KU LEUVEN ARENBERG DOCTORAL SCHOOL

Faculty of Engineering Technology

Elevating Multithreading
Further into the Cloud

Evaluation and Amelioration of
Hardware-Assisted Virtualization for
Multithreaded Applications in X86

Stijn Schildermans

Supervisors: Dissertation presented in partial
Prof. dr. K. Aerts fulfillment of the requirements for the
Prof. dr. ir. T. Schrijvers degree of Doctor of Engineering
Prof. dr. X. Ding Technology (PhD): Electronics-ICT

(New Jersey Institute of Technology)

June 2022

Elevating Multithreading Further into the Cloud

Evaluation and Amelioration of Hardware-Assisted Virtualization for

Multithreaded Applications in X86

Stijn SCHILDERMANS

Examination committee:
Prof. dr. ir. M. Vergauwen, chair
Prof. dr. K. Aerts, supervisor
Prof. dr. ir. T. Schrijvers, supervisor
Prof. dr. X. Ding, supervisor
(New Jersey Institute of Technology)
Prof. dr. ir. D. Weyns
Dr. ing. L. Vandeurzen
Prof. dr. ir. M. Verhelst
Dr. L. Cuypers
(Commeto)
Prof. dr. J. Shan
(Hofstra University)

June 2022

Dissertation presented in partial
fulfillment of the requirements for
the degree of Doctor of Engineering
Technology (PhD): Electronics-ICT

© 2022 KU Leuven — Faculty of Engineering Technology
Uitgegeven in eigen beheer, Stijn Schildermans, Wetenschapspark 27, 3590 Diepenbeek (Belgium)

Alle rechten voorbehouden. Niets uit deze uitgave mag worden vermenigvuldigd en/of openbaar gemaakt worden
door middel van druk, fotokopie, microfilm, elektronisch of op welke andere wijze ook zonder voorafgaande
schriftelijke toestemming van de uitgever.

All rights reserved. No part of the publication may be reproduced in any form by print, photoprint, microfilm,
electronic or any other means without written permission from the publisher.

Preface

The story of this Ph. D. project starts with that of my Master’s thesis, in
which I explored the potential of functional programming in various cloud
environments. The main conclusion of this work was that the functional
programming style lends itself very well to the cloud, but at the time the
severely limited support cloud platforms offered for functional programming
languages inhibited developers from fully exploiting this natural synergy. This
finding originally led to my Ph. D. project, which aimed to develop a platform
and accompanying software framework that allowed practitioners to fully harness
the potential of functional programming in the cloud.

Naturally, the findings of my Master’s thesis would serve as the outset for
developing the platform and framework described above. As such, the first goal
of my Ph. D. was to understand the underlying mechanisms that led to these
findings. Early on in this process, my attention was drawn to a particularly
interesting observation my Master’s thesis made, being that multithreaded
functional programs outperformed their traditional object-oriented counterparts
in the cloud. Soon I found myself combing through system software and
hardware manuals in search for an explanation. I discovered that virtualizing
multithreaded applications—functional or not—is in fact far from trivial and
doing so may to this day induce severe performance issues. This led me
to realize that the observation I made during my Master’s thesis is in fact
but a symptom of a much broader problem, namely efficiently virtualizing
multithreaded applications. This realization compelled me to shift the focus of
my Ph. D. from functional programming to multithreading in a cloud context,
eventually leading to the dissertation before you right now.

For me personally, the Ph. D. project documented in this dissertation means
much more than simply a set of scientific contributions. For the past five years, it
was my principal goal in life and permeated a large part thereof. It forced me to
grow from a shy student used to doing what he is told to an assertive researcher
proactively looking for and tackling new challenges. Needless to say, this journey

i PREFACE

was not without moments of doubt, desillusion and frustration. However, looking
back on it all, I am immensely proud that I persevered, knowing that aside from
scientific contributions, this project has also brought me enormous fulfillment
and personal enrichment in the form of unique experiences, knowledge and
character development.

Having admitted that I experienced this work as challenging at times, it is no
more than fitting to thank the persons enabling me to bring it to a successful
conclusion regardless. Foremost in this list is prof. dr. Kris Aerts, who granted
me the opportunity and funding to perform this Ph. D. and acted as my main
supervisor throughout. Additionally, I would like to thank prof. dr. Xiaoning
Ding and prof. dr. Jianchen Shan for providing me with invaluable technical
advise when working on several of the publications upon which this dissertation
is based and Hofstra University and KU Leuven for providing the infrastructure
necessary to perform the experiments supporting many of the findings presented
in this work. Furthermore, I would like to thank prof. Ding once again in
conjunction with the New Jersey Institute of Technology, the Flemish Research
Foundation and KU Leuven for making it possible for me to travel to the United
States of America for 4.5 months within the context of this Ph. D. project;
to this day the most enriching experience of my life. Finally, I would like
to thank my parents—Georges Schildermans and Godelieve Billiau—and my
girlfriend—Merel Vaes—for their unquestioning emotional support throughout
all these years.

Abstract

Due to the surging popularity of cloud computing on one hand and the
emergence of numerous novel, innately parallel workloads on the other, executing
multithreaded applications in a virtualized setting has become common practice
in industry. However, multithreading is known to be highly susceptible to
severe performance degradation in virtualized environments. In response,
virtualization technologies have evolved rapidly over the years; to the point of
virtual machines being considered comparable to their physical counterparts in
terms of performance. Precisely because of the rapidity of this evolution however,
empirical evidence supporting this consensus is limited at best. Moreover, the
crippling levels of performance degradation described in literature less than a
decade old suggest that—rapid improvements notwithstanding—it is more than
likely that several challenges still remain in this regard. Both identifying and
addressing these challenges are the main goals of this work.

Because virtualization is a very broad term, this manuscript commences by
describing the virtualization process in general and situating the scope of this
Ph. D. project within this broad landscape. Next, it performs a much needed
assessment of the state of the art by measuring virtualization overhead for
a variety of multithreaded applications through controlled experiments, after
first formally defining what exactly virtualization overhead entails within this
context. A reflection on potential mitigation techniques for the remaining
challenges these experiments lay bare follows. Finally, it refines, implements and
evaluates three of the most promising of these techniques, carefully selected to
each target a distinct level of the system stack so that they are complementary
to one another.

This dissertation makes clear that virtualization overhead is a multifaceted
phenomenon, in essence exclusively internal to the system in the form of reduced
resource efficiency. Nevertheless, this reduction in resource efficiency may be
observable externally in the form of a reduction in temporal efficiency. In
particular for multithreaded applications, these system and application effects

iv ABSTRACT

may differ signifficantly in magnitude. Specifically, this work shows that these
effects may still amount to respectively 170% and 80% for multithreaded
applications in a state-of-the-art virtualized environment. Although these
numbers suggest that much work remains to be done, the complementary
mitigation techniques this work elaborates on represent a solid step in the
right direction. In particular, chapter 6 presents 'virtual scheduler ticks’ as a
means to address excessive virtualization overhead caused by rapid switches
between idle and active vCPU states in tickless systems by paravirtualizing the
scheduler tick, improving performance by up to 15%. Furthermore, chapter
7 addresses TLB shootdown overhead induced by rapidly resizing application
memory space, resulting in the concept of ’global hysteresis’, which yields
performance gains of up to 45%. Finally, chapter 8 outlines a series of guidelines
application developers may follow to minimize the likelihood of their code
suffering significant virtualization overhead. Although the effect of applying
these guidelines depends greatly on the nature of the application, the proof of
concept included in this manuscript achieves performance improvements of up
to 40%.

Beknopte samenvatting

Omwille van de toenemende populariteit van cloud computing alsook de opkomst
van verschillende nieuwe, van nature parallelle toepassingen is het uitvoeren
van applicaties die gebruik maken van multithreading in een gevirtualiseerde
context een standaardpraktijk geworden in de industrie. Desalniettemin staat
multithreading erom bekend zeer gevoelig te zijn voor performantieproblemen in
een gevirtualiseerde omgeving. Omwille hiervan zijn virtualisatietechnologieén
doorheen de jaren aan een hoog tempo geévolueerd; zelfs zodanig dat virtuele
machines de dag van vandaag gelijkwaardig worden geacht aan hun fysieke
tegenhangers wat betreft performantie. Precies door het hoge tempo van
deze evolutie is empirisch bewijs ter ondersteuning van deze consensus
echter op zijn zachtst gezegd beperkt. Daarenboven suggereren de enorme
performantiedegradaties beschreven in literatuur die nog maar enkele jaren
oud is dat er op dit gebied meer dan waarschijnlijk nog tal van uitdagingen
overblijven. De voornaamste doelstellingen van dit werk zijn dan ook het
identificeren en het aanpakken van deze uitdagingen.

Omdat virtualisatie een zeer breed begrip is vangt deze thesis aan met een
beschrijving van het virtualisatieproces in het algemeen en een afbakening van
het gebied dat dit doctoraatsproject bestrijkt binnen dit brede landschap.
Vervolgens gaat dit werk de stand van zaken binnen dit gebied na door
aan de hand van experimenten virtualisatie-overhead op te meten voor een
brede waaier aan applicaties die gebruik maken van multithreading, na eerst
formeel te definiéren wat virtualisatie-overhead eigenlijk inhoudt binnen deze
context. Hierop volgt een reflectie over mogelijke oplossingen voor de resterende
problemen die deze experimenten onthullen. Ten slotte wijdt dit werk uit over
drie van de meest veelbelovende dezer mogelijke oplossingen, die aandachtig
geselecteerd zijn zodat ze elk betrekking hebben op een verschillende laag in de
systeem stack en elkaar dus automatisch aanvullen.

Dit proefschrift maakt duidelijk dat virtualisatie-overhead uit vele facetten
bestaat en in eerste instantie een louter intern systeemfenomeen is dat

vi BEKNOPTE SAMENVATTING

zich manifesteert in de vorm van verminderde systeembronefficiéntie. Deze
verminderde systeembronefficiéntie kan op zijn beurt echter extern worden
waargenomen in de vorm van verminderde tijdsefficiéntie. Specifiek voor
applicaties die gebruik maken van multithreading kunnen de groottes van
deze systeem- en applicatie-effecten sterk van elkaar verschillen. Concreet toont
dit werk aan dat deze effecten nog steeds respectievelijk 170% en 80% kunnen
bedragen voor applicaties die gebruik maken van multithreading in zelfs de
modernste gevirtualiseerde omgevingen. Hoewel deze resultaten suggereren dat
er nog veel werk voor de boeg ligt vormen de technieken die dit proefschrift
naar voor draagt een aanzienlijke stap in de goede richting. Specifiek stelt
hoofdstuk 6 het concept van ’virtual scheduler ticks’ voor als een manier om
buitensporige virtualisatie-overhead veroorzaakt door snelle overgangen tussen
actieve en inactieve vCPU toestanden in tickless systemen tegen te gaan door
paravirtualisatie toe te passen op de scheduler tick. Verder pakt hoofdstuk 7 TLB
shootdown overhead veroorzaakt door aan een hoog tempo de geheugenruimte
van applicaties in grootte aan te passen aan, wat leidt tot het concept van
"global hysteresis’ wat op zijn beurt performantiewinsten tot 45% bewerkstelligt.
Ten slotte beschrijft hoofdstuk 8 een reeks richtlijnen voor programmeurs met
als doel de kans dat zij code schrijven die significante virtualisatie-overhead
veroorzaakt te minimaliseren. Hoewel het effect van deze richtlijnen sterk
afhankelijk is van de specifieke applicatie waarop ze worden toegepast, bereikt
de bijgevoegde demonstratieve applicatie een performantiewinst van 40% na
toepassing van deze richtlijnen.

List of Abbreviations

ABI Application Binary Interface. 16, 17, 30
AT Artificial Intelligence. 2, 116
API Application Programming Interface. 23, 109, 110, 121, 153, 168, 173

APIC Advanced Programmable Interrupt Controller. 25, 75
BWW Blocked Waiter Wakeup. 44, 73, 130

CPI Cycles Per Instruction. 69, 70

CPU Central Processing Unit. 4, 8, 10, 14, 17-20, 23-25, 3841, 43-48, 53, 55,
57, 61, 62, 64, 67, 68, 70-73, 75, 77, 78, 80, 81, 8891, 94-96, 98, 109-112,
114, 123, 128, 130, 136-140, 148, 149, 154, 156, 157, 160, 162, 163, 167,
181, 184, 186, 187

DAS Directly Attached Storage. 33
DID Direct Interrupt Delivery. 130

DMA Direct Memory Addressing. 21, 23, 24, 41

EIE External Interrupt Exiting. 130

EPT Extended Page Table. 20
FIFO First-In-First-Out. 42

GB GigaBytes. 186
GPA Guest-Physical Address. 19, 20

viii List of Abbreviations

GPGPU General-Purpose Graphics Processing Unit. 116
GPU Graphics Processing Unit. 25
GVA Guest-Virtual Address. 19, 20

HPA Host-Physical Address. 19, 20

HPC High-Performance Computing. 3, 4, 59

Hz Hertz. 110, 116, 154

I/O Input/Output. ix, 2, 10, 21-25, 31, 38, 39, 41, 46, 48, 60-62, 67, 92, 114,
116, 118, 122, 128-131

ICR Interrupt Command Register. 44, 45, 149

ID Identifier. 89, 99

IoT Internet of Things. 2

IP Internet Protocol. 34

IPI Inter-Processor Interrupt. 43-45, 73, 75, 76, 79, 81, 86, 89, 92, 98, 99,
137-140, 143, 149, 187, 188

ISA Instruction Set Architecture. 8, 14, 15

IT Information Technology. 1, 36

JIT Just-In-Time. 30
JRE Java Runtime Environment. 30

JVM Java Virtual Machine. 30, 96
kB Kilobytes. 128, 135, 141, 143, 178

LAN Local Area Network. 35

LAPIC Local Advanced Programmable Interrupt Controller. 110, 112
LBA Logical Block Addressing. 32

LHP Lock Holder Preemption. 42, 44, 45, 76, 79, 94, 95, 97, 130
LWP Lock Waiter Preemption. 42, 43, 94, 95, 97, 130

List of Abbreviations ix

MB MegaByte(s). 31, 135, 141, 142, 144, 159, 184, 186

MMIO Memory-Mapped Input/Output. 21, 23

MMU Memory Management Unit. 18-20

ms millisecond(s). 38, 116

MSR Model-Specific Register. 44, 45, 73, 75, 76, 94, 112, 113, 123, 130, 149

NAS Network-Attached Storage. 33, 34
NIC Network Interface Card. 25

NUMA Non-Uniform Memory Access. 45-47, 54, 57, 60-62, 64, 67, 69-71, 78
81, 83, 85-87, 100-105, 126, 134, 135, 137, 139, 140, 148, 149, 156, 157
160, 178, 179, 182, 186, 188, 191

NVMe Non-Volatile Memory express. 116

OC OverCommitted. 47, 49, 52, 61, 62, 64, 67, 69, 71, 72, 75-82, 87, 94, 95,
113, 122, 123

OC5 OverCommitted base two. 49, 52, 62, 64, 69, 77-80, 94

OPS Operations per Second. 55, 56

OS Operating System. 9-13, 16, 18-20, 26, 27, 29-33, 42—44, 47, 48, 61, 64,
75, 76, 80, 81, 88, 91, 97, 109-111, 122, 130, 138, 141, 144-146, 155, 163,
168, 178, 186

PClIe Peripheral Component Interconnect Express. 25

pCPU Physical Central Processing Unit. 14, 24, 44, 46, 47, 62, 89, 91, 101,
104, 116, 117, 130

PF Pause Filter. 43, 77

Ph. D. Doctor of Philosophy. 3, 5, 49, 81, 106, 166, 179, 189, 191, 193
PID Process Identifier. 26

PLE Pause Loop Exiting. 43, 76, 77, 79, 86, 94-97, 107, 123

PTE Page Table Entry. 18, 20, 44, 135, 136

RAID Reduntant Array of Independent Disks. 33

X List of Abbreviations

RAM Random Access Memory. 10, 22, 27
RCU Read-Copy-Update. 73, 112, 117, 122
RDT Resource Director Technology. 41

SAN Storage Area Network. 33, 34

SDK Software Development Kit. 174

SDN Software-Defined Networking. 34

SDS Software-Defined Storage. 34

SMP Symmetric MultiProcessing. 2, 109

SMT Symmetric Multithreading. 86, 91, 104

SR-IOV Single Root Input/Output Virtualization. 25, 67, 128
SSD Solid State Drive. 128

TLB Translation Lookaside Buffer. 18-20, 44, 45, 76, 79, 81, 87, 98-100, 106,
130, 133-141, 143, 144, 146-149, 153, 154, 156, 157, 160, 162—-164, 176,
177, 181-183, 185, 187

TPU Tensor Processing Unit. 116
TSC Time Stamp Counter. 73, 112

UC UnderCommitted. 47, 49, 62, 64, 67, 69-72, 75, 76, 78, 79, 87, 83, 92, 93
101, 103, 122, 123

vCPU Virtual Central Processing Unit. 14, 24, 25, 39, 42-46, 60-62, 64-67,
70, 72, 73, 75, 7881, 86-93, 95, 97-99, 101-105, 112-119, 121, 122, 124,
126, 128-130, 186, 187

VIP Virtual Internet Protocol. 34
VIPT Virtually Indexed, Physically Tagged. 98
VLAN Virtual Local Area Network. 35

VM Virtual Machine. 8-12, 17, 19-27, 20-31, 37-43, 46-49, 60-62, 69, 72, 73
80, 88, 89, 91, 97, 99-102, 104, 105, 112-119, 124, 126, 128, 130, 167, 182
186, 192

VMCS Virtual Machine Control Structure. 17, 24, 130

LIST OF ABBREVIATIONS xi

VMM Virtual Machine Monitor. 10-25, 31, 39, 41-47, 72, 76, 79, 80, 87, 90,
91, 95, 99, 101, 102, 104, 105, 112, 113, 116, 117, 121, 130, 135, 186

VPN Virtual Private Network. 35

WAN Wide Area Network. 35

List of Symbols

ony Reduction in Resource Efficiency

on Reduction in Temporal Efficiency

y Central Processing Unit Count
w Overhead Impact Factor

o Variance

C Cycles

P Physical System

S System Settings

~

Wall Clock Application Execution Time

<

Virtual Machine

W Workload

xiii

Contents

Abstract iii
Beknopte samenvatting v
List of Abbreviations xi
List of Symbols xiii
Contents XV
List of Figures XXi
List of Tables xxiii
List of Listings XXV
1 Introduction 1
1.1 Context 1
1.2 Problem Statement, 2
1.3 Objectives 3
1.4 Synopsis 5

2 Background: Virtualization 7
2.1 Definition 7
2.2 Hardware Virtualization 10
2.2.1 The Virtual Machine Monitor 10

2.2.2 CPU Virtualization 14

2.2.3 Memory Virtualization 18

224 T/O Virtualization 21

2.3 Operating System Virtualization 26
2.3.1 System Containers 27

XV

XVi

CONTENTS

2.3.2 Application Containers 27
2.4 Application Virtualization 29
2.4.1 Operating Systems 29
2.4.2 High-Level Programming Languages 30
2.4.3 Unikernels. 30
2.5 Desktop Virtualization 32
2.6 Storage Virtualization 32
2.6.1 Logical Block Addressing 32
2.6.2 Disk Partitioning 0oL 33
2.6.3 Redundant Array of Independent Disks 33
2.6.4 Storage Area Network 33
2.6.5 Network-Attached Storage 33
2.6.6 Software-Defined Storage 34
2.7 Network Virtualization 34
2.7.1 Virtual Internet Protocol 34
2.7.2 Virtual Local Area Network 35
2.7.3 Virtual Private Network 35
2.8 Conclusion 36
Virtualization Overhead 37
3.1 Definition 38
3.1.1 System Effects 39
3.1.2 Application Effects L. 40
3.2 Causes e 41
3.2.1 Unfair Resource Allocation 41
3.2.2 Inmstruction Emulation 41
3.23 Input/Output 41
3.2.4 Double Memory Address Translation 42
3.2.5 Spinning Synchronization 42
3.2.6 Blocking Synchronization 43
3.2.7 Memory Consistency 44
3.2.8 Non-Uniform Memory Access Opacity 45
3.3 Quantification L oL o 45
3.3.1 System Settings. 46
332 Workloads 48
3.3.3 Measurement Lo 48
3.3.4 Threats to Validity 49
3.4 Related Work oo 55
3.4.1 Defining Virtualization Overhead 55
3.4.2 Empirical Research 57
3.5 Conclusion 57

3.5.1 Personal Contribution 58

CONTENTS xvii

4 \Virtualization Overhead for Multithreaded Applications 59
4.1 Sequential Applications L. 60
4.2 Multithreaded Applications 61

4.2.1 Negligible Overhead 69
4.2.2 High Guest Overhead 69
4.2.3 High Host Overhead 71
4.2.4 High Overcommitted Overhead 77
4.3 Longevity of Results 81
4.4 Related Work Lo 81
4.5 Conclusion 83
4.5.1 Personal Contribution 84

5 Reducing Virtualization Overhead for Multithreaded Applications 85

5.1

5.2

5.3

5.4

9.5
5.6

Blocking Synchronization 0. 87
5.1.1 Deferred Scheduling 87
5.1.2 Interrupt Controller Virtualization 89
5.1.3 Co-Scheduling 89
5.1.4 Scheduler Tick Management 90
5.1.5 Symmetric Multithreading 91
5.1.6 Synchronization-Aware Application Design 92
Spinning Synchronization 93
5.2.1 Pause Loop Exiting 94
5.2.2 Paravirtualized Ticket Spin Locks 94
5.2.3 Pause Exiting oo oL 95
5.2.4 Blocking Synchronization 95
5.2.5 Compiler Enhancements 96
5.2.6 Spin Lock System Calls 97
5.2.7 Co-Scheduling 97
Data Sharing L 98
5.3.1 Interrupt Controller Virtualization 98
5.3.2 Alternative Translation Lookaside Buffer Design 98
5.3.3 Co-Scheduling 99
5.3.4 Source Code Alteration 99
5.3.5 Alternative Memory Allocator Design 100
Non-Uniform Memory Access Locality 100
5.4.1 Non-Uniform Memory Access Passthrough 101
5.4.2 Non-Uniform Memory Access Locality Managers 102
5.4.3 Symmetric Multithreading 104
5.4.4 Extended Paravirtualization 105
Related Work 105
Conclusion 106
5.6.1 Personal Contribution 106

5.6.2 Future Work 107

xviii CONTENTS

6 System Amelioration: Paratick 109
6.1 Background: Timer Management 110
6.2 Virtualizing the Scheduler Tick 112

6.2.1 Classic Periodic Tick 113
6.2.2 Tickless Kernels 113
6.2.3 To Tick or not to Tick? 114
6.3 Virtual Scheduler Ticks 116
6.4 Paratick L 118
6.4.1 Host 119
6.4.2 Guest 120
6.5 Evaluation. 122
6.5.1 Sequential Workloads 124
6.5.2 Multithreaded Workloads 126
6.5.3 I/O-Intensive Workloads 128
6.6 Related Work 130
6.7 Conclusion e 131
6.7.1 Personal Contribution 131
6.7.2 Future Work oo 131

7 Runtime Amelioration: PTLBMalloc2 133
7.1 Background: TLB Shootdown Causes 135
7.2 TLB Shootdown Cost 137

721 CPUCount 138
7.2.2 NUMA e 139
7.2.3 Summary 140
7.3 Memory Management & TLB Shootdowns 140
7.3.1 Hysteresis-Based Arenas 141
7.3.2 Decay-Based Purging 144
7.3.3 Size Class-Based Memory Management 144
7.3.4 Garbage Collection, 146
7.3.5 Summary 147
7.4 Global Hysteresis 148
7.5 Implementing Global Hysteresis 151
7.5.1 Ptmalloc2 151
7.5.2 Ptlbmalloc2 153
7.6 Evaluation. 155
7.6.1 Conceptual Effectiveness 156
7.6.2 Side Effectso oo 157
7.6.3 Performance 160
7.7 Related Work 162
7.8 Conclusion e 163
7.8.1 Personal Contriburion 164

782 Future Work, 164

CONTENTS

Xix

8 Application Amelioration: Guidelines to Developers

8.1
8.2

8.3

8.4

8.5

8.6
8.7

Background: The Dedup Benchmark
Application Code & Virtualization Overhead
8.2.1 Blocking Synchronization
8.2.2 Spinning Synchronization
8.2.3 Data Sharing oL
8.2.4 Non-Uniform Memory Access Locality
Guidelines L
8.3.1 Blocking Synchronization
8.3.2 Spinning Synchronization
8.3.3 Data Sharing Lo
8.3.4 Non-Uniform Memory Access Locality
NODedup oo e
8.4.1 Blocking Synchronization
8.4.2 Memory Management
Evaluationo
85.1 Method
8.5.2 Conceptual Effectiveness
8.5.3 Performance L.
Related Work o
Conclusion
8.7.1 Personal Contribution
8.7.2 Future Work

9 Conclusion

9.1
9.2

Valorization
Future Work

A Paratick Source Code
A1 Host

A.1.1 /include/linux/kvm_hosth
A12 Jarch/x86/kvm/x86.c

A2 Guest

A.2.1 /kernel/time/tick-sched.c

B Ptlbmalloc2 Source Code
B.1 Headers

B.1.1 Globalh
B.1.2 Typesh
B.1.3 CPU_monitor.h
B.1.4 Chunkh
B.1.5 Arenah
B.1.6 Ptlbmalloc2.h

XX

B.2 Implementation

B.2.1 CPU__monitor.c

B.22 Chunkc
B.2.3 Arenac
B.2.4 Ptlbmalloc2.c

C NODedup Source Code

C.1 Headers
C.1.1 Chunk listh
C.1.2 TIteratorh

C.1.3 Thread_ pool.h

C.1.4 Encoder.h
C.2 Implementation
C.2.1 Chunk list.c
C.2.2 TIterator.c

C.2.3 Thread_pool.c

C.24 Encoderc

Bibliography
Biography

List of publications

CONTENTS

List of Figures

2.1
2.2
2.3
24
2.5
2.6
2.7
2.8
2.9
2.10
2.11

3.1

4.1
4.2
4.3
4.4
4.5
4.6

4.7
4.8
4.9

4.10
4.11

Type 1 hypervisor

Type 2 hypervisor
Kernel assisted hypervisor
Dynamic binary translation,
Paravirtualization 00000
Hardware-assisted virtualization
Memory virtualization 0oL
Operating system virtualization
System containerization 0L
Application containerization

Unikernel

Virtualization overhead

Virtualization overhead for sequential applications

Virtualization overhead for multithreaded applications
Detailed system effects for multithreaded benchmarks
Detailed application effects for multithreaded benchmarks . . .
Critical path
Breakdown of virtualization overhead for benchmarks with high
guest-level virtualization overhead
Cycles per instruction for benchmarks with high guest-level
overhead L
Breakdown of virtualization overhead for benchmarks with high

host-level overhead

Breakdown of host-level virtualization overhead
Contended lock in a virtualized environment
Breakdown of virtualization overhead for benchmarks with high
overcommitted overhead L.

XXi

13
13
15
16
17
18
26
28
28
31

38

xxii

LIST OF FIGURES

4.12 Subroutine breakdown for benchmarks with high overcommitted

overhead L 78
5.1 Effect of halt polling on virtualization overhead. 88
5.2 Virtualization-sensitive synchronization operations performed by

P3ARSEC. 93
5.3 Memory locality non-uniform memory access passthrough. 101
5.4 Memory locality of memory locality managers. 103
55 dmpof numad.o 103
6.1 Classic periodic tick in Linux. 111
6.2 Linux dynticks idle operation. 111
6.3 Host-side paratick code. 119
6.4 Guest-side paratick code. oL 120
6.5 Paratick performance for sequential workloads. 125
6.6 Paratick performance for multithreaded workloads. 127
6.7 Paratick performance for input/output-intensive workloads. . . 129
7.1 TLBshootdowncost.. 139
7.2 The arena imbalance issue. 142
7.3 Capacitive effect of decay-based purging. 145
7.4 Thread-local cache. L. 145
7.5 Garbage collection. L Lo 147
7.6 Global hysteresis. 150
7.7 Ptmalloc2.. 152
7.8 Ptlbmalloc2 TLB shootdowns. 157
7.9 Side effects of ptlbmalloc2.. 158
7.10 Performance of ptlbmalloc2. 161
8.1 Task parallelism and data parallelism. 180

List of Tables

3.1 Virtualization overhead in existing work
4.1 Existing work studyingvirtualization overhead.

6.1 Classic periodic ticks vs. tickless kernels
6.2 Paratick performance for sequential workloads.
6.3 Paratick performance for multithreaded workloads.
6.4 Paratick performance for input/output-intensive workloads. . .

7.1 Ptlbmalloc2 base thresholds.
7.2 Average performannce improvement of ptlbmalloc2.
7.3 Performance of techniques related to ptlbmalloc2

81 NODedup VM exits. v
8.2 NODedup execution time.

xxiii

List of Listings

4.1
5.1
7.1
7.2
8.1
8.2
8.3
8.4
8.5
8.6
8.7
8.8
8.9

User level spin-based barrier in Volrend. 80
Generic user-level spin lock 0. 96
Microbenchmark generating many TLB shootdowns. 137
Example of the arena imbalance issue, 143
Mutex example o 168
Semaphore example oL 170
Condition variable example 170
Monitor example oL 172
Implicit parallelism example 173
Spin lock example 174
Example of an advanced user-level spin lock in C++. 175
Poor memory management example 177

Poor memory locality example 178

XXV

Chapter 1

Introduction

This brief introductory chapter outlines the context in which the research
presented in this dissertation has been performed, derives the research problems
addressed in this work from said context and establishes concrete objectives
based on these problems. Finally, it provides a synopsis including a summary
of the research papers on which this dissertation is based.

1.1 Context

Cloud computing is among the most impactful computing paradigms to emerge
in decades. Since its initial formalization in 1997, it has grown to a leading
software deployment model [1]. According to Eurostat, 36% of European
businesses employed some form of cloud computing in 2020, up from 24% in
2018 [2]. This significant and growing corporate interest in and dependence on
cloud computing is projected to continue to increase for years to come [3].

Although cloud services vary greatly in design and implementation, the common
denominator among all of them is heavy use of virtualization [4]. This
technology encompasses emulating information technology (IT) resources safely
and efficiently, de facto instantiating (virtual) computing resources largely
independently of the underlying physical infrastructure [5]. This in itself is not
at all a new concept [6]. Over the five decades since its formal introduction,
virtualizaton technology has become highly mature thanks to extensive efforts
from academia and industry. Consequently, virtualized resources are these days
expected to perform practically as well as physical ones [7].

2 INTRODUCTION

The maturity of virtualization is undoubtedly a major driver of the accelerating
adoption of cloud computing, since historically performance constraints
originating at the virtualization infrastructure were among the main limitations
of this novel paradigm [8]. On the other hand, as cloud computing is
adopted for more and more diverse and demanding use cases such as artificial
intelligence (AI), the internet of things (IoT) and big data, the limits of
virtualization technology are continually being pushed. Thus, as much as
improving virtualization performance is driving the adoption of cloud computing,
the adoption of cloud computing is driving the need for ever more efficient
and flexible virtualization technologies. Key to the continued success of cloud
computing is the development of virtualization technology staying ahead of the
growing demands of its adopters in this bilateral evolution.

1.2 Problem Statement

In spite of the increasing expectation of the contrary outlined above, even state-
of-the-art virtualization techniques still struggle to efficiently virtualize certain
system components and workloads. For example, input/output (I/O) devices are
notoriously difficult to virtualize, implying that applications performing large
amounts of I/O operations may still incur a significant performance penalty
in a virtualized environment [9]. Even more problematic are multithreaded
applications. Typical thread synchronization and data sharing constructs often
require special handling in a virtualized environment, again inducing a severe
performance penalty [10]. Moreover, entirely cost-free virtualization is nigh
impossible, since as outlined in §1.1, virtualization entails emulating resources
which are not (necessarily) physically present, which is almost invariably
less efficient than directly employing said resources in physical form. Thus,
optimizing virtualization technology may well prove to be an unending endeavor.
It is therefore clear that even after half a century of progress there is still a
strong need to further reduce the cost of the virtualization process.

The innate performance drawbacks of virtualization have been known since
its inception [6]. Nevertheless, research efforts to ameliorate virtualization
performance were limited during the first decades of its existence, likely because
correctness and robustness were of greater concern. Additionally—or perhaps
consequently—industrial applications of the technology were rare. This status
quo changed radically in the beginning of the 215° century however, as powerful
symmetric multiprocessing (SMP) servers and robust virtualization technology
allowed for multiple virtualized systems to be hosted on a single physical
platform, yielding significant cost savings [11]. Many solutions to long-standing
challenges in the field have been proposed since, some of which have been

OBJECTIVES 3

widely adopted [12, 13, 14, 15, 16]. However, largely due to the speed at which
virtualization technology has evolved in recent years, the current state of the
art regarding virtualization performance in an industrial context is unclear.
Reliable empirical evidence for the efficacy of the many novel features sported
by modern virtualization technology is lacking. Moreover, it is currently unclear
which challenges remain to achieve truly efficient virtualization for all workloads,
under all conditions.

From the above, the two principal problems this dissertation aims to address
emerge:

e Despite great advancements in recent years, virtualization may still
introduce a significant performance penalty for certain workloads;

e Both the nature and severity of the remaining challenges regarding
virtualization performance are currently unclear.

1.3 Objectives

Virtualization is an immensely broad field, covering all kinds of system
components and workloads [17]. Therefore, addressing the problems described
in §1.2 in a general sense is infeasible within the context of a single Ph. D.
dissertation. As such, the scope of this work must by practical necessity be
limited to select virtualization technologies and workloads. Since the Ph. D.
project documented in this dissertation has taken place within the faculty of
engineering technology, industrial relevance was the primary concern in this
selection process. Below the results of this process are outlined and motivated,
before concrete objectives based on said results are defined.

Given the perpetual struggle of cloud platforms to keep up with industrial
demand for supporting ever more demanding and diverse workloads outlined
in §1.1, computationally challenging workloads that are not considered typical
cloud applications are at first glance an excellent target for this work.
Among these, high-performance computing (HPC) applications are particularly
interesting, since moving such workloads to the cloud is a relatively novel trend
that may yield massive cost savings and flexibility benefits compared to hosting
the necessary infrastructure locally [18, 19, 20, 21]. Moreover, since performance
is by definition a key requirement for HPC workloads, optimizations focussed
on such workloads are highly relevant to practitioners.

While HPC workloads are highly varied in nature, one characteristic they all
have in common is their emphasis on parallelism [22, 23]. This concept is

4 INTRODUCTION

often implemented at two levels within these applications: shared-memory
parallelism on the one hand, and distributed-memory parallelism on the other
[24, 23]. The former is also known as multithreading and encompasses multiple
application stacks executing in parallel within the same memory space. The
latter involves multiple distinct processes—often hosted on distinct physical
systems—cooperating through some communication protocol. While both of
these concepts exist outside of the context of HPC, multithreading is much more
commonly employed than distributed memory parallelism, with applications in
web servers, data bases, video games, etc. Moreover, the low-level mechanisms
employed by distributed memory parallelism are more numerous and vary
greatly between applications, which severely limits the real-world impact of
improving any specific cog in the distributed memory mechanism. For these
reasons, the scope of this work is limited to multithreading.

Limiting the scope in terms of workloads to multithreaded applications also
greatly reduces the variety of virtualization technologies to be considered.
Namely, since multithreading is a purely computational concept, only central
processing unit (CPU) virtualization is relevant to this work. Furthermore, the
vast majority of cloud infrastructures are built around a single CPU architecture,
namely x86 [25]. Finally, while many virtualization techniques exist for this
architecture [26], hardware-assisted virtualization is by far the most popular
technique these days [27, 28]. Combining all of the above, the scope of this
work is limited to hardware-assisted virtualization of multithreaded workloads
on x86 CPUs.

Combining the problems described in §1.2 with the scope constraints outlined
above yields the main research question to be answered in this dissertation:

How can the performance cost of hardware-assisted virtualization of multithreaded
applications be further reduced on the x86 platform?

This question implies addressing both problems listed in §1.2. However, it
is evident that both of these problems cannot be resolved simultaneously.
Concretely, the state of the art must be known before solutions to remaining
challenges may be devised. Therefore, the first major contribution of this work
is clarifying the state of the art regarding hardware-assisted virtualization of
multithreaded applications on the x86 platform. This includes both assessing
the effectiveness of the latest enhancements to the relevant technologies and
identifying remaining challenges. Thus, the following secondary research
questions shape the first stage of this dissertation:

SYNOPSIS 5

o What causes high hardware-assisted virtualization cost for multithreaded
applications on the 86 platform?

o How effective are existing hardware-assisted x86 virtualization techniques at
addressing the issues arising from virtualizing multithreaded applications?

Once the remaining challenges regarding hardware-assisted virtualization of
multithreading on the x86 platform are known, novel solutions may be devised
to address said challenges. Besides merely describing such solutions, evidence for
their effectiveness should be provided. This yields the second pair of secondary
research questions to be addressed:

o Which techniques can reduce the cost of hardware-assisted virtualization
of multithreaded applications on the x86 platform?

e How can evidence for the efficacy of proposed techniques to reduce the
cost of hardware-assisted virtualization of multithreaded applications on
the 286 platform be provided?

Providing evidence for the efficacy of the proposed techniques implies performing
a comprehensive performance analysis. Empirical methods are to be preferred
for this because of the complexity of virtualized systems. Moreover, performing
an empirical performance analysis implies implementing the devised solutions,
which allows them to be readily adopted by practitioners. This ensures that
aside from scientific contributions, this dissertation has the potential to directly
ameliorate industrial practices. This fits perfectly within the profile of the
faculty of engineering technology, at which the Ph. D. project presented in this
thesis has been conducted.

1.4 Synopsis

In order to answer the research questions outlined above, a thorough
understanding of virtualization is required. Therefore, chapter 2 provides
a comprehensive introduction to this concept. This chapter will make clear
that virtualization is a complex process with many incarnations. Evidently,
this makes measuring the performance cost of virtualization, i.e. virtualization
overhead, a complicated task. Chapter 3 elaborates on how this virtualization
overhead may be defined and measured and lists the principal known causes of
virtualization overhead. Chapter 4 proceeds to address the first pair of partial
research questions outlined in §1.3 by applying the techniques established in

6 INTRODUCTION

chapter 3. A reflection on existing and potential future techniques to address
the issues discovered in chapter 4 follows in chapter 5, providing an answer
to the third partial research question formulated in §1.3. Finally, the last
partial research question is addressed by implementing some of the techniques
proposed in chapter 5 and empirically determining their effectiveness. Three
complementary solutions have been selected for this detailed analysis: one
at system level, one at application runtime environment level and one at
application level. Chapters 6, 7 and 8 are each respectively dedicated to one of
these. They each provide a deep dive into the problem they address, discuss the
implementation of the proposed solution in both abstract and concrete terms
and conclude with empirical evidence for the latter’s efficacy. Finally, chapter 9
formulates a general conclusion.

Chapters 3 to 8 are all based on peer reviewed and published original work
by the author of this dissertation, his colleagues and supervisors. Each of
these chapters starts with a full bibliographic reference to the publication on
which it is based and concludes with an outline of the main author’s personal
contributions to the work. Concretely, the following publications have been
incorporated into this dissertation:

e Chapters 3, 4 and 5: S. Schildermans et al. “Virtualization Overhead
of Multithreading in X86 State-of-the-Art & Remaining Challenges”. In:
IEEE Transactions on Parallel and Distributed Systems 32.10 (2021),
pp. 2557-2570;

e Chapter 6: S. Schildermans et al. “Paratick: Reducing Timer Overhead
in Virtual Machines”. In: 50th International Conference on Parallel
Processing. 2021, pp. 1-10;

e Chapter 7: S. Schildermans et al. “Ptlbmalloc2: Reducing TLB
Shootdowns with High Memory Efficiency”. In: ISPA-BDCloud-
SocialCom-SustainCom 2020 (2020), pp. 76-83;

¢ Chapter 8: S. Schildermans and K. Aerts. “Towards High-Level Software
Approaches to Reduce Virtualization Overhead for Parallel Applications”.
In: 2018 IEEE International Conference on Cloud Computing Technology
and Science (CloudCom). TEEE. 2018, pp. 193-197.

Chapter 2

Background: Virtualization

Central to this work is the concept of virtualization. This chapter clarifies
this broad topic through describing all of the major forms of virtualization
commonly utilized today. Even though the scope of this work is limited to a
handful of specific aspects of virtualization, discussing the wide landscape of
virtualization technologies as a whole allows for proper positioning of this work
within the state of the art and eases interpretation of the presented findings.

2.1 Definition

Through the years, virtualization has broadened in scope to such an extent that
it has become difficult to define unambiguously. Consequently, several accepted
definitions exist today. One of the most prominent among these, to which this
dissertation adheres, is the following [33]:

Virtualization is a technology that combines or divides computing resources to
present one or many operating environments using methodologies like hardware
and software partitioning or aggregation, partial or complete machine simulation,
emulation, time-sharing, and many others.

According to the above definition, the principal purpose of virtualization is
separating the notion of the operating environment from that of its underlying
resources. Both the resources being virtualized and the technologies employed
in doing so may vary greatly. Interestingly, aggregation and partitioning are
both mentioned as forms of virtualization, even though these techniques achieve

8 BACKGROUND: VIRTUALIZATION

opposite goals. The mainstream notion of virtualization is by contrast limited
to partitioning alone.

While the above definition exemplifies that the applications and implementations
of virtualization are highly diverse, all forms of this technique share the following
conceptual structure:

e Host: The resources hosting the virtualized environment. Depending on
the virtualization technique being applied, these resources may or may
not be aware that they are being virtualized and may or may not provide
specific support for this process. Often, these resources are selected to be
similar to the virtual resources being created for performance reasons;

o Virtualization layer: A dedicated software component responsible for
mapping requests to a virtual resource onto available physical resources.
While the implementation of this layer may vary greatly, it always has
the following properties [6]:

— Accuracy: The virtualization layer must create an operating
environment that accurately mimics the resources it represents. Note
that these resources do not necessarily need to exist physically. A
virtualization layer may for example create an operating environment
representing a CPU employing an instruction set architecture (ISA)
not used by any real CPU. However, it must accurately represent this
fictitious CPU such that the virtual operating environment behaves
in a predictable, well-defined and correct manner;

— Efficiency: The virtualization process must not be excessively costly
in terms of resource consumption or performance. Because some
resources may be much more difficult to virtualize than others,
‘excessively costly’ is not defined in concrete terms. Nevertheless,
efficiency must be a key design goal of any virtualization technology;

— Hardware control: The virtualization layer must have full control
over the resources being virtualized, such that it is impossible
to change the state of the physical system from within the
virtual operating environment in a problematic way without the
virtualization layer being able to intervene.

e Virtual machine: The environment the virtualization layer creates. Two
types of virtual machines (VMs) exist: process VMs on the one hand, and
system VMs on the other. The former represent a virtualized environment
for a single process, while the latter are virtualized representations of
entire systems, in which multiple processes may be hosted [34]. All VMs
share the following properties, which naturally follow from the properties
of the virtualization layer [6]:

DEFINITION 9

— Efficiency: VMs must exhibit comparable performance to their
physical counterparts;

— Isolation: VMs must be strictly isolated from one another, as well as
from the host system (unless they are explicitly configured otherwise);

— Accuracy: VMs must from the perspective of the entities consuming
them accurately represent the resources they mimic.

e Guest: The entity consuming the virtualized resources.

Beyond the above, little can be said about virtualization as a whole, again due to
the breadth of the field. Nevertheless, a deeper understanding of the intricacies
of various virtualization technologies is evidently paramount in the context of
this dissertation. While discussing each of these technologies separately would
be prohibitively onerous, many related technologies can be grouped, effectively
splitting the virtualization spectrum in distinct categories. Kampert et. al.
provide such a categorization, based on the type of resource being virtualized
[17]:

e Hardware virtualization: Virtualizing the hardware with respect to
the OS;

e Operating system virtualization: Virtualizing the operating system
(OS) with respect to applications;

e Application virtualization: Virtualizing the system with respect to a
single application;

e Desktop virtualization: Virtualizing the desktop environment with
respect to end users;

e Storage virtualization: Virtualizing storage with respect to the OS or
applications;

e Network virtualization: Virtualizing the network with respect to the
OS or applications.

Note that many other categorizations of virtualization technologies may be
devised. Moreover, some technologies may not easily fit within a single category.
For example, one may argue that networking and storage are both supported by
physical devices and are therefore forms of hardware virtualization. However,
one may equally argue that ’storage’ and 'networking’ are high-level concepts
entirely separate from their physical implementation and therefore require
dedicated categories. After all, one may perfectly grasp the idea of a ’computer

10 BACKGROUND: VIRTUALIZATION

network’ without having any idea of how such a network would be implemented.
This work opts for a middle ground between these views by including the
low-level technicalities of virtualizing I/O devices in the category of hardware
virtualization, while retaining dedicated categories for discussing the high-level
concepts of virtualized storage and networking. The remainder of this chapter
elaborates on each of the above categories, emphasizing those most important
to this dissertation.

2.2 Hardware Virtualization

Hardware virtualization -more specifically hardware partitioning- is what laymen
most often refer to with the term ’virtualization’ This is the most fundamental
form of virtualization, as it virtualizes physical hardware with respect to the OS
[33]. The virtualization layer is in this case a stand-alone, kernel-like software
program referred to as the hypervisor or virtual machine monitor (VMM). VMs
created through this virtualization method are always system VMs.

Any modern general purpose computer system is comprised of a variety of
different hardware components, each serving a distinct purposes and as such
exhibiting a distinct architecture and behavior. Therefore, virtualizing each of
these components also requires distinct techniques. Much like with virtualization
as a whole, in literature similar hardware components are often grouped
together and discussed as a whole, since elaborating on the specifics of each
component is infeasible. Most often, the categories distinguished in literature
are CPU virtualization, random access memory (RAM) virtualization and I/O
virtualization. This section elaborates on each of these categories below. Firstly
however, the VMM is discussed in depth, as it is central to all three of these
categories.

2.2.1 The Virtual Machine Monitor

Of all virtualization categories identified in §2.1, hardware virtualization requires
the most complicated virtualization layer. The reason for this is that for this form
of virtualization, the intended guests are most often fully-featured operating
systems, which assume to be in direct control of the hardware. They will
therefore often attempt to perform operations which are perfectly safe in a bare
metal context but problematic in a virtualized one, where resources must be
shared with other VMs and the host system alike. Examples include allocating
memory, accessing I/O devices, etc. The VMM must identify whenever a guest
attempts to perform such a sensitive operation and replace that operation with

HARDWARE VIRTUALIZATION 11

Guest kernel Guest kernel

Hardware

Figure 2.1: Schematic overview of a system stack employing a type 1 hypervisor.

a(n) (sequence of) operation(s) which emulate(s) it without compromising the
system. In the interest of efficiency, other guest operations are to be executed
directly on the hardware to the extent possible [6, 35].

From the above, it is evident that the VMM in essence acts as an operating
system for operating systems. Much like the OS is a layer between the hardware
and applications, the VMM is a layer between the host system and guest kernels.
Much like the OS provides a virtual operating environment to applications which
grants them the illusion they have the entire system at their disposal, the VMM
provides a VM to guest kernels which grants them the illusion they have the
entire system at their disposal. Much like the OS multiplexes physical resources
between applications, the VMM multiplexes physical resources between guest
kernels. Much like the OS strictly separates applications and intercepts illegal
application behavior, the VMM strictly separates guest kernels and intercepts
any attempt of theirs to alter the system state in a manner which is not
permissible. Knowing that historically operating systems were refered to as
‘supervisors’, this analogy explains the term ’"hypervisor’, as a streamlined
version of ’supervisor supervisor’ [6, 35].

VMNDMs exist in various forms, all of which are commonly used today. Each of
these forms is described in detail below.

Type 1 Hypervisors

The most commonly used VMMs are type 1 or bare metal hypervisors. These
hypervisors run directly on the hardware and therefore have full control over it
[36, 37]. Figure 2.1 schematically shows a virtualized system stack employing a
type 1 hypervisor.

12 BACKGROUND: VIRTUALIZATION

Type 1 hypervisors are highly popular in industry because they are only
constrained by the hardware in performing their function. This brings several
advantages:

¢ Reliability: Their design is relatively simple, which makes them robust.

¢ Configurability: They allow for pervasive system configuration through
features such as live migration of VMs between physical systems,
overallocation of resources, automatic snapshot creation, etc. All of this
is usually configured remotely through dedicated management software.

e Performance: They have direct access to all hardware features, without
having to pass through intermediate interfaces. This allows them to
emulate problematic guest actions as efficiently as possible.

Many type 1 hypervisors exist, each with its own peculiarities. Their
performance and capabilities are however very similar [7]. Examples include
Xen', VMWare ESXi? and Microsoft Hyper-V?3.

Type 2 Hypervisors

Type 2 or hosted hypervisors are VMMs running as an application on top of
a host OS [38, 36]. In contrast to type 1 hypervisors, the host may thus be
utilized as a bare metal system in tandem with the virtualization infrastructure.
Figure 2.2 illustrates such a system topology schematically.

The hosted nature of type 2 hypervisors limits them with regard to emulating
problematic guest operations. Specifically, rather than directly manipulating the
hardware, type 2 hypervisors must make do with the interfaces provided by the
host OS. As a result, type 2 hypervisors offer fewer features and perform worse
than their bare metal counterparts. Moreover, they are much more complex
and therefore less robust than type 1 hypervisors [39]. All of these limitations
result in type 2 hypervisors rarely being used in industry.

Despite the issues surrounding type 2 hypervisors, they offer the major advantage
of flexibility. A type 2 hypervisor may be installed on any system without
impacting other functions that system may be performing. Therefore, type 2
hypervisors are popular among amateur users who wish to e.g. run software
not supported by their OS. The most popular type 2 hypervisor at the moment
is Oracle VirtualBox?.

Ihttps://xenproject.org/

2https://www.vmware.com/products/esxi-and-esx.html

Shttps://docs.microsoft.com/en-us/virtualization/hyper-v-on-windows/about/
4https://www.virtualbox.org/

https://xenproject.org/
https://www.vmware.com/products/esxi-and-esx.html
https://docs.microsoft.com/en-us/virtualization/hyper-v-on-windows/about/
https://www.virtualbox.org/

HARDWARE VIRTUALIZATION 13

Guest app | Guest app | Guest app § Guest app
Guest kernel Guest kernel

Hypervisor

Host kernel

Hardware

Figure 2.2: Schematic overview of a system stack employing a type 2 hypervisor.

Guest app f§ Guest app | Guest app
Guest kernel Guest kernel

Hypervisor Host kernel

Guest app

Hardware

Figure 2.3: Schematic overview of a system stack employing a kernel-assisted
hypervisor.

Kernel-Assisted Hypervisors

The final type of VMM is in essence a hybrid of type 1 and type 2 hypervisors.
As the name implies, a kernel-assisted hypervisor is an integrated component of
the host kernel [40]. This allows a general-purpose OS to provide virtualization,
yielding a bare metal host system and a VMM with direct hardware access in
one package. Figure 2.3 illustrates this concept.

Kernel-assisted VMMs combine the advantages and avoid the drawbacks of type
1 and type 2 hypervisors. This makes them attractive to both industrial and
private users. However, being a relatively novel technology, their popularity
is currently limited. Only one mainstream kernel-assisted VMM exists at the
moment, namely KVM?, which is implemented as a Linux kernel module.

Shttps://www.linux-kvm.org/page/Main_Page

https://www.linux-kvm.org/page/Main_Page

14 BACKGROUND: VIRTUALIZATION

2.2.2 CPU Virtualization

The CPU may be described as the heart of almost any computing system, as
it is responsible for executing instruction streams that make up applications.
Virtualizing the CPU encompasses abstracting these instruction streams from
the physical CPU (pCPU). This is achieved through the concept of virtual
CPUs (vCPUs). From the perspective of the host, these vCPUs may be seen as
processes. From the perspective of the guest however, they are indistinguishable
from pCPUs. Thus, the guest schedules its processes onto vCPUs, which the
VMM schedules onto pCPUs as it sees fit [34].

As stated in §2.2.1, guest kernels will often perform operations that are not
permissible in a virtualized context. Many of these operations manifest
themselves as CPU instructions. Such instructions are called ’sensitive
instructions’. Whenever a vCPU attempts to execute such an instruction,
the VMM must be made aware thereof. To achieve this, early VMMs exploited
the layered privilege model most CPUs possess. This model consists of at least
two privilege levels: kernel mode (ring 0 in x86) and user mode (ring 3 in x86).
Kernel mode is unrestricted and usually reserved for the kernel, while user mode
only allows access to a subset of the ISA and can therefore safely be used by
all applications [41, 42]. If a program executes a privileged instruction in user
mode, the CPU passes control to the kernel, which may handle the incident as it
sees fit. Therefore, as long as the set of sensitive instructions is a subset of the
set of privileged instructions, registering the VMM as the "kernel’ and executing
all vCPUs in user mode guarantees that the hardware will pass control to the
VMM whenever a guest attempts to execute a sensitive instruction. The VMM
may then emulate the sensitive instruction as it sees fit, after which it may
resume vCPU execution. This process is called trap-and-emulate or classic
virtualization [6].

Unfortunately, most modern CPU architectures, including ARM and x86, may
not be virtualized through classic virtualization, as some of their sensitive
instructions are not part of the set of privileged instructions. Therefore,
virtualizing these architectures was long thought to be impossible [43, 33].
However, several methods have been devised through the years to work around
this issue, allowing virtualization of these architectures after all. For x86 in
particular, three such methods have been widely adopted. Each of these is
described in detail below.

HARDWARE VIRTUALIZATION 15

Guest app

Guest kernel

Hypervisor

Figure 2.4: Schematic overview of dynamic binary translation.

Dynamic Binary Translation

Dynamic binary translation is based on the concept of emulation, which involves
interpreting guest instructions one by one [44]. Although emulation is still
widely used today due to its versatility, it can not be considered a form of
virtualization because of its enormous performance cost [6]. After all, each guest
instruction must be read and replaced by a (sequence of) host instruction(s)
before being executed, which is even with the most up-to-date techniques a
costly affair [45].

Dynamic binary translation sacrifices some of the emulation’s flexibility in favor
of performance. Specifically, in contrast to emulation, it assumes that the host
and guest ISA are identical. This allows for direct execution of all user mode
guest instructions. Only kernel mode instructions must be interpreted by the
VMM [44, 26, 46]. Figure 2.4 shows this schematically.

Most VMMs based on dynamic binary translation employ a number of additional
optimization techniques. For example, instructions may be translated in batches
rather than one by one. Commonly recurring sequences of instructions may
even by cached by the VMM [47].

The main advantage of dynamic binary translation is its versatility, since the
VMM requires host nor guest support. Therefore, this technique is particularly
suitable for certain niche applications such as nested virtualization [48]. The
main drawbacks of this method are the complexity of the VMM and the relatively
high performance cost this technique incurs despite all optimizations. Therefore,
other virtualization techniques are preferable in most scenarios.

16 BACKGROUND: VIRTUALIZATION

Guest app

Guest kernel

Hypervisor

Figure 2.5: Schematic overview of paravirtualization.

Paravirtualization

The core properties of virtualization listed in §2.1 imply that guests must be
unaware of the fact that they arre being virtualized. Forms of virtualization
strictly adhering to this property are referred to as full virtualization [26].
However, it is self-evident that a guest who is aware of its virtualized status
is able to proactively avoid executing sensitive instructions and request VMM
intervention when needed, making the virtualization process much less complex
and resource-hungry. This is exactly the core tenet of paravirtualization.

VMDMs employing paravirtualization may be viewed as implementations of
application binary interfaces (ABIs) that guest kernels may call when they
need to perform a sensitive operation, much like applications may call upon the
OS to perform privileged operations on their behalf through the system call
interface. As such, this ABI is aptly named 'the hypercall interface’. Technically,
trusted guest kernels may be executed directly on the hardware in kernel mode.
However, for security reasons, limiting guests to user mode is still strongly
recommended [37, 26, 33, 49]. All of this is shown in figure 2.5.

Paravirtualization is highly efficient since the guest OS and VMM actively
cooperate, contrary to full virtualization. Moreover, VMMs for paravirtualiza-
tion are relatively simple. The principal drawback of this technique is however
that much like applications must be compiled and/or linked for the specific OS
they target because the system call interface is OS-specific, paravirtualization
requires guest kernels to be modified for each specific VMM they are to be
hosted by because the hypercall interface is VMM-specific. This severely limits
the flexibility of this technique.

HARDWARE VIRTUALIZATION 17

Guest app

Guest kernel

Hypervisor

Figure 2.6: Schematic overview of hardware-assisted virtualization.

Hardware-Assisted Virtualization

In the early 2000’s, both major x86 CPU manufacturers, Intel and AMD, released
a new generation of processors which sported dedicated extensions to the ABI
for virtualization. In essence, these extensions made the x86 architecture fully
classically virtualizable. While implementation details differ, conceptually both
manufacturer’s technologies are mostly identical [50, 51]. Collectively they are
known as hardware-assisted virtualization.

The main innovation behind hardware-assisted virtualization is the addition
of an entirely new CPU operating mode, called 'non-root mode’. This mode
is dedicated to running VMs. The traditional mode of CPU operation, which
is used for all other software, has been renamed to 'root mode’. Both modes
contain all four traditional privilege rings [27, 26, 37, 21, 46].

In non-root mode, guest code may safely run directly on the host, as shown in
figure 2.6. The hardware keeps track of each guest’s state using a dedicated data
structure called the virtual machine control structure (VMCS). When a guest
attempts to perform a sensitive operation, the hardware will autonomously
switch to root mode and grant control to the VMM, saving the guest state in
the VMCS. This is called a VM exit. The VMM may handle the VM exit as
it sees fit, after which it may return control to the guest by performing a VM
entry. The hardware reconstructs the guest state from the VMCS and resumes
its execution.

Hardware-assisted virtualization achieves comparable performance to paravir-
tualization while still maintaining full virtualization. As such, it is the most
popular virtualization technique today. Its only major drawback is its reliance
on hardware support.

18 BACKGROUND: VIRTUALIZATION

Guest virtual memory fl Guest virtual memory l Guest virtual memory @ Guest virtual memory

Rz

Guest physical memory Guest physical memory

Host memory

Figure 2.7: Schematic overview of multi-layered address translation.

2.2.3 Memory Virtualization

Much like the OS virtualizes memory with respect to applications, the VMM
virtualizes memory with respect to guest kernels. The goal of this process is
to present guests with a linear memory space sized in accordance with the
amount of memory the guest kernel believes to have at its disposal, while
the underlying physical memory may be sized and organized differently. This
effectively introduces a double abstraction layer between guest application
memory space and physical system memory, as illustrated in figure 2.7 [26, 37,
46].

Older CPU architectures tend to leave memory management entirely up to
the OS. This makes addressing the double abstraction problem outlined above
relatively simple, because the VMM only has to virtualize OS data structures.
Contemporary architectures however, including x86, often contain advanced
memory management units (MMUs) which integrate memory management
with physical hardware. For example, x86 MMUs are able to perform page
walks entirely in hardware. Retrieved PTEs are automatically stored in a
dedicated cache, called the translation lookaside buffer (TLB). This means that
virtualizing memory requires manipulation of the physical hardware as well as
the OS data structures supporting it, which is evidently a complicated affair.

Three memory virtualization techniques are applicable to x86. All of these are
still commonly used, as none is universally superior to the others [52, 53]. Below
each of these methods is discussed in detail.

HARDWARE VIRTUALIZATION 19

Shadow Paging

Shadow paging is the oldest memory virtualization technique. The guest
operates as usual, maintaining page tables mapping guest-virtual addresses
(GVAS) to guest-physical addresses (GPAs). For each of these page tables, the
VMM maintains a shadow page table mapping GVAs to host-physical addresses
(HPAs). The VMM marks the guest page tables as read-only, which allows it to
intercept any guest page table modification. Upon each such modification, the
VMM writes the GVA to GPA mapping to the guest page table, if necessary
allocates new physical memory to the VM and adds the mapping from GVA to
HPA to its shadow page table [54, 55].

For systems employing basic MMUs, the hardware will pass control to the VMM
upon each TLB miss. The latter may handle the miss by traversing the shadow
page table. This is however not possible for systems performing page walks and
TLB management in hardware (e.g. those based on x86). Instead, the VMM
must change the value of the page table base address register (CR3 in x86) from
the base of the guest page table to the base of the shadow page table upon each
context switch. Thus, the hardware and guest OS use completely distinct page
tables.

Shadow page tables achieve bare metal performance in handling TLB misses,
since they bypass the GPA through directly mapping GVAs to HPAs. On the
other hand, handling page faults is very costly. Upon each page fault, the
CPU transfers control to the guest OS, which will attempt to install a new
mapping in the page table. This generates a hardware exception and traps to
the VMM, which installs the mapping in both the guest page table and the
shadow page table before handing control back to the guest. Since memory
intensive applications may generate large amounts of soft page faults while
other applications may generate almost none, the performance cost of shadow
page tables may vary from negligible to crippling.

Direct Paging

The concept of paravirtualization is not limited to the CPU. Direct paging
or MMU paravirtualization refers to paravirtualizing main memory [56, 53].
While with shadow paging the VMM provides the hardware with the GVA
to HPA mapping entirely transparently to the guest, direct paging requires
active cooperation of the latter. Concretely, the guest page tables contain direct
mappings from GVAs to HPAs. The guest performs hypercalls to the VMM
whenever it wishes to modify these page tables. The VMM thus fully takes over
memory management from the guest OS.

20 BACKGROUND: VIRTUALIZATION

Analogously to CPU paravirtualization (see §2.2.2), direct paging may achieve
near-native performance by sacrificing flexibility. While guest kernels must be
modified to implement this technique, no superfluous data structures must be
maintained and no memory management operations must be intercepted or
emulated to provide the guest with the illusion it is in control of the hardware.
Xen is currently the only popular VMM employing this technique [57].

Nested Paging

Nested paging, extended paging and hardware-assisted memory virtualization
are all terms for memory virtualization implemented mostly in hardware [55,
42, 53]. This technique allows the guest OS to maintain page tables as it would
natively, mapping GVAs to GPAs. Simultaneously, the VMM maintains a
secondary page table, mapping GPAs to HPAs. The MMU is aware of both
of these page tables, allowing it to perform nested page walks in hardware,
finding the mappings between GVAs and HPAs and installing them in the TLB.
Moreover, the guest may modify its own page table, which means it can handle
soft page faults without VMM intervention, as long as the GPA being mapped
into the guest page table is mapped to a HPA in the secondary page table. If
not, control is passed to the VMM, which allocates more physical memory to
the VM and creates the needed mapping in the secondary page table. This is
called an extended page table (EPT) violation.

Because nested paging allows most page faults to be handled without
VMM intervention, in many cases it achieves near-native performance while
maintaining full virtualization. However, the main drawback of this technique
is that handling TLB misses can be very costly. Namely, a page walk normally
requires up to n memory accesses, with n the number of page table layers.
However, because nested page tables do not directly map GVAs to HPAs, each
guest PTE must be translated to a physical address through the secondary page
table, which may take up to n memory accesses. This process has to be repeated
up to n times. Adding the accesses to the guest page table itself as well as those
required to translate the page table root register (which contains a GPA), this
yields up to (n + 2) x n memory accesses. For x86, which employs page tables
with up to four layers, this means that nested paging requires up to 24 memory
accesses to handle a TLB miss, instead of four in a native context. Nevertheless,
since modern TLBs cover a vast address range, this drawback rarely outweighs
the advantages of this technique. Therefore, all modern x86 CPUs supporting
hardware-assisted virtualization offer nested paging and almost all VMMs use
it by default if possible.

HARDWARE VIRTUALIZATION 21

2.2.4 1/0 Virtualization

Of all system component categories, I/O is by far the most diverse. Its
constituents range from mouse and keyboard over block devices and network
adapters to graphics accelerators. All of these devices have different capabilities
and needs and therefore communicate differently with the system. Despite
this diversity however, all I/O devices and accompanying drivers rely on only
a handful of kernel mechanisms to provide their functionality. Thus, while
optimal performance would require the VMM to implement dedicated support
for each individual device, tackling a handful of fundamental challenges allows
for efficient virtualization of the vast majority of I/O devices [58, 59, 60]:

e I/O devices are often orders of magnitude slower than other system
components, which means that it is common for a VM to try to access
a device which will be in use for multiple more milliseconds by the host
or another VM. The VMM must thus efficiently and securely multiplex
access to I/O devices across VMs;

o Each VM associates each I/O device’s registers with a specific address
range, being port numbers in the case of direct I/O or memory addresses
in the case of memory-mapped I/O (MMIO). Moreover, direct memory
addressing (DMA), which is often used by high-throughput devices,
requires the guest to assign a memory region to a device. In a virtualized
scenario, likely none of these identifiers correspond to the physical address
range the device is using. All device accesses by the system and memory
accesses by the device must thus be rerouted;

e Devices are usually configured through dedicated configuration registers.
Guests can not be allowed access to these registers, since that would give
them full control over the device. The VMM must thus intercept accesses
to these registers and emulate their effect with respect to the VM

« Interrupts delivered by I/O devices must be routed to the correct VM.
If the recipient VM is currently preempted, the interrupt must be
acknowledged and injected into the VM at a later time.

Multiple techniques exist to address the issues outlined above. Below the most
common ones are described in detail [61, 62].

22 BACKGROUND: VIRTUALIZATION

Device Emulation

Since the inception of hardware virtualization, emulation has been the standard
method to virtualize I/O. This technique involves the VMM maintaining a
virtual representation of some I/O device in memory and presenting this memory
region to the VM. The latter sees this region as a physical device and thus uses
one of its device drivers to interact with it. Any reads from or writes to the
virtual interface are intercepted by the VMM and translated to instructions
that may be passed on to the physical I/O device backing the virtual interface
through the VMM'’s device driver. Interrupts are intercepted by the VMM,
which injects them into the appropriate VM. Note that the emulated device
interface represents an existing (often generic) device so that the guest may
interact with it using one of its existing device drivers. The physical device
corresponding to the emulated interface does however not need to match it (e.g.
an emulated block device in RAM).

Device emulation is often implemented as an integrated VMM component.
Some modern VMMs however delegate this task to user space. In this case,
a dedicated I/O emulator runs as a host application besides the VMs. This
application performs the bulk of the emulation work, only relying on the VMM
to provide the physical device driver and the necessary plumbing to connect all
components. This approach has multiple advantages. Firstly, the I/O emulator
is a distinct system component, which means it can be exchanged for another
emulator. Moreover, multiple VMMs may use the same emulator. Secondly,
delegating I/0 to user space reduces the footprint of the VMM. Since the VMM
operates in kernel space and has full control over the system, minimizing its
size reduces the system’s attack surface.

The main advantage of device emulation is its flexibility. The VMM may present
a unified interface to VMs regardless of the underlying hardware. This however
comes at a great cost in performance, since every interaction between VM and
I/0 device requires VMM involvement. Nevertheless, device emulation remains
the go-to I/O virtualization technique for most VMMs. Regarding dedicated
user-level I/O emulators, QEMU® is the most popular example. This emulator
is used by e.g. KVM and VirtualBox [63].

Shttps://www.qemu.org/

https://www.qemu.org/

HARDWARE VIRTUALIZATION 23

Paravirtualization

Much like with CPU and memory virtualization, the vast majority of
performance cost associated with virtualizing I/O devices may be avoided
if the guest is aware it is being virtualized. Paravirtualizing I/O starts with
defining a virtual device interface which does not correspond to any existing
physical I/O device. This interface may be thought of as a device API. A
dedicated driver is installed in the guest kernel which directly interacts with
the virtual interface through hypercalls. The VMM translates these to physical
device commands through its own physical device driver [64].

Because their interface is designed specifically with virtualization in mind,
paravirtualized I/O devices are often highly efficient. For example, their API-
like nature forces guest drivers to refrain from relying on the state of memory
registers, which avoids the need for the VMM to translate guest I/O ports,
MMIO or DMA addresses to their physical equivalents. Again analogously
to CPU and memory paravirtualization, the main downside of this approach
is that each guest must implement the paravirtualized I/O driver. However,
because adding such drivers is no different from adding physical device drivers
and therefore requires no extensive changes to the guest kernel, I/0 is currently
the most popular application domain for paravirtualization. It is offered by e.g.
Xen and QEMU.

Device Passthrough

As outlined above, one of the main challenges when virtualizing 1/0 is
multiplexing the physical device between VMs. In many cases however, devices
are only used by a single VM. In such scenarios, full virtualization of the I/O
device is not necessary. Instead, the device may be passed through directly to
the VM in question, which has exclusive access to it and may interact with it
using its own device driver. The VMM only provides minimal abstraction of
the device in the form of address remapping, directly passing through privileged
I/0 instructions and interrupts, so long as they do not pose a threat to the rest
of the system.

Device passthrough achieves near-native performance in most scenarios. The
obvious drawback of this technique is that device multiplexing between VMs is
not possible. Additionally, VMs may only be migrated between physical hosts
sporting identical I/O devices. Anyhow, while not applicable in all situations,
the utility of this technique is obvious. As such, most contemporary VMMs
offer support for device passthrough.

24 BACKGROUND: VIRTUALIZATION

Hardware-Assisted 1/0 Virtualization

Even the most advanced software techniques can not virtualize I/O in a way
that is simultaneously efficient and flexible. This is only possible by direct
hardware support. During the past decade, more and more devices have started
to implement said support as demand for virtualized I/O devices has grown
exponentially. Due to the variety of devices and methods to interact with them,
this hardware support for I/O virtualization can best be viewed as a collection
of independent technologies, which, when combined, make I/O virtualization
with little to no software support possible [65, 66]. Below some prominent
examples of such technologies are briefly discussed.

DMA Remapping Modern chipsets implement the mapping from guest DMA
addresses to physical ones directly in hardware [65]. This greatly increases
DMA throughput by relieving the VMM of this responsibility.

Interrupt Remapping Analogously to DMA, interrupts may be remapped by
the hardware itself. They may be directed to a specific CPU and its attributes,
such as vector, delivery mode, etc. may be altered. Moreover, the hardware may
be instructed to change the physical destination of an interrupt dynamically
whenever its logical destination (i.e. vCPU) is migrated between pCPUs [65].

Security Domains The VMM may set up security domains for each device,
defining which VMs may access which devices. This policy will be enforced by
hardware through generating an exception when a VM attempts to access a
device for which it is not authorized [65].

Besides further reducing the responsibilities of the VMM and thereby improving
performance, when combined with DMA and interrupt remapping this feature
allows for device passthrough to be implemented entirely in hardware. This
hardware-assisted passthrough provides genuine native performance.

Interrupt Posting Through interrupt posting, hardware interrupts intended
for a particular VM may be delivered directly to that VM without VMM
intervention [42, 65]. This feature requires the VMM to assign a dedicated
posted-interrupt vector to each VM. The VMCS contains a field for this vector as
well as a pointer to a posted-interupt descriptor. This data structure contains a
flag for each supported interrupt vector. When a device assigned to a particular
VM fires an interrupt, the hardware remaps this interrupt to the posted-interrupt
vector and records the physical vector in the posted-interrupt descriptor. The

HARDWARE VIRTUALIZATION 25

advanced programmable interrupt controller (APIC) then delivers the remapped
interrupt to the target vCPU, which retrieves the physical interrupt vector from
the posted-interrupt descriptor. If the target vCPU has been preempted when
the interrupt arrives, the hardware records the interrupt in memory and delivers
it as soon as the vCPU is rescheduled.

Interrupt posting allows for many interrupts to be delivered without any VMM
involvement. Note however that for devices that are not assigned to particular
VMs -i.e. devices frequently accessed by multiple VMs in an intertwined fashion-
the hardware is unable to directly map device interrupts to the correct posted
interrupt vector. Such interrupts are instead delivered to some CPU, which
passes control to the VMM (as it always does upon receipt of an interrupt not
corresponding to the posted-interrupt vector). The latter is then responsible for
remapping the interrupt to the correct posted-interrupt vector and updating the
corresponding posted-interrupt descriptor. Once this is done, the interrupt may
be delivered to and processed by the correct vCPU without VMM intervention
at the receiving end.

SR-IOV Peripheral component interconnect express (PCle) is one of the main
I/O buses used in personal computers and servers today. Its applications include
graphics processing units (GPUs), network interface cards (NICs), etc. Because
many of these components demand high throughput, efficient virtualization of
the PClIe bus is paramount. To this end, the SR-IOV standard was developed
[66, 67]. It splits the notion of PCle devices into physical and virtual functions.
A device usually has a single physical function, but up to 256 virtual ones. The
main difference between these is that the physical function allows the device
to be configured, while the virtual functions are limited to transferring data.
Evidently, only the VMM has access to the physical function, while the VMs
are presented with one or more virtual ones. All of this is mostly implemented
in the hardware and firmware. Nevertheless, VMM support is required. Since
this technique drastically reduces the performance cost of 1/O virtualization
with minimal software support, it is increasingly commonly applied.

26 BACKGROUND: VIRTUALIZATION

Guest app | Guest app Guest app | Guest app

Host kernel

Hardware

Figure 2.8: Schematic overview of OS virtualization.

2.3 Operating System Virtualization

Operating system virtualization, also known as containerization, is just like
hardware virtualization a form of system virtualization. While both achieve
similar effects, their implementations are entirely distinct. Where hardware
virtualization virtualizes hardware with respect to the OS, OS virtualization
virtualizes the OS with respect to applications [33, 68]. Concretely, the host
kernel serves as the virtualization layer. All VMs share this kernel and may
directly interact with it. These VMs—often called containers—perceive the
kernel to be exclusive to them. Figure 2.8 illustrates this concept.

From a technical perspective, containerization is achieved by combining a
number of capabilities naturally present in many OS kernels in such a way that
multiple, fully isolated execution environments can be created within a single
operating system context. Mainly, these capabilities are the following [33, 69]:

e Dynamic file system root: The file system is a core component of the
environment the OS presents to applications. As such, each container
must be assigned a unique file system root within the host file system.
Moreover, the kernel must be able to dynamically switch between these
file system roots when serving different containers;

« Namespaces: Namespaces are used to restrict resource access or avoid
naming collisions in shared systems. Processes bound to a namespace
do not have access to resources outside of that namespace. Furthermore,
the scope of resource identifiers (hostnames, PIDs, etc.) is confined to
namespaces. An identifier may thus point to distinct resources when
defined in distinct namespaces;

e Control groups: When processes are competing for system resources, it
is desirable to be able to monitor and manage resource consumption on a
per-process basis. Control groups allow for exactly that.

OPERATING SYSTEM VIRTUALIZATION 27

Containerization achieves near-native performance because -as opposed to
hardware virtualization- guest operations do not need to be intercepted or
translated by the virtualization layer. Moreover, containers boot rapidly, since
starting a container equates to initializing a process rather than booting a
system. Lastly, containers require much less storage space and RAM than
virtual machines due to the absence of guest kernels [70]. Countering these
attractive benefits over hardware virtualization are inherently limited flexibility
and security. Regarding the former, the fact that the kernel is shared between all
containers implies that the entire system is limited to a single OS (family). Thus,
while it is possible to virtualize different flavors of Linux using OS virtualization,
creating a Windows container on a Linux host is out of the question. Regarding
the latter, since containers share the host kernel and its interfaces (e.g. system
calls), their attack surface is very large compared to that of classic VMs, which
makes them unsuitable when security is a primary concern [71, 72]. While these
drawbacks prevent it from fully replacing hardware virtualization, it has evolved
to be a dominant force in the realm of system virtualization and by extension
cloud computing.

Containerization has many flavors. In fact, most of the popular contemporary
general purpose operating systems offer their own implementation of the concept.
Broadly speaking, all of these flavors may be categorized into two groups: system
containers and application containers. Below both are discussed in detail.

2.3.1 System Containers

Classic containerization partitions the host OS into fully independent system
containers. Each container communicates directly with the kernel and behaves
exactly like the OS it is based on, as shown in figure 2.9 [73, 74]. Resources
are managed directly by the kernel on a per-container basis. Nevertheless, a
minimal management daemon usually runs in the background to allow system
administrators to easily configure and manage the containers.

Most UNIX-like systems sport their own version of system containers. Examples
include Solaris Zones, FreeBSD Jails and LXC [75].

2.3.2 Application Containers

A recent development in containerization is the inception of application
containers. While system containers are faithful OS replicas, application
containers rather represent an application sandbox closely resembling an OS
[76, 77]. From the sandboxed application’s perspective, all regular OS interfaces

28 BACKGROUND: VIRTUALIZATION

Hardware

Figure 2.9: Schematic overview of system containerization.

4 4 v
Guest app | Guest app ||| Guest app | Guest app

Hardware

Figure 2.10: Schematic overview of application containerization.

are present. However, many resources are managed externally by a dedicated
container engine. For these resources, the container engine acts as a broker
between the host system and the container, as shown in figure 2.10. For
example, rather than each container connecting directly to the host network,
the container engine provides a virtual network to which the containers connect.
Individual containers are not addressable from the outside world; only the
container engine’s virtual network adapter. Thus, while system containers
resemble independent operating systems from the inside as well as the outside,
application containers only do so from the inside. The main advantage of this
approach is that the container engine may manage all containers running on
the system as a group, which allows it to optimize resource usage. For example,
containers are likely to share many system libraries. The container engine may
share a single copy of these libraries between all containers, saving significant
amounts of storage space.

APPLICATION VIRTUALIZATION 29

While application containers are intended for use by a single application, there
is no technical limit to the number of applications that may be hosted in such
a container. It is however important to note that application containers are
unsuitable for use as general purpose operating systems due to their reliance
on external configuration. They are however a popular medium to distribute
and deploy software, as they allow an application to be packaged with all its
dependencies as a self-contained unit. Installing an application is therefore no
more complicated than downloading and starting its container, which is trivial
once the container engine has been set up. The most prominent example of
application containerization is Docker.

2.4 Application Virtualization

Any technique to create process VMs (see §2.1) falls under the category of
application virtualization. Conceptually, this category is much broader than the
previously discussed ones. After all, computer programs are most often defined
in terms of high-level logic, which must traverse several layers of abstraction
before it may be executed on physical hardware. Strictly speaking, each of these
abstraction layers can be viewed as a form of virtualization. Below the most
important of these are described briefly.

2.4.1 Operating Systems

In the early days of computing, applications were written in machine language
and executed directly on the hardware. Processes had to be loaded manually and
could not run in parallel, which made systems inefficient and cumbersome [78].
To address these issues, the operating system was developed. Its fundamental
task was -and is to this day- abstracting physical system resources from
applications [79]. Each process is provided with its own virtual execution
environment and is in principle unaware of any of the other processes on
the system; having the illusion it has the entire system at its disposal. The
OS provides a number of interfaces representing physical hardware functions,
e.g. system calls and a virtual memory. Furthermore, it is responsible for
multiplexing the physical hardware and enforcing isolation between processes.
In this respect, the OS is the most fundamental form of application virtualization.

30 BACKGROUND: VIRTUALIZATION

2.4.2 High-Level Programming Languages

Mostly for portability reasons, many high-level programming languages are not
compiled directly to machine language. Instead, they are executed within a
runtime environment, which translates application code to machine instructions.
Many variations of this concept exist. For example, Python” programs are most
often distributed as source code. At run time, a just-in-time (JIT) compiler
performs minor optimizations before the code is fed to a platform-specific
interpreter, which is responsible for converting this optimized python code to
machine code and executing it [80]. On the other end of the spectrum, Java®
programs are compiled in advance, albeit to highly optimized byte code rather
than machine language. The Java runtime environment (JRE) transforms this
byte code to machine instructions at run time. Thus, the compilation target of
Java programs is the virtual ABI exposed by the JRE, also known as the Java
virtual machine (JVM) [81].

2.4.3 Unikernels

Software architectures increasingly lean towards viewing applications as
collections of loosely-coupled, autonomous services; as evidenced by the
emergence of e.g. microservice architectures [82] and serverless computing
[83]. These services are mostly passive entities, only performing work when
an external request arrives. As such, they are expected to scale rapidly up
and down in response to fluctuations in demand while still guaranteeing strict
isolation between services. However, currently the unit of deployment in the
cloud is a system VM containing countless interfaces, drivers, libraries etc., of
which the majority is likely never used by a single service. Moreover, these
system VMs provide process isolation at OS level, which is resource-hungry
and entirely pointless in an environment where only one trusted service is
being executed within an individual OS context. Unikernels have recently been
introduced specifically to address these issues. They do this by asserting that
a VM only has to statically support a single, predetermined service [84]. This
allows for the kernel to be compiled, linked and executed as a cohesive unit
with the application. This in turn erodes the notion of kernel and user space,
which transforms system calls into simple function calls. Furthermore, since
all application dependencies are known at kernel compile time, only kernel
components needed by the application have to be provided. Moreover, these
components can be highly optimized to suit that specific application.

"https://www.python.org/
Shttps://www.java.com/en/

https://www.python.org/
https://www.java.com/en/

APPLICATION VIRTUALIZATION 31

Guest kernel § Guest app Guest kernel § Guest app

Hypervisor

Host
Figure 2.11: Schematic overview of a unikernel system.

Since unikernels do not provide resource management or process isolation,
executing multiple applications requires installing multiple unikernels on top
of a VMM. In fact, unikernels are intended to be used in this manner. This
yields a collection of isolated, scalable, optimized VMs each supporting a single
service: the ideal cloud infrastructure [85]. Figure 2.11 provides a schematic
overview of all of this.

Because unikernels align exactly with the needs of the application they are
hosting, their performance is excellent; often even exceeding that of bare metal
general purpose OSs. Moreover, they boot much more rapidly than both classic
VMs and containers, improving scalability. On top of this, compiled unikernel
binaries are rarely more than a few megabytes (MB) in size [86, 87]. Thus,
they offer performance exceeding that of containerization while maintaining the
resource isolation offered by hardware virtualization. This emerging technology
may therefore mature to one day dominate the cloud. In fact, some prominent
members of the Linux community have already demonstrated a unikernel version
of Linux, which they hope to integrate with the mainline kernel [88]. Examples
of unikernels already available include OSv® and MirageOS!°.

A final note regarding unikernels is the recently proposed concept of unikernel
monitors [89]. These can be viewed as VMMs integrated with the application,
providing any needed virtual device interfaces. This approach relieves the host
from much of the I/O virtualization work it should otherwise perform (see
§2.2.4), further improving boot times and performance.

mttp://osv.io/
Ohttps://mirage.io/

http://osv.io/
https://mirage.io/

32 BACKGROUND: VIRTUALIZATION

2.5 Desktop Virtualization

In the 1970’s, computers had become powerful enough to serve multiple users
simultaneously. Combined with the fact that they were still too expensive
to provide individual users with a personal computer, the mainframe concept
was introduced. Multiple users could connect simultaneously to a powerful
centralized computer through dumb terminals. These terminals provided a fully
functional user interface, resembling a personal computer. This was the birth
of the concept of desktop virtualization [26, 78].

Desktop virtualization is still used in large companies because it offers centralized
resource management, as well as cost savings compared to purchasing personal
machines for large numbers of employees. Another application of this concept
is interfacing with embedded devices over a network [90]. Because this form of
virtualization is not important to this dissertation, it is not further discussed.

2.6 Storage Virtualization

Perhaps the most commonly overlooked aspect of virtualization is storage
virtualization. In fact, no modern storage device would be usable without some
form of virtualization. Because storage virtualization is not a focus of this
dissertation, this section is limited to a description of the most common variants
of this technique, omitting technical details.

2.6.1 Logical Block Addressing

The most fundamental form of storage virtualization is logical block addressing
(LBA) [91, 92]. Any modern storage device employs this technology. Namely,
physical disks often use complicated optimization techniques such as parallel
reading and writing (for performance) or spreading data evenly over the device
(for longevity). Moreover, certain device areas may become defective over
time. Exposing such details to the OS would be pointless and prohibitively
complicated for the latter to handle. Therefore, storage devices are typically
largely driven by integrated firmware, presenting a linear address space of usable
storage blocks to the OS. The device itself translates requests to manipulate
these blocks into physical hardware instructions.

STORAGE VIRTUALIZATION 33

2.6.2 Disk Partitioning

It is often desirable or even necessary for a storage device to be represented as
multiple independent logical devices. For example, one may combine different
file systems, restrict access to certain disk areas or provide redundancy. This may
be achieved through disk partitioning. Usually, this technique is implemented
by dedicating the first logical blocks of the disk to a partition table, which
defines disk partitions and their properties. Each of these partitions is treated
as an independent storage device by the OS [93].

2.6.3 Redundant Array of Independent Disks

Redundant array of independent disks (RAID) is a collection of techniques to
aggregate multiple physical disks so that they appear as a single device to the
OS [94, 95, 96]. It has many variants, the applications of which vary greatly.
For example, RAIDO multiplexes all reads and writes between multiple disks
in order to optimize performance. RAID1 on the other hand duplicates all
writes across multiple disks in order to provide data redundancy. [97] provides
a complete overview of the different forms of RAID.

2.6.4 Storage Area Network

Storage is traditionally viewed as an integral system component. Storage
devices are therefore bound to the systems they belong to, and vice versa.
This arrangement is referred to as directly attached storage (DAS). Storage
area networks (SANs) on the other hand break this bond between system and
storage [94, 95, 96]. A SAN consists of a centralized storage pool, managed
by an appliance and presented as a singular block address space. Any number
of systems may connect to the SAN and create partitions within the pool.
Especially in large data centers this storage consolidation may lead to significant
cost savings due to reduced fragmentation and simplified maintenance.

2.6.5 Network-Attached Storage

Network-attached storage (NAS) is conceptually comparable to SAN. The
main difference between the techniques is their level of abstraction. While SAN
aggregates disks at block level, NAS does so at file system level [95, 96]. Systems
connected to a NAS network may thus mount ready-to-use file systems rather
than having to allocate virtual disk partitions.

34 BACKGROUND: VIRTUALIZATION

2.6.6 Software-Defined Storage

The most abstract form of storage virtualization is software-defined storage
(SDS) [96, 98]. In essence, this technique is a refinement of SAN and NAS.
Namely, both of these techniques are still constrained by the limitations of the
proprietary hardware used in most of their implementations. SDS overcomes
this by implementing the entire storage virtualization stack in software. This
makes SDS cheaper and much more flexible at a minor performance penalty
compared to traditional SAN and NAS.

2.7 Network Virtualization

Computer networks are essentially no more than physical connections between
hosts to allow them to communicate. However, as the network grows, managing
it efficiently requires specialized hardware, such as switches and routers. Because
this hardware may be expensive and limited in flexibility, these days more and
more of its functions are being implemented in software. This approach is often
referred to as software-defined networking (SDN) [99]. Through SDN, system
administrators may implement complicated network configurations using only
basic hardware rather than expensive, specialized networking devices, albeit at
a (limited) performance penalty. Below some of the most common applications
of SDN are briefly described. Details are again omitted because this form of
virtualization is not directly relevant to this dissertation.

2.7.1 Virtual Internet Protocol

In certain scenarios, the traditional network addressing technique of tying
distinct internet protocol (IP) addresses to individual network interfaces is
not desirable. For example, large-scale web services often can not be hosted
on a single server for performance or reliability reasons. It would however
be impractical to tie multiple addresses to a single service. This problem is
addressed through the use of virtual internet protocol (VIP) [17, 100]. Usually,
an IP address is assigned to a proxy server, which acts as the entry point to
the web service. Clients connect to the proxy server, which then forwards their
requests to any number of the back end servers, ideally spreading the load
evenly.

NETWORK VIRTUALIZATION 35

2.7.2 \Virtual Local Area Network

The internet (obviously the largest computer network in existence) is a two-tier
entity: hosts within a single organizational unit such as a company, household,
etc. are connected through a local area network (LAN). Individual LANs
are in turn connected through the global wide area network (WAN) [101].
Traditionally, a router is the gateway between these two tiers of networking.
However, often it is desirable to subdivide the LAN, mainly in the interest of
security. Modern routers and switches therefore often allow for multiple virtual
local area networks (VLANS) to be defined within a single LAN [17].

2.7.3 Virtual Private Network

One of the challenges arising from the two-tiered network topology described in
§2.7.2 is that hosts belonging to different LANs can not communicate directly.
While this is partly intentional for security reasons, it is not difficult to imagine
scenarios where this limitation is problematic. For example, an employee may
need to access data residing on a private company server while working from
home. For this reason, virtual private network (VPN) technology was developed
[102, 17]. In brief, VPN allows hosts to join a LAN over the WAN. This can be
achieved in two ways:

e Trusted VPN: A direct physical connection between the external host
and the LAN. This type of VPN is obviously very expensive and only
used by major corporations to e.g. connect multiple office locations;

e Secure VPN: A VPN server is set up in the LAN and acts as a gateway to
the WAN. External hosts may then connect to the VPN server through an
encrypted tunnel. The latter then forwards connections between external
and internal hosts.

36 BACKGROUND: VIRTUALIZATION

2.8 Conclusion

Fundamentally, virtualization is no more than abstracting resources from entities
aiming to employ those resources. As such, it is evident that this diverse
technology is widely used in the information technology (IT) world, since
abstraction is omnipresent in modern computing environments. In extreme
cases, such as clouds, a multitude of virtualization technologies is combined to
the extent that nor applications, nor system administrators, nor end users have
any notion of the physical resources supporting the environment presented to
them. For this reason, it is more appropriate to think of modern virtualized
environments as interfaces rather than as resources. It is self-evident that
continued optimization of this technology is instrumental as demand for flexible,
affordable and efficient computing resources continues to surge.

Chapter 3

Virtualization Overhead

This chapter was previously published as part of:
S. Schildermans et al. “Virtualization Overhead of Multithreading in X86 State-
of-the-Art & Remaining Challenges”. In: IEEE Transactions on Parallel and
Distributed Systems 32.10 (2021), pp. 25572570

Virtualization by definition introduces a layer of abstraction between operating
environments and the resources supporting those environments, as outlined
in §2.1. Since VMs equally by definition behave identically to their physical
counterparts, this abstraction naturally causes some performance degradation
which is referred to as ’virtualization overhead’. While at first glance this term is
self-explanatory, defining and rigorously evaluating virtualization overhead are
no trivial matters. To our knowledge, any existing work handling these topics
employs its own ad-hoc definition of virtualization overhead—most often in
terms of low-level performance metrics—and evaluates it through equally ad-hoc
experiments. This obviously leaves much to be desired in terms of generalizability
and correctness. This chapter addresses this lack of transparency through
formally defining virtualization overhead and reflecting on the methodology
most suitable to evaluate this overhead. Additionally, it lists the principal known
underlying causes of virtualization overhead. Although the emphasis of this
chapter lies on hardware-assisted virtualization of multithreaded applications
on the x86 platform, many of the presented findings are generalizable to other
scenarios and thus form a valuable and long-awaited contribution to the field.

37

38 VIRTUALIZATION OVERHEAD

System effects Application effects

Instruction emulation Extra CPU cycles Increased latency
Double address translation ’ Extra memory consumption * Reduced throughput

Figure 3.1: Schematic breakdown of virtualization overhead.

Main Findings & Contributions

o A definition for virtualization overhead that explicitly divides said overhead
into internal system effects and external application effects is formulated;

e A general method for empirically evaluating virtualization overhead is
described.

3.1 Definition

In order to deeply understand virtualization overhead, it is best approached from
its root causes. These encompass any operation performed by the virtualization
layer that intervenes with the normal execution of the VM. Examples include
emulation of sensitive instructions, double memory address translation, etc.
These operations all impact the system in some way, e.g. through requiring
some CPU time to complete and consuming some memory. Finally, these system
effects become visible to end users through negatively impacting application
performance metrics such as execution time and application throughput. This
causal relationship is crucial to an accurate definition of virtualization overhead.
Figure 3.1 depicts it schematically.

In contrast to what intuition would suggest, system effects and application effects
are not necessarily correlated. For example, when a server is not overloaded,
I/0O operations -which are notorious for inducing large amounts of virtualization
overhead- may be offloaded to redundant CPU cores. In this way, the system
effects induced by these operations are concealed from the guest and do not
induce any application effects. This concealed cost can however not simply
be ignored. Firstly, public cloud providers are charging consumers at ever
higher resolutions to allow for fine-grained cost optimization [103]. For example,
novel serverless cloud environments charge consumers per CPU-ms rather than

DEFINITION 39

per VM-hour [83]. This means that consumed system resources are charged
irrespective of their effect on the application. Secondly, concealed system effects
may become visible to applications when the state of the system changes. For
example, the offloaded I/O operations described above may start reducing
application performance when the server experiences a sudden load spike which
saturates all CPU cores. Thus, system and application effects need to be
quantified independently, making virtualization overhead the sum of all the
system and application effects a virtualized workload has on the system.

From the above, it is evident that both system and application effects must
be understood thoroughly in order to understand virtualization overhead. The
following subsections are dedicated to that purpose.

3.1.1 System Effects

Any excess internal system resource usage caused by virtualization (cycles,
memory, bandwidth,...) is a system effect. However, within the context of
this dissertation, only the system effects induced by virtualizing multithreaded
applications are of concern. Since multithreading is a purely computational
concept and the vast majority of its implementations target the CPU, CPU
cycle consumption is naturally the main system effect of interest. While other
metrics such as memory usage may be valuable as well, from a pragmatic
perspective they only become important when they bottleneck the system. This
will however be reflected by an increase in consumed CPU cycles. Knowing this,
the system effects of virtualizing multithreading may be defined as follows:

Let C,(W, P(Sy)) be the CPU cycles used by workload W on physical system
P(Sy), with Sy, all settings for P. Let C,(W,V(Sy), P(S,)) be the system
cycles used by W on a virtual machine V(S,,) with the same settings, hosted on
a system P(S,). Then the sum of all system effects is the reduction in resource
efficiency induced by virtualization:

s ClWV(Sw), P(5,)) = Cy(IW, P(Sy))
" (W, P(S,))

In the above definition, .S, includes all system settings only visible to the VMM,
e.g. the VMM used, concurrently running VMs, etc. S, reflects all settings
observable within the guest, e.g. concurrently running applications, vCPU
count, etc. Note that these settings include both system configuration and the
system state during workload execution.

40 VIRTUALIZATION OVERHEAD

3.1.2 Application Effects

Application effects are all effects induced by the virtualization process which
are measurable externally and as such visible to end users through altering
application behavior. Analogously to system effects, they encompass a variety
of metrics such as latency, throughput, etc. Again analogously to system effects
however, in the context of multithreaded, computation-intensive applications,
any effects of interest from a pragmatic perspective may be translated to a
single metric, being wall clock execution time. For example, reduced application
throughput translates to either less work being done in the same time frame
or more time being needed for the same amount of work. Thus, analogously
to system effects, the sum of all application effects may be described as a
reduction in temporal efficiency, d7;, which is the increase in wall clock time
needed to execute a workload W in a VM relative to the time needed by a
physical system. One addition must be made though. Since wall clock time
is measured externally and the system settings S, may include temporally
multiplexing physical resources between V(S,,) and other tasks, the effective
resources available to the VM must be taken into account. In other words, the
effects of resource sharing must be separated from those of virtualization. Based
on §3.1.1, the amount of available CPU time may be used as a proxy for system
resources in the context of this dissertation. This yields the following definition
for dny:

ty(W,V(Sw), P(Sy)) X vo — tp(W, P(Sw)) X 7p
tp(W, P(Sw)) X 1

ony =

With ¢, and ¢, the wall clock execution times for W in respectively the physical
and virtual environments and v, and -, the ideal effective CPU count available
to the workload given S,, and S, in each respective environment. Note that ~y
disregards any system-level overheads and is based on the resources available
to the workload and not the amount of resources the workload effectively uses.
Thus, when a sequential application utilizing a single CPU is executed in an
environment offering four CPUs, 7 equals four.

CAUSES 41

3.2 Causes

From the previous section it is clear that virtualization overhead is merely a
symptom of a variety of underlying issues. Many of these issues are by now
well understood, since finding and mitigating the root causes of virtualization
overhead has been the subject of countless scientific publications [104, 46, 105,
66, 106, 107, 14, 108, 109]. This section elaborates on the most important of
these causes and describes any existing techniques to address them which are
already widely adopted in industry.

3.2.1 Unfair Resource Allocation

One of the main purposes of virtualization is hardware consolidation. As a
result, multiple VMs often share hardware resources. Due to inefficient resource
management policies in the VMM or unmanaged contention between VMs,
applications may be unnecessarily starved of resources such as CPU, cache or
memory. Many efforts have been made to minimize this issue. Examples include
memory deduplication [104] and Intel resource director technology (RDT) [42].

3.2.2 Instruction Emulation

At the VMM level, emulation of sensitive operations is still a major cause
of performance degradation for certain workloads. While some virtualization
techniques (i.e. paravirtualization) avoid this cost, doing so has other drawbacks
such as reduced flexibility [46].

3.2.3 Input/Output

1/O operations, such as accessing I/O ports, DMA and interrupts all
require special attention in a virtualized environment, as described in §2.2.4.
Additionally, for high bandwidth I/O devices, extra data needs to be copied
to the VMM. Techniques for working around these limitations include
paravirtualization (e.g. paravirtualized drivers sharing I/O buffers between VM
and VMM) [105] and hardware assistance [66].

42 VIRTUALIZATION OVERHEAD

3.2.4 Double Memory Address Translation

As described in §2.2.3, guest memory accesses have to be translated to VMM-
managed machine addresses in virtualized systems. All existing techniques
to implement this double address translation have some significant drawback:
shadow page tables require VMM intervention upon each page fault (see §2.2.3),
direct paging sacrifices flexibility (see §2.2.3) and nested paging causes page
walks to be much more costly than in a bare metal setting (see §2.2.3).

3.2.5 Spinning Synchronization

Spinning synchronization involves a shared data structure called a ’spin lock’
which may only be atomically read and updated. If a spin lock is free, a thread
may claim it by marking it as claimed through an atomic operation. Any other
threads attempting to claim the lock before the original thread has released it
will continually poll it in a loop until it becomes available. A thread may free
the spin lock by simply marking it as such through a regular write operation.

Because of their simplicity and minimal latency, spin locks are the preferred
form of synchronization for short critical sections, especially when performance
is of greater concern than efficiency. As such, spinning synchronization is often
used within OS kernels. While in a native environment this is perfectly sensible,
in a virtualized context spinning synchronization may be problematic. Namely,
when the hardware is overcommitted, the VMM may deschedule a vCPU holding
a spin lock in order to schedule a vCPU belonging to another VM, causing
the vCPUs waiting for that lock to waste cycles. This is known as lock holder
preemption (LHP) [110].

Many systems offer a more advanced version of spinning synchronization in the
form of ticket spin locks [111]. A ticket spin lock may be viewed as a regular
spin lock which additionally ensures that a contented lock is passed from thread
to thread in the order in which the threads attempted to claim the lock. In
this way, threads waiting for the lock are ordered in a first-in-first-out (FIFO)
queue, which prevents thread starvation. In a virtualized environment, such
primitives are even more problematic than regular spin locks because besides
suffering from regular LHP, these locks may also cause excessive spinning when
a spinning vCPU at the head of the wait queue is preempted by the VMM when
the lock is released. In such a scenario, vCPUs behind said preempted vCPU
are forced to spin for a prolonged period of time, despite the ticket spin lock
technically being available. This problem is known as ’lock waiter preemption
(LWP)’ [109].

CAUSES 43

Several approaches have been proposed to mitigate the issues described
above. Hardware extensions that trigger a VM exit when a vCPU executes
excessive amounts of PAUSE instructions—indicating spinning—are already
widely adopted. Intel’s variant of this technique is called 'pause loop exiting
(PLE)’ [42] and AMD’s is known as ’pause filter (PF)’ [112]). Additionally,
paravirtualized ticket spin locks largely mitigate LWP in Linux for the KVM
and Xen VMMs [113]. Such locks operate like traditional spin locks by default
(i.e. ’fast path’) but switch to ’slow path’ mode as soon as any vCPU has
been spinning for a predetermined amount of time in an attempt to acquire
the lock. Slow path mode entails that the spinning vCPU enters a blocking
state and waits for the lock to become available (as do all vCPUs attempting
to acquire the lock as long as it is in slow path mode). When a vCPU releases
a paravirtualized ticket spin lock in slow path mode, it performs a hypercall to
inform the VMM that the first blocked waiting vCPU in line may be rescheduled.
If there are no other vCPUs contending for the lock at that time, it switches
back to fast path operation [113, 114]. Paravirtualized ticket spin locks may
thus be seen as a hybrid between spinning and blocking synchronization.

3.2.6 Blocking Synchronization

Blocking synchronization is a more efficient alternative to spinning synchro-
nization because contented locks are not continually polled. The basis of this
mechanism is analogously to spinning synchronization a simple shared data
structure which may be claimed by atomically reading and updating it. In
contrast to spinning synchronization however, threads attempting to claim the
lock when it is not available enter a blocking state, yielding the CPU they were
occupying to the OS. The latter may then schedule other tasks on this CPU,
if any are available. If not, it issues a HLT instruction to put the CPU in a
low power mode, saving energy. When the contended lock is released, the OS
marks the blocked thread as runnable, so that it may be scheduled and claim
the lock. If any idle CPUs are available, the kernel wakes one of them by means
of a RESCHEDULE inter-processor interrupt (IPI), which invokes the scheduler on
that CPU and allows the newly awoken thread to claim the lock and continue
work immediately [115, 42].

Blocking synchronization is much more commonly used by applications than
spinning synchronization due to its greater resource efficiency, especially for
longer critical sections. However, while the blocking synchronization process
may be highly efficient in a bare metal environment, in a virtualized context
several complications arise:

44 VIRTUALIZATION OVERHEAD

e When a vCPU encounters a HLT instruction a VM exit is triggered, after
which the VMM scheduler runs in order to find any other tasks to be
executed on the corresponding pCPU. For relatively short critical sections
this may prove problematic, since this process may take much longer
than the time the blocking thread would have had to wait for the lock to
become available. Because of this, most VMMs implement an optimization
called ’halt polling’ [15]. This involves the host first busy-waiting for a
dynamically determined amount of time before scheduling out the vCPU.
If the vCPU receives new work from the guest kernel during this time,
the host resumes its execution immediately rather than scheduling a new
task;

e Similarly to LHP, in an overcommitted setting the vCPU holding a
blocking-based lock may have been preempted, which may cause many
vCPUs to pointlessly block before the vCPU holding the lock is finally
rescheduled and the application may make progress. This, in combination
with the above issue, is known as the 'blocked waiter wakeup (BWW)’
problem [14];

e For modern Intel x86 CPUs utilizing X2APIC, sending IPIs requires
writing to the interrupt command register (ICR), which is a model-specific
register (MSR) containing among other things the destination CPU of
the IPI to be sent. Because in a virtualized environment the destination
vCPU visible to the guest kernel may not correspond to the pCPU visible
to the hardware, the VMM must intercept all ICR writes through a VM
exit in order to remap the destination CPU address. On older systems not
sporting interrupt posting (see §2.2.4), a second VM exit is required to
deliver the IPI on the receiving CPU. When the guest is not under heavy
load, it is likely that upon each release of a contended lock a RESCHEDULE
IPI is sent to schedule the newly awoken thread on an idle vCPU, thereby
invoking at least one VM exit.

3.2.7 Memory Consistency

An often-overlooked aspect of multithreading—especially in a virtualized
context—is the effect of sharing data between threads executing concurrently
on distinct CPUs. Namely, in X86, TLBs are almost always CPU-local and
populated by hardware but—in contrast to other caches—synchronized by the
OS [42, 115]. Because of the semantic gap between the hardware and the OS,
the contents of each TLB are opaque to the latter. This means that whenever a
CPU alters a PTE, the OS must notify all CPUs sharing the virtual address
space to flush the altered PTE from their TLB. This is achieved by sending

QUANTIFICATION 45

IPIs to the CPUs meeting the condition just described and waiting for all of
them to acknowledge the flush request before proceeding. This process is called
a 'TLB shootdown’

In a native setting, TLB shootdowns are generally considered sufficiently efficient.
However, this mechanism has been shown to have problematic performance
implications for specific workloads [116]. Adding virtualization to the equation
exacerbates this issue in several ways:

e Much like the RESCHEDULE IPIs discussed in §3.2.6, sending a TLB
shootdown IPI requires a write to the ICR MSR. A TLB shootdown thus
invokes a number of VM exits proportional to the number of concurrently
executing threads at the moment the shootdown is triggered;

¢ Because the vCPU sending a TLB shootdown must synchronize with all
receiving vCPUs, which is most often implemented by means of a spin
lock, a LHP-like problem may occur when one or more of the receiving
vCPU(s) has/have been preempted by the VMM (see §3.2.5). This issue
is known as "TLB shootdown preemption’ [117].

3.2.8 Non-Uniform Memory Access Opacity

Usually the guest is unaware of the exact physical hardware configuration. This
can decrease e.g. cache and memory performance. Particularly for NUMA
systems this is an issue, since NUMA-unaware scheduling can greatly increase
memory and synchronization latencies [118]. Several solutions to this problem
have been developed, such as NUMA-aware VMM schedulers [115], dedicated
VMM-level NUMA locality managers [108] and exposing the NUMA architecture
to the guest [119].

3.3 Quantification

Quantifying virtualization overhead is much like defining it not trivial. The
complexity of modern systems makes empirical evaluation based on controlled
experiments the only feasible approach. Analytical methods or simulations
are likely less accurate and far more time consuming. However, designing
meaningful experiments to evaluate virtualization overhead is challenging. Most
problematic is the vast quantity of possible system settings that may drastically
influence overhead for any workload. Moreover, when one aims to assess certain
application properties rather than particular workloads—as is the case for this

46 VIRTUALIZATION OVERHEAD

dissertation—choosing a representative (set of) workload(s) in itself is no easy
task. Finally, even with correct system settings and representative workloads,
it is important to keep several best practices in mind when collecting data
and transforming it into interpretable results. This section elaborates on all
of these considerations and provides a template for experiments to evaluate
virtualization overhead. Unless stated otherwise, all experiments presented in
this dissertation conform to this template.

3.3.1 System Settings

At the heart of any computing system lies the hardware. Within the context of
this dissertation, the CPU is by far the most important hardware component
to consider, as it is central to both multithreading and hardware-assisted
virtualization (see §1.3). Since Intel dominates the corporate x86 server CPU
market, with AMD having a market share of only 8%, Intel-based systems
are preferable [120]. However, results can be safely generalized to AMD-based
systems, since Intel VT-x and AMD-V are nearly identical [42, 112]. To the
best knowledge of the author of this dissertation, no studies suggest a notable
performance difference in any regard between these technologies.

Because the hardware configuration influences performance as well as overhead,
the number of CPUs effectively available to the workload under evaluation
should be varied over a sufficiently wide range. The same applies to the number
of NUMA sockets over which these CPUs are distributed. In a virtualized
environment, this may be achieved by creating VMs with the appropriate
vCPU counts and pinning those vCPUs to the appropriate pCPUs. In a native
environment, scheduling tools such as taskset! may be used to pin processes
to a set of CPUs. Since memory and I/O are no primary concerns for this
dissertation, both are provided in abundance so as to minimize the chance they
might form a system bottleneck.

Concerning hypervisors, four players dominate with a combined market share
of over 95%: VMWare, Hyper-v, Xen and KVM [28]. Unfortunately, the most
popular of these -VMWare and Hyper-v- are closed source. This means empirical
results can not be verified by analyzing VMM source code. Therefore, any
detailed analysis of virtualization overhead is best limited to systems employing
Xen or KVM. Because previous studies have shown that KVM is in general by a
narrow margin slower than Xen for CPU-bound workloads [7], KVM was picked
as the VMM for all experiments presented in this dissertation. This ensures
that experimental results are not overly optimistic while at the same time being
safely generalizable to other VMMs.

Ihttps://linux.die.net/man/1/taskset

https://linux.die.net/man/1/taskset

QUANTIFICATION 47

For the guest OS, Linux is an obvious choice since it is by far the most popular
server OS, with the only noteworthy competitor being Windows [121]. The latter
is however closed-source, making analysis of results again difficult. Moreover,
intuitively the guest OS is not a major contributor to virtualization overhead. As
such, results collected under Linux are representative for real-world applications
in general.

Because certain forms of overhead only appear when hardware resources are
oversaturated at VMM level [110], virtualization overhead should be separately
evaluated when the hardware is not shared between V(S,,) and other tasks
on the one hand and when it is on the other. These two scenarios may be
respectively referred to as undercommitted (UC) and overcommitted (OC).
Setting up the UC scenario does not require special considerations. The OC
scenario however is a more complicated matter, since without careful system
configuration «y is unknown. Moreover, unfair resource allocation is a known
issue for synchronization-heavy virtualized workloads [50]. Finally, it is unclear
how to attribute some VMM operations to individual VMs. For example, if
one VM uses 90% of the system’s resources and another uses only 10%, should
VMM scheduling overhead be attributed for 90% to the first VM because it uses
most of the resources or for 50% because scheduling is only necessary because
of the presence of multiple VMs, for which both VMs are equally responsible,
irrespective of their resource usage? All of these issues may be avoided by
creating an OC environment with exactly two identical VMs, running identical
workloads, pinned to the same pCPU set. When both VMs demand all available
resources, each will receive 50% thereof. Thus, v, = VZ—” Cycles used by the

VMM may also be attributed equally to each VM, so that C,, = % +Cyvp =
Csys
=5

Concretely, the host system used for all experiments presented in this dissertation
(unless stated otherwise) is a HPE ProLiant DL385 Genl0 server with four Intel
Xeon Gold 6138 20-core processors and 256GB of memory. Hyperthreading was
disabled, as were C states deeper than C1 to prevent performance degradation
due to CPU power management [122]. Ubuntu Server is the OS for both the
host and the guest, as it is one of the most popular Linux distributions at the
time of writing [123]. CPU count is varied between 4 and 64 and NUMA socket
count between 1 and 4. Both UC and OC scenarios are considered. Details may
however vary for individual experiments. If so, this is obviously clearly stated
where appropriate.

48 VIRTUALIZATION OVERHEAD

3.3.2 Workloads

Selecting a representative set of workloads is as important as using the correct
system settings when evaluating virtualization overhead. Firstly, the set of
workloads should be sufficiently broad because even within specific categories
of applications individual workloads may vary greatly in nature. Moreover, the
workloads are preferably realistic, rather than synthetic programs designed to
test a specific system mechanism. Ideally, an existing benchmark suite meeting
these requirements should be employed.

Since this dissertation focuses on multithreading, multithreaded, computation-
intensive workloads are a natural choice. Several benchmark suites of precisely
such workloads exist. Among these, perhaps the most widely used one is Parsec
3.0 [124]. The 13 workloads of this benchmark suite thus serve as the baseline
for this dissertation. All of these are compiled using pthreads and run with
their native inputs. The level of parallelism is set equal to the number of
CPUs configured for each test. Wherever appropriate, these workloads are
supplemented by other benchmark suites such as SPLASH2X [124] and Phoronix
[125].

3.3.3 Measurement

Besides careful preparation, precise collection and processing of data is
paramount in order to accurately quantify virtualization overhead. Firstly,
immediately before each experiment, the VM should execute a ’'warm-up’ run
of the benchmark to be executed. This pre-warms the OS buffer cache, so
that I/O operations are reduced to the absolute minimum. Furthermore, it
is almost impossible to guarantee that S, and S,, remain constant between
executions due to non-deterministic aspects of the system (e.g. interrupts,
background processes,. ..). To reduce the variance in S, and S,, to negligible
levels, experimental results should always be averaged over many iterations.
Unless stated otherwise, all results shown in this dissertation are derived from
10 iterations of the experiment in question. Perf? is the standard profiling tool
used to collect data.

Since in §3.1 P(Sy) = V(Sw), Cp and t, refer to undercommitted native
execution, even when S, includes overcommitting the system. This is
conceptually sound, since multiplexing system resources between V(S,,) and
other tasks is opaque to the VM and thus a virtualization effect from the
perspective of the workload. On the other hand, this intertwines the effects of
virtualization in se and hardware consolidation, which may in general improve

2https://man7.org/linux/man-pages/mani/perf.1.html

https://man7.org/linux/man-pages/man1/perf.1.html

QUANTIFICATION 49

resource efficiency regardless of the technique employed to achieve it. To
address this, the regular UC and OC virtualization overhead numbers may be
supplemented by an additional ’overcommitted base 2 (OCsz)’ value wherever
appropriate. This value directly compares C, and t, for two concurrent VMs,
each running one instance of W to (), and ¢, when executing two concurrent
instances of W on P(Sy,).

All experimental results are analyzed for each system configuration and each
benchmark independently, as is common practice in the field. While this method
provides detailed insight into individual results, it does not directly allow for
broad conclusions to be drawn with a high degree of certainty regarding the
magnitude of the identified virtualization overhead. Doing so would require
a detailed statistical analysis, which would in turn require a large amount of
expertise and time to conduct properly, which were unfortonately not available
within the scope of the Ph. D. project this dissertation documents. Therefore,
all results presented in this dissertation are to be viewed as indicative and thus
as ’evidence for’ rather than 'proof of’ the trends these results express.

Because of the limitations of the method employed to gather empirical data, it
is of crucial importance that all findings are verified from a technical perspective.
Concretely, every trend observed in experimental results must be linked back
to some relyably observable system behavior. This can be done by analyzing
system source code and hardware features or profiling workload properties. In
this way, even though none of the experimental observations can be conclusively
accepted, the author is convinced the results presented in this work at least
provide credible evidence for the claims they aim to support.

3.3.4 Threats to Validity

Like any empirical work, quantifying virtualization overhead through controlled
experiments is liable to threats to validity, which have to be taken into account
when interpreting results [126, 127]. These validity threats are often grouped
into four categories: internal validity, external validity, construct validity and
conclusion validity. Wohlin et. al. provide a detailed breakdown of all possible
validity threats based on these four categories [127]. This section details the
validity threats applicable to the method outlined above based on their work.

50 VIRTUALIZATION OVERHEAD

Internal Validity

Internal validity threats pertain to the possibility that the outcome of the
experiments does not reflect the effect of the variable(s) the experiment intended
to study. When studying virtualization overhead, it is possible that the observed
overhead is caused by some other effect rather than virtualization itself. When
studying the effectiveness of certain mitigation techniques, it is possible that
the mitigation technique in question (or at least the concept upon which it
is based) is not responsible for the observed result. Concretely, the following
threats must be considered:

» History/maturation: Modern systems adapt themselves to the nature
of the workload they execute in a variety of ways. Examples include
the buffer cache which makes sure disk reads are much faster after the
first iteration of a given workload, certain memory allocator heuristics
that edapt block sizes to workload demand, etc. This may influence
results significantly if not properly controlled for. This work controls for
the effects of the buffer cache by disregarding the first iteration of each
workload execution and for other adaptive system behavior by performing
the same number of iterations for all experiments;

o Instrumentation: While the tools used to collect system data (time,
pert, etc.) are generally highly accurate, perf in particular is sensitive
to overloading under heavy system use. Luckily however, perf logs any
occurance of overloading so that data tainted by this issue can be discarded
and the experiments yielding said data repeated;

e Ambiguity of direction of causal influence: This issue is critically
important regarding virtualization overhead. Namely, it is well-known that
certain negative system effects may cause other positive system effects. A
prominent example is some form of virtualization overhead slowing down
application progress, which in turn reduces lock contention and thereby
reduces issues such as lock holder preemption. This makes it extremely
challenging to quantify the impact of any particular form of virtualization
overhead on the system. Luckily, as argumented above, this work does not
seek such exact quantification. Even though various forms of overhead
may interact with each other, it is highly unlikely that these interactions
are so severe that they would completely hide certain forms of overhead
or completely mitigate the performance benefits of a certain mitigation
technique.

QUANTIFICATION 51

External Validity

External validity threats are concerned with the generalizability of experimental
results. After all, even a perfectly designed experiment has very limited use if
its results can not be used to predict phenomena in the real world. For this
work specifically, external validity is a major challenge because of the threats
outlined below:

¢ Interaction of selection and treatment: Asargued in §3.3.2, selecting
a set of workloads representative of the entire set of multithreaded
applications currently in use is hardly possible. Therefore, this work
opts to employ widely used benchmark suites designed to cover a broad
spectrum of application domains for multithreading. This however means
that experiments performed with these benchmark suites can not be used
to draw quantitative conclusions regarding the population. However,
these benchmark suites can be used to indicate that certain causes of
virtualization overhead exist or that certain mitigation techniques do have
the potential to benefit at least some multithreaded workloads. Thus, the
experiments presented in this work are indicative and explanatory rather
than quantitative.

o Interaction of setting and treatment: Even though the high-level
causes of virtualization overhead and potential of certain mitigation
techniques are conceptual in nature and thus largely independent of system
or workload specifics, all experimental results are only valid for the specific
system configuration used to perform that experiment. Therefore, while
the nature and general behavior of the identified virtualization overhead
or performance benefits of mitigation techniques remain constant across
system configurations, their exact quantities may vary greatly. Particularly
problematic in this regard is the fact that software evolves rapidly and this
work was performed over the course of five years. Therefore, some earlier
findings may have already been invalidated by the time of publication.
These findings are nevertheless still relevant in a pragmatic sense, since
improvements at research level typically take several years to trickle down
into industry. Regardless, while it is hardly possible to redo all experiments
presented in this dissertation every time a new Linux kernel is released
(which is almost daily), all older findings presented in this dissertation
are verified through analysis of newer kernel versions and/or through
performing a sample of the original experiments using a newer kernel.

52 VIRTUALIZATION OVERHEAD

Construct Validity

Construct validity describes to what extent the design of an experiment
conceptually reflects the phenomenon it is attempting to assess. For example,
even if an experiment demonstrates a correlation between some system setting
and virtualization overhead, it is not necessarily the case that this system setting
is the underlying cause of the overhead (i.e. it may exacerbate some internal
phenomenon which does cause the overhead and is only partly dependent on
that particular system setting). The most important construct validity threats
for this dissertation are listed below:

o Inadequate preoperational explication of constructs: This threat
is mostly applicable to the first objective defined in §1.3, being identifying
the leading remaining causes of virtualization overhead for multithreaded
applications. Namely, the entire point of this objective is that the construct
under consideration—virtualization overhead—is not properly understood
at the moment. It is therefore impossible to guarantee beforehand that
the chosen methodology is the most adequate available. The possible
impact of this threat has however been minimized by rigorously defining
virtualization overhead beforehand—albeit without knowing its exact
constituents—and studying existing literature on the topic extensively
to take all known causes of virtualization overhead into account and
encorporate established best practices;

e Mono-operation bias: This threat is reflected perfectly by the OC data
set. Namely, the construct of virtualization overhead is in the opinion
of the author conceptually best represented using this data set, it does
conflate the constructs of virtualization and resource consolidation. This
effect was mitigated by including the OC4 data set, allowing for a multi-
facetted interpretation of results;

o Interaction of testing and treatment: Because much of the
experimental data is gathered by performance profiling during workload
execution, it is not unlikely that the very act of performance profiling
influences workload performance. This issue was however minimized in
several ways: some metrics (e.g. execution time) were measured using
multiple tools, multiple independent benchmark runs were performed to
test independent metrics rather than measuring all metrics at once to
minimize load on the system and identical measurements where applied
to all benchmarks in all settings;

QUANTIFICATION 53

¢ Restricted generalizability across constructs: Due to the many
layers of abstraction in virtualized systems and quasi endless variety of
workloads these systems may be tasked with, some causes of virtualization
overhead that emerge under very specific circumstances may be overlooked
by the experiments provided in this work. Similarly, proposed mitigation
techniques may negatively impact some specific workload ore system
configuration not represented in the experiments performed here. The
impact of these issues is however almost certainly negligible within
the broader context of virtualizing multithreaded applications, since
the workloads and system configurations employed in this work have
been specifically designed to cover a vast range of real-world use cases.
Moreover, all experimental results are verified through source code analysis
and literature review so that all findings can be linked back to the
theoretical construct causing them. If any ambiguity should emerge,
specific additional experiments can be set up to provide clarity.

Conclusion Validity

Conclusion validity is concerned with drawing the correct conclusions from the
results. Threats in this regard are mainly comprised of the following:

o Low statistical power: Because the method described above does not
involve statistical analysis, this work is not able to make quantitative
predictions about virtualization overhead. However, it can make
qualitative statements regarding the nature of the overhead and unveil
general trends;

o Fishing and the error rate: This threat is particularly important when
assessing the effectiveness of novel mitigation techniques. Namely, when
designing these techniques, naturally a particular set of variables is taken
into account in order to address a specific issue. Naturally, evaluation of
the mitigation technique focusses on these variables of interest. However,
it is always possible that a mitigation technique unintentionally negatively
impacts some other variable which is not tested, leading to the issue going
unnoticed. This issue can however be addressed through defining the
metrics of interest in such a general sense that any concerning negative
impact on the system would in the end be visible in this metric. This is
precisely the reasoning of defining system effects in terms of CPU cycles
and application effects in terms of execution time in §3.1. In other words,
by consistently including CPU cycles and application execution time in the
evaluation, any unintended side effects of interest not directly evaluated
by the experiment should become apparent;

54

VIRTUALIZATION OVERHEAD

¢ Reliability of measures: This validity threat was the main driver for

developing the definition of virtualization overhead presented in §3.1 and
the thorough formulation of the experimental approach this dissertation
adheres to above. Namely, without doing so there was no guarantee that
whatever measures used in performing experiments would yield meaningful
results;

Random heterogeneity of subjects: As described previously, any work
measuring benchmark performance is faced with non-determinism inherent
to some system components. Particularly system configurations with more
than one NUMA node are sensitive to such non-deterministic performance
fluctuations, since slight variations in scheduling may heavily influence
memory locality and therefore performance. Nevertheless, averaging
all results over a sufficiently large number of experiment iterations as
suggested above largely nullifies this threat.

RELATED WORK 55

3.4 Related Work

The main contributions of this chapter are providing a generally applicable
definition of virtualization overhead and a systematic method to measure said
overhead through controlled experiments. Regarding both of these issues, an
extensive body of existing work is available to draw on. This section elaborates
on each and clarifies the distinctions between the work presented in this chapter
and these existing efforts.

3.4.1 Defining Virtualization Overhead

While virtualization overhead is a popular research topic, existing studies do
not adequately reflect on the concept of virtualization overhead. All of them
employ their own ad-hoc interpretation of virtualization overhead, which they
usually measure in terms of some general system metrics. The exact metrics
used may vary wildly between studies. Table 3.1 lists the studies most closely
related to the goal of this dissertation and enumerates the metrics these studies
employ to measure virtualization overhead.

Table 3.1 indicates that while indeed existing work varies wildly in terms of
the metrics used to measure virtualization overhead, almost all studies include
some form of the metrics 'wall time’ (short for wall clock execution time) and
‘throughput’ These metrics may be mapped directly to the measures this
work arrived at to quantify virtualization overhead. Namely, execution time
is intuitively related to d7;. When throughput is interpreted as the amount of
useful work the system may perform in a given amount of time, it can be mapped
to 67,.. One may even argue that this holds true for all of the metrics in table
3.1: CPU time is almost identical to CPU cycles, operations per second (OPS) is
a measure of throughput, cache misses manifest themselves in increased 07, and
likely increased d7; and latency can be interpreted as application execution
time, when the application being considered consists of a single unit of work for
which the latency is to be measured. This confirms the validity of the model of
virtualization overhead presented in this chapter. Nevertheless, it is sometimes
useful to include specialized metrics such as latency and cache misses when
studying specific workloads or system aspects for which these metrics are widely
used in order to facilitate interpretation of results by readers not familiar with
virtualization overhead in se.

Besides the validity of the model for virtualization overhead presented in this
chapter, the studies listed in table 3.1 also confirm the importance of rigorously
defining what virtualization overhead means. Namely, it is often not exactly
clear what the studies listed in this table measure exactly. For example, the

56

VIRTUALIZATION OVERHEAD

Table 3.1: Related studies and the measures they employ to quantify
virtualization overhead.

Study | Wall CPU Throughput | OPS Cache Latency

time time misses

[128] X X X X

129] X X

19] X X X X
130 X

131 X X X
132 X X X
133 X

[10] X X

[134] X X

[135] X X X
[136] X X X

[137] X X X X X
[9] X X X
[20] X X X
[21] X X X
8] X X X
[7] X
[44] X X

46 X X X

51 X X

53] X X

138] X X

139 X

140 X X X
141 X X

142 X X X

[143] X X X
[144] X X
[145] X X X X

CONCLUSION 57

term ’throughput’ by itself can mean many different things and can be measured
in many different ways. None of the papers listed in table 3.1 reflect thoroughly
on this, which complicates interpreting their results. Moreover, none of these
studies discuss the relationship between the metrics they study and virtualization
overhead as a whole. This makes it unclear to readers if the presented findings
capture the full effect of virtualization overhead. The systematic definition of
virtualization overhead this chapter has provided addresses both of these issues.

3.4.2 Empirical Research

While the studies presented in table 3.1 all perform controlled experiments
and describe the methodology they employ to perform those experiments, none
of them do so in a generalizable manner. On the other hand, plenty of work
describes how to conduct empirical studies in a software engineering context
[126, 127, 146, 147, 148, 149]. Naturally however, this second category of related
work is too broad in scope to be immediately applicable to this dissertation.
Therefore, the methodology presented in this chapter represents a necessary
merger of the contributions of both of these categories of existing literature by
systematically describing a method to empirically assess virtualization overhead,
which in itself is a novel contribution.

3.5 Conclusion

Virtualization overhead is the cumulation of all negative performance effects the
virtualization process has on the system on the one hand and applications on the
other. These effects may respectively be measured as the reduction in resource
efficiency (d7,) and temporal efficiency (d7;) in the context of multithreaded
applications. A wide variety of issues lay at the root of observed virtualization
overhead. Many of these issues are well known and for some of them effective
solutions have been widely adopted.

Quantifying virtualization overhead is only feasible through controlled
experiments. These experiments must be carefully designed in order for the
results to be representative. Most critical are the system configuration and
workload choice. Results should be obtained for varying CPU counts, NUMA
layouts and hardware contention conditions. Because system state is prone to
variance, experiments should be iterated at least tenfold.

58 VIRTUALIZATION OVERHEAD

3.5.1 Personal Contribution

The definition of virtualization overhead presented in this chapter is the result
of many discussions between the author of this dissertation and his supervisors.
Additionally, the anonymous reviewers of the publication upon which this
chapter is based provided valuable feedback which guided the final formulation
of the definition as well as the quantification method described above. Moreover,
the latter was continually refined by the main author for the duration of the
PhD project documented in this dissertation.

Chapter 4

Virtualization Overhead for
Multithreaded Applications

This chapter was previously published as part of:
S. Schildermans et al. “Virtualization Overhead of Multithreading in X86 State-
of-the-Art & Remaining Challenges”. In: IEEE Transactions on Parallel and
Distributed Systems 32.10 (2021), pp. 2557-2570

As stated in chapter 1, studying virtualization overhead induced by multi-
threading is critical in the modern era of cloud-driven HPC. This chapter
contributes to this effort by addressing the first pair of secondary research
questions outlined in §1.3. Specifically, it provides an overview of the state of
the art regarding hardware-assisted virtualization of multithreaded applications
in x86 and identifies major outstanding issues in this regard.

Perhaps somewhat ironically, this analysis of virtualization overhead for
multithreaded applications starts with a brief study of sequential workloads in
a virtualized setting in order to clearly frame results for their multithreaded
counterparts presented later within a broader context. All experiments are
based on the prescriptions provided in chapter 3. In the interest of generality,
the set of analyzed workloads consists of both the PARSEC and SPLASH2X
benchmark suites throughout this chapter. All findings are verified through
source code analysis and literature review. Moreover, a deeper understanding of
the identified virtualization overhead is provided by linking it to its underlying
causes.

59

60 VIRTUALIZATION OVERHEAD FOR MULTITHREADED APPLICATIONS

While it can not be guaranteed that all findings presented in this chapter are
universally applicable, a wide variety of system configurations and workloads
are covered to minimize the threats to validity inherent to empirical work such
as this. Moreover, a reflection on how the results shown below would translate
to other system configurations is included wherever appropriate.

Main Findings & Contributions

o With the latest virtualization support, overhead imposed on individual
threads is low. For sequential applications, overhead is mainly incurred
by handling I/0;

o Virtualization overhead for multithreaded applications has been sig-
nificantly reduced in recent years thanks to various advancements in
virtualization technology;

e Multithreaded computations still suffer significant virtualization overhead,
especially when the system is overcommitted. Thus, further improvements
are desirable;

o For multithreaded applications, there can be a large divergence between
system and application effects induced by virtualization. The major driver
of this divergence is whether or not the overhead is incurred on the critical
path of the application;

e Most virtualization overhead incurred by multithreaded applications
is caused by interaction between threads, in the form of data sharing
(especially in NUMA systems) and synchronization (especially spinning
at user level and blocking synchronization);

e Most multithreaded workloads benefit from being consolidated using
virtualization. Some even consume less resources when consolidated.

4.1 Sequential Applications

This section briefly analyzes virtualization overhead for sequential workloads in
order to ease interpretation of results for their multithreaded counterparts. To
this end, experiments were performed in accordance with the prescriptions given
in §3.3. The chosen workloads are the PARSEC and SPLASH2X benchmark
suites with the level of parallelism set to one, executed in a VM with a single
vCPU. Figure 4.1 shows the results as an aggregate of all the tested benchmarks.

MULTITHREADED APPLICATIONS 61

20 ° 20 - UC

.5 — .
10 -
UC mmm
15 1 . OC mmmm
- OC, | -
(a) onr (b) dme

Figure 4.1: Box plots of virtualization overhead for the sequential versions of
all PARSEC and SPLASH2X workloads, aggregated for each scenario.

As figure 4.1 shows, modern improvements to virtualization technology have
minimized virtualization overhead for sequential workloads. On average, both
onr and 07 are negligible for the tested benchmarks. Some outliers can be
observed however. Detailed analysis reveals that these are attributable to I/0.
This is a well-known issue, as described in §3.2.3.

Generally, 7, is greater than dn; in figure 4.1. In the OC scenario, d7; is even
negative. Upon closer analysis, QEMU was found to be responsible for this,
as it has to handle write-backs of newly generated data (reads come from the
pre-warmed OS buffer cache). This consumes up to 20% of the CPU resources
used by the entire workload. Because QEMU runs on a separate host thread in
parallel with the VMs, this does not increase d7;. On the contrary, this effect
results in a negative d7; in the OC scenario since the second VM may run while
the first is waiting for QEMU.

4.2 Multithreaded Applications

Evaluating virtualization overhead for multithreaded applications requires
more consideration than doing so for sequential workloads, as stated in §3.3.1.
Specifically, a variety of system configurations is to be considered. For the
analysis presented in this section, the following vCPU and NUMA settings were
evaluated:

62 VIRTUALIZATION OVERHEAD FOR MULTITHREADED APPLICATIONS

e 4 CPUs, 1 NUMA node,
e« 8 CPUs, 1 NUMA node,
e 16 CPUs, 1 NUMA node,
e 32 CPUs, 2 NUMA nodes,
e 64 CPUs, 4 NUMA nodes.

In each of the above scenarios, all PARSEC and SPLASH2X workloads were
evaluated with the level of parallelism set equal to the number of CPUs available
in the respective configuration. Figure 4.2 shows the results in a manner
analogous to figure 4.1 for each studied system configuration separately.

From figure 4.2 it is clear that much like for sequential workloads, d7; is limited
in general for multithreaded applications. In the OC scenario it is even strongly
negative; increasingly so as vCPU count increases. Firstly, this is caused by
processing I/0 in the background, as described in §4.1. Secondly, the pair of
vCPUs competing for each pCPU can compensate for each other’s idle time.
Namely, when a vCPU is idle in the UC scenario, the pCPU hosting that vCPU
is also idle. In the OC scenario however, a vCPU from another VM can perform
useful work during this time, which naturally increases system throughput. This
is confirmed by the OCs data set, since for this data set dn; is positive, as in a
native setting this consolidating effect also occurs.

Figure 4.2 also shows that multithreaded applications still suffer high
virtualization overhead compared to sequential ones. This overhead tends
to greatly increase with vCPU count, indicating that mitigating it will only
gain importance as time goes on, since VMs are likely to follow physical
systems in sporting ever larger numbers of CPUs [150]. However, figure 4.2
simultaneously indicates that great advancements have been made in the past
few years with regard to mitigating virtualization overhead for multithreaded
applications. For example, a study from 2015 found that the performance of the
Dedup benchmark could be degraded by more than 500% in an overcommitted
virtualized environment relative to native execution [10]. Given that no
benchmark in figure 4.2 suffers a d7, of more than 175% and a dn; of more
than 80%, these at first glance concerning performance numbers are at the same
time pleasing within the broader context of the field.

When comparing figures 4.1 and 4.2, the variance in virtualization overhead
between benchmarks appears to be much greater for multithreaded applications
than for sequential ones. For some benchmarks d7, is strangely negative, while
for others it may be over 150%. To better understand this, figure 4.3 provides a
detailed breakdown of the average and maximum d7, by individual benchmark,

MULTITHREADED APPLICATIONS 63

175
150
125
100

175
150 -
125
100

UC mm
OC mmm
OC, =

Figure 4.2: Box plots of virtualization overhead for various multithreaded
executions of PARSEC and SPLASH2X workloads. Results for all benchmarks
are aggregated for each scenario.

64 VIRTUALIZATION OVERHEAD FOR MULTITHREADED APPLICATIONS

aggregated for all vCPU counts with overlapping bars. These bars are split into
cycles spent at guest and host level, respectively. Similarly, figure 4.4 shows the
average and maximum values of d7; for each benchmark with overlapping bars,
aggregated for all studied vCPU configurations.

Figures 4.3 and 4.4 provide several insights. Firstly, the OC, data set explains
why &7, is negative for some benchmarks in the OC scenario (e.g. FFT, Radiosity,
s.Raytrace). Namely, overcommitting has a positive effect on 7, in a native
setting as well. This is thus an effect of consolidation rather than virtualization.
The main causes of this effect are the following:

e Reduced lock contention: As the system is overcommitted, the
effective CPU utilization of individual benchmarks is lower. As less
threads are competing for the same synchronization constructs, less cycles
are wasted;

e« NUMA management: When the system is overcommitted, the
scheduler can do a better job of balancing the workload between different
NUMA nodes, thus reducing memory latency;

¢ Reduced idling: When a CPU runs out of work, the OS performs several
operations to prepare it to enter an idle state. When the system has more
work, it is less likely to start idling, thus eliminating these operations.

Secondly, the relationship between d&7,.and d7;is not simply linear for
multithreaded workloads, even in the UC scenario. To better understand
this at first glance unintuitive finding, we define the ’overhead impact factor (w)’
as a measure of the correlation between system effects and application effects:

1+ n,
w =
14 n,

Intuitively, w shows to what extent system-level virtualization overhead has
an observable impact on application performance. Studying this metric yields
several interesting findings. Firstly, w is for almost all studied workloads smaller
than 1. This indicates that 07, > dn; or in layman’s terms that not all system-
level overhead is observable by end users. This general trend may in part be
explained by the following observations:

MULTITHREADED APPLICATIONS

Barnes
Blackscholes
Bodytrack
Canneal
Dedup
Facesim
Ferret

FFT
Fluidanimate
FMM
Fregmine

LU CB

LU NCB
Ocean CP
Ocean NCP
p.Raytrace
Radiosity
Radix
s.Raytrace
Streamcluster
Swaptions
Vips

Volrend
Water NSquared
Water Spatial

X264

65

avg|max
—UC, IRXJ
~ |0C, mEEXX
- OCZ,g (e
—UCH IR
| |OC, A
- |0Coy I

ony (%)

DG
A’A’A’A’A’A’A’A’A’A"’}
IRRIRRX

A
KX X IOOIHXHXNXX]
A’A AAA

I»'o'o'o

! D!

Ii%%%

RRORRKAIRIRIRAARXK

-50

50 100

150

Figure 4.3: Average and maximum 67, for the studied vCPU counts, displayed
separately for each benchmark with overlapping bars.

66

Barnes
Blackscholes
Bodytrack
Canneal
Dedup
Facesim
Ferret

FFT
Fluidanimate
FMM
Fregmine

LU CB

LU NCB
Ocean CP
Ocean NCP
p.Raytrace
Radiosity
Radix
s.Raytrace
Streamcluster
Swaptions
Vips

Volrend
Water NSquared
Water Spatial

X264

VIRTUALIZATION OVERHEAD FOR MULTITHREADED APPLICATIONS

avglmax
— UC mmExA
I~ | OC mEXX
|| OCEEd

ony (%)

R

.0,0,0.0.0.0.0.0.0.

90%%%%%

'o'm'o 0'0'0'0 0 0 0'0'
KXXXXX]
RRXXXXXX]
S AR

I
o
<]
%

N

0%%%%%

[XX

] [0
KOO XX
XXX

YeYe%%!

-50

1929299 |

50

Figure 4.4: Average and maximum 7 for the studied vCPU counts, displayed

separately for each benchmark with overlapping bars.

MULTITHREADED APPLICATIONS 67

o The virtualized benchmarks show higher CPU utilization than their native
counterparts, caused by e.g. 1/O offloaded to QEMU. Previous research
has shown that hardware-assisted I/O virtualization techniques such as
SR-IOV (see §2.2.4) -while improving performance- actually increase CPU
usage [140].

e Since many of the system effects introduced by virtualization involve
CPU-intensive operations (e.g. instruction emulation), they push said
CPU to its highest boost frequency (185% of the nominal frequency in
the case of the test system employed for this work). The average CPU
frequency is therefore higher in a virtualized context.

Moreover, for multithreaded applications, the variance in w (ow) between
benchmarks is very high. For example, for Bodytrack, UC w ~ 1.1, while for
Ocean CP, OC w =~ 0.6. This can be explained by the fact that the execution
time of a multithreaded application is determined solely by its critical path [151].
In brief, the critical path is the execution path taking the largest amount of time
to complete. For example, consider an image processing application employing
10 threads, the first 9 of which process an equally sized section of the image,
while the last thread processes a section twice that size. Assuming processing
time is directly proportional to image section size, the critical path of the
application is intuitively the tenth thread. Even when the workload of the other
9 threads is doubled, the execution time of the application remains identical
(assuming ample system resources are available), despite the resources consumed
by the application increasing by 82%. Conversely, if the workload of the tenth
thread is doubled, application execution time doubles, despite the resources
consumed by the application only increasing by 18%. For virtualization overhead
this means that when 7, is located mostly on the critical path, d7; increases
drastically. Otherwise, dn,. may have little to no effect on dn;. To illustrate
this, figure 4.5 shows the distribution of cycles over individual CPUs for the
Bodytrack and Ocean CP benchmarks in both a native and virtualized setting,
with 64 CPUs spread over 4 NUMA nodes in an UC scenario. The results are
normalized to the native execution so that 2?73:0 P(C) = (6n, + 1)(x100%),
with C a particular CPU ID.

Figure 4.5 shows that system-level overhead is distributed very differently
between vCPUs for Bodytrack and Ocean CP. Regarding the former, none of
the vCPUs show much overhead, except for one. It is likely other vCPUs will at
some point have to wait for this overhead-heavy vCPU because it is under such
a heavy load, thus slowing down the entire application. Regarding the latter
on the other hand, the distribution of 7, is much more egalitarian. Because of
this, many of the system effects are likely not part of the critical path, yielding
a much smaller w.

68 VIRTUALIZATION OVERHEAD FOR MULTITHREADED APPLICATIONS

w
T

native cycles

N
T
o

C
2>
T
!
&

1F Bodytrack native ——
Bodytrack virtualized —<—

Ocean CP native
Ocean CP virtualized

0 10 20 30 40 50 60

0

Figure 4.5: Distribution of cycles over CPUs for the 64 CPU variants of
Bodytrack and Ocean CP, normalized to native execution.

While figure 4.5 explains how the nature of dn. may affect dn; differently
depending on the workload, a more in-depth analysis is needed to explain
what causes this difference in nature to begin with. Namely, knowing that
on, may have many different causes (see §3.2), it is clear that for each workload,
om,- is constituted of a unique combination of distinct factors that each influence
on (and thus w) in a different way. Figure 4.3 provides some indication of this
variance in composition of d7,. , as the ratio of host- and guest-level overhead
varies between applications. This is thus a good starting point to gain a deeper
insight into the constituents of 7, for multithreaded applications. Specifically,
based on figure 4.3, the benchmarks may be grouped in four different categories
depending on the nature of 7, :

o Negligible overhead: Barnes, Ferret, FFT, FMM, Freqmine, LU NCB,
parsec. Raytrace, Radiosity, splash2x. Raytrace, Swaptions, Water NSquared
and Water Spatial;

o High guest overhead: Blackscholes, Canneal, Fluidanimate, Ocean CP,
Ocean NCP and Radiz;

e« High host overhead: Bodytrack, Dedup, Facesim, Vips and Volrend,

e High overcommitted overhead: LU CB, Streamcluster, Vips, Volrend,
X264.

MULTITHREADED APPLICATIONS 69

Note that some benchmarks exhibit characteristics of several overhead profiles
and were therefore added to multiple categories. Below each of these categories
is discussed in detail. Because figure 4.2 indicates that overhead varies severely
between VM sizes, the discussion of each category begins with a breakdown of
the overhead for each VM size in the most relevant scenario. This allows for
reasoning about the most likely causes of the overhead for that category. This
reasoning is subsequently reinforced with further suitable empirical evidence as
needed.

4.2.1 Negligible Overhead

About half of the tested benchmarks do not exhibit significant virtualization
overhead. This shows that even for workload groups which are by their
nature considered to be prone to virtualization overhead such as the studied
multithreaded applications, modern virtualization techniques are often highly
efficient. Moreover, this data shows that virtualization overhead is highly
dependent on the specific workload and even groups of applications sharing
many high-level characteristics may exhibit wildly varying performance.

4.2.2 High Guest Overhead

The benchmarks displaying high guest overhead show strongly varying behavior
depending on system settings. Firstly, several of these benchmarks display most
overhead in the UC scenario, while others show higher OC overhead in figures
4.3 and 4.4. However, the OC, data set is for the latter group similar to the UC
one, indicating that even on physical systems, overcommitting adds overhead
for these benchmarks. The increase in OC overhead is thus due to resource
consolidation rather than virtualization. Therefore, analyzing virtualization
overhead in the UC scenario is sufficient for this category of benchmarks. In
light of this, figure 4.6 shows a breakdown of the benchmarks showing high
guest overhead for each analyzed system configuration in the UC scenario.

In figure 4.6, overhead is negligible for all system configurations employing only
one NUMA node. For configurations with multiple NUMA nodes on the other
hand, overhead increases dramatically. This makes NUMA an obvious suspect
regarding the underlying cause of the virtualization overhead these benchmarks
incur. Namely, memory-intensive applications may often access data on remote
NUMA nodes. As outlined in §3.2.8, in a VM the scheduler is unaware of the
NUMA configuration of the physical hardware, preventing it from optimizing
NUMA locality like it would natively. For computation-intensive workloads
such as the ones employed in this study, analyzing cycles per instruction (CPI)

VIRTUALIZATION OVERHEAD FOR MULTITHREADED APPLICATIONS

70

o
©

(=]
©

o
<

o
N

Fluidanimate Ocean CP Ocean NCP Radix

Canneal

Blackscholes

o

Figure 4.6: Breakdown of virtualization overhead for the benchmarks with high

guest overhead in the UC scenario.

Radix

Fluidanimate Ocean CP Ocean NCP

Blackscholes Canneal

Figure 4.7: CPI for the benchmarks displaying high guest-level overhead in the

UC scenario, broken down per vCPU count.
can prove this hypothesis, since it indicates memory latency [152]. As such,

figure 4.7 shows the CPI for each combination of workload and system settings

in figure 4.6 in both native and virtualized contexts.
Figure 4.7 verifies the above conjecture. Overhead is highest for the benchmarks

with the highest CPI, being the most memory-intensive benchmarks. For native
executions, CPI increases slightly with CPU count. When virtualized, this
increase is much more pronounced, particularly in the scenario with 64 vCPUs

spread over 4 NUMA nodes.

Ocean CP is the only exception. However, detailed

analysis shows that this benchmark is bottlenecked by memory bandwidth.

MULTITHREADED APPLICATIONS 71

EES

_Virtualization overhead (%) _-

)
80
70
60
50
40
30
20
10

Bodytrack Dedup Facesim Vips Volrend

Figure 4.8: Breakdown of virtualization overhead for the benchmarks with high
host overhead per CPU count in the UC scenario.

When more NUMA nodes are used, available bandwidth increases, improving
performance despite increased memory latency.

For all benchmarks in figure 4.6, w is low. The reason for this is that performance-
critical data tends to be accessed often and thus cached. Only data that is
rarely used is fetched from main memory, which is usually input for worker
threads and therefore not likely to be directly on the critical path.

Abstraction of the underlying system is a core concept of virtualization, implying
that the above issue is independent of the virtualization technology used. Rather,
it depends on the host system P(S,). All popular virtualization platforms are
consequently known to struggle with NUMA locality [153, 154].

4.2.3 High Host Overhead

Figures 4.3 and 4.4 indicate that most of the benchmarks suffering high host-level
virtualization overhead are mostly affected in the UC scenario. Those that do
not (Vips and Volrend) are also included in the ’high overcommitted overhead’
category, which is elaborated on below. Therefore, this section focusses on the
UC scenario, only discussing OC results when specifically required to provide a
complete insight in host-level virtualization overhead. As such, figure 4.8 shows
a breakdown of the virtualization overhead for the benchmarks suffering high
host overhead for all studied system configurations in the UC scenario.

72 VIRTUALIZATION OVERHEAD FOR MULTITHREADED APPLICATIONS

4 8 163264 4 8 163264 4 8 163264 4 8 163264 4 8 163264

0 ‘ TSC deadine
80fF ' ' o ro RESCHEDULE IPI
o Do TLB IPI
70 - other VM exits ===
- Lo Successful HLT poll ==
60 e oo Scheduling
50 = 1 R uc|oc
8\ | | | | | :2:3 ‘ ‘
0L ‘ 8 Do
[| | | | ,‘;: :::: | |
0h6 DR B L
10

‘Bodytrack Dedup “Facesim Vips ~ Volrend

Figure 4.9: Breakdown of host cycles for the benchmarks with high host overhead
into their main causes per vCPU count.

The results displayed in figure 4.8 are interesting. 7, rises steadily with CPU
count until 32 CPUs, after which it drops drastically. d7; however continues
to rise for all benchmarks with the exception of Vips. w thus varies greatly
between benchmarks and CPU counts. It is therefore obvious that a further
breakdown of these results is necessary. Since any host operations are preceded
by a VM exit for systems based on hardware-assisted virtualization, it makes
sense to perform this breakdown based on CPU cycles spent on different kinds
of VM exits. Figure 4.9 shows exactly this. Note that in contrast to figure
4.8 both the UC and OC scenarios are included in this figure, since this may
provide additional insight in the nature of the host-level virtualization overhead,
even though the main interest of this section lies with the UC scenario.

Figure 4.9 explains the variance in w observed in figure 4.8. Namely, the strange
pattern for dn, is exclusively attributable to scheduling. When cycles spent on
scheduling are ignored, one observes a consistent, high w. This is logical, since
in the UC scenario, VMM-level scheduling almost exclusively occurs when the
VM voluntarily yields a vCPU. Therefore, host-level scheduling is rarely part
of the critical path. Most other VM exits on the other hand are attributable
to the guest attempting to perform some sensitive operation requiring VMM
involvement. Many of these are by nature highly likely to be on the critical
path, thus yielding a high w. Below, all of these VM exits are discussed in detail
in terms of their high-level causes.

MULTITHREADED APPLICATIONS 73

Blocking Synchronization

Blocking synchronization is prevalent in multithreaded applications, as discussed
in §3.2.6. The same section notes that while highly efficient in a native
context, this synchronization mechanism is known to induce significant host-level
virtualization overhead through vCPU scheduling, the BWW problem and IPIs.
Additionally, figure 4.9 reveals another complication arising from virtualizing
blocking synchronization, which has to the best knowledge of the author never
been described in literature. Namely, all popular operating systems update
the global system time through a mechanism called the ’scheduler tick’, which
consists of periodic per-CPU timer interrupts, in the case of Linux preferably
driven by the CPU’s time stamp counter (T'SC). Because this scheduler tick
is relatively resource-intensive, modern kernels tend to disable it when the
CPU is idle. Specifically, when a CPU is about to enter an idle state, the
kernel attempts to heuristically predict how long this idle state will last. If it
is determined to likely be sufficiently long, the tick is deferred until the next
scheduled timer or read-copy-update (RCU) event or, if none are available,
disabled entirely. When the CPU is awoken again, the original tick frequency is
restored [115]. This is called ’tickless kernel mode’ and yields energy savings of
up to 70% relative to a classic naive periodic tick [155]. However, altering the
scheduler tick requires writing to the TSC_DEADLINE MSR, which induces a VM
exit. This explains the VM exits due to TSC_DEADLINE MSR writes shown in
figure 4.9.

All of the virtualization overhead induced by blocking synchronization follows a
predictable pattern. Namely, when a thread blocks on a contended lock and
there are no other runnable tasks for the vCPU, the guest kernel usually disables
its scheduler tick and issues a hlt instruction, resulting in two VM exits. When
the thread is woken up again, two more VM exits likely follow for firstly sending
a RESCHEDULE IPI to an idle vCPU in order to schedule the newly awoken
thread and secondly reactivating the scheduler tick on that vCPU. Thus, each
blocking operation results in up to four VM exits. Figure 4.10 shows all of this
schematically.

Figure 4.9 shows that each of the operations inducing VM exits displayed in
figure 4.10 can be costly. Especially surprising is the fact that TSC_DEADLINE
MSR writes account for a d7, of up to 10%, since tickless kernels have been
described before in literature as having a positive effect on virtualization [156].
Nevertheless, figure 4.9 shows that scheduling, which is almost always triggered
by a h1t VM exit, dwarfs any other cause of host-level virtualization overhead
for most studied benchmarks. Much of this cost may be attributed to halt
polling (see §3.2.6), which has several interesting implications with regard to
virtualization overhead:

74

Thread 1

futex (LOCK)

Success

futex (UNLOCK)
ipi_send
(RESCHEDULE)

VIRTUALIZATION OVERHEAD FOR MULTITHREADED APPLICATIONS

Thread 2

futex (LOCK)

Fail

Disable tick

Enable tick ---

futex (LOCK)

Success

futex (UNLOCK)

Figure 4.10: Schematic overview of the execution flow of two threads contending
for a blocking lock in a state-of-the-art virtualized environment. User space
operations are shown in light blue, kernel operations in dark blue.

MULTITHREADED APPLICATIONS 75

e When halt polling is successful (i.e. the vCPU is woken up before the
polling ends and is immediately rescheduled), the cost of handling HLT
VM exits is limited. When it is unsuccessful on the other hand (i.e. the
polling interval expires and the vCPU needs to be descheduled anyway),
the cost of handling HLT VM exits becomes very high. Because cycles
spent on unsuccessful polling only slow down the scheduling process, they
are considered to be scheduling overhead as well in figure 4.9;

e 07, is in general much higher for the system configuration with 32 vCPUs
than for that with 64 vCPUs in figure 4.9. This is a consequence of
the heuristics KVM uses to manage the polling threshold. If the poll
was unsuccessful, KVM grows or shrinks the threshold if the vCPU was
blocked for resp. a short or long time [115]. As vCPU counts increase,
so do contention and average blocking time, which in turn increase the
polling threshold. At 64 vCPUs however, the average blocking time is
so long that the polling threshold shrinks to 0. We confirmed this by
measuring the success rate of halt polling for the studied workloads under
different system configurations, which drops from 30% on average for 4
vCPUs to close to 0% for 64 vCPUs;

o Halt polling is largely responsible for the strange evolution of w in figure
4.8. By design, halt polling expends CPU cycles to improve performance,
lowering w ever more as the polling threshold grows with vCPU count up
to 32 vCPUs. When the polling threshold shrinks back to 0 for 64 vCPUs,
w rises drastically as 7, drops at the expense of d7;;

e 07, is higher in the UC scenario than in the OC scenario in figure 4.9.
This can be explained by the fact that contrary to the UC scenario, halt
polling can degrade system throughput in the OC scenario because upon
a HLT VM exit, the host most likely has other runnable tasks ready to be
scheduled on the yielded CPU, which makes spending cycles on polling
a pure waste time and resources. Therefore, KVM disables halt polling
when the CPU has runnable tasks available when a HLT VM exit occurs
[115], reducing 7, in the OC scenario at the cost of increasing application
latency.

Host-level virtualization overhead may vary greatly depending on the system
configuration. For example, as the root cause of the VM exits induced by
TSC_DEADLINE MSR writes lies within the guest OS, this overhead may vary
between guests. The VM exits themselves however are handled comparably by
Xen and KVM, as are those related to sending IPIs. In terms of hardware, Intel
and AMD offer unique APIC virtualization extensions (resp. APICv [42] and
AVIC [112]). While implementation details differ, their effect and performance

76 VIRTUALIZATION OVERHEAD FOR MULTITHREADED APPLICATIONS

are similar. Both eliminate the need for VMM intervention to inject IPIs and
acknowledge their receipt, but still require a VM exit to write the ICR MSR.
Finally, halt polling overhead may vary drastically between VMMs. In Xen
HVM for example, halt polling is not implemented. é7, will thus be lower in
the UC scenario for Xen than for KVM, while d7; will be higher. In the OC
scenario on the other hand, scheduling overhead for Xen will be comparable to
that for KVM.

Virtual Memory Management

Figure 4.9 shows that Dedup and Vips spend a lot of resources on processing
VM exits induced by TLB shootdowns (see §3.2.7). Analysis of the system calls
invoked by these workloads reveals that most of these TLB shootdowns are
caused by resizing the heap. Namely, heap resizing involves acquiring memory
from or returning memory to the OS, which is done through system calls such
as madvise and mprotect, which in turn invoke TLB shootdown IPIs. While
there are other causes of TLB shootdowns such as page migrations, these are
insignificant for the evaluated workloads.

The exact amount of heap resizing operations an application induces is highly
dependent on its source code and the underlying system libraries it employs.
For example, when an application often allocates and frees small amounts of
memory, highly memory-efficient memory allocators may immediately return
the freed memory to the OS, only to request new memory soon after. The
fact that the studied benchmarks all employ glibc’s ptmalloc2 as their memory
allocator—which is by nature highly memory-efficient—thereby explains the
TLB shootdown-related virtualization overhead some workloads exhibit in figure
4.9.

As the overhead induced by TLB shootdown IPIs is handled comparably across
hardware platforms and VMMs, similar performance is to be expected for
systems from different vendors with otherwise comparable properties.

Spinning at Kernel Level

Some years ago, spinning at kernel level was a serious issue for overcommitted
virtualized systems in the form of LHP and related issues, as described in §3.2.5.
Figure 4.9 however indicates that PLE is very effective at dealing with this.
Only Vips in the OC scenario suffers from many PLE VM exits. While the
overhead caused by these exits themselves is low, they invoke the scheduler,
inducing significant scheduling overhead. As Vips incurs negligible HLT and

MULTITHREADED APPLICATIONS 7

80 4 8 163264 4 8 163264 4 8 163264 4 8 163264 4 8 163264
AT T T T

h. (%

IS
o
T

N
o
Virt. over

CB Streamcluster Vips Volrend X264

Figure 4.11: Breakdown of the virtualization overhead in the OC2 scenario for
the benchmarks that show high overhead in the OC scenario.

preemption timer VM exits compared to the other workloads suffering high
host-level virtualization overhead, almost all the scheduling overhead for Vips
shown in figure 4.9 can be attributed to PLE. Nevertheless, this scheduling
overhead can be considered acceptable, since it is comparable to that for other
benchmarks in the OC scenario and the scheduler would otherwise be triggered
anyway by other mechanisms.

As stated in §3.2.5, AMD’s PF is conceptually identical to Intel’s PLE [112].
Both solutions are treated equally by KVM. Moreover, Xen source code reveals
that it handles both hardware features much like KVM. It is thus fair to conclude
that spinning at kernel level has been tackled effectively across hardware and
virtualization platforms.

4.2.4 High Overcommitted Overhead

Naturally, the benchmarks only showing significant virtualization overhead
when the system is overcommitted are best studied in the OC scenario. As
such, figure 4.11 breaks down virtualization overhead for these benchmarks in
the OC scenario by CPU count. This figure is based on the OCs data set to
eliminate the effects of server consolidation.

The results in figure 4.11 are at first glance bewildering. However, upon careful
inspection, one may distinguish two subcategories in the presented benchmarks
in figure 4.11:

78 VIRTUALIZATION OVERHEAD FOR MULTITHREADED APPLICATIONS

250 native_queued_spin_lock_slowpath
“E-‘ pthread_mutex_trylock ===
= parsec_barrier_wait
200 5 smp_call_function_many
% ray_trace_non_adaptively ——
150 1S
O\O
100
50
uc oc uc oc uc oc uc oc uc oc
LU CB Streamcluster Vips Volrend X264

Figure 4.12: Comparison of subroutine CPU profile between UC and OC
virtualized execution with 64 vCPUs for the benchmarks displaying high
overcommitted virtualization overhead.

o Positive overhead: LU CB, Vips, X264,

o Negative overhead: Streamcluster, Volrend. Note that besides overhead
related to overcommitting, Streamcluster suffers from NUMA locality
issues, distorting its results.

In an effort to understand the above patterns, the call stack of the workloads
from figure 4.11 was analyzed in detail. Figure 4.12 compares the total CPU
cycles spent on each subroutine during virtualized workload execution in
respectively the UC and OC scenario. Only the 64 vCPU variants of the
workloads were studied, since figure 4.11 indicates that variance between system
configurations is limited when accounting for the NUMA-related overhead
incurred by Streamcluster.

Figure 4.12 shows that for the benchmarks with positive OCs overhead in figure
4.11, the system function smp_call_function_many is mainly responsible for
the difference between UC and OC CPU time consumed by the workload,
while for the benchmarks with negative OCy overhead some application-level
subroutines are the culprit. Both of these groups are discussed in detail below.

MULTITHREADED APPLICATIONS 79

Translation Lookaside Buffer Shootdown Preemption

Smp_call_function_many is a system-level function used to send IPIs. In
the OC scenario, at least some IPIs thus appear to increase in performance
cost. Source code analysis reveals that specifically TLB shootdown IPIs are
responsible for this. The benchmarks exhibiting positive overhead in figure 4.11
are thus clearly suffering from TLB shootdown preemption (see §3.2.7).

Since TLB shootdown preemption is an example of excessive kernel-level
spinning, PLE largely mitigates virtualization overhead associated with this
issue. However, as figure 4.11 shows, PLE is not a perfect solution. Namely,
the prolonged execution time of the smp_call_function_many routine in the
OC scenario shown in figure 4.12 is a consequence of the fact that PLE can
only trigger a VM exit after some spinning has already occurred. Note that
because this spinning takes place in the guest kernel, it is visible as guest-level
overhead in figure 4.3.

User-Level Spinning

By analyzing the source code of the subroutines indicated by figure 4.12 as
suffering a severe performance penalty in the OC scenario for the benchmarks
displaying negative OCy overhead in figure 4.11, we found that the common
denominator of all these subroutines is that they contain programmer-defined
spinning synchronization primitives. Such primitives may lead to a LHP-like
problem at user level. Below this issue is illustrated using Volrend, since figure
4.11 indicates that this benchmark suffers the most from this issue, which we
call 'user-level spinning’.

The Ray_Trace subroutine defined in Volrend’s source code, which according to
figure 4.12 consumes approximately ten times more cycles in the OC scenario
compared to the UC scenario, contains the user-level spin-based barrier shown
in listing 4.1. Like with classic LHP, in OC scenarios it is possible that a vCPU
holding such a custom synchronization primitive is preempted by the VMM,
forcing all vCPUs waiting for it to spend exorbitant amounts of time spinning.
As shown in figure 4.11, this may lead to catastrophic virtualization overhead.
Even more problematic is that PLE can not intervene here, as it relies on the
PAUSE instruction to work. Programmer-defined synchronization primitives
rarely compile down to this instruction. Moreover, PLE only works in kernel
mode [42]. As such, user-level spinning is an as of yet unaddressed issue which
has to the best knowledge of the author received no attention from scientific
literature nor industry.

80 VIRTUALIZATION OVERHEAD FOR MULTITHREADED APPLICATIONS

LOCK(Global—>CountLock) ;
Global—>Counter ——;

UNLOCK(Global—CountLock) ;
while (Global—>Counter);

Listing 4.1: User level spin-based barrier in Volrend.

Interestingly, while overall performance is clearly degraded in the OC scenario
for Streamcluster and Volrend due to user-level spinning, figure 4.12 shows a
decrease in kernel-level spinning (native_queued_spin_lock_slowpath) and
blocking synchronization (pthread_mutex_trylock) for Streamcluster due to
reduced lock contention in the OC scenario, as fewer effective resources are
available to each instance of the benchmark. This illustrates the complexity
of quantifying virtualization overhead and categorizing the benchmarks, as a
system setting may impact varying overhead constituents in varying or even
opposite ways.

It is obvious that application design plays a major role in virtualization overhead
due to user level spinning. Notwithstanding, the following system settings may
greatly influence the severity of user-level spinning:

o Increasing thread- and vCPU counts leads to more intensive spinning
synchronization, as indicated by figure 4.11. This problem will thus gain
importance towards the future, as CPU counts tend to grow [150];

e More frequent task switches increase the chance that a thread holding a
lock gets preempted, increasing the severity of user-level spinning. Figures
4.3 and 4.4 prove this, as Volrend shows high overhead for the OC data
set, but negative overhead for the OCsy data set. Firstly this indicates that
user-level spinning is also an issue in a bare metal context. Secondly, the
OC virtualized execution is faster than its native counterpart because in
each VM only one instance of the benchmark executes, while natively two
instances are run within the same OS for the OCy data set. As time slices
are allocated to vCPUs at a much coarser granularity than to threads, it
is much less likely that a lock-holding thread is preempted in a VM, thus
reducing user-level spinning.

Previous research has shown that many applications make use of custom user-
level spinning synchronization primitives [157]. Given the potential severity of
user-level spinning in a virtualized setting and the tendency for vCPU counts
to increase towards the future, addressing this issue is paramount. Since user-
level spinning originates from the application, it is a conceptual rather than
an implementation-related issue from the VMM’s perspective. Therefore, all
VMMs and hardware are equally prone to this problem.

LONGEVITY OF RESULTS 81

4.3 Longevity of Results

Like all of the chapters in this dissertation employing empirical methods, the
results presented in this chapter are susceptible to the threats to validity listed
in §3.3.4. Because the work presented in this chapter was conducted in the
earlier stages of the Ph. D. project this dissertation documents, it is prudent
to particularly ensure the findings discussed here are still valid. In particular,
Ubuntu 18.04.1 was used as both the host and the guest OS, which is based on
Linux 4.15, dating back to January 2018. Therefore, a sample of the evaluated
benchmarks was re-evaluated using the latest stable Linux release at the time
of finalizing the publication upon which this chapter is based (December 2019),
namely 4.19.88. The chosen experiment sample consists of one benchmark from
each category defined in §4.2, executed with 64 threads/CPUs spread over four
NUMA nodes: Bodytrack (high host overhead), Ferret (negligible overhead),
Ocean CP (high guest overhead) and X26/ (high overcommitted overhead). All
of these yield similar results for the newer kernel, with the exception of X264
in the OC scenario. In particular, the overhead induced by TLB shootdown
preemption has disappeared. After analyzing the Linux kernel patch logs, we
found that in kernel 4.16 a patch was implemented that mitigates this problem
entirely by paravirtualizing TLB shootdowns in Linux/KVM [158]. Since this
patch, the guest only sends TLB shootdown IPIs to vCPUs that are running,
while all other vCPUs are flagged to flush their TLB on rescheduling. A similar
solution has been implemented more recently for Xen [159].

4.4 Related Work

Studies quantifying virtualization overhead are plentiful. However, most fail to
provide deep insight into overhead causes or their link to system and application
effects. Indeed, most related work does not even explicitly distinguish between
these two forms of overhead, as table 3.1 has made clear in the previous chapter.
More profound work on the other hand tends to have a very narrow scope,
only addressing a specific issue within the broad landscape of challenges related
to virtualization. When narrowing the scope to multithreaded applications,
qualitative related work becomes even more scarce. Table 4.1 lists all of said
qualitative existing work known to the author which addresses at least some
cause of virtualization overhead for multithreaded applications in detail, ordered
by publication year. By ’in detail’ is meant describing the causes of the overhead
in technical depth, as opposed to merely mentioning or quantifying it.

82 VIRTUALIZATION OVERHEAD FOR MULTITHREADED APPLICATIONS

Table 4.1: Related work concerning identification of virtualization overhead.

Study | Publication | Guest Host ocC
year overhead overhead | overhead

46) 2006 X

139] 2007 X

[110] 2008 X

[107] 2008 X X

[137] 2008 X

[133] 2010 X

[142] 2010 X X X

[116] | 2011 X

[136] 2011 X X

[53] 2011 X X

[160] 2011 X X

[144] | 2011 X

[16] 2012 X

[22] 2012 X X

[114] 2013 X

50] 2013 X X

108] 2013 X

113 2013 X

161 2013 X

14] 2014 X

118] 2014 X

[162] 2014 X X

[10] 2015 X X X

[163] 2015 X

[13] 2016 X

[55] 2016 X X

[7] 2016 X

[117] 2016 X

[164] | 2016 X

[165] 2016 X

[138] 2016 X

[109] 2017 X

153] 2017 X

9] 2018 X

166 2018 X

103 2019 X

154 2019 X

167 2020 X X

168] 2020 X

56] 2021 X X

CONCLUSION 83

Table 4.1 indicates that indeed many existing studies address at least one of
the categories of virtualization overhead described in this chapter. Some of
them even do so in great detail. However, it is also clear that this detail only
extends to a specific aspect of the overhead. Table 4.1 lists only two studies
([142] and [10]) that address at least some aspect of all three categories. Of
these two, only [10] does so in a systematic manner comparable to this chapter.
Since this study was published in 2015 however, it can no longer be considered
representative for modern virtualized systems since virtualization technology
has evolved so profoundly in the past decade. Therefore, table 4.1 makes clear
that this work is the only effort to provide a clear and all-encompassing picture
of virtualization overhead suffered by multithreaded applications on modern
systems.

4.5 Conclusion

Thanks to persistent efforts from academia and industry, contemporary
hardware-assisted x86 virtualization techniques induce minimal overhead for se-
quential computation-intensive workloads on modern platforms. Unfortunately,
this is not yet the case for their multithreaded counterparts. Overhead may have
many different causes which each manifest themselves in a unique way depending
on the workload and system configuration. The perceived application effects
may differ greatly from the underlying impact on the system. The relationship
between these system and application effects is primarily determined by the
critical path of the workload. The principal remaining causes of virtualization
overhead for multithreaded applications are thread-coordination and NUMA
management.

While this chapter has touched on many known issues, the enormous advances
in virtualization technology in the last decade have rendered almost all existing
work regarding this topic outdated. Especially considering that this chapter
uncovered several as of yet unknown causes of virtualization overhead for the
target workloads of this dissertation, it is in the estimation of the author a
valuable contribution to the field as well as an adequate answer to the first pair
of secondary research questions established in §1.3.

84 VIRTUALIZATION OVERHEAD FOR MULTITHREADED APPLICATIONS

4.5.1 Personal Contribution

In addition to the main author of this dissertation, several parties were involved
with the work presented in this chapter through providing the test platform used,
performing several of the required experiments and collaborating on interpreting
findings. While it is thus unfair to state that any part of this chapter is the
exclusive contribution of this dissertation’s author, he did have a principal role
throughout and was in the end responsible for concatenating individual data
points to a cohesive narrative.

Chapter 5

Reducing Virtualization
Overhead for Multithreaded
Applications

This chapter was previously published as part of:
S. Schildermans et al. “Virtualization Overhead of Multithreading in X86 State-
of-the-Art & Remaining Challenges”. In: IEEE Transactions on Parallel and
Distributed Systems 32.10 (2021), pp. 25572570

The previous chapter has made clear that multithreading still induces substantial
virtualization overhead. While this overhead stems from a multitude of sources,
it can be conceptually grouped in the following categories:

o Blocking synchronization: Blocking-based primitives designed to
coordinate the execution flow of a multithreaded application;

e Spinning synchronization: Spinning-based primitives designed to
coordinate the execution flow of a multithreaded application;

e Data sharing: Operations induced by threads modifying shared data;

« NUMA opacity: Issues induced by abstraction of the host NUMA
architecture.

85

86 REDUCING VIRTUALIZATION OVERHEAD FOR MULTITHREADED APPLICATIONS

For each of the above categories, this chapter discusses the most common
techniques employed today to overcome their inherent virtualization overhead.
While these techniques have already briefly been mentioned in previous chapters
to facilitate interpretation of the results presented there, this chapter provides
a much more detailed analysis thereof in order to understand their impact on
virtualized workloads in greater depth. Moreover, this chapter presents and
discusses a range of novel approaches to further reduce virtualization overhead
for multithreaded applications. Some of these have already been proposed in
literature, while others are original ideas.

Main Findings & Contributions

e While halt polling improves én; for blocking synchronization, it greatly
increases 1;;

o Alternative techniques to reduce the cost of vCPU scheduling are under
development, but not yet mature;

e While hardware assistance has greatly optimized virtualizing IPIs, strict
co-scheduling is the only known method to further improve this mechanism.
However, this technique has known resource fragmentation issues;

o Tweaking the scheduler tick behavior may reduce virtualization overhead
related to blocking synchronization for specific workloads;

o Paravirtualizing the scheduler tick has the potential to significantly reduce
virtualization overhead for blocking synchronization;

o Exploiting symmetric multithreading (SMT) may drastically reduce
virtualization overhead related to scheduling and NUMA opacity;

e Wihile PLE is highly effective at mitigating spinning synchronization
overhead at kernel level, it currently does not address user-level spinning;

e Spin-then-block primitives offer a good alternative to traditional spin
locks to minimize spinning at both user and kernel level,;

e Compilers can be enhanced to detect user-level spinning constructs and
replace them by virtualization-friendly alternatives;

e Pause exiting may provide a fundamental solution to the issue of
excessive spinning in virtualized systems, albeit while degrading spin
lock performance in some cases;

e System calls implementing spinning synchronization would allow applica-
tions to utilize PLE at a limited cost in spin lock performance;

BLOCKING SYNCHRONIZATION 87

e Alternative TLB designs may eliminate the need for TLB shootdowns and
their associated virtualization overhead;

« While application source code alteration may be effective at reducing
TLB shootdowns, altering memory allocator behavior is a much more
programmer-friendly approach;

o Extended paravirtualization may eliminate the NUMA opacity problem
without constraining the potential for resource consolidation;

e Modern techniques to optimize vCPU placement are still lacking;

e In general, application-level solutions to reduce virtualization overhead
are highly promising but understudied as of now.

5.1 Blocking Synchronization

§4.2.3 has demonstrated that blocking synchronization is a complex affair in
virtualized systems, inducing up to four VM exits for every synchronization cycle
when the lock in question is heavily contended. The same section describes that
multiple distinct causes underlie these VM exits. Said causes are best treated as
independent issues with dito potential solutions. Consequently, several research
directions as well as industrial innovations benefit blocking synchronization in a
virtualized context. Below an elaboration on each of the existing innovations
known to the author, supplemented with original suggestions to further reduce
the virtualization overhead associated with this synchronization mechanism.

5.1.1 Deferred Scheduling

The most extensively studied aspect of virtualization overhead related to
blocking synchronization is reducing the cost of vCPU scheduling. The best
example of such efforts is the concept of halt polling, which has already been
adopted by some VMMs (e.g. KVM). While—as clarified in §4.2.3—this
technique may reduce dn; related to vCPU scheduling (which is often induced
by blocking synchronization), that section equally suggests that halt polling
itself may have a non-negligible negative impact on 7.

To clarify the above perception, figure 5.1 compares dn,.and dn; for the
experiments performed in §4.2.3 with halt polling respectively enabled and
disabled. Only the UC scenario is considered, since halt polling has a negligible
impact on performance in the OC scenario (as also explained in §4.2.3).

88__ REDUCING VIRTUALIZATION OVERHEAD FOR MULTITHREADED APPLICATIONS

4 8 163264 4 8 163264 4 8 163264 4 8 163264 4 8 163264
70,\‘\‘\‘\‘\\\\\\\\\\\\\\\\\‘ér]r_
605 | :Mié‘ —
S SRR
4wl R

o, [T R
0] R

>0 [T
20’6\\\\ o
105' N
o mim NN —
q0b o]

Bodytrack

Volrend

Figure 5.1: 67, and dn; caused by halt polling for the benchmarks with high
host overhead per vCPU count in the UC scenario.

Figure 5.1 confirms the conjecture that halt polling is not at all resource-efficient.
While it does reduce d7; by up to 14%, this comes at a great cost in d7,.. When
raw application performance is the only concern, this is justifiable. However,
these days this philosophy is highly debatable for various reasons, not least
the tendency of cloud providers to charge consumers at ever-finer granularities,
down to milliseconds of CPU time [83]. This means that an increase in 67, is
directly charged to the consumer, making totally disregarding é7, in favor of
07 an ever more dubious system design choice. Besides these efficiency concerns,
as already stated in §4.2.3, halt polling is hardly effective to begin with when
the system is overcommitted and/or VM vCPU counts are large, indicating
that it is not a durable solution since cloud environments tend to be heavily
consolidated and VM vCPU counts continue to increase [150].

The above issues are inherent to the polling concept. It is very hard to balance
performance and efficiency, especially on overcommitted systems where any
cycles spent on polling reduce system throughput. The reluctance of Xen
to adopt any form of halt polling underpins this. Therefore more intelligent
solutions are highly desirable. Existing research has attempted to replace
polling by computation migrated from other vCPUs, but this introduces vCPU
overloading as a side effect [14]. A recent solution, [164], can reduce such
side effects but requires substantial changes to the guest OS, which limits its
potential for rapid and widespread adoption. All of this suggests that deferred
vCPU scheduling is to be viewed as a specialist tool to tune VM performance
rather than as a silver bullet improving vCPU scheduling behavior in general
terms.

BLOCKING SYNCHRONIZATION 89

5.1.2 Interrupt Controller Virtualization

Handling IPIs—and interrupts in general—efficiently in a virtualized envi-
ronment has received much attention from hardware manufacturers. Intel’s
APICv and AMD’s AVIC reduce IPI-induced virtualization overhead by
approximately 60% by managing interrupt delivery and acknowledgement in
hardware [16]. Nevertheless, the results presented in §4.2.3 indicate that this
issue is still significant. Specifically the RESCHEDULE IPIs associated with
blocking synchronization are of critical importance to application performance,
since the thread being awoken may only resume execution upon receipt of the
IPI. Given that blocking synchronization is by definition a serializing construct,
it is likely that many of these RESCHEDULE IPIs are part of the application’s
critical path. As such, w is high for this particular form of virtualization
overhead, meaning that reducing it is likely to have a significant positive effect
on &1, even if 07, is only modestly ameliorated. Further improvements in this
regard are therefore highly desirable.

5.1.3 Co-Scheduling

Beyond the already adopted hardware improvements mentioned above, strict
co-scheduling has been proposed to eliminate the need for intercepting IPIs in
a virtualized environment because whenever a guest CPU sends an IPI, the
receiving vCPU would be guaranteed to be active. Existing hardware assistance
for interrupt rerouting (see §2.2.4) may be employed to map vCPU identifiers
(IDs) to corresponding pCPU IDs. However, the major drawback of strict
co-scheduling is CPU fragmentation [50]. Namely, co-scheduling demands that
all of a guest’s vCPUs are scheduled and descheduled simultaneously, which
means that a VM with eight vCPUs performing a sequential workload occupies
eight pCPUs at all times, even when it is sharing the system resources with
other VMs which would be able to utilize the occupied resources much more
efficiently. Moreover, if no combination of VMs can be found so that the sum
of the vCPUs used by those VMs equals the number of available pCPUs, some
system resources will inevitably be continuously idle. It is therefore clear that
alternative solutions are direly needed. To the best knowledge of the author,
this remains an open question to date.

90 __ REDUCING VIRTUALIZATION OVERHEAD FOR MULTITHREADED APPLICATIONS

5.1.4 Scheduler Tick Management

One of the most interesting findings in §4.2.3 is the fact that the VM exits
induced by guest scheduler tick management account for a d7, of up to 10% for
applications relying heavily on blocking synchronization. The most surprising
aspect of this issue is that it is a direct consequence of tickless kernel operation
(see §4.2.3), which has been described in literature as having an exclusively
positive effect on virtualization compared to traditional periodic ticks [156].
Since this issue has not even been acknowledged in existing literature, it is
self-evident that no explicit mitigation techniques exist.

Despite lacking explicit mitigation techniques, intelligent system configuration
may work around the problem described above. Specifically, the Linux kernel
allows for tweaking the behavior of the scheduler tick through the boot parameter
CONFIG_NO_HZ [155]. One may choose to never disable the scheduler tick
(referred to as classic periodic ticks), only disable it on idling CPUs (tickless
kernel mode, a.k.a. dynticks idle mode), or disabling it on CPUs that have
at most one runnable task available (full dynticks mode). However, while
reverting to classic periodic ticks may eliminate excessive virtualization overhead
for applications relying heavily on blocking synchronization, it obviously
reintroduces the virtualization issues with classic periodic ticks described
in literature. Namely, the VMM must handle each vCPU’s tick interrupts
individually. A heavily overcommitted host may therefore spend a significant
amount of its resources on handling tick interrupts for idle vCPUs, which leads
to massive virtualization overhead [156]. Knowing this, full dynticks mode at
first glance seems to be an ideal solution, since it eliminates the need to disable
the tick upon every transition between idle and active vCPU states while at the
same time not requiring tick interrupts for idle vCPUs. However, this only holds
true for specific workloads. Namely, this approach simply shifts the threshold
for disabling the scheduler tick on a particular vCPU from having no runnable
tasks to having one runnable task. As such, multithreaded workloads that are
not specifically tuned to employ exactly one worker thread for each available
vCPU may experience just as much or even more virtualization overhead related
to scheduler tick management using full dynticks mode as they would using
dynticks idle mode. Therefore, tuning the scheduler tick is a specialist tool
rather than an all-round solution to the problem of virtualization overhead
induced by scheduler tick management.

Because this work is to the knowledge of the author the first to expose the issues
associated with tickless kernel operation in virtualized systems, it is a natural
reflex to also be the first to provide a solution to said issues. In light of this, this
dissertation presents the concept of virtual scheduler ticks. This idea completely
reconsiders how scheduler ticks are managed in a virtualized environment. After

BLOCKING SYNCHRONIZATION 91

all, the scheduler tick is in essence a mechanism to tie the system’s notion of
the passing of time to physical time through interaction with hardware devices.
In a bare metal context, this is unquestionably a responsibility of the OS. In
a virtualized environment on the other hand, the VMM acts as the OS with
regard to hardware management, essentially taking over this duty from the
guest kernels. Because guest kernels are normally not aware of the fact that they
are being virtualized and thus do not voluntarily yield this responsibility to the
VMM, the latter must forcefully intercept any guest attempt to alter the timer
hardware, which introduces the tick-related virtualization overhead described in
§4.2.3. From a conceptual standpoint, it would be far more prudent if the VM
would proactively delegate management of the scheduler tick to the VMM. In
essence, a guest should be able to request scheduler ticks from the hypervisor
much like applications may request system services from the OS. The VMM
would then be responsible for performing the necessary hardware interactions
to provide this service. This is the basic idea behind virtual scheduler ticks.
Chapter 6 is dedicated to the refinement, implementation and evaluation of this
concept.

5.1.5 Symmetric Multithreading

One may argue that in essence, all of the issues with blocking synchronization
in a virtualized setting are caused by discontinuous CPU availability to (idle)
vCPUs. Following this logic, virtualization overhead related to scheduling—and
thus blocking synchronization—may be drastically reduced by ensuring a vCPU
is never fully descheduled. Obviously, this stands in direct contrast to one of the
principal goals of virtualization, being hardware consolidation. However, these
conflicting goals may be reconciled by exploiting the SMT capability of many
modern CPUs. Recent work applies this idea through statically assigning a
dedicated SMT context to each vCPU, spreading all vCPUs of a particular VM
over distinct pCPUs, but allowing vCPUs from distinct VMs to occupy distinct
SMT contexts within a particular pCPU [169]. In this way, there is no need to
deschedule vCPUs at all while in most cases not significantly reducing system
throughput, thus greatly reducing scheduling-related virtualization overhead
without considerable side effects. The main drawback of this technique however
is that it requires highly capable hardware. Concretely, the host must sport at
least as many pCPUs as the number of vCPUs of the largest VM to be hosted
and at least as many SMT contexts per pCPU as the number of VMs to be
hosted simultaneously. While at the moment these constraints can be considered
too stringent from a pragmatic perspective, it is reasonable to assume that
this approach will be viable in the foreseeable future, since many-core CPUs
containing eight SMT contexts per core already exist [170].

92___ REDUCING VIRTUALIZATION OVERHEAD FOR MULTITHREADED APPLICATIONS

5.1.6 Synchronization-Aware Application Design

While the above has made clear that further refinements to the virtualization
process still have plenty of potential to reduce virtualization overhead related
to blocking synchronization, system-level solutions will always have to consider
certain design trade-offs to ensure correctness and efficient execution of all
workloads they may encounter, which tends to impose restrictions on the
performance gain that may be achieved. Moreover, widespread adoption of
novel mitigation techniques at system level is more often than not a slow process
which may easily take years to make a considerable impact in the real world. For
these reasons, conscientious application developers may instead consider tackling
virtualization overhead in a direct manner, namely through purposely designing
their applications in such a way that they make minimal use of operations which
may induce excessive virtualization overhead. To the surprise of the author,
this approach has received little to no attention in literature. As such, this
section aims to provide an indication of the potential of this concept.

Intuitively, an effective way to reduce thread-interdependencies and thus the
need for (blocking) synchronization is focusing on data parallelism during the
application design process. Therefore, this principle is an ideal candidate to
assess the effectiveness of intelligent application design as a means to mitigate
virtualization overhead. KEqually intuitively however, adopting any such a
fundamental design principle may be far from trivial in some cases. Besides
imposing restrictions on the application architect’s freedom, such an endeavor
may in the case of existing applications require rewriting large amounts of
source code. These days however, solutions aiding in this process exist. For
example, nowadays many programming languages provide libraries allowing
developers to implement common parallel design patterns with minimal effort by
abstracting implementation details such as thread creation and synchronization
from developers. Danelutto et. al. have employed one such library to implement
the PARSEC benchmark suite in a data-parallel manner [171]. We profiled their
implementation to asses its effectiveness in reducing virtualization-sensitive
synchronization operations. Figure 5.2 shows the results for all the PARSEC
benchmarks identified in §4.2.3 as exhibiting high blocking synchronization-
related virtualization overhead, broken down per vCPU count in the UC scenario.

Figure 5.2 shows promising results. All synchronization operations have been
reduced by up to 70%. This improvement tends to increase with vCPU
count. One exception seems to be the HLT operations induced by the Dedup
benchmark. However, profiling Dedup in detail reveals that these operations
are induced by I/O rather than synchronization. Figure 5.2 also suggests this,
as the RESCHEDULE IPIs are drastically reduced. Thus, it is safe to conclude
that intelligent application design may indeed help considerably in reducing

SPINNING SYNCHRONIZATION 93

4 8 16 32 64 4 8 16 32 64 4 8 16 32 64

o[MSR 6EO write s vCPUs ' | o
SCHED IP| s | | ‘ | | |
HLT o
08r | | | ‘ | | |
0.6F G
0.4 R
0.2
0 .
Bodytrack Dedup Facesim

Figure 5.2: Number of virtualization-sensitive synchronization operations for
the P3ARSEC workloads relative to their original equivalents that show many
such operations per vCPU count in the UC scenario.

virtualization overhead related to blocking synchronization. Because of these
promising results, it would be negligent not to explore this trajectory further in
this dissertation. As such, chapter 8 explores mitigating virtualization overhead
at application level in much greater depth.

5.2 Spinning Synchronization

As stated in §3.2.5, spinning synchronization may induce exorbitant amounts of
virtualization overhead when the host is overcommitted. Chapter 4 identified
two forms of spinning synchronization: spinning at kernel level on the one
hand and user-level spinning on the other. While §4.2.3 indicates that
virtualization overhead induced by the former has been mostly mitigated
through recent enhancements to the virtualization process, the latter remains a
severe issue. Therefore, novel approaches to deal with (user-level) spinning in
virtualized settings are direly needed. This section proposes several such novel
approaches and elaborates on the existing techniques that have proven effective
at mitigating kernel-level spinning, exposing their limitations and suggesting
further refinements.

94 REDUCING VIRTUALIZATION OVERHEAD FOR MULTITHREADED APPLICATIONS

5.2.1 Pause Loop Exiting

The findings discussed in §4.2.3 show that considerable progress has been made
in dealing with LHP and related issues in recent years. For example, only half
a decade ago, én, was over 500% for the Dedup benchmark in OC settings [10].
Figure 4.4 shows that thanks to modern system enhancements, dn; ~ 20% (OC)
or on, =~ 50% (OCy) for the same workload nowadays.

While PLE has proven effective at dealing with excessive spinning at kernel
level, one of its main limitations is that it only functions when the CPU is
operating in kernel mode. This means that it cannot be used to address user-
level spinning in its current form. It is unclear to the author why PLE was
designed this way. Extensive literature review has not revealed any reasoning
for this design decision. The most likely explanation for this observation is
that hardware manufacturers do not wish to interfere with the behavior of
(often carefully implemented) application synchronization protocols. While to
expert application developers this is certainly an advantage, to all others this
decision may lead to unintended grave performance degradation. Therefore,
the author argues that PLE should be available at application level. Concerns
about interfering with application behavior may be addressed by exposing a
PLE configuration MSR to user space, allowing expert users to disable this
function if they so desire.

Despite the reassuring results presented in §4.2.3, even with the enhancements
suggested above PLE is not a fundamental solution to the problem of excessive
spinning in overcommitted virtualized systems because it may still allow for
a significant amount of spinning to take place before intervening, as noted in
§4.2.4. As such, mitigating LHP is still to be considered an ongoing issue, with
PLE representing a significant step in the right direction.

5.2.2 Paravirtualized Ticket Spin Locks

As mentioned in §3.2.5, another existing technique to address both LHP and
LWP is the adoption of paravirtualized ticket spin locks. While such locks have
certainly proven effective at reducing spinning-related virtualization overhead
[114], much like PLE, they rely on spinning detection at runtime and can
therefore eliminate all futile spinning induced by LHP and LWP. Moreover,
their reliance on paravirtualization hinders their widespread adoption. Currently,
these locks are—to the best knowledge of the author—only available to Linux
guests running on Xen or KVM hosts [113]. Thus, like PLE, paravirtualized
ticket spin locks are best viewed as a pragmatic intermediary solution pending
an effective, more fundamental alternative.

SPINNING SYNCHRONIZATION 95

5.2.3 Pause Exiting

A simple method to avoid the inefficiency related to ad-hoc detection of spinning
as it is already occurring upon which both existing methods to mitigate
virtualization overhead related to spinning synchronization mentioned above
rely is to employ ’pause exiting’ rather than pause-loop exiting. This is a
capability already present in modern x86 CPUs, which—if enabled—generates
a VM exit on each PAUSE instruction [42]. On such an exit, the VMM may
schedule a different vCPU if the system is heavily overcommitted or reschedule
the vCPU that generated the VM exit immediately if not, until a threshold is
reached. If the vCPU keeps exiting, LHP is likely and the exiting vCPU can
be descheduled for a longer time. Intelligent algorithms may be developed to
determine the amount of time between attempts at rescheduling the exiting
vCPU in function of the amount of contention. This principle is in fact similar
to halt polling. Note that this technique may easily address both spinning at
kernel and user level, since—as opposed to PLE—hardware support for pause
exiting is already available in both user and kernel space.

While pause exiting may improve performance by minimizing spinning in the
event of LHP or LWP, the cost of repeated VM exits may largely mitigate
potential performance gains, in particular for highly contended locks protecting
short critical sections. On the other hand, this is a fundamental solution to
LHP/LWP which does not burden application developers and does not require
novel hardware extensions. Therefore, in the opinion of the author this idea
warrants further investigation.

5.2.4 Blocking Synchronization

Even though §5.1 highlighted plenty of issues concerning blocking synchroniza-
tion in a virtualized context, §4.2.4 has shown that these issues are limited
compared to the potential performance impact of user-level spinning. Therefore,
replacing any user-level spinning synchronization primitives by blocking-based
ones in application source code may be a sensible approach to drastically
reduce overall virtualization overhead. We explored this idea for the Volrend
benchmark, which was identified in §4.2.4 as suffering most from user-level
spinning and found that dn, and dn; were reduced by resp. 60% and 25% in the
OC scenario with 64 vCPUs. Given the magnitude of this improvement, it is
reasonable to conclude that this approach is indeed a viable method to reduce
virtualization overhead induced by user-level spinning in the general sense.

96 ___ REDUCING VIRTUALIZATION OVERHEAD FOR MULTITHREADED APPLICATIONS

Plainly replacing spinning by blocking synchronization may not fit the needs
of all applications because of the naturally lower performance of blocking
synchronization (irrespective of the effects of virtualization). Combined with
the issues blocking synchronization itself induces in a virtualized context, many
applications are likely better served by a hybrid spin-then-block synchronization
mechanism. Many programming languages provide ready-to-use implementa-
tions of such primitives (e.g. InitializeCriticalSectionAndSpinCount in
C++ [172]) or even implement the spin-then-block mechanism directly in the
language runtime environment, completely abstracting its implementation from
application developers (e.g. Oracle’s JRockit JVM [173]). For languages lacking
such a feature, programmers may design custom primitives implementing this
principle. Such primitives are likely to constitute an ideal balance between
the risks of user-level spinning and the performance penalty of blocking
synchronization for many applications.

5.2.5 Compiler Enhancements

Naive user-level spin lock implementations tend to exhibit a similar, simple
structure akin to the pseudocode shown in listing 5.1. It is feasible for compilers
to identify such structures and replace them with more virtualization-friendly
alternatives. This could either involve replacing these constructs by spin-then-
block primitives or injecting PAUSE instructions within the loop. Note that
the latter would require PLE to be supported at user-level as well in order
to significantly reduce excessive spinning. Notwithstanding, injecting PAUSE
instructions in any spinning-based synchronization primitive is highly desirable,
even in native scenarios. Namely, this instruction was specifically designed to
notify the CPU that the application is waiting for a spin lock in order to avoid
memory order violations, which drastically improves spin lock performance on
modern CPUs with advanced branch prediction [174].

global int lock;
while (!atomic_compare_and_swap(&lock ,0,1));
lock = 0;

Listing 5.1: Strucure of a generic user-level spin lock.

SPINNING SYNCHRONIZATION 97

5.2.6 Spin Lock System Calls

At the heart of the user-level spinning issue lies the fact that currently, OSs do
not expose their internal spinning synchronization primitives to applications
[115]. This obligates application (runtime) developers wishing to implement
spinning synchronization to come up with their own interpretation of the
concept. Even without considering virtualization, it is evident that many of
these ad-hoc user-level spin locks are not implemented in an optimal way (e.g.
not employing the PAUSE instruction). By simply exposing the well-defined
spinning primitives employed by the OS to applications through the system
call interface, application developers would no longer need to implement their
own—Iikely sub-optimal—versions of this mechanism. Moreover, this approach
would greatly reduce virtualization overhead related to user-level spinning,
because the actual spinning would take place at kernel level, allowing PLE to
intervene when LHP or LWP occur.

The obvious drawback of offering spinning synchronization as an OS service
through the system call interface is that it requires source code alterations
to make it available to existing applications. More worryingly however, the
overhead involved in invoking a system call and switching to kernel space
may defeat the main purpose of spinning synchronization—avoiding the context
switch overhead related to blocking synchronization—in the first place. However,
system calls are still much less costly than full context switches. Additionally,
spin lock system calls may be implemented in a hybrid manner, where much of
their code is executed in user space and the switch to kernel space is only made
when absolutely necessary (i.e. when the lock is contended). The main system
call upon which blocking synchronization is based in Linux—futex—employs
exactly this strategy as well [175].

5.2.7 Co-Scheduling

Much like with blocking synchronization, co-scheduling may entirely eliminate
the issues associated with spinning synchronization in a virtualized context,
since it forbids vCPUs holding or waiting for a spin lock to be descheduled while
other vCPUs from the same VM may be attempting to acquire it. However,
this technique comes with its own limitations, as outlined in §5.1.3.

98___ REDUCING VIRTUALIZATION OVERHEAD FOR MULTITHREADED APPLICATIONS

5.3 Data Sharing

Sharing data between threads running concurrently on distinct vCPUs may
induce significant virtualization overhead through TLB consistency management,
as §3.2.7 describes. While §4.2 has indicated that addressing this issue is pressing,
it has received much less attention from literature than the issues previously
discussed in this chapter. Therefore, this section proposes several potential
techniques

Below several improvements to TLB design and the TLB shootdown process
which have the potential to drastically reduce virtualization overhead related to
inter-thread data sharing are proposed.

5.3.1 Interrupt Controller Virtualization

Since TLB shootdowns are implemented using IPIs, both APICv and AVIC
benefit them as much as they benefit RESCHEDULE IPIs in the context of blocking
synchronization, as discussed in §5.1.2. However, as previously discussed this
mitigation technique does not eliminate all VM exits related to sending IPIs.
Moreover, it does not address TLB shootdown preemption. As such, this
hardware-level enhancement must be supplemented by other techniques in order
to sufficiently address virtualization overhead induced by TLB shootdowns.

5.3.2 Alternative Translation Lookaside Buffer Design

Beyond reducing virtualization overhead associated with TLB shootdowns, one
may attempt to eliminate the need for them in the first place. To that end,
many alternative TLB designs have been proposed [176]:

e Shared TLB: Some work proposes to implement the TLB as a shared
cache. While this approach obviously eliminates the need for TLB
consistency enforcement, the main challenge with this approach is
performance. Namely, modern x86 CPUs employ a virtually indexed,
physically tagged (VIPT) cache structure, meaning that cache lookup
may only complete once the TLB returns a result [42];

o« Hardware-Managed TLB consistency: Various methods have been
proposed to implement TLB consistency in hardware. In fact, it is not
entirely clear why this is not yet the default approach in x86. Cited
reasons for this include reliability and performance, but strangely the
main driver seems to be tradition [177].

DATA SHARING 99

Several prototypes exist of the proposed alternative TLB architectures described
above. These architectures can be easily extended to work for virtualized systems
since most contemporary TLBs already contain a VM ID tag for each TLB entry,
eliminating the need for TLBs to be flushed upon VM exits/entries and thus
allowing the TLB to operate identically in respectively a native or virtualized
environment [42]. As of now, there are however no plans known to the author
to adopt said alternative TLB designs on a large scale. It will therefore take at
least several more years for any of these designs to have a meaningful impact
on virtualization overhead, since hardware improvements only slowly trickle
down to industry due to the investments involved.

5.3.3 Co-Scheduling

Analogously to blocking and spinning synchronization (see §5.1.3 and §5.2.7,
respectively), strict co-scheduling may eliminate the need for the VMM to handle
TLB shootdown IPIs as well as TLB shootdown preemption through enforcing
all vCPUs associated with a particular VM to be scheduled simultaneously.
Refer to §5.1.3 for a detailed description of this technique and its drawbacks.

5.3.4 Source Code Alteration

In §4.2.3 the high-level cause of most TLB shootdowns for multithreaded
applications has been identified as heap resizing. Since this heap resizing is
a direct consequence of the application allocating or releasing memory, it is
evident that the amount of TLB shootdowns induced by the application may be
drastically reduced by changing its memory allocation behavior at source code
level. Like co-scheduling, source code alteration has been proposed in the context
of blocking synchronization (§5.1.6) and spinning synchronization (§5.2.4) as
well. However, regarding minimizing heap resizing this approach is particularly
challenging since modern memory allocators are very complex. Identification
and amelioration of problematic code without greatly compromising memory
efficiency requires a deep understanding of the particular memory allocator
used and is therefore highly challenging. Nonetheless, chapter 8 provides several
guidelines that aid application developers in precisely this effort.

100 REDUCING VIRTUALIZATION OVERHEAD FOR MULTITHREADED APPLICATIONS

5.3.5 Alternative Memory Allocator Design

Rather than requiring application developers to alter their source code as
suggested above, the number of TLB shootdowns applications induce may
also be drastically reduced by altering the memory allocators used by these
applications so that they call system routines performing said TLB shootdowns
as little as possible. This will however come at the inevitable expense of some
memory efficiency, since balancing application memory efficiency and costly
interaction with the system in order to allocate or release memory is intuitively a
fundamental trade-off in memory allocator design. However, relevant literature
does not ever seem to consider this trade-off explicitly. Rather, the main trade-off
under consideration is relieving thread contention (favored by high-performance
allocators such as tcmalloc [178]) versus maximizing memory efficiency (favored
by high-efficiency allocators such as ptmalloc2 [179]). Any allocators exhibiting
low TLB shootdown overhead therefore achieve this as a side effect of other
design decisions rather than as an explicit design goal.

In spite—or perhaps because—of the lack of attention TLB shootdowns have
received from memory allocator developers, §4.2.3 indicates that it is high time
to start considering the role TLB shootdowns play in application performance
from a memory allocator design perspective. This issue will likely become
even more pressing towards the future, given the ever-increasing emphasis on
virtualization on the one hand and parallelism on the other in industry [2,
150]. This dissertation provides a first step in the right direction regarding this
challenge by developing a novel memory allocator design concept named ’global
hysteresis’. This concept balances memory efficiency and TLB shootdowns
better than any existing memory allocator design paradigm known to the
author. Chapter 7 elaborates on global hysteresis and describes a prototype
implementation thereof based on ptmalloc2.

5.4 Non-Uniform Memory Access Locality

The final high-level cause of virtualization overhead for multithreaded
applications identified in chapter 4 is the opacity of the physical system’s
memory layout to the VM. This issue may drastically increase memory latency
as a consequence of improper scheduling decisions on the guest’s part if the
host system sports a NUMA architecture. Several approaches already exist to
deal with this issue. Two methods are common, as alluded to in §3.2.8: NUMA
passthrough and dedicated NUMA locality managers. This section discusses
both of these approaches in detail, in addition to some less orthodox novel
techniques.

NON-UNIFORM MEMORY ACCESS LOCALITY 101

T
150 1
100 =t % % 5%
(2055 bod o X
BESE S 305 555
2 R KX 34 30
K o S5 X%
E k- oo 0098 Lot
5/ 3 3
: % XX
50 Qg K st
Jasaece % bo%s
2 S

0
Blackscholes Canneal Fluidanimate Ocean CP Ocean NCP Radix

Local|Remote Local|Remote Local|Remote
Native mE=3 VM Eme=s VM passthrough =1

Figure 5.3: Memory locality of NUMA passthrough for the benchmarks studied
in §4.2.2 in the UC, 64 vCPU scenario, normalized to native.

5.4.1 Non-Uniform Memory Access Passthrough

The most straightforward method to address the NUMA opacity issue is to pass
through the NUMA architecture of the host system to the VM. This involves
pinning each vCPU to a set of pCPUs belonging to a singular host NUMA
node and presenting the guest with a virtual NUMA architecture constructed
so that all vCPUs pinned to a particular host NUMA node belong to the same
virtual NUMA node. This allows the guest scheduler to optimize scheduling
decisions with regard to the virtual NUMA architecture of the VM, which by
proxy is the physical NUMA architecture of the host. Every major VMM offers
this ability [154], which in principle yields VM memory latency identical to
that of the physical system represented by that VM. Figure 5.3 assesses this for
the benchmarks identified in §4.2.2 as suffering from the NUMA opacity issue
by comparing the number of local and remote memory accesses performed by
these benchmarks in a native setting, a VM without optimizations and a VM

employing NUMA passthrough. These results were collected using pcm-numa’.

The results presented in figure 5.3 are in line with expectations. Firstly, memory
locality is greatly reduced for all benchmarks when run in a VM without
optimizations. Secondly, manual NUMA exposure mitigates this issue entirely.
This technique is thus certainly a viable option to improve performance for
virtualized workloads exhibiting excessive memory latency.

Thttps://github.com/opcm/pcm

https://github.com/opcm/pcm

102____ REDUCING VIRTUALIZATION OVERHEAD FOR MULTITHREADED APPLICATIONS

While NUMA passthrough does achieve its principal goal, it comes with
several undesirable side effects. Most importantly, it reduces the potential for
resource consolidation, since vCPUs can no longer be migrated between NUMA
nodes without compromising the advantages of NUMA passthrough. Moreover,
constructing virtual NUMA layouts can be tedious, especially for large VMs.
Lastly, VMs employing this technique can no longer easily be migrated between
hosts with different NUMA configurations. Essentially, NUMA passthrough
thus achieves performance gains through sacrificing some of the flexibility the
virtualization process offers. Therefore it is not applicable in all circumstances
and its utility must be considered on a case-by-case basis.

5.4.2 Non-Uniform Memory Access Locality Managers

Another commonly used approach to combat the NUMA opacity issue is taking
the host NUMA architecture into account at VMM level, in particular when
scheduling vCPUs. This technique may be implemented directly in the VMM
scheduler or in a dedicated utility program that runs alongside the VMM,
advising it on optimal vCPU placement in real time. Many algorithms have
been developed in this regard, as refinement of this technique is to date the
subject of active research [153, 154]. Within the context of Linux/KVM, a
popular example of such an algorithm is implemented in the form of numad,
which is a dedicated NUMA locality management daemon or KVM?2. Figure 5.4
shows how this algorithm performs in experiments analogous to those presented
in figure 5.3. While other algorithms may yield varying performance, it is
reasonable to assume figure 5.4 provides some insight in their general behavior.

Surprisingly, figure 5.4 suggests that numad outperforms native execution in
terms of memory locality. On the other hand, its total performance impact on
the system seems to be unpredictable, given that for some benchmarks, the
total number of memory accesses performed by the system employing numad
far exceeds that of an equivalent system not doing so. To verify this intuition,
we analyzed how numad impacts 7, for the benchmarks shown in figure 5.4.
Figure 5.5 shows the results.

Figure 5.5 reveals that for most benchmarks results are in line with expectations.
Note that a small amount of residual d7,. is to be expected when using numad due
to the resource consumption of numad itself on the one hand and virtualization
overhead not related to the NUMA opacity issue on the other. This does however
not hold true universally, as indicated by the results for the benchmarks Canneal
and Ocean CP. Regarding the former, numad seems to outperform even native
execution. This is unlikely, but possible given that any scheduler employs a set

2https://linux.die.net/man/8/numad

https://linux.die.net/man/8/numad

103

o) T T
2
o
X E
T QO L
B R s mna o
PSSR E5555885555] =
[Qoledoleledoletodetetoletedoleted %
o
o —F
Q E
P =1
c = L
g =
% >
o
O o
c 9
S £
Q
o O
[e S
©
L S
© O
£ -2
c > L
8
02000 %000 %000 %000 %000 %000 %000 %00 %00 %0 0!
[RofeSotetoletotetotetotetotetotetotetotets =
[

NON-UNIFORM MEMORY ACCESS LOCALITY

Radix

Fluidanimate Ocean CP Ocean NCP

VM numad ===

VM

Blackscholes Canneal

[\
[0
c
TR L LRI w 2
e e
PRSREREEEIRREEEEIRRREAEKEE
[Soletoletoletoletoletotetotetoletotetels O m
()
[
<o =
o ®©
............ £ 8
¢ 3¢ i
PR R IRR R K RIRIRRKR XX
00000 %0 %0 %000 00 00 0 2 e a0 0 0 0 0t B
RN % = N
« o,

_ _ o Z _ (%) "uQ,
o o o o o o o
Y9 o T o [T
— — —

Figure 5.4: Memory locality of numad for the benchmarks studied in §4.2.2 in

the UC, 64 vCPU scenario, normalized to native.

Figure 5.5: dn, for the benchmarks studied in §4.2.2 in the UC, 64 vCPU
scenario for a system employing numad compared to a system without dedicated

NUMA management.

104 REDUCING VIRTUALIZATION OVERHEAD FOR MULTITHREADED APPLICATIONS

of heuristics to determine NUMA placement. Therefore, any NUMA placement
strategy is likely to perform excellently for some workloads and poorly for others.
Canneal appears to clearly favor the heuristics employed by numad, while for
other workloads this is not the case; or even the opposite is true. Speaking
of which, Ocean CP consumes just as many system resources when run on a
system that employs numad as it would when run on a system that does not.
This may be explained by the fact that as noted in §4.2.2, this benchmark is
bottlenecked by memory bandwidth. Therefore, improving memory locality
may in fact be counterproductive in this specific case, as this likely leads to
data being spread over fewer NUMA nodes, reducing the total available memory
bandwidth. While more research into this phenomenon is needed to assess how
memory locality managers other than numad behave in this scenario, it is clear
that employing a NUMA locality manager does not by definition translate into
improved memory performance. Analogously to NUMA passthrough, NUMA
managers are thus to be seen as a tool that may be employed by advanced users
in order to improve performance for specific workloads rather than a general
solution to the issue of NUMA opacity.

5.4.3 Symmetric Multithreading

Sections 5.4.1 and 5.4.2 have made clear that neither of the mainstream existing
approaches to combat NUMA opacity in VMs perform satisfactorily across
workloads. Therefore, it is prudent to consider alternative approaches to deal
with this issue. One such approach has already been discussed in §5.1.5 in
the context of blocking synchronization, namely pinning vCPUs to dedicated
SMT contexts in order to eliminate the need for most to all vCPU scheduling.
This technique has the potential to eliminate the NUMA opacity issue as well
because it guarantees that any particular vCPU is pinned to a specific pCPU
and therefore NUMA node. This allows for the physical NUMA architecture
to be automatically exposed to the VM. Note that this would not sacrifice the
potential for resource consolidation nearly as significantly as traditional NUMA
exposure (see §5.4.1) since a pCPU may sport many SMT contexts between
which pCPU resources may be dynamically distributed. In essence, the task of
vCPU scheduling is thus largely migrated from the VMM to the hardware itself.

RELATED WORK 105

5.4.4 Extended Paravirtualization

Another promising novel approach to the problem of NUMA opacity is the
concept of extended paravirtualization, which was recently proposed by Bui
et al. [154]. The basis of this technique is traditional NUMA passthrough.
Additionally however, a communication mechanism is implemented between
the guest and VMM so that the latter can notify the former when it migrates a
vCPU between NUMA nodes. This effectively allows for dynamic alteration of
the virtual NUMA configuration of the VM at runtime. Whenever this occurs,
it is immediately propagated to the scheduler, which may alter its scheduling
decisions accordingly. While this technique achieves near-native performance
with regard to memory locality, it is a form of paravirtualization, which by
definition requires changes to the guest kernel, which in turn constrains its
potential for rapid and widespread adoption.

5.5 Related Work

Improving the virtualization process for multithreaded applications has been
the subject of active research for many years. This effort has been far from
fruitless, since many techniques proposed in literature have gradually evolved
into mainstream components of virtualization technologies. To date, there is
no shortage of innovative ideas for further improvements which may one day
be considered essential components of virtualized systems. Since this chapter
largely consists of a reflection on these recently adopted or proposed ideas, any
existing work related to mitigating virtualization overhead for multithreaded
applications has naturally already been explicitly mentioned above. From this
perspective, much of this chapter may be viewed as an extensive reflection on
related work.

While most of this chapter is based on known techniques, it adds value by
listing them all side by side to provide readers with insight into their individual
advantages and drawbacks as well as their relationship to one another. To the
best knowledge of the author, no such exhaustive summary of existing and
promising future techniques to reduce virtualization overhead for multithreaded
applications exists in literature. Additionally, this chapter has presented several
novel ideas which are—again to the best knowledge of the author—not described
in any existing literature.

106 REDUCING VIRTUALIZATION OVERHEAD FOR MULTITHREADED APPLICATIONS

5.6 Conclusion

This chapter has discussed many techniques to reduce virtualization overhead
for multithreaded applications, specifically within the context of hardware-
assisted virtualization of the x86 architecture. Some of these techniques are
already widely adopted, but have been shown in this chapter to require further
refinement. To the best knowledge of the author, this work is the first to assess
these limitations of existing techniques in such depth.

Beyond mainstream technologies, this chapter outlined a wide variety of
mitigation techniques proposed in literature. Many of these techniques are still
under active development, which makes it safe to say that the virtualization
research field still carries plenty of momentum, making a further drastic reduction
in the virtualization overhead incurred by multithreaded applications likely in
the coming years.

Finally—and perhaps most interestingly—this chapter describes several original
ideas of the author, his colleagues and his supervisors. Three of these ideas have
been selected for further exploration in this dissertation: paravirtualization
of the scheduler tick (§5.1.4), TLB-shootdown aware memory allocator design
(§5.3.5) and the adoption of virtualization-friendly application design principles
(§5.1.6, §5.2.4 and §5.3.4). Chapters 6, 7 and 8 are respectively dedicated to
each of these techniques. These ideas have been chosen for further refinement
in this dissertation in favor of some of the other suggestions in this chapter
largely because the problem they address and/or the approach they take have
received little to no attention from existing literature. Therefore, the author
felt that elaborating on these ideas would provide a maximal contribution to
the field within the scope of a single Ph. D. project. Moreover, each of the
chosen technologies focuses on a distinct level of the system stack, yielding a
fully complementary set of improvements. This again maximizes the impact
of this dissertation on the state of the art by ensuring that none of the work
presented in the later chapters makes previous contributions obsolete.

5.6.1 Personal Contribution

The three ideas chosen for further exploration in this dissertation are original
contributions by the author. Other proposed mitigation techniques were either
derived from literature or provided by one of the author’s supervisors, who is
currently actively pursuing some of these.

CONCLUSION 107

5.6.2 Future Work

Potential for future work is largely self-evident from the contents of this
chapter. For all widely adopted techniques reducing virtualization overhead for
multithreaded applications (PLE, halt polling,...), issues warranting further
refinement have been revealed. Almost all of the other described techniques
require more work before they are ready for widespread deployment. Of
all of these techniques, perhaps those with the potential to address user-
level spinning most urgently require attention, since §4.2.4 has shown the
devastating performance impact of this problem and to date no effective
mitigation techniques are available aside from manually replacing user-level
spinning primitives with alternate synchronization mechanisms.

Chapter 6

System Amelioration:
Paratick

This chapter was previously published as:
S. Schildermans et al. “Paratick: Reducing Timer Overhead in Virtual Machines”.
In: 50th International Conference on Parallel Processing. 2021, pp. 1-10

Timekeeping is a fundamental duty of the OS. This task involves assimilating
hardware timekeeping devices and presenting a unified timer API to applications
[180]. Additionally, the OS keeps track of the passing of real time in
the background and performs general maintenance tasks such as scheduling,
accounting, etc. on a regular basis. As described in §4.2.3, contemporary general-
purpose OSs drive all of these duties by recurring physical timer interrupts,
known as scheduler ticks [181]. The same section details how traditional
implementations of this mechanism (referred to hereafter as ’classic periodic
ticks’) are often highly inefficient on current (SMP) hardware, while modern
implementations thereof (referred to hereafter as ’tickless kernels’) require
interaction with the physical timer hardware upon every transition between
active and idle CPU states, which may induce excessive overhead in virtualized
environments.

§4.2.3 has shown that multithreaded applications making heavy use of blocking
synchronization may suffer severely from the virtualization overhead induced by
scheduler tick management in tickless systems. Unfortunately, §5.1.4 has made
clear that simply reverting to classic periodic ticks in virtualized environments

109

110 SYSTEM AMELIORATION: PARATICK

is not a satisfying solution to this problem, nor is employing any other existing
tick management algorithm known to the author. Therefore, an alternative
approach to scheduler tick management is highly desirable. §5.1.4 introduced
exactly such an alternative approach based on paravirtualization, namely 'virtual
scheduler ticks’. This chapter explores this concept as well as the aforementioned
problems it aims to resolve in great depth by providing a comprehensive analysis
of the shortcomings of existing tick management techniques and detailing,
implementing and evaluating virtual scheduler ticks.

Main Findings & Contributions

o This chapter details why neither classic periodic ticks nor tickless kernels
perform satisfactorily in virtualized environments;

¢ The concept of virtual scheduler ticks introduced in §5.1.4 is fleshed out
in this chapter;

o This chapter presents and evaluates paratick; an implementation of virtual
scheduler ticks in Linux/KVM.

6.1 Background: Timer Management

Many applications (as well as the OS itself) rely heavily on accurate time
management. Because programming timer hardware is often complex and
expensive, many OSs choose to implement a high level of abstraction in their
timer APIs. Most often, application timers are managed as soft interrupts. This
means that when an application sets a timer, generally no actual timer hardware
is programmed. Instead, the application timer is added to a dedicated data
structure (e.g. the ’timer wheel’ in Linux [182]). Upon completion of any system
call or hardware interrupt, the OS checks if the current system time has surpassed
the expiration time of any soft interrupts. If so, it services these interrupts
before returning to user space [183]. Therefore, timer management equates to
managing the underlying mechanisms that invoke context switches and allow
soft interrupts to be serviced. The most important of these mechanisms is the
scheduler tick, since the tick ensures that active CPUs are interrupted by a
hardware timer (usually the LAPIC timer in x86) at least at the frequency of
the tick, which typically lies between 100 and 1000 Hz [156].

As mentioned on several occasions before, the traditional implementation of
the scheduler tick involves a timer interrupt on each CPU, recurring at a fixed
interval. The handler of this interrupt performs any needed bookkeeping work

BACKGROUND: TIMER MANAGEMENT 111

tick_interrupt

do_tick

reprogam tick
return

Figure 6.1: Schematic representation of the operation of classic periodic ticks
in Linux.

tick_interrupt

do_tick

reprogram tick return

return reprogam tick reprogam tick disable tick

return

(a) Physical tick handler (b) Idle entry (c) Idle exit

Figure 6.2: Schematic representation of standard tickless kernel operation in
Linux.

(handling soft interrupts, scheduling, updating the system time,...) before
arming a new tick interrupt and returning. Figure 6.1 displays this process
schematically.

While periodic scheduler ticks are simple and effective, they are not suitable
for most modern hardware platforms for reasons detailed in §4.2.3. Because of
this, Linux 2.6.21 introduced the concept of tickless kernels, later to be adopted
by all mainstream OSs [184]. Tickless kernels expand on the concept of classic
periodic ticks by identifying scenarios in which the tick is not useful and may
consequently be deferred or disabled entirely. Most kernels interpret these
’scenarios in which the tick is not useful’ as idle CPUs. Thus, they disable the
tick upon idle entry and enable it again upon idle exit. Figure 6.2 describes
Linux’s implementation of this algorithm. Though details may differ for other
OSs, the principle is always similar.

112 SYSTEM AMELIORATION: PARATICK

Handling tick interrupts in tickless kernel mode is largely identical to doing
so using classic periodic ticks, as shown in figure 6.2a. The only difference
between the tickless tick handler and the classic one is that the former checks
whether the tick has been deferred or disabled by the time the tick interrupt
handler was invoked. This may happen in exceptional circumstances. If so,
the reprogramming step is skipped. Figures 6.2b and 6.2c on the other hand
represent the core of tickless kernel operation. Whenever a CPU is about
to enter the idle loop, the kernel checks if any system component (RCU, irq
work,. ..) explicitly needs the tick to remain enabled or if any RCU events or
soft interrupts are due to expire within the next tick period. If so, the tick is not
disabled and the CPU immediately enters the idle loop. If not, the algorithm
finds the next scheduled RCU callback or soft interrupt. The tick timer is then
reprogrammed to expire at the expiry time of that event. If there are none, the
tick is disabled entirely. Upon exiting the idle state, the algorithm checks if the
tick has been deferred or disabled upon idle entry. If so, it is reprogrammed to
expire at the regular tick interval.

As noted in §5.1.4, Linux offers a third option for tick management, namely full
dynticks mode. As equally noted in that section however, full dynticks mode
may be viewed as a variation on regular tickless operation with the threshold
for disabling the scheduler tick on a particular CPU shifted from having no
runnable tasks to having one runnable task for that CPU. As such, the findings
for tickless kernel operation presented in this chapter are in general equally
applicable to full dynticks mode.

6.2 Virtualizing the Scheduler Tick

As alluded to multiple times before, the main issue regarding virtualizing the
scheduler tick that it inherently involves hardware interaction. Specifically,
Linux uses the TSC for this purpose when possible, since it is the most accurate
timer hardware [185]. It is armed by writing the desired expiration time to
the TSC_DEADLINE MSR, as noted in §4.2.3. When the TSC value reaches
said expiration time, the LAPIC generates a local timer interrupt. In native
environments, this process has a very low cost. In virtualized environments
however, each write to the TSC_DEADLINE MSR must be intercepted by the
VMM, as its current value may correspond to a timer set by the host or another
VM. Moreover, the interrupt generated as the timer expires generates another
VM exit, as the VMM must determine the intended recipient. Some VMMs (e.g.
KVM) optimize this process by replacing the LAPIC timer by the preemption
timer. Namely, upon each VM exit induced by a guest attempting to write to
the TSC_DEADLINE MSR, the VMM arms the preemption timer for the vCPU in

VIRTUALIZING THE SCHEDULER TICK 113

question, but leaves the TSC_DEADLINE MSR untouched. When the preemption
timer expires, a special low-cost VM exit is triggered which allows the VMM to
inject a timer interrupt [186].

From the above, it is clear that handling scheduler ticks is a costly process in
virtualized environments. The magnitude and nature of this cost may however
vary greatly depending on the workload and whether the system is employing
classic periodic ticks or a tickless kernel. The remainder of this section analyzes
virtualization overhead associated with the scheduler tick in a general sense for
both of these tick management algorithms.

6.2.1 Classic Periodic Tick

Given that classic periodic ticks have a constant frequency on each vCPU
irrespective of its workload, one may intuitively derive that a system hosting a
number of VMs ny; employing classic periodic ticks, each having a number
of vCPUs n,cpy and a tick frequency fick, will always incur the following
number of VM exits related to timer management over a time period ¢:

nvm

VMezxits =2 x t x Z (nocpPu X frick)

n=1

The above implies that the host may spend exorbitant resources on processing
ticks from guests employing classic periodic ticks when the system is heavily
overcommitted. Namely, vCPUs must be suspended whenever a tick arrives for
another vCPU, even if the latter is idle [156]. Since one of the main applications
of virtualization is consolidation, such OC scenarios where the majority of
vCPUs are idle for the majority of the time are not rare. As noted in §5.1.4,
this makes classic periodic ticks far from ideal in a virtualized environment.

6.2.2 Tickless Kernels

Tickless kernels are often depicted as almost purely beneficial compared to
classic periodic ticks [187, 156]. While in native environments this claim may
hold true, in virtualized environments their benefits are less clear. While tickless
kernels do reduce the number of timer interrupts generated by lightly utilized
VMs, they must reprogram the tick timer upon each idle entry/exit. Since this
reprogramming requires a write to the TSC_DEADLINE MSR and thus induces
a VM exit, the number of VM exits induced by tick management in a tickless
system can be described as follows:

114 SYSTEM AMELIORATION: PARATICK

. Az (1 - Ln) X NyCcPU
VMexits =2 x t x Z L., X nyopu X frick + T
1 idle

With L,, the VM load expressed as a ratio of the utilized and maximum VM CPU
throughput and T} the average idle period during the time interval ¢. Thus,
the term L, X nycpy X frick represents tick interrupts during active vCPU
operation and the term “L)w represents the number of transitions

between active and idle states durmg the time interval ¢.

From the above, it is evident that for tickless kernels to be efficient in virtualized
environments, the average idle period T;4. must be long relative to the total
CPU time spent on idling (¢t x (1 — L,,) X nycpv), which in practice equates
to minimizing the number of transitions between idle and active vCPU states
since increasing the average idle period ceteris paribus proportionally reduces
system throughput, which is obviously not desirable. However, certain types
of applications incur many such transitions by design. Examples include
multithreaded applications making heavy use of blocking synchronization
and I/O-intensive applications. §4.2.3 already discussed the former in detail.
Regarding the latter, given that I/O latencies are typically in the range of micro-
to milliseconds and most applications block on each I/O transaction [188], I/O
performance may suffer significantly in a virtualized environment if the guest
employs a tickless kernel. Since the severity of this issue is directly proportional
to the frequency of idle transitions and therefore inversely proportional to I/O
latency, high-performance I/O devices are affected the most.

6.2.3 To Tick or not to Tick?

The above indicates that both classic periodic ticks and tickless kernels may
induce severe performance issues in a virtualized environment. In fact, which of
these algorithms is to be preferred depends strongly on the workload W and
system settings S,. To clarify this, let us consider several virtualized systems:

e S1: A system hosting a single idle VM with 16 vCPUs;

e S2: A system hosting four idle VMs with 16 vCPUs each;

e S3: A system hosting a single VM with 16 vCPUs, executing a workload
using 16 threads, synchronizing 1000 times per second through blocking
synchronization;

VIRTUALIZING THE SCHEDULER TICK 115

e S4: A system hosting four VMs with each 16 vCPUs, each executing a
workload using 16 threads, synchronizing 1000 times per second through
blocking synchronization.

116 SYSTEM AMELIORATION: PARATICK

Table 6.1: Number of VM exits induced by classic periodic ticks and tickless
kernels in a variety of scenarios.

S1 S2 S3 S4
| periodic ticks | 40 000 | 160 000 | 40 000 | 160 000 |
tickless 0 0 60 000 | 240 000

Table 6.1 shows the amount of VM exits related to scheduler tick management
incurred by each of the above systems when all of the VMs use respectively
classic periodic ticks or tickless kernels with a tick frequency of 250 Hz, assuming
the workloads are run for 10 seconds on a system with 16 pCPUs. All values
are calculated based on the formulas derived in sections 6.2.1 and 6.2.2.

Table 6.1 shows that for low-intensity workloads where the system is mostly
idle, tickless kernels are vastly superior to classic periodic ticks. However,
for high-intensity workloads which frequently switch between idle and active
states, periodic ticks gain the upper hand. Specifically, tickless kernels are
preferable as long as the average idle period T4 is longer than the average tick
period divided by the number of vCPUs sharing a pCPU. With tick periods
commonly ranging between 1 and 10 ms, this is often not the case. Given
that parallel computing has become the norm these days and more efficient
1/0 devices continue to emerge (e.g. datacenter network, NVMe storage,. ..),
demand for better handling of microsecond-level idle periods continues to rise
[189]. Moreover, stimulated by workloads such as AI and blockchain, various
highly parallel accelerators (e.g. GPGPUs and TPUs) are being designed and
deployed. Fine-grained computation offloads to such accelerators incur similarly
small idle periods. Thus, neither classic periodic ticks nor tickless kernels
meet the requirements of increasingly common highly consolidated virtualized
environments hosting I/O-intensive, highly parallel workloads. It is clear that
an alternative tick management algorithm is highly desirable.

6.3 Virtual Scheduler Ticks

In an effort to address the issues described above, this dissertation proposes the
concept of virtual scheduler ticks, which is a novel tick management algorithm
first introduced in §5.1.4. This section details its design and performance
implications compared to classic periodic ticks and tickless kernels.

In essence, virtual scheduler ticks views the scheduler tick as a system service
managed by the VMM which guests may request through a hypercall interface
(see §5.1.4). This effectively equates to paravirtualizing the scheduler tick, which

VIRTUAL SCHEDULER TICKS 117

in turn implies that the guest kernel must be modified so that it no longer
programs its own scheduler tick and instead performs the appropriate hypercalls
to request ticks from the VMM. The latter may leverage its own scheduler
tick interrupts—which many VMMs must program irrespective of any VMs to
perform their own bookkeeping work—to inject virtual ticks at the appropriate
times. When vCPU execution is resumed, the guest may handle these virtual
tick interrupts analogously to how it would process its own physical scheduler
ticks. Note however that this relies on the host tick frequency corresponding
to (a multiple of) that of the guest, since this is the only way to guarantee
vCPUs are interrupted and virtual scheduler ticks are injected at the appropriate
time interval. When this is not the case, the host should program the guest
preemption timer such that virtual ticks may be injected at the correct rate.
Note that this does not introduce meaningful virtualization overhead, since
if the guest were to program its own tick interrupts, two VM exits would be
generated each tick period for respectively injecting the physical tick interrupt
and reprogramming the timer hardware.

The above forms the basic working principle behind virtual scheduler ticks and
suffices when the vCPU requiring ticks to be injected is actively running and
is therefore regularly interrupted by host scheduler ticks. However, when the
vCPU is idle or is sharing the pCPU hosting it with other tasks, the vCPU
may be descheduled for long periods of time unbeknownst to the guest and thus
not receive any virtual scheduler ticks despite expecting to. Therefore, extra
measures must be taken to ensure a virtual tick is delivered to descheduled
vCPUs in a timely manner. Concretely, the time of the last virtual tick injection
must be accounted for each vCPU. On each VM entry, the host must check if
the last virtual tick injection predates the requested tick interval for that vCPU.
If so, a virtual tick must be injected and the current time is to be recorded as
the last tick. Furthermore, to ensure that idle vCPUs are awoken by the VMM
when necessary despite not receiving any virtual scheduler ticks, the guest must
check if there are any soft interrupts or RCU tasks scheduled upon idle entry.
If so, it must program a timer to expire at the expiration time of the earliest of
these events. We decide not to disable this timer upon exiting the idle state,
as the overhead induced by a single timer is negligible and it is likely that the
vCPU will re-enter an idle state before the timer has expired. If the timer were
to be disabled upon idle exit, it would likely need to be reprogrammed upon
idle entry, thus inducing two unnecessary VM exits.

While the concept of virtual scheduler ticks as proposed above may still induce
some VM exits, this number is negligible compared to both classic periodic
ticks and tickless kernels for almost any workload. Concerning the former,
in particular when guests are mostly idle and/or the host is overcommitted
this may lead to a tangible performance improvement. Concerning the latter,

118 SYSTEM AMELIORATION: PARATICK

virtual scheduler ticks is guaranteed to reduce the number of VM exits upon
idle entry and exit, as tickless kernels require the timer hardware to be touched
on practically every transition between active and idle states. When vCPUs
are actively running on the other hand, even in the worst-case scenario where
the host tick frequency is vastly lower than that of the guest and consequently
(almost) all virtual scheduler ticks must be triggered via the preemption timer,
virtual scheduler ticks reduces the amount of required VM exits by half because
one VM exit suffices to inject and process a virtual scheduler tick, while §6.2 has
made clear that for physical ticks, the same operations require two VM exits.
Notwithstanding, the benefits of virtual scheduler ticks compared to tickless
kernels mostly depend on the workload. Within the context of this dissertation,
being multithreaded workloads, system throughput may improve drastically
for applications relying heavily on blocking synchronization, as noted in §4.2.3.
Nevertheless, application execution times may not improve accordingly because
it is determined solely by the critical path [151]. Therefore, only VM exits
incurred upon idle exit (idle entry is by definition not part of the critical path)
and belonging to a single execution path influence application execution time.
Thus, for multithreaded workloads, a significant improvement in §1,. is expected,
which may however translate to a much smaller improvement in d7; as w is likely
low for this particular form of virtualization overhead. Additionally however,
§6.2.3 identified (sequential) I/O-intensive workloads as likely benefiting from
improved scheduler tick management. For such workloads, virtual scheduler
ticks may indeed improve both 47, and dn; significantly since w is likely to be
much higher in comparison. Namely, for these applications almost all VM exits
incurred upon idle exit—and if 1/O latencies are sufficiently low even those
upon idle entry—are likely part of the critical path as any delay in processing
an I/0 interrupt likely delays the next I/O operation.

6.4 Paratick

Because this dissertation aims to reach beyond purely theoretical reasoning and
seeks to provide tangible improvements to the state of the art based on (a subset
of) the novel techniques to mitigate virtualization overhead for multithreaded
applications it proposes, we developed a prototype implementation of virtual
scheduler ticks based on Linux/KVM (kernel 5.10.26) under the name ’paratick’.
Paratick is freely available! and documented in abstract terms below. Refer to
appendix A for a complete transcript of its source code.

Ihttps://github.com/StijnSchildermans/paratick.git

https://github.com/StijnSchildermans/paratick.git

PARATICK 119

inject timer

inject virtual tick

last_tick = now

VM entry

Figure 6.3: Schematic overview of host-side paratick code.

6.4.1 Host

Implementing paratick requires minimal effort on the host side. Firstly, a field
named last_tick was added to the struct KVM uses to represent a vCPU
internally (kvm_vcpu), recording the time of the last virtual tick injection.
Secondly, the main KVM loop which is responsible for executing vCPUs was
modified. If the vCPU has a pending local timer interrupt upon VM entry, the
last_tick field of the kvm_vcpu struct is updated. Paratick thus heuristically
assumes that the local timer interrupt to be injected was programmed by the
guest-side paratick code upon idle entry. This assumption is acceptable since
Linux by default performs basic timekeeping work upon receipt of any interrupt,
even when the interrupt itself has nothing to do with the scheduler tick [115].
Moreover, extensive testing has not revealed any negative side effects of this
optimization. If no local timer interrupt is pending upon VM entry on the
other hand, paratick evaluates if the time elapsed since the last tick injection
is greater than the tick period. If so, a virtual tick interrupt is injected and
the last_tick field of the kvm_vcpu struct is updated. Paratick uses interrupt
vector 235 for this purpose. Figure 6.3 illustrates all of this schematically.

To demonstrate the potential of virtual scheduler ticks, the above host-side
modifications suffice since the host and guest are guaranteed to have the same
tick frequency. However, when this can not be guaranteed, a hypercall must be
implemented so that the VM can request virtual scheduler ticks at a different
frequency. To deliver these ticks, the VM entry code must be modified further
to program the preemption timer upon each VM entry to guarantee timely
virtual tick delivery. These features were omitted in paratick because they do
not add value from a research perspective. Note that any implementation of
virtual scheduler ticks aiming for widespread adoption should however contain
them.

120 SYSTEM AMELIORATION: PARATICK

paratick_interrupt tick_interrupt

return return

return

(a) Virtual tick (b) Physical tick handler
handler

return

deadline = TICK_NS

deadline = event

(c) Idle entry (d) Idle exit

Figure 6.4: Schematic representation of guest-side paratick code.

6.4.2 Guest

The guest-side implementation of paratick is somewhat more pervasive than
its host-side counterpart. Still, altering just the main scheduler tick source
file (kernel/time/tick-sched.c) suffices. Figure 6.4 schematically shows the
high-level guest-side paratick implementation, arranged in such a way that it
can easily be compared to the regular tickless Linux kernel, as shown in figure
6.2.

Figure 6.4 shows that paratick preserves the basic structure of the tickless Linux
kernel, while adding an extra handler for virtual tick interrupts. Below, all
guest-side implementation details of paratick are described step by step.

PARATICK 121

System Boot

Both the regular tickless kernel and paratick are built on top of the standard
Linux hrtimer API [115]. Unfortunately however, this API is initialized
relatively late in the boot process. Before this time, the system must use a
traditional periodic scheduler tick. Therefore, the paratick initialization code is
integrated with the standard tickless initialization code and any virtual scheduler
ticks arriving before this code has been executed are rejected. The initialization
code itself encompasses installing an interrupt descriptor for the virtual scheduler
tick interrupt vector and disabling the aforementioned temporary periodic
scheduler tick.

Virtual Tick Handling

As figure 6.4a shows, paratick employs a dedicated handler for virtual scheduler
ticks, which slightly differs from the tick interrupt handler employed by the
tickless Linux kernel shown in figure 6.2a. Namely, under no circumstances
does it rearm the tick timer, since this responsibility has been delegated to the
VMM.

Physical Tick Handling

As described in §6.3, paratick may require a physical timer to be programmed
upon idle entry. Figure 6.4b shows the handler for this physical timer interrupt.
It first checks if the vCPU is still idle when receiving the interrupt. If so, this
interrupt is likely crucial to the system and is treated as a virtual tick interrupt.
If not, the vCPU is currently operating normally, meaning virtual scheduler
ticks are actively being injected. There is thus no need to perform any work
and the handler returns.

Idle Entry

The main challenge in implementing paratick has proven to be determining
whether a physical timer should be set upon idle entry. Thankfully, paratick can
largely recycle tickless kernel idle entry code for this purpose, as is evident by
comparing figures 6.4c and 6.2b. Note however that the status quo for paratick
is that no timer is programmed and the idle entry code must check whether a
timer should be set, while the status quo for tickless operation is that a timer is
set and the idle entry code should determine whether to disable it. Thus, if the
tickless code determines the tick must be retained, paratick programs a timer

122 SYSTEM AMELIORATION: PARATICK

to expire at the regular tick interval. Otherwise, it checks if a timer must be
set at the expiry time of the next RCU event or soft interrupt, again recycling
existing tickless kernel code. If so, the determined deadline is compared to the
current expiry time of the physical tick timer, since as described in §6.3, the
timer may not yet have expired after having been set at a previous idle entry.
Only if the physical tick timer is not running or the newly determined expiry
time is sooner than its current one, it is (re)programmed.

Idle Exit

Because as described in §6.3 we heuristically determined that it is beneficial
not to disable any physical timers set at idle entry upon idle exit, no action
must be taken when a vCPU returns from idle, as shown by figure 6.4d. This
stands in contrast to the tickless kernel implementation in Linux, which must
re-enable the tick timer at (almost) each idle exit (see figure 6.2c).

6.5 Evaluation

Having developed a prototype implementation of virtual scheduler ticks, it is
possible to provide concrete evidence of its performance benefits by empirically
comparing it to the state of the art. To this end, experiments were set up in
accordance with the prescriptions provided in §3.3. The baseline OS for both
the host and the guest is Ubuntu 20.04, employing Linux 5.10.26 in in the
default tickless configuration. Since kernels using classic periodic ticks are rare
these days and classic periodic ticks were already compared to tickless kernels
in §6.2.3, this section omits directly comparing paratick to classic periodic ticks.
Readers may nevertheless infer such a comparison from combining the results
in this section with those presented in §6.2.3. This decision also simplifies
the evaluation process, as §6.3 has made clear that the benefits of virtual
scheduler ticks over classic periodic ticks only clearly manifest themselves in
OC environments, while its benefits over tickless kernels are equally profound
in UC settings. As such, limiting the evaluation to UC environments suffices
here. Furthermore, §6.3 identifies the main workloads of interest for this
evaluation: multithreaded and I/O-intensive applications. However, because a
fair performance assessment must include at least some workloads for which
virtual scheduler ticks is not expected to provide a meaningful performance
improvement, sequential, computation-intensive applications are included as
well. Thus, this section evaluates the performance of paratick compared to a
state-of-the-art tickless kernel in an UC setting for sequential, multithreaded
and I/O-intensive applications.

EVALUATION 123

Because the intent of this section is to demonstrate the potential performance
benefits of virtual scheduler ticks as accurately as possible, rather than faithfully
assessing virtualization overhead in se (as was the case in chapter 4), it is
prudent to alter some system settings that may distort experimental results; in
particular PLE and halt polling. Namely, the former is only beneficial in OC
environments (see §3.2.6). In UC scenarios, any VM exits triggered by PLE
unnecessarily degrade performance. Regarding the latter, §5.1.1 has shown that
halt polling may drastically increase d7,. in an effort to slightly improve 7.
This may obfuscate the benefits of virtual scheduler ticks since in some cases, a
more efficient execution may lead to seemingly worse performance when using
halt polling, as it may increase thread contention, which leads to increased
polling cycles without improving execution time tangibly. Therefore, both PLE
and halt polling were disabled for all experiments documented in this section.

Following the reasoning laid out in the previous paragraph, it is important
to note that the results in this section do not accurately reflect virtualization
overhead, but rather potential performance improvements associated with virtual
scheduler ticks. As such, all results are presented as the result paratick yields
for a given metric relative to the result yielded by its tickless counterpart. To
clearly make this distinction, we choose not to represent any results in terms of
on.or 0n:. Instead, this section employs the following metrics:

e VM exits: Since paratick aims to eliminate the majority of writes to
the TSC_DEADLINE MSR and associated VM exits, assessing the number
of VM exits shows to what extent paratick achieves its basic goal. This
metric may be measured directly using perf;

¢ System throughput: System throughput shows the effect of paratick
on system resources. This metric may be viewed as a proxy for d7,,
with the important distinction that it more clearly shows the total
amount of resources consumed—Dby useful work and overhead alike—which
more easily allows for placing the performance improvements paratick
yields into perspective. Rather coincidently, within the context of this
chapter, throughput may be measured analogously to 47, in the context
of multithreaded applications, i.e. in terms of CPU cycles (see §3.1.1).
Namely, although throughput is determined by many factors, §6.3 makes
it clear that virtual scheduler ticks aims to improve system performance
solely through eliminating certain VM exits, which frees up CPU resources
for other tasks. Therefore, the reduction in CPU cycles paratick achieves
represents the maximum throughput improvement it may yield;

o Execution time: Analogously to system throughput, execution time
serves as a proxy metric for dn; which indicates paratick’s performance
benefits visible to end users. This metric is directly measurable.

124 SYSTEM AMELIORATION: PARATICK

Table 6.2: Average performance improvement of paratick accross all PARSEC
benchmarks in sequential mode.

VM exits | System throughput | Execution time
-50% +7% -2%

6.5.1 Sequential Workloads

As described above, paratick is not expected to benefit computation-intensive
sequential workloads. Conversely, any overhead introduced by paratick itself
would likely still be measurable because these workloads obviously still require
scheduler ticks to be injected. Because of this, assessing these workloads allows
for estimation of the gross cost of paratick, irrespective of potential performance
gains. Concretely, figure 6.5 shows the performance of paratick relative to
a standard tickless Linux kernel for each of the PARSEC workloads run in
sequential mode on a VM with a single vCPU. To facilitate interpretation of
this figure, table 6.2 shows the aggregated results for all PARSEC benchmarks.

Figure 6.5a shows that even for low-intensity workloads, paratick reduces the
number of VM exits drastically compared to a plain tickless kernel. This is to be
expected, since such workloads induce very few VM exits to begin with, as may
be derived from §6.2. A large portion of these few VM exits are caused by three
operations: arming the guest tick timer, delivering host ticks and delivering
guest ticks. Since paratick eliminates 2 of these 3 major causes of VM exits, it
greatly reduces virtualization overhead for low-intensity workloads.

Despite figure 6.5a showing excellent results, figures 6.5b and 6.5¢ indicate
that paratick only marginally improves system throughput and application
performance for low-intensity workloads. This is however in line with the
expectations laid out in §6.3: even though the number of VM exits is reduced
drastically, the amount of resources spent processing them is negligible relative
to those spent on the workload itself. More importantly, these figures show that
even in scenarios where paratick offers negligible benefits, workload latency and
system throughput are not affected negatively, indicating that the gross cost of
paratick is minimal.

125

1.00-

EVALUATION

v9zx
Sdin

. wc@&m__ s

IS, aus
I 9p t\ﬂmx
! mSEowé
&mf\:mﬁ iy

i Nwth

(a) VM exits

- E\ wwnvmw
- Q:.cwb
o mvwc:md

. «omé\mcomw

(b) System throughput

S
- 108

0.75-
0.50-
.50

w o :
NS o 0
s o

0.0-
1.00-

x

0 o
)) ™~ N
— o o o o
ndyBnoiyy annejey awn aAeRy

slxa N

>
)
=
ks
o]
o

(c) Execution time
Figure 6.5: Relative performance of paratick compared to tickless Linux for

sequential PARSEC workloads.

126 SYSTEM AMELIORATION: PARATICK

Table 6.3: Average performance improvement of paratick accross all PARSEC
benchmarks in all tested scenarios.

VM size | VM exits | System throughput | Execution time
Small -42% +12% -1%
| Medium | -47% | +13% | 3%]
| Large | -44% | +16% | A%]

6.5.2 Multithreaded Workloads

Having established that paratick does not introduce tangible gross overhead, the
magnitude of its potential benefits may by assessed using workloads outlined in
§6.3 as conceptually greatly profiting from virtual scheduler ticks, the first
category of which being computation-intensive multithreaded applications.
Three distinct system settings S are evaluated:

e A small VM with 4 vCPUs collocated on the same NUMA node;
¢« A medium VM with 16 vCPUs spread over 2 NUMA nodes;
e A large VM with 64 vCPUs spread over 4 NUMA nodes.

In each of the above scenarios, the PARSEC benchmark suite was evaluated
with the level of parallelism set equal to the number of vCPUs sported by the
described VM. All metrics are measured as in §6.5.1. Equally analogously to
§6.5.1, figure 6.6 displays the results for all individual benchmarks and table
6.3 shows the aggregate results across all of the benchmarks in each scenario.

Figure 6.6a shows that for multithreaded workloads, paratick reduces the
relative number of VM exits compared to tickless kernel operation by roughly
the same amount as for sequential ones. Nevertheless, figure 6.6b indicates that
for several of these workloads—in contrast to sequential ones—this translates
to a drastic improvement in system throughput. This is not illogical, since
chapter 4 has demonstrated that multithreaded workloads induce many more
VM exits than their sequential counterparts. This means that the same relative
reduction in VM exits translates to a comparatively much greater performance
improvement. However, this improvement varies greatly between benchmarks
and system configurations. This is to be expected, since as outlined in §6.3,
virtual scheduler ticks specifically reduces the cost of blocking synchronization.
Not all multithreaded workloads rely on this mechanism to the same extent.
Furthermore, the effectiveness of paratick tends to increase with vCPU count
because as the level of parallelism increases, so do thread contention and
consequently switches between running and idle vCPU states.

127

EVALUATION

1.00-

[Te]
~
o

SHX® NA aAlje|ay

©
N
)
=
>

B Small

B Medium
[Large

T

S
n o
o o

0.00-

r9zx
Sdip
SUonGrgy,

S
5
=
()
&
o
S
%]

wUmkN\ﬂmk
| .wSEU@.Q
I 9) WE\C@U \S\k

ECTIY)

- s 90,
Q:.owb

/ m..wttm,o

r v\ow‘b\ﬂbg

| ww\ocom«ow\n

(a) VM exits

2.0-

0

—
indybBnoiyr

VM size

B Small

- B Medium
[Large

.0

—

5

o

anne|ey

-
. N
T
-
S

o —

- —
—

o —
—
= I
o —
o IS

0.0-

o
3
[N

<
[
3
o
<

<
=
£
[
et
0
>

(%]

—

Q0

=

VM size
M Small
B Medium
[Large

0

1.00-
0.75-
5

o
1 aAned

@ 0.25-

El

£

(c) Execution time

Figure 6.6: Relative performance of paratick compared to tickless Linux for

multithreaded PARSEC workloads.

128 SYSTEM AMELIORATION: PARATICK

Table 6.4: Average performance improvement of paratick across all tested
phoronix-fio benchmarks.

VM exits | System throughput | Execution time
-34% +20% -18%

On a somewhat less positive note, figure 6.6¢ confirms that as anticipated
in §6.3, the large throughput gain shown in figure 6.6b does not translate
to a comparable reduction in application execution times, implying that the
VM exits eliminated by paratick are mostly not part of the critical path for
multithreaded workloads. Nevertheless, improved throughput in itself is highly
beneficial since in scenarios where system resources are saturated, resource
availability dictates the execution time of the critical path and thus of the entire
application. Moreover, considering throughput is measured in terms of CPU
cycles in this section, increased throughput implies increased efficiency and thus
reduced energy consumption.

6.5.3 1/0O-Intensive Workloads

Besides multithreaded workloads, §6.3 describes I/O-intensive applications as
potentially greatly benefiting from virtual scheduler ticks. This section assesses
the veracity of this claim using a dedicated I/O benchmark, namely the fio
benchmark from the Phoronix benchmark suite [125]. This benchmark was
executed on a VM with one vCPU, configured analogously to the VM employed
in §6.5.1. Sequential read (seqr), sequential write (seqwr), random read (rndr)
and random write (rndwr) performance were independently evaluated. For
each of these tests, block sizes were varied between 4 kB and 256 kB. The
sync I/O driver was used, as synchronous I/O is much more popular than its
asynchronous counterpart due to the complexity of the latter [188]. Direct
I/0O was disabled as is common practice. Buffering I/O was disabled as well
to simulate reading/writing large data sets. Again analogously to §6.5.1 and
§6.5.2, figure 6.7 shows the results for each category individually while table 6.4
shows the aggregated results of all categories.

Figure 6.7a indicates that also for I/O-intensive workloads, paratick significantly
reduces VM exits. This reduction is however somewhat smaller than for
the application classes discussed above. This is to be expected, because
1/0 is notorious for inducing high virtualization overhead in general [66]
and the test system does not possess a high-end SSD device supporting SR-
IOV. Therefore, timer-related VM exits make up a relatively small subset
of the total number of VM exits such workloads induce. However, figure

EVALUATION 129

0 1.0- 51.0 1.0-
= o
5 = 2
= 3 =
° 5 g
= o <
=2 0.5 205 o 0.5
k) % o
& 4

0.0- 0.0 0.0-

rndr rndwr seqr seqwr rndr rndwr seqr seqwr rndr rndwr seqr seqwr
(a) VM exits (b) System throughput (c) Execution time

Figure 6.7: Relative performance of paratick compared to tickless Linux for
I/O-intensive workloads.

6.7b indicates that this comparatively small reduction in VM exits yields a
significant throughput improvement for I/O-intensive applications. Interestingly,
the average throughput improvement displayed in table 6.4 is not much lower
than the average reduction in VM exits. This confirms that processing VM
exits consumes a significant fraction of the total system resources utilized by
1/O-intensive applications. Even more impressively, figure 6.7c and table 6.4
reveal that for I/O-intensive applications, throughput improvement translates
almost directly to improved application execution times. This makes sense,
since as described in §6.3, at least half of the VM exits eliminated by paratick
are part of the critical path for these workloads. Note that figure 6.7c¢ indicates
that read operations benefit the most from paratick. Given that read latencies
are lower than write latencies and reads are mostly synchronous while writes
are generally asynchronous, reads induce more frequent switches between active
and idle vCPU states than writes. Therefore, the VM exits eliminated by
paratick make up a larger percentage of the total application execution time for
read-heavy workloads and by extension I/O operations with low latencies in
general, which are likely to become ever more prevalent towards the future.

130 SYSTEM AMELIORATION: PARATICK

6.6 Related Work

Timer overhead in virtualized environments has received little attention in
literature. Only a few papers [190, 191, 192] target timekeeping in VMs and its
effects on scheduling and application performance [193, 194, 195]. One major
reason for this is that most recent efforts regarding reducing virtualization
overhead focused on more dominant forms thereof [10], including LHP, BWW,
LWP, TLB shootdown preemption, etc. However, as stated before, recent
improvements to virtualization technology have largely mitigated these issues.
This makes optimizing timer management one of the last significant remaining
challenges regarding efficient virtualization of the x86 platform.

Although the problem of scheduler tick management in virtualized environments
has to the best knowledge of the author never been addressed explicitly in
literature, some studies indirectly offer potential solutions. OSv [85], a novel
unikernel-based OS designed specifically for cloud computing employs a fully
tickless design, utilizing a high resolution clock for time accounting as long as
the use case only calls for a single application to be run at a time. While OSv
is able to outperform a traditional Linux system by up to 47% in some aspects
and therefore far exceeds the performance gains paratick achieves, it is not a
general-purpose OS and achieves these gains by sacrificing many traditional
OS capabilities. While for many cloud applications such a design suffices, it is
obviously not a generalizable solution.

A more widely applicable solution to excessive timer overhead is 'direct interrupt
delivery (DID)’ [163]. DID directly delivers timer interrupts to the target VM,
bypassing VM exits through clearing the ’external interrupt exiting (EIE)’
flag in VMCS. In addition, it programs the hardware not to perform VM
exits upon writes to the TSC_DEADLINE MSR. While the authors of [163] claim
a VM throughput improvement of up to 67%, timers set by the VMM and
descheduled vCPUs are restricted to a designated CPU, which can become
a bottleneck under heavy loads. Moreover, the designated core can not be
used by VMs, which can be interpreted as a static virtualization overhead
inversely proportional to the number of pCPUs in the system. Additionally,
DID only achieves 67% throughput improvement for one particular workload
(memcached). For other I/O-intensive workloads, [163] reports much more
modest improvements of around 10%. Taking into account the throughput
loss due to the aforementioned dedicated CPU for timer management and the
fact that many workloads (e.g. sequential and memory-intensive tasks) do
not benefit noticeably from improved timer performance to begin with, it is
clear that DID is a specialist tool drastically benefiting specific workloads while
negatively affecting others. Paratick in contrast is generally applicable since it
has no (known) negative effects on the system.

CONCLUSION 131

6.7 Conclusion

Even in state-of-the-art virtualized environments, timer management remains
a major source of virtualization overhead. This chapter elaborated on the
concept of virtual scheduler ticks, which was first introduced in §5.1.4 as a
technique to address this issue through the use of paravirtualization. Moreover,
this chapter has shown the potential of this concept by detailing a prototype
implementation thereof in Linux/KVM and demonstrating that it may greatly
enhance system throughput by eliminating most VM exits related to scheduler
tick management. Especially multithreaded applications relying heavily on
blocking synchronization and I/O-intensive applications benefit. For the former,
this system throughput improvement translates to only a minor application
execution time reduction, since many of the VM exits eliminated by virtual
scheduler ticks are not part of the critical path of these workloads. For the
latter however, performance gains are in accordance with system throughput
amelioration.

To the knowledge of the author, virtual scheduler ticks is the only generally
applicable solution to the problem of excessive timer-related virtualization
overhead. The only major drawback of virtual scheduler ticks is its reliance on
paravirtualization and associated requirement for modifications to the guest
kernel. This complicates dissemination, especially towards closed-source systems.
Whenever this drawback is not a concern however, virtual scheduler ticks is
a clear improvement over tickless kernels and classic periodic ticks alike in
virtualized environments.

6.7.1 Personal Contribution

All of the work presented in this chapter was performed by the author of this
dissertation. Nevertheless, his supervisors provided him with valuable feedback
throughout the course of the research this chapter documents.

6.7.2 Future Work

The obvious avenue for future work based on virtual scheduler ticks is developing
a more refined version of paratick, from which a patch for the mainline Linux
kernel may be proposed. Specifically, paratick does not yet incorporate the
hypercall interface proposed in §6.3 which would allow it to support guests with
arbitrary tick frequencies. Moreover, more testing (and likely refinement) is
needed to ensure paratick is stable under all circumstances.

Chapter 7

Runtime Amelioration:
PTLBMalloc2

This chapter was previously published as:

S. Schildermans et al. “Ptlbmalloc2: Reducing TLB Shootdowns with High
Memory Efficiency”. In: ISPA-BDCloud-SocialCom-SustainCom 2020 (2020),
pp. 76-83

A fundamental fact about computer science that appears to be overlooked for too
often in virtualization research is that even a perfectly designed system is only as
efficient as the applications it executes. Chapter 5 has regularly alluded to this
by suggesting application-level solutions to many of the remaining challenges
regarding virtualizing multithreaded applications. Particularly interesting in
this regard is the issue of TLB consistency (see §3.2.7), because as §5.3 lays out,
many solutions to this problem have been proposed at hardware and system
level but none have attained widespread adoption to date. Simultaneously,
the same section explains that while this problem may perfectly be tackled at
application level, this approach seems to have been neglected so far in literature.
This chapter aims to rectify this oversight.

When considering the relationship between applications and TLB shootdown
overhead, memory allocators spontaneously come to mind. After all, these
runtime components determine to a large extent how the application interacts
with the virtual memory subsystem (and by extension the TLB), often entirely
transparently higher-level application code. This implies that memory allocators

133

134 RUNTIME AMELIORATION: PTLBMALLOC2

are to a large extent in control of the number of TLB shootdowns an application
induces and ameliorating their behavior with regard to TLB shootdowns is
likely to significantly improve the performance of multithreaded applications in
a virtualized context.

As laid out in §5.3.5, contemporary memory allocators do not consider
minimizing TLB shootdown overhead as a principal design goal. While this used
to be acceptable since TLB shootdowns are satisfactorily efficient in simplistic
legacy systems, §4.2.3 has made clear that this does no longer hold true in
modern highly consolidated virtualized many-core NUMA environments. As
such, §5.3.5 suggests that a memory allocation paradigm incorporating TLB
consistency as a fundamental design trade-off rather than a side note could be
the key to addressing excessive TLB shootdown overhead on modern systems
without significantly affecting other performance metrics. This chapter is
dedicated to devising exactly such a paradigm. Additionally, it provides a
prototype implementation thereof based on ptmalloc2 and presents evidence for
its performance benefits over traditional memory allocators through controlled
experiments. Before all of this however, it dives deep into the performance
implications of TLB shootdowns and how existing memory allocation paradigms
(fail to) address them.

Main Findings & Contributions

e This chapter quantifies TLB shootdown overhead with respect to several
system properties and shows that this is a growing issue;

e This chapter identifies the ’arena imbalance issue’, which may cause
excessive TLB shootdowns in contemporary efficiency-focused memory
allocators;

o This chapter details the concept of global hysteresis, which has been first
introduced in §5.3.5;

e This chapter presents and evaluates ptlbmalloc2: an implementation of
global hysteresis built as a C library on top of ptmalloc2.

BACKGROUND: TLB SHOOTDOWN CAUSES 135

7.1 Background: TLB Shootdown Causes

Previous chapters have already described the internal mechanics of TLB
shootdowns and how they may degrade system performance. However, equally
crucial to addressing TLB shootdown-induced performance degradation is
understanding which mechanisms trigger these shootdowns in the first place.
In a general sense, these include any operation that alters one or more PTE(s).
Such operations may originate from the system itself on the one hand or from
an application request in the form of system calls on the other. Regarding the
former, the following dominate [196, 197]:

o Transparent huge pages: Historically, the size of memory pages was
almost always 4 kB. In recent years however, applications often require so
much memory that a 4 kB page size has become impractical for several
reasons, most importantly a high TLB miss rate. By increasing the page
size, a single PTE covers a larger address range, which may greatly reduce
TLB miss rate and associated page walk overhead. Therefore, modern
Linux kernels use a page size 2 MB rather than 4 kB whenever possible,
entirely transparently to applications. This process is called 'transparent
huge pages’ [198]. One method the kernel employs to achieve this is
scanning the memory space looking for sets of 512 contiguous 4 kB pages
belonging to the same virtual address space. If it finds such a set, it
promotes these pages to a single 2 MB page and purges references to the
old 4 kB pages from the TLBs;

o Page migrations: As mentioned earlier in this dissertation, optimizing
memory locality is critical on NUMA systems. This means that on such
systems, the kernel may dynamically migrate memory pages from one
NUMA node to another when it deems doing so beneficial. This evidently
changes the physical addresses of the migrated pages, enforcing a TLB
shootdown;

e Memory compaction: When memory fragmentation becomes prob-
lematic, the kernel may move allocated pages directly adjacent to one
another, merging any free space between them. The relocated pages must
be purged from the TLBs by means of a TLB shootdown;

e Memory deduplication: In virtualized systems, certain areas of the
memory space are likely identical across guests. Examples include kernel
code and shared libraries. Some VMMs merge these pages, which
improves memory efficiency. During this merging process, references
to the duplicates of a page must be purged from the TLBs;

136 RUNTIME AMELIORATION: PTLBMALLOC2

e Memory reclamation: When the system is low on memory, the kernel
may free parts thereof without application consent. Most often, the freed
pages are written to disk and their PTEs are removed from the page table
and TLB alike. When an application attempts to access a reclaimed page,
a page fault occurs and the kernel restores it;

o Page cache write-back: Linux buffers reads from disk in memory for
performance reasons. When a buffered page is written to, it is marked
as dirty and the change is propagated to disk asynchronously. This dirty
mark must be propagated to all CPUs that may hold a reference to the
PTE in question by means of a TLB shootdown;

e Copy-on-write: When an application writes to a copy-on-write page,
the kernel immediately alters the PTE pointing to that page so that it
points to the new copy thereof and updates the TLBs accordingly.

From the above, it is clear that TLB shootdowns are essential to many system
processes. Notwithstanding, these system-induced TLB shootdowns rarely
cause noteworthy performance degradation. Applications on the other hand
may induce an arbitrary number of TLB shootdowns by performing any system
call that reduces their access to memory in any way [115]:

e (s)brk: Brk and sbrk are both used to change the location of the program
break (the former sets it at an address provided by the caller while the
latter increments it by the amount provided by the caller), which is a
rudimentary yet efficient way of altering the memory space available to
the application. In particular when the memory space shrinks, a TLB
shootdown is required to avoid illegal memory accesses by other CPUs;

e munmap: This system call returns an address range to the system. Said
address range is invalidated and the page table and the TLBs are updated;

o madvise: This system call gives the kernel advice about certain properties
of an address range. Although madvise is used for many purposes
(see [199]), regarding TLB shootdowns its most important use is
madvise (MADV_DONTNEED), which informs the kernel that the memory
range passed by the caller may be freed whenever the kernel sees fit. In
contrast to munmap, the address range remains valid but the physical pages
backing it are discarded. The PTEs associated with the page range are
consequently removed immediately, inducing a TLB shootdown;

o mprotect: This system call changes the access permissions of a memory
range. These permissions are stored in the page table, which means that
relevant PTEs and TLBs require updating.

TLB SHOOTDOWN COST 137

It does not require much insight to realize that the above system calls are all
crucial to virtual memory management and are therefore essential ingredients
for any application memory allocator. This immediately clarifies the impact
efficient memory management may have on TLB shootdowns, irrespective of
the many system-level causes of the latter.

7.2 TLB Shootdown Cost

While chapter 4 already provided some insight into the virtualization overhead
induced by TLB shootdowns, many aspects of their performance implications
remain unclear. After all, virtualization is far from the only factor that may
influence the cost of TLB shootdowns. Having obtained a deep understanding of
TLB shootdowns during previous chapters, two such factors intuitively emerge:

¢« CPU count: Since TLBs are local to each core and a TLB shootdown
must flush all TLBs potentially containing the target entry, the number of
IPIs required to perform a TLB shootdown linearly increases with CPU
count;

e NUMA architecture: IPI latency vastly increases when the target
CPU is located on another NUMA node because the interrupt signal must
travel through the motherboard rather than just the CPU bus. Since
as made clear in §3.2.7 the CPU performing a TLB shootdown must
wait until all recipient CPUs have acknowledged IPI receipt, if only one
of the recipients is located on a remote NUMA node, performance may
deteriorate significantly.

This section aims to complement the knowledge gathered earlier in this
dissertation regarding the performance implications of TLB shootdowns through
analyzing the impact of the above system properties on their cost. To this
end, several experiments were performed based on the guidelines provided in
§3.3. A custom microbenchmark specifically designed to induce as many TLB
shootdowns as possible was chosen as the workload for all of these experiments,
so as to minimize interference of operations which are currently not of interest.
Listing 7.1 shows the source code of this microbenchmark.

void* madv(voids* mem){
for (long i=0;i <1000000;i++)
madvise (*((char*%) mem) ,4096 ,MADV_DONINEED) ;

138 RUNTIME AMELIORATION: PTLBMALLOC2

int main(int argec, chars* argv){
void *mem;
posix__memalign(&mem, 4096, 8192);
pthread t threads[16];

for (int i = 0; i<16;i++)
pthread create(&threads[i], NULL, madv, &mem);
for (int i = 0; i<16;i++)
pthread_join(threads[i], NULL);

return 0;

Listing 7.1: Microbenchmark generating many TLB shootdowns.

Listing 7.1 creates 16 threads, all performing the TLB shootdown-inducing
system call madvise (MADV_DONTNEED) in a loop. Its performance in function
of the system properties identified above is measured primarily in the form of
CPU cycles and application execution time, in keeping with previous chapters.

7.2.1 CPU Count

The impact of CPU count on TLB shootdown overhead may be analyzed by
pinning the microbenchmark from listing 7.1 to a single socket with CPU counts
varying between 1 and 20. Figure 7.1a shows the results of this experiment.

Figure 7.1a indicates that when the benchmark is run on a single CPU, no
TLB shootdown IPIs are sent, as intuitively expected. For higher CPU counts,
the number of IPIs sent increases linearly. This illustrates the limited capacity
of the system to optimize the number of IPIs required for a TLB shootdown.
Namely, the OS must send IPIs to all cores sharing the virtual address space
of the initiating CPU to guarantee correctness, regardless of whether those
cores actually contain the entry to be purged. Above 16 cores however, the
number of TLB shootdown IPIs stabilizes, as the benchmark can not use more
than 16 CPUs simultaneously. The number of cycles in figure 7.1a reflects the
increase in IPIs, indicating a linear relationship between the number of CPUs
concurrently used by a program and the system effects of the TLB shootdowns
it generates. At first glance, execution time does not seem to follow this trend.
Note however that the total amount of work the benchmark performs remains
constant for all CPU counts. Ideally, one would thus expect the execution time
of the benchmark to be inversely proportional to the CPUs it utilizes, which
is clearly not the case in figure 7.1a. Thus, both the system and application
effects of TLB shootdowns drastically increase with CPU count.

TLB SHOOTDOWN COST 139

250 ™ hootddwns (x108) "+ T
cycles (x1010) x ¥
200 time (s) L]
+
et
150 - .]
+
+
100 - + i
+
N + X X XX X X
XX
50t s X X w x XX i
0 2 4 6 8 10 12 14 16 18 20
CPUs
(a) CPU count

140 cycles (x1010) %+ N

120 t time (s) x]
100 " :

80 b

60+]

40t .

N X
X
20 b
0 ‘ ‘ 4

sockets
(b) Socket count

Figure 7.1: Impact of several system properties on TLB shootdown overhead.

7.2.2 NUMA

To assess the impact of NUMA on TLB shootdown cost, listing 7.1 was run
pinned to 12 cores, spread over 1 to 4 sockets. Figure 7.1b shows the results.

According to figure 7.1b, indeed both execution time and CPU cycles rise with
the number of sockets. As noted before, this is a consequence of IPIs sent to
a remote NUMA node exhibiting a much higher latency than those sent to
a CPU on the local node. Combining the results from figure 7.1a and figure
7.1b enables estimation of just how much more expensive these remote IPIs are.
Given that the total number of cycles required to execute the workload is the
sum of the cycles spent on IPIs to the local socket, IPIs to a remote socket and
a constant representing the remainder of the code, the following holds:

140 RUNTIME AMELIORATION: PTLBMALLOC2

IPI 1
ax 708 + (nxa)x IPIs(1—

cycles =

)+ C

sockets sockets

With:
a = cycles(IPIipcar)

cycles(IPlremote)

"= “cycles(TPiocar)

C = cycles(remaining code)

Substituting C' for the amount of cycles used by the benchmark when executed
on a single CPU and I PIs for the number of IPIs sent by the 12-CPU variant
of the benchmark (both derived from figure 7.1a) allows for determining a and
n by curve fitting the above formula to the results from figure 7.1b. This yields
a near-perfect fit for a = 3200 and n = 3, which indicates that IPIs sent to a
remote socket are approximately 3 times as expensive as those sent to CPUs on
the local socket. The solid lines on figure 7.1b represent the determined curve
(adjusted accordingly for execution time).

7.2.3 Summary

Combining the knowledge obtained in chapter 4 with the findings presented
above, it is clear that while in basic use cases TLB shootdowns are sufficiently
efficient, many factors may drastically increase their cost. What makes this
observation so worrying is the fact that the four system properties identified in
this dissertation as being detrimental to TLB shootdown performance (high CPU
count, NUMA, virtualization and hardware overcommitment) are becoming
increasingly prevalent since the rapid rise of cloud computing implies that
ever more workloads are being executed in highly consolidated virtualized
environments hosted on many-core NUMA systems. This indicates that
addressing excessive TLB shootdown overhead is paramount and will likely only
increase in importance as time goes on.

7.3 Memory Management & TLB Shootdowns

Evidently, the impact of TLB shootdowns on application performance depends
on both the cost of individual shootdowns and the number of these shootdowns
an application induces. While the previous section (in combination with
knowledge from earlier chapters) already provided great insight into the former,
the latter remains mostly unclear. This section addresses this question by

MEMORY MANAGEMENT & TLB SHOOTDOWNS 141

dissecting memory allocator behavior with regard to TLB shootdowns. While
today many memory allocators exist with wildly varying implementation details,
with respect to system interaction (and thus TLB shootdowns) only a handful
of principles are commonly applied. Each of these is detailed below.

7.3.1 Hysteresis-Based Arenas

Early memory allocators were poorly scalable since they serialized all heap
modifications by means of a global lock. As heavily multithreaded applications
became more common, allocators started dividing this monolithic heap structure
into multiple smaller, strictly isolated autonomous arenas, each protected by
their own lock, in an effort to alleviate thread contention. However, this meant
that the need for interaction with the OS in order to expand or shrink the
application’s memory space had to become more frequent and fine-grained so as
to limit the fragmentation issues inherent to partitioning the memory space. To
avoid this OS interaction in turn becoming excessive, hysteresis was employed
in the form of padding when the heap is expanded and a trim threshold which
must be exceeded before it is shrunk. Many contemporary memory allocators
are still based on this concept, most notably glibc’s ptmalloc2 [179].

While fine-grained resizing of arenas based on hysteresis is efficient in terms
of memory usage, many of these resizing operations require the exact system
calls listed in §7.1 as inducing TLB shootdowns. Meanwhile, the global memory
efficiency gained by resizing an arena is often minor, as individual arenas
may only hold a fraction of the total memory used by the application. There
may thus be an imbalance between the rate at which the (relative) memory
footprints of individual arenas and that of the application change, suggesting
that aggressively resizing arenas based on simple hysteresis thresholds may often
not be worth the cost from an application-wide perspective. This dissertation
refers to this phenomenon as the ’arena imbalance issue’. Figure 7.2 clarifies
this problem visually.

Figure 7.2a simulates the memory footprint of a multithreaded program using
two arenas: one with a constant memory consumption of 100 MB and one
with a memory consumption oscillating between 8 MB and 12 MB. A simple
hysteresis-based memory management algorithm is used with a realistic padding
of 500 kB and trim threshold of 1 MB. It is clear that this algorithm maintains
excellent memory efficiency, as the actual application memory consumption
(dashed lines) and the memory allocated from the OS by the memory manager
(solid lines) are hardly distinguishable in figure 7.2a. However, this excellent
efficiency comes at a non-negligible cost in performance. Namely, arena 1 is
resized 34 times during the 10 seconds of simulated program execution shown

142 RUNTIME AMELIORATION: PTLBMALLOC2

—— Arenal —— Arena3 Arena 5
— Arenail — Arena2 — Total —— Arena 2 Arena4 —— Total
f=1
&
i=3 <t
g
@ 8 @ 8
2 2
= =
(=] o o _|
: e ®
s g =
=
o | g
o~
e i S
o o -
T T T T T T \ \ \ \
0 2 4 6 8 10 0 2 4 6 8 10
Time (s) Time (s)
(a) Small threshold. (b) Large threshold.

Figure 7.2: Memory footprints of some hypothetical programs when using
hysteresis-based arenas. Solid lines represent the memory allocated by the
application while dashed lines represent the memory actually used.

in figure 7.2a. Within the context of arena 1 alone these resizing operations
are justified, since the memory footprint of this arena fluctuates by up to
50%. Within the broader context of the application however the story becomes
much different, since this same fluctuation only influences the total application
memory footprint by 4%. Therefore, it is fair to argue that resizing arena 1
at all is pointless and only incurs unnecessary overhead given its small size
compared to arena 2, especially considering the potentially high cost of resizing
arenas on modern systems laid bare in §7.2.

Based on figure 7.2a, one may argue that the solution to the arena imbalance
issue is simply increasing the hysteresis thresholds. This can even be done
dynamically in function of the application’s memory allocation behavior. In fact,
this is the approach taken by most modern allocators employing hysteresis-based
arenas. However, respecting the strict isolation between arenas this paradigm
enforces, it is nigh impossible to determine thresholds that perform well for any
application. For example, with the benefit of hindsight, reasonable padding and
trim thresholds for the program in figure 7.2a would be respectively 2.5 MB and
5 MB. This would eliminate all arena resizing operations, while reducing memory
efficiency by only a few percentage points. However, the same thresholds would
be catastrophic for a program using a large number of arenas with each a small,
though heavily fluctuating demand for memory, as figure 7.2b illustrates. It is

MEMORY MANAGEMENT & TLB SHOOTDOWNS 143

clear that for this program, such enlarged thresholds are not satisfactory since
while they do eliminate heap resizing operations, memory efficiency drops to
less than 50% for a considerable portion of the program’s execution. Thus, the
arena imbalance issue is inherent to hysteresis-based arenas and can not easily
be resolved by tweaking hysteresis thresholds.

Because each memory allocator employing hysteresis-based arenas uses different
thresholds, the exact programs suffering from the arena imbalance issue vary
between them. Intuitively however, for any such allocator, programs exist that
trigger this problem. Listing 7.2 shows a minimal example of such a program
in the case of the most popular memory allocator based on hysteresis-based
arenas today: glibc’s ptmalloc2.

void* work(voidx arg)

{

void* m[1000];
for (int i = 0; i < 1000; i++)
{
for (int j=0;j <1000;j++)
m[j]=malloc (130048) ;
for (int j=0;j<1000;j++)
free (m[999—j]) ;
}
}

int main(int argc, char*x argv){
pthread t threads[16];

for (int i = 0; i<16;i++)

pthread_ create(&threads[i], NULL, work, NULL);
for (int i = 0; i<16;i++)

pthread join(threads[i], NULL);

return 0;

Listing 7.2: Minimal program suffering from the arena imbalance issue when
using ptmalloc2.

In ptmalloc2, the default padding and trimming thresholds are both 128 kB
[179]. Listing 7.2 exploits this fact by allocating 1000 chunks of 127 kB of
memory, only to deallocate all of them again in reverse order. This process is
contained in a loop, which is executed by 16 threads in parallel. On the test
system described in §3.3.1, this program induces 230 million TLB shootdown
IPIs. Interestingly, if chunks are freed in the same as opposed to reverse order as
they are allocated in in listing 7.2, TLB shootdowns and program execution time

144 RUNTIME AMELIORATION: PTLBMALLOC2

are reduced by respectively 99.8% and 87%. This is not particularly surprising,
since arenas can not be trimmed when their top chunk is in use. Much more
interesting is the observation that the arena imbalance issue can be induced
easily for even state-of-the-art memory allocators employing hysteresis-based
arenas through seemingly innocuous source code. Moreover, minor changes to
said source code may drastically alter the severity of this issue.

7.3.2 Decay-Based Purging

While hysteresis is the most commonly used method to combat excessive resizing
operations for memory allocators employing arenas, alternative approaches
exist. The most prevalent of these is called ’decay-based purging’. Rather
than evaluating if the amount of free memory at the top of the heap exceeds
a threshold upon every free operation, the freed memory is gradually released
to the OS after a set amount of real time has elapsed (typically seconds). The
most popular memory allocator based on this principle is FreeBSD’s jemalloc
[200].

While decay-based purging intuitively largely mitigates the arena imbalance
issue, it introduces a capacitive effect to application memory usage. Particularly
for applications with a rapidly and heavily varying memory footprint throughout
their execution, decay-based purging is significantly less efficient than hysteresis-
based trimming. Figure 7.3 shows an example of such an application.

The application figure 7.3 simulates has a base memory usage of 10 MB, which
occasionally briefly peaks to 100 MB. Because these peaks are so sparse however,
the average amount of memory the application requires during the 10 second
interval shown in figure 7.3 is only 28 MB. However, due to the capacitive effect
of decay-based purging, the memory released after each peak is never returned
to the system since the time interval between peaks is shorter than the decay
time threshold the simulated allocator employs, being 10 seconds (which mirrors
jemalloc). Therefore it is clear that decay-based purging is not likely to induce
many TLB shootdowns, albeit at a considerable cost in memory efficiency for
particular applications.

7.3.3 Size Class-Based Memory Management

Because of the issues associated with arena-based memory management outlined
above, some memory allocators opt not to use arenas at all. Instead, they employ
thread-local caches which consist of a series of bins, each containing a list of
chunks of a fixed size class. Each allocation request is assigned a size class

MEMORY MANAGEMENT & TLB SHOOTDOWNS 145

100
l

Memory (MB)

40

Time (s)
Figure 7.3: Memory footprint of a problematic application for memory allocators
employing decay-based purging. The solid line represents the memory reserved

from the OS while the dashed line represents the memory actually being used.

Class 1 Class 2 Class 3 Class 4

Figure 7.4: Schematic representation of a thread-local cache. Blue blocks
represent allocated memory. White ones represent free space.

based on its size and directly served from the corresponding bin. If necessary,
each of these bins may be replenished in batches from a central heap. Figure
7.4 illustrates what such a thread-local cache looks like.

Figure 7.4 immediately reveals the principal drawback of size class-based
memory allocation, namely fragmentation. The main driving factor behind this
undesirable side effect is the fact that freed chunks can only be recycled by
allocations corresponding to the same size class [201]. Therefore, the allocator
must often request more memory from the system to satisfy an allocation of
a particular size class while bins pertaining to other size classes have plenty

146 RUNTIME AMELIORATION: PTLBMALLOC2

of free space to serve the request. Especially for long-running programs which
tend to have a sparsely populated memory space, this may lead to abysmal
memory efficiency. For example, the simulated program in figure 7.4 requires
4 bins, even though the program only needs 2 bins worth of memory as the
chunks assigned to size classes 2 and 3 would have easily fit in size class 1’s bin,
freeing up bin 2 and 3 for return to the OS.

In spite of the fragmentation issues innate to size classes, many applications
make use of this memory allocation paradigm. Namely, allocators based on size
classes offer excellent performance and near-infinite scalability due to a lack
of thread contention and the absence of complex free list traversal algorithms.
Examples of such performance-oriented allocators include tcmalloc [178] and
memcached [202].

7.3.4 Garbage Collection

Today, most memory allocators are based on the principle of garbage collection.
In contrast to the mechanisms described above, these allocators perform memory
management entirely algorithmically, without programmer intervention. The
garbage collection algorithm itself works as follows: the algorithm starts at
certain predetermined root points, such as active threads and static and local
variables. Next, the algorithm identifies all the objects referenced by these root
points, which are considered to be active. It repeats this reference tracking
process for each identified active object until it can no longer find more of
them. All objects which can not be reached through this process are considered
garbage. The memory associated with them is thus eligible for return to the
system. Figure 7.5 represents this algorithm schematically.

Figure 7.5 suggests that garbage collection is an expensive process, since a large
portion of the memory space of the application must be traversed before any
garbage may be identified. In fact, programming languages often defer garbage
collection as long as possible due to its prohibitive performance impact. For
example, in Java, a large amount of memory is reserved when the program starts
and the garbage collector is only executed when all of this memory has been
allocated, irrespective of how much of it has become garbage in the meantime
[203]. While this deferment may minimize performance overhead (including
TLB shootdowns), memory efficiency clearly suffers greatly since heap sizes are
altered only sporadically and coarsely. In fact, many studies have found that
garbage collection has a detrimental impact on memory efficiency [204, 205,
206]. Thus, when efficiency is a concern, allocators employing garbage collection
are not an option. Examples of memory allocators employing garbage collection
include those used by Java, .NET, Python, etc.

MEMORY MANAGEMENT & TLB SHOOTDOWNS 147

Thread Local variable Static variable

Garbage

gl

Garbage Garbage Garbage

Figure 7.5: Schematic representation of the garbage collection algorithm.

7.3.5 Summary

The above suggests that excessive TLB shootdown overhead is not much of
a concern, since many of the discussed memory allocation paradigms do not
tend to resize the heap excessively and therefore are not susceptible to high
TLB shootdown costs. However, as noted in §5.3.5, all of these paradigms
achieve this as a side effect of sacrificing memory efficiency in favor of other
design goals, such as overall performance or scalability. One may argue that
such design decisions are justified, since memory has become abundant and
cheap. However, the widespread adoption of server consolidation demands
reconsideration of this argument. Namely, in heavily consolidated environments
(e.g. public clouds) increased memory efficiency directly translates into a system
being able to host more applications. This especially holds true in containerized
environments, since containers are so lightweight that their memory footprint
is largely determined by the applications they are hosting [207]. Moreover,
increased application memory efficiency often has a positive effect on the invoice
of public cloud consumers.

This section has made clear that the only truly efficient memory allocation
paradigm—to the best knowledge of to the author—is hysteresis-based arenas.
However, this paradigm suffers from the arena imbalance issue, which results in
high TLB shootdown overhead. As such, currently it appears that no memory
allocation paradigm exists that combines excellent memory efficiency with
minimal TLB shootdown overhead. The increasing cost of TLB shootdowns
detailed in §7.2 combined with the returning need for highly efficient application
runtime environments driven by modern consolidated platforms nevertheless
makes a convincing case for such a paradigm.

148 RUNTIME AMELIORATION: PTLBMALLOC2

7.4 Global Hysteresis

As stated in §5.3.5, this dissertation aims to address the observation concluding
the previous section by introducing the concept of global hysteresis. As the
name suggests, this concept is based on hysteresis-based arenas, mainly because
this facilitates interpreting and implementing global hysteresis as an extension to
particular existing allocators, which would in turn allow global hysteresis to have
an immediate impact in industry. Concretely, this means that formulating global
hysteresis equates to formulating a method to eliminate the arena imbalance
issue in hysteresis-based arenas (see §7.3.1).

Because the root cause of the arena imbalance issue is an excess of fine-grained
arena resizing operations which—despite from the perspective of a single arena
appearing appropriate—have no significant impact on the aggregate memory
footprint of the application, mitigating it requires answering the following
question whenever an arena appears to be in need of resizing:

Does the change to the memory footprint of the application justify the
performance overhead of resizing the arena?

Answering the above question requires knowing the benefits of a pending arena
resizing operation regarding the application’s memory footprint on the one hand
and the cost of the resizing operation—which is dominated by the cost of the
TLB shootdown it potentially induces—on the other. The memory allocator
may then balance these factors as it sees fit, potentially allowing for low memory
efficiency in individual arenas when the global impact thereof is minor relative
to the cost of resizing said arenas. Note that this mandates a global notion of
the application state, in contrast to classic hysteresis which only ever considers
the state of the local arena. In other words, implementing global hysteresis as
an extension to hysteresis-based arenas requires partially breaking the strict
isolation between arenas, allowing basic usage statistics to be exchanged between
them in order to determine whether the benefits of a potential arena resizing
operation outweigh its cost from the perspective of the application as a whole.

The first challenge to answering the question above concretely is estimating the
cost of a TLB shootdown. Sections 4.2 and 7.2 indicated that this cost mainly
depends on three factors: the number of CPUs currently being used by the
application, how these CPUs are scheduled on the potential NUMA nodes of
the system and the presence of virtualization. Many systems allow applications
to query these variables at runtime. Thus, the cost of TLB shootdown may be
estimated intermittently throughout program execution based on the following
formula:

GLOBAL HYSTERESIS 149

(ncpu, —1) X Crpr, + (nepu —nepuy) X Crpig +V X Cegir X (nepu — 1)

With nepy, the number of CPUs used on the local NUMA node, Crpr, and
Crpry the number of cycles needed for sending in IPI to a CPU on respectively
the local or a remote NUMA node, ngpy the total number of CPUs used by
the application, V' a value of 1 or 0 depending on whether or not the system
is being virtualized and C,.;; the number of cycles required for processing
an ICR MSR write VM exit. Note however that Crpr,, Crpr, and Ceyi are
to be statically and heuristically determined and may vary strongly between
systems. Therefore, the practical value of the above formula may be disputed.
Moreover, even if the exact cost of an arena resizing operation is known,
balancing this cost with memory efficiency remains a heuristical matter which
should ideally be determined on a per-use-case basis. Therefore, while some
dynamically determined notion of TLB shootdown cost is central to global
hysteresis, it refrains from specifying exactly how this cost should be calculated,
nor how it should be balanced with memory efficiency. Instead, it leaves
these matters to specific implementations, albeit strongly suggesting the use of
some incarnation of the above formula. Additionally, it is prudent to provide
application developers the option to finetune this cost calculation mechanism,
essentially allowing them to specify to what extent the memory allocator should
value performance relative to memory efliciency.

Besides TLB shootdown cost, global hysteresis requires knowledge of the memory
footprint of the entire application. This can be achieved by simply iterating over
all arenas and calculating their cumulative memory usage on a regular basis
(e.g. upon each memory allocation or deallocation). Based on this, suitable
global top padding and trim thresholds can be heuristically determined as a
percentage of the total application memory usage. These thresholds should
then be finetuned based on the factors discussed above (TLB shootdown cost
and programmer preference). The resulting thresholds may then be applied in
the following manner:

e Whenever an arena must be expanded, the local amount of top padding
to be added is the global top padding threshold divided by the number of
arenas;

e Arenas are trimmed whenever the total free top space of the application
exceeds the global trim threshold.

150 RUNTIME AMELIORATION: PTLBMALLOC2

—— Arenal —— Arena3 Arena 5
— Arenail — Arena2 — Total —— Arena 2 Arena4 —— Total
f=
S
= - .
(=3 <+ 7
8
@ 8 @ 8
= <
= =
o o o _|
: : s
= 2 =
o
o | =]
o~
=
o o -
T T T T 1 T \ T T T
0 2 4 6 8 10 0 2 4 6 8 10
Time (s) Time (s)
(a) Application from figure 7.2a. (b) Application from figure 7.2b.

Figure 7.6: Memory footprints of the hypothetical programs from figure 7.2
when using global hysteresis. Solid lines represent the memory allocated by the
application while dashed lines represent the memory actually used.

The exact weights to be used in determining the global padding and trim
thresholds from application memory usage, as well as the specifics of when
they are calculated and how arenas are resized depend on developer preference,
application domain and the target system. All of these are therefore left to the
implementation.

The above makes clear that the underlying mechanism by which global hysteresis
aims to eliminate the arena imbalance issue is allowing for much more free top
space in individual arenas than traditional hysteresis-based approaches, as long
as the memory usage of said arenas is small with respect to the memory usage
of the entire application. When this is not the case, global hysteresis behaves
much like hysteresis-based arenas. To demonstrate this concretely, figure 7.6
shows the simulated memory footprints of the applications introduced in figure
7.2 if their memory allocators were to be based on global hysteresis rather than
hysteresis-based arenas. The global top padding and trim thresholds were set
to 5% and 10%, respectively.

Figure 7.6a shows promising results. Because the variance in arena 1 only
has a minor effect on application memory usage, it is hardly ever resized. In
total, the application only induces 3 arena resizing operations using global
hysteresis, compared to 34 using hysteresis-based arenas. Figure 7.6b on the
other hand shows that global hysteresis is also capable of handling scenarios in

IMPLEMENTING GLOBAL HYSTERESIS 151

which individual arenas do significantly affect application memory usage. In
this example, global hysteresis performs nearly identically to hysteresis-based
arenas with a realistic hysteresis threshold. Namely, if the same threshold
used in figure 7.2a were to be applied to figure 7.2b, hysteresis-based arenas
would induce 170 arena resizing operations for this workload, albeit resulting in
excellent memory efficiency. Global hysteresis on the other hand induces 198
arena resizing operations, achieving comparable memory efficiency. Thus, with
respect to hysteresis-based arenas, global hysteresis effectively mitigates the
arena imbalance issue at the cost of some thread contention.

7.5 Implementing Global Hysteresis

Analogously to chapter 6, this chapter aims to exceed purely theoretical
contributions through providing a functional prototype implementation of
the concept it proposes. As such, this section introduces ptlbmalloc2: an
implementation of global hysteresis developed as an open-source library! on top
of ptmalloc2. The latter was chosen as a baseline because it is a widely used,
open source and well documented memory allocator based on hysteresis-based
arenas. As stated in §7.4, this incremental approach allows ptlbmalloc2 to make
an immediate real-world impact by allowing existing projects to easily integrate
it into their codebase. Appendix B lists all of the ptlbmalloc2 source code.

Implementing any library as an extension to existing code requires intimate
knowledge of the latter so that the original and novel components interact
harmoniously. Therefore, this section first provides an overview of the
implementation of ptmalloc2, after which it details how specific aspects thereof
were altered in order to implement global hysteresis, giving rise to ptlbmalloc2.

7.5.1 Ptmalloc2

Figure 7.7 provides a simplified schematic overview of the workings of the
malloc and free functions of ptmalloc2, which are the main routines used to
respectively allocate and free memory [179].

Ptmalloc2 most often allocates a dedicated arena for each application thread.
These arenas may consist of multiple contiguous memory regions, somewhat
confusingly called heaps. As figure 7.7a shows, large malloc calls are served
directly using the mmap system call. For smaller chunks, a variety of bins is
traversed in search of a suitable previously freed block. If this search is fruitless,

'https://github.com/StijnSchildermans/t1lb_shootdown_mitigation.git

https://github.com/StijnSchildermans/tlb_shootdown_mitigation.git

152 RUNTIME AMELIORATION: PTLBMALLOC2

malloc free

Regular size Huge size Regular size Huge size

Free list Free list

Update
thresholds

Main arena Other arenas Main arena Other arenas

mprotect madvise

(a) Malloc. (b) Free.

munmap

Figure 7.7: Simplified schematic overview of the main routines of ptmalloc2.

the block is allocated from the top of the arena, if sufficient free space is available.
If not, the arena is expanded first. For the main arena, this expansion happens
through the brk system call. For other arenas, the process is slightly more
complicated. If the current heap can still be expanded, mprotect is used to
mark the pages just above the current top of the arena as readable and writable,
which allows the application to access them. If not, a new heap is added using
mmap, with all page permissions disabled before calling mprotect to make part
of it usable. In this way, newly allocated heaps are not backed by physical
memory before they are actually needed by the application. Only in case of the
main arena, top padding is included upon expansion.

Figure 7.7b shows how ptmalloc2 handles free calls. Namely, when the freed
chunk is sufficiently large, it is immediately returned to the system using munmap
and the hysteresis thresholds are updated based on the size of the chunk. Smaller
chunks are added to one of the free lists. Next, the arena is trimmed if its top
space exceeds the trim threshold, leaving a small amount of padding. Again,
for the main arena this process differs from the other arenas. The former is
trimmed using brk, while for the latter madvise (MADV_DONTNEED) is used. If
this madvise call transgresses heap boundaries, the topmost one (which now
no longer holds any allocated chunks) is returned to the system using munmap.

IMPLEMENTING GLOBAL HYSTERESIS 153

Note that brk, munmap, mprotect and madvise all induce TLB shootdowns, as
described in §7.1. This causes the overhead associated with the arena imbalance
issue described in §7.3.1.

Ptmalloc? is able to function as described above by using several data structures
to track the state of chunks, heaps and arenas. Conveniently, the addresses
of these data structures may be derived from the pointer value returned by
malloc. Effectively, knowing any chunk pointer thus allows for querying the
state of the entire memory space. Another interesting side node is the fact
that one is able to tune ptmalloc2’s behavior at runtime through the mallopt
routine. This function grants control over padding and trim thresholds, the
minimum size of chunks to be allocated using mmap, etc. [208].

7.5.2 Ptlbmalloc2

The above has made clear that ptmalloc2 provides all the tools necessary to
implement ptlbmalloc2 as envisioned above; a library on top of ptmalloc2 which
can be linked into any existing application. It is even possible to recycle much
of ptmalloc2’s code using the following approach:

1. Define ptlbmalloc2’s API as an identical copy of that of ptmalloc2 and
perform the necessary linker configuration so that any application calls to
ptmalloc2 routines now point to ptlbmalloc2;

2. Disable ptmalloc2’s heap trimming and top padding upon the first call to
ptlbmalloc2’s routines using mallopt. Ptmalloc2 is now technically no
longer using hysteresis-based arenas;

3. Forward any call to ptlbmalloc2 internally to ptmalloc2 and obtain a
pointer to the latter’s internal data structures from either the return value
of the forwarded call (malloc, calloc, etc.) or the parameters passed by
the caller (free, realloc, etc.);

4. Using the obtained pointer, determine the state of the entire application
memory space whenever prudent;

5. Apply the principles of global hysteresis on the obtained data to determine
appropriate padding and trimming thresholds;

6. When necessary, resize arenas using the appropriate system call and update
ptmalloc2’s internal data structures accordingly using the previously
obtained pointer.

154 RUNTIME AMELIORATION: PTLBMALLOC2

Memory consumption | Base threshold
0B - 500 kB 100 kB

500 kB - 1 MB 50%
1MB-1GB | 10% + 400 kB

1GB - o0 100 MB

Table 7.1: Base thresholds used by ptlbmalloc2 in function of total application
memory consumption.

The above constitutes the basic implementation of ptlbmalloc2. The only
remaining question is how exactly ptlbmalloc2 approaches the aforementioned
‘principles of global hysteresis’. Specifically, three aspects thereof warrant
detailed explanation: threshold calculation, claiming memory and trimming
arenas. The remainder of this section elaborates on each of these in turn.

Threshold Calculation

In order to efficiently calculate global padding and trimming thresholds,
ptlbmalloc2 maintains an array containing pointers to all of ptmalloc2’s arena
data structures. On each malloc call, the arena of the newly allocated chunk
is added to this data structure, if it was not already present. On each free
call, ptlbmalloc2 calls ptmalloc2’s free routine and checks if this has changed
the size of the arena the chunk belonged to significantly. If so, it calculates
the cumulative memory usage of all arenas by iterating over its array of arena
pointers. Note that this requires briefly locking each arena to query its metadata.
Based on the obtained data, ptlbmalloc2 heuristically determines a base global
threshold value. Table 7.1 shows the precise magnitude of this base threshold
in function of application memory consumption.

Besides application memory usage, §7.4 prescribes taking the cost of TLB
shootdowns into account when determining thresholds. Because this cost is not
easily determined, the author judged that for a proof-of-concept implementation
of global hysteresis a limited implementation of this aspect suffices. Specifically,
ptlbmalloc2 only takes the amount of CPUs currently used by the application
into account. It does this by programming a periodic interrupt at a rate of 1 Hz
performing the times system call, which yields the total CPU time used by the
program. Based on this, ptlbmalloc2 determines the average number of CPUs
used in the past second. The base threshold from table 7.1 is then multiplied by
a heuristically determined factor of 1 + %. This yields the global trimming
threshold used by ptlbmalloc2. The global top padding threshold is set to 25%

of this value.

EVALUATION 155

Claiming Memory

In contrast to ptmalloc2, ptlbmalloc2 preemptively applies top padding to
all arenas. It determines the amount thereof by dividing the global padding
threshold by the number of arenas. After every malloc call, ptlbmalloc2
determines if the usable top space of the arena is at least 25% of this value. If
not and the heap can still be expanded, it calls mprotect to set the desired
top padding. Finally, it updates ptmalloc2’s internal data structures to be
consistent with these changes.

Trimming Arenas

Whenever ptlbmalloc2 iterates over arenas to determine hysteresis thresholds,
it also calculates the cumulative free top space. If this value exceeds the global
trim threshold, it trims all arenas who’s top space exceeds twice the per-arena
top padding threshold so that the free top space of that arena equals said
per-arena top padding threshold. In keeping with ptmalloc2, ptlbmalloc2 trims
the main arena using the built-in glibc function malloc_trim (which employs
brk internally) and all other arenas using madvise.

7.6 Evaluation

Much like the main purpose of implementing paratick was providing evidence
for the efficacy of virtual scheduler ticks in chapter 6, within the context of this
dissertation the main purpose of implementing ptlbmalloc2 is assessment of the
efficacy of global hysteresis. Following the template of chapter 6, this section
presents an evaluation of ptlbmalloc2 based on controlled experiments set up
according to the prescriptions provided in §3.3. The employed OS is Ubuntu
20.04 and the assessed workloads are the PARSEC 3.0 benchmarks.

Because ptlbmalloc2 is based on and integrated tightly with ptmalloc2, all results
shown in this section represent the performance of ptlbmalloc2 relative to that
of ptmalloc2. A large body of existing work in turn compares the latter to other
memory allocators, facilitating extrapolation of the results presented here [209,
201]. Note that much like §6.5, this section does not present results in terms
of dn,- and dn; since a more direct comparison to existing technologies provides
better insight into the performance implications of ptlbmalloc2. Moreover, as
§7.2 has indicated that ptlbmalloc2 provides benefits to workloads in native
and virtualized scenarios alike, it is prudent to employ virtualization-agnostic
performance metrics for its evaluation. Concretely, the following were chosen:

156 RUNTIME AMELIORATION: PTLBMALLOC2

e TLB shootdowns: This measure allows for evaluating to what extent
ptlbmalloc2 achieves its principal goal, namely eliminating excessive TLB
shootdown overhead via mitigating the arena imbalance issue;

¢ Memory efficiency: Mitigating the arena imbalance issue implies
reducing the number of arena resizing operations in certain scenarios, which
in turn implies that memory efficiency may suffer in favor of improved
performance. Because ptlbmalloc2 was carefully designed to minimally
affect other aspects of ptmalloc2, reduced memory efficiency compared
to ptmalloc2 is intuitively its main potential negative side effect, which
warrants careful assessment thereof;

e System throughput: This metric allows for assessing to what extent any
reduction in TLB shootdowns translates to improved system performance.
Refer to §6.5 for a detailed description of the implications of system
throughput and its measurement;

e Application execution time: This dissertation has by now made
amply clear that in the case of multithreaded applications, improved
system throughput does not necessarily translate to improved application
performance. Therefore, application execution time is measured
independently. Again refer to §6.5 for a more detailed motivation for
employing this metric.

The remainder of this section evaluates ptlbmalloc2 step by step according to
the prescription laid out above.

7.6.1 Conceptual Effectiveness

Figure 7.8 displays the conceptual effectiveness of ptlbmalloc2 in terms of
TLB shootdowns. The experiments have been conducted in the absence of
virtualization, using 16 CPUs on a single NUMA node. Note that because of
the large variance in results, this figure employs a logarithmic scale.

Figure 7.8 indicates that for most benchmarks, the number of TLB shootdowns
is low, even when using ptmalloc2. This is to be expected, since—as detailed in
§7.3.1—only specific memory allocation patterns induce the arena imbalance
issue. Dedup and Vips likely do exhibit such a pattern, given that these
benchmarks incur vastly more TLB shootdowns than their peers in figure 7.8.
Analysis of the system calls these benchmarks perform reveals that they induce
vast numbers of madvise (MADV_DONTNEED) calls, which is as stated in §7.5.1
the main system call ptmalloc2 uses to trim arenas.

EVALUATION 157

version

[glibc

. ptlbmalloc2

" =
L x %) % a2

S § 8§ 2 E = g £ 8 3 5 <
S & 2 2 @ © £ E€ ®© © = 8 &
7] = S =] = < = £ Q = N
& S < 0] =} (7] [} o > @ S S
s ¢ § © & ¥ =- ¢ ©® § =

© ° =] w < D)

kel = 3

benchmark

Figure 7.8: Comparison of TLB shootdowns for the PARSEC benchmarks using
ptmalloc2 and ptlbmalloc2; run natively with 16 CPUs on 1 socket.

Pertaining to the effectiveness of ptlbmalloc2, figure 7.8 is highly optimistic.
Ptlbmalloc2 appears to eliminate almost all TLB shootdowns for the problematic
benchmarks without significantly affecting others. This indicates that
ptlbmalloc2 achieves its main goal and by extension that global hysteresis
is a viable concept.

7.6.2 Side Effects

While §7.6.1 indicates that ptlbmalloc2 is successful at mitigating the arena
imbalance issue, it is still unclear whether this comes at the cost of undesirable
side effects such as increased resource usage or reduced memory efficiency. To
gain insight into this, we next analyze the metrics other than TLB shootdowns
outlined in the beginning of this section, which are three of the most important
memory allocator performance measures. In the interest of completeness, this
analysis includes system configurations with CPU counts varying from 4 to 64,
spread over 1 to 4 NUMA nodes. It is limited to native settings only, since §3.2.7
implies that ptlbmalloc2’s performance benefits are likely higher in virtualized
scenarios due to the various forms of virtualization overhead TLB shootdowns
induce. Therefore, potential negative side effects of ptlbmalloc2 are likely more
pronounced in a native setting. Figure 7.9 shows the results at the extremes
of the spectrum of studied system settings. Other configurations reliably yield
results in between these values.

RUNTIME AMELIORATION: PTLBMALLOC2

158

measurement
. avg. memory

. cycles
. time

e —
,
—|||||||||||||

| ——

messssessacaas

92X
sdin
suondems
Jaisnjoweans
aJenhel
aulwbauy
orewluepiny
FEYIEN]
wisaoe}
dnpap
[eauued
yoenApoq

sajoyosyoe|q

) 4 CPUs/threads, 1 socket

(a

measurement
. avg. memory

time

92X
sdin
suondems
Jaisnjoweans
aoeifel
aulwbauy
arewluepinjy
10119}
wisaoe}
dnpap
[eauued
oenkpog

sajoyosyoe|q

(b) 64 CPUs/threads, 4 sockets

Figure 7.9: Average memory usage, execution time and cycles for the PARSEC

benchmarks using ptlbmalloc2 relative to ptmalloc2 in various scenarios.

EVALUATION 159

In general, the results in figure 7.9 align with expectations. For most benchmarks,
ptlbmalloc2 performs very comparably to ptmalloc2. No benchmark suffers
a consistent significant performance degradation across system configurations
using ptlbmalloc2. Moreover, careful analysis of the few benchmarks exhibiting
a mild slowdown using ptlbmalloc2 in figure 7.9 reveals that the main cause of
this performance degradation is increased thread contention for arenas. This
occurs partly by design as explained in §7.4 and partly because ptlbmalloc2
is built on top of glibc, rather than as an integrated component thereof. This
forces ptlbmalloc2 to contend with ptmalloc2 code for arena locks. While this
external approach was a deliberate design decision, direct integration with glibc
would likely eliminate the majority of the performance degradation observed in
figure 7.9 at the cost of reduced flexibility.

Figure 7.9b indicates that both Dedup and Vips, which are the benchmarks
most likely to benefit significantly from global hysteresis according to figure
7.8, indeed exhibit greatly improved performance using ptlbmalloc2. In figure
7.9a however, Vips requires slightly more cycles and time when employing
ptlbmalloc2, while strangely memory consumption is 5% lower. This is possible
when a benchmark allocates many large chunks. Namely, in ptmalloc2, the trim
threshold continues to increase as the mmap threshold increases. Ptlbmalloc2
on the other hand bases its thresholds on the application state and may shrink
them accordingly. This means that in circumstances of frequent coarse memory
allocations, ptlbmalloc2 can be more memory efficient than glibc at a minor
cost in performance.

Curiously, Fluidanimate consistently shows a performance improvement of +
5% using ptlbmalloc2 despite figure 7.8 not indicating that this benchmark
suffers from the arena imbalance issue. Closer analysis reveals that that this
is not a direct consequence of the design considerations of ptlbmalloc2, as the
number of system calls performed by this benchmark is identical for ptlbmalloc2
and ptmalloc2. Rather, improved cache performance causes this result. Because
cache behavior is very complicated, not a focus of ptlbmalloc2’s design and out
of scope of this dissertation, it is not fitting to derive any conclusions from this
finding.

Despite the design of global hysteresis often allowing for significantly larger
hysteresis thresholds for individual arenas than traditional hysteresis-based
arenas, figure 7.9 indicates that ptlbmalloc2’s memory efficiency is comparable
to that of ptmalloc2. Only Bodytrack and Swaptions show a notable increase
in memory usage, which never exceeds 15%. However, analysis of the memory
profile of these benchmarks brings to light that they consume very little memory
(30 MB for Bodytrack and 4 MB for Swaptions) to begin with. These results
are therefore certainly acceptable.

160 RUNTIME AMELIORATION: PTLBMALLOC2

7.6.3 Performance

Having established that ptlbmalloc2 mitigates the arena imbalance issue without
introducing significant side effects, the performance improvement it yields over
traditional techniques may be quantified. In keeping with previous chapters, this
‘performance improvement’ is expressed here in terms of both system throughput
and application execution time.

Because both metrics of interest here have already been assessed for native
scenarios in §7.6.2, this section only provides a detailed breakdown thereof
in virtualized settings. Apart from the presence of virtualization, all assessed
system configurations are identical to those assessed in §7.6.2. Figure 7.10
summarizes the results of this evaluation analogously to figure 7.9.

As expected, figure 7.10 shows that the performance improvements yielded by
ptlbmalloc2 are greater in virtualized scenarios, in particular for the benchmarks
suffering from the arena imbalance issue. All other benchmarks perform nearly
identically using either ptlbmalloc2 or ptmalloc2.

Much like in figure 7.9, several outliers for which ptlbmalloc2 unexpectedly
performs notably better than ptmalloc2 may be observed in figure 7.10 (e.g.
Canneal in figure 7.10b). Further investigation into these outliers reveals that
certain benchmarks induce many TLB shootdowns only in specific circumstances.
This underlines that memory allocator performance is highly susceptible to
platform specifics and that these platform specifics may affect different allocators
differently. This in turn implies that limited relative performance variations
between ptlbmalloc2 and ptmalloc2 in either direction are unavoidable.

Distilling the results from figures 7.9 and 7.10 shows that ptlbmalloc2 greatly
improves performance for benchmarks suffering from the arena imbalance issue
relative to ptmalloc2. Most other benchmarks behave nearly identically for
both of these allocators, with minor exceptions in both directions. To gain a
conclusive insight into the performance of ptlbmalloc2, table 7.2 summarizes
the performance of ptlbmalloc2 relative to ptmalloc2 as the aggregate of all
PARSEC benchmarks for each of the studied system configurations.

Table 7.2 confirms that on average, ptlbmalloc2 almost always outperforms
ptmalloc2 for computation-intensive multithreaded workloads. This performance
improvement rises drastically with CPU count. In virtualized environments,
the impact is even greater. To the surprise of the author, NUMA has only a
limited effect. Nevertheless, the average of all results in table 7.2 is 3% for both
throughput and execution time. Ptlbmalloc2 thus boasts tangible performance
improvements in the aggregate, with benchmarks suffering from the arena
imbalance issue benefiting greatly, while others are not notably affected.

161

EVALUATION

measurement

e

92X
sdia
suondems
Jaisnjoweans
aoenhel
aulwbauy
orewiuepinyy
12118}
wisaoe}
dnpap
[eauued
yoenApoq

sajoyosyae|q

) 4 CPUs/threads, 1 socket

(a

measurement

e

ESSSRSERTENEE

9¢X
sdin
suondems
Jaisnjoweans
aoenhel
aulwbaiy
orewluepiny
JEYIEN]
wisaoe}
dnpap
[eauued
yoelApoq

sajoyosyae|q

(b) 64 CPUs/threads, 4 sockets

Figure 7.10: Average execution time and cycles for the PARSEC benchmarks

using ptlbmalloc2 relative to ptmalloc2 in various virtualized scenarios.

162 RUNTIME AMELIORATION: PTLBMALLOC2

Table 7.2: Average performance improvement of ptlbmalloc2 accross all PARSEC
benchmarks in all tested scenarios.

Environment | CPUs | Sockets | Cycles | Time
Native 4 1 0% | -1%
Native 4 4 +1% | -1%

| Native | 6] 1| 1% | -2% |
Native 16 4 2% -4%

| Native | 64 | 41 5% | -4% |
Virtualized 4 1 1% | -1%
Virtualized 4 4 2% | -1%

| Virtualized | 6| 1| 4% | -4% |
Virtualized 16 4 -4% | -3%

| Virtualized | ¢ 64 | 41 1% | -5% |

Table 7.3: Performance comparison between ptlbmalloc2 and related
optimizations reducing TLB shootdowns.

Study \ Level \ Cycles \ Time
Native

210 hardware / -5%

211 hardware | -5% /

[212] system / -2%

[196] system / +1%
ptlbmalloc2 | runtime | -1% | -2%

Virtualized

[117] system / -2%

ptlbmalloc2 | runtime | -4% | -3%

7.7 Related Work

Most, closely related to the work presented in this chapter is literature directly
addressing TLB performance, which is plentiful. However, most studies focus
on increasing TLB hit rate or reducing TLB miss latency without explicitly
addressing TLB shootdowns [176]. Nonetheless, some work directly targeting
the latter does exist. Table 7.3 lists all of said work known to the author,
providing the level of the system stack at which it was implemented and the
performance gains it achieves. The table includes the same information for
ptlbmalloc2 for reference.

CONCLUSION 163

Even though none of the related work in table 7.3 provides performance figures
for both CPU cycles and execution time (or comparable metrics), some clear
patterns emerge. Firstly, all of the related solutions to excessive TLB shootdown
overhead were implemented at hardware or system software level. This limits
their applicability since hardware-based solutions are very costly to implement
and system-based ones are limited in their potential for optimization due to
generality concerns. Secondly, ptlbmalloc2 achieves comparable performance
gains to related solutions at system level. While techniques at hardware level
do perform better overall, their widespread adoption would take many years
due to the aforementioned costs involved.

More indirectly linked to this chapter—but therefore not less relevant—are
ongoing efforts to develop massively scalable OSs [213, 214]. Such systems view
every CPU as a discrete entity running its own microkernel. Any communication
between CPUs is explicit. This reduces or even eliminates the need for OS-
managed TLB consistency, among many other benefits. Although experimental
implementations of these systems exist, there are no signs that any of them are
to be adopted on a large scale in the foreseeable future.

Finally, memory allocation remains a vivid research field. Recent attempts
to improve on the strengths and mitigate the weaknesses of existing memory
allocators are ubiquitous, e.g. with regard to synchronization mechanisms [215]
or data locality [216]. These efforts are largely orthogonal to the work presented
in this chapter.

7.8 Conclusion

Due to several evolutions in the nature of contemporary computing platforms,
TLB shootdown cost is steadily rising. Since for multithreaded applications
many of these shootdowns are caused by memory management at application
level, optimizing memory allocators is a promising method to address this
issue. Existing allocators either exhibit poor TLB performance due to the
arena imbalance issue or poor memory efficiency due to a focus on performance.
This chapter explored the potential of explicitly focussing on the trade-off
between (TLB) scalability and memory efficiency, resulting in a memory allocator
design concept and a prototype implementation thereof exhibiting excellent
performance in both of these metrics with minimal side effects: respectively
global hysteresis and ptlbmalloc2.

While global hysteresis achieves its objectives, it is tightly bound to a specific
legacy allocator design concept, namely hysteresis-based arenas. The core issue
global hysteresis addresses is however much broader: the trade-off between

164 RUNTIME AMELIORATION: PTLBMALLOC2

memory efficiency and performance. Perhaps the most important conclusion
of this chapter is that memory allocators in general must reconsider how they
interpret the metric 'performance’ and start taking into account traditionally
insignificant aspects thereof—such as TLB shootdowns—in response to the
evolution of the systems their allocators are deployed on.

7.8.1 Personal Contriburion

This chapter entirely consists of original work by the author of this dissertation.
As with all other chapters however, his supervisors provided invaluable guidance
and feedback throughout.

7.8.2 Future Work

This chapter provides several incentives for future work:

o As stated above, global hysteresis is but one possible angle from which to
approach the issue of balancing memory efficiency and TLB performance.
Nothing in this chapter suggests that the opposite avenue, namely
improving memory efficiency for any of the memory allocation paradigms
exhibiting low TLB shootdown overhead (see §7.3) is not feasible. How
to develop an allocator from that perspective and how such an allocator
would compare to ptlbmalloc2 are interesting open questions;

o While ptlbmalloc2’s implementation as a library on top of glibc allows for
rapid dissemination, §7.6.2 noted that this has negative performance
implications due to contention between ptmalloc2 and ptlbmalloc2.
Therefore, implementing global hysteresis as an integrated component of
glibc would likely further improve its performance gains over hysteresis-
based arenas and is therefore an interesting direction for future work;

e §7.6.2 noted that ptlbmalloc2 appears to improve cache performance
for some workloads. The mechanisms behind this improvement and
whether it is coincidental or systematic are however unknown. Given
that this observation potentially implies an unintended additional asset
of ptlbmalloc2, more thoroughly analyzing the latter’s effects on cache
behavior is of great interest.

Chapter 8

Application Amelioration:
Guidelines to Developers

This chapter was previously published as:

S. Schildermans and K. Aerts. “Towards High-Level Software Approaches
to Reduce Virtualization Overhead for Parallel Applications”. In: 2018
IEEE International Conference on Cloud Computing Technology and Science
(CloudCom,). IEEE. 2018, pp. 193-197

After having presented ameliorations to the virtualization process of multi-
threaded applications at system level in chapter 6 and runtime environment
level in chapter 7, this chapter targets the highest possible level of abstraction,
namely application source code. Indeed, chapter 5 suggested multiple times
that this is a promising, yet understudied angle from which to approach this
issue and even provided an indication of its potential in §5.1.6.

While system software controls how application requests are processed, the
application itself determines the number and nature of these requests to begin
with. Therefore, almost all virtualization overhead may be prevented through
altering application code so that it avoids operations likely to induce significant
amounts of said overhead. However, doing so is not trivial due to the complexity
of modern virtualization technologies and the unique nature of each application.
The principal goal of this chapter is to aid developers in this process through
formulating a set of guidelines and best practices.

165

166 APPLICATION AMELIORATION: GUIDELINES TO DEVELOPERS

Chapters 3 and 4 have provided a wealth of information regarding the various
forms of virtualization overhead multithreaded applications are susceptible to,
as well as the principal causes thereof. However, these chapters often omitted
linking said causes directly to application source code. Therefore, the first
contribution of this chapter is to detail exactly how certain application source
code triggers the system-level phenomena inducing virtualization overhead
discussed earlier in this dissertation. Once this link has been clearly established,
it proceeds to formulate the aforementioned set of guidelines. Finally, this
chapter provides evidence of the efficacy of the guidelines it proposes by applying
them to one of the benchmarks shown in chapter 4 to suffer the most in a
virtualized environment, namely the Dedup benchmark from the PARSEC
benchmark suite. It dubs this implementation 'NODedup’; short for 'No-
Overhead Dedup’.

While this chapter—like most of the chapters preceeding it—is based on
published and peer-reviewed original work by the author of this dissertation,
most of the information it provides was not included in said publication. The
reason for this is that that publication dates back to the early stages of the
Ph. D. project documented here and was limited to providing evidence for the
viability of the application-level approach to addressing virtualization overhead
alluded to so frequently in chapter 5. It formulated some initial insights
regarding the link between application code and virtualization overhead and
documented and evaluated NODedup. Through the years of work that led to
this dissertation however, the author’s knowledge concerning this topic steadily
expanded and crystallized. While time constraints have prevented this additional
knowledge from being published in its own right, it is included in this chapter
so that it may reach individuals interested in such information regardless. As
a result, this chapter in essence comprises a compilation of insights regarding
mitigating virtualization overhead through intelligent application design the
author obtained while working on the Ph. D. project this manuscript documents,
reinforced with peer-reviewed and published evidence.

Main Findings & Contributions

o This chapter clarifies the link between application source code and the
different forms of virtualization overhead for multithreaded applications;

e This chapter introduces a set of guidelines and best practices aiding
software developers in designing their applications in such a way that they
minimize virtualization overhead;

o This chapter provides evidence for the efficacy of the guidelines it proposes.

BACKGROUND: THE DEDUP BENCHMARK 167

8.1 Background: The Dedup Benchmark

From the introduction to this chapter it is clear that the Dedup benchmark
from the PARSEC benchmark suite will play a central role in validating the
guidelines it proposes. Even though this workload has been featured throughout
this dissertation, none of the previous chapters detailed its inner workings, which
is nonetheless paramount in order to implement NODedup and as such perform
the validation mentioned above. This section rectifies this by elaborating on
the anatomy of this benchmark.

The Dedup benchmark featured in PARSEC is an implementation of the well-
known data deduplication algorithm written in the C programming language.
Data deduplication in turn is a data compression algorithm mostly popular for
storing large data sets likely to contain a significant amount of repetition, such
as periodic system backups and—highly fitting for this dissertation—stores of
VM images in cloud environments [217]. Tt consists of the following steps:

1. Read the input file from disk and coarsely divide it into chunks;
2. Refine each chunk into smaller chunks;
3. For each chunk, identify duplicates using a global hash table;

4. Compress all first occurances of chunks and replace any duplicates by a
reference to their first occurance;

5. Write the output to disk.

The Dedup benchmark implements the above algorithm as a parallel pipeline
based on pthreads. As soon as chunks are created, they pass through the
subsequent pipeline stages in no particular order, before being reordered during
the final pipeline stage and written to disk. Additionally, Dedup creates multiple
threads to handle pipeline stages 2, 3 and 4. The developers of the PARSEC
benchmark suite recommend each of these stages to be assigned at least as many
threads as there are logical CPUs available to the system, so that the scheduler
can accurately balance CPU time between them [124]. Dedup employs ring
buffers [218] between all pipeline stages to store intermediary results. Access to
these buffers is serialized using several blocking synchronization constructs.

168 APPLICATION AMELIORATION: GUIDELINES TO DEVELOPERS

8.2 Application Code & Virtualization Overhead

To be able to formulate accurate guidelines regarding writing multithreaded
application code inducing minimal virtualization overhead, deeply understanding
the connection between said code and overhead is paramount. This section
aims to provide such an understanding, primarily through a (non-exhaustive)
series of examples. It follows the same structure as chapter 5, addressing each of
the high-level causes of virtualization overhead for multithreaded applications
identified in chapter 4 independently.

8.2.1 Blocking Synchronization

§4.2 indicates that blocking synchronization is with little doubt the most common
cause of virtualization overhead for multithreaded applications; not only because
of the many aspects thereof that require special care in a virtualized setting
but also because of how central this mechanism is to multithreading. Namely,
multithreading is hardly possible without at least some coordination mechanism
enabling threads to share data harmoniously. Because blocking synchronization
is for most use cases the most efficient of these mechanisms, many multithreaded
applications rely heavily on it [219].

Blocking synchronization is typically implemented at OS level and exposed to
applications through system calls (e.g. futex in Linux [175]). While the API
facing user space is most often very simple, programming languages have built
plethora of synchronization primitives on top. Because these primitives vary
wildly in level of abstraction, working principles and usage, it is worth exploring
the most prevalent examples thereof. This is done below.

Mutex

The simplest and most explicit implementation of blocking synchronization is
the mutex [220]. It is largely a direct extension of the system level blocking
synchronization API: an atomic boolean variable which threads must explicitly
lock and unlock when respectively entering and exiting a critical section through
dedicated library calls. When a thread attempts to lock an already locked
mutex, it blocks. When the thread holding the lock releases it, the OS wakes
the blocked thread, which may now claim the lock and enter the critical section.

Many low-level imperative programming languages implement mutexes. Listing
8.1 provides an example of the usage of these primitives in C.

APPLICATION CODE & VIRTUALIZATION OVERHEAD 169

#include <pthread.h>;
pthread_ mutex_t mutex;

void* work(void* arg)

{

pthread mutex lock(&mutex) ;
//CRITICAL SECTION
pthread__mutex_ unlock(&mutex) ;

}

int main ()

{
pthread mutex_init(&mutex, NULL) ;
work (NULL) ;

return O0;

Listing 8.1: Mutex example in C.

Listing 8.1 makes it clear that mutexes are easily recognizable due to the
explicit library calls they require to denote every critical section. This facilitates
identification of source code where their use may be problematic in a virtualized
context.

Counting Semaphore

Counting semaphores constitute a more flexible alternative to mutexes. Rather
than a boolean variable, they employ a counter. The programmer may initialize
this counter to an arbitrary positive integer value and threads may atomically
increment or decrement it at any time [221]. When the counter reaches zero,
any threads attempting to decrement it further block until some other thread
increments the counter again.

Counting semaphores are useful for protecting e.g. limited hardware resources
to ensure the system is not overwhelmed. Listing 8.2 shows an example of
typical semaphore usage in C.

Listing 8.2 indicates that using semaphores is almost identical to using mutexes,
which makes them equally easy to identify. Note however that semaphores
are by nature slightly less likely to induce problematic levels of virtualization
overhead than mutexes, since they often allow for multiple threads to acquire a
protected resource before they start blocking any.

170 APPLICATION AMELIORATION: GUIDELINES TO DEVELOPERS

#include <semaphore . h>
sem_t semaphore;

void* work(void* arg)

{

sem_ wait(&semaphore) ;
//PROTECTED RESOURCE ACCESS
sem__post(&semaphore) ;

}

int main ()

{
//Initialize a semaphore which at most 5 threads may hold
simultaneously .
sem__init(&semaphore, 0, 5);
work (NULL) ;

return O0;

Listing 8.2: Counting semaphore example in C.

Condition Variable

Condition variables allow threads to wait for an event by blocking until another
thread determines that said event has occurred [222]. In technical terms, a
condition variable resembles a queue of blocked threads, which any thread
may join at its discretion by calling a specified library function. Any other
thread may at any time signal one or more threads in the queue to resume
execution through another library function. Listing 8.3 displays an example of
this mechanism in C.

#include <pthread.h>

pthread_t worker;
pthread__mutex_t lock;
pthread_cond_t cond;

void* work(voidx arg)

{
pthread__mutex_lock(&lock);
pthread_cond_ wait(&cond, &lock);
pthread mutex_ unlock(&lock);

}

APPLICATION CODE & VIRTUALIZATION OVERHEAD 171

int main ()

{
pthread_mutex_init(&lock , NULL);

pthread_cond_ init(&cond, NULL);
pthread_create(&worker, NULL, work, NULL);

/ /EVENT OCCURED
pthread_mutex_lock(&lock);
pthread_cond_ broadcast(&cond) ;
pthread mutex unlock(&lock);

return O0;

Listing 8.3: Condition variable example in C.

In C, condition variables are significantly more complicated in usage than
the previously discussed synchronization mechanisms, as listing 8.3 indicates.
It is also clear that condition variables are by nature highly conducive to
virtualization overhead because—in contrast to mutexes and semaphores—when
a thread calls to wait for a condition variable, it is guaranteed to block (and
thus induce overhead). Moreover, condition variables require the use of mutexes
internally, further increasing their cost in a virtualized environment. On a
positive note though, this source of virtualization overhead is—even more so
than mutexes and semaphores—easily identifiable due to its verbosity.

Monitor

Many modern programming languages embed thread safety directly into the
most fundamental language constructs in the form of monitors. In abstract
terms, a monitor is a serializing structure encapsulating some resource and
coordinating thread access to that resource [223]. It is usually implemented
as a combination of mutexes and condition variables. Most contemporary
object-oriented programming languages implicitly provide each object with such
a monitor. However, for performance reasons, this monitor is usually ignored
unless the programmer explicitly requests not to do so by means of adding a
specific keyword to any class member declaration (e.g. synchronized in Java
[224] or lock in C# [225]). Some languages (e.g. Python) go even further and
encapsulate the entire runtime environment in a monitor, effectively implicitly
serializing the entire program. Listing 8.4 shows an example of monitor usage
in Java.

172 APPLICATION AMELIORATION: GUIDELINES TO DEVELOPERS

public class BankAccount{
private int balance;

public static synchronized void withdraw(int amount){
balance —= amount;
}

}

Listing 8.4: Example of a Java class using its monitor.

From listing 8.4 it is clear that monitors are much less explicit than the
previously discussed synchronization mechanisms. For instance, it is unclear
from listing 8.4 exactly what the monitor protects: The method and its local
variables? All the objects the method references? The entire class the method
belongs to? It is impossible to answer this question without deep knowledge
of the programming language used. This makes pinpointing the origin of
virtualization overhead induced by these monitors challenging. Moreover,
because of their high level of abstraction, monitors—as implemented in most
mainstream programming languages—tend to be overprotective. While the
previously described synchronization mechanisms allow fine-grained control over
critical sections, monitors evince method- object- or even global granularity.
Therefore, they tend to block threads and thus induce virtualization overhead
(much) more often than semantically necessary.

Implicit Synchronization

Several alternative programming paradigms which have gained much traction
in recent years—e.g. functional programming [226] and reactive programming
[227]—allow for a declarative approach to multithreading. This quite literally
means that programmers simply declare which sections of their code may be
executed concurrently by using dedicated syntax. The application runtime
environment may then distribute the work that code describes over any
number of threads as it sees fit, performing all aspects of thread management
and coordination entirely transparently [228]. In some cases, the runtime
environment may even fully implicitly identify code segments that lend
themselves to parallelization—and execute these segments accordingly. The
most prominent example of this implicit multithreading is MatLab [229].

Even though to many developers semi- or fully implicit parallelism undoubtedly
sounds appealing, the convenience it brings inherently comes at a hefty price:
users must relinquish control over a large part of the application’s operational
semantics to the runtime environment. While in most cases the latter is

APPLICATION CODE & VIRTUALIZATION OVERHEAD 173

adequately capable of determining an efficient manner of parallelizing application
code, the equation changes drastically in a virtualized environment. After
all, most of this dissertation is dedicated to a variety of performance issues
multithreaded applications may suffer in a virtualized environment which are not
yet fully understood by humans—Iet alone application runtime environments.
Consequently, these automated solutions are likely to employ sub-optimal
parallelization techniques such as ubiquitous use of blocking synchronization,
even where the overhead of doing so is likely to outweigh its advantages. Listing
8.5 clarifies this by expanding on listing 8.4 using Java’s functional streams
APIL.

public class BankAccount{
private int balance;

public static synchronized void withdraw(int amount){
balance —= amount;
}

public static void withdrawMany (Stream<Integer> amounts){
withdraw (amounts. parallel ()
.reduce (0, Integer ::sum));

Listing 8.5: Example of a Java class employing a parallel stream.

While listing 8.5 highlights the simplicity and elegance of declarative
multithreading, it also indicates the challenges it poses with regard to tracing
potential sources of virtualization overhead. In particular, while it is clear
that the withdrawMany method parallelizes its input stream, it is unclear how
many threads it creates and how these threads interact. These questions are
of particular importance with regard to the reduction operation this method
employs (a function merging the entire stream into a single value), which
naturally requires extensive exchanging of results and thus synchronization
between threads. While a runtime environment can employ all kinds of
heuristics to optimize the number of threads used and the associated need
for synchronization, the developer is likely in a much better position to make
such judgements, being able to take factors external to the application code
itself into account (e.g. input stream size, hardware platform, presence of
virtualization, etc.). As such, declarative multithreading often leads to wasteful
utilization of resources and in virtualized environments even to non-negligible
amounts of virtualization overhead which can be very difficult pinpoint.

174 APPLICATION AMELIORATION: GUIDELINES TO DEVELOPERS

8.2.2 Spinning Synchronization

Regarding the relationship between application code and virtualization overhead,
spinning synchronization is perhaps the most interesting topic of all. Namely,
despite spinning synchronization having received massive attention from
literature—as discussed in §3.2.5—§4.2.4 has made clear that spinning at user
level may induce catastrophic virtualization overhead, even on state-of-the-art
platforms. As such, it is certainly worthwhile to investigate how this construct
may manifest itself in application source code, as is done below.

Spin Locks

Analogously to blocking synchronization, many programming languages offer
spinning synchronization as part of their core SDK. The abstraction through
which they expose this feature is most often the spin lock. These spin locks
are largely identical in structure and usage to mutexes (see §8.2.1), the main
difference being that instead of blocking, threads attempting to acquire a
contended lock enter a busy-waiting loop, as explained in §3.2.5. Listing 8.6
provides an example of the usage of such a spin lock.

#include <pthread.h>;
pthread_spinlock_t lock;

void* work(void* arg)

{

pthread_spin_lock(&lock);
//CRITICAL SECTION
pthread_spin__unlock(&lock);

}

int main ()

{
pthread_spin_init(&lock, 0);
work (NULL) ;

return O0;
Listing 8.6: Spin lock usage example in C.

Comparing listing 8.6 to listing 8.1, it is clear that spin locks are—at least
in C—identical in usage to mutexes. This holds true for most programming
languages due to the similarity of these constructs. Note however that spin
locks are used much less often than mutexes since the latter are almost always

APPLICATION CODE & VIRTUALIZATION OVERHEAD 175

much more efficient. Only for very short critical sections it may be beneficial to
use spin locks because of the overhead associated with blocking and unblocking
threads, which is even in a native setting not entirely negligible.

Custom Spinning Constructs

Even though many programming languages provide abstractions dedicated to
spinning synchronization, many applications make use of custom constructs for
this purpose. While implementation details may obviously vary significantly, all
of these custom constructs are based on the principle of continually attempting
to atomically check and set a boolean variable; only proceeding when succesful.
Listing 5.1 already provided a generic example of such a custom spinning
synchronization mechanism in the form of a basic spin lock. More advanced
variants may deviate slightly semantically or incorporate additional features or
performance optimizations. Listing 8.7 shows such an advanced user-level spin
lock, written in C++ [230].

struct spinlock {
std ::atomic<bool> lock__ = {0};

void lock () noexcept {

for (55) {
if (!lock_.exchange(true, std::memory_order_acquire))
return;

while (lock .load(std::memory order relaxed))
____builtin__ia32__pause () ;
}

}

void unlock () noexcept {
lock_ .store(false, std:: memory_order_release);
}

}

Listing 8.7: Example of an advanced user-level spin lock in C++-.

At first glance, listings 5.1 and 8.7 highlight the diversity of custom user-
level spinning synchronization constructs, which suggests identifying them
in application source code is challenging. A closer look at these listings
however reveals that said constructs tend to have a similar structure, which
makes identifying them in the application code base in the case of excessive
virtualization overhead relatively straightforward nonetheless.

176 APPLICATION AMELIORATION: GUIDELINES TO DEVELOPERS

8.2.3 Data Sharing

The principal negative effect of sharing data between threads in a virtualized
context is the overhead associated with the TLB shootdowns this inevitably
induces. While these TLB shootdowns are in se purely system-level phenomena,
chapter 7 has shown that application software can have a dramatic effect on their
prevalence and therefore impact on application performance. While that chapter
focussed primarily on the runtime environment, §7.3.1 has indicated that in the
end, even when using a susceptible runtime environment inattentively designed
application source code is the catalyst for excessive TLB shootdown overhead.
Studying precisely how this catalysis takes place is certainly worthwhile in the
interest of situations where optimizing the runtime environment is not possible
or desirable.

Listing 7.2 already provided an example of an application inducing excessive
amounts of TLB shootdowns through the arena imbalance issue, which in turn
is tightly linked to said application’s source code. In a more general sense, heap
resizing operations (and thus TLB shootdowns) are likely when threads often
allocate or deallocate memory at the top of their arenas. Unfortunately, it is
not possible to model this in function of application source code in any general
sense because of the widely varying behavior of different memory allocators (see
§7.3) as well as the fact that the exact size of memory (de)allocations often
dependends on external factors (e.g. an input file, the result of a database
query,. ..). Nevertheless, from the knowledge obtained in chapter 7, it is possible
to derive several application behaviors that increase the likelihood of excessive
heap resizing operations occurring:

o Frequent small memory (de)allocations;

o Large amounts of consecutive (de)allocations;

o Increasing allocation sizes as program execution progresses;

e Holding on to memory for long periods of time before deallocating;

¢ Deallocating memory in reverse order with respect to how it was allocated.
While the above memory management behaviors at first glance appear to be
quite distinct, they all either gradually rather than abruptly alter the heap
size or decrease the probability that memory allocations may be satisfied from
the free list, eventually leading to many allocations being stacked at the top

of the heap. Listing 8.8 shows a C program exhibiting all of these potentially
problematic behaviors simultaneously.

APPLICATION CODE & VIRTUALIZATION OVERHEAD 177

int main ()

{
void* mem[1000];
for (int i = 0; i < 1000; i++)
mem[i] = malloc(10 * 1i);

application_logic (mem) ;

for (int i = 0; i < 1000; i++)
free (mem[1000—1i]) ;
return O0;

}

Listing 8.8: Memory allocation patters leading to excessive TLB shootdown
overhead in C.

Listing 8.8 paints a sobering picture of how easy it is to write code inducing
problematic levels of TLB shootdowns in standard C. Namely, because all of
the allocations are performed consecutively in the very beginning of the main
method, the allocator can not use previously freed blocks. Moreover, each
allocation is larger than any of the preceding ones, meaning that even if some
of the preceeding chunks would have been freed by the time the later ones
were allocated, the free list would likely not have been able to serve them.
Furthermore, even though mem is only used within application_logic, the
program only frees it after completion of this subroutine. This means that any
allocations within application_logic must be served from the top of the heap
as well. Lastly, memory is deallocated in reverse order compared to how it
was allocated, constantly growing the top of the heap and therefore inducing
trimming operations.

Problematic memory allocation patters similar to listing 8.8 are in practice not
at all easy to identify, since real-world allocation patterns are a complex mix
between application code, library routines, runtime specifics, system properties
and external factors. Combined with the previously stated variance between
memory allocators, even armed with the knowledge outlined above, the only
reliable way to definitively pinpoint source code inducing concerning amounts
of TLB shootdowns is through careful performance profiling.

178 APPLICATION AMELIORATION: GUIDELINES TO DEVELOPERS

8.2.4 Non-Uniform Memory Access Locality

The final high-level cause of virtualization overhead for multithreaded
applications chapter 5 recognizes is NUMA abstraction, which may drastically
reduce memory locality and thereby increase memory latency in virtualized
sysems. While this issue is by definition only relevant when the host system
sports a NUMA architecture, it may affect many multithreaded applications
when this is the case. Specifically, any application that frequently accesses
data from multiple threads simultaneously may suffer. Listing 8.9 provides an
example of such an application in C.

#inlcude<pthread .h>

void* work(voidx arg)

{
char* ptr = (charx) arg;
*ptr = “a’;
return NULL;

}

int main()

{

pthread t threads[16];
charx ptr = (char*) malloc(4096) ;

for (int i =0; i < 16; i4++)

{
void* arg = (voidx*)(ptr + 256 * 1i);
pthread_create(threads + i, NULL, work, arg);

}

for (int i =0; i < 16; i++)
pthread_ join(threads + i, NULL);

return O;
Listing 8.9: Program exhibiting poor memory locality in C.

The program in listing 8.9 allocates 4 kB of memory, after which it creates 16
threads which each manipulate a different section thereof. Because the entire
allocation fits into a single memory page, it is more than likely that this program
will exhibit poor memory locality when executed on a NUMA system, especially
in virtualized settings. What makes listing 8.9 especially interesting however,
is that none of the threads manipulate exactly the same data. Nevertheless,
because the OS manages memory at page granularity, accesses to the same

GUIDELINES 179

memory page are equivalent to accesses to the same data with respect to this
issue. Exactly this is what makes this problem more prevalent and challenging
to address than is apparent at first glance. Knowledge of the exact location in
memory of the data used by each thread is therefore necessary to identify code
causing performance degradation due to NUMA abstraction. Unfortunately
however, because the runtime environment often abstracts such details to a
large degree, dynamic profiling is likely necessary to obtain said knowledge.

8.3 Guidelines

By describing application code inducing excessive virtualization overhead, the
previous section implicitly equally described its antithesis; application code
inducing hardly any virtualization overhead at all. This section reformulates
this implicit antithesis as an explicit set of guidelines application developers
may follow in an effort to minimize the probability that their multithreaded
applications will suffer significant virtualization overhead. In practice, these
guidelines have been established and refined throughout the Ph. D. project
documented in this dissertation and can therefore to some extent be seen as
the fruit of all the previously described work. Note that in contrast to the
contributions described in previous chapters, these guidelines are not meant to
be the infallable gold standard regarding developing multithreaded applications
for the cloud. Rather, they are intended as a development aid which minimizes
chances of applications incurring high virtualization overhead, albeit without
providing any guarantees.

Following the example of the previous section, the aforementioned guidelines
are grouped by the high-level cause of virtualization overhead they address and
presented accordingly below.

8.3.1 Blocking Synchronization

Since the primary purpose of synchronization in general is guaranteeing
correctness by coordinating execution streams, the need for it depends on
how these execution streams relate to one another, which in turn largely
depends on the application architecture. One important consideration regarding
the architecture of any multithreaded application is the approach it takes to
the concept of parallelism itself. In this regard, two paradigms exist: data
parallelism on the one hand and task parallelism on the other [231]. Figure 8.1
illustrates both schematically.

180 APPLICATION AMELIORATION: GUIDELINES TO DEVELOPERS

Data Data Data

Thread Data Data Data

Thread Thread Thread

Output | Output | Output Output | Output | Output

(a) Task parallelism. (b) Data parallelism.

Figure 8.1: Schematic overview task parallelism and data parallelism.

As figure 8.1a shows, task parallelism equates to dividing a workload into
multiple independent tasks and executing these tasks in parallel. This concept
is also known as pipelining. Normally, all data is passed through all pipeline
stages, each of which is usually associated with an individual worker thread.
Data parallelism takes the opposite approach, namely dividing the input data
set into independent subsets, each of which is processed entirely by a single
thread, as figure 8.1b illustrates.

From figure 8.1, it is evident that data parallelism is to be preferred over task
parallelism from the perspective of minimizing the need for synchronization.
Namely, task prallelism requires data to be passed between multiple threads,
which introduces data dependencies between them. These dependencies in turn
call for some form of synchronization—most often blocking synchronization due
to its efficiency—to be implemented so that one thread does not access a piece
of data before another is finished with it. Data parallelism conversely does not
suffer from this issue, since each individual piece of data is handled by exactly
one thread.

GUIDELINES 181

A further optimization minimizing the amount of synchronization an application
requires which naturally combines well with data parallelism is the use of thread
pools. A thread pool consists of a centralized set of worker threads (normally
limited in size to the number of CPUs available to the application) and a work
queue [232]. Application code may at any time submit work to the queue. The
worker threads monitor the queue and perform any submitted jobs as soon as
possible. If the thread pool is configured appropriately, it minimizes the amount
of potential contention for locks and associated overhead through limiting the
number of threads and managing these threads using a small set of centralized,
highly optimized routines as opposed to ad-hoc application code.

8.3.2 Spinning Synchronization

The best advice possible regarding spinning synchronization at user level is
to avoid it at all costs if there is any chance the application may be run
in a virtualized environment. The easiest approach to accomplish this is to
at all times resort to blocking synchronization or preferably more advanced
spin-then-block primitives as suggested in §5.2.4.

8.3.3 Data Sharing

Virtualization overhead caused by data sharing between threads and the ensuing
TLB shootdowns is the most challenging form of overhead to address at
application level. The main issue here is that the causes of this problem
outlined in §8.2.3 are so varied and nuanced that straightforward approaches to
addressing some of them may increase the severity of others. For example, one
may trivially address the issue of 'many small allocations’ listed in §8.2.3 by
merging multiple small memory allocations into a single larger one. However,
this would likely require holding on to the memory for a much longer time, since
this ’superblock’ can only be released once the application is finished with all
of its previously independed constituents. This prolonged memory retention
is in itself listed in §8.2.3 as a cause of excessive TLB shootdown overhead.
Moreover, such an approach is likely to non-negligibly reduce memory efficiency
and complicate using the memory in question due to additonal addressing
abstractions. Such side effects make no single approach to the problem of
excessive TLB shootdowns generally applicable and finding the correct one for
a particular application no trivial matter.

Given the above, minimizing virtualizaton overhead induced by TLB shootdowns
equates to finding a good balance between coarse memory allocations which
minimize the amount of times the heap may have to be resized and lean

182 APPLICATION AMELIORATION: GUIDELINES TO DEVELOPERS

allocations which can be deallocated rapidly so that new allocations may recycle
their memory from the free list without requiring additional heap expansion.
Finding this balance must be done iteratively on a per-application basis.

On a positive note, §4.2.3 has made clear that only few multithreaded
applications suffer significantly from excessive TLB shootdown overhead. As
such, in most cases it suffices to keep the 'good balance’ described above loosely
in mind when laying out the application architecture. If performance testing
afterwards should reveal TLB shootdown issues, these may be retroactively
addressed by analyzing the application in search for the behaviors outlined in
§8.2.3 and tweaking any code responsible for these behaviors iteratively until
the issue is resolved.

8.3.4 Non-Uniform Memory Access Locality

Strictly speaking, little can be done about poor memory locality in a virtualized
setting at the application source code level. After all, §4.2.2 has made clear
that the cause of this problem is situated at the VM level, out of reach
of the application source code. Even when an application achieves perfect
memory locality in a native setting, in a virtualized environment the guest may
unwittingly schedule a thread on a particular NUMA node while all of its data
is located on another. Therefore, one may argue that application developers
must rely on system administrators to make sure their applications perform
optimally with regard to memory locality in a virtualized setting.

In spite of the above, application developers targeting virtualized platforms
should not neglect memory locality. Namely, if the application itself exhibits
good memory locality, it is likely that NUMA management algorithms integrated
into many contemporary virtualized systems (see §5.4.2)—imperfect as they
may be—will be able to detect and mitigate NUMA opacity issues, yielding good
memory locality after all. When the application itself exhibits poor memory
locality on the other hand, no amount of host level effort will be able to rectify
the situation.

Concretely, 'not neglecting memory locality’ means that data dependencies
between concurrent threads should be minimized. This naturally implies the use
of data parallelism. Additionally, as noted in §8.2.4, collocating data used by
distinct threads on a single memory page should be avoided. This may be done
by e.g. dividing input data into chunks to be processed by different threads
along page boundaries or adding padding to smaller pieces of data so that they
fill an entire memory page regardless.

NODEDUP 183

8.4 NODedup

Following through on the precedent set in chapters 6 and 7, this chapter
translates its scientific contribution into an industrially applicable solution
which can both be used to make an impact in the real world and validate the
theoretical propositions upon which it is based. Said solution is in this case
a re-implementation of the Dedup benchmark from the PARSEC benchmark
suite using the guidelines laid out in the previous section, aiming to reduce
the virtualization overhead this benchmark induces dramatically. We named
this alternative implementation of Dedup 'NODedup’, which is short for 'No-
Overhead Dedup’. The source code is freely available!. Moreover, appendix C
provides all of the NODedup source files that deviate from the original Dedup
benchmark.

PARSEC Dedup supports both data encoding and decoding using a variety of
parallelization techniques and compression algorithms. Because supporting all
of these features does not significantly strengthen the evidence for the efficacy of
the guidelines proposed in §8.3 compared to supporting a thoughtfully selected
subset thereof, NODedup only implements data encoding using pthreads and
GZIP compression. Naturally however, the techniques presented in §8.3 are
equally applicable to any other aspect of the original benchmark.

Section 4.2.3 has shown that the vast majority of overhead the Dedup benchmark
incurs is related to blocking synchronization and memory management.
Considering the architecture of this benchmark as described in §8.1, this is
not surprising. Namely, its emphasis on task parallelism requires threads to
synchronize each time a chunk transitions between pipeline stages. Moreover,
Dedup by nature performs large amounts of consecutive, comparable memory
allocations to create chunks which must pass through the entire pipeline
before they can be deallocated; behavior listed in §8.2.3 as likely to induce
excessive TLB shootdown overhead. Therefore, implementing NODedup equates
to applying the guidelines listed in §8.3.1 and §8.3.3 to the original Dedup
benchmark. The remainder of this section documents this process.

8.4.1 Blocking Synchronization

Careful analysis of the Dedup source code reveals that indeed the ringbuffers it
employs between pipeline stages employ mutexes and condition variables in order
to serialize access to the data they contain (see §8.2.1). These synchronization
primitives are responsible for the vast majority of overhead related to blocking

Thttps://github.com/StijnSchildermans/dedup_ without_overhead

184 APPLICATION AMELIORATION: GUIDELINES TO DEVELOPERS

synchronization observed in §4.2.3. Therefore, as prescribed in §8.3.1, NODedup
does away with this pipeline altogether and replaces it with data parallelism.
This removes almost all need for thread synchronization at a minor cost in
scalability.

NODedup implements all pipeline stages of the original Dedup benchmark as
functions which it applies in sequential order to the input data. The first of
these functions—creating coarse chunks from the input file—is performed on the
main thread, which immediately adds the newly created chunks to an ordered
linked list which will be used to track the chunks throughout the remainder of
the encoding process. After this sequential stage, the main thread creates a
thread pool sized in accordance with the number of available CPUs. It then
divides the chunk list into equally sized sublists, for each of which it submits a
job to the thread pool consisting of the function representing the second pipeline
stage applied to that sublist. The main thread then blocks until all of these jobs
are finished, before repeating the job creation and blocking process for pipeline
stages 3 and 4. In this way, all manipulation of central data structures—the
thread pool and the chunk list—happens from the main thread only, mimimizing
the need for thread synchronization. After these parallel stages, the main thread
writes each of the sublists to the output file. Note that because this data parallel
application architecture maintains chunk order, NODedup can skip the entire
reordering stage of the original Dedup benchmark.

8.4.2 Memory Management

The original Dedup implementation reads input from disk in large blocks of 128
MB. It then refines these blocks into chunks, which are in fact pointers to a
certain address within this large input block. Only when all chunks constituting
such an input block have been processed, it is freed. This means that when
later pipeline stages allocate memory, the allocator must often draw from the
top of the heap rather than the free list. Because these later allocations are
mostly related to temporary data structures and are therefore short-lived, this
allocation pattern leads to the arena imbalance issue (see §7.3.1). NODedup
addresses this by allocating each chunk individually in the fragmentation stage
rather than using pointers to some address within a large preallocated buffer.
These much smaller allocations can be freed more quickly and their memory
can be recycled through the free list. The downside of this approach however is
that the entire input data set must be copied.

Another improvement NODedup makes to the memory allocation behavior of
Dedup pertains to the data compression stage. Namely, whenever the original
implementation determines a chunk to be unique, it allocates a buffer to store

EVALUATION 185

the compressed version of that chunk. These buffers form a significant portion
of the ’allocations in later stages’ causing the arena imbalance issue referred
to above. NODedup eliminates most of these allocations by employing large
memory buffers holding the compressed version of multiple chunks at once. Note
that these buffers are unlikely to have a significant negative effect on memory
efficiency because they only have a short lifespan, as compression of unique
chunks is one of the last stages in the data deduplication algorithm as described
in §8.1. Moreover, these buffers are likely to be allocated from the free list since
thanks to the modifications described in the previous paragraph, input chunks
are freed during the compression stage, allowing compression buffers created
for subsequent chunks to recycle their memory.

Attentive readers may have noticed that the above paragraphs appear to be
oxymoronic. Namely, the first paragraph advises to divide few large chunks into
many smaller ones, while the second one advises merging many small allocations
into a few large ones. However, when both paragraphs are combined and the
subtle differences and interactions between the alterations they describe are
taken into account, it becomes clear how two steps in opposite directions do not
lead to the original starting point in this case. For example, while not explicitly
stated above, compression buffers are still much smaller than the input buffers
they replace and because they are created at a much later stage in the algorithm,
they are less likely to force later allocations to be served from the top of the
heap. This is a perfect illustration of the admonition from §8.3.3 regarding
the complexity and iterative nature of addressing excessive TLB shootdown
overhead through altering application behavior.

8.5 Evaluation

This chapter is no exception to the approach this dissertation follows with all of
the ameliorations it proposes in the sense that it presents a thorough evaluation
of the guidelines described in the previous section in order to provide evidence
for their efficacy. However, because the work upon which this chapter is based
preceded that presented in any of the previous chapters, the approach this
evaluation takes deviates from the prescriptions provided in §3.3. This section
lays out said approach below, after which it presents the conceptual effectiveness
and eventual performance impact of the guidelines formulated in §8.3 on the
Dedup bechmark in turn.

186 APPLICATION AMELIORATION: GUIDELINES TO DEVELOPERS

8.5.1 Method

System Settings

The system employed for evaluating NODedup is a NUMA server with 2 Skylake-
era Intel Xeon CPUs, each with 8 physical cores without hyperthreading. Each
memory bank is 16 GB in size. The VMM is KVM, running in Ubuntu 16.04.
All contemporary performance optimizations were enabled.

This evaluation considers two VM configurations: one sporting 4 vCPUs on
a single NUMA node and one sporting 14 vCPUs spread over two nodes. In
both cases, the guest OS is Ubuntu 16.04. The larger VM is limited to 14
vCPUs to minimize resource contention between the VM and host background
processes. Native equivalents of these system configurations are evaluated as
well for reference.

Workloads

Naturally, the workloads of interest for this evaluation are NODedup and the
original Dedup implementation from the PARSEC benchmark suite. The level
of parallelism for both is always set equal to the number of CPUs available for
the experiment in question.

Because NODedup implements only part of the functionality the original Dedup
benchmark provides, both versions are executed outside of the regular PARSEC
framework. Specifically, each encodes a predetermined 600 MB tarball consisting
of a number of replicas of a set of pdf files.

Measurement

Analogously to previous chapters, this chapter quantifies the benefits of
NODedup over the original Dedup benchmark by executing both in identical
circumstances and presenting the former’s performance normalized to that of
the latter. Equally analogously to previous chapters, all results are averaged
over 10 iterations to ensure their reliability (see §3.3.3).

Irrespective of potential performance gains, it is prudent to begin any
performance evaluation by determining to what extent the technique being
evaluated achieves its goals at a conceptual level. Because as noted in §4.2 the
vast majority of virtualization overhead incurred by Dedup manifests itself in
the form of VM exits, the number of these events is naturally a perfect fit for
evaluating the conceptual effectiveness of the guidelines presented in §8.3.

EVALUATION 187

Table 8.1: VM exits induced by NODedup relative to the original Dedup.

Event 4 vCPUs | 14 vCPUs
VM _EXIT -91% -96%

Table 8.2: Execution time of NODedup relative to the original Dedup benchmark.

(v)CPUs | Native | Virtualized
4 +5% -20%
14 -30% -40%

Because—as stated multiple times throughout this dissertation—improvements
at system level such as a reduction in VM exits do not necessarily translate
to performance benefits visible to end users for multithreaded applications, it
is important to evaluate the latter as well. The most fitting metric for this
purpuse is—as equally stated multiple times before—application execution time,
which is therefore also included in this evaluation.

8.56.2 Conceptual Effectiveness

Table 8.1 summarizes the number of VM exits NODedup induces relative to
the original Dedup benchmark in both virtualized scenarios described above.

Table 8.1 indicates in no uncertain terms that NODedup suffers hardly any
virtualization overhead compared to Dedup. Results improve even further
as vCPU counts increase, which is not surprising since §4.2 has shown that
both blocking synchronization and TLB shootdown overhead become more
problematic as core counts increase. It is therefore clear that the guidelines
presented in §8.3 can indeed be highly effective when applied correctly.

8.5.3 Performance

Table 8.5.3 shows the execution time of NODedup relative to the original Dedup
benchmark in both the native and virtualized environments described above.

Table 8.5.3 reveals that the great reduction in VM exits NODedup yields
as indicated by table 8.1 does not always impact execution time positively.
Particularly, when natively run using 4 CPUs, a minor slowdown is observable.
This is however to be expected, since in a native, single-socket environment VM
exits are not relevant and TLB shootdown IPIs and blocking operations are

188 APPLICATION AMELIORATION: GUIDELINES TO DEVELOPERS

highly efficient. Therefore, the benefits NODedup yields by eliminating these
operations are negligible, while NODedup sacrificed Dedup’s pipeline—which in
itself conceptually improves performance—in return. In virtualized and NUMA
environments on the other hand, table 8.5.3 paints a much different picture
because there the impact of IPIs and VM exits is much greater, as discussed
at length in previous chapters. This further validates the guidelines proposed
in this chapter and stresses the importance of astute application design rather
than—or complementary to—reliance on platform optimizations when it comes
to minimizing virtualization overhead.

8.6 Related Work

As stated in previous chapters, optimizing virtualization technology is a popular
topic in literature. However, all existing work focusses on solutions at the
hardware or system software level. Chapter 5 elaborates on all of the promising
examples of those proposed solutions. Because repeating all of these studies
here adds no value to the dissertation as a whole, readers arriving here without
having read chapter 5 are strongly encouraged to do so.

Besides listing all noteworthy work related to that presented in this chapter,
chapter 5 repeatedly states what sets this chapter apart from any previously
published study: regarding addressing virtualization overhead—Iet alone
for multithreaded applications—purely at application source code level, no
precedents exist in literature to the best knowledge of the author. While tools
and frameworks exist that do reduce virtualization overhead (e.g. P3ARSEC
[171]), they achieve this as an unintended side effect rather than a design goal.
In fact, showing that P3ARSEC positively influences virtualization overhead
for multithreaded applications is one of the contributions of chapter 5 that
eventually led to the creation of this one. While it would be highly interesting
to explore this avenue of related work in depth, doing so would require showing
that these design patterns, frameworks and tools proposed in literature indeed
have a positive effect on virtualization overhead for multithreaded applications
in a manner similar to how §5.1.6 assessed P3ARSEC. This evidently is a
scientific contribution on its own and goes beyond the scope of this section.

CONCLUSION 189

8.7 Conclusion

This chapter has shown that for computation-intensive multithreaded appli-
cations, certain design choices can have a dramatic effect on overhead and
performance in a virtualized setting. Moreover, through NODedup this chapter
has provided strong evidence that by adhering to a certain set of principles,
applications are unlikely to suffer significant virtualization overhead.

Despite the positive results NODedup achieves, the mitigation technique
this chapter provides remains somewhat vague in comparison the previous
contributions presented in this dissertation. Unfortunately, this vagueness is
largely inherent to the concept of guidelines, since every application is unique and
it is up to practitioners to translate said guidelines into concrete virtualization-
friendly application source code. Nevertheless, the author deems this chapter a
valuable contribution to the field, not in the least because of its pragmatic nature
and its potential for making an immediate and tangible impact in industry.

8.7.1 Personal Contribution

As stated in the introduction to this chapter, the guidelines presented here have
gradually sprouted from the knowledge the author accumulated throughout
this Ph. D. project. This evidently implies that this chapter entirely consists of
original work of the main author.

8.7.2 Future Work

In the opinion of the author, one of the most interesting aspects of this chapter
is the fact that it opens the door to a multitude of avenues for future work.
Below a summary of the most interesting of these:

e While NODedup performs very well in its current form, further refinements
are still possible. This could lead to interesting new insights regarding
the guidelines presented in this chapter, especially those concerning data
sharing;

e While NODedup provides a strong indication of the efficacy of the proposed
guidelines, more similar experiments are desirable to further refine and
validate them;

190

APPLICATION AMELIORATION: GUIDELINES TO DEVELOPERS

e Based on the description of source code likely to induce significant

virtualization overhead in §8.2, a tool could be developed to analyze
application source code in order to identify constructs that are likely
to lead to significant virtualization overhead. Based on the guidelines
presented in §8.3, this tool could even automatically improve this code,
or otherise provide suggestions to developers on how to do so;

The knowledge obtained from this chapter could be integrated into
programming language primitives or libraries so that the abstractions
they provide suffer less virtualization overhead. Alternatively, novel
virtualization-friendly abstractions could be developed from the ground
up. An excellent example of the former is ptlbmalloc2 (see chapter 7).
The parallel patterns discussed in §5.1.6 are on the other hand an example
of the latter, albeit without explicitly targeting minimizing virtualization
overhead;

As stated in §8.6, it is likely that design patterns, tools and frameworks
with a positive effect on virtualization overhead for multithreaded
applications have already been proposed in literature, albeit without their
creators being aware of this because they never considered the implications
of their contribution on the virtualization process. Identifying promising
examples of such contributions and assessing them in a virtualized context
is another promising avenue for future work.

Chapter 9

Conclusion

This dissertation has laid out a variety of scientific contributions traversing
many aspects of contemporary virtualization technology. In conclusion to all
of this work, it is prudent to reflect on whether or not this endeavor has been
able to address the problems it set out to tackle, which equates to determining
to what extent it has answered the research questions formulated in §1.3. To
that end this chapter lists each of the partial research questions referred to
above, followed by a discussion of how the work presented in this dissertation
has addressed it. Naturally, cumulation of the answers to these partial research
questions leads to the answer to the principal research question §1.3 describes,
which is indeed the essence of this Ph. D. project. This final calculation is left
up to the reader.

What causes high hardware-assisted virtualization cost for multi-
threaded applications on the x86 platform?

Both chapter 3 and chapter 4 have been primarily concerned with addressing
this first partial research question. The most important contribution of the
former has been to clearly define virtualization overhead as a combination of
system effects and application effects, expressed respectively as reduced resource
efficiency and reduced temporal efficiency. The latter applied this knowledge
in the form of a thorough analysis of the virtualization overhead suffered by
multithreaded applications on modern platforms, which provided much needed
insight into the state of the art regarding this topic. It affirmed many of the
known causes of virtualization overhead for such applications and even identified
several previously unknown ones. All of these can be broadly grouped into four
categories: blocking synchronization, spinning synchronization, data sharing
and NUMA locality. While the fact that chapter 4 can never guarantee that

191

192 CONCLUSION

it did not miss any relevant causes of overhead will always remain a threat to
validity, the rigorous process it applied makes concluding that this first partial
research question has been adequately answered for at least the vast majority
of realistic workloads reasonable.

How effective are existing hardware-assisted 86 virtualization tech-
niques at addressing the issues arising from wvirtualizing multi-
threaded applications?

This second partial research question was answered in great detail by both
chapter 4 and chapter 5. The former did so by performing its performance
analysis on a state-of-the-art platform including all of the existing techniques
the question refers to, while the latter elaborated on several of these techniques
at length. While we were pleased to find that great progress has been made
in recent years, chapter 4 revealed that multithreaded applications still incur
significant virtualization overhead, especially using larger VMs. Moreover,
chapter 5 has made clear that many of the existing mitigation techniques are
far from perfect; only being partially effective, being too restrictive in scope or
having undesirable side effects.

Which techniques can reduce the cost of hardware-assisted virtualiza-
tion of multithreaded applications on the x86 platform?

Chapter 5 has been entirely dedicated to answering this question. It proposed
many promising research directions and suggested several ameliorations to
existing technologies. While obviously this taxonomy of potential mitigation
techniques can never be guaranteed to be exhaustive, it covers all of the causes
of virtualization overhead chapter 4 identified. Therefore, it is in the estimation
of the author fair to consider this research question adequately answered as
well.

How can evidence for the efficacy of proposed techniques to reduce
the cost of hardware-assisted virtualization of multithreaded applica-
tions on the x86 platform be provided?

Chapters 6, 7 and 8 are each dedicated to fleshing out one of the mitigation
techniques chapter 5 proposed. Each of these chapters includes a thorough
emperical performance evaluation comparing the technique it discusses to the
state of the art, each time providing strong evidence in favor of the former:
paratick and ptlbmalloc2 improve performance of multithreaded applications
in a virtualized context by up to 15% and 45%, respectively. While much
less generalizable, NODedup performs 40% better than the original Dedup
benchmark upon which it is based, indicating the potential of the guidelines
presented in chapter 8. As such, this final partial research question has certainly
been adequately answered as well.

VALORIZATION 193

0.1 Valorization

At the faculty of Engineering Technology where this Ph. D. has taken
place, industrial applicability is an important aspect of any research project.
Concerning this, the most significant contributions of this dissertation are
paratick (see §6.4), ptlbmalloc2 (see §7.5) and the guidelines to developers
presented in §8.3. All of these mitigation techniques have been open sourced so
that they can readily be adopted by practitioners and even be incorporated into
existing projects. In the case of ptlbmalloc2, allowing for effortless adoption
was even a core objective considerably influencing its design. Cloud providers
and consumers alike are likely to benefit from adopting any of these techniques
since the drastic reduction in virtualization overhead they effectuate for certain
applications may yield them significant cost savings.

Naturally, the flip side of open source software is that it does not immediately
allow for monitization to the benefit of its developer. As such, despite its notable
contributions to the scientific and industrial landscapes, this Ph. D. project has
not led to any marketable products or intellectual property. Notwithstanding,
the knowledge and experience obtained while working on this project have
undoubtedly opened the door to many future opportunities for the author.

0.2 Future Work

Software engineering is a rapidly evolving field of science. Indeed, the very
concept of hardware virtualization—which is so central to this dissertation—is
only about half a century old at the time of writing this work and has reinvented
itself several times already. For example, only a few years ago it seemed likely
that hardware virtualization would fade into obscurity due to the rapid surge of
containerization, only to very recently charge back to the forefront of exciting
developments in cloud computing thanks to unikernels. As uncertain as the
future may be, hardware virtualization is likely to remain an indispensible
aspect of software engineering for the foreseeable future, which means that
addressing its issues will equally remain a relevant research topic for years to
come.

This dissertation has provided numerous suggestions to future researchers.
Rather than repeating these, this chapter refers to the 'Related Work’ sections
of previous chapters. Concerning how these suggestions relate to one another, the
author deems pursuing those proposed in chapters 6, 7 and 8 most worthwhile,
since the work presented in these respective chapters already provides a solid
foundation for any such efforts. Of all of these, perhaps those proposed in chapter

194 CONCLUSION

8 are the most interesting, because that chapter approaches virtualization
overhead from an entirely new angle compared to existing literature, which
naturally comes with the biggest challenges but also the most potential. In any
case, while hardware virtualization entirely free of overhead will likely prove
a utopian idea, this dissertation has taken several more incremental steps in
the right direction, providing copious incentives to future researchers to do the
same along the way; as this dissertation itself was built upon the shoulders of a
great number of works before it.

0~ O U W N~

— = = e
=W N = OO

15
16
17
18
19

Appendix A

Paratick Source Code

This appendix discloses the paratick source code, structured in terms of the
original Linux kernel 5.10.26 source files into which it is integrated.

A.1 Host

A.1.1 /include/linux/kvm_host.h

//Code above has not been altered.

struct kvm_vepu {
struct kvm sxkvm;
#ifdef CONFIG_PREEMPT NOTIFIERS
struct preempt_notifier preempt_notifier;
#endif
int cpu;
int vepu_id; /+ id given by userspace at creation x/
int vepu_idx; /% index in kvimn—>vcpus array x*/
int srcu_idx;
int mode;
u64 requests;
unsigned long guest_debug;

int pre_pcpu;
struct list__head blocked_vcpu_list;

195

20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37

38
39
40
41
42
43
44
45
46
47
48
49
50
51

52

54
55
56
57
58
59
60
61
62
63

196 PARATICK SOURCE CODE

struct mutex mutex;
struct kvm_run srun;

struct rcuwait wait;
struct pid __rcu *pid;
int sigset active;
sigset_t sigset;
struct kvm_ vcpu_stat stat;
unsigned int halt_poll_ns;
bool valid__wakeup;
#ifdef CONFIG_HAS IOMEM
int mmio_needed;
int mmio_read_completed;
int mmio_ is_ write;
int mmio_ cur_ fragment;
int mmio_nr_ fragments;
struct kvm_ mmio_fragment mmio_fragments |
KVM_MAX MMIO_FRAGMENTS] ;
#endif
#ifdef CONFIG_KVM ASYNC PF
struct {
u32 queued;
struct list__head queue;
struct list_head done;
spinlock_t lock;
} async_ pf;
#endif
#ifdef CONFIG_HAVE KVM CPU_RELAX INTERCEPT

/%
* Cpu relax intercept or pause loop exit optimization
% in_spin_loop: set when a vcpu does a pause loop exit
% or cpu relax intercepted.
% dy__eligible: indicates whether vcpu is eligible for
directed yield.
«/
struct {
bool in_spin_loop;
bool dy_eligible;
} spin_loop;
#endif
bool preempted;
bool ready;
struct kvm_ vcpu_arch arch;
ktime_t last_tick;
5

HOST

64
65 //Code below has not been altered.
66
67
A.1.2 /arch/x86/kvm/x86.c
1
2
3 //Code above has not been altered.
4
5 static struct kvm_lapic_irq paratick_irq = {
6 .shorthand = APIC_DEST SELF,
7 .dest_mode = APIC_DEST PHYSICAL,
8 .delivery__mode = APIC_DM FIXED,
9 .vector = 235,
10 .level = 15
1}
12
13
14 static int vepu_run(struct kvm_vepu *vcpu)
15 {
16 int r;
17 ktime_t now;
18 struct kvm xkvm = vepu—>kvm;
19
20 vepu—>srcu__idx = srcu_read_lock(&kvm—>srcu);
21 vecpu—>arch.11tf_flush_11d = true;
22
23 for (55) |
24 if (kvm_vcpu_running(vepu)) {
25 r = vcpu__enter_guest(vecpu);
26 } else {
27 r = vepu_block (kvm, vepu);
28 }
29
30 if (r <= 0)
31 break ;
32
33 kvm_ clear_request (KVM_REQ_PENDING_TIMER, vcpu) ;
34
35 now = ktime get();
36 if (kvm_cpu_has_pending_timer(vcpu))
37 {
38 vecpu—>last__tick = now;

39 kvm__inject__pending_ timer_irgs(vcpu);

40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71

W N

N

N O Gt

198 PARATICK SOURCE CODE

}

else if (now — vcpu—>last_tick > 4000000)

{
vecpu—>last__tick = now;
kvm__apic_set_irq(vcpu, ¶tick_irq, NULL);

}

if (dm_request_for_irq_injection (vcpu) &&
kvm_ vcpu_ready_for_interrupt_injection (vepu)) {
r = 0;
vepu—>run—>exit__reason = KVM_EXIT IRQ WINDOW_OPEN;
++vcpu—>stat .request_irq_ exits;
break ;
}

if (__xfer_to_guest_mode_work_pending()) {
srcu_read__unlock(&kvmm—>srcu, vcpu—>srcu_idx);
r = xfer_to_guest_mode_handle_work (vcpu) ;
if (r)
return r;
vepu—>srcu__idx = srcu_read_ lock(&kvm—>srcu) ;

}
}

srcu_read__unlock(&kvm—>srcu, vcpu—>srcu_idx);

return r;

}

//Code above has not been altered.

A.2 Guest

A.2.1 /kernel/time/tick-sched.c

// SPDX—License—Identifier: GPL—2.0

/ %

x Copyright (C) 2005—2006, Thomas Gleixner <tglx@linutronix .
de>

x Copyright (C) 2005—2007, Red Hat, Inc., Ingo Molnar

x Copyright (C) 2006—2007 Timesys Corp., Thomas Gleixner

*/

#include <linux/cpu.h>

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39

40

41
42
43
44
45
46
47
48
49
50
51

GUEST 199

#include <linux/err.h>
#include <linux/hrtimer.h>
#include <linux/interrupt.h>
#include <linux/kernel stat.h>
#include <linux/percpu.h>
#include <linux/nmi.h>
#include <linux/profile.h>
#include <linux/sched/signal.h>
#include <linux/sched/clock.h>
#include <linux/sched/stat.h>
#include <linux/sched/nohz.h>
#include <linux/module.h>
#include <linux/irq_work.h>
#include <linux/posix—timers.h>
#include <linux/context_tracking.h>
#include <linux /mm.h>

#include <linux/irq.h>
#include <linux/irqdesc.h>
#include <asm/irq_regs.h>
#include <asm/apic.h>

#include "tick—internal.h"
#include <trace/events/timer.h>

//Per—CPU nohz control structure
static DEFINE_PER_CPU(struct tick_sched, tick_cpu_sched);

struct tick_sched xtick_ get_tick_sched(int cpu)

{
}

#if defined (CONFIG_NO_HZ COMMON) || defined(
CONFIG_HIGH_RES_TIMERS)

//The time, when the last jiffy update happened. Protected by
jiffies_ lock.

static ktime_t last_jiffies__update;

return &per_cpu(tick__cpu_sched, cpu);

//Must be called with interrupts disabled !
static void tick__do_update_ jiffies64 (ktime_t now)

{
unsigned long ticks = 0;
ktime_t delta;

//Do a quick check without holding jiffies lock
delta = ktime_sub(now, READ ONCE(last_jiffies_update));
if (delta < tick period)

53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
5
76
7
78
79
80

81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96

200

}

PARATICK SOURCE CODE

return ;

/* Reevaluate with jiffies lock held x*/
raw_spin_lock(&jiffies lock);
write__seqcount__begin(&jiffies_seq);

delta = ktime_sub(now, last_jiffies_update);
if (delta >= tick period) {

delta = ktime_sub(delta, tick_period);
/* Pairs with the lockless read in this function. =/
WRITE_ONCE(last__jiffies__update ,

ktime_add (last__jiffies_update , tick_period));

/% Slow path for long timeouts x*/
if (unlikely (delta >= tick period)) {
s64 incr = ktime_to_ns(tick_ period)

b
ticks = ktime_divns(delta, incr);

/* Pairs with the lockless read in this function. =*/
WRITE_ONCE(last__jiffies__update ,
ktime_add_ns(last__jiffies__update
incr % ticks));

}
do__timer(++ticks);

/* Keep the tick_ next_period variable up to date x/
tick__next_period = ktime_add(last_jiffies_update,
tick__period);
} else {
write__seqcount_end(&jiffies__seq);
raw_spin_unlock(&jiffies lock);
return;
}
write_seqcount__end(&jiffies_seq);
raw_spin__unlock(&jiffies__lock);
update__wall_time () ;

//Initialize and return retrieve the jiffies update.
static ktime_t tick__init_ jiffy_update (void)

{

ktime_t period;

raw_spin_lock(&jiffies_lock);

97

98

99
100
101
102
103
104
105
106
107

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126

127
128
129
130
131
132
133
134
135
136
137
138
139
140

GUEST

write_seqcount__begin(&jiffies_ seq);
/% Did we start the jiffies update yet 7 x/
if (last_jiffies update = 0)
last__jiffies__ update = tick_next_period;
period = last_jiffies_update;
write_seqcount_end(&jiffies_ seq);
raw_ spin__unlock(&jiffies_lock);
return period;
}

static void tick_sched do_timer(struct tick_sched xts,
ktime_t now)
{

int cpu = smp_ processor_id () ;

#itdef CONFIG NO HZ COMMON
//Check if the do_timer duty was dropped.
if (unlikely (tick_do_timer_ cpu == TICK DO TIMER NONE)) {
tick__do_ timer_cpu = cpu;
}

#endif

/% Check, if the jiffies need an update x/
if (tick_do_timer_ cpu = cpu)
tick_do_update_jiffies64 (now) ;

if (ts—inidle)
ts—>got__idle_tick = 1;

}

static void tick_sched_handle(struct tick_sched xts, struct
pt_regs xregs)
{

#ifdef CONFIG_NO_HZ COMMON
if (ts—>tick stopped) {
touch__softlockup_ watchdog_sched () ;
if (is_idle_task(current))
ts—>idle__jiffies++;
ts—>next_tick = 0;

#endif
update_process_ times (user_mode(regs));

profile__tick (CPU_PROFILING) ;
}

#endif

201

202 PARATICK SOURCE CODE

141 //NOHZ — aka dynamic tick functionality
142 #ifdef CONFIG_ NO HZ COMMON
143 //NO HZ enabled ?

144 bool tick_nohz_enabled _ _read_mostly = true;
145 unsigned long tick_nohz_active _ _read_mostly;
146 //Enable / Disable tickless mode

147 static int _ _ init setup_tick_nohz(char xstr)
148 {

149 return (kstrtobool(str, &tick_nohz_enabled) =— 0);
150 }

151

152 __setup("nohz=", setup_tick_nohz);

153

154 bool tick_nohz_tick_stopped(void)

155 {

156 struct tick_sched xts = this_cpu_ptr(&tick_cpu_sched);
157 return ts—>tick_stopped;

158}

159

160 bool tick_nohz_tick_ stopped_cpu(int cpu)
161 {

162 struct tick_sched xts = per_cpu_ptr(&tick_cpu_sched, cpu);

163 return ts—>tick_stopped;

164 }

165

166 //tick_nohz_ update_jiffies — update jiffies when idle was
interrupted

167 static void tick_nohz_update_jiffies (ktime_t now)

168 {

169 unsigned long flags;

170

171 __this_cpu_write(tick_cpu_sched.idle_waketime, now);
172

173 local irq save(flags);
174 tick_do_update_jiffies64 (now) ;

175 local_irq_restore(flags);

176

177 touch_softlockup_watchdog sched () ;
178}

179

180 //Updates the per—CPU time idle statistics counters

181 static void update_ts_time_stats(int cpu, struct tick_sched =x
ts, ktime_t now, u64 xlast__update_time)

182 {

183 ktime_t delta;

184

185
186
187
188

189
190

191
192
193
194
195
196
197
198

199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227

GUEST 203

}

if (ts—idle active) {
delta = ktime_sub(now, ts—>idle_entrytime);
if (nr_iowait_cpu(cpu) > 0)

ts—>iowait__sleeptime = ktime_add(ts—>iowait_sleeptime ,
delta);
else

ts—>idle__sleeptime = ktime_add(ts—>idle_sleeptime
delta);
ts—>idle__entrytime = now;

}

if (last_update_time)
xlast__update_time = ktime_to_us(now) ;

static void tick_nohz_stop_idle(struct tick_sched =xts,

{

}

ktime_t now)

update_ts_ time_stats(smp_ processor_id (), ts, now, NULL);
ts—idle__active = 0;

sched__clock_idle__wakeup_event () ;

static void tick_nohz_start_idle(struct tick_sched xts)

{

}

ts—>idle_entrytime = ktime_ get () ;
ts—idle__active = 1;
sched__clock__idle_sleep__event () ;

u64 get_cpu_idle_time_us(int cpu, u64 xlast_update_time)

{

struct tick_sched xts = &per_cpu(tick_cpu_sched, cpu);
ktime_t now, idle;

if (!tick_nohz_active)
return —1;

now = ktime_ get () ;
if (last_update_time) {
update_ts_ time_stats(cpu, ts, now, last_update_time);
idle = ts—>idle_sleeptime;
} else {
if (ts—>idle active && !nr_iowait_cpu(cpu)) {
ktime_t delta = ktime_sub(now, ts—>idle_entrytime);

204 PARATICK SOURCE CODE

228

229 idle
230 } else
231 idle
232 }
233}

234

235 return ktime_to_us(idle);

236

237}

238 EXPORT _SYMBOL GPL(get_cpu_idle_time_us);

239

240 u64 get_cpu_iowait_time_us(int cpu, u64 xlast_update_time)
241 {

242 struct tick_sched xts = &per_cpu(tick_cpu_sched, cpu);
243 ktime_t now, iowait;

ktime_add (ts—>idle__sleeptime , delta);

=1l

ts—>idle__sleeptime;

244

245 if (!tick nohz active)
246 return —1;

247

248 now = ktime get();
249 if (last_update_ time) {

250 update_ts_time_stats(cpu, ts, now, last_update_time);

251 iowait = ts—>iowait_sleeptime;

252 } else {

253 if (ts—idle_active && nr_iowait cpu(cpu) > 0) {

254 ktime_t delta = ktime_sub(now, ts—>idle_entrytime);

255

256 iowait = ktime_add(ts—>iowait_sleeptime, delta);

257 } else {

258 iowait = ts—>iowait_sleeptime;

259 }

260 }

261

262 return ktime_ to_us(iowait);

263}

264 EXPORT_SYMBOL_GPL(get_cpu_iowait_time_ us);

265

266 static void tick_nohz_restart(struct tick_sched *ts, ktime_t
now)

267 {

268 ts—>next_tick = O0;

269 }

270

271 static inline bool local timer_softirq_pending(void)
272 {

273
274
275
276

277
278

279
280
281
282

283
284
285
286
287
288
289
290
291

292

293
294
295
296
297
298
299
300
301
302
303
304

305
306
307
308
309
310

311

GUEST

return local_softirq_pending () & BIT(TIMER,_SOFTIRQ) ;
}

static ktime_t tick_nohz_next_event(struct tick_sched xts,
int cpu)
{

205

u64 basemono, next_tick, next_tmr, next_rcu, delta, expires

;
unsigned long basejiff;
unsigned int seq;

/+* Read jiffies and the time when jiffies were updated last

*/

do {
seq = read_seqcount_begin(&jiffies seq);
basemono = last_ jiffies_update;

basejiff = jiffies;
} while (read_seqcount_retry(&jiffies seq, seq));
ts—>last__jiffies = basejiff;
ts—>timer__expires__base = basemono;

//Keep the periodic tick, when RCU, architecture or
irq__work requests it.

if (rcu_needs_cpu(basemono, &next rcu) || arch needs_ cpu()

irq_work_needs_cpu() || local_timer_softirq_pending()) {

next_tick = basemono + TICK_ NSEC;
} else {

//Get the next pending timer.

next_tmr = get_mnext_timer_interrupt(basejiff , basemono);
ts—>next_timer = next_tmr;

/% Take the next rcu event into account x/

next_tick = next_rcu < next_tmr ? next_rcu : next_tmr;

}
/%

% If the tick is due in the next period, keep it ticking
or
* force prod the timer.
*/
delta = next_tick — basemono;
if (delta <= (u64)TICK NSEC) {
/ %
* Tell the timer code that the base is not idle, i.e.
undo
* the effect of get_next_timer_interrupt():

312
313
314
315

316
317
318
319
320
321
322
323
324
325

326
327
328
329
330
331

332
333
334
335
336
337
338
339
340
341
342
343
344
345

346
347

348
349
350
351

206

ou

}

st

{

PARATICK SOURCE CODE

*/
timer__clear__idle () ;
/%
* We’ve not stopped the tick yet, and there’s a timer in
the
% next period, so no point in stopping it either , bail.
*/
if (!ts—>tick_stopped) {
ts—>timer__expires = 0;
goto out;
}
}

/ %
x If this CPU is the one which had the do_timer() duty
last , we limit
* the sleep time to the timekeeping max_deferment value.
* Otherwise we can sleep as long as we want.

*/

delta = timekeeping max_ deferment () ;
if (cpu != tick_do_timer_ cpu &&
(tick__do_timer_cpu != TICK DO_TIMER_NONE || !ts—>

do__timer_last))
delta = KTIME MAX;

/* Calculate the next expiry time x/
if (delta < (KTIME MAX — basemono))
expires = basemono + delta;
else
expires = KTIME MAX;

ts—>timer__expires = min_t(u64, expires, next_tick);
t:
return ts—>timer__expires;

atic void tick_nohz_stop_tick(struct tick_sched *ts, int
cpu)

struct clock__event_device xdev = ___this_cpu_read(
tick__cpu_device.evtdev);

u64 basemono = ts—>timer_expires_ base;

u64 expires = ts—>timer_ expires;

ktime_t tick = expires;

GUEST 207

352 /% Make sure we won’t be trying to stop it twice in a row.
*
/

353 ts—>timer__expires__base = 0;

354

355 if (cpu = tick_do_timer_cpu) {

356 tick__do_ timer_ cpu = TICK DO_TIMER, NONE;

357 ts—>do_ timer_last = 1;

358 } else if (tick_do_timer_cpu != TICK _DO_TIMER NONE)

359 ts—>do_ timer__last = 0;

360

361 /% Skip reprogram of event if its not changed x*/

362 if (ts—>tick_stopped && (expires =— ts—>next_tick)) {

363 /% Sanity check: make sure clockevent is actually
programmed */

364 if (tick = KITIME MAX || ts—next_tick =
hrtimer get expires(&ts—>sched timer))

365 return;

366

367 WARN_ON_ONCE(1) ;

368 printk once('basemono: %llu ts—>next tick: %llu dev—>

next_event: %llu timer—>active: %d timer—>expires: %llu\n
n
3

369 basemono, ts—>next_tick, dev—>next_event,
370 hrtimer active(&ts—>sched timer),
hrtimer get expires(&ts—>sched timer));
371 }
372
373 if (!ts—>tick stopped) {
374 calc_load__nohz_start () ;
375 quiet__vmstat () ;
376
377 ts—>last__tick = hrtimer_get__expires(&ts—>sched__timer);
378 ts—>tick_stopped = 1;
379 trace_tick_stop (1, TICK DEP MASK NONE) ;
380}
381
382 ts—>next__tick = tick;
383
384 /%
385 x If the expiration time — KTIME_MAX, then we simply stop
386 * the tick timer.
387 *
388 if (unlikely (expires = KTIME MAX)) {
389 return ;
390 }

391

392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409

410
411

412
413

414
415

416
417
418
419
420

421
422
423
424
425
426

427
428
429
430

208

}

st

{

}

st

{

PARATICK SOURCE CODE

if (ts—>nohz_mode = NOHZ MODE_HIGHRES
&& (!hrtimer active(&ts—>sched timer)

|| hrtimer_get_expires(&ts—>sched_timer) >= tick))
{

hrtimer_start(&ts—>sched__timer, tick,

HRTIMER, MODE_ABS PINNED_HARD) ;

} else {

hrtimer_set__expires(&ts—>sched_timer, tick);

tick_ program_event (tick , 1);

}

atic void tick_nohz_retain_tick(struct tick_sched xts)

ktime_t now, next_event;
now = ktime_ get () ;

if (!hrtimer_ active(&ts—>sched timer) ||
hrtimer_get_expires(&ts—>sched_timer) > now + tick_period
)

{

next_event = tick_nohz_next_event(ts, smp_processor_id())

if (next_event = 0)
hrtimer_start(&ts—>sched_timer, now + tick_ period,
HRTIMER, MODE_ABS PINNED_HARD) ;
else if (mext_event < KIIME MAX)
hrtimer_start(&ts—>sched__timer, next_event,
HRTIMER, MODE_ABS PINNED_HARD) ;
}

ts—>timer__expires__base = 0;

atic void tick_nohz_restart_sched_tick(struct tick_sched x
ts, ktime_t now)

/x Update jiffies first x/
tick_do_update_jiffies64 (now) ;

/ %

x Clear the timer idle flag, so we avoid IPIs on remote
queueing and

% the clock forward checks in the enqueue path:

*/

timer__clear_idle () ;

431
432
433
434
435
436
437
438
439
440
441
442

443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466

467
468
469
470
471
472
473
474

GUEST 209

}

calc_load_nohz_stop () ;
touch_softlockup__watchdog_sched () ;

/%

* Cancel the scheduled timer and restore the tick
*/

ts—>tick_stopped = 0;

ts—>idle__exittime = now;

tick_nohz_restart(ts, now);

static bool can_stop_idle_tick(int cpu, struct tick_sched x*ts

{

)
if (unlikely (!cpu_online(cpu))) {
if (cpu = tick_do_timer_cpu)
tick__do_ timer_ cpu = TICK DO_TIMER, NONE;
/%
*+ Make sure the CPU doesn’t get fooled by obsolete tick
x deadline if it comes back online later.
+/
ts—>next_tick = 0;
return false;
}
if (unlikely (ts—>nohz mode = NOHZ MODE INACTIVE))
return false;
if (need_resched())
return false;
if (unlikely (local_softirq_pending())) {
static int ratelimit ;
if (ratelimit < 10 &&
(local_softirq_pending () & SOFTIRQ STOP_IDLE MASK)) {
pr_warn("NOHZ tick —stop error: Non—RCU local softirq
work is pending, handler #%02x!!!\n",
(unsigned int) local softirq_pending());
ratelimit++;
}
return false;
}

if (tick_nohz_full enabled()) {
/%

475

476
477
478
479
480
481
482

483
484
485
486
487
488
489
490
491
492
493
494
495

496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517

210

}

PARATICK SOURCE CODE

*

Keep the tick alive to guarantee timekeeping

progression

*
*

if

/%
if
)

}

if there are full dynticks CPUs around

/
(tick__do__timer_cpu == cpu)
return false;

Should not happen for nohz—full =/
(WARN_ON_ONCE(tick_do_ timer_cpu = TICK DO_TIMER NONE)

return false;

return true;

static void ___ tick_nohz_idle_stop_tick(struct tick_sched xts)

{

ktime_t expires;

int cpu = smp_ processor_id () ;
/%
x If tick _nohz_ get sleep_ length() ran tick nohz_ next_ event
(), the
* tick timer expiration time is known already .
f
if (ts—>timer_expires_base)
expires = ts—>timer expires;
else if (can_stop_idle_tick(cpu, ts))
expires = tick_nohz_next_event(ts, cpu);
else
return ;

ts—>idle__calls++;

if

in

expires > OLL) {
t was_stopped = ts—>tick_stopped;

tick_nohz_stop_tick(ts, cpu);

ts—>idle__sleeps++;
ts—>idle__expires = expires;

if

(!was_stopped && ts—>tick_stopped) {
ts—>idle_jiffies = ts—>last__jiffies;
nohz_balance__enter__idle (cpu);

518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533

534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554

555

556
557
558
559
560
561
562

GUEST 211

}
} else {
tick_nohz_retain_tick(ts);
}
}
void tick_nohz_idle_stop_tick(void)
{
__tick_nohz_idle_stop_ tick (this_cpu_ptr(&tick_cpu_sched));
I3
void tick_nohz_idle_retain_tick(void)
{
tick_nohz_retain_ tick (this_cpu_ptr(&tick_cpu_sched));
/%
* Undo the effect of get_next_timer_interrupt() called
from
* tick_nohz_next_event ().
*/
timer__clear__idle();
}

//Prepare for entering idle on the current CPU

void tick_nohz_ idle enter(void)

{
struct tick_sched =xts;
lockdep__assert_irqs__enabled () ;
local_irq_disable () ;
ts = this_cpu_ptr(&tick_cpu_sched);
WARN_ON _ONCE(ts—>timer__expires_ base) ;
ts—>inidle = 1;
tick_nohz_start_idle(ts);
local__irq__enable () ;

}

//Update next tick event from interrupt exit
void tick_nohz_irq_exit(void)

{
struct tick_sched xts = this_cpu_ptr(&tick_cpu_sched);
if (ts—inidle)
tick_nohz_start_idle(ts);
else
tick_nohz_ full_update_tick (ts);
}

563
564
565
566
567
568
569
570
571
572
573
574
575

576
577
578
579
580
581
582
583
584

585
586
587
588

589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605

212 PARATICK SOURCE CODE

//Check whether or not the tick handler has run
bool tick_nohz_idle_got_tick(void)

{

struct tick_sched xts = this_cpu_ptr(&tick_cpu_sched);

if (ts—got_idle_tick) {
ts—>got__idle_tick = 0;
return true;

}

return false;

}

//Return the next expiration time for the hrtimer or the tick
, whatever that expires first.
ktime_t tick_nohz_get_next_hrtimer (void)

{
}

//Return the expected length of the current sleep
ktime_t tick_nohz_get_ sleep_length (ktime_ t xdelta_next)

{

return ___ this_cpu_read(tick__cpu_device.evtdev)—>next_event;

struct clock_event_device xdev = ___ this_cpu_read(
tick__cpu_device.evtdev);

struct tick_sched xts = this_cpu_ptr(&tick_cpu_sched);

int cpu = smp_ processor_id () ;

/%

% The idle entry time is expected to be a sufficient
approximation of

% the current time at this point.

*/

ktime_t now = ts—>idle_entrytime;

ktime_t next_event;

WARN_ON ONCE(!ts—>inidle);
xdelta_next = ktime_sub(dev—>next__event, now);

if (!can_stop_idle_tick(cpu, ts))
return xdelta_next;

next__event = tick_nohz_next_event(ts, cpu);
if (!next_event)
return xdelta_ next;

/%

606

607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627

628
629
630
631
632
633
634
635

636
637
638
639
640

641
642
643
644
645
646

GUEST 213

* If the next highres timer to expire is earlier than
next__event , the
x idle governor needs to know that.
*/
next__event = min_t(u64, next_event,
hrtimer_next_event_without(&ts—>sched_timer));

return ktime_sub(next__event, now);

}

unsigned long tick_nohz_get idle_calls_cpu(int cpu)
{
struct tick_sched xts = tick_get_tick_sched(cpu);
return ts—>idle calls;

}

unsigned long tick_nohz_get_idle_calls(void)

{
struct tick_sched xts = this_cpu_ptr(&tick_cpu_sched);
return ts—>idle calls;

}

static void tick_nohz_account_idle_ticks(struct tick_ sched =

ts)
{

#ifndef CONFIG_VIRT CPU_ ACCOUNTING NATIVE
unsigned long ticks;

if (vtime_accounting_enabled_ this_cpu())
return;
/%
*+ We stopped the tick in idle. Update process times would
miss the
% time we slept as update_process_times does only a 1 tick
x accounting. Enforce that this is accounted to idle !
Wy
ticks = jiffies — ts—>idle_jiffies;
//We might be one off. Do not randomly account a huge
number of ticks!
if (ticks && ticks < LONG MAX)
account__idle_ticks(ticks);
#endif
}

static void _ _ tick_nohz_idle_restart_tick(struct tick_ sched =x
ts, ktime_t now)

214 PARATICK SOURCE CODE

647 {

648 tick_nohz_restart_sched_ tick(ts, now);
649 tick_nohz_account_idle_ticks(ts);

650 }

651

652 void tick_nohz_idle_restart_tick(void)
653 {

654 struct tick_sched xts = this_cpu_ptr(&tick_cpu_sched);
655

656 if (ts—>tick stopped)

657 __tick_nohz_idle_restart_tick(ts, ktime_ get());
658 1}

659

660 void tick_nohz_idle_exit(void)

661 {

662 struct tick_sched xts = this_cpu_ptr(&tick_cpu_sched);
663 bool idle_active, tick_stopped;

664 ktime_t now;

665

666 local__irq_ disable () ;

667

668 WARN_ON_ONCE(!ts—>inidle);

669 WARN_ON_ONCE(ts—>timer__expires__base);

670

671 ts—inidle = 0;

672 idle__active = ts—>idle__active;
673 tick_ stopped = ts—>tick_stopped;
674

675 if (idle_active || tick_stopped)
676 now = ktime_ get () ;

677

678 if (idle_active)

679 tick_nohz_stop_idle(ts, now);
680

681 if (tick_stopped)

682 __tick_nohz_idle_restart_tick(ts, now);
683

684 local__irq__enable();

685 }

686

687 //The nohz low res interrupt handler
688 static void tick_nohz_handler(struct clock_event_device xdev)

689 {
690 struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
691 struct pt_regs *regs = get_irq_regs();

692 ktime t now = ktime get();

693
694
695
696
697
698
699
700
701
702
703
704

705
706
707

708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733

734
735

GUEST 215

}

dev—>next__event = KITIME MAX;

tick sched do_timer(ts, now);
tick__sched__handle(ts, regs);

/* No need to reprogram if we are running tickless x/
if (unlikely (ts—>tick stopped))
return ;

hrtimer_forward(&ts—>sched__timer, now, tick_ period);
tick__program_event (hrtimer_ get_ expires(&ts—>sched_timer) ,

1);

static inline void tick_nohz_activate(struct tick_sched xts,

{

}

int mode)

if (!tick_nohz_enabled)
return ;

ts—>nohz_mode = mode;

/% One update is enough x/

if (!test_and_set_bit(0, &tick_nohz_active))
timers_update_ mnohz () ;

//tick_nohz_switch_ to_nohz — switch to nohz mode
static void tick_nohz_switch_to_nohz(void)

{

struct tick_sched xts = this_cpu_ptr(&tick_cpu_sched);
ktime_t next;

if (!tick_nohz_enabled)
return;

if (tick_switch_to_oneshot (tick_nohz_handler))
return;

/%
%+ Recycle the hrtimer in ts, so we can share the
* hrtimer_ forward with the highres code.
*
/
hrtimer__init(&ts—>sched__timer , CLOCK_MONOTONIC,
HRTIMER, MODE_ABS HARD) ;
/% Get the next period x/
next = tick__init_ jiffy__update();

216 PARATICK SOURCE CODE

736

737 hrtimer__set__expires(&ts—>sched__timer, next);

738 hrtimer_forward now(&ts—>sched_timer, tick_ period);

739 tick__program_event(hrtimer_get_expires(&ts—>sched_timer),
1);

740 tick_nohz_activate (ts, NOHZ MODE LOWRES) ;

741}

742

743 static inline void tick_nohz_irq_enter(void)

744 {

745 struct tick_sched xts = this_cpu_ptr(&tick_cpu_sched);
746 ktime_t now;

47

748 if (!ts—idle active && !ts—>tick stopped)
749 return ;

750 now = ktime get();

751 if (ts—idle active)

752 tick_nohz_stop_idle(ts, now);
753 if (ts—>tick_ stopped)

754 tick_nohz_update_jiffies (now);
755}

756

757 #else

758

759 static inline void tick nohz switch to mnohz(void) { }

760 static inline void tick_nohz_irq_enter(void) { }

761 static inline void tick_nohz_activate(struct tick_sched xts,
int mode) { }

762

763 #endif /+x OONFIG NO HZ COMMON x/

764

765 //Called from irq_enter to notify about the possible
interruption of idle ()

766 void tick irq enter(void)

767 {

768 tick__check__oneshot__broadcast_this_cpu();

769 tick_nohz_irq_enter () ;

770}

771

772 //High resolution timer specific code

773 #ifdef CONFIG HIGH RES TIMERS

774
775 static void do_tick(void)
776 {

T struct tick_sched* ts = this_cpu_ptr(&tick_cpu_sched);
778 struct pt_regs* regs = get_irq_regs();

779
780
781
782
783
784
785
786
787
788
789
790
791
792
793

794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823

GUEST

ktime t now = ktime get();
tick_sched_do_timer(ts, now);

if (regs)
tick__sched__handle(ts, regs);
else
ts—next__tick = 0;

}
/ %

* We rearm the timer until we get disabled by the

x Called with interrupts disabled.

217

idle code.

*/
static enum hrtimer_restart tick_sched_timer(struct hrtimer x
timer)
{
struct tick scheds* ts = this_cpu_ptr(&tick cpu_sched);
if (ts—>inidle)
do_ tick () ;
return HRTIMER, NORESTART;,
}
static int sched__skew_ tick;
static int _ _init skew_ tick(char *str)
{
get__option(&str, &sched skew_ tick);
return O0;
}
early param("skew tick", skew_ tick);

void handle_ paratick_irq(struct irq_desc* desc)

do_ tick () ;
ack__APIC_irq();
}

static struct irq_desc paratick desc = {
.handle_irq = handle_ paratick_irq
b

static void install_paratick__handler (void)

824
825
826
827
828
829
830
831
832
833
834
835
836

837
838
839
840

841
842
843
844
845
846
847
848
849
850
851

852
853
854
855
856
857
858

859
860
861
862
863
864
865

218 PARATICK SOURCE CODE

{
struct irqg_desc* (xdescs)[256] = this_cpu_ptr(&vector irq);
(xdescs)[235] = ¶tick_desc;
//tick setup_ sched timer — setup the tick emulation timer
void tick_setup_sched_timer(void)
{

struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
ktime_t now = ktime_get () ;

// Emulate tick processing via per—CPU hrtimers:

hrtimer__init(&ts—>sched_timer , CLOCK MONOTONIC,
HRTIMER MODE ABS HARD) ;

ts—>sched__timer.function = tick_sched_timer;

/* Get the next period (per—CPU) x/
hrtimer set expires(&ts—>sched_timer,
tick__init__jiffy__update());

/% Offset the tick to avert jiffies lock contention. x/
if (sched_skew_tick) {
u64 offset = ktime_to_ns(tick_period) >> 1;
do_div(offset , num_possible cpus());
offset #= smp_ processor_id () ;
hrtimer_add__expires_ ns(&ts—>sched_timer, offset);

}

hrtimer_ forward (&ts—>sched__timer, now, tick_period);
hrtimer_start_expires(&ts—>sched_timer ,

HRTIMER, MODE_ABS PINNED_HARD) ;
tick_nohz_activate (ts, NOHZ MODE HIGHRES) ;

install _paratick_handler () ;
#endif /+ HIGH RES TIMERS */

#if defined COONFIG NO HZ COMMON || defined
CONFIG_HIGH RES TIMERS
void tick__cancel_ sched_timer(int cpu)

{

struct tick_sched xts = &per_cpu(tick_cpu_sched, cpu);

ifdef CONFIG_HIGH RES TIMERS
if (ts—>sched timer.base)
hrtimer cancel(&ts—>sched timer);

GUEST

866 # endif

867

868 memset (ts, 0, sizeof(xts));
869 }

870 #endif

871

872 //Async notification about clocksource changes

873 wvoid tick_clock_notify (void)

874 {

875 int cpu;

876 for__each__possible_cpu(cpu)

877 set__bit (0, &per_cpu(tick_cpu_sched, cpu).check_ clocks);
878 1}

879

880 //Async notification about clock event changes

881 wvoid tick oneshot_ notify (void)

882 {

883 struct tick sched *ts = this_cpu_ptr(&tick cpu_sched);
884 set_bit (0, &ts—>check clocks);

885 }

886

887 int tick_check_oneshot_change(int allow_nohz)
888 {

889 struct tick_sched xts = this_cpu_ptr(&tick_cpu_sched);
890

891 if (!test_and clear bit (0, &ts—>check clocks))
892 return O0;

893

894 if (ts—>nohz_mode != NOHZ_ MODE_INACTIVE)

895 return O0;

896

897 if (!timekeeping_valid_for__hres() || !
tick__is__oneshot__available())

898 return O;

899

900 if (lallow_nohz)
901 return 1;

902

903 tick_nohz_ switch_to_nohz () ;
904 return O;
905 }

0~ O Ui WN

e e e el el
O U W= O O

Appendix B

Ptlbmalloc2 Source Code

Below the entire ptlbmalloc2 code base. This code may be compiled to a static
library and linked into any application based on glibc.

B.1

B.1.1

Headers

Global.h

#ifndef GLOBAL_H
#define GLOBAL _H

//GLOBAL VARIABLES

extern
extern
extern
extern
extern

size__t TOP_PAD;

size_t HEAP_M SIZE;

size__t MMAP_THRESHOLD;
size__t MAX MMAP_ THRESHOLD;
size__t TRIM_THRESHOLD;

/ /EXTERNAL FUNCTIONS

extern
extern
extern
extern

#endif

void* _ _libc_malloc(size_t size);

void _ _libc_free(void* ptr);

void* ___libc_calloc(size_t num, size_t size);
void* __libc_realloc(void* ptr, size_t size);

221

0~ U= W

222 PTLBMALLOC2 SOURCE CODE

B.1.2 Types.h

#ifndef TYPES_H
#define TYPES_H

typedef voidx ptmalloc2_ ptr;
typedef void* mchunk_ ptr;
typedef size_t size_ field;
typedef char flags_t;

//Placeholder for the glibc malloc_state struct
typedef struct _ malloc_state_proxy
{
int lock;
int flags;
int have_ fastchunks;
voidx fastbins [10];
void* top;
voidx last_remainder;
void* bins[254];
unsigned int binmap [4];
struct __malloc_state_proxy #*next;
struct _ malloc_state_proxy #*next_ free;
size_t attached__threads;
size__t system_mem;
size_t max_system_mem;
} arena;

typedef struct _mem_ state{
size_t used;
size_t top;

} mem_ state;

//Placeholder for the glibc heap_info struct
typedef struct _ heap_info_ proxy
{
arenax arena;
struct __heap_info_proxy sxprev;
size_t size;
size_t mprotect_size;
} heap_info_ proxy;

#endif

B.1.3 CPU_monitor.h

© 00 O U W

N OO W N

o]

10
11
12
13
14
15
16
17
18
19
20
21

=W N =

N O Gt

HEADERS 223

#ifndef CPU_MONITOR,_H
#define CPU_MONITOR,_H

extern unsigned short used_cpus;
extern unsigned short max_cpus;

void init__cpu_monitor () ;

#endif

B.1.4 Chunk.h

#ifndef CHUNK H
#define CHUNK H

#include <stdbool.h>
#include "types.h'

#define MCHUNK PTR TO PTMALLOC2 PIR(ptr) (ptr + 2 % sizeof(
size_t))

#define IS MMAPPED(chunk) (*((size_t#*)chunk — 1) & 2)

#define HEAP INFO(ptr) ((heap_info proxys) ((long)ptr & ~(
HEAP M SIZE —1)))

#define ARENA(ptr) (HEAP INFO(ptr)—>arena)

#define MAIN(ptr) (!(x((size_t*)ptr — 1) & 4))

#define PREV_INUSE(chunk) (#*((size_t=*)chunk — 1) & 1)

#define SIZE FIELD(ptr) (=*((size_t=*)ptr —1))

#define SIZE(ptr) (SIZE_FIELD(ptr) & ~(7))

#define FLAGS(ptr) (SIZE FIELD(ptr) & 7)

#define TOP(ar) (SIZE(MCHUNK PTR TO PTMALLOC2 PTR(ar—>top)))

A~~~

void set_chunk_size(ptmalloc2_ptr ptr, size_t size);
void set_chunk_size_ head(ptmalloc2_ptr ptr, size_t size);

#endif

B.1.5 Arena.h

#ifndef ARENA_H
#define ARENA H

#include <stddef.h>
#include <stdbool.h>
#include "types.h'

10
11
12
13
14
15
16
17
18
19
20
21

[
— O © 00 O Uik Wi+~

—

=W N =

—_
— O © 00 o Ot

—_

224

extern arena* main_ arena;

void init_arenas(ptmalloc2_ptr ptr);
void add_arena(arenax ar);

bool arena_ exists(arenax ar);
int num_ arenas() ;

mem_ state get__mem_ state() ;
void trim_ arenas();
void expand_arena(arenax ar);

bool need_trim () ;

#endif

B.1.6 Ptlbmalloc2.h

#ifndef PTLBMALLOC2 H
#define PTLBMALLOC2 H

extern voidx malloc(size_t size);
extern void free(void* ptr);

PTLBMALLOC2 SOURCE CODE

extern voidx calloc(size_t num, size_t size);
extern voidx realloc(voidx ptr, size_t size);

int set_sensitivity (float val);

#endif
B.2 Implementation

B.2.1 CPU_monitor.c

#include <sys/time.h>
#include <signal.h>
#include <stdio.h>
#include <stdbool.h>
#include <sys/times.h>
#include <sys/sysinfo.h>
#include <unistd.h>

unsigned short max_cpus;
float ticks__per__us;
struct tms last_times;

12
13
14

15
16

17
18
19
20
21
22
23
24

26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47

IMPLEMENTATION

unsigned

//Estimate the number of CPUs currently being used by the

short used_ cpus;

program .
static void calc_cpus(int sig){

//When the number of used CPUs can not be determined,
assume all system CPUs are used.

used__cpus = max_ cpus;

int passed__usecs = 1000000;
unsigned short cpus_ used;

//Get CPU time passed
struct tms cur_times;
times(&cur__times);

float cpu_time = (cur_times.tms_utime + cur_times.tms_stime

— last__times.tms_utime — last_times.tms_stime)/

ticks__per_ us;

cpus__used = cpu_time/passed__usecs;

if (cpus_used > max_cpus ||

cpus_used = 0) return;

//1f successful , set new values
last__times = cur_times;
used_ cpus = cpus_ used;

}

void init_cpu_monitor () {
times(&last_times);
max_cpus = get_nprocs() ;

ticks
used

cpus = max_ Cpus;

signal (SIGALRM, calc_cpus);
struct itimerval timer;

timer

timer .

timer
timer

setitimer (ITIMER_REAL, &timer, NULL) ;

.it _interval.tv_sec =
it _interval.tv_usec =
.it__value.tv_sec = 1;
.it_value.tv_usec = 0;

B.2.2 Chunk.c

1 #include <stdio.h>
2 #include <stdbool.h>
3 #include

"global .h"

1 .

O .

per_us = sysconf(SC CLK TCK)/1000000.0;

)

225

0~ O Ut

11
12
13
14

0~ O UL W N~

W W WD NDNDNDNDDNDNDND DN DN = = = = =
N — O © 00D UkWNFEOOWOU R WwNH=O©

226 PTLBMALLOC2 SOURCE CODE

#include "types.h'

void set_chunk_size(ptmalloc2_ptr ptr, size_t size){
x((size_tx)ptr — 1) = size;
((size_tx)(ptr + size — 2)) = size;

}

void set_chunk_size head(ptmalloc2_ptr ptr, size_ t size){
x((size_tx)ptr — 1) = size;
}

B.2.3 Arena.c

#include <sys/mman.h>
#include <unistd.h>
#include <sys/syscall .h>
#include <linux/futex.h>
#include <sys/time.h>
#include <stdio.h>
#include <stdbool.h>
#include <malloc.h>
#include <pthread.h>
#include "cpu_monitor.h
#include "chunk.h'
#include "global.h"

"

int max_ arenas;
arenax* arenas = NULL;
arenax main_arena;

static inline void set_main_arena(ptmalloc2_ptr ptr)

{
arena*x a = HEAP_INFO(ptr)—>arena;

arena* ar = a—>next;
arena* max = a;
while (ar != a)
if (ar > max) max = ar;
ar = ar—next;
main_arena = max;

}

static void* find_ main arena(voidx arg)

33
34
35
36
37
38
39
40
41
42

43
44
45
46
47
48
49
50
51
52
53
54

57
58
59
60
61
62
63
64
65
66

67
68
69
70
71
72
73

IMPLEMENTATION 227

{
ptmalloc2__ptr ptr = __libc_malloc(1024);
set__main_arena(ptr);
__libc_free(ptr);
}
void init__arenas (ptmalloc2_ptr ptr)
{
max_ arenas = 8 *x maxX_ Cpus;
arenas = mmap(NULL, max arenas * sizeof (arenax),
PROT_READ | PROT WRITE, MAP PRIVATE | MAP_ANONYMOUS, -1,
0);

if (MAIN(ptr))

{
pthread_t thread;
pthread create(&thread , NULL, &find_ main_arena, NULL);
pthread_ join (thread , NULL);

}

else set_main_arena(ptr);

}

//Futex syscall wrapper

static inline int futex(int #xuaddr, int futex_ op, int wval,
const struct timespec *xtimeout, int kxuaddr2, int val3)

{

return syscall (SYS_ futex, uaddr, futex_ op, val, timeout,
uaddr, val3);

}

//Lock an arena
static void lock__arena(arenax ar)
{
intx lock = &ar—>lock;
if (__sync_val_ compare_and_swap(lock ,0,1)){
do {
int old_val = __sync_val_ compare_and_swap(lock ,1,2);
if (old_val != 0) futex(lock, FUTEX WAIT PRIVATE, 2,
NULL, NULL, 0);
} while (__sync_val compare_and_swap(lock ,0,2) != 0);

}

//Unlock an arena
static void unlock_arena(arenax ar)

228 PTLBMALLOC2 SOURCE CODE

74 |

75 intx lock = &ar—>lock;

76 int old_val = __sync_lock_test_and_set(lock,0);

7 if (old_val > 1) futex(lock, FUTEX WAKE PRIVATE, 1, NULL,
NULL,0) ;

78}

79

80 Dbool arena_ exists(arenax ar)

81 {

82 int i = 0;

83 while (i < max_ arenas && arenas[i] != NULL){

84 if (arenas[i] == ar) return true;

85 i++;

86 }

87 return false;

88 }

89

90 //Add new non—main arena
91 void add_arena(arena* ar)

922 {

93 int i = 0;

94 while (arenas[i] != NULL)

95 {

96 if (arenas[i] = ar) return;

97 i++;

98

99 while (__sync_val compare_and_swap(arenas + i, NULL, ar)
|= NULL)

100 {

101 if (arenas[i] = ar) return;

102 i+

103 }

104}

105

106 //Get the amount of used and top memory
107 mem_ state get__mem_ state ()

108 {

109 mem_ state state;

110 lock__arena (main__arena) ;

111 state.top = TOP(main arena);

112 state.used = main_ arena—>system_ mem;

113 unlock__arena(main_arena) ;

114 int i = 0;

115 while (i < max arenas && arenas[i] != NULL)
116 {

117 arena* ar = arenas|[i];

118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151

152
153
154

155

156
157
158
159
160
161

IMPLEMENTATION 229

}

lock__arena(ar);
state.used += ar—>system__mem;
state.top += TOP(ar) ;
unlock__arena(ar);
i++;

}

return state;

bool need_ trim ()

{

}

size_t top;
lock__arena(main_arena) ;
top = TOP(main_arena);
unlock__arena(main_arena) ;
int i = 0;
while (i < max arenas && arenas[i] != NULL)
{
arena* ar = arenas|[i];
lock__arena(ar);
top += TOP(ar) ;
unlock__arena(ar);
if (top > TRIM THRESHOLD) return true;
i+
}

return false;

//Trimming function for non—main arenas
static inline void trim_arena(arenax ar)

{

lock__arena(ar);

mchunk_ptr top = ar—>top;

ptmalloc2_ptr top_chunk = MCHUNK PTR TO_ PTMALLOC2 PTR(top
)5

size_t top_size = SIZE(top_chunk);

void* addr = (voidx) (((long) (top + TOP_PAD) | 4095) + 1);
unsigned long len = (unsigned long)(top + top_size — addr

IE

if (top_size > 2 x TOP_PAD
&& top_size — len > 32){
size_t size_new_top = (topisize — len);
madvise (addr, len, MADV_DONINEED) ;
set__chunk_size__head (top_chunk, size_new_top | 1);

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207

230 PTLBMALLOC2 SOURCE CODE

heap_info_proxy= top__heap_info = HEAP_INFO((top));
top__heap_info—>size —= len;
ar—>system_mem —= len;

}

unlock__arena(ar);

}

//Trim all arenas
void trim_ arenas ()

{
malloc__trim (TOP_PAD) ;

//Trim non—main arenas

int i =0;
while (1 < max_arenas && arenas[i] != NULL){
trim__arena(arenas[i]) ;
i+
}
}
int num_ arenas|()
{
int i = 0;
while (i < max_ arenas && arenas[i] != NULL) i++;
return i + 1;
}

void expand_arena(arenax ar)

{
lock__arena(ar);
heap_info_proxyx info = HEAP_INFO(ar—>top) ;
//Recalculate after locking

size__t top_mprotect = info—>mprotect_size — info—>size;
if (top_mprotect >= 0.25 x TOP_PAD)
{
unlock arena(ar);
return ;
}
void* addr = (voidx*)info + info—>mprotect_size;

size_t len = ((TOP_PAD — top_mprotect) | 4095) + 1;
if (info—>mprotect_size + len < HEAP_M_ SIZE

&& mprotect (addr, len, PROT READ | PROT WRITE) =— 0)
{

208
209
210

211
212
213
214
215
216
217
218

0 1O Ol W N~

IMPLEMENTATION

info—>mprotect__size += len;
ar—>system__mem += len;
if (ar—>system_mem > ar—>max_system_ mem) ar—>
max_ system_mem = ar—>system_mem:;
}
else
{
unlock_arena(ar);
return ;

}

unlock_arena(ar);

}

B.2.4 Ptlbmalloc2.c

#include <malloc.h>
#include <unistd.h>
#include <sys/mman.h>
#include <stdlib.h>
#include <stdio.h>

#include "global.h"
#include "types.h'
#include "chunk.h"
#include "arena.h'
#include "cpu_monitor.h

"

//STATIC DATA

//Synchronization

bool init = false;
bool init_barrier = false;
bool trim_ barrier = false;

//User—controllable sensitivity
float tune = 1;

size__t TOP_PAD = 0;

size_t TRIM_THRESHOLD = 100000;

size__t HEAP_M SIZE = 8388608 * sizeof (long);
size__t MMAP_THRESHOLD = 128 x 1024;

size_t MAX MMAP THRESHOILD = 64 * 1024 x 1024;

//Initialization. Executed on first malloc call.

231

32
33
34

36
37
38

39
40
41
42
43
44

45
46
47
48
49
50
51
52
53
54

55

56

58
59
60
61
62
63
64
65
66
67
68
69
70
71

232

st

}

st

{

PTLBMALLOC2 SOURCE CODE

atic ptmalloc2_ptr allocate(size_t size, int num){

char buf[256];

ptmalloc2_ptr ptr;

if (!init && __sync_bool compare_ and_swap(&init_barrier ,
false ,true)){
mallopt (M_TRIM_THRESHOLD, -1);
init__cpu_monitor () ;
ptr = num >= 0 ? _ _libc_calloc(num, size) : __libc_malloc
(size);

init__arenas(ptr);

init = true;

}

else {
ptr = num >= 0 ? _ _libc_calloc(num, size) : _ _libc_malloc
(size);

if (!IS_ MMAPPED(ptr) && init)

size__t size_malloced = SIZE(ptr);
if (!MAIN(ptr))
{
arena* ar = ARENA(ptr);
if (larena_exists(ar)) add_arena(ar);

else {
heap_info_proxyx info = HEAP INFO(ptr);
arena*x ar = info—>arena;
size_t top_mprotect = info—>mprotect_size — info—>
size;

if (top_mprotect < 0.25 x TOP_PAD) expand_ arena(ar)

}

}
}

return ptr;

atic inline void update_thresholds()

//Get current memory state

mem_state state = get__mem_state() ;
size_t used_size = state.used;
size_t top_size = state.top;

size_t base;

72

73
74

75
76

7

78
79
80
81

82
83

84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111

IMPLEMENTATION 233

}

//1f allocated memory is smaller than 500kB, use fixed base
threshold of 100kB

if (used_size < 500000) base = 100000;

//1f memory is smaller than 1MB, use base threshold of half
the allocated memory

else if (used_size < 1000000) base = 0.5xused_size;

//1f smaller than 1GB, linearly decrease the percentage of
memory that the threshold value represents.

else if (used_size < 1000000000) base = 0.1 * used_size +
400000;

//I1f more than 1GB allocated , use fixed threshold of 100MB.

else base = 100000000;

//More CPUs means TLB shootdowns are more expensive, so
increase threshold based on number of CPUs used.

//Allow tuning by user

size_t new_ trim_threshold = base % (1 + ((float)used_cpus)
/ 100.0) # tune;

if (new_trim_threshold > 1.25 x TRIM THRESHOLD
|| new_trim threshold < 0.75 s TRIM THRESHOLD)
{

TRIM_THRESHOLD = new_ trim_ threshold;
int n_arenas = num_ arenas() ;
size__t new_top_pad = new_trim_threshold / 4 / n_arenas;
TOP_PAD = new_top_pad;
mallopt (M_TOP_PAD, new_top_pad);
}

//Malloc wrapper
void* malloc(size_t size){

}

return allocate (size , —1);

//Free wrapper
void free(voidx ptr){

if (ptr != NULL && init)

{
bool main = MAIN(ptr);
bool mmapped = IS_MMAPPED(ptr) ;
size_t size = SIZE(ptr);

if (mmapped
&& size > MMAP_THRESHOLD
&& size <= MAX MMAP_THRESHOLD)

234 PTLBMALLOC2 SOURCE CODE

112 {

113 MMAP THRESHOID = 1.1 x size > MAX MMAP_ THRESHOLD ?
MAX MMAP THRESHOID : 1.1 * size;

114 mallopt (M_MMAP THRESHOLD, MMAP_THRESHOLD) ;

115}

116

117 arenax ar;

118 size_t old__top_size;

119 if (init && !mmapped) {

120 if (main) ar = main arena;

121 else {

122 ar = ARENA(ptr);

123 if (larena exists(ar)) add arena(ar);

124 }

125 old__top_size = TOP(ar);

126}

127

128 __libc_free(ptr);

129

130

131 size_t new__top_ size;

132 if (init && !mmapped)

133 {

134 new_ top_size = TOP(ar);

135

136 if (new_top_size > old_top_size

137 && new__top_size > 4 x TOP_PAD

138 && !trim barrier

139 && ___sync_bool_compare_and_swap(&trim__barrier, false ,

true))

140 {

141 if (need_trim()){

142 trim_arenas () ;

143 update thresholds () ;

144 }

145 trim__barrier = false;

146 }

147 }

148

149 else ___libc_free(ptr);

150 }

151

152 voidx calloc (size_t num, size_t size){

153 return allocate (size , num);

154}

155

156
157
158
159
160
161

162

163
164
165
166
167
168
169
170
171

IMPLEMENTATION 235

void* realloc (voidx ptr, size_t size){
ptmalloc2_ptr mem = ___libc_realloc(ptr,size);
return mem;

}

//Allow user to control the trade—off between memory
efficiency and TLB shootdowns
//Higher values decrease shootdowns and memory efficiency ,
lower values increase both
//Default value is 1
//Returns 0 on success, —1 when input is invalid
int set_sensitivity (float wval){
if (val > 0) {
tune = val;
return 0;

}

else return -—1;

Appendix C

NODedup Source Code

All of the NODedup source files that differ from the original Dedup source code
upon which it is based.

C.1 Headers

C.1.1 Chunk_list.h

#ifndef LINKEDLIST HEADER
#define LINKEDLIST HEADER

N =

#include <stdio.h>
#include <stdlib .h>
#include "dedupdef.h"

W O Ot W

typedef struct node{
chunk_t * data;
struct node * next;
int allocated;
char used;

} Node;

— = = e
=W N = OO

15 typedef struct list {
16 Node * head;

17 Node * tail;

18 int length;

19 } List;

237

20
21
22
23
24
25
26
27
28

0~ O U W N~

— = = e
=W N = OO

=W N =

N O Gt

10
11
12
13
14
15

238 NODEDUP SOURCE CODE

List * emptylist () ;

void add(chunk_t = elem, List x list);
List #x split(int n, List x list);

List #x split_mod(int n, List % list);
List * merge(List = 11, List * 12);

List #x zip_split(int n, List %% lists);

#endif

C.1.2 Iterator.h

#include<stdlib .h>
#include "chunk list.h"

typedef struct iterator{
List * list;
Node * index;
}Iterator;

Iterator # init_iterator (List % list);
chunk_t * next(Iterator % iter);

Node * next_node(Iterator = iter);
void reset (Iterator * iter);

int hasNext(Iterator * iter);

void destroy_iterator(Iterator * iter);

C.1.3 Thread_pool.h

#ifndef _THPOOL
#define _THPOOL

typedef struct thpool_x threadpool;

threadpool thpool_init(int num_ threads);

int thpool add_work(threadpool, void (xfunction_p)(void=x),
void* arg_p);

//Wait for all queued jobs to finish

void thpool wait(threadpool);

void thpool_ pause(threadpool);

void thpool resume(threadpool);

void thpool destroy (threadpool);

int thpool num_ threads_working(threadpool);

#endif

0~ O U W N~

IMPLEMENTATION

C.1.4 Encoder.h

#include "chunk list.h"

#ifndef ENCODER H
#define _ENCODER H 1

typedef structq
size_t size;
char * data;

} Compressed__data;

void Encode(config_t * conf);

#endif /+ | ENCODER H /
C.2 Implementation

C.2.1 Chunk_list.c

#include<stdlib .h>
#include<string .h>
#include "chunk_ list.h"
#include "iterator.h"

void createNNodes(int n, List x list){
Node # newNodes = malloc(n * sizeof (Node));

for (int i = 0; i < n—1; i++){

newNodes[i]. allocated = 0;
newNodes[i].data = NULL;
newNodes[i].next = &newNodes[i+1];
newNodes[i].used = 1;
newNodes [0]. allocated = n;

newNodes [n—1].next = NULL;

//No non—empty elemnts

if (list =>tail = NULL) {
//No empty elements either

if (list =>head = NULL) list —>head = newNodes;

//Only empty elements

else {
Node * h = list —>head;
while (h—>next != NULL) h = h—>next;
h—>next = newNodes;

239

26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54

55

56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71

240 NODEDUP SOURCE CODE

}
}
else list —>tail —>next = newNodes;
}
void createNodes(List = list){
int n;

if (list —>length < 16) n = 16;

else if (list —>length < 1024) n = list —>length;
else n = 1024;

createNNodes (n, list) ;

}

List * emptylist (){
List * list = malloc(sizeof (List));
list —head = NULL;
list =>tail = NULL;
list —>length = 0;
return list;

}

void add(chunk_t % elem, List x list){
if (list —>head == NULL) createNodes(list);
if (list —>head—>data = NULL || list —>tail = NULL){
list —>head—>data = elem;
list =—>tail = list —head;

}

else{
if (list =>tail —>next == NULL) createNodes(list);
list =—>tail = list —>tail —>next;
list =>tail —>data = elem;

}

list —>length++;
}
void add_node(Node % node, List * list){
//Empty list
if (list =>head == NULL) {
node—>next = NULL;
list —>head = node;
list =>tail = node;
}
//List with only empty nodes
else if (list —>head—>data = NULL) {
node—>next = list —>head;
list —>head = node;
list =>tail = node;

72
73
74
5
76
T
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92

93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115

IMPLEMENTATION

}

else{

node—>next = list —>tail —>next;
list =>tail —>next = node;
list =>tail = node;

}

list —>length++;

}

//Find the number of memory allocations for a list.
int numAllocs(List * list){

int

len = list —>length;

if (list = NULL) return O;

else
else
else
else
else
else
else
else

if (len < 17) return 1;

if (len < 33) return 2;

if (len < 65) return 3;

if (len < 129) return 4;

if (len < 257) return 5;

if (len < 513) return 6;

if (len < 1025) return 7;

return 7 4+ ((len — 1024) / 1024) + ((len % 1024 = 0)

7 0:1);

}

//Splits a list in n sublists of sequential elements.
List #x split(int n, List * list){

int
List

size = (list —>length)/n;

% lists = malloc(n * sizeof (Listx));

for (int q = 0; g<n;q++) lists[q] = emptylist();
Node * buffer;
buffer = list —>head;

for(int i = 0; i< list —>length; i++){
int 1;
if (i/size < mn) 1 = (i/size);
else 1 = (n—1);
Node * nn = buffer —>next;
add_node(buffer ,lists [1]);
buffer = nn;

}

free(list);

return lists;

241

242 NODEDUP SOURCE CODE

116 //Splits a list in n sublists with each m’th element of the
sublist being the (n*m)’th element of the original list

117 List =% split_mod(int n, List x list){

118 List *% lists = malloc(n * sizeof (Listx));

119 for (int q = 0; g<n;q++) lists[q] = emptylist();

120 int i = 0;

121 Node * buffer = list —>head;

122

123 int len = list —>length;

124 for(int j = 0; j < len; j++){

125 Node * nn = buffer —>next;
126 add_node(buffer ,lists [i]);
127 buffer = nn;

128

129 if(i=(n-1)) i = 0;
130 else i+4++;

131}

132 return lists;

133}

134

135 void merge empty(List = 11, List % 12){

136 Node * fempty NULL;

137 Node * lempty NULL;

138

139 //Initialize fempty;

140 if (11 = NULL) 11 = emptylist () ;

141 //Only empty elements in 11

142 else if(11—>head != NULL && 11—>tail = NULL) fempty = 11—
head;

143 //No empty elements in 11

144 if (11-—>head = NULL || ll1—>tail —>next == NULL) {

145 if (12 = NULL || 12—>head = NULL) return;
146 else if(12—>tail = NULL) fempty = 12—>head;
147 else if (12—>tail —>next == NULL) return;

148 else fempty = 12—>tail —>next;

149

150 //All other cases

151 else fempty = 11—>tail —>next;

152

153 //Initialize lempty

154 lempty = fempty;

155 while (lempty—>next != NULL) lempty = lempty—>next;

156

157 //merge lempty and first empty element of 12 if necessary

160
161

162
163
164
165
166
167

168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198

IMPLEMENTATION 243

}

if (12 != NULL && 12—>tail != NULL && 12—>tail —>next != NULL
&& fempty != 12—>tail —>next) lempty—>next = 12-—>tail—>
next ;

else if(12—>head != NULL && 12—>tail = NULL && fempty !=
12—>head) lempty—>next = 12—>head;

//Do what is necessary to return 11 with the merged empty
sections ;

if (11—>head = NULL || 11—>tail == NULL) 11—>head = fempty;

else 11—>tail —>next = fempty;

//Remove empty nodes from 12 if necessary

if (12 != NULL && 12—>tail != NULL) 12—>tail —>next = NULL;

else if (12 != NULL && 12—>head != NULL && 12—>tail = NULL
) 12—>head = NULL;

List % merge(List * 11, List % 12){

}

if (11 = NULL) return 12;
else if (11—>head = NULL){
free (11);
return 12;

else if (12 = NULL) return 11;
else if (12—>head == NULL){
free(12);
return 11 ;
}
merge__empty (11 ,12);
12—>tail —>next = 11—>tail —>next;
11—>tail —>next = 12—>head;
11—>tail = 12—>tail;
11—>length += 12—>length;
free(12);
return 11 ;

//Zips n lists that were split using split_mod.
List *x zip_split(int n, List %% lists){

List *% output = malloc(n*sizeof (List x));
for (int i = 0; i < n; i++){
output[i] = emptylist () ;
merge__empty (output[i], lists [i]);
}
Node * buffers[n];
int i;

244 NODEDUP SOURCE CODE

199 for (i=0;i<n;i++)buffers[i] = lists [i]—>head;

200 int len = lists[0]—>length;

201 int out_list = 0;

202 int count = 0;

203

204 for (i = 0; i<len;i++){

205 for (int j = 0; j<n;j++){

206 if (buffers[j]!= NULL){

207 Node * nnn = buffers[j];

208 buffers[j] = nnn—>next;

209 add_node(nnn,output [out__list]);

210 count++;

211 if ((out_list < n—1) && (count >= len && ((j < n—1 &&
buffers[j+1] != NULL && buffers[j+1]—>data—>sequence.
Ilnum != nnn—>data—>sequence.llnum)

212 || (j = n—1 && buffers [0] != NULL && buffers
[0]— >data—>sequence .llnum != nnn—>data—>sequence.llnum)))
)

213 out_ list++;

214 count = 0;

215 }

216 }

217 }

218 }

219 for (i=0;i<n;i++) free(lists[i]);
220 free(lists);

221 return output;
222}

C.2.2 Ilterator.c

1 #include "iterator.h"

2

3 Iterator x init iterator (List = list){

4 Iterator % iter = malloc(sizeof(Iterator));
5 iter —>list = list;

6 iter —>index = NULL;

7 return iter;

8 }

9

10 Node * next node(Iterator = iter){

11 Node * n = iter —>index;

12 if (n = NULL) {

13 n = iter —>list —>head;

14 if (n = NULL || n—>data==NULL) return NULL;

15 else{

16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

O © 00 1O Ut WN

[

12
13
14

IMPLEMENTATION 245
iter —>index = n;
return n;
}
}
Node * nn = n—>next;
if (nn = NULL || nn—>data=NULL) return NULL;
iter —>index = nn;
return nn;
}
chunk_t * next(Iterator * iter){
Node * n = next_node(iter);
if (n = NULL || n—>data == NULL) return NULL;
return n—>data;
}s
void reset (Iterator = iter){
iter —>index = NULL;
}
int hasNext(Iterator % iter){
return (iter —>index != iter —>list —>tail);
}
void destroy_iterator (Iterator * iter){
free(iter);
}
C.2.3 Thread_pool.c
[3tk ok kKKK KKK KR KR SRR SR R oK oK oK ok ok ok ok ok ok oK ok oK K K
* @author Johan Hanssen Seferidis
x License: MIT
*
sk sk ok ok kK sk ok ok ok oKk KK K K ok ok Sk KKK KK Kk sk sk koK ok ok /
3k kR kKRR KR KRR R R R R R ok ok ok ok ok ok ok ok ok oK R
* Author: Johan Hanssen Seferidis
x License: MIT
* Description: Library providing a threading pool where you
can add
* work. For usage, check the thpool.h file or
README. md
*

x//+x*% @file thpool.h x//x
*

15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

246 NODEDUP SOURCE CODE

********************************/

#define _POSIX C_SOURCE 200809L
#include <unistd .h>

#include <signal .h>

#include <stdio .h>

#include <stdlib.h>

#include <pthread.h>

#include <errno.h>

#include <time.h>

#if defined (__ linux__)
#include <sys/prctl.h>

#endif

#include "thpool.h"

#ifdef THPOOL DEBUG

#define THPOOL_ DEBUG 1

#else

#define THPOOL_ DEBUG 0

#endif

#if !defined (DISABLE_PRINT) || defined (THPOOL DEBUG)
#define err(str) fprintf(stderr, str)
#else

#define err(str)

#endif

static volatile int threads_keepalive;
static volatile int threads_on_hold;

typedef struct bsem {
pthread mutex_ t mutex;
pthread cond_t cond ;
int v;

} bsem;

typedef struct job{
struct jobx prev;

void (xfunction) (void* arg);
void* arg;
} job;

typedef struct jobqueue{
pthread__mutex_t rwmutex;
job xfront;
job xrear;
bsem xhas_ jobs;
int len;

61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
7
78

79
80
81
82
83
84
85

86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104

IMPLEMENTATION 247

} jobqueue;

typedef struct thread{

int id ;

pthread_t pthread;

struct thpool x thpool_ p;
} thread;

typedef struct thpool_ {

thread xx threads;
volatile int num_ threads_ alive;
volatile int num_ threads_working;
pthread__mutex_t thcount_lock;
pthread_cond_t threads_all_idle;
jobqueue jobqueue;
} thpool_;
static int thread init(thpool = thpool p, struct threadsx

thread_p, int id);
static void* thread_ do(struct threads thread_p);
static void thread_ hold(int sig_id);
static void thread_destroy(struct threadx thread_ p);

static int jobqueue_init (jobqueue* jobqueue p);

static void jobqueue_ clear(jobqueuex jobqueue_p);

static void jobqueue_push(jobqueuex jobqueue_p, struct jobsx
newjob_p);

static struct job* jobqueue_pull(jobqueuex jobqueue_p);

static void jobqueue_destroy(jobqueuex jobqueue_p);

static void bsem_init(struct bsem xbsem_p, int value);
static void bsem_reset(struct bsem xbsem_p);

static void bsem_post(struct bsem xbsem_p);

static void bsem_post_all(struct bsem xbsem_p);

static void bsem_wait(struct bsem sxbsem_p);

/% Initialise thread pool x/
struct thpool # thpool_ init(int num_ threads){

threads on_ hold
threads_ keepalive =

[
— o

if (num_threads < 0){
num_ threads = 0;

}

105
106
107
108
109

110
111
112
113
114
115
116
117

118
119
120
121
122
123

124
125

126
127
128
129
130
131
132
133
134
135
136
137
138
139

140
141
142
143
144
145

NODEDUP SOURCE CODE

/* Make new thread pool x/
thpool__* thpool_p;
thpool p = (struct thpool x)malloc(sizeof(struct thpool));
if (thpool p == NULL){
err ("thpool init(): Could not allocate memory for thread
pool\n");
return NULL;
}
thpool _p—>num_ threads_ alive = 0;
thpool_p-—>num_ threads_ working 0;

/* Initialise the job queue x/
if (jobqueue init(&thpool p—>jobqueue) =— —1){
err ("thpool init(): Could not allocate memory for job
queue\n");
free (thpool_p);
return NULL;

}

/% Make threads in pool x*/

thpool p—>threads = (struct thread=xx)malloc(num_threads x
sizeof (struct thread x*));

if (thpool p—>threads = NULL){
err ("thpool init(): Could not allocate memory for threads
\n");
jobqueue__destroy(&thpool_p—>jobqueue) ;
free (thpool p);
return NULL;

}

pthread__mutex_init (& (thpool p—>thcount_lock), NULL);
pthread__cond__init(&thpool_p—>threads_all_idle, NULL);

/* Thread init =/
int n;
for (n=0; n<num_ threads; n++){
thread__init (thpool_p, &thpool p—>threads[n], n);

#if THPOOL DEBUG

printf ("THPOOL DEBUG: Created thread %d in pool \n', n)

#endif

}
/% Wait for threads to initialize x/
while (thpool p—>num threads alive != num_threads) {}

146
147
148
149
150
151

152
153
154
155
156

157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174

176
177
178
179
180
181
182
183
184
185
186
187

IMPLEMENTATION

249

return thpool p;

}

/% Add work to the thread pool =/
int thpool add_work(thpool * thpool p, void (*function_p)(

void*) ,

void* arg_p){

jobx mnewjob;

newjob=(struct jobx)malloc(sizeof(struct job));
if (newjob==NULL){
err ("thpool add_ work():
job\n");

return

}

Could not allocate memory for new

/* add function and argument x/
newjob—>function=function_p;
newjob—>arg=arg p;

/% add job to queue x/
jobqueue_ push(&thpool p—>jobqueue, newjob);

return 0;

/* Wait until

all jobs have finished x/

void thpool_wait (thpool__x thpool_p){
pthread_mutex_lock(&thpool p—>thcount_lock);

while (thpool p-—>jobqueue.len

num_ threads_working) {
pthread_cond_ wait(&thpool p—>threads_all_idle, &thpool p
—>thcount_lock);

}

|| thpool p—>

pthread__mutex_ unlock(&thpool_p—>thcount_lock);

}

/% Destroy the threadpool x/
void thpool_destroy (thpool x thpool p){
/* No need to destory if it’s NULL x/
if (thpool p == NULL) return

volatile

int threads total

)

thpool p—>num_ threads_ alive;

188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233

250 NODEDUP SOURCE CODE

/* End each thread ’s infinite loop x/

threads__keepalive = 0;

/* Give one second to kill idle threads =/

double TIMEOUT = 1.0;

time_t start, end;

double tpassed = 0.0;

time (&start);

while (tpassed < TIMEOUT && thpool p—>num_ threads_alive){
bsem_ post_all (thpool p—>jobqueue.has_jobs);
time (&end);
tpassed = difftime (end,start);

}

/+* Poll remaining threads =/

while (thpool p—>num_threads_alive){
bsem_ post_all(thpool p—>jobqueue.has_jobs);
sleep (1) ;

}

/* Job queue cleanup x/

jobqueue__destroy(&thpool p—>jobqueue) ;

/* Deallocs x/

int n;

for (n=0; n < threads_ total; n++){
thread destroy (thpool p—>threads[n]);

}

free (thpool p—>threads);

free (thpool_p);

/* Pause all threads in threadpool x/
void thpool_ pause(thpool * thpool _p) {
int n;
for (n=0; n < thpool p—>num_threads_alive; n++){
pthread_ kill (thpool_p—>threads [n]—>pthread , SIGUSRI1);
}
}

/* Resume all threads in threadpool x/

void thpool_ resume (thpool % thpool_p) {
// resuming a single threadpool hasn’t been
// implemented yet, meanwhile this supresses
// the warnings

234
235
236
237
238
239
240
241
242
243
244
245
246

247
248
249
250

251
252
253
254

255
256
257
258
259
260
261

262
263
264
265
266
267
268
269
270
271
272
273
274
275

IMPLEMENTATION 251

(void)thpool p;

threads_on_hold = 0;
}

int thpool num_ threads_working (thpool % thpool p){
return thpool p-—>num_ threads_working;

}
/* Initialize a thread in the thread pool
*
% @param thread address to the pointer of the thread
to be created
x @param id id to be given to the thread
* @return 0 on success, —1 otherwise.
*
/

static int thread init (thpool x thpool p, struct threadsx
thread_p, int id){

xthread_p = (struct threadx)malloc(sizeof(struct thread));
if (thread p == NULL){
err ("thread init(): Could not allocate memory for thread)
n");

return —1;

}
(xthread__p)—>thpool_p = thpool_ p;
(#thread p)—>id = id;

pthread create(&(xthread p)—>pthread, NULL, (void x*)
thread__do, (xthread_p));

pthread__detach ((*thread_p)—>pthread);

return O;

}

/* Sets the calling thread on hold x/
static void thread_hold(int sig_id) {
(void)sig_id;
threads_on_hold = 1;
while (threads_on_hold){
sleep (1) ;
}
}

276
277
278

279
280
281
282
283
284
285
286
287
288
289
290
291

292
293
294
295
296

297
298
299

300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317

252 NODEDUP SOURCE CODE

/* What each thread is doing

*

* In principle this is an endless loop. The only time this
loop gets interuppted is once

* thpool destroy () is invoked or the program exits.

*

% @param thread thread that will run this function
x @return nothing

*/

static voidx thread do(struct threads thread p){

/% Set thread name for profiling and debuging x*/
char thread name[128] = {0};
sprintf (thread_name, 'thread-pool-%d", thread p-—>id);

#if defined (__ linux__)
/% Use prctl instead to prevent using _GNU SOURCE flag and
implicit declaration =/
prctl (PR_SET_NAME, thread_name);
#elif defined(APPLE) && defined (_ MACH)
pthread setname np (thread name);
#else
err ("thread do(): pthread setname np is not supported on
this system");

#endif

/* Assure all threads have been created before starting
serving */
thpool % thpool p = thread__p—>thpool p;

/* Register signal handler x/

struct sigaction act;

sigemptyset(&act.sa_mask) ;

act.sa_ flags = 0;

act.sa_ handler = thread_hold;

if (sigaction (SIGUSRI, &act, NULL) = -1) {
err ("thread do(): cannot handle SIGUSR1")

}

/% Mark thread as alive (initialized) x*/
pthread__mutex_lock(&thpool p—>thcount_lock);
thpool p—>num_ threads_alive += 1;
pthread__mutex_ unlock(&thpool_p—>thcount_lock);

I

while (threads keepalive){

318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363

IMPLEMENTATION 253

}

bsem_ wait (thpool _p—>jobqueue.has_jobs);

if (threads keepalive){

}
}

pthread__mutex_ lock(&thpool p—>thcount_lock);
thpool p—>num_ threads_ working+-;
pthread__mutex_ unlock(&thpool _p—>thcount_lock);

/* Read job from queue and execute it x*/
void (*func_buff) (voidx*);
void* arg_ buff;
jobx job_p = jobqueue_ pull(&thpool_p—>jobqueue);
if (job_p) {
func__buff = job_p-—>function;
arg_buff = job_p-—>arg;
func_buff(arg_buff);
free (job_p);

}

pthread__mutex_ lock(&thpool p—>thcount_lock);

thpool p—>num_ threads_working——;

if (!thpool p—>num_threads working) {
pthread_cond_signal(&thpool p—>threads_all_idle);

}

pthread__mutex_ unlock(&thpool_p—>thcount_lock);

pthread__mutex_ lock(&thpool p—>thcount_lock);
thpool p—>num_ threads_alive ——;
pthread__mutex_ unlock(&thpool _p—>thcount_lock);

return NULL;

/% Frees a thread x/
static void thread_destroy (threadx thread_ p){
free (thread_p);

}

/* Initialize queue x/
static int jobqueue_init(jobqueuex jobqueue_p){

jobqueue_p—>len = 0;
jobqueue__p—>front = NULL;
jobqueue_p—>rear = NULL;

364

365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390

391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407

254

NODEDUP SOURCE CODE

jobqueue__p—>has_jobs = (struct bsemx*)malloc(sizeof (struct

bsem)) ;

if (jobqueue_p—>has_jobs = NULL){

return —1;

}

pthread__mutex_init (& (jobqueue_p—>rwmutex), NULL) ;
bsem__init (jobqueue_p—>has_jobs, 0);

return O;

}

* Clear the queue x
q

static void jobqueue_ clear(jobqueuex jobqueue_p){

while (jobqueue__p—>len)

free (jobqueue__pull (jobqueue_p));

jobqueue__p—>front = NULL;
jobqueue__p—>rear = NULL;

bsem_ reset (jobqueue_p—>has_jobs);

jobqueue_p—>len = 0;

// Add (allocated) job to queue
static void jobqueue_push(jobqueuex jobqueue_p, struct jobsx

newjob) {

pthread__mutex_ lock(&jobqueue_p—>rwmutex) ;

newjob—>prev = NULL;

switch (jobqueue__p—>len){

case 0: /x if no jobs in queue x*/

jobqueue__p—>front
jobqueue__p—>rear
break ;

newjob ;
newjob ;

default: /% if jobs in queue x/
jobqueue__p—>rear—>prev = newjob;

jobqueue__p—>rear

}

jobqueue__p—>len++;

newjob;

408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452

IMPLEMENTATION

bsem_ post (jobqueue__p—>has__jobs);
pthread__mutex_unlock(&jobqueue_p—>rwmutex) ;

}

// Get first job from queue(removes it from queue)
static struct jobx jobqueue_pull(jobqueuex jobqueue_p){

pthread__mutex_ lock(&jobqueue_p—>rwmutex) ;
jobx job_p = jobqueue_p—>front;

switch (jobqueue__p—>len){

case 0: /x if no jobs in queue x*/
break ;
case 1: /+ if one job in queue x/

jobqueue_p—>front = NULL;
jobqueue__p—>rear = NULL;
jobqueue_p—>len = 0;
break ;

default: /+ if >1 jobs in queue x/
jobqueue_p—>front = job_p—>prev;
jobqueue__p—>len ——;

/* more than one job in queue —> post it =/
bsem_ post (jobqueue__p—>has_ jobs);

}

pthread__mutex__unlock(&jobqueue__p—>rwmutex) ;
return job_p;

}

/* Free all queue resources back to the system x/
static void jobqueue_destroy (jobqueue* jobqueue_p){
jobqueue__clear (jobqueue_p);
free (jobqueue__p—>has_ jobs);

}

/* Init semaphore to 1 or 0 x/
static void bsem_ init(bsem xbsem_p, int value) {
if (value < 0 || value > 1) {
err ("bsem_init(): Binary semaphore can take only values
or 0");

255

1

453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490

Tt W N =

256

exit (1);

}

pthread mutex_init (& (bsem_p—>mutex), NULL) ;
pthread cond init(&(bsem p—>cond), NULL) ;

bsem_p—>v = value;

}

/* Reset semaphore to 0 x*/

static void bsem_ reset(bsem xbsem p) {
bsem__init (bsem_p, 0);

}

/* Post to at

}

/* Post to all threads =/
static void bsem_ post_all(bsem sxbsem_p) {

least one thread =/

static void bsem_ post(bsem sbsem_p) {
pthread_mutex_ lock(&bsem_p—>mutex) ;
bsem_p—>v = 1;
pthread_cond_signal(&bsem_p—>cond) ;
pthread mutex_unlock(&bsem_p—>mutex) ;

pthread_mutex_ lock(&bsem_ p—>mutex) ;
bsem_p—>v = 1;

pthread__cond_ broadcast(&bsem_p—>cond) ;

pthread__mutex_unlock(&bsem_p—>mutex) ;

NODEDUP SOURCE CODE

/* Wait on semaphore until semaphore has value 0 %/
static void bsem_ wait(bsem* bsem_p) {
pthread__mutex_ lock(&bsem_p—>mutex) ;

while (bsem_p—>v != 1) {

pthread_cond_ wait(&bsem_p—>cond, &bsem_p—>mutex);

}

bsem_ p—>v =
pthread__mutex_ unlock(&bsem_p—>mutex) ;

}

0;

C.2.4 Encoder.c

/%

* Decoder

*

% Copyright 2010 Princeton

* All

rights

for dedup files

reserved .

University .

(Ol)]

11
12

13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50

IMPLEMENTATION

257

*

% Originally written by Minlan Yu.

* Largely rewritten by Christian

*/
/ *

% The pipeline model for Encode

Bienia .

is Fragment—>FragmentRefine

—>Deduplicate—>Compress—>Reorder

x Fach stage has basically three
x* 1. fetch a group of items from
% 2. process the items

steps:
the queue

* 3. put them in the queue for the next stage

*/

#include <assert .h>

#include <strings.h>

#include <math.h>

#include <limits.h>

#include <sys/stat.h>

#include <fcntl.h>

#include <errno.h>

#include <unistd.h>

#include <string.h>

#include "util.h"

#include "dedupdef.h"
#include "encoder.h'

#include "debug.h'

#include "hashtable.h"
#include "config.h"

#include "rabin.h"

#include "mbuffer.h"

#include "chunk_list.h"
#include "iterator.h"

#include "thpool.h"

#ifdef ENABLE PTHREADS
#include "binheap.h"

#include "tree.h"

#endif //ENABLE PTHREADS
#ifdef ENABLE_GZIP_COMPRESSION
#include <zlib .h>

#endif //ENABLE GZIP_COMPRESSION
#ifdef ENABLE BZIP2 COMPRESSION
#include <bzlib.h>

#endif //ENABLE BZIP2 COMPRESSION
#ifdef ENABLE PTHREADS
#include <pthread.h>

51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
5
76
7
78
79

80

81

82
83
84
85
86
87
88

89

258 NODEDUP SOURCE CODE

#endif //ENABLE PTHREADS
#ifdef ENABLE_PARSEC HOOKS
#include <hooks.h>

#endif //ENABLE PARSEC_ HOOKS

#define INITIAL SEARCH TREE SIZE 4096

//The configuration block defined in main
config_t % conf;
//Hash table data structure & utility functions
struct hashtable xcache;
static unsigned int hash_from_key_ fn(void *xk) {
//NOTE: shal sum is integer—aligned
return ((unsigned int =*)k)[0];

}

static int keys equal fn (void xkeyl, void xkey2) {
return (memcmp(keyl, key2, SHAl LEN) = 0);

}

#ifdef ENABLE STATISTICS

//Keep track of block granularity

#define CHUNK _GRANULARITY POW (7)

//Number of blocks to distinguish

#define CHUNK MAX NUM (8%32)

//Map a chunk size to a statistics array slot

#define CHUNK SIZE TO SLOT(s) (((s)>>(CHUNK GRANULARITY POW)
) >= (CHUNK MAX NUM) ? (CHUNK MAX NUM)—-1 : ((s)>>(
CHUNK GRANULARITY POW)))

//Get the average size of a chunk from a statistics array
slot

#define SLOT_TO_CHUNK SIZE(s) ((s)=*(1<<(
CHUNK_GRANULARITY POW)) + (1<<((CHUNK GRANULARITY POW)—1)
))

//Deduplication statistics
typedef struct {
/* Cumulative sizes x/
size_t total input; //Total size of input in bytes
size_t total_dedup; //Total size of input without duplicate
blocks (after global compression) in bytes
size_t total compressed; //Total size of input stream after
local compression in bytes

90

91
92
93

94

95
96
97
98
99

100
101

102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130

IMPLEMENTATION 259

}

size_t total output; //Total size of output in bytes (with
overhead) in bytes

/* Size distribution & other properties =/

unsigned int nChunks[CHUNK MAX NUM]; //Coarse—granular size
distribution of data chunks

unsigned int nDuplicates; //Total number of duplicate
blocks

stats_ t;

//Arguments to pass to each thread
struct thread_args {

iz

//thread id, unique within a thread pool (i.e. unique for a
pipeline stage)

int tid;

//number of queues available, first and last pipeline stage
only

int nqueues;

//file descriptor, first pipeline stage only

int fd;

//List of chunks

List * list;

//char =% compressed data;
Compressed data * compressed_data;

List #x list__addr;
//input file buffer, first pipeline stage & preloading only
struct {
void xbuffer;
size_t size;
} input_file;

stats_t * stats;

//Initialize a statistics record
static void init_stats(stats_t =*s) {

int i;

assert (s!=NULL) ;
s—>total_input = 0;
s—>total__dedup = 0;
s—>total_compressed = 0;
s—>total_output = 0;

131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159

160

161
162
163
164
165
166
167
168
169
170
171
172
173
174

260 NODEDUP SOURCE CODE

for (i=0; i<CHUNK MAX NUM; i++) {
s—=>nChunks[i] = 0;
}

s—nDuplicates = 0;

}
#ifdef ENABLE PTHREADS

//Merge two statistics records: sl=sl+s2
static void merge stats(stats t *sl, stats t *s2) {
int i;

assert (s1!=NULL) ;

assert (s2!=NULL) ;

sl—>total_input += s2—>total_input;

sl—>total _dedup += s2—>total dedup;
sl—>total_compressed += s2—>total_compressed;
sl—>total_ output += s2—>total_output;

for (i=0; i<CHUNK MAX NUM; i-++) {
s1-—>nChunks[i] 4= s2—>nChunks[i];
}

sl—>nDuplicates += s2—>nDuplicates;

}
#endif //ENABLE PTHREADS

//Print statistics
static void print_stats(stats_t *xs) {

const unsigned int unit_str_size = 7; //elements in
unit_ str array

const char xunit_str[] = {"Bytes", "KB', 'MB", "GB", "IB",
"PB", "EB"};

unsigned int unit_idx = O0;

size__t unit_div = 1;

assert (s!=NULL) ;

//determine most suitable unit to use
for (unit_idx=0; unit_idx<unit_str_size; unit_idx++) {
unsigned int unit_div_next = unit_div x 1024;

if (s—>total__input / unit_div_next <= 0) break;
if (s—>total_dedup / unit_div_next <= 0) break;
if (s—>total compressed / unit div_next <= 0) break;
if (s—>total_output / unit_div_next <= 0) break;

175
176
177
178

179

180

181
182
183
184
185
186

187
188
189
190

191
192
193
194
195
196
197

198
199

200

201

202

203

IMPLEMENTATION 261

unit__div = unit_div_ next;
}
printf (" Total input size: %14.2f %s\n", (float
) (s—>total input)/(float)(unit_div), unit str[unit idx]);
printf (" Total output size: %14.2f %s\n", (float

) (s—>total_output)/(float) (unit_div), unit_str[unit_idx])

;

printf (" Effective compression factor: %14.2fx\n", (float)(
s—>total input)/(float)(s—>total output));

printf("\n");

//Total number of chunks

unsigned int i;

unsigned int nTotalChunks=0;

for (i=0; i<CHUNK MAX NUM; i++) nTotalChunks+= s—>nChunks i
I

//Average size of chunks
float mean_size = 0.0;
for (i=0; i<CHUNK MAX NUM; i++) mean_size += (float)(

SLOT TO_CHUNK SIZE(i)) * (float)(s—>nChunks[i]);

mean_size = mean_size / (float)nTotalChunks;

//Variance of chunk size
float wvar_size = 0.0;
for (i=0; i<CHUNK MAX NUM; i++) var_size += (mean_size — (
float) (SLOT_TO_ CHUNK SIZE(i))) =
(mean_size — (
float) (SLOT_TO_CHUNK SIZE(i))) =
(float) (s—
nChunks[i]) ;

printf (" Total number of chunks: %d, Duplicate chunks: %d\n"
,nTotalChunks ,s—>nDuplicates);

printf("Mean data chunk size: %14.2f %s (stddev:
%.2f %s)\n", mean_size / 1024.0, "KB"', sqrtf(var_size) /
1024.0, 'KB");

printf("Amount of duplicate chunks: %14.21%%\n" , 100.0%(
float) (s—nDuplicates) /(float)(nTotalChunks));

printf("Data size after deduplication: %14.2f %s (
compression factor: %.2fx)\n", (float)(s—>total_dedup) /(
float) (unit_div), unit_str[unit_idx], (float)(s—>
total input)/(float)(s—>total dedup));

204

205

206
207
208
209
210
211
212
213

214

215

216
217
218
219
220
221

222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240

262 NODEDUP SOURCE CODE

printf("Data size after compression: %14.2f %s (
compression factor: %.2fx)\n", (float)(s—>
total _compressed)/(float)(unit_div), unit_str[unit_idx],
(float)(s—>total dedup)/(float)(s—>total compressed));
printf("Output overhead: %14.21%%\n" , 100.0%(
float) (s—>total_output—s—>total compressed)/(float) (s—
total _output));

}

//variable with global statistics
stats_t stats;
#endif //ENABLE_STATISTICS

/ %

x+ Helper function that creates and initializes the output
file

x Takes the file name to use as input and returns the file
handle

% The output file can be used to write chunks without any
further steps

*/
static int create_output_file(char xoutfile) {
int fd;

//Create output file
fd = open(outfile , O_CREAT|O_TRUNC|O_WRONLY|O_TRUNC,
S IRGRP | S IWUSR | S _IRUSR | S IROTH);
if (fd < 0) {
EXIT TRACE("Cannot open output file.");
}

//Write header

if (write_header(fd, conf—>compress_type)) {

EXIT TRACE('Cannot write output file header.\n");
}

return fd;
}

int rf_win;
int rf_win_dataprocess;

/%
*+ Computational kernel of compression stage
* Actions performed: Compress a data chunk
*/

void sub_Compress(chunk t xchunk) {

IMPLEMENTATION 263

241 int r;

242

243 assert (chunk!=NULL) ;

244 switch (conf—>compress_type) {

245 case COMPRESS NONE:

246 //copy the block

247 chunk—>compressed__data.n = chunk—>uncompressed_data.n
248 memcpy (chunk—>compressed__data.ptr, chunk—>

uncompressed__data.ptr, chunk—>uncompressed_data.n);

249 break;

250 #ifdef ENABLE_GZIP_ COMPRESSION

251 case COMPRESS GZIP:

252 r = compress (chunk—>compressed__data.ptr, &chunk—>
compressed__data.n, chunk—>uncompressed_data.ptr, chunk—>
uncompressed__data.n) ;

253 if (r!= Z OK) {

254 EXIT TRACE(' Compression failed. Error code: %d\n",r
)i

255 }

256 break;

257 #endif //ENABLE GZIP COMPRESSION
258 #ifdef ENABLE BZIP2 COMPRESSION

259 case COMPRESS_BZIP2:

260 //Bzip compression buffer must be at least 1% larger
than source buffer plus 600 bytes

261 n = chunk—>uncompressed_data.n + (chunk—>
uncompressed__data.n >> 6) + 600;

262 r = mbuffer_create(&chunk—>compressed data, n);

263 if(r 1= 0) {

264 EXIT TRACE(' Creation of compression buffer failed.\
n');

265 }

266 //compress the block

267 unsigned int int_n = n;

268 r = BZ2_bzBuffToBuffCompress(chunk—>compressed__data.

ptr, &int_n, chunk—>uncompressed_ data.ptr, chunk—>
uncompressed__data.n, 9, 0, 30);

269 n = int_n;

270 if (r != BZ OK) {

271 EXIT TRACE("Compression failed\n");

272 }

273 //Shrink buffer to actual size

274 if (n < chunk—>compressed data.n) {

275 r = mbuffer_realloc(&chunk—>compressed data, n);

276 assert (r = 0);

277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322

264 NODEDUP SOURCE CODE

#i

}
break;

#endif //ENABLE BZIP2 COMPRESSION
default:
EXIT TRACE(' Compression type not implemented.\n");
break ;
}

mbuffer free(&chunk—>uncompressed data);

fdef ENABLE PTHREADS
chunk—>header.state = CHUNK_STATE_COMPRESSED;

#endif //ENABLE PTHREADS

}
/%

* ¥ X x ¥

*
k

//

Pipeline stage function of compression stage

Actions performed:

— Dequeue items from compression queue

— Execute compression kernel for each item
— Enqueue each item into send queue

/
#ifdef ENABLE PTHREADS

void Compress(void = targs) {

struct thread args sargs = (struct thread args x)targs;
List * list = args—>list;

#ifdef ENABLE STATISTICS

stats_t % thread_ stats = args—>stats;
init__stats(thread_stats);

#endif //ENABLE_STATISTICS

//Allocate memory for compressed data buffers

int total_ chunks = 0;

int duplicate_chunks = 0;
size_t total_size = 0;

void * mbuffers;

chunk_t * chunk_refs[1000];

int write_buffers_index = 0;

Iterator * iter = init__iterator(list);
while (hasNext (iter)){

323
324
325
326
327

328
329
330
331
332

333

334
335
336
337

338
339
340
341
342
343
344
345
346
347
348

349
350
351
352
353

354
355
356
357
358
359
360
361
362

IMPLEMENTATION

chunk_t * ¢ = next(iter);
chunk_refs[total_chunks]| = c;
total chunks++;

// If chunk is unique, update counter to reserve memory
for compressed buffer.
if (c—>header.isDuplicate) duplicate_chunks++;

else{
thread__stats—>total dedup += c—>uncompressed_data.n;
size_t % size = &c—>compressed_data.n;

if (conf—>compress_type =— COMPRESS_ NONE) x*size = c¢—>
uncompressed__data.n;

else xsize = c—>uncompressed data.n + (c—>
uncompressed__data.n >> 9) + 12;

total size += xsize;

}

//1f we found 1000 chunks or found the last chunk,
process the batch.

if (total_chunks = 1000 || !hasNext(iter)){
int index = 0;
mbuffers = malloc(total_size);
total size = 0;
for (int i = 0; i<total chunks; i4++){
chunk_t # chunk = chunk_refs[i];
if (!chunk—>header.isDuplicate){
chunk—>compressed_data.ptr = mbuffers 4+ index;

index += chunk—>compressed data.n;
sub_ Compress (chunk) ;
thread stats—>total compressed 4= chunk—>
compressed__data .n;
total_ size 4= chunk—>compressed__data.n;
}
}

int write__buffer_size = duplicate_chunks * SHA1l LEN +
total chunks *x 9 4+ total_ size;

char % write_buffer = malloc(write_buffer_ size);
index = 0;
for (int i = 0; i < total_chunks; i++){

chunk t % chunk = chunk refs[i];

if (chunk—>header.isDuplicate){
thread__stats—>nDuplicates++;
write buffer [index] = 0;
#*((u_long*) (&write buffer [index+1])) = SHAl LEN;

265

363
364

365
366
367
368
369

370
371

372
373
374
375
376
377

378

379
380
381
382
383
384
385
386
387
388
389
390
391
392

393
394
395
396
397
398
399
400
401
402

266 NODEDUP SOURCE CODE

index += 9;
memcpy (write__buffer + index, &chunk—>shal, SHAl LEN

index += SHA1l LEN;
}
else{
write_buffer [index] = 1;
((u_longx) (&write buffer[index+1])) = chunk—>
compressed__data.n;
index += 9;
memcpy (write__buffer + index, chunk—>compressed_data
.ptr, chunk—>compressed_data.n);
index += chunk—>compressed_data.n;

}
free (chunk) ;

}

free (mbuffers);

args—>compressed data[write buffers index]. data
write__buffer;

args—>compressed__data|[write__buffers_index]. size =
write_buffer_size;

write_ buffers__index++;

total__chunks = 0;

duplicate_chunks = 0;

}

}

destroy_ iterator (iter);
free(list);

}

/% Computational kernel of deduplication stage
*
* Actions performed:

x — Calculate SHA1l signature for each incoming data chunk

* — Perform database lookup to determine chunk redundancy
status

* — On miss add chunk to database

* — Returns chunk redundancy status =/

int sub_Deduplicate (chunk_ t schunk) {
int isDuplicate;
int isFirst = 1;
chunk t xentry;

assert (chunk!=NULL) ;
assert (chunk—>uncompressed_data.ptr!=NULL) ;

403

404
405

406
407

408
409
410

411
412
413
414
415
416
417
418
419
420
421

422
423
424
425
426
427
428
429
430
431
432
433
434
435

436
437
438
439
440

IMPLEMENTATION 267

SHA1_Digest(chunk—>uncompressed__data.ptr, chunk—>
uncompressed__data.n, (unsigned char x*)(chunk—>shal));

//Query database to determine whether we’ve seen the data
chunk before
#ifdef ENABLE PTHREADS
pthread__mutex_t *ht_lock = hashtable_ getlock (cache, (void
%) (chunk—>shal));
pthread__mutex_lock (ht_lock);
#endif
entry = (chunk t =x)hashtable search(cache, (void x*)(chunk—>
shal));
isDuplicate = (entry != NULL);
if (isDuplicate){
if (entry—>sequence.llnum > chunk—>sequence.llnum
|| (entry—>sequence.llnum = chunk—>sequence.llnum
&& entry—>sequence.l2num > chunk—>sequence.l2num)){
isFirst = 1;
entry—>header.isDuplicate = 1;
chunk—>header.isDuplicate = 0;
entry—>compressed_data_ref = chunk;
mbuffer_ free(&entry—>uncompressed data);
if (hashtable_insert(cache, (void x)(chunk—>shal),6 (
void #)chunk) = 0) {
EXIT TRACE('hashtable insert failed");
}

}
else{

isFirst = 0;

chunk—>header.isDuplicate = 1;
entry—>header.isDuplicate = 0;
chunk—>compressed__data_ref = entry;
mbuffer_free(&chunk—>uncompressed_ data) ;

}

else{
chunk—>header.isDuplicate = 0;
// Cache miss: Create entry in hash table and forward
data to compression stage
#ifdef ENABLE PTHREADS
pthread mutex init(&chunk—>header.lock, NULL);
pthread_cond_ init(&chunk—>header.update , NULL) ;
#endif
//NOTE: chunk—>compressed data.buffer will be computed
in compression stage

441

442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457

458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481

482
483

268 NODEDUP SOURCE CODE

if (hashtable insert(cache, (void #)(chunk—>shal), (void
x)chunk) = 0) {

EXIT TRACE("hashtable insert failed");
}

I3
#ifdef ENABLE PTHREADS
pthread__mutex_ unlock (ht_lock);
#endif

return (isDuplicate && !isFirst);

}

~
*

Pipeline stage function of deduplication stage

Actions performed:
— Take input data from fragmentation stages
— Execute deduplication kernel for each data chunk

* ¥ X X ¥

— Route resulting package either to compression stage or
to reorder stage, depending on deduplication status x/
#ifdef ENABLE PTHREADS

void Deduplicate(void = targs) {

struct thread_args xargs = (struct thread_args *)targs;
List * list = args—>list;

Node * node;

Node * buffer = list —>head;

#ifdef ENABLE STATISTICS
stats_tx thread_stats = args—>stats;
init__stats(thread_stats);

#endif //ENABLE_ STATISTICS

int len = list —>length;
for(int i = 0; i< len; i++) {
node = buffer;
buffer = buffer—>next;
assert (node—>data!=NULL) ;
//Do the processing
sub_ Deduplicate (node—>data) ;

}

#endif //ENABLE PTHREADS

/% Pipeline stage function and computational kernel of
refinement stage

*

x Actions performed:

484
485

486
487
488
489
490
491
492
493
494
495
496
497
498
499

500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517

518
519
520
521
522

523
524

IMPLEMENTATION 269

*
*
*

*

— Take coarse chunks from fragmentation stage

— Partition data block into smaller chunks with Rabin
rolling fingerprints

— Send resulting data chunks to deduplication stage

Notes:
— Allocates mbuffers for fine—granular chunksx/

void FragmentRefine(void * targs) {

#i

struct thread_args sargs = (struct thread_ args x)targs;
int r;
List = list = (List *)args—>list;

chunk_t *xtemp;

chunk_t *chunk;

u32int * rabintab = malloc(256+sizeof rabintab [0]);
u32int * rabinwintab = malloc(256xsizeof rabintab [0]) ;
if (rabintab = NULL || rabinwintab = NULL) EXIT TRACE('

Memory allocation failed.\n");

fdef ENABLE_ STATISTICS
stats_t xthread_ stats = args—>stats;
init__stats(thread_stats);

#endif //ENABLE STATISTICS

int chcount = 0;
List * refined = emptylist();
Iterator % iter = init_ iterator(list);
while (hasNext(iter)) {
chunk = next(iter);
assert (chunk!=NULL) ;
rabininit (rf_win, rabintab, rabinwintab);

int split;
chcount = 0;
do {
//Find next anchor with Rabin fingerprint
int offset = rabinseg (chunk—>uncompressed_data.ptr,

chunk—>uncompressed_data.n, rf_ win, rabintab, rabinwintab
)
//Can we split the buffer?
if (offset < chunk—>uncompressed data.n) {
//Allocate a new chunk and create a new memory buffer
temp = (chunk_ t x)malloc(sizeof (chunk t));
if (temp=NULL) EXIT TRACE("Memory allocation failed.\
n n) ;
temp—>header.state = chunk—>header.state;
temp—>sequence .llnum = chunk—>sequence.llnum;

270 NODEDUP SOURCE CODE

525

526 //split it into two pieces

527 r = mbuffer_split(&chunk—>uncompressed_data, &temp—>
uncompressed__data, offset);

528 if (r!=0) EXIT_TRACE("Unable to split memory buffer in
refinement stage.\n");

529

530 //Set correct state and sequence numbers

531 chunk—>sequence .12num = chcount;

532 chunk—>isLastL.2Chunk = FALSE;

533 chcount++;

534

535 #ifdef ENABLE STATISTICS

536 //update statistics

537 thread_stats—>nChunks [CHUNK_ SIZE TO_SLOT(chunk—>
uncompressed__data.n)]++;

538 #endif //ENABLE STATISTICS

539

540 //put it into send buffer

541 add (chunk, refined);

542 //prepare for next iteration

543 chunk = temp;

544 split = 1;

545 } else {

546 //End of buffer reached, don’t split but simply
enqueue it

547 //Set correct state and sequence numbers

548 chunk—>sequence .12num = chcount;

549 chunk—>isLastL2Chunk = TRUE;

550

551 #ifdef ENABLE STATISTICS

552 //update statistics

553 thread stats—>nChunks [CHUNK SIZE TO_SLOT(chunk—>
uncompressed__data.n)]++;

554 #endif //ENABLE STATISTICS

555

556 add (chunk, refined);

557 //prepare for next iteration

558 chunk = NULL;

559 split = 0;

560

561 } while(split);

562 }

563

564 x(args—>list_addr) = refined;
565 free (rabintab);

566
567
568
569
570
571
572
573
574
575
576

577
578
579

580

581

582

583

584

585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604

IMPLEMENTATION 271

}
/ %

¥ X X ¥ X %

*

*
*

free (rabinwintab) ;
destroy__iterator (iter);

Pipeline stage function of fragmentation stage
Actions performed:

— Read data from file (or preloading buffer)

— Perform coarse—grained chunking

— Send coarse chunks to refinement stages for further
processing

Notes:

This pipeline stage is a bottleneck because it is
inherently serial. We

therefore perform only coarse chunking and pass on the
data block as fast

as possible so that there are no delays that might
decrease scalability .

With very large numbers of threads this stage will not be
able to keep up

which will eventually limit scalability. A solution to
this is to increase

the size of coarse—grained chunks with a comparable
increase in total

input size.

/

#ifdef ENABLE PTHREADS

List % Fragment(void % targs){

struct thread_args xargs = (struct thread_args *)targs;
size_t preloading_ buffer__seek = 0;

int fd = args—>fd;

int r;

sequence_number_t anchorcount = 0;

List x list = emptylist ();

chunk_t stemp = NULL;
chunk_ t *xchunk = NULL;
u32int * rabintab = malloc(256x*sizeof rabintab [0]) ;
u32int * rabinwintab = malloc(256*sizeof rabintab [0]) ;
if (rabintab == NULL || rabinwintab == NULL) {

EXIT TRACE("Memory allocation failed.\n");
}

605
606
607
608
609
610

611
612
613
614
615
616

617
618

619
620
621
622
623
624
625
626

627
628
629
630

631
632
633
634
635
636
637
638

639
640

NODEDUP SOURCE CODE

rf_win__dataprocess = 0;
rabininit (rf_win_dataprocess, rabintab, rabinwintab);

//Sanity check

if (MAXBUF < 8 * ANCHOR_JUMP) {
printf ("WARNING: I/O buffer size is very small.
Performance degraded.\n");
fflush (NULL) ;

}

//read from input file / buffer

while (1) {
size_t bytes_left; //amount of data left over in
last_mbuffer from previous iteration

//Check how much data left over from previous iteration
resp. create an initial chunk
if (temp != NULL) {
bytes_left = temp—>uncompressed_data.n;
} else {
bytes_left = 0;
}
//Make sure that system supports new buffer size
if (MAXBUF+bytes left > SSIZE MAX) {
EXIT TRACE('Input buffer size exceeds system maximum.\n
RE
}

//Allocate a new chunk and create a new memory buffer
chunk = (chunk_t*)malloc(sizeof (chunk_t));

if (chunk=NULL) EXIT TRACE("Memory allocation failed.\n")
mbuffer__create(&chunk—>uncompressed__data , MAXBUF+
bytes_left);

if (bytes_left > 0) {
//"Extension" of existing buffer, copy sequence number
and left over data to beginning of new buffer
chunk—>header. state = CHUNK_STATE UNCOMPRESSED;
chunk—>sequence.llnum = temp—>sequence.llnum;
//NOTE: We cannot safely extend the current memory
region because it has already been given to another
thread
memcpy (chunk—>uncompressed__data.ptr, temp—>
uncompressed__data.ptr, temp—>uncompressed_ data.n);
mbuffer free(&temp—>uncompressed data);
free (temp) ;

IMPLEMENTATION 273

641 temp = NULL;

642 } else {

643 //brand new mbuffer, increment sequence number

644 chunk—>header.state = CHUNK_STATE UNCOMPRESSED;

645 chunk—>sequence .llnum = anchorcount;

646 anchorcount-++;

647 }

648 //Read data until buffer full

649 size_t bytes_read=0;

650 if (conf—>preloading) {

651 size__t max_read = MIN(MAXBUF, args—>input_ file.size—
preloading_buffer_seek);

652 memcpy (chunk—>uncompressed__data.ptr+bytes_left , args—>
input_ file.buffer+preloading buffer seek , max_read);

653 bytes_read = max_read;

654 preloading_buffer_seek += max_read;

655 } else {

656 while (bytes_ read < MAXBUF) {

657 int r = read(fd, chunk—>uncompressed_data.ptr+
bytes_left+bytes_read , MAXBUF-bytes_read);

658 if (r<0) switch(errno) {

659 case EAGAIN:

660 EXIT TRACE('"I/O error: No data available\n");
break ;

661 case EBADF:

662 EXIT TRACE('"I/O error: Invalid file descriptor\n"
) ; break;

663 case EFAULT:

664 EXIT TRACE("I/O error: Buffer out of range\n');
break;

665 case EINTR:

666 EXIT TRACE("I/O error: Interruption\n");break;

667 case EINVAL:

668 EXIT TRACE('I/O error: Unable to read from file
descriptor\n");break;

669 case EIO:

670 EXIT TRACE('"I/O error: Generic 1/O error\n");
break ;

671 case EISDIR:

672 EXIT TRACE('"I/O error: Cannot read from a
directory\n") ;break;

673 default :

674 EXIT TRACE('"I/O error: Unrecognized error\n");
break ;

675

676 if (r==0) break;

677
678
679
680

681
682
683
684
685
686
687
688
689
690
691
692

693
694
695

696
697
698

699
700
701

702
703
704
705

706
707

708
709
710

711
712

274 NODEDUP SOURCE CODE

bytes_read += r;

}

//No data left over from last iteration and also nothing
new read in, simply clean up and quit
if (bytes_left + bytes_read =— 0) {

mbuffer_free(&chunk—>uncompressed_data);

#ifdef ENABLE MBUFFER, CHECK

m—>check_ flag=0;

#endif

free (chunk) ;

chunk = NULL;

break ;

//Shrink buffer to actual size
if (bytes_left+bytes_read < chunk—>uncompressed_data.n) {

r = mbuffer_realloc(&chunk—>uncompressed__data,
bytes_left+bytes read);
assert (r = 0);

}

//Check whether any new data was read in, enqueue last

chunk if not

if (bytes_read =— 0) {
add (chunk, list);
//NOTE: No need to empty a full send_buf, we will break

now and pass everything on to the queue

break ;
}
//partition input block into large, coarse—granular
chunks
int split;
do {
split = 0;

//Try to split the buffer at least ANCHOR JUMP bytes
away from its beginning
if (ANCHOR_JUMP < chunk—>uncompressed_data.n) {
int offset = rabinseg (chunk—>uncompressed_data.ptr +
ANCHOR_JUMP; chunk—>uncompressed_data.n — ANCHOR_JUMP,
rf_win_dataprocess, rabintab, rabinwintab);
//Did we find a split location?
if (offset = 0) {
//Split found at the very beginning of the buffer (
should never happen due to technical limitations)
assert (0);
split = 0;

IMPLEMENTATION 275

713 } else if(offset + ANCHOR JUMP < chunk—>
uncompressed__data.n) {

714 //Split found somewhere in the middle of the buffer

715 //Allocate a new chunk and create a new memory
buffer

716 temp = (chunk_t x)malloc(sizeof (chunk_ t));

17 if (temp=NULL) EXIT TRACE("Memory allocation failed
An');

718

719 int size = offset + ANCHOR_JUMP;

720

721 mbuffer_create(&temp—>uncompressed_data , size);

722 memcpy (temp—>uncompressed__data.ptr, chunk—>
uncompressed__data.ptr ,size);

723

724 //split it into two pieces

725 void * p = chunk—>uncompressed_data.ptr + size;

726 int p_n = chunk—>uncompressed_data.n — size;

727 mcb_t % p_mcb = chunk—>uncompressed_data.mcb;

728

729 chunk—>uncompressed_data.ptr = temp—>
uncompressed__data . ptr;

730 chunk—>uncompressed data.n = size;

731 chunk—>uncompressed_data.mcb = temp—>
uncompressed__data .mcb;

732

733 temp—>uncompressed_data.ptr = p;

734 temp—>uncompressed__data.n = p_n;

735 temp—>uncompressed__data.mcb = p_mcb;

736

737 #ifdef ENABLE MBUFFER CHECK

738 m2—>check_ flag=MBUFFER,_CHECK_MAGIC;

739 #endif

740

741 temp—>header . state = CHUNK_ STATE_UNCOMPRESSED;

742 temp—>sequence .llnum = anchorcount;

743 anchorcount++;

744

745 //put it into send buffer

746 add (chunk, list);

AT //prepare for next iteration

748 chunk = temp;

749 temp = NULL;

750 split = 1;

751 } else {

752

753

754
755
756
757
758
759

760

761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
T
778
779
780
781
782
783
784
785
786
787
788
789

276 NODEDUP SOURCE CODE

//Due to technical limitations we can’t distinguish
the cases "no split" and "split at end of buffer"

//This will result in some unnecessary (and
unlikely) work but yields the correct result eventually.

temp = chunk;

chunk = NULL;

split = 0;

}

} else {

//NOTE: We don’t process the stub, instead we try to
read in more data so we might be able to find a proper
split .

// Only once the end of the file is reached do
we get a genuine stub which will be enqueued right after
the read operation.

temp = chunk;

chunk = NULL;

split = 0;

}

} while(split);
}
free (rabintab);
free (rabinwintab) ;
return list;

}
#endif //ENABLE PTHREADS

//Write the compressed data to the output file.
#ifdef ENABLE PTHREADS
void Write(Compressed data %% data, int % counts) {
int fd = 0;
fd = create_output_file(conf—>outfile);

for (int i = 0; i<conf—>nthreads; i++){
for (int j = 0; j < counts[i];j++){
xwrite (fd, data[i][j].data, data[i][]]. size);
free(data[i][j]. data);

}
free(data[i]);

close (fd);

}
#endif //ENABLE PTHREADS

790

791
792
793
794
795
796
797
798
799

800
801
802
803
804
805
806
807
808
809
810

811
812
813
814
815
816
817
818
819
820
821
822
823
824

825
826
827
828
829
830

IMPLEMENTATION 277

/%
*/
/* Encode
x+ Compress an input stream
*
* Arguments:
* conf: Configuration parameters
*
*/

void Encode(config_t = _conf) {
printf("*+*Dedup encoding with minimal virtualization
overhead*x\n");
struct stat filestat ;
int32 fd;

conf = _ conf;

#ifdef ENABLE STATISTICS
init stats(&stats);
#endif

//Create chunk cache

cache = hashtable_create (65536, hash_from_key_ fn,
keys_equal_fn, FALSE);

if (cache = NULL) {
printf ("ERROR: Out of memory\n");
exit (1);

}
#ifdef ENABLE PTHREADS

struct thread__args data_ process_args;
#else

struct thread_args generic_args;
#endif //ENABLE PTHREADS

/x src file stat x*/
if (stat(conf—>infile , &filestat) < 0)
EXIT TRACE("stat () %s failed: %s\n", conf—>infile ,
strerror (errno));

if (!S_ISREG(filestat .st_mode))
EXIT TRACE('not a normal file: %s\n", conf—>infile);
#ifdef ENABLE_STATISTICS
stats.total input = filestat.st_size;
#endif //ENABLE_STATISTICS

831
832
833
834

835
836
837
838
839
840
841
842
843
844

845
846
847
848

849
850
851
852
853

854
855

856
857
858
859

860
861
862
863

864
865

866
867
868

278

NODEDUP SOURCE CODE

/x src file open x*/

if ((fd = open(conf—>infile , O RDONLY | O_LARGEFILE)) < 0)
EXIT _TRACE('%s file open error %s\n", conf—>infile ,
strerror (errno));

//Load entire file into memory if requested by user
void xpreloading_ buffer = NULL;
if (conf—>preloading) {

size_t bytes_read=0;

int r;

preloading_buffer = malloc(filestat.st_size);
if (preloading buffer == NULL)
EXIT _TRACE("Error allocating memory for input buffer.\n

”)7

//Read data until buffer full
while (bytes read < filestat .st_size) {
r = read(fd, preloading_ buffer+bytes_read, filestat.
st_size—bytes_ read);
if (r<0) switch(errno) {
case EAGAIN:
EXIT TRACE("I/O error: No data available\n");break;
case EBADF:
EXIT TRACE('I/O error: Invalid file descriptor\n");
break ;
case EFAULT:
EXIT TRACE('I/O error: Buffer out of range\n");
break;
case EINTR:
EXIT TRACE("I/O error: Interruption\n");break;
case EINVAL:
EXIT TRACE('I/O error: Unable to read from file
descriptor\n");break;
case EIO:
EXIT TRACE('I/O error: Generic I/O error\n");break;
case EISDIR:
EXIT TRACE('"I/O error: Cannot read from a directory
\n");break;
default :
EXIT TRACE("I/O error: Unrecognized error\n");break

if (r==0) break;
bytes_read += r;

869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905

906
907
908
909
910

911
912

IMPLEMENTATION

279

}
#ifdef ENABLE PTHREADS
data_ process_args.input_ file.
data_ process_args.input_ file.
#else

generic_args.input_ file.size

generic__args.input_ file. buffer

#endif //ENABLE PTHREADS

data_ process_args. tid 0;
data_ process_args.fd = fd;
#ifdef ENABLE_PARSEC_ HOOKS
____parsec_roi_begin();
#endif
int threadCount =
threadpool pool

List * fragmented
//clean up after preloading

if (conf—>preloading)

refined
0;

List xx
int i

size filestat .st_size;
buffer = preloading_ buffer;

filestat .st_size;
preloading_ buffer;

conf—>nthreads;
thpool init(threadCount);

Fragment(&data_ process_args);

free (preloading_buffer);

split (threadCount, fragmented);

struct thread_args anchor_thread_args[threadCount];
stats__t threads_anchor_rv[threadCount];

for (i = 0; i < threadCount; i
anchor_ thread_args[i]. tid =
anchor__thread_args[i]. list
anchor_thread_args[i].stats
anchor_thread__args[i].list_a

thpool _add_ work (pool,
anchor__thread_args[i]);

thpool _wait (pool);

++) {
i;
refined [i];

= &threads_anchor rv[i];
ddr = &(refined[i]);

FragmentRefine , &

List x refined_merged = emptylist ();

for (i = 0; i < threadCount;
refined__merged ,refined [i]) ;

i++) refined__merged

merge (

List #x dedup = split_mod (threadCount, refined_ merged);

913
914
915
916
917
918
919

920
921
922
923
924
925
926
927
928
929
930
931
932

933

934
935

936
937

938
939
940
941
942
943
944
945
946
947
948
949
950

280 NODEDUP SOURCE CODE

struct thread_args chunk_thread_ args[threadCount];

stats__t threads_chunk_rv[threadCount |;

for (i = 0; i < threadCount; i ++) {
chunk_thread_args[i].tid = i;
chunk_thread_args[i].list = dedup]|i];
chunk_thread args[i].stats = &threads_chunk_rv[i];
thpool_add_work(pool, Deduplicate, &chunk_thread_ args[i])

)

}

thpool _wait (pool);

List *% compress = zip_split(threadCount, dedup);
Compressed__data * total compressed_data[threadCount |;
int buffer_ counts[threadCount |;

struct thread_args compress_thread_args[threadCount |;
stats_t threads_compress_rv|[threadCount];
for (i = 0; i < threadCount; i ++) {

compress_ thread_args[i].tid = i;
compress__thread_args[i].list = compress[i];

int write_ buffer count = compress[i]—>length /1000 + ((
compress [i]—>length % 1000 = 0) ? 0:1);

total _compressed_data[i] = malloc(write_buffer__count =
sizeof (Compressed_data)) ;

buffer_counts[i] = write_buffer_count;

compress__thread__args[i].compressed__data =

total compressed data[i];

compress_thread args[i].stats = &threads compress_rv[i];
thpool__add_work (pool, Compress, &compress_thread_args[i])

)

thpool wait (pool);
thpool_destroy(pool);

Write (total compressed data, buffer counts);

#ifdef ENABLE_ PARSEC HOOKS
___parsec_roi_end();
#endif

#ifdef ENABLE STATISTICS
//Merge everything into global ‘stats’ structure
for (i=0; i<conf—>nthreads; i++) merge_stats(&stats , &
threads anchor rv[i]);
for (i=0; i<conf—>nthreads; i++) merge_stats(&stats, &
threads_ chunk_rv[i]);

IMPLEMENTATION

952 for (i=0; i<conf—>nthreads; i++) merge_stats(&stats, &
threads__compress_rv[i]);

953 #endif //ENABLE STATISTICS

954

955 // clean up with the src file

956 if (conf—>infile != NULL) close(fd);

957

958 hashtable_destroy (cache, FALSE);

959

960 #ifdef ENABLE_STATISTICS

961 //dest file stat

962 if (stat(conf—>outfile , &filestat) < 0)

963 EXIT _TRACE("stat () %s failed: %s\n", conf—>outfile ,

strerror (errno));
964 stats.total output = filestat .st_size;

965

966 //Analyze and print statistics

967 if (conf—>verbose) print_stats(&stats);
968 #endif //ENABLE_STATISTICS

969

970 }

281

Bibliography

P. Neto. “Demystifying cloud computing”. In: Proceeding of doctoral
symposium on informatics engineering. Vol. 24. Citeseer. 2011, pp. 16-21.

Eurostat. Cloud computing - statistics on the use by enterprises. Jan. 2021.
URL: https://ec.europa.eu/eurostat/statistics-explained/
index . php / Cloud _ computing_- _statistics _on _the _use_by _
enterprises#Use _of _cloud _computing: _highlights (visited on
04/29/2021).

N. Taleb and E. A. Mohamed. “Cloud computing trends: A literature
review”. In: Academic Journal of Interdisciplinary Studies 9.1 (2020),
pp- 91-91.

Q. Zhang, L. Cheng, and R. Boutaba. “Cloud computing: state-of-the-art
and research challenges”. In: Journal of internet services and applications

1.1 (2010), pp. 7-18.

L. Malhotra, D. Agarwal, A. Jaiswal, et al. “Virtualization in cloud
computing”. In: J. Inform. Tech. Softw. Eng 4.2 (2014), pp. 1-3.

G. J. Popek and R. P. Goldberg. “Formal requirements for virtualizable
third generation architectures”. In: Communications of the ACM 17.7
(1974), pp. 412-421.

G. P. C. Tran, Y.-A. Chen, D.-I. Kang, J. P. Walters, and S. P. Crago.
“Hypervisor performance analysis for real-time workloads”. In: 2016
IEEE High Performance Extreme Computing Conference (HPEC). IEEE.
2016, pp. 1-7.

N. Khanghahi and R. Ravanmehr. “Cloud computing performance
evaluation: issues and challenges”. In: Comput 5.1 (2013), pp. 29-41.

G. Lettieri, V. Maffione, and L. Rizzo. “A study of I/O performance of
virtual machines”. In: The Computer Journal 61.6 (2018), pp. 808-831.

283

https://ec.europa.eu/eurostat/statistics-explained/index.php/Cloud_computing_-_statistics_on_the_use_by_enterprises#Use_of_cloud_computing:_highlights
https://ec.europa.eu/eurostat/statistics-explained/index.php/Cloud_computing_-_statistics_on_the_use_by_enterprises#Use_of_cloud_computing:_highlights
https://ec.europa.eu/eurostat/statistics-explained/index.php/Cloud_computing_-_statistics_on_the_use_by_enterprises#Use_of_cloud_computing:_highlights

284

BIBLIOGRAPHY

[10]

[11]

[12]

X. Ding and J. Shan. “Diagnosing Virtualization Overhead for Multi-
threaded Computation on Multicore Platforms”. In: CloudCom’15. 2015,
pPDp. 226-233.

R. Scroggins. “Virtualization technology literature review”. In: Global
Journal of Computer Science and Technology (2013).

J. Li, S. Xue, W. Zhang, Z. Qi, et al. “When I/O interrupt becomes
system bottleneck: Efficiency and scalability enhancement for SR-IOV
network virtualization”. In: IEEE TCC 7.4 (2019).

J. Shan, X. Ding, and N. Gehani. “APPLES: Efficiently handling spin-
lock synchronization on virtualized platforms”. In: IEEE Transactions
on Parallel and Distributed Systems 28.7 (2016), pp. 1811-1824.

X. Ding, P. B. Gibbons, M. A. Kozuch, and J. Shan. “Gleaner:
Mitigating the Blocked-Waiter Wakeup Problem for Virtualized Multicore
Applications”. In: USENIX ATC 2014. 2014, pp. 73-84.

The KVM halt polling system. URL: https : //www . kernel . org/
doc /Documentation/virtual /kvm/halt-polling. txt (visited on
07/07/2021).

J. Nakajima. Reviewing Unused and New Features for Interrupt/APIC
Virtualization. 2012.

P. E. Kampert. “A taxonomy of virtualization technologies”. In: (2010).

M. Malawski, A. Gajek, A. Zima, B. Balis, and K. Figiela. “Serverless
execution of scientific workflows: Experiments with hyperflow, aws
lambda and google cloud functions”. In: Future Generation Computer
Systems (2017).

A. Tosup, S. Ostermann, M. N. Yigitbasi, R. Prodan, T. Fahringer, and
D. Epema. “Performance analysis of cloud computing services for many-
tasks scientific computing”. In: IEEE TPDS 22.6 (2011), pp. 931-945.

R. R. Expodsito, G. L. Taboada, S. Ramos, J. Tourifio, and R. Doallo.
“Performance analysis of HPC applications in the cloud”. In: Future
Generation Computer Systems 29.1 (2013), pp. 218-229.

H. N. Palit, X. Li, S. Lu, L. C. Larsen, and J. A. Setia. “Evaluating
hardware-assisted virtualization for deploying HPC-as-a-service”. In: Pro-
ceedings of the Tth international workshop on Virtualization technologies
in distributed computing. ACM. 2013, pp. 11-20.

S. Benedict. “Performance issues and performance analysis tools for HPC
cloud applications: a survey”. In: Computing 95.2 (2013), pp. 89-108.

L. Bo, Z. Zhenliu, and W. Xiangfeng. “A survey of HPC Development”.
In: 2012 International Conference on Computer Science and Electronics
Engineering. Vol. 2. IEEE. 2012, pp. 103-106.

https://www.kernel.org/doc/Documentation/virtual/kvm/halt-polling.txt
https://www.kernel.org/doc/Documentation/virtual/kvm/halt-polling.txt

BIBLIOGRAPHY 285

[24]

[25]

[26]

[27]

28]

D. M. Tullsen, S. J. Eggers, and H. M. Levy. “Simultaneous multithread-
ing: Maximizing on-chip parallelism”. In: Proceedings of the 22nd annual
international symposium on Computer architecture. 1995, pp. 392—403.

T. Alsop. Share of the global server processor market by type from 2018
to 2019. Apr. 2021. URL: https://www.statista.com/statistics/
915080/global -market-share-held-by-server-vendors/ (visited
on 05/05/2021).

D. Marshall. “Understanding full virtualization, paravirtualization, and
hardware assist”. In: VM Ware White Paper 17 (2007), p. 725.

J. Fisher-Ogden. “Hardware support for efficient virtualization”. In:
University of California, San Diego, Tech. Rep 12 (2006).

T. Alsop. Share of the global server market in the first half of 2018 and
2019, by virtualization type. May 2020. URL: https://www.statista.
com/statistics/915091/global-server-share-physical-virtual/
(visited on 05/05/2021).

S. Schildermans, J. Shan, K. Aerts, J. Jackrel, and X. Ding. “Virtualiza-
tion Overhead of Multithreading in X86 State-of-the-Art & Remaining
Challenges”. In: IEEE Transactions on Parallel and Distributed Systems
32.10 (2021), pp. 2557-2570.

S. Schildermans, K. Aerts, J. Shan, and X. Ding. “Paratick: Reducing
Timer Overhead in Virtual Machines”. In: 50th International Conference
on Parallel Processing. 2021, pp. 1-10.

S. Schildermans, K. Aerts, J. Shan, and X. Ding. “Ptlbmalloc2: Reducing
TLB Shootdowns with High Memory Efficiency”. In: ISPA-BDCloud-
SocialCom-SustainCom 2020 (2020), pp. 76-83.

S. Schildermans and K. Aerts. “Towards High-Level Software Approaches
to Reduce Virtualization Overhead for Parallel Applications”. In: 2018
IEEFE International Conference on Cloud Computing Technology and
Science (CloudCom). IEEE. 2018, pp. 193-197.

S. N. T.-c. Chiueh and S. Brook. “A survey on virtualization technologies”.
In: Rpe Report 142 (2005).

J. E. Smith and R. Nair. “The architecture of virtual machines”. In:
Computer 38.5 (2005), pp. 32-38.

R. P. Goldberg. “Survey of virtual machine research”. In: Computer 7.6
(1974), pp. 34-45.

NI. Introduction to the NI Real-Time Hypervisor. 2009.

H. Lee. “Virtualization basics: Understanding techniques and fundamen-
tals”. In: School of Informatics and Computing Indiana University 815
E 10th St. Bloomington IN 47408. 2014.

https://www.statista.com/statistics/915080/global-market-share-held-by-server-vendors/
https://www.statista.com/statistics/915080/global-market-share-held-by-server-vendors/
https://www.statista.com/statistics/915091/global-server-share-physical-virtual/
https://www.statista.com/statistics/915091/global-server-share-physical-virtual/

286

BIBLIOGRAPHY

[49]

S. Alliance. “Virtualization: State of the Art”. In: (2008). URL: http:
//scopealliance . org/sites/default/files/documents/SCOPE -
Virtualization-StateofTheArt-Version-1.0.pdf.

Chapter 10. Technical background. URL: https://www.virtualbox.org/
manual/ch10.html (visited on 05/12/2021).

Y. Goto. “Kernel-based virtual machine technology”. In: Fujitsu Scientific
and Technical Journal 47.3 (2011), pp. 362-368.

T. Maeda and A. Yonezawa. “Kernel Mode Linux: Toward an operating
system protected by a type theory”. In: Annual Asian Computing Science
Conference. Springer. 2003, pp. 3-17.

Intel 64 and IA-32 Architectures Software Developer’s Manual. Intel.
Santa Clara, CA, USA, May 2019. URL: https://software. intel.
com/content/www/us/en/develop/articles/intel-sdm.html.

N. Penneman, D. Kudinskas, A. Rawsthorne, B. De Sutter, and
K. De Bosschere. “Formal virtualization requirements for the ARM
architecture”. In: Journal of Systems Architecture 59.3 (2013), pp. 144—
154.

J. White and A. Pilbeam. “A survey of virtualization technologies with
performance testing”. In: arXiv preprint arXiv:1010.3233 (2010).

J. Shuja, A. Gani, A. Naveed, E. Ahmed, and C.-H. Hsu. “Case of
ARM emulation optimization for offloading mechanisms in mobile cloud
computing”. In: Future Generation Computer Systems 76 (2017), pp. 407—
417.

K. Adams and O. Agesen. “A comparison of software and hardware
techniques for x86 virtualization”. In: ACM Sigplan Notices 41.11 (2006),
pp. 2-13.

M. Probst. “Dynamic binary translation”. In: UKUUG Linux Developer’s
Conference. Vol. 2002. 2002.

R. Community. Nested Virtualization With Binary Translation: Back to
the Future. Nov. 2013. URL: https://blogs.oracle.com/ravello/
nested - virtualization - with - binary - translation (visited on
06/02/2021).

M. Rosenblum and T. Garfinkel. “Virtual machine monitors: Current
technology and future trends”. In: Computer 38.5 (2005), pp. 39-47.

http://scopealliance.org/sites/default/files/documents/SCOPE-Virtualization-StateofTheArt-Version-1.0.pdf
http://scopealliance.org/sites/default/files/documents/SCOPE-Virtualization-StateofTheArt-Version-1.0.pdf
http://scopealliance.org/sites/default/files/documents/SCOPE-Virtualization-StateofTheArt-Version-1.0.pdf
https://www.virtualbox.org/manual/ch10.html
https://www.virtualbox.org/manual/ch10.html
https://software.intel.com/content/www/us/en/develop/articles/intel-sdm.html
https://software.intel.com/content/www/us/en/develop/articles/intel-sdm.html
https://blogs.oracle.com/ravello/nested-virtualization-with-binary-translation
https://blogs.oracle.com/ravello/nested-virtualization-with-binary-translation

BIBLIOGRAPHY 287

[50]

H. Kim, S. Kim, J. Jeong, J. Lee, and S. Maeng. “Demand-based
Coordinated Scheduling for SMP VMs”. In: Proceedings of the Eighteenth
International Conference on Architectural Support for Programming Lan-
guages and Operating Systems. Houston, Texas, USA, 2013, pp. 369-380.
ISBN: 978-1-4503-1870-9. DOI: 10.1145/2451116.2451156. URL: http:
//doi.acm.org/10.1145/2451116.2451156.

A. Menon, J. R. Santos, Y. Turner, G. Janakiraman, and W.
Zwaenepoel. “Diagnosing performance overheads in the xen virtual
machine environment”. In: Proceedings of the 1st ACM/USENIX
international conference on Virtual execution environments. 2005,
pp. 13-23.

VMWare. Hardware-Assisted Memory virtualization. Apr. 2018. URL:
https : / / docs . vmware . com / en / VMware - vSphere / 6 . 5/ com .
vmware . vsphere . resmgmt . doc /GUID- 69CDC049 - 8B42-4D26 - 8B47 -
94961B1777A4.html (visited on 06/07/2021).

X. Wang, J. Zang, Z. Wang, Y. Luo, and X. Li. “Selective hardware/soft-
ware memory virtualization”. In: ACM SIGPLAN Notices 46.7 (2011),
pp. 217-226.

E. Alkassar, E. Cohen, M. Hillebrand, M. Kovalev, and W. J. Paul.
“Verifying shadow page table algorithms”. In: Formal Methods in
Computer Aided Design. 2010, pp. 267-270.

J. Gandhi, M. D. Hill, and M. M. Swift. “Agile paging: Exceeding the
best of nested and shadow paging”. In: 2016 ACM/IEEE 43rd Annual
International Symposium on Computer Architecture (ISCA). IEEE. 2016,
pp. 707-718.

B. T. Djomgwe, P. Yuhala, A. Tchana, F. Hermenier, D. Hagimont, and
G. Muller. “(No) Compromis: Paging Virtualization Is Not a Fatality”.
In: VEE 2021-17th ACM SIGPLAN/SIGOPS International Conference
on Virtual Fxecution Environments. 2021, pp. 1-12.

A. Krapf. “XEN Memory Management (Intel IA-32)”. In: INRIA Sophia
Antipolis-Méditerranée Research Centre (2007).

C. Waldspurger and M. Rosenblum. “I/o virtualization”. In: Communi-
cations of the ACM 55.1 (2012), pp. 66-73.

Y. Luo. “Network I/O virtualization for cloud computing”. In: IT
professional 12.5 (2010), pp. 36-41.

Y. Dong, J. Dai, Z. Huang, H. Guan, K. Tian, and Y. Jiang. “Towards
high-quality I/O virtualization”. In: Proceedings of SYSTOR 2009: The
Israeli Experimental Systems Conference. 2009, pp. 1-8.

https://doi.org/10.1145/2451116.2451156
http://doi.acm.org/10.1145/2451116.2451156
http://doi.acm.org/10.1145/2451116.2451156
https://docs.vmware.com/en/VMware-vSphere/6.5/com.vmware.vsphere.resmgmt.doc/GUID-69CDC049-8B42-4D26-8B47-94961B1777A4.html
https://docs.vmware.com/en/VMware-vSphere/6.5/com.vmware.vsphere.resmgmt.doc/GUID-69CDC049-8B42-4D26-8B47-94961B1777A4.html
https://docs.vmware.com/en/VMware-vSphere/6.5/com.vmware.vsphere.resmgmt.doc/GUID-69CDC049-8B42-4D26-8B47-94961B1777A4.html

288

BIBLIOGRAPHY

M. Jones. Linuz virtualization and PCI passthrough. Oct. 2009. URL:
https : //developer . ibm . com/ tutorials /1 - pci - passthrough/
(visited on 06/08/2021).

B. Zhang, X. Wang, R. Lai, L. Yang, Y. Luo, X. Li, and Z. Wang. “A
survey on i/o virtualization and optimization”. In: 2010 Fifth Annual
ChinaGrid Conference. IEEE. 2010, pp. 117-123.

F. Bellard. “QEMU, a fast and portable dynamic translator.” In: USENIX
annual technical conference, FREENIX Track. Vol. 41. Califor-nia, USA.
2005, p. 46.

J. R. Santos, Y. Turner, G. J. Janakiraman, and I. Pratt. “Bridging the
Gap between Software and Hardware Techniques for I/O Virtualization.”
In: USENIX Annual Technical Conference. 2008, pp. 29-42.

Intel Virtualization Technology for Directed 1/0. Intel. Santa Clara, CA,
USA, Apr. 2021. URL: https://software. intel.com/content/www/
us/en/develop/download/intel-virtualization-technology-for-
directed-io-architecture-specification.html.

PCI-SIG. Single Root I/O Virtualiization and Sharing Specificatiion
Rewvision 1.1. Jan. 2010. URL: https://composter.com.ua/documents/
sr-iovl_1_20Janl0_cb.pdf (visited on 06/09/2021).

Y. Dong, X. Yang, J. Li, G. Liao, K. Tian, and H. Guan. “High
performance network virtualization with SR-IOV”. In: Journal of Parallel
and Distributed Computing 72.11 (2012), pp. 1471-1480.

V. G. da Silva, M. Kirikova, and G. Alksnis. “Containers for virtualization:
An overview”. In: Applied Computer Systems 23.1 (2018), pp. 21-27.

J. Frazelle. Setting the Record Straight: containers vs. Zones vs. Jails vs.
VMs. Mar. 2017. URL: https://blog. jessfraz.com/post/containers-
zones-jails-vms/ (visited on 06/18/2021).

R. Morabito, J. Kjallman, and M. Komu. “Hypervisors vs. lightweight
virtualization: a performance comparison”. In: 2015 IEEE International
Conference on Cloud Engineering. IEEE. 2015, pp. 386-393.

D. Bernstein. “Containers and cloud: From Ixc to docker to kubernetes”.
In: IEEFE Cloud Computing 1.3 (2014), pp. 81-84.

T. Bui. “Analysis of docker security”. In: arXiv preprint arXiv:1501.02967
(2015).

Canonical. Infrastructure for container projects. URL: https : / /
linuxcontainers.org/ (visited on 06/18/2021).

https://developer.ibm.com/tutorials/l-pci-passthrough/
https://software.intel.com/content/www/us/en/develop/download/intel-virtualization-technology-for-directed-io-architecture-specification.html
https://software.intel.com/content/www/us/en/develop/download/intel-virtualization-technology-for-directed-io-architecture-specification.html
https://software.intel.com/content/www/us/en/develop/download/intel-virtualization-technology-for-directed-io-architecture-specification.html
https://composter.com.ua/documents/sr-iov1_1_20Jan10_cb.pdf
https://composter.com.ua/documents/sr-iov1_1_20Jan10_cb.pdf
https://blog.jessfraz.com/post/containers-zones-jails-vms/
https://blog.jessfraz.com/post/containers-zones-jails-vms/
https://linuxcontainers.org/
https://linuxcontainers.org/

BIBLIOGRAPHY 289

[74]

[85]

[86]

[87]

D. Drewanz and L. Grimmer. The Role of Oracle Solaris Zones
and Linux Containers in a Virtualization Strategy. Jan. 2013. URL:
https://www. oracle . com/technical -resources/articles/it-
infrastructure/admin-zones- containers-virtualization.html
(visited on 06/18/2021).

C. Tozzi. Jails, LXC and Beyond: Container Platform Round-Up. July
2017. URL: https://containerjournal.com/features/jails-1xc-

beyond-container-platform-round/ (visited on 06/18/2021).

Docker. Docker overview. URL: https ://docs . docker . com/ get -
started/overview/ (visited on 06/18/2021).

R. Singh. LXD wvs Docker. 2017. URL: https://linuxhint.com/1xd-
vs-docker/ (visited on 06/18/2021).

History of Operating Systems. URL: https://sites.google.com/site/
optsytms/history-of-operating-systems (visited on 06/23/2021).

A. S. Tanenbaum and H. Bos. Modern operating systems. Pearson, 2015.
O. Ike-Nwosu. Inside the Python Virtual Machine. 2015.

G. Kumar. Understanding the difference between JDK, JRE and JVM is
important in Java. Oct. 2015. URL: https://www.linkedin.com/pulse/
understanding - difference - between - jdk - jre - jvm- important -
kumar (visited on 06/24/2021).

J. Thones. “Microservices”. In: IEEE software 32.1 (2015), pp. 116-116.

G. McGrath and P. R. Brenner. “Serverless computing: Design,
implementation, and performance”. In: ICDCSW’17. IEEE. 2017,
pp- 405-410.

A. Madhavapeddy, R. Mortier, C. Rotsos, D. Scott, B. Singh, T.
Gagzagnaire, S. Smith, S. Hand, and J. Crowcroft. “Unikernels: Library
operating systems for the cloud”. In: ACM SIGARCH Computer
Architecture News 41.1 (2013), pp. 461-472.

A. Kivity, D. Laor, G. Costa, P. Enberg, N. Har’El, D. Marti, and V.
Zolotarov. “OSv—optimizing the operating system for virtual machines”.
In: 2014 {USENIX} Annual Technical Conference ({USENIX} ATC}
14). 2014, pp. 61-72.

I. Briggs, M. Day, Y. Guo, P. Marheine, and E. Eide. “A performance
evaluation of unikernels”. In: Technical Report. 2014.

R. Morabito, J. Kjallman, and M. Komu. “Hypervisors vs. lightweight
virtualization: a performance comparison”. In: 2015 IEEE International
Conference on Cloud Engineering. IEEE. 2015, pp. 386-393.

https://www.oracle.com/technical-resources/articles/it-infrastructure/admin-zones-containers-virtualization.html
https://www.oracle.com/technical-resources/articles/it-infrastructure/admin-zones-containers-virtualization.html
https://containerjournal.com/features/jails-lxc-beyond-container-platform-round/
https://containerjournal.com/features/jails-lxc-beyond-container-platform-round/
https://docs.docker.com/get-started/overview/
https://docs.docker.com/get-started/overview/
https://linuxhint.com/lxd-vs-docker/
https://linuxhint.com/lxd-vs-docker/
https://sites.google.com/site/optsytms/history-of-operating-systems
https://sites.google.com/site/optsytms/history-of-operating-systems
https://www.linkedin.com/pulse/understanding-difference-between-jdk-jre-jvm-important-kumar
https://www.linkedin.com/pulse/understanding-difference-between-jdk-jre-jvm-important-kumar
https://www.linkedin.com/pulse/understanding-difference-between-jdk-jre-jvm-important-kumar

290

BIBLIOGRAPHY

A. Raza, P. Sohal, J. Cadden, J. Appavoo, U. Drepper, R. Jones, O.
Krieger, R. Mancuso, and L. Woodman. “Unikernels: The next stage of
linux’s dominance”. In: Proceedings of the Workshop on Hot Topics in
Operating Systems. 2019, pp. 7-13.

D. Williams and R. Koller. “Unikernel monitors: extending minimalism
outside of the box”. In: 8th { USENIX} Workshop on Hot Topics in Cloud
Computing (HotCloud 16). 2016.

VNC (Virtual Network Computing). URL: https://www.raspberrypi.
org/documentation/remote-access/vnc/ (visited on 06/24/2021).

Data Storage - Logical Block Addressing (LBA). URL: https : //
datacadamia.com/io/drive/1ba (visited on 07/05/2021).

S. Lee, M. Liu, S. Jun, S. Xu, J. Kim, et al. “Application-managed
flash”. In: 14th {USENIX} Conference on File and Storage Technologies
({FAST} 16). 2016, pp. 339-353.

C. Hoffman. Beginner Geek: Hard Disk Partitions Fxplained. July 2017.
URL: https://www.howtogeek.com/184659/beginner - geek-hard-
disk-partitions-explained/ (visited on 07/05/2021).

P. Gupta and C. S. S. Asia. “Storage Virtualization: What, Why, Where
and How”. In: The Storage Networking Industry Association (SNIA)
(2008).

G. Smida. DAS RAID NAS SAN. Dec. 2012. URL: https: //www .
slideshare.net/gsmida/das-raid-nas-san.

P. Raj and A. Raman. “Software-defined storage (SDS) for storage
virtualization”. In: Software-defined cloud centers. Springer, 2018, pp. 35—
64.

A. Gillis. RAID (redundant array of independent disks). Feb. 2020. URL:
https://searchstorage.techtarget.com/definition/RAID (visited
on 06/30/2021).

VMWare. Understanding the DNA of Software Defined Storage. URL:
https://www.vmware.com/content/dam/digitalmarketing/vmware/
en/pdf/solutions/understanding-the-dna-of-software-defined-
storage-tech-trends.pdf.

D. Kreutz, F. M. Ramos, P. E. Verissimo, C. E. Rothenberg, S. Azodol-
molky, and S. Uhlig. “Software-defined networking: A comprehensive
survey”. In: Proceedings of the IEEE 103.1 (2014), pp. 14-76.

IBM. Virtual IP address. 2020. URL: https://www.ibm. com/docs/
en/aix/7.27topic=protocol - virtual - ip-address (visited on
07/05/2021).

https://www.raspberrypi.org/documentation/remote-access/vnc/
https://www.raspberrypi.org/documentation/remote-access/vnc/
https://datacadamia.com/io/drive/lba
https://datacadamia.com/io/drive/lba
https://www.howtogeek.com/184659/beginner-geek-hard-disk-partitions-explained/
https://www.howtogeek.com/184659/beginner-geek-hard-disk-partitions-explained/
https://www.slideshare.net/gsmida/das-raid-nas-san
https://www.slideshare.net/gsmida/das-raid-nas-san
https://searchstorage.techtarget.com/definition/RAID
https://www.vmware.com/content/dam/digitalmarketing/vmware/en/pdf/solutions/understanding-the-dna-of-software-defined-storage-tech-trends.pdf
https://www.vmware.com/content/dam/digitalmarketing/vmware/en/pdf/solutions/understanding-the-dna-of-software-defined-storage-tech-trends.pdf
https://www.vmware.com/content/dam/digitalmarketing/vmware/en/pdf/solutions/understanding-the-dna-of-software-defined-storage-tech-trends.pdf
https://www.ibm.com/docs/en/aix/7.2?topic=protocol-virtual-ip-address
https://www.ibm.com/docs/en/aix/7.2?topic=protocol-virtual-ip-address

BIBLIOGRAPHY 291

[101]

[102]

[103]

[104]

[105]
[106]

[107]

[108]

[109]

[110]

[111]

[112]

A. Mumford. What’s the difference between a LAN and a WAN? July
2019. URL: https://purple. ai/blogs/whats-the-difference-
between-a-lan-and-a-wan/ (visited on 07/05/2021).

M. Heller. What you need to know about VPN technologies. Aug. 2006.
URL: https://www. computerworld . com/article /2546283 /what -
you-need - to - know - about - vpn - technologies . html (visited on
07/05/2021).

L. Liu, H. Wang, A. Wang, M. Xiao, Y. Cheng, and S. Chen. “vCPU As a
Container: Towards Accurate CPU Allocation for VMs”. In: Proceedings
of the 15th ACM SIGPLAN/SIGOPS International Conference on
Virtual Ezecution Environments. Providence, RI, USA: ACM, 2019,
pp- 193-206. 1sBN: 978-1-4503-6020-3. DOI: 10.1145/3313808.3313814.
URL: http://doi.acm.org/10.1145/3313808.3313814.

D. Gupta, S. Lee, M. Vrable, S. Savage, A. C. Snoeren, G. Varghese,
G. M. Voelker, and A. Vahdat. “Difference Engine: Harnessing Memory
Redundancy in Virtual Machines”. In: Proceedings of the 8th USENIX
Conference on Operating Systems Design and Implementation. 2008,
pp- 309-322.

Virtio: Paravirtualized drivers for KVM/Linux. URL: https: //www .
linux-kvm.org/page/Virtio (visited on 07/06/2021).

S. W. Devine, L. S. Rogel, P. P. Bungale, et al. Virtualization with
shadow page tables. US Patent 8,464,022. June 2013.

R. Bhargava, B. Serebrin, F. Spadini, and S. Manne. “Accelerating two-
dimensional page walks for virtualized systems”. In: SIGOPS Oper. Syst.
Rev. 42.2 (2008), pp. 26-35.

J. Rao, K. Wang, X. Zhou, and C.-Z. Xu. “Optimizing virtual machine
scheduling in NUMA multicore systems”. In: HPCA’13. IEEE. 2013,
pp- 306-317.

B. Teabe, V. Nitu, A. Tchana, and D. Hagimont. “The Lock Holder and
the Lock Waiter Pre-emption Problems: Nip Them in the Bud Using
Informed Spinlocks (I-Spinlock)”. In: EuroSys ’17. 2017, pp. 286-297.

T. Friebel and S. Biemueller. “How to deal with lock holder preemption”.
In: Xen Summit North America (2008).

J. M. Mellor-Crummey and M. L. Scott. “Algorithms for scalable syn-
chronization on shared-memory multiprocessors”. In: ACM Transactions
on Computer Systems (TOCS) 9.1 (1991), pp. 21-65.

AMD. AMDG6} Architecture Programmer’s Manual: Volumes 1-5. Nov.
2020. URL: https://www.amd.com/system/files/TechDocs/40332.
pdf.

https://purple.ai/blogs/whats-the-difference-between-a-lan-and-a-wan/
https://purple.ai/blogs/whats-the-difference-between-a-lan-and-a-wan/
https://www.computerworld.com/article/2546283/what-you-need-to-know-about-vpn-technologies.html
https://www.computerworld.com/article/2546283/what-you-need-to-know-about-vpn-technologies.html
https://doi.org/10.1145/3313808.3313814
http://doi.acm.org/10.1145/3313808.3313814
https://www.linux-kvm.org/page/Virtio
https://www.linux-kvm.org/page/Virtio
https://www.amd.com/system/files/TechDocs/40332.pdf
https://www.amd.com/system/files/TechDocs/40332.pdf

292

BIBLIOGRAPHY

[113]

[114]

[115]

[116]

[117]

[118]

[119]

[120]

[121]

[122]

[123]

[124]

K. Raghavendra. Paravirtualized ticket spinlocks. June 2013. URL: https:
//1lvn.net/Articles/556141/ (visited on 11/10/2021).

J. Ouyang and J. R. Lange. “Preemptable Ticket Spinlocks: Improving
Consolidated Performance in the Cloud”. In: VEE’13. Houston, Texas,
USA, 2013, pp. 191-200. 1SBN: 978-1-4503-1266-0. DOI: 10 . 1145/
2451512 .2451549. URL: http://doi.acm.org/10.1145/2451512.
2451549.

Torvalds. torvalds/linuz. July 2021. URL: https :// github . com/
torvalds/linux (visited on 07/07/2021).

C. Villavieja, V. Karakostas, L. Vilanova, Y. Etsion, A. Ramirez, A.
Mendelson, N. Navarro, A. Cristal, and O. S. Unsal. “Didi: Mitigating the
performance impact of TLB shootdowns using a shared TLB directory”.
In: PACT 2011, pp. 340-349.

J. Ouyang, J. R. Lange, and H. Zheng. “Shoot4U: Using VMM assists
to optimize TLB operations on preempted vCPUs”. In: VEE’16 (2016).

M. Liu and T. Li. “Optimizing virtual machine consolidation performance
on NUMA server architecture for cloud workloads”. In: 2018 IEEE 19th
International Symposium on High Performance Computer Architecture
(HPCA). IEEE. 2014, pp. 325-336.

Domain XML format. URL: https://libvirt.org/formatdomain.html
(visited on 07/07/2021).

AMD. Leadership High Performance Computing. AMD. June 5, 2020.
URL: https://ir.amd.com/static-files/fd06c15e-0241-424d-
9£d9-5a469d96012d (visited on 07/21/2020).

The Red Hat Enterprise Linux Team. Red Hat: Leading the enterprise
Linux server market. Dec. 2019. URL: https://www.redhat.com/en/
blog/red-hat-leading-enterprise-linux-server-market (visited

on 07/23,/2020).

VMware. Host Power Management in VMware vSphere 5.5. URL: http:
//www.vmware.com/resources/techresources/10205.

Distrowatch. DistroWatch Project Ranking. 2020. URL: https : //
distrowatch . com / dwres . php 7 resource = ranking & sort = votes
(visited on 07/23/2020).

X. Zhan, Y. Bao, C. Bienia, and K. Li. “PARSEC3.0: A Multicore
Benchmark Suite with Network Stacks and SPLASH-2X”. In: SIGARCH
Comput. Archit. News 44.5 (Feb. 2017), pp. 1-16. 1sSN: 0163-5964. DOI: 10.
1145/3053277 . 3053279. URL: https://doi.org/10.1145/3053277.
3053279.

https://lwn.net/Articles/556141/
https://lwn.net/Articles/556141/
https://doi.org/10.1145/2451512.2451549
https://doi.org/10.1145/2451512.2451549
http://doi.acm.org/10.1145/2451512.2451549
http://doi.acm.org/10.1145/2451512.2451549
https://github.com/torvalds/linux
https://github.com/torvalds/linux
https://libvirt.org/formatdomain.html
https://ir.amd.com/static-files/fd06c15e-0241-424d-9fd9-5a469d96012d
https://ir.amd.com/static-files/fd06c15e-0241-424d-9fd9-5a469d96012d
https://www.redhat.com/en/blog/red-hat-leading-enterprise-linux-server-market
https://www.redhat.com/en/blog/red-hat-leading-enterprise-linux-server-market
http://www.vmware.com/resources/techresources/10205
http://www.vmware.com/resources/techresources/10205
https://distrowatch.com/dwres.php?resource=ranking&sort=votes
https://distrowatch.com/dwres.php?resource=ranking&sort=votes
https://doi.org/10.1145/3053277.3053279
https://doi.org/10.1145/3053277.3053279
https://doi.org/10.1145/3053277.3053279
https://doi.org/10.1145/3053277.3053279

BIBLIOGRAPHY 293

[125]
[126]

[127]

[128]

[129]

[130]

[131]

[132]

[133]

[134]

[135]

[136]

Open-Source, Automated Benchmarking. 2021. URL: https : //www .
phoronix-test-suite.com/ (visited on 04/24/2021).

R. Feldt and A. Magazinius. “Validity threats in empirical software
engineering research-an initial survey.” In: Seke. 2010, pp. 374-379.

C. Wohlin, P. Runeson, M. Host, M. C. Ohlsson, B. Regnell, and A.
Wesslén. Ezperimentation in software engineering. Springer Science &
Business Media, 2012.

J. Li, Q. Wang, D. Jayasinghe, J. Park, T. Zhu, and C. Pu. “Performance
overhead among three hypervisors: An experimental study using hadoop
benchmarks”. In: IEEE BigData Congress’13. 2013, pp. 9-16.

P. Luszczek, E. Meek, S. Moore, D. Terpstra, V. M. Weaver, and J.
Dongarra. “Evaluation of the HPC challenge benchmarks in virtualized
environments”. In: Proceedings of the 2011 international conference on
Parallel Processing - Volume 2. Springer-Verlag, 2011, pp. 436-445.

U. F. Minhas, J. Yadav, A. Aboulnaga, and K. Salem. “Database systems
on virtual machines: How much do you lose?” In: 2008 IEEE 2jth
International Conference on Data Engineering Workshop. 2008, pp. 35—
41.

A. J. Younge, R. Henschel, J. T. Brown, G. Von Laszewski, J. Qiu, and
G. C. Fox. “Analysis of virtualization technologies for high performance
computing environments”. In: IEEFE CLOUD’11. 2011, pp. 9-16.

J. P. Walters, V. Chaudhary, M. Cha, S. Guercio Jr, and S. Gallo.
“A comparison of virtualization technologies for HPC”. In: Advanced
Information Networking and Applications, 2008. AINA 2008. 22nd
International Conference on. IEEE. 2008, pp. 861-868.

J. Han, J. Ahn, C. Kim, Y. Kwon, Y.-r. Choi, and J. Huh. “The effect
of multi-core on HPC applications in virtualized systems”. In: Furo-Par
2010 Parallel Processing Workshops. Springer. 2011, pp. 615-623.

M. H. Jamal, A. Qadeer, W. Mahmood, A. Waheed, and J. J. Ding.
“Virtual machine scalability on multi-core processors based servers for
cloud computing workloads”. In: Networking, Architecture, and Storage,
2009. NAS 2009. IEEE International Conference on. IEEE. 2009, pp. 90—
97.

E. Walker. “Benchmarking amazon EC2 for high-performance scientific
computing”. In: ; login:: the magazine of USENIX & SAGE 33.5 (2008),
pp. 18-23.

X. Song, H. Chen, and B. Zang. Characterizing the Performance and
Scalability of Many-core Applications on Virtualized Platforms. Tech. rep.
FDUPPITR-2010-002. Parallel Processing Institute, Fudan University,
2010.

https://www.phoronix-test-suite.com/
https://www.phoronix-test-suite.com/

294

BIBLIOGRAPHY

[137]

[138]

[139]

[140]

[141]

[142]

[143]

[144]

[145]

[146]

[147]

P. Padala, X. Zhu, Z. Wang, S. Singhal, K. G. Shin, et al. “Performance
evaluation of virtualization technologies for server consolidation”. In: HP
Labs Tec. Report 137 (2007).

Y. Zhao, J. Rao, and Q. Yi. “Characterizing and optimizing the
performance of multithreaded programs under interference”. In: PACT
2016. Sept. 2016, pp. 287-297.

Y. Koh, R. Knauerhase, P. Brett, M. Bowman, Z. Wen, and C. Pu. “An
analysis of performance interference effects in virtual environments”.
In: 2007 IEEE International Symposium on Performance Analysis of
Systems € Software. 2007, pp. 200—209.

J. Liu. “Evaluating standard-based self-virtualizing devices: A per-
formance study on 10 GbE NICs with SR-IOV support”. In: IFEE
International Symposium on Parallel & Distributed Processing (IPDPS).
IEEE. 2010, pp. 1-12.

L. Youseff, K. Seymour, H. You, D. Zagorodnov, J. Dongarra, and R.
Wolski. “Paravirtualization effect on single-and multi-threaded memory-
intensive linear algebra software”. In: Cluster Computing 12.2 (2009),
pp. 101-122.

R. McDougall and J. Anderson. “Virtualization Performance: Perspec-
tives and Challenges Ahead”. In: SIGOPS Oper. Syst. Rev. 44.4 (Dec.
2010), pp. 40-56.

W. Huang, J. Liu, B. Abali, and D. K. Panda. “A case for high
performance computing with virtual machines”. In: Proceedings of the
20th annual international conference on Supercomputing. ACM. 2006,
pp. 125-134.

K. Z. Ibrahim, S. Hofmeyr, and C. Iancu. “Characterizing the
performance of parallel applications on multi-socket virtual machines”.
In: Proceedings of the 2011 11th IEEE/ACM International Symposium
on Cluster, Cloud and Grid Computing. IEEE Computer Society. 2011,
pp. 1-12.

M. Grund, J. Schaffner, J. Krueger, J. Brunnert, and A. Zeier. “The
Effects of Virtualization on Main Memory Systems”. In: DaMoN 2010.
Proceedings of the Sixth International Workshop on Data Management
on New Hardware. 2010, pp. 41-46.

B. A. Kitchenham, S. L. Pfleeger, L. M. Pickard, P. W. Jones, D. C.
Hoaglin, K. El Emam, and J. Rosenberg. “Preliminary guidelines for
empirical research in software engineering”. In: IEEFE Transactions on
software engineering 28.8 (2002), pp. 721-734.

R. Malhotra. Empirical research in software engineering: concepts,
analysis, and applications. CRC press, 2016.

BIBLIOGRAPHY 295

[148]

[149]

[150]
[151]
[152]

[153]

[154]

[155]

[156]

[157]

[158]

[159]

[160]

A. Hofer and W. F. Tichy. “Status of empirical research in software
engineering”. In: Empirical Software FEngineering Issues. Critical
Assessment and Future Directions. Springer, 2007, pp. 10-19.

M. Razavian, B. Paech, and A. Tang. “Empirical research for software
architecture decision making: An analysis”. In: Journal of Systems and
Software 149 (2019), pp. 360-381.

D. Etiemble. “45-year CPU evolution: one law and two equations”. In:
arXiv preprint arXiv:1803.00254 (2018).

C.-Q. Yang and B. P. Miller. “Critical path analysis for the execution of
parallel and distributed programs”. In: ICDCS’88. 1988, pp. 366-367.

U. Drepper. Memory part 7: Memory performance tools. Nov. 2007. URL:
https://lun.net/Articles/257209/ (visited on 07/29/2020).

G. Voron, G. Thomas, V. Quema, and P. Sens. “An interface to implement
NUMA policies in the Xen hypervisor”. In: EuroSys’17. 2017, pp. 453—
467.

B. Bui, D. Mvondo, B. Teabe, K. Jiokeng, L.. Wapet, A. Tchana, G.
Thomas, D. Hagimont, G. Muller, and N. Depalma. “When extended
para-virtualization (XPV) meets NUMA”. In: FuroSys’19. 2019, pp. 1-15.

The Linux Kernel Archives. NO__HZ: Reducing Scheduling-Clock Ticks.
URL: https://www.kernel.org/doc/Documentation/timers/%7BN0Y%
BC_HZY%7D.txt (visited on 07/07/2021).

S. Siddha, V. Pallipadi, and A. Ven. “Getting maximum mileage out of
tickless”. In: Proceedings of the Linux Symposium. Vol. 2. Citeseer. 2007,
pp- 201-207.

W. Xiong, S. Park, J. Zhang, Y. Zhou, and Z. Ma. “Ad Hoc
Synchronization Considered Harmful”. In: OSDI’10. Proceedings of
the 9th USENIX Conference on Operating Systems Design and
Implementation. Vancouver, BC, Canada: USENIX Association, 2010,
pp- 163-176. URL: http://dl.acm.org/citation.cfm?id=1924943.
1924955.

W. Li. KVM: X86: Add Paravirt TLB Shootdown. Nov. 2017. URL:
https://lun.net/Articles/740363/ (visited on 07/07/2021).

P. Monne Roger. [v2,3/3] 286/tlb: use Xen L0 assisted TLB flush when
available. Jan. 2020. URL: https://patchwork.kernel.org/patch/
11327803/ (visited on 07,/29/2020).

O. Sukwong and H. S. Kim. “Is co-scheduling too expensive for SMP
VMs?” In: Proceedings of the sixth conference on Computer systems.
ACM, 2011, pp. 257-272.

https://lwn.net/Articles/257209/
https://www.kernel.org/doc/Documentation/timers/%7BNO%5C_HZ%7D.txt
https://www.kernel.org/doc/Documentation/timers/%7BNO%5C_HZ%7D.txt
http://dl.acm.org/citation.cfm?id=1924943.1924955
http://dl.acm.org/citation.cfm?id=1924943.1924955
https://lwn.net/Articles/740363/
https://patchwork.kernel.org/patch/11327803/
https://patchwork.kernel.org/patch/11327803/

296

BIBLIOGRAPHY

[161]

[162]

[163]

[164]

[165)

[166]

[167]

[168]

[169]

[170]

X. Ding, P. Gibbons, and M. Kozuch. “A Hidden Cost of Virtualization
When Scaling Multicore Applications”. In: HotCloud 2013. USENIX.

J. Ahn, C. H. Park, and J. Huh. “Micro-sliced virtual processors
to hide the effect of discontinuous cpu availability for consolidated
systems”. In: 2014 47th Annual IEEE/ACM International Symposium
on Microarchitecture. IEEE. 2014, pp. 394-405.

C.-C. Tu, M. Ferdman, C.-t. Lee, and T.-c. Chiueh. “A comprehensive
implementation and evaluation of direct interrupt delivery”. In: Acm
Sigplan Notices 50.7 (2015), pp. 1-15.

L. Cheng, J. Rao, and F. C. M. Lau. “vScale: Automatic and Efficient
Processor Scaling for SMP Virtual Machines”. In: FuroSys ’16. London,
United Kingdom: ACM, 2016, 2:1-2:14. 1SBN: 978-1-4503-4240-7. DOTI:
10.1145/2901318.2901321. URL: http://doi.acm.org/10.1145/
2901318.2901321.

T. Merrifield and H. R. Taheri. “Performance Implications of Extended
Page Tables on Virtualized x86 Processors”. In: VEE’16. 2016, pp. 25-35.

S. Kashyap, C. Min, and T. Kim. “Scaling Guest OS Critical Sections
with eCS”. In: Boston, MA: USENIX Association, 2018, pp. 159-172.
ISBN: 978-1-931971-44-7. URL: https://www.usenix.org/conference/
atcl8/presentation/kashyap.

J. T. Lim and J. Nieh. “Optimizing Nested Virtualization Performance
Using Direct Virtual Hardware”. In: Proceedings of the Twenty-Fifth
International Conference on Architectural Support for Programming
Languages and Operating Systems. ASPLOS ’20. Lausanne, Switzerland:
Association for Computing Machinery, 2020, pp. 557-574. ISBN:
9781450371025. DOI: 10.1145/3373376.3378467. URL: https://doi.
org/10.1145/3373376.3378467.

N. Amit, A. Tai, and M. Wei. “Don’t Shoot down TLB Shootdowns!” In:
Proceedings of the Fifteenth European Conference on Computer Systems.
EuroSys ’20. Heraklion, Greece: Association for Computing Machinery,
2020. 1SBN: 9781450368827. DOIL: 10 . 1145 /3342195 . 3387518. URL:
https://doi-org.kuleuven.e-bronnen.be/10.1145/3342195.
3387518.

W. Jia, J. Shan, T. O. Li, X. Shang, H. Cui, and X. Ding. “vSMT-IO:
Improving I/O Performance and Efficiency on {SMT} Processors in
Virtualized Clouds”. In: 2020 {USENIX} Annual Technical Conference
({USENIX}{ATC} 20). 2020, pp. 449-463.

S. K. Sadasivam, B. W. Thompto, R. Kalla, and W. J. Starke. “IBM
Power9 processor architecture”. In: IEEE Micro 37.2 (2017), pp. 40-51.

https://doi.org/10.1145/2901318.2901321
http://doi.acm.org/10.1145/2901318.2901321
http://doi.acm.org/10.1145/2901318.2901321
https://www.usenix.org/conference/atc18/presentation/kashyap
https://www.usenix.org/conference/atc18/presentation/kashyap
https://doi.org/10.1145/3373376.3378467
https://doi.org/10.1145/3373376.3378467
https://doi.org/10.1145/3373376.3378467
https://doi.org/10.1145/3342195.3387518
https://doi-org.kuleuven.e-bronnen.be/10.1145/3342195.3387518
https://doi-org.kuleuven.e-bronnen.be/10.1145/3342195.3387518

BIBLIOGRAPHY 297

[171]

[172]

[173]

[174]

[175]

[176]

[177]

[178]
[179]

[180]

[181]

[182]

[183]

[184]
[185]

M. Danelutto, T. De Matteis, D. De Sensi, G. Mencagli, and M. Torquati.
“P3ARSEC: towards parallel patterns benchmarking”. In: Proceedings of
the Symposium on Applied Computing. ACM. 2017, pp. 1582-1589.

InitializeCriticalSectionAndSpinCount function (synchapi.h). Oct. 2021.
URL: https://docs.microsoft.com/en-us/windows/win32/api/
synchapi/nf - synchapi-initializecriticalsectionandspincount
(visited on 11/15/2021).

In-depth JVM-locking and concurrency. URL: https://programmerall.
com/article/4314276986/ (visited on 11/15/2021).

PAUSE. URL: https://c9x.me/x86/html/file_module_x86_id_232.
html (visited on 11/15/2021).

M. Kerrisk. futexz(2). Aug. 2021. URL: https://man7.org/linux/man-
pages/man2/futex.2.html (visited on 09/03/2021).

S. Mittal. “A survey of techniques for architecting TLBs”. In: Concur-
rency and computation: practice and experience 29.10 (2017).

D. L. Black, R. F. Rashid, D. B. Golub, and C. R. Hill. “Translation
lookaside buffer consistency: a software approach”. In: ACM SIGARCH
Computer Architecture News 17.2 (1989), pp. 113-122.

S. Ghemawat and P. Menage. Tcmalloc: Thread-caching malloc. 2009.

Emeryberger. emeryberger/Malloc-Implementations. July 2012. URL:
https://github. com/emeryberger/Malloc-Implementations/tree/
master/allocators/ptmalloc/ptmalloc2 (visited on 07/12/2021).

S. Peter, A. Baumann, T. Roscoe, P. Barham, and R. Isaacs. “30 seconds
is not enough! A study of operating system timer usage”. In: ACM
SIGOPS Operating Systems Review 42.4 (2008), pp. 205-218.

Y. Etsion, D. Tsafrir, and D. G. Feitelson. “Effects of clock resolution
on the scheduling of interactive and soft real-time processes”. In:
Proceedings of the 2003 ACM SIGMETRICS international conference
on Measurement and modeling of computer systems. 2003, pp. 172-183.

J. Corbet. Reinventing the timer wheel. June 2015. URL: https://lwn.
net/Articles/646950 (visited on 07/12/2021).

R. Russell. Unreliable Guide To Hacking The Linux Kernel. 2005. URL:
https://www.kernel.org/doc/htmldocs/kernel-hacking/index.
html (visited on 07/12/2021).

A. Golchin. “Control based tickless scheduling”. PhD thesis. 2017.

Timer Interrupt Sources. Mar. 2019. URL: https://wiki.osdev.org/
Timer_Interrupt_Sources (visited on 07/12/2021).

https://docs.microsoft.com/en-us/windows/win32/api/synchapi/nf-synchapi-initializecriticalsectionandspincount
https://docs.microsoft.com/en-us/windows/win32/api/synchapi/nf-synchapi-initializecriticalsectionandspincount
https://programmerall.com/article/4314276986/
https://programmerall.com/article/4314276986/
https://c9x.me/x86/html/file_module_x86_id_232.html
https://c9x.me/x86/html/file_module_x86_id_232.html
https://man7.org/linux/man-pages/man2/futex.2.html
https://man7.org/linux/man-pages/man2/futex.2.html
https://github.com/emeryberger/Malloc-Implementations/tree/master/allocators/ptmalloc/ptmalloc2
https://github.com/emeryberger/Malloc-Implementations/tree/master/allocators/ptmalloc/ptmalloc2
https://lwn.net/Articles/646950
https://lwn.net/Articles/646950
https://www.kernel.org/doc/htmldocs/kernel-hacking/index.html
https://www.kernel.org/doc/htmldocs/kernel-hacking/index.html
https://wiki.osdev.org/Timer_Interrupt_Sources
https://wiki.osdev.org/Timer_Interrupt_Sources

298

BIBLIOGRAPHY

186

[187]

188

[189)]

[190]
[191]

[192]

193]

[194]

[195]

[196]

[197]

[V4,4/4] Utilize the vmzx preemption timer for tsc deadline timer. June
2016. URL: https://patchwork.kernel.org/project/kvm/patch/
1465852801-6684-5-git-send-email-yunhong. jiang@linux.intel.
com/ (visited on 04/14/2021).

M. C. Chehab and J. Lawall. “NO HZ: Reducing scheduling-clock ticks”.
In: Linux Kernel Source Tree (July 2020). URL: https://github.com/
torvalds/linux/blob/master/Documentation/timers/no_hz.rst.

H. Tang, Q. Koziol, S. Byna, J. Mainzer, and T. Li. “Enabling
Transparent Asynchronous I/O using Background Threads”. In: 2019
IEEE/ACM Fourth International Parallel Data Systems Workshop
(PDSW). IEEE. 2019, pp. 11-19.

L. Barroso, M. Marty, D. Patterson, and P. Ranganathan. “Attack of
the killer microseconds”. In: Communications of the ACM 60.4 (2017),
pp- 48-54.

E. VMware. Timekeeping in VMware Virtual Machines. 2008.

T. Broomhead, L. Cremean, J. Ridoux, and D. Veitch. “Virtualize
Everything but Time.” In: OSDI. Vol. 10. 2010, pp. 1-6.

S. D’Souza and R. Rajkumar. “QuartzV: Bringing Quality of Time to
Virtual Machines”. In: 2018 IEEFE Real-Time and Embedded Technology
and Applications Symposium (RTAS). IEEE. 2018, pp. 49-61.

A. Goel, L. Abeni, C. Krasic, J. Snow, and J. Walpole. “Supporting
time-sensitive applications on a commodity OS”. In: ACM SIGOPS
Operating Systems Review 36.SI (2002), pp. 165-180.

M. Aron and P. Druschel. “Soft timers: Efficient microsecond software
timer support for network processing”. In: ACM Transactions on
Computer Systems (TOCS) 18.3 (2000), pp. 197-228.

Y. Etsion, D. Tsafrir, and D. G. Feitelson. “Effects of clock resolution
on the scheduling of interactive and soft real-time processes”. In:
Proceedings of the 2003 ACM SIGMETRICS international conference
on Measurement and modeling of computer systems. 2003, pp. 172-183.

N. Amit. “Optimizing the TLB Shootdown Algorithm with Page

Access Tracking”. In: 2017 {USENIX} Annual Technical Conference
({USENIX}{ATC} 17). 2017, pp. 27-39.

E. Rigtorp. Latency implications of virtual memory. July 2020. URL:
https://rigtorp.se/virtual-memory/ (visited on 01/05/2022).

https://patchwork.kernel.org/project/kvm/patch/1465852801-6684-5-git-send-email-yunhong.jiang@linux.intel.com/
https://patchwork.kernel.org/project/kvm/patch/1465852801-6684-5-git-send-email-yunhong.jiang@linux.intel.com/
https://patchwork.kernel.org/project/kvm/patch/1465852801-6684-5-git-send-email-yunhong.jiang@linux.intel.com/
https://github.com/torvalds/linux/blob/master/Documentation/timers/no_hz.rst
https://github.com/torvalds/linux/blob/master/Documentation/timers/no_hz.rst
https://rigtorp.se/virtual-memory/

BIBLIOGRAPHY 299

198

[199]
[200]
[201]

202]

203]

[204]

205]

206]

[207]

208

[209]

Y. Kwon, H. Yu, S. Peter, C. J. Rossbach, and E. Witchel. “Coordinated
and Efficient Huge Page Management with Ingens”. In: 12th USENIX
Symposium on Operating Systems Design and Implementation (OSDI 16).
Savannah, GA: USENIX Association, Nov. 2016, pp. 705-721. 1SBN: 978-
1-931971-33-1. URL: https://www.usenix.org/conference/osdil6/
technical-sessions/presentation/kwon.

madvise(2). Mar. 2021. URL: http://man7 . org/linux/man-pages/
man2/madvise.2.html (visited on 07/12/2021).

J. Evans. “A scalable concurrent malloc (3) implementation for FreeBSD”.
In: Proc. of the bsdcan conference, ottawa, canada. 2006.

D. Rentas. Evaluate the Fragmentation Effect of Different Heap Allocation
Algorithms in Linuz. 2015.

A. Wiggins and J. Langston. “Enhancing the scalability of mem-
cached”. In: Intel document, unpublished, hitp://software. intel. com/en-
us/articles/enhancing-the-scalability-of-memcached (2012).

Oracle. Understanding Memory Management. Jan. 2010. URL: https:
//docs.oracle.com/cd/E13150_01/jrockit_jvm/jrockit/geninfo/
diagnos/garbage_collect.html (visited on 07/12/2021).

S. Sangappa, K. Palaniappan, and R. Tollerton. “Benchmarking Java
against C/C++ for interactive scientific visualization”. In: Proceedings of
the 2002 joint ACM-ISCOPE conference on Java Grande. 2002, pp. 236—
236.

L. Prechelt. “An empirical comparison of seven programming languages”.
In: Computer 33.10 (2000), pp. 23-29.

P. Kulkarni, H. Kailash, V. Shankar, S. Nagarajan, and D. Goutham.
“Programming languages: A comparative study”. In: Information Security
Research Lab, NITK, Surathkal (2008).

W. Felter, A. Ferreira, R. Rajamony, and J. Rubio. “An updated
performance comparison of virtual machines and linux containers”. In:
2015 IEEE international symposium on performance analysis of systems

and software (ISPASS). IEEE. 2015, pp. 171-172.

mallopt(8). Mar. 2021. URL: https://man7.org/linux/man-pages/
man3/mallopt.3.html (visited on 01/14/2022).

R. Liu and H. Chen. “SSMalloc: a low-latency, locality-conscious memory
allocator with stable performance scalability”. In: Proceedings of the Asia-
Pacific Workshop on Systems. 2012, pp. 1-6.

https://www.usenix.org/conference/osdi16/technical-sessions/presentation/kwon
https://www.usenix.org/conference/osdi16/technical-sessions/presentation/kwon
http://man7.org/linux/man-pages/man2/madvise.2.html
http://man7.org/linux/man-pages/man2/madvise.2.html
https://docs.oracle.com/cd/E13150_01/jrockit_jvm/jrockit/geninfo/diagnos/garbage_collect.html
https://docs.oracle.com/cd/E13150_01/jrockit_jvm/jrockit/geninfo/diagnos/garbage_collect.html
https://docs.oracle.com/cd/E13150_01/jrockit_jvm/jrockit/geninfo/diagnos/garbage_collect.html
https://man7.org/linux/man-pages/man3/mallopt.3.html
https://man7.org/linux/man-pages/man3/mallopt.3.html

300

BIBLIOGRAPHY

[210]

[211]

[212]

[213]

[214]

[215]

[216]

217]

[218]

[219]

[220]

[221]

B. F. Romanescu, A. R. Lebeck, D. J. Sorin, and A. Bracy. “UNified
instruction/translation/data (UNITD) coherence: One protocol to rule
them all”. In: HPCA 2010 The Sizteenth International Symposium on
High-Performance Computer Architecture. IEEE. 2010, pp. 1-12.

A. Bhattacharjee, D. Lustig, and M. Martonosi. “Shared last-level TLBs
for chip multiprocessors”. In: 2011 IEEE 17th International Symposium
on High Performance Computer Architecture. IEEE. 2011, pp. 62-63.

M. K. Kumar, S. Maass, S. Kashyap, J. Vesely, Z. Yan, T. Kim,
A. Bhattacharjee, and T. Krishna. “Latr: Lazy Translation Coherence”.
In: Proceedings of the Twenty-Third International Conference on
Architectural Support for Programming Languages and Operating Systems.
ACM. 2018, pp. 651-664.

E. Zurich. The Barrelfish Operating System. Oct. 2018. URL: http:
//wuw.barrelfish.org/index.html (visited on 01/21/2022).

S. Boyd-Wickizer, H. Chen, R. Chen, Y. Mao, M. F. Kaashoek, R. T.
Morris, A. Pesterev, L. Stein, M. Wu, Y.-h. Dai, et al. “Corey: An
Operating System for Many Cores.” In: OSDI 2008. Vol. 8. 2008, pp. 43—
57.

A. T. Clements, M. F. Kaashoek, and N. Zeldovich. “RadixVM: Scalable
address spaces for multithreaded applications”. In: Proceedings of the 8th
ACM European Conference on Computer Systems. 2013, pp. 211-224.

S. Schneider, C. D. Antonopoulos, and D. S. Nikolopoulos. “Scalable
locality-conscious multithreaded memory allocation”. In: Proceedings of
the 5th international symposium on Memory management. 2006, pp. 84—
94.

What is data deduplication. 2022. URL: https://www.netapp . com/
data-management/what-is-data-deduplication/#: ~:text=Data}
20deduplication¥ 20is % 20a’ 20process , data’ 20is % 20written?
20t0%20disk. (visited on 02/02/2022).

N. Koksharov. What is a ring buffer? 2021. URL: https://redisson.
org/glossary/ring-buffer.html (visited on 02/01/2022).

R. Johnson, M. Athanassoulis, R. Stoica, and A. Ailamaki. “A new
look at the roles of spinning and blocking”. In: Proceedings of the Fifth
International Workshop on Data Management on New Hardware. 2009,
pp. 21-26.

Using mutexes. 2020. URL: https://www.ibm.com/docs/en/aix/7.27
topic=programming-using-mutexes (visited on 02/03/2022).
sem__overview(7). June 2020. URL: https://man7 . org/linux/man-
pages/man7/sem%5C_overview.7.html (visited on 02/03/2022).

http://www.barrelfish.org/index.html
http://www.barrelfish.org/index.html
https://www.netapp.com/data-management/what-is-data-deduplication/#:~:text=Data%20deduplication%20is%20a%20process,data%20is%20written%20to%20disk.
https://www.netapp.com/data-management/what-is-data-deduplication/#:~:text=Data%20deduplication%20is%20a%20process,data%20is%20written%20to%20disk.
https://www.netapp.com/data-management/what-is-data-deduplication/#:~:text=Data%20deduplication%20is%20a%20process,data%20is%20written%20to%20disk.
https://www.netapp.com/data-management/what-is-data-deduplication/#:~:text=Data%20deduplication%20is%20a%20process,data%20is%20written%20to%20disk.
https://redisson.org/glossary/ring-buffer.html
https://redisson.org/glossary/ring-buffer.html
https://www.ibm.com/docs/en/aix/7.2?topic=programming-using-mutexes
https://www.ibm.com/docs/en/aix/7.2?topic=programming-using-mutexes
https://man7.org/linux/man-pages/man7/sem%5C_overview.7.html
https://man7.org/linux/man-pages/man7/sem%5C_overview.7.html

BIBLIOGRAPHY 301

[222]

[223]

[224]

[225]

[226]

[227]

[228]

[229]

[230]
[231]

[232]

[233]

Using Condition Variables. 2010. URL: https://docs.oracle.com/cd/
E19455-01/806-5257/63e9h032r/index.html (visited on 02/03/2022).

Monitors and Condition Variables. URL: https://cseweb.ucsd.edu/

classes/spl7/csel20-a/applications/1ln/lecture8.html (visited
on 02/03/2022).

Synchronized Methods. 2021. URL: https : / / docs . oracle . com/
javase/tutorial/essential/concurrency/syncmeth.html (visited

on 02/03,/2022).

A. Kumar. Monitor And Lock In C#. May 2019. URL: https://wuw.c—
sharpcorner . com/UploadFile/de41d6/monitor-and-lock-in-C-
Sharp/ (visited on 02/03/2022).

J. Hughes. “Why functional programming matters”. In: The computer
journal 32.2 (1989), pp. 98-107.

E. Bainomugisha, A. L. Carreton, T. v. Cutsem, S. Mostinckx, and
W. d. Meuter. “A Survey on Reactive Programming”. In: ACM Comput.
Surv. 45.4 (Aug. 2013). 1sSN: 0360-0300. DO1: 10.1145/2501654.2501666.
URL: https://doi.org/10.1145/2501654.2501666.

Parallelism. 2021. URL: https://docs.oracle.com/javase/tutorial/
collections/streams/parallelism.html (visited on 02/03/2022).

Run MATLAB on multicore and multiprocessor machines. 2022. URL:
https://www.mathworks.com/discovery/matlab-multicore.html
(visited on 02/13/2022).

E. Rigtorp. Correctly implementing a spinlock in C++. Apr. 2020. URL:
https://rigtorp.se/spinlock/ (visited on 02/04/2022).

D. Loshin. Business intelligence: the savvy manager’s guide. Newnes,

2012.

E. Paraschiv. Introduction to Thread Pools in Java. Jan. 2022. URL:

https://www.baeldung.com/thread-pool-java-and-guava (visited
on 02/08/2022).

S. Schildermans and K. Aerts. “Wolfram for data processing and visual-
ization”. In: Draft Proceedings of the 29th Symposium on Implementation
and Application of Functional Languages (IFL 2017). Nicolas Wu,
University of Bristol; Bristol. 2017.

https://docs.oracle.com/cd/E19455-01/806-5257/6je9h032r/index.html
https://docs.oracle.com/cd/E19455-01/806-5257/6je9h032r/index.html
https://cseweb.ucsd.edu/classes/sp17/cse120-a/applications/ln/lecture8.html
https://cseweb.ucsd.edu/classes/sp17/cse120-a/applications/ln/lecture8.html
https://docs.oracle.com/javase/tutorial/essential/concurrency/syncmeth.html
https://docs.oracle.com/javase/tutorial/essential/concurrency/syncmeth.html
https://www.c-sharpcorner.com/UploadFile/de41d6/monitor-and-lock-in-C-Sharp/
https://www.c-sharpcorner.com/UploadFile/de41d6/monitor-and-lock-in-C-Sharp/
https://www.c-sharpcorner.com/UploadFile/de41d6/monitor-and-lock-in-C-Sharp/
https://doi.org/10.1145/2501654.2501666
https://doi.org/10.1145/2501654.2501666
https://docs.oracle.com/javase/tutorial/collections/streams/parallelism.html
https://docs.oracle.com/javase/tutorial/collections/streams/parallelism.html
https://www.mathworks.com/discovery/matlab-multicore.html
https://rigtorp.se/spinlock/
https://www.baeldung.com/thread-pool-java-and-guava

Biography

I obtained my Master’s degree in Engineering Technology, Electronics-ICT
summa cum laude with congratulations from the examination committee from
KU Leuven and UHasselt in 2017. Ever since, up until the time of writing this
dissertation, I have been working on the Ph. D. project documented here.

My main research interests should be evident from the work before you. However,
since I am highly motivated and curious by nature, I have accrued sizeable
knowledge in other fields related to computer science over the years, including
functional programming, software architectures, embedded systems, etc. Given
the opportunity, I would gladly continue down this path of becoming a true
Swiss army knife of software engineering: versatile, effective and indispensable
in any good project manager’s toolkit.

Besides software development, I have a passion for music and martial arts. I
play electric guitar and have been practicing judo for the majority of my life. A
few years ago I picked up kickboxing as well. Those formal hobbies aside, my
favorite passtime will likely always remain devising novel and creative methods
to annoy my girlfriend followed by empirically studying how she reacts to them.

303

List of publications

e S. Schildermans and K. Aerts. “Wolfram for data processing and
visualization”. In: Draft Proceedings of the 29th Symposium on
Implementation and Application of Functional Languages (IFL 2017).
Nicolas Wu, University of Bristol; Bristol. 2017;

e S. Schildermans and K. Aerts. “Towards High-Level Software Approaches
to Reduce Virtualization Overhead for Parallel Applications”. In: 2018
IEEFE International Conference on Cloud Computing Technology and
Science (CloudCom). IEEE. 2018, pp. 193-197;

e S. Schildermans et al. “Ptlbmalloc2: Reducing TLB Shootdowns with
High Memory Efficiency”. In: ISPA-BDCloud-SocialCom-SustainCom
2020 (2020), pp. 76-83;

e S. Schildermans et al. “Virtualization Overhead of Multithreading in X86
State-of-the-Art & Remaining Challenges”. In: IEEE Transactions on
Parallel and Distributed Systems 32.10 (2021), pp. 2557-2570;

e S. Schildermans et al. “Paratick: Reducing Timer Overhead in Virtual
Machines”. In: 50th International Conference on Parallel Processing.
2021, pp. 1-10.

305

FACULTY OF ENGINEERING TECHNOLOGY
DEPARTMENT OF COMPUTER SCIENCE
ACRO-FUNTTOP

Wetenschapspark 27

3590 Diepenbeek
stijn.schildermans@kuleuven.be
https://iiw.kuleuven.be/onderzoek/acro

	Abstract
	Beknopte samenvatting
	List of Abbreviations
	List of Symbols
	Contents
	List of Figures
	List of Tables
	List of Listings
	Introduction
	Context
	Problem Statement
	Objectives
	Synopsis

	Background: Virtualization
	Definition
	Hardware Virtualization
	The Virtual Machine Monitor
	CPU Virtualization
	Memory Virtualization
	io Virtualization

	Operating System Virtualization
	System Containers
	Application Containers

	Application Virtualization
	Operating Systems
	High-Level Programming Languages
	Unikernels

	Desktop Virtualization
	Storage Virtualization
	Logical Block Addressing
	Disk Partitioning
	Redundant Array of Independent Disks
	Storage Area Network
	Network-Attached Storage
	Software-Defined Storage

	Network Virtualization
	Virtual Internet Protocol
	Virtual Local Area Network
	Virtual Private Network

	Conclusion

	Virtualization Overhead
	Definition
	System Effects
	Application Effects

	Causes
	Unfair Resource Allocation
	Instruction Emulation
	Input/Output
	Double Memory Address Translation
	Spinning Synchronization
	Blocking Synchronization
	Memory Consistency
	Non-Uniform Memory Access Opacity

	Quantification
	System Settings
	Workloads
	Measurement
	Threats to Validity

	Related Work
	Defining Virtualization Overhead
	Empirical Research

	Conclusion
	Personal Contribution

	Virtualization Overhead for Multithreaded Applications
	Sequential Applications
	Multithreaded Applications
	Negligible Overhead
	High Guest Overhead
	High Host Overhead
	High Overcommitted Overhead

	Longevity of Results
	Related Work
	Conclusion
	Personal Contribution

	Reducing Virtualization Overhead for Multithreaded Applications
	Blocking Synchronization
	Deferred Scheduling
	Interrupt Controller Virtualization
	Co-Scheduling
	Scheduler Tick Management
	Symmetric Multithreading
	Synchronization-Aware Application Design

	Spinning Synchronization
	Pause Loop Exiting
	Paravirtualized Ticket Spin Locks
	Pause Exiting
	Blocking Synchronization
	Compiler Enhancements
	Spin Lock System Calls
	Co-Scheduling

	Data Sharing
	Interrupt Controller Virtualization
	Alternative Translation Lookaside Buffer Design
	Co-Scheduling
	Source Code Alteration
	Alternative Memory Allocator Design

	Non-Uniform Memory Access Locality
	Non-Uniform Memory Access Passthrough
	Non-Uniform Memory Access Locality Managers
	Symmetric Multithreading
	Extended Paravirtualization

	Related Work
	Conclusion
	Personal Contribution
	Future Work

	System Amelioration: Paratick
	Background: Timer Management
	Virtualizing the Scheduler Tick
	Classic Periodic Tick
	Tickless Kernels
	To Tick or not to Tick?

	Virtual Scheduler Ticks
	Paratick
	Host
	Guest

	Evaluation
	Sequential Workloads
	Multithreaded Workloads
	I/O-Intensive Workloads

	Related Work
	Conclusion
	Personal Contribution
	Future Work

	Runtime Amelioration: PTLBMalloc2
	Background: TLB Shootdown Causes
	TLB Shootdown Cost
	CPU Count
	NUMA
	Summary

	Memory Management & TLB Shootdowns
	Hysteresis-Based Arenas
	Decay-Based Purging
	Size Class-Based Memory Management
	Garbage Collection
	Summary

	Global Hysteresis
	Implementing Global Hysteresis
	Ptmalloc2
	Ptlbmalloc2

	Evaluation
	Conceptual Effectiveness
	Side Effects
	Performance

	Related Work
	Conclusion
	Personal Contriburion
	Future Work

	Application Amelioration: Guidelines to Developers
	Background: The Dedup Benchmark
	Application Code & Virtualization Overhead
	Blocking Synchronization
	Spinning Synchronization
	Data Sharing
	Non-Uniform Memory Access Locality

	Guidelines
	Blocking Synchronization
	Spinning Synchronization
	Data Sharing
	Non-Uniform Memory Access Locality

	NODedup
	Blocking Synchronization
	Memory Management

	Evaluation
	Method
	Conceptual Effectiveness
	Performance

	Related Work
	Conclusion
	Personal Contribution
	Future Work

	Conclusion
	Valorization
	Future Work

	Paratick Source Code
	Host
	/include/linux/kvm_host.h
	/arch/x86/kvm/x86.c

	Guest
	/kernel/time/tick-sched.c

	Ptlbmalloc2 Source Code
	Headers
	Global.h
	Types.h
	CPU_monitor.h
	Chunk.h
	Arena.h
	Ptlbmalloc2.h

	Implementation
	CPU_monitor.c
	Chunk.c
	Arena.c
	Ptlbmalloc2.c

	NODedup Source Code
	Headers
	Chunk_list.h
	Iterator.h
	Thread_pool.h
	Encoder.h

	Implementation
	Chunk_list.c
	Iterator.c
	Thread_pool.c
	Encoder.c

	Bibliography
	Biography
	List of publications

