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Abstract. In this paper, we extend the notion of microstate free entropy to the bi-free setting. In particular,
using the bi-free analogue of random matrices, microstate bi-free entropy is defined. Properties essential to an

entropy theory are developed, such as the behaviour of the entropy when transformations on the left variables
or on the right variables are performed. In addition, the microstate bi-free entropy is demonstrated to be

additive over bi-free collections provided additional regularity assumptions are included and is computed

for all bi-free central limit distributions. Moreover, an orbital version of bi-free entropy is examined which
provides a tighter upper bound for the subadditivity of microstate bi-free entropy and provides an alternate

characterization of bi-freeness in certain settings.

1. Introduction

In a series of revolutionary papers [32–35,37,38], Voiculescu developed free probability analogues of the
notions of entropy and Fisher’s information. In particular [33] introduced a microstate notion of free entropy.
In this setting ‘microstates’ refers to approximating the distribution of self-adjoint operators in a tracial
von Neumann algebra using matrix algebras. The notion of microstate free entropy led to many important
results pertaining to free group factors, such as the absence of Cartan subalgebras [34], the absence of simple
maximal abelian self-adjoint algebras [11], and the free group factors being prime [12]. Alternatively, an
infinitesimal version of free entropy based on derivations developed in [37] has also led to many developments.

Recently in [39] Voiculescu extended the notion of free probability to simultaneously study the left and
right actions of algebras on reduced free product spaces. This so-called bi-free probability has attracted
the attention of many researchers and has had numerous developments (e.g. [2, 6–8, 24–26]). The interest
surrounding bi-free probability stems from the possibility of extending the techniques of free probability
to solve problems pertaining to pairs of von Neumann algebras, such as a von Neumann algebra and its
commutant or the tensor product of two von Neumann algebras.

One important development in bi-free probability theory was a bi-free analogue of the connection between
free probability and random matrix theory exhibited in [24–26]. As microstate free entropy was motivated by
the connection between free probability and random matrix theory, in this paper we use the bi-free matrix
models of [24–26] to develop a notion of microstate bi-free entropy. In particular, such theory may be of
interest in relation to the recent work [13] which develops a random matrix approach to the Peterson-Thom
conjecture via tensors of random matrices, a topic which bi-free probability theory provides substantial
information on. In our sister paper [9] a notion of non-microstate bi-free entropy is developed.

In addition to this introduction, this paper contains nine sections which are organized as follows. In Section
2 we define our microstate version of bi-free entropy (Definition 2.2). This notion of entropy only applies in
the tracially bi-partite setting: that is, when the left algebra commutes with the right algebra, and the state
becomes tracial when restricted to the left algebra or the right algebra. Although bi-free probability theory
extends beyond the tracially bi-partite setting, many natural examples are tracially bi-partite such as pairs
consisting of a type II1 factor whose commutant is a type II1 factor with the tracial states occurring via the
same vector state from the L2-space of some tracial von Neumann algebra. Section 2 also demonstrates this
notion of microstate bi-free entropy satisfies many of the natural properties of an entropy theory.

In Section 3 we analyze how transformations affect microstate bi-free entropy. We find that when a
transformation modifies only the left variables or only the right variables, microstate bi-free entropy behaves
identically to how microstate free entropy behaves. However, the behaviour of microstate bi-free entropy
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under transformations mixing left and right variables is currently unknown. This is unsurprising as such
a mixing destroys the distinction of left and right variables, and so is not easy to view as a natural bi-free
operation.

In Section 4 it is demonstrated, under the assumption of the existence of microstates of all orders and a
limit condition, that the microstate bi-free entropy of bi-free collections is the sum of the bi-free entropies
(Theorem 4.7). Assuming the existence of microstates of all orders is currently a necessity for the analogous
result for free entropy, with the general case being at partially addressed in works such as [10,18].

In Section 5 an orbital version of bi-free entropy is examined in a similar fashion to the orbital free entropy
from [29]. In particular, two characterizations of orbital bi-free entropy are given and the base properties
are demonstrated. Furthermore, Theorem 5.12 provides a better bound for the difference between the joint
microstate bi-free entropy and the sum of the individual microstate bi-free entropies.

In Section 6 Theorem 6.1 is demonstrated, which characterizes when pairs of algebras with finite-dimensional
approximants are bi-free in terms of the orbital bi-free entropy. In addition, it is shown in Corollary 6.2 that
if collections of left and right operators have finite microstate bi-free entropy and the joint bi-free entropy is
the sum of the individual bi-free entropies, then the collections are bi-free.

In Section 7 computations pertaining to microstate bi-free entropy are performed. In particular, the value
of the microstate bi-free entropy is computed for all finite bi-free central limit distributions. This computation
is non-trivial due to the same complications as in Section 3. It is worthy to note that the microstate bi-free
entropy for bi-free central limit distributions has the same form as Gaussian distributions with respect to the
Shannon entropy and the free central limit distributions with respect to free entropy. Furthermore, the same
value is obtained for non-microstate bi-free entropy in our sister paper [9].

In Section 8 we develop the notion of microstate bi-free entropy dimension and show that for a bi-free
central limit distribution pair that this dimension is equal to the dimension of the support of their joint
distribution. In Section 9 we discuss generalizing this microstate version of bi-free entropy to non-bi-partite
systems and the resulting complications. Finally, in Section 10, several open questions are discussed, most
of which might be possible to solve from a deeper understanding of the structure of free and/or bi-free
microstates.

Note it is not the intent of this paper to reprove every single fact about microstate free entropy in the
bi-free setting, but rather to show that most of the base and some interesting results carry forward.

Throughout the paper, we will assume familiarity with the bi-free setting and adopt its common notation.
The relevant set-up and definitions, such as “bi-free independence” and “family of pairs of faces” may be
found in [39, Section 2].

2. Definition and Basic Properties

In [31] Voiculescu observed a connection between random matrix theory and free probability. Specifically
it was demonstrated that the eigenvalue distribution of certain random matrices asymptotically tended to
the free central limit distributions, and random matrices with independent entries tended in law to freely
independent operators. However other distributions can be approximated using the eigenvalues of matrices.
In an attempt to understand these approximations, Voiculescu introduced the notion of free entropy defined
as follows.

Definition 2.1 ([33]). Let (M, τ) be a tracial von Neumann algebra and let X1, . . . , Xn ∈M be self-adjoint
operators. Let (Md, τd) denote the tracial von Neumann algebra consisting of the d× d complex matrices
with the normalized trace τd. We will use Trd to denote the unnormalized trace on Md and Msa

d to denote
the self-adjoint elements of Md.

For M,d ∈ N and R, ε > 0, let ΓR(X1, . . . , Xn;M,d, ε) denote the set of all n-tuples (A1, . . . , An) ∈ (Msa
d )n

such that ‖Aj‖ ≤ R for all 1 ≤ j ≤ n and∣∣τ(Xi1 · · ·Xip)− τd(Ai1 · · ·Aip)
∣∣ < ε

for all i1, . . . , ip ∈ {1, . . . , n} and 1 ≤ p ≤M . Subsequently, if λd,n denotes the Lebesgue measure on (Msa
d )n

where (Msa
d )n is equipped with the Hilbert-Schmidt norm

‖(A1, . . . , An)‖HS = Trd(A
2
1 + · · ·+A2

n),
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define

χR(X1, . . . , Xn;M,d, ε) = log (λd,n (ΓR(X1, . . . , Xn;M,d, ε)))

χR(X1, . . . , Xn;M, ε) = lim sup
d→∞

1

d2
χR(X1, . . . , Xn;M,d, ε) +

1

2
n log(d)

χR(X1, . . . , Xn) = inf{χR(X1, . . . , Xn;M, ε) | M ∈ N, ε > 0}, and

χ(X1, . . . , Xn) = sup
R>0

χR(X1, . . . , Xn).

The quantity χ(X1, . . . , Xn) ∈ [−∞,∞) is called the free entropy of X1, . . . , Xn. The reason for the constants
and various normalizations can be seen in [33] or the computations in Section 7.

As even some bi-free central limit distributions fail to be tracial (see, e.g., [6, Example 11]) we must replace
microstates with a version which can approximate non-tracial distributions in order to deal with the bi-free
setting. Rather than allow arbitrary non-tracial states on the matrices, though, we seek to progress in a
way that recognizes the distinction between left and right variables. This leads us to the idea of microstates
consisting of bounded linear maps on Md given by left and right matrix multiplication operators; that is, for
A ∈Md, we define L(A) and R(A) to be the bounded linear maps on Md defined by

L(A)B = AB and R(A)B = BA.

We then equip the bounded linear maps on Md with the state τd(·Id) which evaluates the linear maps when
applied to the identity matrix and then computes the trace of the result.

Of course, these choices force some restrictions upon us. In particular, as left matrix multiplication
commutes with right matrix multiplication, we can only find microstates for so-called bi-partite families
where all left variables commute with all right variables (in distribution). Furthermore, τd(·Id) is tracial when
restricted to left multiplication operators or right multiplication operators, so we will only be able to produce
microstates for distributions having this property. We shall refer to systems satisfying the above as tracially
bi-partite, and give some indication of how to broaden this setting in Section 9.

Definition 2.2. Let (A, ϕ) be a C∗-non-commutative probability space and let X1, . . . , Xn, Y1, . . . , Ym be
self-adjoint operators in A. For M,d ∈ N and R, ε > 0, let ΓR(X1, . . . , Xn t Y1, . . . , Ym;M,d, ε) denote the

set of all (n+m)-tuples (A1, . . . , An, B1, . . . , Bm) ∈ (Msa
d )

n+m
such that ‖Ai‖ , ‖Bj‖ ≤ R for all 1 ≤ i ≤ n

and 1 ≤ j ≤ m, such that ∣∣ϕ(Zk1 · · ·Zkp)− τd(Ck1 · · ·Ckp(Id))
∣∣ < ε

for all 1 ≤ p ≤M and k1, . . . , kp ∈ {1, . . . , n+m}, where

Zk =

{
Xk if k ∈ {1 . . . , n}
Yk−n if k ∈ {n+ 1, . . . , n+m}

and Ck =

{
L (Ak) if k ∈ {1 . . . , n}
R (Bk−n) if k ∈ {n+ 1, . . . , n+m}

∈ B(Md).

With λd,p still standing for the Lebesgue measure on (Msa
d )

p
equipped with the Hilbert-Schmidt norm, we

successively define

χR(X1, . . . , Xn t Y1, . . . , Ym;M,d, ε) = log (λd,n+m (ΓR(X1, . . . , Xn t Y1, . . . , Ym;M,d, ε)))

χR(X1, . . . , Xn t Y1, . . . , Ym;M, ε) = lim sup
d→∞

1

d2
χR(X1, . . . , Xn t Y1, . . . , Ym;M,d, ε) +

1

2
(n+m) log(d)

χR(X1, . . . , Xn t Y1, . . . , Ym) = inf{χR(X1, . . . , Xn t Y1, . . . , Ym;M, ε) | M ∈ N, ε > 0}, and

χ(X1, . . . , Xn t Y1, . . . , Ym) = sup
R>0

χR(X1, . . . , Xn t Y1, . . . , Ym).

The quantity χ(X1, . . . , Xn t Y1, . . . , Ym) will be called the microstate bi-free entropy of X1, . . . , Xn t
Y1, . . . , Ym. We will see in Proposition 2.6 that χ(X1, . . . , Xn t Y1, . . . , Ym) ∈ [−∞,∞).

Remark 2.3. By analyzing the joint distribution of L(A1), . . . , L(An), R(B1), . . . , R(Bn) and the definition
of χ(X1, . . . , Xn t Y1, . . . , Ym), we see that χ(X1, . . . , Xn t Y1, . . . , Ym) = −∞ unless we are in the tracially
bi-partite setting. We will make this the standing assumption until Section 9 of the paper. This is a setting
which includes many canonical examples and thus is of great interest. Note we will not assume that ϕ is
tracial on A nor faithful on A as these properties need not occur in most bi-free systems (see [2] and [23]
respectively).
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Using the fact that the system is bi-partite, the definition of ΓR(X1, . . . , Xn t Y1, . . . , Ym;M,d, ε) may
be simplified slightly, as it is enough to check that only certain moments are well-approximated: indeed,
for M,d ∈ N and R, ε > 0 notice ΓR(X1, . . . , Xn t Y1, . . . , Ym;M,d, ε) is the set of all (n + m)-tuples
(A1, . . . , An, B1, . . . , Bm) ∈ (Msa

d )n+m such that ‖Ai‖ , ‖Bj‖ ≤ R for all 1 ≤ i ≤ n and 1 ≤ j ≤ m, and∣∣ϕ(Xi1 · · ·XipYj1 · · ·Yjq )− τd(Ai1 · · ·AipBjq · · ·Bj1)
∣∣ < ε

for all i1, . . . , ip ∈ {1, . . . , n} and j1, . . . , jq ∈ {1, . . . ,m} with p+ q ≤M .

Remark 2.4. It is elementary to see based on the definition of microstate bi-free entropy that if m = 0 then

χ(X1, . . . , Xn t Y1, . . . , Ym) = χ(X1, . . . , Xn),

whence the above notion of bi-free entropy is an extension of microstate free entropy. Further, it can be
readily verified that

(A1, . . . , An, B1, . . . , Bm) ∈ ΓR(X1, . . . , Xn t Y1, . . . , Ym;M,d, ε)

if and only if

(Bt1, . . . , B
t
m, A

t
1, . . . , A

t
n) ∈ ΓR(Y1, . . . , Ym tX1, . . . , Xn;M,d, ε).

It follows that χ(X1, . . . , Xn t Y1, . . . , Ym) = χ(Y1, . . . , Ym tX1, . . . , Xn) as transpose preserves Lebesgue
measure, and in particular when n = 0 we have

χ(X1, . . . , Xn t Y1, . . . , Ym) = χ(Y1, . . . , Ym).

Proposition 2.5. If 0 ≤ p ≤ n and 0 ≤ q ≤ m then

χ(X1, . . . , Xn t Y1, . . . , Ym) ≤ χ(X1, . . . , Xp t Y1, . . . Yq) + χ(Xp+1, . . . , Xn t Yq+1, . . . Ym).

In particular,

χ(X1, . . . , Xn t Y1, . . . , Ym) ≤ χ(X1, . . . , Xn) + χ(Y1, . . . , Ym).

Proof. First note that the inequality will be demonstrated provided we can show that

χR(X1, . . . , Xn t Y1, . . . , Ym;M,d, ε)

≤ χR(X1, . . . , Xp t Y1, . . . Yq;M,d, ε) + χR(Xp+1, . . . , Xn t Yq+1, . . . Ym;M,d, ε)

for all M,d, and ε. Since by definitions we have that

ΓR(X1, . . . , Xn t Y1, . . . , Ym;M,d, ε)

⊆ ΓR(X1, . . . , Xp t Y1, . . . Yq;M,d, ε)×`r ΓR(Xp+1, . . . , Xn t Yq+1, . . . Ym;M,d, ε)

where

(A1, . . . , Ap, B1, . . . , Bq)×`r (Ap+1, . . . , An, Bq+1, . . . , Bm) = (A1, . . . , An, B1, . . . , Bm),

clearly the above inequalities hold. �

These inequalities allow us to import upper bounds on entropy from the free case. In particular, we learn
that the bi-free entropy never takes the value +∞.

Proposition 2.6. Let C2 = ϕ(X2
1 + · · ·+X2

n + Y 2
1 + · · ·+ Y 2

m). Then

χ(X1, . . . , Xn t Y1, . . . , Ym) ≤ n+m

2
log

(
2πe

n+m
C2

)
.

Proof. We recall that the analogous free statement was shown in [33, Proposition 2.2]. Let

C2
X = ϕ(X2

1 + · · ·+X2
n) and C2

Y = ϕ(Y 2
1 + · · ·+ Y 2

m).
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Using the above, Proposition 2.5, and the concavity of the logarithm, we obtain that

χ(X1, . . . , Xn t Y1, . . . , Ym) ≤ χ(X1, . . . , Xn) + χ(Y1, . . . , Ym)

≤ 1

2
n log

(
2πe

n
C2
X

)
+

1

2
m log

(
2πe

m
C2
Y

)
=
n+m

2

(
n

n+m
log

(
2πe

n
C2
X

)
+

m

n+m
log

(
2πe

m
C2
Y

))
≤ n+m

2
log

(
n

n+m

2πe

n
C2
X +

m

n+m

2πe

m
C2
Y

)
=
n+m

2
log

(
2πe

n+m
C2

)
. �

There is a more interesting inequality relating the microstate bi-free entropy to the microstate free entropy.
In particular, the microstate bi-free entropy is bounded below by the microstate free entropy obtained by
changing all of the right variables to left variables.

Theorem 2.7. Let
(
{Xi}ni=1, {Yj}mj=1

)
be tracially bi-partite, self-adjoint operators in a C∗-non-commutative

probability space (A, ϕ). Suppose there exists another C∗-non-commutative probability space (A0, τ0) and
self-adjoint operators X ′1, . . . , X

′
n, Y

′
1 , . . . , Y

′
m ∈ A0 such that τ0 is tracial on A0 and

ϕ(Xi1 · · ·XipYj1 · · ·Yjq ) = τ0(X ′i1 · · ·X
′
ipY
′
jq · · ·Y

′
j1)

for all p, q ∈ N ∪ {0}, i1, . . . , ip ∈ {1, . . . , n}, and j1, . . . , jq ∈ {1, . . . ,m}. Then

χ(X ′1, . . . , X
′
n, Y

′
1 , . . . , Y

′
m) ≤ χ(X1, . . . , Xn t Y1, . . . , Ym).

Proof. Using the characterization from the end of Remark 2.3, we see that

ΓR(X ′1, . . . , X
′
n, Y

′
1 , . . . , Y

′
m;M,d, ε) ⊆ ΓR(X1, . . . , Xn t Y1, . . . , Ym;M,d, ε),

and hence

χ(X ′1, . . . , X
′
n, Y

′
1 , . . . , Y

′
m) ≤ χ(X1, . . . , Xn t Y1, . . . , Ym). �

This inequality, in essence, arises because the set of bi-free microstates is defined with fewer conditions
than the set of free microstates. In addition, as we need only specify certain moments for the “one-sided”
family for a given pair of faces and as many of the moments can be chosen somewhat arbitrarily, Theorem
2.7 provides many possible lower bounds.

Example 2.8. Let us give an example application of Theorem 2.7. Recall that the full Fock space associated
to a Hilbert space H is

F(H) :=
⊕
n≥0

H⊗n.

For e ∈ H, the left and right creation operators l(e) and r(e) act by “tensoring e on the left” and “on the
right”, respectively; their adjoints are the annihilation operators. The operators l(e) + l(e)∗ and r(e) + r(e)∗

have semicircular distribution with respect to the state induced by the vacuum vector Ω ∈ H⊗0 ∼= C. More
details may be found, for example, in [21, Lecture 7] or (with the bi-free context in mind) in [39, Section 6.3].

If e1, e2 ∈ H, c = 〈e1, e2〉 ∈ R, and if Si = l(ei) + l∗(ei), D2 = r(e2) + r∗(e2), then Theorem 2.7 implies
that

χ(S1 tD2) ≥ χ(S1, S2).

Notice that if c ∈ (−1, 1) then

e3 :=
1√

1− c2
(e2 − ce1)

is a unit vector orthogonal to e1, and so if S3 = l(e3) + l∗(e3), then S1 and S3 are freely independent centred
semicircular variables of variance one while[

1 0

c
√

1− c2

] [
S1

S3

]
=

[
S1

S2

]
.
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Therefore, by [32, Proposition 3.5 and Proposition 5.4] (or the analogous Proposition 3.1 in this paper), we
obtain that

χ(S1 tD2) ≥ χ(S1, S2) = χ(S1, S3) + log

∣∣∣∣det

[
1 0

c
√

1− c2

]∣∣∣∣
= χ(S1) + χ(S3) + log(

√
1− c2)

= 2χ(S1) +
1

2
log
(
1− c2

)
.

It will be shown in Theorem 7.3 that this inequality is actually an equality.

Like with free entropy, the upper bound on the norm of microstates R can be controlled.

Proposition 2.9. Let

ρ = max ({‖Xi‖ | 1 ≤ i ≤ n} ∪ {‖Yj‖ | 1 ≤ j ≤ m}) .
If R2 > R1 > ρ, then

χR2
(X1, . . . , Xn t Y1, . . . , Ym) = χR1

(X1, . . . , Xn t Y1, . . . , Ym).

In particular, for all R > ρ,

χR(X1, . . . , Xn t Y1, . . . , Ym) = χ(X1, . . . , Xn t Y1, . . . , Ym).

Proof. As χR is an increasing function of R, it suffices to prove the first equality. The proof of said equality
will be similar to that of [33, Proposition 2.4].

Fix R2 > R1 > R0 > ρ and define g : [−R2, R2] → [−R1, R1] to be the function which is linear on
[−R2,−R0], [−R0, R0], and [R0, R2], and such that g(−R2) = −R1, g(−R0) = −R0, g(R0) = R0, and
g(R2) = R1. Furthermore, for A1, . . . , An, B1, . . . , Bm ∈Msa

d with ‖Ai‖ ≤ R2 and ‖Bj‖ ≤ R2, let

G(A1, . . . , An, B1, . . . , Bm) = (g(A1), . . . , g(An), g(B1), . . . , g(Bm)).

Given M ∈ N and ε > 0, it is not difficult to see that there exists an M1 ≥M and a 0 < ε1 < ε such that

G(ΓR2(X1, . . . , Xn t Y1, . . . , Ym;M1, d, ε1)) ⊆ ΓR1(X1, . . . , Xn t Y1, . . . , Ym;M,d, ε)

for all d ∈ N. Indeed for any

(A1, . . . , An, B1, . . . , Bm) ∈ ΓR2(X1, . . . , Xn t Y1, . . . , Ym;M1, d, ε1)

we obtain that
|τd(Api )|, |τd(B

p
j )| ≤ ρp + ε1

for all 1 ≤ i ≤ n, 1 ≤ j ≤ m, and 1 ≤ p ≤ M1. Thus given δ > 0, choosing M1 large and ε1 small enough
yields

τd(P[−R2,−R0]∪[R0,R2](Ai)), τd(P[−R2,−R0]∪[R0,R2](Bj)) < δ

where P[−R2,−R0]∪[R0,R2] is denoting the spectral projection onto [−R2,−R0] ∪ [R0, R2], and thus can be
selected even smaller still to make

‖g(Ai)−Ai‖1 , ‖g(Bj)−Bj‖1 < δ

for all 1 ≤ i ≤ n and 1 ≤ j ≤ m independent of d. As M and R2 are fixed, by selecting δ sufficiently small
we obtain that the trace of any word of length at most M in g(A1), . . . , g(An), g(B1), . . . , g(Bm) is within
a function of δ, M , and R2 which tends to 0 as δ tends to 0 to the trace of the corresponding word in
A1, . . . , An, B1, . . . , Bm. Thus the claim follows.

To complete the proof, it will suffice to obtain a specific lower bound on the Jacobian of G on

ΓR2
(X1, . . . , Xn t Y1, . . . , Ym;M1, d, ε1).

Let U(d) denote the set of unitary elements of Md and consider the change of coordinates from Msa
d to

(U(d)/T) × {(c1, . . . , cd) ∈ Rd | c1 < · · · < cd} (where T is the torus of diagonal unitaries) defined by
(U,D) 7→ U∗DU where D = diag(c1, . . . , cd). This change of coordinates places the Lebesgue measure in the
form

K

 ∏
1≤i<j≤d

(ci − cj)

 dγd,0dλd
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where K is a normalizing constant and γd,0 is the Haar measure on U(d)/T. The absolute value of the
Jacobian of the map C 7→ g(C) is easily seen to be

g′(c1) · · · g′(cd)
∏

1≤i<j≤d

g(ci)− g(cj)

ci − cj

when C has eigenvalues c1, . . . , cd and ck 6= ±R0 for all k.
Let δ > 0 be arbitrary. If M1 is large enough and ε1 is small enough, we obtain that

τd(P[−R2,−R0]∪[R0,R2](C)) < δ

and thus we obtain (
R1 −R0

R2 −R0

)d+d2−(d(1−δ))2

as a lower bound for the Jacobian of g on a coordinate projection of ΓR2
(X1, . . . , Xn t Y1, . . . , Ym;M1, d, ε1).

In particular a lower bound for the Jacobian of G can be obtained by taking the above lower bound for the
Jacobian of g raised to the (n+m)th power and thus

χR1(X1, . . . , Xn t Y1, . . . , Ym;m, d, ε) ≥ χR2(X1, . . . , Xn t Y1, . . . , Ym;M1, d, ε1)

+ (n+m)(d+ d2(2δ − δ2)) log

(
R1 −R0

R2 −R0

)
.

Hence it follows that

χR1
(X1, . . . , Xn t Y1, . . . , Ym;m, ε) ≥ χR2

(X1, . . . , Xn t Y1, . . . , Ym;M1, ε1)

+ (n+m)(2δ − δ2) log

(
R1 −R0

R2 −R0

)
.

Therefore, as δ > 0 was arbitrary, the result follows. �

Remark 2.10. The proof of Proposition 2.9 can be extended further. Indeed let R1, . . . , Rn, R
′
1, . . . , R

′
m > 0

and

ΓR1,...,Rn,R′1,...,R
′
m

(X1, . . . , Xn t Y1, . . . , Ym;M,d, ε)

be defined like ΓR(X1, . . . , Xn t Y1, . . . , Ym;M,d, ε) where instead of ‖Ai‖ , ‖Bj‖ ≤ R for all i, j, we only
require ‖Ai‖ ≤ Ri and ‖Bj‖ ≤ R′j for all i, j. If we extend the notion of χR(X1, . . . , Xn t Y1, . . . , Ym) to
χR1,...,Rn,R′1,...,R

′
m

(X1, . . . , Xn t Y1, . . . , Ym), then the same proof as Proposition 2.9 can be used to show that
if Ri > ‖Xi‖ and R′j > ‖Yj‖ for all i, j, then

χR1,...,Rn,R′1,...,R
′
m

(X1, . . . , Xn t Y1, . . . , Ym) = χ(X1, . . . , Xn t Y1, . . . , Ym).

In fact, we note that [1] refined the techniques of [33, Proposition 2.4] to demonstrate that if one lets
R = ∞ in the start of Definition 2.1, then the same value of the microstate free entropy is obtained. By
repeating their results verbatim with the obvious modifications in our context identical to those used above
in Proposition 2.9, we note that setting R =∞ from the start of Definition 2.2 yields the same quantity for
the microstate bi-free entropy.

On the other hand, insisting on using microstates of bounded norm allows us the following proposition.

Proposition 2.11. Let
(
{Xi}ni=1, {Yj}mj=1

)
and

({
X

(k)
i

}n
i=1

,
{
Y

(k)
j

}m
j=1

)
for k ∈ N be tracially bi-partite

tuples in a C∗-non-commutative probability space (A, ϕ). Suppose that

({
X

(k)
i

}n
i=1

,
{
Y

(k)
j

}m
j=1

)
converges

in distribution to
(
{Xi}ni=1, {Yj}mj=1

)
; that is

lim
k→∞

ϕ
(
X

(k)
i1
· · ·X(k)

ip
Y

(k)
j1
· · ·Y (k)

jq

)
= ϕ(Xi1 · · ·XipYj1 · · ·Yjq )

for all i1, . . . ip ∈ {1, . . . , n}, j1, . . . , jq ∈ {1, . . . ,m}, and p, q ∈ N. Then

lim sup
k→∞

χR

(
X

(k)
1 , . . . , X(k)

n t Y (k)
1 , . . . , Y (k)

m

)
≤ χR(X1, . . . , Xn t Y1, . . . , Ym).
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Moreover, if supk∈N

∥∥∥X(k)
i

∥∥∥ <∞ for all 1 ≤ i ≤ n and supk∈N

∥∥∥Y (k)
k

∥∥∥ <∞ for all 1 ≤ j ≤ m, then

lim sup
k→∞

χ(X
(k)
1 , . . . , X(k)

n t Y (k)
1 , . . . , Y (k)

m ) ≤ χ(X1, . . . , Xn t Y1, . . . , Ym).

Proof. Our convergence assumption tells us that all moments converge to the correct values, and so for any
M ∈ N and ε > 0 we have for large enough k that

ΓR

(
X

(k)
1 , . . . , X(k)

n t Y (k)
1 , . . . , Y (k)

m ;M,d, ε
)
⊆ ΓR(X1, . . . , Xn t Y1, . . . , Ym;M,d, 2ε),

since the sets involved see only finitely many moments. Hence for all sufficiently large k, we have

χR

(
X

(k)
1 , . . . , X(k)

n t Y (k)
1 , . . . , Y (k)

m ;M,d, ε
)
≤ χR(X1, . . . , Xn t Y1, . . . , Ym;M,d, 2ε)

and passing through the appropriate limits and rescaling in d, then M , and then ε yields

lim sup
k→∞

χR

(
X

(k)
1 , . . . , X(k)

n t Y (k)
1 , . . . , Y (k)

m

)
≤ χR(X1, . . . , Xn t Y1, . . . , Ym)

which is the first claimed inequality. The second inequality follows by applying Proposition 2.9. �

3. Transformations

One important property of the microstate free entropy is the ability to apply a non-commutative functional
calculus to the self-adjoint operators and control the value of the free entropy. In this section, we will develop
an analogue of this result for our microstate bi-free entropy. However, due to the distinction between the left
and right operators, we will need to focus on transformations that modify only left variables or modify only
right variables (although compositions of such transforms are allowed).

To understand the difficulty in mixing left and right variables, consider the n = m = 1 case. If

(A,B) ∈ ΓR(X t Y ;M,d, ε)

and we wanted to consider the new pair (X,Y + cX) for c sufficiently small, it is incredibly unclear whether

(A,B + cA) ∈ ΓR(X t Y + cX;M ′, d, ε′)

as the assumptions on (A,B) yield only information about τd(A
pBq) for 1 ≤ p+ q ≤M whereas we require

knowledge about τd(A
p(B + cA)q). The latter involves terms of the form τd(A

i1Bi2Ai3 · · ·Bij ) and direct
information about these moments appears difficult to extract from knowledge of only τd(A

pBq).
In order to develop our results, we recall some information from [33]. However, as the proofs are near

identical, we refer the reader to [33] on most occasions.
Let x1, . . . , xn be non-commuting indeterminates and let

F (x1, . . . , xn) =
∞∑
k=1

∑
1≤i1,...,ik≤n

ci1,...,ikxi1 · · ·xik

be a non-commuting power series with complex coefficients. If Ri ≥ 0 for all 1 ≤ i ≤ n, it is said that
(R1, . . . , Rn) is a multiradius of convergence of F if

M(F ;R1, . . . , Rn) :=

∞∑
k=1

∑
1≤i1,...,ik≤n

|ci1,...,ik |Ri1 · · ·Rik <∞.

If X1, . . . , Xn are elements in a finite factor (M, τ) and (‖X1‖ , . . . , ‖Xn‖) is a multiradius of convergence of
F , then F (X1, . . . , Xn) is well-defined with

‖F (X1, . . . , Xn)‖ ≤M(F ; ‖X1‖ , . . . , ‖Xn‖).
If (R1, . . . , Rn) is a multiradius of convergence of F , then the map taking (X1, . . . , Xn) to F (X1, . . . , Xn)

is an analytic function on ∏
1≤i≤n

{Xi ∈M | ‖Xi‖ ≤ Ri}

with values in M. If this map is denoted F , then F is differentiable with derivative denoted by DF , and the
positive Jacobian of F at (X1, . . . , Xn) can be defined by

|J |(F )(X1, . . . , Xn) = |det |(DF (X1, . . . , Xn)),
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where |det | denotes the Fuglede-Kadison determinant. Note that DF (X1, . . . , Xn) lies in the algebra
denoted in [33] by LR(M), which is the image in B(M) of the projective tensor product M⊗πMop under the
contraction a⊗b 7→ LaRb (where La denotes left multiplication on M by a and Rb denotes right multiplication
on M by b).

Finally, as our focus is on self-adjoint operators, we will focus on F where F ∗ = F ; that is ci1,...,ik = cik,...,i1
for all k and 1 ≤ i1, . . . , ik ≤ n.

Proposition 3.1. Let (A, ϕ) be a C∗-non-commutative probability space and let(
{Xi}ni=1, {Yj}mj=1

)
be a tracially bi-partite collection of self-adjoint operators such that (alg(X1, . . . , Xn), ϕ) sits inside a finite
factor. Let F1, . . . , Fn, G1, . . . , Gn be non-commutative power series with complex coefficients such that
F ∗i = Fi, G

∗
i = Gi, (‖X1‖+ ε, . . . , ‖Xn‖+ ε) is a multiradius of convergence for the Fi’s for some ε > 0, and

(M(F1; ‖X1‖+ ε, . . . , ‖Xn‖+ ε), . . . ,M(Fn; ‖X1‖+ ε, . . . , ‖Xn‖+ ε))

is a multiradius of convergence for the Gj’s. Assume further that

Gi(F1(x1, . . . , xn), . . . , Fn(x1, . . . , xn)) = xi

for all 1 ≤ i ≤ n. Then

χ(F1(X1, . . . , Xn), . . . , Fn(X1, . . . , Xn) t Y1, . . . , Yn)

≥ log (|J |((F1, . . . , Fn))(X1, . . . , Xn)) + χ(X1, . . . , Xn t Y1, . . . , Ym).

Moreover, if Nk = ‖Fk(X1, . . . , Xn)‖, then

(M(G1;N1 + ε, . . . , Nn + ε), . . . ,M(Gn;N1 + ε, . . . , Nn + ε))

is a multiradius of convergence for the Fi’s, then

χ(F1(X1, . . . , Xn), . . . , Fn(X1, . . . , Xn) t Y1, . . . , Yn)

= log (|J |((F1, . . . , Fn))(X1, . . . , Xn)) + χ(X1, . . . , Xn t Y1, . . . , Ym).

An analogous result holds for such functions applied to the Y ’s instead of the X’s.

Proof. First we invoke Remark 2.10. Let ‖Xi‖ < Ri < ‖Xi‖+ ε, let ‖Yj‖ < R′j , and

M(Fi;R1, . . . , Rn) < ρi ≤M(Fi; ‖X1‖+ ε, . . . , ‖Xn‖+ ε).

Given M ∈ N, and ε > 0, there exist an M1 ≥M and an 0 < ε1 < ε such that the map

(A1, . . . , An, B1, . . . , Bm) 7→ (F1(A1, . . . , An), . . . , Fn(A1, . . . , An), B1, . . . , Bm)

maps ΓR1,...,Rn,R′1,...,R
′
m

(X1, . . . , Xn t Y1, . . . , Ym;M1, d, ε1) into

Γρ1,...,ρn,R′1,...,R′m(F1(X1, . . . , Xn), . . . , Fn(X1, . . . , Xn) t Y1, . . . Ym;M,d, ε).

The remainder of the proof is identical to the proof of [32, Proposition 3.5] as it simply computes how the
transformation (ours being a direct sum of the one used in [32, Proposition 3.5] and the identity) modifies
the microstates and thus the entropy. �

Corollary 3.2.

(1) If a1, . . . , an, b1, . . . , bm ∈ R, then

χ(X1 + a1I, . . . , Xn + anI t Y1 + b1I, . . . , Ym + bmI) = χ(X1, . . . , Xn t Y1, . . . , Ym).

(2) If A = [ai,j ] ∈Mn and B = [bi,j ] ∈Mm are invertible, then

χ

(
n∑
k=1

a1,kXk, . . . ,

n∑
k=1

an,kXk t
m∑
k=1

b1,kYk, . . . ,

m∑
k=1

bm,kYk

)
= χ(X1, . . . , Xn t Y1, . . . , Ym)+log(|det(A⊕B)|).

(3) If X1, . . . , Xn are linearly dependent or Y1, . . . , Ym are linearly dependent, then

χ(X1, . . . , Xn t Y1, . . . , Ym) = −∞.
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Proof. Parts (1) and (2) follow from Proposition 3.1. In the case of part (3), if X1, . . . , Xn are linearly
dependent then there is an A = [ai,j ] ∈Mn such that 0 < |det(A)| < 1 and(

n∑
k=1

a1,kXk, . . . ,

n∑
k=1

an,kXk

)
= (X1, . . . , Xn).

Applying part (2) along with the fact that

χ(X1, . . . , Xn t Y1, . . . , Ym) <∞
by Proposition 2.6 yields the result. �

4. Additivity of Microstate Bi-Free Entropy

One important result for free entropy is additivity; that is, if {X1, . . . , Xp} and {Xp+1, . . . , Xn} are free
then

χ(X1, . . . , Xn) = χ(X1, . . . , Xp) + χ(Xp+1, . . . , Xn)

under certain regularity assumptions. We desire to prove a bi-free analogue of this result. Before we move to
those results, we desire to analyze some limits with regards to the following concept.

Definition 4.1. A tracially bi-partite system ({Xi}ni=1, {Yj}mj=1) in a C∗-non-commutative probability space
(A, ϕ) is said to have finite-dimensional approximants if for every M ∈ N, ε > 0, and

R > max

{
max

1≤i≤n
‖Xi‖ , max

1≤j≤m
‖Yj‖

}
,

there exists an D ∈ N such that ΓR(X1, . . . , Xn t Y1, . . . , Ym;M,d, ε) 6= ∅ for all d ≥ D.
A single family of such variables {Xi}ni=1 is said to have finite-dimensional approximants if ({Xi}ni=1 , ∅)

does or, equivalently by Remark 2.4, if (∅, {Xi}ni=1) does.

Remark 4.2. By repeating the same ideas as in Theorem 2.7, the existence of microstates for tracially
bi-partite systems can be often deduced from knowledge of free entropy. Indeed suppose ({Xi}ni=1, {Yj}mj=1) is
a tracially bi-partite system in a C∗-non-commutative probability space (A, ϕ) and that there exists another
C∗-non-commutative probability space (A0, τ0) and self-adjoint operators X ′1, . . . , X

′
n, Y

′
1 , . . . , Y

′
m ∈ A0 such

that τ0 is tracial on A0 and

ϕ(Xi1 · · ·XipYj1 · · ·Yjq ) = τ0(X ′i1 · · ·X
′
ipY
′
jq · · ·Y

′
j1)

for all p, q ∈ N ∪ {0} and i1, . . . , ip ∈ {1, . . . , n} and j1, . . . , jq ∈ {1, . . . ,m}. As in Theorem 2.7,

ΓR(X ′1, . . . , X
′
n, Y

′
1 , . . . , Y

′
m;M,d, ε) ⊆ ΓR(X1, . . . , Xn t Y1, . . . , Ym;M,d, ε).

Therefore if ({X ′i}ni=1, {Y ′j }mj=1) have finite-dimensional approximants, then so do ({Xi}ni=1, {Yj}mj=1) by
Proposition 2.9. In particular, if χ(X ′1, . . . , X

′
n, Y

′
1 , . . . , Y

′
m) > −∞, then X1, . . . , Xn, Y1, . . . , Ym has finite-

dimensional approximants by [36, Remark 3.2].
Furthermore, if

ΓR(X1, . . . , Xn t Y1, . . . , Ym;M,d0, ε) 6= ∅
for some d0, then there exists a D such that

ΓR(X1, . . . , Xn t Y1, . . . , Ym;M,d, 2ε) 6= ∅

for all d ≥ D. Indeed this follows by taking D to be a sufficiently large multiple of d0 so that d0
D is sufficiently

small thereby adding at most ε to the state estimates. Hence, as in [36, Remark 3.2], it can easily be seen
that if χ(X1, . . . , Xn t Y1, . . . Ym) > −∞, then ({Xi}ni=1, {Yj}mj=1) has finite-dimensional approximants.

In order to develop an additive result for microstate bi-free entropy, we will use the following notion.

Definition 4.3. Let (A, ϕ) be a C∗-non-commutative probability space, let {Ck}k∈K be a collection of finite
subsets of A, let Ak = alg(Ck), and let ψ = ∗k∈Kϕ|Ak

be the unique state on ∗k∈KAk extending each ϕ|Ak

such that the Ak are free. Given M ∈ N and ε > 0, it is said that {Ck}k∈K are (M, ε)-free in (A, ϕ) provided

|ψ(Z1 · · ·Zp)− ϕ(Z1 · · ·Zp)| < ε

for all Z1, . . . , Zp ∈
⋃
k∈K Ck and 1 ≤ p ≤M .
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Given d ∈ N, let U(d) denote the unitary group of Md and let γd denote the normalized Haar measure on
U(d). We recall the following result.

Lemma 4.4 ([36, Corollary 2.13]). Fix R, ε, θ > 0 and M ∈ N. Then there exists an N ∈ N such that for all
d ≥ N , 1 ≤ p ≤M , and sets C1, . . . , Cp ⊆Md of matrices bounded in norm by R, each containing no more
than M elements, we have

µ⊗pd
({

(U1, . . . , Up) ∈ U(d)p
∣∣ the sets U∗1 C1U1, . . . , U

∗
pCpUp are (M, ε)-free

})
> 1− θ.

Our next goal is to prove a result similar to [15, Lemma 6.4.3], that “most” ways of choosing microstates
for each of two bi-free pairs of faces individually produce good microstates for the joint system. This also
shows why the reverse order is desirable on the right matrices in Definition 2.2 and is reminiscent of the ideas
used in [7, Theorem 10.2.1] and [26, Theorem 4.13] to show that a lot related to bi-freeness in our current
setting can be extrapolated from certain arrangements of freely independent variables. In order to do so,
though, we need the following result.

Lemma 4.5. Suppose that ({Xi}ni=1, {Yj}mj=1) is a tracially bi-partite system in a C∗-non-commutative
probability space (A, ϕ), so that

(alg(X1, . . . , Xp), alg(Y1, . . . , Yq)) and (alg(Xp+1, . . . , Xn), alg(Yq+1, . . . , Ym))

are bi-free and that

({X1, . . . , Xp}, {Y1, . . . , Yq}) and ({Xp+1, . . . , Xn}, {Yq+1, . . . , Ym})

have finite-dimensional approximants.
Then there is a collection of bounded operators ({X ′i}ni=1, {Y ′j }mj=1) in another C∗-non-commutative proba-

bility space (A′, ϕ′) so that for all 0 ≤ p, q, i1, . . . , ip ∈ {1, . . . , n}, and j1, . . . , jq ∈ {1, . . . ,m} we have

ϕ′(X ′i1 · · ·X
′
ipY
′
jq · · ·Y

′
j1) = ϕ(Xi1 · · ·XipYj1 · · ·Yjq ),

and such that

alg(X ′1, . . . , X
′
p, Y

′
1 , . . . , Y

′
q ) and alg(X ′p+1, . . . , X

′
n, Y

′
q+1, . . . , Y

′
m)

are free.

Proof. Write

Z1 = (alg(X1, . . . , Xp), alg(Y1, . . . , Yq)) and Z2 = (alg(Xp+1, . . . , Xn), alg(Yq+1, . . . , Ym)).

For k = 1, 2, as Zk has finite dimensional approximants, by the definition of finite dimensional approximants
there exists a state-preserving embedding of Zk into (Mk, τk) where Mk is an ultraproduct of matrix algebras
and τk is a limit of the tracial states along an ultrafilter such that each Xi act via left matrix multiplication
and each Yj acts via right matrix multiplication.

Let L2(Mk) be the GNS construction applied to (Mk, τk) and let H = L2(M1) ∗ L2(M2) be the reduced
free product with vacuum state ψ. By the definition of bi-free independence from [39], we know that the joint
distribution of Z1 and Z2 can be obtained by letting Zk act on L2(Mk) in H as above, letting all X variables
act via the left regular representation, letting all Y variables act via the right regular representation, and
computing the joint distribution with respect to ψ.

The desired C∗-non-commutative probability space (A′, ϕ′) will simply by the bounded linear maps on H
with ϕ′ = ψ. Moreover, to construct the desired ({X ′i}ni=1, {Y ′j }mj=1), take X ′i to be the operator obtained by
letting Xi act on the left of L2(Mk) and via the left regular representation on L2(Mk) in H where k = 1 if
i ≤ p and k = 2 if i > p, and Y ′j to be the operator obtained by letting Yj act on the left of L2(Mk) and via
the left regular representation on L2(Mk) in H where k = 1 if j ≤ q and k = 2 if j > q. It is then clear by a
definition of free independence that

alg(X ′1, . . . , X
′
p, Y

′
1 , . . . , Y

′
q ) and alg(X ′p+1, . . . , X

′
n, Y

′
q+1, . . . , Y

′
m)

are freely independent. Moreover, as the action of Y ′jq · · ·Y
′
j1

on the vacuum vector will be the same as

the action of Yj1 · · ·Yjq on the vacuum vector (as the former acts on the right and via the right regular
representation whereas the latter acts on the left via the left regular representation - hence the reversion of
the ordering), we obtain the desired moment equality. �
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Lemma 4.6. Let ({Xi}ni=1, {Yj}mj=1) be a tracially bi-partite system. Suppose that for some 0 ≤ p ≤ n and
0 ≤ q ≤ m that

(alg(X1, . . . , Xp), alg(Y1, . . . , Yq)) and (alg(Xp+1, . . . , Xn), alg(Yq+1, . . . , Ym))

are bi-free and that

({X1, . . . , Xp}, {Y1, . . . , Yq}) and ({Xp+1, . . . , Xn}, {Yq+1, . . . , Ym})
have finite-dimensional approximants. Then for every M ∈ N, ε > 0, and

R > max

{
max

1≤i≤n
‖Xi‖ , max

1≤j≤m
‖Yj‖

}
there exists an ε1 > 0 such that

lim
d→∞

λd,n+m (Ψd(M, ε1) ∩Θd(M, ε))

λd,n+m (Ψd(M, ε1))
= 1

where 0
0 = 1,

Ψd(M, ε1) = ΓR(X1, . . . , Xp t Y1, . . . , Yq;M,d, ε1)×`r ΓR(Xp+1, . . . , Xn t Yq+1, . . . , Ym;M,d, ε1),

Θd(M, ε) = ΓR(X1, . . . , Xn t Y1, . . . , Ym;M,d, ε),

and ×`r is as defined in the proof of Proposition 2.5.

Proof. Fix M ∈ N, ε > 0, and R as described. We claim that there exists an ε1 > 0 such that if

(A1, . . . , An, B1, . . . , Bm) ∈ Ψd(M, ε1)

and if
{A1, . . . , Ap, B1, . . . , Bq} and {Ap+1, . . . , An, Bq+1, . . . , Bm} are (M, ε1)-free,

then
(A1, . . . , An, B1, . . . , Bm) ∈ Θd(M, ε).

To see this, we first take a collection of operators X ′1, . . . , X
′
n, Y

′
1 , . . . , Y

′
m as in Lemma 4.5, and let R1 be

larger than the largest of their norms. Then for suitably small ε1 > 0, if

(A1, . . . , An, B1, . . . , Bm) ∈ Ψd(M, ε1)

and if
{A1, . . . , Ap, B1, . . . , Bq} and {Ap+1, . . . , An, Bq+1, . . . , Bm} are (M, ε1)-free,

then for all 0 ≤ p, q with p+ q ≤M , i1, . . . ip ∈ {1, . . . , n}, and j1, . . . , jq ∈ {1, . . . ,m} we have that

τd(Ai1 · · ·AipBjq · · ·Bj1)

is within a multiple of ε1 (involving M and R1) of

ϕ′(X ′i1 · · ·X
′
ipY
′
jq · · ·Y

′
j1) = ϕ(Xi1 · · ·XipYj1 · · ·Yjq ),

thereby completing the claim.
Given θ > 0, by Lemma 4.4 there exists an N ∈ N such that

γd

({
U ∈ U(d)

∣∣∣ {A1,...,Ap,B1,...,Bq} and {U∗Ap+1U,...,U
∗AnU,U

∗Bq+1U,...,U
∗BmU}

are (M,ε1)-free

})
≥ 1− θ

for all d ≥ N and all Ai, Bj ∈Msa
d with ‖Ai‖ , ‖Bj‖ ≤ R for 1 ≤ i ≤ n and 1 ≤ j ≤ m.

By the assumption of finite-dimensional approximants, Ψd(M, ε1) is non-empty for sufficiently large d.
Let νd denote the normalized restriction of λd,n+m to Ψd(M, ε1). Since both Ψd(M, ε1) and νd are invariant
under the action of U(d) given by

(A1, . . . , An, B1, . . . , Bn) 7→ (A1, . . . , Ap, U
∗Ap+1U, . . . , U

∗AnU,B1, . . . , Bq, U
∗Bq+1U, . . . , U

∗BmU),

we obtain that

λd,n+m (Ψd(M, ε1) ∩Θd(M, ε))

λd,n+m (Ψd(M, ε1))

=

∫
Ψd(M,ε1)

(∫
U(d)

1Θd(M,ε)(A1, . . . , Ap, U
∗Ap+1U, . . . , U

∗AnU,B1, . . . , Bq, U
∗Bq+1U, . . . , U

∗BmU) dγ(U)

)
dνd.
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By the choice of ε1, we obtain for sufficiently large d that∫
U(d)

1Θd(M,ε)(A1, . . . , Ap, U
∗Ap+1U, . . . , U

∗AnU,B1, . . . , Bq, U
∗Bq+1U, . . . , U

∗BmU) dγ(U) > 1− θ.

Hence

λd,n+m (Ψd(M, ε1) ∩Θd(M, ε))

λd,n+m (Ψd(M, ε1))
≥ 1− θ

which completes the proof as θ was arbitrary. �

Unfortunately, at this point in trying to prove additivity of microstate bi-free entropy for bi-free collections,
we reach a bit of an impasse. Either we need to know that the lim supd→∞ in Definition 2.2 is actually a
limit, or we need to replaces the lim supd→∞ with a limit along an ultrafilter. Thus, for the following result,
we use χω(X1, . . . , Xn t Y1, . . . , Ym) to denote the same quantity as in Definition 2.2 where lim supd→∞ is
replaced with lim supd→ω for some ω a non-principle ultrafilter on N .

Theorem 4.7. Let ({Xi}ni=1, {Yj}mj=1) be a tracially bi-partite system. Suppose that for some 0 ≤ p ≤ n and
0 ≤ q ≤ m that

(alg(X1, . . . , Xp), alg(Y1, . . . , Yq)) and (alg(Xp+1, . . . , Xn), alg(Yq+1, . . . , Ym))

are bi-free. Suppose that the limits superior in Definition 2.2 for the bi-free entropies of ({Xi}pi=1, {Yj}
q
j=1)

and ({Xi}ni=p+1, {Yj}mj=q+1) are attained along a common sequence of dimensions (as is the case when one of
the two can be replaced by a limit). Then

χ(X1, . . . , Xn t Y1, . . . , Ym) = χ(X1, . . . , Xp t Y1, . . . , Yq) + χ(Xp+1, . . . , Xn t Yq+1, . . . , Ym).

Alternatively,

χω(X1, . . . , Xn t Y1, . . . , Ym) = χω(X1, . . . , Xp t Y1, . . . , Yq) + χω(Xp+1, . . . , Xn t Yq+1, . . . , Ym).

Proof. By Proposition 2.5

χ(X1, . . . , Xn t Y1, . . . , Ym) ≤ χ(X1, . . . , Xp t Y1, . . . , Yq) + χ(Xp+1, . . . , Xn t Yq+1, . . . , Ym)

so the result is immediate if either quantity on the right hand side is −∞. Thus we may assume these
microstate bi-free entropies are finite (and thus have finite-dimensional approximants) and proceed with
demonstrating the other inequality.

For any M ∈ N, ε > 0, and

R > max

{
max

1≤i≤n
‖Xi‖ , max

1≤j≤m
‖Yj‖

}
,

Lemma 4.6 implies there exists an ε1 > 0 such that

lim
d→∞

λd,n+m (Ψd(M, ε1) ∩Θd(M, ε))

λd,n+m (Ψd(M, ε1))
= 1,

where

Ψd(M, ε1) = ΓR(X1, . . . , Xp t Y1, . . . , Yq;M,d, ε1)×`r ΓR(Xp+1, . . . , Xn t Yq+1, . . . , Ym;M,d, ε1)

Θd(M, ε) = ΓR(X1, . . . , Xn t Y1, . . . , Ym;M,d, ε).
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Now, assuming that the limits superior in Definition 2.2 are attained along a common subsequence,

χR(X1, . . . , Xn t Y1, . . . , Ym;M, ε)

= lim sup
d→∞

1

d2
log(λd,n+m(Θd(M, ε))) +

1

2
(n+m) log(d)

≥ lim sup
d→∞

1

d2
log(λd,n+m(Θd(M, ε) ∩Ψd(M, ε1))) +

1

2
(n+m) log(d)

= lim sup
d→∞

1

d2
log(λd,n+m(Ψd(M, ε1))) +

1

2
(n+m) log(d)

= lim sup
d→∞

(
1

d2
log(λd,n+m(ΓR(X1, . . . , Xp t Y1, . . . , Yq;M,d, ε1))) +

1

2
(p+ q) log(d)

+
1

d2
log(λd,n+m(ΓR(Xp+1, . . . , Xn t Yq+1, . . . , Ym;M,d, ε1))) +

1

2
(n+m− p− q) log(d)

)
= lim sup

d→∞

(
1

d2
log(λd,n+m(ΓR(X1, . . . , Xp t Y1, . . . , Yq;M,d, ε1))) +

1

2
(p+ q) log(d)

)
+ lim sup

d→∞

(
1

d2
log(λd,n+m(ΓR(Xp+1, . . . , Xn t Yq+1, . . . , Ym;M,d, ε1))) +

1

2
(n+m− p− q) log(d)

)
= χR(X1, . . . , Xp t Y1, . . . , Yq;M, ε1) + χR(Xp+1, . . . , Xn t Yq+1, . . . , Ym;M, ε1)

≥ χR(X1, . . . , Xp t Y1, . . . , Yq) + χR(Xp+1, . . . , Xn t Yq+1, . . . , Ym).

Here the limit superior splits across the sum because of our assumption about a common subsequence, and in
the last inequality we have used the fact that χR(· t ·;M, ε) decreases as M increases and as ε decreases.

The result for χω easily follows by similar arguments. �

Corollary 4.8. Let ({Xi}ni=1, {Yj}mj=1) be a tracially bi-partite system. If

alg({X1, . . . , Xn}) and alg({Y1, . . . , Ym})

are classically independent and if the lim supd→∞ in Definition 2.2 is actually a limit for {Xi}ni=1 and for
{Yj}mj=1), then

χ(X1, . . . , Xn t Y1, . . . , Ym) = χ(X1, . . . , Xn) + χ(Y1, . . . , Ym).

Alternatively,

χω(X1, . . . , Xn t Y1, . . . , Ym) = χω(X1, . . . , Xn) + χω(Y1, . . . , Ym).

Proof. We recall from [39] that classical independence implies the bi-freeness of (alg({X1, . . . , Xn}),C) from
(C, alg({Y1, . . . , Ym})). Theorem 4.7 then allows us to equate the bi-free entropy of the whole system with
the sum of the bi-free entropies of the left variables and of the right variables, which by Remark 2.4 is just
their free entropies. �

5. Orbital Bi-Free Entropy

In this section, we will develop a bi-free analogue of the notion of orbital free entropy, which was introduced
in [14] and is deeply connected to microstate free entropy. Among other results, we use the joint orbital bi-free
entropy to give a strengthened version of the subadditivity estimate from Proposition 2.5 in Theorem 5.12.
The approach used here is based on that of [29] which is a close thematic fit to this paper; although it may
be interesting to consider an approach similar to that of [4], we do not do so here. In fact, most proofs in this
section are adaptations of those from [29].

Throughout this section, let (A, ϕ) be a C∗-non-commutative probability space and let ` ∈ N. For each
1 ≤ k ≤ `, let Xk = (Xk,1, Xk,2, . . . , Xk,nk

) and Yk = (Yk,1, Yk,2, . . . , Yk,mk
) denote, respectively, nk- and

mk-tuples of self-adjoint operators from A, where nk,mk ≥ 0 with nk +mk ≥ 1. Furthermore, we will use
Zk to denote the system of variables Xk tYk where Xk are viewed as the left variables and Yk are viewed
as the right variables.
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Let U(d) denote the unitary matrices fromMd and let γd denote the Haar measure on U(d). Furthermore
define

Φd : U(d)` ×

(∏̀
k=1

(M sa
d )nk

)
×

(∏̀
k=1

(M sa
d )mk

)
→

(∏̀
k=1

(M sa
d )nk

)
×

(∏̀
k=1

(M sa
d )mk

)
by

Φd((Uk)`k=1, (Ak)`k=1, (Bk)`k=1) = ((U∗kAkUk)`k=1, (U
∗
kBkUk)`k=1)

where for Ak = (Ak,1, Ak,2, . . . , Ak,nk
) ∈ (M sa

d )nk and Bk = (Bk,1, Bk,2, . . . , Bk,mk
) ∈ (M sa

d )mk ,

U∗kAkUk = (U∗kAk,1Uk, U
∗
kAk,2Uk, . . . , U

∗
kAk,nk

Uk) and

U∗kBkUk = (U∗kBk,1Uk, U
∗
kBk,2Uk, . . . , U

∗
kBk,mk

Uk).

Moreover, let P
((∏`

k=1(M sa
d )nk

)
×
(∏`

k=1(M sa
d )mk

))
denote the set of all regular Borel probability measures

on
(∏`

k=1(M sa
d )nk

)
×
(∏`

k=1(M sa
d )mk

)
.

Using

ΓR(X1, . . . ,X` tY1, . . . ,Y`;M,d, ε)

to denote the bi-free microstates based on the self-adjoint variables contained in the left variables X1, . . . ,X`

in the order listed and the right variables Y1, . . . ,Y` in the order listed, we may now define the object of
study in this section.

Definition 5.1. With the above notation, for each µ ∈ P
((∏`

k=1(M sa
d )nk

)
×
(∏`

k=1(M sa
d )mk

))
, M,d ∈ N,

and R, ε > 0, let

χorb,R(Z1, . . . ,Z`;M,d, ε;µ) = log
(
(γ⊗`d ⊗ µ)

(
Φ−1
d (ΓR(X1, . . . ,X` tY1, . . . ,Y`;M,d, ε))

))
(with log(0) = −∞). With this we define

χorb,R(Z1, . . . ,Z`;M,d, ε) = sup
µ∈P((

∏`
k=1(Msa

d )nk)×(
∏`

k=1(Msa
d )mk))

χorb,R(Z1, . . . ,Z`;M,d, ε;µ),

χorb,R(Z1, . . . ,Z`;M, ε) = lim sup
d→∞

1

d2
χorb,R(Z1, . . . ,Z`;M,d, ε),

χorb,R(Z1, . . . ,Z`) = inf{χorb,R(Z1, . . . ,Z`;M, ε) | M ∈ N, ε > 0), and

χorb(Z1, . . . ,Z`) = sup
0<R<∞

χorb,R(Z1, . . . ,Z`).

The quantity χorb(Z1, . . . ,Z`) ∈ [−∞, 0] will be called the orbital bi-free entropy of the collections Z1, . . . ,Z`.
Note that the fact that χorb(Z1, . . . ,Z`) ≤ 0 is clear by definition.

Remark 5.2. Based on the definition of χorb(Z1, . . . ,Z`), we can see that the orbital bi-free entropy is a
measure of how well conjugation by unitaries preserves the bi-free microstates. We can see that the infimum
over ε and M occurs as ε tends to 0 and M tends to infinity. Furthermore, it is not difficult to see that if
mk = 0 for all k, then χorb(Z1, . . . ,Z`) agrees with χorb(X1, . . . ,X`) as in [29, Definition 2.1].

If the variables in question are not tracially bipartite, we have ΓR(X1, . . . ,X` tY1, . . . ,Y`;M,d, ε) = ∅
for appropriately antagonistic parameters, and so χorb(Z1, . . . ,Z`) = −∞. We therefore continue to make
the assumption that the variables are tracially bi-partite throughout this section.

Although the supremum over the probability measures portion of Definition 5.1 may seem difficult to
compute with, from the theoretical standpoint it is quite natural, as we will see. However, as with [29], there
are other ways to describe χorb(Z1, . . . ,Z`) without the need to take a supremum over probability measures.
To provide one such description, first we need to develop some additional notation and demonstrate a lemma
that will be useful throughout the section.

Given ((Ak)`k=1, (Bk)`k=1) ∈
(∏`

k=1(M sa
d )nk

)
×
(∏`

k=1(M sa
d )mk

)
, let

Γorb(Z1, . . . ,Z` : (Ak)`k=1, (Bk)`k=1;M,d, ε)

denote the set of all (Uk)`k=1 ∈ (U(d))` such that

Φd((Uk)`k=1, (Ak)`k=1, (Bk)`k=1) ∈ Γ∞(X1, . . . ,X` tY1, . . . ,Y`;M,d, ε).
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Note that for Γorb(Z1, . . . ,Z` : (Ak)`k=1, (Bk)`k=1;M,d, ε) to be non-empty, each (Ak,Bk) must be good
microstates for Xk tYk; more precisely, if (Msa

d )R denotes all elements of Msa
d of operator norm at most R

and if for some k we have that (Ak,Bk) ∈ ((Msa
d )R)nk+mk \ ΓR(Xk tYk;M,d, ε), then

Γorb(Z1, . . . ,Z` : (Ak)`k=1, (Bk)`k=1;M,d, ε) = ∅.

We record the following technical observation as a lemma.

Lemma 5.3. For every R > 0, the map from
(∏`

k=1(M sa
d )nk

R

)
×
(∏`

k=1(M sa
d )mk

R

)
to R defined by

((Ak)`k=1, (Bk)`k=1) 7→ γ⊗`d
(
Γorb(Z1, . . . ,Z` : (Ak)`k=1, (Bk)`k=1;M,d, ε)

)
is Borel. Furthermore, for every µ ∈ P

((∏`
k=1(M sa

d )nk

)
×
(∏`

k=1(M sa
d )mk

))
,

(γ⊗`d ⊗ µ)
(
Φ−1
d (ΓR(X1, . . . ,X` tY1, . . . ,Y`;M,d, ε))

)
=

∫
(
∏`

k=1(Msa
d )

nk
R )×(

∏`
k=1(Msa

d )
mk
R )

γ⊗`d
(
Γorb(Z1, . . . ,Z` : (Ak)`k=1, (Bk)`k=1;M,d, ε)

)
dµ
(
(Ak)`k=1, (Bk)`k=1

)
=

∫
∏`

k=1 ΓR(XktYk;M,d,ε)

γ⊗`d
(
Γorb(Z1, . . . ,Z` : (Ak)`k=1, (Bk)`k=1;M,d, ε)

)
dµ
(
(Ak)`k=1, (Bk)`k=1

)
,

with an implicit reordering of coordinates in the second integral.

Proof. The result follows from the fact that the sets and functions involved are Borel, by the above construc-
tions, and by Fubini’s Theorem. �

Now we are able to demonstrate an alternate definition of the orbital bi-free entropy without the need to
take a supremum over probability measures.

Proposition 5.4. For each M,d ∈ N, ε > 0, and R ∈ (0,∞], let

χ̃orb,R(Z1, . . . ,Z`;M,d, ε)

= sup
((Ak)`k=1,(Bk)`k=1)∈(

∏`
k=1(Msa

d )
nk
R )×(

∏`
k=1(Msa

d )
mk
R )

log
(
γ⊗`d

(
Γorb(Z1, . . . ,Z` : (Ak)`k=1, (Bk)`k=1;M,d, ε)

))
= sup

((Ak)`k=1,(Bk)`k=1)∈
∏`

k=1 ΓR(XktYk;M,d,ε)

log
(
γ⊗`d

(
Γorb(Z1, . . . ,Z` : (Ak)`k=1, (Bk)`k=1;M,d, ε)

))
,

Note χ̃orb,R(Z1, . . . ,Z`;M,d, ε) ∈ [−∞, 0]. Then

χorb,R(Z1, . . . ,Z`) = inf
M∈N,ε>0

lim sup
d→∞

1

d2
χ̃orb,R(Z1, . . . ,Z`;M,d, ε).

Proof. First, it is clear that the two definitions of χ̃orb,R(Z1, . . . ,Z`;M,d, ε) are equivalent by the comments
before Lemma 5.3. Furthermore, Lemma 5.3 implies that

χorb,R(Z1, . . . ,Z`;M,d, ε;µ) ≤ χ̃orb,R(Z1, . . . ,Z`;M,d, ε)

for any µ ∈ P
((∏`

k=1(M sa
d )nk

)
×
(∏`

k=1(M sa
d )mk

))
. Hence we clearly have

χorb,R(Z1, . . . ,Z`) ≤ inf
M∈N,ε>0

lim sup
d→∞

1

d2
χ̃orb,R(Z1, . . . ,Z`;M,d, ε).

To prove the reverse inequality, consider M and ε fixed. If χ̃orb,R(Z1, . . . ,Z`;M,d, ε) = −∞ for all
sufficiently large d then

lim sup
d→∞

1

d2
χ̃orb,R(Z1, . . . ,Z`;M,d, ε) ≤ χorb,R(Z1, . . . ,Z`;M, ε)

trivially follows. Otherwise there exists an increasing sequence (dl)l≥1 such that χ̃orb,R(Z1, . . . ,Z`;M,d, ε) >
−∞ and

lim sup
d→∞

1

d2
χ̃orb,R(Z1, . . . ,Z`;M,d, ε) = lim

l→∞

1

d2
l

χ̃orb,R(Z1, . . . ,Z`;M,dl, ε).
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For each l ∈ N, we can choose ((Ak,l)
`
k=1, (Bk,l)

`
k=1) ∈

(∏`
k=1(M sa

dl
)nk

R

)
×
(∏`

k=1(M sa
dl

)mk

R

)
such that

χ̃orb,R(Z1, . . . ,Z`;M,dl, ε)− 1 ≤ log
(
γ⊗`dl

(
Γorb(Z1, . . . ,Z` : (Ak,l)

`
k=1, (Bk,l)

`
k=1;M,dl, ε)

))
.

Therefore, if δl ∈ P
((∏`

k=1(M sa
dl

)nk

)
×
(∏`

k=1(M sa
dl

)mk

))
is the point-mass measure at ((Ak,l)

`
k=1, (Bk,l)

`
k=1),

then Lemma 5.3 implies that

χ̃orb,R(Z1, . . . ,Z`;M,dl, ε)− 1

≤ log
(
γ⊗`dl

(
Γorb(Z1, . . . ,Z` : (Ak,l)

`
k=1, (Bk,l)

`
k=1;M,dl, ε)

))
= log

(∫
(∏`

k=1(Msa
dl

)
nk
R

)
×
(∏`

k=1(Msa
dl

)
mk
R

) γ⊗`dl (Γorb(Z1, . . . ,Z` : (Ak,l)
`
k=1, (Bk,l)

`
k=1;M,dl, ε)

)
dδl

)
= log

(
(γ⊗`dl ⊗ δl)

(
Φ−1
dl

(ΓR(X1, . . . ,X` tY1, . . . ,Y`;M,dl, ε))
))

= χorb,R(Z1, . . . ,Z`;M,dl, ε; δl)

≤ χorb,R(Z1, . . . ,Z`;M,dl, ε).

Hence

lim sup
d→∞

1

d2
χ̃orb,R(Z1, . . . ,Z`;M,d, ε) = lim

l→∞

1

d2
l

χ̃orb,R(Z1, . . . ,Z`;M,dl, ε)

≤ lim sup
l→∞

1

d2
l

(χorb,R(Z1, . . . ,Z`;M,dl, ε) + 1)

≤ χorb,R(Z1, . . . ,Z`;M, ε).

Thus the result follows. �

Remark 5.5. We note that [29] has an alternate characterization of the orbital free entropy in the case that
the von Neumann algebras generated by each collection of left operators is hyperfinite. Unfortunately, the
arguments for such a characterization break down in the case of orbital bi-free entropy due to the fact that
we are no longer dealing with a tracial state, so Jung’s lemma [19, Lemma 2.9] no longer applies. To find
an analogue of this result, one would need to be able to change all right operators to left ones while still
maintaining hyperfiniteness, which does not seem like a natural assumption.

However, many basic properties of the orbital free entropy extend to the bi-free setting. To begin, we have
the following lemma showing the independence of R.

Lemma 5.6. Let ρ = max{‖Xi,k‖ | 1 ≤ i ≤ nk, 1 ≤ k ≤ `} ∪ {‖Yj,k‖ | 1 ≤ j ≤ mk, 1 ≤ k ≤ `}). For any
R > ρ, we have

χorb(Z1, . . . ,Z`) = χorb,R(Z1, . . . ,Z`)

including the case R =∞.

Proof. Fix R > ρ. Clearly

χorb,∞(Z1, . . . ,Z`) ≥ χorb,R(Z1, . . . ,Z`)

by definitions so it suffices to prove the other inequality. To begin, define f : R→ [−1, 1] by

f(z) =


z if z ∈ [−1, 1]

−1 if z < −1

1 if z > 1

,

and let fR : R→ [−R,R] by fR(z) = Rf
(
z
R

)
.

Fix M ∈ N and ε > 0. Let K = max{(ρ2M + 1)
1

2M , R} ≥ 1, and choose 0 < ε0 <
ε
2 and M ′ ∈ N even with

M ′ ≥ 2M so that

R

(( ρ
R

)M ′
+

ε0
RM ′

) 1
M

<
ε

2MKM
.

Let (Ak,Bk) ∈ Γ∞(Xk tYk;M ′, d, ε0) be arbitrary. Then τd(A
M ′′

k,i ) < ϕ(XM ′′

k,i ) + ε0 ≤ ρM
′′

+ ε0 for all

1 ≤ i ≤ nk and M ′′ even and not greater than M ′. Thus, if for p ∈ [1,∞), ‖·‖p denotes the p-norm on Md
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with respect to τd, we have that ‖Ak,i‖p ≤ ‖Ak,i‖M ′ ≤ K for all p ≤M ′, and in particular, for all p ≤ 2M .

Thus, if a1, a2, . . . , ad are the eigenvalues of Ak,i counting multiplicities, we have for p < M that

‖Ak,i − fR(Ak,i)‖p ≤ ‖Ak,i − fR(Ak,i)‖M ≤ R

1

d

∑
|aq|>R

∣∣∣aq
R

∣∣∣M
 1

M

≤ R

1

d

∑
|aq|>R

∣∣∣aq
R

∣∣∣M ′
 1

M

≤ R

(
τd(A

M ′

k,i )

RM ′

) 1
M

≤ R
(( ρ

R

)M ′
+

ε0
RM ′

) 1
M

<
ε

2MKM
.

Moreover, clearly ‖fR(Ak,i)‖p ≤ R ≤ K for every p, k, and i, and identical inequalities holds for the Bk,j ’s.

The above implies if (Uk)`k=1 ∈ Γorb(Z1, . . . ,Z`; (Ak)`k=1, (Bk)`k=1;M ′, d, ε0), then for all p, q with p+ q ≤
M , for all k1, . . . , kp, l1, . . . , lq ∈ {1, . . . , `}, for all valid indices i1, . . . , ip, j1, . . . , jq, we have∣∣∣τd (U∗k1fR(Ak1,i1)Uk1 · · ·U∗kpfR(Akp,ip)UkpU

∗
lqfR(Blq,jl)Ulq · · ·U∗l1fR(Bl1,j1)Ui1

)
−ϕ

(
Xk1,i1 · · ·Xkp,ipYl1,j1 · · ·Ylq,jq

)∣∣
≤
∣∣∣τd (U∗k1fR(Ak1,i1)Uk1 · · ·U∗kpfR(Akp,ip)UkpU

∗
lqfR(Blq,jl)Ulq · · ·U∗l1fR(Bl1,j1)Ui1

)
−τd

(
U∗k1Ak1,i1Uk1 · · ·U

∗
kpAkp,ipUkpU

∗
lqBlq,jlUlq · · ·U

∗
l1Bl1,j1Ui1

)∣∣∣
+
∣∣∣τd (U∗k1Ak1,i1Uk1 · · ·U∗kpAkp,ipUkpU∗lqBlq,jlUlq · · ·U∗l1Bl1,j1Ui1)− ϕ (Xk1,i1 · · ·Xkp,ipYl1,j1 · · ·Ylq,jq

)∣∣∣
≤

p∑
x=1

Kp+q
∥∥U∗kx(fR(Akx,ix)−Akx,ix)Ukx

∥∥
p+q

+

q∑
y=1

Kp+q
∥∥∥U∗ky (fR(Bky,jy )−Bky,jy )Uky

∥∥∥
p+q

+ ε0

≤MKM ε

2MKM
+
ε

2
= ε.

where the second inequality if shown by the generalized Hölder’s inequality for matrices. Hence

Γorb(Z1, . . . ,Z`; (Ak)`k=1, (Bk)`k=1;M ′, d, ε0) ⊆ Γorb(Z1, . . . ,Z`; (fR(Ak))`k=1, (fR(Bk))`k=1;M,d, ε)

thereby implying

χ̃orb,∞(Z1, . . . ,Z`;M
′, d, ε0) ≤ χ̃orb,R(Z1, . . . ,Z`;M,d, ε)

as ‖fR(Ak,i)‖ ≤ R and ‖fR(Bk,j)‖ ≤ R for all i, j, k. Hence Proposition 5.4 implies that

χorb,∞(Z1, . . . ,Z`) ≤ χorb,R(Z1, . . . ,Z`). �

Some basic properties of orbital bi-free entropy are readily established.

Proposition 5.7. The following hold:

(1) χorb(Z1, . . . ,Z`) = −∞ if X1, . . . ,X` tY1, . . . ,Y` do not have finite-dimensional approximants.
(2) For a single system of variables Z, χorb(Z) = 0 if Z has finite-dimensional approximants, and

χorb(Z) = −∞ otherwise.
(3) χorb(Z1, . . . ,Z`) ≤ χorb(Z1, . . . ,Zq) + χorb(Zq+1, . . . ,Z`) for all 1 ≤ q < `.

Proof. Note (1) follows as if X1, . . . ,X` tY1, . . . ,Y` do not have finite-dimensional approximants, then

ΓR(X1, . . . ,X` tY1, . . . ,Y`;M,d, ε) = ∅

for sufficiently large M , sufficiently small ε, and for all d (see Remark 4.2). Note (2) follows as the U(d)
section of Φ−1

d (ΓR(Z;M,d, ε)) is U(d) if ΓR(Z;M,d, ε) 6= ∅ and is ∅ if ΓR(Z;M,d, ε) = ∅. Finally, (3) holds as
if an `-tuple of unitaries works in the first step of the definition of χorb(Z1, . . . ,Z`), then the first q work in
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the first step of the definition for χorb(Z1, . . . ,Zq) and the remainder work in the first step of the definition
for χorb(Zq+1, . . . ,Z`). �

We now examine the behaviour of orbital bi-free entropy under transformations of each family of variables.
Much like in Section 3, we restrict our attention to transformations which do not mix left and right variables.
We nonetheless obtain a result similar to that of [29, Theorem 2.6 (6)], whose proof we adapt.

Proposition 5.8. Suppose that X′k ⊂W ∗(Xk) and Y′k ⊂W ∗(Yk) are tuples of self-adjoint operators, and
let Z′k denote the system X′k tY′k with with the X′k viewed as left operators, and the Y′k viewed as right
operators. Then

χorb(Z1, . . . ,Z`) ≤ χorb(Z′1, . . . ,Z
′
`).

In particular, χorb(Z1, . . . ,Zn) depends only on the pairs (W ∗(Xk),W ∗(Yk)) of von Neumann subalgebras of
A.

Proof. Our approach will be to establish an inclusion of appropriate Γorb sets. Therefore, let M ∈ N and
δ > 0 be arbitrary.

Since we are working in a tracially bi-partite setting, we have by assumption that ϕ|W∗(Xk) and ϕ|W∗(Yk)

are tracial states. We may therefore invoke the Kaplansky density theorem to find polynomial approximations

Pk and Qk of X′k and Y′k in C 〈Xk〉 and C 〈Yk〉 respectively, so that each ‖Pkj(Xk)‖ ≤
∥∥∥X ′kj∥∥∥ and

‖Qkj(Yk)‖ ≤
∥∥∥Y ′kj∥∥∥, and so that

ϕ
(∣∣Pkj(Xk)−X ′kj

∣∣) , ϕ (∣∣Qkj(Yk)− Y ′kj
∣∣) < δ

2MLM−1

for any fixed L with 1,
∥∥∥X ′kj∥∥∥ ,∥∥∥Y ′kj∥∥∥ ≤ L for all k and j in the appropriate ranges.

As the Pk and Qk are polynomials, there are M ′ ∈ N and δ′ > 0 so that if
(

(Ak)
`
k=1 , (Bk)

`
k=1

)
∈

Γ∞ (X1, . . . ,X` tY1, . . . ,Y`;M
′, d, δ′), then∣∣∣∣τd (Pk1j1(Ak1) · · ·Pksjs(Aks)Qktjt(Bkt) · · ·Qks+1js+1(Bks+1)

)
− ϕ

(
Pk1j1(Xk1) · · ·Pksjs(Xks)Qks+1js+1

(Yks+1
) · · ·Qktjt(Ykt)

) ∣∣∣∣ < δ

2

for every appropriate selection of indices with t ≤ M . Note in particular that M ′, δ′ may be chosen
independently of d.

But now, given
(

(Ak)
`
k=1 , (Bk)

`
k=1

)
∈ Γ∞ (X1, . . . ,X` tY1, . . . ,Y`;M

′, d, δ′), we have the estimates∣∣∣τd (Pk1j1(Ak1) · · ·Pksjs(Aks)Qktjt(Bkt) · · ·Qks+1js+1(Bks+1)
)
− ϕ

(
X′k1j1 · · ·X

′
ksjsY

′
ks+1js+1

· · ·Y′ktjt
)∣∣∣

<
δ

2
+
∣∣∣ϕ (Pk1j1(Xk1) · · ·Pksjs(Xks)Qks+1js+1

(Yks+1
) · · ·Qktjt(Ykt)

)
− ϕ

(
X′k1j1 · · ·X

′
ksjsY

′
ks+1js+1

· · ·Y′ktjt
)∣∣∣

≤ δ

2
+ tLt−1 max

j,k

(
ϕ
(∣∣Pkj(Xk)−X ′kj

∣∣) , ϕ (∣∣Qkj(Yk)− Y ′kj
∣∣))

< δ

Consequently, ((Pk(Ak),Qk(Bk)))k ∈ Γ∞ (X′1, . . . ,X
′
` tY′1, . . . ,Y

′
`;M,d, δ). Since conjugating by unitaries

commutes with the application of the polynomials, it follows that

Γorb(Z1, . . . ,Z` : (Ak)`k=1, (Bk)`k=1;M ′, d, δ′) ⊆ Γorb(Z′1, . . . ,Z
′
` : (Pk(Ak))`k=1, (Qk(Bk))`k=1;M,d, δ),

and so

χ̃orb,∞(Z1, . . . ,Z`;M
′, d, δ′) ≤ χ̃orb,∞(Z′1, . . . ,Z

′
`;M,d, δ).

The desired inequality now follows from Proposition 5.4 and Lemma 5.6. �

Like with the microstate bi-free entropy, the orbital bi-free entropy also is upper semi-continuous with
respect to distributional limits.
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Proposition 5.9. If X
(l)
1 , . . . ,X

(l)
` tY

(l)
1 , . . . ,Y

(l)
` converges in distribution to X1, . . . ,X` tY1, . . . ,Y` as

in the sense of Proposition 2.11, then

χorb,R(Z1, . . . ,Z`) ≥ lim sup
l→∞

χorb,R(Z
(l)
1 , . . . ,Z

(l)
` )

for every R > 0 including R =∞. Therefore, if there exists a uniform operator norm bound of these operators
over l, we have

χorb(Z1, . . . ,Z`) ≥ lim sup
l→∞

χorb(Z
(l)
1 , . . . ,Z

(l)
` )

Proof. As in the proof of Proposition 2.11, our convergence assumption tells us that all moments are converging
to the correct values, and so for any M ∈ N and ε > 0 we have for large enough l that

ΓR

(
X

(l)
1 , . . . ,X

(l)
` tY

(l)
1 , . . . ,Y

(l)
` ;M,d, ε

)
⊆ ΓR(X1, . . . ,X` tY1, . . . ,Y`;M,d, 2ε),

since the sets involved see only finitely many moments. Hence for any µ ∈ P
((∏`

k=1(M sa
d )nk

)
×
(∏`

k=1(M sa
d )mk

))
,

we have that

χorb,R

(
Z

(l)
1 , . . . ,Z

(l)
` ;M,d, ε;µ

)
≤ χorb,R (Z1, . . . ,Z`;M,d, 2ε;µ)

≤ χorb,R (Z1, . . . ,Z`;M,d, 2ε) .

By taking the appropriate sups, limsup, and infs, we obtain

χorb,R(Z1, . . . ,Z`) ≥ lim sup
l→∞

χorb,R(Z
(l)
1 , . . . ,Z

(l)
` )

for every R > 0 including R =∞. The remaining equation then follows from Lemma 5.6. �

Of greater interest is how the orbital bi-free entropy behaves with respect to bi-free collections. In particular,
the following proof uses similar ideas as those used in Lemma 4.6 and Theorem 4.7.

Theorem 5.10. If Z1 and X2, . . . ,X` tY2, . . . ,Y` are as described above and are bi-free with respect to ϕ,
then

χorb(Z1, . . . ,Z`) = χorb(Z1) + χorb(Z2, . . . ,Z`).

Proof. First, suppose that Z1 does not have finite-dimensional approximants. Then X1, . . . ,X` tY1, . . . ,Y`

also does not have finite-dimensional approximants, so the definition of the orbital bi-free entropy implies that

χorb(Z1, . . . ,Z`) = −∞ = χorb(Z1) = χorb(Z1) + χorb(Z2, . . . ,Z`).

Hence we may assume that Z1 has finite-dimensional approximants so χorb(Z1) = 0 by Proposition 5.7.
Next, suppose that χorb(Z2, . . . ,Z`) = −∞. Since Proposition 5.7 implies then that χorb(Z1, . . . ,Z`) ≤

−∞, the equation still holds. Hence we may assume that χorb(Z1, . . . ,Z`) > −∞. Furthermore, as
χorb(Z1, . . . ,Z`) ≤ χorb(Z1) + χorb(Z2, . . . ,Z`) by Proposition 5.7, it suffices to prove the other inequality
with χorb(Z1) = 0.

Fix R > max({1} ∪ {‖Xi,k‖ | 1 ≤ i ≤ nk, 1 ≤ k ≤ `} ∪ {‖Yj,k‖ | 1 ≤ j ≤ mk, 1 ≤ k ≤ `}) and fix M ∈ N
and ε > 0. By the same argument as at the start of the proof of Lemma 4.6, there exists an ε1 > 0 such that if

• (A1,B1) ∈ ΓR(X1 tY1;M,d, ε1),
• ((Ak)`k=2, (Bk)`k=2) ∈ ΓR(X2, . . . ,X` tY2, . . . ,Y`;M,d, ε1), and
• (A1,B1) and ((Ak)`k=2, (Bk)`k=2) are (M, ε1)-free,

then ((Ak)`k=1, (Bk)`k=1) ∈ ΓR(X1, . . . ,X` tY1, . . . ,Y`;M,d, ε).
Since by Lemma 5.6 we have that χorb,R(Z2, . . . ,Z`) = χorb(Z2, . . . ,Z`) > −∞, Proposition 5.4 implies

there exists an increasing sequence (dl)l≥1 such that χ̃orb,R(Z2, . . . ,Z`;M,dl, ε1) > −∞ and

lim sup
d→∞

1

d2
χ̃orb,R(Z2, . . . ,Z`;M,d, ε1) = lim

l→∞

1

d2
l

χ̃orb,R(Z2, . . . ,Z`;M,dl, ε1).

For each l ∈ N, choose ((Ak,l)
`
k=2, (Bk,l)

`
k=2) ∈

(∏`
k=2(M sa

dl
)nk

R

)
×
(∏`

k=2(M sa
dl

)mk

R

)
such that

−∞ < χ̃orb,R(Z2, . . . ,Z`;M,dl, ε1)− 1 ≤ log
(
γ⊗`−1
dl

(
Γorb(Z2, . . . ,Z` : (Ak,l)

`
k=2, (Bk,l)

`
k=2;M,dl, ε1)

))
.

Note this implies γ⊗`−1
dl

(
Γorb(Z2, . . . ,Z` : (Ak,l)

`
k=2, (Bk,l)

`
k=2;M,dl, ε1)

)
> 0. Furthermore, as Z1 has finite-

dimensional approximants, for l sufficiently large we may choose a fixed (A1,l,B1,l) ∈ ΓR(X1 tY1;M,dl, ε1).
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To simplify notation, let

Ψ(M,dl, ε) = Γorb(Z1, . . . ,Z`; (Ak,l)
`
k=1, (Bk,l)

`
k=1;M,dl, ε)

Θ(M,dl, ε1) = Γorb(Z2, . . . ,Z`; (Ak,l)
`
k=2, (Bk,l)

`
k=2;M,dl, ε1)

Ω(M,dl, ε1) = {(Uk)`k=1 ∈ U(dl)
` | (U∗1 A1,lU1, U

∗
1 B1,lU1), ((U∗kAk,l)

`
k=2Uk, U

∗
k (Bk,l)

`
k=2Uk) are (M, ε1)-free},

and let µdl be the probability measure obtained by restricting and renormalizing γ⊗`−1 to Θ(M,dl, ε1).
Notice that by the choice of ε1 and the conditions defining the sets in question, we have

(U(dl)×Θ(M,dl, ε1)) ∩ Ω(M,dl, ε1) ⊆ Ψ(M,dl, ε).

By Lemma 4.4 (with p = 1) there exists a D0 ∈ N such that

γdl({U1 ∈ U(dl) | (Uk)`k=1 ∈ Ω(M,dl, ε1)}) > 1

2

for every dl ≥ D0 and every (Uk)`k=2 ∈ U(dl)
`−1. Hence for all dl ≥ D0 we have that

γ⊗`dl (Ψ(M,dl, ε))

γ⊗`−1
dl

(Θ(M,dl, ε1))
≥ (γdl ⊗ µdl)(Ψ(M,dl, ε))

≥ (γdl ⊗ µdl)((U(dl)×Θ(M,dl, ε1)) ∩ Ω(M,d`, ε1))

=

∫
Θ(M,dl,ε1)

γdl({U1 ∈ U(dl) | (Uk)`k=1 ∈ Ω(M,d`, ε1)}) dµdl((Uk)`k=2) >
1

2

by Fubini’s Theorem. Hence

χ̃orb,R(Z2, . . . ,Z`;M,dl, ε1) ≤ 1 + log
(
γ⊗`−1
dl

(Θ(M,dl, ε1))
)

< 1 + log(2) + log
(
γ⊗`dl (Ψ(M,dl, ε))

)
≤ 1 + log(2) + χ̃orb,R(Z1, . . . ,Z`;M,dl, ε)

whenever dl ≥ D0. Thus as χ̃orb,R(Z2, . . . ,Z`;M,d, ε1) from Proposition 5.4 decreases as M increases and as
ε1 decreases, we have

χorb,R(Z2, . . . ,Z`) ≤ lim sup
d→∞

1

d2
χ̃orb,R(Z2, . . . ,Z`;M,d, ε1)

= lim
l→∞

1

d2
l

χ̃orb,R(Z2, . . . ,Z`;M,dl, ε1)

≤ lim sup
l→∞

1

d2
l

(1 + log(2) + χ̃orb,R(Z1, . . . ,Z`;M,dl, ε))

≤ lim sup
d→∞

1

d2
χ̃orb,R(Z1, . . . ,Z`;M,d, ε).

Hence Proposition 5.4 implies that χorb,R(Z2, . . . ,Z`) ≤ χorb,R(Z1, . . . ,Z`). �

We are finally able to compute the orbital bi-free entropy of certain collections. In particular, in the
following case the orbital bi-free entropy is maximized.

Corollary 5.11. If Z1, Z2, . . ., Z` are bi-free with respect to ϕ and individually have finite-dimensional
approximants, then χorb(Z1, . . . ,Z`) = 0.

Proof. This immediately follows from Theorem 5.10 and part (2) of Proposition 5.7. �

To finish off this section, we note an improvement to the subadditivity result for microstate bi-free entropy.
In particular, the following gives us a smaller upper bound for the joint microstate bi-free entropy in terms of
the individual microstate bi-free entropies.

Theorem 5.12. With the notation used throughout this section, we have that

χ(X1, . . . ,X` tY1, . . . ,Y`) ≤ χorb(Z1, . . . ,Z`) +
∑̀
k=1

χ(Zk)
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Proof. First, if χ(Zk) = −∞ for some k, then the result follows from Proposition 2.5. Hence we may assume
that χ(Zk) > −∞ for all k and thus Zk has finite-dimensional approximants for all k by Remark 4.2.

Fix R > max({1} ∪ {‖Xi,k‖ | 1 ≤ i ≤ nk, 1 ≤ k ≤ `} ∪ {‖Yj,k‖ | 1 ≤ j ≤ mk, 1 ≤ k ≤ `}), M ∈ N,
and ε > 0. As Zk has finite-dimensional approximants for all k, there exists an D0 ∈ N such that
ΓR(Zk;M,d, ε) 6= ∅ for all d ≥ D0 and 1 ≤ k ≤ `.

Define σ :
∏`
k=1 ((Msa

d )nk × (Msa
d )mk)→

(∏`
k=1(M sa

d )nk

)
×
(∏`

k=1(M sa
d )mk

)
by

σ
(
((Ak,Bk))`k=1

)
= ((Ak)`k=1, (Bk)`k=1).

Since each ΓR(Zk;M,d, ε) is non-empty and open, we know the Lebesgue measure of ΓR(Zk;M,d, ε) is non-
zero. Therefore, as σ preserves the Lebesgue measure λ⊗n1+···+n`+m1+···+m`

d under the natural isomorphism

with the domain and co-domain, we have that σ
(∏`

k=1 ΓR(Zk;M,d, ε)
)

has positive Lebesgue measure. Let

νR(M,d, ε) denote the probability measure obtained by renormalizing λ⊗n1+···+n`+m1+···+m`

d after restricting

to σ
(∏`

k=1 ΓR(Zk;M,d, ε)
)

when d ≥ D0; that is

νR(M,d, ε) =
1∏`

k=1 λ
⊗nk+mk

d (ΓR(Zk;M,d, ε))
λ⊗n1+···+n`+m1+···+m`

d

∣∣
σ(
∏`

k=1 ΓR(Zk;M,d,ε)) .

Since

ΓR(X1, . . . ,X` tY1, . . . ,Y`;M,d, ε) ⊆ σ

(∏̀
k=1

ΓR(Zk;M,d, ε)

)
,

we have by Definition 5.1 that for all d ≥ D0

χorb,R(Z1, . . . ,Z`;M,d, ε) ≥ χorb,R(Z1, . . . ,Z`;M,d, ε; νR(M,d, ε))

= log
((
γ⊗`d ⊗ λ

⊗n1+···+n`+m1+···+m`

d

) (
Φ−1
d (ΓR(X1, . . . ,X` tY1, . . . ,Y`;M,d, ε)

))
−
∑̀
k=1

log
(
λ⊗nk+mk

d (ΓR(Zk;M,d, ε))
)
.

Thus

log
((
γ⊗`d ⊗ λ

⊗n1+···+n`+m1+···+m`

d

) (
Φ−1
d (ΓR(X1, . . . ,X` tY1, . . . ,Y`;M,d, ε)

))
≤ χorb,R(Z1, . . . ,Z`;M,d, ε) +

∑̀
k=1

log
(
λ⊗nk+mk

d (ΓR(Zk;M,d, ε))
)

for sufficiently large d for every M ∈ N and ε > 0.
For a fixed (Uk)`k=1 ∈ U(d)`, notice that the corresponding section of Φ−1

d (ΓR(X1, . . . ,X`tY1, . . . ,Y`;M,d, ε)),
namely

{((Ak)`k=1, (Bk)`k=1) | Φd((Uk)`k=1, (Ak)`k=1, (Bk)`k=1) ∈ ΓR(X1, . . . ,X` tY1, . . . ,Y`;M,d, ε)},

is exactly

Φd
(
(U∗k )`k=1,ΓR(X1, . . . ,X` tY1, . . . ,Y`;M,d, ε)

)
.

Hence Fubini’s theorem and the fact that Lebesgue measure is unitarily-invariant together imply that(
γ⊗`d ⊗ λ

⊗n1+···+n`+m1+···+m`

d

) (
Φ−1
d (ΓR(X1, . . . ,X` tY1, . . . ,Y`;M,d, ε)

)
=

∫
U(d)`

λ⊗n1+···+n`+m1+···+m`

d

(
Φd
(
(U∗k )`k=1,ΓR(X1, . . . ,X` tY1, . . . ,Y`;M,d, ε)

))
dγ⊗`d

=

∫
U(d)`

λ⊗n1+···+n`+m1+···+m`

d (ΓR(X1, . . . ,X` tY1, . . . ,Y`;M,d, ε)) dγ⊗`d

= λ⊗n1+···+n`+m1+···+m`

d (ΓR(X1, . . . ,X` tY1, . . . ,Y`;M,d, ε)) .
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Hence

log
(
λ⊗n1+···+n`+m1+···+m`

d (ΓR(X1, . . . ,X` tY1, . . . ,Y`;M,d, ε))
)

≤ χorb,R(Z1, . . . ,Z`;M,d, ε) +
∑̀
k=1

log
(
λ⊗nk+mk

d (ΓR(Zk;M,d, ε))
)

so

1

d2
log
(
λ⊗n1+···+n`+m1+···+m`

d (ΓR(X1, . . . ,X` tY1, . . . ,Y`;M,d, ε))
)

+
1

2

(∑̀
k=1

nk +mk

)
log(d)

≤ 1

d2
χorb,R(Z1, . . . ,Z`;M,d, ε) +

∑̀
k=1

1

d2
log
(
λ⊗nk+mk

d (ΓR(Zk;M,d, ε))
)

+
1

2
(nk +mk) log(d).

Now, taking the appropriate limits, the result follows. �

We note that inequality in Theorem 5.12 need not be an equality. Indeed [30] shows that the inequality
can be strict in the free setting.

6. A Characterization of Bi-Freeness

The goal of this section is to develop another characterization of bi-freeness for specific tracially bi-partite
systems. To be specific, using the same notation as Section 5, the main goal of this section is to prove the
following, a bi-free version of [14, Theorem 3.1].

Theorem 6.1. Let Z1, Z2, . . ., Z` be such that(⋃̀
k=1

{Xk,i}nk
i=1,

⋃̀
k=1

{Yk,j}mk
j=1

)
is a tracially bi-partite system. Then Z1, Z2, . . ., Z` are bi-free and individually have finite-dimensional
approximants if and only if χorb(Z1, . . . ,Z`) = 0.

Of course, the only if direction immediately follows from Corollary 5.11, so the work of this section is to
establish the other direction. Moreover, since finite orbital bi-free entropy immediately implies the existence
of microstates, our real task is to deduce bi-free independence. Before we get to that, we point out the
following corollary, which follows immediately by combining Theorem 6.1 with the results of Section 5.

Corollary 6.2. Let Z1, Z2, . . ., Z` be such that χ(Zk) > −∞ for all 1 ≤ k ≤ `. Suppose further that(⋃̀
k=1

{Xk,i}nk
i=1,

⋃̀
k=1

{Yk,j}mk
j=1

)
is a tracially bi-partite system. If

χ(X1, . . . ,X` tY1, . . . ,Y`) =
∑̀
k=1

χ(Zk),

then Z1, Z2, . . ., Z` are bi-free.

Proof. As χ(Zk) > −∞ for all 1 ≤ k ≤ `, we know from Remark 4.2 that Z1, Z2, . . ., Z` individually have
finite-dimensional approximants. Furthermore, the assumption of additivity of the microstate bi-free entropy
implies that

χ(X1, . . . ,X` tY1, . . . ,Y`) > −∞.
By Theorem 5.12 along with the assumption, we know that

χ(X1, . . . ,X` tY1, . . . ,Y`) ≤ χorb(Z1, . . . ,Z`) +
∑̀
k=1

χ(Zk)

= χorb(Z1, . . . ,Z`) + χ(X1, . . . ,X` tY1, . . . ,Y`).

Thus χorb(Z1, . . . ,Z`) ≥ 0. However, as χorb(Z1, . . . ,Z`) ≤ 0 by definition, we obtain that χorb(Z1, . . . ,Z`) =
0. Hence Theorem 6.1 implies that Z1, Z2, . . ., Z` are bi-free. �



24 IAN CHARLESWORTH AND PAUL SKOUFRANIS

The proof of Theorem 6.1 will follow immediately from Proposition 6.10, which is a Talagrand-like
inequality. Thus we devote the rest of the section to developing the necessary framework to state and prove
this proposition. We first need an analogue of the free Wasserstein metric from [5] for the following objects.

Definition 6.3. A quadruple (A,L,R, ϕ) is said to be a left-right, tracially bi-partite, C∗-non-commutative
probability space if (A, ϕ) is a C∗-non-commutative probability space, L and R are unital C∗-subalgebras of
A that commute with one another, and ϕ is tracial when restricted to L and when restricted to R.

By saying a tracially bi-partite system
(
{Xi}ni=1, {Yj}mj=1

)
is in a left-right, tracially bi-partite, C∗-non-

commutative probability space (A,L,R, ϕ), we mean {Xi}ni=1 ⊆ L and {Yj}mj=1 ⊆ R. Note any tracially
bi-partite system can be realized in a left-right, tracially bi-partite, C∗-non-commutative probability space.

Definition 6.4. Let
(
{Xi,1}ni=1, {Yj,1}mj=1

)
and

(
{Xi,2}ni=1, {Yj,2}mj=1

)
be tracially bi-partite systems in

left-right, tracially bi-partite, C∗-non-commutative probability spaces (A1,L1,R1, ϕ1) and (A2,L2,R2, ϕ2)
respectively. We define

W2

((
{Xi,1}ni=1, {Yj,1}mj=1

)
,
(
{Xi,2}ni=1, {Yj,2}mj=1

))
to be infimum of  n∑

i=1

∥∥X ′i,1 −X ′i,2∥∥2

2
+

m∑
j=1

∥∥Y ′j,1 − Y ′j,2∥∥2

2

 1
2

over all tracially bi-partite systems
(
{X ′i,1}ni=1, {Y ′j,1}mj=1

)
and

(
{X ′i,2}ni=1, {Y ′j,2}mj=1

)
in a left-right, tra-

cially bi-partite, C∗-non-commutative probability spaces (A,L,R, ϕ) such that
(
{Xi,k}ni=1, {Yj,k}mj=1

)
and(

{X ′i,k}ni=1, {Y ′j,k}mj=1

)
have the same ∗-distributions and individual operator norms for k = 1, 2, where ‖ · ‖2

denotes the 2-seminorm with respect to ϕ (note we may only have a seminorm as we are not restricting
ourselves to faithful states).

Remark 6.5. It is natural and necessary to ask whether one can find a left-right, tracially bi-partite,
C∗-non-commutative probability spaces (A,L,R, ϕ) as described in Definition 6.4 so that the infimum is over
a non-empty set. This is indeed the case by considering reduced free products. If one takes the reduced free
product Hilbert space (A1, ϕ1) ∗ (A2, ϕ2), we can let L1 and L2 act via the left regular representation on A1

and A2 respectively, and let R1 and R2 act via the right regular representation on A1 and A2 respectively.
These representations are ϕ-preserving ∗-homomorphism and thus preserve distributions and the operator
norms. Furthermore, the C∗-algebra L generated by the images of L1 and L2 commutes with the C∗-algebra
R generated by the images of R1 and R2. Finally, the reduced free product state is tracial on L and is tracial
on R by properties of the reduced free product (i.e. the free case). Of course, this is one reason why the
states in a left-right, tracially bi-partite, C∗-non-commutative probability space need not be faithful as the
work of [23] shows we would be greatly restricting the systems we can study in that the bi-free product of
faithful states need not be faithful.

Using Definition 6.4, we can consider a similar definition for ‘nice’ states.

Definition 6.6. Let A be a C∗-algebra and let L and R be unital subalgebras of A that commute with one
another. Suppose that A is generated by L and R, which in turn are generated by prescribed sets {Xi}ni=1

and {Yj}mj=1 respectively.

Let CS(A,L,R) denote the set of all states (positive unital linear functionals of norm one) that are tracial
when restricted to L and are tracial when restricted to R. We define

W2(ϕ1, ϕ2) = W2

((
{Xi,1}ni=1, {Yj,1}mj=1

)
,
(
{Xi,2}ni=1, {Yj,2}mj=1

))
where

(
{Xi,k}ni=1, {Yj,k}mj=1

)
denote

(
{Xi}ni=1, {Yj}mj=1

)
in (A,L,R, ϕk) for k = 1, 2. Note that W2 depends

on the choice of generating set, but we leave this implicit.
Given a state ϕ ∈ CS(A,L,R), let us denote by ϕbi-free

Z1,...,Z`
∈ CS(A,L,R) the state whose marginals on

Z1, . . . ,Z` agree with those of ϕ, so that the families Z1, . . . ,Z` are bi-free.

Like the free Wasserstein metric from [5], the function W2 has some nice properties.

Proposition 6.7. The bi-free analogue of the Wasserstein metric is a semimetric on the collection of
tracially bi-partite systems with equal numbers of left variables and equal numbers of right variables, and is a
semimetric CS(A,L,R).
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Proof. The reasons that

W2

((
{Xi,1}ni=1, {Yj,1}mj=1

)
,
(
{Xi,2}ni=1, {Yj,2}mj=1

))
= 0

implies
(
{Xi,1}ni=1, {Yj,1}mj=1

)
and

(
{Xi,2}ni=1, {Yj,2}mj=1

)
have the same distribution and the reasons that

W2(ϕ1, ϕ2) = 0 implies ϕ1 = ϕ2 both follow from the facts that the operator norms of the representations
in Definition 6.4 are bounded, the left and right algebras commute with each other, all linear functionals
considered are states, the traciality of the states on the individual left and right algebras, and the definition of
W2. Indeed, for an example computation, with terms as in Definition 6.4 (where all operator are self-adjoint),
notice that∣∣ϕ(X ′1,1X

′
2,1Y

′
1,1)− ϕ(X ′1,2X

′
2,1Y

′
1,1)
∣∣ ≤ ϕ(1)ϕ

(
Y ′1,1X

′
2,1(X ′1,1 −X ′1,2)(X ′1,1 −X ′1,2)X ′2,1Y

′
1,1

) 1
2

= ϕ
(
X ′2,1(X ′1,1 −X ′1,2)Y ′1,1Y

′
1,1(X ′1,1 −X ′1,2)X ′2,1

) 1
2

≤
∥∥Y ′1,1∥∥ϕ (X ′2,1(X ′1,1 −X ′1,2)(X ′1,1 −X ′1,2)X ′2,1

) 1
2

=
∥∥Y ′1,1∥∥ϕ ((X ′1,1 −X ′1,2)X ′2,1X

′
2,1(X ′1,1 −X ′1,2)

) 1
2

≤
∥∥Y ′1,1∥∥∥∥X ′2,1∥∥∥∥X ′1,1 −X ′1,2∥∥2

where the first equality is left-right commutation, and the second equality is traciality on the left. Using
telescoping sums along with the bounds on the operator norms, the fact that W2 is 0 and thus we can find(
{X ′i,1}ni=1, {Y ′j,1}mj=1

)
and

(
{X ′i,2}ni=1, {Y ′j,2}mj=1

)
as in Definition 6.4 with arbitrarily small 2-seminorms, we

can show the difference in the distribution of any monomial is as small as we desire and thus equal. The
remaining properties of a semimetric are trivial to verify. �

Remark 6.8. Unfortunately we do not know whether or not W2 is a metric. The problem with trying to
repeat the proof of [5] is that there is no current bi-free product that enables one to amalgamate the left
operators over one subalgebra and the right operators over another non-isomorphic subalgebra; that is, [7]
amalgamates over a copy of an algebra contained in both the left and right operators. This creates a problem
with trying to use the bi-free product construction from Remark 6.5 to take two different pairs and construct
a left-right, tracially bi-partite, C∗-non-commutative probability space containing all three in a way that the
both pairs are identified in the appropriate way. In particular, positivity becomes an issue.

It would also be nice to generalize the above to non-bi-partite systems. However, as we are dealing with
seminorms, it does appear difficult to even get a semimetric considering the current proof of Proposition 6.7.

Fortunately for the discussions in this paper, Proposition 6.7 along with the following result are enough.

Proposition 6.9. Given sequences (ϕ1,k)k≥1 and (ϕ2,k)k≥1 in CS(A,L,R) that converge weak∗ to ϕ1 and
ϕ2 in CS(A,L,R) respectively, we have

lim inf
k→∞

W2(ϕ1,k, ϕ2,k) ≥W2(ϕ1, ϕ2).

Similarly, suppose
((
{Xi,1,k}ni=1, {Yj,1,k}mj=1

))
k≥1

and
((
{Xi,2,k}ni=1, {Yj,2,k}mj=1

))
k≥1

are tracially bi-

partite systems in left-right, tracially bi-partite, C∗-non-commutative probability spaces (A1,L1,R1, ϕ1) and
(A2,L2,R2, ϕ2) respectively that converge in distributions to

(
{Xi,1}ni=1, {Yj,1}mj=1

)
and

(
{Xi,2}ni=1, {Yj,2}mj=1

)
in (A1,L1,R1, ϕ1) and (A2,L2,R2, ϕ2) respectively and for which there is a uniform bound on all operator
norms of all operators. Then

lim inf
k→∞

W2

((
{Xi,1,k}ni=1, {Yj,1,k}mj=1

)
,
(
{Xi,2,k}ni=1, {Yj,2,k}mj=1

))
≥W2

((
{Xi,1}ni=1, {Yj,1}mj=1

)
,
(
{Xi,2}ni=1, {Yj,2}mj=1

))
.

Proof. The result follows by considering Definitions 6.6 and 6.4 taking weak∗-limits and a compactness
argument, much like the free case in [5, Proposition 1.4]. �

With the analogue of the Wasserstein metric, we are now able to state our Talagrand-like inequality. This
is an adaptation to the (multivariate) bi-free setting of [14, Proposition 3.5], and our proof draws inspiration
from theirs (and their proof, in turn, draws inspiration from [16]). The proof will require several lemmas,
which are analogues of [14, Lemmas 3.2, 3.3, 3.4].
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Proposition 6.10. Let Z1, Z2, . . ., Z` be such that(⋃̀
k=1

{Xk,i}nk
i=1,

⋃̀
k=1

{Yk,j}mk
j=1

)
is a tracially bi-partite system, and suppose that χorb(Z1, . . . ,Z`) > −∞. Then

W2(ϕZ1,...,Z`
, ϕbi-free

Z1,...,Z`
) ≤ 4R0

√
n+m

√
−χorb(Z1, . . . ,Z`)

where n = max1≤k≤` nk, m = max1≤k≤`mk, and

R0 = max({‖Xi,k‖ | 1 ≤ i ≤ nk, 1 ≤ k ≤ `} ∪ {‖Yj,k‖ | 1 ≤ j ≤ mk, 1 ≤ k ≤ `}).

Proof. Let R > R0. By Proposition 5.4 (and Lemma lem:orbital-R-doesnt-matter), we can chose an increasing
sequence (dl)l≥1 of natural numbers such that

χ̃orb,R

(
Z1, . . . ,Z`; l, dl,

1

l

)
> −∞

for all l ∈ N and

χorb(Z1, . . . ,Z`) = lim
l→∞

1

d2
l

χ̃orb,R

(
Z1, . . . ,Z`; l, dl,

1

l

)
.

For each l ∈ N, choose ((Ak,l)
`
k=1, (Bk,l)

`
k=1) ∈

(∏`
k=1(M sa

dl
)nk

R

)
×
(∏`

k=1(M sa
dl

)mk

R

)
such that

−∞ < χ̃orb,R

(
Z1, . . . ,Z`; l, dl,

1

l

)
− 1 ≤ log

(
γ⊗`dl

(
Γorb

(
Z1, . . . ,Z` : (Ak,l)

`
k=1, (Bk,l)

`
k=1; l, dl,

1

l

)))
.

Note this implies γ⊗`dl
(
Γorb

(
Z1, . . . ,Z` : (Ak,l)

`
k=1, (Bk,l)

`
k=1; l, dl,

1
l

))
> 0.

Let SU(d) denote the special unitary group of Md, let Td := U(d) ∩ CId = TId denote the set of scalar
unitaries, and let γd,s denote the Haar measure on SU(d). We want to work with SU(d) instead of U(d) here
for technical reasons. Indeed this is possible as we note that if

(Uk)`k=1 ∈ Γorb

(
Z1, . . . ,Z` : (Ak,l)

`
k=1, (Bk,l)

`
k=1; l, dl,

1

l

)
then

(VkUk)`k=1 ∈ Γorb

(
Z1, . . . ,Z` : (Ak,l)

`
k=1, (Bk,l)

`
k=1; l, dl,

1

l

)
for all (Vk)`k=1 ∈ T`d. Hence it immediately follows that if

Γl = SU(d) ∩ Γorb

(
Z1, . . . ,Z` : (Ak,l)

`
k=1, (Bk,l)

`
k=1; l, dl,

1

l

)
then

γ⊗`dl

(
Γorb

(
Z1, . . . ,Z` : (Ak,l)

`
k=1, (Bk,l)

`
k=1; l, dl,

1

l

))
= γ⊗`dl,s(Γl)

(so χ̃orb,R

(
Z1, . . . ,Z`; l, dl,

1
l

)
≤ 1 + log

(
γ⊗`dl,s(Γl)

)
).

Let C[−R,R] denote the C∗-algebra of continuous functions on [−R,R] and let

BR =
(
∗`k=1C[−R,R]∗nk

)
⊗max

(
∗`k=1C[−R,R]∗mk

)
where ∗ denotes the universal free product of C∗-algebras. Thus, by properties of the universal free
product C∗-algebra and the maximal tensor product, there exists a homomorphism π : BR → A such
that π(xk,i) = Xk,i and π(yk,j) = Yk,j where xk,i is the identity function on C[−R,R] in the kth term of
∗`k=1C[−R,R]∗nk ⊆ BR and the ith term of C[−R,R]∗nk , and yk,j is the identity function on C[−R,R] in
the kth term of ∗`k=1C[−R,R]∗mk and the jth term of C[−R,R]∗mk . Consequently, if ϕZ1,...,Z`

= ϕ ◦ π,
L =

(
∗`k=1C[−R,R]∗nk

)
⊗ 1, and R = 1⊗

(
∗`k=1C[−R,R]∗mk

)
, then L and R are C∗-subalgebras of BR that

commute with each other and ϕZ1,...,Z`
∈ CS(BR,L,R).

For a fixed l, for each probability measure µ on SU(dl)
` we will define µ̂ ∈ CS(BR,L,R) as follows. For

each (Uk)`k=1 ∈ SU(d)` note there exists a ∗-homomorphism π(Uk)`k=1
from BR to B(Mdl) that sends xk,i to
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left multiplication by U∗kAk,i,lUk and sends yk,j to right multiplication by U∗kBk,j,lUk. We then desire to
define

µ̂(Z) =

∫
SU(dl)⊗`

τd`(π(Uk)`k=1
(Z)Idl) dµ.

The fact that µ̂ ∈ CS(BR,L,R) follows as π(Uk)`k=1
is a representation and τd` is a trace.

With the above in hand, we need several technical lemmas on the weak∗-convergence of certain elements
of CS(BR,L,R).

Lemma 6.11. Let µl = 1

γ⊗`
dl,s

(Γl)
γ⊗`dl,s

∣∣∣
Γl

. Then the weak∗ limit of (µ̂l)l≥1 is ϕZ1,...,Z`
.

Proof. Notice for any z = xk1,i1 · · ·xkp,ip ⊗ yl1,j1 · · · ylq,jq ∈ BR with p+ q ≤ l that

µ̂l(z)− ϕZ1,...,Z`
(z) =

1

γ⊗`dl,s(Γl)

∫
Γl

τdl

(
U∗k1Ak1,i1,lUk1 · · ·U

∗
kpAkp,ip,lUkpU

∗
lqBlq,iq,lUlq · · ·U

∗
l1Bl1,i1,lUl1

)
d(γ⊗`dl,s)

− ϕ(Xk1,i1 · · ·Xkp,ipYl1,j1 · · ·Ylq,jq )

which is at most 1
l in absolute value by the definition of Γl. Thus µ̂l(z) tends to ϕZ1,...,Z`

(z) as l tends to
infinity for any z ∈ BR thereby completing the proof. �

Lemma 6.12. The weak∗ limit of (γ̂⊗`dl,s)l≥1 is ϕbi-free
Z1,...,Z`

.

Proof. For each M ∈ N and ε, θ > 0, Lemma 4.4 implies if

Ω(M,dl, ε) = {(Uk)`k=1 ∈ U(dl)
` | (U∗1 A1,lU1, U

∗
1 B1,lU1), . . . , (U∗` A`,lU1, U

∗
1 B`,lU1) are (M, ε)-free}

then γ⊗`(Ω(M,d`, ε)) > 1− θ for dl sufficiently large.
Let τ∗∗`dl

denote the state on BR obtained as follows: take the reduced free product of `-copies of B(Mdl)
with respect to z 7→ τdl(z1d), and constructing the ∗-homomorphism π on BR that sends xk,i to the left
regular representation on the kth copy of B(Mdl) acting by left multiplication by Ak,i,l and sends yk,j to the
right regular representation on the kth copy of B(Mdl) acting by right multiplication by Bk,j,l. Then τ∗∗`dl

is

the vacuum state on the reduced free product composed with π. That is, τ∗∗`dl
is the distribution so that

{(Ak,l,Bk,l)}`k=1 are bi-free with respect to the left-right matrix multiplication actions of (Ak,l,Bk,l) onMdl .
Note this distribution does not change if {(Ak,l,Bk,l)}`k=1 is replaced with {(U∗kAk,lUk, U

∗
kBk,lUk)}`k=1.

Clearly (τ∗∗`dl
)l≥1 converges weak∗ to ϕbi-free

Z1,...,Z`
as

γ⊗`dl

(
Γorb

(
Z1, . . . ,Z` : (Ak,l)

`
k=1, (Bk,l)

`
k=1; l, dl,

1

l

))
> 0.

Therefore, since for all z = xk1,i1 · · ·xkp,ip ⊗ yl1,j1 · · · ylq,jq ∈ BR with p+ q ≤M we have

γ̂⊗`dl,s(z) =

∫
SU(dl)⊗`

τdl

(
U∗k1Ak1,i1,lUk1 · · ·U

∗
kpAkp,ip,lUkpU

∗
lqBlq,iq,lUlq · · ·U

∗
l1Bl1,i1,lUl1

)
dγ⊗`dl,s

=

∫
U(dl)⊗`

τdl

(
U∗k1Ak1,i1,lUk1 · · ·U

∗
kpAkp,ip,lUkpU

∗
lqBlq,iq,lUlq · · ·U

∗
l1Bl1,i1,lUl1

)
dγ⊗`dl ,

we have that for sufficiently large l that∣∣∣γ̂⊗`dl,s(z)− τ∗∗`dl
(z)
∣∣∣

≤
∫

Ω(M,dl,ε)

∣∣∣τdl (U∗k1Ak1,i1,lUk1 · · ·U∗kpAkp,ip,lUkpU∗lqBlq,iq,lUlq · · ·U∗l1Bl1,i1,lUl1)− τ∗∗`dl
(z)
∣∣∣ dγ⊗`dl

+

∫
U(dl)`\Ω(M,dl,ε)

∣∣∣τdl (U∗k1Ak1,i1,lUk1 · · ·U∗kpAkp,ip,lUkpU∗lqBlq,iq,lUlq · · ·U∗l1Bl1,i1,lUl1)− τ∗∗`dl
(z)
∣∣∣ dγ⊗`dl

≤ ε+ 2(R+ 1)Mθ

where the first inequality follows from (M, ε)-freeness (which gives the correct approximation of τ∗∗`dl
(z) by

the same arguments at the beginning of Lemma 4.6) and the second inequality follows from operator norm
estimates and our bound on γ⊗`(Ω(M,d`, ε)). As ε and θ can be made sufficiently small for any such M , we

have that (γ̂⊗`dl,s)l≥1 and (τ∗∗`dl
)l≥1 have the same weak∗-limit thereby completing the lemma. �
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Now we need to know that the operation of taking a probability measure on SU(dl)
⊗` and producing an

element of CS(BR,L,R) is well-behaved.

Lemma 6.13. For any probability measures µ1 and µ2 on SU(dl)
`, we have that

W2(µ̂1, µ̂2) ≤ 2R
√
n+m√
dl

W2,‖ · ‖HS
(µ1, µ2) ≤ 2R

√
n+m√
dl

W2,‖ · ‖geod(µ1, µ2)

where n = max1≤k≤` nk, m = max1≤k≤`mk, and W2,‖ · ‖HS
and W2,‖ · ‖geod are the 2-Wasserstein distances for

measures with respect to the Hilbert-Schmidt norm ‖ · ‖HS and for the geodesic distance, respectively; here
these are with respect to the inner product induced by the unnormalized trace.

Proof. The proof goes along the same lines as [14, Lemma 3.4]. First, let Π(µ1, µ2) denote the set of all
probability measures on SU(dl)

`×SU(dl)
` whose left- and right- marginal measures are µ1 and µ2 respectively.

For each µ ∈ Π(µ1, µ2) we associate a state µ̂ on(
∗`k=1C[−R,R]∗nk

)
∗
(
∗`k=1C[−R,R]∗nk

)
⊗max

(
∗`k=1C[−R,R]∗mk

)
∗
(
∗`k=1C[−R,R]∗mk

)
as described above (i.e. for each ((Uk)`k=1, (Vk)`k=1) ∈ SU(d`)

` × SU(d`)
`, for 1 ≤ k ≤ ` we send xk,i to

left multiplication by U∗kAk,i,lUk and yk,j to right multiplication by U∗kBk,j,lUk, and for `+ 1 ≤ k ≤ 2` we
send xk,i to left multiplication by V ∗k Ak,i,lVk and sends yk,j to right multiplication by V ∗k Bk,j,lVk). By the
definition of W2 this immediately implies

W2(µ̂1, µ̂2) ≤

√√√√∫
SU(dl)`

∫
SU(dl)`

∑̀
k=1

nk∑
i=1

‖U∗kAk,i,lUk − V ∗k Ak,i,lVk‖
2
HS

+

mk∑
j=1

‖U∗kBk,j,lUk − V ∗k Bk,j,lVk‖
2
HS

dµ

for any µ ∈ Π(µ1, µ2) where the first integration is with respect to (Uk)`k=1 and the second is with respect to
(Vk)`k=1. Thus as

‖U∗kAk,i,lUk − V ∗k Ak,i,lVk‖
2
HS ≤ 4R2 ‖Uk − Vk‖2HS

with a similar inequality for the B-terms, we obtain the first inequality by the definition of the Wasserstein
distances for measures with respect to the Hilbert-Schmidt norm.

Finally, the second inequality is trivial because the geodesic distance majorizes the Hilbert-Schmidt norm
distance. �

The remainder of the proof of Proposition 6.10 is near identical to [14, Proposition 3.5]. Indeed since the
Ricci curvature of SU(dl)

` (with respect to the inner product induced by the real part of the unnormalized

trace) is known to be constant and equal to dl
2 , the transportation cost inequality

W2,geod

(
µl, γ

⊗`
dl,s

)
≤
√

4

dl
S
(
µl, γ

⊗`
dl,s

)
holds by [22], where µl is as in Lemma 6.11, S

(
µl, γ

⊗`
dl,s

)
denotes the relative entropy of µl with respect to

γ⊗`dl,s and thus

S
(
µl, γ

⊗`
dl,s

)
= − log

(
γ⊗`dl,s(Γl)

)
by the definitions. By Lemma 6.13, we obtain that

W2

(
µ̂l, γ̂

⊗`
dl,s

)
≤ 4R

√
n+m

√
− 1

d2
l

log
(
γ⊗`dl,s(Γl)

)
.

Hence Proposition 6.9, Lemma 6.11, and Lemma 6.12 yield the result by taking l to infinity and R to R0. �

For completeness, we record the proof of Theorem 6.1.

Proof of Theorem 6.1. As χorb(Z1, . . . ,Z`) = 0, we obtain that

W2(ϕZ1,...,Z`
, ϕbi-free

Z1,...,Z`
) = 0,

thereby showing that Z1, Z2, . . ., Z` are bi-free by Proposition 6.7. �
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7. Calculating Microstate Entropy

In this section, we will compute the microstate bi-free entropy of several collections. We begin with the
cases where there is a ‘linear dependence in distribution’.

Lemma 7.1. Let (A, ϕ) be a C∗-non-commutative probability space and let X,Y ∈ A be self-adjoint such
that ϕ(X) = ϕ(Y ) = 0 and ϕ(X2) = ϕ(Y 2) = ϕ(XY ) = 1. Then

χ(X t Y ) = −∞.

Proof. Fix R > max {‖X‖ , ‖Y ‖}. Notice that it suffices to show that χR(X t Y ; 2, ε) → −∞ as ε → 0.
Towards this end, notice that for any 1 > ε > 0 and d ∈ N,

ΓR(X t Y ; 2, d, ε) ⊆
{

(A,B) ∈ (M sa
d )2 | τd(A2), τd(B

2), τ(AB) ∈ (1− ε, 1 + ε)
}
.

Recall, however, that the Lebesgue measure used is normalized based on the inner product given by the
unnormalized trace:

〈A,B〉Msa
d

= dτd(B
∗A) = Trd(B

∗A) = 〈A,B〉Rd2 .

The three conditions on the set above then become ‖A‖2Rd2 , ‖B‖2Rd2 , 〈A,B〉Rd2 ∈ (d(1− ε), d(1 + ε)). These
restrictions allow us to deduce a bound on the angle θA,B between any A and B in the set:

cos θA,B =
〈A,B〉
‖A‖ ‖B‖

≥ 1− ε
1 + ε

whence tan θA,B =

√
1− cos2 θA,B

cos θA,B
≤

√
1−

(
1−ε
1+ε

)2

1−ε
1+ε

=
2
√
ε

1− ε
.

Consequently B must lie in the cone from the origin in the direction of A with height
√
d(1 + ε) and radius

at its base
√
d(1 + ε) 2

√
ε

1−ε . Letting C (A, d, ε) represent this cone, we have

ΓR(X t Y ; 2, d, ε) ⊆
{

(A,B) ∈ R2d2 | ‖A‖2 ≤ d(1 + ε), B ∈ C (A, d, ε)
}
.

Since volume of the cone C (A, d, ε) does not depend on A, the volume of the set on the right hand side is

the product of that of the ball B
(
d2,
√
d(1 + ε)

)
of radius

√
d(1 + ε) in dimension d2, and that of any cone

C (A, d, ε). Fortunately, it is known that the volume of the n-ball of radius R is

λn (B (n,R)) =
π

n
2

Γ
(
n
2 + 1

)Rn;

see, e.g., [27, VIII.13], although this has been known at least since [20] (we were not able to find an earlier
reference, though it is very likely one exists). In particular,

λd2
(
B
(
n,
√
d(1 + ε)

))
=

π
d2

2

Γ
(
d2

2 + 1
) (d(1 + ε))

d2

2 .

We now may compute the volume of C(A, d, ε) by integrating along its axis:

λd2 (C (A, d, ε)) =

∫ √d(1+ε)

0

λd2−1

(
B
(
d2 − 1, R

2
√
ε

1− ε

))
dR

=

∫ √d(1+ε)

0

π
d2−1

2

Γ
(
d2−1

2 + 1
) (R 2

√
ε

1− ε

)d2−1

dR

=
1

d2
(d(1 + ε))

d2

2
π

d2−1
2

Γ
(
d2−1

2 + 1
) ( 2

√
ε

1− ε

)d2−1

.

Finally, we recall that Stirling’s formula allows us to make the estimate that for large z > 0, 1
z log Γ(z) =

log z +O(1). This allows us to make the following estimate:

1

d2
χR(X t Y ; 2, d, ε) ≤ log(d)− 1

d2
log Γ

(
d2

2
+ 1

)
− 1

d2
log Γ

(
d2 − 1

2
+ 1

)
+
d2 − 1

2d2
log ε+Od,ε (1)

= − log(d) +
d2 − 1

2d2
log ε+Od,ε (1) .
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Thus χR(X t Y ; 2, ε) ≤ 1
2 log ε+Oε (1) so sending ε→ 0 yields χ(X t Y ) = −∞. �

Using the above, we can prove the following which, when combined with Corollary 3.2, completely determines
the microstate bi-free entropy of a tracially bi-partite system with a linear dependence in distribution.

Theorem 7.2. Let ({Xi}ni=1, {Yj}mj=1) be a tracially bi-partite system in a C∗-non-commutative proba-
bility space (A, ϕ). If there exists an X ∈ span{X1, . . . , Xn} and a Y ∈ span{Y1, . . . , Yn} such that
1 = ϕ(X2) = ϕ(XY ) = ϕ(Y 2) (e.g. X1, . . . , Xn linearly independent, Y1, . . . , Ym linearly independent,
yet X1, . . . , Xn, Y1, . . . , Ym linearly dependent in distribution), then

χ(X1, . . . , Xn t Y1, . . . , Ym) = −∞.

Proof. If X1, . . . , Xn or Y1, . . . , Yn are linearly dependent, then the result follows from Corollary 3.2. Otherwise
there exists an i ∈ {1, . . . , n} and a j ∈ {1, . . . ,m} such that {X1, . . . , Xn} and {X1, . . . , Xi−1, X,Xi+1, . . . , Xn}
are bases for the same subspace of A, and {Y1, . . . , Ym} and {Y1, . . . , Yj−1, Y, Yj+1, . . . , Ym} are bases for the
same subspace of A. By Corollary 3.2 there exists a C ∈ R such that

χ(X1, . . . , Xn t Y1, . . . , Ym) = C + χ(X1, . . . , Xi−1, X,Xi+1, . . . , Xn t Y1, . . . , Yj−1, Y, Yj+1, . . . , Ym).

As

χ(X1, . . . , Xi−1, X,Xi+1, . . . , Xn t Y1, . . . , Yj−1, Y, Yj+1, . . . , Ym)

≤ χ(X t Y ) + χ(X1, . . . , Xi−1, Xi+1, . . . , Xn t Y1, . . . , Yj−1, Yj+1, . . . , Ym)

by Proposition 2.5 and as χ(X1, . . . , Xi−1, Xi+1, . . . , Xn t Y1, . . . , Yj−1, Yj+1, . . . , Ym) < ∞ by Proposition
2.6, Lemma 7.1 yields χ(X t Y ) = −∞ and the result. �

Next we investigate the bi-free entropy of bi-free central limit distributions. Since we are only able to
apply transformations to the left variables and the right variables separately, we cannot directly remove
correlations between left and right semicircular variables. We therefore start with the case of two variables.

Theorem 7.3. Let (A, ϕ) be a C∗-non-commutative probability space and let (S`, Sr) be a centred, self-adjoint
bi-free central limit distribution in A in which each variable is of variance one. If c = ϕ(S`Sr) ∈ [−1, 1], then

χ(S` t Sr) = log(2πe) +
1

2
log(1− c2).

Furthermore, the lim supd→∞ when computing χ(S` t Sr) is actually a limd→∞.

Proof. By Example 2.8, we see that

χ(S` t Sr) ≥ log(2πe) +
1

2
log(1− c2)

as the free entropy of a single semicircular operator of variance one is 1
2 log(2πe). Furthermore, we claim this

inequality holds if we use the lim infd→∞ in place of lim supd→∞ for χ(S` t Sr). To see this, notice Example
2.8 holds for the lim infd→∞ version since both [32, Proposition 3.5 and Proposition 5.4] and Theorem 2.7 do
as well. Therefore, since the free entropy of a single semicircular operator agrees with the lim infd→∞ variety,
the claim is complete.

For the other direction, we will apply some volume arguments. Note the case c = ±1 follows from Lemma
7.1, so we will assume |c| < 1.

For each R > 2 and M ∈ N with M ≥ 2, notice that ΓR(S` t Sr;M,d, ε) is contained in

Ψ :=
{

(A1, A2) ∈ (Msa
d )2

∣∣ 1− ε ≤ τd(A2
k) ≤ 1 + ε, c− ε ≤ τd(A1A2) ≤ c+ ε

}
.

We desire an estimate on the Lebesgue measure of Ψ.

Recall we view (Msa
d )2 ∼= (Rd2)2 as Hilbert spaces where for A,B ∈Msa

d we have

〈A,B〉Msa
d

= dτd(B
∗A) = Tr(B∗A) = 〈A,B〉Rd2 .

Hence

Ψ ∼=
{

(A1, A2) ∈ (Rd
2

)2
∣∣∣√d(1− ε) ≤ ‖Ak‖2 ≤

√
d(1 + ε), d(c− ε) ≤ 〈A1, A2〉Rd2 ≤ d(c+ ε)

}
.
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Consider the map Θ : (Rd2)2 → (Rd2)2 defined by

Θ(A1, A2) =

(
A1,−

c√
1− c2

A1 +
1√

1− c2
A2

)
.

Clearly Θ is a direct sum of d2 copies of the matrix

Q =

[
1 0

− c√
1−c2

1√
1−c2

]
via a specific choice of orthonormal basis of Rd2 . Hence the Jacobian of Θ is also a direct sum of d2 copies of
Q and thus

Vol(Ψ) =
1

det(J (Θ))
Vol(Θ(Ψ)) = (1− c2)

d2

2 Vol(Θ(Ψ)).

To obtain an upper bound for the volume of Θ(Ψ), we claim that

Θ(Ψ) ⊆

{
(B1, B2) ∈ (Rd

2

)2

∣∣∣∣∣ ‖Bk‖2 ≤
√
d

(
1 + ε

(1 + |c|)2

1− c2

)}
.

To see this, fix (A1, A2) ∈ Ψ and let (B1, B2) = Θ(A1, A2). Then B1 = A1 so

‖B1‖2 ≤
√
d(1 + ε) ≤

√
d

(
1 + ε

(1 + |c|)2

1− c2

)
.

Next notice that

‖B2‖22 =

〈
− c√

1− c2
A1 +

1√
1− c2

A2,−
c√

1− c2
A1 +

1√
1− c2

A2

〉
Rd2

=
1

1− c2
(
c2〈A1, A1〉 − 2c〈A1, A2〉+ 〈A2, A2〉

)
≤ 1

1− c2
(
d(1 + ε)c2 − 2dc2 + 2d|c|ε+ d(1 + ε)

)
=

d

1− c2
(
(1− c2) + ε(1 + 2|c|+ c2)

)
= d

(
1 + ε

(1 + |c|)2

1− c2

)
.

Hence the claim is complete.
Using the above and the fact that Θ(Ψ) is contained in the product of two d2-dimensional balls of radius√
d
(

1 + ε (1+|c|)2
1−c2

)
, we obtain that

λd,2(ΓR(S` t Sr;M,d, ε))

≤ Vol(Ψ)

≤ (1− c2)
d2

2 Vol(Θ(Ψ))

≤ ((1− c2)
d2

2

 π
d2

2

Γ
(
d2

2 + 1
) (d(1 + ε

(1 + |c|)2

1− c2

)) d2

2

2

.

Hence, via an application of Stirling’s formula, we obtain that

χR(S` t Sr;M, ε)

≤ lim sup
d→∞

1

2
log(1− c2) + log(π)− 2

1

d2
log

(
Γ

(
d2

2
+ 1

))
+ log(d) + log

(
1 + ε

(1 + |c|)2

1− c2

)
+

2

2
log(d)

≤ lim sup
d→∞

1

2
log(1− c2) + log(π) + log(2e) + log

(
1 + ε

(1 + |c|)2

1− c2

)
.
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Therefore

χ(S` t Sr) ≤ log(2πe) +
1

2
log(1− c2)

completing the claim. �

Combining all of the results of this paper, we obtain the following.

Theorem 7.4. Let ({Sk}nk=1, {Sk}
n+m
k=n+1) be a centred self-adjoint bi-free central limit distribution with

respect to ϕ with ϕ(S2
k) = 1 for all k. Recall that the joint distribution is completely determined by the positive

matrix
A = [ai,j ] = [ϕ(SiSj)] ∈Mn(R).

Then

χ(S1, . . . , Sn t Sn+1, . . . , Sn+m) =
n+m

2
log(2πe) +

1

2
log (det(A)) .

Proof. Note that if A is not invertible then either {Sk}nk=1 are linearly dependent (in distribution), {Sk}n+m
k=n+1

are linearly dependent (in distribution), or the hypotheses of Theorem 7.2 are satisfied. Hence, by Corollary
3.2, the result holds if A is not invertible. Thus we will suppose that A is invertible.

Recall that we can view ({Sk}nk=1, {Sk}
n+m
k=n+1) as left and right semicircular operators acting on a real

Fock space. In particular for k ∈ {1, . . . , n} we can write

Sk = l(ek) + l∗(ek)

and for k ∈ {n+ 1, . . . , n+m} we can write

Sk = r(ek) + r∗(ek)

where {ek}n+m
k=1 ∈ H are unit vectors. Note

A = [〈ei, ej〉]
so we obtain that {ek}n+m

k=1 is linearly independent.

We now discuss how modifications to {ek}nk=1 and modifications to {ek}n+m
k=n+1 modify the bi-free entropy

and the covariance matrix. Suppose Q = [qi,j ] ∈Mn(R) and R = [ri,j ] ∈Mm(R) are invertible. If for each
k ∈ {1, . . . , n} we define

e′k =

n∑
i=1

qk,iei

and for each k ∈ {n+ 1, . . . , n+m} we define

e′k =

m∑
j=1

rk,jej+n

then {e′k}
n+m
k=1 is linearly independent,

χ(l(e′1) + l∗(e′1), . . . , l(e′n) + l∗(e′n) t r(e′n+1) + r∗(e′n+1), . . . , r(en+m) + r∗(en+m))

= χ

 n∑
i=1

q1,iSi, . . . ,

n∑
i=1

qn,iSi t
m∑
j=1

r1,jSj+n, . . . ,

m∑
j=1

rm,jSj+n


= χ(S1, . . . , Sn t Sn+1, . . . , Sn+m) + log(|det(Q)|) + log(|det(R)|)

by Corollary 3.2, and
[〈e′i, e′j〉] = (Q⊕R)[〈ei, ej〉](Q⊕R)∗.

Thus
1

2
log(

∣∣det([〈e′i, e′j〉])
∣∣) =

1

2
log(|det([〈ei, ej〉])|) + log(|det(Q)|) + log(|det(R)|).

Therefore, as both sides of the claimed formula

χ(S1, . . . , Sn t Sn+1, . . . , Sn+m) =
n+m

2
log(2πe) +

1

2
log (det(A))

are preserved under such operations, we will apply such operations until we arrive at a case we can deduce
from previous results.
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First, as applying the Gram-Schmidt Orthogonalization Process to {ek}nk=1 and to {ek}n+m
k=n+1 produces

such matrices Q and R due to linear independence of {ek}n+m
k=1 , we may assume that {ek}nk=1 is orthonormal

and {ek}n+m
k=n+1 is orthonormal. In this case

A =

[
In B
B∗ Im

]
where B is an n×m matrix with real entries. Let us assume that m > n (the other case being similar). It
follows that there are m− n columns of B that are linear combinations of the other n columns of B. Let
{j1, . . . , jn} denote the indices of these other n columns of B. Notice since {ek}n+m

k=n+1 is linearly independent

set of m vectors that we can replace ek where k ≥ n+ 1 and k 6= jq for all q with ek−
∑n
q=1 ck,qejq (where the

ck,q are chosen based on how column k of B is a linear combination of columns j1, . . . , jn) so that {ek}n+m
k=n+1

remains a linearly independent set and so that 〈ek, ep〉 = 0 for all k ≥ n + 1 with k 6= jq for all q, and all
p ≤ n. Subsequently, if we apply the Gram-Schmidt Orthogonalization Process first to the modified ek for
k 6= jq for all q, and then the remainder of the ek, and if we then permute the order of the resulting vectors,
the resulting change of basis matrix can then, with the above arguments, be used so that we may assume

A =

 In C 0n,m−n
C∗ In 0n,m−n

0m−n,n 0m−n,n Im−n


where C is an n× n matrix with real entries.

Recall, by the Singular Value Decomposition, we can write C = UDV where U, V ∈Mn(R) are unitary
matrices and D = diag(d1, . . . , dn) is a diagonal matrix. By using Q = U and R = V ∗ ⊕ Im−n, we reduce to
the case where

A =

 In D 0n,m−n
D∗ In 0n,m−n

0m−n,n 0m−n,n Im−n

 .
Notice in this case that the determinant of A is

∏n
k=1(1− d2

k). Furthermore, in this case, we obtain that

({S1} , {Sn+1}), ({S2} , {Sn+2}), . . . , ({Sn} , {S2n}), (∅, {S2n+1}), . . . , (∅, {Sn+m})

are bi-freely independent. Therefore, as pairs of semicirculars have finite-dimensional approximants and as
Theorem 7.3 implies the lim supd→∞ for pairs of semicirculars is actually a limit, Theorem 4.7 implies that

χ(S1, . . . , Sn t Sn+1, . . . , Sn+m) =

n∑
k=1

χ(Sk t Sk+n) +

n+m∑
j=2n+1

χ(tSj) =

n∑
k=1

χ(Sk t Sk+n) +

n+m∑
j=2n+1

χ(Sj).

(Here we denote by χ(tSj) As Theorem 7.3 implies that

χ(Sk t Sk+n) = log(2πe) +
1

2
log(1− d2

k),

and as we know

χ(Sj) =
1

2
log(2πe),

we obtain that

χ(S1, . . . , Sn t Sn+1, . . . , Sn+m) =
n+m

2
log(2πe) +

1

2

n∑
k=1

log(1− d2
k)

=
n+m

2
log(2πe) +

1

2
log(|det(A)|). �

Remark 7.5. Note that Theorem 7.4 includes the free case (i.e. when m = 0). However, the proof
for the microstate free entropy of free central limit distributions is substantially easier as one may apply
transformations to all of the variables. The bi-free proof is more difficult as Section 3 did not demonstrate
the ability to mix left and right variables. Still it is not surprising that we get the same result as the free
case seeing as, asymptotically, almost all matrices are microstates for semicircular operators so it is simply a
matter of angles. One would expect other random variables which may have more complicated microstate
sets could lead to different behaviours for which the above angle arguments would not apply.
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8. Microstate Bi-Free Entropy Dimension

For the sake of completeness, we briefly study the microstate bi-free entropy dimension. Unfortunately,
we do not know the correct bi-free generalizations of the known von Neumann algebra implications of free
entropy dimension.

Definition 8.1. Let (A, ϕ) be a C∗-non-commutative probability space and let X1, . . . , Xn, Y1, . . . , Ym be
self-adjoint operators in A. The n-left, m-right, microstate bi-free entropy dimension is defined by

δ(X1, . . . , Xn t Y1, . . . , Ym) = n+m+ lim sup
ε→0+

χ(X1 +
√
εS1, . . . , Xn +

√
εSn t Y1 +

√
εT1, . . . , Ym +

√
εTm)

| log(
√
ε)|

where {(Si, I)}ni=1 ∪ {(I, Tj)}mj=1 is a bi-free central limit distribution of semicircular operators with variances
1 and covariances 0 that is bi-free from ({Xi}ni=1, {Yj}mj=1).

It is elementary to see based on bi-freeness that the self-adjoint operators ({Xi+
√
εSi}ni=1, {Yj +

√
εTi}mj=1)

still form a tracially bi-partite collection and thus δ(X1, . . . , Xn t Y1, . . . , Ym) is well-defined. In addition, a
few basis properties of free entropy dimension carry-forward to the bi-free setting.

Proposition 8.2. If 0 ≤ p ≤ n and 0 ≤ q ≤ m then

δ(X1, . . . , Xn t Y1, . . . , Ym) ≤ δ(X1, . . . , Xp t Y1, . . . Yq) + δ(Xp+1, . . . , Xn t Yq+1, . . . Ym).

In particular,

δ(X1, . . . , Xn t Y1, . . . , Ym) ≤ δ(X1, . . . , Xn) + δ(Y1, . . . , Ym).

Proof. This result immediately follows from Definition 8.1 and Proposition 2.5. �

Remark 8.3. Under sufficiently strong assumptions, the bi-free entropy dimension can be shown to be
additive across bi-free families. One always has the estimate

δ(X1, . . . , Xn t Y1, . . . , Ym) ≤ δ(X1, . . . , Xp t Y1, . . . , Yq) + δ(Xp+1, . . . , Xn t Yq+1, . . . , Ym)

by applying the same inequality for χ and splitting the limits superior. The other direction, however, requires
knowing χ is additive for the perturbed variables (up to o (|log ε|)) along some sequence of ε’s witnessing the
limit superior. This could also be ensured by taking limits along appropriate ultrafilters for (0, 1] and N in
the definitions of δ and χ, respectively, in place of the limsups. This approach is the same as that proposed
by Voiculescu in the free setting in [36, Remark 4.8].

What is most interesting about microstate bi-free entropy dimension is its value of bi-free central limit
distributions.

Theorem 8.4. Let ({Sk}nk=1, {Sk}
n+m
k=n+1) be a centred self-adjoint bi-free central limit distribution with

respect to ϕ with ϕ(S2
k) = 1 for all k. Recall that the joint distribution is completely determined by the positive

matrix

A = [ai,j ] = [ϕ(SiSj)] ∈Mn(R).

Then

δ(S1, . . . , Sn t Sn+1, . . . , Sn+m) = rank(A).

Proof. Let ({Tk}nk=1, {Tk}
n+m
k=n+1) be a centred self-adjoint bi-free central limit distribution with respect to ϕ

with

ϕ(TiTj) =

{
1 if i = j

0 if i 6= j
.

If we define Zk,ε = Sk +
√
εTk for all 1 ≤ k ≤ n + m, then ({Zk}nk=1, {Zk}

n+m
k=n+1) is a centred self-adjoint

bi-free central limit distribution with respect to ϕ with

ϕ(Zi,εZj,ε) =

{
1 + ε if i = j

ϕ(SiSj) if i 6= j

and

δ(S1, . . . , Sn t Sn+1, . . . , Sn+m) = n+m+ lim sup
ε→0+

χ(Z1,ε, . . . , Zn,ε t Zn+1,ε, . . . , Zn+m,ε)

| log(
√
ε)|

.
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By applying Corollary 3.2 and Theorem 7.4, we see that

χ(Z1,ε, . . . , Zn,ε t Zn+1,ε, . . . , Zn+m,ε)

= (n+m) log(
√

1 + ε) + χ

(
1√

1 + ε
Z1,ε, . . . ,

1√
1 + ε

Zn,ε t
1√

1 + ε
Zn+1,ε, . . . ,

1√
1 + ε

Zn+m,ε

)
=
n+m

2
log(1 + ε) +

n+m

2
log(2πe) +

1

2
log

(
det

((
1− 1

1 + ε

)
In+m +

1

1 + ε
A

))
=
n+m

2
log(2πe) +

1

2
log (det (εIn+m +A)) .

As A is a positive matrix and thus diagonalizable, we know that

det (εIn+m +A) = εnullity(A)p(ε)

where p is a polynomial of degree rank(A) with real coefficients that does not vanish at 0. Consequently, we
obtain that

δ(S1, . . . , Sn t Sn+1, . . . , Sn+m)

= n+m+ lim sup
ε→0+

n+m
2 log(2πe) + 1

2 log(εnullity(A)p(ε))

| log(
√
ε)|

= n+m+ lim sup
ε→0+

n+m
2 log(2πe) + 1

2nullity(A) log(ε) + 1
2 log(p(ε))

| log(
√
ε)|

= n+m− nullity(A) = rank(A)

as desired. �

Remark 8.5. Let (S, T ) be a bi-free central limit distribution with variances 1 and covariance c ∈ [−1, 1].
Hence

δ(S t T ) =

{
2 if c 6= ±1

1 if c = ±1
.

In particular, the support of the joint distribution of (S, T ) has dimension δ∗(S t T ): indeed, if c 6= ±1 then
(S, T ) has joint distribution with support [−2, 2]2 ⊂ R2 by [17], while otherwise it is supported on the line
y = cx. This adds validation to the name “bi-free microstate entropy dimension”.

9. Microstate Bi-Free Entropy for Non-Bi-Partite Systems

In the section, we will discuss our notion of microstate bi-free entropy to non-bi-partite systems where
further complications arise. To do this, we will find it useful to take an approach from operator-valued bi-free
probability. We refer the reader to [7] rather than reintroduce the entire setting here.

Let (C, ϕ) be a non-commutative probability space and let B be a unital algebra. Then C ⊗ B can be
viewed as a B-B-bimodule where

b · (a⊗ b′) = a⊗ bb′, and (a⊗ b′) · b = a⊗ b′b

for b, b′ ∈ B and a ∈ C. Let us denote by Lb and Rb the left and right actions of b above. If pB : C ⊗B → B
is defined by

pB(a⊗ b) = ϕ(a)b,

then L(C ⊗ B) is a B-B-non-commutative probability space with left and right B-operators Lb and Rb
respectively and expectation E : L(C ⊗B)→ B defined by

E(Z) = pB(Z(1C ⊗ 1B))

for all Z ∈ L(C ⊗ B). Let L(C ⊗ B)` denote all elements of L(C ⊗ B) that commute with elements of
{Rb | b ∈ B} and let L(C ⊗B)r denote all elements of L(C ⊗B) that commute with elements of {Lb | b ∈ B}.
Therefore, if X,Y ∈ C and b ∈ B, we can define L(X ⊗ b) ∈ L(C ⊗B)` and R(Y ⊗ b) ∈ L(C ⊗B)r via

L(X ⊗ b)(a⊗ b′) = Xa⊗ bb′ and R(Y ⊗ b)(a⊗ b′) = Y a⊗ b′b.

for all a ∈ C and b′ ∈ B.
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Our current approach to matricial microstates has been to find matrices in Md for which the moments
of the appropriate left or right multiplication operators computed against τd(·Id) have been approximately
correct. Since L(Md) ∼=Md ⊗Mop

d via L(A)R(B) 7→ A⊗Bop, we may view this in the above setting with
C = C. If we replace C by some larger matrix algebra, we introduce non-commutativity between the left and
the right approximants.

Indeed for fixed d1, d2 ∈ N, if we identify L(Md1 ⊗Md2) ∼= L(Md1)⊗L(Md2) ∼= L(Md1)⊗Md2 ⊗M
op
d2

,
we find

L(Md1 ⊗Md2)` ∼= L(Md1)⊗Md2 ⊗ C and L(Md1 ⊗Md2)r ∼= L(Md1)⊗ C⊗Mop
d2
.

In particular, the pair of faces (L(Md1 ⊗Md2), R(Md1 ⊗Md2)) in L(Md1 ⊗Md2) is isomorphic to the pair
of faces (

(Md1 ⊗Md2 ⊗ C,Md1 ⊗ C⊗Mop
d2

)
)

in Md1 ⊗Md2 ⊗M
op
d2

. Note that the state becomes τd1 ⊗ (τd2 ◦m), where m(B1 ⊗ Bop
2 ) = B1B2 is the

multiplication map. These faces are each as measure spaces isomorphic to Md1 ⊗ Md2 . We have for
A⊗B ∈Md1 ⊗Md2 , L(A⊗B) = A⊗B ⊗ Id2 while R(A⊗B) = A⊗ Id2 ⊗Bop.

Using the above constructions, we postulate the following generalization of our microstate bi-free en-
tropy to the non-tracially bi-partite setting. Let (A, ϕ) be a C∗-non-commutative probability space and
let X1, . . . , Xn, Y1, . . . , Ym be self-adjoint operators in A, where we will consider X1, . . . , Xn as left vari-
ables and Y1, . . . , Ym as right variables. We desire to approximate X1, . . . , Xn by A1, . . . , An ∈ (Md1 ⊗
Md2 ⊗ C)sa, and Y1, . . . , Ym by B1, . . . , Bm ∈ (Md1 ⊗ C ⊗ Mop

d2
)sa. For M,d ∈ N and R, ε > 0, let

ΓR(X1, . . . , Xn t Y1, . . . , Ym;M,d1, d2, ε) denote the set of all (n + m)-tuples (A1, . . . , An, B1, . . . , Bm) ∈
((Md1 ⊗Md2)sa)n+m such that ‖Ai‖ , ‖Bj‖ ≤ R for all 1 ≤ i ≤ n and 1 ≤ j ≤ m, and∣∣ϕ(Zk1 · · ·Zkp)− τd1 ⊗ (τd2 ◦m)(Ck1 · · ·Ckp)

∣∣ < ε

for all i1, . . . , ip ∈ {1, . . . , n+m} and 1 ≤ p ≤M where

Zk =

{
Xk if k ∈ {1 . . . , n}
Yk−n if k ∈ {n+ 1, . . . , n+m}

and Ck =

{
L(Ak) if k ∈ {1 . . . , n}
R(Bk−n) if k ∈ {n+ 1, . . . , n+m}

.

Definition 9.1. Using the above notation, if λd1d2,n+m denotes the Lebesgue measure on (Msa
d1d2

)n+m,
define

χR(X1, . . . , Xn t Y1, . . . , Ym;M,d1, d2, ε) = log (λd1d2,n+m (ΓR(X1, . . . , Xn t Y1, . . . , Ym;M,d1, d2, ε)))

χR(X1, . . . , Xn t Y1, . . . , Ym;M, ε) = lim sup
(d1,d2)→∞

1

(d1d2)2
χR(X1, . . . , Xn t Y1, . . . , Ym;M,d1, d2, ε)

+
1

2
(n+m) log(d1d2)

χR(X1, . . . , Xn t Y1, . . . , Ym) = inf{χR(X1, . . . , Xn t Y1, . . . , Ym;M, ε) | M ∈ N, ε > 0}
χ(X1, . . . , Xn t Y1, . . . , Ym) = sup

R>0
χR(X1, . . . , Xn t Y1, . . . , Ym).

The quantity χ(X1, . . . , Xn t Y1, . . . , Ym) ∈ [−∞,∞) will be called the microstate bi-free entropy of X1, . . . , Xnt
Y1, . . . , Ym.

Remark 9.2. Of course, one must specify what is meant by lim sup(d1,d2)→∞. There are many possible

definitions (i.e. d1 + d2 ≥ K for sufficiently large K or min{d1, d2} ≥ K for sufficiently large K). It may
even be possible that if d2 is sufficiently large, then there is no difference using d1 = 2 or d1 > 2. Of course,
the real question is, “How do the sets ΓR(X1, . . . , Xn t Y1, . . . , Ym;M,d1, d2, ε) behave as d1 and d2 vary?”

Remark 9.3. We have seen above that the d1 = 1 case may only model tracially bi-partite systems. However,
adding the flexibility that d1 > 1 appears to reduce these restrictions. Specifically, the only obvious restriction
is that τd1 ⊗ (τd2 ◦m) is self-adjoint so we may only approximate distributions of left and right operators
with respect to self-adjoint states. This is not a cumbersome restriction since we are already assuming that
the operators and ϕ are self-adjoint.
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Remark 9.4. We note that many results in this paper may be simply extended to apply to Definition 9.1;
specifically Proposition 2.5, Proposition 2.6, Proposition 2.9, Proposition 3.1, and computations like those in
Theorem 7.3. (Note, though, that the computations in Theorem 7.3 provided an upper bound on the entropy
of a semicircular system, while the lower bound came from Theorem 2.7 which does not have an analogue
in this setting.) One point of interest is there is less of a connection between these bi-free microstates and
known free microstates (e.g. the argument used in the proof of Theorem 2.7 and Theorem 4.7 are no longer
clear). Of course knowledge that lim sup can be replaced with lim inf in the definition of microstate free
entropy (Definition 2.1) immediately implies the quantities in Definition 9.1 agree with those in Definition
2.1 when n = 0 or m = 0. However, when n,m > 1, it is not clear how to obtain these generalized bi-free
microstates from free microstates of the left variables and microstates of the right variables.

Remark 9.5. We have made the choice to find approximants in the algebra Md1 ⊗Md2 ⊗M
op
d2

. One may
consider replacing Md1 by some other algebra – possibly of infinite dimension – to allow more flexibility.
While it then becomes easier to find approximants, it becomes less clear how to treat the measure of the set
of approximants. Nonetheless, [25] has argued that this is the correct constructs for the bi-free analogue of
random matrices and thus the correct construct for bi-free microstates.

10. Open Questions

We conclude this paper with several important and intriguing questions raised in this paper in addition to
the question of whether results in bi-free entropy may be applied to obtain results pertaining to von Neumann
algebras.

To begin, as we are dealing with tracially bi-partite systems, one of the most natural questions is the
following.

Question 10.1. Given a tracially bi-partite family of operators
(
{Xi}ni=1, {Yj}mj=1

)
, is there always a single-

sided version as in Theorem 2.7 for which the stated inequality is an equality? If not, does taking a supremum
over all systems which may stand on the left hand side lead to equality?

One can produce examples by making a “poor choice” where the inequality is strict: for example, if (X,Y )
is a pair of classically independent semi-circular operators (of non-zero variance), letting X ′ and Y ′ in the
parlance of that theorem merely be X and Y themselves, the hypotheses of the theorem are satisfied and

−∞ = χ(X,Y ) < χ(X t Y ).

The answer to Question 10.1 is affirmative for the bi-free central limit distributions and for independent
distributions. A general answer to Question 10.1 would be of interest as it directly relates the free and bi-free
non-microstate entropies and could answer the following.

Question 10.2. Is there an analogue of Proposition 3.1 where the transformation can intermingle left and
right variables simultaneously?

Of course Question 10.2 would be of interest as it would provide a greater flexibility in handling this
entropy theory. However, there have been no instances in bi-free probability where right operators can
intermingle with left operators and the resulting operators still behave like left operators.

Question 10.1 also relates to the following question.

Question 10.3. Let (X,Y ) be a bi-partite pair with joint distribution µ. Is there an integration formula
involving µ to compute χ(X t Y )?

Question 10.3 arises from the integration formula established in [33]: if X is a self-adjoint operator with
distribution µ, then the free entropy of X is

χ(X) =
1

2
log(2π) +

3

4
+

∫
R

∫
R

log |s− t| dµ(s) dµ(t).

To determine χ(X t Y ) for a tracially bi-partite pair (X,Y ), one must understand the microstates (A,B) ∈
(Md(C)sa)2 that are good approximants for (X,Y ). If (A′, B′) ∈ (Md(C)sa)2 is another microstate that is a
good approximation of (X,Y ), then [32] implies that ‖A′ −A‖2 and ‖B′ −B‖2 are small. Therefore, for any
n,m ∈ N and any unitary U ∈Md(C) we have that ‖AnU∗BmU − (A′)nU∗(B′)mU‖2 is small in norm (as
the operator norm of microstates will be bounded by some R). Therefore, an understanding of microstates of
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the pair (X,Y ) can be reduced to understanding the vector-valued random variable on the unitary group of
Md(C) defined by

U 7→ (An1U∗Bm1U, . . . , AnkU∗BmkU)

for every k ∈ N and every distinct (n1,m1), . . . , (nk,mk) ∈ N2. When k = 1, the characteristic function of
this random variable may be computable using the Harish-Chandra-Itzykson-Zuber integral formula, but
deriving the necessary information from the characteristic function to describe the microstate bi-free entropy
appears difficult.

Of course, an affirmative answer to both Questions 10.1 and 10.3 would enable the computation of the
microstate free entropy of certain pairs of self-adjoint operators via an integration formula. Thus we do not
expect an affirmative answer to both Questions 10.1 and 10.3.

Other natural questions pertaining to this microstate bi-free entropy are

Question 10.4. Does Theorem 4.7 hold without the explicit assumption of the existence of a nice subsequence?

which clearly will follow from

Question 10.5. Can lim sup be replaced with lim inf in Definition 2.2?

As these questions have been extremely difficult even in the free setting, we presume they will have equal
if not greater difficulty in the bi-free setting. Another natural question to extend to the bi-free setting is the
following.

Question 10.6. When does the microstate bi-free entropy from [9] agree with the above non-microstate bi-free
entropy for tracially bi-partite collections?

In the free setting, [3] first showed that the microstate free entropy is always less than the non-microstate
free entropy. Thus perhaps a good starting point would be a bi-free version of [3]. Much progress was made
towards the converse in [10,18].

Finally, as most of this paper deals only with the tracially bi-partite setting, we ask the following.

Question 10.7. Are the quantities in Definition 9.1 finite when n,m > 0? Furthermore, does Definition 9.1
agree with Definition 2.2 for tracially bi-partite systems?

An answer to Question 10.7 would enable us to extend the notion of microstate bi-free entropy to non-bi-
partite systems thereby allowing a richer theory and demonstrating the notions in this paper are the correct
extensions of microstate free entropy to the bi-free setting.
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