − i

3Te

16

γ

2

(
|C21|2L+(ω) C21C13L−(ω)

C31C12L−(ω) |C31|2L+(ω)

)]

×
(

A+(ω, 0)

A−(ω, 0)

)
, (3.18)

with Cij the product of the Clebsch-Gordan and rotation matrix coefficients of
the |j〉 → |i〉 transition. The proportionality factor is obtained from Eq. (3.6)
and (3.7). We also use the definition of the effective thickness T (Eq. (1.30))
and the definition of the maximal resonant cross-section σ0 [37]:

σ0 =
2π

k2

2Ie + 1

2Ig + 1

γr

γ
. (3.19)
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Consider the case when σ+ radiation is incident, C12 = C13 = C∗
12 = C∗

13

and C = 3TeC
2
12/16. For clarity, we omit the convolution with the incoming

radiation. Then, the intensity of the transmitted radiation is given by

I(ω) = |A+(ω, z)|2 + |A−(ω, z)|2 (3.20)

= 1 + 2=
(
C

γ

2
L+(ω)

)

︸ ︷︷ ︸
I1(ω)

+C2|γ
2
L+(ω)|2 + C2|γ

2
L−(ω)|2

︸ ︷︷ ︸
I′
2
(ω)

. (3.21)

In the thin absorber limit, C << 1 and, hence, the last two terms are negli-
gible with respect to the first terms. The first term is the source term, which
represents the case of transmission without scattering, while the second term
represents the interference of the non-scattered with a single scattering event.
The latter term is given by

2=
(
C

γ

2
L+(ω)

)
= −C

γ2

2

(
1

(ω − ω0 − Ω)
2

+ γ2

4

+
1

(ω − ω0 + Ω)
2

+ γ2

4

)
,

(3.22)
which is a simple sum of two Lorentzian absorption line shapes, centered at
ω0 ±Ω, respectively. This means that there is only a (Stark) shift of the levels,
but no term that could describe additional interference effects5. As shown in
Fig. 3.2, the absorption peaks of the first order term are subtracted from the
baseline (provided by the source term) giving rise to the well-known Mössbauer
absorption spectrum.
Notice that this expression is equivalent to the absorption derived in [98] (and
briefly discussed in section 2.2.5), but now ‘debunked’ as two Lorentzian ab-
sorption lines.

But maybe we overlooked the interference term by neglecting the terms
to second order in C. Closer examination of the second (or higher) order
term to the transmitted radiation (I ′2(ω)) can also provide more insight in the
scattering process for thicker absorbers, as these terms become non-negligible.
Surprisingly, after some algebraic reordering, the sum of these second order
terms can be expressed as:

I ′2(ω) = C2|γ
2
L+(ω)|2 + C2|γ

2
L−(ω)|2 = C2 γ2

2
(g+(ω) + g−(ω)) , (3.23)

with

g±(ω) =
1

(ω − ω0 ∓ Ω)
2

+ γ2

4

, (3.24)

5Remember the definition of EIT by Harris, given in the introduction to chapter 2, who

emphasized that the EIT effect is the sum of a shift of the levels and a (destructive) inter-

ference term.
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Figure 3.2: The transmitted radiation (up to first order in C) as a function of
dimensionless frequency, for different values of the mixing interaction strength Ω.
(thin absorber limit Te = 0.1)

which is exactly the same sum of Lorentzians as in the dominating term, except
for the C2 factor. It is interesting to note that only the sum of both |L±(ω)|2
terms reduces to a sum of Lorentzians. Individually, however, they deviate
from the Lorentzian shape, as shown in Fig. 3.3. The |L+(ω)|2 term displays
a decrease of intensity between the absorption peaks, whereas the absorption
for the |L−(ω)|2 term shows an equal but opposite increase.

These terms only make up a part of the full second order term. In the
second order term of the Taylor expansion, there are two more terms that are
quadratic in C (from the S++ matrix element). Their contribution to I(ω) is

−2<
(

C2

2

γ2

4
L2

+(ω)

)
− 2<

(
C2

2

γ2

4
L2
−(ω)

)
=

−C2 γ2

2

[
g+(ω) + g−(ω) − γ2

2

(
g2
+(ω) + g2

−(ω)
)]

, (3.25)

where the first two terms exactly compensate the Lorentzian terms of Eq.
(3.23). The total second order contribution I2(ω) to the transmitted radiation
is now reduced to a sum of squared Lorentzians and is plotted in Fig. 3.4. This
result again emphasizes the truly independent nature of the scattering process
at the mixed levels. Also, the small amplitude of I2(ω) (∼ 0.001) confirms its
negligibility with respect to I1(ω).
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Figure 3.3: The sum of these second order contributions to the transmitted intensity
exactly equals the sum of two Lorentzians (bold solid line). (thin absorber limit
Te = 0.1)

It is clear, however, that if C12 6= C13, some terms will not cancel each
other any more. However, the full expression of I2(ω) can still be conveniently
arranged:

I2(ω) =

(
3T

16

)2
γ4

4

[
|C12|4 (g+(ω) + g−(ω))

2
+ |C12|2|C31|2 (g+(ω) − g−(ω))

2
]

(3.26)
Now, I2(ω) contains terms of the form g+(ω)g−(ω), introducing ‘cross talk’
between the mixed levels. In Fig. 3.5 we have plotted these cross terms for both
σ+ and σ− source radiation, taking into account the real values of C12 = (3)−1/2

and C13 = 1. It is interesting to note that the cross terms always give a small,
but positive contribution to I2(ω) because |C12|4 + |C13|4 ≥ 2|C12|2|C13|2.

In summary, we have shown that, in the thin absorber limit following the
Blume-Kistner approach, the transmitted radiation is described by a sum of
two Lorentzians, centered at the frequencies of the mixed levels. The sum of
all terms to second order in C (or T ) can be expressed as a sum of squared
Lorentzians, if |C12|2 = |C13|2. If the transition probabilities are asymmetric,
cross terms appear that give a slight increase to I2(ω).
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Figure 3.4: The total second order contribution I2(ω) to the transmitted radiation
for different values for the mixing interaction strength Ω as a function of dimensionless
frequency. (thin absorber limit Te = 0.1)
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Figure 3.5: The contribution of the cross terms in Eq. (3.26) to I2(ω) in the case

of C12 = (3)−1/2, C13 = 1 and Ω = γ. Both the cases of incident σ+ and σ− radiation
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3.1.2 Simulations for a multilevel system and thick ab-

sorber

In order to deal with the real case, i.e. the six absorption lines in the Möss-
bauer scheme of 57Fe and an arbitrarily thick absorber, we have implemented
Eq. (3.8) and (3.9) into a Fortran computer code. Also, the convolution with
the incident radiation line shape (Eq. (3.12)) is included.
We continue the analysis of the transmitted radiation at the level crossing
from the preceding section. In the parallel geometry, two additional transitions
are observable, i.e. the (3/2, 1/2) and (−1/2, 1/2) transitions, which are the
doublet partners of the transitions involved in the level crossing. In the per-
pendicular geometry, also the (1/2, 1/2) − (−1/2,−1/2) doublet appears.
Through these simulations, we study the effect of a magnetic field Be perpen-
dicular to the z-axis of the (axially symmetric) efg, which can be realized by
applying an external field or by a non-collinear component of the hyperfine
field, and the effect of a non-axial efg, characterized by η. Both interactions
have been identified as a possible mixing interaction present in the natural
FeCO3 crystal.

Simulations at the level crossing with perpendicular magnetic field

Fig. 3.6 shows simulations of the transmitted intensity for different values of
the perpendicular magnetic field, Be in both geometries and for a crystal with
Te = 8. They should be compared with the experimental spectra for T = 31K
in Fig. 1.10. We have adopted the experimental values of table A.1 and, in
order to simulate absorption amplitudes that are comparable with the experi-
mental data, a resonant fraction fr = 0.3 is assumed6.
The most obvious feature of these simulations is the appearance of extra ab-
sorption lines, which have also been observed experimentally (see Fig. 1.15).
They originate from the mixing of the m-states. If Be 6= 0, each eigenstate
of the nuclear Hamiltonian is a superposition of all pure m-states. Therefore,
each of the 4 × 2 possible transitions from ground to excited state will now
be allowed. Because of the level crossing/mixing, however, another pair of
absorption lines lie on top of each other, i.e. the (1/2, 1/2) and (1/2,−3/2)
transitions (expressed in their unperturbed m quantum number), resulting in
the six resolved lines.

6This resonant fraction fr usually equals fLM , but is decreased by some factor fnr, which

expresses gamma counts that are non-resonant. Then, the altered transmitted radiation is

given by I′(v) = 1 − fr + frI(v), with I(v) from Eq. (3.12).
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Figure 3.6: Simulation of the transmitted radiation in perpendicular and parallel
geometry for different values of a magnetic field Be perpendicular to the z-axis of the
efg (see Fig. 1.5 for the geometry corresponding to this case).
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The influence of Be on the amount of absorption at the level crossing is only
significant when Be > 4T. If we calculate the perpendicular component of the
magnetic field necessary to resolve the mixed levels (E− 3̃

2

− E 1̃
2

= 2γ)7 using

Eq. (1.28), we find that Be ≥ 11.2T. From diagonalizing the full Hamiltonian,
however, we find that Be ≥ 5.6T. The discrepancy is due to the two-level ap-
proximation of Eq. (1.28), which is no longer valid for these high values of
Be. Indeed, in Fig. 3.6 and for Be = 6T the splitting of the mixed levels is
resolved.
From these simulations, it is clear that a non-collinear component of the hy-
perfine field, e.g. due to impurities, is not consistent with the experimental
data. No additional absorption lines were observed, except in the experiment
where an external magnetic field was applied, which validates these simulations.
Moreover, to explain the reduction in absorption quantitatively, one should as-
sume a very large noncollinear component, which is not straightforward from
the point of view of originating from impurities.

Simulations at the level crossing with a non-axial efg

As the hypothesis of a magnetic mixing interaction is refuted, we now turn to
a more plausible candidate. Simulations in the parallel geometry for different
values of η and for effective thicknesses of Te = 1, 3, 8 and 25 are shown in Fig.
3.7 and 3.8 respectively. The right part of the figure shows the transmitted
radiation that has changed polarization (I+− + I−+) and the radiation that
has kept its polarization (I++ + I−−) separately. It must be noted that, in the
presentation of the simulations of I+− + I−+, we have adjusted the baseline
such that they are easily combined with the presentation of I++ + I−− . The
real baseline of the I+− + I−+ contributions is of course zero. This artificial
modification is applied in the remainder of this thesis.
Because it is assumed that a non-axial efg lies at the origin of the mixing in-
teraction, Ω = γ corresponds to η = γ/(

√
3ωQ) = 0.149.

From the simulations, the following observations can be made:

• The overall absorption increases with thickness and saturates at higher
thicknesses. Saturation is clearly seen when comparing the spectra for
Te = 8 and Te = 25. There is little increase in the heights of the
absorption peaks, but instead, the absorption lines broaden.

• The presence of a mixing interaction only influences the absorption at
the crossing levels, which is unlike the magnetic mixing interaction of

7We use 2γ because this is the minimal line width of the convoluted spectrum.
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Figure 3.7: Simulated Mössbauer spectra in the parallel geometry for Te = 1
(top) and Te = 3 (bottom) for different values of mixing interaction strength Ω. The
right figure shows the individual contributions of the transmitted radiation that has
changed polarization (I+− + I−+) and the radiation that has kept its polarization
(I++ + I−−), while the left figure shows the total transmitted radiation.
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Figure 3.8: Simulated Mössbauer spectra in the parallel geometry for Te = 8 (top)
and Te = 25 (bottom) for different values of mixing interaction strength Ω. The
right figure shows the individual contributions of the transmitted radiation that has
changed polarization (I+− + I−+) and the radiation that has kept its polarization
(I++ + I−−), while the left figure shows the total transmitted radiation.
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the previous section. Here, the non-axial part of the (efg) Hamiltonian
only induces transition between the |me = −3/2〉 and |me = 1/2〉 states.
Because of the large energy difference, the mixing between the |me = 3/2〉
and |me = −1/2〉 states is negligible for small η.

• The turning on of the mixing interaction reduces the absorption at the
crossing levels. For Te = 1 and Te = 3 this reduction is mainly due to
the reduction of the I++ + I−− contribution to the spectrum, whereas
for higher thicknesses the I+− + I−+ contribution is responsible for the
reduction. The latter has an upward peak orientation because, due to its
changed polarization, it does not interfere any more with the incoming
radiation. Therefore, an increase in I+− + I−+ results in a decrease of
the total absorption.

• For Te = 25 a two peak structure appears in I+−+I−+. A more detailed
simulation of the I+− + I−+ transmitted radiation is presented in Fig.
3.9 for different thicknesses. For both values of Ω, the two peak structure
arises when the thickness increases, although it first appears for Ω =
γ/2. More simulations for different values of Ω have made clear that
the amount of peak splitting does not depend8 on Ω, but rather on Te.
This bears a close resemblance with the double hump structure known in
nuclear resonant scattering with synchrotron radiation [102,109].

8Of course, Ω should be larger than zero, in order to have a change in polarization.



3.1 Approach based on Blume-Kistner model 69

3.1.3 Fit procedure

We have adapted our Fortran computer code in order to be able to fit the
experimental data to the theoretical line shape obtained in the Blume-Kistner
model. The fit procedure is based on the maximum likelihood method, see
e.g. [110]. We assume that the probability distribution of the data obtained is
Gaussian. Then, the best fit f(a, i) to the data is found by minimizing the χ2

function:

χ2 =
∑

i

(f(a, i) − ci)
2

σ2
i

, (3.27)

with a = (a1, a2, ..., an) the n variable fit parameters, ci the number of counts
and σ2

i the variance of measurement i (here: channel i). The variance can be
estimated by the statistical error εi =

√
ci, such that σ2

i = ε2i = ci.
The error analysis is performed through the reduced χ2, χ2

r, which is found
by dividing χ2 by the degrees of freedom. A model is a good hypothesis for
a given set of data provided that χ2

r,min ≈ 1. The error σaj
on the value of a

model parameter aj is then calculated as a 1σ standard deviation by finding a
fit f(a1, ..., aj ± σaj

, ..., an, i) such that

χ2
r = χ2

r,min + 1. (3.28)

However, in the following fits we obtain a value for χ2
r,min that is larger than

unity. This can point to two problems. Either, the theoretical model does not
provide a good hypothesis of the experimental data. Or, the estimated error is
too small. One should of course, to some extent, trust the theoretical model,
and therefore, we adjust the estimated error by multiplying σ2

i with χ2
r,min.

This has as a consequence that, for the estimation of the errors, the 1 in Eq.
(3.28) is replaced by χ2

r,min. Hence, this approach will yield higher errors on
the estimated parameters.

The fit program has 9 variables: the isomer shift IS, the efg splitting ∆ (de-
fined in Eq. (1.34)), the efg asymmetry parameter η, the magnetic splitting of
the excited state βe (defined in Eq. (1.35)), the effective thickness Te, the res-
onant fraction fr and three line broadening factors qi. The qi factors [111] are
multiplied with the line width γ in the denominator of the forward scattering
amplitude f̃(ω). q1 belongs to the (3/2, 1/2)− (−3/2,−1/2) doublet, q2 to the
(1/2, 1/2)− (−1/2,−1/2) doublet and q3 to the (1/2,−1/2)− (−1/2, 1/2) dou-
blet. Along with these variable parameters, the spherical angles (θ, φ), which
describe the wave vector of the incident radiation in the nuclear coordinate
system, and the value of an applied perpendicular magnetic field, Be, can be
modified according to the experimental settings. The baseline of the spectrum
is not a fit parameter because the program automatically adjusts the scale of
the theoretical spectrum to that of the experimental spectrum.
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Instead of showing the fit results of all experimental spectra, we only highlight
the ones most relevant to our study. In Fig. 3.10, 3.13 and 3.14 we present the
fitted spectra of the Te = 8 FeCO3 absorber at room temperature (RT) and
T = 31K, with and without mixing, respectively. The values of the parameters
obtained from these fits are presented in table 3.1.

3.1.4 Fit of Te = 8, at RT, no external magnetic field
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Figure 3.10: Mössbauer spectra of FeCO3 at room temperature, with the solid line
giving the best fit based on the Blume-Kistner semiclassical model.

For RT, Fig. 3.10 shows an excellent fit of the data. This is a little surpris-
ing in this respect that, as discussed in section 1.3.2, the deduced area ratio
Aπ/Aσ considerably deviates from the theoretical curve in Fig. 1.9. Moreover,
by a series of simulations with the theoretical model, we have checked that our
model indeed predicts the same area ratio curve as obtained in [52]. So, the
most obvious reason for this discrepancy is that the area ratio obtained from
the Lorentzian fit is either incorrect or should bear much larger error bars. It
is clear that the Lorentzian line shape is only correct for very thin absorbers.
A small deviation of the theoretical line shape from the actual line shape can
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have very large effects for the calculation of the area. To illustrate this we
refer to the fact that half of the area of a Lorentzian curve is found under its
wings. Thus, a good fit of the ‘peak part’ does not necessarily mean a good fit
of the entire line shape. Therefore, we are led to suggest that the area ratios
of section 1.3.2 should only be considered as a crude approximation and that
a good fit within our model yields a much better proof of the validity of both
the theoretical area ratio curve and the experimental results.
The deduced values of the isomer shift and the quadrupole splitting agree with
the results obtained from the Lorentzian fit. The only difference is that we now
obtain much larger errors (×10), which certainly are more realistic.

Table 3.1: Values obtained from fitting the FeCO3 Mössbauer spectra to the Blume-
Kistner semiclassical model.

temperature RT 31K

θ 0 π/2 0 π/2 0 π/2

η - - - - 0.07(1) 0.07(1)

IS (mm/s) 1.23(1) 1.24(1) 1.32(1) 1.34(1) 1.34(1) 1.36(2)

∆ (mm/s) 1.78(4) 1.79(4) 2.08(9) 2.03(8) 2.04(6) 2.07(6)

βe (mm/s) 0 0 1.03(2) 1.02(2) 1.02(1) 1.01(2)

Te 19(12) 18(9) 32(15) 75(24) 40(18) 20(17)

fr 0.3(1) 0.4(1) 0.6(2) 0.2(2) 0.5(2) 0.4(2)

q1 2.4(1) 2.1(2) 3.2(4) 2.4(3) 3.0(3) 3.2(4)

q2 - 1.8(3) - 2.2(5) - 2.9(6)

q3 2.1(2) 2.3(3) 3.1(4) 1.7(3) 2.1(3) 1.9(4)

χ2
r,min 3.8 3.2 11.6 5.8 7.6 8.9
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Anomalous line broadening

It was also noted in section 1.3.2 that the deduced values of the line (half)
widths Γσ and Γπ for both geometries could not be consistently explained.
The q values obtained in these new fits can not really shed some light on this
issue either. However, if we make a series of simulations9 as a function of effec-
tive absorber thickness and deduce the line widths of the absorption lines, then
the experimentally observed behavior is very well reproduced. In Fig. 3.11, for
small thicknesses, the line width of both absorption lines equals the minimal,
and thus natural, line width10. With increasing thickness, all line widths also
increase, which is a clear saturation effect. However, it is seen that the slope of
the saturation curves depends on the details of the absorption resonance. This
can be understood as follows. It is obvious that the amount of line broadening
depends on how close the absorption line approaches the maximal absorption.
Now, both this ‘closeness’ and the maximal absorption can be different for the
different absorption lines. Let us first consider the simplest case, i.e. the par-
allel geometry. Both σ+ and σ− incident radiation can be absorbed by the
transitions belonging to the π and the σ absorption line, which means that
they have equal maximal absorption. From the different interaction strengths,
|Cπ|2 = 1 and |Cσ|2 = 1/3 respectively, we know that, for the same thickness,
the π line is closer to this maximal absorption, and thus will show a larger
line broadening than the σ line. Hence, they experience a ‘regular’ broadening
pattern.

In this parallel geometry, it is also possible to derive an analytical expression
for the line widths as a function of Te. Using Eq. (3.9), with a = d and
b = c = 0, we find that

ΓHWHM =
γ

2

√√√√1 +
3Te|C|2

4 ln 2

1+e−
3Te|C|2

4

. (3.29)

For large Te, ΓHWHM can be approximated by

ΓHWHM ≈ γ

2

√
1 +

3Te|C|2
4 ln 2

(3.30)

which yields the simulated
√

Te-dependence as illustrated in Fig. 3.11. By
differentiating this expression, we also find that the slope dΓ/dTe is proportional
to |Ci|2, as expected from the intuitive approach.

9In these simulations, all q values are chosen 1.
10Actually, due the convolution with the incident radiation spectrum the minimal FWHM

equals twice the natural line width. But here, the HWHM are considered.
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Figure 3.11: Calculated widths of the quadrupole absorption lines π and σ as a
function of absorber effective thickness and for perpendicular and parallel geometry.

As seen in Fig. 3.11 for the perpendicular geometry, for small Te, although the
π and the σ absorption line have different interaction strengths,

∑
i |Cπ,i|2 =

1/2 and
∑

i |Cσ,i|2 = 5/6 respectively, they show an equal line broadening. So,
they behave as if they ‘feel’ a different maximal absorption. The slope dΓ/dTe

of the σ line then gradually decreases with increasing N , with respect to the
π line. This behavior is completely different from the parallel case. An answer
can be found by looking at the contributions to the spectrum of the radiation
that has changed polarization, I+− +I−+, and the radiation that has the same
polarization as the incident radiation, I++ + I−−, separately. In Fig. 3.12, it
is seen that the broadening of the π and σ lines of the I++ + I−− contribution
behaves quite similar to the parallel case. But, for the π line, I+−+I−+ pushes
the total intensity upward, mainly at the line center, whereas for the σ line it
shows a double hump structure with a smaller center intensity. This gives rise
to a less increasing line width of the σ line with respect to the π line. As a
consequence, it is seen that the π line has a maximal absorption that is about
half of that of the σ line.

We admit that the above expose provides us only with a mere heuristic
understanding of the anomalous behavior of the π line width. Closer examina-
tion of Eq. (3.9) for the perpendicular case reveals that the total transmitted
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Figure 3.12: Simulations of the Mössbauer transmitted intensity for different ef-
fective thickness Te, in the perpendicular geometry and at room temperature.
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intensity at the line center can be written as

Itot,π(δ = 0) =
1

2

(
1 + e−

3Te|C++|2

8

)
(3.31)

for the π line and

Itot,σ(δ = 0) =
1

2

(
e−

3Te(|C++|2+|C+−|2)
16 + e−

3Te(|C++|2−|C+−|2)
16

)
(3.32)

for the σ line. This difference stems from the fact that the interaction strengths
for scattering with change (|C+−|2) and without change (|C++|2) of polariza-
tion are equal for the π line, while they are not for the σ line. From the above
expressions, it is clear that the maximal absorption (Te → ∞) for the π line
is exactly one half of that of the σ line, leading to a stronger saturation line
broadening in the former case.
Notice the importance of the inclusion of the polarization dependent terms.
For a correct understanding of the line broadening behavior one not only needs
a model that takes into account the absorber thickness but the polarization
must also be considered.

3.1.5 Fit of Te = 8, T = 31K, no external magnetic field

We have analyzed the Mössbauer spectra at Tc ≈ 31K in two ways, with η = 0
and with a variable η, as shown in Fig. 3.13 and Fig. 3.14 respectively. The pa-
rameter values of the fit are summarized in table 3.1. In the first case (η = 0)
we are able to make a reasonably good fit of the data in the perpendicular
geometry (χ2

r,min=5.8), but the parallel case is not well reproduced11. This
means that saturation, as explained in section 1.4, can account for the reduced
absorption in the perpendicular geometry, but clearly does not provide an an-
swer for the reduction in the parallel geometry. It must be noted, however,
that the best fit for θ = π/2 yields an effective thickness Te = 75(24), which
is a factor 10 larger than expected. So, apparently more thickness saturation
is needed in order to obtain a good fit, which, nevertheless, points to a short-
coming in the model used.

In the second fit analysis, we allow η to vary such that χ2 is minimized
for both geometries simultaneously. This method yields η = 0.07(1). Both

11Note that the misfit is now equally distributed over all absorption lines, whereas in the

Lorentzian fit we can force the fit such that most of the misfit is located on the level crossing

lines.
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Figure 3.13: Mössbauer spectra of FeCO3 at T = 31K, with the solid line giving
the best fit based on the Blume-Kistner semiclassical model with η = 0.
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Figure 3.14: Mössbauer spectra of FeCO3 at T = 31K, with the solid line giving the
best fit based on the Blume-Kistner semiclassical model with η as a free fit parameter.
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from Fig. 3.14 and from the χ2
r,min values, we see that the fit for the parallel

geometry has improved at the expense of the fit for the perpendicular geometry.
This is mainly due to the level mixing effect on the (1/2, 1/2) transition (located
at v ≈ 1.6mm/s). We must conclude that the model developed at this stage
does not succeed in providing a consistent explanation for the data in both
geometries.
Notice that the deduced values for Te and fr have quite large errors. Because
both variables can alter the heights of the absorption peaks, they are correlated
in the fit procedure. An increase in Te and a decrease of fr only yields a small
change in the simulated spectrum and hence in χ2

r,min. This can be remedied,
of course, by fixing Te at its expected value Te = 8. In this case, we find
slightly higher values of χ2

r,min (≈ 10% higher) and values of fr ≈ 0.6 with
almost half of the previous error.

3.1.6 Fit of Te = 8, with external magnetic field
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Figure 3.15: Mössbauer spectra of FeCO3 in the parallel geometry at T = 31K
with an externally applied magnetic field Be. The solid line gives the best fit based
on the Blume-Kistner semiclassical model.

We have first made a fit of the spectrum without external magnetic field, as
shown in the top part of Fig. 3.15. Although the fit does not seem very good,
we obtain χ2

r,min = 1.5, mainly because the low number of counts yields larger
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(relative) errors. In the case of Be = 4T, except of the q-factors, all variables
are fixed to the values obtained in the Be = 0T fit. This gives χ2

r,min = 2.1.
Considering the low statistics, the additional absorption lines at v ≈ −1mm/s
and v ≈ +2mm/s are nicely reproduced. The line widths have increased by no
more than 15%, which means the applied magnetic field at each 57Fe is quite
uniform.

3.1.7 The phase problem

As already weakly introduced in section 2.1.1, we would now like to settle the
‘phase problem’ in a conclusive way. The phase problem arises because the
proposed mixing interaction in the FeCO3 system originates from impurities in
the crystal structure. It has been argued that the presence of these inhomo-
geneities is very likely and some evidence was presented in section 1.1. But we
should, of course, answer the question whether random impurities can give rise
to an observable mixing interaction.
Let us consider the case of one particular lattice site, where the efg is non-
axially symmetric. In its local PAS the spherical components of the efg tensor
operator are given by 〈V 2

0 〉 = 1
2Vzz and 〈V 2

±2〉 = 1
2
√

6
ηVzz, where the brack-

ets mean that the operators are evaluated in electron space. Now we want
to express these components in a fixed lab system (LAB). It does not matter
what this LAB system is, as long as it is well-defined and fixed. If the PAS
coordinate system is specified in this LAB system by the Euler angles (γ, β, α),
then the transformation of any tensor from PAS to LAB is given by Eq. (1.8).
As we are only interested in the quadrupole interaction terms that can mix the
| − 3/2〉 and |1/2〉 states, i.e. the terms containing Î2

±, we limit this discussion
to the q = ±2 terms of the Hamiltonian given in Eq. (1.7). Therefore, we
calculate the 〈V 2

±2〉 terms in the LAB system:

〈V 2
±2〉LAB =

∑

q′

Dn
q′q(−α,−β,−γ)〈V 2

q′〉PAS (3.33)

which yields

〈V 2
±2〉LAB =

e±2iγ

4

[√
6 sin2 β〈V 2

0 〉PAS + (1 ± cos β)
2
e2iα〈V 2

2 〉PAS

+(1 ∓ cos β)
2
e−2iα〈V 2

−2〉PAS

]
. (3.34)

The γ-dependence can be completely removed by applying a suitable unitary
transformation. If we now assume that the z-axis of the PAS coincides with the
z-axis of the LAB, then β = 0 and 〈V 2

±2〉LAB = e±2iα〈V 2
±2〉PAS . It can also be

shown that in this case 〈V 2
0 〉LAB = 〈V 2

0 〉PAS and 〈V 2
±1〉LAB = 0. This means
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that, if we go from site to site, we only allow the orientation of the non-axial
component in the x-y plane to change (parameterized by the angle α). In the
final expression we then should average over this random α.
If we combine the above expressions with the proper nuclear quadrupole tensor
components, the resulting quadrupole Hamiltonian is written as:

HQ =
eQVzz

4I(2I − 1)~2

[(
3Î2

z − Î2
)

+
η

2

(
Î2
+e2iα + Î2

−e−2iα
)]

, (3.35)

where all parameters have been defined before. The α-dependence appears in
a very similar way as in the Hamiltonian of Eq. (1.10), where the magnetic
field was defined by its Euler angles (α, β, 0) in the PAS of the efg. In both
cases, the part of the Hamiltonian that describes the mixing interaction gains
a phase factor.
At the level crossing, the eigenstates of the nuclear Hamiltonian are now given
by

∣∣∣∣∣−
3̃

2

〉
=

1√
2

(
e2iα

∣∣∣∣−
3

2

〉
+

∣∣∣∣
1

2

〉)
, (3.36)

∣∣∣∣∣
1̃

2

〉
=

1√
2

(
e2iα

∣∣∣∣−
3

2

〉
−

∣∣∣∣
1

2

〉)
. (3.37)

while the energies of these eigenstates remain unchanged, and therefore E− 3̃
2

−
E 1̃

2

= 2
√

3η~ωQ is still valid. If we substitute these α-dependent states in

expression Eq. (3.13) of the forward scattering amplitude in the three-level
approximation, we obtain

f++(ω) ∝ |µ21|2
2

L+(ω) f−−(ω) ∝ |µ31|2
2

L+(ω) (3.38)

f+−(ω) ∝ µ21µ13

2
e2i(α−φ)L−(ω) f−+(ω) ∝ µ31µ12

2
e−2i(α−φ)L−(ω)

(3.39)

Because the nuclear Hamiltonian in the LAB system has no axial symmetry,
the transformation of the radiation coordinate system to the LAB system in-
cludes the azimuthal angle φ. In the above expressions the φ-dependence is
written explicitly, such that µij is no longer φ-dependent. This results in a
phase factor with angle α− φ for f+−(ω) and f−+(ω). It is important to note
that the denominators of f+−(ω) and f−+(ω) are related by complex conjuga-
tion, as expected from their definition in Eq. (3.4) and Eq. (3.6).

In the scattering matrix S̃(ω), f+−(ω) and f−+(ω) appear only once sepa-
rately, i.e. as front factor in S+−(ω) and S−+(ω), respectively. Because in
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this work we deal with an unpolarized source of radiation, Eq. (3.12) holds
and therefore, in its unconvoluted form, the intensity of the radiation that has
changed polarization is given by

I±∓(ω) = |S±∓(ω)|2 = |f±∓(ω)|2|S±∓
0 (ω)|2 (3.40)

with S±∓
0 (ω) = S±∓(ω)/f±∓(ω) and thus not containing f±∓(ω) any more.

In all other cases, only their product f+−(ω)f−+(ω) = |f+−(ω)|2 is considered
(in the expression of D). Therefore, in both cases, the phase dependence dis-
appears.
In summary, we have shown that phase factors do appear when a mixing inter-
action originates from a random, non-axial component. Moreover, they com-
pletely vanish from the final expression of the (measurable) intensity. So, all
previously obtained results for a non-random mixing interaction equally hold
for a random interaction.

Notice that we have only considered a variation in the orientation of the
non-axial component in the x−y plane. If also the magnitude of this component
varies from site to site, then the average over a certain η-distribution should
be taken. As we are dealing with inhomogeneities, a Gaussian distribution is
most adequate. This is taken into account in the fit program as described in
section 3.2.5.

3.2 Maxwell-Schrödinger approach

This approach first implies the calculation of the macroscopic polarization
P (z, t), which is the medium’s reaction to the electromagnetic field. The den-
sity matrix formalism is used to facilitate the statistical summations involved
in obtaining P (z, t) from the microscopic dipole moments.

3.2.1 Density matrix

According to a postulate of quantum mechanics, there exists a state vector |ψ〉
that contains all possible information about the system. Typically, however,
we do not know if the system is described by |ψi〉, but we only know the
probability Pψi

that the system is described by |ψi〉. Therefore, in order to
find the expectation value of some observable O, an ensemble average must be
performed: 〈O〉 = Tr (ρ̂O) with

ρ̂ =
∑

i

Pψi
|ψi〉〈ψi| (3.41)
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the density operator. It is convenient to express ρ̂ in a complete set of basis
states {|φm〉}:

ρ̂ =
∑

i

Pψi

∑

m,n

cmic
∗
ni|φm〉〈φn|, (3.42)

with {cmi = 〈φm|ψi〉} the expansion coefficients of |ψi〉 in {|φm〉}. In this basis,
the elements of the corresponding density matrix are defined by

ρmn = 〈φm|ρ̂|φn〉 =
∑

i

Pψi
cmic

∗
ni. (3.43)

From the Schrödinger equation we can obtain the equation of motion for the
density matrix operator:

˙̂ρ = − i

~
[H, ρ̂] (3.44)

This equation is sometimes called the Liouville or Von Neumann equation of
motion.
At this point ρ̂ still describes the total system, i.e. the nuclear-radiation system,
and thus, also includes radiative decay of the nuclear states. However, one
usually limits the density matrix states to the nuclear states (by taking the
trace over the radiative ensemble) and then adds decay terms to Eq. (3.44) in
a phenomenological way [112]:

˙̂ρ = − i

~
[H, ρ̂] − Γ̂ρ̂, (3.45)

with Γ̂ a linear operator expressing all possible relaxations. In the case where
only decay through spontaneous emission is important (incoherent population
transfer), the explicit form of the incoherent part of the Liouville equation in
terms of matrix elements is given by

Γ̂ρmm =
∑

k

γmkρmm +
∑

k

γkmρkk (3.46)

for the diagonal elements (the populations) and

Γ̂ρmn =
1

2

∑

k

(γmk + γnk) ρmn (3.47)

for the non-diagonal elements (the coherences), with γmk the decay rate from
|φm〉 to |φk〉.
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3.2.2 Three-level system in the parallel geometry

Let us now apply this density matrix approach to the three levels involved in
the level crossing/level mixing transition, i.e. the |mg = −1/2〉 ≡ |1〉 ground
state and the |me = 1/2 ≡ |2〉 and |me = −3/2〉 ≡ |3〉 excited states. According
to the selection rules for the parallel geometry, σ+ polarized radiation (V+) can
induce a (2, 1) transition, whereas σ− polarized radiation (V−) induces a (3, 1)
transition. We also include a mixing interaction (Ω) that allows for a (2, 3)
transition. The basic ingredients of this three-level system are summarized in
Fig. 3.16.
In [113] the same three-level system is analyzed in a slightly different way. To
allow an easy comparison, we follow the same line of reasoning and notation of
that paper, wherever possible.

V+ V-

W

g2
g3

|1〉

|2〉 |3〉

Figure 3.16: Schematical representation of the three-level system under considera-
tion. The two excited states |2〉 and |3〉 are mixed by an interaction Ω and couple to
the ground state through V+ and V−, respectively.

The Hamiltonian H of this system consists of an unperturbed part H0

(which gives rise to the nuclear m states) and an interaction term:

H1 = ~V+|2〉〈1| + ~V−|3〉〈1| + ~Ω|2〉〈3| + h.c. (3.48)

The 14.4 keV gamma transition in 57Fe is essentially an M1 magnetic dipole
transition. Hence, the first term describes the interaction of the radiation with
the nucleus in the magnetic dipole approximation, with V+ = 〈2|H+|1〉E+(z, t)/2 ≡
µcµ21E+(z, t)/2 and V− = 〈3|H−|1〉E−(z, t)/2 ≡ µcµ31E−(z, t)/2, with µc a
proportionality constant. The magnetic dipole matrix elements are given by
Eq. (3.7), for L = 1. E+(z, t) (E−(z, t)) is the space- and time-dependent part
of the σ+ (σ−) polarized (electro)magnetic field.
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The third term is a formal expression for the mixing interaction between the
crossing levels, where the mixing frequency Ω is a measure of the strength of
the mixing. The explicit form of Ω depends on the nature of the interaction.
Applying Eq. (3.45), the following set of density matrix equations is obtained:

ρ̇11 = γρ22 + γρ33 − iV+ (ρ21 − ρ12) − iV− (ρ31 − ρ13) (3.49)

ρ̇22 = −γρ22 − iV+ (ρ12 − ρ21) − iΩ(ρ32 − ρ23) (3.50)

ρ̇33 = −γρ33 − iV− (ρ13 − ρ31) − iΩ(ρ23 − ρ32) (3.51)

ρ̇21 =
(
−iω0 −

γ2

2

)
ρ21 + iV+ (ρ22 − ρ11) − iΩρ31 + iV−ρ23 (3.52)

ρ̇31 =
(
−iω0 −

γ3

2

)
ρ31 + iV− (ρ33 − ρ11) − iΩρ21 + iV+ρ32 (3.53)

ρ̇23 = −γ2 + γ3

2
ρ23 − iV+ρ13 + iV−ρ21 + iΩ(ρ33 − ρ22) (3.54)

with ω0 = ω2 − ω1 (ω2 = ω3). The decay of the populations is related to γ,
which corresponds to the natural decay rate of the nuclear excited state. The
coherences, however, can have different decay rates due to other relaxation
phenomena such as phase relaxation by the presence of a fluctuating magnetic
hyperfine field. These decay rates are therefore given a different symbol, i.e.
γ2 and γ3 (such that γ2, γ3 ≥ γ).
We are interested in the solution of the ρ21 and ρ31 coherences since the po-
larizations of the medium P+(z, t) = µcµ12ρ21 and P−(z, t) = µcµ13ρ31 [17].
The equations can be solved analytically in the linear response approximation.
This means we consider the response of the medium only to first order in V±.
This is a good approximation since the interaction of the gamma radiation with
the nuclei is small. In practice, it implies that we neglect the change of the
populations ρmm. Instead, they are replaced with their initial values12 ρ0

11 = 1
and ρ0

22 = ρ0
33 = 0. Also, since ρ23 ∝ V± the iV−ρ23-term in the equation for

ρ21 and the iV+ρ32-term in the equation for ρ31 are discarded.
The above set of equations is reduced to two coupled differential equations:

ρ̇21 =
(
−iω0 −

γ

2

)
ρ21 − iV+ − iΩρ31 (3.55)

ρ̇31 =
(
−iω0 −

γ

2

)
ρ31 − iV− − iΩρ21 (3.56)

where we have assumed that γ2 = γ3 ≡ γ, which is exact if the normal life-
time decay is the only mechanism of relaxation. These differential equations

12Actually, only half of the total initial population is in |1〉 since the other half occupies

the |mg = 1/2〉 state. As the three-level system is a closed system, we can renormalize the

total initial population to the population in |1〉.
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can be simplified to algebraic equations by applying a Fourier transformation
according to the recipe:

F (ω) =

∫ ∞

−∞
dt f(t)eiωt, (3.57)

f(t) =
1

2π

∫ ∞

−∞
dω F (ω)e−iωt. (3.58)

The solution for the coherences in frequency domain is now given by

ρ21(ω) =
L+(ω)

2
V+(ω) +

L−
2

(ω)V−(ω), (3.59)

ρ31(ω) =
L−(ω)

2
V+(ω) +

L+

2
(ω)V−(ω) (3.60)

with L±(ω) defined in Eq. (3.16).
The appropriate wave equations for an electromagnetic field in a reactive medium
is given by the Maxwell equations, see e.g. [74]. In most applications, however,
a simplified version is used by assuming that the field functions slowly vary on
the scale of the carrier wavelength λc. This is certainly a valid approximation
in the case of gamma radiation. In the case of radiation propagating along the
z-axis (and thus neglecting variations of the field intensity in the transverse
directions), the wave equations are reduced to [114]

(
∂

∂z
+

nh

c

∂

∂t

)
E±(z, t) =

2πωcρr

nhc
iP±(z, t), (3.61)

with nh the index of refraction of the host material, ωc = c/λc the carrier
frequency of the field and ρr the concentration of resonant nuclei. After Fourier
transforming these wave equations to frequency domain and substituting Eq.
(3.59) and (3.60), we find

(
∂

∂z
− inhkω

)(
E+(z, ω)

E−(z, ω)

)
= i

2πkρr

nh

µ2
c

4

×
(

|µ21|2L+(ω) µ21µ13L−(ω)

µ31µ12L−(ω) |µ31|2L+(ω)

) (
E+(z, ω)

E−(z, ω)

)
. (3.62)

The solution of this equation exactly equals the exponential form of Eq. (3.2)
with the two-dimensional index of refraction given by Eq. (3.3). There is a one-
to-one correspondence with the solution for the amplitude of the transmitted
plane wave in the Blume-Kistner model if we choose nh = 1 and

µc =
1

2π

√
V kTeγ

2ρr~cγr
. (3.63)
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This means that this Maxwell-Schrödinger approach, under the assumption of
the approximations outlined above, yields exactly the same results as the treat-
ment of the three-level system in the Blume-Kistner approach. We therefore
refer to section 3.1.1 for a solution and a detailed analysis of Eq. (3.62).
In [113] it is shown that Eq. (3.62) can also be solved by finding two eigenmodes
of E(z, ω), which, after creation by a scattering on a first layer of resonant nu-
clei, propagate independently of one another through the medium. The results
of this approach are exactly equal to those obtained in our analysis.

3.2.3 γ2 6= γ3

The Maxwell-Schrödinger approach, however, has a very interesting feature
that is lacking in the Blume-Kistner model. It is possible to assume that the
crossing levels have different relaxation rates (γ2 6= γ3). A physical origin of
such a difference may be found in the fluctuations of the magnetic hyperfine
field. The transition with the highest Larmor frequency will show a higher
relaxation rate, hence γ < γ2 < γ3, with γ the natural line width of the
14.4 keV nuclear excited state. The experimental data in section 1.3.2 strongly
support this hypothesis. Fig. 1.13 shows that γ3 ≈ 2γ2.
We can solve Eq. (3.55) and Eq. (3.56) in exactly the same way as above, but
now with γ2 6= γ3:

ρ21(ω) =
δ3

δ+δ−
V+(ω) +

Ω

δ+δ−
V−(ω) (3.64)

ρ31(ω) =
Ω

δ+δ−
V+(ω) +

δ2

δ+δ−
V−(ω), (3.65)

with

δ± = ω − ω0 + i
γ2 + γ3

4
∓

√

Ω2 −
(

γ2 − γ3

4

)2

(3.66)

δ2/3 = ω − ω0 + i
γ2/3

2
. (3.67)

Again, we limit our first analysis to the thin absorber case, following the same
approach as in the Blume-Kistner section. Let us first consider the case when
only σ+ is incident. Because of the square root in the definition of δ± we
should distinguish two cases. Then, to first order in Te, the intensity of the
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transmitted radiation is given by

I ′(ω) = 1 + 2=
(

Cγ
δ3

δ+δ−

)
(3.68)

= 1 − Cγ
[γ2

2

(
g′+(ω) + g′−(ω)

)

+

(
γ3

(
Ω2 +

γ2γ3

4

)
− γ2

(
γ2
2

8
+

γ2
3

8
− Ω2

))
g′+(ω)g′−(ω)

]
(3.69)

for Ω < |γ2 − γ3|/4, and

I ′′(ω) = 1 − Cγ
[γ2

2

(
g′′+(ω) + g′′−(ω)

)
+ (γ3 − γ2)

(
Ω2 +

γ2γ3

4

)
g′′+(ω)g′′−(ω)

]

(3.70)
for Ω ≥ |γ2 − γ3|/4, where we have introduced the notation

g′±(ω) =
1

(ω − ω0)
2

+

(
γ2+γ3

4 ∓
√

Ω2 −
(

γ2−γ3

4

)2
)2 (3.71)

g′′±(ω) =
1

(
ω − ω0 ∓

√
Ω2 −

(
γ2−γ3

4

)2
)2

+
(

γ2+γ3

4

)2

(3.72)

in analogy with the definition of g±(ω) in Eq. (3.24). C is defined in section
3.1.1. It is seen that, as well as a Lorentzian contribution, there is the ap-
pearance of an interference term proportional to g+(ω)g−(ω). When γ2 = γ3,
the interference term vanishes and the transmitted radiation (I ′′(ω)) reduces
to the sum of Lorentzians, as obtained previously.
When γ3 << γ2, e.g. if |3〉 is a metastable state, the conditions of opti-
cal EIT are met13 . Simulations of the intensity of the transmitted radia-
tion for γ3 = γ2/100 are shown in the left part of Fig. 3.17. The effect
of the interference term is quite dramatic. A transparency window is cre-
ated where most absorption is cancelled. At the center of the absorption line
I ′′(ω = ω0) − 1 ∝ γ3/(Ω2 + γ2γ3/4), hence the absorption is completely sup-
pressed only if γ3 = 0. Also, in order to have a large reduction of the absorption,
the condition that Ω2 >> γ2γ3/4 should be fulfilled. These conclusions are in

13There are two other reasons why this special case corresponds to a ‘common’ optical EIT

scheme. First, the restriction to the incidence of σ+ radiation is equivalent with one probe

field. Second, in the thin absorber limit, the possible transition |3〉 → |1〉, with emission of

σ− radiation, which is not present in a common EIT scheme, is neglected (see also section

2.1).
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perfect agreement with the generic results of optical EIT, see e.g. [115]. A
further explanation of this induced transparency in terms of dark and bright
states is given in section 2.1.
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Figure 3.17: Simulation of the transmitted radiation in the case of: (left figure) the
optical EIT regime (γ3 = γ2/100) for different values of Ω and (right figure) different
values of γ3 with a fixed mixing strength Ω = γ2 (thin absorber limit Te = 0.1).

The importance of the value of γ3 with respect to γ2 is reflected in the
spectra in the right part of Fig. 3.17. It is clearly seen that, even in the
presence of a mixing interaction (here Ω = γ2), there is no reduction but an
increase in absorpion at the line center if γ3 ≥ γ2. This is also obvious from
Eq. (3.70), where the sign of the interference term is determined by (γ3 − γ2).
Let us now add the incidence of σ− radiation. We only consider the most
recurrent case of Ω ≥ |γ2 − γ3|/4. Using the result in Eq. (3.70), the total
transmitted radiation intensity is calculated as

I ′′(ω) = 1 + 2
3Te

16
γ

[
=

(
|C12|2

δ3

δ+δ−

)
+ =

(
|C13|2

δ2

δ+δ−

)]
(3.73)

= 1 − 3Te

16
γ

[(γ2

2
|C12|2 +

γ3

2
|C13|2

) (
g′′+(ω) + g′′−(ω)

)

+
(
|C12|2 − |C13|2

)
(γ3 − γ2)

(
Ω2 +

γ2γ3

4

)
g′′+(ω)g′′−(ω)

]
,(3.74)

with Cij the product of the Clebsch-Gordan and rotation matrix coefficients
of the |j〉 → |i〉 transition. The addition of the σ− contribution is of crucial
importance for the interference term. Now, the sign of this term, which defines
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whether there is destructive (-) or constructive (+) interference, depends on the
strength of one transition with respect to the other. For example, if |C12|2 =
|C13|2, there is no observable interference, even if there is a mixing interaction
and γ3 << γ2. This is of course due to the perfect symmetry of such a case,
where the destructive and constructive terms exactly cancel each other. In our
nuclear level mixing case, we have |C12|2 = 1/3, |C13|2 = 1 and γ3 ≈ 2γ2 ≈ 2γ,
which yield‘ a net destructive interference contribution. This is a promising
result in regard with the explanation of the experimentally observed reduction
of absorption. However, the simulated spectra in Fig. 3.18 do not show a
large effect. On the contrary, a comparison with Fig. 3.2 reveals that, at the
line center there is even more absorption than is the case for γ2 = γ3 = γ.
The reason is that the increased line width reduces the influence of the mixing
interaction. Indeed, at the line center, we have

I ′′(ω = ω0) − 1 ∝ γ2|C13|2 + γ3|C12|2
Ω2 + γ2γ3

4

, (3.75)

which means that, for a particular value of Ω, the absorption increases with
increasing relaxation rates.
Nevertheless, a small but destructive interference term is present in the inten-
sity of the transmitted gamma radiation at the level crossing transition. This
is due to the combination of asymmetrical transition strengths and different
relaxation rates, such that the strongest transition involves the level with the
highest relaxation rate.

Remark: It is interesting to note that the integrated absorption over the
full frequency range is independent of Ω. Although it seems that there is less
absorption, which is of course true at the line center, this reduction is ex-
actly compensated by an increase of absorption spread over the wings of the
resonance. It would therefore be more correct to designate this effect as a re-
distribution instead of a reduction of absorption.

3.2.4 Three-level system in the perpendicular geometry

In the perpendicular geometry, we must distinguish two different three-level sys-
tems. First, there is the ∆m = 0 transition from |mg = 1/2〉 to the (|me = 1/2〉
component of the) mixed levels. The intensity of this absorption line is cor-
rectly described by Eq. (3.74) (or an extension of Eq. (3.69)) with |C13|2 ≈ 0
because the |−3/2〉 → |1/2〉 is negligible with respect an M1 transition. Then,
it is clear that, for γ3 > γ2, the interference is always constructive, which gives
rise to an enhanced absorption at the line center. Therefore, although there is
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Figure 3.18: Simulation of the transmitted intensity in the case of incident both
σ+ and σ− radiation, with realistic values |C12|

2 = 1/3, |C13|
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(thin absorber limit Te = 0.1)

a reduction of absorption due to splitting of the mixed levels, this reduction is
partially counteracted by the interference term. This result certainly helps to
understand why there is no important reduction observed at this absorption
line (with respect to its partner line), while it is present in the parallel geome-
try.
The second three-level system involves the same states as in the parallel ge-
ometry. The difference now is that both polarization states of the incident
radiation can induce both transitions (2, 1) and (3, 1) simultaneously. Tak-
ing into account the different relaxation rates, Eq. (3.64) and Eq. (3.65) are
modified as

ρ21(ω) =
δ3

δ+δ−

(
V −

2 (ω) + V −
2 (ω)

)
+

Ω

δ+δ−

(
V +

3 (ω) + V −
3 (ω)

)
, (3.76)

ρ31(ω) =
δ2

δ+δ−

(
V +

3 (ω) + V −
3 (ω)

)
+

Ω

δ+δ−

(
V +

2 (ω) + V −
2 (ω)

)
, (3.77)

with V ±
i (ω) = 〈i|H±|1〉E±(z, ω)/2 ≡ µcµ

±
i1E±(z, ω)/2. The polarizations of

the medium are also changed accordingly: P±(z, t) = µcµ
±
12ρ21 + µcµ

±
13ρ31.
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3.2.5 New fit of Te=8

These generalized expressions for the polarizations are substituted in the Fourier
transformed propagation equation of (3.61) and implemented in a simulation
and fit computer program. Also, the way that the mixing interaction is taken
into account has changed with respect to the code of section 3.1. Now, we
assume that the magnitude of the non-axial component of the efg (η) is dis-
tributed in a Gaussian way around the mean value of η. This should be in much
closer correspondence with the real conditions in the crystals, than the assump-
tion of a uniform, non-zero value of η. In practice, we make a convolution of
the initial spectrum I(v, η) with the Gaussian distribution G(η):

I(v, η) =

∫ ∞

0

dη I(v, η)G(η − η), (3.78)

with

G(η − η) =
1

Γη

√
2π

e
1
2

(
η−η
Γη

)
2

(3.79)

and Γη the width of the distribution. In the fit, we choose η = 0, corresponding
to the most prevalent situation in our FeCO3 crystal (see section 1.1.2), and
vary Γη. This means that there is no additional degree of freedom with respect
to the previous fit program. The errors on the free parameters are estimated
in the same way as outlined in section 3.1.3.
Notice that, because η is defined to be positive, the convolution of Eq. (3.78)
is limited to an integral over the positive values of η.

The fit results of the spectra of the Te=8 crystal at three different tempera-
tures below TN are summarized in table 3.2 and visualized in Fig. 3.19 and Fig.
3.20. First, we fit the spectrum in the parallel geometry at T = 31K, yielding
the reasonable value of Γη = 0.14(2). This value is kept fixed during the fit of
all other spectra (no estimated error). Also, to simplify the fit procedure, the
values of two hyperfine parameters are fixed to their mean value of previous
fits: IS = 1.33m/s and ∆ = 2.04mm/s.
Not only does the fitted curves agree very well with the experimental data,
quantified in the reasonably small values of χ2

r,min, also the derived values for
the different parameters are mutually consistent. The transition-dependent
broadening of the absorption lines, which is parameterized by the q-values
(see section 3.1.3), is also in correspondence with the broadening deduced in
the first, Lorentzian analysis. Furthermore, the values obtained for Te and
fr are in much better agreement with their theoretical values of Te=8 and
fr = fLM ≈ 0.7.
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Table 3.2: Best fit values to the Maxwell-Schrödinger model of the FeCO3 (Te = 8)
Mössbauer spectra for three different temperatures.

T 34K 31K 18K

θ 0 π/2 0 π/2 0 π/2

Γη 0.14 0.14 0.14(2) 0.14 0.14 0.14

βe 0.88(1) 0.87(1) 1.02(2) 1.02(2) 1.21(1) 1.21(1)

Te 10(3) 9(1) 9(2) 10(3) 9(2) 9(4)

fr 0.52(2) 0.55(5) 0.52(2) 0.57(4) 0.52(2) 0.54(6)

q1 2.8(1) 3.2(1) 2.8(1) 3.0(1) 2.0(1) 1.9(2)

q2 - 2.6(1) - 2.5(1) - 2.0(2)

q3 1.6(1) 1.6(1) 1.5(1) 1.7(1) 2.0(1) 1.3(2)

χ2
r,min 2.4 6.2 4.3 4.6 2.7 8.1
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Figure 3.19: Mössbauer spectra of Te=8 at T = 34 K and T = 31K, with the solid
line giving the best fit based on the Maxwell-Schrödinger model, taking into account
different relaxation rates and a Gaussian distributed η.
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Figure 3.20: Mössbauer spectra of Te=8 at T = 18K, with the solid line giving
the best fit based on the Maxwell-Schrödinger model, taking into account different
relaxation rates and a Gaussian distributed η.

3.2.6 Four-level system

There is one particular case in the Mössbauer spectra studied where the regular
two-level and the three-level system discussed above are not applicable. In
section 1.3.3 the spectra are presented for the FeCO3 Te=8 crystal with an
externally applied magnetic field and in the parallel geometry.
At room temperature, this perpendicular magnetic field mixes the degenerate
|m = ±1/2〉 states, in the ground state as well as in the excited state. The
interaction of these four levels with radiation can be schematized as the four-
level scheme of Fig. 3.21. The four levels are relabelled as |mg = −1/2〉 ≡ |1〉,
|mg = 1/2〉 ≡ |4〉, |me = 1/2〉 ≡ |2〉, and |mg = −1/2〉 ≡ |3〉, where σ+

radiation induces a (2, 1) transition and σ− radiation induces a (3, 4) transition.
The magnetic field provides both a mixing interaction between the ground levels
(Ωg) and between the excited levels (Ωe), with

∣∣∣∣
Ωg

µg

∣∣∣∣ =

∣∣∣∣
Ωe

µe

∣∣∣∣ . (3.80)
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|4〉

Figure 3.21: Schematical representation of the four-level system under considera-
tion. With respect to the three-level system in Fig.3.16, an extra mixing field (Ωg)
and a nuclear state (|4〉) is added.

The density matrix equations for the (relevant) coherences of this four-level
system are given by

ρ̇21 =
(
−iω0 −

γ2

2

)
ρ21 + iV+ (ρ22 − ρ11) − iΩeρ31 + iΩgρ24 (3.81)

ρ̇24 =
(
−iω0 −

γ2

2

)
ρ24 + +iV−ρ23 − iV+ρ14 − iΩeρ34 + iΩgρ21 (3.82)

ρ̇31 =
(
−iω0 −

γ3

2

)
ρ31 + iV+ρ32 − iV−ρ41 − iΩeρ21 + iΩgρ34 (3.83)

ρ̇34 =
(
−iω0 −

γ3

2

)
ρ34 + iV− (ρ33 − ρ44) − iΩeρ24 + iΩgρ31 (3.84)

with the same definitions of section 3.2.2. The equations are again solved an-
alytically in the linear response approximation. The populations are replaced
with their initial values ρ0

11 = ρ0
44 = 1/2 and ρ0

22 = ρ0
33 = 0. Also, since the

terms with ρ23 (ρ32) and ρ14 (ρ41) are proportional to V±, they are discarded.
A Fourier transformation turns the differential equations into four coupled al-
gebraic equations that can be solved in a straightforward way. In the case
that the decay rates of both excited states are equal (γ2 = γ3 = γ), which is
certainly true for the experimental conditions under consideration, we find that

ρ21(ω) =
1

2

δ + iγ/2

δ2
+δ2

− − 4Ω2
eΩ

2
g

(δ+δ−V+(ω) − 2ΩeΩgV−(ω)) , (3.85)

ρ31(ω) =
1

2

δ + iγ/2

δ2
+δ2

− − 4Ω2
eΩ

2
g

(δ+δ−V−(ω) − 2ΩeΩgV+(ω)) , (3.86)
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with δ± = ω − ω0 + iγ/2 ±
√

Ω2
e + Ω2

g.

These results show that Ωe and Ωg are treated on the same footing, and, hence,
are completely interchangeable. This is a little surprising because the two
cases have a different coupling state. If Ωg = 0, then the coupling state is the
decaying excited state |3〉, while, if Ωe = 0 the coupling state is a stable ground
state. The latter case corresponds to a so-called V −scheme. Our solution then
coincides with the generic solution for V -schemes [116], with ρ0

11 = ρ0
44. It

is argued that, in this system, EIT can be achieved if Ω >> γ2. However,
as only one decay rate is involved, it can be shown that the result for ρ21(ω)
now corresponds to the first term of Eq. (3.64) with γ3 = γ2. In the previous
sections, we have illustrated that the reduction of absorption in such a case
is solely due to the Stark shift of the levels and not related to an interference
term. Hence, this (possible) implementation of a V -scheme does not provide
the desired interference either.
In their general form, the denominators of ρ21(ω) and ρ31(ω) can be written as

∏

±∓
(δ ± Ωg ∓ Ωe + iγ/2)

−1
, (3.87)

where all four combinations of + and − must be taken. This means that the
combination of the two mixing interactions gives rise to four new eigenstates
with the above frequencies, which has been correctly assumed in the discussion
in section 1.3.3 (where two Lorentzian doublets are used to fit the σ absorption
line).

3.3 Conclusions

This chapter has focussed on the detailed analysis of the FeCO3 Mössbauer
spectra. The two semiclassical models both correctly take into account thick-
ness and polarization effects, which has proven to be crucial for a good under-
standing of not only the spectra at the level crossing, but also for a correct
interpretation of the anomalous line widths at RT. The Blume-Kistner ap-
proach has been valuable in the identification of the nuclear absorption as the
sum of two Lorentzians and in the deduction that the phase induced by a ran-
dom mixing interaction has no consequences for the final spectrum. However,
fitting the experimental data of both geometries to this model has not been
successful in providing a consistent interpretation.
The Maxwell-Schrödinger approach is then seen as the necessary generaliza-
tion of the former semiclassical model. This approach allows a more detailed
modelling of the (single) forward scattering response, now including a differ-
ence in the relaxation rates of the mixed levels. This is shown to be crucial
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for the understanding of the difference between the three-level system in the
parallel geometry and the ‘∆m = 0’ three-level system in the perpendicular
geometry. By modifying the fit program according to these new insights, we
have finally succeeded in explaining the reduction of absorption in both geome-
tries as the combined effect of polarization, saturation and level mixing induced
transparency in Λ-schemes with different decay rates.
It should certainly be mentioned that, in the latter fit program, the random
nature of the mixing interaction is accounted for by the convolution with a
Gaussian distribution in η, centered around η = 0. Since the efg mixing inter-
action mainly influences the crossing levels, this Gaussian distribution leads to
a broadening of the absorption line involving the crossing levels, with respect
to the other lines. This certainly has helped to reduce the absorption at the
line center.

With the puzzle of the experimental observations solved, we can now focus
our attention to a completely different model in the hope that it can supply
us with some deeper insight into the nuclear resonant (multiple) scattering
process.



Chapter 4

Coherent path model

The coherent path model is a fully quantum mechanical model of the interac-
tion of (gamma) photons with nuclei. It is based on the work of Heitler [4]
and Harris [117] and recently updated by Hoy [118]. The model bears this par-
ticular name because it describes the gamma-nuclei interaction as a coherent
sum of many, discrete, ‘quantum paths’ or amplitudes. It gives the user a privi-
leged view on the quantum mechanical creation of an observable quantity (here:
transmitted radiation intensity) by allowing one to (theoretically) distinguish
every possible quantum path. It is, therefore, a very natural choice of descrip-
tion since we are dealing with single photons in interaction with an ensemble
of nuclei. Furthermore, this coherent path model has been very successful in
describing a resonant Mössbauer detector [119] and has provided a novel in-
terpretation of the gamma echo [120]. It can also be used for time-differential
Mössbauer analysis, where it has added some new insight in the phenomena of
speed-up and dynamical beats present in nuclear resonant forward scattering
of synchrotron radiation [121].

4.1 Model outline

First, a brief, but general description of the model is given. We start from
the time-dependent Schrödinger equation. The Hamiltonian of the system can
be written as the sum of two parts: H0 describes the unperturbed nuclei ánd
the free radiation field (if present), while V is the interaction Hamiltonian that
describes the transitions between the nuclear levels. The actual state of the

97
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system is given by

|Ψ(t)〉 =
∑

n

cn(t)e−iEnt/~|φn〉 (4.1)

with |φn〉 an eigenstate of H0 and En = ~ωn its corresponding energy. The
coefficients cn(t) have to satisfy the Schrödinger equation, which leads to a set
of coupled differential equations

i~
dcn(t)

dt
=

∑

m

cm(t)ei(ωn−ωm)t〈φn|V |φm〉 + i~δ1nδ(t) (4.2)

where δ1n is the Kronecker delta and δ(t) the Dirac delta function. The inho-
mogeneous term is added for the following reasons [4]. First, the solution has
to satisfy the initial condition that the system is in a well-defined state, e.g.,
cn(0) = δ1n. Second, although we choose a solution that only involves positive
times, it will be extended to the negative time axis for analytical reasons. All
amplitudes cn(t) are chosen such that cn(t < 0) = 0. Following Heitler the
discontinuity in c1(t) arising at t = 0 is correctly dealt with by addition of the
inhomogeneous term.
It is more interesting, however, to use the Fourier transform of Eq. (4.2). If we
apply

cn(t) = − 1

2πi

∫ ∞

−∞
dω Cn(ω)ei(ωn−ω)t, (4.3)

then Eq. (4.2) can be rewritten as

(ω − ωn + iε)Cn(ω) =
∑

m

Cm(ω)
Vnm

~
+ δn1 (4.4)

with Vnm ≡ 〈φn|V |φm〉 a time-independent matrix element describing a transi-
tion from the mth to the nth eigenstate of H0. The introduction of +iε (ε > 0)
ensures the proper causality relations [4]. This term eventually disappears from
any physical result by considering the limit ε → 0+.
The eigenstates of H0 are given by the direct product of an ensemble of un-
perturbed nuclear states and the states of the free radiation field: |φn〉 =
|nuclei〉 ⊗ |field〉. In the case of a Mössbauer scheme (see section 1.2) the nu-
clear ensemble is divided into one source nucleus (S) and N absorber nuclei
(A) while the radiation field can be expressed as a photon number state (P):
|φn〉 = |S〉|A1〉|A2〉 . . . |AN 〉|P 〉. The number of |φn〉 states is limited by a
proper choice of the initial state as will be clear later on.
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4.2 Three-level system

As in the semiclassical treatments, we consider the case of the interaction of
a gamma photon with the three levels involved in the level crossing/mixing,
i.e. the |mg = −1/2〉 ≡ |1〉 ground state and the |me = 1/2〉 ≡ |2〉 and
|me = −3/2〉 ≡ |3〉 excited states. The energies of the excited states with
respect to the ground state are ~ω2 and ~ω3 respectively. The interaction
Hamiltonian is similar to that given by (3.48), where the pure nuclear states
states or now replaced with the corresponding product of nuclear and photon
states (see the next section for the exact expression of these product states).
In the parallel geometry, a σ+ photon can induce a (1/2,−1/2) transition,
designated with V+, whereas a σ− photon can induce a (−3/2,−1/2) transition,
designated with V−. It is assumed that a mixing interaction Ω between the
excited states is present. This three-level system is summarized by Fig. 3.16,
but now allowing for ω2 6= ω3.
We restrict the model to σ+ source photons and keep in mind that the treatment
of σ− source photons can be done analogously. Due to the breaking of the axial
symmetry by the level mixing, however, a σ+ source photon can be absorbed
while a σ− photon is re-emitted. Therefore, as soon as the first scattering takes
place, we have to take into account the two photon fields. Because these two
fields have mutual orthogonal polarizations, the total radiation intensity will
be just the sum of both field intensities.
The absorber is treated as a collection of N identical nuclei, which effectively
scatter the gamma photon. The number of scattering centers N is shown to be
proportional to the more common effective thickness Te [118]:

N =
Teγ

2fLMγr
(4.5)

with γ the total decay rate of the nuclear excited state, γr the radiative decay
rate and fLM the recoilless fraction. In the case of the FeCO3 experiment, the
crystals used have an effective thickness of Te = 8 and Te = 3. to Eq. (4.5), this
corresponds to N ≈ 52 and and N ≈ 20 respectively. In a multilevel nucleus,
however, the effective thickness is reduced according to [122]

Te → 1

2Ig + 1

2L + 1

2Ie + 1
Te (4.6)

with L the multipolarity of the radiation (here L = 1), which leads to N ≈ 19
and N ≈ 7 respectively.

A schematical overview of the physical system under consideration is given
in Fig. 4.1. A single-line source nucleus decays and emits a σ+ (or σ−) photon.
This photon is scattered by N absorber nuclei. In this process the photon can
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...

source absorber

1st 2nd Nth

Figure 4.1: Physical model of the nuclear resonant scattering under consideration.
The photon emitted from a single line source can interact with N three-level absorber
nuclei. The horizontal lines represent the unperturbed nuclear eigenstates and the
arrows indicate the interactions.

retain its initial polarization (solid line) or it can change its polarization through
the mixing interaction (dashed line).

4.2.1 General equations

If we apply the above mathematical formalism to the system of a source nucleus
and N resonant absorber nuclei, located between the source and the detector,
then five structurally distinct1 eigenstates of H0 and their corresponding am-
plitudes can be identified:

i) |φ1〉 ≡ |S〉 = |Se, {A1
m=1,N}, {0k,σ+}, {0k′,σ−}〉 with S(ω) the amplitude cor-

responding to the source nucleus in the excited state (~ωs), the absorber
nuclei in the ground state and no photons present. This state |S〉 is
chosen as the initial state in the model considered.

ii) |φ2〉 ≡ |P+
k
〉 = |Sg, {A1

m=1,N}, 1k,σ+ , {0k′,σ−}〉 with P+
k
(ω) the amplitude

corresponding to the source nucleus in the ground state, the absorber
nuclei in the ground state and one photon with wave number k, σ+

polarization and energy ~ωk.

iii) |φ3〉 ≡ |P−
k′〉 = |Sg, {A1

m=1,N}, {0k,σ+}, 1k′,σ−〉 with P−
k′(ω) the amplitude

corresponding to the source nucleus in the ground state, the absorber
nuclei in the ground state and one photon with wave number k′, σ−

polarization and energy ~ωk′ .

1There are more than 5 eigenstates, actually, 1 + 2m + 2 × ∞, but all |Am〉 and |Bm〉

states, for m = 1, N , and all |1k〉 and |1k′ 〉 photon states, for −∞ ≤ k ≤ ∞, are considered

to be structurally equal.
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iv) |φ4〉 ≡ |Am〉 = |Sg, A2
m, {A1

i6=m,i=1,N}, {0k,σ+}, {0k′,σ−}〉 with Am(ω) the
amplitude corresponding to the absorber nucleus m at position xm in
the excited state |2〉 (~ω2), all other nuclei in the ground state and no
photons present.

v) |φ5〉 ≡ |Bm〉 = |Sg, A3
m, {A1

i6=m,i=1,N}, {0k,σ+}, {0k′,σ−}〉 with Bm(ω) the
amplitude corresponding to the absorber nucleus m at position xm in
the excited state |3〉 (~ω3), all other nuclei in the ground state and no
photons present.

It must be noted that this model considers one particular value of k (and k′),
which can be seen as a plane wave approximation. However, at the end of the
derivation, a realistic wave packet is reconstructed as the (infinite) sum of these
plane wave solutions.
Here, decay processes due to electron conversion are not explicitly taken into
account. It can be easily shown, however, that their contribution is limited to
an additional term γc in the total decay rate γ = γr + γc [118].
If we assume that at t = 0 only the source nucleus, at the origin, is excited, or
|Ψ(t = 0)〉 = |S〉, the following set of coupled linear equations from Eq. (4.4)
is obtained:

(ω − ωs + iε) S(ω) = 1 +
∑

k

P+
k

(ω)
VSPk

~
(4.7)

(ω − ωk + iε) P+
k

(ω) = S(ω)
VPkS

~
+

∑

m

Am(ω)
VPkA

~
e−ik.xm (4.8)

(ω − ωk′ + iε) P−
k′(ω) =

∑

m

Bm(ω)
VP

k′B

~
e−ik′.xm (4.9)

(ω − ω2 + iε) Am(ω) =
∑

k

P+
k

(ω)
VAPk

~
eik.xm + Bm(ω)Ω (4.10)

(ω − ω3 + iε) Bm(ω) =
∑

k′

P−
k′(ω)

VBP
k′

~
eik′.xm + Am(ω)Ω∗ (4.11)

where the factors e±ik.xm ,m = 1 to N , take into account the phase according
to the position where the photon absorption (+) or emission (-) takes place.
The interpretation of the above equations is straightforward. For example,
Eq. (4.8) describes the production of a photon having wave number k and σ+

polarization. The first term at the right-hand side states that this can occur
through the emission of such a photon by the source. The second term says that
this can also occur by the emission by any of the absorber nuclei, at positions
xm, that were in the excited state |2〉. Eq. (4.11) describes how nucleus m
can reach the excited state |3〉. This is possible by the absorption of a σ−

photon, described by P−
k

(ω), or by a transition from the excited state |2〉 in
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the same nucleus, described by Am(ω). The other equations can be interpreted
in a similar way.

4.2.2 Solving the equations

Let us first try to find a solution for S(ω). After substitution of Eq. (4.8) into
Eq. (4.7), we have

(ω − ωs + iε) S(ω) = 1 + S(ω)
∑

k

|VSPk
|2

~2

1

ω − ωk + iε

+
∑

m

Am(ω)
∑

k

VPkAVSPk

~2

e−ik.xm

ω − ωk + iε
(4.12)

The summation over k is transformed into an integral through the prescription

∑

k

→ V

(2π)
3

∫
d3k. (4.13)

The sums over k of Eq. (4.12), which are now converted to integrals, can be
evaluated using the relation [4]

lim
ε→0+

1

x − a ± iε
= P

(
1

x − a

)
∓ iπδ(x − a) (4.14)

where P indicates the principal part of a function. The principal part value
gives rise to an energy shift, which can be incorporated into ωs. For the second
term on the right-hand side of Eq. (4.12) the δ-function results in an imaginary
term that is identified as a (partial radiative) line width of the source excited
state:

γr
s =

V

(2π~)
2

∫
d3k|VSPk

|2δ(ω − ωk). (4.15)

It is straightforward to verify that all other (incoherent) decay channels of
the source excited state, e.g., electron conversion, contribute in a similar way.
Eventually, the total decay rate γs should correspond to the inverse of the
lifetime of the source excited state.
The third term on the right-hand side of Eq. (4.12) describes a higher-order
contribution with rapidly oscillating factors that will be neglected. This term
describes the probability of re-excitation of the source nucleus by a photon
coming back from the absorber, expressed by the sum over Am(ω). Such a
process is negligible due to geometry considerations 2. In fact, this is the

2In our experimental setup the solid angle subtended by the source with respect to the

absorber is very small.
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same as assuming that the source nucleus will decay in the same manner as it
would if the absorber were absent [117]. The source term can, therefore, be
approximated by

S(ω) ≈ 1

ω − ωs + iγs

2

. (4.16)

where the limit ε → 0+ is taken. Solving Eq. (4.8) for P+
k (ω) and substituting

into Eq. (4.10) and solving Eq. (4.9) for P−
k′ (ω) and substituting into Eq.

(4.11) gives the following set of coupled linear equations

(ω − ω2 + iε) Am(ω) = ΩBm(ω) +
∑

k

VAPk
VPkS eik.xm

~2 (ω − ωk + iε)
(
ω − ωs + iγs

2

)

+
∑

m′

Am′(ω)
∑

k

|VAPk
|2

~2

e−ik.(x
m′−xm)

ω − ωk + iε
(4.17)

(ω − ω3 + iε) Bm(ω) = Ω∗Am(ω)

+
∑

m′

Bm′(ω)
∑

k′

|VBP
k′ |2

~2

e−ik′.(x
m′−xm)

(ω − ωk′ + iε)
. (4.18)

The sum over k and k′ is evaluated in the same way as described above. Al-
though the general model is formulated in 3-dimensional space, we now restrict
the calculations to the forward direction only. It can be argued that photons
that reach the detector from a non-forward direction have experienced different
optical paths and thus have different optical path lengths. Therefore, since we
must sum over all coherent paths, destructive interference between the non-
forward paths makes their contribution negligible. If only forward scattering
is considered, all paths have the same optical path length and give a non-zero
contribution to the radiation detected.
In this one dimension, the sum over m can be limited by assuming that an ab-
sorber nucleus can only be excited by radiation coming from other nuclei that
are located ‘upstream’ (xm′ < xm) and not by radiation scattered from nuclei
downstream. In the first case all possible optical path lengths are the same
and will add constructively, while in the latter they are not (see also [119] for a
more quantitative treatment of this approximation). The terms with m = m′

yield the radiative decay γr
2/3 of the excited states and again, all other decay

channels can be added to this decay leading to the full decay γ2/3. The set of
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equations can then be rewritten as

(
ω − ω2 + i

γ2

2

)
Am(ω) = ΩBm(ω) −

i
√

γr
2

2

(
VPkS

~

)
ei ω

c xm

(
ω − ωs + iγs

2

)

− iγr
2

2

m−1∑

m′=1

Am′(ω) ei ω
c (xm−xm′ ), (4.19)

(
ω − ω3 + i

γ3

2

)
Bm(ω) = Ω∗Am(ω)

− iγr
3

2

m−1∑

m′=1

Bm′(ω) ei ω
c (xm−xm′ ), (4.20)

with γr
i the partial radiative decay rate from |i〉 to |1〉. This decay rate can

be related to the total radiative decay rate by γr
i = |C1i|2γr, with Cij defined

in the previous sections as the product of Clebsch-Gordan and rotation matrix
coefficients. Furthermore, we have defined

√
γr
2 ≡

(
VPkA

~

)−1
V

(2π~)
2

∫
d3k|VAPk

|2δ(ω − ωk), (4.21)

where it is assumed that VPkA varies little around ω = ωk.

Solution of Am(ω) and Bm(ω)

We first cast Eq. (4.19) and (4.20) in a more symmetrical form by solving them
for Am(ω) and Bm(ω), but still as a function of Am′(ω) and Bm′(ω):

Am(ω) = ei ω
c xm

[
S+(ω) +

m−1∑

m′=1

(−iγr
2

2

)
δ3

δ+δ−
Am′(ω)e−i ω

c xm′

+

m−1∑

m′=1

(
Ω

δ2

)(−iγr
3

2

)
δ2

δ+δ−
Bm′(ω)e−i ω

c xm′

]
(4.22)

Bm(ω) = ei ω
c xm

[(
Ω∗

δ3

)
S+(ω) +

m−1∑

m′=1

(−iγr
3

2

)
δ2

δ+δ−
Bm′(ω)e−i ω

c xm′

+

m−1∑

m′=1

(
Ω∗

δ3

)(−iγr
2

2

)
δ3

δ+δ−
Am′(ω)e−i ω

c xm′

]
, (4.23)

with S+(ω) defined in Eq. (4.25). We have adopted the short-hand notation
δs/2/3 = ω − ωs/2/3 + i

γs/2/3

2 and δ± = ω − ω±. We introduce the two new
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frequencies ω± according to

ω± =

(
ω2 − iγ2

2

)
+

(
ω3 − iγ3

2

)

2
±

√√√√
((

ω2 − iγ2

2

)
−

(
ω3 − iγ3

2

)

2

)2

+ |Ω|2.

(4.24)
Note that these new eigenfrequencies exactly correspond to the new frequencies
appearing in the semiclassical models, see e.g. Eq. (3.66). Now, however, they
are defined in their most general form (ω2 6= ω3 and γ2 6= γ3).
For the moment, let us neglect the phase factors in Eq. (4.22) and Eq. (4.23).
They only give rise to an overall phase factor of the solution of Am (and Bm)
proportional to xm.
According to this set of equations, there are five ways to reach state |2〉 or state
|3〉 in nucleus m, corresponding respectively with Am(ω) and Bm(ω). These
five paths can be divided into one source path S+(ω), two intranuclear paths
(transitions in nucleus m) and two extranuclear paths (transitions in different
nuclei). It is obvious that every scattering process should include (and start
with) the source path, which is given by the expression:

S+(ω) ≡
(

VPkS

~

) (
−i

√
γr
2

2

)
δ3

δsδ+δ−
(4.25)

As we consider the incidence of a σ+ photon, the source path always yield an
excitation to state |2〉 (in any nucleus m).
The two intranuclear paths arise due to the mixing interaction and are schemat-
ically depicted in Fig. 4.2. The two extranuclear paths are shown in Fig.4.3

≡ Ω∗

δ3
≡ Ω

δ2

Figure 4.2: Pictographical representation of the two intranuclear paths along with
their mathematical expression.

and represent the process of σ+ (σ−) emission in nucleus m′ and absorption of
this σ+ (σ−) photon by nucleus m, with m′ < m.
Now, to find a solution for Am(ω) and Bm(ω), for arbitrary m, it is a question

of counting. First, to reach state |2〉 or |3〉 in nucleus m, not all preceding
nuclei have to participate in the scattering process. If n nuclei are involved,
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... ... ...

... ... ...

≡
(

−iγr
2

2

)
δ3

δ+δ−
≡ enc+

≡
(

−iγr
3

2

)
δ2

δ+δ−
≡ enc−

Figure 4.3: Pictographical representation of the two extranuclear paths (or ex-
tranuclear combinations (enc)) along with their mathematical expression.

then

Am(ω) =

m−1∑

n=0

(
m − 1

n

)
An

m(ω), (4.26)

where the binomial coefficient gives the number of ways n nuclei can be picked
out of a set of m− 1 nuclei. An

m(ω) describes the amplitude of state |2〉 in nu-
cleus m, for the case where the photon has first been scattered by n preceding
nuclei.
Each nucleus can interact in 4 possible ways, depending on the polarization
state of the absorbed and emitted photon: ++, −−, +− and −+. However,
there are certain restrictions. If a nucleus has emitted a σ+ photon, then the
next nucleus must absorb this σ+ photon, and, hence, it has only two possible
ways of interacting (++ and +−). Therefore, it is better not to consider all
possible nuclear configurations, as they are not truly independent, but to con-
sider the combination of emission in one nucleus and absorption in a following
one. In Fig. 4.4 it is shown that these extranuclear combinations (or: enc)
can assume values of + and −, independent of the preceding enc. They also
coincide with the extranuclear paths identified in Fig. 4.3.

If there are n + 1 absorber nuclei (n preceding + the last one) and if we
apply the initial condition of a σ+ incident photon and the final condition of
arriving in state |2〉 (or |3〉), there are n enc. Thus, there are 2n possible paths
contributing to An

m(ω).
If there are p enc+, then there should be n− p enc− processes. The number of
intranuclear paths depends on how the p enc+ are arranged between the n− p
enc−. For example, for n = 5 and p = 3, the + + + − − enc series yield a
different number of intranuclear paths than the + − + − + enc series. It can
be shown that, if k denotes the number of enc+ enclosed by at least one enc−
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+ + + - - + + + + - - +...

enc+enc+ enc−enc−

Figure 4.4: Schematical representation of scattering of a σ+ incident photon leading
to the excitation of state |2〉 in nucleus m. Each nucleus that takes part in the process
is depicted by a circle where the left half represents the absorption and the right half
the emission process. The dashed squares represent the independent extranuclear
combinations (see text).

(preceding and succeeding), then

p∑

k=0

(
n − p − 1

k

)( |Ω|2
δ2δ3

)k+1 (p−k−1)∑

l=0

(
p − k − 1

l

) (
k + 2

l + 1

)
(4.27)

for An
m(ω), and

Ω∗

δ3

p∑

k=0

(
n − p

k

)( |Ω|2
δ2δ3

)k (p−k−1)∑

l=0

(
p − k − 1

l

) (
k + 1

l + 1

)
(4.28)

for Bn
m(ω) are the amplitudes of intranuclear paths belonging to each (n, p)

pair. The sum over l accounts for the possible ways to arrange (p − k) other
enc+ on (k + 2) (or (k + 1)) places.
Finally, taking into account the above prescription, we can reconstruct the
solutions:

Am(ω) =
−i

√
γr
2

2

(
VPkS

~

)
δ3 ei ω

c xm

δsδ+δ−

[
1 +

m−1∑

n=1

(
m − 1

n

)
1

(δ+δ−)
n

×
{(−iγr

2δ3

2

)n

+

n−1∑

p=0

(−iγr
3δ2

2

)n−p (−iγr
2δ3

2

)p

×
[(

n − p − 1

p

)( |Ω|2
δ2δ3

)p+1

+

p−1∑

k=0

(
n − p − 1

k

)( |Ω|2
δ2δ3

)k+1 (p−k−1)∑

l=0

(
p − k − 1

l

) (
k + 2

l + 1

)









(4.29)
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and

Bm(ω) =
−i

√
γr
2

2

(
VPkS

~

)
Ω∗ ei ω

c xm

δsδ+δ−

{
1 +

m−1∑

n=1

(
m − 1

n

)
1

(δ+δ−)
n

×
n∑

p=0

(−iγr
3δ2

2

)n−p (−iγr
2δ3

2

)p
[(

n − p

p

)( |Ω|2
δ2δ3

)p

+

p−1∑

k=0

(
n − p

k

)( |Ω|2
δ2δ3

)k (p−k−1)∑

l=0

(
p − k − 1

l

) (
k + 1

l + 1

)




 .

(4.30)

The binomials in the above expressions of course vanish whenever the lower
term exceeds the upper term. We have also checked the result manually up to
m = 5.

Solution of the photon wave function

Let us first consider the σ+ photon field. Substituting the expression for S(ω)
and Am(ω) into Eq. (4.8), we find an expression for P+

k (ω)

P+
k (ω) =

(
VPkS

~

)
1

δs (ω − ωk + iε)

(
1 − iγr

2

2

N∑

m=1

P+
k,m(ω)

)
(4.31)

with

P+
k,m(ω) = ei xm

c (ω−ωk) δ3

δ+δ−

[
1 +

m−1∑

n=1

(
m − 1

n

)
1

(δ+δ−)
n

{(−iγr
2δ3

2

)n

+
n−1∑

p=0

(−iγr
3δ2

2

)n−p (−iγr
2δ3

2

)p
[(

n − p − 1

p

)( |Ω|2
δ2δ3

)p+1

+

p−1∑

k=0

(
n − p − 1

k

)( |Ω|2
δ2δ3

)k+1 p−k−1∑

l=0

(
p − k − 1

l

) (
k + 2

l + 1

)]}]
.

(4.32)

The interpretation of P+
k (ω) is straightforward. The first term is the am-

plitude of a photon k that is not scattered (the original σ+ source photon),
while the subsequent terms describe the amplitudes for scattering at position
x1, x2, ...xm. The factor δ−1

s will eventually lead to a convolution of the (fre-
quency) spectrum of the photon field with the spectrum of the incident field,
centered at ωs. Hence, this term is equivalent to the A±(ω, 0, v) term in Eq.
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(3.12).

According to [117–121], one can represent the (one-dimensional) radiation
wave function ψ(x, t) as an infinite sum of plane waves

ψ(x, t) =
∑

k

ei(kx−ωkt)

√
L

pk(t) =

√
L

2πc

∫ ∞

−∞
dωk e−iωk(t− x

c )pk(t) (4.33)

with pk(t) the time-dependent (classical) amplitude of a plane wave with wave
number k. We admit that this transition from the quantum to the classical
domain is rather sudden and should be more thoroughly derived. In the next
section we will try to justify this suggestion for the photon wave function, by
extending our discussion of the introductory section. For now, we take Eq.
(4.33) for granted and continue the derivation of the wave function.
It is also possible to express ψ(x, t) in frequency domain by a Fourier transfor-
mation of Eq. (4.33):

ψ(x, ω) =

∫ ∞

−∞
dt ψ(x, t)eiωt (4.34)

=

√
L

2πc

∫ ∞

−∞
dωk eiωk

x
c

∫ ∞

−∞
dtpk(t)ei(ω−ωk)t

︸ ︷︷ ︸
=iPk(ω)

(4.35)

If we consider the ωk-dependent terms of P+
k (ω) in Eq. (4.31), then we distin-

guish the m-th absorber term (P+
k,m(ω)), which has a phase factor proportional

to xm, and a source term (Ps(x, ω)), without phase factor3. The calculation of
the integral over ωk is reduced to the integration of these ωk-dependent terms
(see appendix C on the theorem of residues):

ψs(x, ω) ∝
∫ ∞

−∞
dωk

eiωk
x
c

ω − ωk + iε
(4.36)

∝ 2πieiω x
c θ(x) for ε → 0+ (4.37)

and

ψ+
k,m(x, ω) ∝ eiω xm

c

∫ ∞

−∞
dωk

eiωk( x
c − xm

c )

ω − ωk + iε
(4.38)

∝ 2πieiω x
c θ(x − xm) for ε → 0+ (4.39)

The appearance of the θ(x) Heaviside step function ensures a physical mean-
ingful result. For the source term this means the detector position x should be

3This is because we have chosen x0 = 0.



110 CHAPTER 4 Coherent path model

downstream of the source (nucleus), located at x = 0, whereas the m-th ab-
sorber term only is relevant when this m-th nucleus is in front of the detector.
The σ+ photon field is now calculated as

ψ+(x, ω) = eiω x
c ψs(ω)

(
1 +

N−1∑

n=0

(
N

n + 1

)
ψ+

n (ω)

)
(4.40)

with the source term

ψs(ω) = −
(

VPkS

√
L

~c

)
1

δs
(4.41)

and the absorber terms

ψ+
n (ω) =

1

(δ+δ−)
n+1

((−iγr
2δ3

2

)n+1

+

n−1∑

p=0

(−iγr
3δ2

2

)n−p (−iγr
2δ3

2

)p+1

×
[(

n − p − 1

p

)( |Ω2|
δ2δ3

)p+1

+

p−1∑

k=0

(
n − p − 1

k

)( |Ω2|
δ2δ3

)k+1

×
p−k−1∑

l=0

(
p − k − 1

l

)(
k + 2

l + 1

)])
. (4.42)

It is seen that, due to the reconstruction of the total wave packet, the depen-
dence on the positions of the individual scattering centers disappears. Instead,
the field amplitude gains a uniform phase factor, which only depends on the
total path length x between its creation in the source and its destruction at the
detector. Moreover, this phase factor is identical to the phase factor obtained
in the semiclassical models, see e.g. Eq. (3.8).
The derivation of the σ− photon wave function is completely analogous. Even-
tually, we obtain the σ− wave function

ψ−(x, ω) = eiω x
c ψs(ω)

N−1∑

n=0

(
N

n + 1

)
ψ−

n (ω) (4.43)

with ψs(ω) defined in Eq. (4.41) and

ψ−
n (ω) =

(
−i

√
γr
2γr

3

2

)
Ω∗

(δ+δ−)
n+1

(
n∑

p=0

(−iγr
3δ2

2

)n−p (−iγr
2δ3

2

)p

×
[(

n − p

p

)( |Ω2|
δ2δ3

)p

+

p−1∑

k=0

(
n − p

k

)( |Ω2|
δ2δ3

)k

×
p−k−1∑

l=0

(
p − k − 1

l

) (
k + 1

l + 1

)])
. (4.44)
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Except for the source term, the expression of the σ− wave function bears a
very close resemblance with the σ+ wave function. So, once the photon has
undergone one scattering, both fields develop in more or less the same way.
In the case without mixing interaction (Ω = 0), the photon fields reduce to

ψ+(x, ω) = eiω x
c ψs(ω)

[
1 +

N∑

n=1

(
N

n

)(
− iγr

2

2

1

δ2

)n
]

, (4.45)

ψ−(x, ω) = 0, (4.46)

which is exactly the Fourier transform of the time-dependent photon wave func-
tion calculated by Hoy in the case of scattering in a single-resonance nuclear
medium (see Eq.(A24) in [118]).

The measurable transmitted intensity in the case of a σ+ source photon as
a function of ωs is given by

I(ωs) =
1

2π

∫ ∞

−∞
dω

(
|ψ+(x, ω)|2 + |ψ−(x, ω)|2

)
, (4.47)

which is the observable that should be compared with the experimental spectra.

4.2.3 The photon wave function in more detail

The aim of this section is to justify the use of Eq. (4.33) as the photon wave
function. In the introduction we already discussed the ‘fuzzy’ nature of this
concept, but argued that, following Scully and Zubairy [17], it is possible to
assign a photon wave function status to the probability that a single photon will
lead to the ejection of a photo-electron in a detector at point r. As shown in
the introductory section, the photon wave function ψ(r, t) is then given by [17]

ψ(r, t) = 〈0|E(+)(r, t)|ψγ〉 (4.48)

with |ψγ〉 the single photon field state and E(+)(r, t) the positive frequency part
of the electric field operator, defined in Eq. (3). In the following, we assume
that the electric field is polarized and thus discard the sum over λ.
Let us now try to find an expression for this |ψγ〉 in the coherent path model.
For simplicity, we only consider a source nucleus, and deal with the radiation it
emits. Substituting the expression of the ‘source’ amplitude S(ω) of Eq. (4.16)
in Eq. (4.8) we find that

Pk(ω) =

(
VPkS

~

)
e−ik.r0

(ω − ωk + iε)
(
ω − ωs + iγs

2

) (4.49)
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where we discarded the polarization dependence. Note that this equation is ex-
pressed in its three-dimensional form with r0 the position of the source nucleus.
Applying the Fourier transform (Eq. 4.3) back to time domain, we have

s(t) = e−γst/2 (4.50)

and

pk(t) =

(
VPkS

~

)
e−ik.r0

1 − eit(ωk−ωs+iγs/2)

ωk − ωs + iγs

2

(4.51)

According to Eq. (4.1), the state vector of this system can now be reconstructed
as

|Ψ(t)〉 = e−iωste−γst/2|Se, {0k}〉

+
∑

k

(
VPkS

~

)
e−iωkte−ik.r0

1 − eit(ωk−ωs+iγs/2)

ωk − ωs + iγs

2

|Sg, 1k〉. (4.52)

However, to stay consistent with the derivation of the photon wave function,
resulting in the definition in Eq. (4.48), we should express this state vector in
an interaction representation. In this transition only the exponential factors
corresponding to the eigenfrequencies of the states are omitted. The resulting
expression now exactly equals Eq. (6.3.17) of [17], where the state vector of a
decaying two-level atom is derived in a fully quantum mechanical way. Now,
we can define the single-photon field state by taking the trace over the nuclear
subsystem:

|ψγ(t)〉 =
∑

k

pk(t)|1k〉 (4.53)

=
∑

k

(
VPkS

~

)
e−ik.r0

1 − eit(ωk−ωs+iγs/2)

ωk − ωs + iγs

2

|1k〉 (4.54)

which actually is a linear superposition of single-photon states with different
wave vectors. Substituting this result and Eq.( 3) into Eq. (4.48), we find

ψ(r, t) =
∑

k,k′

Ek′

(
VPkS

~

)
e−iωk′ tei(k′.r−k.r0) 1 − eit(ωk−ωs+iγs/2)

ωk − ωs + iγs

2

〈0|ak|ψγ〉

(4.55)

=
∑

k

Ek

(
VPkS

~

)
e−iωkteik.(r−r0) 1 − eit(ωk−ωs+iγs/2)

ωk − ωs + iγs

2

(4.56)

=
∑

k

Ekeik.r−iωktpk(t) (4.57)
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This last expression for the photon wave function equals the suggested ex-
pression in Eq. (4.33), except for the Ek factor. Evaluating the sum over
k in the Weisskopf-Wigner approximation4, this term only yields an overall
multiplication factor and can be neglected if one is only interested in relative
magnitudes.
Therefore, we can state that, although the introduction of the photon wave
function in Eq. (4.33) was not well founded, its use for our purposes is now
rigorously proven.

4.3 Thin absorber limit

We start the discussion of Eq. (4.40) and Eq. (4.43) with the most simple case,
i.e. a thin absorber. This corresponds to a system where multiple scattering
effects are negligible. Also in the most common experiments where optical
EIT is observed, i.e. in vapors, dynamical effects are not taken into account.
This limiting case, therefore, presents an ideal opportunity to make a thorough
comparison between optical EIT and the nuclear level mixing induced trans-
parency.
We could simply consider the case where there is only one absorber nucleus or
N = 1. However, it is more interesting to retain the first term (n = 0) of the
photon field for N absorber nuclei. From Eq. (4.40) and Eq. (4.43) we obtain:

ψ+
1 (x, ω) = eiω x

c ψs(ω)

[
1 + N

(−iγr
2

2

)
δ3

δ+δ−

]
(4.58)

ψ−
1 (x, ω) = eiω x

c ψs(ω)N

(
−i

√
γr
2γr

3

2

Ω∗

δ+δ−

)
, (4.59)

where all parameters have been defined in the previous section. If we disregard
the convolution with the source spectrum, then the transmitted intensity is
given, to first order in γr

2 , by

I1(ω) = 1 + 2=
(

N
γr
2

2

δ3

δ+δ+

)
. (4.60)

This expression equals the semiclassical results, given by Eq. (3.21) and Eq.
(3.68). A one-to-one correspondence between the models is found when

N =
3

8

Teγ

γr
, (4.61)

4We deal with the explicit evaluation of Eq. (4.57) in section 5.2.
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where the 3/8 factor is already correctly dealt with by Eq. (4.6) and originates
from the multilevel system. We further investigate this expression and the
relation with the semiclassical models in more detail in section 4.4.1.
For a discussion of the expression obtained in Eq. (4.60), we refer to the
semiclassical models. Here, we briefly consider the case where ω2 6= ω3, because
this was not included in the analysis of the previous chapter. In Fig. 4.5 the
transmitted intensity is simulated for different values of ω2 − ω3 ≡ ∆. The
influence of the mixing interaction decreases for increasing ∆, as is also clear
from Eq. (4.24). It is shown in section 1.1.4 that the excited states are only fully
mixed when ∆ = 0. Here, the reduction of the admixture of the coupling state
|3〉, is seen as the decreasing amplitude of the left absorption peak. The creation
of the orthogonal polarization state (I+−) is also affected and is reducing with
increasing ∆, as expected.
The analogue of ∆ in optical EIT is the detuning of the driving field with
respect to the |2〉 → |3〉 transition, see e.g. [65].
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4.4 Thick absorber: multiple scattering

Now we extend the model to include the case of a σ− incident photon5. The
radiative decay rates γr

2 and γr
3 are substituted with their real experimental

values: γr
2 = |C12|2γr = γr/3 and γr

3 = |C13|2γr = γr. The treatment of thick
absorbers in this section still differs somewhat from that of section 3.1.2. Here,
the model is still limited to the three-level system. Also, the convolution with
the spectrum of the source photon is discarded. These limitations hardly pose
a threat to the generality of the simulations, but greatly reduce the computer
power needed for the simulations. For example, the effect of the convolution
with the Lorentzian source profile is to smooth out small6 changes in the initial
spectrum, as illustrated in Fig. 4.6.
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Figure 4.6: Illustration of the convolution of the spectrum of I+−, for N = 30 and
Ω = γ2, with the solid line representing the initial spectrum and the dashed line the
convoluted spectrum.

But before discussing some simulations, we first try to make a detailed
comparison with the semiclassical results.

4.4.1 Semiclassical vs. coherent path result

In the thin absorber limit, we could chose N in order to have a one-to-one
correspondence between the semiclassical and coherent path results. But can
this correspondence be extended for arbitrary thicknesses?
Absorbing the 3/8 factor of Eq. (4.61) into Te, then Nγr = Teγ. It appears

5This is no more than interchanging the label ‘2’ with label ‘3’ in the equations for a σ+

incident source photon.
6Small with respect to the line width γs of the source profile.
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that it doesn’t matter whether one uses N absorber nuclei with a decay rate (or:
interaction constant) γr or Te absorber nuclei with a an interaction constant γ.
In the semiclassical models these two possibilities are perfectly interchangeable,
because they are treated on an equal footing (as a factor in the exponential
function). However, in the coherent path model, interchanging both sets results
in quite different spectra. This is most pronounced in the extreme case of set-
ting N = 1, which combines with a large scattering amplitude γr = Teγ. The
coherent path intensity for this single nucleus absorber will never show multiple
scattering effects, for any value of γr. The semiclassical result, however, only
depends on the product Nγr and will show multiple scattering effects, if the
product is large enough, of course.
We can treat the problem in a more general way by introducing the dimension-
less variable x:

Nγr = (Nx)
γr

x
= N ′γ′

r, (4.62)

with N ′ = Nx and γ′
r = γr/x. In [118] Hoy also introduced such kind of

variable, assuming that x = f−1
LM . In this way, he increased the number of

scattering nuclei (see his definition of N in Eq. (4.5)), but he decreased the
amplitude with which they interact. One can certainly question this ‘recoil free’
modification. Does it follow naturally from the model or is it rather manually
added? And how should this be interpreted?

In the semiclassical model, the exponential form of the spectrum function
arises due to the assumption that the absorber is seen as the sum of infinitesimal
slices dz. Each preceding slice acts as a source term for the next slice, which,
in its simplest form, results in the differential equation

dE ∝ Edz (4.63)

for a radiative field E. The assumption of infinitesimal slices is justified when
counting the (real) number of individual nuclei along the path of the incident
radiation. Making use of the definition of Te in Eq. (1.30), we can write

Teγ =

(
fLMχρ

d

sin (β + θ)
A

)

︸ ︷︷ ︸
N ′

(σ0γ

A

)

︸ ︷︷ ︸
γ′

r

, (4.64)

with A the area of the absorber surface. It is clear that the dimensionless
variable (A/σ0) ≡ (σ′

0)
−1 plays the role of x in Eq. (4.62). If, for simplicity, we

take a crystal of A = 1 cm2 and assume that the incident radiation interacts
with the whole crystal, then N ′ = Te(σ

′
0)

−1 ≈ 3.1018 57Fe nuclei (interacting
without recoil). Although this (always) is a discrete number of nuclei, its
approximation as a continuum of possible scattering centers is certainly not
far-fetched.
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Nevertheless, let us now assume that this continuum approximation should be
replaced by the ‘real’ discrete scattering process. Thus, we use these values of
a very large N ′ and a very small γ′

r in the coherent path model. For simplicity,
we consider the single-resonance case as given by Eq. (4.45). The σ+ photon
field function can be expanded as

ψ+(ω) ∝ 1 + N ′
(−iγ′

r

2δ

)
+

N ′(N ′ − 1)

2!

(−iγ′
r

2δ

)2

+
N ′(N ′ − 1)(N ′ − 2)

3!

(−iγ′
r

2δ

)3

+ ... (4.65)

Rearranging the terms and substituting γ′
r = σ′

0γ and N ′ = Te(σ
′
0)

−1 yields

ψ+(ω) ∝ 1 +

(−iTeγ

2δ

)
+

1

2!

(−iTeγ

2δ

)2

+
1

3!

(−iTeγ

2δ

)3

+ ...

+σ′
0

[
− 1

2!

(−iTeγ

2δ

)2

+
2σ′

0 − 3

3!

(−iTeγ

2δ

)3

+ ...

]
(4.66)

Because σ′
0 ≈ 10−18, which in this case should be compared with processes of

the order of 1, it is justified taking the limit σ′
0 → 0:

lim
σ′
0
→0

ψ+(ω) ∝ e−iTe
γ
2δ . (4.67)

From the semiclassical point of view, one can state that this result, obtained in
a fully quantum mechanical model (with discrete scattering events), validates
the semiclassical exponential form of the scattering amplitude.
From the coherent path point of view, one can argue that only by taking the
grid7 and the interaction constant infinitesimally small the exponential form is
recovered. However, due to the very low cross-section, only a limited number of
nuclei (N << Te/σ′

0) effectively participate in the scattering process, with this
number given by Eq. (4.61). Furthermore, when a nucleus interacts with the
radiation, it does so with an interaction strength γr, and not with γr/σ′

0. The
derivation of γr in this model (see Eq. (4.15)) is very clear about this. Also,
in a response to the multiplication of γr with fLM suggested in [118], there is
nothing in its definition that dictates us that γr should be multiplied with the
recoil free fraction. γr is no more than the radiative interaction strength of a
particular nuclear level, whether this nucleus recoils after emission or not. It is
our opinion that the fact that only a fraction of the nuclei does not experience
recoil, should, and can easily, be taken into account in N .
One can also imagine these effective nuclei as N ‘super nuclei’ or groups of

7We imagine the physical system as a grid, with each node representing a scattering center.
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nuclei such that the probability of interaction with gamma radiation equals 1.
Remember that this was also one of the premises early in the development of
the model, i.e. we assumed that these nuclei were interacting.

Remark 1: We have consulted the exhaustive work of Hannon and Trammell
on the dynamical theory of coherent gamma ray optics [123, 124] in the hope
to shed some light on the issue of multiple scattering. They also treat the total
scattering amplitude as a superposition of a finite sum of plane contributions.
They explain that: “The amplitude that a wave Aµ(k(s+)) is incident on the
mth plane is equal to the amplitude that such a wave is incident on the (m−1)
plane, plus the forward scattering (...) of this wave by the (m− 1) plane (...)”.
This clearly agrees with the picture of scattering in the coherent path model.
They also state that: “We assume that some set of infinite crystalline planes
is parallel to the surface, which we take as the xy plane, and that the crystal
is of finite thickness l in the z direction, l = Md, where M is the number of
planes, and d is the interplanar distance. The thickness of the layers is rather
arbitrary, but they must be sufficiently thin so that the Born approximation is
good within the layer. We generally assume a unit cell thickness (chemical or
magnetic, whichever is larger).” The Born approximation involves the neglect
of planar self-action. It is shown that planar self-action leads to a change of the
frequency and the width of the resonance [105] (the terms in the denominator

of the forward scattering amplitude f̃(ω)). However, except for special cases
like grazing incidence experiments, the Born approximation is very accurate.
According to this theory, in the case of a crystal with physical thickness l ≈
10−4 m and unit cell thickness d ≈ 5 Å, there are about 105 scattering planes.
This is of course a much higher number than the N = 20 effective nuclei in
the coherent path model, but it is certainly not an infinite number either.
Although the authors claim that they solve the finite difference equations to
obtain the final transmitted intensity, their result exactly matches the Blume-
Kistner result, which, however, was obtained through a differential equation
of the type of Eq. (4.63). We have not succeeded in unravelling the finite
difference derivation of [124], but we believe that the same type of infinitesimal
approximation of the plane thickness must have been used in order to obtain
the same result as in the Blume-Kistner approach. In that respect it is even
harder to understand why the plane thickness could be ”rather arbitrary”.
We can summarize that the work of Hannon and Trammell agrees with the
fundamental picture of the coherent path model that the scattering process of
radiation in a crystal has a discrete nature. However, this discreteness is not
reflected in their final solution.

Remark 2: One could be led to believe that by seeking a one-to-one corre-
spondence with the semiclassical models through Eq. (4.61), we grant these
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models a higher level of confidence. This is only true in regard with their
‘experience’ of being used for multiple decennia. However, it is certainly pos-
sible to assign a value to N independently from the semiclassical result. In
the coherent path model N is defined as the number of nuclei that effectively
scatter the gamma photon. Hence, we have to count the number of 57Fe nu-
clei along the photon path and multiply this with the interaction cross-section:
N = fLMσ0χρd/ sin(β + θ). The recoil free fraction is added because only
that fraction corresponds to ‘resonant’ nuclei, which actively participate in the
scattering process. In the model also conversion electron decay is taken into
account, though not explicitly (only by adding γc to the decay rate). However,
σ0 has been defined in Eq. (3.19) as the radiative cross-section. Hence, we
should replace it by the total absorption cross-section

σT = σ0
γ

γr
. (4.68)

The final expression for N now exactly equals Eq. (4.61), apart from the
multilevel factor, with Te given by Eq. (1.30).

Remark 3: We have compared higher order terms in the Taylor expansion
of the semiclassical exponent, given in Eq. (3.2) and Eq. (3.18), with multiple
scattering terms of Eq. (4.40) and Eq. (4.43). It is seen that, at least up to
the fourth order, both results yield the same frequency dependent terms. If we
apply N = Teγ/γr from the thin absorber limit, then each nth order term of
the coherent path result ψn(ω) only differs from the semiclassical terms An(ω)
by a numerical factor:

ψn(ω) = An(ω)
n−1∏

i=1

(N − i)

Nn−1
. (4.69)

4.4.2 Simulations for different N

Simulations for N = 5, 10, 20, 30, 50 and 80 are shown in Fig. 4.7, 4.8, and
4.9, respectively. Each right figure shows the individual contributions of the
transmitted radiation that has changed polarization (I+− +I−+) and the radi-
ation that has retained its polarization (I++ +I−−), while the left figure shows
the total spectrum. We have also assumed a resonant fraction of fr = 0.3, in
correspondence with the assumptions made in section 3.1.2. This limits the
maximal resonant absorption to 30% (or: compresses the spectrum by 30%).
It is seen that this maximum absorption is almost reached for N = 50 and
saturation clearly broadens the spectrum for N = 80.

Similar observations can be drawn from these simulations as from the sim-
ulations in the Blume-Kistner approach. Here, the Rabi splitting of the lines,
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Figure 4.7: Simulated spectrum for N = 5 (top) and N = 10 (bottom) for different
values of mixing interaction strength Ω. The right figure shows the individual con-
tributions of the transmitted radiation that has changed polarization (I+−) and the
radiation that has kept its polarization (I++), while the left figure shows the total
transmitted radiation.
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Figure 4.8: Simulated spectrum for N = 20 (top) and N = 30 (bottom) for
different values of mixing interaction strength Ω. The right figure shows the individual
contributions of the transmitted radiation that has changed polarization (I+−) and
the radiation that has kept its polarization (I++), while the left figure shows the total
transmitted radiation.
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Figure 4.9: Simulated spectrum for N = 50 (top) and N = 80 (bottom)for dif-
ferent values of mixing interaction strength Ω. The right figure shows the individual
contributions of the transmitted radiation that has changed polarization (I+−) and
the radiation that has kept its polarization (I++), while the left figure shows the total
transmitted radiation.
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due to the mixing interaction, is more pronounced, which must be attributed
to the neglect of the convolution with the incident photon spectrum. Also,
there is less reduction in absorption with increasing thickness. For example,
for N = 5, a mixing interaction of Ω = γ2/2 almost reduces the absorption
at the line center with 50%, whereas the same mixing field has no observable
effect any more for N = 80.
We can also see a shift in the mechanism of the transparency. First, for small
N , the main reason for the transparency is the Rabi splitting of the excited
states, which is best seen in the I++ +I−− spectrum for N = 5. For increasing
N , however, the contribution of the I+− + I−+ part becomes more important,
see also Fig. 4.10. It first reaches a maximum, at line center, depending on
Ω, and then shows a two- or three-peak structure. This two-peak structure
(for Ω = γ2/2) was also found in the Blume-Kistner model (see Fig. 3.9). But
the three-peak structure has no semiclassical analogue. More simulations have
shown that the center peak eventually disappears for large N , leaving behind
a two-peak structure.
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Figure 4.10: Simulated spectrum of the transmitted radiation that has changed
polarization (I+−) for different N and for Ω = γ2/2 (left) and Ω = γ2 (right).

More insight in the multiple scattering ‘construction’ of the final wave func-
tion is gained by simulating the different ψn(ω) terms of Eq. (4.42) (or Eq.
(4.44)), including the preceding binomial coefficient. In [118] these ψn(ω) terms
are referred to as the n-‘hop’ amplitudes8, because n is the number of nuclei

8We must remark that, due the specific form of our result, a ψ+
n (ω) term corresponds to
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with which the photon interacts, while ‘hopping’ from one to the other. Sim-
ulations of the five first n-hop amplitudes for N=20 are shown in Fig. 4.11.
The left part of the figure gives the hop amplitudes for Ω = 0, expressed in Eq.
(4.45), whereas the right part shows the ψ+

n (ω) terms for Ω = γ2/2. It is clearly
seen that the dominant first term yields a negative contribution, giving rise to
the ‘downward’ absorption peak in the Mössbauer transmission spectrum. This
is the result of the π-phase shift [118] for single scattering at resonance. The
second term (double scattering) yields a positive contribution, the third term
again negative, and so on. For increasing n, however, this simple picture is seen
to blur out, leading to an oscillating and rapidly decreasing net contribution.
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Figure 4.11: Simulation of the first n-hop amplitudes for N=20 with Ω = 0 (left
figure) and Ω = γ2/2 (right figure).

The ψ+
n (ω) terms in Fig. 4.11 show a highly decreasing peak amplitude for

increasing n. It is worthwhile to go into more detail on this. For simplicity, let
us take γr

2 = γr
3 ≡ γr. Then the strength (or peak amplitude at resonance) of

each n is seen to be proportional to

ψ+
n (ω = ω0) ∝

(
N

n + 1

)(
γr

γ

)n+1

. (4.70)

Because the condition that γr < γ is always fulfilled, the second factor de-
creases exponentially for increasing n. The binomial coefficient, however, has
a maximum for n ≈ N/2. Hence, the significance of the contribution of an

an n + 1-hop (only in the right figure).
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n-hop amplitude depends on the interplay between both terms. For example,
the (n = 1)-hop amplitude can gain a higher probability than the (n = 0)-hop
amplitude if the condition N > 1 + (2γr/γ) is satisfied (e.g. if γr/γ = 0.1 then
N > 21). Nevertheless, it is clear from Eq. (4.70) that terms with n > N/2
will always yield a very small contribution. Thus, at least half of the n-hop
amplitudes can be neglected in the calculations. In Fig. 4.12 we illustrate this
convergence of n-hop amplitudes by simulating the I+− + I−+ spectrum for
N = 80, including an increasing number of ψn(ω) terms. The solid line repre-
sents the full solution. It is seen that, already for n = 0 to 12, the spectrum
matches the full solution within the resolving power of the eye.
This information about the rapid convergence of the ψn series can drastically
cut into the quite extensive computer time needed for simulations in the co-
herent path model.
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Figure 4.12: Simulation of the I+− + I−+ spectrum for N = 80, including an
increasing number of ψn(ω) terms. The solid line represents the full solution.

This coherent path model also allows us to study the combined effect of
different relaxation rates and multiple scattering in thick absorbers. Remem-
ber that in section 3.2.3 the Maxwell-Schrödinger approach also gives us the
opportunity to investigate the case when γ3 6= γ2. However, we only did so in
the thin absorber limit. Now, let us consider the cases of N = 5 and N = 20.
In Fig. 4.13 the total transmitted radiation is shown for Ω = γ2/2 and different
values of γ3, in the case of a σ+ incident source photon. Comparing the spec-
tra for N=5 with those of Fig. 3.17, we see that they are qualitatively equal.
For N = 20, however, the spectra are considerably different. It is seen that
the multiple scattering process destroys the transparency window. This can be
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understood as follows: even in a perfect ‘EIT nucleus’ (γ3 << γ2) an incident
photon will always show a little absorption from its wings. In the scattering
process with the next perfect EIT nucleus there is again a little absorption.
Eventually, the absorption profile will show a considerable absorption even in
the frequency region where there is only negligible absorption in the single
scattering event. In fact, this kind of explanation also holds for the effect of
‘saturation broadening’. Hence, the effect of a decreasing reduction of absorp-
tion with increasing thickness is understood as a plain saturation effect.
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Figure 4.13: Simulation of the transmitted radiation in the case of Ω = γ2/2 for
different values of γ3, for N = 5 (left figure) and for N = 20 (right figure).

4.5 Conclusions

A fully quantum mechanical model for resonant scattering of gamma photons
in a medium with an arbitrary number of nuclei, exhibiting a Λ-type of level
structure, is developed. At the conceptual level, it is shown that the photon
wave function obtained in this model corresponds to the probability amplitude
that the photon gives rise to the detection of a photo-electron in a detector at
position x.
Also, a detailed comparison with the semiclassical models reveals that the
results of both models only coincide when N → ∞ and γr → 0, such that
Nγr = Teγ. The question whether multiple scattering is best described by a
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discrete scattering on N effective nuclei or by scattering on an infinite number
of infinitesimal slices, however, remains unanswered. An experiment can be
imagined that could shed some light on the true nature of the scattering process.
Simulations show that for N ≈ 50 a three-peak structure arises that is certainly
due to the discrete scattering process in the coherent path model since it is not
reproduced in the semiclassical models. In order to experimentally observe
this I+− (+I−+) spectrum, a polarized source and a polarization dependent
detection mechanism are required.
Otherwise, simulations of the Mössbauer spectra for different N are in close
agreement with those obtained in the semiclassical models. In addition, it is
seen that multiple scattering destroys the transparency window, simply because
the absorption is saturated.





Chapter 5

Time-differential

Mössbauer spectroscopy

No corporeal substance can be so subtle and swift as this.
William of Conches, 12th century

By identifying the observed reduced absorption as a (weak) form of EIT, a log-
ical step is now to investigate the time properties of the scattered radiation. In
section 2.1.2 it is mentioned that EIT is accompanied by a delay of the probe
pulse, expressed as a reduction of the group velocity. Is it possible to delay
gamma radiation in a similar way as optical radiation?
First, we approach this question from a theoretical point of view, in the semi-
classical as well as in the coherent path model. Then, we extrapolate the
results to an experimental setting and simulate a possible measurement of a
time-differential Mössbauer spectrum.

129
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5.1 Group velocity in the Maxwell-Schrödinger

model

5.1.1 Concept

The concept of group velocity naturally arises when dealing with wave packets.
Each wave (packet) may be regarded as a superposition of monochromatic wave
of different frequencies (Fourier’s theorem). To illustrate some of their proper-
ties, let us consider a wave E(z, t) formed by the superposition of two monochro-
matic (plane) waves with the same amplitude Ei(z, t) = E0(z, t) cos(kiz−ωit):

E(z, t) = E1(z, t) + E2(z, t) (5.1)

= 2E0 cos(∆k z − ∆ω t) cos(k0z − ω0t), (5.2)

with ∆k = (k1 − k2)/2, ∆ω = (ω1 − ω2)/2, k0 = (k1 + k2)/2 and ω0 =
(ω1 + ω2)/2. As also illustrated in Fig. 5.1, the resulting wave packet has a
‘carrier’ wave with wave number k0 and frequency ω0, while its amplitude is
modulated in time and space by cos(∆k z − ∆ω t). The carrier wave (or: the
planes of constant phase) is propagating with the phase velocity vp = ω0/k0,
while the envelope of the wave packet (or: the planes of constant amplitude)
propagates with the group velocity vg = ∆ω/∆k.

Because each wave packet obeys the wave equation, ω and k are related
by the dispersion equation kc = ωn(ω), with n(ω) the refractive index of the
medium. In general, the group velocity is defined by

vg =

(
dω

dk

)

k0

(5.3)

=

(
c

n(ω) + ω dn(ω)
dω

)

k0

(5.4)

where (..)k0
signifies that vg is evaluated at the wave vector of the carrier wave.

The right-hand side of the second line in the above definition also assumes that
there is no appreciable spatial dispersion, i.e. ∂n/∂k ≈ 0, which is valid in our
case. In order to circumvent some interpretational problems, we only consider
the case where the imaginary part of vg is small and can be neglected.

5.1.2 Group velocity in the Λ-scheme

According to the definition of the group velocity in Eq. (5.4), if the index of
refraction of the medium is known, then vg can be deduced. For the case of
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Figure 5.1: The wave packet E(z, t) as a superposition of two monochromatic waves
E1(z, t) and E2(z, t).

the nuclear Λ-scheme, see e.g. Fig. 3.16, we can use the results obtained in
chapter 3. As shown before, the ρ21(ω) coherence in Eq. (3.64) for γ2 6= γ3 is
proportional to the forward scattering amplitude f+±(ω). Taking into account
the correct proportionality factors, the index of refraction defined in Eq. (3.3)
for this three-level system is given by

n++(ω) = 1 − 3Te

16d

γ

2k
|C21|2

δ3

δ+δ−
(5.5)

n+−(ω) = 1 − 3Te

16d

γ

2k
C21C13

Ω

δ+δ−
(5.6)

where a distinction is made for radiation that has changed its polarization. All
parameters have been defined before. Substituting n(ω) and its derivative in
Eq. (5.4) we find that

vg

c
=

[
1 − ρlc

ω0

δ3

δ+δ−
+

ρlc

γ2

(
δ3(δ+ + δ−) − δ+δ−

δ2
+δ2

−

)]−1

(5.7)

for radiation that has retained its initial polarization, with ρl = 3Te|C21|2/(32d)
a ‘linear density’ (or: the number of effective scattering nuclei per meter) and
ω0 the carrier frequency of the gamma radiation. In this expression, all δi are
frequency differences divided by γ2 and thus are dimensionless. Typical values
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for the remaining parameters are: ρl ≈ Te × 105 nuclei/m, ω0 ≈ 2.1019 Hz and
γ2 ≈ 7.106 Hz. The second term is about 1012 times smaller than the third
term and can therefore be neglected.
For radiation that has changed its polarization, however, the imaginary part
of vg is much larger than its real part. Therefore, we omit this case in the
following discussion.

Let us first consider the ideal EIT case, i.e. when γ3 = 0. If the radiation is
tuned to the center of the (split) absorption line (ω = ω0), the group velocity
reduces to

vg =
c

1 + ρlc
γ2

1
Ω2

, (5.8)

which indeed matches the expression obtained in [78] (see Eq. (2.6)).
In Fig. 5.2 we calculate the group velocity as a function of ρl and Ω in the case of
a ‘nuclear’ EIT scheme (γ3 = γ2) and for an optical EIT scheme (γ3 = γ2/100),
for the case of radiation that has not changed its polarization (I++). The
group velocity clearly reduces with increasing linear density, reaching values of
vg ≈ 10−7c for Te = 8, with vg in the optical EIT case two times lower than
the nuclear case (for I++).
These values must be compared with vg in the case without mixing interaction.
For example, let us consider a two-level medium with the incident radiation de-
tuned from resonance1, i.e. δ = ω−ω0 6= 0. As seen in Fig. 2.2, for δ > γ/2 the
slope dn/dω is positive and also gives rise to a slow group velocity [125]. Values
for vg in this two-level medium are plotted in Fig. 5.3 for different values of δ.
For large values of δ the influence of the medium of course decreases, resulting
in a less altered vg. If δ ≈ γ2, however, the reduction of vg is comparable with
the reduction in the Λ-scheme. In fact, vg is even slightly more reduced than
in the optical EIT case! This comparison puts the results of the Λ-scheme in
the right perspective.
However, if we take a look at vg as a function of Ω (right graph in Fig. 5.2), it
is seen that the choice of Ω = γ2 is close to the value of Ω with the lowest vg

in the nuclear case, but it certainly does not yield the lowest vg in the optical
case. Actually, the mixing strength Ωm that yields the lowest group velocity is
calculated as

Ωm =

√
γ2
3

2
+

γ2γ3

4
. (5.9)

Now, for Ω = Ωm the reduction of vg in the optical EIT case can be several
orders of magnitude higher than the nuclear case or the two-level system. How-
ever, papers dealing with EIT mainly consider systems with Ω2 >> γ2γ3/4 in

1On resonance, the imaginary part of n(ω) (absorption) is non-negligible. Also, the slope

dn/dω becomes negative and the group velocity loses its simple kinematic meaning.
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order to create a large transparency window. This condition can clearly not be
reconciled with Eq. (5.9). Hence, there is always a trade off between creating
a transparent medium and maximally reducing the group velocity of the pulse.
Notice that vg(Ω) is only plotted for Ω ≥ γ3/2. When Ω < γ3/2, vg becomes
negative. This condition marks the transition from an ‘absorptive’ medium,
where the concept of group velocity is not straightforward, to a ‘dispersive’
medium.
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Figure 5.2: Calculated group velocity vg in a Λ-system as a function of linear density
ρl (left figure) and as a function of mixing interaction strength Ω (right figure). The
nuclear case (γ3 = γ2) and a possible optical case (γ3 = γ2/100) are compared.

5.2 Time-dependent photon wave function in

the coherent path model

In chapter 4 an expression for the time-dependent photon wave function ψ(x, t)
is presented (Eq. (4.33)). It is instructive to first consider the case when there
is only a (decaying) source nucleus, as in section 4.2.3. The expression for
pk(t) is then given by Eq. (4.51). Substituting its one-dimensional form in Eq.
(4.33) yields

ψ(x, t) =

√
L

2πc

(
VPkS

~

)∫ ∞

−∞
dωk e−iωk(t− x

c +
x0
c ) 1 − eit(ωk−ω0+iγs/2)

ωk − ωs + iγs

2

. (5.10)
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Figure 5.3: Calculated group velocity vg in a two-level system as a function of
linear density ρl for different values of detuning from resonance (δ = ω − ω0).

The integral can be solved by conversion to complex coordinates and applying
the theory of residues for complex closed loop integrals. The integral of the
second term is non-zero for (x

c − x0

c ) < 0, i.e. for radiation from the source
emitted in the opposite direction of the detector. Only the first term gives a
physical contribution:

ψ(x, t) = − i
√

L

c

(
VPkS

~

)
e−i(t−( x

c − x0
c ))(ωs−iγs/2)θ

(
t −

(x

c
− x0

c

))
. (5.11)

The appearance of the Heaviside step function ensures that the signal emitted
by the source nucleus does not travel faster than the speed of light in vacuum.
Eq. (5.11) is very similar to the photon wave function obtained in [17], except
for a |r − r0|−1 dependence. The intensity of radiation emitted from a point
source into 4π should indeed decrease according to |r− r0|−2. The reason why
we do not obtain this factor is simply because our approach is one-dimensional.
In one dimension the energy of the field is not distributed over an ever increasing
spherical surface, but instead, propagates undiminished in the one-dimensional
space. In our case, all photons emitted by the point source have travelled more
or less the same distance before detection. Hence, the |r − r0|−1 factor yields
no more than an overall reduction of intensity.

Let us now turn to the case with an absorber consisting of N effective nu-
clei. To find an expression for pk(t), we make a Fourier transformation to time
domain of Pk(ω) (Eq. (4.31)). We only deal with poles with negative imaginary
part, which means that only for t ≥ 0 the integral is non-zero. The physical
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meaning is obvious.
The calculations are simplified as it turns out that only the pole ω = ωk − iε
will contribute to the final expression of ψ. When integrated over ωk all other
poles only give a contribution if x ≤ xm, i.e. a non-physical situation in which
the detector (at position x) would be positioned in front of the absorber nuclei
instead of behind.
The integral over ωk is calculated in appendix D. Eventually, one finds the
expression for the σ+ photon wave field at position x (≥ xN ) and time t, pa-
rameterized by t′ = t − x/c with the condition that t′ ≥ 0, for N effective
scattering nuclei:

ψ+
N (t′) = ψs(t

′)

[
1 +

N−1∑

n=0

n∑

p=0

p∑

k=0

p−k−1∑

l=0

(
N

n + 1

) (
n − p − 1

k

)

(
p − k − 1

l

)(
k + 2

l + 1

)(−iγr
3

2

)n−p (−iγr
2

2

)p+1 (
|Ω|2

)k+1
ψ+

npk(t′)

]

(5.12)

with

ψs(t
′) =

(
−i

√
L

~c

VPkS

~

)
e−it′(ωv−i γs

2
), (5.13)

and

ψ+
npk(t′) =

δp−k
s3 δn−p−k−1

s2

δn+1
s+ δn+1

s−
+

n∑

i=0

i∑

q=0

q∑

r=0

(
n − p − k − 1

q − r

) (
i − q + n

i − q

)

×
(

p − k

r

)
(−1)n−q


δp−k−r

+3 δn−p−k−1−q+r
+2

δn−i+1
+s δn+i−q+1

+−
e−it′δ+s

n−i∑

j=0

(it′δ+s)
j

j!

+
δp−k−r
−3 δn−p−k−1−q+r

−2

δn−i+1
−s δn+i−q+1

−+

e−it′δ−s

n−i∑

j=0

(it′δ−s)
j

j!


 , (5.14)

with δij = ω′
i − ω′

j and ω′
i = ωi − iγi/2. All parameters have been defined in

the previous chapter. In a similar way, one can calculate the σ− photon wave
field using the expression for Bm(ω) and Eq. (4.9). The general expression for
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the σ− photon field is

ψ−
N (t′) = ψs(t

′)
−i

√
γr
2γr

3

2
Ω∗

N−1∑

n=0

n∑

p=0

p∑

k=0

p−k−1∑

l=0

(
N

n + 1

) (
n − p

k

)

×
(

p − k − 1

l

) (
k + 1

l + 1

)(−iγr
3

2

)n−p (−iγr
2

2

)p (
|Ω|2

)k
ψ−

npk(t′)

(5.15)

with

ψ−
npk(t′) =

δp−k
s3 δn−p−k

s2

δn+1
s+ δn+1

s−
+

n∑

i=0

i∑

q=0

q∑

r=0

(
n − p − k

q − r

)(
i − q + n

i − q

)

×
(

p − k

r

)
(−1)n−q


δp−k−r

+3 δn−p−k−q+r
+2

δn−i+1
+s δn+i−q+1

+−
e−it′δ+s

n−i∑

j=0

(it′δ+s)
j

j!

+
δp−k−r
−3 δn−p−k−q+r

−2

δn−i+1
−s δn+i−q+1

−+

e−it′δ−s

n−i∑

j=0

(it′δ−s)
j

j!


 . (5.16)

As these amplitudes have mutually orthogonal polarizations, the total photon
intensity that impinges on a detector at time t is given by

I(t) = |ψ+(t)|2 + |ψ−(t)|2, (5.17)

≡ I++ + I+−, (5.18)

for a σ+ source photon.

Simulations

We believe that the easiest way to address these photon wave functions is
through numerical simulations. It must be noted that the following simulations
are only valid for the ‘ideal’ case, i.e. there is no line broadening (except due to
the finite lifetime), there are no neighboring absorption lines and all interaction
is resonant (fr = 1). Deviations from the ideal case are discussed in detail in
the next section.

In order to allow for a correct interpretation of the time-differential spectra
in a three-level nuclear medium, we first consider the two-level system (Ω = 0)
as a reference case. In Fig. 5.4 the total transmitted intensity for N = 50
is plotted for different values of detuning δ = ω − ω0. The other parameters
involved are chosen as: γs = γ and γr = γ/10. In comparison with the bold
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Figure 5.4: Simulated time-differential spectra in a two-level system (Ω = 0) for
different values of δ = ω − ω0.

solid line, which represents the normal lifetime curve (without absorber), there
is a considerable ‘speed-up’ effect at small times, i.e. the exponential has a
steeper slope. It is followed by a ‘dynamical beat’. Both features are pure
multiple scattering effects and have been discussed in detail in many papers,
see e.g. [102,103,118,125,126].
If the incident radiation is detuned from resonance, the beating pattern shifts
towards smaller times, while its amplitude increases. When δ & 2γ, it is seen
that, for certain times, even more radiation is detected than without absorber2.
Eventually, for large detuning, the spectrum approaches the normal lifetime
curve, as is expected.

Fig. 5.5 shows the simulations of the time-differential spectra in a three-
level Λ nuclear medium (Ω 6= 0) for incidence of a σ+ photon. Two absorbers
(N = 5 and N = 20) and four different values of mixing interaction Ω are com-
pared. We have chosen γs = γ3 = γ2 = and γr

2 = γr
3 = γ2/10 and the incident

radiation is tuned at the center of the (mixed) absorption lines: ω = ω0. The
bold solid line again represents the normal lifetime curve.
The speed-up and dynamical beat signatures are now less pronounced because
the absorbers are chosen to be less thick. A novel feature for Ω 6= 0 is the
appearance of radiation with the orthogonal polarization state (I+−). This

2This is seen at times when the intensity curve crosses the normal lifetime curve. The

overall, time-integrated intensity, however, is always smaller than in the case without ab-

sorber.
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(γ3 = γ2) for different values of the mixing interaction Ω.



5.2 Time-dependent photon wave function in the coherent path model 139

radiation does not interfere with the incoming radiation and, hence, does not
display the initial exponential decay curve (which originates from the decay of
the source nucleus). It contributes to the total spectrum mainly at times sev-
eral lifetimes later than t = 0. This delay decreases, however, with increasing
Ω, along with the amplitude of its contribution. For large Ω, the spectra tend
to coincide with the normal lifetime curve, which could be compared with the
case of a large detuning in the two-level system. For N = 5 the effects are
similar but less pronounced.
Simulations in the case of γ3 = γ2/100 are presented in Fig. 5.6. The spectra
are very similar to the case with equal decay rates, except that the peak am-
plitude of the I+− contribution is a little higher. Its shape and position have
not changed.
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Figure 5.6: Simulated time-differential spectra in a three-level Λ system with
γ3 = γ2/100 and N = 20, for different values of the mixing interaction Ω.

From the solutions of the photon wave functions in the coherent path model
we know that they are superpositions of n−hop amplitudes, with n (or n + 1)
the number of real scattering events. It is instructive to also visualize these
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n−hop amplitudes in their time-differential form. The first n−hop amplitudes
for N = 20 are shown in Fig. 5.7. As in the time-integrated picture, the first
hop yields a negative contribution with respect to the (positive) exponential
contribution of the noninteracting part of the radiation. This first hop am-
plitude decreases the transmitted intensity for small times, giving rise to the
apparent speed-up effect. The contributions of the next n−hop amplitudes not
only decrease, but also shifts towards later times. It can be shown that, for
Ω = 0, they reach their maximum strength exactly at tn = n(γ2/2)−1. Hence,
each n−hop amplitude is seen to be delayed with respect to the noninteracting
radiation, which has its maximum transmission at t = 0. The specific form of
tn supports the interpretation that the delay is simply due to the interaction
of the radiation with the nuclear medium, where each interaction (scattering)
adds (γ2/2)−1 to the delay. This also coincides with the intuitive picture that,
upon absorption of the radiation, the nucleus decays with a lifetime of γ−1

2 and
therefore ‘slows down’ the radiation by the same factor.
For Ω = γ2, although the concept of a peak amplitude is less applicable, the
contribution of an n−hop amplitude is also seen to shift towards later times
with increasing n. Their oscillatory behavior, however, makes a straightfor-
ward interpretation more cumbersome. At least, we observe that the n−hop
amplitudes for I+− experience more delay than their I++ counterparts. The
creation of the amplitudes belonging to I+− involves at least one interaction
with the mixing field. This interaction time is the reason for the additional
delay.

Can these time-differential spectra somehow be related with the concept
of group velocity, discussed in the previous section? First, we know that the
intensity measured at t = 0 corresponds to radiation that has travelled the
distance from source to detector with vg = c (remember that t → t′ = t −
x/c). In fact, without an interacting medium, the entire source pulse should
propagate with c. The reason that, in this case, radiation is detected at times
later than t = 0 is of course due to the delayed emission by the source itself,
resulting in the exponential ‘lifetime’ curve.
The n−hop amplitudes show that radiation that interacts with the nuclear
medium, experiences a delay ∆t = tn − t0 (for Ω = 0). The corresponding
group velocity of an n−hop amplitude can then be calculated as

vg =
d

∆t
= c

(
tcγ2

2n

)
(5.19)

with d the physical thickness of the absorber and tc = d/c the time it takes to
travel through the absorber at the speed of light in vacuum. If we consider an
absorber with d ≈ 10−4 m and γ2/(2π) ≈ 1MHz, then vg/c ≈ 10−7 for n = 1.
This is of the same order of magnitude as the group velocities obtained in the
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system (top figure) and in a three-level Λ nuclear system (middle and bottom figure)
with γ3 = γ2



142 CHAPTER 5 Time-differential Mössbauer spectroscopy

semiclassical analysis.
It must be noted that vg as defined in Eq. (5.4) does not take into account
multiple scattering. The use of the index of refraction only accounts for a single
scattering event (multiplied by a factor proportional to the linear density).
Therefore, we can limit the comparison to the 1-hop case.
In the same figure, the effect of the strength of the mixing interaction upon the
delay of I+− is clearly seen. The peak shifts to smaller times with increasing
Ω. This is in qualitative agreement with the Ω-dependence calculated in Fig.
5.2.

5.3 Time-differential Mössbauer spectroscopy

It was already recognized almost half a century ago [125] that 57Fe is not only
an ideal candidate to perform time-integrated Mössbauer spectroscopy, but it
lends itself perfectly for Mössbauer experiments as a function of time, i.e. time-
differential Mössbauer spectroscopy (TDMS). In the decay of 57Co, as shown
in Fig.2.3, the emission of the 122 keV gamma photon announces the formation
of the 14.4 keV state. Hence, the detection of the 122 keV gamma photon can
act as a start of the clock, while the detection of the 14.4 keV photon stops it.
To maximize the chance that both photons belong to the decay of the same nu-
cleus, two measures can be taken. First, the 122 keV and 14.4 keV are detected
in coincidence, i.e. their detection should occur within a certain time interval,
typically taken to be a few times the lifetime of the 14.4 keV state. Second, the
strength of the radioactive source should be low enough to assure that in this
time interval only few 57Co nuclei decay. However, there is a trade-off with the
time necessary to obtain a reasonable spectrum, which of course increases for
decreasing source strength.
The experimental difficulties, combined with the complex analysis of the spec-
tra, quickly cooled down the initial interest of the Mössbauer community. Only
a limited number of researchers have published on TDMS, mainly in the sixties
of the 20th century, see e.g. [127–129]. It was not before the advent of the syn-
chrotron that the interest in time-differential measurements was revived [130].
The use of synchrotron radiation has solved most of the experimental problems
and has opened up the range of candidate nuclei. The further increase of the
complexity of the measured spectra and the lack of a table-top synchrotron,
however, can be considered serious drawbacks.
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5.3.1 Experimental setup

The setup described in section 1.2 is extended with a second detector. Both
detectors are now NaI scintillation detectors, which have a good time resolution
and a sufficient energy resolution to resolve the 6 keV X-ray3 and the 14.4 keV
gamma-ray. The driving signal of the transducer is modified in order to run
in a ‘constant velocity’ mode. This is achieved by electronically levelling of
the triangular driving function at the desired velocity. This method, however,
reduces the number of accepted counts by a factor of 4.
A good choice of the signal processing electronics is of crucial importance in
this kind of experiments. In theory, the best timing resolution is achieved in
a fast/slow coincidence setup, where the timing signal is separately processed
from the energy signal. However, former research [131] has learned that, in
the case of 57Fe, a combined energy and time configuration results in a good
timing resolution as well. A typical example of such a setup is shown in Fig.
5.8. The upper network is set to analyze the 14.4 keV signal (by means of the
single-channel analyzer (SCA)) and the lower part processes the 122 keV signal.
The signal from SCA2 will start the time-to-amplitude converter (TAC), while
SCA1 provides the stop signal. The height of the output pulse from the TAC
is now proportional to the time difference between the start and stop pulses.
The height (or time) information is stored as a count in one particular channel
of the multichannel analyzer, finally yielding the time-differential spectrum.

source

detector 1

detector 2

14 keV

122 keV

delay-line
amplifier 1

preamplifier 1 timing single-
channel analyzer 1

time-to-amplitude
converter

analog-to-
digital converter

multichannel
analyzer

preamplifier 2
delay-line
amplifier 2

timing single-
channel analyzer 2

start

stop

Figure 5.8: Schematic overview of a delayed-coincidence timing data system for a
TDMS measurement.

3This 6 keV X-ray originates from the deexcitation of 57Fe by electron conversion. When

this electron vacancy is filled by an electron from a higher orbital, the reduction of the energy

is balanced by the emission of this X-ray.
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5.3.2 Simulations of a realistic experiment

Without actually performing a series of TDMS experiments, it is possible to
simulate the outcome of such an experiment through the models developed in
the previous chapters. We start from the ideal case that is discussed in section
5.2, and then change some parameters to their realistic values. We do this step
by step in order to study the influence of these parameters.
We consider the ideal case to correspond to the conditions that all interaction
is resonant, i.e. fr = 1, with no line broadening, i.e. qi = 1, and no other
absorption lines except for those involved in the Λ-scheme. The simulations
are obtained in the Blume-Kistner model for an absorber with Te = 8 in the
parallel geometry.

Ideal case and mixing interaction The top figure in Fig. 5.9 shows the
TDMS spectrum in the ideal case and without mixing interaction. The con-
tribution of the σ− incident radiation (I−− + I−+) displays a dynamical beat
and more speed-up than the I++ + I+− contribution. The higher value of the
Clebsch-Gordan coefficient in the σ− case results in an apparent higher thick-
ness, giving rise to the more pronounced multiple scattering features. As in all
following figures, the normal lifetime curve is shown as a reference case.
The lower figure in Fig. 5.9 shows the change in the spectra when a mixing
interaction is present. The mixing is assumed to originate from a non-axial efg,
which is parameterized by η. From η ≈ 0.1 on, which corresponds to Ω ≈ 0.7γ2,
the spectrum is changed considerably, with the appearance of a delayed frac-
tion of the transmitted radiation.

Resonant fraction and line broadening The top figure in Fig. 5.10 shows
the strong influence of the resonant fraction. The best achievable value for this
experiment is fr = fLM ≈ 0.7. The non-resonant counts due to scattering with
recoil also exhibit an exponential decay curve. If we assume that the multiple
scattering effects before recoiling are negligible, then this non-resonant fraction
yields a normal lifetime curve. Its contribution partially masks the interesting
features of the resonant fraction.
In a TDMS experiment, the background events originating from scattering with
recoil must be distinguished from another source of ‘noise’. Background counts
in the gamma detection, which originate from events other than the 14.4 keV
photon, and false coincidence counts between the 14.4 keV and 122 keV photons
give rise to a uniform background baseline.
The simulations in the lower figure in Fig. 5.10 illustrate the dependence on
the widths of the absorption lines. Up till now, we assumed that the width of
the excited levels equals the natural width (γ = τ−1). But these widths could
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Figure 5.9: Simulations of the experimental time-differential spectrum in the ideal
case, without mixing interaction (η = 0) in the top figure, and with a mixing in-
teraction due to a non-axial efg in the bottom figure. The total intensity in the
top figure is the weighted sum of the four polarization dependent contributions:
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be increased through different line broadening mechanisms, e.g. distributions
in hyperfine fields and/or a fluctuating magnetic field. Also external effects,
like small vibrations in the setup, can result in an increase in line widths. It
is seen that the effect of the mixing interaction is being ‘blurred out’ upon
increasing line width.
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Figure 5.10: Simulations of the experimental time-differential spectrum for the
case with a non-resonant fraction (fr < 1) (top figure) and for the case with line
broadening (bottom figure).

Multilevel scheme Finally, in Fig. 5.11 the presence of other absorption
lines is simulated. Although the energy difference with the incident photon
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can be large, due to its Lorentzian frequency spectrum, there is always a small
part in the wings that will interact with these distant transitions. The effect is
limited to the appearance of wiggles on the original time spectrum.
In the same figure a comparison is made with the case without mixing inter-
action, but also including all of the above considerations. There is still an
important difference between both spectra. In our opinion, however, it does
not present strong evidence for an induced delay of the transmitted radiation,
since the spectrum still falls within the borders of the normal lifetime curve.
The spectrum for η = 0.05 (not shown) almost coincides with the spectrum
without the mixing interaction, leaving a possible interpretation in terms of
delay very hard to prove.
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Figure 5.11: Simulations of the experimental time-differential spectrum for the
case of a multilevel system with η = 0.1, in comparison with a three-level system
(with same mixing interaction) and a multilevel system without mixing.

5.4 Conclusions

Although the concept of group velocity is not always applicable and must be
handled with care, we have followed the mainstream trend and estimated vg in
a nuclear medium. By comparison with the reduction of the group velocity in a
two-level system we hope to have put the results in the right perspective. It is
shown that the case of the lowest group velocity does not correspond with the
conditions for a large transparency window. In the latter case, the influence
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of the decay rate of the coupling state (γ3) becomes negligible. Not only does
this mean that the decrease of vg is mainly due to the off-resonance situation,
but also that the nuclear case should not be considered inferior to the optical
case with respect to slow group velocities.
Simulations of the time-differential photon amplitudes in the coherent path
model suggest that a delay in the peak amplitude with respect to the initial
time of emission can be related to the (classical) concept of group velocity.
From the total transmitted intensity, however, it is almost impossible to derive
vg for the pulse. There is not only the effect of speed-up, but also the interfer-
ence with the incident radiation, which has an exponential curve. If we could
realize an experimental setup that is polarization sensitive, then a delay could
unequivocally be observed in the detection of the I+− contribution.
Although the calculations are convincing and very hopeful, simulations that
take into account the real experimental conditions leave little room for spec-
tacular observations. Even in the case of a perfect data system, it is shown that
the measurable time-differential Mössbauer spectrum will be quite featureless,
yielding only very weak evidence for a delay of gamma photons.



Conclusions and outlook

This thesis has mainly been concerned with understanding the reduced ab-
sorption, which was observed in the Mössbauer spectra of FeCO3 at the level
crossing temperature. The spectra recorded in the parallel, as well as in the
perpendicular geometry, display a partial transparency at the absorption line
that involves the crossing levels. Whereas the latter spectrum can be explained
as a saturation effect, the first certainly can not.
If there is an interaction present that induces transitions between these crossing
levels, then this nuclear system is analogous to a quantum optical Λ-scheme
in which electromagnetically induced transparency can be observed. The best
candidate for an interaction, whose influence is limited to the mixing of the
crossing levels, has been identified as a non-axial component of the electric
field gradient. This assumption is also supported by the chemical analysis. A
6.4% Mn content on substitutional lattice sites can indeed disturb the, initially
symmetrical, electric field gradient. As these impurities have, most probably, a
random distribution, also the resulting mixing interaction must have a random
nature. However, we have shown that the (random) phase of the mixing in-
teraction does not play a role in the final solution of the transmitted intensity.
A random magnitude of the mixing interaction is, eventually, modelled by a
Gaussian distribution centered around its zero value. Then the only, but im-
portant, difference between the optical and nuclear scheme is due to the decay
rates of the mixing levels, which are (close to) equal in the nuclear case. It is
shown that, if the decay rates are exactly equal, the interference term vanishes,
resulting in a spectrum consisting of two Lorentzian absorption lines. The
experimental data, however, suggest slightly different decay rates for each ab-
sorption doublet, which is explained by the presence of a fluctuating magnetic
field. The differences are such that the absorption at the level crossing from the
|mg = −1/2〉 yields a net destructive interference, leading to less absorption at
the line center, whereas the absorption from the |mg = 1/2〉 (perpendicular ge-
ometry only) yields a net constructive interference. These results qualitatively
explain the reduced absorption in the parallel geometry and the difference with
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the perpendicular geometry in a consistent way.
Another distinctive feature of the nuclear Λ-scheme is the creation of radiation
with a polarization that is complementary to the polarization of the incident
radiation. This radiation does not interfere with the incident radiation and,
therefore, contributes positively to the transmitted radiation, thereby further
reducing the absorption at the level mixing. It also shows a particular thickness
dependence, having its maximum intensity at the line center around Te = 10
and, for higher Te, displaying a double hump structure with a splitting increas-
ing with increasing thickness.

Some collateral, though interesting, aspects have been studied in more de-
tail. The experimentally deduced line width of the π absorption line in the
perpendicular geometry displays an anomalous broadening behavior. This is
now understood as a polarization effect.
The results obtained in the quantum mechanical coherent path model, in gen-
eral, qualitatively agree with the semiclassical results. There are some dis-
crepancies, however, that are due to the discrete nature of the coherent path
solution. We have shown that the two-level result (Ω = 0) coincides with the
first N terms of the classical exponential function of the transmitted inten-
sity as long as the classical approximation of a continuous scattering process
is taken. Otherwise, the quantum mechanical result yields the same frequency
dependent terms, but with different amplitudes (this is also true in the case of
a three-level system).
We have shown that the photon wave function as used in the coherent path
model corresponds to the probability amplitude of the detection of an ejected
photo-electron. It is also here, at the time and place of the measurement,
that the quantum picture of light in terms of single gamma photons meets its
classical counterpart, where the radiation intensity is given as a first order cor-
relation function of the electric field.
Some time-dependent aspects of the transmitted gamma radiation in a three-
level nuclear Λ-scheme have been studied and compared to a reference two-level
system. The group velocity deduced in both systems shows a reduction of the
order of vg/c ≈ 10−7 and is comparable to an optical Λ-system. Extrapolation
of the results of the ideal case to the experimental conditions, however, predicts
only a small observable signature of the delay of the gamma radiation.

The work as presented in this thesis could certainly be improved by col-
lecting more unambiguous experimental evidence. If one could use a pure,
artificially grown FeCO3 single crystal and then apply a known mixing inter-
action, the resulting transparency should be controllable. As we have shown,
however, a strong magnetic field, of the order of 5T, is necessary to yield an
observable effect. The transparency effect will nevertheless always be limited
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due to the (almost) equal decay rates of the crossing levels. We do not know
how to overcome this limitation.
This work also suggests some interesting polarization dependent experiments.
In the case of level mixing, the transmitted radiation can change its polariza-
tion with respect to the incident radiation. This property could be applied to
observe a double hump structure in an ’ordinary’ Mössbauer setup or to study
time-dependent properties of the scattered radiation, like delay, without the
disturbing effect of the non-scattered radiation. Such experiments, of course,
presume an emission and detection process that is polarization sensitive.
An appealing feature of these experiments with gamma radiation and nuclei,
and this research in general, is their single photon nature. Therefore, such
experiments can help to understand fundamental processes like, e.g., the in-
teraction of a single photon with one or with a large number of atoms or nuclei.

Nevertheless, we must be honest with ourselves and the reader, and note
that this quantum nucleonic research is still strongly confined to the concep-
tual level, making it less attractive for investments of time and money. The
contradictory situation, that no investments lead to no progress and hence no
investments, is the fate of fundamental research and is difficult to dispute as
long as science is dictated by short-term economic vision. But maybe we should
not complain as we were given the opportunity to study with the aim to in-
crease the collective knowledge of mankind.
We hope that this work has somehow fulfilled that goal, at least by shedding
some light onto light from a different perspective. We only regret that this is
more than the end of this thesis, it is also the virtual end of the Gamma Optics
Group of Leuven.

Have you ever wondered how it must be to travel at the speed of light?
Rejoicing the eternal present? And how would the universe appear to you?

Has it not become a photon itself? A truly enlightening experience!





Appendix A

57Fe and FeCO3 general

parameters

The two tables below give a summary of the most relevant parameters of the
57Fe isotope and the siderite mineral respectively.
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Table A.1: Some relevant properties of 57Fe.

parameter symbol value

spin of ground state Ig 1/2

spin of first excited state Ie 3/2

magnetic moment of ground state µg +0.09044(7)µB [132]

magnetic moment of excited state µe −0.1549(2)µB [132]

isotopic abundance χ 2.2%

maximum resonant cross section σ0 2.57 × 10−18 cm2

energy of lowest γ-transition Eγ 14.41300(15) keV

frequency of 14.4 keV gamma ω0 = Eγ/~ 2.19 × 1019 Hz

half life of 14.4 keV level t1/2 98.1(3) ns

lifetime of 14.4 keV level τ 141.5(4) ns

total line width of 14.4 keV level

(in frequency units) γ 7.067MHz

(in velocity units) γ 0.097mm/s

Table A.2: Some relevant properties of FeCO3, see also [22].

parameter symbol value

density ρ 3.96 g/cm3

molar weight m 115.86 g



Appendix B

Clebsch-Gordan coefficients

and d functions

In table B.1 and table B.2 we have listed the Clebsch-Gordan coefficients and
d functions most relevant to this work, i.e. belonging to the six allowed M1
transitions in 57Fe. The sign convention is that of Rose [133] and Brink and
Satchler [43].
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Table B.1: Clebsch-Gordan coefficients C(IgLIe; mgMme) for Ig = 1/2, Ie = 3/2
and L = 1

mg M me C( 1
2 1 3

2 ;mgMme)

1/2 1 3/2 1

1/2 0 1/2
√

2/3

−1/2 1 1/2
√

1/3

1/2 −1 −1/2
√

1/3

−1/2 0 −1/2
√

2/3

−1/2 −1 −3/2 1

Table B.2: Selection of d functions dL
m′,m(β), with dL

m,m′ = (−1)m′
−mdL

m′,m =

dL
−m′,−m.

d1
0,0 = cos β d1

1,1 = 1+cos β
2 d1

1,0 = − sin β√
2

d1
1,−1 = 1−cos β

2

d2
0,0 = 3 cos2 β−1

2 d2
2,2 =

(
1+cos β

2

)2

d2
2,0 =

√
6

4 sin2 β d2
2,−2 =

(
1−cos β

2

)2



Appendix C

Contour integration and

the theorem of residues

If f(ω) is an analytic function of the form:

f(ω) =
e−iωt

(ω − ωi)n
, (C.1)

then its integration over ω can be seen as the real part of a complex closed loop
integral: ∮

dz f(z) =

∫ ∞

−∞
dz f(z) + lim

R→∞

∫ ±π

0

dθ iRf(Reiθ)

︸ ︷︷ ︸
IR

(C.2)

where we changed ω into z and z = Reiθ. The first integral on the right hand
side is the integration along the real axis. The second integral closes the loop
in the imaginary plane along a semi-circular path. Functions of the form of
f(ω) belong to the group of functions for which Jordan’s lemma applies. This
lemma shows that the value of IR is exactly zero in the case for integration
over the upper semi-circle, when t < 0, and for integration over the lower semi-
circle, when t > 0. For example, if we close our loop in the negative half of
the complex plane, IR = 0 for t > 0 and we have to consider the poles with
negative imaginary part (see fig.C.1).
The solution of the complex closed loop integral is given by the theorem of
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residues ∮
dz f(z) = ±2πi

∑

i

Res (f(ai)) , (C.3)

with Res (f(ai)) the residue of pole z = ai and with the +/− sign for anti-
clockwise/clockwise integration over the loop. In this work, we only encounter
‘normal’ poles of n-th order, which can be calculated as:

Res (f(ai)) =
1

(n − 1)!
lim

z→ai

∂n−1

∂zn−1
((z − ai)

nf(z)) . (C.4)

Im

Re

Figure C.1: Closed integration loop in the complex plane (here with three poles).



Appendix D

Derivation of the time

dependent photon wave

function

In this appendix we derive the expression for the time dependent photon wave
field ψ(x, t′), as discussed in section 5.2. In the Fourier transformation to time
domain of Pk(ω) (Eq.(4.31)) only the pole of ω = ωk − iε should be considered
(see section 5.2). This means that the expression for pk(t) equals that of Pk(ω),
except that the factor (ω − ωk + iε)−1 has disappeared and that ω is replaced
by ωk. For the integration over ωk we only retain these ωk dependent terms:

p+
npk(t′) ∝ δp−k

k3 δn−p−k−1
k2

δksδ
n+1
k+ δn+1

k−
, (D.1)

with δks/2/3 = ωk − ωs/2/3 + iγs/2/3/2 and δk± = ωk − ω±. Substituting this
expression into Eq.(4.33), the (npk)-term of the photon wave field is given by

ψ+
npk(t′) ∝

∫ ∞

−∞
ωk

δp−k
k3 δn−p−k−1

k2

δksδ
n+1
k+ δn+1

k−
e−iωkt′ . (D.2)

This integral can be solved by using the theorem of residues, which is explained
in appendix C. Here, the integrand has three poles in the negative imaginary
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plane: ωk = ωs−iγs/2 and ωk = ω±. The powers of the terms in the numerator
are always positive, hence they should not be considered as poles. The solution
of the integral is the sum of the three residues of these poles.

Pole ωk = ωs − iγs/2: The residue is found by straightforwardly substituting
ωk with ωs − iγs/2:

Res(ωk = ωs − iγs/2) =
δp−k
s3 δn−p−k−1

s2

δn+1
s+ δn+1

s−
e−i(ωs−iγs/2)t′ . (D.3)

Pole ωk = ω±: Each of these poles can be treated in the same way. We
consider the pole ωk = ω+. Because they are of the (n+1)-th order, the residue
should be calculated by

Res(ωk = ω±) =
1

n!
lim

ωk→ω±

∂n

∂ωn
k

(
δa
k3δ

b
k2e

−iωkt′

δksδc
k−

)

︸ ︷︷ ︸
=I1

, (D.4)

with a = p − k, b = n − p − k − 1 and c = n + 1. The n-th derivative of a
product of functions is given by Leibniz identity:

{I1}n =

n∑

i=0

(
n

i

) {
e−iωkt′

δks

}n−i

︸ ︷︷ ︸
=I2

{
δa
k3δ

b
k2

δc
k−

}i

︸ ︷︷ ︸
=I3

, (D.5)

with {}n the n-th derivative of the functions between brackets. The solution
of the I2 derivative is given by:

I2 = (−1)n−i (n − i)!e−iωkt′

δn−i+1
ks

n−i∑

j=0

(it′δks)
j

j!
. (D.6)

The I3 derivative is further divided into smaller derivatives:

I3 =

i∑

q=0

(
i

q

){
1

δc
k−

}i−q

︸ ︷︷ ︸
=I4

{
δa
k3δ

b
k2

}q

︸ ︷︷ ︸
=I5

, (D.7)

with

I4 = (−1)i−q (c + i − q + 1)!

(c − 1)!δc+i−q
−

. (D.8)
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Again, I5 is divided into two parts:

I5 =

q∑

r=0

(
q

r

)
{δa

k3}q−r

︸ ︷︷ ︸
=I6

{
δb
k2

}r

︸ ︷︷ ︸
=I7

, (D.9)

with

I6 =
a!δa−q+r

k3

(a − q + r)!
(D.10)

and

I7 =
b!δb−r

k2

(b − r)!
. (D.11)

Combining the results of all derivatives and rearranging the binomial coeffi-
cients, we find that

Res(ωk = ω+) = e−iω+t′
n−i∑

j=0

(it′δ+s)
j

j!

n∑

i=0

i∑

q=0

q∑

r=0

(
n − p − k − 1

q − r

)

×
(

i − q + n

i − q

) (
p − k

r

)
(−1)n−q δp−k−r

+3 δn−p−k−1−q+r
+2

δn−i+1
+s δn+i−q+1

+−
.

(D.12)

The sum of all three residues results in the expression for the time-dependent
photon wave field presented in Eq.(5.12) and Eq.(5.15).





Nederlandstalige

samenvatting

Deze samenvatting volgt dezelfde indeling als de vijf hoofdstukken uit de volledige
tekst.

Inleiding

Dit proefschrift bevat het relaas van ons onderzoek naar elektromagnetisch
gëınduceerde transparantie (afgekort als EIT) voor gammastraling. EIT is een
intensief onderzocht fenomeen in de kwantumoptica en kan kort omschreven
worden als het transparent maken van een medium voor een resonant elektro-
magnetisch veld, door middel van een tweede elektromagnetisch veld. In het
tweede deel van deze samenvatting wordt dit meer uitvoerig beschreven.
In de kwantumoptica wordt EIT meestal gerealizeerd met behulp van lasers in
een atomair drie-niveau Λ-schema. Het doel van dit werk is om na te gaan of er
een equivalent nucleair systeem bestaat. In deel 1 geven we de resultaten van
verschillende Mössbauer metingen op een één-kristal van het mineraal sideriet,
FeCO3.
Om deze experimentale spectra te verklaren, worden in deel 3 twee modellen
ontwikkeld, gebaseerd op de semiklassieke benadering van voorwaartse nucle-
aire verstrooiing. Deze modellen worden ook wel aangeduid als de Blume-
Kistner en de Maxwell-Schrödinger benadering.
Omdat we in deze thesis ook de nadruk willen leggen op het één-foton karakter
van het verstrooiingsproces, wijden we deel 4 aan een volledig kwantumme-
chanische beschrijving van de verstrooiing van gamma fotonen in een nucleair
Λ-schema.
Tenslotte wordt er in deel 5 dieper ingegaan op de tijdsafhankelijke eigenschap-
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pen van de gammastraling.

1. FeCO3 Mössbauer experimenten

We hebben de hyperfijnstructuur van twee FeCO3 één-kristallen van verschil-
lende effectieve dikte (Te = 3 en Te = 8) bestudeerd met behulp van Mössbauer
spectroscopie. De opgemeten spectra zijn onderworpen aan een eerste analyse.
Hierin zijn de absorptielijnen gefit als (verbrede) Lorentzlijnen, waarbij we voor
de bepaling van hun onderlinge posities gebruik gemaakt hebben van de kennis
van de hyperfijninteracties in FeCO3 uit de literatuur. De fits uit deze eerste
analyse zijn vrij goed, behalve wanneer de |me = −3/2〉 en |me = 1/2〉 toe-
standen kruisen. Zowel in de loodrechte als in de parallelle geometrie is in deze
eerste analyse minder absorptie waargenomen dan verwacht. De absorptie op
de toestandskruising is duidelijk minder dan de som van de doublet partners1

die niet betrokken zijn bij de kruising. Men is snel geneigd om dit toe te schrij-
ven aan saturatie. Maar simpele argumenten gebaseerd op de selectieregels in
de parallelle geometrie weerleggen deze stelling.
Als snel viel het ons op dat deze verminderde absorptie gelijkenissen vertoont
met de transparantie die gekend is als EIT in de kwantumoptica.

2. Elektromagnetisch gëınduceerde transparantie

Een vrij empirische definitie van elektromagnetisch gëınduceerde transparantie
(EIT) gaat als volgt: “EIT is het effect van het transparant maken van een an-
ders opaak medium voor een resonant elektromagnetisch (EM) veld, d.m.v. een
tweede EM veld.”Meer technisch wordt het geformuleerd als de gëınduceerde
transparantie, waarbij de transparantie het resultaat is van de combinatie van
een Stark opsplitsing en de interferentie tussen de twee aangeklede toestanden,
die gecreëerd zijn door het tweede EM veld. Het archetypisch optisch schema
waarin EIT waargenomen kan worden is een zogenaamd drie-niveau Λ-schema
(zie Fig. 2.1). Een EM ‘probe- of signaalveld’ is resonant met de |1〉 → |2〉
atomaire overgang, terwijl de |3〉 → |2〉 overgang aangedreven wordt door een
EM ‘koppelveld’. Een dergelijk systeem vertoont niet alleen een verminderde
absorptie maar ook een verandering van de brekingsindex. Dit leidt o.a. tot
een vermindering van de groepssnelheid van de EM puls in het medium.
We hebben aangetoond dat het nucleair schema bij toestandskruising analoog
is aan het optisch Λ-schema op voorwaarde dat er een bijkomende interactie

1De zes mogelijke absorptielijnen in een Fe Mössbauer spectrum kunnen gegroepeerd

worden in drie doubletten, waarbij de partnerlijnen omwille van pariteitsinvariantie gelijke

eigenschappen hebben.
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aanwezig is die in staat is om de kruisende niveaus op te mengen. Deze men-
gende interactie fungeert dan als het EM koppelveld, terwijl de gammastraling
gezien wordt als EM signaalveld. Er is echter een belangrijk verschil tussen het
optisch en nucleair schema wat betreft de vervalconstantes van de betrokken
toestanden. In het optisch geval is toestand |3〉 een stabiele of metastabiele
toestand, maar in ons nucleair schema vervalt deze toestand even snel als de
andere geëxciteerde toestand (|2〉). Het belang van dit verschil bij de totstand-
koming van de transparantie werd zeker niet onderkend in de eerste artikels
over nucleaire EIT. Het is eenvoudig aan te tonen dat wanneer de vervalcon-
stantes van de mengende niveaus gelijk zijn (γ2 = γ3) de interferentie helemaal
verdwijnt, wat een verminderde transparantie tot gevolg heeft.

3. Semiklassieke modellen

Een model voor de interactie tussen straling en materie wordt semiklassiek
genoemd wanneer de straling op een klassieke manier wordt beschreven (vol-
gens de vergelijkingen van Maxwell) en de materie kwantummechanisch. In een
eerste dergelijk model volgen we de benadering van Blume en Kistner. Hierin
wordt de voortplanting van straling in een medium gegeven door de oplossing
van de golfvergelijking in functie van de frekwentie van de straling en de dikte
van het medium. Alle eigenschappen van het medium zitten vervat in de 2× 2
complexe matrix van de brekingsindex. Deze brekingsindex is evenredig met
de voorwaartse verstrooiingsamplitude, die op zijn beurt afhangt van de over-
gangsmatrixelementen. We hebben dit model toegepast op het nucleair drie-
niveau systeem, waarbij de twee geëxciteerde niveaus opgemengd zijn. In het
geval van een heel dunne absorber kan de intensiteit van de doorgelaten stra-
ling inderdaad teruggebracht worden tot een som van 2 Lorentz absorptielijnen,
opgesplitst door de mengende interactie maar zonder interferentie. Voor een
kristal van willekeurige dikte hebben simulaties aangetoond dat de mengende
interactie niet afkomstig kan zijn van een magnetisch veld maar wel van een
(kleine) niet-axiale component van de elektrische veldgradiënt. Deze laatste zal
enkel de |me = −3/2〉 en |me = 1/2〉 toestanden opmengen op toestandskrui-
sing. De verminderde absorptie treedt dus enkel op bij de toestandskruising en
kan gezien worden als een combinatie van de Stark opsplitsing en de creatie van
straling met een polarisatie die complementair is met de polarisatie van de in-
vallende straling. Deze zal daardoor niet meer interfereren met de doorgaande
(niet-verstrooide) straling en een niet-verwaarloosbare, versterkende bijdrage
leveren tot het transparantie-effect (transmissiepieken die naar boven gericht
zijn).
We hebben ook bewezen dat, zelfs wanneer de niet-axiale component afkomstig
is van onzuiverheden in het kristal, en dus een willekeurige fase (en grootte)
heeft, deze toch aanleiding kan geven tot een effectieve opmenging.
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Desondanks zijn we niet geslaagd om binnen de lijnen van dit model een kwan-
titatieve fit te maken van de experimentele data, die ook nog eens consistent is
voor beide geometrieën.
Daarom hebben we onze toevlucht gezocht in de meer algemene Maxwell-
Schrödinger benadering, waarbij we ook rekening kunnen houden met kleine
verschillen in de vervalconstantes van de coherenties van beide geëxciteerde
toestanden. Dit heeft ons geleerd dat het al dan niet optreden van interferen-
tie in het nucleaire geval afhankelijk is van zowel de vervalconstantes als van
de overgangswaarschijnlijkheden. Wanneer de sterkste overgang gepaard gaat
met de grootste vervalconstante, dan is er destructieve interferentie (minder
absorptie). In het andere geval is er constructieve interferentie (meer absorp-
tie). Dit resultaat is in perfecte overeenstemming met het verschil tussen de
spectra in beide geometrieën. In de parallelle geometrie wordt de verminderde
absorptie (vanaf de |mg = −1/2〉 grondtoestand), afkomstig van de Stark op-
splitsing, versterkt door de destructieve interferentie. In de loodrechte geome-
trie daarentegen, alhoewel er een zelfde Stark opsplitsing moet zijn, wordt de
verminderde absorptie (vanaf de |mg = 1/2〉 grondtoestand) tegengewerkt door
de constructieve interferentie. Samen leiden ze tot een kwantitatief goede fit
en een consistente verklaring van de opgemeten spectra.

4. Coherent pad model

Om dieper in te gaan op het één-foton karakter van de nucleaire verstrooiing
en om na te gaan of de semiklassieke benadering in dit geval wel toegepast
kon worden, hebben we het volledig kwantummechanisch ‘coherent pad’ model
toegepast op het nucleair Λ-schema. Door verstrooiing aan een willekeurig
aantal kernen (N) te beschouwen houdt dit model ook rekening met de dikte
van het medium. De simulaties van de Mössbauer spectra in dit model zijn
in goeie overeenstemming met deze verkregen in de semiklassieke benadering.
Enkel door het discreet karakter van de meervoudige verstrooiing zijn er kleine
verschillen tussen beide modellen. Dit is bijvoorbeeld zichtbaar in de inten-
siteit van de straling die haar polarisatie veranderd heeft, die voor N ≈ 50 een
drie-piek structuur vertoont in dit model, maar een twee-piek structuur in de
semiklassieke benadering.
We hebben aangetoond dat de uitdrukking voor de doorgelaten intensiteit, in
het geval zonder mengende interactie (een twee-niveau systeem), exact over-
eenkomt met het semiklassieke resultaat, op voorwaarde dat N → ∞ en de
radiatieve vervalconstante γr → 0.
Op conceptueel niveau hebben we een eenduidig verband gevonden tussen de
gesuggereerde foton golffunctie en de waarschijnlijkheidsamplitude dat dit fo-
ton een elektron losmaakt in de detector. Hierdoor is het mogelijk om een
golffunctie, die gelokaliseerd is in tijd en ruimte, te associëren aan het foton-
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concept.

5. Tijdsdifferentiële Mössbauer spectroscopie

Door de waargenomen verminderde absorptie te identificeren als een vorm van
EIT, is het een logische stap om ook de tijdseigenschappen van de doorgelaten
straling te beschouwen, en dan in het bijzonder haar groepssnelheid vg. Door-
dat vg rechtstreeks in verband staat met de brekingsindex hebben we meteen de
resultaten uit de semiklassieke benadering kunnen gebruiken. De groepssnel-
heid neemt zowel in het optische (γ3 << γ2) als in het nucleaire geval (γ3 ≈ γ2)
sterk af, met een vermindering in de grootte-orde van vg/c ≈ 10−7. Deze ver-
mindering neemt af bij toenemende sterkte van de mengende interactie (vooral
zichtbaar in het optische geval), hoewel de geassocieerde transparantie juist
toeneemt. Om deze resultaten in het juiste perspectief te plaatsen, hebben we
ook het twee-niveau systeem bestudeerd, waarbij nu de invallende straling niet
meer exact in resonantie is met de overgang, maar daar in meer of mindere
mate van afwijkt. Een dergelijke situatie leidt immers ook tot een verminderde
groepssnelheid. Onze berekeningen hebben bevestigd dat dit van de zelfde
grootte-orde is als in het drie-niveau systeem.
Simulaties van de tijdsafhankelijke intensiteit in het coherent pad model tonen,
naast de gekende effecten van meervoudige verstrooiing als ‘speed-up’ en ‘dy-
namical beats’, duidelijk het ontstaan van de straling met een polarisatie die
complementair is aan de polarisatie van de invallende straling. Deze straling
vertoont een grote vertraging bij een kleine waarde voor de mengende interactie
en een maximale doorgelaten intensiteit voor Ω ≈ 2γ2. Uit een analyse van de
individuele amplitudes die bijdragen tot de foton golffunctie hebben we een uit-
drukking gevonden voor de geassocieerde groepssnelheid. Hieruit blijkt dat de
vermindering van de groepssnelheid, of de vertraging van het stralingspakket,
volledig te wijten is aan het proces van absorptie en emissie door de kernen.
Tenslotte hebben we nagegaan of dit vertragingseffect waarneembaar zou zijn
in een tijdsafhankelijke Mössbauer meting. In het ideale geval, d.i. er is geen
lijnverbreding (met uitzondering van de natuurlijke lijnbreedte), alle interactie
resonant en er is geen invloed van andere absorptielijnen, is de vertraging zicht-
baar als een toename van de intensiteit van de doorgelaten straling op latere
tijden, wanneer dit vergeleken wordt met het geval zonder mengende interactie.
Maar wanneer we rekening houden met een niet-ideale experimentele configu-
ratie, dan wordt deze vertraging heel moeilijk waarneembaar. Een dergelijk
tijdsafhankelijk spectrum zou geen harde bewijzen kunnen leveren voor de
waarneming van vertraagde gamma fotonen.
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Mössbauer group, University of Ottawa, 2002.

[54] R. V. Pound and G. A. Rebka, Phys. Rev. Lett. 4, 274 (1960).

[55] B. J. Josephson, Phys. Rev. Lett. 4, 341 (1960).

[56] E. N. Kaufmann and R. J. Vianden, Rev. Mod. Phys. 51, 161 (1979).

[57] M. Blume and J. A. Tjon, Phys. Rev. 165, 446 (1968).

[58] F. van der Woude and A. J. Dekker, Solid State Commun. 3, 319 (1965).

[59] S. E. Harris, J. E. Field, and A. Imamoglu, Phys. Rev. Lett. 64, 1107
(1990).

[60] M. Fleischhauer, A. Imamoglu, and J. P. Marangos, Rev. Mod. Phys.
77, 633 (2005).

[61] P. R. Fontana and R. P. Srivastava, Phys. Rev. A 7, 1866 (1973).

[62] E. Arimondo and B. Orriols, Lett. al Nuovo Cimento 17, 333 (1976).

[63] G. Alzetta, A. Gozzini, L. Moi, and B. Orriols, Nuovo Cimento B 36, 5
(1976).

[64] E. Paspalakis, N. J. Kylstra, and P. L. Knight, Phys. Rev. Lett. 82, 2079
(1999).

[65] P. R. Berman, Phys. Rev. A 58, 4886 (1998).

[66] S. E. Harris, Phys. Rev. Lett. 62, 1033 (1989).

[67] M. O. Scully, S. Y. Zhu, and A. Gavrielides, Phys. Rev. Lett. 62, 2813
(1989).

[68] O. Kocharovskaya and P. Mandel, Phys. Rev. A 42, 523 (1990).

[69] S. E. Harris, Physics Today 50, 36 (1997).

[70] J. R. Kuklinski, U. Gaubatz, F. T. Hioe, and K. Bergmann, Phys. Rev.
A 40, 6741 (1989).

[71] S. Alam, Lasers without Inversion and Electromagnetically Induced
Transparency, SPIE Optical Engineering Press, 1999.

[72] A. Imamoglu and S. E. Harris, Opt. Lett. 14, 1344 (1989).

[73] M. D. Lukin, Rev. Mod. Phys. 75, 457 (2003).



BIBLIOGRAPHY 173

[74] M. Born and E. Wolf, Principles of Optics, Cambridge University Press,
seventh (expanded) edition, 1999.

[75] J. Jackson, Classical Electrodynamics, 3rd Ed., John Wiley and Sons,
1998.

[76] A. M. Steinberg and R. Y. Chiao, Phys. Rev. A 49, 2071 (1994).

[77] L. J. Wang, A. Kuzmich, and A. Dogariu, Nature 406, 277 (2000).

[78] S. E. Harris, J. E. Field, and A. Kasapi, Phys. Rev. A 46, 29 (1992).

[79] L. V. Hau, S. E. Harris, Z. Dutton, and C. H. Behroozi, Nature 397, 594
(1999).

[80] C. Liu, Z. Dutton, C. H. Behroozi, and L. V. Hau, Nature 409, 490
(2001).

[81] D. Philips, A. Fleischhauer, A. Mair, R. Walsworth, and M. D. Lukin,
Phys. Rev. Lett. 86, 783 (2001).

[82] A. V. Turukhin, V. S. Sudarhanam, M. S. Shahriar, J. A. Musser, B. S.
Ham, and P. R. Hemmer, Phys. Rev. Lett. 88, 023602 (2002).

[83] J. Odeurs, editor, Nuclear Quantum Optics, volume 135 of Hyp. Int.,
Kluwer Academic Publishers, 2001.

[84] L. A. Rivlin, Laser Phys. 9, 12 (1998).

[85] G. C. Baldwin and J. C. Solem, Rev. Mod. Phys. 69, 1085 (1997).

[86] R. Coussement, M. V. den Bergh, G. S’heeren, G. Neyens, and
R. Nouwen, Phys. Rev. Lett. 71, 1824 (1993).

[87] U. Leonhardt, Measuring the Quantum State of Light, Cambridge Studies
in Modern Optics, Cambridge University Press, 1997.

[88] R. P. Feynman, R. B. Leighton, and M. Sands, The Feynman Lectures
on Physics Vol.3, Addison-Wesley, Reading, 1966.

[89] S. E. Harris, Phys. Rev. Lett. 70, 552 (1993).

[90] H. Gabriel, Phys. Rev. 184, 359 (1969).

[91] F. G. Vagizov, Hyp. Int. 61, 1359 (1990).

[92] I. Tittonen, M. Lippmaa, E. Ikonen, J. Lindén, and T. Katila, Phys.
Rev. Lett. 69, 2815 (1992).



174 BIBLIOGRAPHY

[93] K. Hakuta, L. Marmet, and B. P. Stoicheff, Phys. Rev. Lett. 66, 596
(1991).

[94] K. Hakuta, L. Marmet, and B. P. Stoicheff, Phys. Rev. A 45, 5152 (1992).

[95] R. N. Shakhmuratov and J. Odeurs, Hyp. Int. 135, 215 (2001).

[96] R. Coussement, Y. Rostovtsev, J. Odeurs, G. Neyens, H. Muramatsu,
S. Gheysen, R. Callens, K. Vyvey, G. Kozyreff, R. N. Shakhmuratov,
O. Kocharovskaya, and P. Mandel, Phys. Rev. Lett. 89, 107601 (2002).

[97] J. Odeurs, R. Coussement, K. Vyvey, H. Muramatsu, S. Gheysen, R. Cal-
lens, G. Neyens, I. Serdons, R. N. Shakhmuratov, Y. Rostovtsev, and
O. Kocharovskaya, Hyp. Int. 143, 97 (2002).

[98] R. Coussement, S. Gheysen, I. Serdons, R. Callens, K. Vyvey, ,
R. N. Shakhmuratov, J. Odeurs, P. Mandel, Y. Rostovtsev, and
O. Kocharovskaya, Hyp. Int. 151, 93 (2003).

[99] Y. Rostovtsev and O. Kocharovskaya, Hyp. Int. 135, 233 (2001).

[100] P. W. Milonni, Phys. Rep. 25, 1 (1976).

[101] M. Blume and O. C. Kistner, Phys. Rev. 171, 417 (1968).

[102] G. V. Smirnov, Hyp. Int. 123/124, 31 (1999).

[103] U. van Bürck, Hyp. Int. 123/124, 483 (1999).

[104] M. Lax, Rev. Mod. Phys. 23, 287 (1951).

[105] J. P. Hannon and G. T. Trammell, Hyp. Int. 123/124, 127 (1999).

[106] D. P. Siddons, U. Bergmann, and J. B. Hastings, Hyp. Int. 123/124,
681 (1999).

[107] R. Coussement, S. Cottenier, and C. Labbé, Phys. Rev. B 54, 16003
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