
ARENBERG DOCTORAL SCHOOL
Faculty of Engineering Technology

Elevating Multithreading
Further into the Cloud
Evaluation and Amelioration of
Hardware-Assisted Virtualization for
Multithreaded Applications in X86

Stijn Schildermans

Dissertation presented in partial
fulfillment of the requirements for the

degree of Doctor of Engineering
Technology (PhD): Electronics-ICT

June 2022

Supervisors:
Prof. dr. K. Aerts
Prof. dr. ir. T. Schrijvers
Prof. dr. X. Ding

(New Jersey Institute of Technology)

Elevating Multithreading Further into the Cloud

Evaluation and Amelioration of Hardware-Assisted Virtualization for
Multithreaded Applications in X86

Stijn SCHILDERMANS

Examination committee:
Prof. dr. ir. M. Vergauwen, chair
Prof. dr. K. Aerts, supervisor
Prof. dr. ir. T. Schrijvers, supervisor
Prof. dr. X. Ding, supervisor
(New Jersey Institute of Technology)

Prof. dr. ir. D. Weyns
Dr. ing. L. Vandeurzen
Prof. dr. ir. M. Verhelst
Dr. L. Cuypers
(Commeto)

Prof. dr. J. Shan
(Hofstra University)

Dissertation presented in partial
fulfillment of the requirements for
the degree of Doctor of Engineering
Technology (PhD): Electronics-ICT

June 2022

© 2022 KU Leuven – Faculty of Engineering Technology
Uitgegeven in eigen beheer, Stijn Schildermans, Wetenschapspark 27, 3590 Diepenbeek (Belgium)

Alle rechten voorbehouden. Niets uit deze uitgave mag worden vermenigvuldigd en/of openbaar gemaakt worden
door middel van druk, fotokopie, microfilm, elektronisch of op welke andere wijze ook zonder voorafgaande
schriftelijke toestemming van de uitgever.

All rights reserved. No part of the publication may be reproduced in any form by print, photoprint, microfilm,
electronic or any other means without written permission from the publisher.

Preface

The story of this Ph. D. project starts with that of my Master’s thesis, in
which I explored the potential of functional programming in various cloud
environments. The main conclusion of this work was that the functional
programming style lends itself very well to the cloud, but at the time the
severely limited support cloud platforms offered for functional programming
languages inhibited developers from fully exploiting this natural synergy. This
finding originally led to my Ph. D. project, which aimed to develop a platform
and accompanying software framework that allowed practitioners to fully harness
the potential of functional programming in the cloud.

Naturally, the findings of my Master’s thesis would serve as the outset for
developing the platform and framework described above. As such, the first goal
of my Ph. D. was to understand the underlying mechanisms that led to these
findings. Early on in this process, my attention was drawn to a particularly
interesting observation my Master’s thesis made, being that multithreaded
functional programs outperformed their traditional object-oriented counterparts
in the cloud. Soon I found myself combing through system software and
hardware manuals in search for an explanation. I discovered that virtualizing
multithreaded applications—functional or not—is in fact far from trivial and
doing so may to this day induce severe performance issues. This led me
to realize that the observation I made during my Master’s thesis is in fact
but a symptom of a much broader problem, namely efficiently virtualizing
multithreaded applications. This realization compelled me to shift the focus of
my Ph. D. from functional programming to multithreading in a cloud context,
eventually leading to the dissertation before you right now.

For me personally, the Ph. D. project documented in this dissertation means
much more than simply a set of scientific contributions. For the past five years, it
was my principal goal in life and permeated a large part thereof. It forced me to
grow from a shy student used to doing what he is told to an assertive researcher
proactively looking for and tackling new challenges. Needless to say, this journey

i

ii PREFACE

was not without moments of doubt, desillusion and frustration. However, looking
back on it all, I am immensely proud that I persevered, knowing that aside from
scientific contributions, this project has also brought me enormous fulfillment
and personal enrichment in the form of unique experiences, knowledge and
character development.

Having admitted that I experienced this work as challenging at times, it is no
more than fitting to thank the persons enabling me to bring it to a successful
conclusion regardless. Foremost in this list is prof. dr. Kris Aerts, who granted
me the opportunity and funding to perform this Ph. D. and acted as my main
supervisor throughout. Additionally, I would like to thank prof. dr. Xiaoning
Ding and prof. dr. Jianchen Shan for providing me with invaluable technical
advise when working on several of the publications upon which this dissertation
is based and Hofstra University and KU Leuven for providing the infrastructure
necessary to perform the experiments supporting many of the findings presented
in this work. Furthermore, I would like to thank prof. Ding once again in
conjunction with the New Jersey Institute of Technology, the Flemish Research
Foundation and KU Leuven for making it possible for me to travel to the United
States of America for 4.5 months within the context of this Ph. D. project;
to this day the most enriching experience of my life. Finally, I would like
to thank my parents—Georges Schildermans and Godelieve Billiau—and my
girlfriend—Merel Vaes—for their unquestioning emotional support throughout
all these years.

Abstract

Due to the surging popularity of cloud computing on one hand and the
emergence of numerous novel, innately parallel workloads on the other, executing
multithreaded applications in a virtualized setting has become common practice
in industry. However, multithreading is known to be highly susceptible to
severe performance degradation in virtualized environments. In response,
virtualization technologies have evolved rapidly over the years; to the point of
virtual machines being considered comparable to their physical counterparts in
terms of performance. Precisely because of the rapidity of this evolution however,
empirical evidence supporting this consensus is limited at best. Moreover, the
crippling levels of performance degradation described in literature less than a
decade old suggest that—rapid improvements notwithstanding—it is more than
likely that several challenges still remain in this regard. Both identifying and
addressing these challenges are the main goals of this work.

Because virtualization is a very broad term, this manuscript commences by
describing the virtualization process in general and situating the scope of this
Ph. D. project within this broad landscape. Next, it performs a much needed
assessment of the state of the art by measuring virtualization overhead for
a variety of multithreaded applications through controlled experiments, after
first formally defining what exactly virtualization overhead entails within this
context. A reflection on potential mitigation techniques for the remaining
challenges these experiments lay bare follows. Finally, it refines, implements and
evaluates three of the most promising of these techniques, carefully selected to
each target a distinct level of the system stack so that they are complementary
to one another.

This dissertation makes clear that virtualization overhead is a multifaceted
phenomenon, in essence exclusively internal to the system in the form of reduced
resource efficiency. Nevertheless, this reduction in resource efficiency may be
observable externally in the form of a reduction in temporal efficiency. In
particular for multithreaded applications, these system and application effects

iii

iv ABSTRACT

may differ signifficantly in magnitude. Specifically, this work shows that these
effects may still amount to respectively 170% and 80% for multithreaded
applications in a state-of-the-art virtualized environment. Although these
numbers suggest that much work remains to be done, the complementary
mitigation techniques this work elaborates on represent a solid step in the
right direction. In particular, chapter 6 presents ’virtual scheduler ticks’ as a
means to address excessive virtualization overhead caused by rapid switches
between idle and active vCPU states in tickless systems by paravirtualizing the
scheduler tick, improving performance by up to 15%. Furthermore, chapter
7 addresses TLB shootdown overhead induced by rapidly resizing application
memory space, resulting in the concept of ’global hysteresis’, which yields
performance gains of up to 45%. Finally, chapter 8 outlines a series of guidelines
application developers may follow to minimize the likelihood of their code
suffering significant virtualization overhead. Although the effect of applying
these guidelines depends greatly on the nature of the application, the proof of
concept included in this manuscript achieves performance improvements of up
to 40%.

Beknopte samenvatting

Omwille van de toenemende populariteit van cloud computing alsook de opkomst
van verschillende nieuwe, van nature parallelle toepassingen is het uitvoeren
van applicaties die gebruik maken van multithreading in een gevirtualiseerde
context een standaardpraktijk geworden in de industrie. Desalniettemin staat
multithreading erom bekend zeer gevoelig te zijn voor performantieproblemen in
een gevirtualiseerde omgeving. Omwille hiervan zijn virtualisatietechnologieën
doorheen de jaren aan een hoog tempo geëvolueerd; zelfs zodanig dat virtuele
machines de dag van vandaag gelijkwaardig worden geacht aan hun fysieke
tegenhangers wat betreft performantie. Precies door het hoge tempo van
deze evolutie is empirisch bewijs ter ondersteuning van deze consensus
echter op zijn zachtst gezegd beperkt. Daarenboven suggereren de enorme
performantiedegradaties beschreven in literatuur die nog maar enkele jaren
oud is dat er op dit gebied meer dan waarschijnlijk nog tal van uitdagingen
overblijven. De voornaamste doelstellingen van dit werk zijn dan ook het
identificeren en het aanpakken van deze uitdagingen.

Omdat virtualisatie een zeer breed begrip is vangt deze thesis aan met een
beschrijving van het virtualisatieproces in het algemeen en een afbakening van
het gebied dat dit doctoraatsproject bestrijkt binnen dit brede landschap.
Vervolgens gaat dit werk de stand van zaken binnen dit gebied na door
aan de hand van experimenten virtualisatie-overhead op te meten voor een
brede waaier aan applicaties die gebruik maken van multithreading, na eerst
formeel te definiëren wat virtualisatie-overhead eigenlijk inhoudt binnen deze
context. Hierop volgt een reflectie over mogelijke oplossingen voor de resterende
problemen die deze experimenten onthullen. Ten slotte wijdt dit werk uit over
drie van de meest veelbelovende dezer mogelijke oplossingen, die aandachtig
geselecteerd zijn zodat ze elk betrekking hebben op een verschillende laag in de
systeem stack en elkaar dus automatisch aanvullen.

Dit proefschrift maakt duidelijk dat virtualisatie-overhead uit vele facetten
bestaat en in eerste instantie een louter intern systeemfenomeen is dat

v

vi BEKNOPTE SAMENVATTING

zich manifesteert in de vorm van verminderde systeembronefficiëntie. Deze
verminderde systeembronefficiëntie kan op zijn beurt echter extern worden
waargenomen in de vorm van verminderde tijdsefficiëntie. Specifiek voor
applicaties die gebruik maken van multithreading kunnen de groottes van
deze systeem- en applicatie-effecten sterk van elkaar verschillen. Concreet toont
dit werk aan dat deze effecten nog steeds respectievelijk 170% en 80% kunnen
bedragen voor applicaties die gebruik maken van multithreading in zelfs de
modernste gevirtualiseerde omgevingen. Hoewel deze resultaten suggereren dat
er nog veel werk voor de boeg ligt vormen de technieken die dit proefschrift
naar voor draagt een aanzienlijke stap in de goede richting. Specifiek stelt
hoofdstuk 6 het concept van ’virtual scheduler ticks’ voor als een manier om
buitensporige virtualisatie-overhead veroorzaakt door snelle overgangen tussen
actieve en inactieve vCPU toestanden in tickless systemen tegen te gaan door
paravirtualisatie toe te passen op de scheduler tick. Verder pakt hoofdstuk 7 TLB
shootdown overhead veroorzaakt door aan een hoog tempo de geheugenruimte
van applicaties in grootte aan te passen aan, wat leidt tot het concept van
’global hysteresis’ wat op zijn beurt performantiewinsten tot 45% bewerkstelligt.
Ten slotte beschrijft hoofdstuk 8 een reeks richtlijnen voor programmeurs met
als doel de kans dat zij code schrijven die significante virtualisatie-overhead
veroorzaakt te minimaliseren. Hoewel het effect van deze richtlijnen sterk
afhankelijk is van de specifieke applicatie waarop ze worden toegepast, bereikt
de bijgevoegde demonstratieve applicatie een performantiewinst van 40% na
toepassing van deze richtlijnen.

List of Abbreviations

ABI Application Binary Interface. 16, 17, 30

AI Artificial Intelligence. 2, 116

API Application Programming Interface. 23, 109, 110, 121, 153, 168, 173

APIC Advanced Programmable Interrupt Controller. 25, 75

BWW Blocked Waiter Wakeup. 44, 73, 130

CPI Cycles Per Instruction. 69, 70

CPU Central Processing Unit. 4, 8, 10, 14, 17–20, 23–25, 38–41, 43–48, 53, 55,
57, 61, 62, 64, 67, 68, 70–73, 75, 77, 78, 80, 81, 88–91, 94–96, 98, 109–112,
114, 123, 128, 130, 136–140, 148, 149, 154, 156, 157, 160, 162, 163, 167,
181, 184, 186, 187

DAS Directly Attached Storage. 33

DID Direct Interrupt Delivery. 130

DMA Direct Memory Addressing. 21, 23, 24, 41

EIE External Interrupt Exiting. 130

EPT Extended Page Table. 20

FIFO First-In-First-Out. 42

GB GigaBytes. 186

GPA Guest-Physical Address. 19, 20

vii

viii List of Abbreviations

GPGPU General-Purpose Graphics Processing Unit. 116

GPU Graphics Processing Unit. 25

GVA Guest-Virtual Address. 19, 20

HPA Host-Physical Address. 19, 20

HPC High-Performance Computing. 3, 4, 59

Hz Hertz. 110, 116, 154

I/O Input/Output. ix, 2, 10, 21–25, 31, 38, 39, 41, 46, 48, 60–62, 67, 92, 114,
116, 118, 122, 128–131

ICR Interrupt Command Register. 44, 45, 149

ID Identifier. 89, 99

IoT Internet of Things. 2

IP Internet Protocol. 34

IPI Inter-Processor Interrupt. 43–45, 73, 75, 76, 79, 81, 86, 89, 92, 98, 99,
137–140, 143, 149, 187, 188

ISA Instruction Set Architecture. 8, 14, 15

IT Information Technology. 1, 36

JIT Just-In-Time. 30

JRE Java Runtime Environment. 30

JVM Java Virtual Machine. 30, 96

kB Kilobytes. 128, 135, 141, 143, 178

LAN Local Area Network. 35

LAPIC Local Advanced Programmable Interrupt Controller. 110, 112

LBA Logical Block Addressing. 32

LHP Lock Holder Preemption. 42, 44, 45, 76, 79, 94, 95, 97, 130

LWP Lock Waiter Preemption. 42, 43, 94, 95, 97, 130

List of Abbreviations ix

MB MegaByte(s). 31, 135, 141, 142, 144, 159, 184, 186

MMIO Memory-Mapped Input/Output. 21, 23

MMU Memory Management Unit. 18–20

ms millisecond(s). 38, 116

MSR Model-Specific Register. 44, 45, 73, 75, 76, 94, 112, 113, 123, 130, 149

NAS Network-Attached Storage. 33, 34

NIC Network Interface Card. 25

NUMA Non-Uniform Memory Access. 45–47, 54, 57, 60–62, 64, 67, 69–71, 78,
81, 83, 85–87, 100–105, 126, 134, 135, 137, 139, 140, 148, 149, 156, 157,
160, 178, 179, 182, 186, 188, 191

NVMe Non-Volatile Memory express. 116

OC OverCommitted. 47, 49, 52, 61, 62, 64, 67, 69, 71, 72, 75–82, 87, 94, 95,
113, 122, 123

OC2 OverCommitted base two. 49, 52, 62, 64, 69, 77–80, 94

OPS Operations per Second. 55, 56

OS Operating System. 9–13, 16, 18–20, 26, 27, 29–33, 42–44, 47, 48, 61, 64,
75, 76, 80, 81, 88, 91, 97, 109–111, 122, 130, 138, 141, 144–146, 155, 163,
168, 178, 186

PCIe Peripheral Component Interconnect Express. 25

pCPU Physical Central Processing Unit. 14, 24, 44, 46, 47, 62, 89, 91, 101,
104, 116, 117, 130

PF Pause Filter. 43, 77

Ph. D. Doctor of Philosophy. 3, 5, 49, 81, 106, 166, 179, 189, 191, 193

PID Process Identifier. 26

PLE Pause Loop Exiting. 43, 76, 77, 79, 86, 94–97, 107, 123

PTE Page Table Entry. 18, 20, 44, 135, 136

RAID Reduntant Array of Independent Disks. 33

x List of Abbreviations

RAM Random Access Memory. 10, 22, 27

RCU Read-Copy-Update. 73, 112, 117, 122

RDT Resource Director Technology. 41

SAN Storage Area Network. 33, 34

SDK Software Development Kit. 174

SDN Software-Defined Networking. 34

SDS Software-Defined Storage. 34

SMP Symmetric MultiProcessing. 2, 109

SMT Symmetric Multithreading. 86, 91, 104

SR-IOV Single Root Input/Output Virtualization. 25, 67, 128

SSD Solid State Drive. 128

TLB Translation Lookaside Buffer. 18–20, 44, 45, 76, 79, 81, 87, 98–100, 106,
130, 133–141, 143, 144, 146–149, 153, 154, 156, 157, 160, 162–164, 176,
177, 181–183, 185, 187

TPU Tensor Processing Unit. 116

TSC Time Stamp Counter. 73, 112

UC UnderCommitted. 47, 49, 62, 64, 67, 69–72, 75, 76, 78, 79, 87, 88, 92, 93,
101, 103, 122, 123

vCPU Virtual Central Processing Unit. 14, 24, 25, 39, 42–46, 60–62, 64–67,
70, 72, 73, 75, 78–81, 86–93, 95, 97–99, 101–105, 112–119, 121, 122, 124,
126, 128–130, 186, 187

VIP Virtual Internet Protocol. 34

VIPT Virtually Indexed, Physically Tagged. 98

VLAN Virtual Local Area Network. 35

VM Virtual Machine. 8–12, 17, 19–27, 29–31, 37–43, 46–49, 60–62, 69, 72, 73,
80, 88, 89, 91, 97, 99–102, 104, 105, 112–119, 124, 126, 128, 130, 167, 182,
186, 192

VMCS Virtual Machine Control Structure. 17, 24, 130

LIST OF ABBREVIATIONS xi

VMM Virtual Machine Monitor. 10–25, 31, 39, 41–47, 72, 76, 79, 80, 87, 90,
91, 95, 99, 101, 102, 104, 105, 112, 113, 116, 117, 121, 130, 135, 186

VPN Virtual Private Network. 35

WAN Wide Area Network. 35

List of Symbols

δηr Reduction in Resource Efficiency

δηt Reduction in Temporal Efficiency

γ Central Processing Unit Count

ω Overhead Impact Factor

σ Variance

C Cycles

P Physical System

S System Settings

t Wall Clock Application Execution Time

V Virtual Machine

W Workload

xiii

Contents

Abstract iii

Beknopte samenvatting v

List of Abbreviations xi

List of Symbols xiii

Contents xv

List of Figures xxi

List of Tables xxiii

List of Listings xxv

1 Introduction 1
1.1 Context . 1
1.2 Problem Statement . 2
1.3 Objectives . 3
1.4 Synopsis . 5

2 Background: Virtualization 7
2.1 Definition . 7
2.2 Hardware Virtualization . 10

2.2.1 The Virtual Machine Monitor 10
2.2.2 CPU Virtualization . 14
2.2.3 Memory Virtualization 18
2.2.4 I/O Virtualization . 21

2.3 Operating System Virtualization 26
2.3.1 System Containers . 27

xv

xvi CONTENTS

2.3.2 Application Containers 27
2.4 Application Virtualization . 29

2.4.1 Operating Systems . 29
2.4.2 High-Level Programming Languages 30
2.4.3 Unikernels . 30

2.5 Desktop Virtualization . 32
2.6 Storage Virtualization . 32

2.6.1 Logical Block Addressing 32
2.6.2 Disk Partitioning . 33
2.6.3 Redundant Array of Independent Disks 33
2.6.4 Storage Area Network 33
2.6.5 Network-Attached Storage 33
2.6.6 Software-Defined Storage 34

2.7 Network Virtualization . 34
2.7.1 Virtual Internet Protocol 34
2.7.2 Virtual Local Area Network 35
2.7.3 Virtual Private Network 35

2.8 Conclusion . 36

3 Virtualization Overhead 37
3.1 Definition . 38

3.1.1 System Effects . 39
3.1.2 Application Effects . 40

3.2 Causes . 41
3.2.1 Unfair Resource Allocation 41
3.2.2 Instruction Emulation 41
3.2.3 Input/Output . 41
3.2.4 Double Memory Address Translation 42
3.2.5 Spinning Synchronization 42
3.2.6 Blocking Synchronization 43
3.2.7 Memory Consistency . 44
3.2.8 Non-Uniform Memory Access Opacity 45

3.3 Quantification . 45
3.3.1 System Settings . 46
3.3.2 Workloads . 48
3.3.3 Measurement . 48
3.3.4 Threats to Validity . 49

3.4 Related Work . 55
3.4.1 Defining Virtualization Overhead 55
3.4.2 Empirical Research . 57

3.5 Conclusion . 57
3.5.1 Personal Contribution 58

CONTENTS xvii

4 Virtualization Overhead for Multithreaded Applications 59
4.1 Sequential Applications . 60
4.2 Multithreaded Applications . 61

4.2.1 Negligible Overhead . 69
4.2.2 High Guest Overhead 69
4.2.3 High Host Overhead . 71
4.2.4 High Overcommitted Overhead 77

4.3 Longevity of Results . 81
4.4 Related Work . 81
4.5 Conclusion . 83

4.5.1 Personal Contribution 84

5 Reducing Virtualization Overhead for Multithreaded Applications 85
5.1 Blocking Synchronization . 87

5.1.1 Deferred Scheduling . 87
5.1.2 Interrupt Controller Virtualization 89
5.1.3 Co-Scheduling . 89
5.1.4 Scheduler Tick Management 90
5.1.5 Symmetric Multithreading 91
5.1.6 Synchronization-Aware Application Design 92

5.2 Spinning Synchronization . 93
5.2.1 Pause Loop Exiting . 94
5.2.2 Paravirtualized Ticket Spin Locks 94
5.2.3 Pause Exiting . 95
5.2.4 Blocking Synchronization 95
5.2.5 Compiler Enhancements 96
5.2.6 Spin Lock System Calls 97
5.2.7 Co-Scheduling . 97

5.3 Data Sharing . 98
5.3.1 Interrupt Controller Virtualization 98
5.3.2 Alternative Translation Lookaside Buffer Design 98
5.3.3 Co-Scheduling . 99
5.3.4 Source Code Alteration 99
5.3.5 Alternative Memory Allocator Design 100

5.4 Non-Uniform Memory Access Locality 100
5.4.1 Non-Uniform Memory Access Passthrough 101
5.4.2 Non-Uniform Memory Access Locality Managers 102
5.4.3 Symmetric Multithreading 104
5.4.4 Extended Paravirtualization 105

5.5 Related Work . 105
5.6 Conclusion . 106

5.6.1 Personal Contribution 106
5.6.2 Future Work . 107

xviii CONTENTS

6 System Amelioration: Paratick 109
6.1 Background: Timer Management 110
6.2 Virtualizing the Scheduler Tick 112

6.2.1 Classic Periodic Tick . 113
6.2.2 Tickless Kernels . 113
6.2.3 To Tick or not to Tick? 114

6.3 Virtual Scheduler Ticks . 116
6.4 Paratick . 118

6.4.1 Host . 119
6.4.2 Guest . 120

6.5 Evaluation . 122
6.5.1 Sequential Workloads 124
6.5.2 Multithreaded Workloads 126
6.5.3 I/O-Intensive Workloads 128

6.6 Related Work . 130
6.7 Conclusion . 131

6.7.1 Personal Contribution 131
6.7.2 Future Work . 131

7 Runtime Amelioration: PTLBMalloc2 133
7.1 Background: TLB Shootdown Causes 135
7.2 TLB Shootdown Cost . 137

7.2.1 CPU Count . 138
7.2.2 NUMA . 139
7.2.3 Summary . 140

7.3 Memory Management & TLB Shootdowns 140
7.3.1 Hysteresis-Based Arenas 141
7.3.2 Decay-Based Purging 144
7.3.3 Size Class-Based Memory Management 144
7.3.4 Garbage Collection . 146
7.3.5 Summary . 147

7.4 Global Hysteresis . 148
7.5 Implementing Global Hysteresis 151

7.5.1 Ptmalloc2 . 151
7.5.2 Ptlbmalloc2 . 153

7.6 Evaluation . 155
7.6.1 Conceptual Effectiveness 156
7.6.2 Side Effects . 157
7.6.3 Performance . 160

7.7 Related Work . 162
7.8 Conclusion . 163

7.8.1 Personal Contriburion 164
7.8.2 Future Work . 164

CONTENTS xix

8 Application Amelioration: Guidelines to Developers 165
8.1 Background: The Dedup Benchmark 167
8.2 Application Code & Virtualization Overhead 168

8.2.1 Blocking Synchronization 168
8.2.2 Spinning Synchronization 174
8.2.3 Data Sharing . 176
8.2.4 Non-Uniform Memory Access Locality 178

8.3 Guidelines . 179
8.3.1 Blocking Synchronization 179
8.3.2 Spinning Synchronization 181
8.3.3 Data Sharing . 181
8.3.4 Non-Uniform Memory Access Locality 182

8.4 NODedup . 183
8.4.1 Blocking Synchronization 183
8.4.2 Memory Management 184

8.5 Evaluation . 185
8.5.1 Method . 186
8.5.2 Conceptual Effectiveness 187
8.5.3 Performance . 187

8.6 Related Work . 188
8.7 Conclusion . 189

8.7.1 Personal Contribution 189
8.7.2 Future Work . 189

9 Conclusion 191
9.1 Valorization . 193
9.2 Future Work . 193

A Paratick Source Code 195
A.1 Host . 195

A.1.1 /include/linux/kvm_host.h 195
A.1.2 /arch/x86/kvm/x86.c 197

A.2 Guest . 198
A.2.1 /kernel/time/tick-sched.c 198

B Ptlbmalloc2 Source Code 221
B.1 Headers . 221

B.1.1 Global.h . 221
B.1.2 Types.h . 222
B.1.3 CPU_monitor.h . 222
B.1.4 Chunk.h . 223
B.1.5 Arena.h . 223
B.1.6 Ptlbmalloc2.h . 224

xx CONTENTS

B.2 Implementation . 224
B.2.1 CPU_monitor.c . 224
B.2.2 Chunk.c . 225
B.2.3 Arena.c . 226
B.2.4 Ptlbmalloc2.c . 231

C NODedup Source Code 237
C.1 Headers . 237

C.1.1 Chunk_list.h . 237
C.1.2 Iterator.h . 238
C.1.3 Thread_pool.h . 238
C.1.4 Encoder.h . 239

C.2 Implementation . 239
C.2.1 Chunk_list.c . 239
C.2.2 Iterator.c . 244
C.2.3 Thread_pool.c . 245
C.2.4 Encoder.c . 256

Bibliography 283

Biography 303

List of publications 305

List of Figures

2.1 Type 1 hypervisor . 11
2.2 Type 2 hypervisor . 13
2.3 Kernel assisted hypervisor . 13
2.4 Dynamic binary translation . 15
2.5 Paravirtualization . 16
2.6 Hardware-assisted virtualization 17
2.7 Memory virtualization . 18
2.8 Operating system virtualization 26
2.9 System containerization . 28
2.10 Application containerization . 28
2.11 Unikernel . 31

3.1 Virtualization overhead . 38

4.1 Virtualization overhead for sequential applications 61
4.2 Virtualization overhead for multithreaded applications 63
4.3 Detailed system effects for multithreaded benchmarks 65
4.4 Detailed application effects for multithreaded benchmarks . . . 66
4.5 Critical path . 68
4.6 Breakdown of virtualization overhead for benchmarks with high

guest-level virtualization overhead 70
4.7 Cycles per instruction for benchmarks with high guest-level

overhead . 70
4.8 Breakdown of virtualization overhead for benchmarks with high

host-level overhead . 71
4.9 Breakdown of host-level virtualization overhead 72
4.10 Contended lock in a virtualized environment 74
4.11 Breakdown of virtualization overhead for benchmarks with high

overcommitted overhead . 77

xxi

xxii LIST OF FIGURES

4.12 Subroutine breakdown for benchmarks with high overcommitted
overhead . 78

5.1 Effect of halt polling on virtualization overhead. 88
5.2 Virtualization-sensitive synchronization operations performed by

P3ARSEC. 93
5.3 Memory locality non-uniform memory access passthrough. 101
5.4 Memory locality of memory locality managers. 103
5.5 δηr of numad. 103

6.1 Classic periodic tick in Linux. 111
6.2 Linux dynticks idle operation. 111
6.3 Host-side paratick code. 119
6.4 Guest-side paratick code. 120
6.5 Paratick performance for sequential workloads. 125
6.6 Paratick performance for multithreaded workloads. 127
6.7 Paratick performance for input/output-intensive workloads. . . 129

7.1 TLB shootdown cost. 139
7.2 The arena imbalance issue. 142
7.3 Capacitive effect of decay-based purging. 145
7.4 Thread-local cache. 145
7.5 Garbage collection. 147
7.6 Global hysteresis. 150
7.7 Ptmalloc2. 152
7.8 Ptlbmalloc2 TLB shootdowns. 157
7.9 Side effects of ptlbmalloc2. 158
7.10 Performance of ptlbmalloc2. 161

8.1 Task parallelism and data parallelism. 180

List of Tables

3.1 Virtualization overhead in existing work 56

4.1 Existing work studyingvirtualization overhead. 82

6.1 Classic periodic ticks vs. tickless kernels 116
6.2 Paratick performance for sequential workloads. 124
6.3 Paratick performance for multithreaded workloads. 126
6.4 Paratick performance for input/output-intensive workloads. . . 128

7.1 Ptlbmalloc2 base thresholds. 154
7.2 Average performannce improvement of ptlbmalloc2. 162
7.3 Performance of techniques related to ptlbmalloc2 162

8.1 NODedup VM exits. 187
8.2 NODedup execution time. 187

xxiii

List of Listings

4.1 User level spin-based barrier in Volrend. 80
5.1 Generic user-level spin lock . 96
7.1 Microbenchmark generating many TLB shootdowns. 137
7.2 Example of the arena imbalance issue 143
8.1 Mutex example . 168
8.2 Semaphore example . 170
8.3 Condition variable example . 170
8.4 Monitor example . 172
8.5 Implicit parallelism example . 173
8.6 Spin lock example . 174
8.7 Example of an advanced user-level spin lock in C++. 175
8.8 Poor memory management example 177
8.9 Poor memory locality example 178

xxv

Chapter 1

Introduction

This brief introductory chapter outlines the context in which the research
presented in this dissertation has been performed, derives the research problems
addressed in this work from said context and establishes concrete objectives
based on these problems. Finally, it provides a synopsis including a summary
of the research papers on which this dissertation is based.

1.1 Context

Cloud computing is among the most impactful computing paradigms to emerge
in decades. Since its initial formalization in 1997, it has grown to a leading
software deployment model [1]. According to Eurostat, 36% of European
businesses employed some form of cloud computing in 2020, up from 24% in
2018 [2]. This significant and growing corporate interest in and dependence on
cloud computing is projected to continue to increase for years to come [3].

Although cloud services vary greatly in design and implementation, the common
denominator among all of them is heavy use of virtualization [4]. This
technology encompasses emulating information technology (IT) resources safely
and efficiently, de facto instantiating (virtual) computing resources largely
independently of the underlying physical infrastructure [5]. This in itself is not
at all a new concept [6]. Over the five decades since its formal introduction,
virtualizaton technology has become highly mature thanks to extensive efforts
from academia and industry. Consequently, virtualized resources are these days
expected to perform practically as well as physical ones [7].

1

2 INTRODUCTION

The maturity of virtualization is undoubtedly a major driver of the accelerating
adoption of cloud computing, since historically performance constraints
originating at the virtualization infrastructure were among the main limitations
of this novel paradigm [8]. On the other hand, as cloud computing is
adopted for more and more diverse and demanding use cases such as artificial
intelligence (AI), the internet of things (IoT) and big data, the limits of
virtualization technology are continually being pushed. Thus, as much as
improving virtualization performance is driving the adoption of cloud computing,
the adoption of cloud computing is driving the need for ever more efficient
and flexible virtualization technologies. Key to the continued success of cloud
computing is the development of virtualization technology staying ahead of the
growing demands of its adopters in this bilateral evolution.

1.2 Problem Statement

In spite of the increasing expectation of the contrary outlined above, even state-
of-the-art virtualization techniques still struggle to efficiently virtualize certain
system components and workloads. For example, input/output (I/O) devices are
notoriously difficult to virtualize, implying that applications performing large
amounts of I/O operations may still incur a significant performance penalty
in a virtualized environment [9]. Even more problematic are multithreaded
applications. Typical thread synchronization and data sharing constructs often
require special handling in a virtualized environment, again inducing a severe
performance penalty [10]. Moreover, entirely cost-free virtualization is nigh
impossible, since as outlined in §1.1, virtualization entails emulating resources
which are not (necessarily) physically present, which is almost invariably
less efficient than directly employing said resources in physical form. Thus,
optimizing virtualization technology may well prove to be an unending endeavor.
It is therefore clear that even after half a century of progress there is still a
strong need to further reduce the cost of the virtualization process.

The innate performance drawbacks of virtualization have been known since
its inception [6]. Nevertheless, research efforts to ameliorate virtualization
performance were limited during the first decades of its existence, likely because
correctness and robustness were of greater concern. Additionally—or perhaps
consequently—industrial applications of the technology were rare. This status
quo changed radically in the beginning of the 21st century however, as powerful
symmetric multiprocessing (SMP) servers and robust virtualization technology
allowed for multiple virtualized systems to be hosted on a single physical
platform, yielding significant cost savings [11]. Many solutions to long-standing
challenges in the field have been proposed since, some of which have been

OBJECTIVES 3

widely adopted [12, 13, 14, 15, 16]. However, largely due to the speed at which
virtualization technology has evolved in recent years, the current state of the
art regarding virtualization performance in an industrial context is unclear.
Reliable empirical evidence for the efficacy of the many novel features sported
by modern virtualization technology is lacking. Moreover, it is currently unclear
which challenges remain to achieve truly efficient virtualization for all workloads,
under all conditions.

From the above, the two principal problems this dissertation aims to address
emerge:

• Despite great advancements in recent years, virtualization may still
introduce a significant performance penalty for certain workloads;

• Both the nature and severity of the remaining challenges regarding
virtualization performance are currently unclear.

1.3 Objectives

Virtualization is an immensely broad field, covering all kinds of system
components and workloads [17]. Therefore, addressing the problems described
in §1.2 in a general sense is infeasible within the context of a single Ph. D.
dissertation. As such, the scope of this work must by practical necessity be
limited to select virtualization technologies and workloads. Since the Ph. D.
project documented in this dissertation has taken place within the faculty of
engineering technology, industrial relevance was the primary concern in this
selection process. Below the results of this process are outlined and motivated,
before concrete objectives based on said results are defined.

Given the perpetual struggle of cloud platforms to keep up with industrial
demand for supporting ever more demanding and diverse workloads outlined
in §1.1, computationally challenging workloads that are not considered typical
cloud applications are at first glance an excellent target for this work.
Among these, high-performance computing (HPC) applications are particularly
interesting, since moving such workloads to the cloud is a relatively novel trend
that may yield massive cost savings and flexibility benefits compared to hosting
the necessary infrastructure locally [18, 19, 20, 21]. Moreover, since performance
is by definition a key requirement for HPC workloads, optimizations focussed
on such workloads are highly relevant to practitioners.

While HPC workloads are highly varied in nature, one characteristic they all
have in common is their emphasis on parallelism [22, 23]. This concept is

4 INTRODUCTION

often implemented at two levels within these applications: shared-memory
parallelism on the one hand, and distributed-memory parallelism on the other
[24, 23]. The former is also known as multithreading and encompasses multiple
application stacks executing in parallel within the same memory space. The
latter involves multiple distinct processes—often hosted on distinct physical
systems—cooperating through some communication protocol. While both of
these concepts exist outside of the context of HPC, multithreading is much more
commonly employed than distributed memory parallelism, with applications in
web servers, data bases, video games, etc. Moreover, the low-level mechanisms
employed by distributed memory parallelism are more numerous and vary
greatly between applications, which severely limits the real-world impact of
improving any specific cog in the distributed memory mechanism. For these
reasons, the scope of this work is limited to multithreading.

Limiting the scope in terms of workloads to multithreaded applications also
greatly reduces the variety of virtualization technologies to be considered.
Namely, since multithreading is a purely computational concept, only central
processing unit (CPU) virtualization is relevant to this work. Furthermore, the
vast majority of cloud infrastructures are built around a single CPU architecture,
namely x86 [25]. Finally, while many virtualization techniques exist for this
architecture [26], hardware-assisted virtualization is by far the most popular
technique these days [27, 28]. Combining all of the above, the scope of this
work is limited to hardware-assisted virtualization of multithreaded workloads
on x86 CPUs.

Combining the problems described in §1.2 with the scope constraints outlined
above yields the main research question to be answered in this dissertation:

How can the performance cost of hardware-assisted virtualization of multithreaded
applications be further reduced on the x86 platform?

This question implies addressing both problems listed in §1.2. However, it
is evident that both of these problems cannot be resolved simultaneously.
Concretely, the state of the art must be known before solutions to remaining
challenges may be devised. Therefore, the first major contribution of this work
is clarifying the state of the art regarding hardware-assisted virtualization of
multithreaded applications on the x86 platform. This includes both assessing
the effectiveness of the latest enhancements to the relevant technologies and
identifying remaining challenges. Thus, the following secondary research
questions shape the first stage of this dissertation:

SYNOPSIS 5

• What causes high hardware-assisted virtualization cost for multithreaded
applications on the x86 platform?

• How effective are existing hardware-assisted x86 virtualization techniques at
addressing the issues arising from virtualizing multithreaded applications?

Once the remaining challenges regarding hardware-assisted virtualization of
multithreading on the x86 platform are known, novel solutions may be devised
to address said challenges. Besides merely describing such solutions, evidence for
their effectiveness should be provided. This yields the second pair of secondary
research questions to be addressed:

• Which techniques can reduce the cost of hardware-assisted virtualization
of multithreaded applications on the x86 platform?

• How can evidence for the efficacy of proposed techniques to reduce the
cost of hardware-assisted virtualization of multithreaded applications on
the x86 platform be provided?

Providing evidence for the efficacy of the proposed techniques implies performing
a comprehensive performance analysis. Empirical methods are to be preferred
for this because of the complexity of virtualized systems. Moreover, performing
an empirical performance analysis implies implementing the devised solutions,
which allows them to be readily adopted by practitioners. This ensures that
aside from scientific contributions, this dissertation has the potential to directly
ameliorate industrial practices. This fits perfectly within the profile of the
faculty of engineering technology, at which the Ph. D. project presented in this
thesis has been conducted.

1.4 Synopsis

In order to answer the research questions outlined above, a thorough
understanding of virtualization is required. Therefore, chapter 2 provides
a comprehensive introduction to this concept. This chapter will make clear
that virtualization is a complex process with many incarnations. Evidently,
this makes measuring the performance cost of virtualization, i.e. virtualization
overhead, a complicated task. Chapter 3 elaborates on how this virtualization
overhead may be defined and measured and lists the principal known causes of
virtualization overhead. Chapter 4 proceeds to address the first pair of partial
research questions outlined in §1.3 by applying the techniques established in

6 INTRODUCTION

chapter 3. A reflection on existing and potential future techniques to address
the issues discovered in chapter 4 follows in chapter 5, providing an answer
to the third partial research question formulated in §1.3. Finally, the last
partial research question is addressed by implementing some of the techniques
proposed in chapter 5 and empirically determining their effectiveness. Three
complementary solutions have been selected for this detailed analysis: one
at system level, one at application runtime environment level and one at
application level. Chapters 6, 7 and 8 are each respectively dedicated to one of
these. They each provide a deep dive into the problem they address, discuss the
implementation of the proposed solution in both abstract and concrete terms
and conclude with empirical evidence for the latter’s efficacy. Finally, chapter 9
formulates a general conclusion.

Chapters 3 to 8 are all based on peer reviewed and published original work
by the author of this dissertation, his colleagues and supervisors. Each of
these chapters starts with a full bibliographic reference to the publication on
which it is based and concludes with an outline of the main author’s personal
contributions to the work. Concretely, the following publications have been
incorporated into this dissertation:

• Chapters 3, 4 and 5: S. Schildermans et al. “Virtualization Overhead
of Multithreading in X86 State-of-the-Art & Remaining Challenges”. In:
IEEE Transactions on Parallel and Distributed Systems 32.10 (2021),
pp. 2557–2570;

• Chapter 6: S. Schildermans et al. “Paratick: Reducing Timer Overhead
in Virtual Machines”. In: 50th International Conference on Parallel
Processing. 2021, pp. 1–10;

• Chapter 7: S. Schildermans et al. “Ptlbmalloc2: Reducing TLB
Shootdowns with High Memory Efficiency”. In: ISPA-BDCloud-
SocialCom-SustainCom 2020 (2020), pp. 76–83;

• Chapter 8: S. Schildermans and K. Aerts. “Towards High-Level Software
Approaches to Reduce Virtualization Overhead for Parallel Applications”.
In: 2018 IEEE International Conference on Cloud Computing Technology
and Science (CloudCom). IEEE. 2018, pp. 193–197.

Chapter 2

Background: Virtualization

Central to this work is the concept of virtualization. This chapter clarifies
this broad topic through describing all of the major forms of virtualization
commonly utilized today. Even though the scope of this work is limited to a
handful of specific aspects of virtualization, discussing the wide landscape of
virtualization technologies as a whole allows for proper positioning of this work
within the state of the art and eases interpretation of the presented findings.

2.1 Definition

Through the years, virtualization has broadened in scope to such an extent that
it has become difficult to define unambiguously. Consequently, several accepted
definitions exist today. One of the most prominent among these, to which this
dissertation adheres, is the following [33]:

Virtualization is a technology that combines or divides computing resources to
present one or many operating environments using methodologies like hardware
and software partitioning or aggregation, partial or complete machine simulation,
emulation, time-sharing, and many others.

According to the above definition, the principal purpose of virtualization is
separating the notion of the operating environment from that of its underlying
resources. Both the resources being virtualized and the technologies employed
in doing so may vary greatly. Interestingly, aggregation and partitioning are
both mentioned as forms of virtualization, even though these techniques achieve

7

8 BACKGROUND: VIRTUALIZATION

opposite goals. The mainstream notion of virtualization is by contrast limited
to partitioning alone.

While the above definition exemplifies that the applications and implementations
of virtualization are highly diverse, all forms of this technique share the following
conceptual structure:

• Host: The resources hosting the virtualized environment. Depending on
the virtualization technique being applied, these resources may or may
not be aware that they are being virtualized and may or may not provide
specific support for this process. Often, these resources are selected to be
similar to the virtual resources being created for performance reasons;

• Virtualization layer: A dedicated software component responsible for
mapping requests to a virtual resource onto available physical resources.
While the implementation of this layer may vary greatly, it always has
the following properties [6]:

– Accuracy: The virtualization layer must create an operating
environment that accurately mimics the resources it represents. Note
that these resources do not necessarily need to exist physically. A
virtualization layer may for example create an operating environment
representing a CPU employing an instruction set architecture (ISA)
not used by any real CPU. However, it must accurately represent this
fictitious CPU such that the virtual operating environment behaves
in a predictable, well-defined and correct manner;

– Efficiency: The virtualization process must not be excessively costly
in terms of resource consumption or performance. Because some
resources may be much more difficult to virtualize than others,
’excessively costly’ is not defined in concrete terms. Nevertheless,
efficiency must be a key design goal of any virtualization technology;

– Hardware control: The virtualization layer must have full control
over the resources being virtualized, such that it is impossible
to change the state of the physical system from within the
virtual operating environment in a problematic way without the
virtualization layer being able to intervene.

• Virtual machine: The environment the virtualization layer creates. Two
types of virtual machines (VMs) exist: process VMs on the one hand, and
system VMs on the other. The former represent a virtualized environment
for a single process, while the latter are virtualized representations of
entire systems, in which multiple processes may be hosted [34]. All VMs
share the following properties, which naturally follow from the properties
of the virtualization layer [6]:

DEFINITION 9

– Efficiency: VMs must exhibit comparable performance to their
physical counterparts;

– Isolation: VMs must be strictly isolated from one another, as well as
from the host system (unless they are explicitly configured otherwise);

– Accuracy: VMs must from the perspective of the entities consuming
them accurately represent the resources they mimic.

• Guest: The entity consuming the virtualized resources.

Beyond the above, little can be said about virtualization as a whole, again due to
the breadth of the field. Nevertheless, a deeper understanding of the intricacies
of various virtualization technologies is evidently paramount in the context of
this dissertation. While discussing each of these technologies separately would
be prohibitively onerous, many related technologies can be grouped, effectively
splitting the virtualization spectrum in distinct categories. Kampert et. al.
provide such a categorization, based on the type of resource being virtualized
[17]:

• Hardware virtualization: Virtualizing the hardware with respect to
the OS;

• Operating system virtualization: Virtualizing the operating system
(OS) with respect to applications;

• Application virtualization: Virtualizing the system with respect to a
single application;

• Desktop virtualization: Virtualizing the desktop environment with
respect to end users;

• Storage virtualization: Virtualizing storage with respect to the OS or
applications;

• Network virtualization: Virtualizing the network with respect to the
OS or applications.

Note that many other categorizations of virtualization technologies may be
devised. Moreover, some technologies may not easily fit within a single category.
For example, one may argue that networking and storage are both supported by
physical devices and are therefore forms of hardware virtualization. However,
one may equally argue that ’storage’ and ’networking’ are high-level concepts
entirely separate from their physical implementation and therefore require
dedicated categories. After all, one may perfectly grasp the idea of a ’computer

10 BACKGROUND: VIRTUALIZATION

network’ without having any idea of how such a network would be implemented.
This work opts for a middle ground between these views by including the
low-level technicalities of virtualizing I/O devices in the category of hardware
virtualization, while retaining dedicated categories for discussing the high-level
concepts of virtualized storage and networking. The remainder of this chapter
elaborates on each of the above categories, emphasizing those most important
to this dissertation.

2.2 Hardware Virtualization

Hardware virtualization -more specifically hardware partitioning- is what laymen
most often refer to with the term ’virtualization’. This is the most fundamental
form of virtualization, as it virtualizes physical hardware with respect to the OS
[33]. The virtualization layer is in this case a stand-alone, kernel-like software
program referred to as the hypervisor or virtual machine monitor (VMM). VMs
created through this virtualization method are always system VMs.

Any modern general purpose computer system is comprised of a variety of
different hardware components, each serving a distinct purposes and as such
exhibiting a distinct architecture and behavior. Therefore, virtualizing each of
these components also requires distinct techniques. Much like with virtualization
as a whole, in literature similar hardware components are often grouped
together and discussed as a whole, since elaborating on the specifics of each
component is infeasible. Most often, the categories distinguished in literature
are CPU virtualization, random access memory (RAM) virtualization and I/O
virtualization. This section elaborates on each of these categories below. Firstly
however, the VMM is discussed in depth, as it is central to all three of these
categories.

2.2.1 The Virtual Machine Monitor

Of all virtualization categories identified in §2.1, hardware virtualization requires
the most complicated virtualization layer. The reason for this is that for this form
of virtualization, the intended guests are most often fully-featured operating
systems, which assume to be in direct control of the hardware. They will
therefore often attempt to perform operations which are perfectly safe in a bare
metal context but problematic in a virtualized one, where resources must be
shared with other VMs and the host system alike. Examples include allocating
memory, accessing I/O devices, etc. The VMM must identify whenever a guest
attempts to perform such a sensitive operation and replace that operation with

HARDWARE VIRTUALIZATION 11

Figure 2.1: Schematic overview of a system stack employing a type 1 hypervisor.

a(n) (sequence of) operation(s) which emulate(s) it without compromising the
system. In the interest of efficiency, other guest operations are to be executed
directly on the hardware to the extent possible [6, 35].

From the above, it is evident that the VMM in essence acts as an operating
system for operating systems. Much like the OS is a layer between the hardware
and applications, the VMM is a layer between the host system and guest kernels.
Much like the OS provides a virtual operating environment to applications which
grants them the illusion they have the entire system at their disposal, the VMM
provides a VM to guest kernels which grants them the illusion they have the
entire system at their disposal. Much like the OS multiplexes physical resources
between applications, the VMM multiplexes physical resources between guest
kernels. Much like the OS strictly separates applications and intercepts illegal
application behavior, the VMM strictly separates guest kernels and intercepts
any attempt of theirs to alter the system state in a manner which is not
permissible. Knowing that historically operating systems were refered to as
’supervisors’, this analogy explains the term ’hypervisor’, as a streamlined
version of ’supervisor supervisor’ [6, 35].

VMMs exist in various forms, all of which are commonly used today. Each of
these forms is described in detail below.

Type 1 Hypervisors

The most commonly used VMMs are type 1 or bare metal hypervisors. These
hypervisors run directly on the hardware and therefore have full control over it
[36, 37]. Figure 2.1 schematically shows a virtualized system stack employing a
type 1 hypervisor.

12 BACKGROUND: VIRTUALIZATION

Type 1 hypervisors are highly popular in industry because they are only
constrained by the hardware in performing their function. This brings several
advantages:

• Reliability: Their design is relatively simple, which makes them robust.

• Configurability: They allow for pervasive system configuration through
features such as live migration of VMs between physical systems,
overallocation of resources, automatic snapshot creation, etc. All of this
is usually configured remotely through dedicated management software.

• Performance: They have direct access to all hardware features, without
having to pass through intermediate interfaces. This allows them to
emulate problematic guest actions as efficiently as possible.

Many type 1 hypervisors exist, each with its own peculiarities. Their
performance and capabilities are however very similar [7]. Examples include
Xen1, VMWare ESXi2 and Microsoft Hyper-V3.

Type 2 Hypervisors

Type 2 or hosted hypervisors are VMMs running as an application on top of
a host OS [38, 36]. In contrast to type 1 hypervisors, the host may thus be
utilized as a bare metal system in tandem with the virtualization infrastructure.
Figure 2.2 illustrates such a system topology schematically.

The hosted nature of type 2 hypervisors limits them with regard to emulating
problematic guest operations. Specifically, rather than directly manipulating the
hardware, type 2 hypervisors must make do with the interfaces provided by the
host OS. As a result, type 2 hypervisors offer fewer features and perform worse
than their bare metal counterparts. Moreover, they are much more complex
and therefore less robust than type 1 hypervisors [39]. All of these limitations
result in type 2 hypervisors rarely being used in industry.

Despite the issues surrounding type 2 hypervisors, they offer the major advantage
of flexibility. A type 2 hypervisor may be installed on any system without
impacting other functions that system may be performing. Therefore, type 2
hypervisors are popular among amateur users who wish to e.g. run software
not supported by their OS. The most popular type 2 hypervisor at the moment
is Oracle VirtualBox4.

1https://xenproject.org/
2https://www.vmware.com/products/esxi-and-esx.html
3https://docs.microsoft.com/en-us/virtualization/hyper-v-on-windows/about/
4https://www.virtualbox.org/

https://xenproject.org/
https://www.vmware.com/products/esxi-and-esx.html
https://docs.microsoft.com/en-us/virtualization/hyper-v-on-windows/about/
https://www.virtualbox.org/

HARDWARE VIRTUALIZATION 13

Figure 2.2: Schematic overview of a system stack employing a type 2 hypervisor.

Figure 2.3: Schematic overview of a system stack employing a kernel-assisted
hypervisor.

Kernel-Assisted Hypervisors

The final type of VMM is in essence a hybrid of type 1 and type 2 hypervisors.
As the name implies, a kernel-assisted hypervisor is an integrated component of
the host kernel [40]. This allows a general-purpose OS to provide virtualization,
yielding a bare metal host system and a VMM with direct hardware access in
one package. Figure 2.3 illustrates this concept.

Kernel-assisted VMMs combine the advantages and avoid the drawbacks of type
1 and type 2 hypervisors. This makes them attractive to both industrial and
private users. However, being a relatively novel technology, their popularity
is currently limited. Only one mainstream kernel-assisted VMM exists at the
moment, namely KVM5, which is implemented as a Linux kernel module.

5https://www.linux-kvm.org/page/Main_Page

https://www.linux-kvm.org/page/Main_Page

14 BACKGROUND: VIRTUALIZATION

2.2.2 CPU Virtualization

The CPU may be described as the heart of almost any computing system, as
it is responsible for executing instruction streams that make up applications.
Virtualizing the CPU encompasses abstracting these instruction streams from
the physical CPU (pCPU). This is achieved through the concept of virtual
CPUs (vCPUs). From the perspective of the host, these vCPUs may be seen as
processes. From the perspective of the guest however, they are indistinguishable
from pCPUs. Thus, the guest schedules its processes onto vCPUs, which the
VMM schedules onto pCPUs as it sees fit [34].

As stated in §2.2.1, guest kernels will often perform operations that are not
permissible in a virtualized context. Many of these operations manifest
themselves as CPU instructions. Such instructions are called ’sensitive
instructions’. Whenever a vCPU attempts to execute such an instruction,
the VMM must be made aware thereof. To achieve this, early VMMs exploited
the layered privilege model most CPUs possess. This model consists of at least
two privilege levels: kernel mode (ring 0 in x86) and user mode (ring 3 in x86).
Kernel mode is unrestricted and usually reserved for the kernel, while user mode
only allows access to a subset of the ISA and can therefore safely be used by
all applications [41, 42]. If a program executes a privileged instruction in user
mode, the CPU passes control to the kernel, which may handle the incident as it
sees fit. Therefore, as long as the set of sensitive instructions is a subset of the
set of privileged instructions, registering the VMM as the ’kernel’ and executing
all vCPUs in user mode guarantees that the hardware will pass control to the
VMM whenever a guest attempts to execute a sensitive instruction. The VMM
may then emulate the sensitive instruction as it sees fit, after which it may
resume vCPU execution. This process is called trap-and-emulate or classic
virtualization [6].

Unfortunately, most modern CPU architectures, including ARM and x86, may
not be virtualized through classic virtualization, as some of their sensitive
instructions are not part of the set of privileged instructions. Therefore,
virtualizing these architectures was long thought to be impossible [43, 33].
However, several methods have been devised through the years to work around
this issue, allowing virtualization of these architectures after all. For x86 in
particular, three such methods have been widely adopted. Each of these is
described in detail below.

HARDWARE VIRTUALIZATION 15

Figure 2.4: Schematic overview of dynamic binary translation.

Dynamic Binary Translation

Dynamic binary translation is based on the concept of emulation, which involves
interpreting guest instructions one by one [44]. Although emulation is still
widely used today due to its versatility, it can not be considered a form of
virtualization because of its enormous performance cost [6]. After all, each guest
instruction must be read and replaced by a (sequence of) host instruction(s)
before being executed, which is even with the most up-to-date techniques a
costly affair [45].

Dynamic binary translation sacrifices some of the emulation’s flexibility in favor
of performance. Specifically, in contrast to emulation, it assumes that the host
and guest ISA are identical. This allows for direct execution of all user mode
guest instructions. Only kernel mode instructions must be interpreted by the
VMM [44, 26, 46]. Figure 2.4 shows this schematically.

Most VMMs based on dynamic binary translation employ a number of additional
optimization techniques. For example, instructions may be translated in batches
rather than one by one. Commonly recurring sequences of instructions may
even by cached by the VMM [47].

The main advantage of dynamic binary translation is its versatility, since the
VMM requires host nor guest support. Therefore, this technique is particularly
suitable for certain niche applications such as nested virtualization [48]. The
main drawbacks of this method are the complexity of the VMM and the relatively
high performance cost this technique incurs despite all optimizations. Therefore,
other virtualization techniques are preferable in most scenarios.

16 BACKGROUND: VIRTUALIZATION

Figure 2.5: Schematic overview of paravirtualization.

Paravirtualization

The core properties of virtualization listed in §2.1 imply that guests must be
unaware of the fact that they arre being virtualized. Forms of virtualization
strictly adhering to this property are referred to as full virtualization [26].
However, it is self-evident that a guest who is aware of its virtualized status
is able to proactively avoid executing sensitive instructions and request VMM
intervention when needed, making the virtualization process much less complex
and resource-hungry. This is exactly the core tenet of paravirtualization.

VMMs employing paravirtualization may be viewed as implementations of
application binary interfaces (ABIs) that guest kernels may call when they
need to perform a sensitive operation, much like applications may call upon the
OS to perform privileged operations on their behalf through the system call
interface. As such, this ABI is aptly named ’the hypercall interface’. Technically,
trusted guest kernels may be executed directly on the hardware in kernel mode.
However, for security reasons, limiting guests to user mode is still strongly
recommended [37, 26, 33, 49]. All of this is shown in figure 2.5.

Paravirtualization is highly efficient since the guest OS and VMM actively
cooperate, contrary to full virtualization. Moreover, VMMs for paravirtualiza-
tion are relatively simple. The principal drawback of this technique is however
that much like applications must be compiled and/or linked for the specific OS
they target because the system call interface is OS-specific, paravirtualization
requires guest kernels to be modified for each specific VMM they are to be
hosted by because the hypercall interface is VMM-specific. This severely limits
the flexibility of this technique.

HARDWARE VIRTUALIZATION 17

Figure 2.6: Schematic overview of hardware-assisted virtualization.

Hardware-Assisted Virtualization

In the early 2000’s, both major x86 CPU manufacturers, Intel and AMD, released
a new generation of processors which sported dedicated extensions to the ABI
for virtualization. In essence, these extensions made the x86 architecture fully
classically virtualizable. While implementation details differ, conceptually both
manufacturer’s technologies are mostly identical [50, 51]. Collectively they are
known as hardware-assisted virtualization.

The main innovation behind hardware-assisted virtualization is the addition
of an entirely new CPU operating mode, called ’non-root mode’. This mode
is dedicated to running VMs. The traditional mode of CPU operation, which
is used for all other software, has been renamed to ’root mode’. Both modes
contain all four traditional privilege rings [27, 26, 37, 21, 46].

In non-root mode, guest code may safely run directly on the host, as shown in
figure 2.6. The hardware keeps track of each guest’s state using a dedicated data
structure called the virtual machine control structure (VMCS). When a guest
attempts to perform a sensitive operation, the hardware will autonomously
switch to root mode and grant control to the VMM, saving the guest state in
the VMCS. This is called a VM exit. The VMM may handle the VM exit as
it sees fit, after which it may return control to the guest by performing a VM
entry. The hardware reconstructs the guest state from the VMCS and resumes
its execution.

Hardware-assisted virtualization achieves comparable performance to paravir-
tualization while still maintaining full virtualization. As such, it is the most
popular virtualization technique today. Its only major drawback is its reliance
on hardware support.

18 BACKGROUND: VIRTUALIZATION

Figure 2.7: Schematic overview of multi-layered address translation.

2.2.3 Memory Virtualization

Much like the OS virtualizes memory with respect to applications, the VMM
virtualizes memory with respect to guest kernels. The goal of this process is
to present guests with a linear memory space sized in accordance with the
amount of memory the guest kernel believes to have at its disposal, while
the underlying physical memory may be sized and organized differently. This
effectively introduces a double abstraction layer between guest application
memory space and physical system memory, as illustrated in figure 2.7 [26, 37,
46].

Older CPU architectures tend to leave memory management entirely up to
the OS. This makes addressing the double abstraction problem outlined above
relatively simple, because the VMM only has to virtualize OS data structures.
Contemporary architectures however, including x86, often contain advanced
memory management units (MMUs) which integrate memory management
with physical hardware. For example, x86 MMUs are able to perform page
walks entirely in hardware. Retrieved PTEs are automatically stored in a
dedicated cache, called the translation lookaside buffer (TLB). This means that
virtualizing memory requires manipulation of the physical hardware as well as
the OS data structures supporting it, which is evidently a complicated affair.

Three memory virtualization techniques are applicable to x86. All of these are
still commonly used, as none is universally superior to the others [52, 53]. Below
each of these methods is discussed in detail.

HARDWARE VIRTUALIZATION 19

Shadow Paging

Shadow paging is the oldest memory virtualization technique. The guest
operates as usual, maintaining page tables mapping guest-virtual addresses
(GVAs) to guest-physical addresses (GPAs). For each of these page tables, the
VMM maintains a shadow page table mapping GVAs to host-physical addresses
(HPAs). The VMM marks the guest page tables as read-only, which allows it to
intercept any guest page table modification. Upon each such modification, the
VMM writes the GVA to GPA mapping to the guest page table, if necessary
allocates new physical memory to the VM and adds the mapping from GVA to
HPA to its shadow page table [54, 55].

For systems employing basic MMUs, the hardware will pass control to the VMM
upon each TLB miss. The latter may handle the miss by traversing the shadow
page table. This is however not possible for systems performing page walks and
TLB management in hardware (e.g. those based on x86). Instead, the VMM
must change the value of the page table base address register (CR3 in x86) from
the base of the guest page table to the base of the shadow page table upon each
context switch. Thus, the hardware and guest OS use completely distinct page
tables.

Shadow page tables achieve bare metal performance in handling TLB misses,
since they bypass the GPA through directly mapping GVAs to HPAs. On the
other hand, handling page faults is very costly. Upon each page fault, the
CPU transfers control to the guest OS, which will attempt to install a new
mapping in the page table. This generates a hardware exception and traps to
the VMM, which installs the mapping in both the guest page table and the
shadow page table before handing control back to the guest. Since memory
intensive applications may generate large amounts of soft page faults while
other applications may generate almost none, the performance cost of shadow
page tables may vary from negligible to crippling.

Direct Paging

The concept of paravirtualization is not limited to the CPU. Direct paging
or MMU paravirtualization refers to paravirtualizing main memory [56, 53].
While with shadow paging the VMM provides the hardware with the GVA
to HPA mapping entirely transparently to the guest, direct paging requires
active cooperation of the latter. Concretely, the guest page tables contain direct
mappings from GVAs to HPAs. The guest performs hypercalls to the VMM
whenever it wishes to modify these page tables. The VMM thus fully takes over
memory management from the guest OS.

20 BACKGROUND: VIRTUALIZATION

Analogously to CPU paravirtualization (see §2.2.2), direct paging may achieve
near-native performance by sacrificing flexibility. While guest kernels must be
modified to implement this technique, no superfluous data structures must be
maintained and no memory management operations must be intercepted or
emulated to provide the guest with the illusion it is in control of the hardware.
Xen is currently the only popular VMM employing this technique [57].

Nested Paging

Nested paging, extended paging and hardware-assisted memory virtualization
are all terms for memory virtualization implemented mostly in hardware [55,
42, 53]. This technique allows the guest OS to maintain page tables as it would
natively, mapping GVAs to GPAs. Simultaneously, the VMM maintains a
secondary page table, mapping GPAs to HPAs. The MMU is aware of both
of these page tables, allowing it to perform nested page walks in hardware,
finding the mappings between GVAs and HPAs and installing them in the TLB.
Moreover, the guest may modify its own page table, which means it can handle
soft page faults without VMM intervention, as long as the GPA being mapped
into the guest page table is mapped to a HPA in the secondary page table. If
not, control is passed to the VMM, which allocates more physical memory to
the VM and creates the needed mapping in the secondary page table. This is
called an extended page table (EPT) violation.

Because nested paging allows most page faults to be handled without
VMM intervention, in many cases it achieves near-native performance while
maintaining full virtualization. However, the main drawback of this technique
is that handling TLB misses can be very costly. Namely, a page walk normally
requires up to n memory accesses, with n the number of page table layers.
However, because nested page tables do not directly map GVAs to HPAs, each
guest PTE must be translated to a physical address through the secondary page
table, which may take up to n memory accesses. This process has to be repeated
up to n times. Adding the accesses to the guest page table itself as well as those
required to translate the page table root register (which contains a GPA), this
yields up to (n+ 2)× n memory accesses. For x86, which employs page tables
with up to four layers, this means that nested paging requires up to 24 memory
accesses to handle a TLB miss, instead of four in a native context. Nevertheless,
since modern TLBs cover a vast address range, this drawback rarely outweighs
the advantages of this technique. Therefore, all modern x86 CPUs supporting
hardware-assisted virtualization offer nested paging and almost all VMMs use
it by default if possible.

HARDWARE VIRTUALIZATION 21

2.2.4 I/O Virtualization

Of all system component categories, I/O is by far the most diverse. Its
constituents range from mouse and keyboard over block devices and network
adapters to graphics accelerators. All of these devices have different capabilities
and needs and therefore communicate differently with the system. Despite
this diversity however, all I/O devices and accompanying drivers rely on only
a handful of kernel mechanisms to provide their functionality. Thus, while
optimal performance would require the VMM to implement dedicated support
for each individual device, tackling a handful of fundamental challenges allows
for efficient virtualization of the vast majority of I/O devices [58, 59, 60]:

• I/O devices are often orders of magnitude slower than other system
components, which means that it is common for a VM to try to access
a device which will be in use for multiple more milliseconds by the host
or another VM. The VMM must thus efficiently and securely multiplex
access to I/O devices across VMs;

• Each VM associates each I/O device’s registers with a specific address
range, being port numbers in the case of direct I/O or memory addresses
in the case of memory-mapped I/O (MMIO). Moreover, direct memory
addressing (DMA), which is often used by high-throughput devices,
requires the guest to assign a memory region to a device. In a virtualized
scenario, likely none of these identifiers correspond to the physical address
range the device is using. All device accesses by the system and memory
accesses by the device must thus be rerouted;

• Devices are usually configured through dedicated configuration registers.
Guests can not be allowed access to these registers, since that would give
them full control over the device. The VMM must thus intercept accesses
to these registers and emulate their effect with respect to the VM;

• Interrupts delivered by I/O devices must be routed to the correct VM.
If the recipient VM is currently preempted, the interrupt must be
acknowledged and injected into the VM at a later time.

Multiple techniques exist to address the issues outlined above. Below the most
common ones are described in detail [61, 62].

22 BACKGROUND: VIRTUALIZATION

Device Emulation

Since the inception of hardware virtualization, emulation has been the standard
method to virtualize I/O. This technique involves the VMM maintaining a
virtual representation of some I/O device in memory and presenting this memory
region to the VM. The latter sees this region as a physical device and thus uses
one of its device drivers to interact with it. Any reads from or writes to the
virtual interface are intercepted by the VMM and translated to instructions
that may be passed on to the physical I/O device backing the virtual interface
through the VMM’s device driver. Interrupts are intercepted by the VMM,
which injects them into the appropriate VM. Note that the emulated device
interface represents an existing (often generic) device so that the guest may
interact with it using one of its existing device drivers. The physical device
corresponding to the emulated interface does however not need to match it (e.g.
an emulated block device in RAM).

Device emulation is often implemented as an integrated VMM component.
Some modern VMMs however delegate this task to user space. In this case,
a dedicated I/O emulator runs as a host application besides the VMs. This
application performs the bulk of the emulation work, only relying on the VMM
to provide the physical device driver and the necessary plumbing to connect all
components. This approach has multiple advantages. Firstly, the I/O emulator
is a distinct system component, which means it can be exchanged for another
emulator. Moreover, multiple VMMs may use the same emulator. Secondly,
delegating I/O to user space reduces the footprint of the VMM. Since the VMM
operates in kernel space and has full control over the system, minimizing its
size reduces the system’s attack surface.

The main advantage of device emulation is its flexibility. The VMM may present
a unified interface to VMs regardless of the underlying hardware. This however
comes at a great cost in performance, since every interaction between VM and
I/O device requires VMM involvement. Nevertheless, device emulation remains
the go-to I/O virtualization technique for most VMMs. Regarding dedicated
user-level I/O emulators, QEMU6 is the most popular example. This emulator
is used by e.g. KVM and VirtualBox [63].

6https://www.qemu.org/

https://www.qemu.org/

HARDWARE VIRTUALIZATION 23

Paravirtualization

Much like with CPU and memory virtualization, the vast majority of
performance cost associated with virtualizing I/O devices may be avoided
if the guest is aware it is being virtualized. Paravirtualizing I/O starts with
defining a virtual device interface which does not correspond to any existing
physical I/O device. This interface may be thought of as a device API. A
dedicated driver is installed in the guest kernel which directly interacts with
the virtual interface through hypercalls. The VMM translates these to physical
device commands through its own physical device driver [64].

Because their interface is designed specifically with virtualization in mind,
paravirtualized I/O devices are often highly efficient. For example, their API-
like nature forces guest drivers to refrain from relying on the state of memory
registers, which avoids the need for the VMM to translate guest I/O ports,
MMIO or DMA addresses to their physical equivalents. Again analogously
to CPU and memory paravirtualization, the main downside of this approach
is that each guest must implement the paravirtualized I/O driver. However,
because adding such drivers is no different from adding physical device drivers
and therefore requires no extensive changes to the guest kernel, I/O is currently
the most popular application domain for paravirtualization. It is offered by e.g.
Xen and QEMU.

Device Passthrough

As outlined above, one of the main challenges when virtualizing I/O is
multiplexing the physical device between VMs. In many cases however, devices
are only used by a single VM. In such scenarios, full virtualization of the I/O
device is not necessary. Instead, the device may be passed through directly to
the VM in question, which has exclusive access to it and may interact with it
using its own device driver. The VMM only provides minimal abstraction of
the device in the form of address remapping, directly passing through privileged
I/O instructions and interrupts, so long as they do not pose a threat to the rest
of the system.

Device passthrough achieves near-native performance in most scenarios. The
obvious drawback of this technique is that device multiplexing between VMs is
not possible. Additionally, VMs may only be migrated between physical hosts
sporting identical I/O devices. Anyhow, while not applicable in all situations,
the utility of this technique is obvious. As such, most contemporary VMMs
offer support for device passthrough.

24 BACKGROUND: VIRTUALIZATION

Hardware-Assisted I/O Virtualization

Even the most advanced software techniques can not virtualize I/O in a way
that is simultaneously efficient and flexible. This is only possible by direct
hardware support. During the past decade, more and more devices have started
to implement said support as demand for virtualized I/O devices has grown
exponentially. Due to the variety of devices and methods to interact with them,
this hardware support for I/O virtualization can best be viewed as a collection
of independent technologies, which, when combined, make I/O virtualization
with little to no software support possible [65, 66]. Below some prominent
examples of such technologies are briefly discussed.

DMA Remapping Modern chipsets implement the mapping from guest DMA
addresses to physical ones directly in hardware [65]. This greatly increases
DMA throughput by relieving the VMM of this responsibility.

Interrupt Remapping Analogously to DMA, interrupts may be remapped by
the hardware itself. They may be directed to a specific CPU and its attributes,
such as vector, delivery mode, etc. may be altered. Moreover, the hardware may
be instructed to change the physical destination of an interrupt dynamically
whenever its logical destination (i.e. vCPU) is migrated between pCPUs [65].

Security Domains The VMM may set up security domains for each device,
defining which VMs may access which devices. This policy will be enforced by
hardware through generating an exception when a VM attempts to access a
device for which it is not authorized [65].

Besides further reducing the responsibilities of the VMM and thereby improving
performance, when combined with DMA and interrupt remapping this feature
allows for device passthrough to be implemented entirely in hardware. This
hardware-assisted passthrough provides genuine native performance.

Interrupt Posting Through interrupt posting, hardware interrupts intended
for a particular VM may be delivered directly to that VM without VMM
intervention [42, 65]. This feature requires the VMM to assign a dedicated
posted-interrupt vector to each VM. The VMCS contains a field for this vector as
well as a pointer to a posted-interupt descriptor. This data structure contains a
flag for each supported interrupt vector. When a device assigned to a particular
VM fires an interrupt, the hardware remaps this interrupt to the posted-interrupt
vector and records the physical vector in the posted-interrupt descriptor. The

HARDWARE VIRTUALIZATION 25

advanced programmable interrupt controller (APIC) then delivers the remapped
interrupt to the target vCPU, which retrieves the physical interrupt vector from
the posted-interrupt descriptor. If the target vCPU has been preempted when
the interrupt arrives, the hardware records the interrupt in memory and delivers
it as soon as the vCPU is rescheduled.

Interrupt posting allows for many interrupts to be delivered without any VMM
involvement. Note however that for devices that are not assigned to particular
VMs -i.e. devices frequently accessed by multiple VMs in an intertwined fashion-
the hardware is unable to directly map device interrupts to the correct posted
interrupt vector. Such interrupts are instead delivered to some CPU, which
passes control to the VMM (as it always does upon receipt of an interrupt not
corresponding to the posted-interrupt vector). The latter is then responsible for
remapping the interrupt to the correct posted-interrupt vector and updating the
corresponding posted-interrupt descriptor. Once this is done, the interrupt may
be delivered to and processed by the correct vCPU without VMM intervention
at the receiving end.

SR-IOV Peripheral component interconnect express (PCIe) is one of the main
I/O buses used in personal computers and servers today. Its applications include
graphics processing units (GPUs), network interface cards (NICs), etc. Because
many of these components demand high throughput, efficient virtualization of
the PCIe bus is paramount. To this end, the SR-IOV standard was developed
[66, 67]. It splits the notion of PCIe devices into physical and virtual functions.
A device usually has a single physical function, but up to 256 virtual ones. The
main difference between these is that the physical function allows the device
to be configured, while the virtual functions are limited to transferring data.
Evidently, only the VMM has access to the physical function, while the VMs
are presented with one or more virtual ones. All of this is mostly implemented
in the hardware and firmware. Nevertheless, VMM support is required. Since
this technique drastically reduces the performance cost of I/O virtualization
with minimal software support, it is increasingly commonly applied.

26 BACKGROUND: VIRTUALIZATION

Figure 2.8: Schematic overview of OS virtualization.

2.3 Operating System Virtualization

Operating system virtualization, also known as containerization, is just like
hardware virtualization a form of system virtualization. While both achieve
similar effects, their implementations are entirely distinct. Where hardware
virtualization virtualizes hardware with respect to the OS, OS virtualization
virtualizes the OS with respect to applications [33, 68]. Concretely, the host
kernel serves as the virtualization layer. All VMs share this kernel and may
directly interact with it. These VMs—often called containers—perceive the
kernel to be exclusive to them. Figure 2.8 illustrates this concept.

From a technical perspective, containerization is achieved by combining a
number of capabilities naturally present in many OS kernels in such a way that
multiple, fully isolated execution environments can be created within a single
operating system context. Mainly, these capabilities are the following [33, 69]:

• Dynamic file system root: The file system is a core component of the
environment the OS presents to applications. As such, each container
must be assigned a unique file system root within the host file system.
Moreover, the kernel must be able to dynamically switch between these
file system roots when serving different containers;

• Namespaces: Namespaces are used to restrict resource access or avoid
naming collisions in shared systems. Processes bound to a namespace
do not have access to resources outside of that namespace. Furthermore,
the scope of resource identifiers (hostnames, PIDs, etc.) is confined to
namespaces. An identifier may thus point to distinct resources when
defined in distinct namespaces;

• Control groups: When processes are competing for system resources, it
is desirable to be able to monitor and manage resource consumption on a
per-process basis. Control groups allow for exactly that.

OPERATING SYSTEM VIRTUALIZATION 27

Containerization achieves near-native performance because -as opposed to
hardware virtualization- guest operations do not need to be intercepted or
translated by the virtualization layer. Moreover, containers boot rapidly, since
starting a container equates to initializing a process rather than booting a
system. Lastly, containers require much less storage space and RAM than
virtual machines due to the absence of guest kernels [70]. Countering these
attractive benefits over hardware virtualization are inherently limited flexibility
and security. Regarding the former, the fact that the kernel is shared between all
containers implies that the entire system is limited to a single OS (family). Thus,
while it is possible to virtualize different flavors of Linux using OS virtualization,
creating a Windows container on a Linux host is out of the question. Regarding
the latter, since containers share the host kernel and its interfaces (e.g. system
calls), their attack surface is very large compared to that of classic VMs, which
makes them unsuitable when security is a primary concern [71, 72]. While these
drawbacks prevent it from fully replacing hardware virtualization, it has evolved
to be a dominant force in the realm of system virtualization and by extension
cloud computing.

Containerization has many flavors. In fact, most of the popular contemporary
general purpose operating systems offer their own implementation of the concept.
Broadly speaking, all of these flavors may be categorized into two groups: system
containers and application containers. Below both are discussed in detail.

2.3.1 System Containers

Classic containerization partitions the host OS into fully independent system
containers. Each container communicates directly with the kernel and behaves
exactly like the OS it is based on, as shown in figure 2.9 [73, 74]. Resources
are managed directly by the kernel on a per-container basis. Nevertheless, a
minimal management daemon usually runs in the background to allow system
administrators to easily configure and manage the containers.

Most UNIX-like systems sport their own version of system containers. Examples
include Solaris Zones, FreeBSD Jails and LXC [75].

2.3.2 Application Containers

A recent development in containerization is the inception of application
containers. While system containers are faithful OS replicas, application
containers rather represent an application sandbox closely resembling an OS
[76, 77]. From the sandboxed application’s perspective, all regular OS interfaces

28 BACKGROUND: VIRTUALIZATION

Figure 2.9: Schematic overview of system containerization.

Figure 2.10: Schematic overview of application containerization.

are present. However, many resources are managed externally by a dedicated
container engine. For these resources, the container engine acts as a broker
between the host system and the container, as shown in figure 2.10. For
example, rather than each container connecting directly to the host network,
the container engine provides a virtual network to which the containers connect.
Individual containers are not addressable from the outside world; only the
container engine’s virtual network adapter. Thus, while system containers
resemble independent operating systems from the inside as well as the outside,
application containers only do so from the inside. The main advantage of this
approach is that the container engine may manage all containers running on
the system as a group, which allows it to optimize resource usage. For example,
containers are likely to share many system libraries. The container engine may
share a single copy of these libraries between all containers, saving significant
amounts of storage space.

APPLICATION VIRTUALIZATION 29

While application containers are intended for use by a single application, there
is no technical limit to the number of applications that may be hosted in such
a container. It is however important to note that application containers are
unsuitable for use as general purpose operating systems due to their reliance
on external configuration. They are however a popular medium to distribute
and deploy software, as they allow an application to be packaged with all its
dependencies as a self-contained unit. Installing an application is therefore no
more complicated than downloading and starting its container, which is trivial
once the container engine has been set up. The most prominent example of
application containerization is Docker.

2.4 Application Virtualization

Any technique to create process VMs (see §2.1) falls under the category of
application virtualization. Conceptually, this category is much broader than the
previously discussed ones. After all, computer programs are most often defined
in terms of high-level logic, which must traverse several layers of abstraction
before it may be executed on physical hardware. Strictly speaking, each of these
abstraction layers can be viewed as a form of virtualization. Below the most
important of these are described briefly.

2.4.1 Operating Systems

In the early days of computing, applications were written in machine language
and executed directly on the hardware. Processes had to be loaded manually and
could not run in parallel, which made systems inefficient and cumbersome [78].
To address these issues, the operating system was developed. Its fundamental
task was -and is to this day- abstracting physical system resources from
applications [79]. Each process is provided with its own virtual execution
environment and is in principle unaware of any of the other processes on
the system; having the illusion it has the entire system at its disposal. The
OS provides a number of interfaces representing physical hardware functions,
e.g. system calls and a virtual memory. Furthermore, it is responsible for
multiplexing the physical hardware and enforcing isolation between processes.
In this respect, the OS is the most fundamental form of application virtualization.

30 BACKGROUND: VIRTUALIZATION

2.4.2 High-Level Programming Languages

Mostly for portability reasons, many high-level programming languages are not
compiled directly to machine language. Instead, they are executed within a
runtime environment, which translates application code to machine instructions.
Many variations of this concept exist. For example, Python7 programs are most
often distributed as source code. At run time, a just-in-time (JIT) compiler
performs minor optimizations before the code is fed to a platform-specific
interpreter, which is responsible for converting this optimized python code to
machine code and executing it [80]. On the other end of the spectrum, Java8

programs are compiled in advance, albeit to highly optimized byte code rather
than machine language. The Java runtime environment (JRE) transforms this
byte code to machine instructions at run time. Thus, the compilation target of
Java programs is the virtual ABI exposed by the JRE, also known as the Java
virtual machine (JVM) [81].

2.4.3 Unikernels

Software architectures increasingly lean towards viewing applications as
collections of loosely-coupled, autonomous services; as evidenced by the
emergence of e.g. microservice architectures [82] and serverless computing
[83]. These services are mostly passive entities, only performing work when
an external request arrives. As such, they are expected to scale rapidly up
and down in response to fluctuations in demand while still guaranteeing strict
isolation between services. However, currently the unit of deployment in the
cloud is a system VM containing countless interfaces, drivers, libraries etc., of
which the majority is likely never used by a single service. Moreover, these
system VMs provide process isolation at OS level, which is resource-hungry
and entirely pointless in an environment where only one trusted service is
being executed within an individual OS context. Unikernels have recently been
introduced specifically to address these issues. They do this by asserting that
a VM only has to statically support a single, predetermined service [84]. This
allows for the kernel to be compiled, linked and executed as a cohesive unit
with the application. This in turn erodes the notion of kernel and user space,
which transforms system calls into simple function calls. Furthermore, since
all application dependencies are known at kernel compile time, only kernel
components needed by the application have to be provided. Moreover, these
components can be highly optimized to suit that specific application.

7https://www.python.org/
8https://www.java.com/en/

https://www.python.org/
https://www.java.com/en/

APPLICATION VIRTUALIZATION 31

Figure 2.11: Schematic overview of a unikernel system.

Since unikernels do not provide resource management or process isolation,
executing multiple applications requires installing multiple unikernels on top
of a VMM. In fact, unikernels are intended to be used in this manner. This
yields a collection of isolated, scalable, optimized VMs each supporting a single
service: the ideal cloud infrastructure [85]. Figure 2.11 provides a schematic
overview of all of this.

Because unikernels align exactly with the needs of the application they are
hosting, their performance is excellent; often even exceeding that of bare metal
general purpose OSs. Moreover, they boot much more rapidly than both classic
VMs and containers, improving scalability. On top of this, compiled unikernel
binaries are rarely more than a few megabytes (MB) in size [86, 87]. Thus,
they offer performance exceeding that of containerization while maintaining the
resource isolation offered by hardware virtualization. This emerging technology
may therefore mature to one day dominate the cloud. In fact, some prominent
members of the Linux community have already demonstrated a unikernel version
of Linux, which they hope to integrate with the mainline kernel [88]. Examples
of unikernels already available include OSv9 and MirageOS10.

A final note regarding unikernels is the recently proposed concept of unikernel
monitors [89]. These can be viewed as VMMs integrated with the application,
providing any needed virtual device interfaces. This approach relieves the host
from much of the I/O virtualization work it should otherwise perform (see
§2.2.4), further improving boot times and performance.

9http://osv.io/
10https://mirage.io/

http://osv.io/
https://mirage.io/

32 BACKGROUND: VIRTUALIZATION

2.5 Desktop Virtualization

In the 1970’s, computers had become powerful enough to serve multiple users
simultaneously. Combined with the fact that they were still too expensive
to provide individual users with a personal computer, the mainframe concept
was introduced. Multiple users could connect simultaneously to a powerful
centralized computer through dumb terminals. These terminals provided a fully
functional user interface, resembling a personal computer. This was the birth
of the concept of desktop virtualization [26, 78].

Desktop virtualization is still used in large companies because it offers centralized
resource management, as well as cost savings compared to purchasing personal
machines for large numbers of employees. Another application of this concept
is interfacing with embedded devices over a network [90]. Because this form of
virtualization is not important to this dissertation, it is not further discussed.

2.6 Storage Virtualization

Perhaps the most commonly overlooked aspect of virtualization is storage
virtualization. In fact, no modern storage device would be usable without some
form of virtualization. Because storage virtualization is not a focus of this
dissertation, this section is limited to a description of the most common variants
of this technique, omitting technical details.

2.6.1 Logical Block Addressing

The most fundamental form of storage virtualization is logical block addressing
(LBA) [91, 92]. Any modern storage device employs this technology. Namely,
physical disks often use complicated optimization techniques such as parallel
reading and writing (for performance) or spreading data evenly over the device
(for longevity). Moreover, certain device areas may become defective over
time. Exposing such details to the OS would be pointless and prohibitively
complicated for the latter to handle. Therefore, storage devices are typically
largely driven by integrated firmware, presenting a linear address space of usable
storage blocks to the OS. The device itself translates requests to manipulate
these blocks into physical hardware instructions.

STORAGE VIRTUALIZATION 33

2.6.2 Disk Partitioning

It is often desirable or even necessary for a storage device to be represented as
multiple independent logical devices. For example, one may combine different
file systems, restrict access to certain disk areas or provide redundancy. This may
be achieved through disk partitioning. Usually, this technique is implemented
by dedicating the first logical blocks of the disk to a partition table, which
defines disk partitions and their properties. Each of these partitions is treated
as an independent storage device by the OS [93].

2.6.3 Redundant Array of Independent Disks

Redundant array of independent disks (RAID) is a collection of techniques to
aggregate multiple physical disks so that they appear as a single device to the
OS [94, 95, 96]. It has many variants, the applications of which vary greatly.
For example, RAID0 multiplexes all reads and writes between multiple disks
in order to optimize performance. RAID1 on the other hand duplicates all
writes across multiple disks in order to provide data redundancy. [97] provides
a complete overview of the different forms of RAID.

2.6.4 Storage Area Network

Storage is traditionally viewed as an integral system component. Storage
devices are therefore bound to the systems they belong to, and vice versa.
This arrangement is referred to as directly attached storage (DAS). Storage
area networks (SANs) on the other hand break this bond between system and
storage [94, 95, 96]. A SAN consists of a centralized storage pool, managed
by an appliance and presented as a singular block address space. Any number
of systems may connect to the SAN and create partitions within the pool.
Especially in large data centers this storage consolidation may lead to significant
cost savings due to reduced fragmentation and simplified maintenance.

2.6.5 Network-Attached Storage

Network-attached storage (NAS) is conceptually comparable to SAN. The
main difference between the techniques is their level of abstraction. While SAN
aggregates disks at block level, NAS does so at file system level [95, 96]. Systems
connected to a NAS network may thus mount ready-to-use file systems rather
than having to allocate virtual disk partitions.

34 BACKGROUND: VIRTUALIZATION

2.6.6 Software-Defined Storage

The most abstract form of storage virtualization is software-defined storage
(SDS) [96, 98]. In essence, this technique is a refinement of SAN and NAS.
Namely, both of these techniques are still constrained by the limitations of the
proprietary hardware used in most of their implementations. SDS overcomes
this by implementing the entire storage virtualization stack in software. This
makes SDS cheaper and much more flexible at a minor performance penalty
compared to traditional SAN and NAS.

2.7 Network Virtualization

Computer networks are essentially no more than physical connections between
hosts to allow them to communicate. However, as the network grows, managing
it efficiently requires specialized hardware, such as switches and routers. Because
this hardware may be expensive and limited in flexibility, these days more and
more of its functions are being implemented in software. This approach is often
referred to as software-defined networking (SDN) [99]. Through SDN, system
administrators may implement complicated network configurations using only
basic hardware rather than expensive, specialized networking devices, albeit at
a (limited) performance penalty. Below some of the most common applications
of SDN are briefly described. Details are again omitted because this form of
virtualization is not directly relevant to this dissertation.

2.7.1 Virtual Internet Protocol

In certain scenarios, the traditional network addressing technique of tying
distinct internet protocol (IP) addresses to individual network interfaces is
not desirable. For example, large-scale web services often can not be hosted
on a single server for performance or reliability reasons. It would however
be impractical to tie multiple addresses to a single service. This problem is
addressed through the use of virtual internet protocol (VIP) [17, 100]. Usually,
an IP address is assigned to a proxy server, which acts as the entry point to
the web service. Clients connect to the proxy server, which then forwards their
requests to any number of the back end servers, ideally spreading the load
evenly.

NETWORK VIRTUALIZATION 35

2.7.2 Virtual Local Area Network

The internet (obviously the largest computer network in existence) is a two-tier
entity: hosts within a single organizational unit such as a company, household,
etc. are connected through a local area network (LAN). Individual LANs
are in turn connected through the global wide area network (WAN) [101].
Traditionally, a router is the gateway between these two tiers of networking.
However, often it is desirable to subdivide the LAN, mainly in the interest of
security. Modern routers and switches therefore often allow for multiple virtual
local area networks (VLANs) to be defined within a single LAN [17].

2.7.3 Virtual Private Network

One of the challenges arising from the two-tiered network topology described in
§2.7.2 is that hosts belonging to different LANs can not communicate directly.
While this is partly intentional for security reasons, it is not difficult to imagine
scenarios where this limitation is problematic. For example, an employee may
need to access data residing on a private company server while working from
home. For this reason, virtual private network (VPN) technology was developed
[102, 17]. In brief, VPN allows hosts to join a LAN over the WAN. This can be
achieved in two ways:

• Trusted VPN: A direct physical connection between the external host
and the LAN. This type of VPN is obviously very expensive and only
used by major corporations to e.g. connect multiple office locations;

• Secure VPN: A VPN server is set up in the LAN and acts as a gateway to
the WAN. External hosts may then connect to the VPN server through an
encrypted tunnel. The latter then forwards connections between external
and internal hosts.

36 BACKGROUND: VIRTUALIZATION

2.8 Conclusion

Fundamentally, virtualization is no more than abstracting resources from entities
aiming to employ those resources. As such, it is evident that this diverse
technology is widely used in the information technology (IT) world, since
abstraction is omnipresent in modern computing environments. In extreme
cases, such as clouds, a multitude of virtualization technologies is combined to
the extent that nor applications, nor system administrators, nor end users have
any notion of the physical resources supporting the environment presented to
them. For this reason, it is more appropriate to think of modern virtualized
environments as interfaces rather than as resources. It is self-evident that
continued optimization of this technology is instrumental as demand for flexible,
affordable and efficient computing resources continues to surge.

Chapter 3

Virtualization Overhead

This chapter was previously published as part of:
S. Schildermans et al. “Virtualization Overhead of Multithreading in X86 State-
of-the-Art & Remaining Challenges”. In: IEEE Transactions on Parallel and
Distributed Systems 32.10 (2021), pp. 2557–2570

Virtualization by definition introduces a layer of abstraction between operating
environments and the resources supporting those environments, as outlined
in §2.1. Since VMs equally by definition behave identically to their physical
counterparts, this abstraction naturally causes some performance degradation
which is referred to as ’virtualization overhead’. While at first glance this term is
self-explanatory, defining and rigorously evaluating virtualization overhead are
no trivial matters. To our knowledge, any existing work handling these topics
employs its own ad-hoc definition of virtualization overhead—most often in
terms of low-level performance metrics—and evaluates it through equally ad-hoc
experiments. This obviously leaves much to be desired in terms of generalizability
and correctness. This chapter addresses this lack of transparency through
formally defining virtualization overhead and reflecting on the methodology
most suitable to evaluate this overhead. Additionally, it lists the principal known
underlying causes of virtualization overhead. Although the emphasis of this
chapter lies on hardware-assisted virtualization of multithreaded applications
on the x86 platform, many of the presented findings are generalizable to other
scenarios and thus form a valuable and long-awaited contribution to the field.

37

38 VIRTUALIZATION OVERHEAD

Figure 3.1: Schematic breakdown of virtualization overhead.

Main Findings & Contributions

• A definition for virtualization overhead that explicitly divides said overhead
into internal system effects and external application effects is formulated;

• A general method for empirically evaluating virtualization overhead is
described.

3.1 Definition

In order to deeply understand virtualization overhead, it is best approached from
its root causes. These encompass any operation performed by the virtualization
layer that intervenes with the normal execution of the VM. Examples include
emulation of sensitive instructions, double memory address translation, etc.
These operations all impact the system in some way, e.g. through requiring
some CPU time to complete and consuming some memory. Finally, these system
effects become visible to end users through negatively impacting application
performance metrics such as execution time and application throughput. This
causal relationship is crucial to an accurate definition of virtualization overhead.
Figure 3.1 depicts it schematically.

In contrast to what intuition would suggest, system effects and application effects
are not necessarily correlated. For example, when a server is not overloaded,
I/O operations -which are notorious for inducing large amounts of virtualization
overhead- may be offloaded to redundant CPU cores. In this way, the system
effects induced by these operations are concealed from the guest and do not
induce any application effects. This concealed cost can however not simply
be ignored. Firstly, public cloud providers are charging consumers at ever
higher resolutions to allow for fine-grained cost optimization [103]. For example,
novel serverless cloud environments charge consumers per CPU-ms rather than

DEFINITION 39

per VM-hour [83]. This means that consumed system resources are charged
irrespective of their effect on the application. Secondly, concealed system effects
may become visible to applications when the state of the system changes. For
example, the offloaded I/O operations described above may start reducing
application performance when the server experiences a sudden load spike which
saturates all CPU cores. Thus, system and application effects need to be
quantified independently, making virtualization overhead the sum of all the
system and application effects a virtualized workload has on the system.

From the above, it is evident that both system and application effects must
be understood thoroughly in order to understand virtualization overhead. The
following subsections are dedicated to that purpose.

3.1.1 System Effects

Any excess internal system resource usage caused by virtualization (cycles,
memory, bandwidth,. . .) is a system effect. However, within the context of
this dissertation, only the system effects induced by virtualizing multithreaded
applications are of concern. Since multithreading is a purely computational
concept and the vast majority of its implementations target the CPU, CPU
cycle consumption is naturally the main system effect of interest. While other
metrics such as memory usage may be valuable as well, from a pragmatic
perspective they only become important when they bottleneck the system. This
will however be reflected by an increase in consumed CPU cycles. Knowing this,
the system effects of virtualizing multithreading may be defined as follows:

Let Cp(W,P (Sw)) be the CPU cycles used by workload W on physical system
P (Sw), with Sw all settings for P . Let Cv(W,V (Sw), P (Sv)) be the system
cycles used by W on a virtual machine V (Sw) with the same settings, hosted on
a system P (Sv). Then the sum of all system effects is the reduction in resource
efficiency induced by virtualization:

δηr = Cv(W,V (Sw), P (Sv))− Cp(W,P (Sw))
Cp(W,P (Sw))

In the above definition, Sv includes all system settings only visible to the VMM,
e.g. the VMM used, concurrently running VMs, etc. Sw reflects all settings
observable within the guest, e.g. concurrently running applications, vCPU
count, etc. Note that these settings include both system configuration and the
system state during workload execution.

40 VIRTUALIZATION OVERHEAD

3.1.2 Application Effects

Application effects are all effects induced by the virtualization process which
are measurable externally and as such visible to end users through altering
application behavior. Analogously to system effects, they encompass a variety
of metrics such as latency, throughput, etc. Again analogously to system effects
however, in the context of multithreaded, computation-intensive applications,
any effects of interest from a pragmatic perspective may be translated to a
single metric, being wall clock execution time. For example, reduced application
throughput translates to either less work being done in the same time frame
or more time being needed for the same amount of work. Thus, analogously
to system effects, the sum of all application effects may be described as a
reduction in temporal efficiency, δηt, which is the increase in wall clock time
needed to execute a workload W in a VM relative to the time needed by a
physical system. One addition must be made though. Since wall clock time
is measured externally and the system settings Sv may include temporally
multiplexing physical resources between V (Sw) and other tasks, the effective
resources available to the VM must be taken into account. In other words, the
effects of resource sharing must be separated from those of virtualization. Based
on §3.1.1, the amount of available CPU time may be used as a proxy for system
resources in the context of this dissertation. This yields the following definition
for δηt:

δηt = tv(W,V (Sw), P (Sv))× γv − tp(W,P (Sw))× γp
tp(W,P (Sw))× γp

With tp and tv the wall clock execution times for W in respectively the physical
and virtual environments and γp and γv the ideal effective CPU count available
to the workload given Sw and Sv in each respective environment. Note that γ
disregards any system-level overheads and is based on the resources available
to the workload and not the amount of resources the workload effectively uses.
Thus, when a sequential application utilizing a single CPU is executed in an
environment offering four CPUs, γ equals four.

CAUSES 41

3.2 Causes

From the previous section it is clear that virtualization overhead is merely a
symptom of a variety of underlying issues. Many of these issues are by now
well understood, since finding and mitigating the root causes of virtualization
overhead has been the subject of countless scientific publications [104, 46, 105,
66, 106, 107, 14, 108, 109]. This section elaborates on the most important of
these causes and describes any existing techniques to address them which are
already widely adopted in industry.

3.2.1 Unfair Resource Allocation

One of the main purposes of virtualization is hardware consolidation. As a
result, multiple VMs often share hardware resources. Due to inefficient resource
management policies in the VMM or unmanaged contention between VMs,
applications may be unnecessarily starved of resources such as CPU, cache or
memory. Many efforts have been made to minimize this issue. Examples include
memory deduplication [104] and Intel resource director technology (RDT) [42].

3.2.2 Instruction Emulation

At the VMM level, emulation of sensitive operations is still a major cause
of performance degradation for certain workloads. While some virtualization
techniques (i.e. paravirtualization) avoid this cost, doing so has other drawbacks
such as reduced flexibility [46].

3.2.3 Input/Output

I/O operations, such as accessing I/O ports, DMA and interrupts all
require special attention in a virtualized environment, as described in §2.2.4.
Additionally, for high bandwidth I/O devices, extra data needs to be copied
to the VMM. Techniques for working around these limitations include
paravirtualization (e.g. paravirtualized drivers sharing I/O buffers between VM
and VMM) [105] and hardware assistance [66].

42 VIRTUALIZATION OVERHEAD

3.2.4 Double Memory Address Translation

As described in §2.2.3, guest memory accesses have to be translated to VMM-
managed machine addresses in virtualized systems. All existing techniques
to implement this double address translation have some significant drawback:
shadow page tables require VMM intervention upon each page fault (see §2.2.3),
direct paging sacrifices flexibility (see §2.2.3) and nested paging causes page
walks to be much more costly than in a bare metal setting (see §2.2.3).

3.2.5 Spinning Synchronization

Spinning synchronization involves a shared data structure called a ’spin lock’
which may only be atomically read and updated. If a spin lock is free, a thread
may claim it by marking it as claimed through an atomic operation. Any other
threads attempting to claim the lock before the original thread has released it
will continually poll it in a loop until it becomes available. A thread may free
the spin lock by simply marking it as such through a regular write operation.

Because of their simplicity and minimal latency, spin locks are the preferred
form of synchronization for short critical sections, especially when performance
is of greater concern than efficiency. As such, spinning synchronization is often
used within OS kernels. While in a native environment this is perfectly sensible,
in a virtualized context spinning synchronization may be problematic. Namely,
when the hardware is overcommitted, the VMM may deschedule a vCPU holding
a spin lock in order to schedule a vCPU belonging to another VM, causing
the vCPUs waiting for that lock to waste cycles. This is known as lock holder
preemption (LHP) [110].

Many systems offer a more advanced version of spinning synchronization in the
form of ticket spin locks [111]. A ticket spin lock may be viewed as a regular
spin lock which additionally ensures that a contented lock is passed from thread
to thread in the order in which the threads attempted to claim the lock. In
this way, threads waiting for the lock are ordered in a first-in-first-out (FIFO)
queue, which prevents thread starvation. In a virtualized environment, such
primitives are even more problematic than regular spin locks because besides
suffering from regular LHP, these locks may also cause excessive spinning when
a spinning vCPU at the head of the wait queue is preempted by the VMM when
the lock is released. In such a scenario, vCPUs behind said preempted vCPU
are forced to spin for a prolonged period of time, despite the ticket spin lock
technically being available. This problem is known as ’lock waiter preemption
(LWP)’ [109].

CAUSES 43

Several approaches have been proposed to mitigate the issues described
above. Hardware extensions that trigger a VM exit when a vCPU executes
excessive amounts of PAUSE instructions—indicating spinning—are already
widely adopted. Intel’s variant of this technique is called ’pause loop exiting
(PLE)’ [42] and AMD’s is known as ’pause filter (PF)’ [112]). Additionally,
paravirtualized ticket spin locks largely mitigate LWP in Linux for the KVM
and Xen VMMs [113]. Such locks operate like traditional spin locks by default
(i.e. ’fast path’) but switch to ’slow path’ mode as soon as any vCPU has
been spinning for a predetermined amount of time in an attempt to acquire
the lock. Slow path mode entails that the spinning vCPU enters a blocking
state and waits for the lock to become available (as do all vCPUs attempting
to acquire the lock as long as it is in slow path mode). When a vCPU releases
a paravirtualized ticket spin lock in slow path mode, it performs a hypercall to
inform the VMM that the first blocked waiting vCPU in line may be rescheduled.
If there are no other vCPUs contending for the lock at that time, it switches
back to fast path operation [113, 114]. Paravirtualized ticket spin locks may
thus be seen as a hybrid between spinning and blocking synchronization.

3.2.6 Blocking Synchronization

Blocking synchronization is a more efficient alternative to spinning synchro-
nization because contented locks are not continually polled. The basis of this
mechanism is analogously to spinning synchronization a simple shared data
structure which may be claimed by atomically reading and updating it. In
contrast to spinning synchronization however, threads attempting to claim the
lock when it is not available enter a blocking state, yielding the CPU they were
occupying to the OS. The latter may then schedule other tasks on this CPU,
if any are available. If not, it issues a HLT instruction to put the CPU in a
low power mode, saving energy. When the contended lock is released, the OS
marks the blocked thread as runnable, so that it may be scheduled and claim
the lock. If any idle CPUs are available, the kernel wakes one of them by means
of a RESCHEDULE inter-processor interrupt (IPI), which invokes the scheduler on
that CPU and allows the newly awoken thread to claim the lock and continue
work immediately [115, 42].

Blocking synchronization is much more commonly used by applications than
spinning synchronization due to its greater resource efficiency, especially for
longer critical sections. However, while the blocking synchronization process
may be highly efficient in a bare metal environment, in a virtualized context
several complications arise:

44 VIRTUALIZATION OVERHEAD

• When a vCPU encounters a HLT instruction a VM exit is triggered, after
which the VMM scheduler runs in order to find any other tasks to be
executed on the corresponding pCPU. For relatively short critical sections
this may prove problematic, since this process may take much longer
than the time the blocking thread would have had to wait for the lock to
become available. Because of this, most VMMs implement an optimization
called ’halt polling’ [15]. This involves the host first busy-waiting for a
dynamically determined amount of time before scheduling out the vCPU.
If the vCPU receives new work from the guest kernel during this time,
the host resumes its execution immediately rather than scheduling a new
task;

• Similarly to LHP, in an overcommitted setting the vCPU holding a
blocking-based lock may have been preempted, which may cause many
vCPUs to pointlessly block before the vCPU holding the lock is finally
rescheduled and the application may make progress. This, in combination
with the above issue, is known as the ’blocked waiter wakeup (BWW)’
problem [14];

• For modern Intel x86 CPUs utilizing X2APIC, sending IPIs requires
writing to the interrupt command register (ICR), which is a model-specific
register (MSR) containing among other things the destination CPU of
the IPI to be sent. Because in a virtualized environment the destination
vCPU visible to the guest kernel may not correspond to the pCPU visible
to the hardware, the VMM must intercept all ICR writes through a VM
exit in order to remap the destination CPU address. On older systems not
sporting interrupt posting (see §2.2.4), a second VM exit is required to
deliver the IPI on the receiving CPU. When the guest is not under heavy
load, it is likely that upon each release of a contended lock a RESCHEDULE
IPI is sent to schedule the newly awoken thread on an idle vCPU, thereby
invoking at least one VM exit.

3.2.7 Memory Consistency

An often-overlooked aspect of multithreading—especially in a virtualized
context—is the effect of sharing data between threads executing concurrently
on distinct CPUs. Namely, in X86, TLBs are almost always CPU-local and
populated by hardware but—in contrast to other caches—synchronized by the
OS [42, 115]. Because of the semantic gap between the hardware and the OS,
the contents of each TLB are opaque to the latter. This means that whenever a
CPU alters a PTE, the OS must notify all CPUs sharing the virtual address
space to flush the altered PTE from their TLB. This is achieved by sending

QUANTIFICATION 45

IPIs to the CPUs meeting the condition just described and waiting for all of
them to acknowledge the flush request before proceeding. This process is called
a ’TLB shootdown’.

In a native setting, TLB shootdowns are generally considered sufficiently efficient.
However, this mechanism has been shown to have problematic performance
implications for specific workloads [116]. Adding virtualization to the equation
exacerbates this issue in several ways:

• Much like the RESCHEDULE IPIs discussed in §3.2.6, sending a TLB
shootdown IPI requires a write to the ICR MSR. A TLB shootdown thus
invokes a number of VM exits proportional to the number of concurrently
executing threads at the moment the shootdown is triggered;

• Because the vCPU sending a TLB shootdown must synchronize with all
receiving vCPUs, which is most often implemented by means of a spin
lock, a LHP-like problem may occur when one or more of the receiving
vCPU(s) has/have been preempted by the VMM (see §3.2.5). This issue
is known as ’TLB shootdown preemption’ [117].

3.2.8 Non-Uniform Memory Access Opacity

Usually the guest is unaware of the exact physical hardware configuration. This
can decrease e.g. cache and memory performance. Particularly for NUMA
systems this is an issue, since NUMA-unaware scheduling can greatly increase
memory and synchronization latencies [118]. Several solutions to this problem
have been developed, such as NUMA-aware VMM schedulers [115], dedicated
VMM-level NUMA locality managers [108] and exposing the NUMA architecture
to the guest [119].

3.3 Quantification

Quantifying virtualization overhead is much like defining it not trivial. The
complexity of modern systems makes empirical evaluation based on controlled
experiments the only feasible approach. Analytical methods or simulations
are likely less accurate and far more time consuming. However, designing
meaningful experiments to evaluate virtualization overhead is challenging. Most
problematic is the vast quantity of possible system settings that may drastically
influence overhead for any workload. Moreover, when one aims to assess certain
application properties rather than particular workloads—as is the case for this

46 VIRTUALIZATION OVERHEAD

dissertation—choosing a representative (set of) workload(s) in itself is no easy
task. Finally, even with correct system settings and representative workloads,
it is important to keep several best practices in mind when collecting data
and transforming it into interpretable results. This section elaborates on all
of these considerations and provides a template for experiments to evaluate
virtualization overhead. Unless stated otherwise, all experiments presented in
this dissertation conform to this template.

3.3.1 System Settings

At the heart of any computing system lies the hardware. Within the context of
this dissertation, the CPU is by far the most important hardware component
to consider, as it is central to both multithreading and hardware-assisted
virtualization (see §1.3). Since Intel dominates the corporate x86 server CPU
market, with AMD having a market share of only 8%, Intel-based systems
are preferable [120]. However, results can be safely generalized to AMD-based
systems, since Intel VT-x and AMD-V are nearly identical [42, 112]. To the
best knowledge of the author of this dissertation, no studies suggest a notable
performance difference in any regard between these technologies.

Because the hardware configuration influences performance as well as overhead,
the number of CPUs effectively available to the workload under evaluation
should be varied over a sufficiently wide range. The same applies to the number
of NUMA sockets over which these CPUs are distributed. In a virtualized
environment, this may be achieved by creating VMs with the appropriate
vCPU counts and pinning those vCPUs to the appropriate pCPUs. In a native
environment, scheduling tools such as taskset1 may be used to pin processes
to a set of CPUs. Since memory and I/O are no primary concerns for this
dissertation, both are provided in abundance so as to minimize the chance they
might form a system bottleneck.

Concerning hypervisors, four players dominate with a combined market share
of over 95%: VMWare, Hyper-v, Xen and KVM [28]. Unfortunately, the most
popular of these -VMWare and Hyper-v- are closed source. This means empirical
results can not be verified by analyzing VMM source code. Therefore, any
detailed analysis of virtualization overhead is best limited to systems employing
Xen or KVM. Because previous studies have shown that KVM is in general by a
narrow margin slower than Xen for CPU-bound workloads [7], KVM was picked
as the VMM for all experiments presented in this dissertation. This ensures
that experimental results are not overly optimistic while at the same time being
safely generalizable to other VMMs.

1https://linux.die.net/man/1/taskset

https://linux.die.net/man/1/taskset

QUANTIFICATION 47

For the guest OS, Linux is an obvious choice since it is by far the most popular
server OS, with the only noteworthy competitor being Windows [121]. The latter
is however closed-source, making analysis of results again difficult. Moreover,
intuitively the guest OS is not a major contributor to virtualization overhead. As
such, results collected under Linux are representative for real-world applications
in general.

Because certain forms of overhead only appear when hardware resources are
oversaturated at VMM level [110], virtualization overhead should be separately
evaluated when the hardware is not shared between V (Sw) and other tasks
on the one hand and when it is on the other. These two scenarios may be
respectively referred to as undercommitted (UC) and overcommitted (OC).
Setting up the UC scenario does not require special considerations. The OC
scenario however is a more complicated matter, since without careful system
configuration γ is unknown. Moreover, unfair resource allocation is a known
issue for synchronization-heavy virtualized workloads [50]. Finally, it is unclear
how to attribute some VMM operations to individual VMs. For example, if
one VM uses 90% of the system’s resources and another uses only 10%, should
VMM scheduling overhead be attributed for 90% to the first VM because it uses
most of the resources or for 50% because scheduling is only necessary because
of the presence of multiple VMs, for which both VMs are equally responsible,
irrespective of their resource usage? All of these issues may be avoided by
creating an OC environment with exactly two identical VMs, running identical
workloads, pinned to the same pCPU set. When both VMs demand all available
resources, each will receive 50% thereof. Thus, γv = γp

2 . Cycles used by the
VMM may also be attributed equally to each VM, so that Cv = CV MM

2 +CVM =
Csys

2 .

Concretely, the host system used for all experiments presented in this dissertation
(unless stated otherwise) is a HPE ProLiant DL385 Gen10 server with four Intel
Xeon Gold 6138 20-core processors and 256GB of memory. Hyperthreading was
disabled, as were C states deeper than C1 to prevent performance degradation
due to CPU power management [122]. Ubuntu Server is the OS for both the
host and the guest, as it is one of the most popular Linux distributions at the
time of writing [123]. CPU count is varied between 4 and 64 and NUMA socket
count between 1 and 4. Both UC and OC scenarios are considered. Details may
however vary for individual experiments. If so, this is obviously clearly stated
where appropriate.

48 VIRTUALIZATION OVERHEAD

3.3.2 Workloads

Selecting a representative set of workloads is as important as using the correct
system settings when evaluating virtualization overhead. Firstly, the set of
workloads should be sufficiently broad because even within specific categories
of applications individual workloads may vary greatly in nature. Moreover, the
workloads are preferably realistic, rather than synthetic programs designed to
test a specific system mechanism. Ideally, an existing benchmark suite meeting
these requirements should be employed.

Since this dissertation focuses on multithreading, multithreaded, computation-
intensive workloads are a natural choice. Several benchmark suites of precisely
such workloads exist. Among these, perhaps the most widely used one is Parsec
3.0 [124]. The 13 workloads of this benchmark suite thus serve as the baseline
for this dissertation. All of these are compiled using pthreads and run with
their native inputs. The level of parallelism is set equal to the number of
CPUs configured for each test. Wherever appropriate, these workloads are
supplemented by other benchmark suites such as SPLASH2X [124] and Phoronix
[125].

3.3.3 Measurement

Besides careful preparation, precise collection and processing of data is
paramount in order to accurately quantify virtualization overhead. Firstly,
immediately before each experiment, the VM should execute a ’warm-up’ run
of the benchmark to be executed. This pre-warms the OS buffer cache, so
that I/O operations are reduced to the absolute minimum. Furthermore, it
is almost impossible to guarantee that Sv and Sw remain constant between
executions due to non-deterministic aspects of the system (e.g. interrupts,
background processes,. . .). To reduce the variance in Sv and Sw to negligible
levels, experimental results should always be averaged over many iterations.
Unless stated otherwise, all results shown in this dissertation are derived from
10 iterations of the experiment in question. Perf2 is the standard profiling tool
used to collect data.

Since in §3.1 P (Sw) ∼= V (Sw), Cp and tp refer to undercommitted native
execution, even when Sv includes overcommitting the system. This is
conceptually sound, since multiplexing system resources between V (Sw) and
other tasks is opaque to the VM and thus a virtualization effect from the
perspective of the workload. On the other hand, this intertwines the effects of
virtualization in se and hardware consolidation, which may in general improve

2https://man7.org/linux/man-pages/man1/perf.1.html

https://man7.org/linux/man-pages/man1/perf.1.html

QUANTIFICATION 49

resource efficiency regardless of the technique employed to achieve it. To
address this, the regular UC and OC virtualization overhead numbers may be
supplemented by an additional ’overcommitted base 2 (OC2)’ value wherever
appropriate. This value directly compares Cv and tv for two concurrent VMs,
each running one instance of W to Cp and tp when executing two concurrent
instances of W on P (Sw).

All experimental results are analyzed for each system configuration and each
benchmark independently, as is common practice in the field. While this method
provides detailed insight into individual results, it does not directly allow for
broad conclusions to be drawn with a high degree of certainty regarding the
magnitude of the identified virtualization overhead. Doing so would require
a detailed statistical analysis, which would in turn require a large amount of
expertise and time to conduct properly, which were unfortonately not available
within the scope of the Ph. D. project this dissertation documents. Therefore,
all results presented in this dissertation are to be viewed as indicative and thus
as ’evidence for’ rather than ’proof of’ the trends these results express.

Because of the limitations of the method employed to gather empirical data, it
is of crucial importance that all findings are verified from a technical perspective.
Concretely, every trend observed in experimental results must be linked back
to some relyably observable system behavior. This can be done by analyzing
system source code and hardware features or profiling workload properties. In
this way, even though none of the experimental observations can be conclusively
accepted, the author is convinced the results presented in this work at least
provide credible evidence for the claims they aim to support.

3.3.4 Threats to Validity

Like any empirical work, quantifying virtualization overhead through controlled
experiments is liable to threats to validity, which have to be taken into account
when interpreting results [126, 127]. These validity threats are often grouped
into four categories: internal validity, external validity, construct validity and
conclusion validity. Wohlin et. al. provide a detailed breakdown of all possible
validity threats based on these four categories [127]. This section details the
validity threats applicable to the method outlined above based on their work.

50 VIRTUALIZATION OVERHEAD

Internal Validity

Internal validity threats pertain to the possibility that the outcome of the
experiments does not reflect the effect of the variable(s) the experiment intended
to study. When studying virtualization overhead, it is possible that the observed
overhead is caused by some other effect rather than virtualization itself. When
studying the effectiveness of certain mitigation techniques, it is possible that
the mitigation technique in question (or at least the concept upon which it
is based) is not responsible for the observed result. Concretely, the following
threats must be considered:

• History/maturation: Modern systems adapt themselves to the nature
of the workload they execute in a variety of ways. Examples include
the buffer cache which makes sure disk reads are much faster after the
first iteration of a given workload, certain memory allocator heuristics
that edapt block sizes to workload demand, etc. This may influence
results significantly if not properly controlled for. This work controls for
the effects of the buffer cache by disregarding the first iteration of each
workload execution and for other adaptive system behavior by performing
the same number of iterations for all experiments;

• Instrumentation: While the tools used to collect system data (time,
perf, etc.) are generally highly accurate, perf in particular is sensitive
to overloading under heavy system use. Luckily however, perf logs any
occurance of overloading so that data tainted by this issue can be discarded
and the experiments yielding said data repeated;

• Ambiguity of direction of causal influence: This issue is critically
important regarding virtualization overhead. Namely, it is well-known that
certain negative system effects may cause other positive system effects. A
prominent example is some form of virtualization overhead slowing down
application progress, which in turn reduces lock contention and thereby
reduces issues such as lock holder preemption. This makes it extremely
challenging to quantify the impact of any particular form of virtualization
overhead on the system. Luckily, as argumented above, this work does not
seek such exact quantification. Even though various forms of overhead
may interact with each other, it is highly unlikely that these interactions
are so severe that they would completely hide certain forms of overhead
or completely mitigate the performance benefits of a certain mitigation
technique.

QUANTIFICATION 51

External Validity

External validity threats are concerned with the generalizability of experimental
results. After all, even a perfectly designed experiment has very limited use if
its results can not be used to predict phenomena in the real world. For this
work specifically, external validity is a major challenge because of the threats
outlined below:

• Interaction of selection and treatment: As argued in §3.3.2, selecting
a set of workloads representative of the entire set of multithreaded
applications currently in use is hardly possible. Therefore, this work
opts to employ widely used benchmark suites designed to cover a broad
spectrum of application domains for multithreading. This however means
that experiments performed with these benchmark suites can not be used
to draw quantitative conclusions regarding the population. However,
these benchmark suites can be used to indicate that certain causes of
virtualization overhead exist or that certain mitigation techniques do have
the potential to benefit at least some multithreaded workloads. Thus, the
experiments presented in this work are indicative and explanatory rather
than quantitative.

• Interaction of setting and treatment: Even though the high-level
causes of virtualization overhead and potential of certain mitigation
techniques are conceptual in nature and thus largely independent of system
or workload specifics, all experimental results are only valid for the specific
system configuration used to perform that experiment. Therefore, while
the nature and general behavior of the identified virtualization overhead
or performance benefits of mitigation techniques remain constant across
system configurations, their exact quantities may vary greatly. Particularly
problematic in this regard is the fact that software evolves rapidly and this
work was performed over the course of five years. Therefore, some earlier
findings may have already been invalidated by the time of publication.
These findings are nevertheless still relevant in a pragmatic sense, since
improvements at research level typically take several years to trickle down
into industry. Regardless, while it is hardly possible to redo all experiments
presented in this dissertation every time a new Linux kernel is released
(which is almost daily), all older findings presented in this dissertation
are verified through analysis of newer kernel versions and/or through
performing a sample of the original experiments using a newer kernel.

52 VIRTUALIZATION OVERHEAD

Construct Validity

Construct validity describes to what extent the design of an experiment
conceptually reflects the phenomenon it is attempting to assess. For example,
even if an experiment demonstrates a correlation between some system setting
and virtualization overhead, it is not necessarily the case that this system setting
is the underlying cause of the overhead (i.e. it may exacerbate some internal
phenomenon which does cause the overhead and is only partly dependent on
that particular system setting). The most important construct validity threats
for this dissertation are listed below:

• Inadequate preoperational explication of constructs: This threat
is mostly applicable to the first objective defined in §1.3, being identifying
the leading remaining causes of virtualization overhead for multithreaded
applications. Namely, the entire point of this objective is that the construct
under consideration—virtualization overhead—is not properly understood
at the moment. It is therefore impossible to guarantee beforehand that
the chosen methodology is the most adequate available. The possible
impact of this threat has however been minimized by rigorously defining
virtualization overhead beforehand—albeit without knowing its exact
constituents—and studying existing literature on the topic extensively
to take all known causes of virtualization overhead into account and
encorporate established best practices;

• Mono-operation bias: This threat is reflected perfectly by the OC data
set. Namely, the construct of virtualization overhead is in the opinion
of the author conceptually best represented using this data set, it does
conflate the constructs of virtualization and resource consolidation. This
effect was mitigated by including the OC2 data set, allowing for a multi-
facetted interpretation of results;

• Interaction of testing and treatment: Because much of the
experimental data is gathered by performance profiling during workload
execution, it is not unlikely that the very act of performance profiling
influences workload performance. This issue was however minimized in
several ways: some metrics (e.g. execution time) were measured using
multiple tools, multiple independent benchmark runs were performed to
test independent metrics rather than measuring all metrics at once to
minimize load on the system and identical measurements where applied
to all benchmarks in all settings;

QUANTIFICATION 53

• Restricted generalizability across constructs: Due to the many
layers of abstraction in virtualized systems and quasi endless variety of
workloads these systems may be tasked with, some causes of virtualization
overhead that emerge under very specific circumstances may be overlooked
by the experiments provided in this work. Similarly, proposed mitigation
techniques may negatively impact some specific workload ore system
configuration not represented in the experiments performed here. The
impact of these issues is however almost certainly negligible within
the broader context of virtualizing multithreaded applications, since
the workloads and system configurations employed in this work have
been specifically designed to cover a vast range of real-world use cases.
Moreover, all experimental results are verified through source code analysis
and literature review so that all findings can be linked back to the
theoretical construct causing them. If any ambiguity should emerge,
specific additional experiments can be set up to provide clarity.

Conclusion Validity

Conclusion validity is concerned with drawing the correct conclusions from the
results. Threats in this regard are mainly comprised of the following:

• Low statistical power: Because the method described above does not
involve statistical analysis, this work is not able to make quantitative
predictions about virtualization overhead. However, it can make
qualitative statements regarding the nature of the overhead and unveil
general trends;

• Fishing and the error rate: This threat is particularly important when
assessing the effectiveness of novel mitigation techniques. Namely, when
designing these techniques, naturally a particular set of variables is taken
into account in order to address a specific issue. Naturally, evaluation of
the mitigation technique focusses on these variables of interest. However,
it is always possible that a mitigation technique unintentionally negatively
impacts some other variable which is not tested, leading to the issue going
unnoticed. This issue can however be addressed through defining the
metrics of interest in such a general sense that any concerning negative
impact on the system would in the end be visible in this metric. This is
precisely the reasoning of defining system effects in terms of CPU cycles
and application effects in terms of execution time in §3.1. In other words,
by consistently including CPU cycles and application execution time in the
evaluation, any unintended side effects of interest not directly evaluated
by the experiment should become apparent;

54 VIRTUALIZATION OVERHEAD

• Reliability of measures: This validity threat was the main driver for
developing the definition of virtualization overhead presented in §3.1 and
the thorough formulation of the experimental approach this dissertation
adheres to above. Namely, without doing so there was no guarantee that
whatever measures used in performing experiments would yield meaningful
results;

• Random heterogeneity of subjects: As described previously, any work
measuring benchmark performance is faced with non-determinism inherent
to some system components. Particularly system configurations with more
than one NUMA node are sensitive to such non-deterministic performance
fluctuations, since slight variations in scheduling may heavily influence
memory locality and therefore performance. Nevertheless, averaging
all results over a sufficiently large number of experiment iterations as
suggested above largely nullifies this threat.

RELATED WORK 55

3.4 Related Work

The main contributions of this chapter are providing a generally applicable
definition of virtualization overhead and a systematic method to measure said
overhead through controlled experiments. Regarding both of these issues, an
extensive body of existing work is available to draw on. This section elaborates
on each and clarifies the distinctions between the work presented in this chapter
and these existing efforts.

3.4.1 Defining Virtualization Overhead

While virtualization overhead is a popular research topic, existing studies do
not adequately reflect on the concept of virtualization overhead. All of them
employ their own ad-hoc interpretation of virtualization overhead, which they
usually measure in terms of some general system metrics. The exact metrics
used may vary wildly between studies. Table 3.1 lists the studies most closely
related to the goal of this dissertation and enumerates the metrics these studies
employ to measure virtualization overhead.

Table 3.1 indicates that while indeed existing work varies wildly in terms of
the metrics used to measure virtualization overhead, almost all studies include
some form of the metrics ’wall time’ (short for wall clock execution time) and
’throughput’. These metrics may be mapped directly to the measures this
work arrived at to quantify virtualization overhead. Namely, execution time
is intuitively related to δηt. When throughput is interpreted as the amount of
useful work the system may perform in a given amount of time, it can be mapped
to δηr. One may even argue that this holds true for all of the metrics in table
3.1: CPU time is almost identical to CPU cycles, operations per second (OPS) is
a measure of throughput, cache misses manifest themselves in increased δηr and
likely increased δηt and latency can be interpreted as application execution
time, when the application being considered consists of a single unit of work for
which the latency is to be measured. This confirms the validity of the model of
virtualization overhead presented in this chapter. Nevertheless, it is sometimes
useful to include specialized metrics such as latency and cache misses when
studying specific workloads or system aspects for which these metrics are widely
used in order to facilitate interpretation of results by readers not familiar with
virtualization overhead in se.

Besides the validity of the model for virtualization overhead presented in this
chapter, the studies listed in table 3.1 also confirm the importance of rigorously
defining what virtualization overhead means. Namely, it is often not exactly
clear what the studies listed in this table measure exactly. For example, the

56 VIRTUALIZATION OVERHEAD

Table 3.1: Related studies and the measures they employ to quantify
virtualization overhead.
Study Wall

time
CPU
time

Throughput OPS Cache
misses

Latency

[128] X X X X
[129] X X
[19] X X X X
[130] X
[131] X X X
[132] X X X
[133] X
[10] X X
[134] X X
[135] X X X
[136] X X X
[137] X X X X X
[9] X X X
[20] X X X
[21] X X X
[8] X X X
[7] X
[44] X X
[46] X X X
[51] X X
[53] X X
[138] X X
[139] X
[140] X X X
[141] X X
[142] X X X
[143] X X X
[144] X X
[145] X X X X

CONCLUSION 57

term ’throughput’ by itself can mean many different things and can be measured
in many different ways. None of the papers listed in table 3.1 reflect thoroughly
on this, which complicates interpreting their results. Moreover, none of these
studies discuss the relationship between the metrics they study and virtualization
overhead as a whole. This makes it unclear to readers if the presented findings
capture the full effect of virtualization overhead. The systematic definition of
virtualization overhead this chapter has provided addresses both of these issues.

3.4.2 Empirical Research

While the studies presented in table 3.1 all perform controlled experiments
and describe the methodology they employ to perform those experiments, none
of them do so in a generalizable manner. On the other hand, plenty of work
describes how to conduct empirical studies in a software engineering context
[126, 127, 146, 147, 148, 149]. Naturally however, this second category of related
work is too broad in scope to be immediately applicable to this dissertation.
Therefore, the methodology presented in this chapter represents a necessary
merger of the contributions of both of these categories of existing literature by
systematically describing a method to empirically assess virtualization overhead,
which in itself is a novel contribution.

3.5 Conclusion

Virtualization overhead is the cumulation of all negative performance effects the
virtualization process has on the system on the one hand and applications on the
other. These effects may respectively be measured as the reduction in resource
efficiency (δηr) and temporal efficiency (δηt) in the context of multithreaded
applications. A wide variety of issues lay at the root of observed virtualization
overhead. Many of these issues are well known and for some of them effective
solutions have been widely adopted.

Quantifying virtualization overhead is only feasible through controlled
experiments. These experiments must be carefully designed in order for the
results to be representative. Most critical are the system configuration and
workload choice. Results should be obtained for varying CPU counts, NUMA
layouts and hardware contention conditions. Because system state is prone to
variance, experiments should be iterated at least tenfold.

58 VIRTUALIZATION OVERHEAD

3.5.1 Personal Contribution

The definition of virtualization overhead presented in this chapter is the result
of many discussions between the author of this dissertation and his supervisors.
Additionally, the anonymous reviewers of the publication upon which this
chapter is based provided valuable feedback which guided the final formulation
of the definition as well as the quantification method described above. Moreover,
the latter was continually refined by the main author for the duration of the
PhD project documented in this dissertation.

Chapter 4

Virtualization Overhead for
Multithreaded Applications

This chapter was previously published as part of:
S. Schildermans et al. “Virtualization Overhead of Multithreading in X86 State-
of-the-Art & Remaining Challenges”. In: IEEE Transactions on Parallel and
Distributed Systems 32.10 (2021), pp. 2557–2570

As stated in chapter 1, studying virtualization overhead induced by multi-
threading is critical in the modern era of cloud-driven HPC. This chapter
contributes to this effort by addressing the first pair of secondary research
questions outlined in §1.3. Specifically, it provides an overview of the state of
the art regarding hardware-assisted virtualization of multithreaded applications
in x86 and identifies major outstanding issues in this regard.

Perhaps somewhat ironically, this analysis of virtualization overhead for
multithreaded applications starts with a brief study of sequential workloads in
a virtualized setting in order to clearly frame results for their multithreaded
counterparts presented later within a broader context. All experiments are
based on the prescriptions provided in chapter 3. In the interest of generality,
the set of analyzed workloads consists of both the PARSEC and SPLASH2X
benchmark suites throughout this chapter. All findings are verified through
source code analysis and literature review. Moreover, a deeper understanding of
the identified virtualization overhead is provided by linking it to its underlying
causes.

59

60 VIRTUALIZATION OVERHEAD FOR MULTITHREADED APPLICATIONS

While it can not be guaranteed that all findings presented in this chapter are
universally applicable, a wide variety of system configurations and workloads
are covered to minimize the threats to validity inherent to empirical work such
as this. Moreover, a reflection on how the results shown below would translate
to other system configurations is included wherever appropriate.

Main Findings & Contributions

• With the latest virtualization support, overhead imposed on individual
threads is low. For sequential applications, overhead is mainly incurred
by handling I/O;

• Virtualization overhead for multithreaded applications has been sig-
nificantly reduced in recent years thanks to various advancements in
virtualization technology;

• Multithreaded computations still suffer significant virtualization overhead,
especially when the system is overcommitted. Thus, further improvements
are desirable;

• For multithreaded applications, there can be a large divergence between
system and application effects induced by virtualization. The major driver
of this divergence is whether or not the overhead is incurred on the critical
path of the application;

• Most virtualization overhead incurred by multithreaded applications
is caused by interaction between threads, in the form of data sharing
(especially in NUMA systems) and synchronization (especially spinning
at user level and blocking synchronization);

• Most multithreaded workloads benefit from being consolidated using
virtualization. Some even consume less resources when consolidated.

4.1 Sequential Applications

This section briefly analyzes virtualization overhead for sequential workloads in
order to ease interpretation of results for their multithreaded counterparts. To
this end, experiments were performed in accordance with the prescriptions given
in §3.3. The chosen workloads are the PARSEC and SPLASH2X benchmark
suites with the level of parallelism set to one, executed in a VM with a single
vCPU. Figure 4.1 shows the results as an aggregate of all the tested benchmarks.

MULTITHREADED APPLICATIONS 61

-15

-10

-5

 0

 5

 10

 15

 20

δ
η

r
(%

)

UC
OC

OC2

(a) δηr

-15

-10

-5

 0

 5

 10

 15

 20

δ
η

t
(%

)

UC
OC

OC2

(b) δηt

Figure 4.1: Box plots of virtualization overhead for the sequential versions of
all PARSEC and SPLASH2X workloads, aggregated for each scenario.

As figure 4.1 shows, modern improvements to virtualization technology have
minimized virtualization overhead for sequential workloads. On average, both
δηr and δηt are negligible for the tested benchmarks. Some outliers can be
observed however. Detailed analysis reveals that these are attributable to I/O.
This is a well-known issue, as described in §3.2.3.

Generally, δηr is greater than δηt in figure 4.1. In the OC scenario, δηt is even
negative. Upon closer analysis, QEMU was found to be responsible for this,
as it has to handle write-backs of newly generated data (reads come from the
pre-warmed OS buffer cache). This consumes up to 20% of the CPU resources
used by the entire workload. Because QEMU runs on a separate host thread in
parallel with the VMs, this does not increase δηt. On the contrary, this effect
results in a negative δηt in the OC scenario since the second VM may run while
the first is waiting for QEMU.

4.2 Multithreaded Applications

Evaluating virtualization overhead for multithreaded applications requires
more consideration than doing so for sequential workloads, as stated in §3.3.1.
Specifically, a variety of system configurations is to be considered. For the
analysis presented in this section, the following vCPU and NUMA settings were
evaluated:

62 VIRTUALIZATION OVERHEAD FOR MULTITHREADED APPLICATIONS

• 4 CPUs, 1 NUMA node,

• 8 CPUs, 1 NUMA node,

• 16 CPUs, 1 NUMA node,

• 32 CPUs, 2 NUMA nodes,

• 64 CPUs, 4 NUMA nodes.

In each of the above scenarios, all PARSEC and SPLASH2X workloads were
evaluated with the level of parallelism set equal to the number of CPUs available
in the respective configuration. Figure 4.2 shows the results in a manner
analogous to figure 4.1 for each studied system configuration separately.

From figure 4.2 it is clear that much like for sequential workloads, δηt is limited
in general for multithreaded applications. In the OC scenario it is even strongly
negative; increasingly so as vCPU count increases. Firstly, this is caused by
processing I/O in the background, as described in §4.1. Secondly, the pair of
vCPUs competing for each pCPU can compensate for each other’s idle time.
Namely, when a vCPU is idle in the UC scenario, the pCPU hosting that vCPU
is also idle. In the OC scenario however, a vCPU from another VM can perform
useful work during this time, which naturally increases system throughput. This
is confirmed by the OC2 data set, since for this data set δηt is positive, as in a
native setting this consolidating effect also occurs.

Figure 4.2 also shows that multithreaded applications still suffer high
virtualization overhead compared to sequential ones. This overhead tends
to greatly increase with vCPU count, indicating that mitigating it will only
gain importance as time goes on, since VMs are likely to follow physical
systems in sporting ever larger numbers of CPUs [150]. However, figure 4.2
simultaneously indicates that great advancements have been made in the past
few years with regard to mitigating virtualization overhead for multithreaded
applications. For example, a study from 2015 found that the performance of the
Dedup benchmark could be degraded by more than 500% in an overcommitted
virtualized environment relative to native execution [10]. Given that no
benchmark in figure 4.2 suffers a δηr of more than 175% and a δηt of more
than 80%, these at first glance concerning performance numbers are at the same
time pleasing within the broader context of the field.

When comparing figures 4.1 and 4.2, the variance in virtualization overhead
between benchmarks appears to be much greater for multithreaded applications
than for sequential ones. For some benchmarks δηr is strangely negative, while
for others it may be over 150%. To better understand this, figure 4.3 provides a
detailed breakdown of the average and maximum δηr by individual benchmark,

MULTITHREADED APPLICATIONS 63

-75

-50

-25

 0

 25

 50

 75

 100

 125

 150

 175

4 8 16 32 64

δ
η

r
(%

)

vCPUs

UC
OC

OC2

(a) δηr

-75

-50

-25

 0

 25

 50

 75

 100

 125

 150

 175

4 8 16 32 64

δ
η

t
(%

)

vCPUs

UC
OC

OC2

(b) δηt

Figure 4.2: Box plots of virtualization overhead for various multithreaded
executions of PARSEC and SPLASH2X workloads. Results for all benchmarks
are aggregated for each scenario.

64 VIRTUALIZATION OVERHEAD FOR MULTITHREADED APPLICATIONS

aggregated for all vCPU counts with overlapping bars. These bars are split into
cycles spent at guest and host level, respectively. Similarly, figure 4.4 shows the
average and maximum values of δηt for each benchmark with overlapping bars,
aggregated for all studied vCPU configurations.

Figures 4.3 and 4.4 provide several insights. Firstly, the OC2 data set explains
why δηr is negative for some benchmarks in the OC scenario (e.g. FFT, Radiosity,
s.Raytrace). Namely, overcommitting has a positive effect on ηr in a native
setting as well. This is thus an effect of consolidation rather than virtualization.
The main causes of this effect are the following:

• Reduced lock contention: As the system is overcommitted, the
effective CPU utilization of individual benchmarks is lower. As less
threads are competing for the same synchronization constructs, less cycles
are wasted;

• NUMA management: When the system is overcommitted, the
scheduler can do a better job of balancing the workload between different
NUMA nodes, thus reducing memory latency;

• Reduced idling: When a CPU runs out of work, the OS performs several
operations to prepare it to enter an idle state. When the system has more
work, it is less likely to start idling, thus eliminating these operations.

Secondly, the relationship between δηr and δηt is not simply linear for
multithreaded workloads, even in the UC scenario. To better understand
this at first glance unintuitive finding, we define the ’overhead impact factor (ω)’
as a measure of the correlation between system effects and application effects:

ω = 1 + δηt
1 + δηr

Intuitively, ω shows to what extent system-level virtualization overhead has
an observable impact on application performance. Studying this metric yields
several interesting findings. Firstly, ω is for almost all studied workloads smaller
than 1. This indicates that δηr > δηt or in layman’s terms that not all system-
level overhead is observable by end users. This general trend may in part be
explained by the following observations:

MULTITHREADED APPLICATIONS 65

Figure 4.3: Average and maximum δηr for the studied vCPU counts, displayed
separately for each benchmark with overlapping bars.

66 VIRTUALIZATION OVERHEAD FOR MULTITHREADED APPLICATIONS

Figure 4.4: Average and maximum δηt for the studied vCPU counts, displayed
separately for each benchmark with overlapping bars.

MULTITHREADED APPLICATIONS 67

• The virtualized benchmarks show higher CPU utilization than their native
counterparts, caused by e.g. I/O offloaded to QEMU. Previous research
has shown that hardware-assisted I/O virtualization techniques such as
SR-IOV (see §2.2.4) -while improving performance- actually increase CPU
usage [140].

• Since many of the system effects introduced by virtualization involve
CPU-intensive operations (e.g. instruction emulation), they push said
CPU to its highest boost frequency (185% of the nominal frequency in
the case of the test system employed for this work). The average CPU
frequency is therefore higher in a virtualized context.

Moreover, for multithreaded applications, the variance in ω (σω) between
benchmarks is very high. For example, for Bodytrack, UC ω ≈ 1.1, while for
Ocean CP, OC ω ≈ 0.6. This can be explained by the fact that the execution
time of a multithreaded application is determined solely by its critical path [151].
In brief, the critical path is the execution path taking the largest amount of time
to complete. For example, consider an image processing application employing
10 threads, the first 9 of which process an equally sized section of the image,
while the last thread processes a section twice that size. Assuming processing
time is directly proportional to image section size, the critical path of the
application is intuitively the tenth thread. Even when the workload of the other
9 threads is doubled, the execution time of the application remains identical
(assuming ample system resources are available), despite the resources consumed
by the application increasing by 82%. Conversely, if the workload of the tenth
thread is doubled, application execution time doubles, despite the resources
consumed by the application only increasing by 18%. For virtualization overhead
this means that when δηr is located mostly on the critical path, δηt increases
drastically. Otherwise, δηrmay have little to no effect on δηt. To illustrate
this, figure 4.5 shows the distribution of cycles over individual CPUs for the
Bodytrack and Ocean CP benchmarks in both a native and virtualized setting,
with 64 CPUs spread over 4 NUMA nodes in an UC scenario. The results are
normalized to the native execution so that

∑63
C=0 P (C) = (δηr + 1)(×100%),

with C a particular CPU ID.

Figure 4.5 shows that system-level overhead is distributed very differently
between vCPUs for Bodytrack and Ocean CP. Regarding the former, none of
the vCPUs show much overhead, except for one. It is likely other vCPUs will at
some point have to wait for this overhead-heavy vCPU because it is under such
a heavy load, thus slowing down the entire application. Regarding the latter
on the other hand, the distribution of δηr is much more egalitarian. Because of
this, many of the system effects are likely not part of the critical path, yielding
a much smaller ω.

68 VIRTUALIZATION OVERHEAD FOR MULTITHREADED APPLICATIONS

 0

 1

 2

 3

 4

 0 10 20 30 40 50 60

%
 n

a
ti
ve

 c
y
c
le

s

CPU ID

Bodytrack native
Bodytrack virtualized

Ocean CP native
Ocean CP virtualized

Figure 4.5: Distribution of cycles over CPUs for the 64 CPU variants of
Bodytrack and Ocean CP, normalized to native execution.

While figure 4.5 explains how the nature of δηrmay affect δηt differently
depending on the workload, a more in-depth analysis is needed to explain
what causes this difference in nature to begin with. Namely, knowing that
δηrmay have many different causes (see §3.2), it is clear that for each workload,
δηr is constituted of a unique combination of distinct factors that each influence
δηt (and thus ω) in a different way. Figure 4.3 provides some indication of this
variance in composition of δηr , as the ratio of host- and guest-level overhead
varies between applications. This is thus a good starting point to gain a deeper
insight into the constituents of δηr for multithreaded applications. Specifically,
based on figure 4.3, the benchmarks may be grouped in four different categories
depending on the nature of δηr :

• Negligible overhead: Barnes, Ferret, FFT, FMM, Freqmine, LU NCB,
parsec.Raytrace, Radiosity, splash2x.Raytrace, Swaptions, Water NSquared
and Water Spatial;

• High guest overhead: Blackscholes, Canneal, Fluidanimate, Ocean CP,
Ocean NCP and Radix;

• High host overhead: Bodytrack, Dedup, Facesim, Vips and Volrend;

• High overcommitted overhead: LU CB, Streamcluster, Vips, Volrend,
X264.

MULTITHREADED APPLICATIONS 69

Note that some benchmarks exhibit characteristics of several overhead profiles
and were therefore added to multiple categories. Below each of these categories
is discussed in detail. Because figure 4.2 indicates that overhead varies severely
between VM sizes, the discussion of each category begins with a breakdown of
the overhead for each VM size in the most relevant scenario. This allows for
reasoning about the most likely causes of the overhead for that category. This
reasoning is subsequently reinforced with further suitable empirical evidence as
needed.

4.2.1 Negligible Overhead

About half of the tested benchmarks do not exhibit significant virtualization
overhead. This shows that even for workload groups which are by their
nature considered to be prone to virtualization overhead such as the studied
multithreaded applications, modern virtualization techniques are often highly
efficient. Moreover, this data shows that virtualization overhead is highly
dependent on the specific workload and even groups of applications sharing
many high-level characteristics may exhibit wildly varying performance.

4.2.2 High Guest Overhead

The benchmarks displaying high guest overhead show strongly varying behavior
depending on system settings. Firstly, several of these benchmarks display most
overhead in the UC scenario, while others show higher OC overhead in figures
4.3 and 4.4. However, the OC2 data set is for the latter group similar to the UC
one, indicating that even on physical systems, overcommitting adds overhead
for these benchmarks. The increase in OC overhead is thus due to resource
consolidation rather than virtualization. Therefore, analyzing virtualization
overhead in the UC scenario is sufficient for this category of benchmarks. In
light of this, figure 4.6 shows a breakdown of the benchmarks showing high
guest overhead for each analyzed system configuration in the UC scenario.

In figure 4.6, overhead is negligible for all system configurations employing only
one NUMA node. For configurations with multiple NUMA nodes on the other
hand, overhead increases dramatically. This makes NUMA an obvious suspect
regarding the underlying cause of the virtualization overhead these benchmarks
incur. Namely, memory-intensive applications may often access data on remote
NUMA nodes. As outlined in §3.2.8, in a VM the scheduler is unaware of the
NUMA configuration of the physical hardware, preventing it from optimizing
NUMA locality like it would natively. For computation-intensive workloads
such as the ones employed in this study, analyzing cycles per instruction (CPI)

70 VIRTUALIZATION OVERHEAD FOR MULTITHREADED APPLICATIONS

 0

 20

 40

 60

 80

 100

Blackscholes Canneal Fluidanimate Ocean CP Ocean NCP Radix

4 8 1
6

3
2

6
4

4 8 1
6

3
2

6
4

4 8 1
6

3
2

6
4

4 8 1
6

3
2

6
4

4 8 1
6

3
2

6
4

4 8 1
6

3
2

6
4

V
ir

tu
a
liz

a
ti
o
n
 o

v
e
rh

e
a
d
 (

%
)

δηr
δηt

vCPUs

Figure 4.6: Breakdown of virtualization overhead for the benchmarks with high
guest overhead in the UC scenario.

 0

 2

 4

 6

 8

 10

 12

 14

 16

Blackscholes Canneal Fluidanimate Ocean CP Ocean NCP Radix

4 8 1
6

3
2

6
4

4 8 1
6

3
2

6
4

4 8 1
6

3
2

6
4

4 8 1
6

3
2

6
4

4 8 1
6

3
2

6
4

4 8 1
6

3
2

6
4

C
P

I

Native

Virtualized
vCPUs

Figure 4.7: CPI for the benchmarks displaying high guest-level overhead in the
UC scenario, broken down per vCPU count.

can prove this hypothesis, since it indicates memory latency [152]. As such,
figure 4.7 shows the CPI for each combination of workload and system settings
in figure 4.6 in both native and virtualized contexts.

Figure 4.7 verifies the above conjecture. Overhead is highest for the benchmarks
with the highest CPI, being the most memory-intensive benchmarks. For native
executions, CPI increases slightly with CPU count. When virtualized, this
increase is much more pronounced, particularly in the scenario with 64 vCPUs
spread over 4 NUMA nodes. Ocean CP is the only exception. However, detailed
analysis shows that this benchmark is bottlenecked by memory bandwidth.

MULTITHREADED APPLICATIONS 71

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

Bodytrack Dedup Facesim Vips Volrend

4 8 16 32 64 4 8 16 32 64 4 8 16 32 64 4 8 16 32 64 4 8 16 32 64

V
ir

tu
a
liz

a
ti
o
n
 o

v
e
rh

e
a
d

 (
%

)

δηr
δηt

vCPUs

Figure 4.8: Breakdown of virtualization overhead for the benchmarks with high
host overhead per CPU count in the UC scenario.

When more NUMA nodes are used, available bandwidth increases, improving
performance despite increased memory latency.

For all benchmarks in figure 4.6, ω is low. The reason for this is that performance-
critical data tends to be accessed often and thus cached. Only data that is
rarely used is fetched from main memory, which is usually input for worker
threads and therefore not likely to be directly on the critical path.

Abstraction of the underlying system is a core concept of virtualization, implying
that the above issue is independent of the virtualization technology used. Rather,
it depends on the host system P (Sv). All popular virtualization platforms are
consequently known to struggle with NUMA locality [153, 154].

4.2.3 High Host Overhead

Figures 4.3 and 4.4 indicate that most of the benchmarks suffering high host-level
virtualization overhead are mostly affected in the UC scenario. Those that do
not (Vips and Volrend) are also included in the ’high overcommitted overhead’
category, which is elaborated on below. Therefore, this section focusses on the
UC scenario, only discussing OC results when specifically required to provide a
complete insight in host-level virtualization overhead. As such, figure 4.8 shows
a breakdown of the virtualization overhead for the benchmarks suffering high
host overhead for all studied system configurations in the UC scenario.

72 VIRTUALIZATION OVERHEAD FOR MULTITHREADED APPLICATIONS

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90
4 8 16 32 64 4 8 16 32 64 4 8 16 32 64 4 8 16 32 64 4 8 16 32 64

δ
η

r
(h

o
s
t)

 (
%

)

TSC deadline
RESCHEDULE IPI

TLB IPI
other VM exits

Successful HLT poll
Scheduling

vCPUs

UC|OC

VolrendVipsFacesimDedupBodytrack

Figure 4.9: Breakdown of host cycles for the benchmarks with high host overhead
into their main causes per vCPU count.

The results displayed in figure 4.8 are interesting. δηr rises steadily with CPU
count until 32 CPUs, after which it drops drastically. δηt however continues
to rise for all benchmarks with the exception of Vips. ω thus varies greatly
between benchmarks and CPU counts. It is therefore obvious that a further
breakdown of these results is necessary. Since any host operations are preceded
by a VM exit for systems based on hardware-assisted virtualization, it makes
sense to perform this breakdown based on CPU cycles spent on different kinds
of VM exits. Figure 4.9 shows exactly this. Note that in contrast to figure
4.8 both the UC and OC scenarios are included in this figure, since this may
provide additional insight in the nature of the host-level virtualization overhead,
even though the main interest of this section lies with the UC scenario.

Figure 4.9 explains the variance in ω observed in figure 4.8. Namely, the strange
pattern for δηr is exclusively attributable to scheduling. When cycles spent on
scheduling are ignored, one observes a consistent, high ω. This is logical, since
in the UC scenario, VMM-level scheduling almost exclusively occurs when the
VM voluntarily yields a vCPU. Therefore, host-level scheduling is rarely part
of the critical path. Most other VM exits on the other hand are attributable
to the guest attempting to perform some sensitive operation requiring VMM
involvement. Many of these are by nature highly likely to be on the critical
path, thus yielding a high ω. Below, all of these VM exits are discussed in detail
in terms of their high-level causes.

MULTITHREADED APPLICATIONS 73

Blocking Synchronization

Blocking synchronization is prevalent in multithreaded applications, as discussed
in §3.2.6. The same section notes that while highly efficient in a native
context, this synchronization mechanism is known to induce significant host-level
virtualization overhead through vCPU scheduling, the BWW problem and IPIs.
Additionally, figure 4.9 reveals another complication arising from virtualizing
blocking synchronization, which has to the best knowledge of the author never
been described in literature. Namely, all popular operating systems update
the global system time through a mechanism called the ’scheduler tick’, which
consists of periodic per-CPU timer interrupts, in the case of Linux preferably
driven by the CPU’s time stamp counter (TSC). Because this scheduler tick
is relatively resource-intensive, modern kernels tend to disable it when the
CPU is idle. Specifically, when a CPU is about to enter an idle state, the
kernel attempts to heuristically predict how long this idle state will last. If it
is determined to likely be sufficiently long, the tick is deferred until the next
scheduled timer or read-copy-update (RCU) event or, if none are available,
disabled entirely. When the CPU is awoken again, the original tick frequency is
restored [115]. This is called ’tickless kernel mode’ and yields energy savings of
up to 70% relative to a classic naive periodic tick [155]. However, altering the
scheduler tick requires writing to the TSC_DEADLINE MSR, which induces a VM
exit. This explains the VM exits due to TSC_DEADLINE MSR writes shown in
figure 4.9.

All of the virtualization overhead induced by blocking synchronization follows a
predictable pattern. Namely, when a thread blocks on a contended lock and
there are no other runnable tasks for the vCPU, the guest kernel usually disables
its scheduler tick and issues a hlt instruction, resulting in two VM exits. When
the thread is woken up again, two more VM exits likely follow for firstly sending
a RESCHEDULE IPI to an idle vCPU in order to schedule the newly awoken
thread and secondly reactivating the scheduler tick on that vCPU. Thus, each
blocking operation results in up to four VM exits. Figure 4.10 shows all of this
schematically.

Figure 4.9 shows that each of the operations inducing VM exits displayed in
figure 4.10 can be costly. Especially surprising is the fact that TSC_DEADLINE
MSR writes account for a δηr of up to 10%, since tickless kernels have been
described before in literature as having a positive effect on virtualization [156].
Nevertheless, figure 4.9 shows that scheduling, which is almost always triggered
by a hlt VM exit, dwarfs any other cause of host-level virtualization overhead
for most studied benchmarks. Much of this cost may be attributed to halt
polling (see §3.2.6), which has several interesting implications with regard to
virtualization overhead:

74 VIRTUALIZATION OVERHEAD FOR MULTITHREADED APPLICATIONS

futex(LOCK)

Thread 1

Work

futex(UNLOCK)

ipi_send
(RESCHEDULE)

VM
exit

Success

futex(LOCK)

Thread 2

Disable tick VM
exit

HLT VM
exit

Enable tick VM
exit

schedule()

futex(LOCK)

Work

futex(UNLOCK)

Fail

Success

Figure 4.10: Schematic overview of the execution flow of two threads contending
for a blocking lock in a state-of-the-art virtualized environment. User space
operations are shown in light blue, kernel operations in dark blue.

MULTITHREADED APPLICATIONS 75

• When halt polling is successful (i.e. the vCPU is woken up before the
polling ends and is immediately rescheduled), the cost of handling HLT
VM exits is limited. When it is unsuccessful on the other hand (i.e. the
polling interval expires and the vCPU needs to be descheduled anyway),
the cost of handling HLT VM exits becomes very high. Because cycles
spent on unsuccessful polling only slow down the scheduling process, they
are considered to be scheduling overhead as well in figure 4.9;

• δηr is in general much higher for the system configuration with 32 vCPUs
than for that with 64 vCPUs in figure 4.9. This is a consequence of
the heuristics KVM uses to manage the polling threshold. If the poll
was unsuccessful, KVM grows or shrinks the threshold if the vCPU was
blocked for resp. a short or long time [115]. As vCPU counts increase,
so do contention and average blocking time, which in turn increase the
polling threshold. At 64 vCPUs however, the average blocking time is
so long that the polling threshold shrinks to 0. We confirmed this by
measuring the success rate of halt polling for the studied workloads under
different system configurations, which drops from 30% on average for 4
vCPUs to close to 0% for 64 vCPUs;

• Halt polling is largely responsible for the strange evolution of ω in figure
4.8. By design, halt polling expends CPU cycles to improve performance,
lowering ω ever more as the polling threshold grows with vCPU count up
to 32 vCPUs. When the polling threshold shrinks back to 0 for 64 vCPUs,
ω rises drastically as δηr drops at the expense of δηt;

• δηr is higher in the UC scenario than in the OC scenario in figure 4.9.
This can be explained by the fact that contrary to the UC scenario, halt
polling can degrade system throughput in the OC scenario because upon
a HLT VM exit, the host most likely has other runnable tasks ready to be
scheduled on the yielded CPU, which makes spending cycles on polling
a pure waste time and resources. Therefore, KVM disables halt polling
when the CPU has runnable tasks available when a HLT VM exit occurs
[115], reducing δηr in the OC scenario at the cost of increasing application
latency.

Host-level virtualization overhead may vary greatly depending on the system
configuration. For example, as the root cause of the VM exits induced by
TSC_DEADLINE MSR writes lies within the guest OS, this overhead may vary
between guests. The VM exits themselves however are handled comparably by
Xen and KVM, as are those related to sending IPIs. In terms of hardware, Intel
and AMD offer unique APIC virtualization extensions (resp. APICv [42] and
AVIC [112]). While implementation details differ, their effect and performance

76 VIRTUALIZATION OVERHEAD FOR MULTITHREADED APPLICATIONS

are similar. Both eliminate the need for VMM intervention to inject IPIs and
acknowledge their receipt, but still require a VM exit to write the ICR MSR.
Finally, halt polling overhead may vary drastically between VMMs. In Xen
HVM for example, halt polling is not implemented. δηr will thus be lower in
the UC scenario for Xen than for KVM, while δηtwill be higher. In the OC
scenario on the other hand, scheduling overhead for Xen will be comparable to
that for KVM.

Virtual Memory Management

Figure 4.9 shows that Dedup and Vips spend a lot of resources on processing
VM exits induced by TLB shootdowns (see §3.2.7). Analysis of the system calls
invoked by these workloads reveals that most of these TLB shootdowns are
caused by resizing the heap. Namely, heap resizing involves acquiring memory
from or returning memory to the OS, which is done through system calls such
as madvise and mprotect, which in turn invoke TLB shootdown IPIs. While
there are other causes of TLB shootdowns such as page migrations, these are
insignificant for the evaluated workloads.

The exact amount of heap resizing operations an application induces is highly
dependent on its source code and the underlying system libraries it employs.
For example, when an application often allocates and frees small amounts of
memory, highly memory-efficient memory allocators may immediately return
the freed memory to the OS, only to request new memory soon after. The
fact that the studied benchmarks all employ glibc’s ptmalloc2 as their memory
allocator—which is by nature highly memory-efficient—thereby explains the
TLB shootdown-related virtualization overhead some workloads exhibit in figure
4.9.

As the overhead induced by TLB shootdown IPIs is handled comparably across
hardware platforms and VMMs, similar performance is to be expected for
systems from different vendors with otherwise comparable properties.

Spinning at Kernel Level

Some years ago, spinning at kernel level was a serious issue for overcommitted
virtualized systems in the form of LHP and related issues, as described in §3.2.5.
Figure 4.9 however indicates that PLE is very effective at dealing with this.
Only Vips in the OC scenario suffers from many PLE VM exits. While the
overhead caused by these exits themselves is low, they invoke the scheduler,
inducing significant scheduling overhead. As Vips incurs negligible HLT and

MULTITHREADED APPLICATIONS 77

-80

-60

-40

-20

 0

 20

 40

 60

 80

LU CB Streamcluster Vips Volrend X264

4 8 16 32 64 4 8 16 32 64 4 8 16 32 64 4 8 16 32 64 4 8 16 32 64

V
ir

t.
 o

v
e
rh

.
(%

) δηr
δηt

vCPUs

Figure 4.11: Breakdown of the virtualization overhead in the OC2 scenario for
the benchmarks that show high overhead in the OC scenario.

preemption timer VM exits compared to the other workloads suffering high
host-level virtualization overhead, almost all the scheduling overhead for Vips
shown in figure 4.9 can be attributed to PLE. Nevertheless, this scheduling
overhead can be considered acceptable, since it is comparable to that for other
benchmarks in the OC scenario and the scheduler would otherwise be triggered
anyway by other mechanisms.

As stated in §3.2.5, AMD’s PF is conceptually identical to Intel’s PLE [112].
Both solutions are treated equally by KVM. Moreover, Xen source code reveals
that it handles both hardware features much like KVM. It is thus fair to conclude
that spinning at kernel level has been tackled effectively across hardware and
virtualization platforms.

4.2.4 High Overcommitted Overhead

Naturally, the benchmarks only showing significant virtualization overhead
when the system is overcommitted are best studied in the OC scenario. As
such, figure 4.11 breaks down virtualization overhead for these benchmarks in
the OC scenario by CPU count. This figure is based on the OC2 data set to
eliminate the effects of server consolidation.

The results in figure 4.11 are at first glance bewildering. However, upon careful
inspection, one may distinguish two subcategories in the presented benchmarks
in figure 4.11:

78 VIRTUALIZATION OVERHEAD FOR MULTITHREADED APPLICATIONS

 0

 50

 100

 150

 200

 250

%
 U

C
 C

P
U

 t
im

e

UC OC UC OC UC OC UC OC UC OC

LU CB Streamcluster Vips Volrend X264

native_queued_spin_lock_slowpath
pthread_mutex_trylock

parsec_barrier_wait
smp_call_function_many

ray_trace_non_adaptively

ray_trace
x264
pgain
other

Figure 4.12: Comparison of subroutine CPU profile between UC and OC
virtualized execution with 64 vCPUs for the benchmarks displaying high
overcommitted virtualization overhead.

• Positive overhead: LU CB, Vips, X264,

• Negative overhead: Streamcluster, Volrend. Note that besides overhead
related to overcommitting, Streamcluster suffers from NUMA locality
issues, distorting its results.

In an effort to understand the above patterns, the call stack of the workloads
from figure 4.11 was analyzed in detail. Figure 4.12 compares the total CPU
cycles spent on each subroutine during virtualized workload execution in
respectively the UC and OC scenario. Only the 64 vCPU variants of the
workloads were studied, since figure 4.11 indicates that variance between system
configurations is limited when accounting for the NUMA-related overhead
incurred by Streamcluster.

Figure 4.12 shows that for the benchmarks with positive OC2 overhead in figure
4.11, the system function smp_call_function_many is mainly responsible for
the difference between UC and OC CPU time consumed by the workload,
while for the benchmarks with negative OC2 overhead some application-level
subroutines are the culprit. Both of these groups are discussed in detail below.

MULTITHREADED APPLICATIONS 79

Translation Lookaside Buffer Shootdown Preemption

Smp_call_function_many is a system-level function used to send IPIs. In
the OC scenario, at least some IPIs thus appear to increase in performance
cost. Source code analysis reveals that specifically TLB shootdown IPIs are
responsible for this. The benchmarks exhibiting positive overhead in figure 4.11
are thus clearly suffering from TLB shootdown preemption (see §3.2.7).

Since TLB shootdown preemption is an example of excessive kernel-level
spinning, PLE largely mitigates virtualization overhead associated with this
issue. However, as figure 4.11 shows, PLE is not a perfect solution. Namely,
the prolonged execution time of the smp_call_function_many routine in the
OC scenario shown in figure 4.12 is a consequence of the fact that PLE can
only trigger a VM exit after some spinning has already occurred. Note that
because this spinning takes place in the guest kernel, it is visible as guest-level
overhead in figure 4.3.

User-Level Spinning

By analyzing the source code of the subroutines indicated by figure 4.12 as
suffering a severe performance penalty in the OC scenario for the benchmarks
displaying negative OC2 overhead in figure 4.11, we found that the common
denominator of all these subroutines is that they contain programmer-defined
spinning synchronization primitives. Such primitives may lead to a LHP-like
problem at user level. Below this issue is illustrated using Volrend, since figure
4.11 indicates that this benchmark suffers the most from this issue, which we
call ’user-level spinning’.

The Ray_Trace subroutine defined in Volrend’s source code, which according to
figure 4.12 consumes approximately ten times more cycles in the OC scenario
compared to the UC scenario, contains the user-level spin-based barrier shown
in listing 4.1. Like with classic LHP, in OC scenarios it is possible that a vCPU
holding such a custom synchronization primitive is preempted by the VMM,
forcing all vCPUs waiting for it to spend exorbitant amounts of time spinning.
As shown in figure 4.11, this may lead to catastrophic virtualization overhead.
Even more problematic is that PLE can not intervene here, as it relies on the
PAUSE instruction to work. Programmer-defined synchronization primitives
rarely compile down to this instruction. Moreover, PLE only works in kernel
mode [42]. As such, user-level spinning is an as of yet unaddressed issue which
has to the best knowledge of the author received no attention from scientific
literature nor industry.

80 VIRTUALIZATION OVERHEAD FOR MULTITHREADED APPLICATIONS

LOCK(Global−>CountLock) ;
Global−>Counter−−;
UNLOCK(Global−>CountLock) ;
whi l e (Global−>Counter) ;

Listing 4.1: User level spin-based barrier in Volrend.

Interestingly, while overall performance is clearly degraded in the OC scenario
for Streamcluster and Volrend due to user-level spinning, figure 4.12 shows a
decrease in kernel-level spinning (native_queued_spin_lock_slowpath) and
blocking synchronization (pthread_mutex_trylock) for Streamcluster due to
reduced lock contention in the OC scenario, as fewer effective resources are
available to each instance of the benchmark. This illustrates the complexity
of quantifying virtualization overhead and categorizing the benchmarks, as a
system setting may impact varying overhead constituents in varying or even
opposite ways.

It is obvious that application design plays a major role in virtualization overhead
due to user level spinning. Notwithstanding, the following system settings may
greatly influence the severity of user-level spinning:

• Increasing thread- and vCPU counts leads to more intensive spinning
synchronization, as indicated by figure 4.11. This problem will thus gain
importance towards the future, as CPU counts tend to grow [150];

• More frequent task switches increase the chance that a thread holding a
lock gets preempted, increasing the severity of user-level spinning. Figures
4.3 and 4.4 prove this, as Volrend shows high overhead for the OC data
set, but negative overhead for the OC2 data set. Firstly this indicates that
user-level spinning is also an issue in a bare metal context. Secondly, the
OC virtualized execution is faster than its native counterpart because in
each VM only one instance of the benchmark executes, while natively two
instances are run within the same OS for the OC2 data set. As time slices
are allocated to vCPUs at a much coarser granularity than to threads, it
is much less likely that a lock-holding thread is preempted in a VM, thus
reducing user-level spinning.

Previous research has shown that many applications make use of custom user-
level spinning synchronization primitives [157]. Given the potential severity of
user-level spinning in a virtualized setting and the tendency for vCPU counts
to increase towards the future, addressing this issue is paramount. Since user-
level spinning originates from the application, it is a conceptual rather than
an implementation-related issue from the VMM’s perspective. Therefore, all
VMMs and hardware are equally prone to this problem.

LONGEVITY OF RESULTS 81

4.3 Longevity of Results

Like all of the chapters in this dissertation employing empirical methods, the
results presented in this chapter are susceptible to the threats to validity listed
in §3.3.4. Because the work presented in this chapter was conducted in the
earlier stages of the Ph. D. project this dissertation documents, it is prudent
to particularly ensure the findings discussed here are still valid. In particular,
Ubuntu 18.04.1 was used as both the host and the guest OS, which is based on
Linux 4.15, dating back to January 2018. Therefore, a sample of the evaluated
benchmarks was re-evaluated using the latest stable Linux release at the time
of finalizing the publication upon which this chapter is based (December 2019),
namely 4.19.88. The chosen experiment sample consists of one benchmark from
each category defined in §4.2, executed with 64 threads/CPUs spread over four
NUMA nodes: Bodytrack (high host overhead), Ferret (negligible overhead),
Ocean CP (high guest overhead) and X264 (high overcommitted overhead). All
of these yield similar results for the newer kernel, with the exception of X264
in the OC scenario. In particular, the overhead induced by TLB shootdown
preemption has disappeared. After analyzing the Linux kernel patch logs, we
found that in kernel 4.16 a patch was implemented that mitigates this problem
entirely by paravirtualizing TLB shootdowns in Linux/KVM [158]. Since this
patch, the guest only sends TLB shootdown IPIs to vCPUs that are running,
while all other vCPUs are flagged to flush their TLB on rescheduling. A similar
solution has been implemented more recently for Xen [159].

4.4 Related Work

Studies quantifying virtualization overhead are plentiful. However, most fail to
provide deep insight into overhead causes or their link to system and application
effects. Indeed, most related work does not even explicitly distinguish between
these two forms of overhead, as table 3.1 has made clear in the previous chapter.
More profound work on the other hand tends to have a very narrow scope,
only addressing a specific issue within the broad landscape of challenges related
to virtualization. When narrowing the scope to multithreaded applications,
qualitative related work becomes even more scarce. Table 4.1 lists all of said
qualitative existing work known to the author which addresses at least some
cause of virtualization overhead for multithreaded applications in detail, ordered
by publication year. By ’in detail’ is meant describing the causes of the overhead
in technical depth, as opposed to merely mentioning or quantifying it.

82 VIRTUALIZATION OVERHEAD FOR MULTITHREADED APPLICATIONS

Table 4.1: Related work concerning identification of virtualization overhead.
Study Publication

year
Guest
overhead

Host
overhead

OC
overhead

[46] 2006 X
[139] 2007 X
[110] 2008 X
[107] 2008 X X
[137] 2008 X
[133] 2010 X
[142] 2010 X X X
[116] 2011 X
[136] 2011 X X
[53] 2011 X X
[160] 2011 X X
[144] 2011 X
[16] 2012 X
[22] 2012 X X
[114] 2013 X
[50] 2013 X X
[108] 2013 X
[113] 2013 X
[161] 2013 X
[14] 2014 X
[118] 2014 X
[162] 2014 X X
[10] 2015 X X X
[163] 2015 X
[13] 2016 X
[55] 2016 X X
[7] 2016 X
[117] 2016 X
[164] 2016 X
[165] 2016 X
[138] 2016 X
[109] 2017 X
[153] 2017 X
[9] 2018 X
[166] 2018 X
[103] 2019 X
[154] 2019 X
[167] 2020 X X
[168] 2020 X
[56] 2021 X X

CONCLUSION 83

Table 4.1 indicates that indeed many existing studies address at least one of
the categories of virtualization overhead described in this chapter. Some of
them even do so in great detail. However, it is also clear that this detail only
extends to a specific aspect of the overhead. Table 4.1 lists only two studies
([142] and [10]) that address at least some aspect of all three categories. Of
these two, only [10] does so in a systematic manner comparable to this chapter.
Since this study was published in 2015 however, it can no longer be considered
representative for modern virtualized systems since virtualization technology
has evolved so profoundly in the past decade. Therefore, table 4.1 makes clear
that this work is the only effort to provide a clear and all-encompassing picture
of virtualization overhead suffered by multithreaded applications on modern
systems.

4.5 Conclusion

Thanks to persistent efforts from academia and industry, contemporary
hardware-assisted x86 virtualization techniques induce minimal overhead for se-
quential computation-intensive workloads on modern platforms. Unfortunately,
this is not yet the case for their multithreaded counterparts. Overhead may have
many different causes which each manifest themselves in a unique way depending
on the workload and system configuration. The perceived application effects
may differ greatly from the underlying impact on the system. The relationship
between these system and application effects is primarily determined by the
critical path of the workload. The principal remaining causes of virtualization
overhead for multithreaded applications are thread-coordination and NUMA
management.

While this chapter has touched on many known issues, the enormous advances
in virtualization technology in the last decade have rendered almost all existing
work regarding this topic outdated. Especially considering that this chapter
uncovered several as of yet unknown causes of virtualization overhead for the
target workloads of this dissertation, it is in the estimation of the author a
valuable contribution to the field as well as an adequate answer to the first pair
of secondary research questions established in §1.3.

84 VIRTUALIZATION OVERHEAD FOR MULTITHREADED APPLICATIONS

4.5.1 Personal Contribution

In addition to the main author of this dissertation, several parties were involved
with the work presented in this chapter through providing the test platform used,
performing several of the required experiments and collaborating on interpreting
findings. While it is thus unfair to state that any part of this chapter is the
exclusive contribution of this dissertation’s author, he did have a principal role
throughout and was in the end responsible for concatenating individual data
points to a cohesive narrative.

Chapter 5

Reducing Virtualization
Overhead for Multithreaded
Applications

This chapter was previously published as part of:
S. Schildermans et al. “Virtualization Overhead of Multithreading in X86 State-
of-the-Art & Remaining Challenges”. In: IEEE Transactions on Parallel and
Distributed Systems 32.10 (2021), pp. 2557–2570

The previous chapter has made clear that multithreading still induces substantial
virtualization overhead. While this overhead stems from a multitude of sources,
it can be conceptually grouped in the following categories:

• Blocking synchronization: Blocking-based primitives designed to
coordinate the execution flow of a multithreaded application;

• Spinning synchronization: Spinning-based primitives designed to
coordinate the execution flow of a multithreaded application;

• Data sharing: Operations induced by threads modifying shared data;

• NUMA opacity: Issues induced by abstraction of the host NUMA
architecture.

85

86 REDUCING VIRTUALIZATION OVERHEAD FOR MULTITHREADED APPLICATIONS

For each of the above categories, this chapter discusses the most common
techniques employed today to overcome their inherent virtualization overhead.
While these techniques have already briefly been mentioned in previous chapters
to facilitate interpretation of the results presented there, this chapter provides
a much more detailed analysis thereof in order to understand their impact on
virtualized workloads in greater depth. Moreover, this chapter presents and
discusses a range of novel approaches to further reduce virtualization overhead
for multithreaded applications. Some of these have already been proposed in
literature, while others are original ideas.

Main Findings & Contributions

• While halt polling improves δηt for blocking synchronization, it greatly
increases δηr;

• Alternative techniques to reduce the cost of vCPU scheduling are under
development, but not yet mature;

• While hardware assistance has greatly optimized virtualizing IPIs, strict
co-scheduling is the only known method to further improve this mechanism.
However, this technique has known resource fragmentation issues;

• Tweaking the scheduler tick behavior may reduce virtualization overhead
related to blocking synchronization for specific workloads;

• Paravirtualizing the scheduler tick has the potential to significantly reduce
virtualization overhead for blocking synchronization;

• Exploiting symmetric multithreading (SMT) may drastically reduce
virtualization overhead related to scheduling and NUMA opacity;

• While PLE is highly effective at mitigating spinning synchronization
overhead at kernel level, it currently does not address user-level spinning;

• Spin-then-block primitives offer a good alternative to traditional spin
locks to minimize spinning at both user and kernel level;

• Compilers can be enhanced to detect user-level spinning constructs and
replace them by virtualization-friendly alternatives;

• Pause exiting may provide a fundamental solution to the issue of
excessive spinning in virtualized systems, albeit while degrading spin
lock performance in some cases;

• System calls implementing spinning synchronization would allow applica-
tions to utilize PLE at a limited cost in spin lock performance;

BLOCKING SYNCHRONIZATION 87

• Alternative TLB designs may eliminate the need for TLB shootdowns and
their associated virtualization overhead;

• While application source code alteration may be effective at reducing
TLB shootdowns, altering memory allocator behavior is a much more
programmer-friendly approach;

• Extended paravirtualization may eliminate the NUMA opacity problem
without constraining the potential for resource consolidation;

• Modern techniques to optimize vCPU placement are still lacking;

• In general, application-level solutions to reduce virtualization overhead
are highly promising but understudied as of now.

5.1 Blocking Synchronization

§4.2.3 has demonstrated that blocking synchronization is a complex affair in
virtualized systems, inducing up to four VM exits for every synchronization cycle
when the lock in question is heavily contended. The same section describes that
multiple distinct causes underlie these VM exits. Said causes are best treated as
independent issues with dito potential solutions. Consequently, several research
directions as well as industrial innovations benefit blocking synchronization in a
virtualized context. Below an elaboration on each of the existing innovations
known to the author, supplemented with original suggestions to further reduce
the virtualization overhead associated with this synchronization mechanism.

5.1.1 Deferred Scheduling

The most extensively studied aspect of virtualization overhead related to
blocking synchronization is reducing the cost of vCPU scheduling. The best
example of such efforts is the concept of halt polling, which has already been
adopted by some VMMs (e.g. KVM). While—as clarified in §4.2.3—this
technique may reduce δηt related to vCPU scheduling (which is often induced
by blocking synchronization), that section equally suggests that halt polling
itself may have a non-negligible negative impact on δηr.

To clarify the above perception, figure 5.1 compares δηr and δηt for the
experiments performed in §4.2.3 with halt polling respectively enabled and
disabled. Only the UC scenario is considered, since halt polling has a negligible
impact on performance in the OC scenario (as also explained in §4.2.3).

88 REDUCING VIRTUALIZATION OVERHEAD FOR MULTITHREADED APPLICATIONS

-10

 0

 10

 20

 30

 40

 50

 60

 70

Bodytrack Dedup Facesim Vips Volrend

4 8 16 32 64 4 8 16 32 64 4 8 16 32 64 4 8 16 32 64 4 8 16 32 64

In
c
r.
 v

ir
t.
 o

v
e

rh
.

(%
)

δηr
δηt

vCPUs

Figure 5.1: δηr and δηt caused by halt polling for the benchmarks with high
host overhead per vCPU count in the UC scenario.

Figure 5.1 confirms the conjecture that halt polling is not at all resource-efficient.
While it does reduce δηt by up to 14%, this comes at a great cost in δηr. When
raw application performance is the only concern, this is justifiable. However,
these days this philosophy is highly debatable for various reasons, not least
the tendency of cloud providers to charge consumers at ever-finer granularities,
down to milliseconds of CPU time [83]. This means that an increase in δηr is
directly charged to the consumer, making totally disregarding δηr in favor of
δηt an ever more dubious system design choice. Besides these efficiency concerns,
as already stated in §4.2.3, halt polling is hardly effective to begin with when
the system is overcommitted and/or VM vCPU counts are large, indicating
that it is not a durable solution since cloud environments tend to be heavily
consolidated and VM vCPU counts continue to increase [150].

The above issues are inherent to the polling concept. It is very hard to balance
performance and efficiency, especially on overcommitted systems where any
cycles spent on polling reduce system throughput. The reluctance of Xen
to adopt any form of halt polling underpins this. Therefore more intelligent
solutions are highly desirable. Existing research has attempted to replace
polling by computation migrated from other vCPUs, but this introduces vCPU
overloading as a side effect [14]. A recent solution, [164], can reduce such
side effects but requires substantial changes to the guest OS, which limits its
potential for rapid and widespread adoption. All of this suggests that deferred
vCPU scheduling is to be viewed as a specialist tool to tune VM performance
rather than as a silver bullet improving vCPU scheduling behavior in general
terms.

BLOCKING SYNCHRONIZATION 89

5.1.2 Interrupt Controller Virtualization

Handling IPIs—and interrupts in general—efficiently in a virtualized envi-
ronment has received much attention from hardware manufacturers. Intel’s
APICv and AMD’s AVIC reduce IPI-induced virtualization overhead by
approximately 60% by managing interrupt delivery and acknowledgement in
hardware [16]. Nevertheless, the results presented in §4.2.3 indicate that this
issue is still significant. Specifically the RESCHEDULE IPIs associated with
blocking synchronization are of critical importance to application performance,
since the thread being awoken may only resume execution upon receipt of the
IPI. Given that blocking synchronization is by definition a serializing construct,
it is likely that many of these RESCHEDULE IPIs are part of the application’s
critical path. As such, ω is high for this particular form of virtualization
overhead, meaning that reducing it is likely to have a significant positive effect
on δηt, even if δηr is only modestly ameliorated. Further improvements in this
regard are therefore highly desirable.

5.1.3 Co-Scheduling

Beyond the already adopted hardware improvements mentioned above, strict
co-scheduling has been proposed to eliminate the need for intercepting IPIs in
a virtualized environment because whenever a guest CPU sends an IPI, the
receiving vCPU would be guaranteed to be active. Existing hardware assistance
for interrupt rerouting (see §2.2.4) may be employed to map vCPU identifiers
(IDs) to corresponding pCPU IDs. However, the major drawback of strict
co-scheduling is CPU fragmentation [50]. Namely, co-scheduling demands that
all of a guest’s vCPUs are scheduled and descheduled simultaneously, which
means that a VM with eight vCPUs performing a sequential workload occupies
eight pCPUs at all times, even when it is sharing the system resources with
other VMs which would be able to utilize the occupied resources much more
efficiently. Moreover, if no combination of VMs can be found so that the sum
of the vCPUs used by those VMs equals the number of available pCPUs, some
system resources will inevitably be continuously idle. It is therefore clear that
alternative solutions are direly needed. To the best knowledge of the author,
this remains an open question to date.

90 REDUCING VIRTUALIZATION OVERHEAD FOR MULTITHREADED APPLICATIONS

5.1.4 Scheduler Tick Management

One of the most interesting findings in §4.2.3 is the fact that the VM exits
induced by guest scheduler tick management account for a δηr of up to 10% for
applications relying heavily on blocking synchronization. The most surprising
aspect of this issue is that it is a direct consequence of tickless kernel operation
(see §4.2.3), which has been described in literature as having an exclusively
positive effect on virtualization compared to traditional periodic ticks [156].
Since this issue has not even been acknowledged in existing literature, it is
self-evident that no explicit mitigation techniques exist.

Despite lacking explicit mitigation techniques, intelligent system configuration
may work around the problem described above. Specifically, the Linux kernel
allows for tweaking the behavior of the scheduler tick through the boot parameter
CONFIG_NO_HZ [155]. One may choose to never disable the scheduler tick
(referred to as classic periodic ticks), only disable it on idling CPUs (tickless
kernel mode, a.k.a. dynticks idle mode), or disabling it on CPUs that have
at most one runnable task available (full dynticks mode). However, while
reverting to classic periodic ticks may eliminate excessive virtualization overhead
for applications relying heavily on blocking synchronization, it obviously
reintroduces the virtualization issues with classic periodic ticks described
in literature. Namely, the VMM must handle each vCPU’s tick interrupts
individually. A heavily overcommitted host may therefore spend a significant
amount of its resources on handling tick interrupts for idle vCPUs, which leads
to massive virtualization overhead [156]. Knowing this, full dynticks mode at
first glance seems to be an ideal solution, since it eliminates the need to disable
the tick upon every transition between idle and active vCPU states while at the
same time not requiring tick interrupts for idle vCPUs. However, this only holds
true for specific workloads. Namely, this approach simply shifts the threshold
for disabling the scheduler tick on a particular vCPU from having no runnable
tasks to having one runnable task. As such, multithreaded workloads that are
not specifically tuned to employ exactly one worker thread for each available
vCPU may experience just as much or even more virtualization overhead related
to scheduler tick management using full dynticks mode as they would using
dynticks idle mode. Therefore, tuning the scheduler tick is a specialist tool
rather than an all-round solution to the problem of virtualization overhead
induced by scheduler tick management.

Because this work is to the knowledge of the author the first to expose the issues
associated with tickless kernel operation in virtualized systems, it is a natural
reflex to also be the first to provide a solution to said issues. In light of this, this
dissertation presents the concept of virtual scheduler ticks. This idea completely
reconsiders how scheduler ticks are managed in a virtualized environment. After

BLOCKING SYNCHRONIZATION 91

all, the scheduler tick is in essence a mechanism to tie the system’s notion of
the passing of time to physical time through interaction with hardware devices.
In a bare metal context, this is unquestionably a responsibility of the OS. In
a virtualized environment on the other hand, the VMM acts as the OS with
regard to hardware management, essentially taking over this duty from the
guest kernels. Because guest kernels are normally not aware of the fact that they
are being virtualized and thus do not voluntarily yield this responsibility to the
VMM, the latter must forcefully intercept any guest attempt to alter the timer
hardware, which introduces the tick-related virtualization overhead described in
§4.2.3. From a conceptual standpoint, it would be far more prudent if the VM
would proactively delegate management of the scheduler tick to the VMM. In
essence, a guest should be able to request scheduler ticks from the hypervisor
much like applications may request system services from the OS. The VMM
would then be responsible for performing the necessary hardware interactions
to provide this service. This is the basic idea behind virtual scheduler ticks.
Chapter 6 is dedicated to the refinement, implementation and evaluation of this
concept.

5.1.5 Symmetric Multithreading

One may argue that in essence, all of the issues with blocking synchronization
in a virtualized setting are caused by discontinuous CPU availability to (idle)
vCPUs. Following this logic, virtualization overhead related to scheduling—and
thus blocking synchronization—may be drastically reduced by ensuring a vCPU
is never fully descheduled. Obviously, this stands in direct contrast to one of the
principal goals of virtualization, being hardware consolidation. However, these
conflicting goals may be reconciled by exploiting the SMT capability of many
modern CPUs. Recent work applies this idea through statically assigning a
dedicated SMT context to each vCPU, spreading all vCPUs of a particular VM
over distinct pCPUs, but allowing vCPUs from distinct VMs to occupy distinct
SMT contexts within a particular pCPU [169]. In this way, there is no need to
deschedule vCPUs at all while in most cases not significantly reducing system
throughput, thus greatly reducing scheduling-related virtualization overhead
without considerable side effects. The main drawback of this technique however
is that it requires highly capable hardware. Concretely, the host must sport at
least as many pCPUs as the number of vCPUs of the largest VM to be hosted
and at least as many SMT contexts per pCPU as the number of VMs to be
hosted simultaneously. While at the moment these constraints can be considered
too stringent from a pragmatic perspective, it is reasonable to assume that
this approach will be viable in the foreseeable future, since many-core CPUs
containing eight SMT contexts per core already exist [170].

92 REDUCING VIRTUALIZATION OVERHEAD FOR MULTITHREADED APPLICATIONS

5.1.6 Synchronization-Aware Application Design

While the above has made clear that further refinements to the virtualization
process still have plenty of potential to reduce virtualization overhead related
to blocking synchronization, system-level solutions will always have to consider
certain design trade-offs to ensure correctness and efficient execution of all
workloads they may encounter, which tends to impose restrictions on the
performance gain that may be achieved. Moreover, widespread adoption of
novel mitigation techniques at system level is more often than not a slow process
which may easily take years to make a considerable impact in the real world. For
these reasons, conscientious application developers may instead consider tackling
virtualization overhead in a direct manner, namely through purposely designing
their applications in such a way that they make minimal use of operations which
may induce excessive virtualization overhead. To the surprise of the author,
this approach has received little to no attention in literature. As such, this
section aims to provide an indication of the potential of this concept.

Intuitively, an effective way to reduce thread-interdependencies and thus the
need for (blocking) synchronization is focusing on data parallelism during the
application design process. Therefore, this principle is an ideal candidate to
assess the effectiveness of intelligent application design as a means to mitigate
virtualization overhead. Equally intuitively however, adopting any such a
fundamental design principle may be far from trivial in some cases. Besides
imposing restrictions on the application architect’s freedom, such an endeavor
may in the case of existing applications require rewriting large amounts of
source code. These days however, solutions aiding in this process exist. For
example, nowadays many programming languages provide libraries allowing
developers to implement common parallel design patterns with minimal effort by
abstracting implementation details such as thread creation and synchronization
from developers. Danelutto et. al. have employed one such library to implement
the PARSEC benchmark suite in a data-parallel manner [171]. We profiled their
implementation to asses its effectiveness in reducing virtualization-sensitive
synchronization operations. Figure 5.2 shows the results for all the PARSEC
benchmarks identified in §4.2.3 as exhibiting high blocking synchronization-
related virtualization overhead, broken down per vCPU count in the UC scenario.

Figure 5.2 shows promising results. All synchronization operations have been
reduced by up to 70%. This improvement tends to increase with vCPU
count. One exception seems to be the HLT operations induced by the Dedup
benchmark. However, profiling Dedup in detail reveals that these operations
are induced by I/O rather than synchronization. Figure 5.2 also suggests this,
as the RESCHEDULE IPIs are drastically reduced. Thus, it is safe to conclude
that intelligent application design may indeed help considerably in reducing

SPINNING SYNCHRONIZATION 93

 0

 0.2

 0.4

 0.6

 0.8

 1

Bodytrack Dedup Facesim

4 8 16 32 64 4 8 16 32 64 4 8 16 32 64

MSR 6E0 write
SCHED IPI

HLT

vCPUs

Figure 5.2: Number of virtualization-sensitive synchronization operations for
the P3ARSEC workloads relative to their original equivalents that show many
such operations per vCPU count in the UC scenario.

virtualization overhead related to blocking synchronization. Because of these
promising results, it would be negligent not to explore this trajectory further in
this dissertation. As such, chapter 8 explores mitigating virtualization overhead
at application level in much greater depth.

5.2 Spinning Synchronization

As stated in §3.2.5, spinning synchronization may induce exorbitant amounts of
virtualization overhead when the host is overcommitted. Chapter 4 identified
two forms of spinning synchronization: spinning at kernel level on the one
hand and user-level spinning on the other. While §4.2.3 indicates that
virtualization overhead induced by the former has been mostly mitigated
through recent enhancements to the virtualization process, the latter remains a
severe issue. Therefore, novel approaches to deal with (user-level) spinning in
virtualized settings are direly needed. This section proposes several such novel
approaches and elaborates on the existing techniques that have proven effective
at mitigating kernel-level spinning, exposing their limitations and suggesting
further refinements.

94 REDUCING VIRTUALIZATION OVERHEAD FOR MULTITHREADED APPLICATIONS

5.2.1 Pause Loop Exiting

The findings discussed in §4.2.3 show that considerable progress has been made
in dealing with LHP and related issues in recent years. For example, only half
a decade ago, δηt was over 500% for the Dedup benchmark in OC settings [10].
Figure 4.4 shows that thanks to modern system enhancements, δηt ≈ 20% (OC)
or δηt ≈ 50% (OC2) for the same workload nowadays.

While PLE has proven effective at dealing with excessive spinning at kernel
level, one of its main limitations is that it only functions when the CPU is
operating in kernel mode. This means that it cannot be used to address user-
level spinning in its current form. It is unclear to the author why PLE was
designed this way. Extensive literature review has not revealed any reasoning
for this design decision. The most likely explanation for this observation is
that hardware manufacturers do not wish to interfere with the behavior of
(often carefully implemented) application synchronization protocols. While to
expert application developers this is certainly an advantage, to all others this
decision may lead to unintended grave performance degradation. Therefore,
the author argues that PLE should be available at application level. Concerns
about interfering with application behavior may be addressed by exposing a
PLE configuration MSR to user space, allowing expert users to disable this
function if they so desire.

Despite the reassuring results presented in §4.2.3, even with the enhancements
suggested above PLE is not a fundamental solution to the problem of excessive
spinning in overcommitted virtualized systems because it may still allow for
a significant amount of spinning to take place before intervening, as noted in
§4.2.4. As such, mitigating LHP is still to be considered an ongoing issue, with
PLE representing a significant step in the right direction.

5.2.2 Paravirtualized Ticket Spin Locks

As mentioned in §3.2.5, another existing technique to address both LHP and
LWP is the adoption of paravirtualized ticket spin locks. While such locks have
certainly proven effective at reducing spinning-related virtualization overhead
[114], much like PLE, they rely on spinning detection at runtime and can
therefore eliminate all futile spinning induced by LHP and LWP. Moreover,
their reliance on paravirtualization hinders their widespread adoption. Currently,
these locks are—to the best knowledge of the author—only available to Linux
guests running on Xen or KVM hosts [113]. Thus, like PLE, paravirtualized
ticket spin locks are best viewed as a pragmatic intermediary solution pending
an effective, more fundamental alternative.

SPINNING SYNCHRONIZATION 95

5.2.3 Pause Exiting

A simple method to avoid the inefficiency related to ad-hoc detection of spinning
as it is already occurring upon which both existing methods to mitigate
virtualization overhead related to spinning synchronization mentioned above
rely is to employ ’pause exiting’ rather than pause-loop exiting. This is a
capability already present in modern x86 CPUs, which—if enabled—generates
a VM exit on each PAUSE instruction [42]. On such an exit, the VMM may
schedule a different vCPU if the system is heavily overcommitted or reschedule
the vCPU that generated the VM exit immediately if not, until a threshold is
reached. If the vCPU keeps exiting, LHP is likely and the exiting vCPU can
be descheduled for a longer time. Intelligent algorithms may be developed to
determine the amount of time between attempts at rescheduling the exiting
vCPU in function of the amount of contention. This principle is in fact similar
to halt polling. Note that this technique may easily address both spinning at
kernel and user level, since—as opposed to PLE—hardware support for pause
exiting is already available in both user and kernel space.

While pause exiting may improve performance by minimizing spinning in the
event of LHP or LWP, the cost of repeated VM exits may largely mitigate
potential performance gains, in particular for highly contended locks protecting
short critical sections. On the other hand, this is a fundamental solution to
LHP/LWP which does not burden application developers and does not require
novel hardware extensions. Therefore, in the opinion of the author this idea
warrants further investigation.

5.2.4 Blocking Synchronization

Even though §5.1 highlighted plenty of issues concerning blocking synchroniza-
tion in a virtualized context, §4.2.4 has shown that these issues are limited
compared to the potential performance impact of user-level spinning. Therefore,
replacing any user-level spinning synchronization primitives by blocking-based
ones in application source code may be a sensible approach to drastically
reduce overall virtualization overhead. We explored this idea for the Volrend
benchmark, which was identified in §4.2.4 as suffering most from user-level
spinning and found that δηr and δηt were reduced by resp. 60% and 25% in the
OC scenario with 64 vCPUs. Given the magnitude of this improvement, it is
reasonable to conclude that this approach is indeed a viable method to reduce
virtualization overhead induced by user-level spinning in the general sense.

96 REDUCING VIRTUALIZATION OVERHEAD FOR MULTITHREADED APPLICATIONS

Plainly replacing spinning by blocking synchronization may not fit the needs
of all applications because of the naturally lower performance of blocking
synchronization (irrespective of the effects of virtualization). Combined with
the issues blocking synchronization itself induces in a virtualized context, many
applications are likely better served by a hybrid spin-then-block synchronization
mechanism. Many programming languages provide ready-to-use implementa-
tions of such primitives (e.g. InitializeCriticalSectionAndSpinCount in
C++ [172]) or even implement the spin-then-block mechanism directly in the
language runtime environment, completely abstracting its implementation from
application developers (e.g. Oracle’s JRockit JVM [173]). For languages lacking
such a feature, programmers may design custom primitives implementing this
principle. Such primitives are likely to constitute an ideal balance between
the risks of user-level spinning and the performance penalty of blocking
synchronization for many applications.

5.2.5 Compiler Enhancements

Naive user-level spin lock implementations tend to exhibit a similar, simple
structure akin to the pseudocode shown in listing 5.1. It is feasible for compilers
to identify such structures and replace them with more virtualization-friendly
alternatives. This could either involve replacing these constructs by spin-then-
block primitives or injecting PAUSE instructions within the loop. Note that
the latter would require PLE to be supported at user-level as well in order
to significantly reduce excessive spinning. Notwithstanding, injecting PAUSE
instructions in any spinning-based synchronization primitive is highly desirable,
even in native scenarios. Namely, this instruction was specifically designed to
notify the CPU that the application is waiting for a spin lock in order to avoid
memory order violations, which drastically improves spin lock performance on
modern CPUs with advanced branch prediction [174].

g l o b a l i n t l o ck ;
. . .
whi l e (! atomic_compare_and_swap(&lock , 0 , 1)) ;
. . .
l o ck = 0 ;

Listing 5.1: Strucure of a generic user-level spin lock.

SPINNING SYNCHRONIZATION 97

5.2.6 Spin Lock System Calls

At the heart of the user-level spinning issue lies the fact that currently, OSs do
not expose their internal spinning synchronization primitives to applications
[115]. This obligates application (runtime) developers wishing to implement
spinning synchronization to come up with their own interpretation of the
concept. Even without considering virtualization, it is evident that many of
these ad-hoc user-level spin locks are not implemented in an optimal way (e.g.
not employing the PAUSE instruction). By simply exposing the well-defined
spinning primitives employed by the OS to applications through the system
call interface, application developers would no longer need to implement their
own—likely sub-optimal—versions of this mechanism. Moreover, this approach
would greatly reduce virtualization overhead related to user-level spinning,
because the actual spinning would take place at kernel level, allowing PLE to
intervene when LHP or LWP occur.

The obvious drawback of offering spinning synchronization as an OS service
through the system call interface is that it requires source code alterations
to make it available to existing applications. More worryingly however, the
overhead involved in invoking a system call and switching to kernel space
may defeat the main purpose of spinning synchronization—avoiding the context
switch overhead related to blocking synchronization—in the first place. However,
system calls are still much less costly than full context switches. Additionally,
spin lock system calls may be implemented in a hybrid manner, where much of
their code is executed in user space and the switch to kernel space is only made
when absolutely necessary (i.e. when the lock is contended). The main system
call upon which blocking synchronization is based in Linux—futex—employs
exactly this strategy as well [175].

5.2.7 Co-Scheduling

Much like with blocking synchronization, co-scheduling may entirely eliminate
the issues associated with spinning synchronization in a virtualized context,
since it forbids vCPUs holding or waiting for a spin lock to be descheduled while
other vCPUs from the same VM may be attempting to acquire it. However,
this technique comes with its own limitations, as outlined in §5.1.3.

98 REDUCING VIRTUALIZATION OVERHEAD FOR MULTITHREADED APPLICATIONS

5.3 Data Sharing

Sharing data between threads running concurrently on distinct vCPUs may
induce significant virtualization overhead through TLB consistency management,
as §3.2.7 describes. While §4.2 has indicated that addressing this issue is pressing,
it has received much less attention from literature than the issues previously
discussed in this chapter. Therefore, this section proposes several potential
techniques

Below several improvements to TLB design and the TLB shootdown process
which have the potential to drastically reduce virtualization overhead related to
inter-thread data sharing are proposed.

5.3.1 Interrupt Controller Virtualization

Since TLB shootdowns are implemented using IPIs, both APICv and AVIC
benefit them as much as they benefit RESCHEDULE IPIs in the context of blocking
synchronization, as discussed in §5.1.2. However, as previously discussed this
mitigation technique does not eliminate all VM exits related to sending IPIs.
Moreover, it does not address TLB shootdown preemption. As such, this
hardware-level enhancement must be supplemented by other techniques in order
to sufficiently address virtualization overhead induced by TLB shootdowns.

5.3.2 Alternative Translation Lookaside Buffer Design

Beyond reducing virtualization overhead associated with TLB shootdowns, one
may attempt to eliminate the need for them in the first place. To that end,
many alternative TLB designs have been proposed [176]:

• Shared TLB: Some work proposes to implement the TLB as a shared
cache. While this approach obviously eliminates the need for TLB
consistency enforcement, the main challenge with this approach is
performance. Namely, modern x86 CPUs employ a virtually indexed,
physically tagged (VIPT) cache structure, meaning that cache lookup
may only complete once the TLB returns a result [42];

• Hardware-Managed TLB consistency: Various methods have been
proposed to implement TLB consistency in hardware. In fact, it is not
entirely clear why this is not yet the default approach in x86. Cited
reasons for this include reliability and performance, but strangely the
main driver seems to be tradition [177].

DATA SHARING 99

Several prototypes exist of the proposed alternative TLB architectures described
above. These architectures can be easily extended to work for virtualized systems
since most contemporary TLBs already contain a VM ID tag for each TLB entry,
eliminating the need for TLBs to be flushed upon VM exits/entries and thus
allowing the TLB to operate identically in respectively a native or virtualized
environment [42]. As of now, there are however no plans known to the author
to adopt said alternative TLB designs on a large scale. It will therefore take at
least several more years for any of these designs to have a meaningful impact
on virtualization overhead, since hardware improvements only slowly trickle
down to industry due to the investments involved.

5.3.3 Co-Scheduling

Analogously to blocking and spinning synchronization (see §5.1.3 and §5.2.7,
respectively), strict co-scheduling may eliminate the need for the VMM to handle
TLB shootdown IPIs as well as TLB shootdown preemption through enforcing
all vCPUs associated with a particular VM to be scheduled simultaneously.
Refer to §5.1.3 for a detailed description of this technique and its drawbacks.

5.3.4 Source Code Alteration

In §4.2.3 the high-level cause of most TLB shootdowns for multithreaded
applications has been identified as heap resizing. Since this heap resizing is
a direct consequence of the application allocating or releasing memory, it is
evident that the amount of TLB shootdowns induced by the application may be
drastically reduced by changing its memory allocation behavior at source code
level. Like co-scheduling, source code alteration has been proposed in the context
of blocking synchronization (§5.1.6) and spinning synchronization (§5.2.4) as
well. However, regarding minimizing heap resizing this approach is particularly
challenging since modern memory allocators are very complex. Identification
and amelioration of problematic code without greatly compromising memory
efficiency requires a deep understanding of the particular memory allocator
used and is therefore highly challenging. Nonetheless, chapter 8 provides several
guidelines that aid application developers in precisely this effort.

100 REDUCING VIRTUALIZATION OVERHEAD FOR MULTITHREADED APPLICATIONS

5.3.5 Alternative Memory Allocator Design

Rather than requiring application developers to alter their source code as
suggested above, the number of TLB shootdowns applications induce may
also be drastically reduced by altering the memory allocators used by these
applications so that they call system routines performing said TLB shootdowns
as little as possible. This will however come at the inevitable expense of some
memory efficiency, since balancing application memory efficiency and costly
interaction with the system in order to allocate or release memory is intuitively a
fundamental trade-off in memory allocator design. However, relevant literature
does not ever seem to consider this trade-off explicitly. Rather, the main trade-off
under consideration is relieving thread contention (favored by high-performance
allocators such as tcmalloc [178]) versus maximizing memory efficiency (favored
by high-efficiency allocators such as ptmalloc2 [179]). Any allocators exhibiting
low TLB shootdown overhead therefore achieve this as a side effect of other
design decisions rather than as an explicit design goal.

In spite—or perhaps because—of the lack of attention TLB shootdowns have
received from memory allocator developers, §4.2.3 indicates that it is high time
to start considering the role TLB shootdowns play in application performance
from a memory allocator design perspective. This issue will likely become
even more pressing towards the future, given the ever-increasing emphasis on
virtualization on the one hand and parallelism on the other in industry [2,
150]. This dissertation provides a first step in the right direction regarding this
challenge by developing a novel memory allocator design concept named ’global
hysteresis’. This concept balances memory efficiency and TLB shootdowns
better than any existing memory allocator design paradigm known to the
author. Chapter 7 elaborates on global hysteresis and describes a prototype
implementation thereof based on ptmalloc2.

5.4 Non-Uniform Memory Access Locality

The final high-level cause of virtualization overhead for multithreaded
applications identified in chapter 4 is the opacity of the physical system’s
memory layout to the VM. This issue may drastically increase memory latency
as a consequence of improper scheduling decisions on the guest’s part if the
host system sports a NUMA architecture. Several approaches already exist to
deal with this issue. Two methods are common, as alluded to in §3.2.8: NUMA
passthrough and dedicated NUMA locality managers. This section discusses
both of these approaches in detail, in addition to some less orthodox novel
techniques.

NON-UNIFORM MEMORY ACCESS LOCALITY 101

0

50

100

150

Blackscholes Canneal Fluidanimate Ocean CP Ocean NCP Radix

%
 n

a
tiv

e
 m

e
m

.
re

fs
.

Local|Remote Local|Remote Local|Remote
Native VM VM passthrough

Figure 5.3: Memory locality of NUMA passthrough for the benchmarks studied
in §4.2.2 in the UC, 64 vCPU scenario, normalized to native.

5.4.1 Non-Uniform Memory Access Passthrough

The most straightforward method to address the NUMA opacity issue is to pass
through the NUMA architecture of the host system to the VM. This involves
pinning each vCPU to a set of pCPUs belonging to a singular host NUMA
node and presenting the guest with a virtual NUMA architecture constructed
so that all vCPUs pinned to a particular host NUMA node belong to the same
virtual NUMA node. This allows the guest scheduler to optimize scheduling
decisions with regard to the virtual NUMA architecture of the VM, which by
proxy is the physical NUMA architecture of the host. Every major VMM offers
this ability [154], which in principle yields VM memory latency identical to
that of the physical system represented by that VM. Figure 5.3 assesses this for
the benchmarks identified in §4.2.2 as suffering from the NUMA opacity issue
by comparing the number of local and remote memory accesses performed by
these benchmarks in a native setting, a VM without optimizations and a VM
employing NUMA passthrough. These results were collected using pcm-numa1.

The results presented in figure 5.3 are in line with expectations. Firstly, memory
locality is greatly reduced for all benchmarks when run in a VM without
optimizations. Secondly, manual NUMA exposure mitigates this issue entirely.
This technique is thus certainly a viable option to improve performance for
virtualized workloads exhibiting excessive memory latency.

1https://github.com/opcm/pcm

https://github.com/opcm/pcm

102 REDUCING VIRTUALIZATION OVERHEAD FOR MULTITHREADED APPLICATIONS

While NUMA passthrough does achieve its principal goal, it comes with
several undesirable side effects. Most importantly, it reduces the potential for
resource consolidation, since vCPUs can no longer be migrated between NUMA
nodes without compromising the advantages of NUMA passthrough. Moreover,
constructing virtual NUMA layouts can be tedious, especially for large VMs.
Lastly, VMs employing this technique can no longer easily be migrated between
hosts with different NUMA configurations. Essentially, NUMA passthrough
thus achieves performance gains through sacrificing some of the flexibility the
virtualization process offers. Therefore it is not applicable in all circumstances
and its utility must be considered on a case-by-case basis.

5.4.2 Non-Uniform Memory Access Locality Managers

Another commonly used approach to combat the NUMA opacity issue is taking
the host NUMA architecture into account at VMM level, in particular when
scheduling vCPUs. This technique may be implemented directly in the VMM
scheduler or in a dedicated utility program that runs alongside the VMM,
advising it on optimal vCPU placement in real time. Many algorithms have
been developed in this regard, as refinement of this technique is to date the
subject of active research [153, 154]. Within the context of Linux/KVM, a
popular example of such an algorithm is implemented in the form of numad,
which is a dedicated NUMA locality management daemon or KVM2. Figure 5.4
shows how this algorithm performs in experiments analogous to those presented
in figure 5.3. While other algorithms may yield varying performance, it is
reasonable to assume figure 5.4 provides some insight in their general behavior.

Surprisingly, figure 5.4 suggests that numad outperforms native execution in
terms of memory locality. On the other hand, its total performance impact on
the system seems to be unpredictable, given that for some benchmarks, the
total number of memory accesses performed by the system employing numad
far exceeds that of an equivalent system not doing so. To verify this intuition,
we analyzed how numad impacts δηr for the benchmarks shown in figure 5.4.
Figure 5.5 shows the results.

Figure 5.5 reveals that for most benchmarks results are in line with expectations.
Note that a small amount of residual δηr is to be expected when using numad due
to the resource consumption of numad itself on the one hand and virtualization
overhead not related to the NUMA opacity issue on the other. This does however
not hold true universally, as indicated by the results for the benchmarks Canneal
and Ocean CP. Regarding the former, numad seems to outperform even native
execution. This is unlikely, but possible given that any scheduler employs a set

2https://linux.die.net/man/8/numad

https://linux.die.net/man/8/numad

NON-UNIFORM MEMORY ACCESS LOCALITY 103

0

50

100

150

Blackscholes Canneal Fluidanimate Ocean CP Ocean NCP Radix

%
 n

a
tiv

e
 m

e
m

.
re

fs
.

Local|Remote Local|Remote Local|Remote
Native VM VM numad

Figure 5.4: Memory locality of numad for the benchmarks studied in §4.2.2 in
the UC, 64 vCPU scenario, normalized to native.

0

50

100

Blackscholes Canneal Fluidanimate Ocean CP Ocean NCP Radix

δ
η

r
(%

)

VM VM numad

Figure 5.5: δηr for the benchmarks studied in §4.2.2 in the UC, 64 vCPU
scenario for a system employing numad compared to a system without dedicated
NUMA management.

104 REDUCING VIRTUALIZATION OVERHEAD FOR MULTITHREADED APPLICATIONS

of heuristics to determine NUMA placement. Therefore, any NUMA placement
strategy is likely to perform excellently for some workloads and poorly for others.
Canneal appears to clearly favor the heuristics employed by numad, while for
other workloads this is not the case; or even the opposite is true. Speaking
of which, Ocean CP consumes just as many system resources when run on a
system that employs numad as it would when run on a system that does not.
This may be explained by the fact that as noted in §4.2.2, this benchmark is
bottlenecked by memory bandwidth. Therefore, improving memory locality
may in fact be counterproductive in this specific case, as this likely leads to
data being spread over fewer NUMA nodes, reducing the total available memory
bandwidth. While more research into this phenomenon is needed to assess how
memory locality managers other than numad behave in this scenario, it is clear
that employing a NUMA locality manager does not by definition translate into
improved memory performance. Analogously to NUMA passthrough, NUMA
managers are thus to be seen as a tool that may be employed by advanced users
in order to improve performance for specific workloads rather than a general
solution to the issue of NUMA opacity.

5.4.3 Symmetric Multithreading

Sections 5.4.1 and 5.4.2 have made clear that neither of the mainstream existing
approaches to combat NUMA opacity in VMs perform satisfactorily across
workloads. Therefore, it is prudent to consider alternative approaches to deal
with this issue. One such approach has already been discussed in §5.1.5 in
the context of blocking synchronization, namely pinning vCPUs to dedicated
SMT contexts in order to eliminate the need for most to all vCPU scheduling.
This technique has the potential to eliminate the NUMA opacity issue as well
because it guarantees that any particular vCPU is pinned to a specific pCPU
and therefore NUMA node. This allows for the physical NUMA architecture
to be automatically exposed to the VM. Note that this would not sacrifice the
potential for resource consolidation nearly as significantly as traditional NUMA
exposure (see §5.4.1) since a pCPU may sport many SMT contexts between
which pCPU resources may be dynamically distributed. In essence, the task of
vCPU scheduling is thus largely migrated from the VMM to the hardware itself.

RELATED WORK 105

5.4.4 Extended Paravirtualization

Another promising novel approach to the problem of NUMA opacity is the
concept of extended paravirtualization, which was recently proposed by Bui
et al. [154]. The basis of this technique is traditional NUMA passthrough.
Additionally however, a communication mechanism is implemented between
the guest and VMM so that the latter can notify the former when it migrates a
vCPU between NUMA nodes. This effectively allows for dynamic alteration of
the virtual NUMA configuration of the VM at runtime. Whenever this occurs,
it is immediately propagated to the scheduler, which may alter its scheduling
decisions accordingly. While this technique achieves near-native performance
with regard to memory locality, it is a form of paravirtualization, which by
definition requires changes to the guest kernel, which in turn constrains its
potential for rapid and widespread adoption.

5.5 Related Work

Improving the virtualization process for multithreaded applications has been
the subject of active research for many years. This effort has been far from
fruitless, since many techniques proposed in literature have gradually evolved
into mainstream components of virtualization technologies. To date, there is
no shortage of innovative ideas for further improvements which may one day
be considered essential components of virtualized systems. Since this chapter
largely consists of a reflection on these recently adopted or proposed ideas, any
existing work related to mitigating virtualization overhead for multithreaded
applications has naturally already been explicitly mentioned above. From this
perspective, much of this chapter may be viewed as an extensive reflection on
related work.

While most of this chapter is based on known techniques, it adds value by
listing them all side by side to provide readers with insight into their individual
advantages and drawbacks as well as their relationship to one another. To the
best knowledge of the author, no such exhaustive summary of existing and
promising future techniques to reduce virtualization overhead for multithreaded
applications exists in literature. Additionally, this chapter has presented several
novel ideas which are—again to the best knowledge of the author—not described
in any existing literature.

106 REDUCING VIRTUALIZATION OVERHEAD FOR MULTITHREADED APPLICATIONS

5.6 Conclusion

This chapter has discussed many techniques to reduce virtualization overhead
for multithreaded applications, specifically within the context of hardware-
assisted virtualization of the x86 architecture. Some of these techniques are
already widely adopted, but have been shown in this chapter to require further
refinement. To the best knowledge of the author, this work is the first to assess
these limitations of existing techniques in such depth.

Beyond mainstream technologies, this chapter outlined a wide variety of
mitigation techniques proposed in literature. Many of these techniques are still
under active development, which makes it safe to say that the virtualization
research field still carries plenty of momentum, making a further drastic reduction
in the virtualization overhead incurred by multithreaded applications likely in
the coming years.

Finally—and perhaps most interestingly—this chapter describes several original
ideas of the author, his colleagues and his supervisors. Three of these ideas have
been selected for further exploration in this dissertation: paravirtualization
of the scheduler tick (§5.1.4), TLB-shootdown aware memory allocator design
(§5.3.5) and the adoption of virtualization-friendly application design principles
(§5.1.6, §5.2.4 and §5.3.4). Chapters 6, 7 and 8 are respectively dedicated to
each of these techniques. These ideas have been chosen for further refinement
in this dissertation in favor of some of the other suggestions in this chapter
largely because the problem they address and/or the approach they take have
received little to no attention from existing literature. Therefore, the author
felt that elaborating on these ideas would provide a maximal contribution to
the field within the scope of a single Ph. D. project. Moreover, each of the
chosen technologies focuses on a distinct level of the system stack, yielding a
fully complementary set of improvements. This again maximizes the impact
of this dissertation on the state of the art by ensuring that none of the work
presented in the later chapters makes previous contributions obsolete.

5.6.1 Personal Contribution

The three ideas chosen for further exploration in this dissertation are original
contributions by the author. Other proposed mitigation techniques were either
derived from literature or provided by one of the author’s supervisors, who is
currently actively pursuing some of these.

CONCLUSION 107

5.6.2 Future Work

Potential for future work is largely self-evident from the contents of this
chapter. For all widely adopted techniques reducing virtualization overhead for
multithreaded applications (PLE, halt polling,. . .), issues warranting further
refinement have been revealed. Almost all of the other described techniques
require more work before they are ready for widespread deployment. Of
all of these techniques, perhaps those with the potential to address user-
level spinning most urgently require attention, since §4.2.4 has shown the
devastating performance impact of this problem and to date no effective
mitigation techniques are available aside from manually replacing user-level
spinning primitives with alternate synchronization mechanisms.

Chapter 6

System Amelioration:
Paratick

This chapter was previously published as:
S. Schildermans et al. “Paratick: Reducing Timer Overhead in Virtual Machines”.
In: 50th International Conference on Parallel Processing. 2021, pp. 1–10

Timekeeping is a fundamental duty of the OS. This task involves assimilating
hardware timekeeping devices and presenting a unified timer API to applications
[180]. Additionally, the OS keeps track of the passing of real time in
the background and performs general maintenance tasks such as scheduling,
accounting, etc. on a regular basis. As described in §4.2.3, contemporary general-
purpose OSs drive all of these duties by recurring physical timer interrupts,
known as scheduler ticks [181]. The same section details how traditional
implementations of this mechanism (referred to hereafter as ’classic periodic
ticks’) are often highly inefficient on current (SMP) hardware, while modern
implementations thereof (referred to hereafter as ’tickless kernels’) require
interaction with the physical timer hardware upon every transition between
active and idle CPU states, which may induce excessive overhead in virtualized
environments.

§4.2.3 has shown that multithreaded applications making heavy use of blocking
synchronization may suffer severely from the virtualization overhead induced by
scheduler tick management in tickless systems. Unfortunately, §5.1.4 has made
clear that simply reverting to classic periodic ticks in virtualized environments

109

110 SYSTEM AMELIORATION: PARATICK

is not a satisfying solution to this problem, nor is employing any other existing
tick management algorithm known to the author. Therefore, an alternative
approach to scheduler tick management is highly desirable. §5.1.4 introduced
exactly such an alternative approach based on paravirtualization, namely ’virtual
scheduler ticks’. This chapter explores this concept as well as the aforementioned
problems it aims to resolve in great depth by providing a comprehensive analysis
of the shortcomings of existing tick management techniques and detailing,
implementing and evaluating virtual scheduler ticks.

Main Findings & Contributions

• This chapter details why neither classic periodic ticks nor tickless kernels
perform satisfactorily in virtualized environments;

• The concept of virtual scheduler ticks introduced in §5.1.4 is fleshed out
in this chapter;

• This chapter presents and evaluates paratick; an implementation of virtual
scheduler ticks in Linux/KVM.

6.1 Background: Timer Management

Many applications (as well as the OS itself) rely heavily on accurate time
management. Because programming timer hardware is often complex and
expensive, many OSs choose to implement a high level of abstraction in their
timer APIs. Most often, application timers are managed as soft interrupts. This
means that when an application sets a timer, generally no actual timer hardware
is programmed. Instead, the application timer is added to a dedicated data
structure (e.g. the ’timer wheel’ in Linux [182]). Upon completion of any system
call or hardware interrupt, the OS checks if the current system time has surpassed
the expiration time of any soft interrupts. If so, it services these interrupts
before returning to user space [183]. Therefore, timer management equates to
managing the underlying mechanisms that invoke context switches and allow
soft interrupts to be serviced. The most important of these mechanisms is the
scheduler tick, since the tick ensures that active CPUs are interrupted by a
hardware timer (usually the LAPIC timer in x86) at least at the frequency of
the tick, which typically lies between 100 and 1000 Hz [156].

As mentioned on several occasions before, the traditional implementation of
the scheduler tick involves a timer interrupt on each CPU, recurring at a fixed
interval. The handler of this interrupt performs any needed bookkeeping work

BACKGROUND: TIMER MANAGEMENT 111

Figure 6.1: Schematic representation of the operation of classic periodic ticks
in Linux.

(a) Physical tick handler (b) Idle entry (c) Idle exit

Figure 6.2: Schematic representation of standard tickless kernel operation in
Linux.

(handling soft interrupts, scheduling, updating the system time,. . .) before
arming a new tick interrupt and returning. Figure 6.1 displays this process
schematically.

While periodic scheduler ticks are simple and effective, they are not suitable
for most modern hardware platforms for reasons detailed in §4.2.3. Because of
this, Linux 2.6.21 introduced the concept of tickless kernels, later to be adopted
by all mainstream OSs [184]. Tickless kernels expand on the concept of classic
periodic ticks by identifying scenarios in which the tick is not useful and may
consequently be deferred or disabled entirely. Most kernels interpret these
’scenarios in which the tick is not useful’ as idle CPUs. Thus, they disable the
tick upon idle entry and enable it again upon idle exit. Figure 6.2 describes
Linux’s implementation of this algorithm. Though details may differ for other
OSs, the principle is always similar.

112 SYSTEM AMELIORATION: PARATICK

Handling tick interrupts in tickless kernel mode is largely identical to doing
so using classic periodic ticks, as shown in figure 6.2a. The only difference
between the tickless tick handler and the classic one is that the former checks
whether the tick has been deferred or disabled by the time the tick interrupt
handler was invoked. This may happen in exceptional circumstances. If so,
the reprogramming step is skipped. Figures 6.2b and 6.2c on the other hand
represent the core of tickless kernel operation. Whenever a CPU is about
to enter the idle loop, the kernel checks if any system component (RCU, irq
work,. . .) explicitly needs the tick to remain enabled or if any RCU events or
soft interrupts are due to expire within the next tick period. If so, the tick is not
disabled and the CPU immediately enters the idle loop. If not, the algorithm
finds the next scheduled RCU callback or soft interrupt. The tick timer is then
reprogrammed to expire at the expiry time of that event. If there are none, the
tick is disabled entirely. Upon exiting the idle state, the algorithm checks if the
tick has been deferred or disabled upon idle entry. If so, it is reprogrammed to
expire at the regular tick interval.

As noted in §5.1.4, Linux offers a third option for tick management, namely full
dynticks mode. As equally noted in that section however, full dynticks mode
may be viewed as a variation on regular tickless operation with the threshold
for disabling the scheduler tick on a particular CPU shifted from having no
runnable tasks to having one runnable task for that CPU. As such, the findings
for tickless kernel operation presented in this chapter are in general equally
applicable to full dynticks mode.

6.2 Virtualizing the Scheduler Tick

As alluded to multiple times before, the main issue regarding virtualizing the
scheduler tick that it inherently involves hardware interaction. Specifically,
Linux uses the TSC for this purpose when possible, since it is the most accurate
timer hardware [185]. It is armed by writing the desired expiration time to
the TSC_DEADLINE MSR, as noted in §4.2.3. When the TSC value reaches
said expiration time, the LAPIC generates a local timer interrupt. In native
environments, this process has a very low cost. In virtualized environments
however, each write to the TSC_DEADLINE MSR must be intercepted by the
VMM, as its current value may correspond to a timer set by the host or another
VM. Moreover, the interrupt generated as the timer expires generates another
VM exit, as the VMM must determine the intended recipient. Some VMMs (e.g.
KVM) optimize this process by replacing the LAPIC timer by the preemption
timer. Namely, upon each VM exit induced by a guest attempting to write to
the TSC_DEADLINE MSR, the VMM arms the preemption timer for the vCPU in

VIRTUALIZING THE SCHEDULER TICK 113

question, but leaves the TSC_DEADLINE MSR untouched. When the preemption
timer expires, a special low-cost VM exit is triggered which allows the VMM to
inject a timer interrupt [186].

From the above, it is clear that handling scheduler ticks is a costly process in
virtualized environments. The magnitude and nature of this cost may however
vary greatly depending on the workload and whether the system is employing
classic periodic ticks or a tickless kernel. The remainder of this section analyzes
virtualization overhead associated with the scheduler tick in a general sense for
both of these tick management algorithms.

6.2.1 Classic Periodic Tick

Given that classic periodic ticks have a constant frequency on each vCPU
irrespective of its workload, one may intuitively derive that a system hosting a
number of VMs nVM employing classic periodic ticks, each having a number
of vCPUs nvCPU and a tick frequency ftick, will always incur the following
number of VM exits related to timer management over a time period t:

VMexits = 2× t×
nV M∑
n=1

(nvCPU × ftick)

The above implies that the host may spend exorbitant resources on processing
ticks from guests employing classic periodic ticks when the system is heavily
overcommitted. Namely, vCPUs must be suspended whenever a tick arrives for
another vCPU, even if the latter is idle [156]. Since one of the main applications
of virtualization is consolidation, such OC scenarios where the majority of
vCPUs are idle for the majority of the time are not rare. As noted in §5.1.4,
this makes classic periodic ticks far from ideal in a virtualized environment.

6.2.2 Tickless Kernels

Tickless kernels are often depicted as almost purely beneficial compared to
classic periodic ticks [187, 156]. While in native environments this claim may
hold true, in virtualized environments their benefits are less clear. While tickless
kernels do reduce the number of timer interrupts generated by lightly utilized
VMs, they must reprogram the tick timer upon each idle entry/exit. Since this
reprogramming requires a write to the TSC_DEADLINE MSR and thus induces
a VM exit, the number of VM exits induced by tick management in a tickless
system can be described as follows:

114 SYSTEM AMELIORATION: PARATICK

VMexits = 2× t×
nV M∑
n=1

(
Ln × nvCPU × ftick + (1− Ln)× nvCPU

Tidle

)

With Ln the VM load expressed as a ratio of the utilized and maximum VM CPU
throughput and Tidle the average idle period during the time interval t. Thus,
the term Ln × nvCPU × ftick represents tick interrupts during active vCPU
operation and the term (1−Ln)×nvCP U

Tidle
represents the number of transitions

between active and idle states during the time interval t.

From the above, it is evident that for tickless kernels to be efficient in virtualized
environments, the average idle period Tidle must be long relative to the total
CPU time spent on idling (t× (1− Ln)× nvCPU), which in practice equates
to minimizing the number of transitions between idle and active vCPU states
since increasing the average idle period ceteris paribus proportionally reduces
system throughput, which is obviously not desirable. However, certain types
of applications incur many such transitions by design. Examples include
multithreaded applications making heavy use of blocking synchronization
and I/O-intensive applications. §4.2.3 already discussed the former in detail.
Regarding the latter, given that I/O latencies are typically in the range of micro-
to milliseconds and most applications block on each I/O transaction [188], I/O
performance may suffer significantly in a virtualized environment if the guest
employs a tickless kernel. Since the severity of this issue is directly proportional
to the frequency of idle transitions and therefore inversely proportional to I/O
latency, high-performance I/O devices are affected the most.

6.2.3 To Tick or not to Tick?

The above indicates that both classic periodic ticks and tickless kernels may
induce severe performance issues in a virtualized environment. In fact, which of
these algorithms is to be preferred depends strongly on the workload W and
system settings Sv. To clarify this, let us consider several virtualized systems:

• S1: A system hosting a single idle VM with 16 vCPUs;

• S2: A system hosting four idle VMs with 16 vCPUs each;

• S3: A system hosting a single VM with 16 vCPUs, executing a workload
using 16 threads, synchronizing 1000 times per second through blocking
synchronization;

VIRTUALIZING THE SCHEDULER TICK 115

• S4: A system hosting four VMs with each 16 vCPUs, each executing a
workload using 16 threads, synchronizing 1000 times per second through
blocking synchronization.

116 SYSTEM AMELIORATION: PARATICK

Table 6.1: Number of VM exits induced by classic periodic ticks and tickless
kernels in a variety of scenarios.

S1 S2 S3 S4
periodic ticks 40 000 160 000 40 000 160 000
tickless 0 0 60 000 240 000

Table 6.1 shows the amount of VM exits related to scheduler tick management
incurred by each of the above systems when all of the VMs use respectively
classic periodic ticks or tickless kernels with a tick frequency of 250 Hz, assuming
the workloads are run for 10 seconds on a system with 16 pCPUs. All values
are calculated based on the formulas derived in sections 6.2.1 and 6.2.2.

Table 6.1 shows that for low-intensity workloads where the system is mostly
idle, tickless kernels are vastly superior to classic periodic ticks. However,
for high-intensity workloads which frequently switch between idle and active
states, periodic ticks gain the upper hand. Specifically, tickless kernels are
preferable as long as the average idle period Tidle is longer than the average tick
period divided by the number of vCPUs sharing a pCPU. With tick periods
commonly ranging between 1 and 10 ms, this is often not the case. Given
that parallel computing has become the norm these days and more efficient
I/O devices continue to emerge (e.g. datacenter network, NVMe storage,. . .),
demand for better handling of microsecond-level idle periods continues to rise
[189]. Moreover, stimulated by workloads such as AI and blockchain, various
highly parallel accelerators (e.g. GPGPUs and TPUs) are being designed and
deployed. Fine-grained computation offloads to such accelerators incur similarly
small idle periods. Thus, neither classic periodic ticks nor tickless kernels
meet the requirements of increasingly common highly consolidated virtualized
environments hosting I/O-intensive, highly parallel workloads. It is clear that
an alternative tick management algorithm is highly desirable.

6.3 Virtual Scheduler Ticks

In an effort to address the issues described above, this dissertation proposes the
concept of virtual scheduler ticks, which is a novel tick management algorithm
first introduced in §5.1.4. This section details its design and performance
implications compared to classic periodic ticks and tickless kernels.

In essence, virtual scheduler ticks views the scheduler tick as a system service
managed by the VMM which guests may request through a hypercall interface
(see §5.1.4). This effectively equates to paravirtualizing the scheduler tick, which

VIRTUAL SCHEDULER TICKS 117

in turn implies that the guest kernel must be modified so that it no longer
programs its own scheduler tick and instead performs the appropriate hypercalls
to request ticks from the VMM. The latter may leverage its own scheduler
tick interrupts—which many VMMs must program irrespective of any VMs to
perform their own bookkeeping work—to inject virtual ticks at the appropriate
times. When vCPU execution is resumed, the guest may handle these virtual
tick interrupts analogously to how it would process its own physical scheduler
ticks. Note however that this relies on the host tick frequency corresponding
to (a multiple of) that of the guest, since this is the only way to guarantee
vCPUs are interrupted and virtual scheduler ticks are injected at the appropriate
time interval. When this is not the case, the host should program the guest
preemption timer such that virtual ticks may be injected at the correct rate.
Note that this does not introduce meaningful virtualization overhead, since
if the guest were to program its own tick interrupts, two VM exits would be
generated each tick period for respectively injecting the physical tick interrupt
and reprogramming the timer hardware.

The above forms the basic working principle behind virtual scheduler ticks and
suffices when the vCPU requiring ticks to be injected is actively running and
is therefore regularly interrupted by host scheduler ticks. However, when the
vCPU is idle or is sharing the pCPU hosting it with other tasks, the vCPU
may be descheduled for long periods of time unbeknownst to the guest and thus
not receive any virtual scheduler ticks despite expecting to. Therefore, extra
measures must be taken to ensure a virtual tick is delivered to descheduled
vCPUs in a timely manner. Concretely, the time of the last virtual tick injection
must be accounted for each vCPU. On each VM entry, the host must check if
the last virtual tick injection predates the requested tick interval for that vCPU.
If so, a virtual tick must be injected and the current time is to be recorded as
the last tick. Furthermore, to ensure that idle vCPUs are awoken by the VMM
when necessary despite not receiving any virtual scheduler ticks, the guest must
check if there are any soft interrupts or RCU tasks scheduled upon idle entry.
If so, it must program a timer to expire at the expiration time of the earliest of
these events. We decide not to disable this timer upon exiting the idle state,
as the overhead induced by a single timer is negligible and it is likely that the
vCPU will re-enter an idle state before the timer has expired. If the timer were
to be disabled upon idle exit, it would likely need to be reprogrammed upon
idle entry, thus inducing two unnecessary VM exits.

While the concept of virtual scheduler ticks as proposed above may still induce
some VM exits, this number is negligible compared to both classic periodic
ticks and tickless kernels for almost any workload. Concerning the former,
in particular when guests are mostly idle and/or the host is overcommitted
this may lead to a tangible performance improvement. Concerning the latter,

118 SYSTEM AMELIORATION: PARATICK

virtual scheduler ticks is guaranteed to reduce the number of VM exits upon
idle entry and exit, as tickless kernels require the timer hardware to be touched
on practically every transition between active and idle states. When vCPUs
are actively running on the other hand, even in the worst-case scenario where
the host tick frequency is vastly lower than that of the guest and consequently
(almost) all virtual scheduler ticks must be triggered via the preemption timer,
virtual scheduler ticks reduces the amount of required VM exits by half because
one VM exit suffices to inject and process a virtual scheduler tick, while §6.2 has
made clear that for physical ticks, the same operations require two VM exits.
Notwithstanding, the benefits of virtual scheduler ticks compared to tickless
kernels mostly depend on the workload. Within the context of this dissertation,
being multithreaded workloads, system throughput may improve drastically
for applications relying heavily on blocking synchronization, as noted in §4.2.3.
Nevertheless, application execution times may not improve accordingly because
it is determined solely by the critical path [151]. Therefore, only VM exits
incurred upon idle exit (idle entry is by definition not part of the critical path)
and belonging to a single execution path influence application execution time.
Thus, for multithreaded workloads, a significant improvement in δηr is expected,
which may however translate to a much smaller improvement in δηt as ω is likely
low for this particular form of virtualization overhead. Additionally however,
§6.2.3 identified (sequential) I/O-intensive workloads as likely benefiting from
improved scheduler tick management. For such workloads, virtual scheduler
ticks may indeed improve both δηr and δηt significantly since ω is likely to be
much higher in comparison. Namely, for these applications almost all VM exits
incurred upon idle exit—and if I/O latencies are sufficiently low even those
upon idle entry—are likely part of the critical path as any delay in processing
an I/O interrupt likely delays the next I/O operation.

6.4 Paratick

Because this dissertation aims to reach beyond purely theoretical reasoning and
seeks to provide tangible improvements to the state of the art based on (a subset
of) the novel techniques to mitigate virtualization overhead for multithreaded
applications it proposes, we developed a prototype implementation of virtual
scheduler ticks based on Linux/KVM (kernel 5.10.26) under the name ’paratick’.
Paratick is freely available1 and documented in abstract terms below. Refer to
appendix A for a complete transcript of its source code.

1https://github.com/StijnSchildermans/paratick.git

https://github.com/StijnSchildermans/paratick.git

PARATICK 119

Figure 6.3: Schematic overview of host-side paratick code.

6.4.1 Host

Implementing paratick requires minimal effort on the host side. Firstly, a field
named last_tick was added to the struct KVM uses to represent a vCPU
internally (kvm_vcpu), recording the time of the last virtual tick injection.
Secondly, the main KVM loop which is responsible for executing vCPUs was
modified. If the vCPU has a pending local timer interrupt upon VM entry, the
last_tick field of the kvm_vcpu struct is updated. Paratick thus heuristically
assumes that the local timer interrupt to be injected was programmed by the
guest-side paratick code upon idle entry. This assumption is acceptable since
Linux by default performs basic timekeeping work upon receipt of any interrupt,
even when the interrupt itself has nothing to do with the scheduler tick [115].
Moreover, extensive testing has not revealed any negative side effects of this
optimization. If no local timer interrupt is pending upon VM entry on the
other hand, paratick evaluates if the time elapsed since the last tick injection
is greater than the tick period. If so, a virtual tick interrupt is injected and
the last_tick field of the kvm_vcpu struct is updated. Paratick uses interrupt
vector 235 for this purpose. Figure 6.3 illustrates all of this schematically.

To demonstrate the potential of virtual scheduler ticks, the above host-side
modifications suffice since the host and guest are guaranteed to have the same
tick frequency. However, when this can not be guaranteed, a hypercall must be
implemented so that the VM can request virtual scheduler ticks at a different
frequency. To deliver these ticks, the VM entry code must be modified further
to program the preemption timer upon each VM entry to guarantee timely
virtual tick delivery. These features were omitted in paratick because they do
not add value from a research perspective. Note that any implementation of
virtual scheduler ticks aiming for widespread adoption should however contain
them.

120 SYSTEM AMELIORATION: PARATICK

(a) Virtual tick
handler

(b) Physical tick handler

(c) Idle entry (d) Idle exit

Figure 6.4: Schematic representation of guest-side paratick code.

6.4.2 Guest

The guest-side implementation of paratick is somewhat more pervasive than
its host-side counterpart. Still, altering just the main scheduler tick source
file (kernel/time/tick-sched.c) suffices. Figure 6.4 schematically shows the
high-level guest-side paratick implementation, arranged in such a way that it
can easily be compared to the regular tickless Linux kernel, as shown in figure
6.2.

Figure 6.4 shows that paratick preserves the basic structure of the tickless Linux
kernel, while adding an extra handler for virtual tick interrupts. Below, all
guest-side implementation details of paratick are described step by step.

PARATICK 121

System Boot

Both the regular tickless kernel and paratick are built on top of the standard
Linux hrtimer API [115]. Unfortunately however, this API is initialized
relatively late in the boot process. Before this time, the system must use a
traditional periodic scheduler tick. Therefore, the paratick initialization code is
integrated with the standard tickless initialization code and any virtual scheduler
ticks arriving before this code has been executed are rejected. The initialization
code itself encompasses installing an interrupt descriptor for the virtual scheduler
tick interrupt vector and disabling the aforementioned temporary periodic
scheduler tick.

Virtual Tick Handling

As figure 6.4a shows, paratick employs a dedicated handler for virtual scheduler
ticks, which slightly differs from the tick interrupt handler employed by the
tickless Linux kernel shown in figure 6.2a. Namely, under no circumstances
does it rearm the tick timer, since this responsibility has been delegated to the
VMM.

Physical Tick Handling

As described in §6.3, paratick may require a physical timer to be programmed
upon idle entry. Figure 6.4b shows the handler for this physical timer interrupt.
It first checks if the vCPU is still idle when receiving the interrupt. If so, this
interrupt is likely crucial to the system and is treated as a virtual tick interrupt.
If not, the vCPU is currently operating normally, meaning virtual scheduler
ticks are actively being injected. There is thus no need to perform any work
and the handler returns.

Idle Entry

The main challenge in implementing paratick has proven to be determining
whether a physical timer should be set upon idle entry. Thankfully, paratick can
largely recycle tickless kernel idle entry code for this purpose, as is evident by
comparing figures 6.4c and 6.2b. Note however that the status quo for paratick
is that no timer is programmed and the idle entry code must check whether a
timer should be set, while the status quo for tickless operation is that a timer is
set and the idle entry code should determine whether to disable it. Thus, if the
tickless code determines the tick must be retained, paratick programs a timer

122 SYSTEM AMELIORATION: PARATICK

to expire at the regular tick interval. Otherwise, it checks if a timer must be
set at the expiry time of the next RCU event or soft interrupt, again recycling
existing tickless kernel code. If so, the determined deadline is compared to the
current expiry time of the physical tick timer, since as described in §6.3, the
timer may not yet have expired after having been set at a previous idle entry.
Only if the physical tick timer is not running or the newly determined expiry
time is sooner than its current one, it is (re)programmed.

Idle Exit

Because as described in §6.3 we heuristically determined that it is beneficial
not to disable any physical timers set at idle entry upon idle exit, no action
must be taken when a vCPU returns from idle, as shown by figure 6.4d. This
stands in contrast to the tickless kernel implementation in Linux, which must
re-enable the tick timer at (almost) each idle exit (see figure 6.2c).

6.5 Evaluation

Having developed a prototype implementation of virtual scheduler ticks, it is
possible to provide concrete evidence of its performance benefits by empirically
comparing it to the state of the art. To this end, experiments were set up in
accordance with the prescriptions provided in §3.3. The baseline OS for both
the host and the guest is Ubuntu 20.04, employing Linux 5.10.26 in in the
default tickless configuration. Since kernels using classic periodic ticks are rare
these days and classic periodic ticks were already compared to tickless kernels
in §6.2.3, this section omits directly comparing paratick to classic periodic ticks.
Readers may nevertheless infer such a comparison from combining the results
in this section with those presented in §6.2.3. This decision also simplifies
the evaluation process, as §6.3 has made clear that the benefits of virtual
scheduler ticks over classic periodic ticks only clearly manifest themselves in
OC environments, while its benefits over tickless kernels are equally profound
in UC settings. As such, limiting the evaluation to UC environments suffices
here. Furthermore, §6.3 identifies the main workloads of interest for this
evaluation: multithreaded and I/O-intensive applications. However, because a
fair performance assessment must include at least some workloads for which
virtual scheduler ticks is not expected to provide a meaningful performance
improvement, sequential, computation-intensive applications are included as
well. Thus, this section evaluates the performance of paratick compared to a
state-of-the-art tickless kernel in an UC setting for sequential, multithreaded
and I/O-intensive applications.

EVALUATION 123

Because the intent of this section is to demonstrate the potential performance
benefits of virtual scheduler ticks as accurately as possible, rather than faithfully
assessing virtualization overhead in se (as was the case in chapter 4), it is
prudent to alter some system settings that may distort experimental results; in
particular PLE and halt polling. Namely, the former is only beneficial in OC
environments (see §3.2.6). In UC scenarios, any VM exits triggered by PLE
unnecessarily degrade performance. Regarding the latter, §5.1.1 has shown that
halt polling may drastically increase δηr in an effort to slightly improve δηt.
This may obfuscate the benefits of virtual scheduler ticks since in some cases, a
more efficient execution may lead to seemingly worse performance when using
halt polling, as it may increase thread contention, which leads to increased
polling cycles without improving execution time tangibly. Therefore, both PLE
and halt polling were disabled for all experiments documented in this section.

Following the reasoning laid out in the previous paragraph, it is important
to note that the results in this section do not accurately reflect virtualization
overhead, but rather potential performance improvements associated with virtual
scheduler ticks. As such, all results are presented as the result paratick yields
for a given metric relative to the result yielded by its tickless counterpart. To
clearly make this distinction, we choose not to represent any results in terms of
δηr or δηt. Instead, this section employs the following metrics:

• VM exits: Since paratick aims to eliminate the majority of writes to
the TSC_DEADLINE MSR and associated VM exits, assessing the number
of VM exits shows to what extent paratick achieves its basic goal. This
metric may be measured directly using perf;

• System throughput: System throughput shows the effect of paratick
on system resources. This metric may be viewed as a proxy for δηr,
with the important distinction that it more clearly shows the total
amount of resources consumed—by useful work and overhead alike—which
more easily allows for placing the performance improvements paratick
yields into perspective. Rather coincidently, within the context of this
chapter, throughput may be measured analogously to δηr in the context
of multithreaded applications, i.e. in terms of CPU cycles (see §3.1.1).
Namely, although throughput is determined by many factors, §6.3 makes
it clear that virtual scheduler ticks aims to improve system performance
solely through eliminating certain VM exits, which frees up CPU resources
for other tasks. Therefore, the reduction in CPU cycles paratick achieves
represents the maximum throughput improvement it may yield;

• Execution time: Analogously to system throughput, execution time
serves as a proxy metric for δηtwhich indicates paratick’s performance
benefits visible to end users. This metric is directly measurable.

124 SYSTEM AMELIORATION: PARATICK

Table 6.2: Average performance improvement of paratick accross all PARSEC
benchmarks in sequential mode.

VM exits System throughput Execution time
-50% +7% -2%

6.5.1 Sequential Workloads

As described above, paratick is not expected to benefit computation-intensive
sequential workloads. Conversely, any overhead introduced by paratick itself
would likely still be measurable because these workloads obviously still require
scheduler ticks to be injected. Because of this, assessing these workloads allows
for estimation of the gross cost of paratick, irrespective of potential performance
gains. Concretely, figure 6.5 shows the performance of paratick relative to
a standard tickless Linux kernel for each of the PARSEC workloads run in
sequential mode on a VM with a single vCPU. To facilitate interpretation of
this figure, table 6.2 shows the aggregated results for all PARSEC benchmarks.

Figure 6.5a shows that even for low-intensity workloads, paratick reduces the
number of VM exits drastically compared to a plain tickless kernel. This is to be
expected, since such workloads induce very few VM exits to begin with, as may
be derived from §6.2. A large portion of these few VM exits are caused by three
operations: arming the guest tick timer, delivering host ticks and delivering
guest ticks. Since paratick eliminates 2 of these 3 major causes of VM exits, it
greatly reduces virtualization overhead for low-intensity workloads.

Despite figure 6.5a showing excellent results, figures 6.5b and 6.5c indicate
that paratick only marginally improves system throughput and application
performance for low-intensity workloads. This is however in line with the
expectations laid out in §6.3: even though the number of VM exits is reduced
drastically, the amount of resources spent processing them is negligible relative
to those spent on the workload itself. More importantly, these figures show that
even in scenarios where paratick offers negligible benefits, workload latency and
system throughput are not affected negatively, indicating that the gross cost of
paratick is minimal.

EVALUATION 125

0.00

0.25

0.50

0.75

1.00

bl
ac

ks
ch

ol
es

bo
dy

tr
ac

k
ca

nn
ea

l
de

du
p

fa
ce

si
m

fe
rr

et
flu

id
an

im
at

e
fr

eq
m

in
e

ra
yt

ra
ce

st
re

am
cl

us
te

r
sw

ap
tio

ns
vi

ps
x2

64

R
el

at
iv

e
V

M
 e

xi
ts

(a) VM exits

0.0

0.5

1.0

bl
ac

ks
ch

ol
es

bo
dy

tr
ac

k
ca

nn
ea

l
de

du
p

fa
ce

si
m

fe
rr

et
flu

id
an

im
at

e
fr

eq
m

in
e

ra
yt

ra
ce

st
re

am
cl

us
te

r
sw

ap
tio

ns
vi

ps

x2
64

R
el

at
iv

e
th

ro
ug

hp
ut

(b) System throughput

0.00

0.25

0.50

0.75

1.00

bl
ac

ks
ch

ol
es

bo
dy

tr
ac

k
ca

nn
ea

l
de

du
p

fa
ce

si
m

fe
rr

et
flu

id
an

im
at

e
fr

eq
m

in
e

ra
yt

ra
ce

st
re

am
cl

us
te

r
sw

ap
tio

ns
vi

ps
x2

64

R
el

at
iv

e
 ti

m
e

(c) Execution time

Figure 6.5: Relative performance of paratick compared to tickless Linux for
sequential PARSEC workloads.

126 SYSTEM AMELIORATION: PARATICK

Table 6.3: Average performance improvement of paratick accross all PARSEC
benchmarks in all tested scenarios.

VM size VM exits System throughput Execution time
Small -42% +12% -1%

Medium -47% +13% -3%
Large -44% +16% -1%

6.5.2 Multithreaded Workloads

Having established that paratick does not introduce tangible gross overhead, the
magnitude of its potential benefits may by assessed using workloads outlined in
§6.3 as conceptually greatly profiting from virtual scheduler ticks, the first
category of which being computation-intensive multithreaded applications.
Three distinct system settings S are evaluated:

• A small VM with 4 vCPUs collocated on the same NUMA node;

• A medium VM with 16 vCPUs spread over 2 NUMA nodes;

• A large VM with 64 vCPUs spread over 4 NUMA nodes.

In each of the above scenarios, the PARSEC benchmark suite was evaluated
with the level of parallelism set equal to the number of vCPUs sported by the
described VM. All metrics are measured as in §6.5.1. Equally analogously to
§6.5.1, figure 6.6 displays the results for all individual benchmarks and table
6.3 shows the aggregate results across all of the benchmarks in each scenario.

Figure 6.6a shows that for multithreaded workloads, paratick reduces the
relative number of VM exits compared to tickless kernel operation by roughly
the same amount as for sequential ones. Nevertheless, figure 6.6b indicates that
for several of these workloads—in contrast to sequential ones—this translates
to a drastic improvement in system throughput. This is not illogical, since
chapter 4 has demonstrated that multithreaded workloads induce many more
VM exits than their sequential counterparts. This means that the same relative
reduction in VM exits translates to a comparatively much greater performance
improvement. However, this improvement varies greatly between benchmarks
and system configurations. This is to be expected, since as outlined in §6.3,
virtual scheduler ticks specifically reduces the cost of blocking synchronization.
Not all multithreaded workloads rely on this mechanism to the same extent.
Furthermore, the effectiveness of paratick tends to increase with vCPU count
because as the level of parallelism increases, so do thread contention and
consequently switches between running and idle vCPU states.

EVALUATION 127

0.00

0.25

0.50

0.75

1.00

bl
ac

ks
ch

ol
es

bo
dy

tr
ac

k
ca

nn
ea

l
de

du
p

fa
ce

si
m

fe
rr

et
flu

id
an

im
at

e
fr

eq
m

in
e

ra
yt

ra
ce

st
re

am
cl

us
te

r
sw

ap
tio

ns
vi

ps
x2

64

R
el

at
iv

e
V

M
 e

xi
ts

VM size

Small
Medium
Large

(a) VM exits

0.0

0.5

1.0

1.5

2.0

bl
ac

ks
ch

ol
es

bo
dy

tr
ac

k
ca

nn
ea

l
de

du
p

fa
ce

si
m

fe
rr

et
flu

id
an

im
at

e
fr

eq
m

in
e

ra
yt

ra
ce

st
re

am
cl

us
te

r
sw

ap
tio

ns
vi

ps
x2

64

R
el

at
iv

e
th

ro
ug

hp
ut

VM size

Small
Medium
Large

(b) System throughput

0.00

0.25

0.50

0.75

1.00

bl
ac

ks
ch

ol
es

bo
dy

tr
ac

k
ca

nn
ea

l
de

du
p

fa
ce

si
m

fe
rr

et
flu

id
an

im
at

e
fr

eq
m

in
e

ra
yt

ra
ce

st
re

am
cl

us
te

r
sw

ap
tio

ns
vi

ps
x2

64

R
el

at
iv

e
tim

e

VM size

Small
Medium
Large

(c) Execution time

Figure 6.6: Relative performance of paratick compared to tickless Linux for
multithreaded PARSEC workloads.

128 SYSTEM AMELIORATION: PARATICK

Table 6.4: Average performance improvement of paratick across all tested
phoronix-fio benchmarks.

VM exits System throughput Execution time
-34% +20% -18%

On a somewhat less positive note, figure 6.6c confirms that as anticipated
in §6.3, the large throughput gain shown in figure 6.6b does not translate
to a comparable reduction in application execution times, implying that the
VM exits eliminated by paratick are mostly not part of the critical path for
multithreaded workloads. Nevertheless, improved throughput in itself is highly
beneficial since in scenarios where system resources are saturated, resource
availability dictates the execution time of the critical path and thus of the entire
application. Moreover, considering throughput is measured in terms of CPU
cycles in this section, increased throughput implies increased efficiency and thus
reduced energy consumption.

6.5.3 I/O-Intensive Workloads

Besides multithreaded workloads, §6.3 describes I/O-intensive applications as
potentially greatly benefiting from virtual scheduler ticks. This section assesses
the veracity of this claim using a dedicated I/O benchmark, namely the fio
benchmark from the Phoronix benchmark suite [125]. This benchmark was
executed on a VM with one vCPU, configured analogously to the VM employed
in §6.5.1. Sequential read (seqr), sequential write (seqwr), random read (rndr)
and random write (rndwr) performance were independently evaluated. For
each of these tests, block sizes were varied between 4 kB and 256 kB. The
sync I/O driver was used, as synchronous I/O is much more popular than its
asynchronous counterpart due to the complexity of the latter [188]. Direct
I/O was disabled as is common practice. Buffering I/O was disabled as well
to simulate reading/writing large data sets. Again analogously to §6.5.1 and
§6.5.2, figure 6.7 shows the results for each category individually while table 6.4
shows the aggregated results of all categories.

Figure 6.7a indicates that also for I/O-intensive workloads, paratick significantly
reduces VM exits. This reduction is however somewhat smaller than for
the application classes discussed above. This is to be expected, because
I/O is notorious for inducing high virtualization overhead in general [66]
and the test system does not possess a high-end SSD device supporting SR-
IOV. Therefore, timer-related VM exits make up a relatively small subset
of the total number of VM exits such workloads induce. However, figure

EVALUATION 129

0.0

0.5

1.0

rndr rndwr seqr seqwr

R
el

at
iv

e
V

M
 e

xi
ts

(a) VM exits

0.0

0.5

1.0

rndr rndwr seqr seqwr

R
el

at
iv

e
th

ro
ug

hp
ut

(b) System throughput

0.0

0.5

1.0

rndr rndwr seqr seqwr

R
el

at
iv

e
 ti

m
e

(c) Execution time

Figure 6.7: Relative performance of paratick compared to tickless Linux for
I/O-intensive workloads.

6.7b indicates that this comparatively small reduction in VM exits yields a
significant throughput improvement for I/O-intensive applications. Interestingly,
the average throughput improvement displayed in table 6.4 is not much lower
than the average reduction in VM exits. This confirms that processing VM
exits consumes a significant fraction of the total system resources utilized by
I/O-intensive applications. Even more impressively, figure 6.7c and table 6.4
reveal that for I/O-intensive applications, throughput improvement translates
almost directly to improved application execution times. This makes sense,
since as described in §6.3, at least half of the VM exits eliminated by paratick
are part of the critical path for these workloads. Note that figure 6.7c indicates
that read operations benefit the most from paratick. Given that read latencies
are lower than write latencies and reads are mostly synchronous while writes
are generally asynchronous, reads induce more frequent switches between active
and idle vCPU states than writes. Therefore, the VM exits eliminated by
paratick make up a larger percentage of the total application execution time for
read-heavy workloads and by extension I/O operations with low latencies in
general, which are likely to become ever more prevalent towards the future.

130 SYSTEM AMELIORATION: PARATICK

6.6 Related Work

Timer overhead in virtualized environments has received little attention in
literature. Only a few papers [190, 191, 192] target timekeeping in VMs and its
effects on scheduling and application performance [193, 194, 195]. One major
reason for this is that most recent efforts regarding reducing virtualization
overhead focused on more dominant forms thereof [10], including LHP, BWW,
LWP, TLB shootdown preemption, etc. However, as stated before, recent
improvements to virtualization technology have largely mitigated these issues.
This makes optimizing timer management one of the last significant remaining
challenges regarding efficient virtualization of the x86 platform.

Although the problem of scheduler tick management in virtualized environments
has to the best knowledge of the author never been addressed explicitly in
literature, some studies indirectly offer potential solutions. OSv [85], a novel
unikernel-based OS designed specifically for cloud computing employs a fully
tickless design, utilizing a high resolution clock for time accounting as long as
the use case only calls for a single application to be run at a time. While OSv
is able to outperform a traditional Linux system by up to 47% in some aspects
and therefore far exceeds the performance gains paratick achieves, it is not a
general-purpose OS and achieves these gains by sacrificing many traditional
OS capabilities. While for many cloud applications such a design suffices, it is
obviously not a generalizable solution.

A more widely applicable solution to excessive timer overhead is ’direct interrupt
delivery (DID)’ [163]. DID directly delivers timer interrupts to the target VM,
bypassing VM exits through clearing the ’external interrupt exiting (EIE)’
flag in VMCS. In addition, it programs the hardware not to perform VM
exits upon writes to the TSC_DEADLINE MSR. While the authors of [163] claim
a VM throughput improvement of up to 67%, timers set by the VMM and
descheduled vCPUs are restricted to a designated CPU, which can become
a bottleneck under heavy loads. Moreover, the designated core can not be
used by VMs, which can be interpreted as a static virtualization overhead
inversely proportional to the number of pCPUs in the system. Additionally,
DID only achieves 67% throughput improvement for one particular workload
(memcached). For other I/O-intensive workloads, [163] reports much more
modest improvements of around 10%. Taking into account the throughput
loss due to the aforementioned dedicated CPU for timer management and the
fact that many workloads (e.g. sequential and memory-intensive tasks) do
not benefit noticeably from improved timer performance to begin with, it is
clear that DID is a specialist tool drastically benefiting specific workloads while
negatively affecting others. Paratick in contrast is generally applicable since it
has no (known) negative effects on the system.

CONCLUSION 131

6.7 Conclusion

Even in state-of-the-art virtualized environments, timer management remains
a major source of virtualization overhead. This chapter elaborated on the
concept of virtual scheduler ticks, which was first introduced in §5.1.4 as a
technique to address this issue through the use of paravirtualization. Moreover,
this chapter has shown the potential of this concept by detailing a prototype
implementation thereof in Linux/KVM and demonstrating that it may greatly
enhance system throughput by eliminating most VM exits related to scheduler
tick management. Especially multithreaded applications relying heavily on
blocking synchronization and I/O-intensive applications benefit. For the former,
this system throughput improvement translates to only a minor application
execution time reduction, since many of the VM exits eliminated by virtual
scheduler ticks are not part of the critical path of these workloads. For the
latter however, performance gains are in accordance with system throughput
amelioration.

To the knowledge of the author, virtual scheduler ticks is the only generally
applicable solution to the problem of excessive timer-related virtualization
overhead. The only major drawback of virtual scheduler ticks is its reliance on
paravirtualization and associated requirement for modifications to the guest
kernel. This complicates dissemination, especially towards closed-source systems.
Whenever this drawback is not a concern however, virtual scheduler ticks is
a clear improvement over tickless kernels and classic periodic ticks alike in
virtualized environments.

6.7.1 Personal Contribution

All of the work presented in this chapter was performed by the author of this
dissertation. Nevertheless, his supervisors provided him with valuable feedback
throughout the course of the research this chapter documents.

6.7.2 Future Work

The obvious avenue for future work based on virtual scheduler ticks is developing
a more refined version of paratick, from which a patch for the mainline Linux
kernel may be proposed. Specifically, paratick does not yet incorporate the
hypercall interface proposed in §6.3 which would allow it to support guests with
arbitrary tick frequencies. Moreover, more testing (and likely refinement) is
needed to ensure paratick is stable under all circumstances.

Chapter 7

Runtime Amelioration:
PTLBMalloc2

This chapter was previously published as:
S. Schildermans et al. “Ptlbmalloc2: Reducing TLB Shootdowns with High
Memory Efficiency”. In: ISPA-BDCloud-SocialCom-SustainCom 2020 (2020),
pp. 76–83

A fundamental fact about computer science that appears to be overlooked for too
often in virtualization research is that even a perfectly designed system is only as
efficient as the applications it executes. Chapter 5 has regularly alluded to this
by suggesting application-level solutions to many of the remaining challenges
regarding virtualizing multithreaded applications. Particularly interesting in
this regard is the issue of TLB consistency (see §3.2.7), because as §5.3 lays out,
many solutions to this problem have been proposed at hardware and system
level but none have attained widespread adoption to date. Simultaneously,
the same section explains that while this problem may perfectly be tackled at
application level, this approach seems to have been neglected so far in literature.
This chapter aims to rectify this oversight.

When considering the relationship between applications and TLB shootdown
overhead, memory allocators spontaneously come to mind. After all, these
runtime components determine to a large extent how the application interacts
with the virtual memory subsystem (and by extension the TLB), often entirely
transparently higher-level application code. This implies that memory allocators

133

134 RUNTIME AMELIORATION: PTLBMALLOC2

are to a large extent in control of the number of TLB shootdowns an application
induces and ameliorating their behavior with regard to TLB shootdowns is
likely to significantly improve the performance of multithreaded applications in
a virtualized context.

As laid out in §5.3.5, contemporary memory allocators do not consider
minimizing TLB shootdown overhead as a principal design goal. While this used
to be acceptable since TLB shootdowns are satisfactorily efficient in simplistic
legacy systems, §4.2.3 has made clear that this does no longer hold true in
modern highly consolidated virtualized many-core NUMA environments. As
such, §5.3.5 suggests that a memory allocation paradigm incorporating TLB
consistency as a fundamental design trade-off rather than a side note could be
the key to addressing excessive TLB shootdown overhead on modern systems
without significantly affecting other performance metrics. This chapter is
dedicated to devising exactly such a paradigm. Additionally, it provides a
prototype implementation thereof based on ptmalloc2 and presents evidence for
its performance benefits over traditional memory allocators through controlled
experiments. Before all of this however, it dives deep into the performance
implications of TLB shootdowns and how existing memory allocation paradigms
(fail to) address them.

Main Findings & Contributions

• This chapter quantifies TLB shootdown overhead with respect to several
system properties and shows that this is a growing issue;

• This chapter identifies the ’arena imbalance issue’, which may cause
excessive TLB shootdowns in contemporary efficiency-focused memory
allocators;

• This chapter details the concept of global hysteresis, which has been first
introduced in §5.3.5;

• This chapter presents and evaluates ptlbmalloc2: an implementation of
global hysteresis built as a C library on top of ptmalloc2.

BACKGROUND: TLB SHOOTDOWN CAUSES 135

7.1 Background: TLB Shootdown Causes

Previous chapters have already described the internal mechanics of TLB
shootdowns and how they may degrade system performance. However, equally
crucial to addressing TLB shootdown-induced performance degradation is
understanding which mechanisms trigger these shootdowns in the first place.
In a general sense, these include any operation that alters one or more PTE(s).
Such operations may originate from the system itself on the one hand or from
an application request in the form of system calls on the other. Regarding the
former, the following dominate [196, 197]:

• Transparent huge pages: Historically, the size of memory pages was
almost always 4 kB. In recent years however, applications often require so
much memory that a 4 kB page size has become impractical for several
reasons, most importantly a high TLB miss rate. By increasing the page
size, a single PTE covers a larger address range, which may greatly reduce
TLB miss rate and associated page walk overhead. Therefore, modern
Linux kernels use a page size 2 MB rather than 4 kB whenever possible,
entirely transparently to applications. This process is called ’transparent
huge pages’ [198]. One method the kernel employs to achieve this is
scanning the memory space looking for sets of 512 contiguous 4 kB pages
belonging to the same virtual address space. If it finds such a set, it
promotes these pages to a single 2 MB page and purges references to the
old 4 kB pages from the TLBs;

• Page migrations: As mentioned earlier in this dissertation, optimizing
memory locality is critical on NUMA systems. This means that on such
systems, the kernel may dynamically migrate memory pages from one
NUMA node to another when it deems doing so beneficial. This evidently
changes the physical addresses of the migrated pages, enforcing a TLB
shootdown;

• Memory compaction: When memory fragmentation becomes prob-
lematic, the kernel may move allocated pages directly adjacent to one
another, merging any free space between them. The relocated pages must
be purged from the TLBs by means of a TLB shootdown;

• Memory deduplication: In virtualized systems, certain areas of the
memory space are likely identical across guests. Examples include kernel
code and shared libraries. Some VMMs merge these pages, which
improves memory efficiency. During this merging process, references
to the duplicates of a page must be purged from the TLBs;

136 RUNTIME AMELIORATION: PTLBMALLOC2

• Memory reclamation: When the system is low on memory, the kernel
may free parts thereof without application consent. Most often, the freed
pages are written to disk and their PTEs are removed from the page table
and TLB alike. When an application attempts to access a reclaimed page,
a page fault occurs and the kernel restores it;

• Page cache write-back: Linux buffers reads from disk in memory for
performance reasons. When a buffered page is written to, it is marked
as dirty and the change is propagated to disk asynchronously. This dirty
mark must be propagated to all CPUs that may hold a reference to the
PTE in question by means of a TLB shootdown;

• Copy-on-write: When an application writes to a copy-on-write page,
the kernel immediately alters the PTE pointing to that page so that it
points to the new copy thereof and updates the TLBs accordingly.

From the above, it is clear that TLB shootdowns are essential to many system
processes. Notwithstanding, these system-induced TLB shootdowns rarely
cause noteworthy performance degradation. Applications on the other hand
may induce an arbitrary number of TLB shootdowns by performing any system
call that reduces their access to memory in any way [115]:

• (s)brk: Brk and sbrk are both used to change the location of the program
break (the former sets it at an address provided by the caller while the
latter increments it by the amount provided by the caller), which is a
rudimentary yet efficient way of altering the memory space available to
the application. In particular when the memory space shrinks, a TLB
shootdown is required to avoid illegal memory accesses by other CPUs;

• munmap: This system call returns an address range to the system. Said
address range is invalidated and the page table and the TLBs are updated;

• madvise: This system call gives the kernel advice about certain properties
of an address range. Although madvise is used for many purposes
(see [199]), regarding TLB shootdowns its most important use is
madvise(MADV_DONTNEED), which informs the kernel that the memory
range passed by the caller may be freed whenever the kernel sees fit. In
contrast to munmap, the address range remains valid but the physical pages
backing it are discarded. The PTEs associated with the page range are
consequently removed immediately, inducing a TLB shootdown;

• mprotect: This system call changes the access permissions of a memory
range. These permissions are stored in the page table, which means that
relevant PTEs and TLBs require updating.

TLB SHOOTDOWN COST 137

It does not require much insight to realize that the above system calls are all
crucial to virtual memory management and are therefore essential ingredients
for any application memory allocator. This immediately clarifies the impact
efficient memory management may have on TLB shootdowns, irrespective of
the many system-level causes of the latter.

7.2 TLB Shootdown Cost

While chapter 4 already provided some insight into the virtualization overhead
induced by TLB shootdowns, many aspects of their performance implications
remain unclear. After all, virtualization is far from the only factor that may
influence the cost of TLB shootdowns. Having obtained a deep understanding of
TLB shootdowns during previous chapters, two such factors intuitively emerge:

• CPU count: Since TLBs are local to each core and a TLB shootdown
must flush all TLBs potentially containing the target entry, the number of
IPIs required to perform a TLB shootdown linearly increases with CPU
count;

• NUMA architecture: IPI latency vastly increases when the target
CPU is located on another NUMA node because the interrupt signal must
travel through the motherboard rather than just the CPU bus. Since
as made clear in §3.2.7 the CPU performing a TLB shootdown must
wait until all recipient CPUs have acknowledged IPI receipt, if only one
of the recipients is located on a remote NUMA node, performance may
deteriorate significantly.

This section aims to complement the knowledge gathered earlier in this
dissertation regarding the performance implications of TLB shootdowns through
analyzing the impact of the above system properties on their cost. To this
end, several experiments were performed based on the guidelines provided in
§3.3. A custom microbenchmark specifically designed to induce as many TLB
shootdowns as possible was chosen as the workload for all of these experiments,
so as to minimize interference of operations which are currently not of interest.
Listing 7.1 shows the source code of this microbenchmark.
void ∗ madv(void ∗ mem) {

f o r (long i =0; i <1000000; i++)
madvise (∗ ((char ∗∗) mem) ,4096 ,MADV_DONTNEED) ;

}

138 RUNTIME AMELIORATION: PTLBMALLOC2

i n t main (i n t argc , char ∗∗ argv) {
void ∗mem;
posix_memalign(&mem, 4096 , 8192) ;
pthread_t threads [1 6] ;

f o r (i n t i = 0 ; i <16; i++)
pthread_create(&threads [i] , NULL, madv , &mem) ;

f o r (i n t i = 0 ; i <16; i++)
pthread_join (threads [i] , NULL) ;

re turn 0 ;
}

Listing 7.1: Microbenchmark generating many TLB shootdowns.

Listing 7.1 creates 16 threads, all performing the TLB shootdown-inducing
system call madvise(MADV_DONTNEED) in a loop. Its performance in function
of the system properties identified above is measured primarily in the form of
CPU cycles and application execution time, in keeping with previous chapters.

7.2.1 CPU Count

The impact of CPU count on TLB shootdown overhead may be analyzed by
pinning the microbenchmark from listing 7.1 to a single socket with CPU counts
varying between 1 and 20. Figure 7.1a shows the results of this experiment.

Figure 7.1a indicates that when the benchmark is run on a single CPU, no
TLB shootdown IPIs are sent, as intuitively expected. For higher CPU counts,
the number of IPIs sent increases linearly. This illustrates the limited capacity
of the system to optimize the number of IPIs required for a TLB shootdown.
Namely, the OS must send IPIs to all cores sharing the virtual address space
of the initiating CPU to guarantee correctness, regardless of whether those
cores actually contain the entry to be purged. Above 16 cores however, the
number of TLB shootdown IPIs stabilizes, as the benchmark can not use more
than 16 CPUs simultaneously. The number of cycles in figure 7.1a reflects the
increase in IPIs, indicating a linear relationship between the number of CPUs
concurrently used by a program and the system effects of the TLB shootdowns
it generates. At first glance, execution time does not seem to follow this trend.
Note however that the total amount of work the benchmark performs remains
constant for all CPU counts. Ideally, one would thus expect the execution time
of the benchmark to be inversely proportional to the CPUs it utilizes, which
is clearly not the case in figure 7.1a. Thus, both the system and application
effects of TLB shootdowns drastically increase with CPU count.

TLB SHOOTDOWN COST 139

 0

 50

 100

 150

 200

 250

 2 4 6 8 10 12 14 16 18 20
CPUs

shootdowns (x106)
cycles (x1010)

time (s)

(a) CPU count

 0

 20

 40

 60

 80

 100

 120

 140

1 2 3 4
sockets

cycles (x1010)
time (s)

(b) Socket count

Figure 7.1: Impact of several system properties on TLB shootdown overhead.

7.2.2 NUMA

To assess the impact of NUMA on TLB shootdown cost, listing 7.1 was run
pinned to 12 cores, spread over 1 to 4 sockets. Figure 7.1b shows the results.

According to figure 7.1b, indeed both execution time and CPU cycles rise with
the number of sockets. As noted before, this is a consequence of IPIs sent to
a remote NUMA node exhibiting a much higher latency than those sent to
a CPU on the local node. Combining the results from figure 7.1a and figure
7.1b enables estimation of just how much more expensive these remote IPIs are.
Given that the total number of cycles required to execute the workload is the
sum of the cycles spent on IPIs to the local socket, IPIs to a remote socket and
a constant representing the remainder of the code, the following holds:

140 RUNTIME AMELIORATION: PTLBMALLOC2

cycles = a× IPIs
sockets

+ (n× a)× IPIs(1− 1
sockets

) + C

With:
a = cycles(IPIlocal)

n = cycles(IPIremote)
cycles(IPIlocal)

C = cycles(remaining code)

Substituting C for the amount of cycles used by the benchmark when executed
on a single CPU and IPIs for the number of IPIs sent by the 12-CPU variant
of the benchmark (both derived from figure 7.1a) allows for determining a and
n by curve fitting the above formula to the results from figure 7.1b. This yields
a near-perfect fit for a = 3200 and n = 3, which indicates that IPIs sent to a
remote socket are approximately 3 times as expensive as those sent to CPUs on
the local socket. The solid lines on figure 7.1b represent the determined curve
(adjusted accordingly for execution time).

7.2.3 Summary

Combining the knowledge obtained in chapter 4 with the findings presented
above, it is clear that while in basic use cases TLB shootdowns are sufficiently
efficient, many factors may drastically increase their cost. What makes this
observation so worrying is the fact that the four system properties identified in
this dissertation as being detrimental to TLB shootdown performance (high CPU
count, NUMA, virtualization and hardware overcommitment) are becoming
increasingly prevalent since the rapid rise of cloud computing implies that
ever more workloads are being executed in highly consolidated virtualized
environments hosted on many-core NUMA systems. This indicates that
addressing excessive TLB shootdown overhead is paramount and will likely only
increase in importance as time goes on.

7.3 Memory Management & TLB Shootdowns

Evidently, the impact of TLB shootdowns on application performance depends
on both the cost of individual shootdowns and the number of these shootdowns
an application induces. While the previous section (in combination with
knowledge from earlier chapters) already provided great insight into the former,
the latter remains mostly unclear. This section addresses this question by

MEMORY MANAGEMENT & TLB SHOOTDOWNS 141

dissecting memory allocator behavior with regard to TLB shootdowns. While
today many memory allocators exist with wildly varying implementation details,
with respect to system interaction (and thus TLB shootdowns) only a handful
of principles are commonly applied. Each of these is detailed below.

7.3.1 Hysteresis-Based Arenas

Early memory allocators were poorly scalable since they serialized all heap
modifications by means of a global lock. As heavily multithreaded applications
became more common, allocators started dividing this monolithic heap structure
into multiple smaller, strictly isolated autonomous arenas, each protected by
their own lock, in an effort to alleviate thread contention. However, this meant
that the need for interaction with the OS in order to expand or shrink the
application’s memory space had to become more frequent and fine-grained so as
to limit the fragmentation issues inherent to partitioning the memory space. To
avoid this OS interaction in turn becoming excessive, hysteresis was employed
in the form of padding when the heap is expanded and a trim threshold which
must be exceeded before it is shrunk. Many contemporary memory allocators
are still based on this concept, most notably glibc’s ptmalloc2 [179].

While fine-grained resizing of arenas based on hysteresis is efficient in terms
of memory usage, many of these resizing operations require the exact system
calls listed in §7.1 as inducing TLB shootdowns. Meanwhile, the global memory
efficiency gained by resizing an arena is often minor, as individual arenas
may only hold a fraction of the total memory used by the application. There
may thus be an imbalance between the rate at which the (relative) memory
footprints of individual arenas and that of the application change, suggesting
that aggressively resizing arenas based on simple hysteresis thresholds may often
not be worth the cost from an application-wide perspective. This dissertation
refers to this phenomenon as the ’arena imbalance issue’. Figure 7.2 clarifies
this problem visually.

Figure 7.2a simulates the memory footprint of a multithreaded program using
two arenas: one with a constant memory consumption of 100 MB and one
with a memory consumption oscillating between 8 MB and 12 MB. A simple
hysteresis-based memory management algorithm is used with a realistic padding
of 500 kB and trim threshold of 1 MB. It is clear that this algorithm maintains
excellent memory efficiency, as the actual application memory consumption
(dashed lines) and the memory allocated from the OS by the memory manager
(solid lines) are hardly distinguishable in figure 7.2a. However, this excellent
efficiency comes at a non-negligible cost in performance. Namely, arena 1 is
resized 34 times during the 10 seconds of simulated program execution shown

142 RUNTIME AMELIORATION: PTLBMALLOC2

(a) Small threshold. (b) Large threshold.

Figure 7.2: Memory footprints of some hypothetical programs when using
hysteresis-based arenas. Solid lines represent the memory allocated by the
application while dashed lines represent the memory actually used.

in figure 7.2a. Within the context of arena 1 alone these resizing operations
are justified, since the memory footprint of this arena fluctuates by up to
50%. Within the broader context of the application however the story becomes
much different, since this same fluctuation only influences the total application
memory footprint by 4%. Therefore, it is fair to argue that resizing arena 1
at all is pointless and only incurs unnecessary overhead given its small size
compared to arena 2, especially considering the potentially high cost of resizing
arenas on modern systems laid bare in §7.2.

Based on figure 7.2a, one may argue that the solution to the arena imbalance
issue is simply increasing the hysteresis thresholds. This can even be done
dynamically in function of the application’s memory allocation behavior. In fact,
this is the approach taken by most modern allocators employing hysteresis-based
arenas. However, respecting the strict isolation between arenas this paradigm
enforces, it is nigh impossible to determine thresholds that perform well for any
application. For example, with the benefit of hindsight, reasonable padding and
trim thresholds for the program in figure 7.2a would be respectively 2.5 MB and
5 MB. This would eliminate all arena resizing operations, while reducing memory
efficiency by only a few percentage points. However, the same thresholds would
be catastrophic for a program using a large number of arenas with each a small,
though heavily fluctuating demand for memory, as figure 7.2b illustrates. It is

MEMORY MANAGEMENT & TLB SHOOTDOWNS 143

clear that for this program, such enlarged thresholds are not satisfactory since
while they do eliminate heap resizing operations, memory efficiency drops to
less than 50% for a considerable portion of the program’s execution. Thus, the
arena imbalance issue is inherent to hysteresis-based arenas and can not easily
be resolved by tweaking hysteresis thresholds.

Because each memory allocator employing hysteresis-based arenas uses different
thresholds, the exact programs suffering from the arena imbalance issue vary
between them. Intuitively however, for any such allocator, programs exist that
trigger this problem. Listing 7.2 shows a minimal example of such a program
in the case of the most popular memory allocator based on hysteresis-based
arenas today: glibc’s ptmalloc2.
void ∗ work (void ∗ arg)
{

void ∗ m[1 0 0 0] ;
f o r (i n t i = 0 ; i < 1000 ; i++)
{

f o r (i n t j =0; j <1000; j++)
m[j]= mal loc (130048) ;

f o r (i n t j =0; j <1000; j++)
f r e e (m[999− j]) ;

}
}

i n t main (i n t argc , char ∗∗ argv) {
pthread_t threads [1 6] ;

f o r (i n t i = 0 ; i <16; i++)
pthread_create(&threads [i] , NULL, work , NULL) ;

f o r (i n t i = 0 ; i <16; i++)
pthread_join (threads [i] , NULL) ;

re turn 0 ;
}
Listing 7.2: Minimal program suffering from the arena imbalance issue when
using ptmalloc2.

In ptmalloc2, the default padding and trimming thresholds are both 128 kB
[179]. Listing 7.2 exploits this fact by allocating 1000 chunks of 127 kB of
memory, only to deallocate all of them again in reverse order. This process is
contained in a loop, which is executed by 16 threads in parallel. On the test
system described in §3.3.1, this program induces 230 million TLB shootdown
IPIs. Interestingly, if chunks are freed in the same as opposed to reverse order as
they are allocated in in listing 7.2, TLB shootdowns and program execution time

144 RUNTIME AMELIORATION: PTLBMALLOC2

are reduced by respectively 99.8% and 87%. This is not particularly surprising,
since arenas can not be trimmed when their top chunk is in use. Much more
interesting is the observation that the arena imbalance issue can be induced
easily for even state-of-the-art memory allocators employing hysteresis-based
arenas through seemingly innocuous source code. Moreover, minor changes to
said source code may drastically alter the severity of this issue.

7.3.2 Decay-Based Purging

While hysteresis is the most commonly used method to combat excessive resizing
operations for memory allocators employing arenas, alternative approaches
exist. The most prevalent of these is called ’decay-based purging’. Rather
than evaluating if the amount of free memory at the top of the heap exceeds
a threshold upon every free operation, the freed memory is gradually released
to the OS after a set amount of real time has elapsed (typically seconds). The
most popular memory allocator based on this principle is FreeBSD’s jemalloc
[200].

While decay-based purging intuitively largely mitigates the arena imbalance
issue, it introduces a capacitive effect to application memory usage. Particularly
for applications with a rapidly and heavily varying memory footprint throughout
their execution, decay-based purging is significantly less efficient than hysteresis-
based trimming. Figure 7.3 shows an example of such an application.

The application figure 7.3 simulates has a base memory usage of 10 MB, which
occasionally briefly peaks to 100 MB. Because these peaks are so sparse however,
the average amount of memory the application requires during the 10 second
interval shown in figure 7.3 is only 28 MB. However, due to the capacitive effect
of decay-based purging, the memory released after each peak is never returned
to the system since the time interval between peaks is shorter than the decay
time threshold the simulated allocator employs, being 10 seconds (which mirrors
jemalloc). Therefore it is clear that decay-based purging is not likely to induce
many TLB shootdowns, albeit at a considerable cost in memory efficiency for
particular applications.

7.3.3 Size Class-Based Memory Management

Because of the issues associated with arena-based memory management outlined
above, some memory allocators opt not to use arenas at all. Instead, they employ
thread-local caches which consist of a series of bins, each containing a list of
chunks of a fixed size class. Each allocation request is assigned a size class

MEMORY MANAGEMENT & TLB SHOOTDOWNS 145

Figure 7.3: Memory footprint of a problematic application for memory allocators
employing decay-based purging. The solid line represents the memory reserved
from the OS while the dashed line represents the memory actually being used.

Class 1 Class 2 Class 3 Class 4

Figure 7.4: Schematic representation of a thread-local cache. Blue blocks
represent allocated memory. White ones represent free space.

based on its size and directly served from the corresponding bin. If necessary,
each of these bins may be replenished in batches from a central heap. Figure
7.4 illustrates what such a thread-local cache looks like.

Figure 7.4 immediately reveals the principal drawback of size class-based
memory allocation, namely fragmentation. The main driving factor behind this
undesirable side effect is the fact that freed chunks can only be recycled by
allocations corresponding to the same size class [201]. Therefore, the allocator
must often request more memory from the system to satisfy an allocation of
a particular size class while bins pertaining to other size classes have plenty

146 RUNTIME AMELIORATION: PTLBMALLOC2

of free space to serve the request. Especially for long-running programs which
tend to have a sparsely populated memory space, this may lead to abysmal
memory efficiency. For example, the simulated program in figure 7.4 requires
4 bins, even though the program only needs 2 bins worth of memory as the
chunks assigned to size classes 2 and 3 would have easily fit in size class 1’s bin,
freeing up bin 2 and 3 for return to the OS.

In spite of the fragmentation issues innate to size classes, many applications
make use of this memory allocation paradigm. Namely, allocators based on size
classes offer excellent performance and near-infinite scalability due to a lack
of thread contention and the absence of complex free list traversal algorithms.
Examples of such performance-oriented allocators include tcmalloc [178] and
memcached [202].

7.3.4 Garbage Collection

Today, most memory allocators are based on the principle of garbage collection.
In contrast to the mechanisms described above, these allocators perform memory
management entirely algorithmically, without programmer intervention. The
garbage collection algorithm itself works as follows: the algorithm starts at
certain predetermined root points, such as active threads and static and local
variables. Next, the algorithm identifies all the objects referenced by these root
points, which are considered to be active. It repeats this reference tracking
process for each identified active object until it can no longer find more of
them. All objects which can not be reached through this process are considered
garbage. The memory associated with them is thus eligible for return to the
system. Figure 7.5 represents this algorithm schematically.

Figure 7.5 suggests that garbage collection is an expensive process, since a large
portion of the memory space of the application must be traversed before any
garbage may be identified. In fact, programming languages often defer garbage
collection as long as possible due to its prohibitive performance impact. For
example, in Java, a large amount of memory is reserved when the program starts
and the garbage collector is only executed when all of this memory has been
allocated, irrespective of how much of it has become garbage in the meantime
[203]. While this deferment may minimize performance overhead (including
TLB shootdowns), memory efficiency clearly suffers greatly since heap sizes are
altered only sporadically and coarsely. In fact, many studies have found that
garbage collection has a detrimental impact on memory efficiency [204, 205,
206]. Thus, when efficiency is a concern, allocators employing garbage collection
are not an option. Examples of memory allocators employing garbage collection
include those used by Java, .NET, Python, etc.

MEMORY MANAGEMENT & TLB SHOOTDOWNS 147

Thread Local variable Static variable

Object

Object

Garbage

Object Object

Object Object

Object

Object

Object

Garbage

GarbageGarbage

Figure 7.5: Schematic representation of the garbage collection algorithm.

7.3.5 Summary

The above suggests that excessive TLB shootdown overhead is not much of
a concern, since many of the discussed memory allocation paradigms do not
tend to resize the heap excessively and therefore are not susceptible to high
TLB shootdown costs. However, as noted in §5.3.5, all of these paradigms
achieve this as a side effect of sacrificing memory efficiency in favor of other
design goals, such as overall performance or scalability. One may argue that
such design decisions are justified, since memory has become abundant and
cheap. However, the widespread adoption of server consolidation demands
reconsideration of this argument. Namely, in heavily consolidated environments
(e.g. public clouds) increased memory efficiency directly translates into a system
being able to host more applications. This especially holds true in containerized
environments, since containers are so lightweight that their memory footprint
is largely determined by the applications they are hosting [207]. Moreover,
increased application memory efficiency often has a positive effect on the invoice
of public cloud consumers.

This section has made clear that the only truly efficient memory allocation
paradigm—to the best knowledge of to the author—is hysteresis-based arenas.
However, this paradigm suffers from the arena imbalance issue, which results in
high TLB shootdown overhead. As such, currently it appears that no memory
allocation paradigm exists that combines excellent memory efficiency with
minimal TLB shootdown overhead. The increasing cost of TLB shootdowns
detailed in §7.2 combined with the returning need for highly efficient application
runtime environments driven by modern consolidated platforms nevertheless
makes a convincing case for such a paradigm.

148 RUNTIME AMELIORATION: PTLBMALLOC2

7.4 Global Hysteresis

As stated in §5.3.5, this dissertation aims to address the observation concluding
the previous section by introducing the concept of global hysteresis. As the
name suggests, this concept is based on hysteresis-based arenas, mainly because
this facilitates interpreting and implementing global hysteresis as an extension to
particular existing allocators, which would in turn allow global hysteresis to have
an immediate impact in industry. Concretely, this means that formulating global
hysteresis equates to formulating a method to eliminate the arena imbalance
issue in hysteresis-based arenas (see §7.3.1).

Because the root cause of the arena imbalance issue is an excess of fine-grained
arena resizing operations which—despite from the perspective of a single arena
appearing appropriate—have no significant impact on the aggregate memory
footprint of the application, mitigating it requires answering the following
question whenever an arena appears to be in need of resizing:

Does the change to the memory footprint of the application justify the
performance overhead of resizing the arena?

Answering the above question requires knowing the benefits of a pending arena
resizing operation regarding the application’s memory footprint on the one hand
and the cost of the resizing operation—which is dominated by the cost of the
TLB shootdown it potentially induces—on the other. The memory allocator
may then balance these factors as it sees fit, potentially allowing for low memory
efficiency in individual arenas when the global impact thereof is minor relative
to the cost of resizing said arenas. Note that this mandates a global notion of
the application state, in contrast to classic hysteresis which only ever considers
the state of the local arena. In other words, implementing global hysteresis as
an extension to hysteresis-based arenas requires partially breaking the strict
isolation between arenas, allowing basic usage statistics to be exchanged between
them in order to determine whether the benefits of a potential arena resizing
operation outweigh its cost from the perspective of the application as a whole.

The first challenge to answering the question above concretely is estimating the
cost of a TLB shootdown. Sections 4.2 and 7.2 indicated that this cost mainly
depends on three factors: the number of CPUs currently being used by the
application, how these CPUs are scheduled on the potential NUMA nodes of
the system and the presence of virtualization. Many systems allow applications
to query these variables at runtime. Thus, the cost of TLB shootdown may be
estimated intermittently throughout program execution based on the following
formula:

GLOBAL HYSTERESIS 149

(nCPUL
− 1)× CIPIL

+ (nCPU − nCPUL
)× CIPIR

+ V × Cexit × (nCPU − 1)

With nCPUL
the number of CPUs used on the local NUMA node, CIPIL

and
CIPIR

the number of cycles needed for sending in IPI to a CPU on respectively
the local or a remote NUMA node, nCPU the total number of CPUs used by
the application, V a value of 1 or 0 depending on whether or not the system
is being virtualized and Cexit the number of cycles required for processing
an ICR MSR write VM exit. Note however that CIPIL

, CIPIR
and Cexit are

to be statically and heuristically determined and may vary strongly between
systems. Therefore, the practical value of the above formula may be disputed.
Moreover, even if the exact cost of an arena resizing operation is known,
balancing this cost with memory efficiency remains a heuristical matter which
should ideally be determined on a per-use-case basis. Therefore, while some
dynamically determined notion of TLB shootdown cost is central to global
hysteresis, it refrains from specifying exactly how this cost should be calculated,
nor how it should be balanced with memory efficiency. Instead, it leaves
these matters to specific implementations, albeit strongly suggesting the use of
some incarnation of the above formula. Additionally, it is prudent to provide
application developers the option to finetune this cost calculation mechanism,
essentially allowing them to specify to what extent the memory allocator should
value performance relative to memory efficiency.

Besides TLB shootdown cost, global hysteresis requires knowledge of the memory
footprint of the entire application. This can be achieved by simply iterating over
all arenas and calculating their cumulative memory usage on a regular basis
(e.g. upon each memory allocation or deallocation). Based on this, suitable
global top padding and trim thresholds can be heuristically determined as a
percentage of the total application memory usage. These thresholds should
then be finetuned based on the factors discussed above (TLB shootdown cost
and programmer preference). The resulting thresholds may then be applied in
the following manner:

• Whenever an arena must be expanded, the local amount of top padding
to be added is the global top padding threshold divided by the number of
arenas;

• Arenas are trimmed whenever the total free top space of the application
exceeds the global trim threshold.

150 RUNTIME AMELIORATION: PTLBMALLOC2

(a) Application from figure 7.2a. (b) Application from figure 7.2b.

Figure 7.6: Memory footprints of the hypothetical programs from figure 7.2
when using global hysteresis. Solid lines represent the memory allocated by the
application while dashed lines represent the memory actually used.

The exact weights to be used in determining the global padding and trim
thresholds from application memory usage, as well as the specifics of when
they are calculated and how arenas are resized depend on developer preference,
application domain and the target system. All of these are therefore left to the
implementation.

The above makes clear that the underlying mechanism by which global hysteresis
aims to eliminate the arena imbalance issue is allowing for much more free top
space in individual arenas than traditional hysteresis-based approaches, as long
as the memory usage of said arenas is small with respect to the memory usage
of the entire application. When this is not the case, global hysteresis behaves
much like hysteresis-based arenas. To demonstrate this concretely, figure 7.6
shows the simulated memory footprints of the applications introduced in figure
7.2 if their memory allocators were to be based on global hysteresis rather than
hysteresis-based arenas. The global top padding and trim thresholds were set
to 5% and 10%, respectively.

Figure 7.6a shows promising results. Because the variance in arena 1 only
has a minor effect on application memory usage, it is hardly ever resized. In
total, the application only induces 3 arena resizing operations using global
hysteresis, compared to 34 using hysteresis-based arenas. Figure 7.6b on the
other hand shows that global hysteresis is also capable of handling scenarios in

IMPLEMENTING GLOBAL HYSTERESIS 151

which individual arenas do significantly affect application memory usage. In
this example, global hysteresis performs nearly identically to hysteresis-based
arenas with a realistic hysteresis threshold. Namely, if the same threshold
used in figure 7.2a were to be applied to figure 7.2b, hysteresis-based arenas
would induce 170 arena resizing operations for this workload, albeit resulting in
excellent memory efficiency. Global hysteresis on the other hand induces 198
arena resizing operations, achieving comparable memory efficiency. Thus, with
respect to hysteresis-based arenas, global hysteresis effectively mitigates the
arena imbalance issue at the cost of some thread contention.

7.5 Implementing Global Hysteresis

Analogously to chapter 6, this chapter aims to exceed purely theoretical
contributions through providing a functional prototype implementation of
the concept it proposes. As such, this section introduces ptlbmalloc2: an
implementation of global hysteresis developed as an open-source library1 on top
of ptmalloc2. The latter was chosen as a baseline because it is a widely used,
open source and well documented memory allocator based on hysteresis-based
arenas. As stated in §7.4, this incremental approach allows ptlbmalloc2 to make
an immediate real-world impact by allowing existing projects to easily integrate
it into their codebase. Appendix B lists all of the ptlbmalloc2 source code.

Implementing any library as an extension to existing code requires intimate
knowledge of the latter so that the original and novel components interact
harmoniously. Therefore, this section first provides an overview of the
implementation of ptmalloc2, after which it details how specific aspects thereof
were altered in order to implement global hysteresis, giving rise to ptlbmalloc2.

7.5.1 Ptmalloc2

Figure 7.7 provides a simplified schematic overview of the workings of the
malloc and free functions of ptmalloc2, which are the main routines used to
respectively allocate and free memory [179].

Ptmalloc2 most often allocates a dedicated arena for each application thread.
These arenas may consist of multiple contiguous memory regions, somewhat
confusingly called heaps. As figure 7.7a shows, large malloc calls are served
directly using the mmap system call. For smaller chunks, a variety of bins is
traversed in search of a suitable previously freed block. If this search is fruitless,

1https://github.com/StijnSchildermans/tlb_shootdown_mitigation.git

https://github.com/StijnSchildermans/tlb_shootdown_mitigation.git

152 RUNTIME AMELIORATION: PTLBMALLOC2

malloc

Free list

Regular size

mmap

Huge size

Top
heap

brk

Main arena

mprotect

Other arenas

mmap

(a) Malloc.

free

Free list

Regular size

munmap

Huge size

Update
thresholds

Trim
heap

brk

Main arena

madvise

Other arenas

munmap

(b) Free.

Figure 7.7: Simplified schematic overview of the main routines of ptmalloc2.

the block is allocated from the top of the arena, if sufficient free space is available.
If not, the arena is expanded first. For the main arena, this expansion happens
through the brk system call. For other arenas, the process is slightly more
complicated. If the current heap can still be expanded, mprotect is used to
mark the pages just above the current top of the arena as readable and writable,
which allows the application to access them. If not, a new heap is added using
mmap, with all page permissions disabled before calling mprotect to make part
of it usable. In this way, newly allocated heaps are not backed by physical
memory before they are actually needed by the application. Only in case of the
main arena, top padding is included upon expansion.

Figure 7.7b shows how ptmalloc2 handles free calls. Namely, when the freed
chunk is sufficiently large, it is immediately returned to the system using munmap
and the hysteresis thresholds are updated based on the size of the chunk. Smaller
chunks are added to one of the free lists. Next, the arena is trimmed if its top
space exceeds the trim threshold, leaving a small amount of padding. Again,
for the main arena this process differs from the other arenas. The former is
trimmed using brk, while for the latter madvise(MADV_DONTNEED) is used. If
this madvise call transgresses heap boundaries, the topmost one (which now
no longer holds any allocated chunks) is returned to the system using munmap.

IMPLEMENTING GLOBAL HYSTERESIS 153

Note that brk, munmap, mprotect and madvise all induce TLB shootdowns, as
described in §7.1. This causes the overhead associated with the arena imbalance
issue described in §7.3.1.

Ptmalloc2 is able to function as described above by using several data structures
to track the state of chunks, heaps and arenas. Conveniently, the addresses
of these data structures may be derived from the pointer value returned by
malloc. Effectively, knowing any chunk pointer thus allows for querying the
state of the entire memory space. Another interesting side node is the fact
that one is able to tune ptmalloc2’s behavior at runtime through the mallopt
routine. This function grants control over padding and trim thresholds, the
minimum size of chunks to be allocated using mmap, etc. [208].

7.5.2 Ptlbmalloc2

The above has made clear that ptmalloc2 provides all the tools necessary to
implement ptlbmalloc2 as envisioned above; a library on top of ptmalloc2 which
can be linked into any existing application. It is even possible to recycle much
of ptmalloc2’s code using the following approach:

1. Define ptlbmalloc2’s API as an identical copy of that of ptmalloc2 and
perform the necessary linker configuration so that any application calls to
ptmalloc2 routines now point to ptlbmalloc2;

2. Disable ptmalloc2’s heap trimming and top padding upon the first call to
ptlbmalloc2’s routines using mallopt. Ptmalloc2 is now technically no
longer using hysteresis-based arenas;

3. Forward any call to ptlbmalloc2 internally to ptmalloc2 and obtain a
pointer to the latter’s internal data structures from either the return value
of the forwarded call (malloc, calloc, etc.) or the parameters passed by
the caller (free, realloc, etc.);

4. Using the obtained pointer, determine the state of the entire application
memory space whenever prudent;

5. Apply the principles of global hysteresis on the obtained data to determine
appropriate padding and trimming thresholds;

6. When necessary, resize arenas using the appropriate system call and update
ptmalloc2’s internal data structures accordingly using the previously
obtained pointer.

154 RUNTIME AMELIORATION: PTLBMALLOC2

Memory consumption Base threshold
0B - 500 kB 100 kB

500 kB - 1 MB 50%
1 MB - 1 GB 10% + 400 kB

1 GB - ∞ 100 MB

Table 7.1: Base thresholds used by ptlbmalloc2 in function of total application
memory consumption.

The above constitutes the basic implementation of ptlbmalloc2. The only
remaining question is how exactly ptlbmalloc2 approaches the aforementioned
’principles of global hysteresis’. Specifically, three aspects thereof warrant
detailed explanation: threshold calculation, claiming memory and trimming
arenas. The remainder of this section elaborates on each of these in turn.

Threshold Calculation

In order to efficiently calculate global padding and trimming thresholds,
ptlbmalloc2 maintains an array containing pointers to all of ptmalloc2’s arena
data structures. On each malloc call, the arena of the newly allocated chunk
is added to this data structure, if it was not already present. On each free
call, ptlbmalloc2 calls ptmalloc2’s free routine and checks if this has changed
the size of the arena the chunk belonged to significantly. If so, it calculates
the cumulative memory usage of all arenas by iterating over its array of arena
pointers. Note that this requires briefly locking each arena to query its metadata.
Based on the obtained data, ptlbmalloc2 heuristically determines a base global
threshold value. Table 7.1 shows the precise magnitude of this base threshold
in function of application memory consumption.

Besides application memory usage, §7.4 prescribes taking the cost of TLB
shootdowns into account when determining thresholds. Because this cost is not
easily determined, the author judged that for a proof-of-concept implementation
of global hysteresis a limited implementation of this aspect suffices. Specifically,
ptlbmalloc2 only takes the amount of CPUs currently used by the application
into account. It does this by programming a periodic interrupt at a rate of 1 Hz
performing the times system call, which yields the total CPU time used by the
program. Based on this, ptlbmalloc2 determines the average number of CPUs
used in the past second. The base threshold from table 7.1 is then multiplied by
a heuristically determined factor of 1 + CPUs

100 . This yields the global trimming
threshold used by ptlbmalloc2. The global top padding threshold is set to 25%
of this value.

EVALUATION 155

Claiming Memory

In contrast to ptmalloc2, ptlbmalloc2 preemptively applies top padding to
all arenas. It determines the amount thereof by dividing the global padding
threshold by the number of arenas. After every malloc call, ptlbmalloc2
determines if the usable top space of the arena is at least 25% of this value. If
not and the heap can still be expanded, it calls mprotect to set the desired
top padding. Finally, it updates ptmalloc2’s internal data structures to be
consistent with these changes.

Trimming Arenas

Whenever ptlbmalloc2 iterates over arenas to determine hysteresis thresholds,
it also calculates the cumulative free top space. If this value exceeds the global
trim threshold, it trims all arenas who’s top space exceeds twice the per-arena
top padding threshold so that the free top space of that arena equals said
per-arena top padding threshold. In keeping with ptmalloc2, ptlbmalloc2 trims
the main arena using the built-in glibc function malloc_trim (which employs
brk internally) and all other arenas using madvise.

7.6 Evaluation

Much like the main purpose of implementing paratick was providing evidence
for the efficacy of virtual scheduler ticks in chapter 6, within the context of this
dissertation the main purpose of implementing ptlbmalloc2 is assessment of the
efficacy of global hysteresis. Following the template of chapter 6, this section
presents an evaluation of ptlbmalloc2 based on controlled experiments set up
according to the prescriptions provided in §3.3. The employed OS is Ubuntu
20.04 and the assessed workloads are the PARSEC 3.0 benchmarks.

Because ptlbmalloc2 is based on and integrated tightly with ptmalloc2, all results
shown in this section represent the performance of ptlbmalloc2 relative to that
of ptmalloc2. A large body of existing work in turn compares the latter to other
memory allocators, facilitating extrapolation of the results presented here [209,
201]. Note that much like §6.5, this section does not present results in terms
of δηr and δηt since a more direct comparison to existing technologies provides
better insight into the performance implications of ptlbmalloc2. Moreover, as
§7.2 has indicated that ptlbmalloc2 provides benefits to workloads in native
and virtualized scenarios alike, it is prudent to employ virtualization-agnostic
performance metrics for its evaluation. Concretely, the following were chosen:

156 RUNTIME AMELIORATION: PTLBMALLOC2

• TLB shootdowns: This measure allows for evaluating to what extent
ptlbmalloc2 achieves its principal goal, namely eliminating excessive TLB
shootdown overhead via mitigating the arena imbalance issue;

• Memory efficiency: Mitigating the arena imbalance issue implies
reducing the number of arena resizing operations in certain scenarios, which
in turn implies that memory efficiency may suffer in favor of improved
performance. Because ptlbmalloc2 was carefully designed to minimally
affect other aspects of ptmalloc2, reduced memory efficiency compared
to ptmalloc2 is intuitively its main potential negative side effect, which
warrants careful assessment thereof;

• System throughput: This metric allows for assessing to what extent any
reduction in TLB shootdowns translates to improved system performance.
Refer to §6.5 for a detailed description of the implications of system
throughput and its measurement;

• Application execution time: This dissertation has by now made
amply clear that in the case of multithreaded applications, improved
system throughput does not necessarily translate to improved application
performance. Therefore, application execution time is measured
independently. Again refer to §6.5 for a more detailed motivation for
employing this metric.

The remainder of this section evaluates ptlbmalloc2 step by step according to
the prescription laid out above.

7.6.1 Conceptual Effectiveness

Figure 7.8 displays the conceptual effectiveness of ptlbmalloc2 in terms of
TLB shootdowns. The experiments have been conducted in the absence of
virtualization, using 16 CPUs on a single NUMA node. Note that because of
the large variance in results, this figure employs a logarithmic scale.

Figure 7.8 indicates that for most benchmarks, the number of TLB shootdowns
is low, even when using ptmalloc2. This is to be expected, since—as detailed in
§7.3.1—only specific memory allocation patterns induce the arena imbalance
issue. Dedup and Vips likely do exhibit such a pattern, given that these
benchmarks incur vastly more TLB shootdowns than their peers in figure 7.8.
Analysis of the system calls these benchmarks perform reveals that they induce
vast numbers of madvise(MADV_DONTNEED) calls, which is as stated in §7.5.1
the main system call ptmalloc2 uses to trim arenas.

EVALUATION 157

210211212213214215216217218219220221222223224225

bl
ac

ks
ch

ol
es

bo
dy

tr
ac

k

ca
nn

ea
l

de
du

p

fa
ce

si
m

fe
rr

et

flu
id

an
im

at
e

fr
eq

m
in

e

ra
yt

ra
ce

st
re

am
cl

us
te

r

sw
ap

tio
ns

vi
ps

x2
64

benchmark

sh
oo

td
ow

ns version

glibc

ptlbmalloc2

Figure 7.8: Comparison of TLB shootdowns for the PARSEC benchmarks using
ptmalloc2 and ptlbmalloc2; run natively with 16 CPUs on 1 socket.

Pertaining to the effectiveness of ptlbmalloc2, figure 7.8 is highly optimistic.
Ptlbmalloc2 appears to eliminate almost all TLB shootdowns for the problematic
benchmarks without significantly affecting others. This indicates that
ptlbmalloc2 achieves its main goal and by extension that global hysteresis
is a viable concept.

7.6.2 Side Effects

While §7.6.1 indicates that ptlbmalloc2 is successful at mitigating the arena
imbalance issue, it is still unclear whether this comes at the cost of undesirable
side effects such as increased resource usage or reduced memory efficiency. To
gain insight into this, we next analyze the metrics other than TLB shootdowns
outlined in the beginning of this section, which are three of the most important
memory allocator performance measures. In the interest of completeness, this
analysis includes system configurations with CPU counts varying from 4 to 64,
spread over 1 to 4 NUMA nodes. It is limited to native settings only, since §3.2.7
implies that ptlbmalloc2’s performance benefits are likely higher in virtualized
scenarios due to the various forms of virtualization overhead TLB shootdowns
induce. Therefore, potential negative side effects of ptlbmalloc2 are likely more
pronounced in a native setting. Figure 7.9 shows the results at the extremes
of the spectrum of studied system settings. Other configurations reliably yield
results in between these values.

158 RUNTIME AMELIORATION: PTLBMALLOC2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

1.1

1.2

bl
ac

ks
ch

ol
es

bo
dy

tr
ac

k

ca
nn

ea
l

de
du

p

fa
ce

si
m

fe
rr

et

flu
id

an
im

at
e

fr
eq

m
in

e

ra
yt

ra
ce

st
re

am
cl

us
te

r

sw
ap

tio
ns

vi
ps

x2
64

ra
tio

measurement

avg. memory

cycles

time

(a) 4 CPUs/threads, 1 socket

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

1.1

1.2

bl
ac

ks
ch

ol
es

bo
dy

tr
ac

k

ca
nn

ea
l

de
du

p

fa
ce

si
m

fe
rr

et

flu
id

an
im

at
e

fr
eq

m
in

e

ra
yt

ra
ce

st
re

am
cl

us
te

r

sw
ap

tio
ns

vi
ps

x2
64

ra
tio

measurement

avg. memory

cycles

time

(b) 64 CPUs/threads, 4 sockets

Figure 7.9: Average memory usage, execution time and cycles for the PARSEC
benchmarks using ptlbmalloc2 relative to ptmalloc2 in various scenarios.

EVALUATION 159

In general, the results in figure 7.9 align with expectations. For most benchmarks,
ptlbmalloc2 performs very comparably to ptmalloc2. No benchmark suffers
a consistent significant performance degradation across system configurations
using ptlbmalloc2. Moreover, careful analysis of the few benchmarks exhibiting
a mild slowdown using ptlbmalloc2 in figure 7.9 reveals that the main cause of
this performance degradation is increased thread contention for arenas. This
occurs partly by design as explained in §7.4 and partly because ptlbmalloc2
is built on top of glibc, rather than as an integrated component thereof. This
forces ptlbmalloc2 to contend with ptmalloc2 code for arena locks. While this
external approach was a deliberate design decision, direct integration with glibc
would likely eliminate the majority of the performance degradation observed in
figure 7.9 at the cost of reduced flexibility.

Figure 7.9b indicates that both Dedup and Vips, which are the benchmarks
most likely to benefit significantly from global hysteresis according to figure
7.8, indeed exhibit greatly improved performance using ptlbmalloc2. In figure
7.9a however, Vips requires slightly more cycles and time when employing
ptlbmalloc2, while strangely memory consumption is 5% lower. This is possible
when a benchmark allocates many large chunks. Namely, in ptmalloc2, the trim
threshold continues to increase as the mmap threshold increases. Ptlbmalloc2
on the other hand bases its thresholds on the application state and may shrink
them accordingly. This means that in circumstances of frequent coarse memory
allocations, ptlbmalloc2 can be more memory efficient than glibc at a minor
cost in performance.

Curiously, Fluidanimate consistently shows a performance improvement of ±
5% using ptlbmalloc2 despite figure 7.8 not indicating that this benchmark
suffers from the arena imbalance issue. Closer analysis reveals that that this
is not a direct consequence of the design considerations of ptlbmalloc2, as the
number of system calls performed by this benchmark is identical for ptlbmalloc2
and ptmalloc2. Rather, improved cache performance causes this result. Because
cache behavior is very complicated, not a focus of ptlbmalloc2’s design and out
of scope of this dissertation, it is not fitting to derive any conclusions from this
finding.

Despite the design of global hysteresis often allowing for significantly larger
hysteresis thresholds for individual arenas than traditional hysteresis-based
arenas, figure 7.9 indicates that ptlbmalloc2’s memory efficiency is comparable
to that of ptmalloc2. Only Bodytrack and Swaptions show a notable increase
in memory usage, which never exceeds 15%. However, analysis of the memory
profile of these benchmarks brings to light that they consume very little memory
(30 MB for Bodytrack and 4 MB for Swaptions) to begin with. These results
are therefore certainly acceptable.

160 RUNTIME AMELIORATION: PTLBMALLOC2

7.6.3 Performance

Having established that ptlbmalloc2 mitigates the arena imbalance issue without
introducing significant side effects, the performance improvement it yields over
traditional techniques may be quantified. In keeping with previous chapters, this
’performance improvement’ is expressed here in terms of both system throughput
and application execution time.

Because both metrics of interest here have already been assessed for native
scenarios in §7.6.2, this section only provides a detailed breakdown thereof
in virtualized settings. Apart from the presence of virtualization, all assessed
system configurations are identical to those assessed in §7.6.2. Figure 7.10
summarizes the results of this evaluation analogously to figure 7.9.

As expected, figure 7.10 shows that the performance improvements yielded by
ptlbmalloc2 are greater in virtualized scenarios, in particular for the benchmarks
suffering from the arena imbalance issue. All other benchmarks perform nearly
identically using either ptlbmalloc2 or ptmalloc2.

Much like in figure 7.9, several outliers for which ptlbmalloc2 unexpectedly
performs notably better than ptmalloc2 may be observed in figure 7.10 (e.g.
Canneal in figure 7.10b). Further investigation into these outliers reveals that
certain benchmarks induce many TLB shootdowns only in specific circumstances.
This underlines that memory allocator performance is highly susceptible to
platform specifics and that these platform specifics may affect different allocators
differently. This in turn implies that limited relative performance variations
between ptlbmalloc2 and ptmalloc2 in either direction are unavoidable.

Distilling the results from figures 7.9 and 7.10 shows that ptlbmalloc2 greatly
improves performance for benchmarks suffering from the arena imbalance issue
relative to ptmalloc2. Most other benchmarks behave nearly identically for
both of these allocators, with minor exceptions in both directions. To gain a
conclusive insight into the performance of ptlbmalloc2, table 7.2 summarizes
the performance of ptlbmalloc2 relative to ptmalloc2 as the aggregate of all
PARSEC benchmarks for each of the studied system configurations.

Table 7.2 confirms that on average, ptlbmalloc2 almost always outperforms
ptmalloc2 for computation-intensive multithreaded workloads. This performance
improvement rises drastically with CPU count. In virtualized environments,
the impact is even greater. To the surprise of the author, NUMA has only a
limited effect. Nevertheless, the average of all results in table 7.2 is 3% for both
throughput and execution time. Ptlbmalloc2 thus boasts tangible performance
improvements in the aggregate, with benchmarks suffering from the arena
imbalance issue benefiting greatly, while others are not notably affected.

EVALUATION 161

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

1.1

1.2

bl
ac

ks
ch

ol
es

bo
dy

tr
ac

k

ca
nn

ea
l

de
du

p

fa
ce

si
m

fe
rr

et

flu
id

an
im

at
e

fr
eq

m
in

e

ra
yt

ra
ce

st
re

am
cl

us
te

r

sw
ap

tio
ns

vi
ps

x2
64

ra
tio

measurement

cycles

time

(a) 4 CPUs/threads, 1 socket

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

1.1

1.2

bl
ac

ks
ch

ol
es

bo
dy

tr
ac

k

ca
nn

ea
l

de
du

p

fa
ce

si
m

fe
rr

et

flu
id

an
im

at
e

fr
eq

m
in

e

ra
yt

ra
ce

st
re

am
cl

us
te

r

sw
ap

tio
ns

vi
ps

x2
64

ra
tio

measurement

cycles

time

(b) 64 CPUs/threads, 4 sockets

Figure 7.10: Average execution time and cycles for the PARSEC benchmarks
using ptlbmalloc2 relative to ptmalloc2 in various virtualized scenarios.

162 RUNTIME AMELIORATION: PTLBMALLOC2

Table 7.2: Average performance improvement of ptlbmalloc2 accross all PARSEC
benchmarks in all tested scenarios.

Environment CPUs Sockets Cycles Time
Native 4 1 0% -1%
Native 4 4 +1% -1%
Native 16 1 -1% -2%
Native 16 4 -2% -4%
Native 64 4 -5% -4%
Virtualized 4 1 -1% -1%
Virtualized 4 4 -2% -1%
Virtualized 16 1 -4% -4%
Virtualized 16 4 -4% -3%
Virtualized 64 4 -7% -5%

Table 7.3: Performance comparison between ptlbmalloc2 and related
optimizations reducing TLB shootdowns.

Study Level Cycles Time
Native

[210] hardware / -5%
[211] hardware -5% /
[212] system / -2%
[196] system / +1%

ptlbmalloc2 runtime -1% -2%
Virtualized

[117] system / -2%
ptlbmalloc2 runtime -4% -3%

7.7 Related Work

Most closely related to the work presented in this chapter is literature directly
addressing TLB performance, which is plentiful. However, most studies focus
on increasing TLB hit rate or reducing TLB miss latency without explicitly
addressing TLB shootdowns [176]. Nonetheless, some work directly targeting
the latter does exist. Table 7.3 lists all of said work known to the author,
providing the level of the system stack at which it was implemented and the
performance gains it achieves. The table includes the same information for
ptlbmalloc2 for reference.

CONCLUSION 163

Even though none of the related work in table 7.3 provides performance figures
for both CPU cycles and execution time (or comparable metrics), some clear
patterns emerge. Firstly, all of the related solutions to excessive TLB shootdown
overhead were implemented at hardware or system software level. This limits
their applicability since hardware-based solutions are very costly to implement
and system-based ones are limited in their potential for optimization due to
generality concerns. Secondly, ptlbmalloc2 achieves comparable performance
gains to related solutions at system level. While techniques at hardware level
do perform better overall, their widespread adoption would take many years
due to the aforementioned costs involved.

More indirectly linked to this chapter—but therefore not less relevant—are
ongoing efforts to develop massively scalable OSs [213, 214]. Such systems view
every CPU as a discrete entity running its own microkernel. Any communication
between CPUs is explicit. This reduces or even eliminates the need for OS-
managed TLB consistency, among many other benefits. Although experimental
implementations of these systems exist, there are no signs that any of them are
to be adopted on a large scale in the foreseeable future.

Finally, memory allocation remains a vivid research field. Recent attempts
to improve on the strengths and mitigate the weaknesses of existing memory
allocators are ubiquitous, e.g. with regard to synchronization mechanisms [215]
or data locality [216]. These efforts are largely orthogonal to the work presented
in this chapter.

7.8 Conclusion

Due to several evolutions in the nature of contemporary computing platforms,
TLB shootdown cost is steadily rising. Since for multithreaded applications
many of these shootdowns are caused by memory management at application
level, optimizing memory allocators is a promising method to address this
issue. Existing allocators either exhibit poor TLB performance due to the
arena imbalance issue or poor memory efficiency due to a focus on performance.
This chapter explored the potential of explicitly focussing on the trade-off
between (TLB) scalability and memory efficiency, resulting in a memory allocator
design concept and a prototype implementation thereof exhibiting excellent
performance in both of these metrics with minimal side effects: respectively
global hysteresis and ptlbmalloc2.

While global hysteresis achieves its objectives, it is tightly bound to a specific
legacy allocator design concept, namely hysteresis-based arenas. The core issue
global hysteresis addresses is however much broader: the trade-off between

164 RUNTIME AMELIORATION: PTLBMALLOC2

memory efficiency and performance. Perhaps the most important conclusion
of this chapter is that memory allocators in general must reconsider how they
interpret the metric ’performance’ and start taking into account traditionally
insignificant aspects thereof—such as TLB shootdowns—in response to the
evolution of the systems their allocators are deployed on.

7.8.1 Personal Contriburion

This chapter entirely consists of original work by the author of this dissertation.
As with all other chapters however, his supervisors provided invaluable guidance
and feedback throughout.

7.8.2 Future Work

This chapter provides several incentives for future work:

• As stated above, global hysteresis is but one possible angle from which to
approach the issue of balancing memory efficiency and TLB performance.
Nothing in this chapter suggests that the opposite avenue, namely
improving memory efficiency for any of the memory allocation paradigms
exhibiting low TLB shootdown overhead (see §7.3) is not feasible. How
to develop an allocator from that perspective and how such an allocator
would compare to ptlbmalloc2 are interesting open questions;

• While ptlbmalloc2’s implementation as a library on top of glibc allows for
rapid dissemination, §7.6.2 noted that this has negative performance
implications due to contention between ptmalloc2 and ptlbmalloc2.
Therefore, implementing global hysteresis as an integrated component of
glibc would likely further improve its performance gains over hysteresis-
based arenas and is therefore an interesting direction for future work;

• §7.6.2 noted that ptlbmalloc2 appears to improve cache performance
for some workloads. The mechanisms behind this improvement and
whether it is coincidental or systematic are however unknown. Given
that this observation potentially implies an unintended additional asset
of ptlbmalloc2, more thoroughly analyzing the latter’s effects on cache
behavior is of great interest.

Chapter 8

Application Amelioration:
Guidelines to Developers

This chapter was previously published as:
S. Schildermans and K. Aerts. “Towards High-Level Software Approaches
to Reduce Virtualization Overhead for Parallel Applications”. In: 2018
IEEE International Conference on Cloud Computing Technology and Science
(CloudCom). IEEE. 2018, pp. 193–197

After having presented ameliorations to the virtualization process of multi-
threaded applications at system level in chapter 6 and runtime environment
level in chapter 7, this chapter targets the highest possible level of abstraction,
namely application source code. Indeed, chapter 5 suggested multiple times
that this is a promising, yet understudied angle from which to approach this
issue and even provided an indication of its potential in §5.1.6.

While system software controls how application requests are processed, the
application itself determines the number and nature of these requests to begin
with. Therefore, almost all virtualization overhead may be prevented through
altering application code so that it avoids operations likely to induce significant
amounts of said overhead. However, doing so is not trivial due to the complexity
of modern virtualization technologies and the unique nature of each application.
The principal goal of this chapter is to aid developers in this process through
formulating a set of guidelines and best practices.

165

166 APPLICATION AMELIORATION: GUIDELINES TO DEVELOPERS

Chapters 3 and 4 have provided a wealth of information regarding the various
forms of virtualization overhead multithreaded applications are susceptible to,
as well as the principal causes thereof. However, these chapters often omitted
linking said causes directly to application source code. Therefore, the first
contribution of this chapter is to detail exactly how certain application source
code triggers the system-level phenomena inducing virtualization overhead
discussed earlier in this dissertation. Once this link has been clearly established,
it proceeds to formulate the aforementioned set of guidelines. Finally, this
chapter provides evidence of the efficacy of the guidelines it proposes by applying
them to one of the benchmarks shown in chapter 4 to suffer the most in a
virtualized environment, namely the Dedup benchmark from the PARSEC
benchmark suite. It dubs this implementation ’NODedup’; short for ’No-
Overhead Dedup’.

While this chapter—like most of the chapters preceeding it—is based on
published and peer-reviewed original work by the author of this dissertation,
most of the information it provides was not included in said publication. The
reason for this is that that publication dates back to the early stages of the
Ph. D. project documented here and was limited to providing evidence for the
viability of the application-level approach to addressing virtualization overhead
alluded to so frequently in chapter 5. It formulated some initial insights
regarding the link between application code and virtualization overhead and
documented and evaluated NODedup. Through the years of work that led to
this dissertation however, the author’s knowledge concerning this topic steadily
expanded and crystallized. While time constraints have prevented this additional
knowledge from being published in its own right, it is included in this chapter
so that it may reach individuals interested in such information regardless. As
a result, this chapter in essence comprises a compilation of insights regarding
mitigating virtualization overhead through intelligent application design the
author obtained while working on the Ph. D. project this manuscript documents,
reinforced with peer-reviewed and published evidence.

Main Findings & Contributions

• This chapter clarifies the link between application source code and the
different forms of virtualization overhead for multithreaded applications;

• This chapter introduces a set of guidelines and best practices aiding
software developers in designing their applications in such a way that they
minimize virtualization overhead;

• This chapter provides evidence for the efficacy of the guidelines it proposes.

BACKGROUND: THE DEDUP BENCHMARK 167

8.1 Background: The Dedup Benchmark

From the introduction to this chapter it is clear that the Dedup benchmark
from the PARSEC benchmark suite will play a central role in validating the
guidelines it proposes. Even though this workload has been featured throughout
this dissertation, none of the previous chapters detailed its inner workings, which
is nonetheless paramount in order to implement NODedup and as such perform
the validation mentioned above. This section rectifies this by elaborating on
the anatomy of this benchmark.

The Dedup benchmark featured in PARSEC is an implementation of the well-
known data deduplication algorithm written in the C programming language.
Data deduplication in turn is a data compression algorithm mostly popular for
storing large data sets likely to contain a significant amount of repetition, such
as periodic system backups and—highly fitting for this dissertation—stores of
VM images in cloud environments [217]. It consists of the following steps:

1. Read the input file from disk and coarsely divide it into chunks;

2. Refine each chunk into smaller chunks;

3. For each chunk, identify duplicates using a global hash table;

4. Compress all first occurances of chunks and replace any duplicates by a
reference to their first occurance;

5. Write the output to disk.

The Dedup benchmark implements the above algorithm as a parallel pipeline
based on pthreads. As soon as chunks are created, they pass through the
subsequent pipeline stages in no particular order, before being reordered during
the final pipeline stage and written to disk. Additionally, Dedup creates multiple
threads to handle pipeline stages 2, 3 and 4. The developers of the PARSEC
benchmark suite recommend each of these stages to be assigned at least as many
threads as there are logical CPUs available to the system, so that the scheduler
can accurately balance CPU time between them [124]. Dedup employs ring
buffers [218] between all pipeline stages to store intermediary results. Access to
these buffers is serialized using several blocking synchronization constructs.

168 APPLICATION AMELIORATION: GUIDELINES TO DEVELOPERS

8.2 Application Code & Virtualization Overhead

To be able to formulate accurate guidelines regarding writing multithreaded
application code inducing minimal virtualization overhead, deeply understanding
the connection between said code and overhead is paramount. This section
aims to provide such an understanding, primarily through a (non-exhaustive)
series of examples. It follows the same structure as chapter 5, addressing each of
the high-level causes of virtualization overhead for multithreaded applications
identified in chapter 4 independently.

8.2.1 Blocking Synchronization

§4.2 indicates that blocking synchronization is with little doubt the most common
cause of virtualization overhead for multithreaded applications; not only because
of the many aspects thereof that require special care in a virtualized setting
but also because of how central this mechanism is to multithreading. Namely,
multithreading is hardly possible without at least some coordination mechanism
enabling threads to share data harmoniously. Because blocking synchronization
is for most use cases the most efficient of these mechanisms, many multithreaded
applications rely heavily on it [219].

Blocking synchronization is typically implemented at OS level and exposed to
applications through system calls (e.g. futex in Linux [175]). While the API
facing user space is most often very simple, programming languages have built
plethora of synchronization primitives on top. Because these primitives vary
wildly in level of abstraction, working principles and usage, it is worth exploring
the most prevalent examples thereof. This is done below.

Mutex

The simplest and most explicit implementation of blocking synchronization is
the mutex [220]. It is largely a direct extension of the system level blocking
synchronization API: an atomic boolean variable which threads must explicitly
lock and unlock when respectively entering and exiting a critical section through
dedicated library calls. When a thread attempts to lock an already locked
mutex, it blocks. When the thread holding the lock releases it, the OS wakes
the blocked thread, which may now claim the lock and enter the critical section.

Many low-level imperative programming languages implement mutexes. Listing
8.1 provides an example of the usage of these primitives in C.

APPLICATION CODE & VIRTUALIZATION OVERHEAD 169

#inc lude <pthread . h>;

pthread_mutex_t mutex ;

void ∗ work (void ∗ arg)
{

pthread_mutex_lock(&mutex) ;
//CRITICAL SECTION
pthread_mutex_unlock(&mutex) ;

}

i n t main ()
{

pthread_mutex_init(&mutex , NULL) ;
work (NULL) ;
re turn 0 ;

}
Listing 8.1: Mutex example in C.

Listing 8.1 makes it clear that mutexes are easily recognizable due to the
explicit library calls they require to denote every critical section. This facilitates
identification of source code where their use may be problematic in a virtualized
context.

Counting Semaphore

Counting semaphores constitute a more flexible alternative to mutexes. Rather
than a boolean variable, they employ a counter. The programmer may initialize
this counter to an arbitrary positive integer value and threads may atomically
increment or decrement it at any time [221]. When the counter reaches zero,
any threads attempting to decrement it further block until some other thread
increments the counter again.

Counting semaphores are useful for protecting e.g. limited hardware resources
to ensure the system is not overwhelmed. Listing 8.2 shows an example of
typical semaphore usage in C.

Listing 8.2 indicates that using semaphores is almost identical to using mutexes,
which makes them equally easy to identify. Note however that semaphores
are by nature slightly less likely to induce problematic levels of virtualization
overhead than mutexes, since they often allow for multiple threads to acquire a
protected resource before they start blocking any.

170 APPLICATION AMELIORATION: GUIDELINES TO DEVELOPERS

#inc lude <semaphore . h>

sem_t semaphore ;

void ∗ work (void ∗ arg)
{

sem_wait(&semaphore) ;
//PROTECTED RESOURCE ACCESS
sem_post(&semaphore) ;

}

i n t main ()
{

// I n i t i a l i z e a semaphore which at most 5 threads may hold
s imul taneous ly .

sem_init(&semaphore , 0 , 5) ;
work (NULL) ;
re turn 0 ;

}
Listing 8.2: Counting semaphore example in C.

Condition Variable

Condition variables allow threads to wait for an event by blocking until another
thread determines that said event has occurred [222]. In technical terms, a
condition variable resembles a queue of blocked threads, which any thread
may join at its discretion by calling a specified library function. Any other
thread may at any time signal one or more threads in the queue to resume
execution through another library function. Listing 8.3 displays an example of
this mechanism in C.
#inc lude <pthread . h>

pthread_t worker ;
pthread_mutex_t lock ;
pthread_cond_t cond ;

void ∗ work (void ∗ arg)
{

pthread_mutex_lock(& lock) ;
pthread_cond_wait(&cond , &lock) ;
pthread_mutex_unlock(& lock) ;

}

APPLICATION CODE & VIRTUALIZATION OVERHEAD 171

i n t main ()
{

pthread_mutex_init(&lock , NULL) ;
pthread_cond_init(&cond , NULL) ;
pthread_create(&worker , NULL, work , NULL) ;

//EVENT OCCURED
pthread_mutex_lock(& lock) ;
pthread_cond_broadcast(&cond) ;
pthread_mutex_unlock(& lock) ;

r e turn 0 ;
}

Listing 8.3: Condition variable example in C.

In C, condition variables are significantly more complicated in usage than
the previously discussed synchronization mechanisms, as listing 8.3 indicates.
It is also clear that condition variables are by nature highly conducive to
virtualization overhead because—in contrast to mutexes and semaphores—when
a thread calls to wait for a condition variable, it is guaranteed to block (and
thus induce overhead). Moreover, condition variables require the use of mutexes
internally, further increasing their cost in a virtualized environment. On a
positive note though, this source of virtualization overhead is—even more so
than mutexes and semaphores—easily identifiable due to its verbosity.

Monitor

Many modern programming languages embed thread safety directly into the
most fundamental language constructs in the form of monitors. In abstract
terms, a monitor is a serializing structure encapsulating some resource and
coordinating thread access to that resource [223]. It is usually implemented
as a combination of mutexes and condition variables. Most contemporary
object-oriented programming languages implicitly provide each object with such
a monitor. However, for performance reasons, this monitor is usually ignored
unless the programmer explicitly requests not to do so by means of adding a
specific keyword to any class member declaration (e.g. synchronized in Java
[224] or lock in C# [225]). Some languages (e.g. Python) go even further and
encapsulate the entire runtime environment in a monitor, effectively implicitly
serializing the entire program. Listing 8.4 shows an example of monitor usage
in Java.

172 APPLICATION AMELIORATION: GUIDELINES TO DEVELOPERS

pub l i c c l a s s BankAccount{

p r i v a t e i n t balance ;

pub l i c s t a t i c synchronized void withdraw (i n t amount) {
balance −= amount ;

}
}

Listing 8.4: Example of a Java class using its monitor.

From listing 8.4 it is clear that monitors are much less explicit than the
previously discussed synchronization mechanisms. For instance, it is unclear
from listing 8.4 exactly what the monitor protects: The method and its local
variables? All the objects the method references? The entire class the method
belongs to? It is impossible to answer this question without deep knowledge
of the programming language used. This makes pinpointing the origin of
virtualization overhead induced by these monitors challenging. Moreover,
because of their high level of abstraction, monitors—as implemented in most
mainstream programming languages—tend to be overprotective. While the
previously described synchronization mechanisms allow fine-grained control over
critical sections, monitors evince method- object- or even global granularity.
Therefore, they tend to block threads and thus induce virtualization overhead
(much) more often than semantically necessary.

Implicit Synchronization

Several alternative programming paradigms which have gained much traction
in recent years—e.g. functional programming [226] and reactive programming
[227]—allow for a declarative approach to multithreading. This quite literally
means that programmers simply declare which sections of their code may be
executed concurrently by using dedicated syntax. The application runtime
environment may then distribute the work that code describes over any
number of threads as it sees fit, performing all aspects of thread management
and coordination entirely transparently [228]. In some cases, the runtime
environment may even fully implicitly identify code segments that lend
themselves to parallelization—and execute these segments accordingly. The
most prominent example of this implicit multithreading is MatLab [229].

Even though to many developers semi- or fully implicit parallelism undoubtedly
sounds appealing, the convenience it brings inherently comes at a hefty price:
users must relinquish control over a large part of the application’s operational
semantics to the runtime environment. While in most cases the latter is

APPLICATION CODE & VIRTUALIZATION OVERHEAD 173

adequately capable of determining an efficient manner of parallelizing application
code, the equation changes drastically in a virtualized environment. After
all, most of this dissertation is dedicated to a variety of performance issues
multithreaded applications may suffer in a virtualized environment which are not
yet fully understood by humans—let alone application runtime environments.
Consequently, these automated solutions are likely to employ sub-optimal
parallelization techniques such as ubiquitous use of blocking synchronization,
even where the overhead of doing so is likely to outweigh its advantages. Listing
8.5 clarifies this by expanding on listing 8.4 using Java’s functional streams
API.
pub l i c c l a s s BankAccount{

p r i v a t e i n t balance ;

pub l i c s t a t i c synchronized void withdraw (i n t amount) {
balance −= amount ;

}
pub l i c s t a t i c void withdrawMany (Stream<Integer > amounts) {

withdraw (amounts . p a r a l l e l ()
. reduce (0 , I n t e g e r : : sum)) ;

}
}

Listing 8.5: Example of a Java class employing a parallel stream.

While listing 8.5 highlights the simplicity and elegance of declarative
multithreading, it also indicates the challenges it poses with regard to tracing
potential sources of virtualization overhead. In particular, while it is clear
that the withdrawMany method parallelizes its input stream, it is unclear how
many threads it creates and how these threads interact. These questions are
of particular importance with regard to the reduction operation this method
employs (a function merging the entire stream into a single value), which
naturally requires extensive exchanging of results and thus synchronization
between threads. While a runtime environment can employ all kinds of
heuristics to optimize the number of threads used and the associated need
for synchronization, the developer is likely in a much better position to make
such judgements, being able to take factors external to the application code
itself into account (e.g. input stream size, hardware platform, presence of
virtualization, etc.). As such, declarative multithreading often leads to wasteful
utilization of resources and in virtualized environments even to non-negligible
amounts of virtualization overhead which can be very difficult pinpoint.

174 APPLICATION AMELIORATION: GUIDELINES TO DEVELOPERS

8.2.2 Spinning Synchronization

Regarding the relationship between application code and virtualization overhead,
spinning synchronization is perhaps the most interesting topic of all. Namely,
despite spinning synchronization having received massive attention from
literature—as discussed in §3.2.5—§4.2.4 has made clear that spinning at user
level may induce catastrophic virtualization overhead, even on state-of-the-art
platforms. As such, it is certainly worthwhile to investigate how this construct
may manifest itself in application source code, as is done below.

Spin Locks

Analogously to blocking synchronization, many programming languages offer
spinning synchronization as part of their core SDK. The abstraction through
which they expose this feature is most often the spin lock. These spin locks
are largely identical in structure and usage to mutexes (see §8.2.1), the main
difference being that instead of blocking, threads attempting to acquire a
contended lock enter a busy-waiting loop, as explained in §3.2.5. Listing 8.6
provides an example of the usage of such a spin lock.
#inc lude <pthread . h>;

pthread_spinlock_t lock ;

void ∗ work (void ∗ arg)
{

pthread_spin_lock(& lock) ;
//CRITICAL SECTION
pthread_spin_unlock(& lock) ;

}

i n t main ()
{

pthread_spin_init (&lock , 0) ;
work (NULL) ;
re turn 0 ;

}
Listing 8.6: Spin lock usage example in C.

Comparing listing 8.6 to listing 8.1, it is clear that spin locks are—at least
in C—identical in usage to mutexes. This holds true for most programming
languages due to the similarity of these constructs. Note however that spin
locks are used much less often than mutexes since the latter are almost always

APPLICATION CODE & VIRTUALIZATION OVERHEAD 175

much more efficient. Only for very short critical sections it may be beneficial to
use spin locks because of the overhead associated with blocking and unblocking
threads, which is even in a native setting not entirely negligible.

Custom Spinning Constructs

Even though many programming languages provide abstractions dedicated to
spinning synchronization, many applications make use of custom constructs for
this purpose. While implementation details may obviously vary significantly, all
of these custom constructs are based on the principle of continually attempting
to atomically check and set a boolean variable; only proceeding when succesful.
Listing 5.1 already provided a generic example of such a custom spinning
synchronization mechanism in the form of a basic spin lock. More advanced
variants may deviate slightly semantically or incorporate additional features or
performance optimizations. Listing 8.7 shows such an advanced user-level spin
lock, written in C++ [230].
s t r u c t s p i n l o c k {

std : : atomic<bool> lock_ = {0} ;

void lock () noexcept {
f o r (; ;) {

i f (! lock_ . exchange (true , s td : : memory_order_acquire))
re turn ;

whi l e (lock_ . load (std : : memory_order_relaxed))
__builtin_ia32_pause () ;

}
}

void unlock () noexcept {
lock_ . s t o r e (f a l s e , s td : : memory_order_release) ;

}
}

Listing 8.7: Example of an advanced user-level spin lock in C++.

At first glance, listings 5.1 and 8.7 highlight the diversity of custom user-
level spinning synchronization constructs, which suggests identifying them
in application source code is challenging. A closer look at these listings
however reveals that said constructs tend to have a similar structure, which
makes identifying them in the application code base in the case of excessive
virtualization overhead relatively straightforward nonetheless.

176 APPLICATION AMELIORATION: GUIDELINES TO DEVELOPERS

8.2.3 Data Sharing

The principal negative effect of sharing data between threads in a virtualized
context is the overhead associated with the TLB shootdowns this inevitably
induces. While these TLB shootdowns are in se purely system-level phenomena,
chapter 7 has shown that application software can have a dramatic effect on their
prevalence and therefore impact on application performance. While that chapter
focussed primarily on the runtime environment, §7.3.1 has indicated that in the
end, even when using a susceptible runtime environment inattentively designed
application source code is the catalyst for excessive TLB shootdown overhead.
Studying precisely how this catalysis takes place is certainly worthwhile in the
interest of situations where optimizing the runtime environment is not possible
or desirable.

Listing 7.2 already provided an example of an application inducing excessive
amounts of TLB shootdowns through the arena imbalance issue, which in turn
is tightly linked to said application’s source code. In a more general sense, heap
resizing operations (and thus TLB shootdowns) are likely when threads often
allocate or deallocate memory at the top of their arenas. Unfortunately, it is
not possible to model this in function of application source code in any general
sense because of the widely varying behavior of different memory allocators (see
§7.3) as well as the fact that the exact size of memory (de)allocations often
dependends on external factors (e.g. an input file, the result of a database
query,. . .). Nevertheless, from the knowledge obtained in chapter 7, it is possible
to derive several application behaviors that increase the likelihood of excessive
heap resizing operations occurring:

• Frequent small memory (de)allocations;

• Large amounts of consecutive (de)allocations;

• Increasing allocation sizes as program execution progresses;

• Holding on to memory for long periods of time before deallocating;

• Deallocating memory in reverse order with respect to how it was allocated.

While the above memory management behaviors at first glance appear to be
quite distinct, they all either gradually rather than abruptly alter the heap
size or decrease the probability that memory allocations may be satisfied from
the free list, eventually leading to many allocations being stacked at the top
of the heap. Listing 8.8 shows a C program exhibiting all of these potentially
problematic behaviors simultaneously.

APPLICATION CODE & VIRTUALIZATION OVERHEAD 177

i n t main ()
{

void ∗ mem[1 0 0 0] ;
f o r (i n t i = 0 ; i < 1000 ; i++)

mem[i] = mal loc (10 ∗ i) ;

a p p l i c a t i o n _ l o g i c (mem) ;

f o r (i n t i = 0 ; i < 1000 ; i++)
f r e e (mem[1000− i]) ;

r e turn 0 ;
}
Listing 8.8: Memory allocation patters leading to excessive TLB shootdown
overhead in C.

Listing 8.8 paints a sobering picture of how easy it is to write code inducing
problematic levels of TLB shootdowns in standard C. Namely, because all of
the allocations are performed consecutively in the very beginning of the main
method, the allocator can not use previously freed blocks. Moreover, each
allocation is larger than any of the preceding ones, meaning that even if some
of the preceeding chunks would have been freed by the time the later ones
were allocated, the free list would likely not have been able to serve them.
Furthermore, even though mem is only used within application_logic, the
program only frees it after completion of this subroutine. This means that any
allocations within application_logic must be served from the top of the heap
as well. Lastly, memory is deallocated in reverse order compared to how it
was allocated, constantly growing the top of the heap and therefore inducing
trimming operations.

Problematic memory allocation patters similar to listing 8.8 are in practice not
at all easy to identify, since real-world allocation patterns are a complex mix
between application code, library routines, runtime specifics, system properties
and external factors. Combined with the previously stated variance between
memory allocators, even armed with the knowledge outlined above, the only
reliable way to definitively pinpoint source code inducing concerning amounts
of TLB shootdowns is through careful performance profiling.

178 APPLICATION AMELIORATION: GUIDELINES TO DEVELOPERS

8.2.4 Non-Uniform Memory Access Locality

The final high-level cause of virtualization overhead for multithreaded
applications chapter 5 recognizes is NUMA abstraction, which may drastically
reduce memory locality and thereby increase memory latency in virtualized
sysems. While this issue is by definition only relevant when the host system
sports a NUMA architecture, it may affect many multithreaded applications
when this is the case. Specifically, any application that frequently accesses
data from multiple threads simultaneously may suffer. Listing 8.9 provides an
example of such an application in C.
#inlcude <pthread . h>

void ∗ work (void ∗ arg)
{

char ∗ ptr = (char ∗) arg ;
∗ ptr = ’ a ’ ;
r e turn NULL;

}

i n t main ()
{

pthread_t threads [1 6] ;
char ∗ ptr = (char ∗) mal loc (4096) ;

f o r (i n t i =0; i < 16 ; i++)
{

void ∗ arg = (void ∗) (ptr + 256 ∗ i) ;
pthread_create (threads + i , NULL, work , arg) ;

}

f o r (i n t i =0; i < 16 ; i++)
pthread_join (threads + i , NULL) ;

re turn 0 ;
}

Listing 8.9: Program exhibiting poor memory locality in C.

The program in listing 8.9 allocates 4 kB of memory, after which it creates 16
threads which each manipulate a different section thereof. Because the entire
allocation fits into a single memory page, it is more than likely that this program
will exhibit poor memory locality when executed on a NUMA system, especially
in virtualized settings. What makes listing 8.9 especially interesting however,
is that none of the threads manipulate exactly the same data. Nevertheless,
because the OS manages memory at page granularity, accesses to the same

GUIDELINES 179

memory page are equivalent to accesses to the same data with respect to this
issue. Exactly this is what makes this problem more prevalent and challenging
to address than is apparent at first glance. Knowledge of the exact location in
memory of the data used by each thread is therefore necessary to identify code
causing performance degradation due to NUMA abstraction. Unfortunately
however, because the runtime environment often abstracts such details to a
large degree, dynamic profiling is likely necessary to obtain said knowledge.

8.3 Guidelines

By describing application code inducing excessive virtualization overhead, the
previous section implicitly equally described its antithesis; application code
inducing hardly any virtualization overhead at all. This section reformulates
this implicit antithesis as an explicit set of guidelines application developers
may follow in an effort to minimize the probability that their multithreaded
applications will suffer significant virtualization overhead. In practice, these
guidelines have been established and refined throughout the Ph. D. project
documented in this dissertation and can therefore to some extent be seen as
the fruit of all the previously described work. Note that in contrast to the
contributions described in previous chapters, these guidelines are not meant to
be the infallable gold standard regarding developing multithreaded applications
for the cloud. Rather, they are intended as a development aid which minimizes
chances of applications incurring high virtualization overhead, albeit without
providing any guarantees.

Following the example of the previous section, the aforementioned guidelines
are grouped by the high-level cause of virtualization overhead they address and
presented accordingly below.

8.3.1 Blocking Synchronization

Since the primary purpose of synchronization in general is guaranteeing
correctness by coordinating execution streams, the need for it depends on
how these execution streams relate to one another, which in turn largely
depends on the application architecture. One important consideration regarding
the architecture of any multithreaded application is the approach it takes to
the concept of parallelism itself. In this regard, two paradigms exist: data
parallelism on the one hand and task parallelism on the other [231]. Figure 8.1
illustrates both schematically.

180 APPLICATION AMELIORATION: GUIDELINES TO DEVELOPERS

Data Data Data

Thread

Thread

Thread

OutputOutput Output

(a) Task parallelism.

Data Data Data

Thread Thread Thread

Output Output Output

(b) Data parallelism.

Figure 8.1: Schematic overview task parallelism and data parallelism.

As figure 8.1a shows, task parallelism equates to dividing a workload into
multiple independent tasks and executing these tasks in parallel. This concept
is also known as pipelining. Normally, all data is passed through all pipeline
stages, each of which is usually associated with an individual worker thread.
Data parallelism takes the opposite approach, namely dividing the input data
set into independent subsets, each of which is processed entirely by a single
thread, as figure 8.1b illustrates.

From figure 8.1, it is evident that data parallelism is to be preferred over task
parallelism from the perspective of minimizing the need for synchronization.
Namely, task prallelism requires data to be passed between multiple threads,
which introduces data dependencies between them. These dependencies in turn
call for some form of synchronization—most often blocking synchronization due
to its efficiency—to be implemented so that one thread does not access a piece
of data before another is finished with it. Data parallelism conversely does not
suffer from this issue, since each individual piece of data is handled by exactly
one thread.

GUIDELINES 181

A further optimization minimizing the amount of synchronization an application
requires which naturally combines well with data parallelism is the use of thread
pools. A thread pool consists of a centralized set of worker threads (normally
limited in size to the number of CPUs available to the application) and a work
queue [232]. Application code may at any time submit work to the queue. The
worker threads monitor the queue and perform any submitted jobs as soon as
possible. If the thread pool is configured appropriately, it minimizes the amount
of potential contention for locks and associated overhead through limiting the
number of threads and managing these threads using a small set of centralized,
highly optimized routines as opposed to ad-hoc application code.

8.3.2 Spinning Synchronization

The best advice possible regarding spinning synchronization at user level is
to avoid it at all costs if there is any chance the application may be run
in a virtualized environment. The easiest approach to accomplish this is to
at all times resort to blocking synchronization or preferably more advanced
spin-then-block primitives as suggested in §5.2.4.

8.3.3 Data Sharing

Virtualization overhead caused by data sharing between threads and the ensuing
TLB shootdowns is the most challenging form of overhead to address at
application level. The main issue here is that the causes of this problem
outlined in §8.2.3 are so varied and nuanced that straightforward approaches to
addressing some of them may increase the severity of others. For example, one
may trivially address the issue of ’many small allocations’ listed in §8.2.3 by
merging multiple small memory allocations into a single larger one. However,
this would likely require holding on to the memory for a much longer time, since
this ’superblock’ can only be released once the application is finished with all
of its previously independed constituents. This prolonged memory retention
is in itself listed in §8.2.3 as a cause of excessive TLB shootdown overhead.
Moreover, such an approach is likely to non-negligibly reduce memory efficiency
and complicate using the memory in question due to additonal addressing
abstractions. Such side effects make no single approach to the problem of
excessive TLB shootdowns generally applicable and finding the correct one for
a particular application no trivial matter.

Given the above, minimizing virtualizaton overhead induced by TLB shootdowns
equates to finding a good balance between coarse memory allocations which
minimize the amount of times the heap may have to be resized and lean

182 APPLICATION AMELIORATION: GUIDELINES TO DEVELOPERS

allocations which can be deallocated rapidly so that new allocations may recycle
their memory from the free list without requiring additional heap expansion.
Finding this balance must be done iteratively on a per-application basis.

On a positive note, §4.2.3 has made clear that only few multithreaded
applications suffer significantly from excessive TLB shootdown overhead. As
such, in most cases it suffices to keep the ’good balance’ described above loosely
in mind when laying out the application architecture. If performance testing
afterwards should reveal TLB shootdown issues, these may be retroactively
addressed by analyzing the application in search for the behaviors outlined in
§8.2.3 and tweaking any code responsible for these behaviors iteratively until
the issue is resolved.

8.3.4 Non-Uniform Memory Access Locality

Strictly speaking, little can be done about poor memory locality in a virtualized
setting at the application source code level. After all, §4.2.2 has made clear
that the cause of this problem is situated at the VM level, out of reach
of the application source code. Even when an application achieves perfect
memory locality in a native setting, in a virtualized environment the guest may
unwittingly schedule a thread on a particular NUMA node while all of its data
is located on another. Therefore, one may argue that application developers
must rely on system administrators to make sure their applications perform
optimally with regard to memory locality in a virtualized setting.

In spite of the above, application developers targeting virtualized platforms
should not neglect memory locality. Namely, if the application itself exhibits
good memory locality, it is likely that NUMA management algorithms integrated
into many contemporary virtualized systems (see §5.4.2)—imperfect as they
may be—will be able to detect and mitigate NUMA opacity issues, yielding good
memory locality after all. When the application itself exhibits poor memory
locality on the other hand, no amount of host level effort will be able to rectify
the situation.

Concretely, ’not neglecting memory locality’ means that data dependencies
between concurrent threads should be minimized. This naturally implies the use
of data parallelism. Additionally, as noted in §8.2.4, collocating data used by
distinct threads on a single memory page should be avoided. This may be done
by e.g. dividing input data into chunks to be processed by different threads
along page boundaries or adding padding to smaller pieces of data so that they
fill an entire memory page regardless.

NODEDUP 183

8.4 NODedup

Following through on the precedent set in chapters 6 and 7, this chapter
translates its scientific contribution into an industrially applicable solution
which can both be used to make an impact in the real world and validate the
theoretical propositions upon which it is based. Said solution is in this case
a re-implementation of the Dedup benchmark from the PARSEC benchmark
suite using the guidelines laid out in the previous section, aiming to reduce
the virtualization overhead this benchmark induces dramatically. We named
this alternative implementation of Dedup ’NODedup’, which is short for ’No-
Overhead Dedup’. The source code is freely available1. Moreover, appendix C
provides all of the NODedup source files that deviate from the original Dedup
benchmark.

PARSEC Dedup supports both data encoding and decoding using a variety of
parallelization techniques and compression algorithms. Because supporting all
of these features does not significantly strengthen the evidence for the efficacy of
the guidelines proposed in §8.3 compared to supporting a thoughtfully selected
subset thereof, NODedup only implements data encoding using pthreads and
GZIP compression. Naturally however, the techniques presented in §8.3 are
equally applicable to any other aspect of the original benchmark.

Section 4.2.3 has shown that the vast majority of overhead the Dedup benchmark
incurs is related to blocking synchronization and memory management.
Considering the architecture of this benchmark as described in §8.1, this is
not surprising. Namely, its emphasis on task parallelism requires threads to
synchronize each time a chunk transitions between pipeline stages. Moreover,
Dedup by nature performs large amounts of consecutive, comparable memory
allocations to create chunks which must pass through the entire pipeline
before they can be deallocated; behavior listed in §8.2.3 as likely to induce
excessive TLB shootdown overhead. Therefore, implementing NODedup equates
to applying the guidelines listed in §8.3.1 and §8.3.3 to the original Dedup
benchmark. The remainder of this section documents this process.

8.4.1 Blocking Synchronization

Careful analysis of the Dedup source code reveals that indeed the ringbuffers it
employs between pipeline stages employ mutexes and condition variables in order
to serialize access to the data they contain (see §8.2.1). These synchronization
primitives are responsible for the vast majority of overhead related to blocking

1https://github.com/StijnSchildermans/dedup_without_overhead

184 APPLICATION AMELIORATION: GUIDELINES TO DEVELOPERS

synchronization observed in §4.2.3. Therefore, as prescribed in §8.3.1, NODedup
does away with this pipeline altogether and replaces it with data parallelism.
This removes almost all need for thread synchronization at a minor cost in
scalability.

NODedup implements all pipeline stages of the original Dedup benchmark as
functions which it applies in sequential order to the input data. The first of
these functions—creating coarse chunks from the input file—is performed on the
main thread, which immediately adds the newly created chunks to an ordered
linked list which will be used to track the chunks throughout the remainder of
the encoding process. After this sequential stage, the main thread creates a
thread pool sized in accordance with the number of available CPUs. It then
divides the chunk list into equally sized sublists, for each of which it submits a
job to the thread pool consisting of the function representing the second pipeline
stage applied to that sublist. The main thread then blocks until all of these jobs
are finished, before repeating the job creation and blocking process for pipeline
stages 3 and 4. In this way, all manipulation of central data structures—the
thread pool and the chunk list—happens from the main thread only, mimimizing
the need for thread synchronization. After these parallel stages, the main thread
writes each of the sublists to the output file. Note that because this data parallel
application architecture maintains chunk order, NODedup can skip the entire
reordering stage of the original Dedup benchmark.

8.4.2 Memory Management

The original Dedup implementation reads input from disk in large blocks of 128
MB. It then refines these blocks into chunks, which are in fact pointers to a
certain address within this large input block. Only when all chunks constituting
such an input block have been processed, it is freed. This means that when
later pipeline stages allocate memory, the allocator must often draw from the
top of the heap rather than the free list. Because these later allocations are
mostly related to temporary data structures and are therefore short-lived, this
allocation pattern leads to the arena imbalance issue (see §7.3.1). NODedup
addresses this by allocating each chunk individually in the fragmentation stage
rather than using pointers to some address within a large preallocated buffer.
These much smaller allocations can be freed more quickly and their memory
can be recycled through the free list. The downside of this approach however is
that the entire input data set must be copied.

Another improvement NODedup makes to the memory allocation behavior of
Dedup pertains to the data compression stage. Namely, whenever the original
implementation determines a chunk to be unique, it allocates a buffer to store

EVALUATION 185

the compressed version of that chunk. These buffers form a significant portion
of the ’allocations in later stages’ causing the arena imbalance issue referred
to above. NODedup eliminates most of these allocations by employing large
memory buffers holding the compressed version of multiple chunks at once. Note
that these buffers are unlikely to have a significant negative effect on memory
efficiency because they only have a short lifespan, as compression of unique
chunks is one of the last stages in the data deduplication algorithm as described
in §8.1. Moreover, these buffers are likely to be allocated from the free list since
thanks to the modifications described in the previous paragraph, input chunks
are freed during the compression stage, allowing compression buffers created
for subsequent chunks to recycle their memory.

Attentive readers may have noticed that the above paragraphs appear to be
oxymoronic. Namely, the first paragraph advises to divide few large chunks into
many smaller ones, while the second one advises merging many small allocations
into a few large ones. However, when both paragraphs are combined and the
subtle differences and interactions between the alterations they describe are
taken into account, it becomes clear how two steps in opposite directions do not
lead to the original starting point in this case. For example, while not explicitly
stated above, compression buffers are still much smaller than the input buffers
they replace and because they are created at a much later stage in the algorithm,
they are less likely to force later allocations to be served from the top of the
heap. This is a perfect illustration of the admonition from §8.3.3 regarding
the complexity and iterative nature of addressing excessive TLB shootdown
overhead through altering application behavior.

8.5 Evaluation

This chapter is no exception to the approach this dissertation follows with all of
the ameliorations it proposes in the sense that it presents a thorough evaluation
of the guidelines described in the previous section in order to provide evidence
for their efficacy. However, because the work upon which this chapter is based
preceded that presented in any of the previous chapters, the approach this
evaluation takes deviates from the prescriptions provided in §3.3. This section
lays out said approach below, after which it presents the conceptual effectiveness
and eventual performance impact of the guidelines formulated in §8.3 on the
Dedup bechmark in turn.

186 APPLICATION AMELIORATION: GUIDELINES TO DEVELOPERS

8.5.1 Method

System Settings

The system employed for evaluating NODedup is a NUMA server with 2 Skylake-
era Intel Xeon CPUs, each with 8 physical cores without hyperthreading. Each
memory bank is 16 GB in size. The VMM is KVM, running in Ubuntu 16.04.
All contemporary performance optimizations were enabled.

This evaluation considers two VM configurations: one sporting 4 vCPUs on
a single NUMA node and one sporting 14 vCPUs spread over two nodes. In
both cases, the guest OS is Ubuntu 16.04. The larger VM is limited to 14
vCPUs to minimize resource contention between the VM and host background
processes. Native equivalents of these system configurations are evaluated as
well for reference.

Workloads

Naturally, the workloads of interest for this evaluation are NODedup and the
original Dedup implementation from the PARSEC benchmark suite. The level
of parallelism for both is always set equal to the number of CPUs available for
the experiment in question.

Because NODedup implements only part of the functionality the original Dedup
benchmark provides, both versions are executed outside of the regular PARSEC
framework. Specifically, each encodes a predetermined 600 MB tarball consisting
of a number of replicas of a set of pdf files.

Measurement

Analogously to previous chapters, this chapter quantifies the benefits of
NODedup over the original Dedup benchmark by executing both in identical
circumstances and presenting the former’s performance normalized to that of
the latter. Equally analogously to previous chapters, all results are averaged
over 10 iterations to ensure their reliability (see §3.3.3).

Irrespective of potential performance gains, it is prudent to begin any
performance evaluation by determining to what extent the technique being
evaluated achieves its goals at a conceptual level. Because as noted in §4.2 the
vast majority of virtualization overhead incurred by Dedup manifests itself in
the form of VM exits, the number of these events is naturally a perfect fit for
evaluating the conceptual effectiveness of the guidelines presented in §8.3.

EVALUATION 187

Table 8.1: VM exits induced by NODedup relative to the original Dedup.
Event 4 vCPUs 14 vCPUs

VM_EXIT -91% -96%

Table 8.2: Execution time of NODedup relative to the original Dedup benchmark.
(v)CPUs Native Virtualized

4 +5% -20%
14 -30% -40%

Because—as stated multiple times throughout this dissertation—improvements
at system level such as a reduction in VM exits do not necessarily translate
to performance benefits visible to end users for multithreaded applications, it
is important to evaluate the latter as well. The most fitting metric for this
purpuse is—as equally stated multiple times before—application execution time,
which is therefore also included in this evaluation.

8.5.2 Conceptual Effectiveness

Table 8.1 summarizes the number of VM exits NODedup induces relative to
the original Dedup benchmark in both virtualized scenarios described above.

Table 8.1 indicates in no uncertain terms that NODedup suffers hardly any
virtualization overhead compared to Dedup. Results improve even further
as vCPU counts increase, which is not surprising since §4.2 has shown that
both blocking synchronization and TLB shootdown overhead become more
problematic as core counts increase. It is therefore clear that the guidelines
presented in §8.3 can indeed be highly effective when applied correctly.

8.5.3 Performance

Table 8.5.3 shows the execution time of NODedup relative to the original Dedup
benchmark in both the native and virtualized environments described above.

Table 8.5.3 reveals that the great reduction in VM exits NODedup yields
as indicated by table 8.1 does not always impact execution time positively.
Particularly, when natively run using 4 CPUs, a minor slowdown is observable.
This is however to be expected, since in a native, single-socket environment VM
exits are not relevant and TLB shootdown IPIs and blocking operations are

188 APPLICATION AMELIORATION: GUIDELINES TO DEVELOPERS

highly efficient. Therefore, the benefits NODedup yields by eliminating these
operations are negligible, while NODedup sacrificed Dedup’s pipeline—which in
itself conceptually improves performance—in return. In virtualized and NUMA
environments on the other hand, table 8.5.3 paints a much different picture
because there the impact of IPIs and VM exits is much greater, as discussed
at length in previous chapters. This further validates the guidelines proposed
in this chapter and stresses the importance of astute application design rather
than—or complementary to—reliance on platform optimizations when it comes
to minimizing virtualization overhead.

8.6 Related Work

As stated in previous chapters, optimizing virtualization technology is a popular
topic in literature. However, all existing work focusses on solutions at the
hardware or system software level. Chapter 5 elaborates on all of the promising
examples of those proposed solutions. Because repeating all of these studies
here adds no value to the dissertation as a whole, readers arriving here without
having read chapter 5 are strongly encouraged to do so.

Besides listing all noteworthy work related to that presented in this chapter,
chapter 5 repeatedly states what sets this chapter apart from any previously
published study: regarding addressing virtualization overhead—let alone
for multithreaded applications—purely at application source code level, no
precedents exist in literature to the best knowledge of the author. While tools
and frameworks exist that do reduce virtualization overhead (e.g. P3ARSEC
[171]), they achieve this as an unintended side effect rather than a design goal.
In fact, showing that P3ARSEC positively influences virtualization overhead
for multithreaded applications is one of the contributions of chapter 5 that
eventually led to the creation of this one. While it would be highly interesting
to explore this avenue of related work in depth, doing so would require showing
that these design patterns, frameworks and tools proposed in literature indeed
have a positive effect on virtualization overhead for multithreaded applications
in a manner similar to how §5.1.6 assessed P3ARSEC. This evidently is a
scientific contribution on its own and goes beyond the scope of this section.

CONCLUSION 189

8.7 Conclusion

This chapter has shown that for computation-intensive multithreaded appli-
cations, certain design choices can have a dramatic effect on overhead and
performance in a virtualized setting. Moreover, through NODedup this chapter
has provided strong evidence that by adhering to a certain set of principles,
applications are unlikely to suffer significant virtualization overhead.

Despite the positive results NODedup achieves, the mitigation technique
this chapter provides remains somewhat vague in comparison the previous
contributions presented in this dissertation. Unfortunately, this vagueness is
largely inherent to the concept of guidelines, since every application is unique and
it is up to practitioners to translate said guidelines into concrete virtualization-
friendly application source code. Nevertheless, the author deems this chapter a
valuable contribution to the field, not in the least because of its pragmatic nature
and its potential for making an immediate and tangible impact in industry.

8.7.1 Personal Contribution

As stated in the introduction to this chapter, the guidelines presented here have
gradually sprouted from the knowledge the author accumulated throughout
this Ph. D. project. This evidently implies that this chapter entirely consists of
original work of the main author.

8.7.2 Future Work

In the opinion of the author, one of the most interesting aspects of this chapter
is the fact that it opens the door to a multitude of avenues for future work.
Below a summary of the most interesting of these:

• While NODedup performs very well in its current form, further refinements
are still possible. This could lead to interesting new insights regarding
the guidelines presented in this chapter, especially those concerning data
sharing;

• While NODedup provides a strong indication of the efficacy of the proposed
guidelines, more similar experiments are desirable to further refine and
validate them;

190 APPLICATION AMELIORATION: GUIDELINES TO DEVELOPERS

• Based on the description of source code likely to induce significant
virtualization overhead in §8.2, a tool could be developed to analyze
application source code in order to identify constructs that are likely
to lead to significant virtualization overhead. Based on the guidelines
presented in §8.3, this tool could even automatically improve this code,
or otherise provide suggestions to developers on how to do so;

• The knowledge obtained from this chapter could be integrated into
programming language primitives or libraries so that the abstractions
they provide suffer less virtualization overhead. Alternatively, novel
virtualization-friendly abstractions could be developed from the ground
up. An excellent example of the former is ptlbmalloc2 (see chapter 7).
The parallel patterns discussed in §5.1.6 are on the other hand an example
of the latter, albeit without explicitly targeting minimizing virtualization
overhead;

• As stated in §8.6, it is likely that design patterns, tools and frameworks
with a positive effect on virtualization overhead for multithreaded
applications have already been proposed in literature, albeit without their
creators being aware of this because they never considered the implications
of their contribution on the virtualization process. Identifying promising
examples of such contributions and assessing them in a virtualized context
is another promising avenue for future work.

Chapter 9

Conclusion

This dissertation has laid out a variety of scientific contributions traversing
many aspects of contemporary virtualization technology. In conclusion to all
of this work, it is prudent to reflect on whether or not this endeavor has been
able to address the problems it set out to tackle, which equates to determining
to what extent it has answered the research questions formulated in §1.3. To
that end this chapter lists each of the partial research questions referred to
above, followed by a discussion of how the work presented in this dissertation
has addressed it. Naturally, cumulation of the answers to these partial research
questions leads to the answer to the principal research question §1.3 describes,
which is indeed the essence of this Ph. D. project. This final calculation is left
up to the reader.

What causes high hardware-assisted virtualization cost for multi-
threaded applications on the x86 platform?
Both chapter 3 and chapter 4 have been primarily concerned with addressing
this first partial research question. The most important contribution of the
former has been to clearly define virtualization overhead as a combination of
system effects and application effects, expressed respectively as reduced resource
efficiency and reduced temporal efficiency. The latter applied this knowledge
in the form of a thorough analysis of the virtualization overhead suffered by
multithreaded applications on modern platforms, which provided much needed
insight into the state of the art regarding this topic. It affirmed many of the
known causes of virtualization overhead for such applications and even identified
several previously unknown ones. All of these can be broadly grouped into four
categories: blocking synchronization, spinning synchronization, data sharing
and NUMA locality. While the fact that chapter 4 can never guarantee that

191

192 CONCLUSION

it did not miss any relevant causes of overhead will always remain a threat to
validity, the rigorous process it applied makes concluding that this first partial
research question has been adequately answered for at least the vast majority
of realistic workloads reasonable.

How effective are existing hardware-assisted x86 virtualization tech-
niques at addressing the issues arising from virtualizing multi-
threaded applications?
This second partial research question was answered in great detail by both
chapter 4 and chapter 5. The former did so by performing its performance
analysis on a state-of-the-art platform including all of the existing techniques
the question refers to, while the latter elaborated on several of these techniques
at length. While we were pleased to find that great progress has been made
in recent years, chapter 4 revealed that multithreaded applications still incur
significant virtualization overhead, especially using larger VMs. Moreover,
chapter 5 has made clear that many of the existing mitigation techniques are
far from perfect; only being partially effective, being too restrictive in scope or
having undesirable side effects.

Which techniques can reduce the cost of hardware-assisted virtualiza-
tion of multithreaded applications on the x86 platform?
Chapter 5 has been entirely dedicated to answering this question. It proposed
many promising research directions and suggested several ameliorations to
existing technologies. While obviously this taxonomy of potential mitigation
techniques can never be guaranteed to be exhaustive, it covers all of the causes
of virtualization overhead chapter 4 identified. Therefore, it is in the estimation
of the author fair to consider this research question adequately answered as
well.

How can evidence for the efficacy of proposed techniques to reduce
the cost of hardware-assisted virtualization of multithreaded applica-
tions on the x86 platform be provided?
Chapters 6, 7 and 8 are each dedicated to fleshing out one of the mitigation
techniques chapter 5 proposed. Each of these chapters includes a thorough
emperical performance evaluation comparing the technique it discusses to the
state of the art, each time providing strong evidence in favor of the former:
paratick and ptlbmalloc2 improve performance of multithreaded applications
in a virtualized context by up to 15% and 45%, respectively. While much
less generalizable, NODedup performs 40% better than the original Dedup
benchmark upon which it is based, indicating the potential of the guidelines
presented in chapter 8. As such, this final partial research question has certainly
been adequately answered as well.

VALORIZATION 193

9.1 Valorization

At the faculty of Engineering Technology where this Ph. D. has taken
place, industrial applicability is an important aspect of any research project.
Concerning this, the most significant contributions of this dissertation are
paratick (see §6.4), ptlbmalloc2 (see §7.5) and the guidelines to developers
presented in §8.3. All of these mitigation techniques have been open sourced so
that they can readily be adopted by practitioners and even be incorporated into
existing projects. In the case of ptlbmalloc2, allowing for effortless adoption
was even a core objective considerably influencing its design. Cloud providers
and consumers alike are likely to benefit from adopting any of these techniques
since the drastic reduction in virtualization overhead they effectuate for certain
applications may yield them significant cost savings.

Naturally, the flip side of open source software is that it does not immediately
allow for monitization to the benefit of its developer. As such, despite its notable
contributions to the scientific and industrial landscapes, this Ph. D. project has
not led to any marketable products or intellectual property. Notwithstanding,
the knowledge and experience obtained while working on this project have
undoubtedly opened the door to many future opportunities for the author.

9.2 Future Work

Software engineering is a rapidly evolving field of science. Indeed, the very
concept of hardware virtualization—which is so central to this dissertation—is
only about half a century old at the time of writing this work and has reinvented
itself several times already. For example, only a few years ago it seemed likely
that hardware virtualization would fade into obscurity due to the rapid surge of
containerization, only to very recently charge back to the forefront of exciting
developments in cloud computing thanks to unikernels. As uncertain as the
future may be, hardware virtualization is likely to remain an indispensible
aspect of software engineering for the foreseeable future, which means that
addressing its issues will equally remain a relevant research topic for years to
come.

This dissertation has provided numerous suggestions to future researchers.
Rather than repeating these, this chapter refers to the ’Related Work’ sections
of previous chapters. Concerning how these suggestions relate to one another, the
author deems pursuing those proposed in chapters 6, 7 and 8 most worthwhile,
since the work presented in these respective chapters already provides a solid
foundation for any such efforts. Of all of these, perhaps those proposed in chapter

194 CONCLUSION

8 are the most interesting, because that chapter approaches virtualization
overhead from an entirely new angle compared to existing literature, which
naturally comes with the biggest challenges but also the most potential. In any
case, while hardware virtualization entirely free of overhead will likely prove
a utopian idea, this dissertation has taken several more incremental steps in
the right direction, providing copious incentives to future researchers to do the
same along the way; as this dissertation itself was built upon the shoulders of a
great number of works before it.

Appendix A

Paratick Source Code

This appendix discloses the paratick source code, structured in terms of the
original Linux kernel 5.10.26 source files into which it is integrated.

A.1 Host

A.1.1 /include/linux/kvm_host.h

1 . . .
2
3 //Code above has not been a l t e r e d .
4
5 s t r u c t kvm_vcpu {
6 s t r u c t kvm ∗kvm ;
7 #i f d e f CONFIG_PREEMPT_NOTIFIERS
8 s t r u c t preempt_not i f i e r preempt_not i f i e r ;
9 #e n d i f

10 i n t cpu ;
11 i n t vcpu_id ; /∗ id g iven by use r space at c r e a t i o n ∗/
12 i n t vcpu_idx ; /∗ index in kvm−>vcpus array ∗/
13 i n t srcu_idx ;
14 i n t mode ;
15 u64 r e q u e s t s ;
16 unsigned long guest_debug ;
17
18 i n t pre_pcpu ;
19 s t r u c t l i s t_head blocked_vcpu_list ;

195

196 PARATICK SOURCE CODE

20
21 s t r u c t mutex mutex ;
22 s t r u c t kvm_run ∗ run ;
23
24 s t r u c t rcuwait wait ;
25 s t r u c t pid __rcu ∗ pid ;
26 i n t s i g s e t _ a c t i v e ;
27 s i g s e t _ t s i g s e t ;
28 s t r u c t kvm_vcpu_stat s t a t ;
29 unsigned i n t halt_pol l_ns ;
30 bool valid_wakeup ;
31 #i f d e f CONFIG_HAS_IOMEM
32 i n t mmio_needed ;
33 i n t mmio_read_completed ;
34 i n t mmio_is_write ;
35 i n t mmio_cur_fragment ;
36 i n t mmio_nr_fragments ;
37 s t r u c t kvm_mmio_fragment mmio_fragments [

KVM_MAX_MMIO_FRAGMENTS] ;
38 #e n d i f
39 #i f d e f CONFIG_KVM_ASYNC_PF
40 s t r u c t {
41 u32 queued ;
42 s t r u c t l i s t_head queue ;
43 s t r u c t l i s t_head done ;
44 sp in lock_t lock ;
45 } async_pf ;
46 #e n d i f
47 #i f d e f CONFIG_HAVE_KVM_CPU_RELAX_INTERCEPT
48 /∗
49 ∗ Cpu r e l a x i n t e r c e p t or pause loop e x i t opt imiza t i on
50 ∗ in_spin_loop : s e t when a vcpu does a pause loop e x i t
51 ∗ or cpu r e l a x i n t e r c e p t e d .
52 ∗ d y _ e l i g i b l e : i n d i c a t e s whether vcpu i s e l i g i b l e f o r

d i r e c t e d y i e l d .
53 ∗/
54 s t r u c t {
55 bool in_spin_loop ;
56 bool d y _ e l i g i b l e ;
57 } spin_loop ;
58 #e n d i f
59 bool preempted ;
60 bool ready ;
61 s t r u c t kvm_vcpu_arch arch ;
62 ktime_t l a s t _ t i c k ;
63 } ;

HOST 197

64
65 //Code below has not been a l t e r e d .
66
67 . . .

A.1.2 /arch/x86/kvm/x86.c

1 . . .
2
3 //Code above has not been a l t e r e d .
4
5 s t a t i c s t r u c t kvm_lapic_irq parat i ck_i rq = {
6 . shorthand = APIC_DEST_SELF,
7 . dest_mode = APIC_DEST_PHYSICAL,
8 . delivery_mode = APIC_DM_FIXED,
9 . vec to r = 235 ,

10 . l e v e l = 15
11 } ;
12
13
14 s t a t i c i n t vcpu_run (s t r u c t kvm_vcpu ∗vcpu)
15 {
16 i n t r ;
17 ktime_t now ;
18 s t r u c t kvm ∗kvm = vcpu−>kvm ;
19
20 vcpu−>srcu_idx = srcu_read_lock(&kvm−>srcu) ;
21 vcpu−>arch . l 1 t f_ f lu sh_l1d = true ;
22
23 f o r (; ;) {
24 i f (kvm_vcpu_running (vcpu)) {
25 r = vcpu_enter_guest (vcpu) ;
26 } e l s e {
27 r = vcpu_block (kvm, vcpu) ;
28 }
29
30 i f (r <= 0)
31 break ;
32
33 kvm_clear_request (KVM_REQ_PENDING_TIMER, vcpu) ;
34
35 now = ktime_get () ;
36 i f (kvm_cpu_has_pending_timer (vcpu))
37 {
38 vcpu−>l a s t _ t i c k = now ;
39 kvm_inject_pending_timer_irqs (vcpu) ;

198 PARATICK SOURCE CODE

40 }
41 e l s e i f (now − vcpu−>l a s t _ t i c k > 4000000)
42 {
43 vcpu−>l a s t _ t i c k = now ;
44 kvm_apic_set_irq (vcpu , ¶t ick_irq , NULL) ;
45 }
46
47 i f (dm_request_for_irq_inject ion (vcpu) &&
48 kvm_vcpu_ready_for_interrupt_injection (vcpu)) {
49 r = 0 ;
50 vcpu−>run−>exit_reason = KVM_EXIT_IRQ_WINDOW_OPEN;
51 ++vcpu−>s t a t . r eques t_i rq_ex i t s ;
52 break ;
53 }
54
55 i f (__xfer_to_guest_mode_work_pending ()) {
56 srcu_read_unlock(&kvm−>srcu , vcpu−>srcu_idx) ;
57 r = xfer_to_guest_mode_handle_work (vcpu) ;
58 i f (r)
59 re turn r ;
60 vcpu−>srcu_idx = srcu_read_lock(&kvm−>srcu) ;
61 }
62 }
63
64 srcu_read_unlock(&kvm−>srcu , vcpu−>srcu_idx) ;
65
66 return r ;
67 }
68
69 //Code above has not been a l t e r e d .
70
71 . . .

A.2 Guest

A.2.1 /kernel/time/tick-sched.c

1 // SPDX−License −I d e n t i f i e r : GPL−2.0
2 /∗
3 ∗ Copyright (C) 2005 −2006 , Thomas Gle ixner <t g l x @ l i n u t r o n i x .

de>
4 ∗ Copyright (C) 2005 −2007 , Red Hat , Inc . , Ingo Molnar
5 ∗ Copyright (C) 2006−2007 Timesys Corp . , Thomas Gle ixner
6 ∗/
7 #inc lude <l inux /cpu . h>

GUEST 199

8 #inc lude <l inux / e r r . h>
9 #inc lude <l inux / hrt imer . h>

10 #inc lude <l inux / i n t e r r u p t . h>
11 #inc lude <l inux / kerne l_sta t . h>
12 #inc lude <l inux / percpu . h>
13 #inc lude <l inux /nmi . h>
14 #inc lude <l inux / p r o f i l e . h>
15 #inc lude <l inux / sched / s i g n a l . h>
16 #inc lude <l inux / sched / c l o ck . h>
17 #inc lude <l inux / sched / s t a t . h>
18 #inc lude <l inux / sched /nohz . h>
19 #inc lude <l inux /module . h>
20 #inc lude <l inux / irq_work . h>
21 #inc lude <l inux / posix−t imers . h>
22 #inc lude <l inux / context_track ing . h>
23 #inc lude <l inux /mm. h>
24 #inc lude <l inux / i r q . h>
25 #inc lude <l inux / i r q d e s c . h>
26 #inc lude <asm/ i rq_regs . h>
27 #inc lude <asm/ ap ic . h>
28 #inc lude " t i ck −i n t e r n a l . h "
29 #inc lude <t r a c e / events / t imer . h>
30
31 //Per−CPU nohz c o n t r o l s t r u c t u r e
32 s t a t i c DEFINE_PER_CPU(s t r u c t tick_sched , tick_cpu_sched) ;
33
34 s t r u c t t ick_sched ∗ t ick_get_tick_sched (i n t cpu)
35 {
36 return &per_cpu (tick_cpu_sched , cpu) ;
37 }
38
39 #i f de f ined (CONFIG_NO_HZ_COMMON) | | de f in ed (

CONFIG_HIGH_RES_TIMERS)
40 //The time , when the l a s t j i f f y update happened . Protected by

j i f f i e s _ l o c k .
41 s t a t i c ktime_t l a s t _ j i f f i e s _ u p d a t e ;
42
43 //Must be c a l l e d with i n t e r r u p t s d i s a b l e d !
44 s t a t i c void t i ck_do_update_j i f f i e s64 (ktime_t now)
45 {
46 unsigned long t i c k s = 0 ;
47 ktime_t d e l t a ;
48
49 //Do a quick check without ho ld ing j i f f i e s _ l o c k
50 d e l t a = ktime_sub (now , READ_ONCE(l a s t _ j i f f i e s _ u p d a t e)) ;
51 i f (d e l t a < t ick_per iod)

200 PARATICK SOURCE CODE

52 return ;
53
54 /∗ Reevaluate with j i f f i e s _ l o c k held ∗/
55 raw_spin_lock(& j i f f i e s _ l o c k) ;
56 write_seqcount_begin(& j i f f i e s _ s e q) ;
57
58 d e l t a = ktime_sub (now , l a s t _ j i f f i e s _ u p d a t e) ;
59 i f (d e l t a >= t ick_per iod) {
60
61 d e l t a = ktime_sub (de l ta , t i ck_per iod) ;
62 /∗ Pai r s with the l o c k l e s s read in t h i s func t i on . ∗/
63 WRITE_ONCE(l a s t _ j i f f i e s _ u p d a t e ,
64 ktime_add (l a s t _ j i f f i e s _ u p d a t e , t i ck_per iod)) ;
65
66 /∗ Slow path f o r long t imeouts ∗/
67 i f (u n l i k e l y (d e l t a >= t ick_per iod)) {
68 s64 i n c r = ktime_to_ns (t i ck_per iod) ;
69
70 t i c k s = ktime_divns (de l ta , i n c r) ;
71
72 /∗ Pai r s with the l o c k l e s s read in t h i s func t i on . ∗/
73 WRITE_ONCE(l a s t _ j i f f i e s _ u p d a t e ,
74 ktime_add_ns (l a s t _ j i f f i e s _ u p d a t e ,
75 i n c r ∗ t i c k s)) ;
76 }
77 do_timer(++t i c k s) ;
78
79 /∗ Keep the t ick_next_period v a r i a b l e up to date ∗/
80 tick_next_period = ktime_add (l a s t _ j i f f i e s _ u p d a t e ,

t i ck_per iod) ;
81 } e l s e {
82 write_seqcount_end(& j i f f i e s _ s e q) ;
83 raw_spin_unlock(& j i f f i e s _ l o c k) ;
84 re turn ;
85 }
86 write_seqcount_end(& j i f f i e s _ s e q) ;
87 raw_spin_unlock(& j i f f i e s _ l o c k) ;
88 update_wall_time () ;
89 }
90
91 // I n i t i a l i z e and return r e t r i e v e the j i f f i e s update .
92 s t a t i c ktime_t t i ck_ in i t_ j i f f y_update (void)
93 {
94 ktime_t per iod ;
95
96 raw_spin_lock(& j i f f i e s _ l o c k) ;

GUEST 201

97 write_seqcount_begin(& j i f f i e s _ s e q) ;
98 /∗ Did we s t a r t the j i f f i e s update yet ? ∗/
99 i f (l a s t _ j i f f i e s _ u p d a t e == 0)

100 l a s t _ j i f f i e s _ u p d a t e = tick_next_period ;
101 per iod = l a s t _ j i f f i e s _ u p d a t e ;
102 write_seqcount_end(& j i f f i e s _ s e q) ;
103 raw_spin_unlock(& j i f f i e s _ l o c k) ;
104 re turn per iod ;
105 }
106
107 s t a t i c void tick_sched_do_timer (s t r u c t t ick_sched ∗ ts ,

ktime_t now)
108 {
109 i n t cpu = smp_processor_id () ;
110
111 #i f d e f CONFIG_NO_HZ_COMMON
112 //Check i f the do_timer duty was dropped .
113 i f (u n l i k e l y (tick_do_timer_cpu == TICK_DO_TIMER_NONE)) {
114 tick_do_timer_cpu = cpu ;
115 }
116 #e n d i f
117
118 /∗ Check , i f the j i f f i e s need an update ∗/
119 i f (tick_do_timer_cpu == cpu)
120 t i ck_do_update_j i f f i e s64 (now) ;
121
122 i f (ts−>i n i d l e)
123 ts−>got_id le_t ick = 1 ;
124 }
125
126 s t a t i c void tick_sched_handle (s t r u c t t ick_sched ∗ ts , s t r u c t

pt_regs ∗ r eg s)
127 {
128 #i f d e f CONFIG_NO_HZ_COMMON
129 i f (ts−>tick_stopped) {
130 touch_softlockup_watchdog_sched () ;
131 i f (i s_ id l e_task (cur rent))
132 ts−>i d l e _ j i f f i e s ++;
133 ts−>next_tick = 0 ;
134 }
135 #e n d i f
136 update_process_times (user_mode (r eg s)) ;
137 p r o f i l e _ t i c k (CPU_PROFILING) ;
138 }
139 #e n d i f
140

202 PARATICK SOURCE CODE

141 //NOHZ − aka dynamic t i c k f u n c t i o n a l i t y
142 #i f d e f CONFIG_NO_HZ_COMMON
143 //NO HZ enabled ?
144 bool tick_nohz_enabled __read_mostly = true ;
145 unsigned long tick_nohz_active __read_mostly ;
146 // Enable / Disab le t i c k l e s s mode
147 s t a t i c i n t __init setup_tick_nohz (char ∗ s t r)
148 {
149 return (k s t r t o b o o l (s t r , &tick_nohz_enabled) == 0) ;
150 }
151
152 __setup (" nohz=" , setup_tick_nohz) ;
153
154 bool tick_nohz_tick_stopped (void)
155 {
156 s t r u c t t ick_sched ∗ t s = this_cpu_ptr(&tick_cpu_sched) ;
157 re turn ts−>tick_stopped ;
158 }
159
160 bool tick_nohz_tick_stopped_cpu (i n t cpu)
161 {
162 s t r u c t t ick_sched ∗ t s = per_cpu_ptr(&tick_cpu_sched , cpu) ;
163 re turn ts−>tick_stopped ;
164 }
165
166 // t i ck_nohz_update_j i f f i e s − update j i f f i e s when i d l e was

i n t e r r u p t e d
167 s t a t i c void t i ck_nohz_update_j i f f i e s (ktime_t now)
168 {
169 unsigned long f l a g s ;
170
171 __this_cpu_write (tick_cpu_sched . idle_waketime , now) ;
172
173 loca l_i rq_save (f l a g s) ;
174 t i ck_do_update_j i f f i e s64 (now) ;
175 l o c a l _ i r q _ r e s t o r e (f l a g s) ;
176
177 touch_softlockup_watchdog_sched () ;
178 }
179
180 // Updates the per−CPU time i d l e s t a t i s t i c s counter s
181 s t a t i c void update_ts_time_stats (i n t cpu , s t r u c t t ick_sched ∗

ts , ktime_t now , u64 ∗ last_update_time)
182 {
183 ktime_t d e l t a ;
184

GUEST 203

185 i f (ts−>i d l e _ a c t i v e) {
186 d e l t a = ktime_sub (now , ts−>idle_entryt ime) ;
187 i f (nr_iowait_cpu (cpu) > 0)
188 ts−>iowai t_s l eept ime = ktime_add (ts−>iowait_s leept ime ,

d e l t a) ;
189 e l s e
190 ts−>id l e_s l e ep t ime = ktime_add (ts−>id le_s l eept ime ,

d e l t a) ;
191 ts−>idle_entryt ime = now ;
192 }
193
194 i f (last_update_time)
195 ∗ last_update_time = ktime_to_us (now) ;
196 }
197
198 s t a t i c void tick_nohz_stop_idle (s t r u c t t ick_sched ∗ ts ,

ktime_t now)
199 {
200 update_ts_time_stats (smp_processor_id () , ts , now , NULL) ;
201 ts−>i d l e _ a c t i v e = 0 ;
202
203 sched_clock_idle_wakeup_event () ;
204 }
205
206 s t a t i c void t ick_nohz_start_id le (s t r u c t t ick_sched ∗ t s)
207 {
208 ts−>idle_entryt ime = ktime_get () ;
209 ts−>i d l e _ a c t i v e = 1 ;
210 sched_clock_idle_sleep_event () ;
211 }
212
213 u64 get_cpu_idle_time_us (i n t cpu , u64 ∗ last_update_time)
214 {
215 s t r u c t t ick_sched ∗ t s = &per_cpu (tick_cpu_sched , cpu) ;
216 ktime_t now , i d l e ;
217
218 i f (! t ick_nohz_active)
219 return −1;
220
221 now = ktime_get () ;
222 i f (last_update_time) {
223 update_ts_time_stats (cpu , ts , now , last_update_time) ;
224 i d l e = ts−>id l e_s l e ep t ime ;
225 } e l s e {
226 i f (ts−>i d l e _ a c t i v e && ! nr_iowait_cpu (cpu)) {
227 ktime_t d e l t a = ktime_sub (now , ts−>idle_entryt ime) ;

204 PARATICK SOURCE CODE

228
229 i d l e = ktime_add (ts−>id le_s l eept ime , d e l t a) ;
230 } e l s e {
231 i d l e = ts−>id l e_s l e ep t ime ;
232 }
233 }
234
235 return ktime_to_us (i d l e) ;
236
237 }
238 EXPORT_SYMBOL_GPL(get_cpu_idle_time_us) ;
239
240 u64 get_cpu_iowait_time_us (i n t cpu , u64 ∗ last_update_time)
241 {
242 s t r u c t t ick_sched ∗ t s = &per_cpu (tick_cpu_sched , cpu) ;
243 ktime_t now , i owa i t ;
244
245 i f (! t ick_nohz_active)
246 return −1;
247
248 now = ktime_get () ;
249 i f (last_update_time) {
250 update_ts_time_stats (cpu , ts , now , last_update_time) ;
251 i owa i t = ts−>iowai t_s l eept ime ;
252 } e l s e {
253 i f (ts−>i d l e _ a c t i v e && nr_iowait_cpu (cpu) > 0) {
254 ktime_t d e l t a = ktime_sub (now , ts−>idle_entryt ime) ;
255
256 i owa i t = ktime_add (ts−>iowait_s leept ime , d e l t a) ;
257 } e l s e {
258 i owa i t = ts−>iowai t_s l eept ime ;
259 }
260 }
261
262 return ktime_to_us (i owa i t) ;
263 }
264 EXPORT_SYMBOL_GPL(get_cpu_iowait_time_us) ;
265
266 s t a t i c void t ick_nohz_restart (s t r u c t t ick_sched ∗ ts , ktime_t

now)
267 {
268 ts−>next_tick = 0 ;
269 }
270
271 s t a t i c i n l i n e bool loca l_t imer_sof t i rq_pending (void)
272 {

GUEST 205

273 return loca l_so f t i rq_pend ing () & BIT(TIMER_SOFTIRQ) ;
274 }
275
276 s t a t i c ktime_t tick_nohz_next_event (s t r u c t t ick_sched ∗ ts ,

i n t cpu)
277 {
278 u64 basemono , next_tick , next_tmr , next_rcu , de l ta , e x p i r e s

;
279 unsigned long b a s e j i f f ;
280 unsigned i n t seq ;
281
282 /∗ Read j i f f i e s and the time when j i f f i e s were updated l a s t

∗/
283 do {
284 seq = read_seqcount_begin(& j i f f i e s _ s e q) ;
285 basemono = l a s t _ j i f f i e s _ u p d a t e ;
286 b a s e j i f f = j i f f i e s ;
287 } whi l e (read_seqcount_retry(& j i f f i e s _ s e q , seq)) ;
288 ts−>l a s t _ j i f f i e s = b a s e j i f f ;
289 ts−>timer_expires_base = basemono ;
290
291 //Keep the p e r i o d i c t i ck , when RCU, a r c h i t e c t u r e or

irq_work r e q u e s t s i t .
292 i f (rcu_needs_cpu (basemono , &next_rcu) | | arch_needs_cpu ()

| |
293 irq_work_needs_cpu () | | l oca l_t imer_sof t i rq_pending ()) {
294 next_tick = basemono + TICK_NSEC;
295 } e l s e {
296 //Get the next pending t imer .
297 next_tmr = get_next_timer_interrupt (b a s e j i f f , basemono) ;
298 ts−>next_timer = next_tmr ;
299 /∗ Take the next rcu event in to account ∗/
300 next_tick = next_rcu < next_tmr ? next_rcu : next_tmr ;
301 }
302
303 /∗
304 ∗ I f the t i c k i s due in the next per iod , keep i t t i c k i n g

or
305 ∗ f o r c e prod the t imer .
306 ∗/
307 d e l t a = next_tick − basemono ;
308 i f (d e l t a <= (u64)TICK_NSEC) {
309 /∗
310 ∗ Te l l the t imer code that the base i s not i d l e , i . e .

undo
311 ∗ the e f f e c t o f get_next_timer_interrupt () :

206 PARATICK SOURCE CODE

312 ∗/
313 t imer_c lear_id l e () ;
314 /∗
315 ∗ We’ ve not stopped the t i c k yet , and there ’ s a t imer in

the
316 ∗ next per iod , so no po int in stopping i t e i t h e r , b a i l .
317 ∗/
318 i f (! ts−>tick_stopped) {
319 ts−>timer_expi res = 0 ;
320 goto out ;
321 }
322 }
323
324 /∗
325 ∗ I f t h i s CPU i s the one which had the do_timer () duty

l a s t , we l i m i t
326 ∗ the s l e e p time to the t imekeeping max_deferment value .
327 ∗ Otherwise we can s l e e p as long as we want .
328 ∗/
329 d e l t a = timekeeping_max_deferment () ;
330 i f (cpu != tick_do_timer_cpu &&
331 (tick_do_timer_cpu != TICK_DO_TIMER_NONE | | ! ts−>

do_timer_last))
332 d e l t a = KTIME_MAX;
333
334 /∗ Calcu la te the next exp i ry time ∗/
335 i f (d e l t a < (KTIME_MAX − basemono))
336 e x p i r e s = basemono + d e l t a ;
337 e l s e
338 e x p i r e s = KTIME_MAX;
339
340 ts−>timer_expi res = min_t (u64 , exp i r e s , next_tick) ;
341 out :
342 re turn ts−>timer_expi res ;
343 }
344
345 s t a t i c void tick_nohz_stop_tick (s t r u c t t ick_sched ∗ ts , i n t

cpu)
346 {
347 s t r u c t c lock_event_device ∗dev = __this_cpu_read (

tick_cpu_device . evtdev) ;
348 u64 basemono = ts−>timer_expires_base ;
349 u64 e x p i r e s = ts−>timer_expi res ;
350 ktime_t t i c k = e x p i r e s ;
351

GUEST 207

352 /∗ Make sure we won ’ t be t r y i n g to stop i t twice in a row .
∗/

353 ts−>timer_expires_base = 0 ;
354
355 i f (cpu == tick_do_timer_cpu) {
356 tick_do_timer_cpu = TICK_DO_TIMER_NONE;
357 ts−>do_timer_last = 1 ;
358 } e l s e i f (tick_do_timer_cpu != TICK_DO_TIMER_NONE)
359 ts−>do_timer_last = 0 ;
360
361 /∗ Skip reprogram of event i f i t s not changed ∗/
362 i f (ts−>tick_stopped && (e x p i r e s == ts−>next_tick)) {
363 /∗ Sanity check : make sure c l o ckevent i s a c t u a l l y

programmed ∗/
364 i f (t i c k == KTIME_MAX | | ts−>next_tick ==

hrt imer_get_expires (&ts−>sched_timer))
365 re turn ;
366
367 WARN_ON_ONCE(1) ;
368 printk_once (" basemono : %l l u ts−>next_tick : %l l u dev−>

next_event : %l l u timer−>a c t i v e : %d timer−>e x p i r e s : %l l u \n
" ,

369 basemono , ts−>next_tick , dev−>next_event ,
370 hrt imer_act ive (&ts−>sched_timer) ,

hrt imer_get_expires (&ts−>sched_timer)) ;
371 }
372
373 i f (! ts−>tick_stopped) {
374 calc_load_nohz_start () ;
375 quiet_vmstat () ;
376
377 ts−>l a s t _ t i c k = hrt imer_get_expires (&ts−>sched_timer) ;
378 ts−>tick_stopped = 1 ;
379 trace_t ick_stop (1 , TICK_DEP_MASK_NONE) ;
380 }
381
382 ts−>next_tick = t i c k ;
383
384 /∗
385 ∗ I f the e x p i r a t i o n time == KTIME_MAX, then we simply stop
386 ∗ the t i c k t imer .
387 ∗/
388 i f (u n l i k e l y (e x p i r e s == KTIME_MAX)) {
389 return ;
390 }
391

208 PARATICK SOURCE CODE

392 i f (ts−>nohz_mode == NOHZ_MODE_HIGHRES
393 && (! hrt imer_act ive (&ts−>sched_timer)
394 | | hrt imer_get_expires (&ts−>sched_timer) >= t i c k))
395 {
396 hrt imer_start (&ts−>sched_timer , t i ck ,
397 HRTIMER_MODE_ABS_PINNED_HARD) ;
398 } e l s e {
399 hrt imer_set_expires (&ts−>sched_timer , t i c k) ;
400 tick_program_event (t i ck , 1) ;
401 }
402 }
403
404 s t a t i c void t ick_nohz_reta in_tick (s t r u c t t ick_sched ∗ t s)
405 {
406 ktime_t now , next_event ;
407 now = ktime_get () ;
408
409 i f (! hrt imer_act ive (&ts−>sched_timer) | |

hrt imer_get_expires (&ts−>sched_timer) > now + t ick_per iod
)

410 {
411 next_event = tick_nohz_next_event (ts , smp_processor_id ())

;
412 i f (next_event == 0)
413 hrt imer_start (&ts−>sched_timer , now + tick_per iod ,

HRTIMER_MODE_ABS_PINNED_HARD) ;
414 e l s e i f (next_event < KTIME_MAX)
415 hrt imer_start (&ts−>sched_timer , next_event ,

HRTIMER_MODE_ABS_PINNED_HARD) ;
416 }
417 ts−>timer_expires_base = 0 ;
418 }
419
420 s t a t i c void t ick_nohz_restart_sched_tick (s t r u c t t ick_sched ∗

ts , ktime_t now)
421 {
422 /∗ Update j i f f i e s f i r s t ∗/
423 t i ck_do_update_j i f f i e s64 (now) ;
424
425 /∗
426 ∗ Clear the t imer i d l e f l ag , so we avoid IPIs on remote

queueing and
427 ∗ the c l o ck forward checks in the enqueue path :
428 ∗/
429 t imer_c lear_id l e () ;
430

GUEST 209

431 calc_load_nohz_stop () ;
432 touch_softlockup_watchdog_sched () ;
433 /∗
434 ∗ Cancel the scheduled t imer and r e s t o r e the t i c k
435 ∗/
436 ts−>tick_stopped = 0 ;
437 ts−>id l e_ex i t t im e = now ;
438
439 t ick_nohz_restart (ts , now) ;
440 }
441
442 s t a t i c bool can_stop_idle_tick (i n t cpu , s t r u c t t ick_sched ∗ t s

)
443 {
444 i f (u n l i k e l y (! cpu_online (cpu))) {
445 i f (cpu == tick_do_timer_cpu)
446 tick_do_timer_cpu = TICK_DO_TIMER_NONE;
447 /∗
448 ∗ Make sure the CPU doesn ’ t get f o o l e d by o b s o l e t e t i c k
449 ∗ dead l ine i f i t comes back o n l i n e l a t e r .
450 ∗/
451 ts−>next_tick = 0 ;
452 return f a l s e ;
453 }
454
455 i f (u n l i k e l y (ts−>nohz_mode == NOHZ_MODE_INACTIVE))
456 return f a l s e ;
457
458 i f (need_resched ())
459 return f a l s e ;
460
461 i f (u n l i k e l y (l o ca l_so f t i rq_pend ing ())) {
462 s t a t i c i n t r a t e l i m i t ;
463
464 i f (r a t e l i m i t < 10 &&
465 (l oca l_so f t i rq_pend ing () & SOFTIRQ_STOP_IDLE_MASK)) {
466 pr_warn ("NOHZ t ick −stop e r r o r : Non−RCU l o c a l s o f t i r q

work i s pending , handler #%02x ! ! ! \ n " ,
467 (unsigned i n t) l o ca l_so f t i rq_pend ing ()) ;
468 r a t e l i m i t ++;
469 }
470 return f a l s e ;
471 }
472
473 i f (t ick_nohz_ful l_enabled ()) {
474 /∗

210 PARATICK SOURCE CODE

475 ∗ Keep the t i c k a l i v e to guarantee t imekeeping
p r o g r e s s i o n

476 ∗ i f the re are f u l l dynt i cks CPUs around
477 ∗/
478 i f (tick_do_timer_cpu == cpu)
479 re turn f a l s e ;
480
481 /∗ Should not happen f o r nohz− f u l l ∗/
482 i f (WARN_ON_ONCE(tick_do_timer_cpu == TICK_DO_TIMER_NONE)

)
483 re turn f a l s e ;
484 }
485
486 return true ;
487 }
488
489 s t a t i c void __tick_nohz_idle_stop_tick (s t r u c t t ick_sched ∗ t s)
490 {
491 ktime_t e x p i r e s ;
492 i n t cpu = smp_processor_id () ;
493
494 /∗
495 ∗ I f t ick_nohz_get_sleep_length () ran tick_nohz_next_event

() , the
496 ∗ t i c k t imer e x p i r a t i o n time i s known a l ready .
497 ∗/
498 i f (ts−>timer_expires_base)
499 e x p i r e s = ts−>timer_expi res ;
500 e l s e i f (can_stop_idle_tick (cpu , t s))
501 e x p i r e s = tick_nohz_next_event (ts , cpu) ;
502 e l s e
503 return ;
504
505 ts−>i d l e _ c a l l s ++;
506
507 i f (e x p i r e s > 0LL) {
508 i n t was_stopped = ts−>tick_stopped ;
509
510 tick_nohz_stop_tick (ts , cpu) ;
511
512 ts−>i d l e _ s l e e p s ++;
513 ts−>i d l e _ e x p i r e s = e x p i r e s ;
514
515 i f (! was_stopped && ts−>tick_stopped) {
516 ts−>i d l e _ j i f f i e s = ts−>l a s t _ j i f f i e s ;
517 nohz_balance_enter_idle (cpu) ;

GUEST 211

518 }
519 } e l s e {
520 t ick_nohz_reta in_tick (t s) ;
521 }
522 }
523
524 void t ick_nohz_idle_stop_tick (void)
525 {
526 __tick_nohz_idle_stop_tick (this_cpu_ptr(&tick_cpu_sched)) ;
527 }
528
529 void t ick_nohz_idle_reta in_t ick (void)
530 {
531 t ick_nohz_retain_tick (this_cpu_ptr(&tick_cpu_sched)) ;
532 /∗
533 ∗ Undo the e f f e c t o f get_next_timer_interrupt () c a l l e d

from
534 ∗ tick_nohz_next_event () .
535 ∗/
536 t imer_c lear_id l e () ;
537 }
538
539 // Prepare f o r e n t e r i n g i d l e on the cur rent CPU
540 void t ick_nohz_idle_enter (void)
541 {
542 s t r u c t t ick_sched ∗ t s ;
543 lockdep_assert_irqs_enabled () ;
544 l o c a l _ i r q _ d i s a b l e () ;
545 t s = this_cpu_ptr(&tick_cpu_sched) ;
546 WARN_ON_ONCE(ts−>timer_expires_base) ;
547 ts−>i n i d l e = 1 ;
548 t ick_nohz_start_id le (t s) ;
549 loca l_i rq_enab le () ;
550 }
551
552 //Update next t i c k event from i n t e r r u p t e x i t
553 void tick_nohz_irq_exit (void)
554 {
555 s t r u c t t ick_sched ∗ t s = this_cpu_ptr(&tick_cpu_sched) ;
556
557 i f (ts−>i n i d l e)
558 t ick_nohz_start_id le (t s) ;
559 e l s e
560 tick_nohz_ful l_update_tick (t s) ;
561 }
562

212 PARATICK SOURCE CODE

563 //Check whether or not the t i c k handler has run
564 bool t ick_nohz_idle_got_tick (void)
565 {
566 s t r u c t t ick_sched ∗ t s = this_cpu_ptr(&tick_cpu_sched) ;
567
568 i f (ts−>got_id le_t ick) {
569 ts−>got_id le_t ick = 0 ;
570 return true ;
571 }
572 return f a l s e ;
573 }
574
575 // Return the next e x p i r a t i o n time f o r the hrt imer or the t i ck

, whatever that e x p i r e s f i r s t .
576 ktime_t tick_nohz_get_next_hrtimer (void)
577 {
578 return __this_cpu_read (tick_cpu_device . evtdev)−>next_event ;
579 }
580
581 // Return the expected l ength o f the cur rent s l e e p
582 ktime_t tick_nohz_get_sleep_length (ktime_t ∗ delta_next)
583 {
584 s t r u c t c lock_event_device ∗dev = __this_cpu_read (

tick_cpu_device . evtdev) ;
585 s t r u c t t ick_sched ∗ t s = this_cpu_ptr(&tick_cpu_sched) ;
586 i n t cpu = smp_processor_id () ;
587 /∗
588 ∗ The i d l e entry time i s expected to be a s u f f i c i e n t

approximation o f
589 ∗ the cur rent time at t h i s po int .
590 ∗/
591 ktime_t now = ts−>idle_entryt ime ;
592 ktime_t next_event ;
593
594 WARN_ON_ONCE(! ts−>i n i d l e) ;
595
596 ∗ delta_next = ktime_sub (dev−>next_event , now) ;
597
598 i f (! can_stop_idle_tick (cpu , t s))
599 return ∗ delta_next ;
600
601 next_event = tick_nohz_next_event (ts , cpu) ;
602 i f (! next_event)
603 return ∗ delta_next ;
604
605 /∗

GUEST 213

606 ∗ I f the next h i gh r e s t imer to ex p i r e i s e a r l i e r than
next_event , the

607 ∗ i d l e governor needs to know that .
608 ∗/
609 next_event = min_t (u64 , next_event ,
610 hrtimer_next_event_without(&ts−>sched_timer)) ;
611
612 return ktime_sub (next_event , now) ;
613 }
614
615 unsigned long tick_nohz_get_idle_cal ls_cpu (i n t cpu)
616 {
617 s t r u c t t ick_sched ∗ t s = tick_get_tick_sched (cpu) ;
618 re turn ts−>i d l e _ c a l l s ;
619 }
620
621 unsigned long t ick_nohz_get_id le_cal l s (void)
622 {
623 s t r u c t t ick_sched ∗ t s = this_cpu_ptr(&tick_cpu_sched) ;
624 re turn ts−>i d l e _ c a l l s ;
625 }
626
627 s t a t i c void t ick_nohz_account_idle_ticks (s t r u c t t ick_sched ∗

t s)
628 {
629 #i f n d e f CONFIG_VIRT_CPU_ACCOUNTING_NATIVE
630 unsigned long t i c k s ;
631
632 i f (vtime_accounting_enabled_this_cpu ())
633 return ;
634 /∗
635 ∗ We stopped the t i c k in i d l e . Update p roce s s t imes would

miss the
636 ∗ time we s l e p t as update_process_times does only a 1 t i c k
637 ∗ account ing . Enforce that t h i s i s accounted to i d l e !
638 ∗/
639 t i c k s = j i f f i e s − ts−>i d l e _ j i f f i e s ;
640 //We might be one o f f . Do not randomly account a huge

number o f t i c k s !
641 i f (t i c k s && t i c k s < LONG_MAX)
642 account_id le_t icks (t i c k s) ;
643 #e n d i f
644 }
645
646 s t a t i c void __tick_nohz_idle_restart_tick (s t r u c t t ick_sched ∗

ts , ktime_t now)

214 PARATICK SOURCE CODE

647 {
648 t ick_nohz_restart_sched_tick (ts , now) ;
649 t ick_nohz_account_idle_ticks (t s) ;
650 }
651
652 void t i ck_nohz_id le_restart_t ick (void)
653 {
654 s t r u c t t ick_sched ∗ t s = this_cpu_ptr(&tick_cpu_sched) ;
655
656 i f (ts−>tick_stopped)
657 __tick_nohz_idle_restart_tick (ts , ktime_get ()) ;
658 }
659
660 void t ick_nohz_idle_exit (void)
661 {
662 s t r u c t t ick_sched ∗ t s = this_cpu_ptr(&tick_cpu_sched) ;
663 bool id l e_act ive , t ick_stopped ;
664 ktime_t now ;
665
666 l o c a l _ i r q _ d i s a b l e () ;
667
668 WARN_ON_ONCE(! ts−>i n i d l e) ;
669 WARN_ON_ONCE(ts−>timer_expires_base) ;
670
671 ts−>i n i d l e = 0 ;
672 i d l e _ a c t i v e = ts−>i d l e _ a c t i v e ;
673 t ick_stopped = ts−>tick_stopped ;
674
675 i f (i d l e _ a c t i v e | | t ick_stopped)
676 now = ktime_get () ;
677
678 i f (i d l e _ a c t i v e)
679 tick_nohz_stop_idle (ts , now) ;
680
681 i f (t ick_stopped)
682 __tick_nohz_idle_restart_tick (ts , now) ;
683
684 loca l_i rq_enab le () ;
685 }
686
687 //The nohz low r e s i n t e r r u p t handler
688 s t a t i c void tick_nohz_handler (s t r u c t c lock_event_device ∗dev)
689 {
690 s t r u c t t ick_sched ∗ t s = this_cpu_ptr(&tick_cpu_sched) ;
691 s t r u c t pt_regs ∗ r eg s = get_irq_regs () ;
692 ktime_t now = ktime_get () ;

GUEST 215

693
694 dev−>next_event = KTIME_MAX;
695
696 tick_sched_do_timer (ts , now) ;
697 tick_sched_handle (ts , r eg s) ;
698
699 /∗ No need to reprogram i f we are running t i c k l e s s ∗/
700 i f (u n l i k e l y (ts−>tick_stopped))
701 return ;
702
703 hrtimer_forward(&ts−>sched_timer , now , t i ck_per iod) ;
704 tick_program_event (hrt imer_get_expires (&ts−>sched_timer) ,

1) ;
705 }
706
707 s t a t i c i n l i n e void t ick_nohz_act ivate (s t r u c t t ick_sched ∗ ts ,

i n t mode)
708 {
709 i f (! tick_nohz_enabled)
710 return ;
711 ts−>nohz_mode = mode ;
712 /∗ One update i s enough ∗/
713 i f (! test_and_set_bit (0 , &tick_nohz_active))
714 timers_update_nohz () ;
715 }
716
717 // tick_nohz_switch_to_nohz − switch to nohz mode
718 s t a t i c void tick_nohz_switch_to_nohz (void)
719 {
720 s t r u c t t ick_sched ∗ t s = this_cpu_ptr(&tick_cpu_sched) ;
721 ktime_t next ;
722
723 i f (! tick_nohz_enabled)
724 return ;
725
726 i f (t ick_switch_to_oneshot (tick_nohz_handler))
727 return ;
728
729 /∗
730 ∗ Recycle the hrt imer in ts , so we can share the
731 ∗ hrtimer_forward with the h i gh r e s code .
732 ∗/
733 hr t imer_in i t (&ts−>sched_timer , CLOCK_MONOTONIC,

HRTIMER_MODE_ABS_HARD) ;
734 /∗ Get the next per iod ∗/
735 next = t i ck_ in i t_ j i f f y_update () ;

216 PARATICK SOURCE CODE

736
737 hrt imer_set_expires (&ts−>sched_timer , next) ;
738 hrtimer_forward_now(&ts−>sched_timer , t i ck_per iod) ;
739 tick_program_event (hrt imer_get_expires (&ts−>sched_timer) ,

1) ;
740 t ick_nohz_act ivate (ts , NOHZ_MODE_LOWRES) ;
741 }
742
743 s t a t i c i n l i n e void tick_nohz_irq_enter (void)
744 {
745 s t r u c t t ick_sched ∗ t s = this_cpu_ptr(&tick_cpu_sched) ;
746 ktime_t now ;
747
748 i f (! ts−>i d l e _ a c t i v e && ! ts−>tick_stopped)
749 return ;
750 now = ktime_get () ;
751 i f (ts−>i d l e _ a c t i v e)
752 tick_nohz_stop_idle (ts , now) ;
753 i f (ts−>tick_stopped)
754 t i ck_nohz_update_j i f f i e s (now) ;
755 }
756
757 #e l s e
758
759 s t a t i c i n l i n e void tick_nohz_switch_to_nohz (void) { }
760 s t a t i c i n l i n e void tick_nohz_irq_enter (void) { }
761 s t a t i c i n l i n e void t ick_nohz_act ivate (s t r u c t t ick_sched ∗ ts ,

i n t mode) { }
762
763 #e n d i f /∗ CONFIG_NO_HZ_COMMON ∗/
764
765 // Cal led from irq_enter to n o t i f y about the p o s s i b l e

i n t e r r u p t i o n o f i d l e ()
766 void t i ck_irq_enter (void)
767 {
768 tick_check_oneshot_broadcast_this_cpu () ;
769 tick_nohz_irq_enter () ;
770 }
771
772 //High r e s o l u t i o n t imer s p e c i f i c code
773 #i f d e f CONFIG_HIGH_RES_TIMERS
774
775 s t a t i c void do_tick (void)
776 {
777 s t r u c t t ick_sched ∗ t s = this_cpu_ptr(&tick_cpu_sched) ;
778 s t r u c t pt_regs ∗ r eg s = get_irq_regs () ;

GUEST 217

779 ktime_t now = ktime_get () ;
780
781 tick_sched_do_timer (ts , now) ;
782
783 i f (r eg s)
784 tick_sched_handle (ts , r eg s) ;
785 e l s e
786 ts−>next_tick = 0 ;
787 }
788
789 /∗
790 ∗ We rearm the t imer u n t i l we get d i s a b l e d by the i d l e code .
791 ∗ Cal led with i n t e r r u p t s d i s a b l e d .
792 ∗/
793 s t a t i c enum hrt imer_res ta r t t ick_sched_timer (s t r u c t hrt imer ∗

t imer)
794 {
795 s t r u c t t ick_sched ∗ t s = this_cpu_ptr(&tick_cpu_sched) ;
796
797 i f (ts−>i n i d l e)
798 do_tick () ;
799
800 return HRTIMER_NORESTART;
801 }
802
803 s t a t i c i n t sched_skew_tick ;
804
805 s t a t i c i n t __init skew_tick (char ∗ s t r)
806 {
807 get_option(&st r , &sched_skew_tick) ;
808
809 return 0 ;
810 }
811 early_param (" skew_tick " , skew_tick) ;
812
813 void handle_parat ick_irq (s t r u c t i rq_desc ∗ desc)
814 {
815 do_tick () ;
816 ack_APIC_irq () ;
817 }
818
819 s t a t i c s t r u c t i rq_desc parat ick_desc = {
820 . handle_irq = handle_parat ick_irq
821 } ;
822
823 s t a t i c void in s ta l l_para t i ck_hand l e r (void)

218 PARATICK SOURCE CODE

824 {
825 s t r u c t i rq_desc ∗ (∗ desc s) [2 5 6] = this_cpu_ptr(&vector_irq) ;
826 (∗ desc s) [2 3 5] = ¶t ick_desc ;
827 }
828
829 // tick_setup_sched_timer − setup the t i c k emulat ion t imer
830 void tick_setup_sched_timer (void)
831 {
832 s t r u c t t ick_sched ∗ t s = this_cpu_ptr(&tick_cpu_sched) ;
833 ktime_t now = ktime_get () ;
834
835 // Emulate t i c k p r o c e s s i n g v ia per−CPU hrt imers :
836 hr t imer_in i t (&ts−>sched_timer , CLOCK_MONOTONIC,

HRTIMER_MODE_ABS_HARD) ;
837 ts−>sched_timer . f unc t i on = tick_sched_timer ;
838
839 /∗ Get the next per iod (per−CPU) ∗/
840 hrt imer_set_expires (&ts−>sched_timer ,

t i ck_ in i t_ j i f f y_update ()) ;
841
842 /∗ O f f s e t the t i c k to aver t j i f f i e s _ l o c k content ion . ∗/
843 i f (sched_skew_tick) {
844 u64 o f f s e t = ktime_to_ns (t i ck_per iod) >> 1 ;
845 do_div (o f f s e t , num_possible_cpus ()) ;
846 o f f s e t ∗= smp_processor_id () ;
847 hrtimer_add_expires_ns(&ts−>sched_timer , o f f s e t) ;
848 }
849
850 hrtimer_forward(&ts−>sched_timer , now , t i ck_per iod) ;
851 hrt imer_star t_exp i re s (&ts−>sched_timer ,

HRTIMER_MODE_ABS_PINNED_HARD) ;
852 t ick_nohz_act ivate (ts , NOHZ_MODE_HIGHRES) ;
853
854 in s ta l l_para t i ck_hand l e r () ;
855 }
856 #e n d i f /∗ HIGH_RES_TIMERS ∗/
857
858 #i f de f ined CONFIG_NO_HZ_COMMON | | de f ined

CONFIG_HIGH_RES_TIMERS
859 void tick_cancel_sched_timer (i n t cpu)
860 {
861 s t r u c t t ick_sched ∗ t s = &per_cpu (tick_cpu_sched , cpu) ;
862
863 # i f d e f CONFIG_HIGH_RES_TIMERS
864 i f (ts−>sched_timer . base)
865 hrt imer_cance l (&ts−>sched_timer) ;

GUEST 219

866 # e n d i f
867
868 memset (ts , 0 , s i z e o f (∗ t s)) ;
869 }
870 #e n d i f
871
872 //Async n o t i f i c a t i o n about c l o c k s o u r c e changes
873 void t i ck_c lock_not i fy (void)
874 {
875 i n t cpu ;
876 for_each_possible_cpu (cpu)
877 set_bi t (0 , &per_cpu (tick_cpu_sched , cpu) . check_clocks) ;
878 }
879
880 //Async n o t i f i c a t i o n about c l o ck event changes
881 void t ick_oneshot_not i fy (void)
882 {
883 s t r u c t t ick_sched ∗ t s = this_cpu_ptr(&tick_cpu_sched) ;
884 se t_bi t (0 , &ts−>check_clocks) ;
885 }
886
887 i n t tick_check_oneshot_change (i n t allow_nohz)
888 {
889 s t r u c t t ick_sched ∗ t s = this_cpu_ptr(&tick_cpu_sched) ;
890
891 i f (! test_and_clear_bit (0 , &ts−>check_clocks))
892 return 0 ;
893
894 i f (ts−>nohz_mode != NOHZ_MODE_INACTIVE)
895 return 0 ;
896
897 i f (! t imekeeping_val id_for_hres () | | !

t i ck_is_oneshot_ava i lab l e ())
898 return 0 ;
899
900 i f (! allow_nohz)
901 return 1 ;
902
903 tick_nohz_switch_to_nohz () ;
904 re turn 0 ;
905 }

Appendix B

Ptlbmalloc2 Source Code

Below the entire ptlbmalloc2 code base. This code may be compiled to a static
library and linked into any application based on glibc.

B.1 Headers

B.1.1 Global.h

1 #i f n d e f GLOBAL_H
2 #d e f i n e GLOBAL_H
3
4 //GLOBAL VARIABLES
5 extern s i z e_t TOP_PAD;
6 extern s i z e_t HEAP_M_SIZE;
7 extern s i z e_t MMAP_THRESHOLD;
8 extern s i z e_t MAX_MMAP_THRESHOLD;
9 extern s i z e_t TRIM_THRESHOLD;

10
11 //EXTERNAL FUNCTIONS
12 extern void ∗ __libc_malloc (s i z e_t s i z e) ;
13 extern void __libc_free (void ∗ ptr) ;
14 extern void ∗ __libc_cal loc (s i z e_t num, s i z e_t s i z e) ;
15 extern void ∗ __libc_rea l loc (void ∗ ptr , s i z e_t s i z e) ;
16
17 #e n d i f

221

222 PTLBMALLOC2 SOURCE CODE

B.1.2 Types.h

1 #i f n d e f TYPES_H
2 #d e f i n e TYPES_H
3
4 typede f void ∗ ptmalloc2_ptr ;
5 typede f void ∗ mchunk_ptr ;
6 typede f s i z e_t s i z e _ f i e l d ;
7 typede f char f l ag s_t ;
8
9 // Placeho lder f o r the g l i b c mal loc_state s t r u c t

10 typede f s t r u c t _malloc_state_proxy
11 {
12 i n t l ock ;
13 i n t f l a g s ;
14 i n t have_fastchunks ;
15 void ∗ f a s t b i n s [1 0] ;
16 void ∗ top ;
17 void ∗ last_remainder ;
18 void ∗ bins [2 5 4] ;
19 unsigned i n t binmap [4] ;
20 s t r u c t _malloc_state_proxy ∗ next ;
21 s t r u c t _malloc_state_proxy ∗ next_free ;
22 s i z e_t attached_threads ;
23 s i z e_t system_mem ;
24 s i z e_t max_system_mem ;
25 } arena ;
26
27 typede f s t r u c t _mem_state{
28 s i z e_t used ;
29 s i z e_t top ;
30 } mem_state ;
31
32 // Placeho lder f o r the g l i b c heap_info s t r u c t
33 typede f s t r u c t _heap_info_proxy
34 {
35 arena ∗ arena ;
36 s t r u c t _heap_info_proxy ∗ prev ;
37 s i z e_t s i z e ;
38 s i z e_t mprotect_size ;
39 } heap_info_proxy ;
40
41 #e n d i f

B.1.3 CPU_monitor.h

HEADERS 223

1 #i f n d e f CPU_MONITOR_H
2 #d e f i n e CPU_MONITOR_H
3
4 extern unsigned shor t used_cpus ;
5 extern unsigned shor t max_cpus ;
6
7 void init_cpu_monitor () ;
8
9 #e n d i f

B.1.4 Chunk.h

1 #i f n d e f CHUNK_H
2 #d e f i n e CHUNK_H
3
4 #inc lude <stdboo l . h>
5 #inc lude " types . h "
6
7 #d e f i n e MCHUNK_PTR_TO_PTMALLOC2_PTR(ptr) (ptr + 2 ∗ s i z e o f (

s i z e_t))
8 #d e f i n e IS_MMAPPED(chunk) (∗ ((s i z e_t ∗) chunk − 1) & 2)
9 #d e f i n e HEAP_INFO(ptr) ((heap_info_proxy ∗) ((long) ptr & ~(

HEAP_M_SIZE −1)))
10 #d e f i n e ARENA(ptr) (HEAP_INFO(ptr)−>arena)
11 #d e f i n e MAIN(ptr) (! (∗ ((s i z e_t ∗) ptr − 1) & 4))
12 #d e f i n e PREV_INUSE(chunk) (∗ ((s i z e_t ∗) chunk − 1) & 1)
13 #d e f i n e SIZE_FIELD(ptr) (∗ ((s i z e_t ∗) ptr −1))
14 #d e f i n e SIZE (ptr) (SIZE_FIELD(ptr) & ~(7))
15 #d e f i n e FLAGS(ptr) (SIZE_FIELD(ptr) & 7)
16 #d e f i n e TOP(ar) (SIZE (MCHUNK_PTR_TO_PTMALLOC2_PTR(ar−>top)))
17
18 void set_chunk_size (ptmalloc2_ptr ptr , s i z e_t s i z e) ;
19 void set_chunk_size_head (ptmalloc2_ptr ptr , s i z e_t s i z e) ;
20
21 #e n d i f

B.1.5 Arena.h

1 #i f n d e f ARENA_H
2 #d e f i n e ARENA_H
3
4 #inc lude <s t dde f . h>
5 #inc lude <stdboo l . h>
6 #inc lude " types . h "
7

224 PTLBMALLOC2 SOURCE CODE

8 extern arena ∗ main_arena ;
9

10 void in i t_arenas (ptmalloc2_ptr ptr) ;
11 void add_arena (arena ∗ ar) ;
12
13 bool arena_ex i s t s (arena ∗ ar) ;
14 i n t num_arenas () ;
15
16 mem_state get_mem_state () ;
17 void trim_arenas () ;
18 void expand_arena (arena ∗ ar) ;
19 bool need_trim () ;
20
21 #e n d i f

B.1.6 Ptlbmalloc2.h

1 #i f n d e f PTLBMALLOC2_H
2 #d e f i n e PTLBMALLOC2_H
3
4 extern void ∗ malloc (s i z e_t s i z e) ;
5 extern void f r e e (void ∗ ptr) ;
6 extern void ∗ c a l l o c (s i z e_t num, s i z e_t s i z e) ;
7 extern void ∗ r e a l l o c (void ∗ ptr , s i z e_t s i z e) ;
8
9 i n t s e t _ s e n s i t i v i t y (f l o a t va l) ;

10
11 #e n d i f

B.2 Implementation

B.2.1 CPU_monitor.c

1 #inc lude <sys / time . h>
2 #inc lude <s i g n a l . h>
3 #inc lude <s t d i o . h>
4 #inc lude <stdboo l . h>
5 #inc lude <sys / t imes . h>
6 #inc lude <sys / s y s i n f o . h>
7 #inc lude <uni s td . h>
8
9 unsigned shor t max_cpus ;

10 f l o a t ticks_per_us ;
11 s t r u c t tms las t_t imes ;

IMPLEMENTATION 225

12 unsigned shor t used_cpus ;
13
14 // Estimate the number o f CPUs c u r r e n t l y being used by the

program .
15 s t a t i c void calc_cpus (i n t s i g) {
16 //When the number o f used CPUs can not be determined ,

assume a l l system CPUs are used .
17 used_cpus = max_cpus ;
18
19 i n t passed_usecs = 1000000;
20 unsigned shor t cpus_used ;
21
22 //Get CPU time passed
23 s t r u c t tms cur_times ;
24 t imes(&cur_times) ;
25 f l o a t cpu_time = (cur_times . tms_utime + cur_times . tms_stime

− l a s t_t imes . tms_utime − l a s t_t imes . tms_stime) /
ticks_per_us ;

26 cpus_used = cpu_time/ passed_usecs ;
27 i f (cpus_used > max_cpus | | cpus_used == 0) return ;
28
29 // I f s u c c e s s f u l , s e t new va lues
30 las t_t imes = cur_times ;
31 used_cpus = cpus_used ;
32 }
33
34 void init_cpu_monitor () {
35 t imes(& las t_t imes) ;
36 max_cpus = get_nprocs () ;
37 ticks_per_us = syscon f (_SC_CLK_TCK) /1000000 .0 ;
38 used_cpus = max_cpus ;
39
40 s i g n a l (SIGALRM, calc_cpus) ;
41 s t r u c t i t i m e r v a l t imer ;
42 t imer . i t _ i n t e r v a l . tv_sec = 1 ;
43 t imer . i t _ i n t e r v a l . tv_usec = 0 ;
44 t imer . i t_value . tv_sec = 1 ;
45 t imer . i t_value . tv_usec = 0 ;
46 s e t i t i m e r (ITIMER_REAL, &timer , NULL) ;
47 }

B.2.2 Chunk.c

1 #inc lude <s t d i o . h>
2 #inc lude <stdboo l . h>
3 #inc lude " g l o b a l . h "

226 PTLBMALLOC2 SOURCE CODE

4 #inc lude " types . h "
5
6
7 void set_chunk_size (ptmalloc2_ptr ptr , s i z e_t s i z e) {
8 ∗ ((s i z e_t ∗) ptr − 1) = s i z e ;
9 ∗ ((s i z e_t ∗) (ptr + s i z e − 2)) = s i z e ;

10 }
11
12 void set_chunk_size_head (ptmalloc2_ptr ptr , s i z e_t s i z e) {
13 ∗ ((s i z e_t ∗) ptr − 1) = s i z e ;
14 }

B.2.3 Arena.c

1 #inc lude <sys /mman. h>
2 #inc lude <uni s td . h>
3 #inc lude <sys / s y s c a l l . h>
4 #inc lude <l inux / futex . h>
5 #inc lude <sys / time . h>
6 #inc lude <s t d i o . h>
7 #inc lude <stdboo l . h>
8 #inc lude <mal loc . h>
9 #inc lude <pthread . h>

10 #inc lude " cpu_monitor . h "
11 #inc lude " chunk . h "
12 #inc lude " g l o b a l . h "
13
14
15 i n t max_arenas ;
16 arena ∗∗ arenas = NULL;
17 arena ∗ main_arena ;
18
19 s t a t i c i n l i n e void set_main_arena (ptmalloc2_ptr ptr)
20 {
21 arena ∗ a = HEAP_INFO(ptr)−>arena ;
22 arena ∗ ar = a−>next ;
23 arena ∗ max = a ;
24 whi l e (ar != a)
25 {
26 i f (ar > max) max = ar ;
27 ar = ar−>next ;
28 }
29 main_arena = max ;
30 }
31
32 s t a t i c void ∗ find_main_arena (void ∗ arg)

IMPLEMENTATION 227

33 {
34 ptmalloc2_ptr ptr = __libc_malloc (1024) ;
35 set_main_arena (ptr) ;
36 __libc_free (ptr) ;
37 }
38
39 void in i t_arenas (ptmalloc2_ptr ptr)
40 {
41 max_arenas = 8 ∗ max_cpus ;
42 arenas = mmap(NULL, max_arenas ∗ s i z e o f (arena ∗) ,

PROT_READ | PROT_WRITE, MAP_PRIVATE | MAP_ANONYMOUS, −1,
0) ;

43
44 i f (MAIN(ptr))
45 {
46 pthread_t thread ;
47 pthread_create(&thread , NULL, &find_main_arena , NULL) ;
48 pthread_join (thread , NULL) ;
49 }
50 e l s e set_main_arena (ptr) ;
51 }
52
53 // Futex s y s c a l l wrapper
54 s t a t i c i n l i n e i n t fu tex (i n t ∗uaddr , i n t futex_op , i n t val ,

const s t r u c t t imespec ∗ timeout , i n t ∗uaddr2 , i n t va l3)
55 {
56 return s y s c a l l (SYS_futex , uaddr , futex_op , val , timeout ,

uaddr , va l3) ;
57 }
58
59 //Lock an arena
60 s t a t i c void lock_arena (arena ∗ ar)
61 {
62 i n t ∗ l o ck = &ar−>lock ;
63 i f (__sync_val_compare_and_swap (lock , 0 , 1)) {
64 do {
65 i n t old_val = __sync_val_compare_and_swap (lock , 1 , 2) ;
66 i f (old_val != 0) fu tex (lock , FUTEX_WAIT_PRIVATE, 2 ,

NULL, NULL, 0) ;
67 } whi l e (__sync_val_compare_and_swap (lock , 0 , 2) != 0) ;
68 }
69
70 }
71
72 // Unlock an arena
73 s t a t i c void unlock_arena (arena ∗ ar)

228 PTLBMALLOC2 SOURCE CODE

74 {
75 i n t ∗ l o ck = &ar−>lock ;
76 i n t old_val = __sync_lock_test_and_set (lock , 0) ;
77 i f (old_val > 1) fu tex (lock , FUTEX_WAKE_PRIVATE, 1 , NULL,

NULL, 0) ;
78 }
79
80 bool arena_ex i s t s (arena ∗ ar)
81 {
82 i n t i = 0 ;
83 whi l e (i < max_arenas && arenas [i] != NULL) {
84 i f (arenas [i] == ar) re turn true ;
85 i ++;
86 }
87 return f a l s e ;
88 }
89
90 //Add new non−main arena
91 void add_arena (arena ∗ ar)
92 {
93 i n t i = 0 ;
94 whi l e (arenas [i] != NULL)
95 {
96 i f (arenas [i] == ar) re turn ;
97 i ++;
98 }
99 whi l e (__sync_val_compare_and_swap (arenas + i , NULL, ar)

!= NULL)
100 {
101 i f (arenas [i] == ar) re turn ;
102 i ++;
103 }
104 }
105
106 //Get the amount o f used and top memory
107 mem_state get_mem_state ()
108 {
109 mem_state s t a t e ;
110 lock_arena (main_arena) ;
111 s t a t e . top = TOP(main_arena) ;
112 s t a t e . used = main_arena−>system_mem ;
113 unlock_arena (main_arena) ;
114 i n t i = 0 ;
115 whi l e (i < max_arenas && arenas [i] != NULL)
116 {
117 arena ∗ ar = arenas [i] ;

IMPLEMENTATION 229

118 lock_arena (ar) ;
119 s t a t e . used += ar−>system_mem ;
120 s t a t e . top += TOP(ar) ;
121 unlock_arena (ar) ;
122 i ++;
123 }
124 return s t a t e ;
125 }
126
127 bool need_trim ()
128 {
129 s i z e_t top ;
130 lock_arena (main_arena) ;
131 top = TOP(main_arena) ;
132 unlock_arena (main_arena) ;
133 i n t i = 0 ;
134 whi l e (i < max_arenas && arenas [i] != NULL)
135 {
136 arena ∗ ar = arenas [i] ;
137 lock_arena (ar) ;
138 top += TOP(ar) ;
139 unlock_arena (ar) ;
140 i f (top > TRIM_THRESHOLD) return true ;
141 i ++;
142 }
143 return f a l s e ;
144 }
145
146 //Trimming func t i on f o r non−main arenas
147 s t a t i c i n l i n e void trim_arena (arena ∗ ar)
148 {
149 lock_arena (ar) ;
150 mchunk_ptr top = ar−>top ;
151 ptmalloc2_ptr top_chunk = MCHUNK_PTR_TO_PTMALLOC2_PTR(top

) ;
152 s i z e_t top_size = SIZE (top_chunk) ;
153
154 void ∗ addr = (void ∗) (((long) (top + TOP_PAD) | 4095) + 1) ;
155 unsigned long l en = (unsigned long) (top + top_size − addr

) ;
156
157 i f (top_size > 2 ∗ TOP_PAD
158 && top_size − l en > 32) {
159 s i z e_t size_new_top = (top_size − l en) ;
160 madvise (addr , len , MADV_DONTNEED) ;
161 set_chunk_size_head (top_chunk , size_new_top | 1) ;

230 PTLBMALLOC2 SOURCE CODE

162
163 heap_info_proxy∗ top_heap_info = HEAP_INFO((top)) ;
164 top_heap_info−>s i z e −= len ;
165 ar−>system_mem −= len ;
166 }
167 unlock_arena (ar) ;
168 }
169
170 //Trim a l l arenas
171 void trim_arenas ()
172 {
173 malloc_trim (TOP_PAD) ;
174
175 //Trim non−main arenas
176 i n t i =0;
177 whi l e (i < max_arenas && arenas [i] != NULL) {
178 trim_arena (arenas [i]) ;
179 i ++;
180 }
181 }
182
183 i n t num_arenas ()
184 {
185 i n t i = 0 ;
186 whi l e (i < max_arenas && arenas [i] != NULL) i ++;
187 return i + 1 ;
188 }
189
190
191 void expand_arena (arena ∗ ar)
192 {
193 lock_arena (ar) ;
194 heap_info_proxy∗ i n f o = HEAP_INFO(ar−>top) ;
195 // Reca l cu l a t e a f t e r l o c k i n g
196 s i z e_t top_mprotect = in fo −>mprotect_size − i n fo −>s i z e ;
197 i f (top_mprotect >= 0.25 ∗ TOP_PAD)
198 {
199 unlock_arena (ar) ;
200 re turn ;
201 }
202
203 void ∗ addr = (void ∗) i n f o + in fo −>mprotect_size ;
204 s i z e_t l en = ((TOP_PAD − top_mprotect) | 4095) + 1 ;
205 i f (in fo −>mprotect_size + len < HEAP_M_SIZE
206 && mprotect (addr , len , PROT_READ | PROT_WRITE) == 0)
207 {

IMPLEMENTATION 231

208 in fo −>mprotect_size += len ;
209 ar−>system_mem += len ;
210 i f (ar−>system_mem > ar−>max_system_mem) ar−>

max_system_mem = ar−>system_mem ;
211 }
212 e l s e
213 {
214 unlock_arena (ar) ;
215 re turn ;
216 }
217 unlock_arena (ar) ;
218 }

B.2.4 Ptlbmalloc2.c

1 #inc lude <mal loc . h>
2 #inc lude <uni s td . h>
3 #inc lude <sys /mman. h>
4 #inc lude <s t d l i b . h>
5 #inc lude <s t d i o . h>
6
7 #inc lude " g l o b a l . h "
8 #inc lude " types . h "
9 #inc lude " chunk . h "

10 #inc lude " arena . h "
11 #inc lude " cpu_monitor . h "
12
13
14 //STATIC DATA
15
16 // Synchron izat ion
17 bool i n i t = f a l s e ;
18 bool i n i t _ b a r r i e r = f a l s e ;
19 bool t r im_barr i e r = f a l s e ;
20
21 //User−c o n t r o l l a b l e s e n s i t i v i t y
22 f l o a t tune = 1 ;
23
24 s i z e_t TOP_PAD = 0 ;
25 s i z e_t TRIM_THRESHOLD = 100000;
26 s i z e_t HEAP_M_SIZE = 8388608 ∗ s i z e o f (long) ;
27 s i z e_t MMAP_THRESHOLD = 128 ∗ 1024 ;
28 s i z e_t MAX_MMAP_THRESHOLD = 64 ∗ 1024 ∗ 1024 ;
29
30
31 // I n i t i a l i z a t i o n . Executed on f i r s t mal loc c a l l .

232 PTLBMALLOC2 SOURCE CODE

32 s t a t i c ptmalloc2_ptr a l l o c a t e (s i z e_t s i z e , i n t num) {
33 char buf [2 5 6] ;
34 ptmalloc2_ptr ptr ;
35 i f (! i n i t && __sync_bool_compare_and_swap(& i n i t _ b a r r i e r ,

f a l s e , t rue)) {
36 mal lopt (M_TRIM_THRESHOLD, −1) ;
37 init_cpu_monitor () ;
38 ptr = num >= 0 ? __libc_cal loc (num, s i z e) : __libc_malloc

(s i z e) ;
39
40 in i t_arenas (ptr) ;
41 i n i t = true ;
42 }
43 e l s e {
44 ptr = num >= 0 ? __libc_cal loc (num, s i z e) : __libc_malloc

(s i z e) ;
45 }
46 i f (!IS_MMAPPED(ptr) && i n i t)
47 {
48 s i z e_t s ize_mal loced = SIZE (ptr) ;
49 i f (!MAIN(ptr))
50 {
51 arena ∗ ar = ARENA(ptr) ;
52 i f (! a rena_ex i s t s (ar)) add_arena (ar) ;
53 e l s e {
54 heap_info_proxy∗ i n f o = HEAP_INFO(ptr) ;
55 arena ∗ ar = in fo −>arena ;
56 s i z e_t top_mprotect = in fo −>mprotect_size − i n fo −>

s i z e ;
57 i f (top_mprotect < 0 .25 ∗ TOP_PAD) expand_arena (ar)

;
58 }
59 }
60 }
61 return ptr ;
62 }
63
64 s t a t i c i n l i n e void update_thresholds ()
65 {
66 //Get cur rent memory s t a t e
67 mem_state s t a t e = get_mem_state () ;
68 s i z e_t used_size = s t a t e . used ;
69 s i z e_t top_size = s t a t e . top ;
70
71 s i z e_t base ;

IMPLEMENTATION 233

72 // I f a l l o c a t e d memory i s sma l l e r than 500kB , use f i x e d base
th r e sho ld o f 100kB

73 i f (used_size < 500000) base = 100000;
74 // I f memory i s sma l l e r than 1MB, use base th r e sho ld o f h a l f

the a l l o c a t e d memory
75 e l s e i f (used_size < 1000000) base = 0.5∗ used_size ;
76 // I f sma l l e r than 1GB, l i n e a r l y dec r ea se the percentage o f

memory that the th r e sho ld value r e p r e s e n t s .
77 e l s e i f (used_size < 1000000000) base = 0 .1 ∗ used_size +

400000;
78 // I f more than 1GB a l l o c a t e d , use f i x e d thre sho ld o f 100MB.
79 e l s e base = 100000000;
80
81 //More CPUs means TLB shootdowns are more expens ive , so

i n c r e a s e th r e sho ld based on number o f CPUs used .
82 // Allow tuning by user
83 s i z e_t new_trim_threshold = base ∗ (1 + ((f l o a t) used_cpus)

/ 100 . 0) ∗ tune ;
84
85 i f (new_trim_threshold > 1.25 ∗ TRIM_THRESHOLD
86 | | new_trim_threshold < 0.75 ∗ TRIM_THRESHOLD)
87 {
88 TRIM_THRESHOLD = new_trim_threshold ;
89 i n t n_arenas = num_arenas () ;
90 s i z e_t new_top_pad = new_trim_threshold / 4 / n_arenas ;
91 TOP_PAD = new_top_pad ;
92 mal lopt (M_TOP_PAD, new_top_pad) ;
93 }
94 }
95
96 // Malloc wrapper
97 void ∗ malloc (s i z e_t s i z e) {
98 return a l l o c a t e (s i z e , −1) ;
99 }

100
101 // Free wrapper
102 void f r e e (void ∗ ptr) {
103 i f (ptr != NULL && i n i t)
104 {
105 bool main = MAIN(ptr) ;
106 bool mmapped = IS_MMAPPED(ptr) ;
107 s i z e_t s i z e = SIZE (ptr) ;
108
109 i f (mmapped
110 && s i z e > MMAP_THRESHOLD
111 && s i z e <= MAX_MMAP_THRESHOLD)

234 PTLBMALLOC2 SOURCE CODE

112 {
113 MMAP_THRESHOLD = 1.1 ∗ s i z e > MAX_MMAP_THRESHOLD ?

MAX_MMAP_THRESHOLD : 1 .1 ∗ s i z e ;
114 mal lopt (M_MMAP_THRESHOLD, MMAP_THRESHOLD) ;
115 }
116
117 arena ∗ ar ;
118 s i z e_t old_top_size ;
119 i f (i n i t && ! mmapped) {
120 i f (main) ar = main_arena ;
121 e l s e {
122 ar = ARENA(ptr) ;
123 i f (! a rena_ex i s t s (ar)) add_arena (ar) ;
124 }
125 old_top_size = TOP(ar) ;
126 }
127
128 __libc_free (ptr) ;
129
130
131 s i z e_t new_top_size ;
132 i f (i n i t && ! mmapped)
133 {
134 new_top_size = TOP(ar) ;
135
136 i f (new_top_size > old_top_size
137 && new_top_size > 4 ∗ TOP_PAD
138 && ! tr im_barr i e r
139 && __sync_bool_compare_and_swap(&tr im_barr ier , f a l s e ,

t rue))
140 {
141 i f (need_trim ()) {
142 trim_arenas () ;
143 update_thresholds () ;
144 }
145 tr im_barr i e r = f a l s e ;
146 }
147 }
148 }
149 e l s e __libc_free (ptr) ;
150 }
151
152 void ∗ c a l l o c (s i z e_t num, s i z e_t s i z e) {
153 return a l l o c a t e (s i z e , num) ;
154 }
155

IMPLEMENTATION 235

156 void ∗ r e a l l o c (void ∗ ptr , s i z e_t s i z e) {
157 ptmalloc2_ptr mem = __libc_rea l loc (ptr , s i z e) ;
158 re turn mem;
159 }
160
161 // Allow user to c o n t r o l the trade−o f f between memory

e f f i c i e n c y and TLB shootdowns
162 // Higher va lue s dec r ea s e shootdowns and memory e f f i c i e n c y ,

lower va lue s i n c r e a s e both
163 // Defau l t va lue i s 1
164 // Returns 0 on succes s , −1 when input i s i n v a l i d
165 i n t s e t _ s e n s i t i v i t y (f l o a t va l) {
166 i f (va l > 0) {
167 tune = va l ;
168 re turn 0 ;
169 }
170 e l s e re turn −1;
171 }

Appendix C

NODedup Source Code

All of the NODedup source files that differ from the original Dedup source code
upon which it is based.

C.1 Headers

C.1.1 Chunk_list.h

1 #i f n d e f LINKEDLIST_HEADER
2 #d e f i n e LINKEDLIST_HEADER
3
4 #inc lude <s t d i o . h>
5 #inc lude <s t d l i b . h>
6 #inc lude " dedupdef . h "
7
8 typede f s t r u c t node{
9 chunk_t ∗ data ;

10 s t r u c t node ∗ next ;
11 i n t a l l o c a t e d ;
12 char used ;
13 } Node ;
14
15 typede f s t r u c t l i s t {
16 Node ∗ head ;
17 Node ∗ t a i l ;
18 i n t l ength ;
19 } L i s t ;

237

238 NODEDUP SOURCE CODE

20
21 L i s t ∗ empty l i s t () ;
22 void add (chunk_t ∗ elem , L i s t ∗ l i s t) ;
23 L i s t ∗∗ s p l i t (i n t n , L i s t ∗ l i s t) ;
24 L i s t ∗∗ split_mod (i n t n , L i s t ∗ l i s t) ;
25 L i s t ∗ merge (L i s t ∗ l1 , L i s t ∗ l 2) ;
26 L i s t ∗∗ z i p _ s p l i t (i n t n , L i s t ∗∗ l i s t s) ;
27
28 #e n d i f

C.1.2 Iterator.h

1 #inc lude <s t d l i b . h>
2 #inc lude " chunk_l i s t . h "
3
4 typede f s t r u c t i t e r a t o r {
5 L i s t ∗ l i s t ;
6 Node ∗ index ;
7 } I t e r a t o r ;
8
9 I t e r a t o r ∗ i n i t _ i t e r a t o r (L i s t ∗ l i s t) ;

10 chunk_t ∗ next (I t e r a t o r ∗ i t e r) ;
11 Node ∗ next_node (I t e r a t o r ∗ i t e r) ;
12 void r e s e t (I t e r a t o r ∗ i t e r) ;
13 i n t hasNext (I t e r a t o r ∗ i t e r) ;
14 void d e s t r o y _ i t e r a t o r (I t e r a t o r ∗ i t e r) ;

C.1.3 Thread_pool.h

1 #i f n d e f _THPOOL_
2 #d e f i n e _THPOOL_
3
4 typede f s t r u c t thpool_∗ threadpoo l ;
5
6 threadpoo l thpoo l_ in i t (i n t num_threads) ;
7 i n t thpool_add_work (threadpool , void (∗ function_p) (void ∗) ,

void ∗ arg_p) ;
8 //Wait f o r a l l queued jobs to f i n i s h
9 void thpool_wait (threadpoo l) ;

10 void thpool_pause (threadpoo l) ;
11 void thpool_resume (threadpoo l) ;
12 void thpool_destroy (threadpoo l) ;
13 i n t thpool_num_threads_working (threadpoo l) ;
14
15 #e n d i f

IMPLEMENTATION 239

C.1.4 Encoder.h

1 #inc lude " chunk_l i s t . h "
2
3 #i f n d e f _ENCODER_H_
4 #d e f i n e _ENCODER_H_ 1
5
6 typede f s t r u c t {
7 s i z e_t s i z e ;
8 char ∗ data ;
9 } Compressed_data ;

10
11 void Encode (conf ig_t ∗ conf) ;
12
13 #e n d i f /∗ !_ENCODER_H_ ∗/

C.2 Implementation

C.2.1 Chunk_list.c

1 #inc lude <s t d l i b . h>
2 #inc lude <s t r i n g . h>
3 #inc lude " chunk_l i s t . h "
4 #inc lude " i t e r a t o r . h "
5
6 void createNNodes (i n t n , L i s t ∗ l i s t) {
7 Node ∗ newNodes = mal loc (n ∗ s i z e o f (Node)) ;
8
9 f o r (i n t i = 0 ; i < n−1; i++){

10 newNodes [i] . a l l o c a t e d = 0 ;
11 newNodes [i] . data = NULL;
12 newNodes [i] . next = &newNodes [i +1] ;
13 newNodes [i] . used = 1 ;
14 }
15 newNodes [0] . a l l o c a t e d = n ;
16 newNodes [n −1] . next = NULL;
17 //No non−empty elemnts
18 i f (l i s t −>t a i l == NULL) {
19 //No empty elements e i t h e r
20 i f (l i s t −>head == NULL) l i s t −>head = newNodes ;
21 //Only empty elements
22 e l s e {
23 Node ∗ h = l i s t −>head ;
24 whi l e (h−>next != NULL) h = h−>next ;
25 h−>next = newNodes ;

240 NODEDUP SOURCE CODE

26 }
27 }
28 e l s e l i s t −>t a i l −>next = newNodes ;
29 }
30
31 void createNodes (L i s t ∗ l i s t) {
32 i n t n ;
33 i f (l i s t −>length < 16) n = 16 ;
34 e l s e i f (l i s t −>length < 1024) n = l i s t −>length ;
35 e l s e n = 1024 ;
36 createNNodes (n , l i s t) ;
37 }
38
39 L i s t ∗ empty l i s t () {
40 L i s t ∗ l i s t = mal loc (s i z e o f (L i s t)) ;
41 l i s t −>head = NULL;
42 l i s t −>t a i l = NULL;
43 l i s t −>length = 0 ;
44 re turn l i s t ;
45 }
46
47 void add (chunk_t ∗ elem , L i s t ∗ l i s t) {
48 i f (l i s t −>head == NULL) createNodes (l i s t) ;
49 i f (l i s t −>head−>data == NULL | | l i s t −>t a i l == NULL) {
50 l i s t −>head−>data = elem ;
51 l i s t −>t a i l = l i s t −>head ;
52 }
53 e l s e {
54 i f (l i s t −>t a i l −>next == NULL) createNodes (l i s t) ;
55 l i s t −>t a i l = l i s t −>t a i l −>next ;
56 l i s t −>t a i l −>data = elem ;
57 }
58 l i s t −>length++;
59 }
60 void add_node (Node ∗ node , L i s t ∗ l i s t) {
61 //Empty l i s t
62 i f (l i s t −>head == NULL) {
63 node−>next = NULL;
64 l i s t −>head = node ;
65 l i s t −>t a i l = node ;
66 }
67 // L i s t with only empty nodes
68 e l s e i f (l i s t −>head−>data == NULL) {
69 node−>next = l i s t −>head ;
70 l i s t −>head = node ;
71 l i s t −>t a i l = node ;

IMPLEMENTATION 241

72 }
73 e l s e {
74 node−>next = l i s t −>t a i l −>next ;
75 l i s t −>t a i l −>next = node ;
76 l i s t −>t a i l = node ;
77 }
78 l i s t −>length++;
79 }
80
81 // Find the number o f memory a l l o c a t i o n s f o r a l i s t .
82 i n t numAllocs (L i s t ∗ l i s t) {
83 i n t l en = l i s t −>length ;
84 i f (l i s t == NULL) return 0 ;
85 e l s e i f (l en < 17) re turn 1 ;
86 e l s e i f (l en < 33) re turn 2 ;
87 e l s e i f (l en < 65) re turn 3 ;
88 e l s e i f (l en < 129) re turn 4 ;
89 e l s e i f (l en < 257) re turn 5 ;
90 e l s e i f (l en < 513) re turn 6 ;
91 e l s e i f (l en < 1025) re turn 7 ;
92 e l s e re turn 7 + ((l en − 1024) / 1024) + ((l en % 1024 == 0)

? 0 : 1) ;
93 }
94
95 // S p l i t s a l i s t in n s u b l i s t s o f s e q u e n t i a l e lements .
96 L i s t ∗∗ s p l i t (i n t n , L i s t ∗ l i s t) {
97 i n t s i z e = (l i s t −>length) /n ;
98 L i s t ∗∗ l i s t s = mal loc (n ∗ s i z e o f (L i s t ∗)) ;
99 f o r (i n t q = 0 ; q<n ; q++) l i s t s [q] = empty l i s t () ;

100 Node ∗ b u f f e r ;
101 b u f f e r = l i s t −>head ;
102
103 f o r (i n t i = 0 ; i< l i s t −>length ; i++){
104 i n t l ;
105 i f (i / s i z e < n) l = (i / s i z e) ;
106 e l s e l = (n−1) ;
107 Node ∗ nn = buf f e r −>next ;
108 add_node (bu f f e r , l i s t s [l]) ;
109 b u f f e r = nn ;
110 }
111 f r e e (l i s t) ;
112
113 return l i s t s ;
114 }
115

242 NODEDUP SOURCE CODE

116 // S p l i t s a l i s t in n s u b l i s t s with each m’ th element o f the
s u b l i s t be ing the (n∗m) ’ th element o f the o r i g i n a l l i s t

117 L i s t ∗∗ split_mod (i n t n , L i s t ∗ l i s t) {
118 L i s t ∗∗ l i s t s = mal loc (n ∗ s i z e o f (L i s t ∗)) ;
119 f o r (i n t q = 0 ; q<n ; q++) l i s t s [q] = empty l i s t () ;
120 i n t i = 0 ;
121 Node ∗ b u f f e r = l i s t −>head ;
122
123 i n t l en = l i s t −>length ;
124 f o r (i n t j = 0 ; j < l en ; j++){
125 Node ∗ nn = buf f e r −>next ;
126 add_node (bu f f e r , l i s t s [i]) ;
127 b u f f e r = nn ;
128
129 i f (i == (n − 1)) i = 0 ;
130 e l s e i ++;
131 }
132 return l i s t s ;
133 }
134
135 void merge_empty (L i s t ∗ l1 , L i s t ∗ l 2) {
136 Node ∗ fempty = NULL;
137 Node ∗ lempty = NULL;
138
139 // I n i t i a l i z e fempty ;
140 i f (l 1 == NULL) l 1 = empty l i s t () ;
141 //Only empty elements in l 1
142 e l s e i f (l1−>head != NULL && l1−>t a i l == NULL) fempty = l1−>

head ;
143 //No empty elements in l 1
144 i f (l1−>head == NULL | | l1−>t a i l −>next == NULL) {
145 i f (l 2 == NULL | | l2−>head == NULL) return ;
146 e l s e i f (l2−>t a i l == NULL) fempty = l2−>head ;
147 e l s e i f (l2−>t a i l −>next == NULL) return ;
148 e l s e fempty = l2−>t a i l −>next ;
149 }
150 // Al l other c a s e s
151 e l s e fempty = l1−>t a i l −>next ;
152
153 // I n i t i a l i z e lempty
154 lempty = fempty ;
155 whi l e (lempty−>next != NULL) lempty = lempty−>next ;
156
157 //merge lempty and f i r s t empty element o f l 2 i f nece s sa ry

IMPLEMENTATION 243

158 i f (l 2 != NULL && l2−>t a i l != NULL && l2−>t a i l −>next != NULL
&& fempty != l2−>t a i l −>next) lempty−>next = l2−>t a i l −>

next ;
159 e l s e i f (l2−>head != NULL && l2−>t a i l == NULL && fempty !=

l2−>head) lempty−>next = l2−>head ;
160
161 //Do what i s nece s sa ry to re turn l 1 with the merged empty

s e c t i o n s ;
162 i f (l1−>head == NULL | | l1−>t a i l == NULL) l1−>head = fempty ;
163 e l s e l1−>t a i l −>next = fempty ;
164
165 //Remove empty nodes from l 2 i f nece s sa ry
166 i f (l 2 != NULL && l2−>t a i l != NULL) l2−>t a i l −>next = NULL;
167 e l s e i f (l 2 != NULL && l2−>head != NULL && l2−>t a i l == NULL

) l2−>head = NULL;
168 }
169
170 L i s t ∗ merge (L i s t ∗ l1 , L i s t ∗ l 2) {
171 i f (l 1 == NULL) return l 2 ;
172 e l s e i f (l1−>head == NULL) {
173 f r e e (l 1) ;
174 re turn l 2 ;
175 }
176 e l s e i f (l 2 == NULL) return l 1 ;
177 e l s e i f (l2−>head == NULL) {
178 f r e e (l 2) ;
179 re turn l 1 ;
180 }
181 merge_empty (l1 , l 2) ;
182 l2−>t a i l −>next = l1−>t a i l −>next ;
183 l1−>t a i l −>next = l2−>head ;
184 l1−>t a i l = l2−>t a i l ;
185 l1−>length += l2−>length ;
186 f r e e (l 2) ;
187 re turn l 1 ;
188 }
189
190 // Zips n l i s t s that were s p l i t us ing split_mod .
191 L i s t ∗∗ z i p _ s p l i t (i n t n , L i s t ∗∗ l i s t s) {
192 L i s t ∗∗ output = mal loc (n∗ s i z e o f (L i s t ∗)) ;
193 f o r (i n t i = 0 ; i < n ; i++){
194 output [i] = empty l i s t () ;
195 merge_empty (output [i] , l i s t s [i]) ;
196 }
197 Node ∗ b u f f e r s [n] ;
198 i n t i ;

244 NODEDUP SOURCE CODE

199 f o r (i =0; i<n ; i++)b u f f e r s [i] = l i s t s [i]−>head ;
200 i n t l en = l i s t s [0]−> length ;
201 i n t o u t _ l i s t = 0 ;
202 i n t count = 0 ;
203
204 f o r (i = 0 ; i<l en ; i++){
205 f o r (i n t j = 0 ; j<n ; j++){
206 i f (b u f f e r s [j] != NULL) {
207 Node ∗ nnn = b u f f e r s [j] ;
208 b u f f e r s [j] = nnn−>next ;
209 add_node (nnn , output [o u t _ l i s t]) ;
210 count++;
211 i f ((o u t _ l i s t < n−1) && (count >= len && ((j < n−1 &&

b u f f e r s [j +1] != NULL && b u f f e r s [j+1]−>data−>sequence .
l1num != nnn−>data−>sequence . l1num)

212 | | (j == n−1 && b u f f e r s [0] != NULL && b u f f e r s
[0]−>data−>sequence . l1num != nnn−>data−>sequence . l1num)))
) {

213 o u t _ l i s t++;
214 count = 0 ;
215 }
216 }
217 }
218 }
219 f o r (i =0; i<n ; i++) f r e e (l i s t s [i]) ;
220 f r e e (l i s t s) ;
221 re turn output ;
222 }

C.2.2 Iterator.c

1 #inc lude " i t e r a t o r . h "
2
3 I t e r a t o r ∗ i n i t _ i t e r a t o r (L i s t ∗ l i s t) {
4 I t e r a t o r ∗ i t e r = mal loc (s i z e o f (I t e r a t o r)) ;
5 i t e r −>l i s t = l i s t ;
6 i t e r −>index = NULL;
7 re turn i t e r ;
8 }
9

10 Node ∗ next_node (I t e r a t o r ∗ i t e r) {
11 Node ∗ n = i t e r −>index ;
12 i f (n == NULL) {
13 n = i t e r −>l i s t −>head ;
14 i f (n == NULL | | n−>data==NULL) return NULL;
15 e l s e {

IMPLEMENTATION 245

16 i t e r −>index = n ;
17 re turn n ;
18 }
19 }
20 Node ∗ nn = n−>next ;
21 i f (nn == NULL | | nn−>data==NULL) return NULL;
22 i t e r −>index = nn ;
23 re turn nn ;
24 }
25
26 chunk_t ∗ next (I t e r a t o r ∗ i t e r) {
27 Node ∗ n = next_node (i t e r) ;
28 i f (n == NULL | | n−>data == NULL) return NULL;
29 return n−>data ;
30 } ;
31
32 void r e s e t (I t e r a t o r ∗ i t e r) {
33 i t e r −>index = NULL;
34 }
35
36 i n t hasNext (I t e r a t o r ∗ i t e r) {
37 return (i t e r −>index != i t e r −>l i s t −>t a i l) ;
38 }
39
40 void d e s t r o y _ i t e r a t o r (I t e r a t o r ∗ i t e r) {
41 f r e e (i t e r) ;
42 }

C.2.3 Thread_pool.c

1 /∗ ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗
2 ∗ @author Johan Hanssen S e f e r i d i s
3 ∗ License : MIT
4 ∗
5 ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗ ∗/
6
7 /∗ ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗
8 ∗ Author : Johan Hanssen S e f e r i d i s
9 ∗ License : MIT

10 ∗ Desc r ip t i on : Library prov id ing a thread ing pool where you
can add

11 ∗ work . For usage , check the thpool . h f i l e or
README.md

12 ∗
13 ∗//∗∗ @ f i l e thpoo l . h ∗//∗
14 ∗

246 NODEDUP SOURCE CODE

15 ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗ ∗/
16
17 #d e f i n e _POSIX_C_SOURCE 200809L
18 #inc lude <uni s td . h>
19 #inc lude <s i g n a l . h>
20 #inc lude <s t d i o . h>
21 #inc lude <s t d l i b . h>
22 #inc lude <pthread . h>
23 #inc lude <errno . h>
24 #inc lude <time . h>
25 #i f de f ined (__linux__)
26 #inc lude <sys / p r c t l . h>
27 #e n d i f
28 #inc lude " thpoo l . h "
29 #i f d e f THPOOL_DEBUG
30 #d e f i n e THPOOL_DEBUG 1
31 #e l s e
32 #d e f i n e THPOOL_DEBUG 0
33 #e n d i f
34 #i f ! de f i ned (DISABLE_PRINT) | | de f ined (THPOOL_DEBUG)
35 #d e f i n e e r r (s t r) f p r i n t f (s tde r r , s t r)
36 #e l s e
37 #d e f i n e e r r (s t r)
38 #e n d i f
39
40 s t a t i c v o l a t i l e i n t threads_keepa l ive ;
41 s t a t i c v o l a t i l e i n t threads_on_hold ;
42
43 typede f s t r u c t bsem {
44 pthread_mutex_t mutex ;
45 pthread_cond_t cond ;
46 i n t v ;
47 } bsem ;
48
49 typede f s t r u c t job {
50 s t r u c t job ∗ prev ;
51 void (∗ f unc t i on) (void ∗ arg) ;
52 void ∗ arg ;
53 } job ;
54
55 typede f s t r u c t jobqueue {
56 pthread_mutex_t rwmutex ;
57 job ∗ f r o n t ;
58 job ∗ r ea r ;
59 bsem ∗ has_jobs ;
60 i n t l en ;

IMPLEMENTATION 247

61 } jobqueue ;
62
63 typede f s t r u c t thread {
64 i n t id ;
65 pthread_t pthread ;
66 s t r u c t thpool_∗ thpool_p ;
67 } thread ;
68
69 typede f s t r u c t thpool_{
70 thread ∗∗ threads ;
71 v o l a t i l e i n t num_threads_alive ;
72 v o l a t i l e i n t num_threads_working ;
73 pthread_mutex_t thcount_lock ;
74 pthread_cond_t threads_a l l_ id l e ;
75 jobqueue jobqueue ;
76 } thpool_ ;
77
78 s t a t i c i n t thread_in i t (thpool_∗ thpool_p , s t r u c t thread ∗∗

thread_p , i n t id) ;
79 s t a t i c void ∗ thread_do (s t r u c t thread ∗ thread_p) ;
80 s t a t i c void thread_hold (i n t s ig_id) ;
81 s t a t i c void thread_destroy (s t r u c t thread ∗ thread_p) ;
82
83 s t a t i c i n t jobqueue_in i t (jobqueue ∗ jobqueue_p) ;
84 s t a t i c void jobqueue_clear (jobqueue ∗ jobqueue_p) ;
85 s t a t i c void jobqueue_push (jobqueue ∗ jobqueue_p , s t r u c t job ∗

newjob_p) ;
86 s t a t i c s t r u c t job ∗ jobqueue_pul l (jobqueue ∗ jobqueue_p) ;
87 s t a t i c void jobqueue_destroy (jobqueue ∗ jobqueue_p) ;
88
89 s t a t i c void bsem_init (s t r u c t bsem ∗bsem_p , i n t va lue) ;
90 s t a t i c void bsem_reset (s t r u c t bsem ∗bsem_p) ;
91 s t a t i c void bsem_post (s t r u c t bsem ∗bsem_p) ;
92 s t a t i c void bsem_post_all (s t r u c t bsem ∗bsem_p) ;
93 s t a t i c void bsem_wait (s t r u c t bsem ∗bsem_p) ;
94
95 /∗ I n i t i a l i s e thread pool ∗/
96 s t r u c t thpool_∗ thpoo l_ in i t (i n t num_threads) {
97
98 threads_on_hold = 0 ;
99 threads_keepa l ive = 1 ;

100
101 i f (num_threads < 0) {
102 num_threads = 0 ;
103 }
104

248 NODEDUP SOURCE CODE

105 /∗ Make new thread pool ∗/
106 thpool_∗ thpool_p ;
107 thpool_p = (s t r u c t thpool_ ∗) mal loc (s i z e o f (s t r u c t thpool_)) ;
108 i f (thpool_p == NULL) {
109 e r r (" thpoo l_ in i t () : Could not a l l o c a t e memory f o r thread

pool \n ") ;
110 re turn NULL;
111 }
112 thpool_p−>num_threads_alive = 0 ;
113 thpool_p−>num_threads_working = 0 ;
114
115 /∗ I n i t i a l i s e the job queue ∗/
116 i f (jobqueue_in i t (&thpool_p−>jobqueue) == −1){
117 e r r (" thpoo l_ in i t () : Could not a l l o c a t e memory f o r job

queue\n") ;
118 f r e e (thpool_p) ;
119 re turn NULL;
120 }
121
122 /∗ Make threads in pool ∗/
123 thpool_p−>threads = (s t r u c t thread ∗∗) mal loc (num_threads ∗

s i z e o f (s t r u c t thread ∗)) ;
124 i f (thpool_p−>threads == NULL) {
125 e r r (" thpoo l_ in i t () : Could not a l l o c a t e memory f o r threads

\n ") ;
126 jobqueue_destroy(&thpool_p−>jobqueue) ;
127 f r e e (thpool_p) ;
128 re turn NULL;
129 }
130
131 pthread_mutex_init (&(thpool_p−>thcount_lock) , NULL) ;
132 pthread_cond_init(&thpool_p−>threads_a l l_ id l e , NULL) ;
133
134 /∗ Thread i n i t ∗/
135 i n t n ;
136 f o r (n=0; n<num_threads ; n++){
137 thread_in i t (thpool_p , &thpool_p−>threads [n] , n) ;
138 #i f THPOOL_DEBUG
139 p r i n t f ("THPOOL_DEBUG: Created thread %d in pool \n " , n)

;
140 #e n d i f
141 }
142
143 /∗ Wait f o r threads to i n i t i a l i z e ∗/
144 whi l e (thpool_p−>num_threads_alive != num_threads) {}
145

IMPLEMENTATION 249

146 return thpool_p ;
147 }
148
149
150 /∗ Add work to the thread pool ∗/
151 i n t thpool_add_work (thpool_∗ thpool_p , void (∗ function_p) (

void ∗) , void ∗ arg_p) {
152 job ∗ newjob ;
153
154 newjob=(s t r u c t job ∗) mal loc (s i z e o f (s t r u c t job)) ;
155 i f (newjob==NULL) {
156 e r r (" thpool_add_work () : Could not a l l o c a t e memory f o r new

job \n") ;
157 re turn −1;
158 }
159
160 /∗ add func t i on and argument ∗/
161 newjob−>func t i on=function_p ;
162 newjob−>arg=arg_p ;
163
164 /∗ add job to queue ∗/
165 jobqueue_push(&thpool_p−>jobqueue , newjob) ;
166
167 return 0 ;
168 }
169
170
171 /∗ Wait u n t i l a l l j obs have f i n i s h e d ∗/
172 void thpool_wait (thpool_∗ thpool_p) {
173 pthread_mutex_lock(&thpool_p−>thcount_lock) ;
174 whi l e (thpool_p−>jobqueue . l en | | thpool_p−>

num_threads_working) {
175 pthread_cond_wait(&thpool_p−>threads_a l l_ id l e , &thpool_p

−>thcount_lock) ;
176 }
177 pthread_mutex_unlock(&thpool_p−>thcount_lock) ;
178 }
179
180
181 /∗ Destroy the threadpoo l ∗/
182 void thpool_destroy (thpool_∗ thpool_p) {
183 /∗ No need to des tory i f i t ’ s NULL ∗/
184 i f (thpool_p == NULL) return ;
185
186 v o l a t i l e i n t threads_tota l = thpool_p−>num_threads_alive ;
187

250 NODEDUP SOURCE CODE

188 /∗ End each thread ’ s i n f i n i t e loop ∗/
189 threads_keepa l ive = 0 ;
190
191 /∗ Give one second to k i l l i d l e threads ∗/
192 double TIMEOUT = 1 . 0 ;
193 time_t s ta r t , end ;
194 double tpassed = 0 . 0 ;
195 time (& s t a r t) ;
196 whi l e (tpassed < TIMEOUT && thpool_p−>num_threads_alive) {
197 bsem_post_all (thpool_p−>jobqueue . has_jobs) ;
198 time (&end) ;
199 tpassed = d i f f t i m e (end , s t a r t) ;
200 }
201
202 /∗ Po l l remaining threads ∗/
203 whi l e (thpool_p−>num_threads_alive) {
204 bsem_post_all (thpool_p−>jobqueue . has_jobs) ;
205 s l e e p (1) ;
206 }
207
208 /∗ Job queue cleanup ∗/
209 jobqueue_destroy(&thpool_p−>jobqueue) ;
210 /∗ Dea l l o c s ∗/
211 i n t n ;
212 f o r (n=0; n < threads_tota l ; n++){
213 thread_destroy (thpool_p−>threads [n]) ;
214 }
215 f r e e (thpool_p−>threads) ;
216 f r e e (thpool_p) ;
217 }
218
219
220 /∗ Pause a l l threads in threadpoo l ∗/
221 void thpool_pause (thpool_∗ thpool_p) {
222 i n t n ;
223 f o r (n=0; n < thpool_p−>num_threads_alive ; n++){
224 pthread_k i l l (thpool_p−>threads [n]−>pthread , SIGUSR1) ;
225 }
226 }
227
228
229 /∗ Resume a l l threads in threadpoo l ∗/
230 void thpool_resume (thpool_∗ thpool_p) {
231 // resuming a s i n g l e threadpoo l hasn ’ t been
232 // implemented yet , meanwhile t h i s s u p r e s s e s
233 // the warnings

IMPLEMENTATION 251

234 (void) thpool_p ;
235
236 threads_on_hold = 0 ;
237 }
238
239
240 i n t thpool_num_threads_working (thpool_∗ thpool_p) {
241 return thpool_p−>num_threads_working ;
242 }
243
244 /∗ I n i t i a l i z e a thread in the thread pool
245 ∗
246 ∗ @param thread address to the po in t e r o f the thread

to be c reated
247 ∗ @param id id to be g iven to the thread
248 ∗ @return 0 on succes s , −1 otherw i s e .
249 ∗/
250 s t a t i c i n t thread_in i t (thpool_∗ thpool_p , s t r u c t thread ∗∗

thread_p , i n t id) {
251
252 ∗ thread_p = (s t r u c t thread ∗) mal loc (s i z e o f (s t r u c t thread)) ;
253 i f (thread_p == NULL) {
254 e r r (" thread_in i t () : Could not a l l o c a t e memory f o r thread \

n") ;
255 re turn −1;
256 }
257
258 (∗ thread_p)−>thpool_p = thpool_p ;
259 (∗ thread_p)−>id = id ;
260
261 pthread_create (&(∗ thread_p)−>pthread , NULL, (void ∗)

thread_do , (∗ thread_p)) ;
262 pthread_detach ((∗ thread_p)−>pthread) ;
263 re turn 0 ;
264 }
265
266 /∗ Sets the c a l l i n g thread on hold ∗/
267 s t a t i c void thread_hold (i n t s ig_id) {
268 (void) s ig_id ;
269 threads_on_hold = 1 ;
270 whi l e (threads_on_hold) {
271 s l e e p (1) ;
272 }
273 }
274
275

252 NODEDUP SOURCE CODE

276 /∗ What each thread i s doing
277 ∗
278 ∗ In p r i n c i p l e t h i s i s an e n d l e s s loop . The only time t h i s

loop ge t s inte ruppted i s once
279 ∗ thpool_destroy () i s invoked or the program e x i t s .
280 ∗
281 ∗ @param thread thread that w i l l run t h i s func t i on
282 ∗ @return nothing
283 ∗/
284 s t a t i c void ∗ thread_do (s t r u c t thread ∗ thread_p) {
285
286 /∗ Set thread name f o r p r o f i l i n g and debuging ∗/
287 char thread_name [1 2 8] = {0} ;
288 s p r i n t f (thread_name , " thread−pool−%d" , thread_p−>id) ;
289
290 #i f de f ined (__linux__)
291 /∗ Use p r c t l i n s t ead to prevent us ing _GNU_SOURCE f l a g and

i m p l i c i t d e c l a r a t i o n ∗/
292 p r c t l (PR_SET_NAME, thread_name) ;
293 #e l i f de f i ned (__APPLE__) && de f ined (__MACH__)
294 pthread_setname_np (thread_name) ;
295 #e l s e
296 e r r (" thread_do () : pthread_setname_np i s not supported on

t h i s system ") ;
297 #e n d i f
298
299 /∗ Assure a l l threads have been created b e f o r e s t a r t i n g

s e r v i n g ∗/
300 thpool_∗ thpool_p = thread_p−>thpool_p ;
301
302 /∗ Reg i s t e r s i g n a l handler ∗/
303 s t r u c t s i g a c t i o n act ;
304 s igemptyset (&act . sa_mask) ;
305 act . sa_f l ag s = 0 ;
306 act . sa_handler = thread_hold ;
307 i f (s i g a c t i o n (SIGUSR1 , &act , NULL) == −1) {
308 e r r (" thread_do () : cannot handle SIGUSR1") ;
309 }
310
311 /∗ Mark thread as a l i v e (i n i t i a l i z e d) ∗/
312 pthread_mutex_lock(&thpool_p−>thcount_lock) ;
313 thpool_p−>num_threads_alive += 1 ;
314 pthread_mutex_unlock(&thpool_p−>thcount_lock) ;
315
316 whi l e (threads_keepa l ive) {
317

IMPLEMENTATION 253

318 bsem_wait (thpool_p−>jobqueue . has_jobs) ;
319
320 i f (threads_keepa l ive) {
321
322 pthread_mutex_lock(&thpool_p−>thcount_lock) ;
323 thpool_p−>num_threads_working++;
324 pthread_mutex_unlock(&thpool_p−>thcount_lock) ;
325
326 /∗ Read job from queue and execute i t ∗/
327 void (∗ func_buff) (void ∗) ;
328 void ∗ arg_buff ;
329 job ∗ job_p = jobqueue_pul l (&thpool_p−>jobqueue) ;
330 i f (job_p) {
331 func_buff = job_p−>func t i on ;
332 arg_buff = job_p−>arg ;
333 func_buff (arg_buff) ;
334 f r e e (job_p) ;
335 }
336
337 pthread_mutex_lock(&thpool_p−>thcount_lock) ;
338 thpool_p−>num_threads_working−−;
339 i f (! thpool_p−>num_threads_working) {
340 pthread_cond_signal(&thpool_p−>threads_a l l_ id l e) ;
341 }
342 pthread_mutex_unlock(&thpool_p−>thcount_lock) ;
343
344 }
345 }
346 pthread_mutex_lock(&thpool_p−>thcount_lock) ;
347 thpool_p−>num_threads_alive −−;
348 pthread_mutex_unlock(&thpool_p−>thcount_lock) ;
349
350 return NULL;
351 }
352
353 /∗ Frees a thread ∗/
354 s t a t i c void thread_destroy (thread ∗ thread_p) {
355 f r e e (thread_p) ;
356 }
357
358 /∗ I n i t i a l i z e queue ∗/
359 s t a t i c i n t jobqueue_in i t (jobqueue ∗ jobqueue_p) {
360 jobqueue_p−>len = 0 ;
361 jobqueue_p−>f r o n t = NULL;
362 jobqueue_p−>rear = NULL;
363

254 NODEDUP SOURCE CODE

364 jobqueue_p−>has_jobs = (s t r u c t bsem ∗) mal loc (s i z e o f (s t r u c t
bsem)) ;

365 i f (jobqueue_p−>has_jobs == NULL) {
366 return −1;
367 }
368
369 pthread_mutex_init (&(jobqueue_p−>rwmutex) , NULL) ;
370 bsem_init (jobqueue_p−>has_jobs , 0) ;
371
372 return 0 ;
373 }
374
375 /∗ Clear the queue ∗/
376 s t a t i c void jobqueue_clear (jobqueue ∗ jobqueue_p) {
377
378 whi l e (jobqueue_p−>len)
379 f r e e (jobqueue_pul l (jobqueue_p)) ;
380
381 jobqueue_p−>f r o n t = NULL;
382 jobqueue_p−>rear = NULL;
383 bsem_reset (jobqueue_p−>has_jobs) ;
384 jobqueue_p−>len = 0 ;
385
386 }
387
388
389 // Add (a l l o c a t e d) job to queue
390 s t a t i c void jobqueue_push (jobqueue ∗ jobqueue_p , s t r u c t job ∗

newjob) {
391
392 pthread_mutex_lock(&jobqueue_p−>rwmutex) ;
393 newjob−>prev = NULL;
394
395 switch (jobqueue_p−>len) {
396
397 case 0 : /∗ i f no jobs in queue ∗/
398 jobqueue_p−>f r o n t = newjob ;
399 jobqueue_p−>rear = newjob ;
400 break ;
401
402 d e f a u l t : /∗ i f j obs in queue ∗/
403 jobqueue_p−>rear−>prev = newjob ;
404 jobqueue_p−>rear = newjob ;
405
406 }
407 jobqueue_p−>len++;

IMPLEMENTATION 255

408
409 bsem_post (jobqueue_p−>has_jobs) ;
410 pthread_mutex_unlock(&jobqueue_p−>rwmutex) ;
411 }
412
413
414 // Get f i r s t job from queue (removes i t from queue)
415 s t a t i c s t r u c t job ∗ jobqueue_pul l (jobqueue ∗ jobqueue_p) {
416
417 pthread_mutex_lock(&jobqueue_p−>rwmutex) ;
418 job ∗ job_p = jobqueue_p−>f r o n t ;
419
420 switch (jobqueue_p−>len) {
421
422 case 0 : /∗ i f no jobs in queue ∗/
423 break ;
424
425 case 1 : /∗ i f one job in queue ∗/
426 jobqueue_p−>f r o n t = NULL;
427 jobqueue_p−>rear = NULL;
428 jobqueue_p−>len = 0 ;
429 break ;
430
431 d e f a u l t : /∗ i f >1 jobs in queue ∗/
432 jobqueue_p−>f r o n t = job_p−>prev ;
433 jobqueue_p−>len −−;
434 /∗ more than one job in queue −> post i t ∗/
435 bsem_post (jobqueue_p−>has_jobs) ;
436
437 }
438
439 pthread_mutex_unlock(&jobqueue_p−>rwmutex) ;
440 re turn job_p ;
441 }
442
443 /∗ Free a l l queue r e s o u r c e s back to the system ∗/
444 s t a t i c void jobqueue_destroy (jobqueue ∗ jobqueue_p) {
445 jobqueue_clear (jobqueue_p) ;
446 f r e e (jobqueue_p−>has_jobs) ;
447 }
448
449 /∗ I n i t semaphore to 1 or 0 ∗/
450 s t a t i c void bsem_init (bsem ∗bsem_p , i n t va lue) {
451 i f (va lue < 0 | | va lue > 1) {
452 e r r (" bsem_init () : Binary semaphore can take only va lue s 1

or 0 ") ;

256 NODEDUP SOURCE CODE

453 e x i t (1) ;
454 }
455 pthread_mutex_init (&(bsem_p−>mutex) , NULL) ;
456 pthread_cond_init (&(bsem_p−>cond) , NULL) ;
457 bsem_p−>v = value ;
458 }
459
460 /∗ Reset semaphore to 0 ∗/
461 s t a t i c void bsem_reset (bsem ∗bsem_p) {
462 bsem_init (bsem_p , 0) ;
463 }
464
465 /∗ Post to at l e a s t one thread ∗/
466 s t a t i c void bsem_post (bsem ∗bsem_p) {
467 pthread_mutex_lock(&bsem_p−>mutex) ;
468 bsem_p−>v = 1 ;
469 pthread_cond_signal(&bsem_p−>cond) ;
470 pthread_mutex_unlock(&bsem_p−>mutex) ;
471 }
472
473 /∗ Post to a l l threads ∗/
474 s t a t i c void bsem_post_all (bsem ∗bsem_p) {
475 pthread_mutex_lock(&bsem_p−>mutex) ;
476 bsem_p−>v = 1 ;
477 pthread_cond_broadcast(&bsem_p−>cond) ;
478 pthread_mutex_unlock(&bsem_p−>mutex) ;
479 }
480
481
482 /∗ Wait on semaphore u n t i l semaphore has va lue 0 ∗/
483 s t a t i c void bsem_wait (bsem∗ bsem_p) {
484 pthread_mutex_lock(&bsem_p−>mutex) ;
485 whi l e (bsem_p−>v != 1) {
486 pthread_cond_wait(&bsem_p−>cond , &bsem_p−>mutex) ;
487 }
488 bsem_p−>v = 0 ;
489 pthread_mutex_unlock(&bsem_p−>mutex) ;
490 }

C.2.4 Encoder.c

1 /∗
2 ∗ Decoder f o r dedup f i l e s
3 ∗
4 ∗ Copyright 2010 Pr inceton Un ive r s i ty .
5 ∗ Al l r i g h t s r e s e rved .

IMPLEMENTATION 257

6 ∗
7 ∗ O r i g i n a l l y wr i t t en by Minlan Yu.
8 ∗ Large ly r e w r i t t e n by Chr i s t i an Bien ia .
9 ∗/

10
11 /∗
12 ∗ The p i p e l i n e model f o r Encode i s Fragment−>FragmentRefine

−>Dedupl icate−>Compress−>Reorder
13 ∗ Each s tage has b a s i c a l l y three s t e p s :
14 ∗ 1 . f e t c h a group o f items from the queue
15 ∗ 2 . p roc e s s the items
16 ∗ 3 . put them in the queue f o r the next s tage
17 ∗/
18
19 #inc lude <a s s e r t . h>
20 #inc lude <s t r i n g s . h>
21 #inc lude <math . h>
22 #inc lude <l i m i t s . h>
23 #inc lude <sys / s t a t . h>
24 #inc lude <f c n t l . h>
25 #inc lude <errno . h>
26 #inc lude <uni s td . h>
27 #inc lude <s t r i n g . h>
28 #inc lude " u t i l . h "
29 #inc lude " dedupdef . h "
30 #inc lude " encoder . h "
31 #inc lude " debug . h "
32 #inc lude " hashtab le . h "
33 #inc lude " c o n f i g . h "
34 #inc lude " rab in . h "
35 #inc lude " mbuffer . h "
36 #inc lude " chunk_l i s t . h "
37 #inc lude " i t e r a t o r . h "
38 #inc lude " thpoo l . h "
39 #i f d e f ENABLE_PTHREADS
40 #inc lude " binheap . h "
41 #inc lude " t r e e . h "
42 #e n d i f //ENABLE_PTHREADS
43 #i f d e f ENABLE_GZIP_COMPRESSION
44 #inc lude <z l i b . h>
45 #e n d i f //ENABLE_GZIP_COMPRESSION
46 #i f d e f ENABLE_BZIP2_COMPRESSION
47 #inc lude <b z l i b . h>
48 #e n d i f //ENABLE_BZIP2_COMPRESSION
49 #i f d e f ENABLE_PTHREADS
50 #inc lude <pthread . h>

258 NODEDUP SOURCE CODE

51 #e n d i f //ENABLE_PTHREADS
52 #i f d e f ENABLE_PARSEC_HOOKS
53 #inc lude <hooks . h>
54 #e n d i f //ENABLE_PARSEC_HOOKS
55
56
57 #d e f i n e INITIAL_SEARCH_TREE_SIZE 4096
58
59
60 //The c o n f i g u r a t i o n block de f ined in main
61 conf ig_t ∗ conf ;
62 //Hash t a b l e data s t r u c t u r e & u t i l i t y f u n c t i o n s
63 s t r u c t hashtab le ∗ cache ;
64 s t a t i c unsigned i n t hash_from_key_fn (void ∗k) {
65 //NOTE: sha1 sum i s in t ege r −a l i gned
66 return ((unsigned i n t ∗) k) [0] ;
67 }
68 s t a t i c i n t keys_equal_fn (void ∗key1 , void ∗key2) {
69 return (memcmp(key1 , key2 , SHA1_LEN) == 0) ;
70 }
71
72
73 #i f d e f ENABLE_STATISTICS
74 //Keep track o f b lock g r a n u l a r i t y
75 #d e f i n e CHUNK_GRANULARITY_POW (7)
76 //Number o f b locks to d i s t i n g u i s h
77 #d e f i n e CHUNK_MAX_NUM (8∗32)
78 //Map a chunk s i z e to a s t a t i s t i c s array s l o t
79 #d e f i n e CHUNK_SIZE_TO_SLOT(s) (((s)>>(CHUNK_GRANULARITY_POW)

) >= (CHUNK_MAX_NUM) ? (CHUNK_MAX_NUM)−1 : ((s)>>(
CHUNK_GRANULARITY_POW)))

80 //Get the average s i z e o f a chunk from a s t a t i s t i c s array
s l o t

81 #d e f i n e SLOT_TO_CHUNK_SIZE(s) ((s)∗(1<<(
CHUNK_GRANULARITY_POW)) + (1<<((CHUNK_GRANULARITY_POW) −1)
))

82
83
84 // Dedupl i cat ion s t a t i s t i c s
85 typede f s t r u c t {
86 /∗ Cumulative s i z e s ∗/
87 s i z e_t tota l_input ; // Total s i z e o f input in bytes
88 s i z e_t total_dedup ; // Total s i z e o f input without d u p l i c a t e

b locks (a f t e r g l o b a l compress ion) in bytes
89 s i z e_t total_compressed ; // Total s i z e o f input stream a f t e r

l o c a l compress ion in bytes

IMPLEMENTATION 259

90 s i z e_t tota l_output ; // Total s i z e o f output in bytes (with
overhead) in bytes

91
92 /∗ S i z e d i s t r i b u t i o n & other p r o p e r t i e s ∗/
93 unsigned i n t nChunks [CHUNK_MAX_NUM] ; // Coarse−granu lar s i z e

d i s t r i b u t i o n o f data chunks
94 unsigned i n t nDupl i cates ; // Total number o f d u p l i c a t e

b locks
95 } stat s_t ;
96
97 //Arguments to pass to each thread
98 s t r u c t thread_args {
99 // thread id , unique with in a thread pool (i . e . unique f o r a

p i p e l i n e s tage)
100 i n t t i d ;
101 //number o f queues a v a i l a b l e , f i r s t and l a s t p i p e l i n e s tage

only
102 i n t nqueues ;
103 // f i l e d e s c r i p t o r , f i r s t p i p e l i n e s tage only
104 i n t fd ;
105 // L i s t o f chunks
106 L i s t ∗ l i s t ;
107
108 // char ∗∗ compressed_data ;
109 Compressed_data ∗ compressed_data ;
110
111 L i s t ∗∗ l i s t_addr ;
112 // input f i l e bu f f e r , f i r s t p i p e l i n e s tage & pre load ing only
113 s t r u c t {
114 void ∗ b u f f e r ;
115 s i z e_t s i z e ;
116 } i n p u t _ f i l e ;
117
118 stat s_t ∗ s t a t s ;
119 } ;
120
121 // I n i t i a l i z e a s t a t i s t i c s record
122 s t a t i c void i n i t _ s t a t s (s tat s_t ∗ s) {
123 i n t i ;
124
125 a s s e r t (s !=NULL) ;
126 s−>tota l_input = 0 ;
127 s−>total_dedup = 0 ;
128 s−>total_compressed = 0 ;
129 s−>total_output = 0 ;
130

260 NODEDUP SOURCE CODE

131 f o r (i =0; i<CHUNK_MAX_NUM; i++) {
132 s−>nChunks [i] = 0 ;
133 }
134 s−>nDupl i cates = 0 ;
135 }
136
137 #i f d e f ENABLE_PTHREADS
138
139 //Merge two s t a t i s t i c s r e co rd s : s1=s1+s2
140 s t a t i c void merge_stats (s tat s_t ∗ s1 , s tat s_t ∗ s2) {
141 i n t i ;
142
143 a s s e r t (s1 !=NULL) ;
144 a s s e r t (s2 !=NULL) ;
145 s1−>tota l_input += s2−>tota l_input ;
146 s1−>total_dedup += s2−>total_dedup ;
147 s1−>total_compressed += s2−>total_compressed ;
148 s1−>total_output += s2−>total_output ;
149
150 f o r (i =0; i<CHUNK_MAX_NUM; i++) {
151 s1−>nChunks [i] += s2−>nChunks [i] ;
152 }
153 s1−>nDupl i cates += s2−>nDupl i cates ;
154 }
155 #e n d i f //ENABLE_PTHREADS
156
157 // Pr int s t a t i s t i c s
158 s t a t i c void pr in t_s ta t s (s tat s_t ∗ s) {
159 const unsigned i n t un i t_st r_s i ze = 7 ; // e lements in

un i t_str array
160 const char ∗ uni t_str [] = { " Bytes " , "KB" , "MB" , "GB" , "TB" ,

"PB" , "EB" } ;
161 unsigned i n t unit_idx = 0 ;
162 s i z e_t unit_div = 1 ;
163
164 a s s e r t (s !=NULL) ;
165
166 // determine most s u i t a b l e un i t to use
167 f o r (unit_idx =0; unit_idx<uni t_st r_s i ze ; unit_idx++) {
168 unsigned i n t unit_div_next = unit_div ∗ 1024 ;
169
170 i f (s−>tota l_input / unit_div_next <= 0) break ;
171 i f (s−>total_dedup / unit_div_next <= 0) break ;
172 i f (s−>total_compressed / unit_div_next <= 0) break ;
173 i f (s−>total_output / unit_div_next <= 0) break ;
174

IMPLEMENTATION 261

175 unit_div = unit_div_next ;
176 }
177
178 p r i n t f (" Total input s i z e : %14.2 f %s \n" , (f l o a t

) (s−>tota l_input) /(f l o a t) (unit_div) , un i t_str [unit_idx]) ;
179 p r i n t f (" Total output s i z e : %14.2 f %s \n" , (f l o a t

) (s−>total_output) /(f l o a t) (unit_div) , un i t_str [unit_idx])
;

180 p r i n t f (" E f f e c t i v e compress ion f a c t o r : %14.2 fx \n" , (f l o a t) (
s−>tota l_input) /(f l o a t) (s−>total_output)) ;

181 p r i n t f (" \n ") ;
182
183 // Total number o f chunks
184 unsigned i n t i ;
185 unsigned i n t nTotalChunks=0;
186 f o r (i =0; i<CHUNK_MAX_NUM; i++) nTotalChunks+= s−>nChunks [i

] ;
187
188 // Average s i z e o f chunks
189 f l o a t mean_size = 0 . 0 ;
190 f o r (i =0; i<CHUNK_MAX_NUM; i++) mean_size += (f l o a t) (

SLOT_TO_CHUNK_SIZE(i)) ∗ (f l o a t) (s−>nChunks [i]) ;
191 mean_size = mean_size / (f l o a t) nTotalChunks ;
192
193 // Variance o f chunk s i z e
194 f l o a t var_s ize = 0 . 0 ;
195 f o r (i =0; i<CHUNK_MAX_NUM; i++) var_s ize += (mean_size − (

f l o a t) (SLOT_TO_CHUNK_SIZE(i))) ∗
196 (mean_size − (

f l o a t) (SLOT_TO_CHUNK_SIZE(i))) ∗
197 (f l o a t) (s−>

nChunks [i]) ;
198
199 p r i n t f (" Total number o f chunks : %d , Dupl i cate chunks : %d\n"

, nTotalChunks , s−>nDupl i cates) ;
200
201 p r i n t f ("Mean data chunk s i z e : %14.2 f %s (stddev :

%.2 f %s) \n " , mean_size / 1024 .0 , "KB" , s q r t f (var_s ize) /
1024 .0 , "KB") ;

202 p r i n t f ("Amount o f d u p l i c a t e chunks : %14.2 f%%\n" , 100 .0∗ (
f l o a t) (s−>nDupl i cates) /(f l o a t) (nTotalChunks)) ;

203 p r i n t f (" Data s i z e a f t e r de dup l i c a t i on : %14.2 f %s (
compress ion f a c t o r : %.2 fx) \n " , (f l o a t) (s−>total_dedup) /(
f l o a t) (unit_div) , un i t_str [unit_idx] , (f l o a t) (s−>
tota l_input) /(f l o a t) (s−>total_dedup)) ;

262 NODEDUP SOURCE CODE

204 p r i n t f (" Data s i z e a f t e r compress ion : %14.2 f %s (
compress ion f a c t o r : %.2 fx) \n " , (f l o a t) (s−>
total_compressed) /(f l o a t) (unit_div) , un i t_str [unit_idx] ,
(f l o a t) (s−>total_dedup) /(f l o a t) (s−>total_compressed)) ;

205 p r i n t f (" Output overhead : %14.2 f%%\n" , 100 .0∗ (
f l o a t) (s−>total_output−s−>total_compressed) /(f l o a t) (s−>
total_output)) ;

206 }
207
208 // v a r i a b l e with g l o b a l s t a t i s t i c s
209 s tat s_t s t a t s ;
210 #e n d i f //ENABLE_STATISTICS
211
212 /∗
213 ∗ Helper func t i on that c r e a t e s and i n i t i a l i z e s the output

f i l e
214 ∗ Takes the f i l e name to use as input and re tu rn s the f i l e

handle
215 ∗ The output f i l e can be used to wr i t e chunks without any

f u r t h e r s t ep s
216 ∗/
217 s t a t i c i n t c rea te_output_f i l e (char ∗ o u t f i l e) {
218 i n t fd ;
219
220 // Create output f i l e
221 fd = open (o u t f i l e , O_CREAT|O_TRUNC|O_WRONLY|O_TRUNC,

S_IRGRP | S_IWUSR | S_IRUSR | S_IROTH) ;
222 i f (fd < 0) {
223 EXIT_TRACE(" Cannot open output f i l e . ") ;
224 }
225
226 // Write header
227 i f (write_header (fd , conf−>compress_type)) {
228 EXIT_TRACE(" Cannot wr i t e output f i l e header . \ n ") ;
229 }
230 return fd ;
231 }
232
233 i n t rf_win ;
234 i n t rf_win_dataprocess ;
235
236 /∗
237 ∗ Computational k e r n e l o f compress ion s tage
238 ∗ Actions performed : Compress a data chunk
239 ∗/
240 void sub_Compress (chunk_t ∗chunk) {

IMPLEMENTATION 263

241 i n t r ;
242
243 a s s e r t (chunk!=NULL) ;
244 switch (conf−>compress_type) {
245 case COMPRESS_NONE:
246 // copy the block
247 chunk−>compressed_data . n = chunk−>uncompressed_data . n

;
248 memcpy(chunk−>compressed_data . ptr , chunk−>

uncompressed_data . ptr , chunk−>uncompressed_data . n) ;
249 break ;
250 #i f d e f ENABLE_GZIP_COMPRESSION
251 case COMPRESS_GZIP:
252 r = compress (chunk−>compressed_data . ptr , &chunk−>

compressed_data . n , chunk−>uncompressed_data . ptr , chunk−>
uncompressed_data . n) ;

253 i f (r != Z_OK) {
254 EXIT_TRACE(" Compression f a i l e d . Error code : %d\n" , r

) ;
255 }
256 break ;
257 #e n d i f //ENABLE_GZIP_COMPRESSION
258 #i f d e f ENABLE_BZIP2_COMPRESSION
259 case COMPRESS_BZIP2:
260 // Bzip compress ion b u f f e r must be at l e a s t 1% l a r g e r

than source b u f f e r p lus 600 bytes
261 n = chunk−>uncompressed_data . n + (chunk−>

uncompressed_data . n >> 6) + 600 ;
262 r = mbuffer_create(&chunk−>compressed_data , n) ;
263 i f (r != 0) {
264 EXIT_TRACE(" Creat ion o f compress ion b u f f e r f a i l e d . \

n ") ;
265 }
266 // compress the block
267 unsigned i n t int_n = n ;
268 r = BZ2_bzBuffToBuffCompress (chunk−>compressed_data .

ptr , &int_n , chunk−>uncompressed_data . ptr , chunk−>
uncompressed_data . n , 9 , 0 , 30) ;

269 n = int_n ;
270 i f (r != BZ_OK) {
271 EXIT_TRACE(" Compression f a i l e d \n") ;
272 }
273 // Shrink b u f f e r to ac tua l s i z e
274 i f (n < chunk−>compressed_data . n) {
275 r = mbuf f e r_rea l l oc (&chunk−>compressed_data , n) ;
276 a s s e r t (r == 0) ;

264 NODEDUP SOURCE CODE

277 }
278 break ;
279 #e n d i f //ENABLE_BZIP2_COMPRESSION
280 d e f a u l t :
281 EXIT_TRACE(" Compression type not implemented . \ n ") ;
282 break ;
283 }
284 mbuf fer_free(&chunk−>uncompressed_data) ;
285
286 #i f d e f ENABLE_PTHREADS
287 chunk−>header . s t a t e = CHUNK_STATE_COMPRESSED;
288 #e n d i f //ENABLE_PTHREADS
289
290 }
291
292 /∗
293 ∗ P i p e l i n e s tage func t i on o f compress ion s tage
294 ∗
295 ∗ Actions performed :
296 ∗ − Dequeue items from compress ion queue
297 ∗ − Execute compress ion k e r n e l f o r each item
298 ∗ − Enqueue each item in to send queue
299 ∗/
300 //#i f d e f ENABLE_PTHREADS
301 void Compress (void ∗ t a r g s) {
302
303 s t r u c t thread_args ∗ args = (s t r u c t thread_args ∗) t a r g s ;
304 L i s t ∗ l i s t = args−>l i s t ;
305
306 #i f d e f ENABLE_STATISTICS
307 stat s_t ∗ thread_stats = args−>s t a t s ;
308 i n i t _ s t a t s (thread_stats) ;
309 #e n d i f //ENABLE_STATISTICS
310
311 // Al l o ca t e memory f o r compressed data b u f f e r s
312
313 i n t total_chunks = 0 ;
314 i n t dupl icate_chunks = 0 ;
315 s i z e_t t o t a l _ s i z e = 0 ;
316 void ∗ mbuffers ;
317 chunk_t ∗ chunk_refs [1 0 0 0] ;
318
319 i n t wr i te_buf fers_index = 0 ;
320
321 I t e r a t o r ∗ i t e r = i n i t _ i t e r a t o r (l i s t) ;
322 whi l e (hasNext (i t e r)) {

IMPLEMENTATION 265

323 chunk_t ∗ c = next (i t e r) ;
324 chunk_refs [total_chunks] = c ;
325 total_chunks++;
326
327 // I f chunk i s unique , update counter to r e s e r v e memory

f o r compressed b u f f e r .
328 i f (c−>header . i s D u p l i c a t e) dupl icate_chunks++;
329 e l s e {
330 thread_stats−>total_dedup += c−>uncompressed_data . n ;
331 s i z e_t ∗ s i z e = &c−>compressed_data . n ;
332 i f (conf−>compress_type == COMPRESS_NONE) ∗ s i z e = c−>

uncompressed_data . n ;
333 e l s e ∗ s i z e = c−>uncompressed_data . n + (c−>

uncompressed_data . n >> 9) + 12 ;
334 t o t a l _ s i z e += ∗ s i z e ;
335 }
336
337 // I f we found 1000 chunks or found the l a s t chunk ,

p roce s s the batch .
338 i f (total_chunks == 1000 | | ! hasNext (i t e r)) {
339 i n t index = 0 ;
340 mbuf fers = mal loc (t o t a l _ s i z e) ;
341 t o t a l _ s i z e = 0 ;
342 f o r (i n t i = 0 ; i<total_chunks ; i++){
343 chunk_t ∗ chunk = chunk_refs [i] ;
344 i f (! chunk−>header . i s D u p l i c a t e) {
345 chunk−>compressed_data . ptr = mbuffers + index ;
346 index += chunk−>compressed_data . n ;
347 sub_Compress (chunk) ;
348 thread_stats−>total_compressed += chunk−>

compressed_data . n ;
349 t o t a l _ s i z e += chunk−>compressed_data . n ;
350 }
351 }
352
353 i n t wr i t e_bu f f e r_s i z e = dupl icate_chunks ∗ SHA1_LEN +

total_chunks ∗ 9 + t o t a l _ s i z e ;
354 char ∗ wr i t e_buf f e r = mal loc (wr i t e_bu f f e r_s i z e) ;
355
356 index = 0 ;
357 f o r (i n t i = 0 ; i < total_chunks ; i++){
358 chunk_t ∗ chunk = chunk_refs [i] ;
359 i f (chunk−>header . i s D u p l i c a t e) {
360 thread_stats−>nDupl i cates++;
361 wr i t e_buf f e r [index] = 0 ;
362 ∗ ((u_long ∗) (& wr i t e_buf f e r [index +1])) = SHA1_LEN;

266 NODEDUP SOURCE CODE

363 index += 9 ;
364 memcpy(wr i t e_buf f e r + index , &chunk−>sha1 , SHA1_LEN

) ;
365 index += SHA1_LEN;
366 }
367 e l s e {
368 wr i t e_buf f e r [index] = 1 ;
369 ∗ ((u_long ∗) (& wr i t e_buf f e r [index +1])) = chunk−>

compressed_data . n ;
370 index += 9 ;
371 memcpy(wr i t e_buf f e r + index , chunk−>compressed_data

. ptr , chunk−>compressed_data . n) ;
372 index += chunk−>compressed_data . n ;
373 }
374 f r e e (chunk) ;
375 }
376 f r e e (mbuf fers) ;
377 args−>compressed_data [wr i te_buf fers_index] . data =

wr i t e_buf f e r ;
378 args−>compressed_data [wr i te_buf fers_index] . s i z e =

wr i t e_bu f f e r_s i z e ;
379 wr i te_buf fers_index++;
380 total_chunks = 0 ;
381 dupl icate_chunks = 0 ;
382 }
383 }
384 d e s t r o y _ i t e r a t o r (i t e r) ;
385 f r e e (l i s t) ;
386 }
387
388 /∗ Computational k e r n e l o f d ed up l i c a t i on s tage
389 ∗
390 ∗ Actions performed :
391 ∗ − Calcu la te SHA1 s i g n a t u r e f o r each incoming data chunk
392 ∗ − Perform database lookup to determine chunk redundancy

s t a t u s
393 ∗ − On miss add chunk to database
394 ∗ − Returns chunk redundancy s t a t u s ∗/
395 i n t sub_Deduplicate (chunk_t ∗chunk) {
396 i n t i s D u p l i c a t e ;
397 i n t i s F i r s t = 1 ;
398 chunk_t ∗ entry ;
399
400 a s s e r t (chunk!=NULL) ;
401 a s s e r t (chunk−>uncompressed_data . ptr !=NULL) ;
402

IMPLEMENTATION 267

403 SHA1_Digest (chunk−>uncompressed_data . ptr , chunk−>
uncompressed_data . n , (unsigned char ∗) (chunk−>sha1)) ;

404
405 //Query database to determine whether we ’ ve seen the data

chunk be f o r e
406 #i f d e f ENABLE_PTHREADS
407 pthread_mutex_t ∗ ht_lock = hashtab le_get lock (cache , (void

∗) (chunk−>sha1)) ;
408 pthread_mutex_lock (ht_lock) ;
409 #e n d i f
410 entry = (chunk_t ∗) hashtable_search (cache , (void ∗) (chunk−>

sha1)) ;
411 i s D u p l i c a t e = (entry != NULL) ;
412 i f (i s D u p l i c a t e) {
413 i f (entry−>sequence . l1num > chunk−>sequence . l1num
414 | | (entry−>sequence . l1num == chunk−>sequence . l1num
415 && entry−>sequence . l2num > chunk−>sequence . l2num)) {
416 i s F i r s t = 1 ;
417 entry−>header . i s D u p l i c a t e = 1 ;
418 chunk−>header . i s D u p l i c a t e = 0 ;
419 entry−>compressed_data_ref = chunk ;
420 mbuf fer_free (&entry−>uncompressed_data) ;
421 i f (hashtab l e_ inse r t (cache , (void ∗) (chunk−>sha1) , (

void ∗) chunk) == 0) {
422 EXIT_TRACE(" hashtab l e_ inse r t f a i l e d ") ;
423 }
424 }
425 e l s e {
426 i s F i r s t = 0 ;
427 chunk−>header . i s D u p l i c a t e = 1 ;
428 entry−>header . i s D u p l i c a t e = 0 ;
429 chunk−>compressed_data_ref = entry ;
430 mbuf fer_free (&chunk−>uncompressed_data) ;
431 }
432 }
433 e l s e {
434 chunk−>header . i s D u p l i c a t e = 0 ;
435 // Cache miss : Create entry in hash t a b l e and forward

data to compress ion s tage
436 #i f d e f ENABLE_PTHREADS
437 pthread_mutex_init(&chunk−>header . lock , NULL) ;
438 pthread_cond_init(&chunk−>header . update , NULL) ;
439 #e n d i f
440 //NOTE: chunk−>compressed_data . b u f f e r w i l l be computed

in compress ion s tage

268 NODEDUP SOURCE CODE

441 i f (ha shtab l e_ inse r t (cache , (void ∗) (chunk−>sha1) , (void
∗) chunk) == 0) {

442 EXIT_TRACE(" hashtab l e_ inse r t f a i l e d ") ;
443 }
444 }
445 #i f d e f ENABLE_PTHREADS
446 pthread_mutex_unlock (ht_lock) ;
447 #e n d i f
448
449 return (i s D u p l i c a t e && ! i s F i r s t) ;
450 }
451
452 /∗ P i p e l i n e s tage func t i on o f de dup l i c a t i on s tage
453 ∗
454 ∗ Actions performed :
455 ∗ − Take input data from fragmentat ion s t a g e s
456 ∗ − Execute d edup l i c a t i on k e r n e l f o r each data chunk
457 ∗ − Route r e s u l t i n g package e i t h e r to compress ion s tage or

to r eo rde r stage , depending on de dup l i c a t i on s t a t u s ∗/
458 #i f d e f ENABLE_PTHREADS
459 void Dedupl icate (void ∗ t a r g s) {
460 s t r u c t thread_args ∗ args = (s t r u c t thread_args ∗) t a r g s ;
461 L i s t ∗ l i s t = args−>l i s t ;
462 Node ∗ node ;
463 Node ∗ b u f f e r = l i s t −>head ;
464
465 #i f d e f ENABLE_STATISTICS
466 stat s_t ∗ thread_stats = args−>s t a t s ;
467 i n i t _ s t a t s (thread_stats) ;
468 #e n d i f //ENABLE_STATISTICS
469
470 i n t l en = l i s t −>length ;
471 f o r (i n t i = 0 ; i< l en ; i++) {
472 node = b u f f e r ;
473 b u f f e r = bu f f e r −>next ;
474 a s s e r t (node−>data !=NULL) ;
475 //Do the p r o c e s s i n g
476 sub_Deduplicate (node−>data) ;
477 }
478 }
479 #e n d i f //ENABLE_PTHREADS
480
481 /∗ P i p e l i n e s tage func t i on and computat ional k e rn e l o f

re f inement s tage
482 ∗
483 ∗ Actions performed :

IMPLEMENTATION 269

484 ∗ − Take coar s e chunks from fragmentat ion s tage
485 ∗ − P a r t i t i o n data block in to sma l l e r chunks with Rabin

r o l l i n g f i n g e r p r i n t s
486 ∗ − Send r e s u l t i n g data chunks to ded up l i c a t i on s tage
487 ∗
488 ∗ Notes :
489 ∗ − A l l o c a t e s mbuf fers f o r f i n e −granu lar chunks ∗/
490 void FragmentRefine (void ∗ t a r g s) {
491 s t r u c t thread_args ∗ args = (s t r u c t thread_args ∗) t a r g s ;
492 i n t r ;
493 L i s t ∗ l i s t = (L i s t ∗) args−>l i s t ;
494
495 chunk_t ∗temp ;
496 chunk_t ∗chunk ;
497 u32int ∗ rab intab = mal loc (256∗ s i z e o f rab intab [0]) ;
498 u32int ∗ rabinwintab = malloc (256∗ s i z e o f rab intab [0]) ;
499 i f (rab intab == NULL | | rabinwintab == NULL) EXIT_TRACE("

Memory a l l o c a t i o n f a i l e d . \ n ") ;
500
501 #i f d e f ENABLE_STATISTICS
502 stat s_t ∗ thread_stats = args−>s t a t s ;
503 i n i t _ s t a t s (thread_stats) ;
504 #e n d i f //ENABLE_STATISTICS
505
506 i n t chcount = 0 ;
507 L i s t ∗ r e f i n e d = empty l i s t () ;
508 I t e r a t o r ∗ i t e r = i n i t _ i t e r a t o r (l i s t) ;
509 whi l e (hasNext (i t e r)) {
510 chunk = next (i t e r) ;
511 a s s e r t (chunk!=NULL) ;
512 r a b i n i n i t (rf_win , rabintab , rabinwintab) ;
513 i n t s p l i t ;
514 chcount = 0 ;
515 do {
516 // Find next anchor with Rabin f i n g e r p r i n t
517 i n t o f f s e t = rab in seg (chunk−>uncompressed_data . ptr ,

chunk−>uncompressed_data . n , rf_win , rabintab , rabinwintab
) ;

518 //Can we s p l i t the b u f f e r ?
519 i f (o f f s e t < chunk−>uncompressed_data . n) {
520 // Al l o ca t e a new chunk and c r e a t e a new memory b u f f e r
521 temp = (chunk_t ∗) mal loc (s i z e o f (chunk_t)) ;
522 i f (temp==NULL) EXIT_TRACE("Memory a l l o c a t i o n f a i l e d . \

n ") ;
523 temp−>header . s t a t e = chunk−>header . s t a t e ;
524 temp−>sequence . l1num = chunk−>sequence . l1num ;

270 NODEDUP SOURCE CODE

525
526 // s p l i t i t i n to two p i e c e s
527 r = mbuf f e r_sp l i t (&chunk−>uncompressed_data , &temp−>

uncompressed_data , o f f s e t) ;
528 i f (r !=0) EXIT_TRACE(" Unable to s p l i t memory b u f f e r in

re f inement s tage . \ n ") ;
529
530 // Set c o r r e c t s t a t e and sequence numbers
531 chunk−>sequence . l2num = chcount ;
532 chunk−>isLastL2Chunk = FALSE;
533 chcount++;
534
535 #i f d e f ENABLE_STATISTICS
536 // update s t a t i s t i c s
537 thread_stats−>nChunks [CHUNK_SIZE_TO_SLOT(chunk−>

uncompressed_data . n)]++;
538 #e n d i f //ENABLE_STATISTICS
539
540 // put i t i n to send b u f f e r
541 add (chunk , r e f i n e d) ;
542 // prepare f o r next i t e r a t i o n
543 chunk = temp ;
544 s p l i t = 1 ;
545 } e l s e {
546 //End o f b u f f e r reached , don ’ t s p l i t but simply

enqueue i t
547 // Set c o r r e c t s t a t e and sequence numbers
548 chunk−>sequence . l2num = chcount ;
549 chunk−>isLastL2Chunk = TRUE;
550
551 #i f d e f ENABLE_STATISTICS
552 // update s t a t i s t i c s
553 thread_stats−>nChunks [CHUNK_SIZE_TO_SLOT(chunk−>

uncompressed_data . n)]++;
554 #e n d i f //ENABLE_STATISTICS
555
556 add (chunk , r e f i n e d) ;
557 // prepare f o r next i t e r a t i o n
558 chunk = NULL;
559 s p l i t = 0 ;
560 }
561 } whi le (s p l i t) ;
562 }
563
564 ∗(args−>l i s t_addr) = r e f i n e d ;
565 f r e e (rab intab) ;

IMPLEMENTATION 271

566 f r e e (rabinwintab) ;
567 d e s t r o y _ i t e r a t o r (i t e r) ;
568 }
569
570 /∗
571 ∗ P i p e l i n e s tage func t i on o f f ragmentat ion s tage
572 ∗
573 ∗ Actions performed :
574 ∗ − Read data from f i l e (or pre l oad ing b u f f e r)
575 ∗ − Perform coarse −gra ined chunking
576 ∗ − Send coar s e chunks to re f inement s t a g e s f o r f u r t h e r

p r o c e s s i n g
577 ∗
578 ∗ Notes :
579 ∗ This p i p e l i n e s tage i s a bo t t l eneck because i t i s

i n h e r e n t l y s e r i a l . We
580 ∗ t h e r e f o r e perform only coar s e chunking and pass on the

data block as f a s t
581 ∗ as p o s s i b l e so that the re are no de lays that might

dec r ea se s c a l a b i l i t y .
582 ∗ With very l a r g e numbers o f threads t h i s s tage w i l l not be

ab le to keep up
583 ∗ which w i l l ev en tua l l y l i m i t s c a l a b i l i t y . A s o l u t i o n to

t h i s i s to i n c r e a s e
584 ∗ the s i z e o f coarse −gra ined chunks with a comparable

i n c r e a s e in t o t a l
585 ∗ input s i z e .
586 ∗/
587 #i f d e f ENABLE_PTHREADS
588 L i s t ∗ Fragment (void ∗ t a r g s) {
589 s t r u c t thread_args ∗ args = (s t r u c t thread_args ∗) t a r g s ;
590 s i z e_t pre load ing_buf fe r_seek = 0 ;
591 i n t fd = args−>fd ;
592 i n t r ;
593 sequence_number_t anchorcount = 0 ;
594
595 L i s t ∗ l i s t = empty l i s t () ;
596
597 chunk_t ∗temp = NULL;
598 chunk_t ∗chunk = NULL;
599 u32int ∗ rab intab = mal loc (256∗ s i z e o f rab intab [0]) ;
600 u32int ∗ rabinwintab = malloc (256∗ s i z e o f rab intab [0]) ;
601 i f (rab intab == NULL | | rabinwintab == NULL) {
602 EXIT_TRACE("Memory a l l o c a t i o n f a i l e d . \ n ") ;
603 }
604

272 NODEDUP SOURCE CODE

605 rf_win_dataprocess = 0 ;
606 r a b i n i n i t (rf_win_dataprocess , rabintab , rabinwintab) ;
607
608 // Sanity check
609 i f (MAXBUF < 8 ∗ ANCHOR_JUMP) {
610 p r i n t f ("WARNING: I /O b u f f e r s i z e i s very smal l .

Performance degraded . \ n ") ;
611 f f l u s h (NULL) ;
612 }
613
614 // read from input f i l e / b u f f e r
615 whi l e (1) {
616 s i z e_t b y t e s _ l e f t ; //amount o f data l e f t over in

last_mbuf fer from prev ious i t e r a t i o n
617
618 //Check how much data l e f t over from prev ious i t e r a t i o n

resp . c r e a t e an i n i t i a l chunk
619 i f (temp != NULL) {
620 b y t e s _ l e f t = temp−>uncompressed_data . n ;
621 } e l s e {
622 b y t e s _ l e f t = 0 ;
623 }
624 //Make sure that system supports new b u f f e r s i z e
625 i f (MAXBUF+b y t e s _ l e f t > SSIZE_MAX) {
626 EXIT_TRACE(" Input b u f f e r s i z e exceeds system maximum. \ n

") ;
627 }
628 // Al l o ca t e a new chunk and c r e a t e a new memory b u f f e r
629 chunk = (chunk_t ∗) mal loc (s i z e o f (chunk_t)) ;
630 i f (chunk==NULL) EXIT_TRACE("Memory a l l o c a t i o n f a i l e d . \ n ")

;
631 mbuffer_create(&chunk−>uncompressed_data , MAXBUF+

b y t e s _ l e f t) ;
632
633 i f (b y t e s _ l e f t > 0) {
634 // " Extension " o f e x i s t i n g bu f f e r , copy sequence number

and l e f t over data to beg inning o f new b u f f e r
635 chunk−>header . s t a t e = CHUNK_STATE_UNCOMPRESSED;
636 chunk−>sequence . l1num = temp−>sequence . l1num ;
637 //NOTE: We cannot s a f e l y extend the cur rent memory

reg i on because i t has a l r eady been given to another
thread

638 memcpy(chunk−>uncompressed_data . ptr , temp−>
uncompressed_data . ptr , temp−>uncompressed_data . n) ;

639 mbuf fer_free (&temp−>uncompressed_data) ;
640 f r e e (temp) ;

IMPLEMENTATION 273

641 temp = NULL;
642 } e l s e {
643 // brand new mbuffer , increment sequence number
644 chunk−>header . s t a t e = CHUNK_STATE_UNCOMPRESSED;
645 chunk−>sequence . l1num = anchorcount ;
646 anchorcount++;
647 }
648 //Read data u n t i l b u f f e r f u l l
649 s i z e_t bytes_read =0;
650 i f (conf−>pre load ing) {
651 s i z e_t max_read = MIN(MAXBUF, args−>i n p u t _ f i l e . s i z e −

pre load ing_buf fe r_seek) ;
652 memcpy(chunk−>uncompressed_data . ptr+bytes_le f t , args−>

i n p u t _ f i l e . b u f f e r+pre loading_buf fer_seek , max_read) ;
653 bytes_read = max_read ;
654 pre load ing_buf fe r_seek += max_read ;
655 } e l s e {
656 whi le (bytes_read < MAXBUF) {
657 i n t r = read (fd , chunk−>uncompressed_data . ptr+

b y t e s _ l e f t+bytes_read , MAXBUF−bytes_read) ;
658 i f (r <0) switch (errno) {
659 case EAGAIN:
660 EXIT_TRACE(" I /O e r r o r : No data a v a i l a b l e \n ") ;

break ;
661 case EBADF:
662 EXIT_TRACE(" I /O e r r o r : I n v a l i d f i l e d e s c r i p t o r \n "

) ; break ;
663 case EFAULT:
664 EXIT_TRACE(" I /O e r r o r : Bu f f e r out o f range \n") ;

break ;
665 case EINTR:
666 EXIT_TRACE(" I /O e r r o r : I n t e r r u p t i o n \n") ; break ;
667 case EINVAL:
668 EXIT_TRACE(" I /O e r r o r : Unable to read from f i l e

d e s c r i p t o r \n ") ; break ;
669 case EIO :
670 EXIT_TRACE(" I /O e r r o r : Generic I /O e r r o r \n ") ;

break ;
671 case EISDIR :
672 EXIT_TRACE(" I /O e r r o r : Cannot read from a

d i r e c t o r y \n") ; break ;
673 d e f a u l t :
674 EXIT_TRACE(" I /O e r r o r : Unrecognized e r r o r \n ") ;

break ;
675 }
676 i f (r==0) break ;

274 NODEDUP SOURCE CODE

677 bytes_read += r ;
678 }
679 }
680 //No data l e f t over from l a s t i t e r a t i o n and a l s o nothing

new read in , s imply c l ean up and qu i t
681 i f (b y t e s _ l e f t + bytes_read == 0) {
682 mbuf fer_free (&chunk−>uncompressed_data) ;
683 #i f d e f ENABLE_MBUFFER_CHECK
684 m−>check_f lag =0;
685 #e n d i f
686 f r e e (chunk) ;
687 chunk = NULL;
688 break ;
689 }
690 // Shrink b u f f e r to ac tua l s i z e
691 i f (b y t e s _ l e f t+bytes_read < chunk−>uncompressed_data . n) {
692 r = mbuf f e r_rea l l oc (&chunk−>uncompressed_data ,

b y t e s _ l e f t+bytes_read) ;
693 a s s e r t (r == 0) ;
694 }
695 //Check whether any new data was read in , enqueue l a s t

chunk i f not
696 i f (bytes_read == 0) {
697 add (chunk , l i s t) ;
698 //NOTE: No need to empty a f u l l send_buf , we w i l l break

now and pass everyth ing on to the queue
699 break ;
700 }
701 // p a r t i t i o n input block in to la rge , coarse −granu lar

chunks
702 i n t s p l i t ;
703 do {
704 s p l i t = 0 ;
705 //Try to s p l i t the b u f f e r at l e a s t ANCHOR_JUMP bytes

away from i t s beg inning
706 i f (ANCHOR_JUMP < chunk−>uncompressed_data . n) {
707 i n t o f f s e t = rab in seg (chunk−>uncompressed_data . ptr +

ANCHOR_JUMP, chunk−>uncompressed_data . n − ANCHOR_JUMP,
rf_win_dataprocess , rabintab , rabinwintab) ;

708 //Did we f i n d a s p l i t l o c a t i o n ?
709 i f (o f f s e t == 0) {
710 // S p l i t found at the very beg inning o f the b u f f e r (

should never happen due to t e c h n i c a l l i m i t a t i o n s)
711 a s s e r t (0) ;
712 s p l i t = 0 ;

IMPLEMENTATION 275

713 } e l s e i f (o f f s e t + ANCHOR_JUMP < chunk−>
uncompressed_data . n) {

714 // S p l i t found somewhere in the middle o f the b u f f e r
715 // A l l o ca t e a new chunk and c r e a t e a new memory

b u f f e r
716 temp = (chunk_t ∗) mal loc (s i z e o f (chunk_t)) ;
717 i f (temp==NULL) EXIT_TRACE("Memory a l l o c a t i o n f a i l e d

. \ n ") ;
718
719 i n t s i z e = o f f s e t + ANCHOR_JUMP;
720
721 mbuffer_create(&temp−>uncompressed_data , s i z e) ;
722 memcpy(temp−>uncompressed_data . ptr , chunk−>

uncompressed_data . ptr , s i z e) ;
723
724 // s p l i t i t i n to two p i e c e s
725 void ∗ p = chunk−>uncompressed_data . ptr + s i z e ;
726 i n t p_n = chunk−>uncompressed_data . n − s i z e ;
727 mcb_t ∗ p_mcb = chunk−>uncompressed_data . mcb ;
728
729 chunk−>uncompressed_data . ptr = temp−>

uncompressed_data . ptr ;
730 chunk−>uncompressed_data . n = s i z e ;
731 chunk−>uncompressed_data . mcb = temp−>

uncompressed_data . mcb ;
732
733 temp−>uncompressed_data . ptr = p ;
734 temp−>uncompressed_data . n = p_n ;
735 temp−>uncompressed_data . mcb = p_mcb ;
736
737 #i f d e f ENABLE_MBUFFER_CHECK
738 m2−>check_f lag=MBUFFER_CHECK_MAGIC;
739 #e n d i f
740
741 temp−>header . s t a t e = CHUNK_STATE_UNCOMPRESSED;
742 temp−>sequence . l1num = anchorcount ;
743 anchorcount++;
744
745 // put i t i n to send b u f f e r
746 add (chunk , l i s t) ;
747 // prepare f o r next i t e r a t i o n
748 chunk = temp ;
749 temp = NULL;
750 s p l i t = 1 ;
751 } e l s e {

276 NODEDUP SOURCE CODE

752 //Due to t e c h n i c a l l i m i t a t i o n s we can ’ t d i s t i n g u i s h
the c a s e s " no s p l i t " and " s p l i t at end o f b u f f e r "

753 // This w i l l r e s u l t in some unnecessary (and
u n l i k e l y) work but y i e l d s the c o r r e c t r e s u l t even tua l l y .

754 temp = chunk ;
755 chunk = NULL;
756 s p l i t = 0 ;
757 }
758 } e l s e {
759 //NOTE: We don ’ t p roce s s the stub , i n s t ead we try to

read in more data so we might be ab le to f i n d a proper
s p l i t .

760 // Only once the end o f the f i l e i s reached do
we get a genuine stub which w i l l be enqueued r i g h t a f t e r
the read opera t i on .

761 temp = chunk ;
762 chunk = NULL;
763 s p l i t = 0 ;
764 }
765 } whi le (s p l i t) ;
766 }
767 f r e e (rab intab) ;
768 f r e e (rabinwintab) ;
769 re turn l i s t ;
770 }
771 #e n d i f //ENABLE_PTHREADS
772
773 // Write the compressed data to the output f i l e .
774 #i f d e f ENABLE_PTHREADS
775 void Write (Compressed_data ∗∗ data , i n t ∗ counts) {
776 i n t fd = 0 ;
777 fd = create_output_f i l e (conf−>o u t f i l e) ;
778
779 f o r (i n t i = 0 ; i<conf−>nthreads ; i++){
780 f o r (i n t j = 0 ; j < counts [i] ; j++){
781 xwr i te (fd , data [i] [j] . data , data [i] [j] . s i z e) ;
782 f r e e (data [i] [j] . data) ;
783 }
784 f r e e (data [i]) ;
785 }
786 c l o s e (fd) ;
787 }
788 #e n d i f //ENABLE_PTHREADS
789

IMPLEMENTATION 277

790 /∗
−−
∗/

791 /∗ Encode
792 ∗ Compress an input stream
793 ∗
794 ∗ Arguments :
795 ∗ conf : Con f igurat ion parameters
796 ∗
797 ∗/
798 void Encode (conf ig_t ∗ _conf) {
799 p r i n t f (" ∗∗Dedup encoding with minimal v i r t u a l i z a t i o n

overhead ∗∗\n") ;
800 s t r u c t s t a t f i l e s t a t ;
801 in t32 fd ;
802
803 conf = _conf ;
804
805 #i f d e f ENABLE_STATISTICS
806 i n i t _ s t a t s (& s t a t s) ;
807 #e n d i f
808
809 // Create chunk cache
810 cache = hashtab le_create (65536 , hash_from_key_fn ,

keys_equal_fn , FALSE) ;
811 i f (cache == NULL) {
812 p r i n t f ("ERROR: Out o f memory\n") ;
813 e x i t (1) ;
814 }
815
816 #i f d e f ENABLE_PTHREADS
817 s t r u c t thread_args data_process_args ;
818 #e l s e
819 s t r u c t thread_args gener i c_args ;
820 #e n d i f //ENABLE_PTHREADS
821
822 /∗ s r c f i l e s t a t ∗/
823 i f (s t a t (conf−>i n f i l e , &f i l e s t a t) < 0)
824 EXIT_TRACE(" s t a t () %s f a i l e d : %s \n" , conf−>i n f i l e ,

s t r e r r o r (errno)) ;
825
826 i f (! S_ISREG(f i l e s t a t . st_mode))
827 EXIT_TRACE(" not a normal f i l e : %s \n" , conf−>i n f i l e) ;
828 #i f d e f ENABLE_STATISTICS
829 s t a t s . tota l_input = f i l e s t a t . s t _ s i z e ;
830 #e n d i f //ENABLE_STATISTICS

278 NODEDUP SOURCE CODE

831
832 /∗ s r c f i l e open ∗/
833 i f ((fd = open (conf−>i n f i l e , O_RDONLY | O_LARGEFILE)) < 0)
834 EXIT_TRACE("%s f i l e open e r r o r %s \n" , conf−>i n f i l e ,

s t r e r r o r (errno)) ;
835
836 //Load e n t i r e f i l e i n to memory i f r eques ted by user
837 void ∗ pre load ing_buf f e r = NULL;
838 i f (conf−>pre load ing) {
839 s i z e_t bytes_read =0;
840 i n t r ;
841
842 pre load ing_buf f e r = mal loc (f i l e s t a t . s t _ s i z e) ;
843 i f (p re l oad ing_buf f e r == NULL)
844 EXIT_TRACE(" Error a l l o c a t i n g memory f o r input b u f f e r . \ n

") ;
845
846 //Read data u n t i l b u f f e r f u l l
847 whi l e (bytes_read < f i l e s t a t . s t _ s i z e) {
848 r = read (fd , p re l oad ing_buf f e r+bytes_read , f i l e s t a t .

s t_s ize −bytes_read) ;
849 i f (r <0) switch (errno) {
850 case EAGAIN:
851 EXIT_TRACE(" I /O e r r o r : No data a v a i l a b l e \n ") ; break ;
852 case EBADF:
853 EXIT_TRACE(" I /O e r r o r : I n v a l i d f i l e d e s c r i p t o r \n ") ;

break ;
854 case EFAULT:
855 EXIT_TRACE(" I /O e r r o r : Buf f e r out o f range \n") ;

break ;
856 case EINTR:
857 EXIT_TRACE(" I /O e r r o r : I n t e r r u p t i o n \n") ; break ;
858 case EINVAL:
859 EXIT_TRACE(" I /O e r r o r : Unable to read from f i l e

d e s c r i p t o r \n ") ; break ;
860 case EIO :
861 EXIT_TRACE(" I /O e r r o r : Generic I /O e r r o r \n ") ; break ;
862 case EISDIR :
863 EXIT_TRACE(" I /O e r r o r : Cannot read from a d i r e c t o r y

\n") ; break ;
864 d e f a u l t :
865 EXIT_TRACE(" I /O e r r o r : Unrecognized e r r o r \n ") ; break

;
866 }
867 i f (r==0) break ;
868 bytes_read += r ;

IMPLEMENTATION 279

869 }
870 #i f d e f ENABLE_PTHREADS
871 data_process_args . i n p u t _ f i l e . s i z e = f i l e s t a t . s t _ s i z e ;
872 data_process_args . i n p u t _ f i l e . b u f f e r = pre load ing_buf f e r ;
873 #e l s e
874 gener i c_args . i n p u t _ f i l e . s i z e = f i l e s t a t . s t _ s i z e ;
875 gener i c_args . i n p u t _ f i l e . b u f f e r = pre load ing_buf f e r ;
876 #e n d i f //ENABLE_PTHREADS
877 }
878
879 data_process_args . t i d = 0 ;
880 data_process_args . fd = fd ;
881
882 #i f d e f ENABLE_PARSEC_HOOKS
883 __parsec_roi_begin () ;
884 #e n d i f
885
886 i n t threadCount = conf−>nthreads ;
887 threadpoo l pool = thpoo l_ in i t (threadCount) ;
888
889 L i s t ∗ fragmented = Fragment(&data_process_args) ;
890 // c l ean up a f t e r p re l oad ing
891 i f (conf−>pre load ing) f r e e (pre l oad ing_buf f e r) ;
892
893
894 L i s t ∗∗ r e f i n e d = s p l i t (threadCount , fragmented) ;
895 i n t i = 0 ;
896 s t r u c t thread_args anchor_thread_args [threadCount] ;
897 s tat s_t threads_anchor_rv [threadCount] ;
898 f o r (i = 0 ; i < threadCount ; i ++) {
899 anchor_thread_args [i] . t i d = i ;
900 anchor_thread_args [i] . l i s t = r e f i n e d [i] ;
901
902 anchor_thread_args [i] . s t a t s = &threads_anchor_rv [i] ;
903 anchor_thread_args [i] . l i s t_addr = &(r e f i n e d [i]) ;
904
905 thpool_add_work (pool , FragmentRefine , &

anchor_thread_args [i]) ;
906 }
907 thpool_wait (pool) ;
908
909 L i s t ∗ ref ined_merged = empty l i s t () ;
910 f o r (i = 0 ; i < threadCount ; i++) ref ined_merged = merge (

refined_merged , r e f i n e d [i]) ;
911 L i s t ∗∗ dedup = split_mod (threadCount , ref ined_merged) ;
912

280 NODEDUP SOURCE CODE

913 s t r u c t thread_args chunk_thread_args [threadCount] ;
914 s tat s_t threads_chunk_rv [threadCount] ;
915 f o r (i = 0 ; i < threadCount ; i ++) {
916 chunk_thread_args [i] . t i d = i ;
917 chunk_thread_args [i] . l i s t = dedup [i] ;
918 chunk_thread_args [i] . s t a t s = &threads_chunk_rv [i] ;
919 thpool_add_work (pool , Dedupl icate , &chunk_thread_args [i])

;
920 }
921 thpool_wait (pool) ;
922
923 L i s t ∗∗ compress = z i p _ s p l i t (threadCount , dedup) ;
924 Compressed_data ∗ total_compressed_data [threadCount] ;
925 i n t buf fer_counts [threadCount] ;
926
927 s t r u c t thread_args compress_thread_args [threadCount] ;
928 s tat s_t threads_compress_rv [threadCount] ;
929 f o r (i = 0 ; i < threadCount ; i ++) {
930 compress_thread_args [i] . t i d = i ;
931 compress_thread_args [i] . l i s t = compress [i] ;
932 i n t write_buffer_count = compress [i]−>length /1000 + ((

compress [i]−>length % 1000 == 0) ? 0 : 1) ;
933 total_compressed_data [i] = mal loc (write_buffer_count ∗

s i z e o f (Compressed_data)) ;
934 buf fer_counts [i] = write_buffer_count ;
935 compress_thread_args [i] . compressed_data =

total_compressed_data [i] ;
936 compress_thread_args [i] . s t a t s = &threads_compress_rv [i] ;
937 thpool_add_work (pool , Compress , &compress_thread_args [i])

;
938 }
939 thpool_wait (pool) ;
940 thpool_destroy (pool) ;
941
942 Write (total_compressed_data , buf fer_counts) ;
943
944 #i f d e f ENABLE_PARSEC_HOOKS
945 __parsec_roi_end () ;
946 #e n d i f
947
948 #i f d e f ENABLE_STATISTICS
949 //Merge everyth ing in to g l o b a l ‘ s t a t s ’ s t r u c t u r e
950 f o r (i =0; i<conf−>nthreads ; i++) merge_stats(& s ta t s , &

threads_anchor_rv [i]) ;
951 f o r (i =0; i<conf−>nthreads ; i++) merge_stats(& s ta t s , &

threads_chunk_rv [i]) ;

IMPLEMENTATION 281

952 f o r (i =0; i<conf−>nthreads ; i++) merge_stats(& s ta t s , &
threads_compress_rv [i]) ;

953 #e n d i f //ENABLE_STATISTICS
954
955 // c l ean up with the s r c f i l e
956 i f (conf−>i n f i l e != NULL) c l o s e (fd) ;
957
958 hashtable_destroy (cache , FALSE) ;
959
960 #i f d e f ENABLE_STATISTICS
961 // dest f i l e s t a t
962 i f (s t a t (conf−>o u t f i l e , &f i l e s t a t) < 0)
963 EXIT_TRACE(" s t a t () %s f a i l e d : %s \n" , conf−>o u t f i l e ,

s t r e r r o r (errno)) ;
964 s t a t s . tota l_output = f i l e s t a t . s t _ s i z e ;
965
966 // Analyze and p r i n t s t a t i s t i c s
967 i f (conf−>verbose) p r in t_s ta t s (& s t a t s) ;
968 #e n d i f //ENABLE_STATISTICS
969
970 }

Bibliography

[1] P. Neto. “Demystifying cloud computing”. In: Proceeding of doctoral
symposium on informatics engineering. Vol. 24. Citeseer. 2011, pp. 16–21.

[2] Eurostat. Cloud computing - statistics on the use by enterprises. Jan. 2021.
url: https://ec.europa.eu/eurostat/statistics- explained/
index . php / Cloud _ computing_ - _statistics _ on _ the _ use _ by _
enterprises # Use _ of _ cloud _ computing : _highlights (visited on
04/29/2021).

[3] N. Taleb and E. A. Mohamed. “Cloud computing trends: A literature
review”. In: Academic Journal of Interdisciplinary Studies 9.1 (2020),
pp. 91–91.

[4] Q. Zhang, L. Cheng, and R. Boutaba. “Cloud computing: state-of-the-art
and research challenges”. In: Journal of internet services and applications
1.1 (2010), pp. 7–18.

[5] L. Malhotra, D. Agarwal, A. Jaiswal, et al. “Virtualization in cloud
computing”. In: J. Inform. Tech. Softw. Eng 4.2 (2014), pp. 1–3.

[6] G. J. Popek and R. P. Goldberg. “Formal requirements for virtualizable
third generation architectures”. In: Communications of the ACM 17.7
(1974), pp. 412–421.

[7] G. P. C. Tran, Y.-A. Chen, D.-I. Kang, J. P. Walters, and S. P. Crago.
“Hypervisor performance analysis for real-time workloads”. In: 2016
IEEE High Performance Extreme Computing Conference (HPEC). IEEE.
2016, pp. 1–7.

[8] N. Khanghahi and R. Ravanmehr. “Cloud computing performance
evaluation: issues and challenges”. In: Comput 5.1 (2013), pp. 29–41.

[9] G. Lettieri, V. Maffione, and L. Rizzo. “A study of I/O performance of
virtual machines”. In: The Computer Journal 61.6 (2018), pp. 808–831.

283

https://ec.europa.eu/eurostat/statistics-explained/index.php/Cloud_computing_-_statistics_on_the_use_by_enterprises#Use_of_cloud_computing:_highlights
https://ec.europa.eu/eurostat/statistics-explained/index.php/Cloud_computing_-_statistics_on_the_use_by_enterprises#Use_of_cloud_computing:_highlights
https://ec.europa.eu/eurostat/statistics-explained/index.php/Cloud_computing_-_statistics_on_the_use_by_enterprises#Use_of_cloud_computing:_highlights

284 BIBLIOGRAPHY

[10] X. Ding and J. Shan. “Diagnosing Virtualization Overhead for Multi-
threaded Computation on Multicore Platforms”. In: CloudCom’15. 2015,
pp. 226–233.

[11] R. Scroggins. “Virtualization technology literature review”. In: Global
Journal of Computer Science and Technology (2013).

[12] J. Li, S. Xue, W. Zhang, Z. Qi, et al. “When I/O interrupt becomes
system bottleneck: Efficiency and scalability enhancement for SR-IOV
network virtualization”. In: IEEE TCC 7.4 (2019).

[13] J. Shan, X. Ding, and N. Gehani. “APPLES: Efficiently handling spin-
lock synchronization on virtualized platforms”. In: IEEE Transactions
on Parallel and Distributed Systems 28.7 (2016), pp. 1811–1824.

[14] X. Ding, P. B. Gibbons, M. A. Kozuch, and J. Shan. “Gleaner:
Mitigating the Blocked-Waiter Wakeup Problem for Virtualized Multicore
Applications”. In: USENIX ATC 2014. 2014, pp. 73–84.

[15] The KVM halt polling system. url: https : / / www . kernel . org /
doc/Documentation/virtual/kvm/halt- polling.txt (visited on
07/07/2021).

[16] J. Nakajima. Reviewing Unused and New Features for Interrupt/APIC
Virtualization. 2012.

[17] P. E. Kampert. “A taxonomy of virtualization technologies”. In: (2010).
[18] M. Malawski, A. Gajek, A. Zima, B. Balis, and K. Figiela. “Serverless

execution of scientific workflows: Experiments with hyperflow, aws
lambda and google cloud functions”. In: Future Generation Computer
Systems (2017).

[19] A. Iosup, S. Ostermann, M. N. Yigitbasi, R. Prodan, T. Fahringer, and
D. Epema. “Performance analysis of cloud computing services for many-
tasks scientific computing”. In: IEEE TPDS 22.6 (2011), pp. 931–945.

[20] R. R. Expósito, G. L. Taboada, S. Ramos, J. Touriño, and R. Doallo.
“Performance analysis of HPC applications in the cloud”. In: Future
Generation Computer Systems 29.1 (2013), pp. 218–229.

[21] H. N. Palit, X. Li, S. Lu, L. C. Larsen, and J. A. Setia. “Evaluating
hardware-assisted virtualization for deploying HPC-as-a-service”. In: Pro-
ceedings of the 7th international workshop on Virtualization technologies
in distributed computing. ACM. 2013, pp. 11–20.

[22] S. Benedict. “Performance issues and performance analysis tools for HPC
cloud applications: a survey”. In: Computing 95.2 (2013), pp. 89–108.

[23] L. Bo, Z. Zhenliu, and W. Xiangfeng. “A survey of HPC Development”.
In: 2012 International Conference on Computer Science and Electronics
Engineering. Vol. 2. IEEE. 2012, pp. 103–106.

https://www.kernel.org/doc/Documentation/virtual/kvm/halt-polling.txt
https://www.kernel.org/doc/Documentation/virtual/kvm/halt-polling.txt

BIBLIOGRAPHY 285

[24] D. M. Tullsen, S. J. Eggers, and H. M. Levy. “Simultaneous multithread-
ing: Maximizing on-chip parallelism”. In: Proceedings of the 22nd annual
international symposium on Computer architecture. 1995, pp. 392–403.

[25] T. Alsop. Share of the global server processor market by type from 2018
to 2019. Apr. 2021. url: https://www.statista.com/statistics/
915080/global-market-share-held-by-server-vendors/ (visited
on 05/05/2021).

[26] D. Marshall. “Understanding full virtualization, paravirtualization, and
hardware assist”. In: VMWare White Paper 17 (2007), p. 725.

[27] J. Fisher-Ogden. “Hardware support for efficient virtualization”. In:
University of California, San Diego, Tech. Rep 12 (2006).

[28] T. Alsop. Share of the global server market in the first half of 2018 and
2019, by virtualization type. May 2020. url: https://www.statista.
com/statistics/915091/global-server-share-physical-virtual/
(visited on 05/05/2021).

[29] S. Schildermans, J. Shan, K. Aerts, J. Jackrel, and X. Ding. “Virtualiza-
tion Overhead of Multithreading in X86 State-of-the-Art & Remaining
Challenges”. In: IEEE Transactions on Parallel and Distributed Systems
32.10 (2021), pp. 2557–2570.

[30] S. Schildermans, K. Aerts, J. Shan, and X. Ding. “Paratick: Reducing
Timer Overhead in Virtual Machines”. In: 50th International Conference
on Parallel Processing. 2021, pp. 1–10.

[31] S. Schildermans, K. Aerts, J. Shan, and X. Ding. “Ptlbmalloc2: Reducing
TLB Shootdowns with High Memory Efficiency”. In: ISPA-BDCloud-
SocialCom-SustainCom 2020 (2020), pp. 76–83.

[32] S. Schildermans and K. Aerts. “Towards High-Level Software Approaches
to Reduce Virtualization Overhead for Parallel Applications”. In: 2018
IEEE International Conference on Cloud Computing Technology and
Science (CloudCom). IEEE. 2018, pp. 193–197.

[33] S. N. T.-c. Chiueh and S. Brook. “A survey on virtualization technologies”.
In: Rpe Report 142 (2005).

[34] J. E. Smith and R. Nair. “The architecture of virtual machines”. In:
Computer 38.5 (2005), pp. 32–38.

[35] R. P. Goldberg. “Survey of virtual machine research”. In: Computer 7.6
(1974), pp. 34–45.

[36] NI. Introduction to the NI Real-Time Hypervisor. 2009.
[37] H. Lee. “Virtualization basics: Understanding techniques and fundamen-

tals”. In: School of Informatics and Computing Indiana University 815
E 10th St. Bloomington IN 47408. 2014.

https://www.statista.com/statistics/915080/global-market-share-held-by-server-vendors/
https://www.statista.com/statistics/915080/global-market-share-held-by-server-vendors/
https://www.statista.com/statistics/915091/global-server-share-physical-virtual/
https://www.statista.com/statistics/915091/global-server-share-physical-virtual/

286 BIBLIOGRAPHY

[38] S. Alliance. “Virtualization: State of the Art”. In: (2008). url: http:
//scopealliance.org/sites/default/files/documents/SCOPE-
Virtualization-StateofTheArt-Version-1.0.pdf.

[39] Chapter 10. Technical background. url: https://www.virtualbox.org/
manual/ch10.html (visited on 05/12/2021).

[40] Y. Goto. “Kernel-based virtual machine technology”. In: Fujitsu Scientific
and Technical Journal 47.3 (2011), pp. 362–368.

[41] T. Maeda and A. Yonezawa. “Kernel Mode Linux: Toward an operating
system protected by a type theory”. In: Annual Asian Computing Science
Conference. Springer. 2003, pp. 3–17.

[42] Intel 64 and IA-32 Architectures Software Developer’s Manual. Intel.
Santa Clara, CA, USA, May 2019. url: https://software.intel.
com/content/www/us/en/develop/articles/intel-sdm.html.

[43] N. Penneman, D. Kudinskas, A. Rawsthorne, B. De Sutter, and
K. De Bosschere. “Formal virtualization requirements for the ARM
architecture”. In: Journal of Systems Architecture 59.3 (2013), pp. 144–
154.

[44] J. White and A. Pilbeam. “A survey of virtualization technologies with
performance testing”. In: arXiv preprint arXiv:1010.3233 (2010).

[45] J. Shuja, A. Gani, A. Naveed, E. Ahmed, and C.-H. Hsu. “Case of
ARM emulation optimization for offloading mechanisms in mobile cloud
computing”. In: Future Generation Computer Systems 76 (2017), pp. 407–
417.

[46] K. Adams and O. Agesen. “A comparison of software and hardware
techniques for x86 virtualization”. In: ACM Sigplan Notices 41.11 (2006),
pp. 2–13.

[47] M. Probst. “Dynamic binary translation”. In: UKUUG Linux Developer’s
Conference. Vol. 2002. 2002.

[48] R. Community. Nested Virtualization With Binary Translation: Back to
the Future. Nov. 2013. url: https://blogs.oracle.com/ravello/
nested - virtualization - with - binary - translation (visited on
06/02/2021).

[49] M. Rosenblum and T. Garfinkel. “Virtual machine monitors: Current
technology and future trends”. In: Computer 38.5 (2005), pp. 39–47.

http://scopealliance.org/sites/default/files/documents/SCOPE-Virtualization-StateofTheArt-Version-1.0.pdf
http://scopealliance.org/sites/default/files/documents/SCOPE-Virtualization-StateofTheArt-Version-1.0.pdf
http://scopealliance.org/sites/default/files/documents/SCOPE-Virtualization-StateofTheArt-Version-1.0.pdf
https://www.virtualbox.org/manual/ch10.html
https://www.virtualbox.org/manual/ch10.html
https://software.intel.com/content/www/us/en/develop/articles/intel-sdm.html
https://software.intel.com/content/www/us/en/develop/articles/intel-sdm.html
https://blogs.oracle.com/ravello/nested-virtualization-with-binary-translation
https://blogs.oracle.com/ravello/nested-virtualization-with-binary-translation

BIBLIOGRAPHY 287

[50] H. Kim, S. Kim, J. Jeong, J. Lee, and S. Maeng. “Demand-based
Coordinated Scheduling for SMP VMs”. In: Proceedings of the Eighteenth
International Conference on Architectural Support for Programming Lan-
guages and Operating Systems. Houston, Texas, USA, 2013, pp. 369–380.
isbn: 978-1-4503-1870-9. doi: 10.1145/2451116.2451156. url: http:
//doi.acm.org/10.1145/2451116.2451156.

[51] A. Menon, J. R. Santos, Y. Turner, G. Janakiraman, and W.
Zwaenepoel. “Diagnosing performance overheads in the xen virtual
machine environment”. In: Proceedings of the 1st ACM/USENIX
international conference on Virtual execution environments. 2005,
pp. 13–23.

[52] VMWare. Hardware-Assisted Memory virtualization. Apr. 2018. url:
https : / / docs . vmware . com / en / VMware - vSphere / 6 . 5 / com .
vmware.vsphere.resmgmt.doc/GUID- 69CDC049- 8B42- 4D26- 8B47-
94961B1777A4.html (visited on 06/07/2021).

[53] X. Wang, J. Zang, Z. Wang, Y. Luo, and X. Li. “Selective hardware/soft-
ware memory virtualization”. In: ACM SIGPLAN Notices 46.7 (2011),
pp. 217–226.

[54] E. Alkassar, E. Cohen, M. Hillebrand, M. Kovalev, and W. J. Paul.
“Verifying shadow page table algorithms”. In: Formal Methods in
Computer Aided Design. 2010, pp. 267–270.

[55] J. Gandhi, M. D. Hill, and M. M. Swift. “Agile paging: Exceeding the
best of nested and shadow paging”. In: 2016 ACM/IEEE 43rd Annual
International Symposium on Computer Architecture (ISCA). IEEE. 2016,
pp. 707–718.

[56] B. T. Djomgwe, P. Yuhala, A. Tchana, F. Hermenier, D. Hagimont, and
G. Muller. “(No) Compromis: Paging Virtualization Is Not a Fatality”.
In: VEE 2021-17th ACM SIGPLAN/SIGOPS International Conference
on Virtual Execution Environments. 2021, pp. 1–12.

[57] A. Krapf. “XEN Memory Management (Intel IA-32)”. In: INRIA Sophia
Antipolis-Méditerranée Research Centre (2007).

[58] C. Waldspurger and M. Rosenblum. “I/o virtualization”. In: Communi-
cations of the ACM 55.1 (2012), pp. 66–73.

[59] Y. Luo. “Network I/O virtualization for cloud computing”. In: IT
professional 12.5 (2010), pp. 36–41.

[60] Y. Dong, J. Dai, Z. Huang, H. Guan, K. Tian, and Y. Jiang. “Towards
high-quality I/O virtualization”. In: Proceedings of SYSTOR 2009: The
Israeli Experimental Systems Conference. 2009, pp. 1–8.

https://doi.org/10.1145/2451116.2451156
http://doi.acm.org/10.1145/2451116.2451156
http://doi.acm.org/10.1145/2451116.2451156
https://docs.vmware.com/en/VMware-vSphere/6.5/com.vmware.vsphere.resmgmt.doc/GUID-69CDC049-8B42-4D26-8B47-94961B1777A4.html
https://docs.vmware.com/en/VMware-vSphere/6.5/com.vmware.vsphere.resmgmt.doc/GUID-69CDC049-8B42-4D26-8B47-94961B1777A4.html
https://docs.vmware.com/en/VMware-vSphere/6.5/com.vmware.vsphere.resmgmt.doc/GUID-69CDC049-8B42-4D26-8B47-94961B1777A4.html

288 BIBLIOGRAPHY

[61] M. Jones. Linux virtualization and PCI passthrough. Oct. 2009. url:
https : / / developer . ibm . com / tutorials / l - pci - passthrough/
(visited on 06/08/2021).

[62] B. Zhang, X. Wang, R. Lai, L. Yang, Y. Luo, X. Li, and Z. Wang. “A
survey on i/o virtualization and optimization”. In: 2010 Fifth Annual
ChinaGrid Conference. IEEE. 2010, pp. 117–123.

[63] F. Bellard. “QEMU, a fast and portable dynamic translator.” In: USENIX
annual technical conference, FREENIX Track. Vol. 41. Califor-nia, USA.
2005, p. 46.

[64] J. R. Santos, Y. Turner, G. J. Janakiraman, and I. Pratt. “Bridging the
Gap between Software and Hardware Techniques for I/O Virtualization.”
In: USENIX Annual Technical Conference. 2008, pp. 29–42.

[65] Intel Virtualization Technology for Directed I/O. Intel. Santa Clara, CA,
USA, Apr. 2021. url: https://software.intel.com/content/www/
us/en/develop/download/intel-virtualization-technology-for-
directed-io-architecture-specification.html.

[66] PCI-SIG. Single Root I/O Virtualiization and Sharing Specificatiion
Revision 1.1. Jan. 2010. url: https://composter.com.ua/documents/
sr-iov1_1_20Jan10_cb.pdf (visited on 06/09/2021).

[67] Y. Dong, X. Yang, J. Li, G. Liao, K. Tian, and H. Guan. “High
performance network virtualization with SR-IOV”. In: Journal of Parallel
and Distributed Computing 72.11 (2012), pp. 1471–1480.

[68] V. G. da Silva, M. Kirikova, and G. Alksnis. “Containers for virtualization:
An overview”. In: Applied Computer Systems 23.1 (2018), pp. 21–27.

[69] J. Frazelle. Setting the Record Straight: containers vs. Zones vs. Jails vs.
VMs. Mar. 2017. url: https://blog.jessfraz.com/post/containers-
zones-jails-vms/ (visited on 06/18/2021).

[70] R. Morabito, J. Kjällman, and M. Komu. “Hypervisors vs. lightweight
virtualization: a performance comparison”. In: 2015 IEEE International
Conference on Cloud Engineering. IEEE. 2015, pp. 386–393.

[71] D. Bernstein. “Containers and cloud: From lxc to docker to kubernetes”.
In: IEEE Cloud Computing 1.3 (2014), pp. 81–84.

[72] T. Bui. “Analysis of docker security”. In: arXiv preprint arXiv:1501.02967
(2015).

[73] Canonical. Infrastructure for container projects. url: https : / /
linuxcontainers.org/ (visited on 06/18/2021).

https://developer.ibm.com/tutorials/l-pci-passthrough/
https://software.intel.com/content/www/us/en/develop/download/intel-virtualization-technology-for-directed-io-architecture-specification.html
https://software.intel.com/content/www/us/en/develop/download/intel-virtualization-technology-for-directed-io-architecture-specification.html
https://software.intel.com/content/www/us/en/develop/download/intel-virtualization-technology-for-directed-io-architecture-specification.html
https://composter.com.ua/documents/sr-iov1_1_20Jan10_cb.pdf
https://composter.com.ua/documents/sr-iov1_1_20Jan10_cb.pdf
https://blog.jessfraz.com/post/containers-zones-jails-vms/
https://blog.jessfraz.com/post/containers-zones-jails-vms/
https://linuxcontainers.org/
https://linuxcontainers.org/

BIBLIOGRAPHY 289

[74] D. Drewanz and L. Grimmer. The Role of Oracle Solaris Zones
and Linux Containers in a Virtualization Strategy. Jan. 2013. url:
https://www.oracle.com/technical- resources/articles/it-
infrastructure/admin- zones- containers- virtualization.html
(visited on 06/18/2021).

[75] C. Tozzi. Jails, LXC and Beyond: Container Platform Round-Up. July
2017. url: https://containerjournal.com/features/jails-lxc-
beyond-container-platform-round/ (visited on 06/18/2021).

[76] Docker. Docker overview. url: https : / / docs . docker . com / get -
started/overview/ (visited on 06/18/2021).

[77] R. Singh. LXD vs Docker. 2017. url: https://linuxhint.com/lxd-
vs-docker/ (visited on 06/18/2021).

[78] History of Operating Systems. url: https://sites.google.com/site/
optsytms/history-of-operating-systems (visited on 06/23/2021).

[79] A. S. Tanenbaum and H. Bos. Modern operating systems. Pearson, 2015.
[80] O. Ike-Nwosu. Inside the Python Virtual Machine. 2015.
[81] G. Kumar. Understanding the difference between JDK, JRE and JVM is

important in Java. Oct. 2015. url: https://www.linkedin.com/pulse/
understanding - difference - between - jdk - jre - jvm - important -
kumar (visited on 06/24/2021).

[82] J. Thönes. “Microservices”. In: IEEE software 32.1 (2015), pp. 116–116.
[83] G. McGrath and P. R. Brenner. “Serverless computing: Design,

implementation, and performance”. In: ICDCSW’17. IEEE. 2017,
pp. 405–410.

[84] A. Madhavapeddy, R. Mortier, C. Rotsos, D. Scott, B. Singh, T.
Gazagnaire, S. Smith, S. Hand, and J. Crowcroft. “Unikernels: Library
operating systems for the cloud”. In: ACM SIGARCH Computer
Architecture News 41.1 (2013), pp. 461–472.

[85] A. Kivity, D. Laor, G. Costa, P. Enberg, N. Har’El, D. Marti, and V.
Zolotarov. “OSv—optimizing the operating system for virtual machines”.
In: 2014 {USENIX} Annual Technical Conference ({USENIX}{ATC}
14). 2014, pp. 61–72.

[86] I. Briggs, M. Day, Y. Guo, P. Marheine, and E. Eide. “A performance
evaluation of unikernels”. In: Technical Report. 2014.

[87] R. Morabito, J. Kjällman, and M. Komu. “Hypervisors vs. lightweight
virtualization: a performance comparison”. In: 2015 IEEE International
Conference on Cloud Engineering. IEEE. 2015, pp. 386–393.

https://www.oracle.com/technical-resources/articles/it-infrastructure/admin-zones-containers-virtualization.html
https://www.oracle.com/technical-resources/articles/it-infrastructure/admin-zones-containers-virtualization.html
https://containerjournal.com/features/jails-lxc-beyond-container-platform-round/
https://containerjournal.com/features/jails-lxc-beyond-container-platform-round/
https://docs.docker.com/get-started/overview/
https://docs.docker.com/get-started/overview/
https://linuxhint.com/lxd-vs-docker/
https://linuxhint.com/lxd-vs-docker/
https://sites.google.com/site/optsytms/history-of-operating-systems
https://sites.google.com/site/optsytms/history-of-operating-systems
https://www.linkedin.com/pulse/understanding-difference-between-jdk-jre-jvm-important-kumar
https://www.linkedin.com/pulse/understanding-difference-between-jdk-jre-jvm-important-kumar
https://www.linkedin.com/pulse/understanding-difference-between-jdk-jre-jvm-important-kumar

290 BIBLIOGRAPHY

[88] A. Raza, P. Sohal, J. Cadden, J. Appavoo, U. Drepper, R. Jones, O.
Krieger, R. Mancuso, and L. Woodman. “Unikernels: The next stage of
linux’s dominance”. In: Proceedings of the Workshop on Hot Topics in
Operating Systems. 2019, pp. 7–13.

[89] D. Williams and R. Koller. “Unikernel monitors: extending minimalism
outside of the box”. In: 8th {USENIX} Workshop on Hot Topics in Cloud
Computing (HotCloud 16). 2016.

[90] VNC (Virtual Network Computing). url: https://www.raspberrypi.
org/documentation/remote-access/vnc/ (visited on 06/24/2021).

[91] Data Storage - Logical Block Addressing (LBA). url: https : / /
datacadamia.com/io/drive/lba (visited on 07/05/2021).

[92] S. Lee, M. Liu, S. Jun, S. Xu, J. Kim, et al. “Application-managed
flash”. In: 14th {USENIX} Conference on File and Storage Technologies
({FAST} 16). 2016, pp. 339–353.

[93] C. Hoffman. Beginner Geek: Hard Disk Partitions Explained. July 2017.
url: https://www.howtogeek.com/184659/beginner-geek-hard-
disk-partitions-explained/ (visited on 07/05/2021).

[94] P. Gupta and C. S. S. Asia. “Storage Virtualization: What, Why, Where
and How”. In: The Storage Networking Industry Association (SNIA)
(2008).

[95] G. Smida. DAS RAID NAS SAN. Dec. 2012. url: https : / / www .
slideshare.net/gsmida/das-raid-nas-san.

[96] P. Raj and A. Raman. “Software-defined storage (SDS) for storage
virtualization”. In: Software-defined cloud centers. Springer, 2018, pp. 35–
64.

[97] A. Gillis. RAID (redundant array of independent disks). Feb. 2020. url:
https://searchstorage.techtarget.com/definition/RAID (visited
on 06/30/2021).

[98] VMWare. Understanding the DNA of Software Defined Storage. url:
https://www.vmware.com/content/dam/digitalmarketing/vmware/
en/pdf/solutions/understanding-the-dna-of-software-defined-
storage-tech-trends.pdf.

[99] D. Kreutz, F. M. Ramos, P. E. Verissimo, C. E. Rothenberg, S. Azodol-
molky, and S. Uhlig. “Software-defined networking: A comprehensive
survey”. In: Proceedings of the IEEE 103.1 (2014), pp. 14–76.

[100] IBM. Virtual IP address. 2020. url: https://www.ibm.com/docs/
en / aix / 7 . 2 ? topic = protocol - virtual - ip - address (visited on
07/05/2021).

https://www.raspberrypi.org/documentation/remote-access/vnc/
https://www.raspberrypi.org/documentation/remote-access/vnc/
https://datacadamia.com/io/drive/lba
https://datacadamia.com/io/drive/lba
https://www.howtogeek.com/184659/beginner-geek-hard-disk-partitions-explained/
https://www.howtogeek.com/184659/beginner-geek-hard-disk-partitions-explained/
https://www.slideshare.net/gsmida/das-raid-nas-san
https://www.slideshare.net/gsmida/das-raid-nas-san
https://searchstorage.techtarget.com/definition/RAID
https://www.vmware.com/content/dam/digitalmarketing/vmware/en/pdf/solutions/understanding-the-dna-of-software-defined-storage-tech-trends.pdf
https://www.vmware.com/content/dam/digitalmarketing/vmware/en/pdf/solutions/understanding-the-dna-of-software-defined-storage-tech-trends.pdf
https://www.vmware.com/content/dam/digitalmarketing/vmware/en/pdf/solutions/understanding-the-dna-of-software-defined-storage-tech-trends.pdf
https://www.ibm.com/docs/en/aix/7.2?topic=protocol-virtual-ip-address
https://www.ibm.com/docs/en/aix/7.2?topic=protocol-virtual-ip-address

BIBLIOGRAPHY 291

[101] A. Mumford. What’s the difference between a LAN and a WAN? July
2019. url: https : / / purple . ai / blogs / whats - the - difference -
between-a-lan-and-a-wan/ (visited on 07/05/2021).

[102] M. Heller. What you need to know about VPN technologies. Aug. 2006.
url: https://www.computerworld.com/article/2546283/what-
you - need - to - know - about - vpn - technologies . html (visited on
07/05/2021).

[103] L. Liu, H. Wang, A. Wang, M. Xiao, Y. Cheng, and S. Chen. “vCPU As a
Container: Towards Accurate CPU Allocation for VMs”. In: Proceedings
of the 15th ACM SIGPLAN/SIGOPS International Conference on
Virtual Execution Environments. Providence, RI, USA: ACM, 2019,
pp. 193–206. isbn: 978-1-4503-6020-3. doi: 10.1145/3313808.3313814.
url: http://doi.acm.org/10.1145/3313808.3313814.

[104] D. Gupta, S. Lee, M. Vrable, S. Savage, A. C. Snoeren, G. Varghese,
G. M. Voelker, and A. Vahdat. “Difference Engine: Harnessing Memory
Redundancy in Virtual Machines”. In: Proceedings of the 8th USENIX
Conference on Operating Systems Design and Implementation. 2008,
pp. 309–322.

[105] Virtio: Paravirtualized drivers for KVM/Linux. url: https://www.
linux-kvm.org/page/Virtio (visited on 07/06/2021).

[106] S. W. Devine, L. S. Rogel, P. P. Bungale, et al. Virtualization with
shadow page tables. US Patent 8,464,022. June 2013.

[107] R. Bhargava, B. Serebrin, F. Spadini, and S. Manne. “Accelerating two-
dimensional page walks for virtualized systems”. In: SIGOPS Oper. Syst.
Rev. 42.2 (2008), pp. 26–35.

[108] J. Rao, K. Wang, X. Zhou, and C.-Z. Xu. “Optimizing virtual machine
scheduling in NUMA multicore systems”. In: HPCA’13. IEEE. 2013,
pp. 306–317.

[109] B. Teabe, V. Nitu, A. Tchana, and D. Hagimont. “The Lock Holder and
the Lock Waiter Pre-emption Problems: Nip Them in the Bud Using
Informed Spinlocks (I-Spinlock)”. In: EuroSys ’17. 2017, pp. 286–297.

[110] T. Friebel and S. Biemueller. “How to deal with lock holder preemption”.
In: Xen Summit North America (2008).

[111] J. M. Mellor-Crummey and M. L. Scott. “Algorithms for scalable syn-
chronization on shared-memory multiprocessors”. In: ACM Transactions
on Computer Systems (TOCS) 9.1 (1991), pp. 21–65.

[112] AMD. AMD64 Architecture Programmer’s Manual: Volumes 1-5. Nov.
2020. url: https://www.amd.com/system/files/TechDocs/40332.
pdf.

https://purple.ai/blogs/whats-the-difference-between-a-lan-and-a-wan/
https://purple.ai/blogs/whats-the-difference-between-a-lan-and-a-wan/
https://www.computerworld.com/article/2546283/what-you-need-to-know-about-vpn-technologies.html
https://www.computerworld.com/article/2546283/what-you-need-to-know-about-vpn-technologies.html
https://doi.org/10.1145/3313808.3313814
http://doi.acm.org/10.1145/3313808.3313814
https://www.linux-kvm.org/page/Virtio
https://www.linux-kvm.org/page/Virtio
https://www.amd.com/system/files/TechDocs/40332.pdf
https://www.amd.com/system/files/TechDocs/40332.pdf

292 BIBLIOGRAPHY

[113] K. Raghavendra. Paravirtualized ticket spinlocks. June 2013. url: https:
//lwn.net/Articles/556141/ (visited on 11/10/2021).

[114] J. Ouyang and J. R. Lange. “Preemptable Ticket Spinlocks: Improving
Consolidated Performance in the Cloud”. In: VEE’13. Houston, Texas,
USA, 2013, pp. 191–200. isbn: 978-1-4503-1266-0. doi: 10 . 1145 /
2451512.2451549. url: http://doi.acm.org/10.1145/2451512.
2451549.

[115] Torvalds. torvalds/linux. July 2021. url: https : / / github . com /
torvalds/linux (visited on 07/07/2021).

[116] C. Villavieja, V. Karakostas, L. Vilanova, Y. Etsion, A. Ramirez, A.
Mendelson, N. Navarro, A. Cristal, and O. S. Unsal. “Didi: Mitigating the
performance impact of TLB shootdowns using a shared TLB directory”.
In: PACT 2011, pp. 340–349.

[117] J. Ouyang, J. R. Lange, and H. Zheng. “Shoot4U: Using VMM assists
to optimize TLB operations on preempted vCPUs”. In: VEE’16 (2016).

[118] M. Liu and T. Li. “Optimizing virtual machine consolidation performance
on NUMA server architecture for cloud workloads”. In: 2013 IEEE 19th
International Symposium on High Performance Computer Architecture
(HPCA). IEEE. 2014, pp. 325–336.

[119] Domain XML format. url: https://libvirt.org/formatdomain.html
(visited on 07/07/2021).

[120] AMD. Leadership High Performance Computing. AMD. June 5, 2020.
url: https://ir.amd.com/static- files/fd06c15e- 0241- 424d-
9fd9-5a469d96012d (visited on 07/21/2020).

[121] The Red Hat Enterprise Linux Team. Red Hat: Leading the enterprise
Linux server market. Dec. 2019. url: https://www.redhat.com/en/
blog/red-hat-leading-enterprise-linux-server-market (visited
on 07/23/2020).

[122] VMware. Host Power Management in VMware vSphere 5.5. url: http:
//www.vmware.com/resources/techresources/10205.

[123] Distrowatch. DistroWatch Project Ranking. 2020. url: https : / /
distrowatch . com / dwres . php ? resource = ranking & sort = votes
(visited on 07/23/2020).

[124] X. Zhan, Y. Bao, C. Bienia, and K. Li. “PARSEC3.0: A Multicore
Benchmark Suite with Network Stacks and SPLASH-2X”. In: SIGARCH
Comput. Archit. News 44.5 (Feb. 2017), pp. 1–16. issn: 0163-5964. doi: 10.
1145/3053277.3053279. url: https://doi.org/10.1145/3053277.
3053279.

https://lwn.net/Articles/556141/
https://lwn.net/Articles/556141/
https://doi.org/10.1145/2451512.2451549
https://doi.org/10.1145/2451512.2451549
http://doi.acm.org/10.1145/2451512.2451549
http://doi.acm.org/10.1145/2451512.2451549
https://github.com/torvalds/linux
https://github.com/torvalds/linux
https://libvirt.org/formatdomain.html
https://ir.amd.com/static-files/fd06c15e-0241-424d-9fd9-5a469d96012d
https://ir.amd.com/static-files/fd06c15e-0241-424d-9fd9-5a469d96012d
https://www.redhat.com/en/blog/red-hat-leading-enterprise-linux-server-market
https://www.redhat.com/en/blog/red-hat-leading-enterprise-linux-server-market
http://www.vmware.com/resources/techresources/10205
http://www.vmware.com/resources/techresources/10205
https://distrowatch.com/dwres.php?resource=ranking&sort=votes
https://distrowatch.com/dwres.php?resource=ranking&sort=votes
https://doi.org/10.1145/3053277.3053279
https://doi.org/10.1145/3053277.3053279
https://doi.org/10.1145/3053277.3053279
https://doi.org/10.1145/3053277.3053279

BIBLIOGRAPHY 293

[125] Open-Source, Automated Benchmarking. 2021. url: https : / / www .
phoronix-test-suite.com/ (visited on 04/24/2021).

[126] R. Feldt and A. Magazinius. “Validity threats in empirical software
engineering research-an initial survey.” In: Seke. 2010, pp. 374–379.

[127] C. Wohlin, P. Runeson, M. Höst, M. C. Ohlsson, B. Regnell, and A.
Wesslén. Experimentation in software engineering. Springer Science &
Business Media, 2012.

[128] J. Li, Q. Wang, D. Jayasinghe, J. Park, T. Zhu, and C. Pu. “Performance
overhead among three hypervisors: An experimental study using hadoop
benchmarks”. In: IEEE BigData Congress’13. 2013, pp. 9–16.

[129] P. Luszczek, E. Meek, S. Moore, D. Terpstra, V. M. Weaver, and J.
Dongarra. “Evaluation of the HPC challenge benchmarks in virtualized
environments”. In: Proceedings of the 2011 international conference on
Parallel Processing - Volume 2. Springer-Verlag, 2011, pp. 436–445.

[130] U. F. Minhas, J. Yadav, A. Aboulnaga, and K. Salem. “Database systems
on virtual machines: How much do you lose?” In: 2008 IEEE 24th
International Conference on Data Engineering Workshop. 2008, pp. 35–
41.

[131] A. J. Younge, R. Henschel, J. T. Brown, G. Von Laszewski, J. Qiu, and
G. C. Fox. “Analysis of virtualization technologies for high performance
computing environments”. In: IEEE CLOUD’11. 2011, pp. 9–16.

[132] J. P. Walters, V. Chaudhary, M. Cha, S. Guercio Jr, and S. Gallo.
“A comparison of virtualization technologies for HPC”. In: Advanced
Information Networking and Applications, 2008. AINA 2008. 22nd
International Conference on. IEEE. 2008, pp. 861–868.

[133] J. Han, J. Ahn, C. Kim, Y. Kwon, Y.-r. Choi, and J. Huh. “The effect
of multi-core on HPC applications in virtualized systems”. In: Euro-Par
2010 Parallel Processing Workshops. Springer. 2011, pp. 615–623.

[134] M. H. Jamal, A. Qadeer, W. Mahmood, A. Waheed, and J. J. Ding.
“Virtual machine scalability on multi-core processors based servers for
cloud computing workloads”. In: Networking, Architecture, and Storage,
2009. NAS 2009. IEEE International Conference on. IEEE. 2009, pp. 90–
97.

[135] E. Walker. “Benchmarking amazon EC2 for high-performance scientific
computing”. In: ; login:: the magazine of USENIX & SAGE 33.5 (2008),
pp. 18–23.

[136] X. Song, H. Chen, and B. Zang. Characterizing the Performance and
Scalability of Many-core Applications on Virtualized Platforms. Tech. rep.
FDUPPITR-2010-002. Parallel Processing Institute, Fudan University,
2010.

https://www.phoronix-test-suite.com/
https://www.phoronix-test-suite.com/

294 BIBLIOGRAPHY

[137] P. Padala, X. Zhu, Z. Wang, S. Singhal, K. G. Shin, et al. “Performance
evaluation of virtualization technologies for server consolidation”. In: HP
Labs Tec. Report 137 (2007).

[138] Y. Zhao, J. Rao, and Q. Yi. “Characterizing and optimizing the
performance of multithreaded programs under interference”. In: PACT
2016. Sept. 2016, pp. 287–297.

[139] Y. Koh, R. Knauerhase, P. Brett, M. Bowman, Z. Wen, and C. Pu. “An
analysis of performance interference effects in virtual environments”.
In: 2007 IEEE International Symposium on Performance Analysis of
Systems & Software. 2007, pp. 200–209.

[140] J. Liu. “Evaluating standard-based self-virtualizing devices: A per-
formance study on 10 GbE NICs with SR-IOV support”. In: IEEE
International Symposium on Parallel & Distributed Processing (IPDPS).
IEEE. 2010, pp. 1–12.

[141] L. Youseff, K. Seymour, H. You, D. Zagorodnov, J. Dongarra, and R.
Wolski. “Paravirtualization effect on single-and multi-threaded memory-
intensive linear algebra software”. In: Cluster Computing 12.2 (2009),
pp. 101–122.

[142] R. McDougall and J. Anderson. “Virtualization Performance: Perspec-
tives and Challenges Ahead”. In: SIGOPS Oper. Syst. Rev. 44.4 (Dec.
2010), pp. 40–56.

[143] W. Huang, J. Liu, B. Abali, and D. K. Panda. “A case for high
performance computing with virtual machines”. In: Proceedings of the
20th annual international conference on Supercomputing. ACM. 2006,
pp. 125–134.

[144] K. Z. Ibrahim, S. Hofmeyr, and C. Iancu. “Characterizing the
performance of parallel applications on multi-socket virtual machines”.
In: Proceedings of the 2011 11th IEEE/ACM International Symposium
on Cluster, Cloud and Grid Computing. IEEE Computer Society. 2011,
pp. 1–12.

[145] M. Grund, J. Schaffner, J. Krueger, J. Brunnert, and A. Zeier. “The
Effects of Virtualization on Main Memory Systems”. In: DaMoN 2010.
Proceedings of the Sixth International Workshop on Data Management
on New Hardware. 2010, pp. 41–46.

[146] B. A. Kitchenham, S. L. Pfleeger, L. M. Pickard, P. W. Jones, D. C.
Hoaglin, K. El Emam, and J. Rosenberg. “Preliminary guidelines for
empirical research in software engineering”. In: IEEE Transactions on
software engineering 28.8 (2002), pp. 721–734.

[147] R. Malhotra. Empirical research in software engineering: concepts,
analysis, and applications. CRC press, 2016.

BIBLIOGRAPHY 295

[148] A. Höfer and W. F. Tichy. “Status of empirical research in software
engineering”. In: Empirical Software Engineering Issues. Critical
Assessment and Future Directions. Springer, 2007, pp. 10–19.

[149] M. Razavian, B. Paech, and A. Tang. “Empirical research for software
architecture decision making: An analysis”. In: Journal of Systems and
Software 149 (2019), pp. 360–381.

[150] D. Etiemble. “45-year CPU evolution: one law and two equations”. In:
arXiv preprint arXiv:1803.00254 (2018).

[151] C.-Q. Yang and B. P. Miller. “Critical path analysis for the execution of
parallel and distributed programs”. In: ICDCS’88. 1988, pp. 366–367.

[152] U. Drepper. Memory part 7: Memory performance tools. Nov. 2007. url:
https://lwn.net/Articles/257209/ (visited on 07/29/2020).

[153] G. Voron, G. Thomas, V. Quema, and P. Sens. “An interface to implement
NUMA policies in the Xen hypervisor”. In: EuroSys’17. 2017, pp. 453–
467.

[154] B. Bui, D. Mvondo, B. Teabe, K. Jiokeng, L. Wapet, A. Tchana, G.
Thomas, D. Hagimont, G. Muller, and N. Depalma. “When extended
para-virtualization (XPV) meets NUMA”. In: EuroSys’19. 2019, pp. 1–15.

[155] The Linux Kernel Archives. NO_HZ: Reducing Scheduling-Clock Ticks.
url: https://www.kernel.org/doc/Documentation/timers/%7BNO%
5C_HZ%7D.txt (visited on 07/07/2021).

[156] S. Siddha, V. Pallipadi, and A. Ven. “Getting maximum mileage out of
tickless”. In: Proceedings of the Linux Symposium. Vol. 2. Citeseer. 2007,
pp. 201–207.

[157] W. Xiong, S. Park, J. Zhang, Y. Zhou, and Z. Ma. “Ad Hoc
Synchronization Considered Harmful”. In: OSDI’10. Proceedings of
the 9th USENIX Conference on Operating Systems Design and
Implementation. Vancouver, BC, Canada: USENIX Association, 2010,
pp. 163–176. url: http://dl.acm.org/citation.cfm?id=1924943.
1924955.

[158] W. Li. KVM: X86: Add Paravirt TLB Shootdown. Nov. 2017. url:
https://lwn.net/Articles/740363/ (visited on 07/07/2021).

[159] P. Monne Roger. [v2,3/3] x86/tlb: use Xen L0 assisted TLB flush when
available. Jan. 2020. url: https://patchwork.kernel.org/patch/
11327803/ (visited on 07/29/2020).

[160] O. Sukwong and H. S. Kim. “Is co-scheduling too expensive for SMP
VMs?” In: Proceedings of the sixth conference on Computer systems.
ACM, 2011, pp. 257–272.

https://lwn.net/Articles/257209/
https://www.kernel.org/doc/Documentation/timers/%7BNO%5C_HZ%7D.txt
https://www.kernel.org/doc/Documentation/timers/%7BNO%5C_HZ%7D.txt
http://dl.acm.org/citation.cfm?id=1924943.1924955
http://dl.acm.org/citation.cfm?id=1924943.1924955
https://lwn.net/Articles/740363/
https://patchwork.kernel.org/patch/11327803/
https://patchwork.kernel.org/patch/11327803/

296 BIBLIOGRAPHY

[161] X. Ding, P. Gibbons, and M. Kozuch. “A Hidden Cost of Virtualization
When Scaling Multicore Applications”. In: HotCloud 2013. USENIX.

[162] J. Ahn, C. H. Park, and J. Huh. “Micro-sliced virtual processors
to hide the effect of discontinuous cpu availability for consolidated
systems”. In: 2014 47th Annual IEEE/ACM International Symposium
on Microarchitecture. IEEE. 2014, pp. 394–405.

[163] C.-C. Tu, M. Ferdman, C.-t. Lee, and T.-c. Chiueh. “A comprehensive
implementation and evaluation of direct interrupt delivery”. In: Acm
Sigplan Notices 50.7 (2015), pp. 1–15.

[164] L. Cheng, J. Rao, and F. C. M. Lau. “vScale: Automatic and Efficient
Processor Scaling for SMP Virtual Machines”. In: EuroSys ’16. London,
United Kingdom: ACM, 2016, 2:1–2:14. isbn: 978-1-4503-4240-7. doi:
10.1145/2901318.2901321. url: http://doi.acm.org/10.1145/
2901318.2901321.

[165] T. Merrifield and H. R. Taheri. “Performance Implications of Extended
Page Tables on Virtualized x86 Processors”. In: VEE’16. 2016, pp. 25–35.

[166] S. Kashyap, C. Min, and T. Kim. “Scaling Guest OS Critical Sections
with eCS”. In: Boston, MA: USENIX Association, 2018, pp. 159–172.
isbn: 978-1-931971-44-7. url: https://www.usenix.org/conference/
atc18/presentation/kashyap.

[167] J. T. Lim and J. Nieh. “Optimizing Nested Virtualization Performance
Using Direct Virtual Hardware”. In: Proceedings of the Twenty-Fifth
International Conference on Architectural Support for Programming
Languages and Operating Systems. ASPLOS ’20. Lausanne, Switzerland:
Association for Computing Machinery, 2020, pp. 557–574. isbn:
9781450371025. doi: 10.1145/3373376.3378467. url: https://doi.
org/10.1145/3373376.3378467.

[168] N. Amit, A. Tai, and M. Wei. “Don’t Shoot down TLB Shootdowns!” In:
Proceedings of the Fifteenth European Conference on Computer Systems.
EuroSys ’20. Heraklion, Greece: Association for Computing Machinery,
2020. isbn: 9781450368827. doi: 10 . 1145 / 3342195 . 3387518. url:
https : / / doi - org . kuleuven . e - bronnen . be / 10 . 1145 / 3342195 .
3387518.

[169] W. Jia, J. Shan, T. O. Li, X. Shang, H. Cui, and X. Ding. “vSMT-IO:
Improving I/O Performance and Efficiency on {SMT} Processors in
Virtualized Clouds”. In: 2020 {USENIX} Annual Technical Conference
({USENIX}{ATC} 20). 2020, pp. 449–463.

[170] S. K. Sadasivam, B. W. Thompto, R. Kalla, and W. J. Starke. “IBM
Power9 processor architecture”. In: IEEE Micro 37.2 (2017), pp. 40–51.

https://doi.org/10.1145/2901318.2901321
http://doi.acm.org/10.1145/2901318.2901321
http://doi.acm.org/10.1145/2901318.2901321
https://www.usenix.org/conference/atc18/presentation/kashyap
https://www.usenix.org/conference/atc18/presentation/kashyap
https://doi.org/10.1145/3373376.3378467
https://doi.org/10.1145/3373376.3378467
https://doi.org/10.1145/3373376.3378467
https://doi.org/10.1145/3342195.3387518
https://doi-org.kuleuven.e-bronnen.be/10.1145/3342195.3387518
https://doi-org.kuleuven.e-bronnen.be/10.1145/3342195.3387518

BIBLIOGRAPHY 297

[171] M. Danelutto, T. De Matteis, D. De Sensi, G. Mencagli, and M. Torquati.
“P3ARSEC: towards parallel patterns benchmarking”. In: Proceedings of
the Symposium on Applied Computing. ACM. 2017, pp. 1582–1589.

[172] InitializeCriticalSectionAndSpinCount function (synchapi.h). Oct. 2021.
url: https://docs.microsoft.com/en- us/windows/win32/api/
synchapi/nf-synchapi-initializecriticalsectionandspincount
(visited on 11/15/2021).

[173] In-depth JVM-locking and concurrency. url: https://programmerall.
com/article/4314276986/ (visited on 11/15/2021).

[174] PAUSE. url: https://c9x.me/x86/html/file_module_x86_id_232.
html (visited on 11/15/2021).

[175] M. Kerrisk. futex(2). Aug. 2021. url: https://man7.org/linux/man-
pages/man2/futex.2.html (visited on 09/03/2021).

[176] S. Mittal. “A survey of techniques for architecting TLBs”. In: Concur-
rency and computation: practice and experience 29.10 (2017).

[177] D. L. Black, R. F. Rashid, D. B. Golub, and C. R. Hill. “Translation
lookaside buffer consistency: a software approach”. In: ACM SIGARCH
Computer Architecture News 17.2 (1989), pp. 113–122.

[178] S. Ghemawat and P. Menage. Tcmalloc: Thread-caching malloc. 2009.
[179] Emeryberger. emeryberger/Malloc-Implementations. July 2012. url:

https://github.com/emeryberger/Malloc-Implementations/tree/
master/allocators/ptmalloc/ptmalloc2 (visited on 07/12/2021).

[180] S. Peter, A. Baumann, T. Roscoe, P. Barham, and R. Isaacs. “30 seconds
is not enough! A study of operating system timer usage”. In: ACM
SIGOPS Operating Systems Review 42.4 (2008), pp. 205–218.

[181] Y. Etsion, D. Tsafrir, and D. G. Feitelson. “Effects of clock resolution
on the scheduling of interactive and soft real-time processes”. In:
Proceedings of the 2003 ACM SIGMETRICS international conference
on Measurement and modeling of computer systems. 2003, pp. 172–183.

[182] J. Corbet. Reinventing the timer wheel. June 2015. url: https://lwn.
net/Articles/646950 (visited on 07/12/2021).

[183] R. Russell. Unreliable Guide To Hacking The Linux Kernel. 2005. url:
https://www.kernel.org/doc/htmldocs/kernel-hacking/index.
html (visited on 07/12/2021).

[184] A. Golchin. “Control based tickless scheduling”. PhD thesis. 2017.
[185] Timer Interrupt Sources. Mar. 2019. url: https://wiki.osdev.org/

Timer_Interrupt_Sources (visited on 07/12/2021).

https://docs.microsoft.com/en-us/windows/win32/api/synchapi/nf-synchapi-initializecriticalsectionandspincount
https://docs.microsoft.com/en-us/windows/win32/api/synchapi/nf-synchapi-initializecriticalsectionandspincount
https://programmerall.com/article/4314276986/
https://programmerall.com/article/4314276986/
https://c9x.me/x86/html/file_module_x86_id_232.html
https://c9x.me/x86/html/file_module_x86_id_232.html
https://man7.org/linux/man-pages/man2/futex.2.html
https://man7.org/linux/man-pages/man2/futex.2.html
https://github.com/emeryberger/Malloc-Implementations/tree/master/allocators/ptmalloc/ptmalloc2
https://github.com/emeryberger/Malloc-Implementations/tree/master/allocators/ptmalloc/ptmalloc2
https://lwn.net/Articles/646950
https://lwn.net/Articles/646950
https://www.kernel.org/doc/htmldocs/kernel-hacking/index.html
https://www.kernel.org/doc/htmldocs/kernel-hacking/index.html
https://wiki.osdev.org/Timer_Interrupt_Sources
https://wiki.osdev.org/Timer_Interrupt_Sources

298 BIBLIOGRAPHY

[186] [V4,4/4] Utilize the vmx preemption timer for tsc deadline timer. June
2016. url: https://patchwork.kernel.org/project/kvm/patch/
1465852801-6684-5-git-send-email-yunhong.jiang@linux.intel.
com/ (visited on 04/14/2021).

[187] M. C. Chehab and J. Lawall. “NO HZ: Reducing scheduling-clock ticks”.
In: Linux Kernel Source Tree (July 2020). url: https://github.com/
torvalds/linux/blob/master/Documentation/timers/no_hz.rst.

[188] H. Tang, Q. Koziol, S. Byna, J. Mainzer, and T. Li. “Enabling
Transparent Asynchronous I/O using Background Threads”. In: 2019
IEEE/ACM Fourth International Parallel Data Systems Workshop
(PDSW). IEEE. 2019, pp. 11–19.

[189] L. Barroso, M. Marty, D. Patterson, and P. Ranganathan. “Attack of
the killer microseconds”. In: Communications of the ACM 60.4 (2017),
pp. 48–54.

[190] E. VMware. Timekeeping in VMware Virtual Machines. 2008.
[191] T. Broomhead, L. Cremean, J. Ridoux, and D. Veitch. “Virtualize

Everything but Time.” In: OSDI. Vol. 10. 2010, pp. 1–6.
[192] S. D’Souza and R. Rajkumar. “QuartzV: Bringing Quality of Time to

Virtual Machines”. In: 2018 IEEE Real-Time and Embedded Technology
and Applications Symposium (RTAS). IEEE. 2018, pp. 49–61.

[193] A. Goel, L. Abeni, C. Krasic, J. Snow, and J. Walpole. “Supporting
time-sensitive applications on a commodity OS”. In: ACM SIGOPS
Operating Systems Review 36.SI (2002), pp. 165–180.

[194] M. Aron and P. Druschel. “Soft timers: Efficient microsecond software
timer support for network processing”. In: ACM Transactions on
Computer Systems (TOCS) 18.3 (2000), pp. 197–228.

[195] Y. Etsion, D. Tsafrir, and D. G. Feitelson. “Effects of clock resolution
on the scheduling of interactive and soft real-time processes”. In:
Proceedings of the 2003 ACM SIGMETRICS international conference
on Measurement and modeling of computer systems. 2003, pp. 172–183.

[196] N. Amit. “Optimizing the TLB Shootdown Algorithm with Page
Access Tracking”. In: 2017 {USENIX} Annual Technical Conference
({USENIX}{ATC} 17). 2017, pp. 27–39.

[197] E. Rigtorp. Latency implications of virtual memory. July 2020. url:
https://rigtorp.se/virtual-memory/ (visited on 01/05/2022).

https://patchwork.kernel.org/project/kvm/patch/1465852801-6684-5-git-send-email-yunhong.jiang@linux.intel.com/
https://patchwork.kernel.org/project/kvm/patch/1465852801-6684-5-git-send-email-yunhong.jiang@linux.intel.com/
https://patchwork.kernel.org/project/kvm/patch/1465852801-6684-5-git-send-email-yunhong.jiang@linux.intel.com/
https://github.com/torvalds/linux/blob/master/Documentation/timers/no_hz.rst
https://github.com/torvalds/linux/blob/master/Documentation/timers/no_hz.rst
https://rigtorp.se/virtual-memory/

BIBLIOGRAPHY 299

[198] Y. Kwon, H. Yu, S. Peter, C. J. Rossbach, and E. Witchel. “Coordinated
and Efficient Huge Page Management with Ingens”. In: 12th USENIX
Symposium on Operating Systems Design and Implementation (OSDI 16).
Savannah, GA: USENIX Association, Nov. 2016, pp. 705–721. isbn: 978-
1-931971-33-1. url: https://www.usenix.org/conference/osdi16/
technical-sessions/presentation/kwon.

[199] madvise(2). Mar. 2021. url: http://man7.org/linux/man-pages/
man2/madvise.2.html (visited on 07/12/2021).

[200] J. Evans. “A scalable concurrent malloc (3) implementation for FreeBSD”.
In: Proc. of the bsdcan conference, ottawa, canada. 2006.

[201] D. Rentas. Evaluate the Fragmentation Effect of Different Heap Allocation
Algorithms in Linux. 2015.

[202] A. Wiggins and J. Langston. “Enhancing the scalability of mem-
cached”. In: Intel document, unpublished, http://software. intel. com/en-
us/articles/enhancing-the-scalability-of-memcached (2012).

[203] Oracle. Understanding Memory Management. Jan. 2010. url: https:
//docs.oracle.com/cd/E13150_01/jrockit_jvm/jrockit/geninfo/
diagnos/garbage_collect.html (visited on 07/12/2021).

[204] S. Sangappa, K. Palaniappan, and R. Tollerton. “Benchmarking Java
against C/C++ for interactive scientific visualization”. In: Proceedings of
the 2002 joint ACM-ISCOPE conference on Java Grande. 2002, pp. 236–
236.

[205] L. Prechelt. “An empirical comparison of seven programming languages”.
In: Computer 33.10 (2000), pp. 23–29.

[206] P. Kulkarni, H. Kailash, V. Shankar, S. Nagarajan, and D. Goutham.
“Programming languages: A comparative study”. In: Information Security
Research Lab, NITK, Surathkal (2008).

[207] W. Felter, A. Ferreira, R. Rajamony, and J. Rubio. “An updated
performance comparison of virtual machines and linux containers”. In:
2015 IEEE international symposium on performance analysis of systems
and software (ISPASS). IEEE. 2015, pp. 171–172.

[208] mallopt(3). Mar. 2021. url: https://man7.org/linux/man-pages/
man3/mallopt.3.html (visited on 01/14/2022).

[209] R. Liu and H. Chen. “SSMalloc: a low-latency, locality-conscious memory
allocator with stable performance scalability”. In: Proceedings of the Asia-
Pacific Workshop on Systems. 2012, pp. 1–6.

https://www.usenix.org/conference/osdi16/technical-sessions/presentation/kwon
https://www.usenix.org/conference/osdi16/technical-sessions/presentation/kwon
http://man7.org/linux/man-pages/man2/madvise.2.html
http://man7.org/linux/man-pages/man2/madvise.2.html
https://docs.oracle.com/cd/E13150_01/jrockit_jvm/jrockit/geninfo/diagnos/garbage_collect.html
https://docs.oracle.com/cd/E13150_01/jrockit_jvm/jrockit/geninfo/diagnos/garbage_collect.html
https://docs.oracle.com/cd/E13150_01/jrockit_jvm/jrockit/geninfo/diagnos/garbage_collect.html
https://man7.org/linux/man-pages/man3/mallopt.3.html
https://man7.org/linux/man-pages/man3/mallopt.3.html

300 BIBLIOGRAPHY

[210] B. F. Romanescu, A. R. Lebeck, D. J. Sorin, and A. Bracy. “UNified
instruction/translation/data (UNITD) coherence: One protocol to rule
them all”. In: HPCA 2010 The Sixteenth International Symposium on
High-Performance Computer Architecture. IEEE. 2010, pp. 1–12.

[211] A. Bhattacharjee, D. Lustig, and M. Martonosi. “Shared last-level TLBs
for chip multiprocessors”. In: 2011 IEEE 17th International Symposium
on High Performance Computer Architecture. IEEE. 2011, pp. 62–63.

[212] M. K. Kumar, S. Maass, S. Kashyap, J. Veselỳ, Z. Yan, T. Kim,
A. Bhattacharjee, and T. Krishna. “Latr: Lazy Translation Coherence”.
In: Proceedings of the Twenty-Third International Conference on
Architectural Support for Programming Languages and Operating Systems.
ACM. 2018, pp. 651–664.

[213] E. Zurich. The Barrelfish Operating System. Oct. 2018. url: http :
//www.barrelfish.org/index.html (visited on 01/21/2022).

[214] S. Boyd-Wickizer, H. Chen, R. Chen, Y. Mao, M. F. Kaashoek, R. T.
Morris, A. Pesterev, L. Stein, M. Wu, Y.-h. Dai, et al. “Corey: An
Operating System for Many Cores.” In: OSDI 2008. Vol. 8. 2008, pp. 43–
57.

[215] A. T. Clements, M. F. Kaashoek, and N. Zeldovich. “RadixVM: Scalable
address spaces for multithreaded applications”. In: Proceedings of the 8th
ACM European Conference on Computer Systems. 2013, pp. 211–224.

[216] S. Schneider, C. D. Antonopoulos, and D. S. Nikolopoulos. “Scalable
locality-conscious multithreaded memory allocation”. In: Proceedings of
the 5th international symposium on Memory management. 2006, pp. 84–
94.

[217] What is data deduplication. 2022. url: https://www.netapp.com/
data-management/what-is-data-deduplication/#:~:text=Data%
20deduplication % 20is % 20a % 20process , data % 20is % 20written %
20to%20disk. (visited on 02/02/2022).

[218] N. Koksharov. What is a ring buffer? 2021. url: https://redisson.
org/glossary/ring-buffer.html (visited on 02/01/2022).

[219] R. Johnson, M. Athanassoulis, R. Stoica, and A. Ailamaki. “A new
look at the roles of spinning and blocking”. In: Proceedings of the Fifth
International Workshop on Data Management on New Hardware. 2009,
pp. 21–26.

[220] Using mutexes. 2020. url: https://www.ibm.com/docs/en/aix/7.2?
topic=programming-using-mutexes (visited on 02/03/2022).

[221] sem_overview(7). June 2020. url: https://man7.org/linux/man-
pages/man7/sem%5C_overview.7.html (visited on 02/03/2022).

http://www.barrelfish.org/index.html
http://www.barrelfish.org/index.html
https://www.netapp.com/data-management/what-is-data-deduplication/#:~:text=Data%20deduplication%20is%20a%20process,data%20is%20written%20to%20disk.
https://www.netapp.com/data-management/what-is-data-deduplication/#:~:text=Data%20deduplication%20is%20a%20process,data%20is%20written%20to%20disk.
https://www.netapp.com/data-management/what-is-data-deduplication/#:~:text=Data%20deduplication%20is%20a%20process,data%20is%20written%20to%20disk.
https://www.netapp.com/data-management/what-is-data-deduplication/#:~:text=Data%20deduplication%20is%20a%20process,data%20is%20written%20to%20disk.
https://redisson.org/glossary/ring-buffer.html
https://redisson.org/glossary/ring-buffer.html
https://www.ibm.com/docs/en/aix/7.2?topic=programming-using-mutexes
https://www.ibm.com/docs/en/aix/7.2?topic=programming-using-mutexes
https://man7.org/linux/man-pages/man7/sem%5C_overview.7.html
https://man7.org/linux/man-pages/man7/sem%5C_overview.7.html

BIBLIOGRAPHY 301

[222] Using Condition Variables. 2010. url: https://docs.oracle.com/cd/
E19455-01/806-5257/6je9h032r/index.html (visited on 02/03/2022).

[223] Monitors and Condition Variables. url: https://cseweb.ucsd.edu/
classes/sp17/cse120-a/applications/ln/lecture8.html (visited
on 02/03/2022).

[224] Synchronized Methods. 2021. url: https : / / docs . oracle . com /
javase/tutorial/essential/concurrency/syncmeth.html (visited
on 02/03/2022).

[225] A. Kumar. Monitor And Lock In C#. May 2019. url: https://www.c-
sharpcorner.com/UploadFile/de41d6/monitor- and- lock- in- C-
Sharp/ (visited on 02/03/2022).

[226] J. Hughes. “Why functional programming matters”. In: The computer
journal 32.2 (1989), pp. 98–107.

[227] E. Bainomugisha, A. L. Carreton, T. v. Cutsem, S. Mostinckx, and
W. d. Meuter. “A Survey on Reactive Programming”. In: ACM Comput.
Surv. 45.4 (Aug. 2013). issn: 0360-0300. doi: 10.1145/2501654.2501666.
url: https://doi.org/10.1145/2501654.2501666.

[228] Parallelism. 2021. url: https://docs.oracle.com/javase/tutorial/
collections/streams/parallelism.html (visited on 02/03/2022).

[229] Run MATLAB on multicore and multiprocessor machines. 2022. url:
https://www.mathworks.com/discovery/matlab-multicore.html
(visited on 02/13/2022).

[230] E. Rigtorp. Correctly implementing a spinlock in C++. Apr. 2020. url:
https://rigtorp.se/spinlock/ (visited on 02/04/2022).

[231] D. Loshin. Business intelligence: the savvy manager’s guide. Newnes,
2012.

[232] E. Paraschiv. Introduction to Thread Pools in Java. Jan. 2022. url:
https://www.baeldung.com/thread-pool-java-and-guava (visited
on 02/08/2022).

[233] S. Schildermans and K. Aerts. “Wolfram for data processing and visual-
ization”. In: Draft Proceedings of the 29th Symposium on Implementation
and Application of Functional Languages (IFL 2017). Nicolas Wu,
University of Bristol; Bristol. 2017.

https://docs.oracle.com/cd/E19455-01/806-5257/6je9h032r/index.html
https://docs.oracle.com/cd/E19455-01/806-5257/6je9h032r/index.html
https://cseweb.ucsd.edu/classes/sp17/cse120-a/applications/ln/lecture8.html
https://cseweb.ucsd.edu/classes/sp17/cse120-a/applications/ln/lecture8.html
https://docs.oracle.com/javase/tutorial/essential/concurrency/syncmeth.html
https://docs.oracle.com/javase/tutorial/essential/concurrency/syncmeth.html
https://www.c-sharpcorner.com/UploadFile/de41d6/monitor-and-lock-in-C-Sharp/
https://www.c-sharpcorner.com/UploadFile/de41d6/monitor-and-lock-in-C-Sharp/
https://www.c-sharpcorner.com/UploadFile/de41d6/monitor-and-lock-in-C-Sharp/
https://doi.org/10.1145/2501654.2501666
https://doi.org/10.1145/2501654.2501666
https://docs.oracle.com/javase/tutorial/collections/streams/parallelism.html
https://docs.oracle.com/javase/tutorial/collections/streams/parallelism.html
https://www.mathworks.com/discovery/matlab-multicore.html
https://rigtorp.se/spinlock/
https://www.baeldung.com/thread-pool-java-and-guava

Biography

I obtained my Master’s degree in Engineering Technology, Electronics-ICT
summa cum laude with congratulations from the examination committee from
KU Leuven and UHasselt in 2017. Ever since, up until the time of writing this
dissertation, I have been working on the Ph. D. project documented here.

My main research interests should be evident from the work before you. However,
since I am highly motivated and curious by nature, I have accrued sizeable
knowledge in other fields related to computer science over the years, including
functional programming, software architectures, embedded systems, etc. Given
the opportunity, I would gladly continue down this path of becoming a true
Swiss army knife of software engineering: versatile, effective and indispensable
in any good project manager’s toolkit.

Besides software development, I have a passion for music and martial arts. I
play electric guitar and have been practicing judo for the majority of my life. A
few years ago I picked up kickboxing as well. Those formal hobbies aside, my
favorite passtime will likely always remain devising novel and creative methods
to annoy my girlfriend followed by empirically studying how she reacts to them.

303

List of publications

• S. Schildermans and K. Aerts. “Wolfram for data processing and
visualization”. In: Draft Proceedings of the 29th Symposium on
Implementation and Application of Functional Languages (IFL 2017).
Nicolas Wu, University of Bristol; Bristol. 2017;

• S. Schildermans and K. Aerts. “Towards High-Level Software Approaches
to Reduce Virtualization Overhead for Parallel Applications”. In: 2018
IEEE International Conference on Cloud Computing Technology and
Science (CloudCom). IEEE. 2018, pp. 193–197;

• S. Schildermans et al. “Ptlbmalloc2: Reducing TLB Shootdowns with
High Memory Efficiency”. In: ISPA-BDCloud-SocialCom-SustainCom
2020 (2020), pp. 76–83;

• S. Schildermans et al. “Virtualization Overhead of Multithreading in X86
State-of-the-Art & Remaining Challenges”. In: IEEE Transactions on
Parallel and Distributed Systems 32.10 (2021), pp. 2557–2570;

• S. Schildermans et al. “Paratick: Reducing Timer Overhead in Virtual
Machines”. In: 50th International Conference on Parallel Processing.
2021, pp. 1–10.

305

FACULTY OF ENGINEERING TECHNOLOGY
DEPARTMENT OF COMPUTER SCIENCE

ACRO-FUNTTOP
Wetenschapspark 27

3590 Diepenbeek
stijn.schildermans@kuleuven.be

https://iiw.kuleuven.be/onderzoek/acro

	Abstract
	Beknopte samenvatting
	List of Abbreviations
	List of Symbols
	Contents
	List of Figures
	List of Tables
	List of Listings
	Introduction
	Context
	Problem Statement
	Objectives
	Synopsis

	Background: Virtualization
	Definition
	Hardware Virtualization
	The Virtual Machine Monitor
	CPU Virtualization
	Memory Virtualization
	io Virtualization

	Operating System Virtualization
	System Containers
	Application Containers

	Application Virtualization
	Operating Systems
	High-Level Programming Languages
	Unikernels

	Desktop Virtualization
	Storage Virtualization
	Logical Block Addressing
	Disk Partitioning
	Redundant Array of Independent Disks
	Storage Area Network
	Network-Attached Storage
	Software-Defined Storage

	Network Virtualization
	Virtual Internet Protocol
	Virtual Local Area Network
	Virtual Private Network

	Conclusion

	Virtualization Overhead
	Definition
	System Effects
	Application Effects

	Causes
	Unfair Resource Allocation
	Instruction Emulation
	Input/Output
	Double Memory Address Translation
	Spinning Synchronization
	Blocking Synchronization
	Memory Consistency
	Non-Uniform Memory Access Opacity

	Quantification
	System Settings
	Workloads
	Measurement
	Threats to Validity

	Related Work
	Defining Virtualization Overhead
	Empirical Research

	Conclusion
	Personal Contribution

	Virtualization Overhead for Multithreaded Applications
	Sequential Applications
	Multithreaded Applications
	Negligible Overhead
	High Guest Overhead
	High Host Overhead
	High Overcommitted Overhead

	Longevity of Results
	Related Work
	Conclusion
	Personal Contribution

	Reducing Virtualization Overhead for Multithreaded Applications
	Blocking Synchronization
	Deferred Scheduling
	Interrupt Controller Virtualization
	Co-Scheduling
	Scheduler Tick Management
	Symmetric Multithreading
	Synchronization-Aware Application Design

	Spinning Synchronization
	Pause Loop Exiting
	Paravirtualized Ticket Spin Locks
	Pause Exiting
	Blocking Synchronization
	Compiler Enhancements
	Spin Lock System Calls
	Co-Scheduling

	Data Sharing
	Interrupt Controller Virtualization
	Alternative Translation Lookaside Buffer Design
	Co-Scheduling
	Source Code Alteration
	Alternative Memory Allocator Design

	Non-Uniform Memory Access Locality
	Non-Uniform Memory Access Passthrough
	Non-Uniform Memory Access Locality Managers
	Symmetric Multithreading
	Extended Paravirtualization

	Related Work
	Conclusion
	Personal Contribution
	Future Work

	System Amelioration: Paratick
	Background: Timer Management
	Virtualizing the Scheduler Tick
	Classic Periodic Tick
	Tickless Kernels
	To Tick or not to Tick?

	Virtual Scheduler Ticks
	Paratick
	Host
	Guest

	Evaluation
	Sequential Workloads
	Multithreaded Workloads
	I/O-Intensive Workloads

	Related Work
	Conclusion
	Personal Contribution
	Future Work

	Runtime Amelioration: PTLBMalloc2
	Background: TLB Shootdown Causes
	TLB Shootdown Cost
	CPU Count
	NUMA
	Summary

	Memory Management & TLB Shootdowns
	Hysteresis-Based Arenas
	Decay-Based Purging
	Size Class-Based Memory Management
	Garbage Collection
	Summary

	Global Hysteresis
	Implementing Global Hysteresis
	Ptmalloc2
	Ptlbmalloc2

	Evaluation
	Conceptual Effectiveness
	Side Effects
	Performance

	Related Work
	Conclusion
	Personal Contriburion
	Future Work

	Application Amelioration: Guidelines to Developers
	Background: The Dedup Benchmark
	Application Code & Virtualization Overhead
	Blocking Synchronization
	Spinning Synchronization
	Data Sharing
	Non-Uniform Memory Access Locality

	Guidelines
	Blocking Synchronization
	Spinning Synchronization
	Data Sharing
	Non-Uniform Memory Access Locality

	NODedup
	Blocking Synchronization
	Memory Management

	Evaluation
	Method
	Conceptual Effectiveness
	Performance

	Related Work
	Conclusion
	Personal Contribution
	Future Work

	Conclusion
	Valorization
	Future Work

	Paratick Source Code
	Host
	/include/linux/kvm_host.h
	/arch/x86/kvm/x86.c

	Guest
	/kernel/time/tick-sched.c

	Ptlbmalloc2 Source Code
	Headers
	Global.h
	Types.h
	CPU_monitor.h
	Chunk.h
	Arena.h
	Ptlbmalloc2.h

	Implementation
	CPU_monitor.c
	Chunk.c
	Arena.c
	Ptlbmalloc2.c

	NODedup Source Code
	Headers
	Chunk_list.h
	Iterator.h
	Thread_pool.h
	Encoder.h

	Implementation
	Chunk_list.c
	Iterator.c
	Thread_pool.c
	Encoder.c

	Bibliography
	Biography
	List of publications

