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Preface

Wat begon met een eenvoudige mail naar Tine, relatief onwetend over wat
er uiteindelijk uit zou volgen, leidde uiteindelijk tot dit doctoraat. Net als
turbulentie, is het leven onvoorspelbaar en kunnen kleine dingen grote gevolgen
hebben over een langere tijdshorizon. Dat vind ik best een mooie manier om
naar het leven te kijken: ook al lijkt iets weinig bij te dragen, uiteindelijk kan
het toch grotere zaken teweeg brengen. Bovendien maakt dat ook overdreven
piekeren overbodig vermits je toch maar in beperkte mate kan voorspellen
waartoe keuzes zullen leiden. Beide gelden ook tot op zekere hoogte voor een
doctoraat.

Het is niet altijd makkelijk vliegen onder de turbulente omstandigheden van een
doctoraat. Gelukkig waren er in het algemeen meer mooie zonnige vlieguren en
fijne tussenstops dan periodes van hevige turbulentie. Desondanks ben ik blij
dat ik nu (even) geland ben. Hoewel ik de piloot was van mijn eigen vliegtuig,
waren er vele copiloten, bemanningsleden, controletorens en grondpersoneel die
ik niet genoeg kan bedanken om mij te ondersteunen bij deze uitdagende reis.

Ten eerste wil ik mijn promotor Tine Baelmans bedanken. In de eerste plaats
om mij de kans te geven om aan dit enorm interessante onderwerp te beginnen
en vervolgens voor de begeleiding en de brede blik op mijn werk. Ik had steeds
het gevoel dat je mij steunde en dat ik bij je terecht kon in geval van problemen,
ondanks je meer dan goed gevulde agenda.

Ten tweede wil ik ook mijn copromotor Wouter Dekeyser bedanken voor de
begeleiding van iets dichterbij. In het bijzonder voor de fantastische besprekingen
waar ik altijd uit kwam met een duidelijker beeld van waar ik naartoe moest,
met veel nieuwe ideeën en, misschien wel nog belangrijker, meer motivatie dan
tevoren. De gedeelde interesse in dit onderwerp leidde steeds tot heel fijne
gedachtewisselingen.
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I’m also thankful to Patrick for the genuine, easy-going collaboration we had. I
really appreciated your sincere interest in my research and the openness with
which you received my sometimes unexpected results. I would also like to thank
both you and William for sharing your expertise as well as detailed simulation
data I could analyse. I’m grateful to William for patiently answering all the
question I came up with regarding this simulation data as well.

Next, I would like to sincerely thank all members of the jury for carefully
and critically reviewing my manuscript and for the interesting discussions.
I’m convinced that your valuable suggestions have significantly improved my
dissertation.

I’m very grateful to my TME colleagues for creating the excellent atmosphere
at work. I quite enjoyed the bonding-through-shared-suffering event that was
organised weekly, i.e. Alma day. Of course the TME weekends were also
unforgettable. In particular, I would like to thank everyone I had the pleasure
of sharing an office with during my TME-carreer: Dieter, Damien, Sarah,
Andreas, Bart, Kristof, Sander, Javier, Yannick, Nathan and Kenneth. Besides
concentrated working, you were always there for a nice chat or a good laugh.
Sander deserves a special mention, not only for being a source of practical
information running one year ahead of me, but also for providing some guidance
during my start at TME, and for providing good advice in general. A special
thanks also goes out to Kristel and Wim for the unforgettable holidays after
my only in-person conference. I would also like to thank Stefano, Ján, Geert
and Michiel for the great conversations we had.

Verder wil ik ook graag iedereen die meewerkte aan de ondersteunende functies
vanuit het departement bedanken. Bedankt om alles wat vlotter te doen
verlopen en voor de administratieve ondersteuning Valérie, Marina, Cindy, Nele
en Karin. Ook Hans wil ik graag bedanken voor zijn inzet om alle machines in
het thermotechnisch instituut te onderhouden en op te waarderen, en voor de
fijne gesprekken over uiteenlopende onderwerpen.

Ik ben heel blij dat ik ook buiten het werk steeds omringd was door fantastische
mensen. Bedankt aan al mijn vrienden voor alle leuke gesprekken, ontspannende
momenten, fijne uitstappen en geweldige reizen,... Ik hoop samen met
jullie dat we dit kunnen verderzetten met slechts een beperkte hoeveelheid
minder geslaagde nachtelijke wandelingen naar willekeurige heuveltoppen over
twijfelachtige padjes ;)



PREFACE iii

Ten laatste wil ik zeker ook mijn familie, ouders, grootouders en broer bedanken
om mij altijd te ondersteunen, altijd naar mij te luisteren en goede raad te geven.
Bedankt Papa om steeds een rots in de branding te zijn, een referentiepunt en
een voorbeeld. Bedankt Mama om er altijd met zo veel liefde voor mij te zijn
en zonder aan jezelf te denken mij altijd te helpen. Bedankt Sander om zo vaak
leuke dingen samen te doen, maar ook voor de goede gesprekken en om als een
klankbord te fungeren wanneer ik dat nodig had.

Reinart Coosemans
Leuven, Juni 2022





Abstract

The absence of greenhouse gas emissions, the widely available fuel, the inherent
safety and the limited nuclear waste make nuclear fusion an attractive option
for our future electricity supply. However, a number of technological challenges
still stand, one of which is the high heat and particle load on the divertor.
Turbulent transport processes largely determine the outward heat and particle
fluxes and thus the efficiency of the plasma confinement. Taking the turbulence
into account is of crucial importance to predict the load on the divertor.

Mean-field transport codes remain a key tool for designing the plasma facing
components and the divertor. However, the description of turbulent transport in
these codes remains lacking. Typically, the turbulent fluxes are described via an
ad hoc diffusive approximation, in which the diffusion coefficients are determined
for a particular experiment. This poses severe limitations on the predictive
capabilities of these mean-field codes. As a solution to this, this thesis proposes
an approach for modelling the turbulent fluxes that is inspired by the Reynolds-
Averaged Navier-Stokes methods commonly used in hydrodynamic turbulence
modelling. In this approach, still only the average of the turbulent flow field is
resolved to maintain a tractable computational cost, but the turbulent fluxes
are modelled by relating them to quantities characteristic of the turbulence.

Firstly, this thesis establishes an analytical framework by deriving the mean-
field equations through a rigorous averaging procedure. This provides an exact
interpretation for the quantities in the mean-field equations and identifies the
closure terms. The turbulent E×B fluxes of heat and particles are demonstrated
to be the crucial closure terms to be modelled. It is proposed to retain the
diffusive model structure commonly used in mean-field codes, but to relate
the transport coefficients to averaged quantities characterising the turbulence.
In particular, it is found that the average kinetic energy (k⊥) and enstrophy
(ζ⊥) in the E×B drift fluctuations, which are exactly the fluctuations causing
the E×B turbulent transport, can be used to robustly capture the turbulent
transport coefficients. Hence, to complete the analytical framework, equations
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vi ABSTRACT

for k⊥ and ζ⊥ are derived. This allows to pinpoint and physically interpret
their sources, sinks and transport terms. Most of these terms are in turn closure
terms which require modelling.

To develop a practical, self-consistent model, this analytical framework is
subsequently applied to the basic case of 2D electrostatic plasma edge turbulence,
for which reference data is provided by the TOKAM2D turbulence code.
The focus lies on the interchange-dominated sheath-connected scrape-off layer
case. The extension to a core region with drift wave-like dynamics is likewise
considered. A Bayesian inference framework for model comparison and
parameter estimation supports the development of models for important closure
terms. In particular, these Bayesian inference methods are used to select the
best performing model for the relation between k⊥ (and ζ⊥) and the transport
coefficients.

With the above methodology, a self-consistent model for the turbulent E×B
fluxes is established. The physics of this model is that mean-field density and
temperature gradients lead to turbulent heat fluxes down the gradient. If
this flux is in the direction opposite to the magnetic field strength gradient,
this drives the interchange source of k⊥ (through a generally valid analytical
relation), which in turn leads to increased transport, etc. The turbulence
saturates when the mean-field gradients are such that a balance is established
between this interchange source and the sheath losses, which were found to
provide the dominant sink of k⊥. Note that all elements of this model derive
from specific terms in the analytical framework, giving a clear analytical basis
and physical meaning to the model. Forward 1D mean-field simulations with this
k⊥ model are capable of reproducing the profiles of the averaged TOKAM2D
reference data very well. While it is shown that including the enstrophy has
the potential to further improve the turbulent transport description, it is found
that the additional complexity of closing the enstrophy equation may render
the resulting mean-field model less accurate at present.

Even though important physics ingredients such as drift waves, flow shear
and neutrals are still missing and extensive testing is required to establish its
predictive capabilities, the model already provides a large improvement over
the current practise for modelling the turbulent transport in mean-field codes.
Its implementation in SOLPS-ITER shows that transport patterns which are
novel for mean-field codes can be achieved. The results of this thesis directly
lead to ballooned transport combined with fast parallel spreading of it due
to fast “anomalous” transport of k⊥ through parallel current fluctuations. In
this way, this work provides a crucial stepping stone for the development of
self-consistent turbulent transport models for mean-field simulations, both in
terms of analytical mean-field equations as background and by suggesting a
concrete model for a subset of the dynamics involved in future fusion reactors.



Beknopte samenvatting

Kernfusie is een veelbelovende optie voor onze toekomstige elektriciteitsvoor-
ziening, aangezien het geen broeikasgassen uitstoot, de brandstof overvloedig
voorhanden is, het proces inherent veilig is en weinig radioactief afval produceert.
Echter, een aantal technologische uitdagingen verhinderen momenteel nog het
gebruik van deze technologie. Eén hiervan is de enorme warmtebelasting van de
divertor. Turbulente transportprocessen bepalen grotendeels de uitstroom van
deeltjes en warmte en dus de efficiëntie van de magnetische opsluiting. Bijgevolg
is het van cruciaal belang om deze turbulentie in rekening te nemen om de
belasting van de divertor te voorspellen.

Voor het ontwerpen van de divertor worden gewoonlijk transportcodes
gebruikt. Deze codes maken gebruik van een ad-hoc beschrijving van het
turbulent transport, waarbij eenvoudige diffusiemodellen gebruikt worden met
modelcoëfficiënten afgesteld voor specifieke experimenten. Dit plaatst sterke
beperkingen op het voorspellende vermogen van de modellen. Als oplossing
hiervoor stelt deze thesis een aanpak voor geïnspireerd op Reynolds-Averaged
Navier-Stokes methodes die veelvuldig gebruikt worden in hydrodynamische
turbulentiemodellering. Nog steeds wordt enkel het gemiddelde van het
turbulente stromingsveld berekend teneinde de rekenkost te beperken, maar de
turbulente fluxen worden nu gemodelleerd door ze te relateren aan grootheden
die de turbulentie karakteriseren.

Eerst wordt een analytisch kader opgebouwd door de gemiddelde transportver-
gelijking af te leiden via een rigoureuze uitmiddelingsprocedure. Dit laat een
exacte interpretatie toe van de grootheden in transportcodes en identificeert
de sluitingstermen. Er wordt geïllustreerd dat de turbulente E×B fluxen van
deeltjes en warmte cruciale sluitingstermen zijn die gemodelleerd moeten worden.
De diffusieve modelstructuur van de transportcodes wordt behouden voor deze
termen, echter, de transportcoëfficiënten worden gerelateerd aan karakteristieke
grootheden van de turbulentie. In het bijzonder wordt er aangetoond dat de
gemiddelde kinetische energie (k⊥) en enstrofie (ζ⊥) in de E×B fluctuaties,
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dewelke het turbulent transport veroorzaken, gebruikt kunnen worden om een
robuuste voorspelling van de transportcoëfficiënten te maken. Het analytische
kader wordt dan vervolledigd door ook transportvergelijkingen voor k⊥ en ζ⊥ af
te leiden. Dit maakt het mogelijk om hun bronnen, verliezen en transporttermen
éénduidig aan te duiden en fysisch te interpreteren. De meeste van van deze
termen zijn op hun beurt opnieuw sluitingstermen.

Om concrete, zelf-consistente modellen te ontwikkelen, wordt dit analytische
kader dan toegepast op het geval van 2D elektrostatische plasmarandturbulentie,
waarvoor de TOKAM2D turbulentiecode gedetailleerde referentiedata levert.
De focus ligt op het interchange-gedomineerde sheath-geconnecteerde regime in
de plasmarand. De uitbreidingen naar de kernregio met drift wave-achtig gedrag
wordt eveneens gemaakt. Bayesiaanse methoden voor modelvergelijking en
parameterschatting ondersteunen de ontwikkeling van modellen voor belangrijke
sluitingstermen. Deze methodologie wordt bijvoorbeeld gebruikt om de exacte
relatie tussen k⊥ (en ζ⊥) en de transportcoëfficiënten te bepalen.

Met behulp van de bovenstaande methodologie wordt een zelf-consistent model
opgesteld voor de turbulente E×B fluxen. Dit model impliceert dat gemiddelde
gradiënten van dichtheid en temperatuur leiden tot turbulente warmtefluxen.
Indien de richting van deze warmteflux tegengesteld is aan die van de magnetische
veldgradiënt, drijft dit de interchange bron van de turbulentie aan (volgens een
analytisch verband), hetgeen op zijn beurt tot een verhoogd transport leidt, etc.
De turbulentie verzadigt wanneer de gemiddelde gradiënten een niveau aannemen
waarop een evenwicht ontstaat tussen de interchange bron en het sheath verlies
dat werd geïdentificeerd als het dominante verlies van k⊥. Gezien alle elementen
van dit model voortkomen uit de analytische transportvergelijkingen, krijgt dit
model een duidelijke fysische interpretatie. Voorwaartse 1D transportsimulaties
slagen er zeer goed in om de profielen van de TOKAM2D referentiedata te
reproduceren. Hoewel er wordt aangetoond dat het toevoegen van de enstrofie
in principe de prestaties van het transportmodel kan verbeteren, blijkt de
toegenomen modelcomplexiteit nefast voor de nauwkeurigheid.

Hoewel verdere ontwikkelingen nodig zijn om effecten als drift waves,
afschuifstroming en neutralen in rekening te brengen en het nog uitgebreid
getest moet worden, is het huidige model reeds een grote stap voorwaarts ten
opzichte van de bestaande aanpak voor het modelleren van het turbulente
transport in transportcodes. De implementatie ervan in SOLPS-ITER toont
aan dat dit nieuwe transportpatronen introduceert, zoals asymmetrische gedrag
in combinatie met snel parallel transport van k⊥. Op deze manier vormt dit
werk een cruciaal steunpunt in de ontwikkeling van zelf-consistente turbulente
transportmodellen voor transportsimulaties, zowel door het analytische kader
van gemiddelde transportvergelijkingen als door het voorstellen van een concreet
model voor een subset van de fenomenen die in realistische gevallen optreden.



List of Abbreviations

AMH Adaptive Metropolis-Hastings. 92, 93

DHD drift hydrodynamic , 1D in-house mean-field code. 28, 30, 31

DNS direct numerical simulations. 19, 23

DOL DivOptLight, 1D in-house mean-field code. xxii, xxiii, 187–190, 208–211,
281, 282

DW drift wave. xxiii, 9, 10, 13, 75, 98, 149, 154, 156, 157, 159, 164, 167–170,
191, 213, 217, 226, 227, 230, 231, 237, 239, 240, 242, 245, 247, 248, 255,
263

HFS high-field side. 10, 235, 236, 240

KH Kelvin-Helmholtz. 74, 237, 238

LCFS last closed flux surface. 4

LES large eddy simulations. 19, 20, 23

LFS low-field side. 10, 235, 237

LHS left hand side. 22, 32–34, 41–44, 48, 63, 68, 73, 75, 76, 80, 107, 108, 111,
112, 128, 129, 139, 144, 157, 173, 195, 208, 212, 224, 226, 235, 252, 253,
264, 265, 272, 290, 292, 295, 296

LS least squares. 83, 84, 89, 91, 142, 143

MAP maximum a posteriori. xxiii, 91, 143, 145–147, 162–164, 184, 201, 206

MCMC Markov chain Monte Carlo. 91, 92

ix



x LIST OF ABBREVIATIONS

MHD magneto hydrodynamic , 1D in-house mean-field code. 28

OMP outer mid-plane. 46, 99, 212, 236, 258

PDE partial differential equation. 22, 48

RANS Reynolds-averaged Navier-Stokes. 18–23, 37, 38, 49, 50, 53, 56, 93, 122,
139, 140, 151, 242

RHS right hand side. 19, 25, 32, 35, 42–44, 48, 65, 67, 69, 74–77, 80, 82, 100,
104, 107, 108, 111, 112, 114, 137, 139, 152, 155, 180, 195, 196, 199, 228,
252, 255, 261, 265, 267, 268, 271, 274, 290, 291

RS Reynolds stress. 9, 10, 20–22, 68, 74, 80, 112, 157, 175, 237, 238, 242

SCW sheath-driven conducting-wall. xxii, 193, 194, 198–200, 204, 211, 213,
214, 216–218, 246, 248, 283

SOL scrape-off layer. xxi, xxii, 4, 10, 13, 14, 52, 75, 94, 95, 98, 99, 101, 103,
107, 113, 147–149, 151–153, 155, 156, 158, 159, 164, 168–173, 191, 193,
194, 199, 203, 212, 214, 220, 226, 228, 230, 233–237, 239, 240, 243, 245,
247, 248, 258, 259, 263, 275, 278, 280, 288, 297

TW total vorticity. xxii, xxiii, 172–175, 178, 180–191, 223, 227–233, 237, 238,
245



List of Symbols

Parameter estimation and model validation

D data

ε model error

L(D|M) Bayesian evidence

I input quantity of a model

L(D|θ,M) Bayesian likelihood function

M mathematical model

O output quantity to be modelled

P(θ|D,M) Bayesian posterior function

π(θ|M) Bayesian prior

Σ model error covariance matrix

σ model error standard deviation

θ unknown parameter

Bij Bayes factor for modelsMi andMj

R2 coefficient of determination

Fluid properties

µ dynamic viscosity

ν kinematic viscosity

Π viscous stress tensor

xi



xii LIST OF SYMBOLS

ρ mass density

ω vorticity vector

V velocity vector

n particle density

p pressure

S shearing rate

T temperature

General

L|| parallel connection length

L⊥ perpendicular length scale

e unit vector

τ time scale

a tokamak minor radius

C Constant

g effective gravity

I unit tensor

R tokamak major radius

S source term

t time

x radial coordinate

y diamagnetic coordinate

z parallel coordinate

Plasma quantities

A magnetic vector potential field

B magnetic field

b magnetic field direction (unit vector)



LIST OF SYMBOLS xiii

E electric field

γ sheath heat transmission coefficient

J current density

Λ sheath potential drop

µ magnetic permeability

Ω ion gyro-frequency

φ electrostatic potential

Qei electron-ion heat transfer

η|| parallel resistivity

ρ ion gyro-radius

Rei electron-ion friction force

U0 V0 × b

W pseudo-vorticity

V0 Dominant plasma velocity

cs plasma sound speed

e electron charge

m ion mass

q particle charge

Z charge state

Transport

χ diffusion transport coefficient

Γ flux

q heat flux

θ Prandtl number

D (particle) diffusion coefficient

Subscripts, superscripts, and accentuation



xiv LIST OF SYMBOLS

′ Reynolds fluctuating component
′′ Favre fluctuating component

∗ diamagnetic

0 refence value or dominant contributions

¯ Reynolds average component

ˆ magnitude of complex quantity

λ or y diamagnetic

⊥ perpendicular

φ toroidal

θ poloidal

˜ Favre average component

E E×B

e electron

i ion

m mean-field

p polarisation

r or x radial

t turbulent

Z zonal flow

Turbulence

γ (linear) growth rate

Gk interchange drive term of k⊥

K wave number

νt turbulent viscosity

P turbulent kinetic energy production

ψ fase difference



LIST OF SYMBOLS xv

Sk sheath sink term of k⊥

T turbulent kinetic energy transport

ε turbulent kinetic energy dissipation

εk viscous sink of k⊥

ζ enstrophy

E kinetic energy

I turbulence intensity

k turbulent kinetic energy

lm mixing length





Contents

Abstract v

Beknopte samenvatting vii

List of Abbreviations x

List of Symbols xv

Contents xvii

List of Figures xxi

List of Tables xxiii

1 Introduction 1
1.1 Nuclear fusion, the tokamak concept and power exhaust . . . . 1
1.2 Plasma drifts and turbulence . . . . . . . . . . . . . . . . . . . 6

1.2.1 Mechanisms of perpendicular transport in the plasma edge 7
1.2.2 Phenomenology of plasma edge turbulence . . . . . . . . 8

1.3 Simulating turbulent transport . . . . . . . . . . . . . . . . . . 11
1.4 Goals and outline . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2 Plasma edge turbulence and state of the art in mean-field modelling 17
2.1 Hydrodynamic turbulence and RANS approach . . . . . . . . . 18
2.2 Plasma edge turbulence: governing equations . . . . . . . . . . 23

2.2.1 Fluid turbulence equations for the plasma edge . . . . . 25
2.2.2 Drift formulation through charge balance equation . . . 28
2.2.3 Link between charge balance equation and vorticity equation 33

2.3 Mean-field plasma edge transport equations and existing closure
models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
2.3.1 Analytical mean-field equations . . . . . . . . . . . . . . 38

xvii



xviii CONTENTS

2.3.2 Treatment in mean-field transport codes . . . . . . . . . 45
2.3.3 Recent closure attempts . . . . . . . . . . . . . . . . . . 46

2.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

3 Methodology for the development of mean-field models for the
E×B turbulent fluxes 55
3.1 Ansatz of the k⊥ model . . . . . . . . . . . . . . . . . . . . . . 56
3.2 Analytical derivation of k⊥ equations and energy theorem . . . 60

3.2.1 Derivation of total perpendicular kinetic energy equations 61
3.2.2 Derivation of E×B kinetic energy equations . . . . . . . 65
3.2.3 Analytical relation between interchange term and turbu-

lent fluxes . . . . . . . . . . . . . . . . . . . . . . . . . . 69
3.2.4 Derivation of parallel kinetic energy equations . . . . . . 71
3.2.5 Energy theorem . . . . . . . . . . . . . . . . . . . . . . . 72

3.3 Analytical derivation of ζ⊥ equations . . . . . . . . . . . . . . . 78
3.3.1 Total enstrophy equations . . . . . . . . . . . . . . . . . 79
3.3.2 E×B-only enstrophy equations . . . . . . . . . . . . . . 80

3.4 Parameter estimation and model validation framework . . . . . 83
3.4.1 Least squares methodology for regression analysis . . . . 83
3.4.2 Theory of Bayesian inference . . . . . . . . . . . . . . . 85
3.4.3 Computational methods for Bayesian inference . . . . . 91

3.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

4 2D isothermal interchange-dominated E×B drift turbulence in the
SOL 97
4.1 TOKAM2D setup and equations . . . . . . . . . . . . . . . . . 98
4.2 Mean-field equations . . . . . . . . . . . . . . . . . . . . . . . . 101

4.2.1 Discussion of the kinetic energy equations . . . . . . . . 105
4.2.2 Discussion of the enstrophy equations . . . . . . . . . . 111

4.3 k⊥ model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113
4.3.1 Characterisation of the different terms in the k⊥ equation 113
4.3.2 Particle transport model . . . . . . . . . . . . . . . . . . 121
4.3.3 Complete 1D transport model and implementation in

DivOpt . . . . . . . . . . . . . . . . . . . . . . . . . . . 124
4.4 k⊥ − ζ⊥ model . . . . . . . . . . . . . . . . . . . . . . . . . . . 133

4.4.1 Diffusion coefficient model and enstrophy balance . . . . 133
4.4.2 Two-equation k⊥ − ζ⊥ model . . . . . . . . . . . . . . . 136
4.4.3 Performance of the two-equation k⊥ − ζ⊥ model . . . . 140

4.5 Bayesian model comparison . . . . . . . . . . . . . . . . . . . . 142
4.5.1 Bayesian inference for the submodels . . . . . . . . . . . 142
4.5.2 Bayesian inference for the full models . . . . . . . . . . 144
4.5.3 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . 147

4.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148



CONTENTS xix

5 2D isothermal E×B drift turbulence: extensions 151
5.1 Extension to core region . . . . . . . . . . . . . . . . . . . . . . 151

5.1.1 Turbulent equations and reference data . . . . . . . . . 153
5.1.2 Influence of the core region on the general flow picture . 155
5.1.3 Models for mean-field particle transport . . . . . . . . . 157
5.1.4 Bayesian inference for turbulent diffusion coefficient models162
5.1.5 Discussion and conclusion . . . . . . . . . . . . . . . . . 170

5.2 Extension to total vorticity case . . . . . . . . . . . . . . . . . . 172
5.2.1 Derivation of kinetic energy and enstrophy equations . . 173
5.2.2 k⊥ balances and influence of total vorticity on transport 180
5.2.3 k⊥ model for total vorticity case . . . . . . . . . . . . . 182
5.2.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . 189

5.3 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 191

6 2D anisothermal E×B drift turbulence in the SOL 193
6.1 Anisothermal TOKAM2D setup and equations . . . . . . . . . 194
6.2 k⊥ model for radial turbulent transport . . . . . . . . . . . . . 200

6.2.1 Diffusion model for heat and particle transport . . . . . 200
6.2.2 Modelling the k⊥ equation . . . . . . . . . . . . . . . . . 205

6.3 Mean-field transport model results . . . . . . . . . . . . . . . . 207
6.4 Detailed look at the sheath term: influence of SCW term . . . 213
6.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 218

7 A look ahead: preliminary analysis of 3D cases 219
7.1 Analysis of 3D slab cases . . . . . . . . . . . . . . . . . . . . . 220

7.1.1 TOKAM3X setup and equations . . . . . . . . . . . . . 220
7.1.2 Mean-field equations . . . . . . . . . . . . . . . . . . . . 223
7.1.3 Preliminary modelling results . . . . . . . . . . . . . . . 226

7.2 The impact of realistic 3D geometries: a first exploration . . . 233
7.2.1 Mean-field closure terms . . . . . . . . . . . . . . . . . . 233
7.2.2 Modelling the turbulent kinetic energy equation . . . . 235
7.2.3 Limitations of the k⊥ model . . . . . . . . . . . . . . . . 237

7.3 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 239

8 Conclusion and suggestions for further research 241
8.1 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 241
8.2 Suggestions for future research . . . . . . . . . . . . . . . . . . 247

A Charge balance equation and energetic couplings between kinetic
energies 251
A.1 Link between vorticity equation and charge balance equation . 251
A.2 Diamagnetic kinetic energy equations . . . . . . . . . . . . . . . 253
A.3 Mixed kinetic energy equations . . . . . . . . . . . . . . . . . . 254



xx CONTENTS

A.4 Energetic couplings . . . . . . . . . . . . . . . . . . . . . . . . . 255

B Derivation of TOKAM2D equations and equations for the kinetic
energy and enstrophy 257
B.1 TOKAM2D setup and equations . . . . . . . . . . . . . . . . . 258
B.2 TOKAM2D kinetic energy equations . . . . . . . . . . . . . . . 264

B.2.1 TOKAM2D total kinetic energy equations . . . . . . . . 265
B.2.2 TOKAM2D E×B-only kinetic energy equations . . . . . 268

B.3 TOKAM2D enstrophy equations kinetic energy equations . . . 271
B.3.1 Derivation of total enstrophy equations . . . . . . . . . 271
B.3.2 Derivation of E×B-only enstrophy equations . . . . . . 272

C Representative dimensional values for plasma quantities in TOKAM2D275

D TOKAM2D simulation parameters 277
D.1 Isothermal TOKAM2D simulations for the SOL . . . . . . . . . 278

D.1.1 Default simulation . . . . . . . . . . . . . . . . . . . . . 278
D.1.2 TOKAM2D parameters used in section 4.3 . . . . . . . 278
D.1.3 TOKAM2D parameters used in sections 4.4 and 4.5 . . 279
D.1.4 TOKAM2D parameters used in chapter 5 . . . . . . . . 280

D.2 Isothermal TOKAM2D simulations for the SOL and core region 281
D.3 Anisothermal TOKAM2D simulations for the SOL . . . . . . . 282

E TOKAM2D grid refinement 285

F Supplementary information and derivations for the TOKAM3X slab
cases 289
F.1 Derivation of the kinetic energy equations . . . . . . . . . . . . 289

F.1.1 Total perpendicular kinetic energy equations . . . . . . 290
F.1.2 E×B-only kinetic energy equations . . . . . . . . . . . . 292
F.1.3 Parallel kinetic energy equations . . . . . . . . . . . . . 294

F.2 Derivation of enstrophy equations . . . . . . . . . . . . . . . . . 295
F.2.1 Total enstrophy equations . . . . . . . . . . . . . . . . . 295
F.2.2 E×B-only enstrophy equations . . . . . . . . . . . . . . 296

F.3 TOKAM3X simulation parameters . . . . . . . . . . . . . . . . 297

Bibliography 299

Curriculum Vitae 315

List of publications 317



List of Figures

1.1 Magnetic field structure in a tokamak . . . . . . . . . . . . . . 3
1.2 Schematic of divertor configuration . . . . . . . . . . . . . . . . 5
1.3 Plasma edge axis systems . . . . . . . . . . . . . . . . . . . . . 6
1.4 E×B convection cell . . . . . . . . . . . . . . . . . . . . . . . . 9
1.5 Interchange instability . . . . . . . . . . . . . . . . . . . . . . . . 11

2.1 3D plasma turbulence . . . . . . . . . . . . . . . . . . . . . . . 24
2.2 2D tokamak mean-field . . . . . . . . . . . . . . . . . . . . . . 37

3.1 Energy transfer channels in the plasma edge . . . . . . . . . . . 77

4.1 Sketch of TOKAM2D domain . . . . . . . . . . . . . . . . . . . 102
4.2 Averaging of the TOKAM2D density field. . . . . . . . . . . . . 103
4.3 Dependence of time averages on averaging time horizon. . . . . 104
4.4 Dependence of time averages on initial conditions. . . . . . . . 105
4.5 Radial profiles of D, k⊥ and ζ⊥ in isothermal TOKAM2D SOL

simulation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107
4.6 Isothermal TOKAM2D k⊥ balance. . . . . . . . . . . . . . . . . 114
4.7 Isothermal TOKAM2D k⊥ fluxes. . . . . . . . . . . . . . . . . . 115
4.8 k⊥ interchange models for isothermal TOKAM2D. . . . . . . . 117
4.9 k⊥ sink models for isothermal TOKAM2D. . . . . . . . . . . . 119
4.10 k⊥ particle flux models for isothermal TOKAM2D. . . . . . . . 122
4.11 Isothermal DivOpt profiles. . . . . . . . . . . . . . . . . . . . . 130
4.12 Scatter plot of D for different self-consistent models . . . . . . 132
4.13 Isothermal k⊥ − ζ⊥ versus k⊥ diffusion models . . . . . . . . . 135
4.14 Isothermal TOKAM2D ζ⊥ balance . . . . . . . . . . . . . . . . 136
4.15 Isothermal k⊥ − ζ⊥ model comparison . . . . . . . . . . . . . . . 141

5.1 Characteristic profiles for TOKAM2D simulation with SOL and
core region. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 156

xxi



xxii LIST OF FIGURES

5.2 k⊥ and ζ⊥ balances for TOKAM2D simulation with SOL and
core region. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 157

5.3 TOKAM2D diffusion coefficient profile for case with SOL and
core region . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 158

5.4 Comparison of diffusion coefficient profiles for various models
involving flow shear . . . . . . . . . . . . . . . . . . . . . . . . 164

5.5 Scatter plot of diffusion coefficient for various models involving
flow shear . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 167

5.6 Scatter plot of core region diffusion coefficient for models involving
flow shear . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 167

5.7 Isothermal TW TOKAM2D k⊥ balances. . . . . . . . . . . . . . 181
5.8 Comparison of k⊥ and D between TW and E×B-only cases . . 183
5.9 Isothermal DOL profiles for TW case. . . . . . . . . . . . . . . 189
5.10 Isothermal DOL scatter plots for TW case. . . . . . . . . . . . 190

6.1 Decomposition of particle and thermal fluxes . . . . . . . . . . 196
6.2 Turbulent kinetic energy balance for the anisothermal case . . . 197
6.3 Series decomposition of the sheath term of k⊥ . . . . . . . . . . 198
6.4 Comparison of turbulent particle and heat transport coefficients . 201
6.5 Radial profile of diffusion coefficient models for anisothermal

TOKAM2D . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 203
6.6 Scatter plot of diffusion coefficient models for anisothermal

TOKAM2D simulations . . . . . . . . . . . . . . . . . . . . . . 204
6.7 Scaling of model error with SCW term . . . . . . . . . . . . . . 205
6.8 Model for the sheath term of k⊥ in the anisothermal case . . . 207
6.9 Anisothermal DOL profiles. . . . . . . . . . . . . . . . . . . . . 210
6.10 Scatter plots for anisothermal DOL . . . . . . . . . . . . . . . . . 211
6.11 Phase difference for different TOKAM2D cases. . . . . . . . . . 215
6.12 Scatter plot of diffusion coefficient models for the anisothermal

case . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 216
6.13 Scatter plot of phase difference versus strength of the SCW term 217

7.1 TOKAM3X slab geometry. . . . . . . . . . . . . . . . . . . . . . 221
7.2 TOKAM3X profiles for selected quantities. . . . . . . . . . . . 223
7.3 Isothermal TOKAM3X k⊥ balances . . . . . . . . . . . . . . . 227
7.4 Assesment of k⊥ model in TOKAM3X . . . . . . . . . . . . . . 229
7.5 Models for ∇ · φ′J′|| in TOKAM3X . . . . . . . . . . . . . . . . 229
7.6 Models for ∇||φ′ · J′|| in TOKAM3X . . . . . . . . . . . . . . . . 231
7.7 Models for the turbulent diffusion coefficient D in TOKAM3X 232
7.8 Poloidal profile of k⊥ and Gk in SOLPS-ITER simulations. . . 236

E.1 Grid refinement for the k⊥ and ζ⊥ equations . . . . . . . . . . 287
E.2 Grid refinement for k⊥ and ζ⊥ . . . . . . . . . . . . . . . . . . 287



List of Tables

1.1 TOKAM2D normalisations . . . . . . . . . . . . . . . . . . . . 4

3.1 Interpretation of the Bayes factor . . . . . . . . . . . . . . . . . 89

4.1 R2 values of the terms in the k⊥-only and k⊥ − ζ⊥ models . . . 135
4.2 Bayesian inference results for the submodels in the k⊥-only and

k⊥ − ζ⊥ models . . . . . . . . . . . . . . . . . . . . . . . . . . . 143
4.3 MAP values of the submodels and full models inferences for the

k⊥ and k⊥ − ζ⊥ models . . . . . . . . . . . . . . . . . . . . . . 145
4.4 Comparison of k⊥ and k⊥ − ζ⊥ full models . . . . . . . . . . . 147

5.1 Bayesian analysis of the proposed models for the particle diffusion
coefficients for the iso and isoDW datasets (part 1) . . . . . . . 165

5.2 Bayesian analysis of the proposed models for the particle diffusion
coefficients for the iso and isoDW datasets (part 2) . . . . . . . 166

5.3 Bayesian inference for the particle diffusion coefficient models for
the E×B-only and the TW cases . . . . . . . . . . . . . . . . . 184

5.4 Bayesian inference for models for the sheath loss of k⊥ for the
E×B-only and the TW cases . . . . . . . . . . . . . . . . . . . 186

5.5 Model parameters used in DOL simulations simulations. . . . . 187

6.1 Bayesian analysis of transport coefficient models for the anisother-
mal case . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 202

6.2 Bayesian analysis of sheath term of k⊥ in the anisothermal case 206
6.3 Model parameters for anisothermal DOL simulations . . . . . . 209
6.4 Transport coefficient scalings for different models . . . . . . . . 212

7.1 Bayesian analysis of the proposed models for the parallel transport
term ∇ · φ′J′|| for TOKAM3X . . . . . . . . . . . . . . . . . . . 230

7.2 Bayesian analysis of the proposed models for the DW term
∇||φ′ · J′|| for TOKAM3X . . . . . . . . . . . . . . . . . . . . . . 231

xxiii



xxiv LIST OF TABLES

7.3 Bayesian analysis of the proposed models for the turbulent
diffusion coefficient in TOKAM3X . . . . . . . . . . . . . . . . 232

C.1 TOKAM2D normalisations . . . . . . . . . . . . . . . . . . . . 276

D.1 Default parameters used in TOKAM2D simulations and their
post processing. . . . . . . . . . . . . . . . . . . . . . . . . . . . 278

D.2 TOKAM2D and post-processing parameters of the simulations
used in the regression analysis in section 4.3 . . . . . . . . . . . 279

D.3 TOKAM2D and post-processing parameters of the simulations
used in the regression analysis in section 4.4. . . . . . . . . . . 280

D.4 TOKAM2D and post-processing parameters of the simulations
used in the regression analysis in section 5.2. . . . . . . . . . . . 281

D.5 TOKAM2D and post-processing parameters of the simulations
of the isoDW data set. . . . . . . . . . . . . . . . . . . . . . . . 282

D.6 Simulation parameters of the anisothermal TOKAM2D data set. 283

E.1 TOKAM2D and post-processing parameters of the simulations
used in the grid refinement analysis. . . . . . . . . . . . . . . . 286



Chapter 1

Introduction

It has become abundantly clear that mankind’s emissions of greenhouse gases
and other pollutants have to drop drastically to preserve Earth’s ecosystems.
The absence of greenhouse gas emissions, the widely available fuel, the inherent
safety and the limited, short-lived nuclear waste make nuclear fusion a formidable
option for sustainable electricity generation in the future. However, harnessing
the power of nuclear fusion has presented an equally formidable challenge and
a number of technological problems still stand.

In the effort of working towards controlled electricity generation by nuclear
fusion, several test reactors of increasing size have already been built. Currently
the full-size ITER reactor is under construction in France. Next, DEMO will
supply energy from a fusion reaction to the electricity grid for the first time. The
exhaust functions of these test reactors are becoming ever more important as
the problem of large scale stability of the magnetic confinement for the plasma
has virtually been solved. Hence, the focus of this thesis will be on obtaining a
more realistic description of the turbulent heat and particle transport processes
that play a crucial role in determining the load on the exhaust system.

1.1 Nuclear fusion, the tokamak concept and
power exhaust

In classical power plants for electricity generation, fossil fuels are combusted
by means of a chemical reaction, releasing energy in the form of heat. For the
combustion of methane for example, the principal component of natural gas,

1



2 INTRODUCTION

the reaction can be written as follows.

CH4 + 2O2 → CO2 + 2H2O + 9.24 eV (1.1)

Through a classical thermodynamic cycle, the 9.24eV of heat that is generated
per reaction is converted into useful work and then into electricity.

In nuclear fusion-based electricity generation, these last steps are envisaged
to remain unchanged. There as well the generated heat will be converted
in electricity through a well known steam cycle and by driving an electrical
generator. However, the heat will now be generated by a nuclear reaction instead.
In the nuclear reaction that will be used, two hydrogen isotopes, deuterium
(D) and tritium (T), are fused to create a helium (He) particle and a neutron
[71, 165], while releasing a large amount of energy:

D + T→ He + n + 17.6 MeV. (1.2)

This energy is released in the form of kinetic energy of the resulting helium and
neutron particles, and is converted into heat by collisions, either with other
particles or with the reactor walls. Notice that contrary to the combustion
of methane, no carbon dioxide (or other greenhouse gases) is formed in this
reaction. Furthermore, the D-T nuclear reaction releases an enormous amount of
energy per fuel particle, almost two million times more than for the combustion
of a methane molecule. Hence, very low quantities of deuterium and tritium
suffice to generate the same heat as a gas-fired power plant does.

However, in order for the D-T fusion reaction to take place, the deuterium
and tritium particles need to have sufficient energy to overcome the repulsive
Coulomb barrier between their nuclei. In the thermonuclear fusion concept
considered in this thesis, this requires a mixture of D and T at enormously
high temperatures (order of magnitude 100, 000, 000 K [165, 71]). At these
temperatures, the D, T and He particles are present in the aggregation state
known as a plasma, i.e. the electrons have detached from the atomic nuclei
resulting in a collection of unbound charged particles. Note that while individual
particles are charged, the plasma as collection of charged particles remains quasi-
neutral on length scales larger than the Debye length, which is typically very
small in fusion plasmas (see table 1.1). This is because plasma particles arrange
themselves in such a way that the charge of each particle is shielded by those
around it such that no net space charge remains on larger length scales [82, 165].
Nonetheless, the individual charged particles are affected by electromagnetic
forces. In the presence of a strong magnetic field, charged particles in the plasma
can move almost unhindered along magnetic field lines, while particle motion
perpendicular to it is greatly hindered by the Lorentz force. This behaviour
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Figure 1.1: Magnetic field structure in a tokamak. Figure reproduced from
[124].

is exploited to confine the plasma in the most advanced concept for achieving
nuclear fusion to date: the tokamak.

In a tokamak, the plasma is kept in a toroidal vessel. To minimise the contact
between the hot plasma and the walls, the plasma is confined by a magnetic
field, see figure 1.1. This magnetic field has a toroidal and a poloidal component
resulting in magnetic field lines that are helically shaped and form nested
flux surfaces [165]. Since plasma particles tend to gyrate around magnetic
field lines in orbits much smaller than the system size (see table 1.1), this
magnetic field structure largely confines the plasma particles to their magnetic
flux surface. However, the magnetic fields cannot confine the plasma particles
indefinitely. Several mechanisms exist by which particles do move across flux
surfaces. Moreover, reaction products need to be removed to sustain conditions
favourable for the fusion reaction and the generated heat1 needs to be transferred
to a secondary circuit to use it for electricity generation. To achieve this, a
potent exhaust system is required.

To this end, the magnetic configuration at the wall is changed by a divertor in
most test reactors. The resulting magnetic configuration comprises an X-point

1Of the 17.6 MeV generated per fusion reaction in equation 1.2, only the 3.5 MeV carried by
the kinetic energy of the helium particle is typically absorbed by the plasma and contributes
to the exhaust problem sensu stricto. As the neutrons hardly interact with the plasma, the
remaining 14.1 MeV carried by them is deposited roughly uniformly over the vessel wall.
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Table 1.1: Typical values for characteristic tokamak edge plasma quantities.
Evaluated for a deuterium plasma (charge number Z = 1), magnetic field
B = 5T , density n = 5 × 1019/m3, temperature T = 50eV , ln Λ = 20 safety
factor q = 4.

quantity formula typical value
major radius ∼ 2m
minor radius ∼ 1m
parallel connection length L|| = 2πqR ∼ 50m
speed of sound cs =

√
T
m 4.9× 104m/s

gyro-frequency Ω = eB
m 2.4× 108Hz

gyro-radius ρ = cs
Ω 2.0× 10−4m

Debye length [82, 165] LDebye =
√

ε0T
ne2 7.4× 10−6m

SOL dwell time [153] τSOL ∼ L||/cs ∼ 1.0× 10−3s
SOL width [14, 81] LSOL = p

∇p ∼ 4qρ ∼ 3.3× 10−3m
typical parallel length scale [165] ∼ L|| ∼ 50m
smallest turbulent time scale [71] τ−1

t,min ∼
ρ

LSOL
Ω ∼ 1.5× 107Hz

smallest turbulent perpendicular
length scale [71]

Lt,⊥,min ∼ ρ ∼ 2.0× 10−4m

ion-ion collision frequency [165] νii = nZ4e4 ln Λ
12π3/2ε20miT

3/2 9.6× 104Hz
electron-electron collision fre-
quency [165]

νee =
√

2ne4 ln Λ
12π3/2ε20meT

3/2 8.2× 106Hz

ion-electron collision frequency
[165]

νei =
√

2nZ2e4 ln Λ
12π3/2ε20meT

3/2 8.2× 106Hz

ion mean-free path [165] Lmfp,i ∼ cs
νii

∼ 0.51m
electron mean-free path [165] Lmfp,e ∼

√
T√

meνee
∼ 0.36m

plasma β β = 2µp/B2 4.0× 10−5

that lies on the last closed flux surface (LCFS), also called the separatrix. The
region outside of this LCFS is called the scrape-off layer (SOL) or open field
line region. Flux surfaces in this region are in contact with the divertor target
plates. The plasma edge is formed by the SOL and the plasma that lies just
inside the LCFS [153]. Figure 1.2 shows a cross section in the poloidal plane of
a tokamak with a divertor.

At a material surface in contact with the plasma, charged plasma particles
recombine to form neutral atoms and molecules again. As a result, the material
surface acts like a sink of plasma particles such that the plasma accelerates to
sound speed towards this surface. The details of these plasma-wall interactions
are governed by a layer as thin as a couple Debye lengths that forms in front of
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Figure 1.2: Schematic of a tokamak with divertor configuration. ©EFDA-JET

the surface, which is known as the sheath. The neutral particles formed at the
surface are released again and enter the plasma. Furthermore, the impact of
plasma particles on the material surface tends to knock particles loose, leading
to impurities (particles other than fuel or exhaust species) entering the plasma.
Consequently, a certain concentration of neutral particles and impurities is
typically present in the plasma edge, especially close to the divertor targets.
These plasma-wall interactions are described in detail in Ref. [153] for example.
A divertor configuration shifts the main place of contact between the plasma
and the wall away from the core plasma, limiting the amount of impurities
that enter the core plasma as well as protecting the walls of the main chamber
from excessive heat loads. As a result of this configuration, heat and particle
loads are concentrated on the divertor plates [153]. The full-size ITER reactor
is designed to handle a steady state heat flux of 10 MW/m2 impinging on the
target plates. However, depending on the exact operating parameters and
modelling assumptions, this value may be exceeded [123].

Overcoming the difficulties posed by these peaked heat and particle loads at
the divertor targets is crucial in the development of commercially viable nuclear
fusion power plants. The magnitude and location of these heat and particle
loads depend both on the quickness of heat and particle removal along magnetic
field lines toward the target plates and on the rate at which they are transported
outward across magnetic flux surfaces in the plasma edge. Furthermore, the
outward transport in the plasma edge also contributes to the energy confinement
time, which is an important performance characteristic for the reactor efficiency
and operation. While self-consistent models based on collisional closures exist
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λ 

Figure 1.3: Illustration of the radial (er), diamagnetic (eλ), parallel (e||) and
radial (er), poloidal (eθ), toroidal (eφ) axis systems used for the description of
the plasma edge in tokamak geometry. Figure reproduced from Ref. [52].

for the transport in the parallel direction, the outward transport perpendicular
to the magnetic field is poorly understood. This outward transport is known
to be dominated by turbulent processes [71, 143, 165] for which accurate yet
computationally affordable models are still being developed. The next section
will introduce the basic mechanisms driving this turbulent transport.

1.2 Plasma drifts and turbulence

As mentioned in the previous section, plasma particles in a strong magnetic field
tend to move along the magnetic flux lines. In the direction perpendicular to
the magnetic field line, the charged plasma particles are confined by the Lorentz
force and trace circular orbits. This is called the gyro-motion of the particles
[82, 165]. Different mechanisms breaking this perfectly confined gyro-motion
exist though.

In order to facilitate the upcoming discussion, figure 1.3 introduces the directions
and coordinate systems that will be used. Mostly the radial, diamagnetic,
parallel (e||) system will be used in this thesis. The radial er direction points
outwards, out of the flux surface. The parallel direction e|| is perpendicular to
it and points in the direction of the magnetic field. The diamagnetic direction
eλ lays in the magnetic flux surface, perpendicular to the former two and
completes the right handed axes system. Alternatively, the radial, poloidal,
toroidal coordinate system could be used. Here, the toroidal axis eφ is aligned
with the toroidal direction of the tokamak, while the poloidal direction eθ is
perpendicular to both the radial and the toroidal directions completing this right
handed axis system. Note that the same radial axis is used in both systems.
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1.2.1 Mechanisms of perpendicular transport in the plasma
edge

Classical particle transport is due to collisions on the scale of the collision
mean free path in the direction parallel to the magnetic field and the gyro-
radius in the directions perpendicular to it. Typical values for the collision
frequencies and mean-free paths (in the parallel direction) are shown in table
1.1. This classical transport theory does not take toroidal effects that lead to
gradients in the magnetic field into account. These gradients lead to different
kinds of particle motions that induce neoclassical transport effects in the
collisional transport, enhancing the transport compared to classical theory [165].
Comparing experimental results to neoclassical predictions, it was found that the
perpendicular transport is much larger than theory predicts [165, 143, 165]. This
anomalous transport is generally known to be caused by turbulent fluctuations
which are not included in the neoclassical predictions. This turbulence is due
to fluctuating drift flows [71, 143, 165]. Table 1.1 also shows typical length and
time scales for the turbulent fluctuations.

In general, plasma drift flows are the effect of the gyro-motion of plasma particles
being distorted either by forces acting on plasma particles or due to spatial
and temporal changes of the magnetic field. As a result, the particles no longer
trace perfect circles around the field lines, but instead “drift” across magnetic
field lines. These drifts occur in the plane perpendicular to the magnetic field.
In tokamak plasmas, the dominant plasma drift is usually the E×B drift due to
the presence of an electric field. The resulting drift velocity VE is

VE = E×B
B2 . (1.3)

In this equation, E is the electric field vector, B the magnetic vector field and
B the magnetic field strength. As can be seen from this formula, the E×B
velocity is indeed perpendicular to the magnetic field, and purely due to the
part of the electric field perpendicular to the magnetic field. The E×B drift
velocity and the other drift velocities add to the circular gyro-motions. The
drift velocities are thus the velocity of the so called guiding centres, the location
of the particle averaged over many gyro-periods (which are much shorter than
the length scales of the turbulence and the transport of interest in this thesis).
Looking not at the guiding centres of individual particles but at the plasma as
a whole, equivalent drifts for the plasma fluid are found. A detailed description
and derivation of guiding centre and fluid drifts can be found in, for example,
Refs. [82, 165].

E×B drift flows occur due to an electric field that persists on long time and length
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scales as part of the plasma equilibrium in the reactor, but arises in response
to small scale fluctuations of the electric field just as well. The latter kind of
drift flows constitute the main mechanism of the turbulence. The correlation of
electric field fluctuations with density and temperature fluctuations leads to
turbulent fluxes of particles and heat. Note that fluctuations of the magnetic
field typically play a less important role for the transport in the plasma edge and
are often neglected in an electrostatic treatment [71, 143, 153]. What happens is
that in the plane perpendicular to the magnetic field, an electric field with many
small perturbations arises. Under effect of the E×B drift, plasma fluid elements
trace orbits around local maxima an minima of the electrostatic potential (φ).
More precisely, perpendicular to the magnetic field, the plasma elements move
along lines of constant electrostatic potential. This motion convects thermal
energy and particles, which in turn changes the structure of the electric field.
The continuous interactions between both leads to a chaotic structure of both
the electric field and the flow which evolves over a range of time and length
scales, and hence to turbulence.

These small scale E×B convection cells of the turbulence constitute the dominant
mechanism by which heat and particles are transported across magnetic flux
surfaces in modern tokamaks [153, 165, 143, 71]. This mechanism is illustrated
in figure 1.4. It shows that a local maximum in the electrostatic potential
(φ), indicated by the “+” symbol, leads to a convection cell around it. In the
presence of a density (n) gradient perpendicular to the magnetic field, this
causes a particle flux (Γ) in the direction perpendicular to the magnetic field.
Note that while the figure depicts a simple quadratic-like potential structure
resulting in elliptical E×B orbits, the picture is much more irregular in real
plasma edge turbulence. Many local maxima and minima occur and change in
time, such that the lines of constant electrostatic potential which are followed
by the plasma elements may be much more tortuous and complex.

Since the drift flows occur in the plane perpendicular to the magnetic field and
motion in the parallel direction is largely unhindered by the magnetic field, the
flow field takes the form of small scale structures in the plane perpendicular to
the magnetic field (of the order of the ion gyro-radius) that are highly elongated
in the direction parallel to it. As a result turbulence in the plasma edge is
typically quasi-2D with fluctuations in the parallel direction occurring on much
larger scales than those in the perpendicular plane [131, 141, 153, 143].

1.2.2 Phenomenology of plasma edge turbulence

In general, turbulence arises when strong thermal gradients are present in the
plasma. As a way of diminishing this thermodynamic inequilibrium, turbulent
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Figure 1.4: Schematic representation of an E×B convection cell. E×B drift
velocities cause fluid elements to trace orbits around maxima and minima of
the electrostatic potential. Figure reproduced from Ref. [94].

flow structures develop that cause strong heat and particle fluxes to counteract
this. As such, it is the energy present in the background thermal energy
and its inequilibrium which provides the energy for the turbulence to develop
[36, 94, 117, 143, 145]. A plethora of instabilities can occur in the plasma edge
by which perturbations can grow and feed the turbulence. While the structure
of the developed turbulence is nonlinear and cannot be determined from the
linear instability only [71, 143, 145], some characteristics of the linear drive
may still shine through. Here, we will take the energy transfer channels into
the turbulence as a viewpoint though. These transfer channels correspond to
sources and sinks of the energy in the turbulent fluctuations, which exchange
energy with other energy forms in the plasma (see section 3.2.5). While several
more channels exist, the drift wave (DW), interchange and Reynolds stress (RS)
channels are assumed to dominate the dynamics [143].

The DW transfer channel allows energy to be exchanged with the turbulence
through dynamics parallel to the magnetic field. Hence, this transfer channel
can only be active when fluctuations in the parallel direction are allowed [143].
For this reason, the DW channel is expected to be more important in the
closed field line region inside the separatrix where parallel fluctuations are not
constrained by the magnetic field lines ending at the sheath [131]. The DW
instability related to this channel originates from the wave which propagates
in the direction perpendicular to both the (electron) pressure gradient and
the magnetic field when electron parallel dynamics are allowed for. When the
parallel electron response to density perturbations is not infinitely fast, this
wave grows in amplitude and can induce turbulence [94, 95, 164].

Next, the interchange channel allows energy exchange with the turbulence in the
presence of gradients in the magnetic field strength. This channel purely relies
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on dynamics perpendicular to the magnetic field and can function without any
fluctuations in the parallel direction. As such, this channel tends to be dominant
in the SOL where the parallel dynamics are modified by the magnetic field lines
being in contact with material surfaces, hindering the DW channel [131]. The
larger resistivity (due to lower temperatures) and the strong gradients in this
region further facilitate the interchange channel over the DW channel. This
transfer channel is related to the “interchange” of fluid elements by which the
heavier fluid element moves radially outward due magnetic field gradients acting
like an effective gravity in that direction. Equivalently, this can be explained
as an interaction between the E×B drift and the pressure-gradient-induced
drift [82, 164]. Since the interchange mechanism is only unstable when the
pressure gradient (∇p) points in the opposite direction of the effective gravity
(g = −2pκ/ρ, with κ the local magnetic field line curvature and ρ the density
[82]), interchange turbulence is normally strongest on the outboard side of the
tokamak. This is illustrated in figure 1.5, where also the magnetic field strength
is indicated for future reference. As such, interchange is believed to explain the
experimental observation that the turbulence is usually much stronger at the
outboard side (or low field side, LFS) of the tokamak than at the inboard side (or
high field side, HFS), an effect which is called “ballooning” [34, 66, 74, 85, 158].

The interchange mechanism is also responsible for the propagation of blob-
filaments aligned with magnetic field lines in the plasma edge. High density
perturbations known as “blobs” propagate outwards, while low density “holes”
propagate inwards. This induces a pronounced ballistic character into the
small scale dynamics of the turbulent transport. A significant fraction of the
radial transport in the plasma edge is due to these blob-filaments, such that
this mechanism should be considered as an important addition to the picture
of convection cells moving thermal energy and particles gradually outwards
sketched above [76, 78, 61, 101, 106, 125].

Another phenomenon of interest are large scale shear flows which tend to develop
around the separatrix. These are plasma flows in the poloidal/diamagnetic
direction which are sheared in the radial direction. Typically, these flow
structures are largely uniform on magnetic flux surfaces. A distinction can
be made between the stationary mean-field component due to the plasma
equilibrium and the so-called “zonal flow” component which varies in time
(typically on a time scale larger than that of the turbulence). These shear flows
act to break up turbulent eddies and thus reduce the intensity of the turbulence
and the transport. Moreover, these shear flows are partly fed by absorbing
the energy of the turbulence through the RS energy transfer channel. As a
result, strong shear flows can create a “transport barrier” which improves the
confinement, leading to the operating regime called H-mode, as opposed to the
lower confinement regime called L-mode [56, 58, 144, 146, 163]. The formation
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Figure 1.5: Cross-section of a tokamak showing the density profile in the radial-
poloidal plane. A schematic representation of quantities relevant to the stability
of the interchange mode has been overlaid. Figure adapted from Ref. [12].

process of these strong shear flows can be understood as a manifestation of the
inverse energy cascade by which energy is transferred from small to large scales
in 2D turbulent systems [4, 36, 71, 169].

1.3 Simulating turbulent transport

As experimental tokamaks are extremely expensive, numerical simulations of
the plasma edge are vital to predict the performance of future reactors and
to obtain improved designs. The detailed models solved in these simulations
allow to extrapolate knowledge obtained from smaller-scale test machines to
operating regimes of future full-scale reactors. While the turbulent transport
processes introduced in the previous section are of crucial importance to predict
the load on the divertor, simulating this transport remains challenging.

A first approach is to explicitly resolve all the fine length and time scales of
the turbulence, which yields a very accurate representation of the turbulent
transport. This is done in turbulence codes which solve a set of fluid equations
governing the plasma dynamics, see for example Refs. [132, 157, 154, 33].
Gyrokinetic codes go a step further by using a gyro-averaged 5D kinetic
description of the plasma, see for example [86]. However, the fine spatio-
temporal resolution that these approaches require, leads to an exceedingly
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high computational cost for large devices and inhibits their use for routine
design simulations. Hence, despite the availability of advanced super computer
infrastructure, the applications of these approaches remains largely limited to
the plasma edge of medium-size tokamaks.

Instead, plasma facing-components and the exhaust system are typically
designed using mean-field plasma edge transport codes. Since these codes
only calculate averaged, macroscopic values of quantities and usually assume
toroidal symmetry, their computation cost is much more affordable. Running
a simulation for the plasma edge of an ITER-scale machines typically takes
around a month in wall time on dedicated computational infrastructure [102].
SOLPS-ITER, which is the reference code for the design of the ITER divertor,
is a prime example of such a mean-field code [29, 167]. The main transport code
in SOLPS-ITER is B2.5-EIRENE. The EIRENE code solves the Boltzmann
equation for the neutrals based on a Monte-Carlo approach [130, 142]. The B2.5
code models the ion and electron transport, using a finite volume discretisation.
Fluid equations for the plasma are used to model the parallel transport, while
ad-hoc diffusion-type equations approximate the turbulent transport in the
perpendicular directions. The reason why these ad-hoc diffusion models are
used is that the turbulent fluctuations appear as closure terms consisting of
correlations between fluctuating quantities in the averaged mean-field equations.
These closure terms cannot be calculated from first principles based on mean-
field quantities.

However, at present these diffusive models contain no information on the
underlying turbulence. Instead, these models employ experimentally determined
profiles for the diffusion coefficient featuring a large amount of parameters as
the profiles are a function of the radial (and sometimes the poloidal) coordinate
[3, 53, 128]. The resulting diffusion coefficients are typically found to vary
significantly between machines and operating conditions, even varying by several
orders of magnitude within a single discharge [103]. Moreover, in the current
“best practices”, there is no framework for evaluating these models and issues
such as overfitting are not taken into account. Therefore, these diffusive
approximations pose severe limitations on the predictive capabilities of the
codes.

1.4 Goals and outline

At present, the mean-field transport codes used for divertor design are not
capable of properly modelling turbulent transport. This thesis aims to develop
self-consistent models for the turbulent transport in the plasma edge which can
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be used in mean-field codes without exceedingly increasing the computational
cost. The resulting models should depend on fewer and more universal
parameters than the ad-hoc diffusive models that are presently used. Such
model should be able to predict the anomalous transport phenomena based on
a physical description of the underlying mechanisms. The improved predictive
capabilities of the model are envisaged to enhance the reliability of simulation-
based design of future fusion reactors.

To achieve this goal, a theoretical model is derived first. This includes rigorously
averaging the equations governing the plasma dynamics taking turbulent
fluctuations into account. The averaged equations include closure terms that
depend on the correlation of multiple fluctuating quantities [143]. Appropriate
models for the relevant closure terms will be developed. Inspiration can be
found in the methodology and models employed for hydrodynamic turbulence.
However, these models have to be carefully analysed and adapted to the specific
nature of edge plasma turbulence.

The development of models for the important closure terms proceeds by an
analysis of detailed reference data provided by (averaged) data from turbulence
code simulations. A systematic approach is followed by the use of reference data
from increasingly complex turbulence models that gradually take additional
physical effects into account. This gradual approach allows to build a reduced
model starting from the basic physics of plasma edge turbulence, to subsequently
determine the impact of the refinements in the turbulence model, and integrate
it into the reduced model. This thesis will mostly consider 2D interchange-
dominated electrostatic turbulence in the SOL where flow shear is limited.
Preliminary extensions will be made to cases with DW dynamics and strong
flow shear, as well as fully-3D configurations. The effect of neutrals will largely
be neglected in the analysis.

An important element in this data driven model development process is the
estimation of the model parameters and the selection of the most suited model
variant. Appropriate values for the parameters can be determined by optimising
the fit between the reference data and the mean-field models that are developed.
A Bayesian framework will be applied in order to not only estimate the single
“best” value of the model parameters, but also the uncertainty on the model
parameters and their mutual correlations. Furthermore, this Bayesian approach
allows to compare different models in a statistically relevant way, while inherently
taking differences in model complexity and the issue of overfitting into account.

The remainder of this thesis works towards the objective with the following
structure. Chapter 2 first reviews the basics of hydrodynamic turbulence
and the Reynolds-averaging approach followed to solve the closure problem in
hydrodynamic turbulence. Then, the commonly used fluid equations governing
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the plasma behaviour in the plasma edge are formulated and averaged to obtain
their mean-field equivalent. This already allows to identify the exact form of the
perpendicular turbulent heat and particle fluxes that need to be closed. Next,
the treatment of these fluxes in mean-field codes as well as a number of models
recently proposed in literature to self-consistently determine these fluxes are
discussed.

Chapter 3 explains the basic ansatz that will be followed in this thesis for
developing mean-field turbulent transport models and provides a physical
argumentation for it. The closure strategy that is followed relies on relating
the effective turbulent transport coefficients to characteristic quantities of the
turbulence, in particular the perpendicular turbulent kinetic energy k⊥ and
enstrophy ζ⊥. Next, analytical transport equations for these quantities are
presented. These equations provide insight in the dynamics of the turbulence, in
the form of new closure terms that appear as sources and sinks of the turbulence.
Notably, an analytical relation for the interchange source of the turbulent kinetic
energy is identified. Finally, the Bayesian inference methodology that will be
used for parameter estimation and model comparison is introduced.

Chapter 4 applies the framework developed earlier to the case of 2D isothermal
electrostatic interchange-dominated E×B drift turbulence in the SOL. Reference
data for this simplified flow case is obtained from the TOKAM2D turbulence
code [109, 116, 141]. Two mean-field turbulent transport models, the k⊥ and
k⊥ − ζ⊥ model, will be developed and compared. A good match with the
TOKAM2D reference data is achieved by both models. It is believed that these
simple models already capture some of the basic physics of turbulent plasma
edge transport.

The developed models are then further tested and extended for more challenging
flow cases in chapters 5 and 6. First, a core region with drift-wave like
dynamics is added in chapter 5, which also introduces strong flow shear in
the simulations. Both elements are found to require adjustments in the particle
transport model. Next, the effect of including the pressure gradient drift in
the inertia is investigated. This is found to require adjustments to the model
coefficients. Chapter 6 then investigates the anisothermal case in which not
only the turbulent particle flux, but also the turbulent heat fluxes need to be
modelled. Furthermore, this introduces a new instability capable of driving
the turbulence. A natural extension of the previously developed k⊥ model is
found to reproduce the reference data with good accuracy, although the detailed
dynamics of the new instability are not captured.

Chapter 7 provides a first step in the extension of the approach towards 3D
turbulence (2D mean-field cases). This is guided by a preliminary analysis of 3D
turbulence code data for isothermal slab cases generated with the TOKAM3X
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[157] turbulence code. In particular, this enables a more detailed investigation
of the parallel dynamics and their effect on the turbulent perpendicular kinetic
energy.

Finally, chapter 8 summarises the main results of this thesis, presents a
conclusion, and suggests tracks for future research.





Chapter 2

Plasma edge turbulence and
state of the art in mean-field
modelling

The previous chapter has established that turbulent transport processes largely
determine the outward power and particle fluxes in the plasma edge. Thus,
properly modelling these processes is crucial to correctly predict the load on the
divertor. However, doing so using acceptable computational resources remains
challenging. The aim of this chapter is to review the current state of the art in
modelling the average turbulent transport.

There is a long history of studying 3D hydrodynamic turbulence, which has
led to a good understanding of it, and a range of models have been developed.
In view of this, section 2.1 will investigate how this related research field may
serve as inspiration for plasma edge turbulence modelling. Particular attention
will go to the Reynolds averaging methodology and the strategy to solve the
closure problem in hydrodynamic turbulence.

Next, section 2.2 will present the instantaneous fluid equations governing
the plasma edge turbulence. Similarities and differences with respect to the
hydrodynamic case will be highlighted, to get an idea of the degree to which
knowledge on hydrodynamic turbulence can be transferred to the plasma edge
case at hand. Section 2.3 will then average the instantaneous equations derived
in the previous section in order to obtain the corresponding mean-field equations.
In these equations, the closure terms which require modelling will be identified.
The lacking treatment of these closure terms in current mean-field codes, and

17
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models suggested in literature to improve this will be discussed. Finally, section
2.4 will conclude this chapter.

2.1 Hydrodynamic turbulence and RANS approach

Turbulence is a ubiquitous feature of fluid flows which is commonly encountered
in non-plasma applications as well. The standard setting that has been most
often studied is that of 3D hydrodynamic turbulence. Even though there are
very important differences between the plasma edge turbulence of interest in
this work and this 3D hydrodynamic turbulence, it is worthwhile to take the
state of the art in this related field into account and to draw inspiration from it.
Especially the Reynolds-averaged Navier-Stokes (RANS) models to calculate
the average of the turbulent flow field are of interest since the goal of this thesis
is to advance the development of equivalent models for the plasma edge, which
are only in their infancy at the time of writing.

Hydrodynamic fluid flow can be described by the Navier-Stokes equations:

∂ρ

∂t
+∇ · (ρV) = 0, (2.1)

∂ρV
∂t

+∇ · (ρVV) = −∇p−∇ ·Π. (2.2)

In these equations, t is time, ρ is the mass density, V the fluid velocity, p the
pressure and Π the viscous stress tensor. Particle sources and body forces are
assumed to be zero in these equations. If we consider the archetypical example
of Newtonian constant density flow in which ρ is constant in space and time
and the stress tensor is Π = −µ(∇V +∇VT ) with µ the dynamic viscosity, the
equations reduce to

∇ ·V = 0, (2.3)

∂V
∂t

+∇ · (VV) = −∇p
ρ

+ ν∇2V, (2.4)

with ν = µ/ρ the kinematic viscosity. Equation 2.3 can be used to rework
equation 2.4 into a Poisson equation for the pressure

∇2p = −ρ∇V : ∇VT = −ρ∇ · (∇ · (VV)). (2.5)
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This way, equations 2.4 and 2.5 form a closed set of equations for the velocity
and pressure fields.

In 3D constant-density hydrodynamic turbulence as described above, the
general picture is the following. Energy is injected into the turbulence at
some macroscopic length scale. Eddies of this size having absorbed this energy
tend to break down into smaller eddies, transferring the energy to smaller length
scales. This process of eddy break-up is dominated by inertial forces and goes
on until the energy reaches the Kolmogorov length scale at which viscous effects
become important and the energy is taken out of the turbulence and dissipated
into heat. The energy is said to follow a direct cascade, being transferred from
large to ever smaller length scales [126]. The basic mechanism responsible for
the eddies becoming smaller and smaller is vortex stretching. According to
Helmholtz theorem [126] for inviscid constant-density hydrodynamic flow, lines
of vorticity are conserved in fluid elements, i.e. they could be imagined to
be “frozen-in” the flow. Now in general, the end points of a vortex tube in
a turbulent flow will move away from each other (following the random walk
principle) such that vortex tubes are stretched. Due to the incompressibility,
this stretching leads to the thinning of the vortex tube. Moreover, due to the
conservation of angular momentum, this thinning leads to an increase of the
vorticity of the tubes. Thus, this vortex stretching leads to a reduction of
the scales of the turbulence and an increase of the vorticity. Note that vortex
stretching is inherently a 3D effect. A third direction is required in order for the
end points of a vortex tube to be able to move away from each other [9, 126].

Vortex stretching can also be identified in the vorticity equation, which can be
obtained by taking the curl of equation 2.4:

Dω

Dt
= ω · ∇V + ν∇2ω, (2.6)

where ω = ∇ ×V is the vorticity vector. The first term to the RHS of this
equation is the vortex stretching term leading to the creation of vorticity in
fluid elements (and, losely speaking, of turbulence), while the second term leads
to viscous dissipation of it. It can be remarked here as well that the vortex
stretching term can only be nonzero if a velocity gradient along the direction of
the vorticity vector can exist [126].

In hydrodynamic turbulence, an extensive framework for turbulence modelling
has been developed over the past decades. Three modelling approaches can be
distinguished: DNS, LES and RANS modelling. In direct numerical simulations
(DNS), the Navier-Stokes fluid equations (2.1-2.2 or 2.3-2.4) are solved on a
very fine grid, such that even the smallest turbulent length and time scales are
explicitly simulated. This generally requires significant computational efforts,
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but yields a very accurate description of the flow. In large eddy simulations
(LES), only large scale turbulent structures are resolved, while the small scale
turbulent fluctuations are approximated using models. This approach reduces
the computational cost at the expense of the accuracy and requires accurate
models for the fine scales. Lastly, in Reynolds-averaged Navier-Stokes (RANS)
modelling, the Navier-Stokes equations are averaged such that only macroscopic
quantities of the flow are calculated. The effects of turbulent fluctuations appear
as closure terms consisting of correlations between fluctuating quantities. In
this RANS approach, each turbulent quantity u (which can vary chaotically in
space and time) is decomposed in an average component ū and a fluctuating
component u′ according to [126]

u = ū+ u′, (2.7)

ū , lim
N→∞

1
N

N∑
i=1

u(i). (2.8)

The latter formula defines the ensemble average where u(i) is an individual
realisation of the flow. Applying this averaging operator to the incompressible
NS equations 2.3-2.4 yields

∇ · V̄ = 0, (2.9)

∂V̄
∂t

+∇ · (V̄V̄ + V′V′) = −∇p̄
ρ

+ ν∇2V̄, (2.10)

Equation 2.9 could again be replaced by a Poisson equation for the average
pressure:

∇2p̄ = −ρ∇ · (∇ · (V̄V̄ + V′V′)). (2.11)

In these equations, the Reynolds stresses (RS) V′V′ appear, which depend
on the correlation between fluctuating velocity components. They cannot be
calculated self-consistently from the average velocity V̄ that is obtained from
equations 2.10-2.11. As such, this is a closure term for which an external model
is needed in order to solve the system of averaged Navier-Stokes equations. The
RS are the primary closure terms that needs to be modelled in RANS modelling.
Various models for these closure terms have been developed. Most of these
models solve additional partial differential equations for higher order moments
of the fluctuations such as turbulent kinetic energy (k) or Reynolds stresses
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themselves. Some well-known examples are the k, k − ε and k − ω models,
which are widely used for industrial applications today [126].

In the remainder of this section, we will discuss the k model in some more detail
to give insight in the way RANS models tackle the closure problem for the RS.
To start of with, the turbulent kinetic energy is defined as

k ,
1
2tr(V′V′) = V′2

2 . (2.12)

It is thus that part of the kinetic energy of the flow that is present in the
fluctuating part of the velocity field. As such, it is an interesting measure for
the intensity of the turbulence and can be used to construct a characteristic
velocity scale for it.

The k model, like the k − ε and k − ω models, makes use of the turbulent
viscosity hypothesis, which assumes the RS to behave similarly to the viscous
stress tensor. Thus, in analogy with the total pressure tensor, the RS are
modelled as

V′V′ = 2
3kI − νt(∇V̄ +∇V̄T ) (2.13)

In this equation, νt is the turbulent viscosity, which is to be interpreted as
some kind of effective turbulent viscosity acting on the averaged flow field. This
turbulent viscosity now needs to be modelled still. The k model does so by
taking νt = Cν lm

√
k, where lm is a characteristic mixing length scale to be

chosen and Cν a model coefficient. This expression has the same dimensions
as a viscosity, and it seems sensible to relate the strength of the RS to the
turbulent intensity as characterised by k. This now shifts the closure problem to
modelling k. Manipulating the momentum equation 2.4, a transport equation
for k can be derived:

∂k

∂t
+∇ · (kV̄ + T ) = P − ε, (2.14)

P = −V′V′ : ∇V̄, (2.15)

ε = ν

2 (∇V′ +∇V′T ) : (∇V′ +∇V′T ), (2.16)

T = V′2V′

2 + p′V′

ρ
− νV′ · (∇V′ +∇V′T ). (2.17)
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This provides yet another way of looking at the energy cascade. Energy
is injected into the turbulence by the production term P through the RS
acting on the average flow shear. This turbulent kinetic energy is then either
dissipated locally at the fine scales by viscous effects through the dissipation ε,
or transported in space by the transport terms on the LHS (to be dissipated by ε
elsewhere). However, equation 2.14 still needs closures for ε and T before it can
be used to model k. The understanding of the energy cascade and dimensional
arguments are used to provide a closure for ε, while transport T is modelled
using a gradient diffusion hypothesis (see later in this section). All this together
leads to the following k model:

∂k

∂t
+∇ · (kV̄− νt

θk
∇k) = −V′V′ : ∇V̄− Cε

lm
k3/2 (2.18)

V′V′ = νt(
2
3kI − νt(∇V̄ +∇V̄T ) (2.19)

νt = Cν lm
√
k (2.20)

In these equations, θk is the turbulent Prandtl number and Cν and Cε are
coefficients to be determined. Hence, together with the averaged Navier-Stokes
equation 2.10-2.11, this leads to a closed set of equations for the averaged
flow field. In summary, the k model allows solving the averaged Navier-Stokes
equations by closing the RS. A model for these is constructed based on k, for
which an additional PDE is solved.

As mentioned above, extensions of this k model also exist, e.g. the k − ε and
k − ω models. In the k − ε model, the dissipation ε is no longer modelled as a
scaling law based on k, but by a separate transport equation. This equation is
typically taken ad-hoc, based on dimensional arguments and trying to replicate
the energy cascade. The additional field for ε that is now available is used
to complete the scaling for νt = Cνk

2/ε such that the mixing length lm is no
longer needed.

Another noteworthy topic is the treatment of the transport of a (passive) scalar
in RANS modelling. The total flux Γu of a scalar u can be written as

Γu = uV = ūV̄ + u′V′. (2.21)

Here, the first term represents transport by the mean velocity, while the second
term governs turbulent transport. This second term again requires closure. A
typical way to model it is to make use of the gradient-diffusion hypothesis

u′V′ = −Du∇ū, (2.22)
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with Du an effective turbulent diffusion coefficient. Hence, the “random”
turbulent fluctuations are expected to produce a flux of u down the gradient of
its average, much like regular molecular diffusion would. The turbulent diffusion
coefficient Du in this expression has the same dimensions as the turbulent
viscosity νt and a similar interpretation as well. As such, both are typically
modelled similarly, i.e. Du = νt/θu, where θu is a turbulent Prandtl number.
Hence, if the k model is used, the turbulent flux of u would typically be modelled
as

u′V ′ = −Du∇ū = −Cν lm
θu

√
k∇ū. (2.23)

2.2 Plasma edge turbulence: governing equations

While the approach followed by plasma turbulence codes is similar to the
approach followed by DNS, mature LES- or RANS-like equivalents for plasma
turbulence are missing to date. It is possible to average the fluid-like Braginskii
equations governing the turbulence, taking the turbulent fluctuations into
account though, as was done in [143]. Some first steps towards a RANS-like
model for plasmas have been set only recently in [11, 12, 13, 14, 34, 44, 45, 46,
47, 113]. This section will first discuss the full turbulence equations governing
the plasma edge. Next, section 2.3 will present their averaged, mean-field
equivalent as well as the treatment of these averaged equations in mean-field
transport codes.

Plasma edge turbulence codes solve fluid equations describing the dominant
dynamics in the plasma edge on very fine time and length scales to resolve the
turbulent flow field, as is done in a DNS approach for hydrodynamic turbulence.
Examples of such plasma edge turbulence codes capable of resolving the whole
3D flow field self-consistently (without assuming a scale separation between
turbulence and the background plasma) are TOKAM3X [157], GBS [90, 132],
GRILLIX [154] and SOLEDGE3X [33]. Simulations with such turbulence codes
require substantial computational resources. Turbulence codes that resolve the
flow field under a 2D approximation also exist, e.g. TOKAM2D [141, 109, 116],
HESEL [119, 159] and SOLT [139, 140]. These are significantly more affordable,
but are typically only reliable to model a small region of the reactor.

While some concepts and methodologies can presumably be transferred, plasma
edge turbulence is inherently different from the familiar 3D constant-density
hydrodynamic case discussed in the previous section. Some elements leading
to significantly different dynamics are the following. The strong magnetic
field present in the tokamak plasma edge and its interaction with the plasma
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Figure 2.1: Visualisation of the instantaneous plasma density in a tokamak.
Figure reproduced from Ref. [48].

fluid leads to a strong anisotropy of the turbulence. Plasma particles can
move almost unhindered in the direction parallel to the magnetic field (the
parallel direction), while these charged particles are strongly constrained in
their movement perpendicular to the magnetic field line due to Lorentz forces.
As a result of this, the turbulent structures are elongated along the magnetic
field lines, i.e. the length scale of the turbulent structures is much larger in the
parallel direction than in the perpendicular direction. This leads to a quasi-2D
structure of turbulence. Figure 2.1 illustrates this instantaneous structure based
on a detailed numerical simulation.1

Chapters 4 to 6 will almost exclusively consider the turbulence as fully 2D
according to the commonly made flute approximation [36, 71, 92, 119, 141].
In such 2D turbulence, the vortex stretching mechanism is no longer active,
completely changing the dynamics of the turbulence. Indeed, in 2D inviscid
hydrodynamic turbulence the energy cascade is reversed with energy now being
transferred from small to large length scales in an inverse cascade instead [4, 71,
169]. Similar characteristics are also expected in 2D plasma edge turbulence
[36, 71]. In the absence of vortex stretching, other mechanisms are required in
order to create turbulence. This can again be shown in the vorticity equation
(for a plasma this time) [51]:

Dω

Dt
= ω · ∇V− ω∇ ·V + ∇ρ×∇p

ρ2 +∇× (J×B
ρ

)−∇× (∇ ·Π
ρ

).(2.24)

1Note this figure does not show the plasma edge in particular, but the general, qualitative
picture it paints is representative for the plasma edge as well.
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In this equation, p is the plasma pressure, J the plasma current density and
B the magnetic field. The first term on the RHS is still the vortex stretching
term, but will be zero in the 2D case. The second term is a new term due to the
compressibility of the plasma. The third term enters because the plasma density
is not constant. In this case, the pressure gradient can give rise to a drive for the
turbulence. This term is not plasma-specific and also occurs in hydrodynamic
flows with variable density, see for example the case of Rayleigh-Taylor-driven
turbulence [2, 27, 134]. The fourth term is then the effect of the Lorentz forces
acting on the plasma and introduces electromagnetic effects into the vorticity
generation. The last term represents viscous dissipation. In this work, it will
be shown that the pressure gradient term and the Lorentz term are the most
important ones for the dynamics of the turbulence.

Apart from these rather general considerations, some more specific features of
the plasma edge case could be expected to influence the dynamics. First of all
there is the specific magnetic geometry and the very strong flow to the plasma
sheath along the magnetic field in the third direction. Also, the ionisation of
neutrals into plasma particles leads to significant sources of particles, momentum
and energy [153]. Next, the temperature in the plasma edge varies by orders of
magnitude such that an energy equation needs to be coupled to the system.

2.2.1 Fluid turbulence equations for the plasma edge

Having briefly established a qualitative description of plasma edge turbulence
and highlighted the differences with 3D constant density hydrodynamic
turbulence, a systematic overview of the equation set used to describe plasma
edge turbulence will now be given. The equations presented in this section are
largely based on the internal technical report by Dekeyser [51].

To start of with, the plasma under consideration will be assumed to behave
as a continuum, such that the fluid approximation can be used and kinetic
effects for the plasma can be neglected. This fluid assumption is often made
in plasma edge modelling despite the fact that edge plasmas are in practice
often just marginally collisional [153], limiting the strict validity of the fluid
treatment. Especially in the parallel direction, the particle mean-free path
can be longer than the mean-field gradient lengths, in particular close to the
plasma sheath. Nonetheless, fluid treatments do predict similar values for the
main quantities of interest as fully kinetic treatments [153]. Hence, collisional
closures are still widely used, also in modern plasma edge turbulence codes
[33, 90, 132, 154, 157]. Furthermore, kinetic correction for the fluid approach
have been suggested in literature [7, 82, 153]. As an illustration, table 1.1 shows
typical orders of magnitude for collisional time and length scales.
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It will also be assumed that the length scales of interest for the transport and
the turbulence are much larger than the Debye length LDebye, which is typically
well satisfied in the plasma edge (see table 1.1). At this condition, the plasma
can be assumed to be quasi-neutral since the charged ion and electron particles
organise themselves in such a way that the net space charge remaining in a
control volume on the length scales of interest is negligible [82]. The result of
quasi-neutrality is that Gauss’s law cannot be used to calculate the electric
field E, because the net space charge is assumed to be zero. Instead, the charge
balance equation specifying that no charges can build up in the plasma will be
used for this, as will be discussed in section 2.2.2.

When such a quasi-neutral fluid approach is adopted, the plasma can be described
by the Braginskii equations [32, 71]. The continuity equations for the ions and
electrons then take the following form:

∂ni

∂t
+∇ · (nVi) = Sni , (2.25)

∂ne

∂t
+∇ · (neVe) = Sne . (2.26)

In these equations ni and ne are the ion and electron particle densities, Vi and
Ve the ion and electron velocities, and Sni and Sne the ion and electron particle
sources. Under quasi-neutrality, the densities are related as ne =

∑
i Zini with

Zi the charge state of ionic species i. In the remainder of this manuscript we
consider plasmas consisting of only a single hydrogen isotope (Zi = 1) such that
ni = ne. Hence, only one continuity equation, 2.25 or 2.26 needs to be used,
not both. For simplicity of notation, we will drop the subscript on the density
n = ni = ne and on the ion velocity Vi = V. Note that using these definitions,
the mass density is equal to ρ = mn, with m the ion mass (and neglecting the
electron mass).

In order for quasi-neutrality to be maintained, the condition

∇ · J = 0 (2.27)

is applied such that no net charge can build up in the plasma. This is called
the charge balance equation. In this equation, the plasma current density is
defined as J = en(V−Ve).
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The momentum equation for the ions is written as

∂mnV
∂t

+∇ · (mnVV)

= −∇pi −∇ ·Π + enE + enV×B−Rei + Sm. (2.28)

In this equation, Π is the ion viscous stress tensor, E the electric field, B the
magnetic field, Rei the friction force between ions and electrons and Sm sources
of ion momentum (e.g. due to ion-neutral collisions).

The electron momentum equation has a similar form:

−∇pe − enE− enVe ×B + Rei = 0, (2.29)

with pe the electron pressure. Notice that the terms scaling with electron
inertia have been neglected because of the very low electron mass [149]. The
momentum equations of ions and electrons can be added to obtain the plasma
momentum equation:

∂mnV
∂t

+∇ · (mnVV) = −∇p−∇ ·Π + J×B + Sm, (2.30)

where p = pi + pe is the total pressure. The ion and electron thermal energy
equations are

3
2
∂pi

∂t
+∇ · (5

2piV + qi) = V · ∇pi −Π : ∇VT −Qei + 3
2Spi , (2.31)

3
2
∂pe

∂t
+∇ · (5

2peVe + qe) = Ve · ∇pe + J
en
·Rei +Qei + 3

2Spe , (2.32)

Here, the internal energy of the fluid is 3pi/e/2 = 3nTi/e/2, with Ti/e respectively
the ion or electron temperature. Qei is the collisional heat transfer from ions to
electrons, qi/e the conductive heat flux and Spi/e the sources of thermal energy.

In theory, equations 2.25-2.32 could be solved for n, V, Ve, pi and pe. This
still requires expressions for the sources Sn, Sm, Spi , Spe , the viscous stress Π,
the force Rei, the heat fluxes qi and qe, the electron-ion heat exchange Qei
as a function of the afore mentioned state variables. Such expressions can be
found for example in Refs. [32, 71]. In addition, the electromagnetic quantities
E and B have to be treated. The treatment of the coupling with the electric
and magnetic fields will be discussed in more detail in the next section. Direct
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numerical solution of the equations presented here is very difficult, in particular
for the perpendicular components of the momentum equation 2.30 which are
strongly dominated by the force terms on the right-hand side, with the inertial
terms being much smaller. Instead, the equations are usually reformulated as
discussed in the next section.

2.2.2 Drift formulation through charge balance equation

In order to arrive at a more workable equation set, the equations are first
rewritten in such a way that the fluxes parallel to the magnetic field (in the
magnetic field direction b = B/B) and the fluxes perpendicular to it are
decoupled. Next, a drift ordering is followed to identify the dominant velocity
components. The equations presented in this section are largely based on the
internal technical report by Dekeyser [51] and the 2003 paper by Scott [143].

The drift ordering that will be used relies on the assumption that strong
magnetic fields are present in the plasma edge such that the (ion) gyration
time and length scales are much smaller than those of the plasma as a fluid
(see table 1.1) [71, 82, 149]. Note that the strict validity of the drift ordering is
limited by the fact that the smallest length scales of the turbulent dynamics
are comparable to the ion gyro-radius [71, 143, 147]. While formally it may be
needed to take finite larmor radius effects into account, it is assumed here that a
regular drift description still captures the dominant dynamics of the turbulence.
Note that this is also the route taken by modern plasma edge turbulence codes
[33, 90, 132, 154, 157].

In this thesis, drift hydrodynamic dynamics (DHD) will be considered, which
is suitable to describe plasma edge transport. Compared to magnetohydro-
dynamics (MHD), the fast time scale used in this ordering is relatively slow.
As a result, slower dynamics are retained in DHD, while it excludes some fast
dynamics present in MHD. In particular, electrodynamic induction is small in
DHD leading to dominantly electrostatic dynamics [71]. Moreover, the ratio
between the plasma pressure and the magnetic pressure is typically very small in
the plasma edge, i.e. β , 2µp/B2 � 1 with µ the plasma magnetic permeability.
Such a low β plasma justifies the assumption that ∇×B ≈ 0 (sometimes called
“vacuum field” assumption) where the plasma current is small and thus plays a
negligible role in Ampère’s law [82]. This assumption likewise differs strongly
from the (ideal) MHD description. The reader interested in MHD and MHD
turbulence is referred to Refs. [26, 80].

The main idea in reformulating the plasma edge fluid equations presented in
section 2.2.1 is to exploit the cross product with the magnetic field B in the
Lorentz force term in the momentum equations to find expressions for the ion
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and electron fluxes. This relies on using the identity (V × B) × B = −V⊥,
with V⊥ the velocity in the plane perpendicular to the magnetic field direction.
Hence, taking the cross product of B with the momentum equations 2.28, 2.29
and 2.30 and rewriting yields expressions for the perpendicular components of
the ion and electron fluxes and currents:

Γ⊥,i = nV⊥ = − m

eB
(∂nV
∂t

+∇ · (nVV))× b︸ ︷︷ ︸
nVp,0

−∇pi × b
eB︸ ︷︷ ︸

nV∗,i

+ nE× b
B︸ ︷︷ ︸
nVE

−∇ ·Π
eB

× b + Sm × b
eB︸ ︷︷ ︸

nVp,Π

−Rei × b
eB

, (2.33)

Γ⊥,e = nV⊥,e = ∇pe × b
eB︸ ︷︷ ︸
nV∗,e

+ nE× b
B︸ ︷︷ ︸
nVE

−Rei × b
eB

, (2.34)

J⊥ = e(Γ⊥,i − Γ⊥,e) = −m
B

(∂nV
∂t

+∇ · (nVV))× b︸ ︷︷ ︸
Jp,0

−∇p× b
B︸ ︷︷ ︸

J∗

−∇ ·Π
B
× b + Sm × b

B︸ ︷︷ ︸
Jp,Π

. (2.35)

In these equations, the total particle flux is decomposed in a parallel and a
perpendicular component as Γ = Γ|| + Γ⊥, where Γ|| , (Γ · b)b and Γ⊥ ,
−b× (b× Γ).

The plasma drifts that were introduced in a mechanistic way in section 1.2.1
now appear in equations 2.33-2.35.2 The first term on the RHS of equation 2.33
represents the flux due to the polarisation drift and can be seen to be due to
inertial effects. The viscous term and the term due to momentum sources will
likewise be included in this polarisation drift. Together, they will be denoted
Vp = Vp,0 + Vp,Π for the polarisation velocity and Jp = Jp,0 + Jp,Π for the
polarisation current. As there is no electron equivalent (because the electron
inertia and viscosity have been neglected) for this drift, it also leads to a current
in equation 2.35. The second term in equation 2.33 is the diamagnetic flux
which is due to the pressure gradient force. This term has an analogue in the

2Note that the section 1.2.1 mainly introduced the drifts from a guiding center approach,
while the drifts are here derived from the fluid approach.
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electron flux, second term in equation 2.34. Since both depend on the particle
charge, these fluxes also lead to a current, called diamagnetic current, second
term in 2.35. The third term in 2.33 represents the E×B drift. It is also present
in the electron flux, and since this one does not depend on either the mass or
the charge of the particle, it does not lead to a current.

A rigorous ordering of the drift terms in these equations shows that the E×B
and diamagnetic drifts are typically the dominant terms, while the polarization
drift is of higher order [71, 82, 149]. Furthermore, the E×B drift is expected to
be more important for the transport than the diamagnetic drift. The reason for
this is that the only nonzero contribution to the divergences of the diamagnetic
particle and heat fluxes (see later) can be shown to be due to gradients of the
magnetic field, which typically have much larger length scales than the turbulent
quantities [147, 162]. This is commonly used to write

V ≈ V0 = V|| + VE + V∗, (2.36)

with VE , E × b/B the E×B velocity and V∗,i/e , −∇p × b/(qnB) the
diamagnetic velocity, where q is the particle charge, i.e. e for the ion and −e for
the electron. For the reason given above, the diamagnetic contribution is also
regularly neglected in this expression. Note that the inclusion of the diamagnetic
current J∗ in the charge balance equation 2.41 is of fundamental importance
though (as there is no current due to ExB drifts). Hence, the dominant velocity
in the perpendicular turbulent plasma transport that will be investigated in
this work is the E×B velocity.

As the E×B drift velocity is of prime importance in the perpendicular direction,
the treatment of the magnetic field and the electric field are crucial. From the
DHD description and/or the low β assumption, it follows that the externally
imposed magnetic field (i.e. by the toroidal field coils and the plasma current
in the core) and far exceeds the magnetic field fluctuations generated by
electromagnetic effects in the plasma edge. The net transport as a result
of magnetic field lines fluctuating around their equilibrium position (magnetic
flutter transport) is also deemed to be negligible [71, 143, 153]. For these reasons,
the magnetic field B will be assumed to be constant in time and externally
imposed (with exception of its treatment in the parallel electric field).

The electric field can then be written as

E = −∇φ− ∂A
∂t

. (2.37)

In this equation φ is the electrostatic potential and A is the magnetic vector
potential defined as B , ∇×A with ∇ ·A , 0. The electrostatic contribution
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to the electric field is widely accepted to be dominant in the plasma edge, and
the electromagnetic contribution is often neglected (low β). In this text as well,
it will be neglected in the turbulence model used in chapters 4-7. The inductive
contribution due to A⊥ is found to be small because of the rather slow time
scales assumed in the DHD ordering [71, 149]. Literature indicates however
that the parallel magnetic vector potential A|| may play a role in the dynamics
of the turbulence in the plasma edge through its presence in the electric field,
where it may be of particular importance for the drift wave coupling (see section
3.2.5) [71, 131, 143, 145]. Thus, we retain it in the electric field for now:

E = −∇φ−
∂A||
∂t

. (2.38)

The parallel magnetic vector potential can be solved from a Poisson equation
stemming from Ampère’s law:

∇2
⊥A|| = −µJ||. (2.39)

Whether the parallel magnetic vector potential is taken into account or not, the
E×B velocity can be written as

VE = b×∇φ
B

, (2.40)

and is thus determined by the electrostatic potential (and the magnetic field that
is assumed to be constant in time in this expression, i.e. without influence of
A||). Then, an equation for the electrostatic potential is still needed to be able
to calculate the E×B velocity. Since the plasma is assumed to be quasi-neutral,
the net space charge is zero and Gauss’ law cannot be used. Instead, the charge
balance condition 2.27, which maintains the neutrality of the plasma, provides
an equation for the electrostatic potential. The charge balance equation can
be rewritten as ∇ · J|| = −∇ · J⊥, in which we can insert equation 2.35 for the
perpendicular current density:

−∇ · Jp = ∇ · J|| +∇ · J∗. (2.41)
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In this equation, the dominant plasma velocities V ≈ V0 (see equation 2.36)
can be filled out in the inertial part of the the polarisation current Jp,0:

−Jp,0 ≈
m

B
(∂nV0

∂t
+∇ · (nVV0))× b = m

B

∂

∂t

(
n∇⊥φ
B

+ ∇⊥pi

eB

)

+m

B
∇ ·
(

V
(
n∇⊥φ
B

+ ∇⊥pi

eB

))
+ Db
Dt
× mnV0

B
(2.42)

The LHS of equation 2.41 then effectively includes a time change term for
the electrostatic potential. Note that only perpendicular gradients of the
electrostatic potential enter in the time-dependent term in this equation. Parallel
gradients of the potential enter through the ∇·J|| term on the RHS of equation
2.41.

The parallel ion velocity and parallel current are computed from the parallel
components of the momentum equations 2.29 and 2.30. Indeed, taking the
scalar product of these equations with the unit vector along the magnetic field
yields

−∇||pe − enE|| +Rei,|| = 0, (2.43)

∂mnV||

∂t
+∇ · (mnVV||) = −∇||p− (∇ ·Π) · b+mn

Db
Dt
·V0,⊥ + Sm,||.(2.44)

Note that in the last equation Db
Dt ·V0 = Db

Dt ·V0,⊥ since Db
Dt · b = 0. Equation

2.43 is also referred to as “Ohm’s law”. Equation 2.38 and the Braginskii closure
for the parallel friction force Rei,|| = enη||J|| − 0.71n∇||Te can be filled out in
this equation to obtain

∇||pe − en∇||φ− en
∂A||

∂t
− eη||nJ|| + 0.71n∇||Te = 0, (2.45)

with η|| the parallel resistivity. This equation can readily be solved for J|| and
then filled out in 2.41. Doing so, also the parallel gradient of the electrostatic
potential enters in that equation, such that the full electrostatic potential can
be solved for in the end.

Note that we have not made use of the so-called “gyro-viscous cancellation” in
the charge balance equation 2.41-2.42 nor in the parallel momentum equation
2.44. This would allow to cancel part of the viscous stress tensor ∇·Π with a part
of the momentum transport (approximately ∇ ·mnV∗,iV0). The details of this
cancellation remain a topic of study in the community though [127, 136, 138].
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As such, the stress tensor Π represents the full Braginskii stress tensor and
the convective velocity V (which could be approximated as V0) includes the
diamagnetic velocity V∗,i. This interpretation will be maintained in this chapter
and the next. In view of later derivations, we will henceforth distinguish the
velocity used in the ion convection operators and the velocity considered for the
inertia. For this reason, we define the symbol VC for the ion convective velocity
and avoid writing specific velocity components for it in the plasma momentum
equations (charge balance and plasma parallel momentum). It will be assumed
that the ion convective velocity VC is the same in the plasma momentum
equations and in the ion continuity equation, as should be the case in theory.
This notation might also facilitate the interpretation of the derivations that will
follow in view of the gyro-viscous cancellation. The rigorous validation hereof
is left for future work though.

2.2.3 Link between charge balance equation and vorticity
equation

In plasma edge turbulence modelling, the charge balance equation 2.41 is
commonly formulated as a transport equation for a quantity that approximates
the (parallel component of the) vorticity. For this reason, the charge balance
equation is often called the vorticity equation, even though strictly speaking
this is somewhat of a misnomer. Appendix A.1 semi-quantitatively shows that
the charge balance equation 2.41 is equivalent to the projection of the vorticity
equation 2.24 onto the parallel direction b divided by B. The basic reason for
the equivalence between both equations is that in essence they both derive from
manipulation of the plasma momentum equation 2.30. Appendix A.1 illustrates
that the LHS of the vorticity equation resembles the ∇ · Jp,0 term in the charge
balance equation, the pressure gradient term in the vorticity equation gives rise
to the diamagnetic current divergence in the charge balance equation, and the
Lorentz force term to the parallel current divergence.

Having established the relation between the equation for the vorticity and the
charge balance equation, the latter will now be reformulated as a transport
equation for a quantity that approximates the parallel component of the vorticity,
which we will call pseudo-vorticity. This is usually the form of the charge balance
equation that is solved in plasma edge turbulence codes. This pseudo-vorticity,
which will be denoted W in this work, takes the form [116, 141, 157]

W , ∇ · (∇⊥φ
B2 + ∇⊥pi

enB2 ) = ∇ · U0

B
. (2.46)
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In the last equality, the notation

U0 , −b×V0 = ∇⊥φ
B

+ ∇⊥pi

enB
. (2.47)

has been introduced. Note that U0 naturally appears in the LHS of the charge
balance equation as can be seen in expression 2.42. The pseudo-vorticity W
relates to the real vorticity ω as

ω · B
B2 ≈W + U0

B
· ∇ lnB. (2.48)

Hence, the difference between the parallel component of the real vorticity and
the pseudo-vorticity is proportional to magnetic field gradients which typically
have a much larger length scale than turbulent quantities. Based on this result,
it is expected that W can function as a good proxy for the parallel component
of ω. Remark that the parallel velocity component is no longer present in these
expressions.

Next, the charge balance equation 2.41 is rewritten as a transport equation for
W . This starts from the inertial part of the polarisation current Jp,0, whose
divergence can be written as

∇ · Jp,0 = en∇ ·Vp,0 + e∇n ·Vp,0. (2.49)

Starting from equation 2.42, the inertial part of the polarisation velocity Vp,0
can be manipulated as follows:

−Vp,0 = −Jp,0
ne

= m

eB

D

Dt
U0 + Db

Dt
× mV0

eB
+ m

enB
SniU0

= m

e

D

Dt

U0

B
+ mU0

eB

D lnB
Dt

+ Db
Dt
× mV0

eB
+ m

enB
SniU0. (2.50)

Note that the ion continuity equation 2.25 is used to get to the last form in
the first line of this equation. Moreover, it is assumed that the ion convective
velocity VC (which is implicitly present in the D/Dt operator) is the same
in the momentum equation and in the ion continuity equation. Differences
between this ion convective velocity and the velocity V0 which is important for
the (ion) flow inertia are allowed though.

Taking the divergence of the first term of equation 2.50 yields

∇ · (m
e

D

Dt

U0

B
) = m

e

DW

Dt
+ m

e
∇VC : ∇U0

B
. (2.51)
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Taking the divergence of the second and last terms in 2.50 yields

∇ · (mU0

eB

D lnB
Dt

+ m

enB
SniU0)

= mW

e
(D lnB

Dt
+ Sni

n
) + mU0

eB
· ∇(D lnB

Dt
+ Sni

n
) (2.52)

Combining equations 2.49-2.52, the charge balance equation 2.41 may be written
as

m
∂nW

∂t
+∇ ·mnWVC = ∇ · J|| +∇ · J∗ +∇ · Jp,Π + SW,cor, (2.53)

SW,cor , e∇n ·Vp,0 −mn∇VC : ∇U0

B
−mnW D lnB

Dt

−mnU0

B
· ∇(D lnB

Dt
+ Sni

n
)−mn∇ · (Db

Dt
× V0

B
). (2.54)

The current divergence terms in the RHS of equation 2.53 can straightforwardly
be traced back to the terms in the original charge balance equation 2.41.
However, in order to obtain a vorticity-equation-like form of the equation, quite
a number of “correction terms” appear as well, which are grouped in SW,cor.
These correction terms are often (implicitly) assumed to be small and neglected
in turbulence code models [74, 119, 132, 141, 157, 170]. For generality, they
will be retained here. In particular, evaluating the associated artefacts in the
mean-field equations for the TOKAM2D and TOKAM3X codes will give some
insight into how important they may or may not be.

Model summary

To summarise, the drift-reduced equations to be solved are the continuity
equation for ions are electrons 2.25 or 2.26, the thermal energy equations for
ions 2.31 and electrons 2.32, the parallel momentum equations for ions and
electrons 2.44 and 2.45 and the charge balance equation 2.41 (or its vorticity
equation-like equivalent 2.53). In all these equations, the dominant perpendicular
drift velocities and currents in expressions 2.33-2.35 can be filled out where
appropriate. If electromagnetic effects are not ignored, equation 2.45 needs to
be solved for A|| and equation 2.39 is added for the parallel current. Finally,
expressions for the sources Sn, Sm, Spi , Spe , the viscous stress Π, the friction
force Rei, the heat fluxes qi and qe and the electron-ion heat exchange Qei are
still required. Such expressions can be found for example in Refs. [32, 71].
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Having established these drift-reduced equations commonly used to describe
plasma edge turbulence, the qualitative flow picture of the turbulence can be
revisited. In the direction parallel to the magnetic field, the plasma can freely
flow, it is not hindered by the magnetic field as can be seen from equations
2.44 and 2.45. As such, the classical, collisional transport along the magnetic
field is very fast and turbulent structures are elongated in this direction. In
the directions perpendicular to the field on the other hand, the particles are
restrained. Mainly due to the plasma drifts, particles are however not perfectly
confined to their field lines, see equations 2.33 and 2.34. The dominant one of
these drifts is the E×B drift, which in equation 2.40 has been shown to be purely
due to the electrostatic field that is present. Equation 2.53 shows that this E×B
drift (included in VC) in turn convects the 2D pseudo-vorticity W , and as such
the electrostatic potential itself. In this way, the E×B drift is coupled back
to the electrostatic field that produces the drift. This readily yields a swirling
chaotic flow field with eddies in the 2D plane perpendicular to the magnetic field.
In this 2D flow field, density and energy are convected by the turbulence, mainly
by the E×B drift. This then leads to a turbulent flux of particles and thermal
energy across magnetic flux surfaces. In this quasi-2D turbulence picture, the
vortex stretching effect that was the dominant mechanism for the creation of
vorticity in hydrodynamic turbulence (see section 2.1) can be expected to play a
minor role only. Instead, the sources and sinks of (pseudo-)vorticity on the right
hand side of the charge balance equation 2.41 or 2.53 are due to the divergence
of the diamagnetic current (related to pressure gradient), the divergence of
the parallel current, and momentum sources. This is further complicated by
diamagnetic contribution to the pseudo-vorticity, non-constant pressures and
densities, fluctuations in the parallel magnetic vector potential etc.

2.3 Mean-field plasma edge transport equations
and existing closure models

In the previous section, the fluid equations describing the instantaneous
dynamics of the edge plasma have been presented. These equations tend
to develop a chaotic, turbulent flow with large fluctuations. These fluctuations
occur at very small time and length scales, typically of the order of (ρΩ/L⊥)−1

and ρ respectively, with Ω = eB/m the ion gyro-frequency, ρ = csΩ the ion
gyro-radius, cs =

√
(Ti + Te)/m the plasma sound speed and L⊥ a typical

length scale of the average perpendicular gradients of the profiles [71, 143, 147].
Typical numerical values for these length and time scales are given in table 1.1.
The details of these very fine scale dynamics are not really of interest to the
design of future fusion reactors. Moreover, they are very expensive to resolve
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Figure 2.2: Mean-field plasma density in a poloidal cross section of the plasma
edge of the TCV tokamak. Figure reproduced from Ref. [12].

computationally since very fine meshes and time steps are required. It is rather
the average behaviour of the turbulence and the resulting average profiles of
density and pressure that are of interest. These averaged or so-called mean-field
quantities of the turbulent flow are calculated in mean-field transport codes
such as SOLPS-ITER [29, 167], SOLEDGE2D [35], DivOpt [55, 52], UEDGE
[136] and EDGE2D-EIRENE [129, 150, 166]. As an example, figure 2.2 shows
the mean-field density as calculated by such a code. This is clearly very smooth,
the turbulent fluctuations are not resolved in this code.

However, the turbulent fluctuations introduce a number of closure terms in
the mean-field equations which need to be modelled. Typically, the treatment
of these closure terms in mean-field codes is minimal and very ad-hoc. This
severely limits the predictive capabilities of these codes. This work will develop a
self-consistent model for these closure terms, drawing inspiration from the RANS
methodology which is commonly used in hydrodynamic turbulence modelling
(see section 2.1).

Section 2.3.1 derives the mean-field equations for the plasma edge based on the
instantaneous equations presented in section 2.2. The main closure terms will
be pointed out. Next, the typical treatment of these closure terms in mean-field
codes is discussed in section 2.3.2, after which section 2.3.3 presents recent
developments in literature proposing improved closure models.
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2.3.1 Analytical mean-field equations

The current approach in mean-field modeling is basically to take the full
turbulence equations from section 2.2 and to evaluate them with mean-field
quantities. In addition to this, ad-hoc diffusion pieces are added to model the
radial turbulent transport. Due to turbulent fluctuations, these equations are
not equivalent to the turbulent equations and forego the actual dynamics of the
turbulence. This section on the other hand derives mean-field equations that
do correspond to the underlying turbulence equations analytically through a
rigorous averaging methodology. The resulting equations will give more insight
into which terms are being modelled and/or neglected in the mean-field codes.
Furthermore, this will allow to evaluate the terms to be modelled using reference
data in later chapters. The methodology followed for analytically deriving these
mean-field equations is inspired by the 2003 paper by Scott [143] and by the
internal report by Dekeyser [51].

In order to derive the averaged, mean-field equations, all quantities are split in
a mean-field component and a fluctuating component, as is done in the RANS
methodology for hydrodynamic turbulence. Both the Reynolds and the Favre
decomposition of turbulent quantities (generally denoted by u) will be used.
The Reynolds decomposition was already introduced in equations 2.7-2.8 and is
repeated here for convenience [126]:

u = ū+ u′, (2.55)

ū , lim
N→∞

1
N

N∑
i=1

u(i). (2.56)

In this thesis, we assume the turbulent flows to be ergodic such that a long time
statistical steady state of the flow exists, of which the time average converges
to the ensemble average:

ū , lim
N→∞

1
N

N∑
i=1

u(i) = lim
T→∞

1
T

∫ T

0
udt. (2.57)

In addition to the Reynolds average, the Favre or density weighted average will
also be used. This is defined as follows [37]:

u = ũ+ u′′, (2.58)

ũ ,
nu

n̄
. (2.59)
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This Favre average is particularly useful when transport equations with variable
density need to be averaged, as it allows to limit the number of closure terms
in that case. The Reynolds and Favre decompositions imply the following
relationships:

u′ = 0, nu′′ = 0, ũ = ū+ n′u′

n̄
, nu1u2 = n̄ũ1ũ2 + nu′′1u

′′
2 .(2.60)

Note also that the averaging operator ū commutes with time and space
derivatives, but the Favre operator ũ does not:

∇u = ∇ū, ∇̃u = ∇ũ− u′′∇n
n̄

= ∇ũ+ n∇(u′′)
n̄

. (2.61)

As discussed in section 2.2.2, this thesis only considers low β plasmas. Hence, it
is assumed that strong time-constant magnetic fields are externally applied and
that fluctuations of the magnetic field can be neglected. As such, the magnetic
fields can be brought out of the averaging operators. An exception to this is
again the treatment of A|| in the parallel momentum equations, which will be
retained in this chapter and in chapter 3.

The remainder of this section will apply the above averaging operators to the
drift ordered equations presented earlier. The resulting mean-field equations
this yields are largely inspired on the internal report by Dekeyser [51].

Mean-field continuity equation

Averaging the continuity equation for the ions 2.25 and electrons 2.26 with
the dominant plasma velocities filled out from equation 2.36 (including the
polarisation current for the ions as well) yields

∂n̄

∂t
+∇ · (Γn,|| + Γn,E + Γn,∗,i + Γn,p) = S̄ni (2.62)

∂n̄

∂t
+∇ · (Γn,|| − J̄||/e+ Γn,E + Γn,∗,e) = S̄ne , (2.63)
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with

Γn,|| , n̄Ṽ||, (2.64)

Γn,E , nVE = n̄V̄E + n′V′E , Γn,m,E + Γn,t,E , (2.65)

Γn,∗,i ,
b×∇p̄i
eB

, Γn,∗,e , −
b×∇p̄e
eB

, (2.66)

Γn,p , n̄Ṽp = J̄p/e. (2.67)

These equations describe the time evolution of the average densities. As
mentioned in section 2.2.1 already, it suffices to solve either equation 2.62 or
2.63 for a quasi-neutral single species hydrogenic plasma in which n = ne = ni.

In these equations the turbulent E×B particle flux Γn,t,E , n′V′E constitutes
a closure term as it depends on the correlation between fluctuations, which
cannot directly be determined based on mean-field quantities only. Modelling
Γn,t,E is important since this term is known to dominate the outward transport
across magnetic flux surfaces [143, 165, 71].

Note that the parallel term is written with Favre averages in equation 2.64.
In this way it can be solved from the average parallel plasma momentum
equation 2.77, see later. Similarly, the average parallel current is available from
the parallel electron momentum equation 2.75. Equation 2.66 shows that the
diamagnetic fluxes can be calculated exactly from the mean-field pressures,
which are available from thermal energy equations 2.68 and 2.69. Furthermore,
the divergence of the diamagnetic fluxes can be shown to depend on gradients of
the magnetic field strength, such that this term is expected to be rather small
[147, 162]. The averaged polarisation flux also entails a number of closure terms,
see charge balance equation 2.74. However, since the polarisation velocity is of
higher order than the other velocities [71, 82, 149], it is usually neglected in the
continuity equation (even for the ions).

For the E×B drift, a similar Favre average does not make sense, since in mean-
field modelling, the Reynolds average potential φ̄ is solved for from the average
charge balance equation 2.74 and not the Favre averaged potential (see later).
Hence, the turbulent E×B particle flux n′V′E needs to be added next to the
Reynolds average mean-field E×B particle flux n̄V̄E . Note that after modelling
n′V′E , the Favre averaged E×B velocity can be calculated following relation
2.60 as ṼE = V̄E + n′V′E/n̄.
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Mean-field thermal energy equations

As for the continuity equation, mean-field equations can be derived for the ion
and electron thermal energy from equations 2.31 and 2.32. Following Ref. [143]
for the general form of the equation, but treating the averaging more rigorously
we write

3
2
∂p̄i
∂t

+∇ · (3
2Γpi,E + 5

2Γpi,|| +
5
2Γpi,p + 5

2
b×∇piTi

eB
+ q̄||,i),

= −pi∇ ·VE + V|| · ∇pi + Vp · ∇pi −Π : ∇VT
0 − Q̄ei + 3

2 S̄pi , (2.68)

3
2
∂p̄e
∂t

+∇ · (3
2Γpe,E + 5

2Γpe,|| +
5
2

b×∇peTe
eB

+ q̄||,e),

= −pe∇ ·VE + V|| · ∇pe −
J||
ne
· ∇pe + J

en
·Rei + Q̄ei + 3

2 S̄pe . (2.69)

with

Γpi/e,E , nTi/eVE = T̃i/eΓn,E + nT ′′i/eV
′′
E , Γpi/e,m,E + Γpi/e,t,E ,(2.70)

Γpi,|| , nTiV|| = T̃iΓn,|| + nT ′′i V′′||(2.71)

Γpe,|| , nTeV|| −
peJ||
en

= T̃eΓn,|| + nT ′′e V′′|| −
T̃eJ̄||
e
−
T ′′e J||
e

(2.72)

Γpi,p , nTiVp = n̄T̃iṼp + nT ′′i V′′p(2.73)

In these equations, it was assumed that the only important conductive heat
fluxes are the parallel ones q|| and the one due to the diamagnetic drift. The
latter is combined with the diamagnetic heat convection and the pressure work
on the diamagnetic velocity ∇p ·V∗ to obtain the one but last term in the LHS
of equations 2.68 and 2.69 [143].

Note that the average pressure in the equations can be decomposed using Favre
averages as p̄ = n̄T̃ . As shown in equations 2.70-2.73, the energy fluxes on the
LHS of equations 2.68 and 2.69 can be decomposed into a mean-field convection
term and a turbulent convection term. Assuming the mean-field particle fluxes
Γn are available, this introduces a new closure term for each velocity component.
The closure terms that are expected to be most important in the LHS are the
turbulent E×B heat fluxes Γpi,t,E and Γpi/e,t,E [71, 143, 165]. Next, there are
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also parallel turbulent fluxes (see equations 2.71 and 2.72). However, due to the
fast classical collisonal transport in the parallel direction, the length scale of the
fluctuations is much longer in this direction than in the perpendicular directions.
It can be expected that the transport by parallel velocity fluctuations will be
small compared to the anyway very fast classical collisional transport in this
direction. Hence, it is presumed that the mean-field convective fluxes and the
conductive heat flux q|| dominate the turbulent one in the parallel direction.
The careful validation of this hypothesis is left for future work though. Then,
the contribution due to the polarisation velocity (in the ion thermal energy
equation) is expected to be small as well because the polarisation drift itself
is of higher order than the E×B drift [71, 82, 149]. Finally, the diamagnetic
contribution to the transport terms in equations 2.68 and 2.69 (penultimate
term in the LHS of both equations) is presumably rather small as well. The only
nonzero contribution from this term can be shown to be through gradients of
the magnetic field [147, 162] and to vanish exactly in a 1D mean-field geometry.

The terms in the RHS of equations 2.68 and 2.69 likewise contain closure terms.
The turbulent contributions of these terms are not expected to play a large
role in the thermal energy equations though. While these terms will briefly be
revisited later on when dealing with the energetic couplings in section 3.2.5,
their closure will only receive limited attention in this thesis.

Mean-field charge balance and parallel momentum equations

Averaging equation 2.41 with expression 2.42 filled out yields the averaged
charge balance equation:

∇ · m
B

[
∂

∂t

(
n∇⊥φ
B

+ ∇⊥p̄i
eB

)
+∇ ·

(
VC

(
n∇⊥φ
B

+ ∇⊥pi

eB

))]

= ∇ · J̄|| +∇ · J̄∗ −∇ ·
(
∇ · Π̄
B
× b

)
−∇ ·

(
Db
Dt
× mnV0

B

)

+∇ ·
(

S̄m × b
B

)
. (2.74)

In this equation, the divergences of parallel current and diamagnetic current
on the RHS are typically dominant, since the other terms are of higher order
[71, 82, 149]. As such, it is mostly important to treat the averages of these two
terms with care. The average diamagnetic current J̄∗ = −∇p̄× b/B does not
lead to any closure terms. Dividing the Ohm’s law 2.45 by the density and then
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averaging yields following expression for the average parallel current:

η̄||J̄|| =
∇||pe

en
−∇||φ̄−

∂Ā||

∂t
+ 0.71

e
∇||T̄e − η′||J

′
||. (2.75)

Clearly, the Reynolds averaged electrostatic potential φ̄ appears naturally in the
Ohm’s law 2.75 for the parallel current, and thus in the RHS of 2.74. For this
reason, the average charge balance equation 2.74 is solved for φ̄ and a Reynolds
average is used for the electrostatic potential. As a result, a Reynolds average
also appears naturally for the mean-field E×B drift i.e. V̄E = b×∇φ̄/B and
the n′V′E closure for the E×B flux is required in the average E×B particle flux
in equation 2.65. Essentially the same closure also appears in the LHS of the
charge balance equation 2.74 in the form of n′∇⊥φ′, however, in this equation it
presumably constitutes but a small correction. The second term on the LHS of
equation 2.74 basically represents the convection of perpendicular momentum.
This includes an additional closure term as well, which can be seen to consist of
part of the Reynolds stresses. Apart from these closures, also the convective
part of the second but last term in 2.74 requires closure.

Equation 2.75 likewise contains a number of closure terms. The first term on
the RHS of this equation requires closure due to the nonlinear dependence on
both n and pe. The third term on the RHS features the Reynolds average T̄e of
the electron temperature instead of the Favre average T̃e which follows from
the electron thermal energy equation 2.69. Relation 2.60 has shown that a
closure term enters in the relation between both averages. The last term in
equation 2.75 is likewise a nonzero closure term since the resistivity depends
on the plasma quantities (η|| ∼ T−3/2

e ). Note that similar closure terms due to
nonlinear plasma properties are likewise present in the viscous stress tensor Π̄
in equations 2.74 and 2.77, and in the collisional parallel heat fluxes q̄||,i and
q̄||,e in the thermal energy equations 2.68 and 2.69.

Unless the magnetic vector potential is neglected, an equation for this is also
required. From 2.39, rather straightforwardly one finds

∇2
⊥Ā|| = −µJ̄||. (2.76)
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Finally, by averaging equation 2.44, an equation for the Favre averaged parallel
velocity is obtained:

∂mn̄Ṽ||

∂t
+∇ · (mn̄ṼC Ṽ|| +mnV′′CV ′′|| )

= −∇||p̄− (∇ · Π̄) · b+mn
Db
Dt
·V0,⊥ + S̄m,||. (2.77)

The third term on the LHS represents the turbulent transport of parallel
momentum, which is again a closure term to be modelled. Presumably, mostly
the perpendicular part of the turbulent transport of parallel momentum is
important, as the turbulence is mostly active in the plane perpendicular to the
magnetic field. The third term on the RHS also entails a closure term, but this
one is always neglected as far as the author is aware, both in turbulence and
mean-field models.

Mean-field equation summary

We briefly summarise the mean-field equations that have been derived and the
closure terms which need modelling in order to solve them self-consistently. The
main equations are the following: the continuity equation 2.62 or 2.63 is to
be solved for the average density n̄, the mean-field thermal energy equations
2.68 and 2.69 for the average pressures p̄i and p̄e (which allows to calculate the
Favre averaged temperatures T̃i = p̄i/n̄ and T̃e = p̄e/n̄), the mean-field charge
balance equation 2.74 for the average potential φ̄ and the mean-field plasma
parallel momentum equation 2.77 for the Favre averaged parallel ion velocity
Ṽ||. Furthermore, the average parallel current J̄|| follows directly from equation
2.75 in the purely electrostatic case. In the electromagnetic case, equation 2.75
needs to be solved for Ā||, which then yields J̄|| through equation 2.76.

The closure terms remaining in these equations are the turbulent E×B fluxes of
particles (n′V′E) and heat (nT ′′V′′E), the parallel turbulent heat fluxes (nT ′′V′′||
and T ′′e J′′||/e), the diamagnetic contribution to the thermal energy equations
(b×∇pT/eB), the turbulent heat flux due to the polarisation velocity (nT ′′i V′′p)
the Reynolds stresses (nV′′CV′′0) and the turbulent contributions to the terms on
the RHS of the mean-field thermal energy equations 2.68 and 2.69. Furthermore,
T̄e and ∇pe/n appear in 2.75, which can also not be determined from the
mean-field quantities listed before. Lastly, any nonlinear dependence on the
plasma state in the classical transport expressions (Π, Rei, q||, Qei) or source
terms (Sn, Sm, Sp) will likewise give rise to closure terms.
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Hence, a considerable number of closure terms appear. This thesis will mostly
consider the turbulent particle transport Γn,t,E , n′V′E which is considered
to be of crucial importance, and which is indeed known to be large compared
to the mean-field flux n̄V̄E [71, 143, 165]. The goal of chapters 4 and 5 is to
develop a suitable closure model for this term in particular. Moreover, the
information gained from modelling this relatively simple term could be used to
further develop the applied methodology to assess the important terms and to
elaborate models for the dominant closure terms. Indeed, chapter 6 will build
upon the models for the particle flux to also model the E×B turbulent heat
convection Γpi/e,t,E , nT ′′i/eV

′′
E . These are again important closure terms which

are large compared to the perpendicular mean-field thermal energy convection
[71, 143, 165]. In addition, both the turbulent particle flux and heat flux are
explicitly modelled in mean-field codes, as will be illustrated in the next section.

2.3.2 Treatment in mean-field transport codes

In mean-field codes, an equation set similar to 2.62-2.77 is typically solved.
Assuming a toroidally-symmetric device, the equations are solved in a 2D radial-
poloidal domain. Next to these equations for the plasma, mean-field transport
codes usually also resolve the neutral particles using a kinetic treatment and
couple this to the plasma solver. Usually, most of the nonlinear terms in the
mean-field plasma equations are simply evaluated using the mean-field quantities
involved, e.g. V · ∇p would simply be modelled as Ṽ · ∇p̄ (where the averaging
symbols would have to be tacitly assumed to be there). As such, the turbulent
closure terms are implicitly neglected [7, 29, 35, 55, 52, 129, 130, 136, 150,
166, 167]. The perpendicular turbulent fluxes of particles, heat and parallel
momentum are typically taken into account, but through an ad-hoc treatment.
Usually it is assumed that

n′V′⊥ = −D∇⊥n̄+ n̄Vconv, (2.78)

nT ′′i/eV
′′
⊥ = −n̄χi/e∇⊥T̃i/e, (2.79)

mnV ′′||V
′′
⊥ = −χm,||n̄∇⊥Ṽ||. (2.80)

whereD, Vconv, χi/e and χm,|| are anomalous particle diffusion, convection, ion/-
electron heat conductivities and parallel momentum conductivity respectively.
They are typically determined empirically, from experimental observations.
The convective contribution to the particle flux n̄Vconv is often not included
[3, 53, 103, 128]. It can be noted that the diffusive parts of these models are
implicitly derived from a gradient diffusion hypothesis similar to that used
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in hydrodynamic turbulence modelling, see section 2.1 and equation 2.22 in
particular. The effective transport coefficients typically take the form of 1D
or 2D profiles. Usually, in the analysis of experimental data the 1D profile of
the transport coefficients at the outer mid-plane (OMP) is first manually tuned
in order to achieve good agreement between the profile of the mean-field code
simulation and the reference data at that location. Then further manual tuning
is performed to achieve a better match between simulation and reference data
at other locations, e.g. at the targets. In addition, ad-hoc corrections based on
the magnetic field geometry can be used to further adjust the 2D profiles of the
transport coefficients [1, 3]

While such a procedure may give a good match of data from a particular
experiment by construction, the effective transport coefficients differ significantly
from one machine to another, from one operating regime to another, and from
one discharge to another [103]. Note also that all perpendicular velocities
and fluxes are typically lumped in these models, while the careful averaging
combined with the typical length scale assumptions outlined in section 2.3.1
has shown that mainly the E×B particle and heat fluxes require closure. Since
the underlying dynamics of the turbulence driving the transport are not taken
into account in this procedure, the resulting transport coefficients can hardly
be extrapolated to different machines or operating conditions.

Another issue is that the parameter space available for this fitting procedure,
allowing arbitrary 2D variations of the transport coefficients, is clearly very
large, making the procedure prone to overfitting of the experimental data.
Moreover, no framework for systematically assessing these models and issues
such as overfitting is routinely used. Furthermore, this manual tuning procedure
is very time consuming and laborious for the modeller and it effectively relies
on expert judgement. Least squares regression approaches have been applied to
alleviate this problem by automating this fitting procedure [8, 99, 118].

Due to the shortcomings sketched above, the predictive capability of such
models calibrated to a particular experiment is rather limited. To address these
issues, self-consistent models for the turbulent transport coefficients that do
take information about the underlying characteristics of the turbulence into
account have recently been proposed, as will be outlined in the next section.

2.3.3 Recent closure attempts

Two often used scalings to determine the order of magnitude of the turbulent
transport coefficients are the Bohm and the gyro-Bohm scalings. In the Bohm
scaling, it is assumed that the relevant length and time scales for the turbulence
are the ion gyro-radius (evaluated at cold ion sound speed) and the ion gyro-
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period. This leads to following scaling for the turbulent diffusion coefficient

D ∼ χ ∼ Te
eB

. (2.81)

Literature seems to indicate that the turbulent transport in tokamaks rather
follows the gyro-Bohm scaling:

D ∼ χ ∼ ρTe
L⊥

Te
eB

, (2.82)

where L⊥ is the scale length of the perpendicular mean-field profiles and ρTe is
the ion gyro-radius evaluated at the electron temperature. Often, the factor
ρ/L⊥ is assumed to scale as ρ/L⊥ ∼ ρ/a, with a the tokamak minor radius.
As ρ � L⊥ < a, gyro-Bohm scaling predicts much lower turbulent transport
than the Bohm scaling (assuming proportionality constants of order unity
should be added to either scaling). However, these scalings might need to
be viewed as order of magnitude estimates of global machine performance
rather than detailed models for the local behaviour within a single machine
[73, 94, 95, 71, 141]. Rather recently, a number of models has been proposed
that relate the mean-field turbulent transport coefficients to the characteristics
of the underlying turbulence. These models intend to capture both the global
scaling of the turbulent transport across different tokamaks, and the important
local variations within a single machine.

Miki et al. [113] pioneer in the development of such a model. They present a 1D
(radial) model to explain the L-H transition (see section 1.2.2). The turbulent
flux of particles (Γn) and heat (Γp) are modelled as in equations 2.78 and 2.79.
However, both transport coefficients are assumed to scale with the local and
time dependent turbulence intensity I:

D = χ = τc2sI

1 + αS2
m

. (2.83)

In this equation, cs is the plasma sound speed, τ is a time scale for the turbulence
decorrelation, Sm = ∇rVMF,θ is the mean flow shear with VMF,θ the poloidal
mean flow velocity, and α a coefficient determining how strongly mean flow
shear reduces the transport coefficients. Hence, a mechanism for the suppression
of the turbulent transport coefficient by flow shear breaking up the turbulent
eddies is also included in these diffusion relations. All quantities in the equations
of this model are to be interpreted as being averaged over fast time scales and
short length scales.
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The turbulence intensity is then solved from a separate PDE:

∂I

∂t
− χI∇r(I∇rI) = γI − δI2 − αZS2

Z − αMFS
2
m. (2.84)

The first term on the LHS of this equation is the time change of I, the second
term represents transport of I, assumed to be diffusive with some coefficient χI .
The first term on the RHS is the linear growth of I with linear growth rate γ
(which may be a function of the plasma state), the second term is a nonlinear
damping term with δ a coefficient characterising its strength. The third and
fourth terms on the RHS represent the suppression of the turbulence by zonal
flow and mean flow shear, with SZ = ∇rVZ,θ in which VZ,θ is the zonal flow
velocity. αZ and αMF are coefficients determining the strength of both effects.
As discussed in section 1.2.2, these shear flows evolve on time and length scales
that are significantly larger than the smallest scales of the turbulence. They
are partly driven by the fine scale turbulence [58]. Sometimes a distinction is
made between mean-field shear flows that are not turbulence driven, and zonal
flows that are, as is done in this paper.

The model presented by Miki et al. then suggests following equation for the
zonal flow shear:

∂S2
Z

∂t
= αZIS

2
Z

1 + βS2
m

− γdampS2
Z . (2.85)

Hence, the growth of the zonal flow shear is stronger as the zonal flow itself is
stronger and when the turbulence intensity is higher. Mean flow shear hinders
the growth of zonal flow on the other hand, the strength of this effect being
characterised by the coefficient β. The γdamp characterises the linear damping
of the zonal flow growth. Finally, the model would be complemented with an
expression for the convective velocity Vconv introduced in equation 2.78 and an
equation for the mean flow velocity VMF,θ. An ad-hoc expression for a particle
pinch Vconv is used, while VMF,θ is determined from a poloidal force balance
equation in which some further closure assumptions are made.

Hence, the physics of the turbulence dynamics in this model is that the
turbulence intensity is driven by the (linear) growth of some instability (typically
depending on the mean-field gradients). A first mechanism to saturate the
turbulence is through the nonlinear damping term δI2. Secondly, it could be
saturated by shear flows. The dynamics of the zonal flow is of particular interest.
Zonal flow shear simultaneously leads to a sink of the turbulence intensity and
a source of the zonal flow shear itself. In turn, the growth of the zonal flow
also depends on the turbulence intensity itself, as it is inherently driven by the
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turbulence. This leads to a kind of predator-prey dynamic, where the turbulence
acts as the prey and the zonal flow shear as the predator, which can only grow
if there is a prey present. Zonal flow dynamics are an active area of research,
as they are believed to be at the basis of transport barrier formation around
the separatrix and the L-H transition [14, 56, 58, 113, 144, 146].

The model summarized in equations 2.83-2.85 elegantly combines numerous
physical mechanisms at play. However, it is a phenomenological model which
specifically intends to explain the L-H transition. Hence, it has not been
intended to be used in complete mean-field simulations as is the goal of this
PhD. The turbulence intensity equation 2.84 is based on the wave kinetic
equation [57], implicitly assuming weak wave turbulence, which may not be a
valid paradigm for fully developed nonlinear plasma edge turbulence. Moreover,
some ad-hoc additions and simplifications have been made to the analytically
derived equation. Also, the meaning of the quantity turbulence intensity I
remains somewhat vague.

Using the work of Miki et al. as inspiration, Bufferand et al. [34] proposed
for the first time a RANS-like model for mean-field transport simulations,
based on an equation for the evolution of the turbulent kinetic energy. Firstly,
Bufferand et al. identified the turbulence intensity with the turbulent kinetic
energy of the ExB fluctuations, defined here as k⊥ , V′2E/2.3 As is done in
hydrodynamic turbulence modelling, the transport coefficient in the gradient
diffusion hypothesis is modelled based on a dimensional scaling involving the
turbulent kinetic energy. Following form is suggested in this work:

D ∼ χi/e ∼ χk ∼
ak⊥
cs

, (2.86)

with a the tokamak minor radius and χk a transport coefficient for the transport
of k. No convective contribution n̄Vconv to the turbulent particle flux is used
in this model. The proposed turbulent kinetic energy equation is written as

∂nk⊥
∂t

+∇ · (nk⊥V|| − χk∇⊥k⊥) = γnk⊥ − δnk2
⊥. (2.87)

Bufferand et al. explicitly related the linear growth rate to that of the
interchange instability:

γ = cs

√
∇B · ∇p
Bp

− 5
R2 (1 + Ti

Te
), (2.88)

3The symbol k⊥ here is not to be confused with the perpendicular wave number, which in
plasma physics literature is often denoted with this symbol as well.
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where R is the tokamak major radius. Equations 2.86-2.88 yield a self-consistent
model for the turbulent transport coefficient that can be used in a mean-field
code. For completeness, it is to be remarked that all quantities in these equations
are assumed to be mean-field quantities, but nothing is mentioned about the
specific averaging operators used in the original publication.

The interchange growth rate (equation 2.88) immediately leads to “ballooned”
characteristics of the transport with higher transport on the outboard side of the
tokamak, as observed in experiments [34, 66, 74, 85, 158]. Indeed, the magnetic
field strength generally decreases as the major radius coordinate increases, while
the pressure decreases with the minor radius coordinate. As a result, the growth
rate is only positive on the outboard side of the tokamak. Comparing to the
model by Miki et al., it can be seen that the effects of flow shear have been
left out as a simplification, as well as the convective particle flux as mentioned
earlier. Hence, in this model the linear drive of the turbulence causes the
turbulent kinetic energy to increase initially. As k⊥ increases, the nonlinear
sink increases faster than the drive term and finally saturates the turbulence.

Baschetti et al. [11, 12, 13] refined the previous model by including information
on experiments into the model. Ref. [11] calibrated the free model parameters
by matching measurements of a set of discharges on the TCV tokamak to a 2D
mean-field simulation using this model. Refs. [12, 13] on the other hand used a
scaling law for the SOL width obtained from multimachine comparison to close
the dissipation parameter δ in the k⊥ equation. Not only does this fix the value
of this parameter, it also introduces a new scaling with machine parameters
into it.

Baschetti et al. [14] further extended these models by including an equation for
ε, the dissipation of turbulent kinetic energy, taking the analogy with the k − ε
RANS approach for hydrodynamic turbulence a step further. The turbulent
transport coefficients are then modelled as

D ∼ χi/e ∼ χk ∼ χε ∼
k2
⊥
ε
, (2.89)

with χε a transport coefficient for ε. Note that the local turbulent transport
coefficient now only depends on local characteristics of the turbulence, and no
longer on global machine parameters as the minor radius a. The equations for
the turbulent kinetic energy and its dissipation take the following form:
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∂k⊥
∂t

+∇ · (k⊥V|| − χk∇⊥k⊥) = γk⊥ − δkk2
⊥ − ε, (2.90)

∂ε

∂t
+∇ · (εV|| − χε∇⊥ε) = γε− δε

ε2

k
3/2
⊥

. (2.91)

In this equation, δε is a model coefficient characterising the nonlinear sink of
the dissipation. γ is again chosen to be the interchange growth rate. δk is taken
to be very small, such that the dissipation of k⊥ is almost purely due to ε. The
parameter δε is again chosen such that the same machine scaling law used in
Refs. [12, 13] is obtained as an asymptotic solution. As an alternative it is
proposed to take δε as a function of the flow shear, such that suppression of the
turbulence by flow shear could be taken into account.

The idea behind this model is that k⊥ represents the kinetic energy of the part
of the spectrum that strongly contributes to turbulent transport, while ε is
the rate at which this kinetic energy is transferred to regions of the spectrum
that do not significantly contribute to transport. The latter regions can either
be at very small scales where the energy is dissipated by viscous effects as in
hydrodynamic turbulence, or at very large scales (in the zonal flows) through
an inverse energy cascade. In order to model these cascades, the k3/2 scaling is
used in the sink of ε in equation 2.91 to enforce an inertial range scaling in the
model.

It is worth remarking that next to the extended mean-field models discussed
above, different approaches have also been proposed. It has been suggested
to couple turbulence codes to mean-field transport codes to provide transport
coefficients self-consistently. In such an approach, the turbulence code can
either resolve the turbulence locally in distinct parts of the mean-field domain
as performed by for example Nishimura et al. [120], or it can globally solve the
entire mean-field computational domain as performed by Zhang et al. [171].
Note that in the former approach non-local transport effects cannot be captured,
while in the latter approach the computational cost is expected to remain a
bottleneck due to the need for a 3D turbulence simulation resolving the relevant
turbulent length and time scales.

Machine learning provides another approach to use turbulence codes in order
to obtain an improved transport description in mean-field codes. In such an
approach, a database of detailed reference data from turbulence codes is first
constructed, after which machine learning techniques are used to train a reduced
model. After the training phase, the reduced model can be used to quickly
calculate the average turbulent fluxes from given mean-field information [42,
104, 111]. Note that this approach presents clear similarities with the method
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that is suggested in this thesis, in the sense that it is based on studying detailed
reference data. Moreover, the parameter estimation and model validation
techniques suggested in this thesis can be seen as a step towards machine
learning. While the machine learning approach certainly holds promise and may
be complementary to the physics based approach suggested here, it remains to
be proven that it can capture the physics needed to extrapolate to new cases
out of the training data set.

Furthermore, quasilinear approaches have also been suggested, see for example
Refs. [30, 31, 42]. The idea behind this is to linearise the system of equations
and to calculate the mode structure and growth rates of the turbulence based on
that. When the amplitude of the modes is known, the turbulent fluxes can then
be calculated from this mode structure. However, the linearised system does not
provide information on the amplitude of the modes in the saturated state. This
information is calculated separately by means of ad-hoc “mixing length rules”.
Moreover, since the saturated state of the turbulence is manifestly nonlinear and
since fluctuation levels in the plasma edge can be rather large, it is questionable
whether a framework based on the linear characteristics of the turbulence can
supply accurate predictions [71, 143, 145]. Hence, quasilinear models have
mostly been used for the core region where turbulent fluctuations are typically
smaller. Borrowing some elements from the quasilinear approach, Fedorczak
et al. [68] and Peret et al. [122] recently proposed models for the turbulent
transport in the SOL based on a spectral decomposition of the fluctuations.

While the extended mean-field models by Miki et al., Bufferand et al. and
Baschetti et al. discussed earlier certainly have their merits and contain
numerous important physical effects, they tend to be rather ad-hoc still. To
some extent, they rely on qualitative expectations of the turbulence and consist
of a combination of mechanisms that have empirically been observed to be
relevant. Little supporting evidence is available for the validity of some of
the models used for these individual elements. Moreover, a clear view of the
overarching picture and of the first principle equations governing the dynamics
seems to be somewhat missing. In the work presented here however, we will
start from a clear physical basis in the form of the governing turbulent equations
(as presented in section 2.2) and the mean-field equations derived from these
(see section 2.3.1). In addition, the closures used will be derived based on
detailed reference data from turbulence code simulations and the developed
models (both the complete models and the submodels for individual terms) will
be rigorously compared to this reference data. In order to avoid being overly
reliant on ad-hoc parameter tuning and expert judgement, a framework for
rigorous parameter estimation and model validation will be set up as well.
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2.4 Conclusion

This chapter has provided the analytical fluid equations that govern the plasma
edge and the turbulence which tends to develop in it. The interpretation of these
equations has provided insight into the structure of plasma edge turbulence and
the main differences with hydrodynamic turbulence. Next, these instantaneous
equations have been rigorously averaged to obtain their mean-field equivalent.
This averaging procedure has introduced closure terms into the equations which
depend on the correlation between turbulent fluctuations. Such closure terms
cannot be calculated from mean-field quantities from first principles and require
modelling instead. The importance of the turbulent E×B particle and heat
fluxes for the continuity and thermal energy equations has been highlighted.

The lacking treatment of these perpendicular turbulent fluxes in currently
used mean-field codes as well as recent self-consistent models presented in
literature have been discussed. While these models proposed in literature contain
interesting elements, the approach that will be followed for modelling these
fluxes in this thesis will stay closer to the underlying governing equations and
draw inspiration from the RANS techniques used in hydrodynamic turbulence
modelling that have also been briefly summarised. This will further be discussed
in the next chapter. Another deficiency in current approach of modelling the
turbulent fluxes is that no systematic methodology for parameter estimation and
model selection is consistently used. In the next chapter, a Bayesian inference
framework to treat this will be suggested.





Chapter 3

Methodology for the
development of mean-field
models for the E×B turbulent
fluxes

In the previous chapter it was argued that the E×B turbulent particle flux
Γn,t,E and turbulent heat fluxes Γpi,t,E and Γpe,t,E are vital turbulent closure
terms to be modelled. This chapter1 outlines the main philosophy of the closure
strategy that will be used for these terms. This will rely on relating the effective
turbulent transport coefficients to turbulence characteristics — to the turbulent
kinetic energy and enstrophy in particular. To support the application to
particular plasma models in later chapters, a general analytical framework of
equations for the turbulent kinetic energy and enstrophy will be developed
here. Since many models for the turbulent closure terms will feature one or
several parameters that need to be calibrated, a methodology to do so is also
required. Furthermore, multiple competing models may exist which one may

1This chapter uses material that has been published in “Coosemans, R., Dekeyser, W.,
Baelmans, M. (2021). Turbulent kinetic energy in 2D isothermal interchange-dominated
scrape-off layer E×B drift turbulence: Governing equation and relation to particle transport.
Physics of Plasmas, 28:012302” [46], in “Coosemans, R., Dekeyser, W., Baelmans, M. (2020).
A new mean-field plasma edge transport model based on turbulent kinetic energy and enstrophy.
Contributions to Plasma Physics, 60:e201900156” [44], and in “Coosemans, R., Dekeyser,
W., Baelmans, M. (2022). A self-consistent mean-field model for turbulent particle and
heat transport in 2D interchange-dominated electrostatic ExB turbulence in a sheath-limited
scrape-off layer. Contributions to Plasma Physics, e202100193” [47].
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want to compare. To this end, the framework for parameter estimation and
model comparison that is used as a tool in this thesis will also be presented.
Both nonlinear regression and Bayesian inference are considered.

This chapter is organised as follows. Section 3.1 will sketch the general RANS-
like approach that will be followed to close the turbulent E×B fluxes, and provide
a physical argumentation for it. Analytical equations for the turbulent kinetic
energy k⊥ and the enstrophy ζ⊥, key quantities in the closure strategy that will
be followed, are derived in sections 3.2 and 3.3. Next, section 3.4 will describe
the framework for parameter estimation and model comparison employed in
this thesis. Then, section 3.5 will conclude the main results presented in this
chapter.

3.1 Ansatz of the k⊥ model

As has been discussed in section 2.3.2, the standard approach to close the
perpendicular turbulent fluxes in mean-field codes is to model them using ad-
hoc (convection-)diffusion relations, in which transport coefficients are tuned in
order to achieve a match with available experimental data. This reliance on
experimental data, combined with the knowledge that these transport coefficients
strongly vary in space, depend on the operating regime and on the reactor,
strongly hampers the reliability of predictive mean-field code simulations.

In this thesis, it is instead proposed to relate the turbulent E×B particle flux
Γn,t,E , n′V′E and heat fluxes Γpi,t,E , nT ′′i V′′E and Γpe,t,E , nT ′′e V′′E that
require closure to quantities that characterise the underlying turbulence that
drives these fluxes. In addition to a relation between the closure terms and
well-chosen turbulent quantities, a way to determine these turbulent quantities
themselves is also required in order to establish a self-consistent model. To this
end, transport equations for these turbulence characteristics will be derived.
These transport equations in turn include additional closure terms, of which
the dominant ones will be identified and modelled.

The proposed approach is inspired by RANS techniques used in hydrodynamic
turbulence modelling (see section 2.1) and by recent literature on turbulent
transport modelling in the plasma edge (see section 2.3.3). However, the
latter tended to rely on ad-hoc assumptions and expert knowledge. Here, a
clear analytical framework will first be established starting from the governing
turbulence equations, after which the closure terms are modelled based on
detailed data from turbulence code simulations with the aid of the parameter
estimation and model comparison framework described in section 3.4.
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While we certainly do not rule out convective models or more complex
descriptions of the fluxes in general [107, 59], the diffusive structure of the
turbulent fluxes which is commonly used in mean-field modelling will be
maintained in the models developed here because they were found to work
well for the cases investigated. Thus, similar to models 2.78 and 2.79, but now
neglecting the convective contribution, and clearly stating that only the E×B
fluxes are modelled, we use

Γn,t,E , n′V′E ≈ −D∇⊥n̄, (3.1)

Γpi/e,t,E , nT ′′i/eV
′′
E ≈ −χi/en̄∇⊥T̃i/e. (3.2)

Hence, the closure problem is now moved to modelling the transport coefficients
D, χi and χe. In general, it is expected that these effective turbulent transport
coefficients scale as D ∼ L2/τ ∼ LV ∼ V 2τ and likewise for χi and χe, with L,
τ and V characteristic length, time and velocity scales of the turbulence. In
the approach followed here, the assumption is that such characteristic scales
can be constructed from time-averaged turbulence quantities. By then deriving
transport equations for these quantities, estimates of the relevant turbulent
scales in the entire simulation domain are obtained.

Note that in writing equations 3.1-3.2, it is implicitly assumed that a scalar
transport coefficient is capable of modelling the turbulent fluxes in both
directions perpendicular to the magnetic field, as is also commonly done in mean-
field codes. In general, it could however be envisaged to make the transport
coefficients tensors to account for differences in the transport in both directions.
Such generalisations might be required in view of the magnetic field gradients
which play a role in the propagation of blob filaments and large-scale shear
flows affecting the turbulent transport. For the practical cases that will be
studied later in this thesis, this does not make a difference because mean-field
plasma gradients, magnetic field gradients and transport will only occur in
the radial direction and will be zero in the diamagnetic direction. This is a
relevant starting point since mostly the radial turbulent transport is important
in mean-field modelling.

While diffusion relations such as 3.1-3.2 are routinely used for the radial particle
transport in mean-field modelling and despite the merits of the diffusive model
that will be presented in this thesis, literature seems to indicate that the
nature of the particle and heat transport in the plasma edge is not diffusive.
Radially propagating structures such as avalanches and blob-filaments would
rather induce intermittent convective/ballistic transport with a strong non-local
character [76, 78, 101, 61, 117, 125], see also section 1.2.2. These blobs might
be interpreted as a result of the gradient removal mechanism [114, 89, 133]: on
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short timescales, density and temperature gradients build up and then suddenly
decay as they become unstable and a blob-like outburst of particles occurs,
resulting in a flattening of the gradient that becomes stable again.

It might however be expected that a well-chosen diffusion model can give a
reasonable approximation of the long time scale average particle flux. To provide
qualitative support for this idea, we make an analogy to collisional diffusion.
Collisional diffusion in gases is the result of particles undergoing random
collisions and tracing (ballistic) trajectories in between. If individual particles
have an equal probability of moving in either direction, the presence of density
gradient results in a net flux of particles, because more particles are present
on one side. In plasma edge turbulence, as an approximation, the convection
cells and/or plasma filaments could be assumed to cause seemingly random
ballistic transport of plasma fluid elements in either direction. Likewise, density
and temperature gradients will lead to particle and heat fluxes in the direction
opposite to the gradients. Hence, even if the underlying particle transport
physics may not be diffusive, its statistical average may be approximated as
such to a certain extent. It could nonetheless be interesting to research particle
transport models that better incorporate the underlying convective properties.
Inspiration for such models might be drawn from characteristic blob propagation
velocity models [74, 101, 106, 61].

Another perspective is that while a diffusion relation might not suffice to
describe the intermittent, fast fine-scale dynamics, the transport coefficients can
effectively be defined and calculated for any flow according to equations 3.1-3.2
based on the mean-field gradients and fluxes.2 In that sense, all the complex
non-local, fine-scale dynamics of the fine scales are implicitly incorporated
in these transport coefficients. The only question is then how these effective
transport coefficients can be modelled in a self-consistent way for predictive
purposes. Note that the models for the transport coefficients do not need to use
local quantities only. In particular, the transport of the quantities characterising
the turbulence in the full transport models that are developed in this work
(e.g. transport of k⊥ in equations 6.17-6.21) introduces a non-local effect in
the mean-field model. This transport allows turbulent kinetic energy created
in one location to increase turbulent transport in another. In addition to
that, the local density gradient in a mean-field model is not just the gradient
of the instantaneous background density seen by the propagating blobs, but
the gradient of the time-averaged density field including the averaged density
of these blobs. This may partially help bridging the gap between non-local
behaviour of (individual) blobs and a mean-field diffusive description.

2When fluxes would be in the direction opposite to the gradient, or when fluxes would
occur without a gradient, the transport coefficients would need to become zero or infinity
respectively. It is fair to say the diffusive model breaks down for these (exceptional) situations.
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As Γn,t,E , Γpi,t,E and Γpe,t,E have been shown to be governed by the correlations
between density, temperature and potential fluctuations, we aim to find a
measure for the intensity of these fluctuations, and relate it to the resulting
fluxes and thus to the transport coefficients D, χi and χe. To this end, we
define the turbulent kinetic energy in the E×B drift velocity as

n̄kE ,
mnV′′2E

2 . (3.3)

This turbulent kinetic energy provides a direct measure of the characteristic
(density weighed) E×B drift velocity of particles in the fluctuating electrostatic
field. The eddies and convection cells that this forms are exactly the motions
that cause the anomalous transport observed in the SOL that is of interest
here (see section 1.2.1) [10, 71, 143, 165]. Hence, a link between kE and the
effective turbulent diffusion coefficient is expected. In the next chapters, it will
be found that D ∼ ρ0

√
kE/m. Thus, the velocity scale for the turbulence is

indeed identified with the turbulent kinetic energy as
√
kE/m and the reference

gyro-radius ρ0 provides a length scale.

To further refine this basic scaling for the transport coefficients, the turbulent
enstrophy will also be considered, which is defined as

n̄ζE ,
mnω′′2E

2 , (3.4)

with ωE = b · (∇ × VE). Like the turbulent kinetic energy, the turbulent
enstrophy provides a measure for the intensity of the turbulence. Also,
in hydrodynamic, inviscid, 2D turbulence, both the kinetic energy and the
enstrophy are conserved. While the kinetic energy follows an inverse cascade,
transferring energy from smaller to larger scales, the enstrophy follows a direct
cascade [4, 71, 169]. Similar characteristics are expected for E×B drift turbulence
[36, 71]. Furthermore, it is also known from hydrodynamic turbulence that
viscous dissipation of kinetic energy is closely related to the enstrophy. Tran et
al. [160] have shown that the enstrophy is related to zonal flow formation in
E×B drift turbulence. Hence, it is expected that the turbulent enstrophy will
provide valuable additional information not contained in the turbulent kinetic
energy.

In practical terms, the enstrophy allows to complete the scaling for the transport
coefficients with a turbulent time scale as D ∼ kE/

√
mζE . Hence, in this scaling,

the transport coefficient only depends on characteristics of the turbulence that
drives the transport to be modelled. No (global) reference quantities such as
the gyro-radius are required anymore. It could be argued that while

√
kE/m
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still defines a velocity scale for the particles in the eddies,
√
kE/ζE now adds a

length scale. For a given value of kE this length scale decreases as ζE increases,
meaning that the particles move in smaller structures, leading to less transport
at a velocity determined by kE .

Another mechanism that is known to influence the turbulent transport is flow
shear. As briefly discussed in section 1.2.2, strong flows in the poloidal direction
are known to develop, which are sheared in the radial direction. These flows
tend to break up turbulent eddies and as such reduce the turbulent transport.
These shear flows are partly fed by the turbulence. Such shear flows decrease the
turbulence intensity (and thus presumably kE and ζE) but are also expected to
decrease the turbulent transport at a given turbulence intensity [23, 58, 88, 113].
Hence, this phenomenon also needs to be accounted for in the turbulent transport
relation. This could for example be done by including a time scale for how long
it would take a shear flow to decorrelate turbulent eddies.

Lastly, corrections for the phase structure of the turbulence will also be
investigated. Assuming a single, dominant wave number exists in the turbulent
spectrum, the E×B transport could be approximated as Γn,t,E ≈ Kyn̂φ̂sin(ψ),
where n̂ and φ̂ are the amplitude of the density and the potential of this mode,
Ky the wavenumber in the diamagnetic direction and ψ is the phase difference
between the potential and the density fluctuations. While a diffusion relation
with kE and ζE supposedly does well at representing the magnitude of the
amplitudes, a further correction for the phase difference might be needed. This
phase difference is expected to change significantly with the turbulence regime
(e.g. interchange or drift wave dominated turbulence) [145].

3.2 Analytical derivation of k⊥ equations and en-
ergy theorem

In order to use the above scalings for the transport coefficients for predictive
purposes, expressions for the underlying turbulent quantities are required. To
this end, equations for kE and ζE , which are crucial quantities to the closure
strategy, are analytically derived. This section derives equations for the kinetic
energy, while section 3.3 considers the enstrophy equations. Next to the relevance
for the models, a further investigation of these equations also provides a view
into the dynamics of the turbulence and the interaction between various energy
forms at play.

This section will first derive the total perpendicular turbulent kinetic energy
equation in section 3.2.1. Next, this equation will further be manipulated to
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obtain a transport equation for the turbulent kinetic energy of the E×B drift
velocity only in section 3.2.2. Then, section 3.2.3 will consider the interchange
term which acts as an important source term in these equations in more detail
and derive an analytical expression for it. Section 3.2.4 will derive equations for
the parallel turbulent kinetic energy. Finally, section 3.2.5 will put the equations
derived previously in their physical context by discussing the channels by which
energy can be exchanged between the turbulent kinetic energy and other forms
of energy in the plasma.

3.2.1 Derivation of total perpendicular kinetic energy equa-
tions

We define the perpendicular total (Ek,⊥), mean-flow (Ek,m,⊥), and turbulent
(k⊥) kinetic energies as

Ek,⊥ ,
mV2

0,⊥

2 , Ek,m,⊥ ,
mṼ2

0,⊥

2 , n̄k⊥ ,
mnV′′20,⊥

2 , (3.5)

where V0,⊥ contains the perpendicular velocity components that are relevant for
the ion inertia. In this section, we will assume that V0,⊥ = VE+V∗,i. As in the
previous chapter, the electron inertia and the related kinetic energy is neglected
because the electron mass is much smaller than the ion mass. Note that Ek,⊥
varies rapidly in time and space as it follows the instantaneous fluctuations,
while Ek,m,⊥ and k⊥ are ensemble averaged quantities that do not change at
these small scales. The latter two are constant in time in a statistical steady
state, while the former is not. Note also that the sum of mean flow and turbulent
kinetic energy per unit volume equals the averaged total kinetic energy per unit
volume:

nEk,⊥ = n̄Ek,m,⊥ + n̄k⊥. (3.6)

The analytical derivation of the equation governing the transport of k⊥ starts
from the charge balance equation 2.41. We follow a procedure similar to Scott
[143], Garcia et al. [76] and Tran et al. [160], but rigorously account for density
fluctuations in the kinetic energy equation. The Favre averages demonstrated
in equation 2.58 allow to reduce the number of closure terms that appear in
the mean-field equations with respect to using Reynolds averages shown in
equation 2.55. Similar Favre averaging techniques have been used to take density
fluctuations into account to analyse zonal flow generation by Ref. Held et al.
[93].
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Total perpendicular kinetic energy equation

In order to derive equations for the turbulent kinetic energy, we start by deriving
an equation for the total kinetic energy, and later on split this up in a mean-flow
and a turbulent part. The basic trick to derive a turbulent energy equation is to
multiply the charge balance equation 2.41 with φ and to rewrite the polarisation
current term. We start from the polarisation current in equation 2.42 (where
only its inertial contribution was shown):

−Jp , (∂nV0

∂t
+∇ · (nVCV0))× mb

B
+ ∇ ·Π

B
× b− Sm × b

B

= m

B

∂

∂t
nU0 + m

B
∇ · (nVCU0) + Db

Dt
× mnV0

B

+∇ ·Π
B
× b− Sm × b

B
. (3.7)

In this expression, we have used the symbol U0 , V0 × b = ∇⊥φ
B + ∇⊥pi

enB
introduced in equations 2.47. Note that in the convective term, it is assumed
that the velocity V0 that is important for the (ion) flow inertia might differ
from the convective (ion) velocity VC that is used in the second term. Typically,
the convective velocity will be chosen to contain the dominant plasma velocities
though, such that VC = V0 with V0 as in equation 2.36.

Multiplying the polarisation current with (∇⊥φ+ ∇⊥pi
en ), leads to

−(∇⊥φ+ ∇⊥pi

en
) · Jp = U0 ·

(
∂

∂t
mnU0 +∇ ·mnVCU0

)

+U0 ·
(
Db
Dt
×mnV0 + (∇ ·Π)× b− Sm × b

)

= ∂nEk,⊥

∂t
+∇ · (nEk,⊥VC + Π ·V0,⊥)

−Π : ∇VT
0,⊥ +mnV||

Db
Dt
·V0,⊥ + Ek,⊥Sn,i − Sm ·V0,⊥. (3.8)

In this derivation, we made use of continuity equation 2.25 in which we assumed
the convection velocity is also given by VC . Furthermore, we used the fact that
Ek,⊥ = V2

0,⊥/2 = U2
0/2 and some common vector calculus identities (Db

Dt ·b = 0
for the unit vector b, ∇·(Π·V) = (∇·Π)·V+Π : ∇VT , P ·(Q×R) = Q·(R×P )
and (P ×Q) · (R× T ) = (P ·R)(Q · T )− (Q ·R)(P · T ) for arbitrary vectors P ,



ANALYTICAL DERIVATION OF K⊥ EQUATIONS AND ENERGY THEOREM 63

Q, R, and T ). Thus, this way a relation for the time change and transport of
the total perpendicular kinetic energy is found.

So far we have only performed algebraic manipulations involving the polarization
current, relating it to the perpendicular kinetic energy. Note that we have not
yet added any meaningful information other than its definition though. The
critical piece of information to get to a proper transport equation is the charge
balance equation 2.41. This is inserted by manipulating the LHS of equation
3.8 as follows:

−(∇⊥φ+ ∇⊥pi

en
) · Jp = −∇ · φJp + φ∇ · Jp −∇⊥pi ·Vp

= −∇ · φJp − φ∇ · J|| − φ∇ · J∗ −∇⊥pi ·Vp, (3.9)

where the charge balance equation ∇ · Jp = −∇ · J|| − ∇ · J∗ has been used
to get to the second line. Combining expressions 3.8 and 3.9 now yields the
transport equation for Ek,⊥:

∂nEk,⊥

∂t
+∇ · (nEk,⊥VC + Π ·V0,⊥ + φJp)

= −φ∇ · J|| − φ∇ · J∗ −∇⊥pi ·Vp + Π : ∇VT
0,⊥

−mnV||
Db
Dt
·V0,⊥ − Ek,⊥Sni + Sm ·V0,⊥. (3.10)

Mean-flow and turbulent kinetic energy equations

To arrive at equations for Ek,m,⊥ and k⊥ defined in equation 3.5, the Ek,⊥
equation 3.10 should be averaged and split in a contribution due to mean flows
and a contribution due to fluctuations.

The procedure to obtain an equation for Ek,m,⊥ is rather similar to that used for
Ek,⊥. An expression for the time rate of change of Ek,m,⊥ can now be obtained
by taking the scalar product of the average polarisation current J̄p and Ũ0.
Taking the average of the polarisation current in equation 3.7 yields:

−J̄p = m

B

∂

∂t
n̄Ũ0 + m

B
∇ · (n̄ṼCŨ0 + nV′′CU′′0)

+Db
Dt
× mnV0

B
+ ∇ · Π̄

B
× b− S̄m × b

B
. (3.11)
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Multiplying this with (∇̃⊥φ+ ∇⊥p̄i
en̄ ),

−(∇̃⊥φ+ ∇⊥p̄i
en̄

) · J̄p = ∂n̄Ek,m,⊥

∂t

+∇ · (n̄Ek,m,⊥ṼC +mnV′′CV′′0,⊥ · Ṽ0,⊥ + Π̄ · Ṽ0,⊥)− Π̄ : ∇ṼT

0,⊥

−mnV′′CV′′0,⊥ : ∇ṼT

0,⊥ +mnV||
Db
Dt
· Ṽ0,⊥ + Ek,m,⊥S̄ni − S̄m · Ṽ0,⊥(3.12)

is obtained, again making use of the ion continuity equation. This can be linked
to the divergence of the average polarisation current as

−(∇̃⊥φ+ ∇⊥p̄i
en̄

) · J̄p

= φ̄∇ · J̄p −∇ · (φ̄J̄p)−
J̄p
n̄
· n′∇φ′ −∇⊥p̄i · Ṽp. (3.13)

Note that this is more complicated than for the total kinetic energy case because
Favre averages and gradients do not commute. As a result, an additional “Favre
averaging term”, which is the penultimate term in 3.13, originates.

Combining equations 3.12 and 3.13 and filling out the average charge balance
equation as −∇ · J̄p = ∇ · J̄|| +∇ · J̄∗ then yields the mean-field kinetic energy
equation:

∂n̄Ek,m,⊥

∂t
+∇ · (n̄Ek,m,⊥ṼC +mnV′′CV′′0 · Ṽ0,⊥ + Π̄ · Ṽ0,⊥ + φ̄J̄p)

= −φ̄∇ · J̄|| − φ̄∇ · J̄∗ −∇⊥p̄i · Ṽp + Π̄ : ∇ṼT

0,⊥

+mnV′′CV′′0,⊥ : ∇ṼT

0,⊥ −
J̄p
n̄
· n′∇φ′ −mnV||

Db
Dt
· Ṽ0,⊥

−Ek,m,⊥S̄ni + S̄m · Ṽ0,⊥.(3.14)

Since the average total kinetic energy equals the sum of the mean-field and
turbulent kinetic energies (as illustrated in equation 3.6), an equation for the
perpendicular turbulent kinetic energy can be derived by taking the difference
between the average of the total perpendicular kinetic energy equation 3.10 and
the mean-field perpendicular kinetic energy equation 3.14. This then leads to
the following equation:
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∂n̄k⊥
∂t

+∇ · (n̄k⊥ṼC + mnV′′20 V′′C
2 + Π ·V′′0,⊥ + φ′J′p)

= −φ′∇ · J′|| − φ′∇ · J′∗ −∇⊥pi ·V′′p + Π : ∇V′′T0,⊥

−mnV′′CV′′0,⊥ : ∇ṼT

0,⊥ + J̄p
n̄
· n′∇φ′ −mnV||

Db
Dt
·V′′0,⊥

−
mSniV

′′2
0,⊥

2 −mṼ0,⊥ ·V′′0,⊥Sni + Sm ·V′′0,⊥. (3.15)

The manipulations performed in this section and the equations in which they
resulted have largely been based on the seminal paper by Scott [143]. However,
a clearer definition of the averaging operators has been used here, which
consistently includes density fluctuations. Next to changes in the exact form of
some terms in terms of averages and fluctuations, this lead to the appearance
of the “Favre term” in equations 3.14 and 3.15 (sixth term on the RHS).
Furthermore, particle and momentum sources (Sn and Sm) have been retained
in the equation set (including their possible fluctuations) as well as the Db

Dt
term which were not included in the paper by Scott. Also, we chose to keep
the general form of the viscous stress tensor Π instead of assuming a particular
model for it. On the other hand, magnetic field fluctuations have been neglected
here, while they were (partly) maintained in the original paper.

We leave a discussion of the perpendicular kinetic energy equations 3.10, 3.14,
and 3.15 and the physics they included for section 3.2.5.

3.2.2 Derivation of E×B kinetic energy equations

At this point, it is important to remember (cfr. section 2.3.1) that the turbulent
fluxes Γn,t,E , Γpi,t,E and Γpe,t,E (see equations 2.65 and 2.70) due to the E×B
drift are the ones that require modelling. It could be expected that these E×B
fluxes are more closely related to the turbulent kinetic energy in the E×B
velocity fluctuation only than to the total turbulent kinetic energy due to the
total perpendicular V0,⊥ consisting of both the E×B and the ion diamagnetic
velocity. This would indeed be more in line with the underlying hypotheses of
the k⊥ transport models formulated in section 3.1. As such, this section will
derive an equation for the kinetic energy in the E×B drift velocity only.
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In analogy to the total kinetic energies, we define the E×B-only kinetic energies
as

EE ,
mV2

E

2 , EE,m ,
mṼ2

E

2 , n̄kE ,
mnV′′2E

2 . (3.16)

Note that the sum of this and the diamagnetic drift’s kinetic energy which
could be defined as mV2

∗,i/2 is not equal to the total drift kinetic energy Ek,⊥

as the VE · V∗,i terms would then be overlooked, i.e. Ek,⊥ = mV2
0,⊥/2 =

mV2
E/2 +mV2

∗,i/2 +mVE ·V∗,i. Equations for the latter two kinetic energy
components separately are derived in appendix A for completeness.

As a first step to derive equations for the E×B kinetic energies, we split the
polarisation current in a contribution due to the E×B velocity, a contribution
due to the ion diamagnetic velocity and a contribution due to viscosity and
momentum sources as follows:

Jp ,
Db
Dt
×
mnV||
B︸ ︷︷ ︸

Jp,||

+
(
∂nVE

∂t
+∇ · nVCVE

)
× mb

B︸ ︷︷ ︸
Jp,E

+
(
∂nV∗,i
∂t

+∇ · nVCV∗,i
)
× mb

B︸ ︷︷ ︸
Jp,∗

−∇ ·Π
B
× b + Sm × b

B︸ ︷︷ ︸
Jp,Π

, (3.17)

where

Jp,|| ,
(
∂nV||
∂t

+∇ · nVCV||
)
× mb

B
= Db

Dt
×
mnV||
B

. (3.18)

By excluding the contribution of the ion diamagnetic velocity to the polarisation
current, transport equations for the E×B-only kinetic energy can be constructed.
The procedure to do this is very analogous to that used for the total kinetic
energy. The equivalent to equation 3.8 now becomes
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−∇⊥φ · (Jp,E + Jp,Π + Jp,||) = mUE ·
(
∂

∂t
nUE +∇ · nVCUE

)

+UE ·
(
Db
Dt
×mnV|| +∇ ·Π× b− Sm × b

B

)

= ∂nEE

∂t
+∇ · (nEEVC + Π ·VE)−Π : ∇VT

E

+mnV||
Db
Dt
·VE + EESni − Sm ·VE . (3.19)

Note that the polarization current is only multiplied with the electrostatic field
gradient to obtain the E×B-only kinetic energy. In equation 3.19, the following
definition has been used:

UE , −b×VE = ∇⊥φ
B

. (3.20)

Relating this to the charge balance equation as before yields

−∇⊥φ · (Jp,E + Jp,Π + Jp,||)

= −∇ · φ(Jp,E + Jp,Π + Jp,||) + φ∇ · (Jp,E + Jp,Π + Jp,||)

= −∇ · φ(Jp,E + Jp,Π + Jp,||)− φ∇ · J|| − φ∇ · J∗ − φ∇ · Jp,∗. (3.21)

Combining equations 3.19 and 3.21, an equation for the E×B-only kinetic energy
is readily obtained:

∂nEE

∂t
+∇ · (nEEVC + Π ·VE + φJp) = −φ∇ · J|| − φ∇ · J∗

+∇φ · Jp,∗ + Π : ∇VT
E −mnV||

Db
Dt
·VE − EESni + Sm ·VE . (3.22)

The form of this equation is very similar to equation 3.10. However, Ek,⊥
is “replaced” by EE and V0,⊥ by VE . Furthermore, the ∇pi ·Vp term is no
longer present in the equation, while the last term on the RHS of equation
3.21, rewritten as −φ∇ · Jp,∗ = −∇ · φJp,∗ +∇φ · Jp,∗, comes in to include the
diamagnetic drift contribution to the polarisation current. Thus the latter is not
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neglected. Instead, it is chosen to account for it as a current divergence term
instead of including it in the kinetic energy in the LHS as was done in the total
kinetic energy case in section 3.2.1. When the diamagnetic drift contribution
to the polarisation current is small or is neglected the φ∇ · Jp,∗ term can also
be neglected. On the other hand, it is worth noting that the parallel and
diamagnetic drift current divergence terms remain unchanged between the total
perpendicular and the E×B-only kinetic energy equations. Note that equation
3.22 could of course also have been derived directly from equation 3.10 by
algebraic manipulation. This derivation proved much more tortuous and tedious
though.

Splitting the average polarisation current into an E×B, a diamagnetic and a
viscous and source term contribution as well, multiplying with ∇̃φ and rewriting
using the averaged charge balance equation as before, yields following equation
for the E×B-only mean-field kinetic energy:

∂n̄EE,m

∂t
+∇ · (n̄EE,mṼC +mnV′′CV′′E · ṼE + Π̄ · ṼE + φ̄J̄p)

= −φ̄∇ · J̄|| − φ̄∇ · J̄∗ +∇φ̄ · J̄p,∗ + Π̄ : ∇ṼT

E +mnV′′CV′′E : ∇ṼT

E

−( J̄p,E + J̄p,Π
n̄

) · n′∇φ′ −mnV||
Db
Dt
· ṼE − EE,mS̄ni + S̄m · ṼE . (3.23)

Taking the difference between the average of equation 3.22 and equation 3.23
again yields an equation for the turbulent kinetic energy, in the E×B drift
fluctuations this time:

∂n̄kE
∂t

+∇ · (n̄kEṼC + mnV′′2E V′′C
2 + Π ·V′′E + φ′J′p)

= −φ′∇ · J′|| − φ′∇ · J′∗ +∇φ′ · J′p,∗ + Π : ∇V′′TE

−mnV′′CV′′E : ∇ṼT

E + ( J̄p,E + J̄p,Π
n̄

) · n′∇φ′ −mnV||
Db
Dt
·V′′E

−mSniV
′′2
E

2 −mṼE ·V′′E · Sni + Sm ·V′′E . (3.24)

Comparing these E×B-only kinetic energy equations 3.23 and 3.24 to the total
perpendicular kinetic energy equations 3.14 and 3.15, the same changes as for
the total kinetic energy can be observed. In addition, it is worth remarking
that the Reynolds stresses (RS) have also changed now, in the sense that these
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now include only the E×B velocity (and VC). Likewise, in the Favre averaging
term (sixth term on the RHS) the diamagnetic drift polarisation current is no
longer present.

3.2.3 Analytical relation between interchange term and tur-
bulent fluxes

The term involving φ∇·J∗ in the perpendicular kinetic energy equations, which
we will call interchange terms, will be shown to be an important source of
kinetic energy in the next chapters. Moreover, they appear unchanged in the
total perpendicular kinetic energy equations 3.10, 3.14, 3.15 and the E×B-only
kinetic energy equations 3.22, 3.23, 3.24 respectively, indicating that they are a
direct source of E×B kinetic energy. Hence, it is of crucial importance to model
them correctly. Interestingly, an analytical expression is found that relates these
important terms to the E×B energy flux.

Following Scott [143], the interchange term GEk in the total kinetic energy
equations 3.10 and 3.22 can be rewritten as

GEk , −φ∇ · J∗ = −∇ · φJ∗ +∇φ · J∗

= −∇ · φJ∗ +∇φ ·
(

b×∇p
B

)
= −∇ · φJ∗ −∇p ·

(
b×∇φ
B

)
= −∇ · φJ∗ −∇p ·VE = −∇ · (φJ∗ + pVE) + p∇ ·VE (3.25)

In complete analogy, the interchange terms for the mean-field and turbulent
kinetic energy can be written as

GEkm , −φ̄∇ · J̄∗ = −∇ · (φ̄J̄∗ + p̄V̄E) + p̄∇ · V̄E (3.26)

Gk , −φ′∇ · J′∗ = −∇ · (φ′J′∗ + p′V′E) + p′∇ ·V′E (3.27)

These derivations clearly show that the first two terms in these expressions are
actually transport terms that do not inject energy in the turbulence, but merely
transport it. The sum of both terms is expected to be small [143], and their
average can moreover be shown to vanish in 1D radial geometries (as will be
considered in the next chapters of this thesis) [46]:

−∇ · (φJ∗ + pVE) = ∇ ·
(
∇(pφ)× b

B

)
≈ 0. (3.28)
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Assuming symmetry in the diamagnetic direction on average, only the radial
gradient of pφ can be nonzero. The gradient of this in the diamagnetic direction
which is taken in the divergence operator is zero. This also holds for the
corresponding terms in the mean-field and turbulent kinetic energy interchange
terms.

Hence, the last term in the interchange expressions 3.25-3.27 is expected to be
the dominant contribution. The divergence in this term can be rewritten as
[143]

∇ ·VE = ∇ ·
(

b×∇φ
B

)
= ∇φ
B2 · ∇ ×B −VE · ∇ lnB2. (3.29)

In this equation, the first term is expected to be small because of the low β
approximation (cfr. section 2.2.2).

Largely independently from Scott [143], results equivalent to equations 3.25-3.29
were achieved in this thesis, and have been reported in Ref. [46]. Based on
these derivations, it is found that the interchange term can be modelled as

GEk ≈ −pVE · ∇ lnB2, (3.30)

GEkm ≈ −p̄V̄E · ∇ lnB2, (3.31)

Gk ≈ −p′V′E · ∇ lnB2. (3.32)

These relations for the interchange term are similar to relations reported by
Refs. [155, 74, 76]. They very clearly illustrate the link between the interchange
source of kinetic energy and the E×B energy flux 3pVE/2 (in equations 2.68
and 2.69 for example).

The interchange drive for the turbulent kinetic energy, Gk, can further be
elaborated to deepen this link. Defining T = Ti+Te and writing p′ = n′T̃ +nT ′′,
it is found that

p′V′E = T̃ n′V′E + nT ′′V′E = T̃ n′V′E + nT ′′V′′E . (3.33)

Using equations 2.65 and 2.70, the expression for the interchange term becomes

Gk = −(T̃ n′V′E + nT ′′V′′E) · ∇ ln(B2)

= −(T̃Γn,t,E + Γpi,t,E + Γpe,t,E) · ∇ ln(B2). (3.34)
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This shows that the interchange drive for the turbulent kinetic energy is purely
due to turbulent fluctuations, and more in particular due to turbulent ion
and electron energy fluxes. Furthermore, this expression directly explains the
ballooning character of the turbulence (see also section 1.2.2) [74, 34, 158, 85, 66].
A radially outward turbulent E×B heat flux will lead to the generation of k⊥
on the low field side of the tokamak where this flux is in the opposite direction
of the magnetic field gradient. On the high field side on the other hand, such
an outward flux leads to a sink of k⊥ (not just the absence of a source). In real
tokamaks, this effect may be reduced or compensated by the contributions from
other sources of the turbulence. Note also that if the diffusive relations 3.1-3.2
are filled out in the interchange relation 3.34, a direct link is established between
the drive of the turbulence and the mean-field gradients (in combination with the
magnetic geometry). This is in accordance with the general principle that plasma
turbulence originates from free energy that is available from the thermodynamic
inequilibrium created by nonzero mean-field gradients [36, 94, 143, 145, 117].

Hence, when closures for the turbulent E×B particle and heat fluxes are available
(possibly as a function of k⊥), expression 3.34 can be directly used such that no
additional closures are required for the interchange term Gk. Remember that
this expression is analytically exact for a 1D (radial) geometry with zero plasma
β and under the assumption of electrostatic turbulence, such that there are
no fluctuations in the magnetic field B. Moreover, this closure is expected to
provide an accurate approximation for more general cases since the correction
terms are expected to be rather small.

3.2.4 Derivation of parallel kinetic energy equations

There is also kinetic energy in the parallel ion plasma velocity, both in the
mean-field and the fluctuating component. In analogy with the perpendicular
kinetic energies, we write the parallel kinetic energies as

Ek,|| ,
mV2

||

2 , Ek,m,|| ,
mṼ2

||

2 , n̄k|| ,
mnV′′2||

2 . (3.35)

Remember from section 2.2 that because the plasma is not hindered by
electromagnetic forces in the parallel direction, fluctuations along the parallel
direction occur on longer length scales than those in the perpendicular direction.
As mentioned in section 2.3.1, it might be expected that parallel velocity
fluctuations are relatively small and only play a secondary role for the parallel
particle and heat fluxes and for the (average) parallel kinetic energy. The rigorous
validation of these hypotheses is left for future work though. Transport equations
for the parallel kinetic energy can be obtained in a rather straightforward way
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which is very similar to the typical procedure used in hydrodynamic turbulence.
An equation for Ek,|| can be obtained by multiplying the parallel momentum
equation 2.44 with V||:

∂

∂t
(nEk,||) +∇ · (nVCEk,|| + Π ·V||)

= Π : ∇VT
|| −V|| · ∇||p+mV||

Db
Dt
· nV0,⊥ − Ek,||Sni + V|| · Sm. (3.36)

In this derivation, the ion continuity equation 2.25 has been used, in which the
convection velocity is assumed to be VC , as in the ion momentum equation.
Likewise, a mean-field parallel kinetic energy equation is constructed by
multiplying the average of equation 2.44 with Ṽ||. This yields

∂

∂t
(n̄Ek,m,||) +∇ · (mn̄ṼCEk,m,|| +mnV′′CV′′|| · Ṽ|| + Π · Ṽ||)

= Π : ∇ṼT

|| +mnV′′CV′′|| : ∇ṼT

|| − Ṽ|| · ∇||p̄

+mṼ||
Db
Dt
· nV0,⊥ − Ek,m,||S̄ni + Ṽ|| · S̄m. (3.37)

Taking the difference between the average of the equation 3.37 and the previous
equation, an equation for the parallel turbulent kinetic energy is found as

∂

∂t
(n̄k||) +∇ · (n̄ṼCk|| +

mnV′′CV′′2||
2 + Π ·V′′||)

= Π : ∇V′′T|| −mnV′′CV′′|| : ∇ṼT

|| −V′′|| · ∇||p

+mV ′′||
Db
Dt
· nV0,⊥ −

SniV
′′2
||

2 − Ṽ|| ·V′′|| · Sni + V′′|| · Sm. (3.38)

Beside the Db/Dt terms, the interpretation of these equations is rather standard
and deviates little from that for the kinetic energy in hydrodynamic turbulence.
We will come back to this interpretation in the next section.

3.2.5 Energy theorem

Next to the perpendicular turbulent kinetic energy, supposedly driving the
turbulent transport of heat and particles and thus our main interest, other
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forms of energy are present in the plasma edge as well. These include mean-field
kinetic energy, thermal energy and parallel kinentic energy (mean-field and
turbulent) for which transport equations have already been derived, but also
magnetic energy. This section illustrates the energetic couplings between these
various kinds of energy and thus of the different pathways for the energy to get
into and out of the turbulence. This discussion is largely based on the insight
provided by Ref. [143]. To facilitate this analysis and to bring out the energetic
couplings, we start by slightly rewriting the mean-field and turbulent kinetic
energy equations 3.14 and 3.15:

∂n̄Ek,m,⊥

∂t

+∇ · (n̄Ek,m,⊥ṼC +mnV′′CV′′0 · Ṽ0,⊥ + Π̄ · Ṽ0,⊥ + φ̄J̄ + p̄V̄E)

= ∇||φ̄ · J̄|| + p̄∇ · V̄E +mnV′′CV′′0,⊥ : ∇ṼT

0,⊥ −
J̄p
n̄
· n′∇φ′

+Π̄ : ∇ṼT

0,⊥ −∇⊥p̄i · Ṽp −mnV||
Db
Dt
· Ṽ0,⊥ − Ek,m,⊥S̄ni + S̄m · Ṽ0,⊥,(3.39)

∂n̄k⊥
∂t

+∇ · (n̄k⊥ṼC + mnV′′20 V′′C
2 + Π ·V′′0,⊥ + φ′J′ + p′V′E)

= ∇||φ′ · J′|| + p′∇ ·V′E −mnV′′CV′′0,⊥ : ∇ṼT

0,⊥ + J̄p
n̄
· n′∇φ′

+Π : ∇V′′T0,⊥ −∇⊥pi ·V′′p −mnV||
Db
Dt
·V′′0,⊥

−
mSniV

′′2
0,⊥

2 −mṼ0,⊥ ·V′′0,⊥ · Sni + Sm ·V′′0,⊥. (3.40)

Here, interchange relations 3.26 and 3.27 were filled out, the parallel current
term was written as φ∇ ·J|| = ∇ ·J||−∇||φ ·J|| and all ∇ ·φJ terms have been
collected in the LHS.

We will first consider the LHS of 3.40. The first term is the time rate of change
of the turbulent kinetic energy. Then, all terms under the divergence operator
represent fluxes transporting turbulent kinetic energy from one location to
another. The first flux is the convection of k⊥ by the mean-field velocity, the
second one the convection by turbulent fluctuations and the third one a flux due
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to viscous stresses. These terms also appear in regular hydrodynamic turbulence,
see for example equation 2.14. Next, a flux due to electrostatic potential and
current fluctuations follows and then a flux of pressure due to E×B velocity
fluctuations. In section 3.2.3, it has already been argued that the divergence
∇ · (φ′J′∗ + p′V′E) is presumably small. Furthermore, Scott [143] argues that
that ∇ · (φ′J′ + p′V′E) ≈ ∇ · φ′J′||, since pVE cancels with φJ⊥ due to Pointing
cancellation. The remaining term thus constitutes a non-convective parallel
transport term that does not have an equivalent in hydrodynamic turbulence.
Note that all these transport terms, except for mean-field convection, constitute
closure terms, and that little quantitative information is available for them a
priori. Ref. [151] focuses on the radial transport of turbulence intensity and
investigates when the associated terms are important. As far as the author is
aware, the φ′J′|| flux has received very little attention in literature. However,
chapter 7 will show it may play an important role in plasma edge turbulence.

Next, the coupling between mean-field and turbulent kinetic energy is considered.
As in hydrodynamic turbulence, the Reynolds stress term (RS, third term in
the RHS of equations 3.39 and 3.40, different sign in both) exchanges energy
between the turbulent and mean-field kinetic energy. While in 3D hydrodynamic
turbulence this term typically drives the turbulence, in plasma edge physics
it is expected to act like a sink of k⊥ and thus a source of Ek,m,⊥ because of
the inverse energy cascade (see section 2.2). Hence, this term is expected to
be important close to the separatrix, where strong shear flows tend to develop,
which are partly fed by the turbulent kinetic energy by tearing apart small
eddies. Moreover, this term is also expected to play an important role in the
generation of these shear flows [58, 108, 93]. However, when the turbulence
is sufficiently damped and when the flow shear is sufficiently strong, the RS
term may act like a source of k⊥ through the Kelvin-Helmholtz (KH) instability
[79, 115, 135]. In addition, the “Favre term”, fourth term on the RHS in both
equations, also exchanges energy between mean-field and turbulent kinetic
energy. This term appeared due to the non-commutivity of the gradient and
Favre averaging operators. Thus, this term only appeared in the equation
because of the rigorous average techniques that have been applied and had not
been identified in literature before as far as the author is aware. The RS clearly
constitute a closure term. The Favre term contains closure terms in J̄p (see
equation 3.11), while the n′∇φ′ factor can be calculated from Γn,t,E .

Comparing the RHS of the thermal energy equations 2.68 and 2.69 to that
of the kinetic energy equations 3.39 and 3.40 it can be seen that interchange
terms involving p∇ ·VE appear in all of them. Hence, the fluctuations of this
interchange term exchange energy between the turbulence and the thermal
energy. From the discussion in section 3.2.3, it follows that this energy transfer
could occur in both directions (from thermal energy to turbulence and vice versa).
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However, it is expected that this interchange term will provide an important
source of the turbulence on the outboard side of the tokamak, especially in
the SOL [143, 145, 131]. This will be confirmed for the TOKAM2D cases that
will be studied in chapters 4-6. While the interchange term is a closure term,
an analytical model for it was already found in equation 3.34. The ∇⊥pi ·Vp

and viscous stress terms likewise exchange energy between the kinetic energy
(both mean-field and turbulent) and ion thermal energy. In chapters 5 and 7,
the former will be shown to be a large sink in the k⊥ equation, although some
reservations about this result are in place. The viscous stress will be found to
be of secondary importance for the k⊥ balance in the next chapters. As would
be expected, it acts like a sink dissipating kinetic energy into thermal energy.
Again, both terms appear as closure terms in the k⊥ equation.

Then, the ∇||φ′ · J′|| term in the k⊥ equation can be shown to exchange energy
with the fluctuating magnetic energy. As in chapter 2, it is assumed that the
only relevant fluctuations of the magnetic field are those due to A||. An equation
for the energy in magnetic fluctuations can be obtained by averaging the scalar
product between J′|| and the parallel electron momentum equation 2.45 divided
by en, which yields [143]

1
2
∂

∂t
B′2⊥ +∇ · (

∂A′||
∂t
×B′⊥) = J′|| · (

∇||pe

ne
)′ − J′|| · ∇||φ′ − J′|| · (

Rei

ne
)′.(3.41)

Hence, the ∇||φ′ · J′|| term does indeed allow energy transfer between k⊥ and
turbulent magnetic energy B′2⊥/2. Furthermore, the other two terms on the
RHS of equation 3.41 exchange energy between this magnetic energy and the
electron thermal energy in equation 2.69. The last term in equation 3.41 is due
to electron-ion friction and is expected to dissipate magnetic energy providing a
unidirectional transfer to the thermal energy. The first term on the RHS of the
equation is assumed to allow energy transfer from thermal energy to magnetic
energy and from there to the turbulent kinetic energy. Hence, this constitutes
a second channel by which energy can be injected from the thermal energy
into the turbulence (next to the interchange channel) [143, 145]. This transfer
channel is related to the dynamics parallel to the magnetic field and especially
the drift wave (DW) instability is expected to act on this channel. Because
parallel dynamics have more freedom to evolve in the closed field line region
than in the SOL, it is expected to be especially important there [131, 143, 145].
The importance of this DW coupling will partly be confirmed in chapter 7.
However, since the main part of this thesis will investigate simplified 2D cases,
the DW coupling will not be studied in great detail here.

Note that in the electrostatic case (which will be studied in the next chapters) in
which A′|| = 0, the LHS of equation 3.41 vanishes. Nonetheless, the DW coupling
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remains active, be it in a slightly simplified form. The terms −J|| · ∇||pe/(ne) +
J|| ·Rei/(ne) in the electron thermal energy equation 2.69 could then be replaced
by −J||∇||φ, such that the coupling is directly between the thermal energy and
the turbulent kinetic energy (without the mediation of the magnetic energy).

Next, the Db/Dt terms in the perpendicular kinetic energy equations 3.39 and
3.40 exchange energy with the parallel kinetic energies in equations 3.37 and
3.38. These terms are due to changes in the magnetic field direction. Notice
that the Db/Dt term in the k⊥ equation does not only exchange energy with
k||, but also with Ek,m,||. Likewise, this term allows energy transfer from Ek,m,⊥
to Ek,m,|| and k||. The importance of these energy transfer channels is unknown
(they were not included in Ref. [143]). It may be expected that their magnitude
and sign depend on the direction of the magnetic field in the reactor (forward
field or reverse field). Note that these terms represent the only direct coupling
between parallel and perpendicular kinetic energies. However, energy could also
be transferred between them by the mediation of the ion and electron thermal
energy. Furthermore, it is very well possible that the parallel kinetic energy
dynamics implicitly impact the turbulence, for example by their impact on or
competition with other energy transfer channels.

The interpretation of the other terms in the parallel kinetic energy equations 3.37
and 3.38 is rather standard and deviates little from that for the kinetic energy in
hydrodynamic turbulence. The terms on the LHS under the divergence represent
kinetic energy fluxes due to mean-field convection, turbulent convection and
viscous transport. On the RHS, the first term is the viscous dissipation of
kinetic energy which is converted into ion thermal energy. The second term
contains Reynolds stresses acting on the gradients of the parallel (ion) velocity
and exchanges energy between turbulent and mean-field parallel kinetic energy
again. The third term is the work done by the pressure gradient on the parallel
velocity. Both for mean-field and turbulent energy this exchanges energy with
the ion and electron thermal energy. This energy transfer might again take place
in either direction. The last three terms are due to particle and momentum
sources, which are expected to be mainly due to plasma-neutral interactions.

Finally, the last three terms in the RHS of the perpendicular turbulent kinetic
energy equation 3.40 are due to particle and momentum sources in the plasma.
The prime particle and momentum sources in the plasma are expected to be
due to the ionisation of neutral particles and collisions with neutrals. These
source terms are again closure terms, about which very limited information is
available a priori. While neutrals are known to influence the turbulent dynamics
(see for example Refs. [140, 159, 172]), they will not be explicitly considered in
the remainder of this thesis.

The energetic couplings between the different energy forms in plasma edge
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Figure 3.1: Schematic representation of the main energy transfer channels
between the different energy forms in plasma edge turbulence. Adapted from
Ref. [143].

turbulence are illustrated in figure 3.1. The figure aims to give an overview of
some of the couplings which are expected to be important, but does not contain
all the energy transfer channels. This figure is inspired by a similar figure in
Ref. [143].

Now, almost all source/sink terms on the RHS of the energy equations 2.68,
2.69, 3.39, 3.40, 3.41, 3.37, 3.38 appear in two equations with opposite signs,
hence conserving their total energy. The only terms to only appear once are the
J⊥
en ·Rei, J̄|| ·Rei

en and J̄|| ·∇pe
ne terms in the electron thermal energy equation 2.69

and the ∇φ̄ · J̄|| term in the mean-field perpendicular kinetic energy equation
3.39. The latter three terms presumably exchange energy with the mean-field
perpendicular magnetic energy (for which no equation is derived here). Moreover,
if ∂tĀ|| = 0 as should be the case for the mean-field magnetic field, the sum
of these terms cancels exactly because of the electron momentum equation
2.43. Finally, the author expects the J⊥

en ·Rei in the electron thermal energy
equation exchanges energy with the magnetic energy in the A⊥ component of
the magnetic field, but this is not proven. However, this term is assumed to
only be of minor importance [143, 149].
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3.3 Analytical derivation of ζ⊥ equations

In section 3.1, the hypothesis that the perpendicular turbulent kinetic energy,
which has been discussed in detail in the previous section, could be used to
develop a scaling for the effective turbulent transport coefficients was put
forward. In particular, k⊥ could be used to provide a velocity scale for the
turbulence. However, as also discussed in section 3.1, such a scaling for the
turbulent transport coefficients might be further refined through the construction
of a time scale, for which the (turbulent) enstrophy could be employed. This
provides the motivation for this section, which derives transport equations for
the enstrophy. Section 3.3.1 considers the total enstrophy, after which section
3.3.2 will consider the E×B-only enstrophy.

Theoretically the total, mean-field and turbulent enstrophies are defined as

ζtot ,
mω2

2 , ζmean ,
mω̃2

2 , n̄ζturb ,
mnω′′2

2 , (3.42)

where ω = ∇×V. In the variable density case considered here, density weighing
with Favre averages is used in these definitions. In analogy to the definition of
the turbulent kinetic energy in equation 3.5, the total enstrophy is defined as a
fluctuating quantity, while the mean-field and turbulent enstrophies are defined
as mean-field quantities. Also, the average total enstrophy per unit volume is
again equal to the sum of mean-field and turbulent enstrophy per unit volume,
i.e. nζtot = n̄ζmean + n̄ζturb.

Since in plasma physics it is customary to work with a charge balance equation
and since most numerical codes also use a charge balance equation, we will take
that equation as a starting point rather than the vorticity equation. Both are
however not exactly the same as discussed in section 2.2.3. Moreover, since
plasma edge turbulence is mostly 2D, mainly the component of the vorticity
in the parallel direction is of interest. For these reasons, we will consider
the “pseudo-vorticity” W defined in equation 2.46 as a proxy for the (parallel
component of) the real vorticity. This pseudo-vorticity follows more naturally
from the charge balance equation, see equation 2.53. Note that W has a
component due to the E×B drift and one due to the ion diamagnetic drift.
Using this quantity, we define the enstrophies that will be used in this thesis as

ζtot ,
mW 2

2 , ζmean ,
mW̃ 2

2 , n̄ζturb ,
mnW ′′2

2 , (3.43)
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3.3.1 Total enstrophy equations

To analytically derive transport equations for the enstrophy, we follow a
procedure similar to the work of Ref. [160], but allow independent density
fluctuations, and we split the resulting equation into mean flow and turbulent
contributions. An equation for the total enstrophy can readily be obtained by
multiplying the vorticity-equation-like form of the charge balance equation 2.53
with the (pseudo-)vorticity W :

∂nζtot
∂t

+∇ · nζtotVC = W∇ · J|| +W∇ · J∗ +W∇ · Jp,Π

+WSW,cor − ζtotSni . (3.44)

Note that in this derivation, the ion continuity equation 2.25 has been used, in
which the convection velocity is assumed to be VC , as in the charge balance
equation. Hence, like the total kinetic energy equation, the total enstrophy
equation is mainly driven by the divergences of the plasma currents. In addition,
the correction terms resulting from the vorticity equation formulation of the
charge balance equation appear in this equation through the WSW,cor term.
SW,cor has been defined in equation 2.54.

A mean-field enstrophy equation is then obtained by taking the product of W̃
and the average of the plasma vorticity equation 2.53:

∂n̄ζmean
∂t

+∇ · (n̄ζmeanṼC +mnW ′′V′′C · W̃ ) = W̃∇ · J̄||

+W̃∇ · J̄∗ + W̃∇ · J̄p,Π +mnW ′′V′′C · ∇W̃ + W̃ S̄W,cor − ζmeanS̄ni .(3.45)

This derivation again involved the ion continuity equation. The difference
between the average of equation 3.44 and equation 3.45 then allows to write
the turbulent enstrophy equation as

∂n̄ζturb
∂t

+∇ · (n̄ζturbṼC + mnW ′′2V′′C
2 )

= W ′′∇ · J|| +W ′′∇ · J∗ +W ′′∇ · Jp,Π −mnW ′′V′′C · ∇W̃

+W ′′SW,cor −
W ′′2Sni

2 − W̃W ′′Sni . (3.46)

The structure of the mean-field and turbulent enstrophy equations 3.45 and
3.46 can be seen to be rather similar to that of the mean-field and turbulent
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kinetic energy equations 3.14 and 3.15. Here as well, the main source terms in
the RHS are due to current divergences and similar mean-field and turbulent
convection terms appear in the LHS. Furthermore, the fourth term on the RHS
of both equations seems to play a role similar to the RS term for the kinetic
energy, allowing enstrophy transfer between mean-field and turbulence. Because
a direct cascade of enstrophy is expected in 2D-like turbulence [4, 36, 71, 169],
it is anticipated that this transfer will be from mean-field enstrophy to turbulent
enstrophy.

Thus, both the k⊥ equation and the ζturb equations have their origin in the
charge balance equation and the form of both equations shows remarkable
similarities. Nonetheless we expect both equations to behave differently and
expect k⊥ and ζturb to provide complementary information for the closure
models that will be developed in the next chapters. Since the cascade directions
are opposite for both quantities, it is anticipated that ζturb is concentrated on
smaller length scales than k⊥ for example. This can also be seen from a spectral
decomposition of both quantities. This shows that ζtot(K⊥) = K2

⊥Ek,⊥(K⊥),
with Ek,⊥(K⊥) and ζtot(K⊥) the intensity of the spectrum of the kinetic energy
and the enstrophy at a perpendicular wave number K⊥. Hence, the enstrophy
spectrum is larger at high K⊥, at smaller spatial scales. In addition, the
dimension of k⊥ and ζ⊥ is different. Furthermore, it could be argued that in
averaging the charge balance equation as is done in the mean-field approach
followed here, an infinite amount of information on the instantaneous fluctuations
is lost. The k⊥ and ζturb equations represent but two different moments of the
original instantaneous charge balance equation and should thus not be expected
to be equivalent.

Note that derivations for the real enstrophies (based on the real vorticity ω)
defined in equation 3.42 could be derived from vorticity equation 2.24 by a
procedure very similar to that outlined here for the pseudo-enstrophies and
pseudo-vorticity W here.

3.3.2 E×B-only enstrophy equations

The main closure terms we want to model in this thesis are the turbulent
E×B particle (Γn,t,E) and heat (Γpi,t,E and Γpe,t,E) fluxes. In line with the
hypothesis formulated in section 3.1, these fluxes may be more closely related
to turbulence quantifiers which are based on the E×B drift only. To this end,
section 3.2.2 derived equations for the E×B-only kinetic energy kE already.
This section will do the same for the enstrophy by deriving equations for the
E×B-only enstrophy.
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To arrive at equations for the E×B-only enstrophy, we first split the total
vorticity defined in equation 2.46 into its contribution by the E×B drift and its
contribution by the ion diamagnetic drift as

W = WE +W∗ , ∇ ·
∇⊥φ
B2 +∇ · ∇⊥pi

enB2 , ∇ · UE

B
+∇ · U∗,i

B
. (3.47)

The E×B-only enstrophies are then defined based on the E×B-only vorticity as

ζtot,E ,
mW 2

E

2 , ζmean,E ,
˜mWE

2

2 , n̄ζturb,E ,
mnW ′′2E

2 . (3.48)

Note that the sum of this E×B-only enstrophies and a diamagnetic enstrophy
which could be defined as mW 2

∗ /2 is not equal to the total enstrophy, since
WEW∗ terms would then be ignored.

In order to derive transport equations for these E×B-only enstrophies, the
charge balance equation is rewritten to explicitly bring out WE . To this
end, the procedure followed in section 2.2.3 in equations 2.49-2.54 to obtain a
vorticity-like form of the charge balance equation is repeated for the E×B-part
of the polarisation current Jp,E (see definition 3.17). This yields

m
∂nWE

∂t
+∇ ·mnWEVC

= ∇ · J|| +∇ · J∗ +∇ · Jp,Π +∇ · Jp,∗ +∇ · Jp,|| + SWE ,cor (3.49)

SWE ,cor , e∇n ·Vp,E −mn∇VC : ∇UE

B
−mnWE

D lnB
Dt

−mnUE

B
· ∇(D lnB

Dt
+ Sni

n
)−mn∇ · (Db

Dt
× VE

B
). (3.50)

Equations for the total, mean-flow and turbulent E×B-only enstrophy can be
obtained by multiplying equation 3.49 with WE following exactly the same
procedure as that followed in section 3.3.1 for the total enstrophies. This leads
to following equations:

∂nζtot,E
∂t

+∇ · nζtot,EVC = WE∇ · J|| +WE∇ · J∗ +WE∇ · Jp,Π

+WE∇ · Jp,∗ +WE∇ · Jp,|| +WESWE ,cor − ζtot,ESni , (3.51)
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∂n̄ζmean,E
∂t

+∇ · (n̄ζmean,EṼC +mnW ′′EV′′C · W̃E) = W̃E∇ · J̄||

+W̃E∇ · J̄∗ + W̃E∇ · J̄p,Π + W̃E∇ · J̄p,∗ + W̃E∇ · J̄p,||

+nW ′′EV′′C · ∇W̃E + W̃ES̄WE ,cor − ζmean,ES̄ni , (3.52)

∂n̄ζturb,E
∂t

+∇ · (n̄ζturb,EṼC + mnW ′′2E V′′C
2 ) = W ′′E∇ · J||

+W ′′E∇ · J∗ +W ′′E∇ · Jp,Π +W ′′E∇ · Jp,∗ +W ′′E∇ · Jp,||

−nW ′′EV′′C · ∇W̃E +W ′′ESWE ,cor −
W ′′2E Sni

2 − W̃EW ′′ESni . (3.53)

These E×B-only enstrophy equations are very similar to the total enstrophy
equations 3.44-3.46. The only difference is that the total quantities (sum of
E×B-only and ion diamagnetic contributions) in all terms have been replaced
by E×B-only quantities where appropriate. In addition, terms proportional
to WE∇ · Jp,∗ now also appear on the RHS. Contrary to the results for the
E×B-only kinetic energy in section 3.2.2, the form of the current divergences in
the RHS of these equations does change, as they are multiplied with the total
vorticity W for the total enstrophy and only with the E×B-only vorticity WE

for the E×B-only enstrophy.

If desired, the current divergences could be rewritten as follows

WE∇ · J|| +WE∇ · J∗ +WE∇ · Jp,Π +WE∇ · Jp,∗ +WE∇ · Jp,||

= W (∇ · J|| +∇ · J∗ +∇ · Jp,Π +∇ · Jp,∗ +∇ · Jp,||)

−W∗(∇ · J|| +∇ · J∗ +∇ · Jp,Π +∇ · Jp,∗ +∇ · Jp,||)

= W (∇ · J|| +∇ · J∗ +∇ · Jp,Π +∇ · Jp,∗ +∇ · Jp,||) +W∗∇ · Jp,E . (3.54)

In the last line, the charge balance equation has been used. Hence, the equations
could be rewritten with the total vorticity multiplied with the current divergences
such that the terms become identical with those in the total enstrophy equations.
However, a correction term of the form W∗∇ · Jp,E needs to be added then (in
addition to the ∇ · Jp,∗ term that already provided a first correction).
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3.4 Parameter estimation and model validation
framework

Mean-field models for the turbulent transport in the plasma edge are by definition
a simplification of the underlying detailed fine-scale turbulent processes. As
such, these models require calibration with respect to reference data in a first
step. This is the case for the standard approach of imposing ad-hoc transport
coefficient profiles to match particular experiments discussed in section 2.3.2,
for the recent closure models proposed in literature that have been discussed
in section 2.3.3 and for the closure models that will be discussed in this thesis
following the ansatz presented in section 3.1. This comes down to a problem of
parameter estimation, where the parameters θ of a model f(I, θ), with the model
I inputs, need to be chosen such that the model approximates the reference
data O as closely as possible. In addition different competitor models may
exist of which the best one needs to be selected. To the extent of the model
capabilities, the calibrated (best) model can then be used to extrapolate the
reference data and to provide predictions in a next step.

This section3 discusses two approaches for parameter estimation and model
validation that will be used in this thesis. First the standard approach of
least squares regression will briefly be discussed in section 3.4.1. Then, section
3.4.2 discusses the theory of Bayesian inference which provides an alternative
framework for parameter estimation and model validation with a solid statistical
basis. Section 3.4.3 then presents the computational methods that will be used
to apply Bayesian inference in this thesis.

3.4.1 Least squares methodology for regression analysis

The non-linear least squares (LS) regression techniques presented here are based
on Ref. [43]. It is assumed that a set of reference input I and output O
data measurements are available, of which individual elements are denoted Ii
and Oi. In this thesis, these data points will come from the averaged data of
detailed turbulence code simulations. The parameters θ in the model f(I, θ)

3This section uses material that has been published in “Coosemans, R., Dekeyser, W.,
Baelmans, M. (2021). Turbulent kinetic energy in 2D isothermal interchange-dominated
scrape-off layer E×B drift turbulence: Governing equation and relation to particle transport.
Physics of Plasmas, 28:012302” [46], in “Coosemans, R., Dekeyser, W., Baelmans, M. (2021).
Bayesian analysis of turbulent transport coefficients in 2D interchange dominated E×B
turbulence involving flow shear. Journal of Physics: Conference Series, 1785:012001” [45],
and in “De Wolf, R., Coosemans, R., Dekeyser, W., Baelmans, M. (2021). Bayesian approach
to parameter estimation and model validation for nuclear fusion reactor mean-field edge
turbulence modelling. Nuclear Fusion, 61:046048” [50].
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approximating O are tuned by minimising an objective function over these
parameters of the model, resulting in the optimisation problem

minimize
θ

obj(θ) (3.55)

obj =
Nd∑
i=1

(f(Ii, θ)
Oi

− 1)2 (3.56)

In these formulae, Nd is the number of available data points. The objective
function 3.56 aims to minimize the relative error between model and data.

Within this approach, the coefficient of determination, or R2 value, can be used
as a figure of merit for the models that will be tested. This value is defined as

R2 , 1−
∑Nd
i=1(f(Ii, θ)−Oi)2∑Nd
i=1(Oi −Omean)2

, (3.57)

where Omean ,
∑Nd
i=1Oi/Nd. Thus, it quantifies to what extent the variance of

the data can be explained by the model. Note that the R2 value depends on
the value of the parameters θ that is used.

While the LS method is rather straightforward and widely used, it suffers from
several drawbacks. Firstly, the result does not provide any information about the
uncertainty of the parameters, it merely finds a best fit for the model. Secondly,
this approach is oblivious to possible correlations between the parameters, which
might be of interest to the researcher. The largest drawback of the LS approach,
however, is the danger of overfitting the data. It is generally known that adding
more model parameters reduces the error of fit for a certain reference data
set, even when said parameters are completely irrelevant. Therefore, it may
be difficult to know whether a parameter is actually relevant for the model
or merely improves the fit by stochastic coincidence. According to Occam’s
principle [5], models with fewer parameters should be preferred to models with
more parameters, by penalizing the latter for every additional parameter. A
possible way to overcome this issue would be to use a cross validation approach.
In such an approach only part of the data is used to estimate the parameters,
and the remainder to validate the model (e.g. the R2 value). This process is
repeated multiple times, always leaving out different subsets of the data for the
parameter estimation [6, 69]. The Bayesian inference methodology discussed in
the next section is capable of addressing all the issues outlined above.
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3.4.2 Theory of Bayesian inference

The objective of a Bayesian analysis is to infer about the joint probability
distribution of the model parameters, which provides much more information
than a single parameter value resulting from a classical least squares regression.
In addition, the Bayesian evidence provides a statistically rigorous methodology
to rank different competing models. In this section, we aim to give a concise
overview of the main features of Bayesian inference theory. We refer to De Wolf
et al. [50] and the reference therein for a more detailed discussion of this topic.

The basic identity underlying Bayesian techniques is Bayes’ rule:

P(θ|D,M) = π(θ|M)L(D|θ,M)
L(D|M) , (3.58)

where the posterior P(θ|D,M) is the probability of the parameters θ after
observing the data D for a certain modelM, the prior π(θ|M) is the probability
of the parameters before observing the data for the model, the likelihood
L(D|θ,M) indicates how likely it is to observe the data given a specific value of
the parameters and the model, and the Bayesian evidence L(D|M) is the
marginal likelihood of observing the data given the model no matter the
parameters [49, 50, 100, 121, 161]. The main objective of Bayesian analysis for
parameter estimation is to infer the posterior distribution of the parameters
P(θ|D,M) from the data. Secondly, the model evidence L(D|M) can be
evaluated for model comparison, as it will be shown to be proportional to the
probability of the model given the data. In order to achieve this, a likelihood
function and a prior need to be constructed.

Likelihood function and prior

The likelihood function is basically a model for the probability distribution
describing the error between the data and the model. If we consider a (physical)
model f(I, θ) (which is a function of the input data I) that approximates the
(output) data D : O, the error is defined as

ε , O − f(I, θ) (3.59)

Describing the model error ε is a delicate matter. This error is not only
composed of the statistical error that remains on the averaged output data O
but also includes the error on the model f(I, θ). The latter is composed of
an error because the model form f(I, θ) is not perfect (model inadequacy), an
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error caused by propagating the statistical error on the averaged input data
I through the model and a numerical error in solving the model [137]. Since
very little is known about most of these error contributions in this work, we
chose to aggregate them all. Due to this lack of knowledge, the true probability
distribution of this aggregated error is also unknown. To acknowledge our
ignorance, we choose to use an error distribution which is as uninformative
as possible. Through the maximum entropy principle, it can be shown that
a Gaussian distribution is the least informative distribution characterised by
only a mean and a standard deviation [24, 50, 60, 84, 96, 121]. Based on
this argumentation, we assume the error at every data point has a Gaussian
distribution. Furthermore, the model error is assumed to have zero mean, such
that εi ∼ N(0, σi) for every data point i. The likelihood function is then this
distribution expressed as a function of the parameters, yielding for a single data
point:

L(Di|θ,M) = 1√
2πσi

exp
(
− (Oi − f(Ii, θ))2

2σ2
i

)
. (3.60)

For a data set consisting of multiple points and allowing for possible correlations
between the data, we get

L(D|θ,M) = 1
((2π)n/2 det Σ1/2 exp(−1

2ε
TΣ−1ε), (3.61)

where it is understood that ε is now a vector grouping the errors εi of all
individual data points and Σ is the covariance matrix of the error [49, 50, 121].
Note that while the likelihood function is a proper probability density as a
function of the model error ε, it is not a probability density when viewed as a
function of the parameters θ. From equations 3.60 and 3.61, it is clear that in
order to evaluate the likelihood function for a single value of the parameters θ,
a forward model evaluation of f(I, θ) is required for all data points.

In equations 3.61, the error covariance matrix still needs to be further specified.
If the (spatial) data points are not statistically independent, it is important
to account for this (spatial) correlation [40, 98]. This correlation can be taken
into account by assigning nonzero values to the off-diagonal elements of the
covariance matrix, in accordance with a chosen model for the correlation. In this
work, we will assume the correlation to decay exponentially with the distance
between the data points [62, 121, 168], yielding the following expression for the
off-diagonal elements:

Σij = σ2
ii exp

(
−∆ij

`

)
, (3.62)
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where ∆ij is the distance between two grid points at which data is available
and ` is the characteristic correlation length of the exponential model. Note
that ` might be different for different directions in case the data is anisotropic.
Similarly, if the data would be time dependent, a correlation time would need to
be added. Both would require generalisation of equation 3.62. For the diagonal
elements of the error correlation matrix, two alternative assumptions will be
used in this work. Either the standard deviation of the error will be assumed
to be uniform over all data points

σii = σabs, (3.63)

or it will be assumed to scale with the magnitude of the considered data point

σii = σrelOi. (3.64)

Through the definition of the model for the error 3.62 with 3.63 or 3.64, the
additional parameters ` and σabs/rel enter the likelihood function. If these
are not known a priori, as will be the case in this thesis, they should be
estimated during the Bayesian inference procedure just as the parameters of the
physical model. These model parameters of the error model are called nuisance
parameters. Note that the parameters θ include both the parameters used in
the physical model f(I, θ), and the nuisance parameters.

At this point it is worth remarking that in a Bayesian analysis, the results (both
the posterior and the evidence) do not only depend on the physical model f(I, θ)
under consideration, but also on the statistical model that is used for the model
error in the likelihood function, i.e. the modelM includes both the physical
model and the statistical model [168]. While characterising the (statistical)
model error may provide relevant insights, we will mostly be interested in the
physical model. However, as both cannot be decoupled in a Bayesian analysis
we will try to select statistical models that properly represent the error, such
that the results for the physical model are as accurate as possible and are not
disturbed too much by deficiencies of the statistical model.

Next, we turn our attention to the model prior π(θ|M), which describes what
is known about the parameters prior to observing the data. Note that not only
the parameters of the physical models require a prior, but also the nuisance
parameters. As the models developed in this thesis are novel such that no
prior information is available, it is opted to use non-informative, wide prior
distributions in order not to exclude any values of the parameters from the start.
A number of methods have been proposed to construct so-called objective priors
[22, 156, 18, 19], but it should be mentioned that a prior can never be truly
non-informative and will always contain at least some subjectivity [28, 161].



88 METHODOLOGY FOR THE DEVELOPMENT OF MEAN-FIELD MODELS FOR THE E×B
TURBULENT FLUXES

As is evident from equation 3.58, the product of the likelihood and the prior
L(D|θ,M)π(θ|M) determines the shape of the posterior distribution P(θ|D,M),
which is the end goal for the parameter estimation since the evidence L(D|M)
is a scalar which can be considered to be a normalisation factor in equation
3.58. This posterior provides a comprehensive description of the information the
data provides on the parameters: the regions in parameter space that are most
likely, how large the spread is on the parameters and the correlation between
the different parameters of the modelM.

Model evidence

The evidence L(D|M) on the other hand is of particular interest to compare
different competing modelsM attempting to explain the data. Defined as

L(D|M) ,
∫
π(θ|M)L(D|θ,M)dθ, (3.65)

the evidence is independent of the value of the parameters. Note that the
evidence is not a probability, since the likelihood is not a probability distribution
in terms of the parameters. However, the Bayesian evidence is directly related
to the probability of a model given the data. Applying the Bayes rule 3.58
again, but now reworking the conditionality on the model instead, it is found
that

P(M|D) = P(M)L(D|M)
L(D) , (3.66)

where P(M) is the prior probability for the model before observing the data
(independent of the parameters) and L(D) is a normalisation factor that purely
depends on the data. Hence, if there is no prior information P(M) about which
model is more probable, the ratio of the evidence of two modelsM1 andM2 is
equal to the relative probability of both models given the data [100, 161]:

B12 ,
L(D|M1)
L(D|M2) = P(M1|D)

P(M2|D) . (3.67)

This evidence ratio of B12 is also called the Bayes factor. Thus, while the
evidence for a single model does not have a clear meaning (as it is not a
probability), the ratio of the evidence between competing models directly
indicates which model is to be preferred. Note that this only holds for models
trying to explain the same diagnostic output data, the evidence cannot be used
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Table 3.1: Interpretation of the Bayes factor. Source: adapted from [96].

logB12 B12 Strength of evidence for hypothesis 1
< 0 < 1 Negative (supports hypothesis 2)

0− 1.2 1− 3.2 Barely worth mentioning
1.2− 2.3 3.2− 10 Substantial
2.3− 3.5 10− 31.6 Strong
3.5− 4.6 31.6− 100 Very strong

> 4.6 > 100 Decisive

to compare models that explain different (output) data sets. The reference
input data I that is implicitly included inM may be different. Guidelines for
interpreting the value of B12 have been included in table 3.1.

It needs to be kept in mind that just like the model posterior, also the model
evidence does not only depend on the physical model f(I, θ), but also on the
statistical model that is used for the error (included inM) and on the prior. As
such, the Bayesian evidence compares the combination of physical model and
statistical model. As we are mostly interested in the physical model (for the
average turbulent transport) in this thesis, we will try to select statistical models
that properly represent the error, such that the results for the physical model
are as accurate as possible. The other way around, different statistical models
can be compared based on the evidence when the physical model is kept the
same. This way, the most suitable statistical model can be selected (Gaussian
distribution or not, scaled error or not, correlation length or not,...). While in
theory different error models may be better suited for different physical models,
we choose to use the same error model when comparing different physical models
with each other in this thesis.

In order to highlight the main strength of the evidence in context of model
comparison, recall that the LS approach is not a good method to compare
models of different complexity due to the danger of overfitting. In contrast,
the evidence provides a theoretically founded measure to compare such models,
because it inherently penalizes more complex models. This is generally referred
to as Occam’s Razor [152] and is by no means limited to a Bayesian context.
Next to the concept of model sparsity, the Bayesian evidence inherently includes
the concept of predictive capability as well. It can be shown that under certain
conditions, the result of a rigorous cross validation approach reduces to the
Bayesian evidence [69]. In effect, there is no point in splitting the data into a
data set for model calibration and another for testing the calibrated model.

To understand how the Bayesian evidence automatically applies Occam’s Razor,
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the reasoning of Ref. [100] is followed quite closely. Consider a model which
features a single parameter θ, given a uniform prior distribution in the range
∆θ = θmax − θmin. The effective width δθ ≤ ∆θ of the likelihood function is
then defined by

δθ = 1
Lmax

∫ θmax

θmin

L(D|θ,M)dθ, (3.68)

where Lmax is the dominant mode of the likelihood function, for which the
goodness-of-fit of the model is maximized. The evidence can then be written as

L(D|M) = 1
∆θ

∫ θmax

θmin

L(D|θ,M)dθ, (3.69)

since the prior is a uniform distribution of height 1/∆θ. Upon substitution of
equation 3.68 into this last equation, we obtain an intuitive expression for the
evidence as

L(D|M) = Lmax
δθ

∆θ , (3.70)

where Lmax is a goodness-of-fit indicator and δθ/∆θ can be viewed as an Occam
factor.

The above derivation can readily be extended to multidimensional evidence
calculations. Physically, equation 3.70 shows that the evidence is maximized
when the effective width (or volume in higher dimensions) of the likelihood
function occupies the prior range to its maximum. When an additional parameter
is introduced to a model, the evidence will only increase if the goodness-of-fit
offsets the decreased occupied relative volume of the prior parameter space.4

Clearly, the evidence strongly depends on how the prior distributions are
constructed. From equation 3.69 it can be seen that the evidence can be made
arbitrarily small by increasing the range of the prior distributions. Moreover, it
can be seen that improper priors are to be avoided due to the evidence becoming
meaningless in an infinitely large prior parameter space. To deal with this issue,
care should be taken to construct correct (i.e. proper) prior distributions. If
this is not possible, e.g. when a non-informative Jeffreys prior is improper,
upper boundaries of the evidence could be computed as comparative measure
[148, 161].

To highlight the main features of Bayesian theory, we briefly review the main
difference with a classical least square regression approach. If the model error ε
is assumed to have a Gaussian distribution as in equation 3.60 and when the

4Note that more complex models with more parameters need not necessarily have a smaller
volume ratio between posterior and prior. Nonetheless, this is the expected trend, since every
parameter does lead to an additional dimension in which the data (have the potential to)
constrain the values allowed by the prior.
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covariance matrix only has diagonal elements that are uniform (Σ = Σii = σ2
abs),

it can be seen that maximising this likelihood is identical to a classical LS
regression. Alternatively, when scaled errors are used such that Σ = Σii =
(σrelOi)2, maximising the likelihood reduces to the objective in equation 3.56
presented in the regression analysis in section 3.4.1. So, a first generalisation is
that the likelihood function also allows more complex distributions for the error
if desired. In a second step, the likelihood function is multiplied with the prior
distribution such that any available prior information could be self-consistently
incorporated. Maximising this product yields the maximum a posteriori (MAP)
estimate for the parameters. In addition, the distribution of the parameters
formed by the product L(D|θ,M)π(θ|M) is proportional to the probability
density function for the parameters, hence including much more information
than the MAP point-estimate itself. Comparing different models based on the
value of L(D|θ,M)π(θ|M) at MAP would still only compare models for a single
parameter setting, as the LS comparison does. Instead, the Bayesian evidence
L(D|M) integrates this product of likelihood and prior over the parameter
space of the models in order to effectively compare the models for any setting
of the parameters allowed by the prior. This “prior-weighed” integration of the
likelihood function over parameter space adds the Occam factor - penalizing
more complex models - to the basic (LS-like) goodness of fit statistic included
in the likelihood function [161, 100].

3.4.3 Computational methods for Bayesian inference

Computational techniques are required in order to infer about the complex
posterior distribution P(θ|D,M) and to determine the Bayesian evidence
L(D|M). In this work, we choose to employ Markov Chain Monte Carlo
MCMC techniques to evaluate Bayes’ theorem, which is widely used in the
research community. In this section, we will only briefly treat the basics of this
method, while a more complete description of it can be found in Refs. [49, 50]
and the references therein. The framework developed in these references has
been used for all Bayesian inferences reported in this thesis.

The idea of MCMC is to approximate a target distribution by generating a chain
of samples which converges to a statistical steady state in which the samples are
distributed as the target distribution. A typical step of the classical Metropolis-
Hastings algorithm [112] for sampling from a generic target distribution h(θ) is
schematically represented below:

• Given θi, generate θ′ according to the proposal distribution q(θ′|θi)

• Calculate the acceptance probability α = min
(
h(θ′)q(θ′|θi)
h(θi)q(θi|θ′) , 1

)
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• generate a sample from the uniform distribution u ∼ U(0, 1)
if α > u accept sample, θi+1 = θ′

if α < u reject sample, θi+1 = θi

In this algorithm, q(θ′|θi) is the proposal distribution describing the probability
of where the next proposal parameter will be located given the previous accepted
sample. Thus, in each iteration, a random step is taken, which is more likely to
go to a point of higher probability than to one of lower probability. This brings
the great advantage that the Markov chain will automatically move to high
density regions of the target distribution. Hence, the regions of interest and the
locations were samples need to be taken do not need to be specified a priori.

The choice of the proposal distribution q(θ′|θi) distribution is crucial to the
efficiency of the algorithm. If this distribution is very narrow, samples will
easily be accepted as they are likely to be close to the previous accepted sample,
however, it will take a long time for the chain to move to other regions and
explore the whole target distribution. If the proposal distribution is very wide
on the other hand, the accepted samples will quickly cover the entire target
distribution, but a high number proposal samples will be rejected before one is
accepted since they are likely to be far off in low probability regions.

A typical choice for the proposal density is a multivariate Gaussian probability
distribution centered around the last accepted sample, i.e. q(θ′|θi) ∼ N(θi,Σq).
In order to increase the efficiency of the algorithm, the Adaptive Metropolis-
Hastings (AMH) algorithm [87, 49, 50] which adjusts the proposal distribution
during runtime will be used in this thesis. The previously accepted samples are
used to estimate the covariance matrix of the target distribution ΣT , which is
then optimally scaled and used as the covariance matrix of the Gaussian proposal
function, i.e. Σq ∼ 2.4ΣT /

√
d where d is the dimension of θ [49, 50, 77, 87].

This algorithm is used for Bayesian inference by sampling for h(θ) ∼
π(θ|M)L(D|θ,M). Remark that the second step of this algorithm requires
a forward evaluation of the model f(I, θ) in order to calculate the likelihood,
making it the most expensive step of the algorithm in most cases. An optimal
choice for the initial conditions of the AMH algorithm (the initial sample and
covariance matrix of the proposal distribution) can significantly reduce the
number of required model evaluations before convergence. This can be achieved
by starting from the results from a cheaper simplified analysis such as the
Laplace approximation [50, 121, 161].

While MCMC offers a very complete framework for Bayesian inference, the
evidence is by default not an output of the analysis and has to be estimated
separately. Several methods of varying complexity and accuracy can be employed
for this [91, 70]. In this thesis, Chib’s method [41, 49] is used. This method
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uses the Bayes rule 3.58 to calculate the evidence as the ratio

L(D|M) = L(D|θ∗,M)π(θ∗|M)
π(θ∗|D,M) . (3.71)

at a single parameter value θ∗. In theory, any choice of θ∗ is admitted, but in
order for the estimate to be accurate the method requires a point in the high
density region of the posterior. The numerator of expression 3.71 can readily
be calculated since the value of the likelihood and the prior can be calculated
for any parameter value. Obtaining the denominator is more difficult though.
Chib et. al [41] prove that it can be calculated as

π(θ∗|D,M) =
M−1∑M

g=1 α(θ∗|θ(g))q(θ∗|θ(g))
J−1∑J

j=1 α(θ(j)|θ∗)
, (3.72)

where θ(g) are samples of the posterior distribution, θ(j) are samples of the
proposal density, α is the acceptance ratio and q is the proposal density. M and
J are the number of samples drawn for the numerator and the denominator,
respectively. Note that for θ(g), the samples from the AMH algorithm can be
used, while new samples are required for θ(j). However, as the proposal density
is normally much less complicated, this is typically much less computationally
demanding.

3.5 Conclusion

In chapter 2, it has been established that the turbulent E×B particle and heat
fluxes for the continuity and thermal energy equations play an important role
for the plasma edge transport. Since the average of these fluxes depends on
the correlation of turbulent fluctuations of the density, electrostatic potential
and temperature, closure models are required to include them in mean-field
codes. A closure strategy based on the RANS techniques that are widely used
in hydrodynamic turbulence modelling is outlined in this chapter.

It is proposed to base such closure models on average quantities that characterise
the E×B drift turbulence driving the transport. It is argued that the turbulent
kinetic energy k⊥ and turbulent enstrophy ζ⊥ offer attractive choices for such
quantities as they contain relevant information on the turbulent eddies providing
the mechanism for the transport. Furthermore, they can be used to construct a
velocity and a time scale for the turbulence respectively. Despite the knowledge
that the fine-scale phenomena leading to turbulent transport have a clear
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convective nature, it is suggested that a diffusive model may provide an adequate
description of their statistical average. Thus, it is proposed that k⊥ and ζ⊥ can
be used to model the effective turbulent transport coefficients in these diffusion
relations. This ansatz will be proven to be fruitful in the next chapters.

In order to construct a self-consistent model for these turbulent fluxes, model
equations for these quantifiers of the turbulence, k⊥ and ζ⊥, are required. To
this end, transport equations for both are derived analytically. Variants have
been obtained for the total quantities including contributions due to the E×B
drift and the diamagnetic ion drift, and for the E×B-only variant. Since the
fluxes to be modelled feature only the E×B velocity, the latter may be more
relevant. However, most terms in the transport equations for k⊥ and ζ⊥ are
closure terms that depend on correlations between turbulent fluctuations. Hence,
in order to obtain a self-consistent model, these transport equations in turn
require modelling. To this end, the next chapters will evaluate the different
terms based on turbulence code data for reduced flow cases. This will allow to
identify the dominant terms and to model these.

Literature does already provide some direction though. A detailed analysis
of the perpendicular turbulent kinetic energy equation and how it couples to
other energy equations (thermal energy, mean-field perpendicular kinetic energy,
parallel kinetic energy, magnetic energy) provide insight in how energy can be
injected into the turbulence and extracted from it. Two main channels are the
interchange coupling and the drift wave coupling. The interchange channel
exchanges energy between k⊥ and thermal energy in the presence of magnetic
field gradients. This is expected to be particularly important in the SOL. An
analytical relation has been found to model this source of the turbulence, which
links it to the turbulent E×B heat fluxes themselves. The drift wave channel
transfers energy between electron thermal energy and k⊥ through a coupling
involving parallel current dynamics. Because of this link with fluctuations in
the direction parallel to the magnetic field, this channel is expected to be more
important in the closed field line region. Furthermore, the Reynolds stresses
allow energy transfer between k⊥ and the mean-field perpendicular kinetic
energy. It is expected that this will act as a strong sink of the turbulence around
the separatrix where strong shear flows tend to occur. Lastly, spatial transport
of k⊥ might also play a significant role. In particular, a transport term related
to parallel current fluctuations is identified. The results in the next chapters
suggest that this term enables fast transport of k⊥ along the magnetic field
lines to the plasma sheath, hence acting as a sink of k⊥.

The mean-field turbulent transport models that will be developed in this thesis
will feature a number of free parameters to be estimated. Furthermore, multiple
competitor models (of different complexity) will be developed, which need to be
compared. For this purpose, a framework for parameter estimation and model
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comparison has been presented in this chapter. Both the simple least-squares
method and the Bayesian inference methodology are discussed.

In the next chapters, the hypotheses formulated in this chapter will be checked
systematically and the broad picture strategy for developing closure models will
be put in practice. This will be done by applying the framework developed here
to detailed turbulence code simulation data. Detailed analysis of the resulting
averaged data will allow to suggest a number of closure models.

In order to gradually develop closure models starting from the basic dynamics,
strongly simplified cases will be studied first, after which the complexity of
the considered cases is gradually increased. First, the case of an isothermal,
interchange-dominated, SOL in 2D with dominant E×B drifts will be considered
in chapter 4. Chapter 5 will extend this case to also investigate the outer core
region, where drift wave dynamics and flow shear also come into play. In
addition, the influence of the ion diamagnetic drift in the inertia will be studied.
Then, 6 will generalise the developed models to consider the anisothermal 2D
SOL. Finally, chapter 7 will provide a look ahead by an exploratory analysis of
fully 3D turbulence code data.





Chapter 4

2D isothermal
interchange-dominated E×B
drift turbulence in the SOL

Chapters 2 and 3 considered fluid equations for the plasma edge in general,
making a limited amount of assumptions on effects to be neglected. This led to
a rather extensive set of equations containing a lot of physics. In this chapter1,
we will first reduce the complexity of the physics under consideration in order
to be able to better disentangle the different effects at play. We start from a
simplified case and try to understand this. Later on, assumptions can gradually
be removed to build up a model for more realistic cases. This methodology
allows to systematically construct a model based on a good understanding of
the basic elements as well as any further additions.

This chapter will consider the simplified case of 2D isothermal, interchange-
dominated, electrostatic E×B drift turbulence in the SOL. While simplified,
this already contains some of the basic physics of plasma edge turbulence

1Parts of this chapter have been published in “Coosemans, R., Dekeyser, W., Baelmans, M.
(2021). Turbulent kinetic energy in 2D isothermal interchange-dominated scrape-off layer E×B
drift turbulence: Governing equation and relation to particle transport. Physics of Plasmas,
28:012302” [46], in “Coosemans, R., Dekeyser, W., Baelmans, M. (2020). A new mean-field
plasma edge transport model based on turbulent kinetic energy and enstrophy. Contributions
to Plasma Physics, 60:e201900156” [44], and in “Coosemans, R., Dekeyser, W., Baelmans,
M. (2022). A self-consistent mean-field model for turbulent particle and heat transport in
2D interchange-dominated electrostatic ExB turbulence in a sheath-limited scrape-off layer.
Contributions to Plasma Physics, e202100193” [47].

97
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(e.g. blob-like structures, intermittency,...). Usually, the interchange coupling
provides the main source of the turbulence in the SOL. In contrast, the drift
wave (DW) coupling, requiring parallel fluctuations, plays a less important role
in the SOL since fluctuations without a parallel component can exist in this
region [89, 131, 133]. DW dynamics are not considered in the present chapter.
Mean-field models for the average particle transport will be constructed based on
a rigourous analysis of reference data obtained from the TOKAM2D turbulence
code described in detail in Refs. [109, 116, 141]. This code fully resolves
turbulent time and length scales in a plane perpendicular to the magnetic
field. Section 4.1 first describes the 2D equation set modelling this turbulence
and the TOKAM2D code setup used to simulate it. Next, section 4.2 derives
the mean-field equations for this 2D model, including equations for k⊥ and
ζ⊥. Then, a mean field model for the transport is constructed that relates the
turbulent diffusion coefficient to the turbulent kinetic energy in section 4.3.
Section 4.4 further refines this model by also taking the turbulent enstrophy ζ⊥
into account. Finally, section 4.5 compares both models by means of a Bayesian
analysis.

4.1 TOKAM2D setup and equations

Section 2.2 has presented the equations commonly used to describe the
instantaneous dynamics of plasma edge turbulence. Appendix B.1 simplifies
these equations to the case of 2D interchange-dominated electrostatic E×B drift
turbulence in a sheath-limited SOL. This yields the equation set that is solved
in the TOKAM2D turbulence code described in detail in Refs. [109, 116, 141].
TOKAM2D will be used to obtain detailed reference data for the turbulence in
this chapter and in chapters 5 and 6. In this chapter, the TOKAM2D equations
are simplified to the very basics of plasma edge turbulence and consider the
isothermal E×B-vorticity-only case.

TOKAM2D considers a collection of flux tubes in the SOL connecting two
plasma sheaths. As discussed in detail in section 2.2, plasma edge turbulence
has much smaller length scales in the direction perpendicular to the magnetic
field than in the direction parallel to it, especially in the SOL. In view of this, a
flute approximation is made in TOKAM2D to neglect fluctuations along the
parallel direction and an infinite conductivity is assumed such that plasma
quantities are constant in this direction. Under these assumptions, the geometry
reduces from 3D to 2D. Formally, the TOKAM2D equations are derived by
averaging over the uniform parallel direction of these flux tubes. The fluxes
out of this flux tube in the parallel direction are incorporated as artificial
volumetric sinks. The form of these sinks is inspired by Bohm-like sheath
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conditions. The assumptions above effectively imply a sheath-limited regime.
The TOKAM2D equations are expected to be representative for the dynamics
under such a sheath-limited regime in the outer midplane (OMP) region, the
region on the outboard side of the tokamak around the horizontal midplane
where the turbulence is strongest. While these assumptions do not hold for
SOLs under all plasma edge conditions, it is a reasonable approximation and
already allows to capture some of the dominant mechanisms at play in plasma
edge turbulence [65, 67, 68, 122, 141].

The TOKAM2D equations are solved on a rectangular 2D domain, which is
schematically represented in figure 4.1. x is the radial direction and y is the
diamagnetic direction perpendicular to x and to the magnetic field direction b,
such that the three form a right handed coordinate system. Hence, y points in the
electron diamagnetic direction. The direction along b is assumed to be uniform
and is not resolved. In TOKAM2D, the magnetic field is assumed to be constant
in time and uniform in space (except for magnetic field gradients in the ∇ · J∗
term in the charge balance equation which act as effective gravity). Furthermore,
TOKAM2D uses quantities which are normalised with the ion mass m, reference
ion gyro-frequency Ω0 = eB0/m and reference gyro-radius ρ0 = cs,0Ω0, with
B0 the reference magnetic field strength, cs,0 =

√
T0/mi the reference sound

speed and T0 the reference temperature. The density is normalised to the
reference density n0. Note that the reference temperatures are defined in energy
units of [J] or equivalently [eV]. This normalisation procedure is illustrated
for typical tokamak SOL conditions in appendix C. Note that for clarity of
notation, we choose to keep using the same symbols after the normalisation. In
the remainder of this chapter and in chapter 5 and 6, the plasma quantities are
all normalised, unless explicitly stated otherwise. Likewise, almost all figure
showing TOKAM2D data in this thesis plot nondimensional, normalised data.
For clarity, the “units” are indicated in terms of ion mass, reference density,
gyro-frequency, gyro-radius and reference sound speed. Dimensional quantities
can be obtained by filling out values for these reference quantities (which can
be freely chosen).

Using this notation, the equations solved by TOKAM2D for the isothermal
SOL case are the following:

∂n

∂t
+ VE · ∇n−D0∇2

⊥n = Sn −
ncs
L||

exp(Λ− φ

Te
), (4.1)

∂W

∂t
+ VE · ∇W − ν0∇2

⊥W = − g
n

∂p

∂y
+ cs
L||

(1− exp(Λ− φ

Te
)), (4.2)

W , ∇2
⊥φ, VE , b×∇φ. (4.3)
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These equations correspond to the minimal subset of the full TOKAM2D
equations B.21-B.25 presented in appendix B.1. In these equations, it is assumed
that only the E×B velocity is relevant for convection in the perpendicular plane,
i.e. VC , VE . Moreover, the divergence of the E×B drift ∇ ·VE vanishes
exactly since the magnetic field strength is assumed to be uniform over the
whole domain (see equation 3.29). The perpendicular classical particle flux
and the viscous stresses are modelled using simple diffusion models with D0
and ν0 as a constant transport coefficient. Next to their physical meaning of
classical transport, these terms are likewise required for numerical stability of the
TOKAM2D code as they stop the direct cascade to length scales smaller than
the gyro-radius, which would be unphysical in a drift-reduced fluid approach.

The divergences of the parallel fluxes are retained. These terms represent the
flow of particles out of the flux tube at the parallel ends of it, i.e. at the plasma
sheath. Using Bohm conditions for the plasma sheath, this leads to [153]

∇ · nVe,|| ≈
ncs
L||

exp(Λ− φ

Te
), ∇ · J|| ≈

encs
L||

(1− exp(Λ− φ

Te
)). (4.4)

In these expressions Λ = 1
2 ln( mi

2πme ) [116] is the sheath potential drop. L||
represents half the connection length, the distance along the field line between
the intersections with the solid surface, i.e. the parallel length of the flux tube
considered here. Hence, the expressions in 4.4 give rise to the last terms on the
RHS of equations 4.1 and 4.2.

In the vorticity equation 4.2, only the contribution of the E×B velocity to
the polarisation current is considered, meaning that the contribution from the
diamagnetic ion drift is neglected. Furthermore, the SW,cor term (see equation
2.54) is neglected, which in this reduced case mainly implies the commonly made
Boussinesq approximation is used [74, 132, 141, 170]. In addition, particle and
momentum sources are also neglected in the vorticity equation. Since neutrals
are not treated in TOKAM2D, the only particle source is an imposed source
close the domain boundary, a region which will be excluded from the analysis in
this thesis. Hence, neglecting the particle source terms can be justified. Finally,
the first term in equation 4.2 represents the diamagnetic current divergence,
where g = −∂ ln(B2)/∂x and a low β approximation is made (see equation
B.18 in appendix for details). Note that spatial variations of the magnetic
field are retained in this term specifically in TOKAM2D in order to be able to
represent the important interchange drive for the turbulence. Moreover, the
parameter g is to be interpreted as the average magnetic field curvature along
the parallel extent of the considered flux tube. It is worth remarking that in
this 2D case with a constant magnetic field, the pseudo-vorticity W and (the
parallel component of) the real vorticity are equivalent, see equation 2.48.
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For the isothermal SOL case, TOKAM2D only solves the equations 4.1-4.3
and assumes spatio-temporally constant ion and electron temperatures Ti
and Te (instead of solving thermal energy equations). These equations are
solved for a rectangular Cartesian x, y-coordinate system representing the plane
perpendicular to the magnetic field. In this thesis the finite volume version of
the TOKAM2D code [109, 116] is used.

On radial (x) boundaries of the domain, the radial fluxes of all quantities are
forced to zero.2 This is done by applying Neumann boundary conditions on
radial boundaries combined with fringe regions near the radial boundaries to
drive fluctuations in the diamagnetic (y) direction to zero in those regions. The
latter are required because gradients in the y-direction would otherwise lead
to ExB fluxes over the radial boundaries. Periodic boundary conditions are
used on diamagnetic boundaries. The particle source Sn has a Gaussian profile
in the x-direction and is constant both in the y-direction and in time. In the
simulations performed for this thesis, the particle source is situated towards
the inner boundary of the domain. Figure 4.1 shows a sketch of the different
regions in the TOKAM2D computational domain. Note that in this thesis only
the physical middle part of the computational domain will be considered where
the influence of the fringe region and the particle source is negligible. More
details regarding the TOKAM2D simulation parameters used in the various
sets of simulations reported here can be found in appendix D.

4.2 Mean-field equations

As discussed in chapters 1-3, the goal of this thesis is to a model the
average turbulent E×B transport, drawing inspiration from RANS techniques
for hydrodynamic turbulence. Hence, this section will construct mean-field
equation from the instantaneous, turbulent equations for isothermal electrostatic
interchange-dominated E×B drift turbulence SOL described in the previous
section. To this end, all turbulent quantities in the governing equations 4.1-4.2
and 4.3-4.3 are split into a mean flow and a fluctuating component, either using
a Reynolds or a Favre decomposition, see equation 2.55 and 2.58. Averaging the
equations then yields equations describing the evolution of the average density

2Particles enter the domain through the source term instead.
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Figure 4.1: Sketch of the computational domain of the TOKAM2D turbulence
code and the various regions in it.

n̄, vorticity W̄ and electrostatic potential φ̄:

∂n̄

∂t
+∇ · (n̄V̄E + n′V′E) = S̄n −

cs
L||

n exp(Λ− φ

Te
) +D0∇2

⊥n̄, (4.5)

∂n̄W̃

∂t
+∇ · (n̄W̃ ṼE + nW ′′V′′E)

= −gT ∂n̄
∂y

+ cs
L||

(n̄− n exp(Λ− φ

Te
)) + νn∇2

⊥W, (4.6)

W̃ = ∇̃2
⊥φ, V̄E = b×∇φ̄, (4.7)

where T = Ti + Te. The terms in these equation can be compared to the
corresponding terms in the turbulent equations 4.1-4.2. Linear terms, such
as the time derivative and diffusive terms, retain the same form as in the
original equation. Nonlinear terms, such as the convective terms and the sheath
loss terms, lead to correlations between fluctuations, and give rise to terms
that require closure. S̄n represents the averaged source term of particles. As
the particle source in the TOKAM2D code is constant in time, this overbar
notation is not strictly necessary, but is used for generality and possible future
extensions of the model. Note that in writing the above mean-field equations, the
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Figure 4.2: Typical results for the TOKAM2D density field. Snapshot of the
turbulent density field (left), time averaged density field (middle) and radial
profile (averaged in time and diamagnetic direction, right) .

original convective operator VE · ∇u was rewritten as ∇ · uVE , for an arbitrary
convected quantity u. Given the definition 4.7, hence without taking variations
of the magnetic field strength into account, both are exactly equivalent since
∇ ·VE = 0. We write the equations in this chapter in the conservative form
using the divergence operator to allow easier generalisation to more complex
models. It is also to be remarked that a Reynolds average for the E×B velocity is
used in the continuity equation in analogy to the treatment in current mean-field
transport models and codes, as discussed in section 2.3.

Figure 4.2 illustrates the concrete averaging procedure that is applied to
TOKAM2D data. The density field as obtained for the default isothermal
SOL TOKAM2D simulation (see appendix D.1.1 for detailed parameters) is
considered as an example. The raw data consist of the evolution of the 2D
density field in time, which feature strong turbulent fluctuations as illustrated
in the left panel of figure 4.2. The middle panel is obtained by averaging the
data in time from the onset of steady state. Since the diamagnetic y-direction
in TOKAM2D is periodic and there are no inhomogeneities in this direction
(in geometry, parameters, or sources), averaged quantities should only vary in
the radial x-direction. For this reason, the TOKAM2D data will not only be
averaged over time as indicated in the average in equation 2.57, but also over
this periodic y-direction. This then yields the right panel of figure 4.2. Hence,
the mean-field models for the turbulence developed in this chapter will be 1D,
radial models. Note that the diamagnetic averaging is not a necessary part of
the methodology, but is only used to obtain more data points for the averaging.

Figure 4.3 illustrates how the finite time average 〈u〉T = 1
T

∫ T
0 udt varies with

the averaging time T . For this default TOKAM2D case, 〈u(x, y)〉T clearly
reaches a quasi-constant value when T becomes sufficiently high. The figure
also illustrates the diamagnetic symmetry at longer averaging times. Small
variations of 〈u(x, y)〉T for different y values at the same x do persist even for
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Figure 4.3: Dependence of selected quantities on the averaging time horizon T
for a representative TOKAM2D simulation. Results are plotted for three radial
locations (x = 50ρ0 in blue line, x = 100ρ0 in red line, x = 150ρ0in yellow line)
at three diamagnetic locations (y = 1ρ0in solid line, y = 100ρ0 in dashed line,
y = 200ρ0 in dotted line).

large averaging times T though.3 This may be due to a certain hysteris in the
flow field leading to large scale flow structures remaining on long time scales.

Figure 4.4 then illustrates the variations of quantities averaged in time and over
the diamagnetic direction for varying initial conditions. TOKAM2D simulations
are initialised with random seeding for a selected set of diamagnetic modes (Ky).
Figure 4.4 shows the radial profile (at selected locations) for 25 simulations
with different seeding. These 25 simulations consist of sets of 5 simulations
with different (preselected) modes in the initial state. Results are shown for the
density divided by the average density in all simulations in figure 4.4a and for
the effective turbulent diffusion coefficient in figure 4.4b. These results seem
to indicate that the same average state is achieved independently of the initial
conditions, although noise does remain on the averages. As such, this figure
gives an idea of the noise level on the averaged data. This noise level can be very
different for different quantities, i.e. the density variations seem to lay within
1%, while the diffusion coefficient varies by over 10%. While figures 4.3 and 4.4
do not provide a formal proof of ergodicity at infinite time (see equation 2.57),
ergodicity will be assumed in this thesis based on these qualitative observation.

Because the average quantities only vary in the x direction, only the turbulent
E×B particle flux Γn,E,t,x = n′V′E,x contributes to the averaged radial total

3For the electrostatic potential, there is little variation in the radial direction as well for
this isothermal case. The reason is that the potential is driven to a value φ = ΛTe by the
exponential terms on the RHS of equations 4.1-4.2.
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Figure 4.4: Dependence of averaged TOKAM2D quantities on the initial
conditions for representative parameters. Radial profiles are shown for a
reduced number of radial points to preserve readability. Different colours
represent different modes in the initial conditions. Five different simulations
with random seeds (for the selected modes) are shown for each colour.

E×B particle flux because the mean field E×B particle flux Γn,E,m,x = n̄V̄E,x

is zero (since gradients in the y-direction of averaged quantities are zero). For
this reason the term ∇ · n̄V̄E = ∇ · Γn,m,E drops from equation 4.5. Hence,
the remainder of this chapter will look for models to close the turbulent E×B
particle flux Γn,E,t,x = n′V′E,x in mean-field transport models. Note however
that in more general (non-1D) models, solving equations 4.6 and 4.7 for n̄ and
φ̄ would allow to calculate the mean-field E×B particle transport Γn,m,E . Note
also that this requires additional closures for the nonlinear terms in the averaged
vorticity equation.

According to the hypothesis formulated in section 3.1, the turbulent E×B
particle flux is assumed to be related to the turbulence characteristics. Sections
4.3 and 4.4 will relate this closure term to the turbulent kinetic energy k⊥
and the turbulent enstrophy ζ⊥ in particular. To that end, sections 4.2.1 and
4.2.2 will first present the analytically derived transport equations for these two
quantities themselves.

4.2.1 Discussion of the kinetic energy equations

In this chapter it is assumed that the E×B drift is the dominant perpendicular
velocity, and the only one relevant for the inertia, as assumed in the basic
isothermal TOKAM2D model in equations 4.1-4.3. As a result, only the E×B
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velocity appears in the vorticity W = ∇2
⊥φ. Consequently, we also define the

(perpendicular) kinetic energy based on this E×B drift. Hence, we define the
total (Ek,⊥), mean flow (Ek,m,⊥), and turbulent (k⊥) perpendicular kinetic
energies as in equation 3.164:

Ek,⊥ ,
V2
E

2 , Ek,m,⊥ ,
Ṽ2
E

2 , n̄k⊥ ,
nV′′2E

2 . (4.8)

As before, Ek,⊥ varies rapidly in time and space as it follows the instantaneous
fluctuations, while Ek,m,⊥ and k⊥ are time averaged quantities that do not
change at these small scales. Note also that the sum of mean flow and turbulent
kinetic energy per unit volume equals the averaged total kinetic energy per
unit volume, as shown in equation 3.6. Figure 4.5 shows the radial profile of
the turbulent kinetic energy for the default isothermal TOKAM2D simulation.
For future reference, it also shows the radial profiles of the turbulent diffusion
coefficient and the turbulent enstrophy. The profiles of all three quantities can
be seen to be rather flat. Note that the profile of the diffusion coefficient remains
rather noisy, while those of k⊥ and ζ⊥ are much smoother. This complies with
the results in figure 4.4, which also showed that the diffusion coefficient is a
quantity on which significant noise tends to remain. This may be due to the
persistence of certain flow structures on long time scales and/or hysteresis in
the density profile.

Transport equations for the perpendicular kinetic energy are derived in appendix
B.2.2. This derivation is largely similar to that presented for the general case in
section 3.2.2 and the resulting equation are very similar to the E×B-only kinetic
energy equations 3.22-3.24. The differences are due to model assumptions in
TOKAM2D: only E×B convection is considered, the Boussinesq approximation
is made, Jp,∗ has been neglected, source terms have been neglected in 4.2
and specific forms of the currents J|| and J∗ have been used. Furthermore,
it is opted to keep the viscous contribution to the polarisation current Jp,Π
completely separately from the inertial part of it (Jp,0). This leads to slight
differences in the exact formulation of the equations. As in chapter 3, the density
fluctuations are rigorously taken into account in these derivations and in the
resulting equations. However, this may not bring a large benefit for the present
analysis of incompressible flow. Nonetheless, we decided not to neglect density
fluctuation a priori, for generality, and in anticipation of future extensions of
the model presented in this manuscript where they may be more important.

4In this chapter, we use the notation subscript ⊥ to denote the perpendicular kinetic
energy. In the present chapter, this includes only the E×B drift such that subscripts E could
equivalently be used. We opt to use the more general notation ⊥ since no other perpendicular
velocities come into play and there can thus be little confusion. The same comment goes for
the subscripts on the vorticity, the enstrophy and the inertial part of the polarisation current.
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Figure 4.5: Radial profiles of the turbulent diffusion coefficient (D), the turbulent
kinetic energy (k⊥) and the turbulent enstrophy (ζ⊥) for a representative
isothermal TOKAM2D simulation for the SOL.

Retaining these density fluctuations does render the derivation and the final
expressions more complicated though, but the Favre averages demonstrated in
equation 2.58 allow to reduce the number of closure terms that appear in the
mean-field equations with respect to using Reynolds averages shown in equation
2.55.

The total kinetic energy equation is found to be (see equation B.49 in appendix)

∂

∂t
nEk,⊥ +∇ · ΓEk,⊥ = gφ

∂p

∂y
− csnφ

L||
(1− exp(Λ− φ

Te
))

−νnφ∇2
⊥W + SEk,⊥,n + φVp,0 · ∇n, (4.9)

ΓEk,⊥ = nEk,⊥VE + φJp,0, (4.10)

SEk,⊥,n = Ek,⊥Sn +D0Ek,⊥∇2
⊥n− Ek,⊥

csn

L||
exp(Λ− φ

Te
), (4.11)

Jp,0 = nVp,0 = nb× DVE

Dt
. (4.12)

The terms on the LHS of this equation represent the time rate of change and
transport of Ek,⊥, with the transport terms written in conservative form. In
equation 4.9, only the E×B velocity appears in the convective transport term on
the LHS. The contributions of the parallel and diffusive flow components appear
on the RHS of the equation, as part of the source term 4.11. In more complete
models, these two flow components would naturally be moved to the transport
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term on the LHS of the equation to ensure particle and energy conservation.
The RHS of the equation groups sources and sinks of Ek,⊥. The first two are
the interchange source and loss to the sheath through divergence of the parallel
current, which will turn out to be the dominant ones. The following term is a
dissipation term due to the viscosity. The last term on the RHS is a “Boussinesq
correction term” introduced by bringing n in the divergence in n∇· (φVp). This
term would not have been present if the Boussinesq approximation had not
been made in the vorticity equation 4.2, i.e. if the corresponding term had not
been dropped in equation B.15.

In order to arrive at equations for Ek,m,⊥ and k⊥ defined in equation 3.5, the
Ek,⊥ equation 4.9 should be split in a contribution due to mean flows and a
contribution due to fluctuations. Appendix B.2.2 applies a rigorous methodology
to do so, obtaining the mean-field kinetic energy equation (see equation B.54 in
appendix) as

∂

∂t
n̄Ek,m,⊥ +∇ · ΓEk,m,⊥ = gφ̄

∂p̄

∂y
− φ̄

L||
csn(1− exp(Λ− φ

Te
))

−νφ̄ n∇2
⊥W + nV′′EV′′E : ∇ṼT

E − Ṽp,0 · n′∇φ′

+SEk,m,⊥,n + φ̄Vp,0 · ∇n, (4.13)

ΓEk,m,⊥ = n̄Ek,m,⊥ṼE + nV′′EV′′E · ṼE + φ̄J̄p,0, (4.14)

SEk,m,⊥,n = Ek,m,⊥S̄n + ṼE ·V′′ESn

+D0Ek,m,⊥∇2
⊥n̄+D0ṼE ·V′′E∇2

⊥n

−Ek,m,⊥

L||
csn exp(Λ− φ

Te
)− csnV′′E exp(Λ− φ

Te
) · ṼE

L||
. (4.15)

The parallel and diffusive particle fluxes are treated like volumetric particle
sinks as was done before for the total kinetic energy. Note that the last four
terms in SEk,m,⊥,n are still pure transport terms. Due to symmetry, the parallel
contributions to the Reynolds stresses vanish.
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The turbulent kinetic energy equation is then found (see equation B.57 in
appendix) as

∂

∂t
n̄k⊥ +∇ · Γk⊥ = gφ′

∂p′

∂y
− 1
L||

φ′(csn(1− exp(Λ− φ

Te
)))′

−νφ′(n∇2
⊥W )′ − nV′′EV′′E : ∇ṼT

E + Ṽp,0 · n′∇φ′

+Sk⊥,n + φ′(Vp,0 · ∇n)′, (4.16)

Γk⊥ = n̄k⊥ṼE + nV′′EV′′2E /2 + φ′J′p,0, (4.17)

Sk⊥,n = 1
2V′′2E Sn + D0

2 V′′2E ∇2
⊥n−

1
2L||

csnV′′2E exp(Λ− φ

Te
). (4.18)

The perpendicular transport terms (second term on LHS) and the Reynolds
stress terms (fourth on RHS) in equations 4.13 and 4.16 have the same form as
in hydrodynamic turbulence [37, 126]. The interchange, sheath loss and viscous
term (first, second and third term on the RHS) correspond to the pressure, the
sheath loss, and the viscous stress tensor term in a typical plasma momentum
equation respectively. Comparing the Ek,m,⊥ and the k⊥ equations, it can be
seen that both the Reynolds stresses and the Favre averaging term (fifth term
on RHS) exchange energy between the turbulence and the mean flow. The
latter originates from the non-commutative properties of Favre averaging and
the divergence operator (see equation B.38). Close inspection reveals that the
Favre term has a structure similar to the turbulent transport and Reynolds
energy transfer term, which is in accordance with it appearing as an energy
transfer term.

Note that no assumptions have been made on the isothermal character of the
plasma to derive equations 4.9, 4.13 and 4.16. As such, they are equally valid for
the anisothermal case that will be studied in chapter 6. In the isothermal case
considered in this chapter, the temperatures, implicitly present in p , n(Ti+Te)
and in cs =

√
Ti + Te, could be brought out of the averaging operator in a

straightforward way.

Analytical interchange relation for TOKAM2D

Section 3.2.3 derived an analytical relation for the interchange term in general,
relating it to the E×B energy flux and magnetic field strength gradients. Similar
physics is at play in the reduced TOKAM2D case. The equivalent derivation
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for this case specifically yields following expressions for the interchange drive
of the total kinetic energy GEk,⊥ , the mean-field kinetic energy GEk,m,⊥ and
turbulent kinetic energy Gk:

GEk , gφ
∂p

∂y
= gpVE,x + g

∂φp

∂y
, (4.19)

GEk,m , gφ̄
∂p̄

∂y
= 0, (4.20)

Gk , gφ′
∂p′

∂y
= gp′V ′E,x. (4.21)

Note that gradients in the y-direction of average quantities again cancel due
to symmetry. The above expressions are again valid both for the anisothermal
and the isothermal case. Following the derivations in equations 3.33-3.34 for
the general case in section 4.2.1, expression 4.21 can be rewritten as

Gk = g(T̃ n′V ′E,x + nT ′′V ′′E,x) = g(T̃Γn,E,t,x + Γpi,E,t,x + Γpe,E,t,x). (4.22)

In the 1D mean-field case considered here, the relation between the interchange
source of kinetic energy and the E×B energy flux 3pVE/2 is very clear. The
magnetic field gradients, shown to be the second ingredient of the interchange
relation in section 3.2.3, appear here in the form of the factor g. Equation 4.21
shows that the interchange drive for the turbulence can hence only be positive if
the radial E×B energy flux has the same sign as g, e.g. is outward for positive
g, which means in the direction of decreasing magnetic field strength. Equation
4.20 illustrates that the interchange drive for the mean-field kinetic energy is
zero, since there is no mean-field E×B transport of kinetic energy in 1D.

If the plasma is additionally assumed to be isothermal as it will be in this
chapter, relation 4.22 simplifies to

Gk = gTn′V ′E,x = gT Γ̄n,E,t,x. (4.23)

This relation will be retrieved exactly when processing TOKAM2D simulations
in section 4.3. Hence, it suffices to model the turbulent E×B particle flux to
model the interchange term in the k⊥ equation in the considered case of an
isothermal 1D transport model.
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4.2.2 Discussion of the enstrophy equations

As discussed in section 3.3, the enstrophy is normally defined as half the square
of the vorticity ζ = ω2/2. In TOKAM2D we will use the quantity W instead,
which is similar to the real vorticity, but not exactly equivalent, see section 2.2.3.
In the TOKAM2D case which is 2D and in which a uniform magnetic field is
assumed, the difference is only a constant factor B though. Thus, similar to
equation 3.43 we define the total, mean flow and turbulent enstrophies as

ζtot ,
W 2

2 , ζmean ,
W̃ 2

2 , n̄ζturb ,
nW ′′2

2 . (4.24)

In analogy to the definition of the turbulent kinetic energy in equation 4.8, the
total enstrophy is defined as a fluctuating quantity, while the mean-field and
turbulent enstrophies are defined as mean-field quantities. The radial profile of
ζturb for a representative TOKAM2D simulation is shown in figure 4.5.

To analytically derive transport equations for the enstrophies, a procedure
similar to section 3.3.1 is followed in appendix B.3.2. The TOKAM2D enstrophy
equations are found to be very similar to the general E×B-only enstrophy
equations 3.51-3.53. The main difference are due to the terms that have
been neglected in the general E×B-only vorticity equation 3.49 to obtain the
TOKAM2D vorticity equation 4.2 (with W = ∇2

⊥φ). In addition, models have
been filled out for the parallel and diamagnetic and viscous current divergences.

The total enstrophy equation is derived as (see equation B.66)

∂nζtot
∂t

+∇ · (nVEζtot) = −gW ∂p

∂y
+ csnW

L||
(1− exp(Λ− φ

Te
))

+νnW∇2
⊥W + ζtotSn +D0ζtot∇2

⊥n−
csnζtot
L||

exp(Λ− φ

Te
). (4.25)

In this equation, terms similar to those in the original vorticity equation and in
the Ek,⊥ equation derived earlier can again be identified. The first and second
terms on the LHS represent time change and transport of the total enstrophy
respectively. The first three terms on the RHS are interchange, sheath losses
and viscous dissipation. The last three terms are due to the sources in the
electron density equation. The last two terms might again be interpreted as
transport terms.
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The mean field and turbulent enstrophy equations are found to be (see equations
B.67 and B.68)

∂n̄ζmean
∂t

+∇ · (n̄ζmeanṼE + nW ′′V′′EW̃ ) = −gW̃ ∂p̄

∂y

+ 1
L||

W̃ csn(1− exp(Λ− φ

Te
)) + νW̃n∇2

⊥W + nW ′′V′′E · ∇W̃

+ζmeanS̄n + W̃W ′′Sn +D0ζmean∇2
⊥n̄+D0W̃W ′′∇2

⊥n

−ζmean
L||

csn exp(Λ− φ

Te
)− W̃

L||
csnW ′′ exp(Λ− φ

Te
) (4.26)

and

∂n̄ζturb
∂t

+∇ · (n̄ζturbṼE + nW ′′2V′′E
2 ) = −gW ′′ ∂p

∂y

+ 1
L||

csnW ′′(1− exp(Λ− φ

Te
)) + νnW ′′∇2

⊥W − nW ′′V
′′
E · ∇W̃

+W ′′2Sn
2 +Dn

W ′′2∇2
⊥n

2 − 1
L||

csnW ′′2

2 exp(Λ− φ

Te
). (4.27)

The interpretation of most of the terms in equations 4.26 and 4.27 is very similar
to that of the total enstrophy equation 4.25. A nontrivial term that appears is
the fourth term in the RHS of both equations. This term exchanges enstrophy
between the mean-flow and the turbulent enstrophy. The structure of this term
is similar to that of the well-known RS term in the kinetic energy equations. In
analogy to that, it could be assumed that this term in the enstrophy equation is
indeed responsible for transferring enstrophy from the large scales to the small
scales in a direct cascade. The third term in the LHS of equation 4.26 also
features transport of mean-field enstrophy by the “enstrophy Reynolds stresses”
in a way familiar from the kinetic energy equation. Lastly, the third term
on the LHS of equation 4.27 represents the turbulent convection of turbulent
enstrophy.

Note that no assumptions have been made on the isothermal character of the
plasma to derive enstrophy equations 4.25-4.27. They are thus equally valid for
the anisothermal case that will be studied in chapter 6. In the isothermal case
considered in this chapter, the temperatures, implicitly present in p and in cs,
can be brought outside of the averaging operator.
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4.3 k⊥ model

Having established the necessary background, this section will develop a first
mean-field model for the turbulent E×B particle flux in isothermal SOL plasmas.
The model presented in this section models this particle flux using a diffusion
relation, and links the diffusion coefficient to the turbulent kinetic energy k⊥.
Section 4.3.1 evaluates the turbulent kinetic energy equation derived in the
previous section using TOKAM2D data and investigates the balance of the
sources and sinks of turbulent kinetic energy. Models for the dominant closure
terms are proposed based on a regression analysis. The same regression analysis
techniques are used to identify possible models for the average turbulent particle
flux in section 4.3.2. Section 4.3.3 then compares simulation results obtained
with the newly developed model to the original TOKAM2D results and to the
model proposed in Ref. [34].

4.3.1 Characterisation of the different terms in the k⊥
equation

In this section, we investigate the balance of turbulent kinetic energy described
by equation 4.16. The different terms in this equation are evaluated for a set of
TOKAM2D simulations to identify the dominant sources and sinks. Then, we
propose closure models for the dominant terms.

Turbulent kinetic energy balance in 2D isothermal interchange turbulence

To assess the various terms in the k⊥ equation, we performed a set of 19
TOKAM2D simulations with varying input parameters g, L||, Ti, ν and D0.
The reference simulation has parameters g = 6e − 4, 1/L|| = 1e − 4, Ti = 1
and ν = 5e− 3 as in Ref. [109]. These parameters have then respectively been
varied by factors 0.5 − 2, 0.75 − 1.5, 0.5 − 2 and 0.4 − 3 of the reference set.
D0 has been set equal to ν in all simulations. In order to get a clearer view
of the effects at play, the figures in this section will distinguish the results for
the 14 TOKAM2D simulations with viscosity ν = 5e− 3 and the 5 simulations
in which the viscosity is varied. The complete set of input parameters for the
simulations is provided in appendix D.

Figure 4.6 shows the evaluation of the different terms in the k⊥ equation 4.16
for the default case with the standard parameter settings. The left plot 4.6a
shows the larger terms, while the smaller contributions are grouped as “other
terms” in that figure and plotted separately in the figure 4.6b. In these figures,
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Figure 4.6: Evaluation of terms in the TOKAM2D k⊥ equation 4.16.

the transport terms in the left hand side of equation 4.16 have been moved to
the right hand side (i.e. a minus sign was added to those terms). Figure 4.6
clearly shows that the interchange term is the dominant source of k⊥ while the
sheath loss term is the dominant sink. The viscous term provides a secondary
sink for k⊥. The other terms are much smaller than these first three. It is
particularly interesting that the perpendicular transport of k⊥ is small. Thus,
the turbulent kinetic energy balance almost reduces to a local balance. Note
also that the Reynolds stress energy transfer between the mean flow and the
turbulence is very small for the cases studied here. In our simulations, this is
the result of the sheath model constraining the electrostatic potential such that
no significant E×B flow can develop in the y-direction. We expect this term to
become important to describe turbulence suppression in cases with flow shear,
and it will likely be required when generalizing the model presented here towards
more complex setups. The Favre term (which entered the equations because
Favre averaging and the divergence operator do not commute) also exchanges
energy between turbulence and mean flow and appears to be larger than the
Reynolds stresses. The Boussinesq term is very noisy, but its average value
appears to be small. Hence, it seems to be more of a numerical artefact than a
physical term, which indicates that the Boussinesq approximation made in the
TOKAM2D equation set is self-consistent, as the corresponding correction term
is not important. The Sk⊥,n term in equation 4.16, involving the source terms
on the RHS of the TOKAM2D continuity equation, is observed to be small in
the considered part of the domain. It is largely dominated by the particle loss
to the sheath. The “subgrid” term represents the imbalance on the evaluation
of the k⊥ equation. It will be shown below that it is a numerical discretisation
error, that can be reduced through grid refinement.
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Figure 4.7: Evaluation of the different contributions to the average radial flux
of turbulent kinetic energy Γk⊥ in equation 4.17.

In figure 4.6, the perpendicular transport terms have all been plotted together.
Figure 4.7 shows the different fluxes that contribute to this transport separately,
according to equation 4.17. It is important to note that this figure plots the
fluxes of turbulent kinetic energy contributing to Γk⊥ themselves, not their
divergences that appear in equation 4.16. The divergence of the flux gives the
transport term in the k⊥ equation for all the perpendicular terms shown in
figure 4.6. This figure shows that the perpendicular transport of turbulent
kinetic energy is dominated by mean flow convection. For completeness we
remind the reader that the diffusive term and the sheath loss term in the Sk⊥,n
term in equation 4.18 can also be interpreted as transport terms of k⊥.

It has to be remarked that the imbalance on the k⊥ equation labelled subgrid
model, is not negligible as it is actually the fourth largest term in this evaluation
(see figure 4.6). Its magnitude is about 7% of the size of the interchange source
in this case. A grid and time step refinement study has been conducted to
verify that this error reduces with increasing refinement. It is also observed
that the magnitude of k⊥ increases as the grid is refined, presumably because
the dissipative effect of the discretisation error is reduced. Details of this grid
refinement study can be found in appendix E. The commonly used cell sizes and
time steps (∆x = ∆y = ρ, ∆t = 1/Ω)[109, 116] will be used in the remainder
of this chapter, despite the error that they seem to cause, because we found
no significant impact on the underlying physics interpretation or saturation
behavior of the turbulence at present. However, for a detailed analysis of the
forward and inverse turbulence cascades [34, 36, 71, 92], this implied subgrid
model might play an important role, and requires further investigation.
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Development of a model for the k⊥ equation

In this section, we search a model to close the k⊥ equation 4.16. Figure 4.6 has
shown that the interchange term, the sheath loss term and the viscous term are
the dominant ones in the energy balance for k⊥, which is also observed in other
simulations. Hence, we focus on these terms here. First the interchange source
of the turbulence will be analysed by means of a regression analysis. Then,
the sheath loss and viscous sinks will be discussed, as well as the saturation
mechanism of the turbulence.

In this chapter, we will make use of the regression analysis methodology discussed
in section 3.4.1. In order to model the output reference data O, power laws are
suggested as the expected model form:

O ≈ f(I, p) = p0

Np∏
i=1

Ipii . (4.28)

In this expression, Np is the number of input quantities present in the model,
which equals the number of parameters minus one (as one parameter is contained
in the constant in front of the product). The exponents found in these power
laws indicate whether or not a certain quantity Ii in I is important. This
allows to trim the full set of available quantities down to those relevant for the
output O. The data for the regression analysis is provided by 19 TOKAM2D
simulations with different combinations of the model parameters g, L||, Ti and
ν (see appendix D). The sample points Ii and Oi are the radial profiles of the
relevant quantities of these simulations. To this end, the TOKAM2D data of
each simulation are averaged both in time (where only data after convergence
to a statistical steady state is used) and in the y-direction (which is a symmetry
direction).

Regression analysis of the interchange term The interchange term in the k⊥
equation is crucial to the closure of this equation as it provides the main source
of the turbulence. Subsection 4.2.1 has already established the analytic relation
4.23 between the interchange term and the turbulent E×B energy flux. Figures
4.8a and 4.8b confirm that this relation is indeed retrieved in TOKAM2D.
Figure 4.8a shows the radial profile of the averaged interchange term for the
exact TOKAM2D data and for the analytical model 4.23, evaluated using
TOKAM2D data, for the reference simulation with the standard parameter
settings (see appendix D). Both lines coincide. Figure 4.8b shows a scatter plot
of the interchange term that is obtained by evaluating the flux model 4.23 using
TOKAM2D data, versus an evaluation of the exact TOKAM2D interchange
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Figure 4.8: Comparison of the TOKAM2D interchange term of k⊥ with models
4.23 and 4.29.

term. Each data point in the figure represents a single TOKAM2D simulation
(i.e. fixed parameters g, T , L||,...) that is not only averaged in time and in the
diamagnetic direction, but also in the radial direction. These types of scatter
plots give a clear image of the trends in the data across simulations. In addition,
the coefficient of determination as introduced in equation 3.57 is provided (for
all the data together as well as for the data set with constant viscosity and
the one with varying viscosity separately). Note that R2 is calculated based
on the radially averaged values plotted as data points in figure 4.8b and not
on the full data set of radial profiles for all simulations. The figure shows that
the analytical relation 4.23 also manages to perfectly capture the trends in
parameter space, as expected.

As an alternative option to model the interchange source, we analyse a model
inspired by Bufferand et al. [34], which has been discussed in section 2.3.3.
Bufferand et al. proposed to model the interchange term using a linear growth
model Gk = γn̄k⊥, where the growth rate of the interchange instability (in
dimensional form) is given in equation 2.88. Here, we adapt this model to the
isothermal TOKAM2D case and remove the threshold part of the growth rate
(which allowed to match the TOKAM2D data much better) yielding

Gk = Cg,Buffcs

√
−g ∂xn̄

n̄
n̄k⊥. (4.29)

To determine the constant CG,Buff , we perform a nonlinear regression on
the set of TOKAM2D simulations as described in appendix D.1.2. In this
case, the output quantity of interest is the interchange term O = Gk and
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I = cs
√
−gn̄∂xn̄k⊥ is chosen as the explanatory variable. This procedure leads

to the value CG,Buff ≈ 2.21, which differs significantly from the factor 1/
√

2
that would be obtained by filling out g = −2∇B/B in equation 2.88.

The results of this alternative model are also shown in figures 4.8a and 4.8b. It
can be seen from figure 4.8a that a somewhat different (steeper) radial profile of
the interchange term is obtained with model 4.29. The magnitude of the relative
error is around 10% in this case. The default TOKAM2D case used for figure
4.8a lies in the middle of the parameter range investigated in the regression
analysis. As a result, the model parameters are very well matched to this
case specifically. Simulations further away from the center of this TOKAM2D
parameter range differ more from the TOKAM2D results. This is confirmed by
figure 4.8b, which shows that model 4.29 from Ref. [34] captures the trends in
parameter space rather well and has a high R2 value, but some scatter, error,
remains. In particular, the model does not seem to capture the trend for varying
viscosities, indicated by the stars in the figure.

Sinks of k⊥ and turbulence saturation A regression according to section 3.4.1
is conducted for the sum of the main sinks, the sheath loss and viscous terms
(O = Sk + εk). The explanatory quantities I could be any set of quantities
that are expected to be related to these terms. These may include mean-field
quantities and gradients thereof (e.g. k⊥,n,∇n,..), and TOKAM2D parameters
(such as g, Ti, L||,...). The regression analysis optimises the exponents on these
explanatory variables. Quantities with lower exponents have been dropped
and exponents have been rounded to make the models more interpretable and
physically plausible. This resulted in the following model:

Sk + εk ≈ C||,k
cs√
L||

n̄k⊥ with C||,k ≈ −0.538. (4.30)

It has to be noted that the sink is found to be proportional to cs/
√
L||, whereas

it could be expected to scale as cs/L||, as that is the factor determining the
strength of the sheath loss in the original vorticity equation 4.2. It is also worth
keeping in mind that the sheath loss term Sk is physically not a pure sink
dissipating k⊥, but is due to transport to the sheath.

The performance of this regression model is assessed in figures 4.9a and 4.9b.
Figure 4.9a shows that the regression model manages to capture the radial profile
of the sink terms very well, with very little error remaining. The maximum
relative error is smaller than 4%. The scatter plot shown in figure 4.9b indicates
that the regression model also captures trends in parameter space rather well.
Note that the R2 value shown in the figure is again calculated based on the
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Figure 4.9: Comparison of TOKAM2D sinks terms for k⊥ with model 4.30.

radially averaged data points shown in the figure and not on the underlying
radial profiles. The largest errors here are found in simulations where the
viscosity was significantly varied from its default value. The viscosity was
not retained in regression model 4.30 because the regression analysis that was
conducted showed the exponent on it to be relatively low. Another reason not
to retain a scaling with the viscosity is that physically a second sink term due
to viscous dissipation would be expected, rather than a factor on the sheath loss
term. This is explored in Ref. [44] and will be discussed in section 4.4. There,
the turbulent enstrophy equation 4.27 is also modelled and used to provide a
measure for the viscous dissipation of k⊥.

It is interesting to see that a purely linear sink follows from the regression
analysis. This is different from the quadratic sink that was proposed in the
model in Ref. [34]. In combination with the linear source growth rate model for
the interchange source model, a quadratic sink then leads to the k⊥ model shown
in equation 2.87 discussed in section 2.3.3, and repeated below for convenience:

∂n̄k⊥
∂t

+∇ · (Γk⊥) = γn̄k⊥ −∆ωn̄k2
⊥. (4.31)

In such a model, the linear drive of the turbulence causes the turbulent kinetic
energy to increase initially. As k⊥ increases, the nonlinear sink increases faster
than the drive term and finally saturates the turbulence. Hence, the absence of
any nonlinear sinks that is observed in TOKAM2D implies that the saturation
mechanism is also different.
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Combining the analytical relation 4.23 for the interchange source and regression
relation 4.30 for the sink, we construct following model for the k⊥ equation:

∂n̄k⊥
∂t

+∇ · (Γk⊥) = gTΓn,t,E − C||,k
cs√
L||

n̄k⊥. (4.32)

If steady state is assumed and the transport terms are neglected because of
the quasi-local balance that is observed, the model reduces to an algebraic
expression:

n̄k⊥ =
g
√
L||T

C||,kcs
Γn,t,E . (4.33)

The idea behind this model is the following: as soon as a turbulent E×B
particle flux originates (in the direction of decreasing magnetic field strength,
indicated by g), this leads to an increase in the turbulent kinetic energy (through
the interchange source term), which in turn causes an increase of the particle
flux (see section 4.3.2) and a further build-up of the turbulence. Finally, this
is saturated by a sink that is proportional to the turbulent kinetic energy
(effectively modelling the parallel transport of k⊥ to the sheath) together with
a reduction of the gradients driving the particle flux (see section 4.3.2).

Note that the presented k⊥ model now features a very simple model for the
sink of turbulent kinetic energy, related to the parallel sheath loss term. In
this model this term effectively represents −φ′∇ · J′||, which can be rewritten
as −∇ · φ′J′|| + J′|| · ∇||φ′ (see Ref. [143] and equation 3.40 discussed in section
3.2.5). The first term can be interpreted as a transport term of k⊥ in the parallel
direction, while the second term is a real local source/sink of k⊥ transferring
energy with the parallel magnetic energy (see section 3.2.5). Because of the
flute approximation made in TOKAM2D to neglect parallel gradients and
fluctuations, only the transport contribution −∇ · φ′J′|| remains. This is also
consistent with the ad-hoc model for the parallel direction in this 2D setup
which aims to represent the flux out of the considered flux tube. Hence, it is
the parallel transport term that constitutes the linear sink of k⊥ that is found
here for the simple sheath model used in equations 4.1 and 4.2. The term “sink”
may not be completely appropriate here though as this sheath loss term is due
to transport, redistribution, of k⊥ rather than dissipation. Also, we would like
to stress that the real parallel dynamics are likely to be more complicated than
this simple linear sink. These parallel dynamics and the distinction between
both parts of the parallel current term will be investigated in chapter 7, where
3D cases are studied.
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Nonetheless does the analysis presented here indicate that the parallel direction
suffices as a linear sink of the turbulence and that no nonlinear sinks (due to
self-saturation) are required to saturate the turbulence in the isothermal SOL
case considered here. In more complex cases different saturation mechanisms
might come into play though. For example, flow shear is believed to lead to
turbulence quenching and may lead to zonal flow and transport barrier formation
[14, 58, 76, 93, 108, 113]. This phenomenon is not observed in this work as the
electrostatic potential is very strongly constrained by the sheath potential such
that no significant E×B flow in the diamagnetic y-direction and thus no flow
shear can develop. Note that in order to incorporate more complex physical
phenomena, more complex models for the sink could easily be implemented,
e.g. a second sink term to model the viscous dissipation separately, or any
nonlinear terms that would be found to be important could be added in the
future. It might also be envisaged to include a model for the Reynolds stresses
transferring energy with zonal flow in the future. Nonetheless, in section 4.3.3
it will be shown that the present model already explains the TOKAM2D results
well.

4.3.2 Particle transport model

In this section, models for the average radial turbulent E×B particle flux
Γn,t,E = n′V′E are developed. In Section 4.2, we have already shown that this
flux dominates the radial particle transport in the considered 1D case. Moreover,
the radial mean-flow convection, which has been shown to be the dominant
perpendicular transport term in the k⊥ equation, is also determined by this
particle flux.

The regression methodology discussed in section 3.4.1 is applied to find a model
for Γn,t,E . The input quantities I of the regression analysis are chosen as any set
of quantities that are expected to be related to the particle transport (including
TOKAM2D parameters, mean-field properties and gradients thereof). This
yields

Γn,t,E = −CD
√
k⊥∇⊥n̄ with CD ≈ 23.9. (4.34)

It has to be noted that, also here, quantities with lower exponents have
been dropped and exponents have been rounded to make the models more
interpretable and physically viable.

Figures 4.10a and 4.10b compare regression model 4.34, evaluated using
TOKAM2D data, to the particle flux obtained from TOKAM2D directly. Figure
4.10a shows that the model captures the radial profile of the particle flux in
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Figure 4.10: Comparison of TOKAM2D particle flux models 4.34 and 4.35.

general, however, the model profile is slightly too steep. The maximum relative
error on the particle flux is 25.1%. Figure 4.10b shows that regression model 4.34
manages to capture the main trends in TOKAM2D parameter space, however,
some trends seem not to be fully captured by this model. The clearest one is
again the one with variations in viscosity. This time, the scaling with varying
sheath loss parameter L|| does not seem to be fully captured either though.
Correction factors for this have been dropped in the regression analysis as
they seemed to be of secondary importance. The introduction of the turbulent
enstrophy in the diffusion coefficient has been shown to significantly reduce
these errors. This will be discussed in section 4.4. Note that the R2 values
shown in figure 4.10b are again calculated based on the radially averaged data
points shown in the figure and not on the radial profiles.

The diffusive model 4.34 for the average radial particle flux is very interesting
in the sense that it proves to be rather robust, using a very limited number of
parameters. This model indicates that the initial hypothesis that the turbulent
kinetic energy k⊥ plays an important role in the particle transport holds. In
its dimensionless form D = CD

√
k⊥, the diffusion coefficient in this model only

depends on characteristics of the turbulence. It could be argued that these are
the only parameters the diffusion coefficient should depend on as the turbulence
is the driver of the particle transport and no macroscopic, geometric parameters
such as g or L|| should be involved. Recalling equation 3.5, the scaling with√
k⊥ is very natural because it provides a direct measure of the local strength

of the fluctuating E×B velocity.

Also, this square-root-scaling seems quite intuitive and is also found in
hydrodynamic turbulence modelling. In RANS models for hydrodynamic
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turbulence, the turbulent transport of a passive scalar is often modelled using
the gradient diffusion hypothesis, see section 2.1. The transport coefficient
therein is commonly related to the turbulent viscosity, which is assumed to
scale as lm

√
k in one-equation k-models, where lm is a suitable length scale, see

equation 2.23. Making the diffusion coefficient in equation 4.34 dimensional by
removing the TOKAM2D normalisation, it takes form, D ∼ ρ0

√
k⊥, which is

clearly analogous to the hydrodynamic turbulence scaling.

Furthermore, this scaling can be interpreted as a refinement of the Bohm scaling
2.81. The Bohm scaling in dimensional units may equivalently be written as
DB ∼ ρTecs,Te, where ρTe = cs,Te/Ω and cs,Te =

√
Te/m are the ion gyro-

radius and the sound speed based on the electron temperature. Hence, the
D ∼ ρ0

√
k⊥ scaling basically replaces the generic electron thermal velocity in

the Bohm scaling with a velocity characterising the turbulent E×B fluctuations
driving the transport. Note also that the TOKAM2D normalisation of the
Bohm scaling leads to D ∼ Te (under the uniform magnetic field in TOKAM2D),
which is exactly constant in the isothermal case where Te = 1 in all simulations
that are considered in this chapter. This can be seen not to be in accordance
with the results shown in figure 4.10b. The Bohm model is not explicitly shown
this figure, since it would just amount to all data points laying at the average
value for the whole set of simulations. By construction of the R2 value (see
equation 3.57), this leads to a value of zero.

The gyro-Bohm scaling 2.82 can be translated to TOKAM2D units as D ∼
−T 3/2

e ∂x ln n̄ when the density decay length is taken as the perpendicular scale
length. Alternatively, when the minor radius a is taken as the perpendicular
scale length, it could be assumed that this is proportional to the major radius,
i.e. a constant aspect ratio could be assumed such that a ∼ R. Then it could
be assumed that ρ/a ∼ ρ/R ∼ g, such that D ∼ T 3/2

e g. The R2 values for these
models have been calculated to be −4.33 and 0.18 respectively. Hence, the k⊥
scaling provides an improvement over both variations of the gyro-Bohm scaling
for the TOKAM2D data set considered here.

The transport coefficient proposed by Bufferand et al. [34], shown in equation
2.86, provides another alternative model for this diffusion coefficient. This
model is adapted to the 2D interchange turbulence model 4.1-4.2 by assuming
a constant aspect ratio, such that the minor radius is proportional to the major
radius, and thus inversely proportional to the magnetic field curvature a ∼ 1/g.
Thus,

Γn,t,E = −CD,Buff
k⊥
csg
∇⊥n̄. (4.35)

The regression methodology presented in section 3.4.1 (with O = Γn,t,E and
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I = k⊥∇⊥n̄/(csg)) yields CD,Buff ≈ 0.507. A one-to-one comparison of this
constant with Ref. [34], who used a proportionality constant of 0.67 in equation
2.86, is somewhat difficult because of the use of g ∼ 1/R in equation 4.35 and
the minor radius a in the original model 2.86. Trying to correct for this using
R = 2.4m and a = 0.72m for the Tore Supra tokamak from the case ran in Ref.
[34], we would find CD,Buff ≈ 0.67a/R = 0.201.

Figure 4.10a shows that the error on the radial profile of the particle flux is
slightly more pronounced for the model adapted from Ref. [34]. The maximum
relative error is 35.7%. Figure 4.10b indicates that model 4.35 also performs
less good in parameter space.

While diffusion models for the radial particle transport are routinely used in
mean-field modelling and despite the merits of the diffusive model presented
here, the underlying nature of the particle transport in the plasma edge is not
diffusive. Radially propagating blob-filaments would rather lead to convective
transport [61, 76, 78, 101, 106, 125]. As discussed in section 3.1, a well-chosen
diffusion model might however give a reasonable approximation of the long time
scale average particle flux caused by all the instantaneous filaments moving
outward and holes moving inward in a seemingly random way. In this respect,
it is worthwhile to note that the main structure and interpretation of our model
still hold in the case of alternative (e.g. convective) transport assumptions:
the specific closure for the particle flux enters in the continuity equation, the
interchange source of k⊥ and the (perpendicular) transport of k⊥, leading to a
self-saturating system.

4.3.3 Complete 1D transport model and implementation in
DivOpt

The models developed above are combined to obtain a closed system of equations
for the average density. This complete model is implemented in a 1D mean-field
finite volume code that can simulate the average turbulent transport, whereas
all the previous sections have only post-processed TOKAM2D data. In this
section, the results of simulations with this model are compared to the exact
TOKAM2D results, and to our interpretation of the model proposed in Ref.
[34].

Mean-field transport model for 2D isothermal interchange turbulence

Combining k⊥ model 4.32 developed in section 4.3.1 with the particle flux model
4.34 that depends on k⊥ found in section 4.3.2, the radial transport in the
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averaged continuity equation 4.5 can be closed. The resulting model equations
proposed here are repeated below in their dimensionless form:

∂n̄

∂t
+∇ · (n̄V̄E + Γn,t,E −D0∇⊥n̄) = S̄n −

csn̄

L||
, (4.36)

Γn,t,E = −CD
√
k⊥∇⊥n̄ = −D∇⊥n̄, (4.37)

∂n̄k⊥
∂t

+∇ · Γk⊥ = gTΓn,t,E − C||,k
cs√
L||

n̄k⊥, (4.38)

Γk⊥ = k⊥Γn,E − CDkn̄D∇k⊥, (4.39)

CD = 23.9, C||,k = 0.561, CDk = 0.79. (4.40)

Some additional assumptions have been made in the model presented above.
First, a detailed study of isothermal TOKAM2D data in Ref. [43] revealed
that the sheath loss term in the continuity equation 4.36 can be approximately
modelled as csn̄/L||. Moreover, an ad-hoc diffusive term has been added to
the turbulent kinetic energy flux as a proxy for the (small) turbulent transport
contribution in equation 4.39. The constant CDk for the latter has been
determined by means of a regression analysis. This last model is quite crude
and might need to be improved in the future. It also has to be noted that the
value of the k⊥ sink parameter C||,k has been determined from a regression
analysis for Gk ≈ C||,kcsn̄k⊥/

√
L|| and not as the value found in equation 4.30.

In this way, all sinks are collected in this single sink and assumed to exactly
balance the source of the turbulence locally (which is approximately observed,
quasi-local balances). This allows to implicitly treat the effect of all the minor
terms in the k⊥ balance without having to model all of them.

In the model presented here, the turbulence level and the transport are
determined by the interaction between the source of the turbulence and the
mean flow gradients. The source of the turbulence depends on the particle flux
(energy), which in turn depends both on k⊥ and the mean flow density gradient,
where the density gradient depends on the magnitude of the turbulent diffusion
coefficient that is determined by k⊥. Parallel sheath dynamics constitute the
main sink mechanism of the turbulence.

This behaviour is compatible with the gradient removal mechanism for
turbulence saturation. The idea behind this is that pressure or density gradients
determine the growth rate of the turbulence (see for example equations 2.88 and
4.29). Due to the turbulence that develops, the mean flow pressure and density
gradients are relaxed, leading to a reduced growth rate of the turbulence or
even to its removal. This leads to intermittent behaviour, where gradients are
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first built up, until the instability threshold is reached and causes a sudden,
large outburst due to turbulent transport [114, 89, 133]. Arguably, the model
presented here contains the averaged result of these dynamics, which lead to a
shift of the equilibrium due to the interaction between the mean-flow gradients,
the resulting turbulence, and the transport caused by the turbulence. Note that
the sheath losses also play an important role in the model presented here. For
the simple sheath model in equations 4.1 and 4.2, the corresponding sheath loss
term for k⊥ constitutes a linear sink of k⊥. While the parallel dynamics are
likely to be more complicated than the simple models used here, these findings
do indicate that the parallel direction suffices as a sink of the turbulence and
that no nonlinear sinks (due to self-saturation) are required to saturate the
turbulence. This is in accordance with Refs. [89, 133], which also suggest that
parallel losses to the wall are the main removal mechanism for the turbulence in
the gradient removal regime. More analysis of the gradient removal mechanism,
and its link with the model presented here is required though. It could be
especially illuminating to investigate time series and transient behaviour in
TOKAM2D.

It is important to emphasise that this model is only strictly valid for the
isothermal, interchange-dominated, SOL case that we considered. In this case,
the electrostatic potential is to a large degree set by the sheath potential. If the
electrostatic potential has more freedom to develop, strong E×B flows tend to
evolve in the y-direction which are sheared in the x-direction. This can lead to a
large Reynolds stress sink of k⊥ (−nV′′E,xV′′E,y : ∇xṼT

E,y in equation 4.16), and
thus to an alternative saturation mechanism for the turbulence [58, 76, 108, 93].
These interactions are not observed in the present case, but certainly not ruled
out in general. Section 5.1 will provide a first step towards incorporating the
effects of flow shear in the k⊥ model by investigating the balance of k⊥ and
the effect of flow shear on the turbulent transport relation 4.34 for TOKAM2D
cases with a core region added.

The new model 4.36-4.40 introduced here can be compared to the model proposed
by Bufferand et al. [34], which has been adapted to the TOKAM2D case as
summarised here:
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∂n̄

∂t
+∇ · (n̄V̄E + Γn,t,E −D0∇⊥n̄) = S̄n −

csn̄

L||
, (4.41)

Γn,t,E = −CD,Buff
k⊥
mcsg

∇⊥n̄ = −DBuff∇⊥n̄, (4.42)

∂n̄k⊥
∂t

+∇ · Γk⊥ = Cg,Buffcs

√
−g ∂xn̄

n̄
n̄k⊥ − Csink,Buff n̄k2

⊥, (4.43)

Γ̄k⊥ = k⊥Γn,E − CDkn̄DBuff∇k⊥, (4.44)

CD,Buff = 0.507, Cg,Buff = 2.21, Csink,Buff = 5.84. (4.45)

In these equations, the source term consists of the interchange term found in
expression 4.29 and a sink term quadratic in k⊥ that saturates the linear source
is assumed to exist. As a crude approximation, this sink is assumed not to
scale with any TOKAM2D parameters, i.e. sinkk ∼ n̄k2

⊥ only. Note however
that recent studies [13, 11, 12] do include a dependence on machine parameters
in this sink term in the model by Bufferand et al.. A regression analysis has
been conducted to determine the corresponding constant Csink,Buff such that
equation CG,Buff cs

Csink,Buff

√
−g∂x ln n̄ matches the TOKAM2D k⊥ results across all

simulations as good as possible. Note however that this sink term is ad-hoc
as no large nonlinear sink terms have been identified in TOKAM2D in this
analysis. Comparing with the value of 10−2s/m2 reported in Ref. [34] is again
not straightforward, because of the normalisation that is involved. If we assume
a reference temperature of 50eV (temperature at the LCFS used in Ref. [34])
and a magnetic field of 2T , we would find the coefficient Csink,Buff ≈ 0.25.

Although the saturation mechanisms of the new k⊥ model and the model by
Bufferand et al. seem very different at first sight, some remarkable similarities
can be observed. While the sink of k⊥ in the new model 4.36-4.40 scales linearly
with k⊥, this sink is still of higher order than the source of k⊥. The latter
scales with the particle flux which scales with

√
k⊥ and the density gradient.

This is not so different from the behaviour in the Bufferand model 4.41-4.45,
where the scaling of the sink in k⊥ is also the square of the scaling of the source
in k⊥. Moreover, there as well, the source is also a function of the density
gradient. Nonetheless, the detailed scalings predicted by both models differ, as
can be seen in the steady state local balance equivalents of both k⊥ models.
For the new model, combining the diffusion coefficient relation 4.37 with the
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k⊥ equation 4.38 in which we neglect the LHS yields

D = C2
D

C||,k

g√
L||

∂x ln n̄, k⊥ = C2
D

C2
||,k

g2

L||
(∂x ln n̄)2. (4.46)

Analogously, combining the particle diffusion coefficient relation 4.42 with k⊥
equation 4.43 without LHS for the Bufferand model result in

D = CD,BuffCg,Buff
Csink,Buff

1
√
g

√
∂x ln n̄, k⊥ = Cg,Buff

Csink,Buff
cs
√
g
√
∂x ln n̄. (4.47)

Assessment of mean-field model performance

The mean-field transport model presented above has been implemented in
DivOpt [52, 55], an in-house 2D finite volume code that is used for testing
purposes. The geometry that is simulated consists of the central part of the
TOKAM2D domain which has earlier been used in the post processing, see
figure 4.1. Zero flux boundary conditions are applied in the diamagnetic
direction for both the continuity equation and the k⊥ equation to arrive at the
mean-field equivalent of the fully-turbulent TOKAM2D setup with periodic
boundary conditions on the diamagnetic boundaries. These boundary conditions
lead to uniform profiles in the diamagnetic direction and thus to a mean-field
solution which only varies in the radial direction. On the radial boundaries,
flux boundary conditions that exactly match the TOKAM2D data are applied
for both equations. The mean-field particle flux n̄V̄E is included in equation
4.36 for generality, but is exactly zero in the considered 1D case, as discussed
earlier. Likewise, the average particle source S̄n has been included in equation
4.36 for generality, but no particle source is present in the forward mean-field
simulations reported in this section (since the region with a significant particle
source in the TOKAM2D computational domain has been discarded in the
post processing and as such also in the mean-field case). The simulations are
run on an orthogonal grid with 48 cells in the radial direction and 4 cells in
the diamagnetic direction (which is arbitrary due to symmetry). The global
reference values used for making the TOKAM2D variables dimensional are
n0 = 1019m−3, T0 = 50eV , B0 = 1.725T and m is the mass of deuterium.

Remark that we leave the development of boundary conditions for the k⊥
equation for further research. Note that the k⊥ PDE model equations 4.38
and 4.43 could be simplified to algebraic k⊥ equations by making a steady-
state-quasi-local-balance-approximation to neglect time rate of change and
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the transport of k⊥ in the LHS. This removes the need to provide boundary
conditions for the k⊥ equation, and has been shown to provide good results for
these 1D mean-field cases. However, attention is focused on the PDE versions
of the k⊥ equations as it is expected that transport terms will become more
important in realistic geometries such that the balance of k⊥ will be non-local.

Figure 4.11 shows the resulting profiles for a number of quantities of interest for
two DivOpt simulations, compared to the exact TOKAM2D results (referred to
as “T2D”). The two simulations that are compared are one with the transport
model 4.36-4.40 derived from term by term regression of the 19 TOKAM2D
simulations (referred to as “KUL”), and one with the tuned Bufferand model
4.41-4.45 (referred to as “Buff”). The results shown here are the ones for the
default TOKAM2D case. Figures 4.11a and 4.11b show that both models are
capable of predicting the density and the particle flux quite well. The “secondary
quantities” being the diffusion coefficient and the turbulent kinetic energy are
also approximated relatively well by the different models, as can be seen in
figures 4.11c and 4.11d. However, the error on these quantities is significantly
higher and the difference between the two models is much more pronounced.

The new model proposed in this section can be seen to capture the trend in
the TOKAM2D k⊥ profile very well, while the steady state Bufferand profile
seems to be too flat. However, the trend in the diffusion coefficient is more
similar for both models, because of the different scaling with k⊥ (D ∼

√
k⊥

and DBuff ∼ k⊥ respectively). From these results we conclude that the newly
developed model correctly predicts k⊥, as well as its relation to the diffusion
coefficient. It is hoped that including these physics will provide a good basis to
further elaborate the presented model to more complex plasma flow situations.
On the other hand, the model proposed by Bufferand et al. appears to get the
trend in the diffusion coefficient right, but uses an artificial quantity to predict
it, which is more likely not to work anymore in more complex flow cases.

Figures 4.11e-4.11g show the source, the sink and the flux of k⊥. These results
indicate that both models manage to realistically predict the profiles of the
terms in the k⊥ equation. Note that the TOKAM2D reference data used for
the sink in figure 4.11f is that of the opposite of the interchange term, −Gk, as
that was also the data used to fit the total sink of k⊥ in equation 4.38.

It is worth remarking that the model parameters used in the above simulations
are those tuned on the global TOKAM2D simulation set, not to this single
TOKAM2D simulation in particular. However, the model parameters are very
well matched to this default TOKAM2D case since it lies in the middle of
the parameter range investigated in the regression analyses (see appendix D).
Figure 4.12 on the other hand gives an idea of the kind of errors that can
be expected with varying TOKAM2D parameters. It shows a scatter plot of
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Figure 4.11: Comparison of radial profiles of a representative TOKAM2D
simulation to forward mean-field DivOpt simulations with the KUL 4.36-4.40
and Bufferand 4.41-4.45 k⊥ models.
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the algebraic steady state local balance diffusion coefficients in equations 4.46
and 4.47. These expressions are evaluated using TOKAM2D data, and plotted
versus the exact TOKAM2D diffusion coefficient. Each circle in figure 4.12
represents a single TOKAM2D simulation (i.e. fixed TOKAM2D parameters g,
T , L||,...) that is averaged in time and in the x and y directions. Thus, this
figure is constructed by post-processing TOKAM2D data, no forward DivOpt
simulations have been run to make it. The R2 values shown in figure 4.12 are
again calculated based on the radially averaged data points shown in the figure.
Note that if they would be calculated using the radial profiles instead, the R2

values would be significantly lower because the evaluation of the radial profile
introduces a large amount of noise on the model data. As the radial trend in
the diffusion coefficient profile is rather weak (see blue dotted line in figure
4.11c), the R2 values would be dominated by this noise on the profile. Similar
noise induced effects on the R2 value were also observed in figure 4.10b. For
the data in figures 4.8b and 4.9b which have stronger radial profiles, it may be
beneficial to calculate the R2 on the radial profiles, but this has not been done
for the sake of comparison between the different models.

Note that figures with scatter plots of the diffusion coefficient, as figure 4.12,
will be used throughout the text to assess the accuracy of the models across
parameter space. The figures focus on the turbulent diffusion coefficient, since
it most directly quantifies the strength of the turbulent transport which is
ultimately of practical interest. If this quantity is predicted correctly, the mean-
field turbulent particle flux is modelled correctly. Similarly, for the anisothermal
cases that will be studied later, a correct prediction of the turbulent transport
coefficients D, χi and χe (see equations 3.1-3.2)) implies that the mean-field
turbulent particle and heat fluxes are modelled correctly. Often, the decay
lengths of the density, temperature, pressure and the parallel heat flux profiles
are considered as engineering quantities since they determine to a large extend
the peakedness of the heat load deposited on the target plates. These decay
lengths are basically determined by 1) the turbulent transport coefficients, 2)
the parallel transport dynamics, and 3) mean-flow drifts. Since the parallel
transport dynamics in the TOKAM2D are only modelled by artificial sink terms
and mean-field drifts do not contribute to transport in TOKAM2D, it seems
more sensible to stick purely to the turbulent transport coefficients.

Figure 4.12 seems to indicate that the newly proposed model manages to
capture the scalings of the particle transport in TOKAM2D parameter space
relatively well, although some scatter, error, does remain. Bufferand’s model
on the other hand appears to miss the trends in parameter space. Including a
scaling with TOKAM2D parameters in the sink for k⊥ in equations 4.43, as
proposed in Refs. [11, 13, 12], might (partially) remedy this discrepancy. Upon
running forward DivOpt simulations for a number of extreme values in figure
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Figure 4.12: Scatter plot of the exact TOKAM2D diffusion coefficient versus
model prediction for it. Newly proposed model 4.46 (blue markers), Bufferand
model 4.47 (red markers) and gyro-Bohm scaling D ∼ gT 3/2

e (green markers).
Each marker indicates the radial average of a single simulation in a database of
TOKAM2D simulations.

4.12, the newly developed model managed to still capture the trends in the
profiles, although larger errors than those in figures 4.11a-4.11g were observed
as expected, confirming the results of figure 4.12.

It is also interesting to come back to the comparison between the k⊥ model
and the gyro-Bohm scaling 2.82. Some interesting parallels can be observed
between the local-balance steady-state equivalent of the

√
k⊥ model D ∼

−g
√
L||cs∂x ln n̄ and the gyro-Bohm scaling which could be translated to

TOKAM2D units as D ∼ −T 3/2
e ∂x ln n̄ or as D ∼ T

3/2
e g. The R2 depends

on the assumptions of the appropriate perpendicular length scale (see section
4.3.2). Hence, the k⊥ model includes adjustments with respect to either of the
gyro-Bohm scalings, in terms of the temperatures, L|| and g or the perpendicular
length scale. The latter form of the gyro-Bohm scaling has also been included
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in figure 4.12. The general trend is captured less accurately by the gyro-Bohm
model than by the k⊥ model. However, it performs less badly for viscosity
variations than the k⊥ model. The first form of the gyro-Bohm scaling does
not capture the trend at all and is not shown.

4.4 k⊥ − ζ⊥ model

While the k⊥ model discussed in the previous section managed to fit turbulence
reference data rather well over a range of TOKAM2D parameters, it was unable
to capture some trends, especially those with varying viscosity. This may not be
surprising as the viscous sink in the k⊥ equation has been crudely aggregated
in the single sink term which predominantly models the sheath loss of k⊥.
Indeed, the different sinks of the turbulent kinetic energy were lumped together
in one contribution. In this section, based on Ref. [44], we aim to extend
this model by including an equation for the turbulent enstrophy, as there are
convincing physical grounds to expect the enstrophy to provide additional
information about the turbulent transport in the plasma edge. Important
arguments for this are that viscous dissipation of kinetic energy is closely related
to the enstrophy and that enstrophy is a conserved scalar (like kinetic energy)
in hydrodynamic, inviscid, 2D turbulence which has some similarities with
the plasma edge turbulence considered here. Furthermore, it is concentrated
on smaller length scales than the kinetic energy, hence providing additional
information [4, 71, 169]. See section 3.1 for a more elaborate discussion of this.
Note that in the remainder of this chapter, the symbol ζ⊥ will be used to denote
the turbulent enstrophy that was denoted with ζturb before since the mean-field
and total enstrophy will not be considered here.

This section is structured as follows. section 4.4.1 shows that the turbulent
enstrophy (ζ⊥) can be combined with the turbulent kinetic energy to obtain
an improved model for the turbulent particle diffusion coefficient. In addition,
the turbulent enstrophy equation is used to evaluate the enstrophy balance
using TOKAM2D reference data. Section 4.4.2 then develops a closed transport
model for the combined k⊥ − ζ⊥ system and the average particle transport.
Section 4.4.3 shows results obtained with the new model and compares them to
the one-equation k⊥ model.

4.4.1 Diffusion coefficient model and enstrophy balance

From the turbulent kinetic energy and the turbulent enstrophy, a characteristic
time and length scale can be constructed. Using such dimensional combinations,
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the turbulent diffusion coefficient is expected to scale as D ∼ k⊥/
√
ζ⊥. Note

that this relation is the same in dimensional units and in dimensionless form.
This is to be compared to the one-equation k⊥ model that could only construct
a velocity scale for the turbulence as only the turbulent kinetic energy was
available. As a result, no dimensional scaling could be constructed for the
diffusion coefficient with turbulent characteristics only. Instead, the scaling
D ∼ ρ0

√
k⊥ in dimensional units (see equation 4.34 and the explanation

thereafter in section 4.3.2) is found. The global reference quantity ρ0 seems
somewhat odd in this expression, as a k(−ε) model implies that turbulent
transport can be described by local turbulent characteristics and does not
depend on global reference quantities such as ρ0.

Figure 4.13 compares both diffusive relations. The diffusion coefficient in this
figure is calculated from the TOKAM2D data directly, while the models shown
are estimates for the diffusion coefficient obtained using the new model proposed
here and the k⊥ only model from equation 4.34. Both diffusive models are
evaluated using the exact TOKAM2D values for k⊥ and ζ⊥. On the profile
level (figure 4.13a), the differences between the k⊥ and the k⊥ − ζ⊥ model are
insignificant. Both k⊥ and ζ⊥ are quantifiers of the turbulence intensity (I)
with very similar trends in the radial profile. As a result, the radial profile of
both diffusion models scales as D ∼

√
I.

The scatter plot in figure 4.13b illustrates trends across parameter space on
the other hand. Each data point in the figure again represents a TOKAM2D
simulation for a certain set of parameters of which the data are averaged in time
and in the x- and y-directions. Results are shown for 18 simulations in which g,
L||, ν and Ti are varied, see appendix D.1.3 for the exact simulation parameters.
While the set of TOKAM2D simulations used in this section partly coincides
with the simulations used in section 4.3, it is not identical. The horizontal axis
in figure 4.13b represents the diffusion coefficient, while the vertical axis shows
estimates for the diffusion coefficient obtained using the k⊥ and the k⊥ − ζ⊥
models. While some scatter around the perfect fit line still remains, it is clear
that the k⊥-ζ⊥ estimate for the diffusion coefficient performs significantly better
than the k⊥ only estimate. This is confirmed by the R2 values for the radially
averaged data shown in table 4.1. In particular, the new model manages to
capture trends with varying viscosity much better, confirming the hypothesis
that the enstrophy is related to the viscous dissipation. It is to be remarked that
the simulation set used in this section contains significantly more variations in
the viscosity than the equation set used in section 4.3 such that this parameter
becomes more important here. Note also that the parameter values used for
the k⊥ model are still those tuned for the initial data set of section 4.3.

Since the previous has clearly shown the turbulent enstrophy to be an interesting
quantity for modelling the average particle flux, which is ultimately the term
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Figure 4.13: Comparison of k⊥ − ζ⊥ and k⊥ diffusion models 4.34 and 4.49.

Table 4.1: Results of R2 goodness of fit statistic of the radially averaged profiles
for all terms in the k⊥-only and k⊥ − ζ⊥ model. The table shows the R2 values
for the complete data set, for the subset with all simulations at ν = 5× 10−3

and the subset in which ν is varied.

Model term R2 for all cases R2 for ν = 5× 10−3 R2 for ν 6= 5× 10−3

k⊥ D = CD
√
k⊥ −0.20 0.65 −1.07

Sk + εk = −C||,k cS√
L||
n̄k⊥ 0.74 0.99 0.54

k⊥ − ζ⊥ D = CD
k⊥√
ζ⊥

0.96 0.98 0.94

Gζ = gTΓn,t,E ζ⊥
k⊥

0.96 0.96 0.94
Sk = −C||,k cs

L||T 0.75
e

n̄k2
⊥

ζ⊥
0.87 0.95 0.80

εk = −Cν,kνn̄ζ⊥ 1.00 1.00 0.99
Sζ = −C||,ζ cs

L||Te
n̄k⊥ 0.99 1.00 0.97

εζ = −Cν,ζνn̄ ζ
2
⊥
k⊥

0.77 0.77 0.67

that needs to be closed, it is worthwhile to derive a model for the turbulent
enstrophy. To this end, we start by evaluating the turbulent enstrophy equation
4.27 using TOKAM2D data. A balance of the different terms in this equation
is shown in figure 4.14. This balance can be compared with the balance of the
k⊥ equation 4.16 in figure 4.6. Figure 4.14a clearly shows that the source of
turbulent enstrophy, like that of turbulent kinetic energy, is dominated by the
interchange term. However, sheath losses, viscosity and the subgrid dissipation
seem to contribute almost equally to enstrophy losses, while the sink of the
turbulent kinetic energy is dominated by the sheath losses only. Thus, these
balances show that, as expected, k⊥ and ζ⊥ have different characteristics. Figure
4.14b then plots separately the smaller contributions that where grouped as
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Figure 4.14: Evaluation of terms in the TOKAM2D ζ⊥ equation 4.27.

“other terms” in figure 4.14a. In these figures, the transport terms in the left
hand side of equation 4.27 have been moved to the right hand side (i.e. a minus
sign was added to those terms).

The subgrid scale term is a numerical imbalance in the evaluation of the
different terms in the corresponding equations, and is likely caused by numerical
dissipation as a result of the second order WENO schemes [97, 110] that are
used in TOKAM2D [46]. A grid refinement study confirmed the numerical
nature of this term: relative errors on both the k⊥ and ζ⊥ equations decrease
as the grid and the time step are refined. Simultaneously, k⊥ and ζ⊥ increase,
as their respective sinks decrease in magnitude. The larger error on the ζ⊥
equation compared to the one on the k⊥ equation is most likely a result of
the enstrophy being concentrated on the smaller scales which suffer more from
the discretization, while the kinetic energy is more strongly present on larger
scales. This difference in length scale is the reason why viscous dissipation is
much more important for the ζ⊥ than it is for k⊥. These explanations are in
accordance with the understanding of hydrodynamic 2D turbulence and its
dual cascade picture [71, 169, 4]. A detailed description of the grid refinement
analysis and its results can be found in appendix E.

4.4.2 Two-equation k⊥ − ζ⊥ model

This section proposes a model for the enstrophy equation derived in the previous
section and integrates it in the mean-field transport model, together with the
improved diffusive relation found in the previous section. The resulting two-
equation k⊥-ζ⊥ transport model proposed in this section is then
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∂n̄

∂t
+∇ · (n̄V̄E + Γn,t,E −D0∇⊥n̄) = S̄n −

csn̄

L||
, (4.48)

Γn,t,E = −CD
k⊥√
ζ⊥
∇⊥n̄, (4.49)

∂k⊥
∂t

+∇ · Γk⊥ = gTΓn,t,E − C||,k
cs

L||T 0.75
e

n̄k2
⊥

ζ⊥
− Cν,kνn̄ζ⊥, (4.50)

∂ζ⊥
∂t

+∇ · Γζ⊥ = Cg,ζgTΓn,t,E
ζ⊥
k⊥
− C||,ζ

cs
L||Te

n̄k⊥ − Cν,ζνn̄
ζ2
⊥
k⊥

, (4.51)

CD = 7.71, C||,k = 4.43, Cν,k = 1.85,

Cg,ζ = 0.974, C||,ζ = 2.02, Cν,ζ = 5.51. (4.52)

The continuity equation 4.48 is the same as equation 4.36 from the one-equation
k⊥ model. The particle flux 4.49 is based on the diffusion coefficient proposed
in section 4.4.1. Equation 4.50 for k⊥ retains the analytically exact relation
for the interchange source from the one-equation k⊥ model i.e. gTΓn,t,E , while
the sinks on the right hand side are now split into a sheath loss and a viscous
contribution. Equation 4.51 for ζ⊥ features terms representing the same three
effects: the interchange source, sheath losses and viscous dissipation. Other
sources have been neglected in the k⊥ and ζ⊥ equations at present as they
appear to be small. The transport of k⊥ and ζ⊥ on the RHS will also be
neglected as this has also been observed to be small. All the model constants
shown in 4.52 have been determined by means of a term-by-term regression
analysis as described in 3.4.1, similar to the regression analysis performed for the
k⊥ model in section 4.3. The reference data used consisted of the results from
the TOKAM2D simulations described in appendix D.1.3 that are averaged in
time and in the diamagnetic y-direction. Table table 4.1 quantifies the goodness
of fit of this regression analysis of the different terms and compares with the
k⊥-only model derived in section 4.3.

Now the rationale for the different models used in equations 4.50-4.51 is looked
at in some more detail, starting with the visous dissipation terms. The visous
dissipation of total enstrophy can be written as

εEk , −νnφ∇2
⊥W = −2νnζtot + νn∇ · (W∇⊥φ− φ∇⊥W ). (4.53)

Evaluating this expression using TOKAM2D data showed the first term related
to the enstrophy to be the dominant, clearly establishing the relation between
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viscous dissipation of kinetic energy and enstrophy. This is in line with the
findings of hydrodynamic 2D turbulence [4, 71, 169]. It could also be remarked
that the second term would presumably scale as νn∇2

⊥Ek,⊥, though it is found
to be unimportant. The equivalent derivation for the viscous dissipation of the
turbulent kinetic energy εk , −νnφ′∇2

⊥W itself is significantly complicated
by the fluctuations that are involved, and for that reason not used. It seems
reasonable to model εk based on a similar relation though, but using the
turbulent enstrophy instead of the total enstrophy, i.e. εk ≈ −Cν,kn̄ζ⊥. This
also explains that Cν,k is approximately but not exactly equal to two. This
model provides an excellent fit of the TOKAM2D data (see sixth row of table
4.1).

A similar derivation, again in agreement with hydrodynamic 2D turbulence
[4, 71, 169], shows that the viscous dissipation of turbulent enstrophy is equal
to

εζ , νnW ′′∇2
⊥W

′′ = νn
∇2
⊥W

′′2

2 − 2νnP , (4.54)

where P , (∇⊥W ′′)2/2 is the turbulent palinstrophy. Evaluation of both
contributions showed the first term to be negligible. A scaling for this
turbulent palinstrophy is then constructed from k⊥ and ζ⊥ based on dimensional
arguments, i.e. P ∼ ζ2

⊥/k⊥. The agreement between this model and the original
TOKAM2D data is quite good, as can be seen in the last row of table 4.1.

Next we turn our attention to the enstrophy sheath loss term Sζ . Constructing
a series expansion around φ̄ and T̃e yields

Sζ ,
1
L||

csnW ′′(1− exp (Λ− φ

Te
)) (4.55)

≈ 1
L||

(nW
′′φ′

T̃e
− φ̄

T̃ 2
e

nW ′′T ′′e )
√
T̃ exp (Λ− φ̄

T̃e
))

+ 1
L||

nW ′′T ′′

2
√
T̃

(1− exp (Λ− φ̄

T̃e
)), (4.56)

where only fluctuations up to second order in φ and Te have been retained. In
the isothermal case (i.e. Ti/e = T̃i/e and T ′′i/e = 0) considered here, only the first
contribution to the first term is nonzero. The fluctuating part of this expression
can be related to the turbulent kinetic energy. For the total term, we can write

nWφ = n∇2
⊥φ

2

2 − 2nEk,⊥. (4.57)



K⊥ − ζ⊥ MODEL 139

Evaluating both contributions shows the second one to be dominant again.
Then, assuming that the turbulent part of this term can be modelled based on
the turbulent kinetic energy, and observing that exp (Λ− φ̄

T̃e
) ≈ 1, we obtain

Sζ ∼ −2csnk⊥/(L||T̃e). This model matches the TOKAM2D data extremely
well (see table table 4.1), up to the factor 2 that is almost perfectly retrieved.

Thus, four of the six source terms in the k⊥-ζ⊥ system are modeled based on
physical and mathematical insights. The remaining terms, the sheath loss of
k⊥ and interchange source of ζ⊥, have been modeled purely based on regression
analysis of TOKAM2D data. While the models for both terms manage to fit
the data sufficiently well (see table 4.1), it is not clear if they really capture
the underlying physics. Both are dominant terms in their respective equations
and require further investigation. Hence, improvements in the model for these
terms are expected to further enhance the performance of the transport model
presented in this chapter.

We remark that both the one-equation k⊥ model and the two-equation k⊥ − ζ⊥
model imply the same turbulence saturation mechanism, similar in nature to
gradient removal assumptions [133, 114, 89]. The turbulent E×B particle flux
(and hence density (pressure) gradient) appears directly in the source terms of
the equations for k⊥ and ζ⊥. Too steep gradients will lead to an increase in
the turbulence intensity and resulting turbulent transport, tending to flatten
out the gradients until a balance between particle flux and turbulence intensity
is found. The sinks of both equations still scale linearly with the turbulence
intensity I assuming that both k⊥ and ζ⊥ are quantifiers for this intensity, as
argued before when discussing the diffusion coefficient scaling.

An interesting feature of the equation set above is that the RHS of the k⊥
and ζ⊥ equations 4.50 and 4.51 differ only by a factor ζ⊥/k⊥ and a number of
constants. If the LHS is neglected (steady state and local balance assumed),
this allows both equations to be written and solved together as a linear matrix
system:

[
gTΓn,t,E

Cg,ζgTΓn,t,E

]
=
[ C||,kcs
L||T 0.75

e
Cν,kν

C||,ζcs
L||Te

Cν,ζν

][
n̄
k2
⊥
ζ⊥

n̄ζ⊥

]
. (4.58)

It can be noted that the two-equation k⊥-ζ⊥ approach to modelling turbulence
bears a lot of similarity to k-ε models that are commonly used to model
hydrodynamic turbulence in a RANS approach [126, 34]. There as well, the
combination of both quantities allows to construct a length and a time scale
for the turbulence and sources and sinks of k and ε differ by a factor ε/k.
However, in the model presented here, both equations represent the evolution of
a turbulent quantity and all of the terms in both equations have a clear physical
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meaning, while in RANS modelling of hydrodynamic turbulence ε is typically
an ad-hoc quantity used to represent dissipation on the small scales.

4.4.3 Performance of the two-equation k⊥ − ζ⊥ model

This section presents results obtained with the new k⊥−ζ⊥ model and compares
them to the earlier k⊥ model as well as to the original TOKAM2D data.

Figures 4.15b and 4.15d show scatter plots of the observed TOKAM2D values
for k⊥ and ζ⊥ versus the estimate for these quantities obtained with the two-
equation k⊥-ζ⊥ model and the one-equation k⊥ model. The former estimate is
obtained by solving system 4.58 for k⊥ and ζ⊥ with all other quantities filled
out using exact TOKAM2D data. Additionally, the TOKAM2D results for the
subgrid model have been added to the left hand side of system 4.58 to cope
with the large error on the enstrophy equation especially. The k⊥ estimate for
the one-equation k⊥ model is likewise obtained from equation 4.33. However,
no correction for the subgrid model is made in this case as this error is relatively
small for the k⊥ equation and because this subgrid dissipation is implicitly
present in the sink constant of equation 4.33. Hence, figures 4.15b and 4.15d
show that the newly developed model manages to capture the trends in the
TOKAM2D parameter space very well, both for k⊥ and ζ⊥. While some scatter
around the perfect fit line does remain, this error is significantly smaller than
that for the one equation k⊥ model. In particular, the k⊥ − ζ⊥ model manages
to capture variations in ν much better.

Figure 4.15f shows a similar scatter plot for the diffusion coefficient. The points
indicated in this figure are obtained by filling out the model values for k⊥ and
ζ⊥ in particle transport relations 4.49 and 4.37 respectively. Figure 4.15f shows
that the estimate of the diffusion coefficient of the two-equation k⊥-ζ⊥ model is
not unequivocally superior to that of the one-equation k⊥ model. While the
former seems to better capture the trend of the high D simulations, it is still far
from perfect. For the simulations at intermediate levels of D, the new model
seems to perform slightly worse than the original one-equation model. This is
rather surprising as it has clearly been shown that the diffusion relation is more
reliable, that the estimate for k⊥ is more accurate, and that the estimate for ζ⊥
looks very reasonable. It seems that the remaining errors on k⊥ and ζ⊥ reinforce
each other in the diffusive relation and cause the overall behavior to become less
accurate. Section 4.5.2 will show that the diffusion relation found under steady
state local balance assumptions is D ∼ gL||TΓn,t,E/cs for the k⊥ − ζ⊥ model,
which is very close to the k⊥ model scaling D ∼ g

√
L||TΓn,t,E/cs. Hence, there

is still no dependence on ν in the diffusion coefficient in the k⊥ − ζ⊥ model.
The difference between both models as well as the dependence of the accuracy
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Figure 4.15: Comparison of the performance of the k⊥ − ζ⊥ and k⊥ model to
the original TOKAM2D data. Radial profiles for a representative TOKAM2D
simulation (left collumn) and scatter plots showing radially averaged values for
a database of TOKAM2D simulations (right collumn).
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on the value of the model constants will further be investigated in section 4.5.
Further research is needed to determine the shortcomings of the models for the
interchange source of ζ⊥ and sheath loss sink of k⊥.

Figures 4.15a, 4.15c and 4.15e show the radial profiles of k⊥, ζ⊥ and D for the
TOKAM2D simulation with the default parameter setting (see appendix D.1.1
for exact parameters). The figure shows that both models manage to capture
the trends in the radial profiles rather well.

4.5 Bayesian model comparison

The parameters of the k⊥ model in section 4.3 and the k⊥− ζ⊥ model in section
4.4 have been determined through nonlinear least squares (LS) regression
according to the methodology described in section 3.4.1. This section5 discusses
the results obtained by De Wolf et al. [50] who used the Bayesian inference
framework outlined in section 3.4 to gain information and new insights on these
plasma turbulence models, and to compare them. While Bayesian inference has
already been used extensively in other fields, to our knowledge, De Wolf et al.
use Bayesian analysis to infer about mean-field plasma turbulence models for
the first time. Up till now, a framework for comparing the different models in
an objective way was missing. Issues such as the amount of free parameters
needed in a model and overfitting had not been considered in a systematic way,
not for the empirical fitting of the diffusion coefficient discussed in section 2.3.2,
nor for the RANS-like models discussed in sections 2.3.3, 4.3 and 4.4.

4.5.1 Bayesian inference for the submodels

De Wolf et al. analyse the models described earlier in this chapter in two
steps. First, the models for the individual closure terms (i.e. model for the
turbulent particle flux, model for the interchange source, model for the sheath
loss sink,...) are inferred about individually. This is done by comparing the
reference TOKAM2D output data (e.g. the Γn,t,E in equation 4.34) to the
model evaluated with TOKAM2D input data (e.g. k⊥ and n̄ for equation
4.34) using a Bayesian methodology to infer about the unknown parameter (e.g.
CD for equation 4.34). This allows to estimate the probability distribution of
the unknown parameters as well as the Bayesian evidence for the considered

5This section discusses the results published in “De Wolf, R., Coosemans, R., Dekeyser,
W., Baelmans, M. (2021). Bayesian approach to parameter estimation and model validation
for nuclear fusion reactor mean-field edge turbulence modelling. Nuclear Fusion, 61:046048”
[50].
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Table 4.2: Results of the Bayesian submodels analysis. For each submodel, the
table shows the parameter LS values [44, 46], the MAP of the posteriors for the
constant C and the error standard deviation σ with their 2σ confidence interval,
and the logevidence. Table adjusted from Ref. [50].

Model Submodel LS value C σrel[%] lnL(D|M)
k⊥ Γn,t,E - CD 23.9 25.19± 0.22 7.48± 0.20 19497

Sk - C||,k 0.561 0.4854± 0.0026 4.79± 0.13 39379
k⊥ − ζ⊥ Γn,t,E - CD 7.71 7.630± 0.042 4.84± 0.13 20671

Sk - C||,k 4.43 4.4219± 0.0020 4.04± 0.11 39837
εk - Cν,k 1.85 1.853± 0.030 1.47± 0.04 47606
Gζ - Cg,ζ 0.974 0.948± 0.028 2.62± 0.07 47230
Sζ - C||,ζ 2.02 2.0156± 0.0022 1.00± 0.03 52377
εζ - Cν,ζ 5.51 5.502± 0.034 5.51± 0.15 47695

submodels. Next, section 4.5.2 will discuss the results of the “full model”
inference. The full models are the complete, self-consistent k⊥ model 4.36-4.38
and k⊥− ζ⊥ 4.48-4.51 models consisting of union of all the submodels. De Wolf
et al. used the same 1D (radial) TOKAM2D data used for the k⊥ − ζ⊥ model
as reference data. A detailed description of this data can be found in appendix
D.1.3.

The results of the Bayesian analysis of the submodels is shown in table 4.2.
Details on the Bayesian methodology and settings that have been used can be
found in the original publication. Firstly, it can be seen that the Bayesian MAP
values (listed in the fourth column) are in close correspondence to the LS values
for the models reported in sections 4.3 and 4.4. The main difference is assumed
to be due the correlation length that is taken into account, which effectively
applies a different weighing to the data points. Also, the data set used for the
least squares calibration of the k⊥ submodels differs from the one used for the
Bayesian inference here, see appendix D.1 for details.

Furthermore, the logevidence shown in table 4.2 allows to compare some of
the submodels. Remember from section 3.4.2 that the evidence can only be
compared when models explaining the same data are considered. Hence, the
only comparisons that are possible is that for the particle flux Γn,t,E and for
the sheath sink of the k⊥ equation Sk. In both cases, the k⊥ − ζ⊥ submodels
significantly outperform the k⊥ variants. σrel (defined in equation 3.64) denotes
the standard deviation of the relative error between the model and the reference
data. In general, it can be noticed to be rather low, below 10% for all models,
indicating that the submodels are rather accurate.
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4.5.2 Bayesian inference for the full models

Next, De Wolf et al. studied the full models, i.e. the complete k⊥ model
4.36-4.38 and k⊥ − ζ⊥ 4.48-4.51 models consisting of combination of all the
submodels. However, they simplified these models by neglecting the terms on
the LHS of equations 4.38, 4.50 and 4.51, effectively assuming a steady-state
local balance for k⊥ and ζ⊥. As before, only the turbulent flux and the sheath
loss sink of particles are retained in the continuity equation 4.36 or 4.48.

In addition to the previous simplification, De Wolf et al. set Cg,ζ = 1 (in close
correspondence with the value in table 4.2) to remove the linear dependency in
the simplified form of equation 4.51, which would otherwise distort the Bayesian
analysis of the k⊥ − ζ⊥ model inference. Moreover, they show that under these
simplification, equations 4.50 and 4.51 of the k⊥ − ζ⊥ model can equivalently
be written as

n̄k⊥ =

√
(Cν,ζ − Cν,k)(C||,k − C||,ζ)

(C||,kCν,ζ − Cν,kC||,ζ)2
gTΓn,t,E√
νcs/L||

, Ck
gTΓn,t,E√
νcs/L||

, (4.59)

n̄ζ⊥ =
C||,k − C||,ζ

C||,kCν,ζ − Cν,kC||,ζ
gTΓn,t,E

ν
, Cζ

gTΓn,t,E
ν

. (4.60)

Hence, only two parameters suffice to characterise the behaviour of the reduced
form of k⊥-ζ⊥ system of equations 4.50-4.51 instead of four. This has strong
implications for the Bayesian parameter estimation.

Since these models are self-consistent, no input reference data is required for
the Bayesian analysis of these models (except for the boundary conditions),
contrary to the submodel analysis. Reference output data is of course still
required. De Wolf et al. choose a minimal set of meaningful summary quantities
for this, consisting of Γn,t,E and k⊥. For the k⊥ − ζ⊥ model inference, ζ⊥ is
added as well. These quantities are all combined in the likelihood function, each
with their own nuisance parameter for the standard derivation for the error on
them (see the original publication for a detailed description hereof). Allowing
for this, the inference is 4 dimensional for the k⊥ model (2 model parameters
CD and C||,k and 2 nuisance parameters σΓ and σk⊥) and 8 dimensional for the
k⊥ − ζ⊥ model (5 remaining model parameters CD, C||,k, Cν,k, C||,ζ and Cν,ζ
when Cg,ζ = 1 and 3 nuisance parameters σΓ, σk⊥ and σζ⊥). Using equation
4.59 and 4.60, inferences will be run for a reduced form of the k⊥ − ζ⊥ model
later.
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Table 4.3: MAP values of the submodels and full models inferences. Submodels
analyses have been performed twice: once with only physical submodel reference
data, and once with numerical dissipation errors of the TOKAM2D data were
included in the reference data. Table adapted from Ref. [50].

k⊥ model k⊥ − ζ⊥ model
Model CD C||,k CD C||,k Cν,k Cg,ζ C||,ζ Cν,ζ

Submodels, physical 25.2 0.485 7.63 4.42 1.85 0.948 2.02 5.50
Submodels, adjusted 25.2 0.577 7.63 4.27 2.54 0.948 1.97 7.12
Full model 24.8 0.587 7.75 4.92 2.54 / 1.97 11.0∗
∗values corrected for Cinter,ζ = 1

Full model inferences

The resulting Bayesian analysis showed that all parameters of the k⊥ model are
well-informed, the posteriors take a Gaussian shape with parameter correlations
that can readily be explained physically. Table 4.3 then compares the MAP
values between the submodels and the full model. In the second row of this
table, the submodel values are adjusted to better match the intended behaviour
of the full model. For the k⊥ model this is done by fitting the sheath loss
model in the k⊥ equation not to reference data from this term exactly, but
against the interchange term which it needs to compensate. Note that this
was also done in section 4.3.3. These adjusted submodel MAP values can be
seen to match the full model values very closely. The compatibility between
the full model and submodel results indicates that the k⊥ model captures the
underlying dynamics well and does not exploit its larger parameter freedom
to overcome model deficiencies. Furthermore, the consistent performance of
the model for a set of reference data containing different quantities than the
submodels testifies to the robustness of the model.

For the k⊥− ζ⊥ model on the other hand, De Wolf et al. found that very strong
correlations between parameters are present and that most of the parameters
are poorly informed. The reason for this is that the four remaining physical
parameters of the reduced form of k⊥ and ζ⊥ equations 4.50-4.51 can be exactly
reduced to the two parameters in equations 4.59-4.60. As a result, the inference
problem is unidentifiable because any set of model parameters C||,k, Cν,k, C||,ζ
and Cν,ζ that leads to the same value of Ck and Cζ will have the same posterior
value. Hence, the 4D C||,k − Cν,k − C||,ζ − Cν,ζ parameter space contains 2D
manifolds that all lead to the same posterior. Note that the Bayesian techniques
did correctly handle this unidentifiable problem, while the peculiar results give
an indication of the dependencies in the initial model. To prove the above
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reasoning, De Wolf et al. calculated Ck and Cζ according to equations 4.59-4.60
for each of the parameter samples, and thus constructed the posterior of the
“reparameterised” samples. This posterior takes a much more regular form with
quasi-Gaussian distributions and well identified parameters.

Table 4.3 compares the MAP values of the submodels and the full model. The
submodel values of C||,k and C||,ζ are adjusted by fitting the sheath loss models
of both k⊥ and ζ⊥ to the interchange term minus the viscous dissipation minus
the subgrid term. Cν,k and Cν,ζ are then adjusted by matching the viscous
dissipation models for k⊥ and ζ⊥ to the viscous dissipation plus the subgrid
term. The subgrid term is attributed to the viscous dissipation because it is
likewise assumed to behave like numerical viscous dissipation at small length
scales. The results for the full model in table 4.3 are also manipulated. The
effective MAP point identified by the Bayesian inference has been replaced by
an equivalent point with the same Ck and Cζ and thus the same posterior value
(still equal to MAP). To ease the comparison with the submodel values, this new
point is chosen such that it matches the Cν,k and C||,ζ values of the submodel
(which are assumed to be the most physically informed). Significant differences
between the submodel and full model values persist, indicating that the full
k⊥ − ζ⊥ model may be using the freedom its parameters provide to compensate
for model deficiencies.

k⊥ vs. k⊥ − ζ⊥ model

Finally, De Wolf et al. compare the full k⊥ and k⊥− ζ⊥ models with each other
using the Bayesian evidence. In order for the evidence to be comparable, the
same reference needs to be used for both models though. However, by default
the k⊥ − ζ⊥ model uses the enstrophy in the likelihood function, while the k⊥
model does not. To remedy this difference, equations 4.59-4.60 are exploited
to construct an equivalent, reduced k⊥ − ζ⊥ model that does not predict ζ⊥
(or need data for it) but still produces the same predictions for Γn,t,E and
k⊥. As discussed in section 3.4.2, the prior distribution likewise influences the
model evidence. Since no (independent) information on the parameter values
is available a priori, De Wolf et al. use uniform priors which are cut-off at a
high value. While the value of this cut-off is arbitrary, it was observed that the
exact value had little effect on the model evidence.

The results of the evidence and the model errors for the different models are
summarised in table 4.4. While the results for the relative model error standard
deviation are inconclusive, both the maximum and the logevidence indicate that
the k⊥ model outperforms the k⊥ − ζ⊥ model for the considered data set. Note
that the evidence cannot be compared between the regular enstrophy model in
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Table 4.4: Comparison of model error standard deviation and loglikelihood at
MAP and logevidences of the different full models. Table adapted from Ref.
[50].

σ [%]
Model Γ̄E,t k⊥ ζ⊥ Lmax Logevidence
k⊥ model 8.8 7.3 / 39083 39060
k⊥ − ζ⊥ model 7.2 11.4 14.1 64159 64123
k⊥ − ζ⊥ model, reduced 7.2 11.4 / 38465 38443

the second row of the table and the other models because this inference includes
the enstrophy in the likelihood function.

4.5.3 Discussion

The above analysis showed that while k⊥-only submodels were outperformed by
their k⊥ − ζ⊥ counterparts, the simpler full k⊥ model as a whole has a higher
Bayesian evidence than the full k⊥ − ζ⊥ model. These seemingly contradictory
results may be due to the deficiencies in submodels in the k⊥ − ζ⊥ model that
have no equivalent in the k⊥ model. Also, as remarked in section 4.4 already,
the full k⊥ − ζ⊥ model may combine the submodels in such a way that the
submodel errors reinforce one-another and lead to less accurate predictions as a
whole. Further research into this is required to overcome the deficiencies in the
present model form.

Furthermore, it was observed that the posterior distribution of the full k⊥ model
matches the posterior of the submodel analysis rather well. This indicates that
the k⊥ model uses the underlying physics of the submodels as intended. The full
model posterior of the k⊥ − ζ⊥ model on the other hand differs markedly from
the submodel posterior, even after removing the redundancy in the specification
this model. This may indicate that the k⊥ − ζ⊥ full model uses its parameter
freedom to compensate for model deficiencies, and hence that it does not capture
the underlying physics.

Finally, it needs to be recalled that De Wolf et al., considered reduced versions
of the turbulent transport models, in which the transport of turbulent kinetic
energy and enstrophy themselves have been neglected. Neglecting the transport
of k⊥ and ζ⊥ may be a good approximation in the 1D isothermal SOL case
studied here, but it is expected that these terms come into play in more general
flow cases which will ultimately be of practical interest. When these transport
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terms are important, the k⊥ − ζ⊥ full model can no longer be reduced to an
equivalent form with less parameters.

4.6 Conclusion

This chapter has applied the approach and the framework presented in chapter 3
to develop a physics-based mean-field transport model for a reduced flow case as
a first step towards the development of a more generally valid model. Different
models for the E×B turbulent particle flux in isothermal interchange-dominated
electrostatic SOL plasmas have been developed, calibrated and compared, based
on data from the TOKAM2D turbulence code.

To support the model development process, the TOKAM2D turbulence code
model itself has first been introduced and the main assumptions in it discussed.
Mean-field equations for this code have been derived using the methodology
introduced in chapter 3. In particular, analytical equations for the turbulent
kinetic energy (k⊥) and turbulent enstrophy (ζ⊥) have been derived. It has been
shown that the main driver of the turbulent kinetic energy balance is dominated
by the interchange source while a sink due to parallel current losses to the
sheath provides the main sink. For the turbulent enstrophy, the interchange
term likewise constitutes the main source, but now the loss to the sheath and
viscous dissipation are both important. Perpendicular transport seemed to play
a minor role in the balances for k⊥ and ζ⊥.

Following the ansatz presented in chapter 3, transport models were developed by
relating the turbulent diffusion coefficient D to characteristics of the turbulence.
This lead to the k⊥ and the k⊥ − ζ⊥ model. In the k⊥ model, the turbulent
diffusion coefficient is modelled as D ∼

√
k⊥, which followed from a regression

analysis of averaged TOKAM2D data. This can be seen as a refinement of the
Bohm scaling. The interchange source of k⊥ is modelled using the analytical
relation with the average particle (heat) flux, which directly leads to ballooning
effects, especially in 1D geometries. A regression analysis has identified a
model for the sheath loss sink that is linear in the turbulent kinetic energy.
Combining the latter three elements, a closed model for the radial particle flux
is obtained. The transport in this model is determined by mean-flow gradients
and the turbulence level, whose source is in turn controlled by the particle
transport, while parallel dissipation due to the sheath suffices to saturate the
turbulence. The implementation of this model in a 1D mean-field code has been
shown to be capable of reproducing the TOKAM2D results with high accuracy.
Moreover, the new model provides an improvement over both the Bohm and
the gyro-Bohm scalings.
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The k⊥ − ζ⊥ model refined the k⊥ model by relating the turbulent diffusion
coefficient as D ∼ k⊥/

√
ζ⊥. This scaling performs substantially better over a

range of TOKAM2D parameters, especially for varying viscosity, which was
found to be a weakness of the k⊥ model. Moreover, the inclusion of the
enstrophy provided a quasi-analytical model for the viscous dissipation of k⊥
which is now included as a separate sink. To use these improved models, the
enstrophy equation was likewise modelled. Models for the dominant terms are
developed through a combination of analytical derivations, dimensional scalings,
and regression analysis. The results obtained by De Wolf et al. showed that
the submodel components of the k⊥ − ζ⊥ model are indeed superior to those of
the k⊥ model. However, the full model as a combination of these submodels
was found to do less well than the k⊥ model. This is most likely due to the
unfortunate alignment of errors in the submodels in the full k⊥ − ζ⊥ model.
Further research into this is required to overcome the deficiencies in the present
model form.

The results of these relatively simple models are promising and encourage
their further development. Moreover, the models developed in this section
can already be implemented in 2D mean-field codes as a first step towards a
physics-based description of the turbulent transport. To this end, Carli et al.
[39] have implemented a model based on the k⊥ model in the SOLPS-ITER
mean-field code. However, several effects that are expected to be important are
not addressed yet. No strong shear flows developed in the considered isothermal
SOL cases and their effect on the turbulence and the transport has thus not
been considered. However, strong flow shear may provide an additional or
alternative saturation mechanism for the turbulence (in parts of the domain)
through the Reynolds stresses in more general flow cases. Furthermore, not
only the interchange channel may be important to drive the turbulence, but
also the drift wave channel and possibly others. To study these effects, the
next chapter will add a core region to the TOKAM2D simulations by which
DW-like dynamics and strong flow shear are introduced in the simulations.
Another element missing in this chapter is the effect of temperature variations
and fluctuations. This will be investigated in chapter 6, where the turbulent
heat fluxes that result of this will also be modelled. Chapter 7 will then provide
a preliminary analysis of how the results obtained for the 2D TOKAM2D case
compare to turbulence simulations resolved in 3D. This allows a more profound
analysis of the DW dynamics and to distinguish them from parallel transport.





Chapter 5

2D isothermal E×B drift
turbulence: extensions

In the previous chapter, self-consistent anomalous transport models were derived
for the SOL based on the RANS approach. Two models were presented: a
one-equation k⊥ model and a two-equation k⊥ − ζ⊥ model. While the previous
chapter strictly treated 2D isothermal interchange-dominated SOL plasmas,
this chapter will slightly extend the scope to take some important additional
effects into account. First, section 5.1 will investigate the influence of flow shear
on the particle transport relation, which only plays a significant role in more
complex cases. We will still consider the purely E×B case with W = ∇2

⊥φ in
this section. Section 5.2 will then consider the effect of using the total (E×B and
diamagnetic drift) vorticity W = ∇2

⊥φ+∇ · ∇⊥pin . This amounts to including
the inertia of the ion diamagnetic flow in the equation set.

5.1 Extension to core region

While the previous chapter has only considered the SOL, also the outer core
region will be studied in this section1. To this end, the TOKAM2D domain will

1Parts of this section have been published in “Coosemans, R., Dekeyser, W., Baelmans,
M. (2021). Bayesian analysis of turbulent transport coefficients in 2D interchange dominated
E×B turbulence involving flow shear. Journal of Physics: Conference Series, 1785:012001”
[45] and in “Coosemans, R., Dekeyser, W., Baelmans, M. (2021). Turbulent kinetic energy
in 2D isothermal interchange-dominated scrape-off layer E×B drift turbulence: Governing
equation and relation to particle transport. Physics of Plasmas, 28:012302” [46].
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be extended to also include a part of the core region, where a drift-wave-like
model has been implemented. Around the separatrix, strong shear flows in the
diamagnetic direction will result —a phenomenon that was almost absent in
the previous isothermal SOL-only simulations. The focus of this section will be
to study the effect of this flow shear on the particle transport relation. This
will be assisted by the Bayesian framework discussed in section 3.4.

In the isothermal SOL case considered before, the electrostatic potential was to
a large degree set by the sheath potential. As a result, no significant E×B flow
in the diamagnetic y-direction could develop. If the electrostatic potential has
more freedom to develop, strong E×B flows tend to evolve in the y-direction,
especially around the separatrix, the boundary between the SOL and the core
region. In the presence of radial shear of the E×B velocity in the y-direction,
these flows are (partly) maintained by extracting energy from the turbulence
through the Reynolds stress terms (nV′′E,xV′′E,y : (∇xṼE,y)T on the RHS of
equations 4.13 and 4.16). While the turbulence saturates due to currents to
the sheath in the k⊥ model 4.38 developed in section 4.3, this interaction
between turbulence and sheared E×B flows provides an alternative saturation
mechanism for the turbulence [58, 76, 108, 93]. Hence, it is expected that
shear flows, and especially a radial shear of flow in the diamagnetic direction,
will reduce the turbulent transport as well as the turbulent kinetic energy
[23, 88, 144, 58, 146, 56, 108, 93].

To integrate this interaction between turbulence and flow shear into the k⊥
transport model, the Reynolds stress term in the exact k⊥ equation 4.16 would
need to be added to model the effect of flow shear in the k⊥ model equation 4.38.
This requires a closure model for both the Reynolds stresses nV′′EV′′E themselves
and a model (equation) for the mean E×B flow in the diamagnetic direction
ṼE,y. Manz et al. [108] analysed this using a mean-field versus turbulent
kinetic energy approach, while Held et al. [93] made use of Favre averaging
to further disentangle the various contributions to shear flow generation. In
addition to this, the radial turbulent diffusion coefficient might also need to be
adjusted for the presence of flow shear. This section will focus on the latter
element, proposing new particle transport relations that explicitly account
for flow shear. This analysis will furthermore demonstrate the capabilities of
Bayesian techniques, and provide guidance to further improve the mean-field
turbulent particle transport models.

The remainder of this section is structured as follows. In section 5.1.1, the
drift-wave-like model used in the core region of the TOKAM2D turbulence code
is introduced. Next, alternative mean-field models for the particle transport
closure term are proposed in section 5.1.3. Then, in section 5.1.4, Bayesian
inference techniques are applied to study the performance of both the existing
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k⊥ and k⊥ − ζ⊥ particle transport models and the newly suggested ones for
the new data. Finally, section 5.1.5 provides a discussion of the results and
summarises the main findings of this work.

5.1.1 Turbulent equations and reference data

Garcia et al. [76] and Nielsen et al. [119] have already reported the appearance
of strong flows in the diamagnetic direction in 2D turbulence simulations of the
complete edge region, including both the SOL and the edge region inside the
separatrix. This section extends the TOKAM2D code to also contain a core
region with drift wave-like dynamics. For generality, the core region extension
of the TOKAM2D model will be discussed for the anisothermal case. The
equations now become

∂n

∂t
+ VE · ∇n−D0∇2

⊥n = Sn + S||,ne, (5.1)

∂W

∂t
+ VE · ∇W − ν0n∇2

⊥W =
S||,ne − S||,ni

n
− g

n

∂p

∂y
, (5.2)

∂pi
∂t

+ VE · ∇pi − χ0∇2
⊥pi = Spi + S||,pi −

2me

mi

pi − pe
τei

, (5.3)

∂pe
∂t

+ VE · ∇pe − χ0∇2
⊥pe = Spe + S||,pe + 2me

mi

pi − pe
τei

. (5.4)

Remember that the direction parallel to the magnetic field is not resolved in
TOKAM2D. Instead, the behaviour in the parallel direction is modelled using
the artificial volumetric sources S||,ni/e and S||,pi/e. In the SOL region, these
sources represent the fluxes towards the plasma sheath at which the magnetic
field lines end in this open field line region. They take the following form:

S||,ne , −
csn

L||
exp(Λ− φ

Te
), S||,ni , −

csn

L||
,

S||,pi/e ,
2
3γi/eTi/eS||,ni/e. (5.5)

Hence, in the SOL, nothing has changed and the equations are exactly the same
as B.21-B.22 presented in appendix B.1. However, a core region is now added
as well, where the sources for the equations are
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S||,ne , KDW [(φ− Te lnn− 1.71Te)− 〈φ− Te lnn− 1.71Te〉y],

S||,ni , 0, S||,pi = 0, S||,pe ,
2
3φS||,ne. (5.6)

KDW is a new parameter determining the strength of the parallel drift wave
(DW) dynamics and 〈u〉y =

∫ Ly
0 udy/Ly denotes the diamagnetic (y-direction)

average of u, with Ly the diamagnetic length of the domain.

These sources in the core region have been added to give a 2D representation
of DW characteristics. They are derived from the electron momentum balance
η||nJ|| = ∇||pe−n∇||φ+ 0.71n∇||Te (see equation 2.45, with ∂A||/∂t neglected
in the electrostatic case). Solving for J|| and taking the divergence, we find

∇ · J|| = ∇ · 1
η||

(Te∇|| lnn+ 1.71∇||Te−∇||φ), (5.7)

Replacing the parallel gradient operators in this expression with a characteristic
parallel wave number iK|| and defining KDW = K2

||/η||, we obtain ∇ · J|| ≈
KDW (φ − Te lnn − 1.71Te). In the final source term, the flux surface
(diamagnetic) average of this term is subtracted to ensure zero net divergence
of the parallel current on a flux surface. This term leads to the typical DW
physics where the potential fluctuations tend to follow the density fluctuations.
Note that the S||,ne term used here matches the parallel term in Ref. [93] in
the isothermal case and is similar to the parallel term used in the core region in
the HESEL code [119]. The S||,pe term in the core region is chosen to represent
the DW coupling between kinetic energy and electron thermal energy. By the
implementation chosen here, the total kinetic energy injected (or extracted)
through the DW term in the vorticity equation is provided by (or to) the
electron thermal energy. This is in accordance with the DW energy transfer
channel discussed in section 3.2.5 (for the electrostatic case).

In the isothermal SOL case studied earlier, only equations 5.1-5.2 were solved,
while the ion and electron temperature were assumed to be constant in space
and time and the DW-like terms were not active. In that scenario, only the
interchange instability was present to drive the turbulence. A description of
the linear spectrum and the turbulence characterics for this case can be found
in Ref. [116]. In this section, we will compare the results of this original case to
the isothermal case with a core region where the DW-like terms come into play.
It is clear that this term introduces a DW-like instability in the core region in
addition to the interchange instability still at play. Note that only a subset of
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the full TOKAM2D equations is solved in the isothermal case considered in this
section, i.e. the thermal energy equations 5.3 and 5.4 are not solved.

Both for the regular case and for the new case with a core region, a set of
simulations has been performed. Details can be found in appendix D.1.4 and
D.2. We will refer to the resulting data sets as iso and isoDW respectively.

5.1.2 Influence of the core region on the general flow picture

In order to give an idea of the dynamics introduced by adding the core region
in TOKAM2D, this section briefly discusses the general flow picture that is
established as well as the balances of k⊥ and ζ⊥. Firstly, the addition of the
core region leads to fluctuations on very long time scales (in the order of several
hundred thousands of gyro-periods Ω−1

0 ). These transients seem to be related
to flow shear building up, suppressing the turbulence more and more, only to
be broken up again by a sudden turbulent outburst. It needs to be remarked
that (for reasons of computational time) the data analysed in this section might
not suffice to fully resolve the statistics of these slow transients. Nonetheless,
the averages of this data can be expected to provide a good view on the trends
to be expected.

Figure 5.1 shows the averaged radial profiles of selected quantities for a typical
isoDW simulation. Figure 5.1b illustrates that the electrostatic potential has
a deep well in the core region (x < 0), while it is still flat in the SOL (x > 0).
This implies strong flow shear in the core region and around the separatrix
(x = 0), since the flow shear S , ∂xVE,y , ∂2

xφ. Presumably as a result of this
flow shear, the density gradients in the core region are much steeper than those
in the SOL, see figure 5.1a. Note that the very high core density in comparison
to the SOL density is artificial, not representative for real tokamaks. The
magnitude of the electrostatic potential well might also be exaggerated. The
mean-field components of the kinetic energy and the enstrophy are dominant in
the core region because of the large mean-flow velocity and mean-flow shear,
as shown in figures 5.1c and 5.1d. Moreover, the turbulent kinetic energy and
enstrophy are suppressed in this region. In the SOL on the other hand, the
turbulent components still dominate.

Figure 5.2 then shows the balances of k⊥ and ζ⊥ for this simulation. These
balances are calculated by evaluating equations 4.16 and 4.27. The only
difference is that the parallel current terms (second term on the RHS
of both equations) are now calculated as φ′(S||,ni − S||,ne)′ for k⊥ and
W ′(S||,ne − S||,ni)′ for ζ⊥. Since the parallel sources are different in the core
region and the SOL, the parallel current terms change character across the
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Figure 5.1: Radial profiles of characteristic quantities for a representative isoDW
TOKAM2D simulation. The separatrix lies at x = 0 in these figures.

separatrix. In the core region the parallel current term of k⊥ represents the
DW coupling ∇||φ′ · J′||, while in the SOL it represents the parallel transport
term −∇ · φ′J′||.

First we compare the balances in figure 5.2 to the balances of the SOL-only
case in figures 4.6 and 4.14. It can be seen that the balances in the SOL are
very similar whether a core region is present or not. In the core region, the
balance between the different terms does become much more complex and noisy
though. An interesting observation is that the DW term (red line) acts like
a sink of k⊥. In the simulations investigated here, the interchange drive (in
blue) remains dominant, and the DW terms assumes the role of sink term.
However, the DW term could act like a source as well. When the interchange
term is turned off by setting g = 0, the DW term is indeed observed to lead to
turbulence. Next to the interchange term and the parallel current term, the
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Figure 5.2: k⊥ and ζ⊥ balances for a representative isoDW TOKAM2D
simulation. The separatrix lies at x = 0 in these figures.

Reynolds stress (RS) term (in yellow) becomes important in the k⊥ balance in
some regions due to the strong shear flows that develop. Furthermore, the “other
terms” (in purple) also seem to be non-negligible in the core region. Mostly
the ∇ · φ′J′p,0 transport term and the Boussinesq correction term tend to take
large values, although they generally remain very noisy. Finally, in a narrow
region around the separatrix, many terms take large, peaked values. Further
investigation is required to determine if this behaviour is physical, or rather the
effect of numerical difficulties in resolving the sudden change in character of
the (modelled) parallel dynamics.

The enstrophy balance in figure 5.2b in the core region takes a more regular, less
noisy form. The interchange term (in dark blue) still acts like the main source
of ζ⊥, while the DW term (in red) is negligible. The latter may be because
the DW term mostly affects the larger length scales, while the enstrophy is
concentrated on the small scales. As a result, practically all the dissipation in
the core region is due to viscous effects (in yellow) and the numerical dissipation
of the subgrid term (in light blue). All other terms (in green) as well as the
equivalent to the RS term nW ′′V′′E · ∇W̃ (in purple) remain small.

5.1.3 Models for mean-field particle transport

The analysis in this section focuses on the average E×B turbulent particle flux
Γn,t,E , n′V′E , and on mean-field transport relations for it especially. Note
that the structure of the particle fluxes and of this closure term is not changed
by the new parallel model that is used in the core region, i.e. the LHS of
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Figure 5.3: Radial profiles of the turbulent diffusion coefficients for representative
TOKAM2D simulations.

equation 4.5 remains unchanged. In this work, we will investigate models for
the radial component of this flux and consider the mean-field fluxes in the
diamagnetic y-direction (Γn,E,y , nVE,y), which may have both a mean-field
and a turbulent component (even in the simplified 2D cases considered here),
as a given. Note that this particle flux in the y-direction was insignificant in
the isothermal SOL case considered before, but that it becomes large in the
new flow cases. The generation of this flow in the diamagnetic direction is also
a topic of active research. Refs. [93, 108] have analysed this in 2D systems for
example. However, Refs. [144, 146] found that geodesic curvature effects in
3D toroidal geometries alter the dynamics of zonal flows significantly. Hence,
in our analysis, we acknowledge that the shear in the considered 2D system
may not be completely representative for realistic 3D cases, but our working
hypothesis is that these 2D systems do allow to study the effect of flow shear
on the transport, i.e. that the nature of the perpendicular transport in the
presence of flow shear is not fundamentally changed by the dynamics of the
shear generation itself.

As in the previous chapter, we will still consider diffusion models of the form
Γn,t,E = −D∇⊥n̄ to close the radial turbulent fluxes. Figure 5.3 shows the radial
profiles of these turbulent diffusion coefficients for a representative simulation
of each of the two studied flow cases. Figure 5.3a shows that the diffusion
coefficient for a typical iso simulation has a very flat profile. In the isoDW case,
shown in figure 5.3b, the profile in the SOL changed little, but there is a large
suppression of the diffusion coefficient in the core region. Interestingly, D drops
much more than k⊥ and ζ⊥.
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Remember that section 4.3 [46] modelled the turbulent particle diffusion
coefficient in the isothermal SOL case using the following k⊥ model:

D = CD
√
k⊥, (5.8)

with CD a free parameter. A value of CD = 23.9 was found by means of a
regression analysis for a set of TOKAM2D simulations. Still considering only
the SOL under isothermal conditions, section 4.4 [44] proposed the k⊥ − ζ⊥
model as a refinement of the previous model:

D = CD
k⊥√
ζ⊥
. (5.9)

A regression analysis for a (slightly different) set of TOKAM2D data yielded
CD = 7.6. A rigorous Bayesian analysis of both models in section 4.5.1 [50]
showed that the k⊥ − ζ⊥ model largely outperformed the k⊥ model as far as
this diffusion relation is concerned.

A significant effect coming into play that was effectively absent in this iso flow
case is flow shear. In the new flow cases, this is especially pronounced in the
core region of the isoDW simulations. Literature indicates that mean-flow
shear changes the characteristics of the turbulence and decreases the transport
[23, 58, 88, 93, 108]. It is expected that both the intensity of the turbulence,
thus k⊥ and ζ⊥, and the magnitude of the transport for a given turbulence
intensity, thus D at fixed k⊥ and ζ⊥, decrease. The model proposed by Miki et
al [113], discussed in section 2.3.3, did indeed include both effects. In this work
we will only investigate the latter effect.

It might be hoped that the effect of flow shear would inherently be captured by
the scales used in the k⊥ − ζ⊥ model, however, it will be shown that this model
no longer performs satisfactorily for the new flow cases. The ansatz followed in
this contribution is that this reduced accuracy is due to the presence of radial
shear of the diamagnetic component of the E×B velocity, S , ∂xVE,y. Another
reason for discrepancies could be the DW instability coming into play next to
the interchange one.

A first modification of models (5.8) and (5.9) that will be tested is to replace
the total perpendicular turbulent kinetic energy k⊥ by the radial turbulent
kinetic energy kx , nV′′2E,x/n̄. The idea behind this modified version is that the
turbulent kinetic energy in the radial velocity component may be more strongly
related to the average radial transport than the total perpendicular kinetic
energy, especially in cases where there is strong shear, presumably affecting the
turbulent kinetic energy in the diamagnetic velocity component ky , nV′′2E,y/n̄.
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Another adjustment proposed here is to take the effect of the flow shear explicitly
into account, by adding a frequency scale accounting for the flow shear ΩS to
the regular k⊥ − ζ⊥ model:

D = CD
k⊥√

ζ⊥ + CSΩS
, (5.10)

with CS a proportionality constant to be determined. The rationale is that√
ζ⊥ provides a characteristic frequency for the temporal decorrelation of eddies

(eddy turn-over frequency), while shear provides an additional decorrelation
mechanism. As shear becomes large, the latter starts dominating the former
and decreases the turbulent diffusion coefficient for a given turbulence intensity
as indicated by k⊥ and ζ⊥.

Shear decorrelation rates indicated in literature make a natural choice for the
shear frequency scale ΩS . A very basic frequency scale is ΩS ∼ |S|. A slightly
more complicated decorrelation rate is based on the time it takes for two fluid
elements a distance ∆x away to be decorrelated by moving a diamagnetic
wavelength 1/Ky away in the y-direction, resulting in ΩS ∼ Ky|S|∆x [23,
58]. Finally, the interplay between regular radial decorrelation and shear flow
decorrelation may result in a hybrid decorrelation time ΩS ∼ (DK2

yS
2)1/3

[23, 58].

These scalings only strictly apply for transport of passive scalars in a constant
shear flow. However, here we use them to model the effect of flow shear which
may vary in time on the density transport. To this end, we first define the
mean-flow shear Sm , ∂xṼE,y, which is the shear based on the Favre average
velocity in the y-direction. In order to convert the first shear time scale to a
mean-field one we simply take ΩS ∼ |Sm|. This will be referred to as the simple
shear model in the following.
For the second time scale we have to use an approximation for Ky and a
relevant scale for ∆x. We construct length scales for both based on the radial
and diamagnetic turbulent kinetic energy, which nicely fits in the modelling
framework constructed in chapter 4. This then yields ΩS ∼ |Sm|

√
kx/ky, which

will be referred to as the strong shear model.
For the hybrid decorrelation time model, a time scale is needed in addition to
the ky velocity scale to construct an approximation for Ky. If the turbulent
enstrophy is used for that, we find Kx/y ∼

√
ζ⊥/kx/y and then ΩS ∼

(DS2
mζ⊥/ky)1/3. Note that the diffusion coefficient is now ultimately present

in the model for D itself. In a mean-field code that is solved iteratively, this
should not pose a problem. In case the shear frequency is dominant (D ∼ k/ΩS)
the diffusion coefficient can be eliminated to find D ∼ k3/4/

√
|Sm|Ky as was

done in Ref. [58]. This then yields ΩS ∼
√
|Sm|(kζ⊥/ky)1/4 for the resulting
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mean-field time scale.
Note that in the previous derivation for the hybrid decorrelation frequency, the
“regular” turbulent enstrophy time scale of the turbulence was used. It may
however be more consistent to use the shear decorrelation frequency instead.
Doing so, we find ΩS ∼ DS2

m/ky. When this is then in turn filled out in the
diffusion relation for the case of dominant shear frequency, we finally obtain
D ∼

√
kky/|Sm|. This can be seen to be equivalent to the regime where shear

is dominant for the strong shear model (when k = kx). Hence, the hybrid
decorrelation time reduces to the strong shear decorrelation time in the strong
shear limit in these models. The diffusion models resulting from these four
mean-flow shear time scales are summarised in table 5.1.

Lastly, it will be examined whether replacing the turbulent enstrophy ζ⊥ = ζturb
by the total enstrophy ζtot (see 4.24 for definitions) improves the performance
of the k⊥ − ζ⊥ model. The reasoning behind this relies on the fact that the
vorticity includes the flow shear as

W , ∇ · ∇⊥φ = ∇xVE,y −∇yVE,x ∼ S, (5.11)

where it is assumed that the shear of VE,y will be largely dominant. Hence,
turbulent and mean field enstrophy are proportional to

ζ⊥ = S̃′′2, ζtot = S̃′′2 + S̃2. (5.12)

As such, while the turbulent enstrophy already does include the effect of (small
scale) flow shear fluctuations, the total enstrophy might add the effect of the
mean-flow shear that becomes important now. Filling this out in the regular
k⊥ − ζ⊥ diffusion relation yields

D = k⊥√
ζtot

= k⊥√
ζ⊥ + S̃2

. (5.13)

This result clearly shows similarities with the approach suggested in equation
5.10. Here as well large scale flow shear leads to a reduction of D at fixed
k⊥ and ζ⊥, while the model reduces to the regular k⊥ − ζ⊥ model when large
scale flow shear is absent. Note however that the order of operations (sum
over timescales and square root operator) is different and that no free model
constant CS is available or required. Furthermore, it is worth remarking that
S̃ 6= Sm, the difference being a term n∂xV ′′y .
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5.1.4 Bayesian inference for turbulent diffusion coefficient
models

In this section, the Bayesian framework for parameter estimation and model
comparison discussed in section 3.4 is used to study the particle transport
models in the new isoDW flow case and compare to results of the original iso
cases. First, the k⊥ and k⊥ − ζ⊥ models presented earlier will be assessed, and
then the new models explicitly taking flow shear into account will analysed.

As data for the Bayesian analysis, we again consider the 1D profiles of the
TOKAM2D reference data obtained by averaging in time (from the onset of the
statistical steady state) and in the y-direction (which is a symmetry direction).
Hence, the output data O are the radial profiles of the diffusion coefficient D,
and the input data I are the radial profiles of turbulent kinetic energy k⊥ and
the turbulent enstrophy ζ⊥.

As discussed in section 3.4.2, describing the model error ε in order to construct
the likelihood function is a delicate matter. Since very little is known about
most of the contributions to this error, we chose to aggregate them all and
assume the error at every data point has a Gaussian distribution as in equation
3.61. The standard deviation of the error is assumed to take a single value for
all radial points for all simulations in each inference, i.e. εi ∼ N(0, σabs) as in
expression 3.63. Hence, we chose not to scale the model error to the data point
value as in expression 3.64. The reason for this is that low but noisy values
of D in the core region for the isoDW inferences led to unsatisfactory results
with this scaled error. For the regular iso cases, a scaled error did however lead
to higher evidences and thus more reliable results, but in order to maintain
the parallelism between both cases, we chose to report the data without scaled
error here. As this “absolute standard deviation” σabs is not known a priori, it
is an additional parameter that will be inferred. Possible spatial correlations in
the model error have not been accounted for here. The total likelihood function
3.61 then reduces to the product of the likelihood functions of all individual
data points.

For the priors of C (CD and CS) and σabs we chose wide distributions in order
not to exclude any parameter values a priori:{

π(C) = 2N(0, 100) if C ≥ 0
π(C) = 0 if C < 0

{
π(σabs) = 1/σabs if σabs ≥ 0
π(σabs) = 0 if σabs < 0

(5.14)

The results of the Bayesian analysis for this setup are summarised in table
5.1. The maximum a posteriori (MAP) value of the parameters of the models
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as well as the logarithm of their evidence is shown. Both the original models
and the variant in which the total perpendicular turbulent kinetic energy k⊥
is replaced by the radial turbulent kinetic energy kx are studied. Results are
shown for the both the iso and the isoDW data sets described in appendix D.
Remember that the evidence also depends on the data, such that it can only be
meaningfully compared for models which have the same output data O. Hence
only models within (double) columns under iso and isoDW that use the same
data set can be compared with each other. Also, since the (natural) logarithm
of the evidence is reported, a difference of about 5 between two models can
already be considered to be decisive in selecting one model over another, see
table 3.1 [49, 50, 161].

Assessment of k⊥ and k⊥ − ζ⊥ models

Looking at the MAP values of the CD coefficient for the regular k⊥ and k⊥− ζ⊥
models for the iso case in table 5.1, it can be seen that these are rather close to
the values of respectively 23.9 and 7.6 that were found by means of regression
analysis in sections 4.3 and 4.4. Comparing the different models for the iso case,
it is observed that in the data as reported here, the k⊥ model does less well than
the Bohm scaling (D ∼ Te in the TOKAM2D case) model. However, when the
model error standard deviation is scaled to the data point value (σi = σrelOi),
the evidence of the k⊥ model does become higher than the Bohm model and the
error lower. This testifies to the importance of the statistical model and thus on
the hypotheses made in the likelihood function in a Bayesian analysis. Another
reason for the relatively poor performance of the k⊥ model is the rather strong
variations in ν in the reference data set. This trend is captured much better
by the k⊥ − ζ⊥ model, which clearly outperforms the k⊥ model in this case, as
was also found in chapter 4. In addition, the models where kx is used instead
of k⊥ perform better in almost all cases.

Visual inspection of the iso data, see figures 5.4a and 5.5a, shows the k⊥ − ζ⊥
model captures the data very well. Figure 5.4 compares the radial profile for the
diffusion coefficient for representative simulations to the models proposed here.
Figure 5.5 then gives an overview of the model’s performance in parameter
space. It shows a scatter plot of the model value for D on the vertical axis
versus the observed TOKAM2D value on the horizontal axis. Each marker in
the figure represents a single TOKAM2D simulation (for a certain parameter
set g, L||, ν,...), which is now also radially averaged. The classical coefficient of
determination, defined in equation 3.57, is also reported in this figure. Note
that this is calculated based on the radially averaged data here.

While a comparison of the iso and isoDW cases based on evidence and model
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Figure 5.4: Comparison of radial profiles of the turbulent diffusion coefficient
for representative cases. TOKAM2D reference data in black, k⊥ model (second
row in table 5.1) in blue, k⊥ − ζ⊥ model (third row in table 5.1) in red, strong
shear kx model (sixth row in table 5.1) in yellow, kx-DW-corrected model (last
row in table 5.2, only shown for isoDW case) in purple.

error is not possible, the higher standard deviation of the error for the isoDW
(for a similar order of magnitude of D in the SOL) indicates that the models
capture the isoDW case less well. Furthermore, figures 5.4b and 5.5b show
that the k⊥ and k⊥ − ζ⊥ models fail to adequately represent the underlying
data. Figure 5.4b illustrates that the models seem to be making a trade-off
between having a high enough diffusion coefficient in the SOL and capturing the
suppressed value in the core region. The MAP values of the model parameters
do not match between the iso and the isoDW cases because of this model
inadequacy for the isoDW case. Judging by the Bayesian model evidence (and
the standard deviation of the errors), the k⊥ model performs better than the
Bohm scaling, and curiously also better than the k⊥ − ζ⊥ model. No clear
reason has been identified for the latter, although it could be speculated that
the turbulent enstrophy does not provide the correct time scale in the core
region, and that a time scale accounting for the flow shear should instead be
used. Here as well, the kx variants work better than the k⊥ variants.
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Table 5.1: Bayesian analysis of the proposed models for the particle diffusion
coefficients for the iso and isoDW datasets (part 1). Parameter values are
reported at MAP.

iso isoDW
Model for D parameter k⊥ kx k⊥ kx

CDTe

CD[−] 0.925 0.595
σabs[−] 0.200 0.517

logevidence 599 -2423

CD
√
k

CD[−] 24.5 29.6 19.9 26.8
σabs[−] 0.216 0.203 0.379 0.317

logevidence 344 551 -1434 -872

CD
k√
ζ⊥

CD[−] 7.49 10.8 3.45 6.81
σabs[−] 0.134 0.120 0.578 0.496

logevidence 1858 2225 -2775 -2286

CD
k√
ζtot

CD[−] 7.49 10.8 5.67 8.92
σabs[−] 0.134 0.120 0.407 0.376

logevidence 1858 2226 -1664 -1409
CD

k√
ζ⊥+ΩS

CD[−] 7.85 11.4 8.14 12
CS [−] 10.1 11.2 5.05 5.11

ΩS = CS |Sm|
σabs[−] 0.128 0.11 0.221 0.226

logevidence 2013 2492 268 201
CD

k√
ζ⊥+ΩS

CD[−] 7.85 11.3 8.28 12.1
CS [−] 5.33 6.63 5.09 3.40

ΩS = CS |Sm|
√

kx
ky

σabs[−] 0.129 0.110 0.241 0.212
logevidence 1973 2476 -13 398

CD
k√

ζ⊥+ΩS
CD[−] 7.79 11.4 9.81 13.6
CS [−] 0.496 0.683 3.47 2.22

ΩS = CS

(
DS2

mζ⊥
ky

)1/3 σabs[−] 0.135 0.115 0.343 0.306
logevidence 1899 2339 -1125 -759

CD
k√

ζ⊥+ΩS
CD[−] 8.00 11.7 10.2 14.6
CS [−] 0.813 1.06 3.38 2.97

ΩS = CS

(
S2
mkζ⊥
ky

)1/4 σabs[−] 0.131 0.114 0.270 0.250
logevidence 1936 2383 -371 -122

CDk√
ζ⊥+ΩS1+ΩS2

CD[−] 7.78 11.3 8.29 12.1

ΩS1 = CS1|Sm|
√

kx
ky

CS1[−] 5.35 6.66 5.10 3.40
CS2[−] 7.21E-5 1.83E-4 5.91E-4 1.35E-4

ΩS2 = CS2

(
S2
mkζ⊥
ky

)1/4 σabs[−] 0.130 0.111 0.242 0.212
logevidence 1965 2467 -19 388
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Table 5.2: Bayesian analysis of the proposed models for the particle diffusion
coefficients for the iso and isoDW datasets (part 2). Parameter values are
reported at MAP.

iso isoDW
Model for D parameter k⊥ kx k⊥ kx

CD

CD,SOL[−] 0.894
CD,core[−] 0.0737
σabs[−] 0.333

logevidence -1039

CD,i
√
k⊥

CD,SOL[−] 23.3 29.8
CD,core[−] 3.54 5.85
σabs[−] 0.277 0.238

logevidence -450 47

CD,i
k√
ζ⊥

CD,SOL[−] 7.48 11.6
CD,core[−] 0.437 0.904
σabs[−] 0.203 0.133

logevidence 54 1880

CD,i
k√
ζtot

CD,SOL[−] 7.67 11.6
CD,core[−] 0.811 1.25
σabs[−] 0.166 0.129

logevidence 1180 1991
CD

Gk
Gk+C||DWk

k√
ζtot

CD[−] 7.49 10.8 7.66 11.6
C||[−] 2.65E-5 2.67E-5 12.8 9.99
σabs[−] 0.134 0.120 0.163 0.123

logevidence 1848 2215 1229 2121

Assessment of shear-adjusted particle transport models

The next six rows in table 5.1 show the shear-adjusted models suggested in
section 5.1.3 and the Bayesian analysis results for them.

For the iso data set, the shear models only bring a modest improvement in
terms of the model error standard deviation σabs over the k⊥ − ζ⊥ models. The
reason for this is that the latter already performed very well, and because the
low flow shear does not play an important role in this case. Nonetheless, the
increase of the logevidence largely exceeds 5 for most models, making them
significantly better according to the Bayesian analysis. Surprisingly, it is the
simplest shear model with kx in the numerator that has the highest evidence in
this case. The model using the total enstrophy, the k⊥ − ζtot model, does not
bring a significant improvement over the regular k⊥ − ζ⊥ model for this case.
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Figure 5.5: Scatter plot of the radially averaged turbulent diffusion coefficients
for a database of TOKAM2D simulations. k⊥ model (second row in table 5.1)
in blue, k⊥ − ζ⊥ model (third row in table 5.1) in red, strong shear kx model
(sixth row in table 5.1) in yellow, kx-DW-corrected model (last row in table 5.2,
only shown for isoDW case) in purple.
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Figure 5.6: Scatter plot of the turbulent diffusion coefficient radially averaged
over the core region (x < 0) for a database of isoDW simulations. k⊥ model
(second row in table 5.1) in blue, k⊥ − ζ⊥ model (third row in table 5.1) in
red, strong shear kx model (sixth row in table 5.1) in yellow, kx-DW-corrected
model (last row in table 5.2) in purple.
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Including the flow shear in the models for the isoDW data on the other hand
drastically increases the evidence and decreases the model error over the regular
models as expected. Here, the strong shear model with kx in the numerator
has the highest evidence. The elegant k⊥ − ζtot model which does not need
an additional CS parameter does yield a significant improvement over the
regular k⊥ − ζ⊥ model, but performs much less well than some of the other
shear-corrected models. In general, it has to be remarked that the error on the
models for this isoDW data remains rather large.

It is also interesting to notice that both for the iso and isoDW cases the bottom
model, which includes a combination of the strong shear decorrelation timescale
and the hybrid decorrelation timescale to account for the possible influence of
both, does not bring an improvement with respect to the model with the strong
shear model time scale only. The model parameters tend to the parameters
of the model with the higher evidence of both without making a compromise.
In addition, the model evidence of this combined model is lower than that of
the strong shear case because of its higher complexity and number of fitting
parameters.

It is worth remarking that while the kx variants of the models consistently
perform better than the k⊥ variants, no model for kx is currently available.
This would require deriving an analytical transport equation for kx, which is
presumably non-trivial. Furthermore, the relevant closure terms in that equation
would again need to be modelled. Hence, in the near future it is foreseen to keep
using the k⊥ variants. Of these models, the simple shear model (fifth model
in table 5.1) performs best, both for the iso and isoDW case. Moreover, the
parameters are relatively similar for both cases (especially since the exact value
of CS is not that important for iso case where flow shear is low).

In order to further investigate the significance of the shear models, we
also compare with models that additionally correct for different instability
mechanisms in table 5.2. The first four rows in this table represent “2-zone”
models. The idea for these models is that the dynamics in the core and those in
the SOL may be inherently different because of the different parallel dynamics.
As such, it could be imagined that both regions actually follow the same diffusion
relation, but that different model constants should be allowed in the core and
the SOL. For these 2-zone models, the k⊥ − ζ⊥ model (finally) does better than
the k⊥ model. The k⊥ − ζtot model, including the average flow shear provides
a further improvement.

The last row of table 5.2 lists another model that explicitly takes the parallel
dynamics of the DW-like term into account, relative to the regular interchange
term. Since the DW term is only present in the core, this effectively allows
to decouple the diffusion coefficient in the core and the SOL region as well.
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This model has the highest evidence of all models that were investigated. Note
that this “DW correction” might also be combined with other models than the
k⊥ − ζtot model. In order to keep the number of model parameters low, the
combinations with other shear models has not yet been tried. For the iso case
that is also reported for this model, the DWk parallel term has been replaced
by the sheath loss term Sk to see if taking parallel dynamics into account would
also work here. This does not seem to be the case. Note that in the isoDW
case, no correction for Sk has been used in the SOL. These results comply
with the expectation that different instabilities lead to a different structure of
the turbulence leading to a different relation between turbulence intensity and
transport. In particular, it is known that the DW instability leads to a much
smaller phase difference between density and potential fluctuations than the
interchange instability [145], which is expected to lead to lower transport at the
same intensity of the fluctuations.

Comparing the results in tables 5.1 and 5.2, it can be seen that the 2-zone
models and the model with the DW correction largely outperform the pure
shear models. However, the ζtot variants of the former which implicitly include
the flow shear do lead to improvements over the ζ⊥ ones that do not. Hence,
flow shear does still seem to play a role.

Next, the parameter values are compared between the iso and the isoDW case
for the models in tables 5.1 and 5.2. It can be seen that for the models that
perform rather well, the parameters that influence the SOL region are rather
similar for both cases. This is especially true for the important CD parameter,
while the difference in the CS parameter that is less important in the SOL is
larger. This indicates that the models do not only give a good match for the
particular data they were developed for, but likely also capture some of the
underlying physics.

For the iso case, figures 5.4a and 5.5a support the results from the Bayesian
evidence. Figure 5.4a shows that all models manage to capture the radial profiles
well and that the difference between the different models is small. Figure 5.5a
then illustrates that the strong shear model still manages to improve the fit for
the iso data set accross TOKAM2D parameter space, although the k⊥ − ζ⊥
model already did very well. Note also that part of the improvement is due to
the use of kx in the denominator instead of k⊥. As was discussed before already,
the k⊥ model misses the trend with varying ν.

For the isoDW case then, figure 5.4b shows that both the strong shear model
and the DW-correction model manage to capture both the behaviour in the SOL
and the base level of the suppressed diffusion coefficient in the core region rather
well. The strong shear model (like the other shear models) features significant
peaks in the core region that are not present in the data though. These peaks
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occur at locations where the local flow shear is very low. The DW-correction
model (and the 2-zone models) do not include such peaks. Figure 5.5b seems to
indicate that both models capture the trends in parameter space rather well,
with the DW-correction model performing better according to the R2 value as
well. Hence, the R2 value and the Bayesian evidence yield the same ranking for
the models over the different data sets. It has to be remarked though that this
plot pertains to the radial average of the entire domain, both outer core region
and SOL. If a similar scatter plot is made for the core region only, the models
perform less good and the R2 value is reduced, see figure 5.6.

5.1.5 Discussion and conclusion

In this section, mean-field models for the turbulent particle diffusion coefficient
for isothermal SOL cases, with and without core region, are studied. This
model development process is supported by a Bayesian framework for parameter
estimation and model comparison. These Bayesian techniques allowed estimating
the combined posterior distribution of the proposed models, identifying terms
which are irrelevant in the models and ranking the different models according
to the Bayesian evidence. This Bayesian evidence is especially relevant since
it automatically penalises more complex models hence guarding against over
fitting.

This analysis has shown that the existing k⊥ and k⊥ − ζ⊥ particle transport
models proposed in chapter 4 do not capture the trends in the new simulations
with a core region. The strong flow shear developing in simulations with SOL
and core region was assumed to be the origin of this deficiency and the k⊥ − ζ⊥
diffusion model is adapted by incorporating shear decorrelation frequencies
inspired by literature to explicitly take this effect into account.

The shear-corrected models provide a large enhancement over the earlier models,
but considerable room for improvement certainly does remain for the core region.
Based on this analysis, it is plausible that the discrepancies of the earlier models
are indeed due to flow shear, but it cannot be ruled out that also other effects
are at play.

An important consideration and possible (partial) explanation for the mediocre
performance of the shear-adjusted diffusion models reported here may be in the
time dependent nature of the flow shear. Assume for example that an exact
expression for the relation between instantaneous transport and instantaneous
flow shear would be available, D(t) = f(S(t)). If this relation is not linear,
D̄ 6= f(S̄). In our models, we use the mean flow shear as a proxy for the shear,
which may impact the performance of the mean field models if fluctuations are
large.
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A class of models that explicitly decouples the transport relation in the core
region from that in the SOL has also been examined. The idea behind these
models is that the dynamics in both regions may be inherently different because
of the different parallel dynamics and instabilities at play. These 2-zone models,
which are still based on the ansatz that k⊥ and ζ⊥ can be used to predict
the turbulent transport, were shown to work very well and outperformed the
models that only corrected for flow shear. This observation puts the importance
of flow shear in perspective. It could be concluded that the different parallel
dynamics in core and SOL region and the different instabilities and turbulence
structure that result from it seem to be responsible for difference in the diffusion
coefficient. Since there is strong shear in the core region and very limited
shear in the SOL, the different behaviour in both regions can be emulated by
incorporating the flow shear in the models, however, it seems that other models
may be more appropriate for “decoupling” both regions.

Nonetheless, it has been shown that including the total enstrophy, which includes
the mean-flow shear, instead of the turbulent enstrophy does consistently and
significantly enhance the evidence, indicating that accounting for the mean-flow
shear does bring an improvement. Hence, the mean-flow shear does seem to
play a role, but may not be the dominant factor in explaining the difference
in the diffusion coefficient between core and SOL for the simulations analysed
here. Another adjustment that proved useful for both the iso and isoDW case
for almost all models is to use the radial turbulent kinetic energy kx instead
of the perpendicular kinetic energy k⊥. The reason for this is most likely that
the radial velocity, characterised by kx, is more closely related to radial particle
transport. In addition, kx is less disturbed by strong shear flows which have a
larger impact on ky and thus k⊥.

It has been observed that the parameters in cases with a core region and cases
with only a SOL region are rather close together, especially for the models that
perform well. The more complex models developed for the isoDW cases still do
well for the simpler iso cases (no results shown here), indicating a good degree
of consistency in these models.

When interpreting the results of the Bayesian inference, the influence of the
Bayesian parameters and the statistical framework should be kept in mind. As
argued in section 3.4, the results of the Bayesian analysis do not only depend
on the physical model (the diffusion models that are proposed), but also on
the statistical model: the form of the the prior and the likelihood function
that is chosen (including the absolute or relative scaling of the model error and
the correlation length). The width of the prior determines how strongly more
complex models are penalised. The choice for the model error standard deviation
to represent the absolute or the relative error changes the weighing of the data
points. If the absolute error formulation is used, a significant relative error on
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a data point with a low absolute value does not have as much importance as
the same relative error would have when the relative error formulation were
used. Inferences with various correlation lengths showed that the value of the
parameters depends on it in a rather irregular way, especially for those models
that perform less well. As such, we have chosen to use the results where no
correlation length is used. The value of the correlation length did not seem to
change the ranking of the different models according to their evidence though.
In this context, it may be envisaged to smooth the results in the core region
of the isoDW data since the peaks are probably due to the rather small scale
specifics of the flow field which are hard to capture in a mean-field model.
However, care should be taken for the interaction with the statistical model of
the Bayesian framework.

In future research, forward simulations will have to prove if the models developed
here effectively captured causal relations, or rather correlations without their
common origin. Further research should also focus on investigating the balances
of the turbulent kinetic energy and turbulent enstrophy for the new flow cases
following the methodology demonstrated in chapter 4. Another research track
is to further extend the physical model of the TOKAM2D simulations that
are studied. Up to now, the diamagnetic drift contribution to the vorticity
has been neglected, while literature indicates this may significantly influence
the dynamics [105, 25, 15]. This will be investigated in the next section. Also,
anisothermal cases will be investigated in chapter 6.

5.2 Extension to total vorticity case

All the models developed so far, i.e. chapter 4 and section 5.1, only considered
the contribution from the E×B drift to the inertia and thus to the pseudo-
vorticity W . In this section2 the influence of including the contribution from
the ion diamagnetic velocity will be investigated. This will be referred to as the
“total vorticity” (TW) case, while the earlier case will be referred to as “E×B-
only”. Only the isothermal SOL will be considered in this section. Literature
has already found that this contribution changes the dynamics of individual
plasma blobs [25, 105] and that it affects the statistics of the turbulence and
the resulting profiles [15].

2Parts of this section have been presented as a poster at the Joint EU-US Transport Task
Force Meeting, 6-10 September 2021, “Influence of the diamagnetic drift contribution on the
turbulent kinetic energy balance in isothermal interchange-dominated ExB turbulence in the
scrape-off layer”, Coosemans, R., Dekeyser, W., Baelmans, M.
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The subset of TOKAM2D equations B.21-B.25 considered in this section becomes

∂n

∂t
+ VE · ∇n−D0∇2

⊥n = −ncs
L||

exp(Λ− φ

Te
) + Sn, (5.15)

∂W

∂t
+ VE · ∇WTW = − g

n

∂p

∂y
+ cs
L||

(1− exp(Λ− φ

Te
)) + ν0n∇2

⊥WTW , (5.16)

WTW , ∇2
⊥φ+∇ · ∇⊥pi

n
, VE , b×∇φ. (5.17)

Note that the only difference compared to the isothermal SOL equation set
used in chapter 4 is the definition of the vorticity. The definition used here
effectively implies that the LHS of equation 5.16 now represents

∂WTW

∂t
+ VE · ∇WTW = −b× D

Dt
∇ ·V0 (5.18)

as an approximation for the divergence of the inertial contribution to the
polarisation velocity −∇·Vp,0. The velocities contributing to this inertia are now
assumed to be the E×B drift and the ion diamagnetic drift, i.e. V0 = VE+V∗,i.
However, note that the contribution from the diamagnetic velocity to convection
is not taken into account, i.e. VC = VE .

The kinetic energy equations and enstrophy equations for this modified equation
set will be presented in section 5.2.1. Then, a comparison will be made between
TOKAM2D simulations with total vorticity and E×B-only simulations in section
5.2.2. Finally, 5.2.3 will test the models developed earlier for the TW simulations.

5.2.1 Derivation of kinetic energy and enstrophy equations

The different form of the vorticity equation has implications for the turbulent
kinetic energy. As the inertia due to the diamagnetic drift is included in the
model, it also needs to be included in the kinetic energy. To this end, we define
the total (in the sense of including E×B and diamagnetic velocity) perpendicular
kinetic energies as in equation 3.53:

EE∗ ,
V2

0
2 , Em,E∗ ,

Ṽ0

2 , n̄kE∗ ,
nV′′20

2 . (5.19)
3In this section, we abolish the general subscript ⊥ notation and use subscripts that

specifically denote the velocity components that are included in order to avoid possible
confusion.
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Total kinetic energy equations

The procedure to derive transport equations for these quantities is similar to
that followed for the general case in section 3.2.1. However, the specific form
of the TOKAM2D equations does require some adjustments. The complete
derivation of these equations is presented in appendix B.2.1.

In this appendix, the total kinetic energy equation is derived (see equation B.34)
as

∂nEE∗
∂t

+∇ · ΓEE∗ = gφ
∂p

∂y
− csnφ

L||
(1− exp(Λ− φ

Te
))

−νnφ∇2
⊥WTW + SEE∗,n −∇pi ·Vp,0

+φ∇n ·Vp,0 − nφ∇VE : ∇U0, (5.20)

ΓEE∗ = nEE∗VE + φJp,0, (5.21)

SEE∗,n = EE∗Sn +D0EE∗∇2
⊥n−

EE∗csn

L||
exp(Λ− φ

Te
), (5.22)

Jp,0 = nVp,0 = nb× DV0

Dt
(5.23)

Comparing the total kinetic energy equation 5.20 for the TW case to equation
4.9 derived for the E×B-only case, we see that they are largely the same. The
only differences are 1) the definition of the kinetic energy and vorticity is
different, 2) Vp,0 now uses both the E×B drift velocity and the diamagnetic
velocity and 3) most interestingly, two new terms enter the equation. The
third but last term represents the work done by the pressure gradient on the
polarisation current. This term also appeared in the total perpendicular kinetic
energy equation for the general case 3.10. The second new term is the last one
in the equation. Just like the Boussinesq term (first term in the third line of
equation 5.20), this term only appears because of the approximations made in
the TOKAM2D vorticity equation, as illustrated in equations B.15 and B.30.
Hence, this is also an artificial term which should not have been there. Note
that this term is identically zero in the E×B-only case considered in chapters
4 and 6 since it then is proportional to ∇VE : ∇UE = 0 (at least when the
magnetic field is uniform as is the case in TOKAM2D).
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The Em,E∗ and kE∗ equations derived as equations B.39 and B.34 in appendix
are:

∂

∂t
n̄Em,E∗ +∇ · ΓEm,E∗ = gφ̄

∂p̄

∂y
− φ̄

L||
csn(1− exp(Λ− φ

Te
))

−νφ̄n∇2
⊥WTW + nV′′EV′′0 : ∇ṼT

0 − n′∇φ′ · Ṽp,0 + SEm,E∗,n

−∇⊥p̄i · Ṽp,0 + φ̄∇n ·Vp,0 − φ̄n∇VE : ∇U0, (5.24)

ΓEm,E∗ = n̄ṼEEm,E∗ + nV′′EV′′0 · Ṽ0 + φ̄J̄p,0, (5.25)

SEm,E∗,n = Em,E∗S̄n + Ṽ0 ·V′′0Sn

+D0Em,E∗∇2
⊥n̄+D0Ṽ0 ·V′′0∇2

⊥n

−Em,E∗
L||

csn exp(Λ− φ

Te
)− csnV′′0 exp(Λ− φ

Te
) · Ṽ0

L||
, (5.26)

∂

∂t
n̄kE∗ +∇ · ΓkE∗ = gφ′

∂p′

∂y
− 1
L||

φ′csn(1− exp(Λ− φ

Te
))

−νφ′(n∇2
⊥WTW )′ − nV′′EV′′0 : ∇ṼT

0 + n′∇φ′ · Ṽp,0 + SkE∗,n

−∇pi ·V′′p,0 + φ′∇n ·Vp,0 − nφ′∇VE : ∇U0, (5.27)

ΓkE∗ = n̄kE∗ṼE + nV′′EV′′20 /2 + φ′J′p,0, (5.28)

SEm,E∗,n = 1
2V′′20 Sn + D0

2 V′′20 ∇2
⊥n−

1
L||

cs
nV′′20

2 exp(Λ− φ

Te
). (5.29)

In equations 5.24 and 5.27, the same new terms appear that appeared in the
total kinetic energy equation 5.20, i.e. the first and last term in the last line
of both equations. Note that the RS and turbulent transport terms now also
feature the plasma velocity V0.

The total perpendicular kinetic energy equations 5.20, 5.24 and 5.27 for the
TOKAM2D TW case are very similar to the general total perpendicular energy
equations 3.10, 3.14 and 3.15. The main differences are due to approximations
made in the TOKAM2D charge balance equation B.15 with respect to the
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general charge balance equation 2.53. These approximations directly lead to
the Boussinesq correction terms, the nφ∇VE : ∇U0 terms, and the different
form of the particle source terms in the TOKAM2D equations.

E×B-only kinetic energy equations

At this point, it is important to recall (from chapter 3) that the actual fluxes
that we are trying to model are those due to the E×B drift, i.e. the particle flux
Γn,t,E , n′V′E in the isothermal case. It could be assumed that the E×B fluxes
are more closely related to the turbulent kinetic energy in the E×B velocity
fluctuations themselves than they would be to the total turbulent kinetic energy
(which has contributions from the ion diamagnetic drift as well). This would
indeed be more in line with the underlying hypotheses of the k⊥ transport
models formulated in section 3.1. As such, this section will derive equations for
the kinetic energy in the E×B drift velocity only.

As in equation 3.16 in section 3.2.2 where E×B-only kinetic energy equations
have been derived for the general case, we define the E×B kinetic energies as

EE ,
V2
E

2 , EE,m ,
Ṽ2
E

2 , n̄kE ,
nV′′2E

2 . (5.30)

Note that the sum of this and the ion diamagnetic drift’s kinetic energy which
could be defined as V2

∗,i/2 is not equal to the total drift kinetic energy EE∗
as the VE ·V∗,i term would then be overlooked. Remark that definitions 5.30
are exactly the same as those for the total kinetic energy in the E×B-only case
considered in chapter 4.

Analogously to the derivations in section 3.2.2, but accounting for the specifics
of the TOKAM2D case, the equations for these E×B-only kinetic energies are
derived in appendix B.2.2. The equations are found (see equations B.49, B.54
and B.57) as
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∂

∂t
nEE +∇ · ΓEE = gφ

∂p

∂y
− csnφ

L||
(1− exp(Λ− φ

Te
))

−νnφ∇2
⊥WTW + nφ

DW∗
Dt

+ SEE,n + φVp,E · ∇n, (5.31)

ΓEE = nEEVE + φJp,E , (5.32)

SEE,n = EESn +D0EE∇2
⊥n−

EEcsn

L||
exp(Λ− φ

Te
), (5.33)

Jp,E = nVp,E = nb× DVE

Dt
. (5.34)

∂

∂t
n̄EE,m +∇ · Γ̄EE,m = gφ̄

∂p̄

∂y
− φ̄

L||
csn(1− exp(Λ− φ

Te
))

−νφ̄n∇2
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Dt
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+SEE,m,n + φ̄Vp,E · ∇n, (5.35)

Γ̄EE,m = n̄EE,mṼE + nV′′EV′′E · ṼE + φ̄J̄p,E , (5.36)

SEE,m,n = EE,mS̄n + ṼE ·V′′ESn

+D0EE,m∇2
⊥n̄+D0ṼE ·V′′E∇2

⊥n

−EE,m

L||
csn exp(Λ− φ

Te
)− csnV′′E exp(Λ− φ

Te
) · ṼE

L||
, (5.37)
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∂

∂t
n̄kE +∇ · Γ̄kE = gφ′

∂p′

∂y
− 1
L||

φ′csn(1− exp(Λ− φ

Te
))

−νnφ′∇2
⊥WTW + nφ′

DW∗
Dt

− nV′′EV′′E : ∇ṼT

E + Ṽp,E · n′∇φ′

+SkE ,n + φ′(Vp,E · ∇n)′, (5.38)

Γ̄kE = n̄kEṼE + nV′′EV′′2E /2 + φ′J′p,E , (5.39)

SkE ,n = 1
2V′′2E Sn + D0

2 V′′2E ∇2
⊥n−

1
L||

cs
nV′′2E

2 exp(Λ− φ

Te
). (5.40)

Hence, comparing this E×B-only kinetic energy equations for the TW case
to the original E×B-only kinetic energy equations 4.9, 4.16 and 4.13 for the
E×B-only case, the only differences are the second term on the second line and
the viscous term which is now calculated for the total vorticity instead of the
E×B-only one. The new nφDW∗/Dt terms can be seen as a correction term
to account for the fact that the total vorticity needs to be used instead of the
E×B-only one in the charge balance equation. Alternatively, this term can be
identified with the contribution of the diamagnetic drift to the divergence of
the polarisation drift ∇ · Jp,∗.

Enstrophy equations

As for the kinetic energy, equations for the enstrophy can also be derived for
the TW case, both for the total and for the E×B-only part. Hence, we define
the total enstrophy (with contributions from the E×B and the ion diamagnetic
drift) as

ζtot,E∗ ,
W 2
TW

2 , ζmean,E∗ ,
W̃ 2
TW

2 , n̄ζ,E∗ ,
nW ′′2TW

2 , (5.41)

and the E×B-only enstrophy as

ζtot,E ,
W 2
E

2 , ζmean,E ,
W̃ 2
E

2 , n̄ζE ,
nW ′′2E

2 . (5.42)

Note that the E×B-only enstrophy as defined here is exactly the same as the
enstrophy considered in the E×B-only case in chapter 4. The detailed derivation
of the transport equations for these quantities can be found in appendix B.3.
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The total enstrophy equations B.62-B.64 derived in the appendix take exactly
the same form as those for the E×B-only case discussed in section 4.2.2. However,
the vorticity W used there (which is implicitly assumed to be the E×B-only
vorticity WE) needs to be replaced by the total vorticity WTW . As exactly the
same form of the enstrophy equations 4.25, 4.26 and 4.27 of the equations is
retrieved, they are not repeated here. Note that contrary to the total energy
equation, no new terms (e.g. due to approximations in the vorticity equation)
appear in these total enstrophy equations.

The E×B-only enstrophy equations are then shown to take the following form
in appendix (see equations B.66-B.68):

∂nζtot,E
∂

+∇ · (nVEζtot,E) = −gWE
∂p

∂y

+csnWE

L||
(1− exp(Λ− φ

Te
)) + νnWE∇2

⊥W − nWE
DW∗
Dt

+ζtot,ESn +D0ζtot,E∇2
⊥n−

csnζtot,E
L||

exp(Λ− φ

Te
), (5.43)

∂n̄ζmean,E
∂t

+∇ · (n̄ζmean,EṼE + nW ′′EV′′EW̃E) = −gW̃E
∂p̄

∂y

+W̃E

L||
csn(1− exp(Λ− φ

Te
)) + νW̃En∇2

⊥WTW − W̃En
DW∗
Dt

+nW ′′EV′′E · ∇W̃E + ζmean,ES̄n + W̃EW ′′ESn +D0ζmean,E∇2
⊥n̄

+D0W̃EW ′′E∇2
⊥n−

ζmean,E
L||

csn exp(Λ− φ

Te
)

−W̃E

L||
csnW ′′E exp(Λ− φ

Te
), (5.44)
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∂n̄ζE
∂t
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L||
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DW∗
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2 +Dn

W ′′2E ∇2
⊥n

2

− 1
L||

csnW ′′2E
2 exp(Λ− φ

Te
). (5.45)

These E×B-only vorticity equation for the TW case are again very similar to
those for the E×B-only case. The only differences are the total vorticity in the
viscous term and the appearance of the fourth term on the RHS. The latter
could be interpreted as a correction term for the fact that not all vorticity is
due to the E×B drift anymore.

The TOKAM2D total and E×B-only enstrophy equations derived here can
be seen to be very similar to the total (3.44-3.46) and E×B-only (3.51-3.53)
enstrophy equations for the general case. The main difference is due to the
terms that have been neglected in the general vorticity equation 3.49 to obtain
the TOKAM2D vorticity equation 4.2. In addition, models have been filled out
for the parallel and diamagnetic and viscous current divergences.

5.2.2 k⊥ balances and influence of total vorticity on transport

In this section we will compare some mean-field observables of the turbulence
and the resulting transport between the E×B-only case considered in chapter 4
and the TW case studied here. To this end, two sets of TOKAM2D simulations
have been run: one with the regular E×B-only vorticity and another set with all
the same simulation parameters but with the contribution from the diamagnetic
drift to the vorticity included. A detailed description of these simulations can
be found in appendix D.1.4. Note that the (former) set of simulations is not
exactly the same set of simulations used in chapter 4.

Figure 5.7 evaluates the different variants of the k⊥ equation. Figure 5.7d
shows the balance of k⊥ = kE for the E×B-only case discussed in chapter 4 as
a reference. As the figure recalls, the interchange term acts as the dominant
source, while the sheath losses are the dominant sink. “Other terms” denotes
the sum of all terms in the k⊥ equations that are not explicitly mentioned in
the legend 5.7b, while the “subgrid” term again represents the unbalance left in
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(c) kE balance for TW case, equation 5.38
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(d) kE balance for E×B-only case,
equation 4.16

Figure 5.7: Evaluation of terms in the TOKAM2D k⊥ equation for different
cases.

the evaluation of the equation. Both can be seen to only play a secondary role
in all subplots. Note that figure 5.7d basically plots the same data as figure
4.6. The only differences are that a larger part of the computational domain is
shown, and that the viscous term is included in “other terms” instead of having
been plotted separately.

Figure 5.7a shows the balance of kE∗ according to equation 5.27 for the total
vorticity case. While the interchange source and the sheath loss sink are still
important in the balance, the two new terms are clearly of the same order of
magnitude. The “artificial polarisation” term, indicating the −nφ′∇VE : ∇U0
term resulting from approximations in the charge balance equation, becomes
a major source. The pressure work against the polarisation velocity plays the
role of a dominant sink, which almost perfectly cancels the new source.
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Figure 5.7c then shows the evaluation of the E×B-only turbulent kinetic energy
kE for this TW case. In line with the cancellation observed in the previous
figure, the balance basically reduces to one between interchange and sheath
losses again. The only direct influence of the total vorticity in this evaluation
of the equation is the correction for the diamagnetic vorticity, which appears to
play a minor role.

Some remarks are in place on these results. Firstly, the fact that an artificial
term becomes a dominant source of the turbulence (at least for kE∗) is worrying,
and it could be argued that the whole of the simulation becomes physically
irrelevant. The fact that the term does not explicitly appear in the balance of
kE does not mean that it could not implicitly influence the dynamics of this
quantity either. On the other hand, the diamagnetic drift velocity and the
kinetic energy it brings may not be of physical relevance. The origin of the
diamagnetic drift is the gyration of particles around their respective magnetic
field line and the mere existence or presence of this velocity does not in itself
imply any net transport. In fact, only the divergence of the diamagnetic fluxes
are relevant [82]. As such, it could be speculated that the diamagnetic kinetic
energy and its contribution to the total energy is irrelevant, and that the
artificial drive of this total energy is not so much of a problem. The almost pure
cancellation of terms might be interpreted as an indication that the dynamics
of interest are not so much influenced by these diamagnetic drift contributions.

Figure 5.8 then shows a comparison between turbulent kinetic energy and
turbulent diffusion coefficient for the case with and without contributions from
the diamagnetic velocity to the inertia. It can be seen from figure 5.8a that
both the total turbulent kinetic energy kE∗ and the E×B-only kinetic energy
kE in the TW case are significantly larger than the (E×B-only) kinetic energy
from the E×B-only case. Hence, the diamagnetic contribution to the kinetic
energy does not simply add up to the E×B-only part. Moreover, there is no
clear relation between the kinetic energy in the TW case and in the E×B-only
case. The same conclusions hold for the turbulent diffusion coefficient in both
cases, shown in figure 5.8b. The diffusion coefficient is significantly higher in the
TW case, and there is no obvious relation to the diffusion coefficient observed in
the E×B-only case. From these results, it can be concluded that the inclusion
of the diamagnetic contribution to the inertia does inherently influence the
dynamics of the turbulence and the resulting transport.

5.2.3 k⊥ model for total vorticity case

In this section, we will investigate whether the models for the E×B-only
isothermal SOL developed in section 4 can be applied to the TW case as well.



EXTENSION TO TOTAL VORTICITY CASE 183

0 0.5 1 1.5 2 2.5 3

k
E

ExB only cases [mc
s,0
2 ] 10-3

0

1

2

3

4

5

6

7

k
T

W
 c

as
es

 [m
c s,

0
2

]

10-3

k
E*

k
E

k
TW,E*

=2.4k
ExB,E

k
TW,E

=1.8k
ExB,E

(a) comparison for k⊥

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8

D ExB only cases [
0
2

0
]

0

0.5

1

1.5

2

2.5

3

3.5

4

D
 T

W
 c

as
es

 [
02

0
]

T2D data
D

TW
=2.4D

ExB

(b) comparison for D

Figure 5.8: Comparison of the TW and E×B-only cases. Each marker in the
scatter plots represents the radial average of a single simulation in a database
of TOKAM2D simulations.

Because of the dubious physical relevance of the treatment of the diamagnetic
inertia in the TOKAM2D as identified in the previous section, we prefer to keep
this analysis rather brief. Nonetheless, testing the models developed earlier in
this new case can be an interesting check on their robustness.

Models for the diffusion coefficient

First, we will consider the diffusion model itself. Bayesian analyses for the
E×B-only and the TW cases have been run to compare the performance of
different diffusion models. The Bayesian inference was run analogously to that
of the submodels in sections 4.5 and 5.1. The same wide, uninformative priors
were used as in equation 5.14. The likelihood function is constructed in exactly
the same way as in 5.1.4. Hence, a Gaussian distribution is assumed for the error
without (spatial) correlation between different data points and the standard
deviation of the error σi has been taken as in expression 3.63. The reason for
not scaling σi to the data point value is that the large fluctuations on the TW
data made these results unreliable.

Table 5.34 shows the results of these inferences. Considering the TW case first,
it can be seen that the models based on total (E×B and diamagnetic) quantities
do better than the E×B-only variables. This disproves our hypothesis made in

4Note that the results for the E×B-only case in this table have been obtained for the same
models, the same Bayesian parameters and for the same data set as the first three models of
the iso-k⊥ case in table 5.1. The minor differences in the results are due to a slight difference
in the part of the domain that is used, see appendix D.1.4.
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section 5.2.1 that the E×B-only quantities would be better predictors for the
turbulent E×B transport than the total quantities. It might be argued that this
is a chance result that would not be observed in more accurate models though.
More complex models involving flow shear and the phase between density and
potential fluctuations (see section 5.1 and chapter 6) have been tried as well,
but were found not to yield an improvement over the simpler models shown in
table 5.3.

Table 5.3: Bayesian analysis of the proposed models for the particle diffusion
coefficients for the E×B-only and the TW cases. Parameter values are reported
at MAP.

E×B-only TW
model for D parameter kE/ζE kE/ζE kE∗/ζ,E∗

CDTe

CD[−] 0.925 2.17
σabs[−] 0.197 0.801

logevidence 616 -3651

CD
√
k

CD[−] 24.3 42.8 37.8
σabs[−] 0.203 0.738 0.714

logevidence 522 -3399 -3300

CD
k√
ζ

CD[−] 7.42 18.0 7.93
σabs[−] 0.116 0.770 0.744

logevidence 2214 -3531 -3423

Next, the results from the TW case are compared to those of the E×B-only
case. While the evidence cannot be compared between the E×B-only case
and the TW case because the output data is different for both, it can be seen
that the error of the diffusion models is higher in the TW case. Note that
this may not solely be due to the models working less well, but could also be
due to increased noise on the data itself (that is not recovered by the models).
Another notable observation is that the values for the model parameters shift
significantly for almost all models. Only for the total k⊥ − ζ⊥ model are the
parameter values at MAP similar to one another in both cases. This testifies
of changes in the dynamics of the simulations, as was already illustrated in
figures 5.8. The new source and sink terms that come into play (artificial or
not) presumably change the structure of the turbulence, and through that the
relation between the intensity of the turbulence (as indicated by k⊥ and ζ⊥) and
the resulting transport. Preliminary results seem to indicate that the spectral
structure of the phase difference between density and potential fluctuations in
particular changes significantly. A single model valid for both cases with the
same parameters, if it exists, would hence need to include additional physical
elements.
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Comparing the different models with one another then, the k⊥ and k⊥ − ζ⊥
model are observed to do better than the simple Bohm scaling model in the TW
case. Contrary to the E×B-only case, the k⊥ − ζ⊥ model has a lower evidence
and higher model error than the k⊥ model. No reason for this has yet been
found. Note also that in the data as reported here, the k⊥ model does less
well than the Bohm scaling model for the E×B-only case. However, when the
model error σi is scaled to the data point value (σi = σrelOi), which does work
well for this case, the evidence increases for all models, indicating that this is
a better statistical model for this case. The evidence of the k⊥ model does
become higher than the Bohm model and the error lower. This again testifies
to the importance of the statistical model and thus on the hypotheses made in
the likelihood function in a Bayesian analysis.

Based on the results of table 5.3, we decide to only investigate the kE variant
of the k⊥ model. The k⊥ − ζ⊥ model was shown not to lead to improvement,
while it would need an additional model for the enstrophy equation. This is
also the reason why we have not considered the enstrophy balances in section
5.2.2. While kE∗ was shown to be a better predictor for D, kE is also deemed
to be adequate. Moreover, constructing a model equation for kE∗ would be
considerably more difficult because new terms due to the pressure work on the
polarisation velocity and the artificial polarisation would need to be modelled
(see section 5.2.2 and figure 5.7 in particular).

Model for the kE equation

In section 5.2.2 it has been shown that the balance of kE is dominated by the
interchange source and the sheath loss sink, exactly like it was in the E×B-only
case. In addition, the interchange term in the kE balance is the same in both
cases, such that the analytical interchange relation 4.23 derived in section 4.2.1
still holds. Hence, the only term that still requires modelling is the sheath loss
term. A Bayesian inference is run for this term with a very similar setup as
that for the diffusion coefficient in the previous section. The main difference is
that now the likelihood function is based on the relative error, i.e. the model
error for each data point is assumed to scale with the value of the data point
σi = σrelOi as in expression 3.64. The noise on the data for the TW case was
smaller here, such that this statistical model could be used.

The sheath loss term was found to still largely follow the scalings identified for
the E×B-only case in chapter 4. This is illustrated in table 5.4, which compares
the sheath models for the E×B-only and the TW case. Here as well, the error
of the sheath models is higher in the TW case. Recall that this may not only
be a result of the performance of the physical model but may also be due to
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the data. Also, remember that the evidence cannot be compared between both
cases, because of the difference in output data. While there is a notable shift in
the model coefficients between both cases, it is less significant than it was for
the diffusion models in table 5.3, at least for the E×B-only evaluation of the
models. This E×B-only evaluation is observed to be a better predictor than
the evaluation including the diamagnetic kinetic energy, both in terms of error
and in terms of evidence. This is rather logical since the sheath term itself
only contains the electrostatic potential and does not include a direct link with
the pressure and thus the diamagnetic drift. Lastly, it is remarkable that the
k⊥ − ζ⊥ model for the Sk (see expression 4.50) does less well than the simpler
k⊥ model for it (see expression 4.30) for the TW data, while it is the other way
around for the E×B-only case. No explanation for this has yet been found.

Table 5.4: Bayesian analysis of the proposed models for the sheath loss term
in the k⊥ equation for the E×B-only and the TW cases. Parameter values are
reported at MAP.

E×B-only TW
model for Sk parameter kE/ζE kE/ζE kE∗/ζ,E∗

C||,k
cs√
L||
n̄k

C||,k[−] 0.475 0.423 0.312
σrel[%] 11.9 17.6 27.2

logevidence 40342 37711 36384

C||,k
cs
L||

n̄k2

ζ

C||,k[−] 4.39 6.19 1.17
σrel[%] 10.4 22.2 45.2

logevidence 40751 37011 34840

kE transport model for the TW case

The previous section showed that the submodels from the k⊥ developed for
the E×B-only case in section 4.3 still hold to some extent in the TW case. In
this section, it will be investigated if the full model, combining the various
submodels, can self-consistently reproduce the TOKAM2D reference data. The
full model that will be used is that shown in equations 4.36-4.39, repeated below
for convenience:
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∂n̄

∂t
+∇ · Γn,t,E = S̄n − C||,n

csn̄

L||
, (5.46)

Γn,t,E = −CD
√
kE∇⊥n̄ = −D∇⊥n̄, (5.47)

∂n̄kE
∂t

+∇ · ΓkE = gTΓn,t,E − C||,k
cs√
L||

n̄kE , (5.48)

ΓkE = kEΓn,E − CDkn̄D∇kE . (5.49)

Note that we have already dropped the mean-field and classical transport
terms in the continuity equation since these are negligible in the case under
consideration. In addition, a small correction factor has been used for the
sheath loss sink of particles in equation 5.46.

The model coefficients used for both cases are summarised in table 5.5. Note
that the C||,k parameters differ slightly from those shown in 5.4. The reason for
that is that in the full models, the sink coefficient has been tuned such that it
compensates the interchange source instead of really representing the sheath
loss sink. This way, secondary sink terms are also implicitly modelled. Secondly,
the value of the CD coefficient for the E×B-only case has been chosen to be the
one obtained with scaled errors in the Bayesian inference (with higher evidence)
instead of the value shown in table 5.3.

Table 5.5: Model parameters used in DOL simulations simulations.

CD C||,k CD,k C||,n
E×B-only 23.3 0.575 0.79 0.997

TW 42.8 0.407 0.79 0.997

Next, equations 5.46-5.49 with the parameters shown in table 5.5 are solved
using the DivOptLight (DOL) finite volumes mean-field transport code. As the
name suggests, DOL is a simplified version of the DivOpt code [52, 55] used in
section 4.3.3. In DOL, all contributions in the poloidal direction are neglected
and sheath conditions are added as sinks in the resulting 1D equations. This
code allows to self-consistently simulate the transport, without needing input
from TOKAM2D data. In order to properly compare, the geometry of DOL
replicates the 1D equivalent of the TOKAM2D geometry and the particle and
turbulent kinetic energy fluxes obtained from the TOKAM2D reference data are
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applied as boundary conditions. As such, the DOL setup is equivalent with the
original TOKAM2D setup averaged over the y-direction. Note that again only
the central part of the TOKAM2D domain is considered where the influence of
the fringe regions and the particle sources is negligible.

Figure 5.9 shows the results of the default simulation for both the E×B-only and
the TW case. As can be seen from figure 5.9a, the density profile is captured
rather well for both cases. Furthermore, the TW density profile is much flatter,
which is the result of the higher turbulent diffusion coefficient shown in figure
5.9b. While the data for these transport coefficients is rather noisy, they seem
to be reproduced rather well by the DOL simulations in both cases. Lastly,
also the E×B-only turbulent kinetic energy is much higher for the TW case
as shown in figure 5.9c. This quantity as well is captured to an acceptable
accuracy by both cases. However, their seems to be a mismatch around the
boundaries for the TW case, which is presumably because of the lacking models
for the transport of kE . The trend in the center of the domain seems to be
accurately represented though.

DOL simulations have likewise been conducted for the other TOKAM2D
reference simulations. The parameters and setup of the simulations was exactly
the same for all DOL simulations, except for the boundary conditions which
represent the incoming and outgoing fluxes for each individual simulation.
Figure 5.10 summarises the results of all these simulations in a scatter plot.
Each marker in these plots indicates the results of a single DOL-TOKAM2D
simulation that has been averaged over the radial direction. These figures tend
to give a good idea of the model performance in TOKAM2D parameter space.
Figure 5.10a shows that the main trend in the diffusion coefficient seems to be
captured for both cases, despite significant remaining scatter. Surprisingly, the
R2 value is even higher for the TW case than for the original E×B-only case.
This is due to the strong variations in viscosity ν present in the data set, for
which the k⊥ model has already been shown to work poorly in chapter 4. Even
though the reason for this remains obscure, the viscosity variations seem to have
less effect on the TW case. This might be related to the change in the definition
of W from WE to WTW in the viscous term of the charge balance equation
5.16. Figure 5.10b then shows the underlying results for kE . Here as well the
DOL simulations are rather accurate. For kE , the R2 value is higher for the
E×B-only case. Note that a Bayesian inference for the combined posterior of
all parameters of the full model (as conducted in section 4.5) is not attempted
for the TW case.

The conclusion from figures 5.9 and 5.10 is that the kE model captures the
dominant dynamics of the turbulent transport since it can predict profiles of
relevant quantities with good accuracy. This is true for both the E×B-only case
studied in detail in section 4.3 and for the TW case. In addition the model also
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Figure 5.9: Comparison of radial profiles of forward mean-field DOL simulations
to representative TOKAM2D reference data for the TW and E×B-only cases.

gives a reasonably good idea of the behaviour in parameter space for both cases,
even though there clearly is room for improvement in that aspect. However, it
has to be noted that different model parameters are needed for both cases.

5.2.4 Conclusion

This section has clearly proven that incorporating the effect of the diamagnetic
drift in the plasma vorticity has a significant effect on plasma edge turbulence and
the resulting transport. Analytical derivations showed a nonphysical “artificial
polarisation” term to appear in the total turbulent kinetic energy equation.
Evaluating the energy balance showed it to become an important source term.
This poses questions on the physical validity of the reference data.
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Figure 5.10: Scatter plots comparing forward mean-field DOL simulations with
TOKAM2D reference data for the TW and E×B-only cases. Each marker in
the plots represents the radial average of a single simulation in a database of
simulations.

Equations have likewise been derived for the E×B component of the turbulent
kinetic energy only. The balance of this equation approximately reduced to a
balance between the interchange term and the sheath loss term, as was the case
in the E×B-only case in section 4.3. The closure models developed for that
case still hold approximately in the TW case considered here, even though the
model parameters changed significantly. This may be due to the changes in
the structure of the turbulence caused by the new source and sink terms that
come into play. Preliminary results seem to indicate that the spectral structure
of the phase difference between density and potential fluctuation driving the
transport in particular changes significantly.

Comparing simulations with the contribution from the diamagnetic drift to
the vorticity to equivalent simulations without this contribution showed both
the turbulent kinetic energy (E×B-only and total) and the effective turbulent
diffusion coefficient to be much larger in the TW case. This trend is reproduced
by the mean-field model, because of the adjusted model parameters. Nonetheless,
this seems to testify to the robustness of the physics in the k⊥ transport model.

It remains unclear why exactly the turbulence intensity and the turbulent
transport increase and why the model parameters shift. The physical
mechanisms for this and thus the physical reason for the influence of the
diamagnetic contribution remain obscure. However, the implicit presence of the
artificial polarisation term in the equation set limits the relevance of further
studies of these phenomena with (the current version of) the TOKAM2D code.
It seems necessary to further investigate this in a different turbulence code
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(or in an improved version of TOKAM2D) where the diamagnetic current’s
contribution to the divergence of the polarisation current is more carefully
treated.

5.3 Conclusion

This chapter extended the analysis of the E×B-only 2D isothermal SOL case
studied in chapter 4 by adding a core region to it in section 5.1 and by adding
the inertia of the ion diamagnetic drift in the polarisation current in section
5.2. Either of the effects that were added introduces new dynamics in the
simulations. The core region most notably featured strong shear flows and
DW-like dynamics instead of a sheath connection, while the inclusion of the
diamagnetic drift’s inertia led to new terms becoming significant in the kinetic
energy balance. As a result, changes in the structure of the turbulence occurred
with respect to the standard case investigated in the previous chapter. Even
though the mean-field turbulent transport models developed for the standard
case still capture some of the basic elements for the new cases, adjustments are
required to reflect these changes in the character of the turbulence.

While several modifications have been explored to improve the performance of
the models, further research is still needed to elucidate the precise role of the
new dynamics and instabilities. In particular, a model with fixed parameters
that holds irrespective of the exact case that is investigated remains elusive. In
order to achieve such model, it might be interesting to investigate still different
characteristic quantities of the turbulence, such as the phase shift between
density and potential fluctuations for example. For investigating the core region
in particular, it seems preferable to continue this research for 3D reference data
though, since the DWs are effectively a 3D phenomenon such that only an
approximate description of them was possible in 2D. For the TW case, reference
data should be used in which the artificial terms identified in this chapter do
not occur.





Chapter 6

2D anisothermal E×B drift
turbulence in the SOL

While chapters 4 and 5 have only considered edge plasmas in which the
ion and electron temperatures were constant in time and in space, this
chapter1 investigates the SOL under fully anisothermal conditions. Hence,
the temperatures are allowed to evolve self-consistently, introducing not only
mean-field temperature profiles, but also spatio-temporal fluctuations of Ti and
Te. The 2D electrostatic conditions without neutrals are maintained here. In
addition, only the E×B drift will be considered in the inertia again (contrary
to the generalisation allowed in section 5.2).

Because temperature fluctuations are included, part of the mean-field radial
heat flux is now due to turbulent convection. This constitutes a new closure
term which needs to be modelled in addition to the average turbulent particle
flux. Furthermore, it is investigated whether the temperature fluctuations
themselves introduce changes to the turbulent plasma dynamics. In particular,
the sheath-driven conducting-wall (SCW) instability [15, 17, 20, 21] is found to
appear as an additional source of the turbulence. The k⊥ model developed for
the isothermal case in section 4.3 will be extended to self-consistently include
these new effects.

The remainder of this chapter is structured as follows. Section 6.1 will briefly
1Parts of this chapter have been published in “Coosemans, R., Dekeyser, W., Baelmans,

M. (2022). A self-consistent mean-field model for turbulent particle and heat transport in
2D interchange-dominated electrostatic ExB turbulence in a sheath-limited scrape-off layer.
Contributions to Plasma Physics, e202100193” [47].
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introduce the anisothermal TOKAM2D model and derive the corresponding
mean-field equations. The SCW instability will be identified in this section and a
case will be set up where this instability is artificially removed. Comparison with
the original case allows to single out the influence of the SCW instability. Section
6.2 then investigates models for the turbulent transport coefficient for particle
and heat transport, the interchange source of k⊥ and the sheath contribution
to k⊥ separately. Next, section 6.3 combines these individual “submodels” into
a self-consistent model for the mean-field transport. Forward simulations with
this model are compared to the TOKAM2D reference data. Section 6.4 then
comes back to the SCW instability analysing the effects resulting from it in
more detail. Finally, section 6.5 summarises the main findings of this chapter.

6.1 Anisothermal TOKAM2D setup and equations

The isothermal TOKAM2D code and the simulation setup are discussed in
detail in section 4.1. In this chapter, thermal energy equations are added to
describe the evolution of the ion and electron temperatures, as described in
appendix B.1. The subset of the full TOKAM2D equations B.21-B.25 that
describes the anisothermal SOL which will be considered in this chapter is the
following [141, 109, 116]:

∂n

∂t
+ VE · ∇n−D0∇2

⊥n = Sn −
ncs
L||

exp(Λ− φ

Te
), (6.1)

∂W

∂t
+ VE · ∇W − ν0∇2

⊥W = − g
n

∂p

∂y
+ cs
L||

(1− exp(Λ− φ

Te
)), (6.2)

∂pi

∂t
+ VE · ∇pi − χ0∇2

⊥pi = Spi −
2
3
γipics
L||

− 2me

mi

pi − pe

τei
, (6.3)

∂pe

∂t
+ VE · ∇pe − χ0∇2

⊥pe

= Spe −
2
3
γepecs
L||

exp(Λ− φ

Te
) + 2me

mi

pi − pe

τei
, (6.4)

W , ∇2
⊥φ, VE , b×∇φ. (6.5)

Note that we reintroduce the assumption that the only contribution to the
voriticity W and thus to the inertia is due to the E×B drift. It can also
be remarked that the energetic coupling between the kinetic energy and the
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thermal energy is not self-consistently included in these equations. Following
the energetic interactions outlined in section 3.2.5, the total kinetic energy
interchange and viscous stress terms (first and third term on the RHS of
equation 4.9) should exchange energy with the thermal energy equations.2

In this thesis, we are interested in modelling the average behaviour of this
system. Time- (or ensemble-) averaging equations 6.1, 6.3 and 6.4 yields the
following mean-field equations.

∂n̄

∂t
+∇ · Γn,E = S̄n −

1
L||

csn exp(Λ− φ

Te
) +D0∇2

⊥n̄, (6.6)

∂p̄i
∂t

+∇ · Γpi,E = S̄pi −
2
3
γi
L||

cspi + χ0∇2
⊥p̄i −

2me

mi

p̄i − p̄e
τei

, (6.7)

∂p̄e
∂t

+∇ · Γpe,E

= S̄pe −
2
3
γe
L||

cspe exp(Λ− φ

Te
) + χ0∇2

⊥p̄e + 2me

mi

p̄i − p̄e
τei

, (6.8)

Γn,E , nVE = n̄V̄E + n′V′E , Γn,m,E + Γn,t,E , (6.9)

Γp,i/e , nTi/eVE = T̃i/eΓn,E + nT ′′i/eV
′′
E , Γpi/e,m,E + Γpi/e,t,E . (6.10)

Note that the mean-field continuity equation had already been derived as
equation 4.5 when treating the isothermal case. Furthermore, the definitions
of the mean-field E×B fluxes correspond to those used for the general case in
equations 2.65 and 2.70. Remark also that the convective terms VE · ∇u on the
LHS of equations 6.1, 6.3 and 6.4 are written as ∇ · (uVE) in equations 6.6-6.8
for generality. In the TOKAM2D case where ∇ ·VE = 0, this is analytically
exact.

Remember also that as in the isothermal TOKAM2D case, the radial component
of particle flux due to convection with the mean-field E×B velocity, Γn,m,E ,
is zero, since V̄E,x = 0 due to symmetry. For the heat flux, both convection
with the mean-field particle flux, Γpi/e,m,E3 and the turbulent part Γpi/e,t,E
are relevant, both for ions and electrons. This is illustrated in figure 6.1, where

2The sheath loss term (second term on the RHS of equation 4.9) on the other hand is
interpreted as the −∇ ·φJ|| parallel transport term which does not interact with other energy
equations.

3Note that in this terminology, the mean-field pressure flux Γpi/e,m,E includes a
contribution due to convection with the mean-field turublent particle flux T̃i/eΓn,t,E .
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Figure 6.1: Decomposition of particle and thermal flux for the anisothermal
TOKAM2D case.

these terms are evaluated for a representative TOKAM2D case. As in the
previous chapter, the radial profiles in this figure are obtained by averaging the
TOKAM2D data in time and over the (periodic) y-direction.

Inspection of equations 6.6-6.10 shows that only the turbulent particle and
thermal fluxes, Γn,t,E and Γpi/e,t,E respectively, and the sheath losses on the
RHS of equations 6.6-6.8 require closure. We will mostly focus on the closures
of these turbulent fluxes. As in equations 3.1 and 3.2, a diffusive model is
proposed:

Γn,t,E ≈ −D∇n̄, (6.11)

Γpi/e,t,E ≈ −χi/en̄∇T̃i/e. (6.12)

Note that the latter expression represents the flux of pressure, which still needs
to be multiplied by a factor 3/2 to obtain the turbulent E×B thermal energy
flux.

Following chapters 4 and 5, the transport coefficients in these expressions will
be related to the turbulent kinetic energy k⊥ in section 6.2.1. With this in mind
and to get more information on the underlying dynamics of the turbulence,
the balance of the turbulent kinetic energy is studied. Since only the E×B
velocity is considered in the inertia, we consider the E×B-only kinetic energy
k⊥ = nV′′2E /2 in this chapter.4 The transport equation for this quantity has

4As there is again no cause for confusion in this chapter, we choose to use the symbol k⊥
for generality again.
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Figure 6.2: Turbulent kinetic energy balance according to equation 4.16 for a
representative anisothermal TOKAM2D simulation.

been derived analytically in section 4.2.1 as equation 4.16. Note that this
equation is equally valid in the anisothermal case.

Figure 6.2a shows an evaluation of the terms in this equation for a representative
TOKAM2D simulation. The label SCW1 in this figure indicates that the full set
of anisothermal equations is used, which includes a new sheath conducting wall
instability compared to the isothermal case. It is clear from this figure that the
interchange term Gk (first term on the RHS of equation 4.16) is the dominant
source, while the sheath term Sk (second term on the RHS of equation 4.16)
provides the dominant sink of the turbulence. The viscous sink (third term on
the RHS of equation 4.16) and the subgrid term, which is the unbalance on
the numerical evaluation of equation 4.16, act as secondary sinks. The other
terms in the equation do not seem to play an important role. This picture is
qualitatively very similar to that painted in section 4.3 for the isothermal case.

Closer evaluation of the sheath term shows that its behaviour is much more
complex in the anisothermal case than it was in the isothermal case though. A
series expansion in n, φ and Te around n̄, φ̄ and T̃e respectively up to fluctuations
of second order yields
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Sk , − 1
L||

csnφ′(1− exp(Λ− φ

Te
)) ≈ Sφ2 + SφTe + Snφ + SφT

,
n̄
√
T̃i + T̃e
L||

exp(Λ− φ̄

T̃e
)(−φ

′2

T̃e
+ φ̄

T̃ 2
e

φ′T ′′e )

− 1
L||

(1− exp(Λ− φ̄

T̃e
))(
√
T̃i + T̃en′φ′ +

n̄

2
√
T̃
φ′(T ′′i + T ′′e )). (6.13)

As is shown in figure 6.3a, the first term in this expansion provides a sink indeed,
but the second contribution acts like a large source of k⊥. The last two terms
in the series expansion are small because (1− exp(Λ− φ̄/T̃e)) ≈ 0. The series
expansion is a reasonable approximation since the sum of the four contributions
is close to the original, total term, as indicated in the figure with the dashed
red line. While in the isothermal case only the first (and third) terms were
present, the second (and fourth) source term comes into play now that electron
temperature fluctuations are present in equations 6.1-6.4. Physically, this new
source term can be identified with the sheath conducting wall (SCW) mode
described for TOKAM2D specifically in Refs. [17, 15] and in general in Refs.
[21, 20]. It will be shown to significantly influence the results.
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Figure 6.3: Decomposition of the sheath term Sk in the turbulent kinetic energy
equation according to series expansion 6.13.

As described by Baudoin [15], the basic mechanism of the SCW instability is
the following. When an electron temperature perturbation in the diamagnetic
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direction is present, this will cause the electrostatic potential to follow this
perturbation such that the factor exp(Λ−φ/Te) in the RHS of equations 6.6-6.8
remains limited. The resulting electric field in the diamagnetic direction will
then lead to a radial E×B drift. If a radial gradient in the electron temperature
is present, it will be convected by this E×B drift which develops and amplifies
the initial perturbation. Hence, this instability will grow and provide a drive
for turbulence. Dedicated TOKAM2D simulations where the interchange term
was set to zero (g = 0) have shown that this SCW mode suffices to develop a
turbulent flow field.

In order to distinguish between the effect of this SCW mode that appears in
the anisothermal case, and other possible effects inherent to the inclusion of
temperature variations, a case is set up in which the SCW mode is removed.
This will be called the SCW0 case, while the original case is referred to as SCW1.
The SCW0 case is constructed by replacing the local, instantaneous Te by the
diamagnetic average 〈Te〉y in all the exponential terms in equations 6.6-6.8, as
was suggested in Ref. [15]. In the SCW instability mechanism described above,
this means that the electrostatic potential no longer needs to follow diamagnetic
fluctuations of Te, such that no radial E×B drifts originate to compensate these
diamagnetic fluctuations and the instability mechanism is broken. In equation
6.13 as well, this reduces the factor φ′T ′′e in the SCW drive to 〈φ〉′y〈Te〉′′y . Since
the remaining fluctuations in the latter expression are already averaged over the
diamagnetic direction, it is expected to be much smaller than the former. Note
that it need not be exactly zero since fluctuations in time of diamagnetically
averaged profiles may still persist.

Figure 6.3b shows that the SCW contribution SφTe to Sk is indeed largely
suppressed in the SCW0 case as intended. However, comparing the k⊥ balance
shown in 6.2b of this case to that of the original SCW1 case in figure 6.2a, it is
observed that they differ very little, i.e. the sum of all sheath terms remains
largely unchanged. Nonetheless, it will be shown that the resulting value of k⊥
does significantly differ, as well as the model coefficients that will be required
for both cases.

Another difference with the isothermal SOL case is that stronger shear flows
tend to develop. As in the isothermal case, the electrostatic potential φ tends
to follow the electron temperature Te to limit the magnitude of the sheath loss
terms ∼ exp(Λ− φ/Te) in equations 6.1, 6.2 and 6.4 (both in the SCW1 and
SCW0 case). Since Te is now allowed to evolve self-consistently, both Te and φ
now develop a radial profile, resulting in a radial shear of the diamagnetic E×B
velocity ∂xVE,y = ∂2

xφ. As far as the author has been able to uncover, this flow
shear does not seem to play a large role. The Reynolds stress contribution to
the k⊥ balance (−nV′′E,xV′′E,y : ∂xṼT

E,y) seems to remain small. Flow shear was
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not identified to be of major importance for the turbulent transport relation
either.

6.2 k⊥ model for radial turbulent transport

In this section, a mean-field model for the turbulent transport coefficients D, χi
and χe in equations 6.11 and 6.12 is constructed. This is done by relating these
coefficients to the turbulent kinetic energy, and constructing a model equation
for the latter. The closure models required for this are constructed based
on an analysis of a set of TOKAM2D simulations. In these simulations, the
TOKAM2D parameters have been varied in the following range: g = 3−12×10−4,
1/L|| = 0.2− 2× 10−4, D0 =ν0 = 2.5− 10× 10−3, Tinj,i/e = 2− 8. This set of
simulations has been run twice: once with the SCW instability (SCW1 case)
and once with the SCW instability suppressed (SCW0 case). See appendix D.3
for a more detailed description of this set of TOKAM2D simulations.

6.2.1 Diffusion model for heat and particle transport

A first interesting observation to make is that the turbulent particle transport
coefficient is very similar to that for the ion and electron heat transport, i.e.
D ∼ χi ∼ χe as was already remarked in Ref. [45]. The transport coefficients
only seem to differ by a factor of order unity, as is illustrated in figure 6.4. Each
marker in this plot represents the transport coefficients of a single TOKAM2D
simulation which have been averaged over time, x- and y-directions. Even
though the x-direction is not a symmetry direction and strong profiles are
present along it, such plots tend to give a good overview of the trends in
parameter space. It can be seen that the proportionality constants between
D, χi and χe slightly differ between the SCW1 and the SCW0 case. In the
SCW1 case, χi becomes noticeably larger than D and χe, while the differences
between the three are smaller in the SCW0 case.

As a first model, it is proposed that all three transport coefficients follow a
scaling with

√
k⊥ as was found to hold approximately for the isothermal case in

chapters 4 and 5. To estimate the closure constants from the set of TOKAM2D
reference simulations, the Bayesian inference framework presented in section
3.4 is used. The absolute formulation for the standard deviation of the model
error (see equation 3.63) is used since using the relative error formulation (see
equation 3.64) led to unsatisfactory results because of the reference data having
very low values towards the other side of the TOKAM2D computational domain.
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Figure 6.4: Scatter plot of ion and electron heat transport coefficients against
the particle transport coefficient. Each marker represents the radial average of
a single simulation in a database of TOKAM2D simulations.

The priors for the model constants and the standard deviation of the model
errors are taken as in equation 5.14 in chapter 5:

{
π(C) = 2N(0, 100) if C ≥ 0
π(C) = 0 if C < 0

{
π(σabs) = 1/σabs if σabs ≥ 0
π(σabs) = 0 if σabs < 0

(6.14)

The resulting MAP values for the transport coefficients and model error standard
deviation as well as the model evidence are shown on the fourth row in table 6.1.
The first three rows in the table show the results for various (gyro-)Bohm-like
scalings. Furthermore, figures 6.5 and 6.6 show the radial profile for a typical
simulation and a scatter plot across the set of simulations for the particle
diffusion coefficient for the MAP values. From figure 6.5 it is clear that the
k⊥ model captures the profile of the diffusion coefficient very well, both for
the SCW1 and the SCW0 case. It can be noted that the match at the left
side of the domain is less convincing, which is presumed to be due to the
non-negligible influence of the particle and energy sources that are present there.
In addition, flow shear is also strongest in this region, which might also influence
the transport. Figure 6.6 indicates that the basic scaling in parameter space
is also captured by the k⊥ model for both cases. However, some discrepancy
remains in the finer trends. This discrepancy as well as the scatter on the results
is markedly higher for the SCW1 case than for the SCW0 case.
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Even though the results cannot strictly be compared between the different cases
because the output data is different, it seems the k⊥ model works better for the
SCW0 case judging by the results in figure 6.5 as well as by the σabs values in
table 6.1. Furthermore, the agreement of the CD parameter of the isothermal
case (∼ 23− 25, see tables 4.2, 5.1 and 5.3 ) is better with the SCW0 case than
with the SCW1 case.

Table 6.1: Bayesian analysis of the proposed models for the particle and
heat transport coefficients for the anisothermal SCW1 and SCW0 datasets.
Parameter values are reported at MAP.

SCW1 SCW0
Model parameter D χi χe D χi χe

CTe

C[−] 1.21 1.43 1.04 1.05 0.953 0.958
σabs[−] 0.266 0.321 0.246 0.227 0.217 0.245

logevidence -470 -1368 -101 290 503 -76

CgT
3/2
e

C[−] 1685 1988 1458 1461 1320 1315
σabs[−] 0.388 0.460 0.348 0.339 0.319 0.348

logevidence -2397 -3272 -1846 -1725 -1412 -1823

CT
3/2
e ∇ ln p̄

C[−] 55.3 66.1 47.6 49.5 44.7 44.0
σabs[−] 0.533 0.629 0.471 0.444 0.442 0.433

logevidence -3784 -4568 -3194 -2912 -2539 -2884

C
√
k⊥

C[−] 16.8 19.9 14.5 20.8 18.9 19.2
σabs[−] 0.189 0.229 0.189 0.121 0.120 0.139

logevidence 1181 257 1168 3283 3321 2627

C k⊥√
ζ⊥

C[−] 4.33 5.14 3.74 6.50 5.90 5.97
σabs[−] 0.194 0.237 0.190 0.0977 0.104 0.136

logevidence 1039 81 1134 4318 4021 2756

C
√
k⊥sinΨ

C[−] 25.0 29.2 21.6 22.1 20.1 20.4
σabs[−] 0.163 0.205 0.170 0.123 0.124 0.138

logevidence 1504 783 1681 3123 3183 2665

C k⊥√
ζ⊥

sinΨ
C[−] 6.59 7.81 5.70 6.96 6.31 6.40
σabs[−] 0.143 0.188 0.152 0.0924 0.103 0.130

logevidence 2505 1199 2211 4588 4078 2964

C Gk
Gk+CSCWSφTe

√
k⊥

C[−] 21.3 24.8 18.4 21.4 19.2 19.2
CSCW [−] 0.143 0.128 0.146 0.257 0.156 8.62E-3
σabs[−] 0.154 0.192 0.164 0.119 0.119 0.139

logevidence 2142 1078 1832 3375 3349 2619

C Gk
Gk+CSCWSφTe

k⊥√
ζ⊥

C[−] 5.76 6.61 5.02 6.50 5.90 5.97
CSCW [−] 0.176 0.151 0.184 1.23E-3 2.98E-5 3.55E-5
σabs[−] 0.155 0.199 0.161 0.0977 0.104 0.136

logevidence 2101 921 1930 4308 4011 2745

In addition, table 6.1 and figures 6.5 and 6.6 also show the results for the
Bohm and gyro-Bohm scalings 2.81 and 2.82. The Bohm scaling in normalised
TOKAM2D units and with the magnetic field assumed to be constant becomes
D ∼ Te. Under the same assumptions and using the pressure decay length as the
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Figure 6.5: Comparison of radial diffusion coefficient profiles for different models
for a representative anisothermal TOKAM2D simulation for the SOL.

perpendicular length scale leads to D ∼ T 3/2
e ∇ ln p̄ for the gyro-Bohm scaling.

Alternatively, when the tokamak minor radius is used as the characteristic
perpendicular length scale, and a constant aspect ratio is assumed such that
L⊥ ∼ a ∼ R ∼ 1/g, the gyro-Bohm scaling becomes D ∼ gT 3/2

e . (See also table
6.4 for a summary.)

The evidence of these Bohm and gyro-Bohm scalings can be seen to be much
lower than that of the k⊥ model for all transport coefficients, both in the
SCW1 and the SCW0 case. Figure 6.5 shows that the Bohm scaling manages
to capture the trend in the profile sufficiently well, while the profiles of the
gyro-Bohm scaling are too steep due to the T 3/2

e scaling. Also, oddly, the
coefficients for the gyro-Bohm scaling seem to be poorly tuned for this reference
case. Considering the behaviour in TOKAM2D parameter space then, the k⊥
model again outperforms the Bohm and gyro-Bohm models. This confirms the
results of the comparison for the isothermal case presented in section 4.3.

radially averaged values for a database of TOKAM2D simulations

Sections 4.4 and 5.1 have tried to improve the accuracy of the k⊥ model by
taking the effect of enstrophy and flow shear into account in the diffusion
relation. The results in table 6.1 indicate that the enstrophy does not allow to
remove the remaining model discrepancies in the SCW1 case, since the evidence
for the k⊥ − ζ⊥ model is lower than that of the k⊥ model. For the SCW0 case,
the inclusion of the enstrophy does allow a large improvement of the results.
Including the flow shear can improve the results, although this seems to play a
secondary role.
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Figure 6.6: Scatter plot showing radially averaged values of different models for
the diffusion coefficient for a database of TOKAM2D simulations.

Hence, in the SCW1 anisothermal case the main reason for the remaining
model discrepancy is due to the SCW drive coming into play next to the
interchange drive. Each instability mechanism individually would lead to a
different structure of the turbulence. Because of this, the relation between the
fluctuation level, and thus k⊥, and the resulting transport is different in both
regimes. As a result, the diffusion relation changes as the relative magnitude
of both driving mechanisms of the turbulence varies. The strong influence of
the SCW term on the accuracy of the k⊥ model is illustrated in figure 6.7.
When the SCW term SφTe is large compared to the interchange term Gk, the
turbulence largely follows the SCW turbulence structure. The small phase
difference between density and potential fluctuations for this kind of turbulence
leads to lower transport for the same level of k⊥, resulting in an overestimation
of D as seen in the figure. Note that this explanation is in line with the lower
CD coefficient found here than in the isothermal case where only interchange
was present.

The influence of the SCW term on the diffusion models will be further analysed
in section 6.4. It will be found that correcting the diffusion relation for the
phase difference between density and potential fluctuations (ψ) can significantly
improve the accuracy of the models. This leads to the last four models shown
in table 6.1 which will further be discussed there. Given the acceptable fit of
the transport coefficients illustrated above we keep the basic D ∼

√
k⊥ scaling

in the remainder of this section and in section 6.3, where we propose a closed
mean-field model for the anisothermal case.
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√
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model 6.16 for Sk against the relative importance of the SCW term in the k⊥
balance. Each marker represents the radial average of a single simulation in a
database of TOKAM2D SCW1 simulations.

6.2.2 Modelling the k⊥ equation

Having established that k⊥ can be used as a predictor for the turbulent transport,
we need to derive a model for k⊥. To this end we propose suitable closures
for the dominant interchange source and sheath sink terms in the transport
equation 4.16 of k⊥, neglecting other terms in the balance.

Section 4.2.1 has already derived an exact, analytical relation for the interchange
term in the TOKAM2D k⊥ equation. Equation 4.22 is repeated here for
convenience:

Gk = g(T̃ n′V ′E,x + nT ′′V ′′E,x) = g(T̃Γn,E,t,x + Γpi,E,t,x + Γpe,E,t,x), (6.15)

where T is defined as T = Ti + Te. Hence, with the closures for the turbulent
particle and heat fluxes available from the previous section, no additional
closures are required for the interchange term. It can again be observed that
this expression directly relates the interchange drive of the turbulence with the
turbulent E×B heat flux and with the magnetic field strength gradient through
the factor g. Note also that if the diffusive relations 6.11-6.12 are filled out in
the interchange relation 6.15, the drive of the turbulence occurs through the
mean-field gradients (in combination with the magnetic geometry).

The sheath term Sk in k⊥ equation 4.16 is the dominant sink, as was concluded
from figure 6.2. Closer analysis in equation 6.13 revealed it to be composed of
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multiple contributions. In the SCW1 case, one contribution acts as a large sink
and another as a large source (see figure 6.3a). So far we have neglected this
detailed behaviour in our model development effort though. One reason for this
is that the real underlying parallel dynamics can only be crudely modelled in 2D
turbulence codes like TOKAM2D. A dedicated analysis of 3D turbulence code
data would probably be required to properly disentangle these effects. Hence,
we only use a model for the total sheath term for now:

Sk = −C||,k
cs,m√
L||T̃e

n̄k⊥, (6.16)

where we defined cs,m =
√
T̃ as a proxy for the average sound speed. This

model is inspired by the isothermal model 4.30 for the sheath term used in
section 4.3. Table 6.2 shows the results of a Bayesian analysis for the SCW1
and SCW0 data sets. This analysis was carried out analogously to that for the
transport coefficients in section 6.2.1. However, here the relative formulation
for the model error standard deviation has been used, which was found to yield
a higher evidence than that of the absolute error formulation. The prior in
equation 6.14 is again used (but with σrel instead of σabs). From table 6.2 it is
clear that the relative error of the model is much lower for the SCW0 case.

Table 6.2: Bayesian analysis of the proposed model for the sheath term in the
k⊥ equation for the anisothermal SCW1 and SCW0 datasets. Parameter values
are reported at MAP.

Model for Sk parameter SCW1 SCW0

−C||,k
cs,m√
L||T̃e

n̄k⊥
C||,k[−] 27.4 46.9
σrel[%] 0.585 0.18

logevidence 57745 64166

Figure 6.8 illustrates the performance of sheath model 6.16 when the MAP value
of the model parameter is used for both the SCW1 and the SCW0 case. The
model predicts the radial profile for single simulations very well, especially for the
SCW0 case. However, in the SCW1 case it fails to predict more detailed trends
with varying TOKAM2D parameters. The main reason for this is presumably
the varying ratio between both contributions of the sheath loss term. This
hypothesis is supported by the much better performance for the SCW0 case.
Figure 6.7 also shows the model error to be an increasing function of the relative
strength of the SCW term. This further supports the idea that a strong SCW
contribution leads to a less negative total sheath term and through that to an
overestimation of the magnitude of this term in model 6.16.
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Figure 6.8: Comparison of the TOKAM2D sheath term for k⊥ with model 6.16
for the SCW1 and SCW0 cases.

6.3 Mean-field transport model results

Filling out the models found in section 6.2 in the mean-field equations 6.6-6.8
and 4.16, the following self-consistent model is obtained:

∂n̄

∂t
+∇ · (Γn,m,E + Γn,t,E) = S̄n − C||,n

cs,mn̄

L||
, (6.17)

∂p̄i
∂t

+∇ · (T̃iΓn,m,E + T̃iΓn,t,E + Γpi,t,E)

= S̄pi −
2
3
C||,piγics,mp̄i

L||
− 2me

mi

p̄i − p̄e
τei

, (6.18)

∂p̄e
∂t

+∇ · (T̃eΓn,m,E + T̃eΓn,t,E + Γpe,t,E)

= S̄pe −
2
3
C||,peγecs,mp̄e

L||
+ 2me

mi

p̄i − p̄e
τei

, (6.19)

∂n̄k⊥
∂t

+∇ · (k⊥Γn,m,E + k⊥Γn,t,E + Γk⊥,t)

= g(T̃Γn,t,E + Γpi,t,E + Γpe,t,E)− C||,k
cs,m

L||
√
T̃e
n̄k⊥, (6.20)
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Γn,m,E , n̄V̄E , Γn,t,E = −CD
√
k⊥∇n̄,

Γpi,t,E = −Ci
√
k⊥n̄∇T̃i, Γpe,t,E = −Ce

√
k⊥n̄∇T̃e,

Γk⊥,t = −CD,k
√
k⊥n̄∇k⊥. (6.21)

Note that some additional closures have also been filled out. The sheath sink
terms on the RHS of equations 6.6-6.8 have been replaced by a straightforward
mean-field equivalent and a correction factor. This approximation is very
accurate. The classical diffusion terms have been neglected, since these are
much smaller than the turbulent transport, but could simply be reintroduced.
In equation 6.21, a simple diffusive model is proposed to close the remaining
transport terms Γk⊥,t on the LHS of equation 4.16. The mean-field E×B particle
transport Γn,m,E has been retained for generality, but will vanish in the 1D
simulations performed hereafter.

The basic physics of this model is that mean-field density and temperature
gradients lead to a turbulent E×B energy flux (if a nonzero k⊥ is present). If
these fluxes are oriented in the direction of decreasing magnetic field strength
(as indicated by g), these fluxes drive the interchange source of k⊥. This system
saturates when the mean-field gradients and k⊥ have reached a level that is
sufficient to carry the power and particles across the field lines, and at which
the sheath sink can balance the interchange drive of k⊥. Note that these physics
are very similar to that of the k⊥ model for the isothermal case developed in
section 4.3. The main difference is that the E×B turbulent heat flux driving the
turbulent kinetic energy now has multiple contributions. Next to the convection
with mean-field turbulent particle flux, ion and electron temperature turbulent
convection now also contribute. The interpretation of this model as a steady
state manifestation of the gradient removal mechanism [89, 114, 133] still holds
as well. As the mean-field gradients are reduced by the turbulent transport, the
turbulence itself is also reduced.

The above model 6.17-6.21 is used to simulate a 1D radial geometry with the
DivOptLight (DOL) code (see section 5.2.3). The model coefficients that are
used are summarised in table 6.3. It can be noted that the important parameter
C||,k is corrected with respect to the value shown in table 6.2 in order to
compensate for the effect of the minor terms that are not modelled explicitly.
As in the isothermal case, this has been done by redoing the Bayesian analysis
for the Sk term (with the same model 6.13), but using the Gk as reference data.
The CD,k parameter has been taken equal to that used in the isothermal case
in section 4.3.

The parameters and boundary conditions of the DOL simulations are set as
in the corresponding TOKAM2D simulations such that both can be readily
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compared. To this end, the same TOKAM2D parameters g, L||, γi, γe, τei
are used and the boundary conditions impose the TOKAM2D flux of particles,
thermal ion and electron energy and k⊥ at the boundaries. The fixed particle
and thermal energy sources S̄n, S̄pi and S̄pe have not been included since only
the region where these are negligible is simulated (these sources are implicitly
present in the imposed boundary condition fluxes). An equidistant 1D grid of
48 cells is used in all simulations.

Table 6.3: Model parameters used in 1D mean-field DOL simulations.

CD Ci Ce CD,k C||,n C||,pi C||,pe C||,k
SCW1 16.8 19.9 14.5 0.790 1.03 1.01 1.08 37.4
SCW0 20.8 18.9 19.1 0.790 0.992 1.01 0.998 54.9

Figure 6.9 shows the profiles of some key quantities of the DOL simulation of the
reference SCW1 case, and compares them to the original TOKAM2D profiles.
The figure illustrates that the mean-field k⊥ model manages to capture the
density and temperature profiles very accurately. In addition, the profile of the
turbulent kinetic energy is closely matched (although a minor offset remains),
leading to a very good estimation of the turbulent transport coefficients. One
level deeper, the interchange source and sheath loss sink of k⊥ are also very
well matched to the reference data. The transport of k⊥, which has only been
modelled very crudely, does not capture the reference data very well. Since the
transport represents only a minor term in the balance of k⊥ in the considered
cases, this does not lead to major errors. Nonetheless, this may explain the minor
differences with respect to the TOKAM2D reference data near the boundaries,
which is most pronounced for k⊥. Similar results have been obtained for the
SCW0 case, but these are not explicitly shown in the interest of space. Hence,
the model not only captures the relevant macroscopic quantities, but manages
to do so based on an accurate estimate of the underlying turbulent kinetic
energy driving the transport.

The model parameters shown in table 6.3 were well matched to the previous
simulation of the reference case since it lies in the middle of the scanned
operational range. Figure 6.10 now shows a scatter plot of the particle diffusion
coefficient and k⊥ for all the TOKAM2D simulations in the database against
the equivalent DOL simulations for both the SCW1 and the SCW0 case (all
with the same parameters shown in table 6.3). While the main trend in k⊥
across parameter space is captured, significant scatter clearly remains on the
estimate. Surprisingly, the R2 value is higher for the SCW1 case than for
the SCW0 case. Furthermore, figure 6.10 clearly shows that the k⊥ value is



210 2D ANISOTHERMAL E×B DRIFT TURBULENCE IN THE SOL

-20 0 20 40 60 80 100 120 140 160 180

radial position [
0
]

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

de
ns

ity
 [n

0
]

DOL
T2D

(a) density

-20 0 20 40 60 80 100 120 140 160 180

radial position [
0
]

0

0.2

0.4

0.6

0.8

1

1.2

1.4

te
m

pe
ra

tu
re

 [m
ic s,

0
2

]

DOL ion
DOL electron
T2D ion
T2D electron

(b) temperatures

-20 0 20 40 60 80 100 120 140 160 180

radial position [
0
]

0

0.2

0.4

0.6

0.8

1

1.2

1.4

tr
an

sp
or

t c
oe

ffi
ci

en
t [

02
0
]

DOL D
T2D D
DOL

i

T2D
i

DOL
e

T2D
e

(c) diffusion coefficient

-20 0 20 40 60 80 100 120 140 160 180

radial position [
0
]

0

0.5

1

1.5

2

2.5

3

3.5

tu
rb

ul
en

t k
in

et
ic

 e
ne

rg
y 

[m
ic s,

0
2

]

10-3

DOL
T2D

(d) turbulent kinetic energy

-20 0 20 40 60 80 100 120 140 160 180

radial position [
0
]

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

in
te

rc
ha

ng
e 

te
rm

 [m
in

0
c s,

0
2

0
]

10-5

DOL
T2D

(e) interchange term

-20 0 20 40 60 80 100 120 140 160 180

radial position [
0
]

-1.6

-1.4

-1.2

-1

-0.8

-0.6

-0.4

-0.2

0

S
he

at
h

lo
ss

te
rm

[m
in

0
c s,

0
2

0
]

10-5

DOL
T2D
T2D -G

k

(f) turbulent kinetic energy sink

-20 0 20 40 60 80 100 120 140 160 180

radial position [
0
]

-0.5

0

0.5

1

1.5

2

2.5

3

3.5

tu
rb

ul
en

tk
in

et
ic

en
er

gy
flu

x
[m

in
0
c s,

0
3

] 10-5

DOL
T2D

(g) turbulent kinetic energy flux

Figure 6.9: Comparison of radial profiles of a representative TOKAM2D SCW1
simulation to a forward mean-field DOL simulations with k⊥ model 6.17-6.21.
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Figure 6.10: Scatter plots comparing forward mean-field DOL simulations
against the original TOKAM2D reference data for the SCW1 and SCW0 cases.
Each marker in the plots represents the radial average of a single simulation in
a database of simulations.

significantly higher in the SCW1 case due to the contribution of SφTe to the
turbulent kinetic energy. Remarkably, the particle diffusion coefficient shows
much less discrepancies. This behaviour can be explained by the compensation
of the error caused by the SCW term on the estimate of k⊥ by the error on the
diffusion relation D ∼

√
k⊥ itself. As shown in figure 6.7, the SCW term leads

to an overestimation of D on the one hand. On the other hand, it likewise leads
to an overestimation of the magnitude of the sheath sink, leading in turn to an
underestimation of k⊥, compensating the overestimation of D to a large extent.
Physically, this can be explained as the SCW drive leading to more k⊥, but
this does not significantly increase the transport since this “SCW turbulence”
contribution leads to a limited amount of transport due to the modified phase
shift between density and potential fluctuations (see section 6.4).

Now it is also interesting to investigate the scaling for the transport coefficient
that is implied by the k⊥ model and to compare it to the Bohm and gyro-Bohm
scalings again. This is summarised in table 6.4. As already mentioned in section
4.3 for the isothermal case, the k⊥ scaling 6.21 for the transport coefficients
can be seen as a refinement of the Bohm scaling. It effectively replaces the
generic electron thermal velocity scale with

√
k⊥/m, which is a characteristic

velocity specifically for the E×B turbulent fluctuations driving the transport.
However, also in the anisothermal case, the reference gyro-radius ρ0 remains in
this expression as a global length scale. Remember that the k⊥ − ζ⊥ scaling
allowed to overcome this. No self-consistent k⊥ − ζ⊥ model is elaborated for
the anisothermal case though.
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Table 6.4: Comparison of the scaling for the transport coefficients implied by
k⊥ model to Bohm and gyro-Bohm scalings.

scaling variant TOKAM2D units [ρ0cs,0] dimensional [m2/s]

k⊥
submodel

√
k⊥ ρ0

√
k⊥
m

full model gL||

√
T̃eT̃
Lp

L||
R

ρ0
Lp

√
T̃eT̃
eB

Bohm T̃e
T̃e
eB = ρTe

√
T̃e
m

gyro-Bohm L⊥ ∼ Lp T̃ 3/2
e

Lp

ρTe
Lp

T̃e
eB

L⊥ ∼ R gT̃
3/2
e

ρTe
R

T̃e
eB

To compare with the gyro-Bohm scaling, the k⊥ model predictions are further
reworked. Filling out the turbulent fluxes using equation 6.21 in the k⊥ equation
6.20 and neglecting the LHS (hence assuming steady state and a local balance),
it can be solved as follows:

√
k⊥ = −

gL||
√
T̃eT̃

C||,k
(CD

∂xn̄

n̄
+ Ci

∂xT̃i

T̃
+ Ce

∂xT̃e

T̃
). (6.22)

Multiplying this with the appropriate constants readily yields the turbulent
transport coefficients D, χi and χe. If it is now additionally assumed that
CD = Ci = Ce and thus D = χi = χe, this can further be rewritten as

D = − C2
D

C||,k
gL||

√
T̃eT̃ ∂x ln p̄ (6.23)

The dimensional form in table 6.4 is then obtained by filling out g ∼ ρ0/R.

This scaling now shows some similarity to the gyro-Bohm scaling. Compared
to the Lp variant of the latter though, a factor L||/R is added. Furthermore,
the gyro-radius does not appear as a local quantity, but rather as the global
reference value ρ0. Finally, the scaling with Te is replaced by a scaling with T̃eT̃ .
As discussed in section 2.3.3, the Bohm and gyro-Bohm scalings are usually
only used as global machine scaling laws. The dimensional full model form of
the k⊥ model could presumably also be used as such a scaling for the OMP in
interchange-dominated turbulence in a sheath connected SOL. However, the k⊥
model discussed in this chapter (and in this thesis in general) has much wider



DETAILED LOOK AT THE SHEATH TERM: INFLUENCE OF SCW TERM 213

applications. Firstly, the model allows to calculate local values of the turbulent
transport coefficients. In particular, (with some generalisations) it can be used
in 2D mean-field codes to provide a physics-based 2D profile of the transport
coefficients. This has been demonstrated by the implementations of models
based on the k⊥ model in SOLPS-ITER by Carli et al. [39, 38] and Dekeyser et
al. [54]. Secondly, the methodology of the model and the D ∼

√
k⊥ submodel

in particular is expected to hold more generally such that the model could be
extended to more general cases as well (e.g. cases with flow shear, with strong
DW drive, non-sheath-limited cases,...).

While the results of the k⊥ model presented up to here are encouraging already,
the next section will further study its remaining deficiencies and highlight the
role of the SCW instability in these.

6.4 Detailed look at the sheath term: influence of
SCW term

Figure 6.7 has clearly illustrated the link between the sheath-conducting wall
instability acting as a source of the turbulence and the error on both the diffusion
relation 6.21 and the sheath sink model 6.16. This section will highlight the
role of the phase shift between density and potential fluctuations in the error
on the diffusion relation and the role the SCW term plays in establishing this
phase shift.

Drawing inspiration from Fedorczak et al. [68] and Peret et al. [122], we
start by taking the Fourier decomposition of the instantaneous density and the
electrostatic potential along the diamagnetic y-direction (which is symmetric in
TOKAM2D) at every radial position:

n =
∫ ∞
−∞

n̂Ky sin (Kyy + ψn,Ky )dKy,

φ =
∫ ∞
∞

φ̂Ky sin (Kyy + ψφ,Ky )dKy, (6.24)

where Ky is the diamagnetic wave number, n̂Ky and φ̂Ky are the amplitudes
corresponding to the spectral component with wave-number Ky and ψn,Ky
and ψφ,Ky are the phase of the density and the potential fluctuations for wave
number Ky. Note that the quantities n, φ, n̂Ky , φ̂Ky , ψn,Ky and and ψφ,Ky
are functions of the radial x-coordinate and fluctuate in time. By integration
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over the periodic y-direction, the local, instantaneous E×B particle flux can be
calculated as [68, 122]

Γn,E,x = nVE,x = −n∂φ
∂y

= 8π
∫ ∞

0
Kyn̂Ky φ̂Ky sinψKydKy, (6.25)

where ψKy = ψn,Ky − ψφ,Ky . Hence, the phase difference between density and
potential differences directly influences the particle flux. We will now show the
SCW term changes this phase structure. To calculate the averaged particle flux
of interest, this expression should still be averaged in time as

Γn,E,x = 8π
∫ ∞

0
Kyn̂Ky φ̂Ky sinψKydKy. (6.26)

Note that Fedorczak et al. [68] and Peret et al. [122] found that the correlation
between spectral component fluctuations is negligible for the isothermal SOL
TOKAM2D case.

For the TOKAM2D cases available, the instantaneous spectra were approxi-
mated using the default Matlab fast Fourier transform algorithm. The resulting
complex numbers were then used to calculate the amplitudes (n̂Ky and φ̂Ky)
and phases (ψn,Ky and ψφ,Ky) at every point in time at every radial position.
Histograms of the phase difference ψKy = ψn,Ky − ψφ,Ky are constructed by
binning all the time points for a selected radial position. The phase structure
does not seem to change significantly in the radial direction for the considered
cases.

The resulting histograms for a number of cases are shown in figure 6.11. Figure
6.11d shows the isothermal SOL case studied in chapter 4. For this case, the
phase difference is close to π/2 for all wave numbers. This is indeed the expected
phase difference for pure interchange turbulence [15, 17, 145] and matches the
results obtained by Fedorczak et al. [68] and Peret et al. [122]. Note also that
this phase difference of ψ = π/2 leads to maximum transport in equation 6.25
for given amplitudes. For the SCW0 case shown in figure 6.11b, the phase
structure is very similar. This makes sense, since in this case as well, only the
interchange drive of the turbulence is present. In the SCW1 case of figure 6.11a
on the other hand, the results are quite different. While at high Ky the phase
still goes to ψ ≈ π/2, at low Ky where the spectrum is now most intense, the
phase is instead close to zero. Remark that ψ = 0 does not lead to any transport.
This low phase in part of the spectrum of the SCW1 case is clearly the influence
of the SCW mode, which in itself is shown to lead to a very low phase difference
in figure 6.11c. This complies with the linear analysis performed by Baudoin
et al. [15, 17] predicting a phase difference between zero and π/4 for the pure
SCW mode.
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(a) SCW1 case (b) SCW0 case

(c) SCW1 g = 0 case (d) E×B-only isothermal case

Figure 6.11: Histograms of the phase difference between density and potential
fluctuations against wave number in the diamagnetic direction for different
TOKAM2D cases at a selected radial location. Red lines indicate ψ = 0 and
ψ = π/2.

Now the question is how these insights on the phase difference can be integrated
in the k⊥ model to obtain improved transport models. As a first step, we
here assume that the relation Γn,t,E ∼ −

√
k⊥∇n̄ gives a good estimate of the

(wave number integrated) amplitude of 6.26, but that the information on the
phase difference ψ is not incorporated in the model. Under this assumption,
a correction for the phase difference is required in the transport relation. To
this end, we define an effective phase difference by weighing the instantaneous
spectra of the phase difference with the instantaneous spectrum of the radial
E×B particle flux and averaging this in time:

Ψ ,

∫∞
−∞ Γ̂KyψKydKy∫∞
−∞ Γ̂KydKy

. (6.27)
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Figure 6.12: Scatter plot of the turbulent diffusion coefficient between
TOKAM2D reference data and different models. Each marker indicates the
radial average of a single simulation in a database of simulations.

In this expression, Γ̂Ky = 8πKyn̂Ky φ̂Ky is understood to mean the magnitude
of the spectrum of the radial E×B particle flux from equation 6.25. The effective
phase difference Ψ is only a relation of the radial position since the dependencies
of ψKy on time and wave number have been integrated out.

Next, we use this phase difference to correct the diffusion relation as

Γn,t,E ∼
√
k⊥ sin Ψ. (6.28)

This then yields the sixth and seventh rows in table 6.1, where the same
correction has also been applied to the k⊥ − ζ⊥ transport relation. From these
results, it is clear that including this correction for the phase difference improves
both models for the SCW1 case. Moreover, after having made this correction,
the k⊥−ζ⊥ model does become better than the k⊥ model, as had been expected
a priori. On the other hand, this correction does not bring an improvement for
all models and all quantities in the SCW0 case. This is presumably because the
noise on the evaluation of the phase difference overshadows the small deviations
away from π/2 of the real phase difference for some cases. The improved
performance of the phase-corrected models is further illustrated in the scatter
plots in figure 6.12. No figures of the radial profiles are shown because they do
not change significantly due to the limited variations of the characteristic phase
in the radial direction.

It has also been tried to correct the k⊥ and k⊥ − ζ⊥ models with a factor
accounting for the SCW mode itself in the last two rows of table 6.1. This
provides an alternative way to correct for the change in the structure of the
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Figure 6.13: Scatter plot of the characteristic phase difference between density
and potential fluctuations against the relative importance of the SCW term in
the k⊥ balance for the SCW1 case. Each marker indicates the radial average of
a single simulation in a database of TOKAM2D simulations.

turbulence when the SCW drive is important, of which the phase difference
seems to present an important element. Note that this model form is similar to
that used for the DW term in the last row of table 5.2 in section 5.1. For the
SCW1 case, these SCW-corrected models likewise provide a large improvement
over the standard models. The k⊥-only variant performs better than the phase-
corrected model. The k⊥ − ζ⊥-variant has a lower evidence than the former
and also a lower evidence than the k⊥ − ζ⊥ phase-corrected model.

With this we have further clarified some of the physics involved in the transport
and suggested an improved form of the transport model. However, in order
to get a self-consistent estimate of the transport coefficients, a model for the
characteristic phase difference Ψ or for the SCW term SφTe is needed.The
SCW term would need to be modelled separately from the sink term Sφ2 in
the k⊥ equation as well (see equation 6.13). Figure 6.13 shows there is a clear
correlation between Ψ and Gk/SφTe. Hence, it would probably be possible to
close the model if a model for the SCW term were available. This is left for
future work. Furthermore, it might also be worthwhile to further investigate
the influence of the wave number scale Ky, which also appeared in equation
6.26, on the transport. It may be investigated how this changes between the
various cases in the TOKAM2D data sets. It could be speculated that the
influence hereof is (partially) accounted for by including the enstrophy in the
transport relations. The reasoning for this is that ζ⊥ tends to concentrate on
smaller length scales than k⊥, such that the inclusion of both quantities may
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better represent the characteristic length scale of the transport. This is also left
for future research.

6.5 Conclusion

This chapter has generalised the k⊥ mean-field turbulent transport model that
was originally developed for 2D isothermal interchange-dominated electrostatic
E×B drift turbulence in a sheath-limited SOL in section 4.3 to the anisothermal
case. In this model, the turbulent transport of particles and heat is related to
the turbulent kinetic energy and an additional equation for the latter is added
to the mean-field equation set.

While an analytical relation for the dominant interchange source of k⊥ is still
available, the behaviour of the sheath term that mimics parallel transport to
the sheath is significantly complicated. It is shown to consist of a source and a
sink contribution. These new dynamics are shown to influence the transport
behaviour, but are not yet self-consistently modelled in this work. Nonetheless,
the results of the anisothermal model are very promising and a good match of
the original TOKAM2D turbulence code results can be obtained. Hence, the
anisothermal model, and the self-saturation behaviour between turbulence and
mean-field gradients contained within it, seems to capture some of the basic
physics of SOL plasma transport very well.

The new dynamics introduced by the sheath source are identified with the sheath-
conduction wall (SCW) instability. It is shown that this new source term changes
the characteristic phase difference between density and potential fluctuations.
As a result, the turbulent fluxes at fixed k⊥ vary as the relative importance
of the interchange and SCW drive varies. Including the characteristic phase
difference in the transport relation is shown to lead to an improved performance
on the submodel level.

However, the TOKAM2D code used as a reference in this work does not contain
all the necessary physics to describe the SOL of future fusion reactors, such
that the model developed in this chapter should still be seen as a stepping stone
in the ongoing research to develop more complete mean-field models for the
turbulent transport. Detailed modelling of the phenomena introduced by the
sheath term in the k⊥ equation seems more appropriate in a 3D setting where
the parallel direction is explicitly resolved. Analysing 3D reference data will
also allow to study drift wave dynamics in more detail and to distinguish those
from parallel transport effects. The next chapter will provide a preliminary
discussion of such 3D cases.



Chapter 7

A look ahead: preliminary
analysis of 3D cases

The general framework of mean-field equations and the strategy to be followed
for their closure presented in chapters 2 and 3 made no assumptions on the
dimensionality of the turbulence. However, chapters 4-6 have been limited
to a discussion of purely 2D plasma edge turbulence, accounting for the
parallel direction through approximate volumetric sinks. While this allowed
to gain valuable insights on the basic dynamics of the perpendicular turbulent
transport, the considered cases were still rather far-off from a reactor relevant
case. Nonetheless, it is expected that the basic physics modelled for the reduced
cases can be extrapolated to more complex cases as well. This chapter will
couple back to the general case considered in chapter 3. It will look ahead
considering the implications of the developed model for mean-field transport in
general and discuss the elements of the model that require further refinement.
This discussion will be supported by a preliminary analysis of 3D turbulence
code simulations with the TOKAM3X code [157].

First, section 7.1 provides a preliminary analysis of 3D isothermal slab cases
for which reference data is obtained from TOKAM3X simulation results. Then,
section 7.2 discusses the implications of the models developed in this thesis for
the mean-field transport in realistic geometries, as well as the effects which are
still missing. Finally, section 7.3 presents the main conclusions of this chapter.

219
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7.1 Analysis of 3D slab cases

This section elaborates how the models developed earlier for purely 2D cases
need to be generalised to be used in 3D (2D mean-field). To this end, isothermal
TOKAM3X slab cases will be studied, where the focus lies on the SOL. Section
7.1.1 first presents the TOKAM3X code and the setup of the studied cases.
Next section 7.1.2 derives the corresponding mean-field equations. Section 7.1.3
then provides a preliminary discussion the turbulent kinetic energy balance and
the transport relations, focusing on the differences with respect to the 2D cases
investigated before.

7.1.1 TOKAM3X setup and equations

TOKAM3X is a versatile 3D turbulence code capable of modelling anisothermal
edge plasma turbulence in complex geometries [16, 15, 72, 157]. Furthermore,
it has been coupled to the EIRENE code to self-consistently study the effect
of neutrals [64]. However, in line with the stepwise approach followed in this
thesis, reference data from a reduced version will be used for simplicity and to
facilitate comparison with results from earlier chapters in this preliminary study.
Hence, the plasma edge will be assumed to be isothermal, a slab geometry is
considered and no neutrals are simulated.

This slab geometry is shown in figure 7.1. A straight time-constant magnetic
field is assumed which only has a toroidal (ϕ) component. As a result, the
toroidal direction coincides with the parallel direction and the poloidal direction
(θ) coincides with the diamagnetic direction in this simplified geometry. The
magnetic field strength decays in the radial direction (r) though. The slab
domain has two regions: a closed field line region and a SOL region. In the
closed field line region, periodic boundary conditions are applied in the toroidal
direction (black surface), representing the toroidal periodicity in a tokamak.
In the SOL, the magnetic field lines are assumed to end on material surfaces
(indicated with red), which are represented by Bohm boundary conditions.
On the poloidal boundaries (top and bottom), periodic boundary conditions
are applied while Neumann conditions are applied on radial boundaries [83].
Note that in this geometry the toroidal direction coincides with the parallel
direction, and the polodidal direction with the diamagnetic direction. Hence,
geometrically, the case considered here is identical to the TOKAM2D case
investigated in chapters 4-6, the only difference being that the parallel direction
is now effectively resolved instead of being modelled using volumetric sinks
intended to replicate its behaviour.
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Figure 7.1: Visualisation of the TOKAM3X slab geometry. Reproduced from
Ref. [83].

For this isothermal slab case, the TOKAM3X equations simplify to [83, 157]

∂n

∂t
+∇ · nVC −DN∇2

⊥n = Sn, (7.1)

∂W

∂t
+∇ ·WVC −DW∇2

⊥W = ∇ · J∇B +∇ · J||, (7.2)

∂nV||

∂t
+∇ · nVCV|| −D||∇2

⊥nV|| = −∇||p, (7.3)

η||nJ|| = ∇||pe − n∇||φ, (7.4)

W = ∇ · (∇⊥φ
B2 + ∇⊥pi

nB2 ), (7.5)

VC , V|| + VE + V∇B,i, J∇B , nV∇B,i − nV∇B,e, (7.6)

VE ,
b×∇φ
B

, V∇B,i/e , ±
2Ti/e
B

b×∇B
B

, . (7.7)

Like the TOKAM2D equations 4.1-4.3, these equations are normalised with
the ion mass m, the reference ion gyro-frequency Ω0 = eB0/m and radius
ρ0 = cs,0Ω0, with B0 the reference magnetic field strength, cs,0 =

√
T0/mi the

reference sound speed and T0 the reference temperature. Note that the magnetic
field strength B is no longer uniform though. The magnetic field direction b is
constant though, such that the Db/Dt terms in the parallel momentum and
charge balance equations drop. Unless specifically mentioned otherwise, the
equations and plots in this section make use of normalised units.

In these equations, the diamagnetic current J∗ and diamagnetic velocities V∗ are
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replaced by the magnetic drifts J∇B and V∇B , except in the (pseudo-)vorticty
W . For the divergence of particle fluxes and currents, they are exactly the same
under a low β approximation [15, 82]. For the convection of W and V|| this
is motivated by the gyro-viscous cancellation. The details of this cancellation
remain a topic of study in the community though [127, 136, 138]. Note that
the velocity VC used in the convection operator is not the same as the plasma
velocity V0 used for calculating the inertia since V∗,i 6= V∇B,i.

The continuity equation 7.1 and parallel momentum equation 7.3 readily follow
from the general equations 2.25 and 2.44 respectively, with the convective velocity
given by equation 7.6 and a diffusion term for the classical transport. Note that
the parallel momentum sources are absent because no neutrals are simulated.
The electron momentum equation 7.4 is equal to the general one in equation
2.45, where the electromagnetic term is dropped in the considered electrostatic
case, as well as the n∇||Te term because of the isothermal assumptions.

Vorticity definition 7.5 in TOKAM3X is the same as that used in equation
2.46. Hence, the vorticity equation-like form of the general charge balance
equation 2.53 can be compared to the TOKAM3X charge balance equation
7.2. Comparing both equations, the parallel current divergences can be seen
to be the same (∇ · J∗ = ∇ · J∇B for a low β plasma). As in TOKAM2D,
Jp,Π is modelled by a diffusion-like term (equivalent to Newtonian viscosity)
and momentum sources are neglected (in the absence of neutrals). Hence, the
remaining terms approximate the polarisation current divergence:

∂W

∂t
+∇ ·VCW ≈ −∇ · Jp,0. (7.8)

This means that SW,cor (defined in equation 2.54) is neglected. Furthermore,
a strong Boussinesq approximation is made assuming that the density in the
polarisation current can be neglected, i.e. replaced by the constant reference
density in non-normalised units.

Data from two TOKAM3X simulations has been provided by W. Gracias and
P. Tamain. One simulation considers the total vorticity case with W exactly as
in equation 7.5, while the other is an E×B-only case in which the diamagnetic
current contribution to the inertia (second term in equation 7.5) has been
neglected. The other parameters are identical between both cases, and can be
found in appendix F.3.
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Figure 7.2: Averaged radial-parallel profiles for selected TOKAM3X quantities
for TW and E×B-only cases.

7.1.2 Mean-field equations

As before, we are interested in mean-field quantities in this thesis. These can
now be obtained from the TOKAM3X equations by time averaging (as before)
and by averaging over the poloidal/diamagnetic direction which is still periodic.
Thus, the obtained mean-field data is now two-dimensional along the radial
and parallel directions. Away from the target plates, most of the profiles are
relatively uniform in the parallel direction though, see figure 7.2. This behaviour
was indeed anticipated because of the fast transport in the parallel direction.

As in the previous chapters, the main interest in this thesis is to self-consistently
calculate mean-field quantities. The main closure problem to be addressed here
is that of the continuity equation. Similar to equation 2.62 for the general case,
we here have
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∂n̄

∂t
+∇ · (n̄Ṽ|| + n̄V̄E + n′V′E + n̄Ṽ∇B,i) = S̄n. (7.9)

Again, the only closure in this equation is the turbulent E×B particle flux
Γn,t,E , n′V′E . Like the diamagnetic drift flux, the ∇B drift flux can be closed
from the average pressure (nV∇B,i ∼ nTi = p̄i). The basic idea is still to use
a diffusion relation for Γn,t,E and to relate the effective turbulent diffusion
coefficient to quantifiers of the turbulence, and to the turbulent kinetic energy
in particular.

Since there is no density weighing of the inertia in the LHS of the charge balance
equation 7.2, we will also not use density weighing in the definition of the
perpendicular kinetic energy and work with the regular Reynolds decomposition
(see equation 2.7) instead of the Favre decomposition we used before. Thus, the
total perpendicular kinetic energies are now defined as

EE∗ ,
V2

0,⊥

2 , Em,E∗ ,
V̄2

0,⊥

2 , kE∗ ,
V′20,⊥

2 , (7.10)

where the perpendicular velocities in the kinetic energy are those considered
for the inertia, i.e. V0,⊥ = VE + V∗,i. Note that in this case the sum of the
mean-field and turbulent kinetic energies equals the average total kinetic energy
(without weighing with the density):

EE∗ = Em,E∗ + kE∗. (7.11)

Likewise, we define the E×B-only kinetic energies for TOKAM3X as

EE ,
V2
E

2 , EE,m ,
V̄2
E

2 , kE ,
V′2E
2 . (7.12)
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The transport equations for the total perpendicular and E×B-only turbulent
kinetic energies are derived in appendix F as equations F.10 and F.17:

∂k⊥
∂t

+∇ · (k⊥VC +
V′20,⊥V′C

2 + φ′J′|| + φ′V′p,0)

= ∇||φ′ · J′|| − φ′∇ · J∇B −DWφ′∇2
⊥W

′ −V′CV′0,⊥ : ∇V̄T

0,⊥

−∇pi

n
·V′p,0 − φ′∇ · (

U0

B

D lnB
Dt

)− φ′∇ · (U0

B
· ∇VC)

−k⊥∇ · V̄C −
V′20,⊥∇ ·V

′
C

2 − V̄0,⊥ ·V′0,⊥∇ ·V
′
C , (7.13)

∂kE
∂t

+∇ · (kEVC + V′2EV′C
2 + φ′J′|| + φ′V′p,E)

= ∇||φ′ · J′|| − φ′∇ · J∇B −DWφ′∇2
⊥W

′ −V′CV′E : ∇V̄T

E

+φ′(∂W∗
∂t

+∇ ·W∗VC)− φ′∇ · (UE

B

D lnB
Dt

)− φ′∇ · (UE

B
· ∇VC)

−kE∇ · V̄C −
V′2E∇ ·V

′
C

2 − V̄E ·V′E∇ ·V
′
C ,(7.14)

with

Vp,0 , − 1
B

(∂U0

∂t
+∇ ·VCU0), U0 , V0 × b, (7.15)

Vp,E , − 1
B

(∂UE

∂t
+∇ ·VCUE), UE , VE × b. (7.16)

Hence, these turbulent kinetic energy equations are similar to those for the
general case shown in equations 3.15 and 3.24. The differences are due to
the simplifications in the TOKAM3X charge balance equation 7.2 w.r.t. the
general charge balance equation 2.53. The most noticable differences are the last
five terms, which stem from simplification in the TOKAM3X charge balance
equation with respect to the general form of the charge balance equation 2.53,
and are thus non-physical. Furthermore, there is a factor n difference in all
terms related to the inertia which are now written using Reynolds averages.
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This is the result of the strong Boussinesq approximation by which the density
in the LHS of equation 7.2 has been neglected. Also because of this, the Favre
term that was identified before does not appear now.

It is interesting to note that the parallel current transport term ∇·φ′J′|| can now
be distinguished from the drift wave (DW) term ∇||φ′ · J′|| and that both can
be present at the same time. Remember that in the TOKAM2D case studied
in chapters 4-6, either the one or the other was present. The TOKAM2D
sheath loss term in the SOL has been identified with the transport contribution,
since this term indeed represents the flux out of the flux tube in the parallel
direction. The parallel current term in the core region introduced in section
5.1 was intended to mimic DW behaviour and has been identified with the
∇||φ′ · J′|| term.

7.1.3 Preliminary modelling results

At this point, it needs to be mentioned that only a very limited set of TOKAM3X
data is available. Just two cases at a particular set of parameters are at hand.
Based on such a limited sample, no compelling conclusions can be drawn and
no reliable model development can be performed. Furthermore, the above k⊥
equations have been illustrated to contain a number of nonphysical terms due
to approximations made in the TOKAM3X model equations. Some of these
seem to provide a considerable contribution to the energy balance. Moreover,
the unbalance left on the evaluation of the turbulent kinetic energy equations is
substantial (see later). At present, it is unclear what the cause of this unbalance
is. For the above reasons, some doubt remains of the fidelity of the results of
the TOKAM3X analysis. Because of this, the results presented next should be
treated with some apprehension and should rather be considered to be a first
preliminary look into 3D dynamics.

k⊥ balances

Even when only considering the SOL, the evaluation of turbulent kinetic energy
equations 7.13 and 7.14 for the TOKAM3X slab cases shows that more terms
become important than before, as can be seen in figure 7.3. The plots in
this figure are obtained by averaging the central part of the 2D radial-parallel
mean-field profiles over the parallel direction, hence obtaining purely radial
profiles. While the parallel direction is not symmetric, the profiles were observed
to be rather uniform in this direction (as long as the parallel boundary is not
approached too closely).
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Figure 7.3: Evaluation of terms in the TOKAM3X k⊥ equation for different
cases. Mean-field data averaged over the parallel direction as well to obtain
radial profiles.

For the E×B-only case in figure 7.3d), the DW term ∇||φ′ · J′|| becomes a very
large source, while the interchange source only plays a minor role. Note that
this behaviour is different from the DW-like term in the core region for the
(E×B-only) TOKAM2D case presented in section 5.1. The parallel current
transport term ∇ · φ′J′|| together with the viscous dissipation present the main
sinks. However, they seem to be too small to compensate the DW term, such
that a large unbalance remains on the evaluation of this energy balance. It still
needs to be mentioned that the time change term in the polarisation velocity
(first term in expressions 7.15 and 7.16) could not be evaluated with the available
data. This might still change the balances, however, this contribution was found
to be small in the TOKAM2D cases presented earlier.
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In the E×B kinetic energy balance for the TW case in figure 7.3c, the interchange
term and the parallel current terms remain important. However, in addition to
these terms, also the perpendicular turbulent transport terms (including the
∇·φ′J′p,E contribution) and the correction term for the total vorticity (fifth term
on the RHS of equation 7.14) become large, although significant noise is present
on these terms. Furthermore, the total kinetic energy balance for this case
(figure 7.3a) is dominated by the V′p,0 · ∇pi/n and φ′∇ · (U∗,i/B · ∇VC) terms
which appear in this balance. The latter term is purely due to simplifications
in the TOKAM3X charge balance equation and is thus nonphysical. This puts
doubts on the physical validity of these results. Note that this behaviour is
similar to the TOKAM2D TW case described in section 5.2, and that also the
nonphysical term in both equations is similar. For the TW case as well, the
error remaining on the evaluation of the k⊥ equations is non-negligible.

Modelling the k⊥ equation

Despite other (source) terms coming into play as well, the interchange term is
expected to remain an important source term in more realistic 3D cases as well.
For this term, the analytical relation 3.34 becomes

Gk = −T̃Γn,t,E · ∇ ln(B2), (7.17)

for the isothermal TOKAM3X slab case, assuming a low β plasma. This is
indeed found to be an excellent model for both slab cases.

The sheath sink term 4.30 that was used before seems to be most closely
related to the transport part of the parallel current contribution. Indeed, in the
TOKAM3X data available it is found that ∇ · φ′J′|| ∼ csn0k⊥/

√
L|| still holds

approximately in the SOL region. However, calculating k⊥ from the balance
between the interchange term and this sheath loss model as was done for the
TOKAM2D cases now is inaccurate, as illustrated in figure 7.4. This was to
be expected based on the kinetic energy balances shown earlier. Moreover, the
validity of this model for ∇ · φ′J′|| is expected to be very limited. In the core
region for example, it is clearly inadequate. Instead, it seems preferable to find
a model for the local flux φ′J′||. In the SOL region of the TOKAM3X slab cases,
this flux has a profile which is roughly proportional to the parallel convection
of k⊥, i.e. φ′J′|| ∼ n̄k⊥Ṽ||. While this model is most likely too crude, it does
clearly indicate that this “anomalous” contribution to the parallel transport of
k⊥ is an important effect since the proportionality factor was found to be in
the order of 20− 50. Hence, parallel transport of k⊥ is found to be much faster
than would be expected based on parallel convection only. Physically, Scott
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Figure 7.5: TOKAM3X models for the ∇ ·φ′J′|| term in the k⊥ equation. Mean-
field data averaged over the parallel direction as well to obtain radial profiles.

relates the flux φJ|| to the parallel part the Poynting energy flux, and more
specifically to the energy transport by shear Alfvén waves along B [143].

This qualitative discussion is supported by the the Bayesian inference results
presented in table 7.1 and the profiles in figure 7.5. The Bayesian inferences in
this section have been run with the same framework discussed in section 3.4.
As in chapters 5 and 6, the likelihood function is takes the form of equation
3.61 without correlation distance, with the absolute model error formulation
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of equation 3.63. The priors are chosen as in equation 5.14. The reference
data consists of the 2D radial-parallel mean-field data. (Hence, not on the
parallelly averaged data.) Note that investigating the scaling of the ∇ · φ′J′||
with density is questionable with the current data. Due to the strong Boussinesq
approximation used in TOKAM3X, this term might now be interpreted as a
sink that needs to compensate not n̄k⊥, but just k⊥. Remark also that the
parameter scaling of the first two models in table 7.1 (cs/

√
L||) cannot be

confirmed with the current data, since only a cases at a single parameter value
is available. Given the limitations of the available data and the contrasting
results for the E×B-only and TW case, it seems misleading to select a best
model based on this analysis.

Table 7.1: Bayesian analysis of the models proposed for the ∇ · φ′J′|| parallel
transport of k⊥ for the TOKAM3X E×B-only and TW cases. Parameter values
are reported at MAP.

E×B-only TW
model for ∇ · φ′J′|| parameter kE kE kE∗

C||,k
cs√
L||
k

C||,k[−] 0.332 0.221 0.432
σabs[−] 6.95E-6 1.90E-5 1.81E-5

logevidence 29332 26514 26642

C||,k
cs√
L||
n̄k

C||,k[−] 0.602 0.476 0.909
σabs[−] 6.73E-6 1.99E-5 1.98E-5

logevidence 29421 26376 26391

∇ · C||,kkV̄||
C||,k[−] 18.6 12.0 24.4
σabs[−] 8.56E-6 2.09E-5 1.89E-5

logevidence 28749 26246 26530

∇ · C||,kn̄kV̄||
C||,k[−] 43.9 34.4 64.3
σabs[−] 5.87E-6 1.81E-5 1.90E-5

logevidence 29811 26653 26516

∇ · C||,kn̄V̄||
C||,k[−] 0.200 0.440
σabs[−] 5.88E-6 1.79E-5

logevidence 29800 26677

The parallel current term ∇||φ′ · J′|| associated with the DW energy transfer
channel (see section 3.2.5) has not yet been duly modelled. Based on the
available data, it is hard to draw clear conclusions on the behaviour of this
term. In the E×B-only TOKAM3X slab case, it acts like the dominant source
of k⊥ in the SOL (see figure 7.3d). The fact that the profile of k⊥ shows a keen
resemblance with the profile of this term (see figure 7.6) seems to testify to its
importance for this case. Table 7.2 provides a tentative quantification hereof,
the numerical value of C||,k clearly showing it to be much larger then the ∇·φ′J′||
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Figure 7.6: TOKAM3X models for the ∇||φ′ · J̄
′
|| term in the k⊥ equation.

Mean-field data averaged over the parallel direction as well to obtain radial
profiles.

parallel transport term. Note that the parameter scaling cs/
√
L|| is arbitrary

and only chosen to facilitate the comparison with this parallel transport term.
On the other hand, the ∇||φ′ · J′|| DW term does not seem to play a role in the
energy balance for the equivalent TW case (see figures 7.3a and 7.3c).

Table 7.2: Bayesian analysis of the proposed models for the DW term ∇||φ′ · J′||
in the kE equation for the TOKAM3X E×B-only case. Parameter values are
reported at MAP.

model for ∇||φ′ · J′|| parameter

C||,k
cs√
L||
kE

CD[−] 1.64
σabs[−] 1.31E-5

logevidence 27980

C||,k
cs√
L||
n̄kE

CD[−] 2.80
σabs[−] 3.62E-5

logevidence 24704

Particle transport relation

Table 7.3 and figure 7.7 show the results for the Bohm, k⊥ and k⊥−ζ⊥ diffusion
models for the average E×B turbulent particle flux Γn,t,E . In this isothermal
TOKAM3X case, the Bohm relation is normalised as D ∼ Te/B, where B is the
normalised field strength. Since B only slightly decays in the radial direction,
and Te is uniform, this predicts an almost uniform profile. Here it needs to be
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Figure 7.7: Comparison of TOKAM3X reference data for the turbulent diffusion
coefficient to the k⊥ and k⊥ − ζ⊥ models. Mean-field data averaged over the
parallel direction as well to obtain radial profiles.

remarked that the Bayesian inference is run as before, but using the relative
standard deviation formulation in equation 3.64.

Table 7.3: Bayesian analysis of the models proposed for the turbulent particle
diffusion coefficients for the TOKAM3X E×B-only and the TW cases. Parameter
values are reported at MAP.

E×B-only TW
model for D parameter kE/ζE kE/ζE kE∗/ζ,E∗

CD
Te
B

CD[−] 0.197 0.219
σrel[%] 40.0 28.9

logevidence 2173 3188

CD
√
k

CD[−] 3.92 2.41 3.40
σrel[%] 27.8 17.9 16.2

logevidence 3193 4540 4810

CD
k√
ζturb

CD[−] 5.10 3.54
σrel[%] 23.4 15.3

logevidence 3684 4982

CD
k√
ζtot

CD[−] 5.10 3.54
σrel[%] 23.3 15.3

logevidence 3689 4984

These result indicate that the k⊥ and k⊥ − ζ⊥ models show a good correlation
with the diffusion coefficient profile for the TW case, while the fit for the
E×B-only case is much less convincing. While the profiles of both models are
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very similar, the evidence indicates that the k⊥ − ζ⊥ model is to be preferred.
Against the expectations formulated earlier, using the E×B-only kinetic energy
kE instead of the total perpendicular turbulent kinetic energy kE∗ does not
bring an improvement. (Note that we have not yet reconstructed the E×B-only
enstrophy in the postprocessing for the TW case, which is why no data of these
models is shown.) Using the total enstrophy instead of the turbulent enstrophy
to account for the mean-flow shear still seems to bring a slight improvement.
The Bohm scaling clearly performs less good. Comparing the model parameters
with those of the isothermal SOL results for TOKAM2D in table 5.3, it can be
seen that for most of the models, the model parameters change strongly.

In conclusion, the limited data available does seem to indicate some correlation
between D and

√
k⊥, although the correspondence is less convincing than for

the TOKAM2D cases and the proportionality coefficient takes a different value.
These differences might be due to changes in the structure of the turbulence
induced by the different terms which are now important in the turbulent kinetic
energy balances. However, too little data is available and too much questions
remain on the available data to draw pertinent conclusions.

7.2 The impact of realistic 3D geometries: a first
exploration

The previous section presented a preliminary analysis of 3D slab cases based on
a limited set of available TOKAM3X reference data. This section comments on
the extension of the findings of the previous section and chapters to realistic 3D
geometries. This will amount to a discussion of the implications of the k⊥ model
which has been developed for the transport in mean-field code simulations.
Attention will also be paid to the remaining shortcomings of the model.

7.2.1 Mean-field closure terms

Section 2.3.1 established that the mean-field E×B particle flux Γn,t,E in the
average continuity equation 2.62 or 2.63 and the E×B turbulent heat fluxes
Γpi,t,E and Γpe,t,E in the thermal energy equations 2.68 and 2.69 are vital
closure terms to be modelled. Section 3.1 suggested to model these fluxes
through diffusion relations 3.1 and 3.2 (repeated here for convenience)

Γn,t,E ≈ −D∇⊥n̄, Γpi,t,E ≈ −χin̄∇⊥T̃i, Γpe,t,E ≈ −χen̄∇⊥T̃e (7.18)
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and to relate the effective turbulent transport coefficients D, χi and χe to
characteristic quantities for the turbulence. Chapter 6 showed that the three
transport coefficient are proportional to one-another up to a constant of order
unity for the investigated 2D electrostatic sheath connected SOL cases. It
remains to be confirmed if this scaling holds more generally. For now it is
assumed that this results holds to a certain extent in more complex cases as
well.

Under that assumption, it suffices to model only one of the transport coefficients
to obtain a model for the three. Combining the best performing models suggested
in chapters 5 and 6, an elaborate scaling of the form

D = CD
kE√

mζ⊥ + CSmSm
sin(Ψ) (7.19)

may be suggested, where it might still be necessary to adjust the coefficients
CD and/or CS depending on the turbulence regime (core or SOL, interchange
or DW dominated case, sheath connected or not). This transport coefficient
model, how general it is, and in how far case specific parameter tuning is needed,
certainly requires further investigation in realistic 3D cases. However, given its
rather robust performance in chapters 4-6, it seems reasonable to assume that
the basic scaling

D ∼ ρ
√
kE/m (7.20)

will hold to some extent, even though the proportionality factor may not take a
strictly fixed value that works for all cases. Assuming that this scaling holds, the
next section will summarise the progress that has been made in modelling the
transport equation of kE , and which terms and effects require further attention.
Besides the relevance for the transport coefficients themselves, this also led to
insights on the dynamics and drives of the turbulence itself.
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7.2.2 Modelling the turbulent kinetic energy equation

The general kinetic energy equation for a low β edge plasma has been derived
in section 3.2 as equation 3.24. Rewriting yields

∂n̄kE
∂t

+∇ · (n̄kEṼC + mnV′′2E V′′C
2 + Π ·V′′E + φ′J′|| + φ′J′p)

≈ ∇||φ′ · J′|| + p′∇ ·V′E +∇φ′ · J′p,∗ −mnV′′CV′′E : ∇ṼT

E + Π : ∇V′′TE

−mnV||
Db
Dt
·V′′E −

mSn,iV′′2E
2 −mVE ·V′′E · Sn,i + SnV ·V′′E .(7.21)

Some terms which are expected to be small are neglected here. It is assumed
that ∇ · (pVE + φJ∗) ≈ 0 due to the smallness of magnetic field gradients w.r.t.
length scales of the turbulent quantities. The Favre term has likewise been left
away since all TOKAM2D results showed it to be small.

This thesis has confirmed that the interchange term can act like the major drive
of the turbulence in the SOL on the low field side (LFS). A general analytical
equation has been derived for this term in equation 3.34:

Gk = p′∇ ·V′E = −(T̃Γn,t,E + Γpi,t,E + Γpe,t,E) · ∇ ln(B2), (7.22)

which assumes a low β electrostatic plasma. As mentioned before, this term
has a ballooned character, since heat fluxes are normally outward everywhere in
the reactor, while the magnetic field gradient is only opposed to this flux on the
LFS. As a result, the interchange term tends to act like a source on the LFS,
while it acts like a sink on the high field side (HFS). This is illustrated in figure
7.8a, showing the interchange term in the poloidal plane of a SOLPS-ITER
mean-field code simulation in which a model based on the k⊥ model developed
in this thesis has been implemented [55]. Note that this interchange model holds
in general and is thus not only relevant in interchange dominated turbulence
regimes. It is interesting to remark that even when another term would provide
a poloidally uniform drive of k⊥, the turbulence on the HFS would be decreased
and that on the LFS increased due to the resulting turbulent E×B heat fluxes.

The term that was found to balance the interchange on the LFS SOL in the
TOKAM2D cases is the parallel loss to the sheath. This term is the equivalent
of the transport part of the parallel current contribution (fifth term on the
LHS of equation 7.21). This was confirmed to some extend by the available
TOKAM3X cases. For these TOKAM3X cases, it was also found that the
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(a) interchange term Gk (b) Turbulent kinetic energy k⊥

Figure 7.8: Profiles in the poloidal plane of the C-Mod tokamak as obtained
from a self-consistent SOLPS-ITER mean-field transport simulation. Figures
reproduced from Ref. [54].

underlying “anomalous” parallel flux φ′J′|| largely exceeded both the mean-field
and the turbulent parallel convection.

This has interesting implications for the distribution of k⊥ in tokamaks. The
exploratory SOLPS-ITER case set up by Dekeyser et al. [54] had the interchange
term as the dominant source of k⊥ with this fast transport acting like the main
compensation mechanism. The resulting balance showed strong production
of turbulence around the OMP (as shown in figure 7.8a), which is quickly
removed by the fast parallel transport. In the SOL, this allows saturation of
the turbulence by removal of k⊥ to the divertor targets, which is reminiscent of
the physics of the TOKAM2D cases. In the core region on the other hand, k⊥
can be transported away from the OMP to the HFS, where it may be dissipated
by the interchange term acting like a sink in that region. These mechanisms
are illustrated in figure 7.8b showing the resulting mean-field solution for k⊥.
Hence, this term adds a strongly non-local element to the balance of k⊥ and thus
to the turbulent transport of particles and heat. Furthermore, this increased
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parallel spreading of k⊥ also means that the resulting turbulent transport is
less ballooned than would have been the case had the interchange source (on
the LFS) been balanced by a local sink.

It is not claimed in this text that this flow picture or the corresponding saturation
mechanism is generally valid in any tokamak operating regime. Nonetheless,
the insights provided by them and the role of the φ′J′|| flux in enhancing the
parallel spreading of the turbulence are believed to be novel and may in general
be considered in the overall flow picture in tokamaks. Many other effects which
were not yet taken into account may modify these dynamics though.

7.2.3 Limitations of the k⊥ model

In the current stage of its development, the validity of the k⊥ model is limited
since it has mostly been developed and tested for interchange-dominated, sheath-
connected, electrostatic SOL cases. A number of terms which are expected to
be important in the k⊥ transport equation 7.21 in different cases is neglected.

The ∇||φ′ · J′|| term associated with the DW energy transfer channel (see section
3.2.5) has for example not yet been duly modelled.1 It is observed that the
role of this term varies depending on the turbulence regime. This term has
been observed to be the dominant source of k⊥ in the E×B-only TOKAM3X
slab case, but was negligible in the corresponding TW case. Moreover, the
term intended to mimic DW dynamics in the core region of TOKAM2D acted
like a sink (see section 5.1.2). Hence, it seems that the behaviour of this term
can change significantly depending on the regime the turbulence is in and how
exactly the competition with other terms occurs. Much more analysis is thus
required to model this term.

Another term in the k⊥ equation which requires further modelling attention is
the Reynolds stress term term −mnV′′CV′′E : ∇ṼT

E . In the SOL, the flow shear
is limited because the electrostatic potential is tied to the sheath potential at
the end of the field lines. However, around the separatrix and in the core region,
strong poloidal flows which are sheared in the radial direction may develop, such
that the mnV′′C,rV

′′
E,θ∂rṼE,θ contribution in particular may become important

(see for example section 5.1.2). Primarily, this term is expected to break up
the turbulent eddies and as such act like a sink of k⊥ (in line with the inverse
energy cascade). However, when the turbulence is sufficiently damped and when
the flow shear is sufficiently strong, the Kelvin-Helmholtz (KH) instability may
come into play. This secondary instability might then lead to the RS term to

1Note that Dekeyser et al. modelled this term as a small linear sink of k⊥, reminiscent of
its behaviour in the investigated TOKAM3X TW slab case.
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act like a source of k⊥ [79, 115, 135]. Furthermore, as indicated in equation
7.19, strong flow shear could also influence the diffusion relation itself. Hence,
flow shear is expected to lead to both a reduction of k⊥ and a reduction of the
transport coefficients at the same k⊥. In addition, since both effects depend on
the flow shear, a model for ∂rṼE,θ itself is required. While the mean-field E×B
velocity can be calculated from the mean-field charge balance equation for the
electrostatic potential, the closure terms in this equation need further attention.

Dekeyser et al. implemented a negative turbulent viscosity model in SOLPS-
ITER to model the RS as a first approximation. Note that such model does not
allow the RS to act like a source of k⊥ as would be implied in the KH-regime.
The RS were then also used in the polarisation current such that they contribute
to the formation of the shear flow itself as they should. Furthermore, Dekeyser
et al. used a shear dependent diffusion coefficient (D ∼ k⊥/(

√
k⊥+CS |∇VE |)).

These elements caused a clear suppression of the turbulent transport coefficients
around the separatrix as physically expected. While this behaviour is promising,
further investigation of models for both the RS and the influence of shear on the
transport coefficient based on an analysis of reliable and sufficiently complex
reference data is certainly required.

Furthermore, the effects of perpendicular turbulent transport of k⊥ might
also require further attention. In the TOKAM2D cases studied earlier, its
contribution to the balance of k⊥ was found to be small. However, this may not
be the case in general. In TOKAM3X TW case for example, the perpendicular
turbulent transport terms (both φ′J′p,0 and mnV′′CV′′2E /2) seemed to become
large but noisy. In regions where the perpendicular gradients of k⊥ are steeper,
such as presumably around the separatrix due to flow shear, more radial
transport of it would likewise be expected [151]. Another element that may
need to be taken into account is the influence of the diamagnetic contribution to
the polarisation current Jp,∗ and its effect on the balance of kE or kE∗. However,
both in TOKAM2D and in TOKAM3X, the implementation of this contribution
is questionable, such that no firm conclusions on the importance of these effects
can be formulated and certainly no models proposed.

The viscous dissipation of k⊥ has been shown to be of secondary importance in
all investigated cases. It could be modelled by including the enstrophy into the
model. As illustrated by De Wolf et al., the k⊥ and ζ⊥ equations still require
to be properly decoupled for this to bring an improvement. If the additional
complexity of an enstrophy equation is not desired, it may be possible to model
the viscous dissipation of k⊥ with a dimensional scaling and using I ∼ k⊥ ∼ ζ⊥
as has been observed in the TOKAM2D data (with I a measure of the turbulence
intensity).

Finally, there are still the source terms of kE due to particle and momentum
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sources (which are mainly due to neutrals), and due to changes of the magnetic
field direction. Since only slab cases without neutrals have been studied in
this thesis, no comment on the importance of either of these can be made.
However, it cannot be excluded that these effects would play a role in tokamaks
(in particular regions are regimes).

Depending on which of the terms in the k⊥ equation are dominant in a certain
case, i.e. which regime the turbulence is in, it can be expected that the structure
of the turbulence is different. As a result, it is likely that the exact relation
between the intensity of the turbulence (e.g. k⊥) and the transport resulting
from it (i.e. the turbulent transport coefficients) will be different. Hence,
it is possible that depending on the regime, different model constants might
be needed in equation 7.20 or even a different form of the transport relation
itself. The occurrence of different turbulence regimes and the threshold values
for the transition between them have not explicitly been investigated in this
thesis. This topic has however been studied in literature, see for example
Refs.[63, 79, 114, 145]. Nonetheless, it is expected that a basic scaling between
the transport coefficients and well-chosen quantifiers of the turbulence can be
used to get an idea of the characteristics of the transport. Furthermore, as
has been proven here, for particular regimes such as electrostatic interchange-
dominated E×B turbulence in a sheath-connected SOL, these models can
provide very accurate predictions.

7.3 Conclusion

This section has provided a first step to the generalisation of the k⊥ model to
3D cases, and the implications of the model for the perpendicular turbulent
transport in the plasma edge of nuclear fusion reactors.

A preliminary analysis of isothermal TOKAM3X slab cases showed that the
turbulent kinetic energy balance becomes more complex with more terms playing
a role, as was anticipated. While the interchange term does seem to remain
an appreciable source, also other terms come into play, most notably the DW
source. Furthermore, the “anomalous” parallel flux of k⊥ due to parallel current
fluctuations is found to largely dominate the parallel transport of k⊥. It is
argued that the large sheath loss sink of k⊥ observed (and modelled) in the
2D case studied in earlier chapters is to be related to this parallel flux. Only a
very limited TOKAM3X data set was available and some doubt remains on the
simulation results and the analysis though, requiring the results to be treated
with some apprehension.
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Extrapolating the k⊥ model mainly developed for the 2D interchange-dominated,
sheath-limited SOL to realistic 3D geometries, it is found that poloidally
ballooned profiles are inherently predicted, including dissipation of k⊥ on
the HFS. Furthermore, fast parallel transport of k⊥ leads to spreading of the
turbulence over a wider poloidal angle and the removal of k⊥ towards the targets
in the SOL. The physics-based, self-consistent inclusion of these phenomena
is novel in 2D mean-field simulations. However, further development of the
model is required to comprehensively include additional physical effects (parallel
transport, DWs, effect of flow shear, neutrals, perpendicular transport,...).
Furthermore, it should be checked if the transport in the core region can be
modelled with the same models, i.e. if the same transport as in the SOL results
when the same level of k⊥ and the same balance is present, as was implicitly
presumed. Moreover, the model needs to be extensively tested in order to assess
how universal its parameters are and thus to establish its predictive capabilities.



Chapter 8

Conclusion and suggestions
for further research

8.1 Conclusions

The absence of greenhouse gas emissions, the widely available fuel, the inherent
safety and the limited nuclear waste make nuclear fusion an attractive option
for electricity generation in the future. However, a number of technological
challenges still stand, one of which is the high heat and particle load on the
divertor. Turbulent transport processes largely determine the outward power
and particle fluxes and thus the efficiency of the plasma confinement. Taking
the turbulent transport in the plasma edge into account is of crucial importance
to predict the load on the divertor.

As experimental tokamaks are extremely expensive, numerical simulations
of the plasma edge are crucial to predict the performance of future reactors
and to obtain improved designs. In particular, mean-field transport codes,
which only calculate the average characteristics of the plasma in every point,
are the main tools used for designing the plasma facing components and the
divertor. However, the description of turbulent transport in these codes is
lacking. Typically, the turbulent fluxes are described via an ad hoc diffusive
approximation, in which the diffusion coefficients are determined for a particular
experiment. Since these diffusion coefficients vary from one location to another,
from one regime to another and from one device to another, this poses severe
limitations on the predictive capabilities of these mean-field codes. On the
other hand, the routine use of turbulence code simulations resolving the detailed

241
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turbulent flow field including all the fine scale fluctuations remains inhibitive
for reactor design due to their high computational cost.

This thesis has proposed an approach for modelling the turbulent fluxes
inspired by Reynolds-averaged Navier-Stokes (RANS) methods commonly used
in hydrodynamic turbulence. In this approach, only the average of the turbulent
flow field is resolved, as in the mean-field approach for plasma edge simulations,
but the closure terms are modelled by relating them to quantities characteristic
of the turbulence.

General framework

The approach followed in this thesis starts by rigorously averaging the Braginskii-
like fluid equations. This procedure allows to identify the closure terms, which
cannot be calculated from mean-field quantities directly. It is illustrated that
the average E×B turbulent fluxes of particles and heat are the main closure
terms to be modelled for the transport across magnetic flux surfaces. The exact
form of these fluxes in terms of correlations between regular and density weighed
fluctuations is presented.

It is proposed to retain the diffusive description for the E×B turbulent fluxes
as commonly used in mean-field transport codes, but to relate the transport
coefficients to characteristics of the turbulence as in the RANS approach. In
particular, they are related to the turbulent kinetic energy k⊥ and the enstrophy
ζ⊥ of the E×B drift causing the fluxes of interest. Hence, these quantities do
not only quantify the intensity of the turbulence, but also provide characteristic
time and length scales for the fluctuations causing the transport.

Following Scott [143] but treating the density in averaging more systematically,
mean-field transport equations are derived analytically for k⊥ and ζ⊥ based
on the Braginskii equations. Another extension of the work by Scott is that
equations are not only derived for the total perpendicular kinetic energy, but
also for its E×B contribution separately. These analytical equations show the
exact form of the different source, sink and transport terms of k⊥, and the
corresponding interactions with the different energy forms present in the plasma.
In the turbulent kinetic energy equation, it is expected that the interchange,
drift wave (DW) and Reynolds stress (RS) energy transfer channels will provide
the dominant sources and sinks. Most of the terms in these k⊥ and ζ⊥ equations
in turn also constitute closure terms to be modelled (if they are relevant).

From this general framework, the question naturally follows which form the
diffusion relation needs to take exactly, which terms in the k⊥ and ζ⊥ equations
are dominant (under which conditions) and how these dominant terms can
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in turn be modelled. These questions are answered by applying the above
framework to reference data obtained from detailed turbulence code simulations.
By comparing this reference data to the models that are developed, the free
parameters in the models can be estimated and the adequacy of the models tested.
To support this, a Bayesian framework for parameter estimation and model
comparison is employed. This statistical methodology allows to extract plenty of
information on the parameters. In particular, a probability distribution for the
model parameters, including their mutual correlation is obtained. Furthermore,
the Bayesian evidence allows to compare different models with each other, while
inherently taking differences in model complexity into account, thus guarding
against overfitting of the reference data.

Turbulent transport model development

In order to start with an intelligible case and to build up the model from
the basics of plasma edge turbulence, the simplified conditions of isothermal
interchange-dominated electrostatic turbulence in a sheath-connected SOL are
considered first. The TOKAM2D turbulence code [141, 109, 116] is used to
provide reference data for this case. In analogy to the earlier work on the
general case, mean-field equations, including those for k⊥ and ζ⊥, are derived
for this case specifically.

The analysis conducted for this case has shown that the effective turbulent
particle diffusion coefficient can indeed be linked to k⊥ and ζ⊥ as anticipated.
Both the averaged profile of individual simulations and the scaling across
simulations with different physical parameters can be approximated asD ∼

√
k⊥.√

k⊥ acts like a characteristic velocity scale for the turbulence such that this
relation can be interpreted as a refinement of the Bohm scaling [71, 94, 95]
where the electron thermal velocity is used for that. Additionally including
the turbulent enstrophy, the alternative scaling D ∼ k⊥/

√
ζ⊥ is found. In

this scaling, both a length and a time scale are now constructed based on
turbulent quantities. This allows to further improve the accuracy of the model
in TOKAM2D parameter space, especially for varying viscosity.

For these relations to be used in a self-consistent way, a model for k⊥ and ζ⊥ is
required. First, the balance of k⊥ is studied for the isothermal SOL case. It is
shown that the interchange term provides the dominant source, while the losses
to the sheath (as a model for the unresolved parallel direction in TOKAM2D)
act like the main sink. Viscous dissipation plays a secondary role, while all
other terms are smaller in magnitude. It is thus found that the k⊥ equation
can approximately be modelled as a balance between interchange and sheath
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losses. The turbulent enstrophy balance is found to be similar, however, the
viscous dissipation of ζ⊥ is roughly as important as the sheath losses.

The interchange term for k⊥ is modelled using an analytical relation which was
already derived for the general case (exact under low β assumptions). This
relation shows that the interchange term is proportional to the opposite of the
scalar product of the E×B turbulent energy flux and the magnetic field strength
gradient. A prominent feature of this relation is that it explains the ballooned
character of plasma edge transport. On the outboard side of the tokamak, the
energy flux and the magnetic field strength gradient have opposite directions,
leading to a source of k⊥ and thus to strong transport. On the inboard side
though, the energy flux and the magnetic field strength gradient are aligned
leading to a sink of k⊥ and thus to reduced transport. If the turbulent fluxes
are known (from the diffusion relation), the interchange term can be calculated
without further closure model. Moreover, this clearly links the drive of the
turbulence with the mean-field thermal gradients which are expected to drive
the turbulence. The sheath loss term is modelled using a simple regression
relation, scaling linearly with k⊥.

The combination of the particle diffusion, interchange source, and sheath loss
relations then leads to the k⊥ model which can self-consistently predict the
turbulent E×B particle flux. The physics of this model can be interpreted as a
mean-field equivalent to the gradient removal mechanism [133, 114, 89]. When
a mean-field density gradient is present (and k⊥ 6= 0), this leads to a turbulent
particle flux down the gradient. If this flux is in the direction opposite to the
magnetic field gradient, this leads to a source of k⊥, which in turn leads to
increased transport, etc. This system saturates when the mean-field gradient
is reduced and k⊥ is increased to such levels that the particle flux can still be
carried across the flux surfaces but that the sheath loss sink of k⊥ suffices to
compensate the source. Forward 1D mean-field simulations with this k⊥ model
are capable of reproducing the profiles of the averaged TOKAM2D reference
data very well.

This k⊥ model is further extended to a self-consistent k⊥− ζ⊥ model by adding
a model equation for the turbulent enstrophy. The interchange, sheath loss
and viscous terms in this equation are modelled using series decomposition,
dimensional scalings and regression analyses. Furthermore, the enstrophy allows
to use an analytical relation to include the viscous dissipation of k⊥ separately
from the sheath loss sink of k⊥ and to improve the regression relation for the
sheath loss sink. While these “submodels” for the individual terms all seem to
work adequately, they do significantly increase the complexity of the complete
k⊥ − ζ⊥ model w.r.t. the k⊥ model. The Bayesian analysis performed by De
Wolf et al. has shown that this more complex “full model” is outperformed by
the simpler k⊥ model. The reason for this is probably that the limited errors
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on the submodels align, leading to more significant errors overall.

Next, the scalings for the diffusion coefficient are further investigated in more
complex flow cases. To that end, the TOKAM2D domain is extended with a
core region, that intends to mimic DW dynamics. This leads to the development
of strong flow shear around the separatrix and the reduction of the effective
turbulent diffusion coefficient, in line with the behaviour in more complete
turbulence codes and experiments. The k⊥ and k⊥ − ζ⊥ scalings are found
not to be adequate to predict the diffusion coefficient in the outer edge region
and the SOL at the same time with just a single coefficient. It is suggested
to extend the k⊥ − ζ⊥ model by explicitly including shear decorrelation rates
for the turbulence in addition to the

√
ζ⊥ rate already included. This allows

to largely improve the Bayesian evidence. However, it is found that using
the default k⊥ − ζ⊥ scaling while allowing a different coefficient in the core
and the edge region performs even better. This may imply that k⊥ and ζ⊥
can effectively be used to predict the turbulent transport, but that the model
coefficient needs to be adjusted for the specific regime and structure of the
turbulence (e.g. interchange or DW regime). Alternatively, it could be argued
that the model form should be changed or extended with further quantifiers of
the turbulence to be able to use it more generally. Note that the influence of
the flow shear on k⊥ and ζ⊥, a second mechanism by which shear could reduce
transport, is not studied here.

Another extension of the TOKAM2D model that has been investigated is the
total vorticity (TW) case in which the contribution of the diamagnetic ion drift to
the inertia is incorporated (next to the E×B drift contribution). The E×B-only
kinetic energy (kE) balance is demonstrated to change little, it is still dominated
by the interchange source and the sheath loss sink. Forward simulations with
the k⊥ = kE model developed earlier still provide acceptable results with respect
to the reference data, although the model coefficients had to be significantly
adjusted. However, the total (E×B and ion diamagnetic) turbulent kinetic
energy balance feature two dominant new terms which largely balance each
other. The new source term enters purely due to the approximations made in
the TOKAM2D charge balance equation, and is thus nonphysical. Hence, the
physical relevance of the results obtained related to this TW case is questionable.
It could be argued that the decent performance of the k⊥ model even in this
case testifies to its robustness.

Next, the generalisation towards the anisothermal (E×B-only) SOL case
in TOKAM2D has been considered. Since electron and ion temperature
fluctuations are now allowed, the turbulent E×B heat fluxes require modelling
next to the E×B turbulent particle flux. A first result that is obtained is
that the effective turbulent transport coefficients for all three are proportional
D ∼ χi ∼ χe up to a constant of order unity. Furthermore, the scaling D ∼

√
k⊥
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identified for the isothermal case is observed to still predict the profiles very
well and to capture the main trend in parameter space. The change in the
model coefficient with respect to the isothermal case is limited. The balance
of k⊥ in this case is largely similar to that in the isothermal case, with the
interchange term still acting like the main source, the sheath term acting like
the main sink and the other terms being significantly smaller. However, upon
closer evaluation, the sheath term now has a large sink contribution as before,
and a large source contribution related to the correlation between potential and
electron temperature fluctuations which was absent in the isothermal case. The
source term is associated with the sheath-conducting wall instability (SCW)
and thus provides a second drive term for the turbulence next to the interchange
term.

The analytical model for the interchange term discussed before remains valid in
the anisothermal case, however, both the heat flux due to convection with the
mean turbulent particle flux and due to turbulent conduction come into play.
For the sheath term as well, the model form is changed little. Even though the
SCW contribution is inherently present in it, only the total sheath term (which
always remained negative) is modelled, for which a regression model that is
linear in k⊥ is still used. Hence, the SCW term is not modelled explicitly in any
of the submodels. It is shown that this does lead to an increased error on the
submodel level, both for the sheath loss model and for the transport coefficients.
For the sheath loss term, the magnitude of the sheath loss is overestimated in
cases where the SCW contribution is large (hence lowering the magnitude of
the overall negative term). For the transport coefficients, it is shown that when
the SCW drive is large compared to the interchange drive, the turbulence is
closer to the SCW structure of the turbulence. This structure is characterised
by a low phase shift between density and potential fluctuations, leading to low
transport for a given value of k⊥. Correcting the transport coefficients for this
phase shift does indeed improve their performance.

While neither the phase shift nor the SCW term from which it results is self-
consistently modelled at the moment, the transport coefficients resulting from the
forward simulations with the full model compare well to the averaged TOKAM2D
reference data nonetheless. The reason for this is that the unmodelled SCW
drive tends to increase k⊥, but at the same time decrease the characteristic
phase shift between density and potential fluctuations, lowering the transport.
The net result of both is that the SCW term has little effect on the value of the
transport coefficients. Note that the basic physics of the resulting anisothermal
k⊥ transport model are very similar to the self-saturation picture drawn for the
isothermal case before. Both density and temperature gradients now lead to heat
fluxes, which drive the interchange source of the turbulence, and the turbulence
now saturates when both kinds of gradients are such that a balance is established
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between this interchange term and the sheath losses of k⊥. Furthermore, when
steady state is assumed and the perpendicular transport of k⊥ neglected, the
resulting scaling of the transport coefficient can be interpreted as a modification
of the gyro-Bohm scaling [71, 73, 94, 95].

Finally, a preliminary analysis of TOKAM3X [157] turbulence code data for an
isothermal 3D slab SOL has shown that the turbulent kinetic energy balance
may take a more complex form in 3D. The parallel current term in the k⊥
equation now has a transport and a DW contribution, which might both play
an important role. In particular, this transport term is the 3D equivalent of
the sheath losses in TOKAM2D. This transport term is expected to lead to a
parallel spreading of the turbulence and introduces a strongly non-local element
into the balance of k⊥ and thus into the turbulent particle and heat fluxes.
Furthermore, the perpendicular transport of k⊥ and the correction term for the
diamagnetic contribution to the polarisation current may also become more
important. On the other hand, the relation between k⊥ and the turbulent
transport coefficient is less clear for the very limited data set that was available.
Also, the model coefficients in this relation shift significantly.

In summary, this work has shown that a model based on k⊥ is very well capable
of reproducing the average E×B perpendicular transport for specific cases.
Moreover, this model can be implemented in mean-field codes such as SOLPS-
ITER [29] in order to obtain a physics based profile of the turbulent transport
coefficient in the poloidal plane. The resulting profile automatically shows some
experimentally observed features such as ballooning of the transport, transport
reduction around the separatrix and parallel spreading of the turbulence.
Moreover, this profile can be established by specifying a limited number of
coefficients with a clear physical meaning. Hence, it is expected that these
coefficients will remain accurate, at least in a certain turbulence regime, such
that this model and its further developments can be used for predictive purposes.
Nonetheless, many effects are not yet accounted for and require further research

8.2 Suggestions for future research

Firstly, even though the model predictions for the investigated 2D cases worked
very well in general, some parameter scalings are not recovered. This requires
further investigation. In particular, section 4.5 showed that a proper decoupling
of the equations in the k⊥ − ζ⊥ model should be further studied. Also, the
influence of flow shear, the diamagnetic contribution to the polarisation drift
and different drivers of the turbulence require further analysis. It should be
further studied how the diffusive transport relations need to be adjusted to
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account for these different effects with a minimum of physics based parameters.
The relation with the characteristic phase difference and the length scale of the
turbulence seem to be promising research tracks to further pursue. Since the
DW channel and the SCW mode are inherently phenomena related to parallel
dynamics, it seems preferable to study these in a 3D setting directly though. For
studying the diamagnetic contribution to the inertia, reference data is required
in which this is resolved without major nonphysical assumptions hindering the
analysis.

However, more generally and away from the 2D cases, the diffusion relation
linking the transport coefficients and k⊥ in general should be tested in more
complex cases. Especially in 3D cases with a realistic geometry it should be
checked how the relation between k⊥ and the turbulent transport behaves. Since
large differences in the transport in different regions of the reactor are expected,
it would be interesting to check if the link between k⊥ and the transport holds
in all regions. Validating this relation for the core region would be particularly
relevant since this work has mainly studied the SOL. In line with this, it should
be investigated how the diffusion relation evolves when different terms dominate
the turbulence, i.e. interchange or DW dominated, strong flow shear or not,
sheath modes or not,... If the link between k⊥ and the transport is found to
hold, the sources and sinks of the turbulence in these general 3D cases should
be studied. Accurate models for the parallel dynamics, both in the form of the
DW channel and the parallel flux φ′J′|| and the effect of flow shear are expected
to be especially important.

Another interesting research track might be to elaborate an alternative non-
diffusive particle transport relation to better take the underlying nature of the
blob-filaments into account. It may be attempted to combine the characteristic
blob velocities identified for example in Refs. [61, 101, 106] to the statistical
distribution of the fluctuations described in Refs. [75, 76].

Another element that still needs to be integrated in the k⊥ model framework
is the interaction between the turbulent transport and neutrals. On the one
hand the neutrals influence the dynamics of the turbulence and the transport
through friction and ionisation sources. The other way around, the turbulent
fluctuations may induce closure terms into the mean-field sources and sinks of
the neutrals. Furthermore, the influence of electromagnetic fluctuations and
A′|| in particular on the dynamics of the turbulence and the transport may be
investigated.

Another standing problem is how the boundary conditions for the turbulent
quantities k⊥ and ζ⊥ are to be chosen in predictive mean-field simulations.
In this work, boundary conditions could always be taken from data of the
turbulence code simulations, but these will no longer be available for predictive
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mean-field simulations. It may be an option to use the local-balance equivalent
of the k⊥ and ζ⊥ equations as boundary conditions to get a self-consistent
estimate.

Once a sufficiently comprehensive model is obtained and implemented in a
mean-field code, a logical next step is to compare it to experimental discharges
in different machines and operating regimes. This will allow to check how
universal the model and the model parameters really are, and thus to effectively
assess its predictive performance. Note that comparison to experiments can
be started before the model is “completed” for discharges which are known to
be governed by dynamics that are already in the model. In effect, this process
has already started through the work of Carli et al. [39, 38] and Dekeyser et al.
[54].

Finally, some methodological extensions could be envisaged as well. It could
be of interest to extend the analysis to also include slow transient effects. This
would allow to use more information from the turbulence code data and may
allow to go deeper into the dynamics at play. The capability of the model to
capture slow transients would widen the range of applications and scenarios
for its use. It would for example enable simulations of the transient effects
when changing operating regimes in the reactor. Secondly, also the Bayesian
framework could be further elaborated. A particular feature of interest would be
to include the uncertainty on the input data that is used. Also, a further study
into the best way to combine data from the different quantities in the reference
data when analysing the full models might provide new insights. Lastly, it may
be interesting to look into machine learning techniques and to investigate how
these could improve or complement the physics based approach suggested here.





Appendix A

Charge balance equation and
energetic couplings between
kinetic energies

First, this appendix discusses the similarities and differences between the charge
balance equation and the vorticity equation in section A.1. Then, kinetic energy
equations for the diamagnetic ion drift and the mixed kinetic energy (kinetic
energy in the product VE ·V∗,i) are derived in sections A.2 and A.3. Finally,
the energetic interactions of these kinetic energies are discussed in section A.4.

A.1 Link between vorticity equation and charge
balance equation

In plasma edge turbulence modelling, the charge balance equation 2.41 is
commonly formulated as a transport equation for a quantity that approximates
the (parallel component of the) vorticity. For this reason, the charge balance
equation is often called the vorticity equation, even though strictly speaking
this is somewhat of a misnomer. With this in mind, it is interesting to compare
the charge balance equation 2.41 to the vorticity equation 2.24. This appendix
will semi-quantitatively show that the charge balance equation is equivalent to
the projection of the vorticity equation onto the parallel direction.
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Using equation 2.42 the LHS of the charge balance equation 2.41 can be written
as
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This resembles the LHS of the vorticity equation 2.24 projected onto the parallel
direction b divided by the magnetic field strength B:
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In this expression, the definition of the vorticity has been applied to the dominant
plasma velocity, ω = ∇×V = ∇×V0. Note that a term proportional to ∇×B
has been dropped by the low-β approximation in the product ω · b. While
expressions A.1 and A.2 are not exactly equal to each other, they are clearly
similar, showing qualitatively the link between both equations.

The right hand sides of the parallel vorticity equation and the charge balance
equations can be illustrated to strongly resemble each other as well. It is
particularly interesting to look at the pressure and the Lorentz force term in
the vorticity equation. Manipulating the pressure term (third term on the RHS
of equation 2.24) in a fashion similar to the time change term, the following
expression is found:

mn(∇ρ×∇p
ρ2 ) · b

B
= ∇ · J∗ −

∇ · (nJ∗)
n

. (A.3)

The first term in this expression clearly is the same as in the charge balance
equation 2.41. Effecting the same manipulations on the Lorentz force term in
the vorticity equation yields

mn(∇× (J×B
mn

)) · B
B2 ≈ ∇ · J|| −

∇⊥n · J⊥
n

. (A.4)

In this derivation, the low β approximation has again been made to neglect a
term involving ∇×B. In addition, the charge balance equation itself has been
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used to rewrite −∇ · J|| = ∇ · J⊥. The first term in expression A.4 appears in
charge balance equation 2.41 as well. Hence, somewhat surprisingly, it is the
Lorentz force term in the vorticity equation that corresponds to the parallel
current divergence in the charge balance equation.

A.2 Diamagnetic kinetic energy equations

The total, mean-field and turbulent diamagnetic kinetic energies are defined as

E∗ ,
mV2

∗,i

2 , E∗,m ,
mṼ2
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2 , n̄k∗ ,
mnV′′2∗,i

2 . (A.5)

In analogy to equations 3.8 and 3.19, a transport relation for the total kinetic
energy in the diamagnetic drift velocity can be obtained as
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The LHS of this expression can be written as
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Combining the previous two equations readily yields the total diamagnetic
kinetic energy equation as
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In analogy to equations 3.12 and A.6, an equation for the mean-field kinetic
energy in the diamagnetic drift velocity can be written as
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Taking the difference between the average of equation A.13 and equation A.14,
an equation for the turbulent diamagnetic kinetic energy is obtained:
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A.3 Mixed kinetic energy equations

Decomposing the total perpendicular kinetic energy as
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it is noted that there is a kinetic energy contribution from the “mixed” ExB-ion
diamagnetic kinetic energy. We define this mixed kinetic energy as

Emix , mVE ·V∗,i, Emix,m , mṼE · Ṽ∗,i, n̄kmix , mnV′′E ·V
′′
∗,i. (A.12)

Note that these mixed kinetic energies can be negative when VE and V∗,i are
counter-aligned. According to equation A.11, an equation for the total mixed
kinetic energy can be calculated as the difference between equation 3.10 and
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equations 3.22 and A.8. Likewise, an equation for the mean-field mixed kinetic
energy is obtained from the difference between 3.14 and equations 3.23 and A.9,
and for the turbulent mixed kinetic energy from the difference between 3.15
and equations 3.24 and A.10. This then yields
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E − eṼp,∗ · n′∇φ′. (A.14)

∂n̄kmix

∂t
+∇ · (n̄kmixṼC +mnV′′E ·V
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A.4 Energetic couplings

The sources and sinks in the RHS of equations to 3.22-3.24, A.8-A.10 and
A.13-A.15 again represent the energetic couplings between the different energy
equations. Firstly, this shows that the interchange and DW terms really transfer
energy with the ExB kinetic energy only, and not with the other perpendicular
kinetic energy contributions. The viscous stresses on the other hand, transfer
energy between the ion thermal energy (equation 2.68) and the ExB-only and
diamagnetic kinetic energy individually, acting on the respective velocities of
the latter. The kinetic energy source due to momentum sources and the Db/Dt
terms are likewise split between both forms of kinetic energy. The kinetic energy
source due to the particle source acts independently on all three kinds of kinetic
energy.

In addition, the pressure work on the polarisation velocity exchanges energy
between the ion thermal energy and E∗ and Emix separately. Thus, it can be
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seen that, somewhat surprisingly, the diamagnetic kinetic energy equation is
not directly coupled to the other perpendicular kinetic energy equations at all.
Then, the ∇φ · Jp,∗ term exchanges energy between EE and Emix. Thus, the
latter “mixed” form of kinetic energy exchanges energy with the ion thermal
energy and the ExB kinetic energy.

Lastly, the various forms of the Reynolds stress and Favre terms exchange
energy between the mean-field kinetic energy equation and the corresponding
turbulent kinetic energy equation.



Appendix B

Derivation of TOKAM2D
equations and equations for
the kinetic energy and
enstrophy

This appendix1 first derives the equations solved by the TOKAM2D code, and
discusses the setup of simulations with this code. Then, the kinetic energy and
enstrophy equations for the TOKAM2D code are derived. Equations will be
derived both for the total quantities containing contributions from both the
E×B drift and the ion diamagnetic drift, and for the E×B only quantities. The
methodology to derive these equations for TOKAM2D is broadly similar to
that used for the general case in chapter 3.

Section B.1 first derives the equations of the TOKAM2D code and discusses
the TOKAM2D setup. Then, section B.2 derives kinetic energy equations for
TOKAM2D, after which section B.3 derives the enstrophy equations.

1Parts of this appendix have been published in “Coosemans, R., Dekeyser, W., Baelmans,
M. (2021). Turbulent kinetic energy in 2D isothermal interchange-dominated scrape-off layer
E×B drift turbulence: Governing equation and relation to particle transport. Physics of
Plasmas, 28:012302” [46] and in “Coosemans, R., Dekeyser, W., Baelmans, M. (2020). A new
mean-field plasma edge transport model based on turbulent kinetic energy and enstrophy.
Contributions to Plasma Physics, 60:e201900156” [44].
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258 DERIVATION OF TOKAM2D EQUATIONS AND EQUATIONS FOR THE KINETIC ENERGY AND
ENSTROPHY

B.1 TOKAM2D setup and equations

Section 2.2 has presented the equations commonly used to describe the
instantaneous dynamics of plasma edge turbulence. These equations will be
simplified to the case of 2D interchange-dominated electrostatic E×B drift
turbulence in a sheath-limited SOL. This yields the equation set that is solved
in the TOKAM2D turbulence code described in detail in Refs. [109, 116, 141].
TOKAM2D will be used to obtain detailed reference data for the turbulence in
chapters 4-6.

TOKAM2D considers a collection of flux tubes in the SOL connecting two
plasma sheaths. A flute approximation is made to neglect fluctuations along
the parallel direction and an infinite conductivity is assumed such that plasma
quantities are constant in this direction. Under these assumptions, the geometry
reduces from 3D to 2D. Formally, the TOKAM2D equations are derived by
averaging over the uniform parallel direction of these flux tubes. The fluxes
out of this flux tube in the parallel direction are incorporated as artificial
volumetric sinks on the right-hand side of the equations. The form of these sinks
is inspired by Bohm-like sheath conditions. The above assumptions effectively
imply a sheath-limited regime. The TOKAM2D equations are expected to be
representative for dynamics around the outer midplane (OMP) region under
such a sheath-limited regime.

We briefly derive the equation set used by the TOKAM2D turbulence code
to describe this case. TOKAM2D considers a rectangular 2D domain, which
is shown in figure 4.1. x is the radial direction and y is the diamagnetic
direction perpendicular to x and to the magnetic field direction b, such that the
three form a right handed coordinate system. Hence, y points in the electron
diamagnetic direction. The direction along b is assumed to be uniform and is
not resolved. In TOKAM2D, the magnetic field is assumed to be constant in
time and uniform in space (except for magnetic field gradients in the ∇ · J∗
term in the charge balance equation which act as effective gravity). In order to
ease notation, we change the definitions of VE , V∗,i, U, U0 and W as follows

VE , b×∇φ, V∗,i , b× ∇pi

n
, U , −b×V, (B.1)

U0 = ∇⊥φ+ ∇⊥pi

n
, W , ∇ ·U0 = ∇2

⊥φ+∇ · (∇⊥pi
n

), (B.2)

hence excluding the magnetic field from these definitions. Note that in this 2D
case with a constant magnetic field, the pseudo-vorticty W and (the parallel
component of) the real vorticity are equivalent, see equation 2.48.
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The electron continuity equation 2.26, ion thermal energy equation 2.31 and
electron thermal energy equation 2.32 can be rewritten as

∂n

∂t
+ VE

B
· ∇n−D0∇2

⊥n = Sn −∇ · (nVe,||), (B.3)

3
2
∂pi
∂t

+ 3
2

VE

B
· ∇pi −

3
2χ0∇2

⊥pi = 3
2Spi −∇ · (

5
2piV||+qi,||)−Qei, (B.4)

3
2
∂pe
∂t

+ 3
2

VE

B
· ∇pe −

3
2χ0∇2

⊥pe = 3
2Spe −∇ · (

3
2peVe,||+qe,||) +Qei.(B.5)

Here, it has been assumed that only the E×B velocity and the parallel velocities
are relevant for the density and thermal energy convection, i.e. VC , V||+ VE

and that the perpendicular classical particle and heat fluxes can be modelled
using simple diffusion models with D0 and χ0 as constant transport coefficients.
These diffusion terms are required for numerical stability as they stop the direct
cascade to length scales smaller than the gyro-radius, which would be unphysical
in a drift-reduced fluid approach. The divergence of the E×B drift ∇ · VE

vanishes exactly (see equation 3.29) in the TOKAM2D code since the magnetic
field strength is assumed to be uniform over the whole domain. Furthermore,
since a flux tube with no gradients along the parallel direction is considered,
the pressure work on the parallel velocity ∇p ·V|| vanishes. Viscous heating of
the ions and the resistive heating of the electrons is neglected.

Note that the divergences of the parallel heat and particle fluxes are retained.
These terms represent the flow of particles and thermal energy out of the flux
tube at the parallel ends of it. In the SOL, the flux tube ends at a material
surface where a very thin plasma sheath forms. Such plasma-wall interactions
are described in detail in Ref. [153] for example. The behaviour of the sheath
can be described by Bohm conditions. The flux of ions and electrons, ion and
electron heat and the current at the entrance of the plasma sheath are the
following:

Γsheath,i = ncs, (B.6)

Γsheath,e = ncs exp(Λ− φ/Te), (B.7)

qsheath,i = γipics, (B.8)

qsheath,e = γepecs exp(Λ− φ/Te), (B.9)

Jsheath = encs(1− exp(Λ− φ/Te)). (B.10)
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In these expressions Λ = 1
2 ln( mi

2πme ) [116] is the sheath potential drop and γi
and γe are sheath heat transmission coefficients that can further be calculated,
see for example Refs. [116, 153]. These relations are used to model the parallel
flux divergences as

∇ · nV|| ≈
Γsheath
L||

, ∇ · J|| ≈
Jsheath
L||

, ∇ · (5
2pV||+q||) ≈

qsheath
L||

. (B.11)

In these relations, L|| is half the connection length, the distance along the field
line between the intersections with the solid surface, i.e. the parallel length of
the flux tube considered here. Then, the ion-electron heat transfer is modelled
as Qei = 3me

mi

pi−pe
τei

, with τei the ion-electron collision time. Filling out these
models, the equations become

∂n

∂t
+ VE

B
· ∇n−D0∇2

⊥n = Sn −
ncs
L||

exp(Λ− φ

Te
), (B.12)

∂pi
∂t

+ VE

B
· ∇pi − χ0∇2

⊥pi = Spi −
2γipics

3L||
− 2me

mi

pi − pe
τei

, (B.13)

∂pe
∂t

+ VE

B
· ∇pe − χ0∇2

⊥pe

= Spe −
2γepecs

3L||
exp(Λ− φ

Te
) + 2me

mi

pi − pe
τei

. (B.14)

Next, we consider the charge balance equation which provides an equation for
the electrostatic potential φ. The vorticity equation 2.53, is reduced to

mn

B2
∂W

∂t
+ mn

B2 VE · ∇W = ∇ · J|| +∇ · J∗ +∇ · Jp,Π + SW,cor, (B.15)

SW,cor = e∇n ·Vp,0 −
mn

B2 ∇VE : ∇U0 −
mn

B2 U0 · ∇
Sni

n
− m

B2SniW. (B.16)

As in the continuity and thermal energy equations, the velocity important for
convection is assumed to be VC , VE + V||. Note that the perpendicular
component of this velocity is now different from the velocity used for the inertia,
i.e. VC 6= V0,⊥. Parallel gradients have again been dropped in this equation.
Since the magnetic field is assumed to be constant in time and uniform in space,
all derivatives of the magnetic field also vanish.

In TOKAM2D, SW,cor is also neglected. The first one of these terms is dropped
by the commonly made Boussinesq approximation [74, 132, 141, 170]. The
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second term can be shown to be zero when the diamagnetic drift contribution
to U0 is neglected, as will be the case in the next sections of this chapter.
Since neutrals are not treated in TOKAM2D, the only particle source is an
imposed source close the domain boundary, a region which will be excluded
from the analysis in this thesis. Hence, neglecting the particle source terms can
be justified.

Next, we will discuss the treatment of the different current divergence terms on
the RHS of equation B.15 separately. The divergence of the parallel current
is treated like the divergence of the parallel heat and particle fluxes. Using
expression B.11, it is modelled as

∇ · J|| ≈
encs
L||

(1− exp(Λ− φ

Te
)) (B.17)

Then, with the help of some vector algebra the diamagnetic current divergence
in equation B.15 is written as

∇ · J∗ , ∇ · (B×
∇p
B2 ) ≈ b

B
· (∇ ln(B2)×∇p) = − g

B

∂p

∂y
. (B.18)

In this derivation, a term (∇ × B) · ∇p/B2 is neglected through the low β
approximation (see section 2.2.2). In the last step, the magnetic field strength is
assumed to vary in the radial x-direction only, and the magnetic field gradient
is written as g = −∂ ln(B2)/∂x. Note that spatial variations of the magnetic
field are retained in this term specifically in TOKAM2D in order to be able to
represent the important interchange drive for the turbulence. Moreover, the
parameter g is to be interpreted as the average magnetic field curvature along
the parallel extent of the flux tube.

Finally, the contribution of viscous stresses and momentum sources to the
polarisation current Jp,Π , (−∇ ·Π + Sm)× b/B is approximated as

∇ · Jp,Π = −∇ · (∇ ·Π
B
× b) = mν0

B2 n∇
2
⊥W. (B.19)

Next to its physical meaning of viscous dissipation, this term is likewise required
for numerical stability of the TOKAM2D code.
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Filling out expressions B.17, B.18 and B.19 in equation B.15 and neglecting
SW,cor as is done in TOKAM2D, we obtain

mn

B2 (∂W
∂t

+ VE · ∇W )− m

B2 ν0n∇2
⊥W

= − g
B

∂p

∂y
+ encs

L||
(1− exp(Λ− φ

Te
)). (B.20)

Finally, equations B.12, B.13, B.14 and B.20 are normalised with the ion massm,
reference ion gyro-frequency Ω0 = eB0/m and reference gyro-radius ρ0 = cs,0Ω0,
with B0 the reference magnetic field strength, cs,0 =

√
T0/mi the reference

sound speed and T0 the reference temperature. The density is normalised to the
reference density n0. Note that the reference temperatures are defined in energy
units of [J] or equivalently [eV]. This normalisation procedure is illustrated
for typical tokamak SOL conditions in appendix C. Note that for clarity of
notation, we choose to keep using the same symbols after the normalisation. In
the remainder of this appendix and in chapters 4-6, the plasma quantities are
all normalised, unless explicitly stated otherwise. This yields the full equation
set as

∂n

∂t
+ VE · ∇n−D0∇2

⊥n = Sn −
ncs
L||

exp(Λ− φ

Te
)

+KDW [(φ− Te lnn− 1.71Te)− 〈φ− Te lnn− 1.71Te〉y], (B.21)

∂W

∂t
+ VE · ∇W − ν0∇2

⊥W = − g
n

∂p

∂y
+ cs
L||

(1− exp(Λ− φ

Te
))

+KDW [(φ− Te lnn− 1.71Te)− 〈φ− Te lnn− 1.71Te〉y], (B.22)

∂pi

∂t
+ VE · ∇pi − χ0∇2

⊥pi = Spi −
2me

mi

pi − pe

τei
− 2

3
γipics
L||

, (B.23)

∂pe

∂t
+ VE · ∇pe − χ0∇2

⊥pe

= Spe + 2me

mi

pi − pe

τei
− 2

3
γepecs
L||

exp(Λ− φ

Te
)

+2
3KDWφ[(φ− Te lnn− 1.71Te)− 〈φ− Te lnn− 1.71Te〉y], (B.24)

W , ∇2
⊥φ+∇ · ∇⊥pi

n
, VE , b×∇φ. (B.25)
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Note that charge balance equation B.20 is divided by the density n to obtain
equation B.22. In addition, the last terms in equations B.21, B.22 and B.24
were added to to the equations. These terms induce DW-like dynamics in
the simulations and are only active in the core region where they replace the
penultimate terms in equations B.21, B.22 and B.24 representing the losses to
the sheath in the SOL. The physics and the derivation of these DW-like terms
are discussed in section 5.1.1. This is then the set of equations that is solved by
the TOKAM2D turbulence code.

Various options are implemented for turning on or off certain physical effects in
equations B.21-B.25 if desired. The terms in black are always active in the SOL.
The basic isothermal SOL-only case studied in chapter 4 considers just this
minimal set. In section 5.1, a core region is added in which the terms in blue
replace the penultimate terms in equations B.22, B.22 and B.22 which are used
in the SOL. Section 5.2 then considers the effect of the total vorticity by adding
the diamagnetic contribution to the pseudo-vorticity in green to the basic model
in black (DW-like terms in blue are no longer active). The anisothermal SOL
only case is studied in chapter 6, for which the thermal energy equations in red
are added to the basic equations in black. (The terms in blue and green are
not actived in this case.) Finally, the term in purple is only active in the core
region in the anisothermal case. This situation is not studied in this thesis.

TOKAM2D solves (a subset of) equations B.21-B.25 for a Cartesian x, y-
coordinate system representing the plane perpendicular to the magnetic field.
In this thesis the finite volume version of the TOKAM2D code [109, 116] is
used. Periodic boundary conditions are used on diamagnetic (y) boundaries,
while Neumann boundary conditions are applied on radial (x) boundaries such
that there is no radial flux of any quantity at the radial boundaries of the
domain.2 In addition, fringe regions are applied near the radial boundaries of
the domain to drive fluctuations in the y-direction to zero in those regions. The
particle source Sn has a Gaussian profile in the x-direction and is constant both
in the y-direction and in time. Ion and electron thermal energy sources Spi

and Spe are applied that have the same shape as the particle source, they are
determined as Sp,i/e = Tinj,i/eSn, with Tinj,i and Tinj,e user defined simulation
parameters determining the thermal energy of the injected ion and electrons. In
the simulations performed for this thesis, the particle source is situated towards
the inner boundary of the domain. More details regarding the TOKAM2D
simulation parameters used in the various sets of simulations reported here can
be found in appendix D. Figure 4.1 shows a sketch of the different regions in
the TOKAM2D computational domain.

2Particles and thermal energy enter the domain through the sources instead.
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B.2 TOKAM2D kinetic energy equations

The TOKAM2D vorticity equation 4.2 together with the definition for the
TOKAM2D vorticity 4.3 effectively implies that the LHS of the charge balance
equation represents

∂W

∂t
+ VE · ∇W = D

Dt
∇ ·U0 (B.26)

as an approximation for the divergence of the inertial contribution to the
polarisation velocity −∇ ·Vp,0. The velocities contributing to this inertia are
now assumed to be the E×B drift and the ion diamagnetic drift, i.e.

U0 = V0 × b = (VE + V∗,i)× b = ∇⊥φ+∇⊥pi/n. (B.27)

However, note that the contribution from the diamagnetic velocity to convection
is not taken into account, i.e. VC = VE .

Given these contributions to the inertia, the total (in the sense of including
E×B and diamagnetic velocity) perpendicular kinetic energies have been defined
in equations 5.19-5.19 as:

EE∗ = V2
0

2 , Em,E∗ = Ṽ0

2 , n̄kE∗
nV′′20

2 . (B.28)

Since these may be expected to be more directly related to the E×B turbulent
fluxes that need to be modelled, the TOKAM2D E×B-only kinetic energies
have been defined in equation 5.30 as:

EE = V2
E

2 , EE,m = Ṽ2
E

2 , n̄kE = nV′′2E
2 . (B.29)

Section B.2.1 will first derive equations for the total perpendicular kinetic
energies, after which section B.2.2 will derive equations for the E×B-only
kinetic energies.
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B.2.1 TOKAM2D total kinetic energy equations

Derivation of EE∗ equation

The procedure to derive transport equations for the total perpendicular kinetic
energy is similar to that followed for the general case in section 3.2.1.

To derive transport equations for these quantities, we again start from the
TOKAM2D vorticity equation 4.2. The LHS of this equation 4.2 is now equal
to

DW

Dt
= D

Dt
∇ ·U0 = −∇ ·Vp,0 −∇VE : ∇U0, (B.30)

where we defined the inertial contribution to the TOKAM2D polarisation current
as

Vp,0 = Jp,0
n

= −DU0

Dt
. (B.31)

Note that the second term in expression B.30 has been neglected in the derivation
of the TOKAM2D vorticity equation in equation B.15 in section 4.1. Multiplying
the expression by nφ and rewriting, we get

nφ
DW

Dt
= −∇ · φJp,0 +∇φ · Jp,0 + φ∇n ·Vp,0 − nφ∇VE : ∇U0. (B.32)

In this expression, the second term in the RHS is to be associated with the
kinetic energy. However, the diamagnetic contribution is not yet fully included.
To this end, ∇pi ·Vp,0 is added to both sides, to obtain

nφ
DW

Dt
+∇pi ·Vp,0

= −∇ · φJp,0 − n
DEE∗
Dt

+ φ∇n ·Vp,0 − nφ∇VE : ∇U0. (B.33)

Rewriting the kinetic energy term in the conservative form (using continuity
equation B.21) and filling out the RHS of TOKAM2D vorticty equation 4.2 in
the first term on the LHS, the total kinetic energy equation is obtained:
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∂nEE∗
∂t

+∇ · ΓEE∗

= gφ
∂p

∂y
− csnφ

L||
(1− exp(Λ− φ

Te
))− νnφ∇2

⊥W + SEE∗,n

−∇pi ·Vp,0 + φ∇n ·Vp,0 − nφ∇VE : ∇U0, (B.34)

ΓEE∗ = nEk,⊥VE + φJp,0, (B.35)

SEE∗,n = EE∗Sn +D0EE∗∇2
⊥n−

EE∗csn

L||
exp(Λ− φ

Te
). (B.36)

Derivation of Em,E∗ and kE∗ equations

In order to arrive at equations for Em,E∗ and kE∗, the EE∗ equation B.34
should be split in a contribution due to mean flows and a contribution due to
fluctuations.

We obtain an expression for the time rate of change of Em,E∗ by taking the
scalar product of the inertial part of the average polarisation current J̄p,0 with
∇̃φ+∇p̄i/n̄ and then using the averaged continuity equation 4.5 to rewrite:

∂

∂t
n̄Em,E∗ +∇ · (n̄Em,E∗ṼE + nV′′EV′′0 · Ṽ0)

= −
(
∇̃φ+ ∇p̄i

n̄

)
· J̄p,0 + nV′′EV′′0 : ∇ṼT

0 + Ṽ0 ·V′′0Sn + Em,E∗S̄n. (B.37)

In order to use this expression starting from an averaged charge balance equation
(∇ · J̄ = 0), ∇̃φ · J̄p,0 is rewritten to include nDW/Dt:

−∇̃φ · J̄p,0 = φ̄∇ · J̄p,0 −∇ · (φ̄J̄p,0)− J̄p,0
n̄
· n′∇φ′

= −φ̄nDW
Dt
− φ̄n∇VE : ∇U0 + φ̄∇n ·Vp,0

−∇ · (φ̄J̄p,0)− Ṽp,0 · n′∇φ′. (B.38)

Note that this is more complicated than for the total kinetic energy case in
equation B.32 because Favre averages and gradients do not commute. As a
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result, an additional “Favre averaging term”, which is the last term in B.38,
originates.

Filling out equation B.38 in equation B.37, and then filling out the RHS of the
vorticity equation 4.2 for DW/Dt leads to the Em,E∗ equation

∂

∂t
n̄Em,E∗ +∇ · ΓEm,E∗ = gφ̄

∂p̄

∂y
− φ̄

L||
csn(1− exp(Λ− φ

Te
))

−νφ̄n∇2
⊥W + nV′′EV′′0 : ∇ṼT

0 − n′∇φ′ · Ṽp,0 + SEm,E∗,n

−∇⊥p̄i · Ṽp,0 + φ̄∇n ·Vp,0 − φ̄n∇VE : ∇U0, (B.39)

ΓEm,E∗ = n̄ṼEEm,E∗ + nV′′EV′′0 · Ṽ0 + φ̄J̄p,0, (B.40)

SEm,E∗,n = Em,E∗S̄n + Ṽ0 ·V′′0Sn

+D0Em,E∗∇2
⊥n̄+D0Ṽ0 ·V′′0∇2

⊥n

−Em,E∗
L||

csn exp(Λ− φ

Te
)− csnV′′0 exp(Λ− φ

Te
) · Ṽ0

L||
. (B.41)

Taking the difference between the average of the total kinetic energy equation
B.34 and the mean-flow kinetic energy equation B.39 yields the turbulent kinetic
energy equation:

∂

∂t
n̄kE∗ +∇ · ΓkE∗ = gφ′

∂p′

∂y
− 1
L||

φ′csn(1− exp(Λ− φ

Te
))

−νφ′(n∇2
⊥WTW )′ − nV′′EV′′0 : ∇ṼT

0 + n′∇φ′ · Ṽp,0 + SkE∗,n

−∇pi ·V′′p,0 + φ′∇n ·Vp,0 − nφ′∇VE : ∇U0, (B.42)

ΓkE∗ = n̄kE∗ṼE + nV′′EV′′20 /2 + φ′J′p,0, (B.43)

SEm,E∗,n = 1
2V′′20 Sn + D0

2 V′′20 ∇2
⊥n−

1
L||

nV′′20
2 exp(Λ− φ

Te
). (B.44)
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B.2.2 TOKAM2D E×B-only kinetic energy equations

Derivation of EE equation

The derivation of the E×B-only kinetic energy equations are analogous to
those for the total case. However the derivation now proceeds based on the
E×B contribution to the polarisation current only instead of the total inertial
contribution (which also contains a contribution from the ion diamagnetic drift).
We define this E×B-only polarisation current for TOKAM2D as

Jp,E = nVp,E = nb× DVE

Dt
= −nDUE

Dt
, (B.45)

with UE = VE × b = ∇⊥φ. To relate this to the TOKAM2D charge balance
equation 4.2, we split the total TOKAM2D vorticity into an E×B and a
diamagnetic contribution as well (in analogy to equation 3.47):

W = WE +W∗ = ∇2
⊥φ+∇ ·

(
∇⊥pi

n

)
= ∇ ·UE +∇ ·U∗,i. (B.46)

Thus, we can write that

DW

Dt
= D

Dt
∇ ·UE + DW∗

Dt
= −∇ ·Vp,E −∇VE : ∇UE + DW∗

Dt
, (B.47)

Note that the∇VE : ∇UE can be shown to be identically zero in the TOKAM2D
case. Multiplying the E×B-contribution only with nφ, we now find

nφ
DWE

Dt
= −∇ · φJp,E +∇φ · Jp,E + φ∇n ·Vp,E . (B.48)

The second term on the RHS of this expression is now exactly the time rate of
change of the E×B kinetic energy nDEE/Dt, i.e. no additional term similar
to ∇p · Vp is required in this case. Hence, the previous equation can be
reworked into an E×B-only kinetic energy equation by filling out DWE/Dt =
DW/Dt−DW∗/Dt and filling out the TOKAM2D charge balance equation 4.2



TOKAM2D KINETIC ENERGY EQUATIONS 269

for DW/Dt:

∂

∂t
nEE +∇ · ΓEE = gφ

∂p

∂y
− csnφ

L||
(1− exp(Λ− φ

Te
))

−νnφ∇2
⊥W + nφ

DW∗
Dt

+ SEE,n + φVp,E · ∇n, (B.49)

ΓEE = nEEVE + φJp,E , (B.50)

SEE,n = EESn + EED0∇2
⊥n−

EEcsn

L||
exp(Λ− φ

Te
), (B.51)

Note that the continuity equation B.21 was used to get from the advective form
to the conservative form of this equation. Remark also that equation B.49 can
also be derived by algebraic manipulation of equation B.34, but this derivation
is much more tedious.

Derivation of EE,m and kE equations

An expression for the time rate of change of EE,m is obtained by taking the
scalar product of J̄p,E with ∇̃φ and then using the averaged continuity equation
4.5 to rewrite:

∂

∂t
n̄EE,m +∇ · (n̄EE,mṼE + nV′′EV′′E · ṼE)

= −∇̃φ · J̄p,E + nV′′EV′′E : ∇ṼT

E + ṼE ·V′′ESn + EE,mS̄n. (B.52)

A expression equivalent to B.38 can be written to relate ∇̃φ · J̄p,E to include
nDW/Dt:

−∇̃φ · J̄p,E = −φ̄nDW
Dt

+ φ̄n
DW∗
Dt

+ φ̄∇n ·Vp,E

−∇ · (φ̄J̄p,0)− Ṽp,0 · n′∇φ′. (B.53)

Filling out equation B.53 in equation B.52, and then filling out the charge
balance equation 4.2 for DW/Dt, the mean-field E×B-only kinetic energy
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equation for TOKAM2D can be written as

∂

∂t
n̄EE,m +∇ · ΓEE,m = gφ̄

∂p̄

∂y
− φ̄

L||
csn(1− exp(Λ− φ

Te
))

−νφ̄n∇2
⊥W + φ̄n

DW∗
Dt

+ nV′′EV′′E : ∇ṼT

E − Ṽp,E · n′∇φ′

+SEE,m,n + φ̄Vp,E · ∇n, (B.54)

Γ̄EE,m = n̄EE,mṼE + nV′′EV′′E · ṼE + φ̄J̄p,E , (B.55)

SEE,m,n = EE,mS̄n + ṼE ·V′′ESn

+D0EE,m∇2
⊥n̄+D0ṼE ·V′′E∇2

⊥n

−EE,m

L||
csn exp(Λ− φ/Te)− csnV′′E exp(Λ− φ/Te) ·

ṼE

L||
. (B.56)

Taking the difference between the average of equation B.49 and equation B.54,
the E×B-only turbulent kinetic energy equation is obtained as

∂

∂t
n̄kE +∇ · ΓkE = gφ′

∂p′

∂y
− 1
L||

φ′csn(1− exp(Λ− φ

Te
))

−νnφ′∇2
⊥W + nφ′

DW∗
Dt

− nV′′EV′′E : ∇ṼT

E + Ṽp,E · n′∇φ′

+SkE ,n + φ′(Vp,E · ∇n)′, (B.57)

Γ̄kE = n̄kEṼE + nV′′EV′′2E /2 + φ′J′p,E , (B.58)

SkE ,n = 1
2V′′2E Sn + D0

2 V′′2E ∇2
⊥n−

1
L||

cs
nV′′2E

2 exp(Λ− φ

Te
). (B.59)

A comment on the TOKAM2D E×B-only case that is mostly studied in
chapters 4-6 is still in place here. In this E×B-only case, only the E×B
contribution to the inertia in the polarisation current is considered, while
the diamagnetic contribution is neglected. Hence, also in the vorticity the
diamagnetic contribution is neglected W∗ = 0, such that W ≡ WE . In this
E×B-only case the E×B-only kinetic energy equations B.49, B.54 and B.57
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remain valid, but slightly simplify as the nφDW∗/Dt terms on the RHS vanish.
Also note that the viscous term becomes νnφ∇2

⊥WE .

B.3 TOKAM2D enstrophy equations kinetic en-
ergy equations

B.3.1 Derivation of total enstrophy equations

As for the kinetic energy, equation for the enstrophy can also be derived both
for the total and for the E×B-only part. Hence, we define the total enstrophy
(with contributions from the E×B and the ion diamagnetic drift) as

ζtot,E∗ = W 2

2 , ζmean,E∗ = W̃ 2

2 , n̄ζ,E∗ = nW ′′2

2 , (B.60)

and the E×B-only enstrophy as

ζtot,E = W 2
E

2 , ζmean,E = W̃ 2
E

2 , n̄ζE = nW ′′2E
2 . (B.61)

Note that the sum of this E×B-only enstrophies and a diamagnetic enstrophy
which could be defined as W 2

∗ / is not equal to the total enstrophy, since WEW∗
terms would then be ignored.

To analytically derive transport equations for the enstrophy, we follow a
procedure similar to section 3.3.1. An equation for the total enstrophy can
readily be derived by multiplying the TOKAM2D charge balance equation 4.2
by nW :

∂nζtot
∂t

+∇ · (nVEζtot) = −gW ∂p

∂y
+ csnW

L||
(1− exp(Λ− φ

Te
))

+νnW∇2
⊥W + ζtotSn +D0ζtot∇2

⊥n−
csnζtot
L||

exp(Λ− φ

Te
). (B.62)

Note that the continuity equation B.21 was used to get from the advective form
to the conservative form of this equation.

The mean field enstrophy equation is obtained by first averaging the charge
balance equation 4.2 multiplied by n, effectively yielding an equation for n̄W̃ .
Then, this equation is multiplied by W̃ to obtain
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∂n̄ζmean
∂t

+∇ · (n̄ζmeanṼE + nW ′′V′′EW̃ ) = −gW̃ ∂p̄

∂y

+ W̃

L||
csn(1− exp(Λ− φ

Te
)) + νW̃n∇2

⊥W + nW ′′V′′E · ∇W̃

+ζmeanS̄n + W̃W ′′Sn +D0ζmean∇2
⊥n̄+D0W̃W ′′∇2

⊥n

−ζmean
L||

csn exp(Λ− φ

Te
)− W̃

L||
csnW ′′ exp(Λ− φ

Te
). (B.63)

The difference between the averaged total enstrophy equation B.62 and the mean
flow enstrophy equation B.63 then yields the turbulent enstrophy equation:

∂n̄ζturb
∂t

+∇ · (n̄ζturbṼE + nW ′′2V′′E
2 ) = −gW ′′ ∂p

∂y

+ 1
L||

csnW ′′(1− exp(Λ− φ

Te
)) + νnW ′′∇2

⊥W − nW ′′V
′′
E · ∇W̃

+W ′′2Sn
2 +Dn

W ′′2∇2
⊥n

2 − 1
L||

csnW ′′2

2 exp(Λ− φ

Te
). (B.64)

B.3.2 Derivation of E×B-only enstrophy equations

To derive the E×B-only enstrophy equations we again make use of the
decomposition of the vorticity in an E×B and a diamagetic contribution shown
in equation B.46. Following this decomposition, we write the LHS of the
TOKAM2D charge balance equation 4.2 as

DW

Dt
= DWE

Dt
+ DW∗

Dt
(B.65)

Multiplying this charge balance equation with WE and using the continuity
equation B.21 to get to the conservative form readily yields the total E×B-only
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enstrophy equation as

∂nζtot,E
∂

+∇ · (nVEζtot,E) = −gWE
∂p

∂y

+csnWE

L||
(1− exp(Λ− φ

Te
)) + νnWE∇2

⊥W − nWE
DW∗
Dt

+ζtot,ESn +D0ζtot,E∇2
⊥n−

csnζtot,E
L||

exp(Λ− φ

Te
). (B.66)

Similarly, multiplying the average of the product between the density and the
TOKAM2D vorticity equation 4.2 with W̃E yields

∂n̄ζmean,E
∂t

+∇ · (n̄ζmean,EṼE + nW ′′EV′′EW̃E) = −gW̃E
∂p̄

∂y

+W̃E

L||
csn(1− exp(Λ− φ

Te
)) + νW̃En∇2

⊥W − W̃En
DW∗
Dt

+nW ′′EV′′E · ∇W̃E + ζmean,ES̄n + W̃EW ′′ESn +D0ζmean,E∇2
⊥n̄

+D0W̃EW ′′E∇2
⊥n−

ζmean,E
L||

csn exp(Λ− φ

Te
)

−W̃E

L||
csnW ′′E exp(Λ− φ

Te
). (B.67)

Then, the E×B-only turbulent enstrophy equation for TOKAM2D is obtained
by taking the difference between the average of equation B.66 and B.67:

∂n̄ζE
∂t

+∇ · (n̄ζEṼE + nW ′′2E V′′E
2 ) = −gW ′′E

∂p

∂y

+ cs
L||

nW ′′E(1− exp(Λ− φ

Te
)) + νnW ′′E∇2

⊥W − nW ′′E
DW∗
Dt

−nW ′′EV′′E · ∇W̃E + W ′′2E Sn
2 +Dn

W ′′2E ∇2
⊥n

2

− 1
L||

csnW ′′2E
2 exp(Λ− φ

Te
). (B.68)
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If desired, the first four terms in the RHS of equations B.66-B.68 could be
rewritten using the charge balance equation 4.2 as follows

−gWE
∂p

∂y
+ csnWE

L||
(1− exp(Λ− φ

Te
))− νnWE∇2

⊥W + nWE
DW∗
Dt

= −gW ∂p

∂y
+ csnW

L||
(1− exp(Λ− φ

Te
))− νnW∇2

⊥W

+nW DW∗
Dt

+ nW∗
DWE

Dt
. (B.69)

Hence these terms can be written with the total vorticity W instead of the
E×B-only vorticity WE to obtain the same closures in the RHS as in the
total enstrophy equations B.62-B.64. However, a correction term of the form
nW∗DWE/Dt then needs to be added (in addition to the DW∗/Dt term which
was already there as correction w.r.t. the total enstrophy case).

In the TOKAM2D E×B-only case (where W∗ = 0 and W ≡WE are assumed)
that is mostly studied in chapters 4-6, the E×B-only enstrophy equations B.66-
B.68 remain valid. Moreover, the equations slightly simplify as the fourth term
on the RHS can be dropped.



Appendix C

Representative dimensional
values for plasma quantities
in TOKAM2D

By way of example to interpret the normalised quantities used in the main text,
this appendix1 considers a tokamak operating with a pure deuterium plasma.
Typical values around the separatrix of such a machine could be B0 = 5T ,
n0 = 5 × 1019/m3 and T0 = 50eV . For these reference values, the reference
quantities used in the normalisation become

Ω0 = eB0/mi = 2.4× 108Hz, (C.1)

cs,0 =
√
T0/mi = 4.9× 104m/s, (C.2)

ρ0 = cs,0/Ω0 = 2.0× 10−4m. (C.3)

These reference quantities are then used in table C.1 to calculate typical
dimensional values from the typical values of (anisothermal SOL) TOKAM2D
simulation results for a number of key quantities. The particle diffusion
coefficient can be seen to be rather high, characteristic of a highly turbulent
SOL.

1This appendix has been published in the appendix of “Coosemans, R., Dekeyser, W.,
Baelmans, M. (2022). A self-consistent mean-field model for turbulent particle and heat
transport in 2D interchange-dominated electrostatic E×B turbulence in a sheath-limited
scrape-off layer. Contributions to Plasma Physics, e202100193” [47].
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Table C.1: Typical dimensional and normalised values for turbulent quantities
as obtained from the default TOKAM2D simulation.

normalisation T2D value [-] dimensional value
D ρ2

0Ω0 0.2− 1.2 2− 12m2/s
n n0 1 5× 1019m−3

Ti/e T0 = mc2s,0 1 50eV
Γn n0cs,0 10−2 2.4× 1022m−2s−1

Γpi + Γpe n0T0cs,0 3× 10−2 5.9× 105Jm−2s−1

k⊥ T0 = mc2s,0 3× 10−3 0.15eV



Appendix D

TOKAM2D simulation
parameters

This appendix1 details the simulation parameters used in the TOKAM2D
simulations presented in chapters 4-6. All reported simulations were run for the
finite volume version of the code with a non-periodic x-direction and using the
strong Boussinesq assumption. Fringe regions are applied on the radial edges of
the domain to smoothly enforce diamagnetically uniform profiles in these zones.
The width of the fringe region near the inner and outer radial boundary is set
to 10 gyro-radii on both sides in all simulations. Note that the data used in the
post processing only considers the physical middle part of the computational
domain where there is no fringe region and the influence of the particle and
thermal energy sources is negligible.

In all simulations a particle source Sn with Gaussian profile in the x direction
that is uniform in the diamagnetic y direction and in time is applied. This source

1Parts of this appendix have been published in the appendices of “Coosemans, R., Dekeyser,
W., Baelmans, M. (2021). Turbulent kinetic energy in 2D isothermal interchange-dominated
scrape-off layer E×B drift turbulence: Governing equation and relation to particle transport.
Physics of Plasmas, 28:012302” [46], of “Coosemans, R., Dekeyser, W., Baelmans, M. (2020). A
new mean-field plasma edge transport model based on turbulent kinetic energy and enstrophy.
Contributions to Plasma Physics, 60:e201900156” [44], of “Coosemans, R., Dekeyser, W.,
Baelmans, M. (2021). Bayesian analysis of turbulent transport coefficients in 2D interchange
dominated E×B turbulence involving flow shear. Journal of Physics: Conference Series,
1785:012001” [45], and of “Coosemans, R., Dekeyser, W., Baelmans, M. (2022). A self-
consistent mean-field model for turbulent particle and heat transport in 2D interchange-
dominated electrostatic ExB turbulence in a sheath-limited scrape-off layer. Contributions to
Plasma Physics, e202100193” [47].
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is centered 10 gyro-radii from the inner boundary and has a standard deviation
of 8 gyro-radii in the radial direction. The cell size is set to ∆x = ∆y = 1[ρ0] for
all simulations. The parameters were chosen such that D0 = ν0 and Λ = 2.8388
in all the reported simulations.

D.1 Isothermal TOKAM2D simulations for the
SOL

In the isothermal case, the ion and electron temperatures take spatio-temporally
constant values equal to Ti = Ti0 and Te = Te0. In particular, Te0 = 1
has been set in all simulations, since the dimensional electron temperature
could then still be set to any desired value through the choice of the reference
temperature T0. All these isothermal SOL simulations were run with a time
step ∆t = 1[Ω−1

0 ].

D.1.1 Default simulation

The default settings for the simulations are shown in table D.1. The last four
columns are not classical TOKAM2D parameters, but are parameters used in
the post-processing. xstart and xend denote the first and the last cell that are
considered in the post-processing. They serve to remove the nonphysical fringe
region and the zone where the particle source is large. tstart and tend denote
the first and the last time steps used for the averaging, they serve to remove
the non-converged first part of the simulation and to show the length of the
simulation.

Table D.1: Default parameters used in TOKAM2D simulations and their post
processing.

Nr. Lx Ly g T i0 L−1
|| ν0 xstart xend tstart tend

1 256 256 6e-4 1 1e-4 5e-3 51 199 2e5 8e5

D.1.2 TOKAM2D parameters used in section 4.3

Table D.2 shows the parameters of the simulations used for the regression analysis
in section 4.3 on the development of the k⊥ model. Only the parameters that
differ from the default simulation (for which the parameters are listed in table
D.1) are shown, except for the first simulation which is the default simulation.



ISOTHERMAL TOKAM2D SIMULATIONS FOR THE SOL 279

Table D.2: TOKAM2D and post-processing parameters of the simulations used
in the regression analysis in section 4.3

Nr. g T i0 L−1
|| ν0 tstart tend

1 6e-4 1 1e-4 5e-3 2e5 8e5
2 4.5e-4
3 7.5e-4
4 5e-5
5 8e-5
6 2e-4
7 0.5
8 2
9 2e-3
10 4e-3
11 6e-3
12 1e-2
13 1.5e-2
14 4e-4 0.8
15 4e-4 1.4
16 9e-4 1.8
17 8e-4 0.75
18 0.9 0.75e-4
19 4.5e-4 1.5e-4

D.1.3 TOKAM2D parameters used in sections 4.4 and 4.5

Table D.3 shows the parameters of the simulations used for the regression
analysis in section 4.4 on the development of the k⊥ − ζ⊥ model and in section
4.5 compare the k⊥ and k⊥ − ζ⊥ models. Only the parameters that differ from
the default simulation (for which the parameters are listed in table D.1) are
shown, except for the third simulation which is the default simulation.
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Table D.3: TOKAM2D and post-processing parameters of the simulations used
in the regression analysis in section 4.4.

Nr. g T i0 L−1
|| ν0 tstart tend

1 4e-4
2 4.5e-4
3 6e-4 1 1e-4 5e-3 2e5 8e5
4 7.5e-4
5 9e-4
6 2e-3
7 1e-2
8 1.5e-2
9 5e-5 2e-2
10 9e-4 5e-5 2e-2
11 8e-5
12 4.5e-4 1.5e-4
13 0.5
14 2
15 3e-4 4 7e-3
16 7e-4 0.7 3e-5
17 0.3 1.5e-4 8e-3
18 4e-4 0.4 6e-5

D.1.4 TOKAM2D parameters used in chapter 5

Table D.4 shows the parameters of the simulations used for the regression
analysis for the SOL in chapter 5. Only the parameters that differ from the
default simulation (for which the parameters are listed in table D.1) are shown,
except for the first simulation which is the default simulation. Each of the
simulations listed in the table are run twice: once with the E×B-only vorticity
W = ∇2

⊥φ and once with the total vorticity W = ∇2
⊥φ+∇ · (∇pin ). Both sets

of simulations are compared in section 5.2. In section 5.1 on the other hand,
only the E×B-only simulations are considered, which are there compared with
simulations that also feature a core region. These are described in appendix
D.2.

In the regression analysis of section 5.1, the data from the radial positions
21 ≤ x ≤ 219 from these simulations has been used.

In the regression analysis of section 5.2, the data from the radial positions
21 ≤ x ≤ 209 from these simulations has been used, while for the 1D mean-field



ISOTHERMAL TOKAM2D SIMULATIONS FOR THE SOL AND CORE REGION 281

DivOptLight (DOL) simulations, the domain 49 ≤ x ≤ 210 has been simulated.

Table D.4: TOKAM2D and post-processing parameters of the simulations used
in the regression analysis in section 5.2.

Nr. g T i0 L−1
|| ν0 tstart tend

1 6e-4 1 1e-4 5e-3 2e5 8e5
2 4e-4
3 9e-4
4 0.5
5 1.2
6 1.5
7 5.e-5
8 2.e-4
9 2e-3
10 1e-2
11 1.5e-2
12 4e-4 0.8
13 9e-4 1.5
14 4.5e-4 1.5e-4
15 5e-5 2e-2
16 0.3 1.5e-4 8e-3

D.2 Isothermal TOKAM2D simulations for the
SOL and core region

Table D.5 shows the parameters of the simulations with SOL and outer core
region used in section 5.1. Lx and Ly denote the radial and diamagnetic domain
length and xsep the location of the separatrix. The radial range xstart ≤ x ≤
xend used for the analysis in section 5.1 is also shown. In these simulations,
neither the ion nor the electron temperature has been varied and both were
chosen Ti0 = Te0 = 1. A time step of ∆t = 0.1 gyro-periods is used in all these
simulations. Data from simulation 15 is used in figures 5.3b and 5.4b.
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Table D.5: TOKAM2D and post-processing parameters of the simulations of
the isoDW data set.

Nr. g L−1
|| KDW ν0 Lx Ly xsep xstart xend

1 2e-3 1.25e-4 5.9e-4 2.7e-3 170 200 61 21 149
2 2.3e-4 2.5e-5 2.74e-4 5e-3 170 200 61 21 149
3 6e-4 1e-4 1e-4 5e-3 170 200 61 21 149
4 2.3e-4 2.5e-5 3.6e-5 2e-2 170 200 61 21 149
5 6e-4 1e-4 1e-5 5e-3 170 200 61 21 149
6 2e-3 1.25e-4 5.9e-4 2.7e-3 256 256 105 21 219
7 2.3e-4 2.5e-5 2.74e-4 5e-3 256 256 105 21 219
8 6e-4 1e-4 1e-4 5e-3 256 256 105 21 219
9 2.3e-4 2.5e-5 3.6e-5 2e-2 256 256 105 21 219
10 6e-4 1e-4 1e-5 5e-3 256 256 105 21 219
11 2e-3 1.25e-4 5.9e-4 2.7e-3 384 256 129 21 339
12 2.3e-4 2.5e-5 2.74e-4 5e-3 384 256 129 21 339
13 6e-4 1e-4 1e-4 5e-3 384 256 129 21 339
14 2.3e-4 2.5e-5 3.6e-5 2e-2 384 256 129 21 339
15 6e-4 1e-4 1e-5 5e-3 384 256 129 21 339

D.3 Anisothermal TOKAM2D simulations for the
SOL

This appendix summarises the TOKAM2D simulation parameters used for the
analysis of the anisothermal TOKAM2D case in chapter 6.

A particle source Sn that is uniform in time and in the diamagnetic y direction
with Gaussian profile in the x direction is applied. This source has its maximum
10 cells from the core boundary and has a standard deviation of 8 cells. Electron
and ion thermal energy sources Spe and Spi are applied that have the same
shape as the particle source, they are determined as Sp,i/e = 2/3Einj,i/eSn.

All simulations are all conducted on a grid of 256x256 cells with a cell size
∆x = ∆y = 1 gyro-radius and a time step of ∆t = 0.1 gyro-period. In the radial
direction, only the data points in the range 21 ≤ x ≤ 219 are retained for the
analysis in order to exclude the fringe region. All diamagnetic data points are
used. In the 1D mean-field DivOptLight (DOL) simulations, the radial domain
is further trimmed to 50 ≤ x ≤ 219 in order to also exclude the region where
the particle and thermal energy sources are active.
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The physical TOKAM2D parameters which are varied in the simulations are
shown in table D.6. The first simulation is the reference one, only parameters
that differ from this default simulation are shown for other simulations. This
first simulation is also the one of used in all figures showing radial profiles in
chapter 6 and in figure 6.11. Apart from the parameters shown in table D.6,
the settings γi = 2.5 and γe = 4 are used in all simulations.

Table D.6: Simulation parameters of the anisothermal TOKAM2D data set.

Nr. g Einj,i Einj,e L−1
|| ν0

1 6e-4 3 3 1e-4 5e-3
2 2e-5
3 5e-5
4 8e-5
5 1.5e-4
6 2e-4
7 2 1.4e-4
8 2 1.4e-4
9 5
10 5
11 6 2
12 2 6
13 8 2
14 2 8
15 2 2
16 6 6
17 3e-4
18 9e-4
19 1.2e-3
20 2.5e-3
21 1e-2
22 4e-4 8e-3
23 8e-4 4e-3
24 4 4 1.2e-4

The simulations in table D.6 have all been run twice: once with the SCW
mode on (SCW1 case) and once with the SCW mode suppressed (SCW0 case).
Furthermore, the default simulation 1 has been run once more for the SCW1
case, but with g = 0 to supply the data for figure 6.11c.





Appendix E

TOKAM2D grid refinement

This appendix1 conducts a grid and time step refinement study to verify for
the isothermal TOKAM2D case discussed in chapter 4. It is verified that the
error on the turbulent kinetic energy balance and on the turbulent enstrophy
balance, shown in figures 4.6 and 4.14 respectively, reduces with increasing
refinement. Given the first order time integration and second order WENO
spatial discretization schemes [97, 110] used by the finite volumes version of the
TOKAM2D code used in this contribution [109, 116], the error is expected to
scale like O(∆x2) +O(∆y2) +O(∆t). During the refinement we systematically
reduced the cell size with a factor 2 in both directions, and the time step with
a factor 4 such that we would theoretically obtain second order convergence.

The exact parameters used in the TOKAM2D grid refinement simulations are
shown in table E.1. Only the parameters that differ from the default simulation
(for which the parameters are listed in table D.1) are shown. For all these
simulations, the particle source Sn is centered 5 gyro-radii from the inner
boundary and has a standard deviation of 4 gyro-radii in the radial direction.
Note that the start and end points of the considered domain in space and in
time are expressed in cell numbers and in time steps, rather than gyro-radii
and gyro-periods.

Figure E.1 shows the results for the radially averaged value of the relative error
on the k⊥ and ζ⊥ equations as a function of the refinement step. The figure
shows that the relative error and the subgrid model decrease as the grid and

1Parts of this appendix have been published in the appendix of “Coosemans, R., Dekeyser,
W., Baelmans, M. (2021). Turbulent kinetic energy in 2D isothermal interchange-dominated
scrape-off layer E×B drift turbulence: Governing equation and relation to particle transport.
Physics of Plasmas, 28:012302” [46].
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Table E.1: TOKAM2D and post-processing parameters of the simulations used
in the grid refinement analysis.

Nr. Lx Ly ∆x ∆y ∆t xstart xend tstart tend
a 64 64 2 2 4 13 49 8e5 1.04e7
b 128 128 1 1 1 26 99 2e5 2.6e6
c 256 256 0.5 0.5 0.25 51 199 8e5 3.2e6
d 512 512 0.25 0.25 1/16 101 399 1.6e6 8e6

time step are refined. The figure also shows that the expected second order
convergence has not been reached yet for the k⊥ equation, while it might be
reached in the last refinement step for the ζ⊥ equation. Hence, the grid would
have to be refined even further to complete the grid convergence study. This has
not been done yet for reasons of computational cost. An alternative explanation
may be that the discretization scheme we used may not be second order for one
of the terms in the k⊥ equation.

Figure E.2 shows the difference between k⊥ and ζ⊥ on the finest grid and k⊥ and
ζ⊥ on the coarser grids. The theoretically expected second order convergence
does seem to be recovered here. This figure clearly shows that both quantities
increase as the grid is refined. Indeed, as the grid is refined, the dissipative
effect of the discretisation error is reduced, which leads to an increase of k⊥
and ζ⊥. This numerical dissipation thus acts as an additional subgrid model
that is not present in the governing equations 4.1-4.2. Alternatively, it could be
argued that refining the grid allows smaller scale structure to be resolved and
to contribute to k⊥ and ζ⊥, leading to an increase of these quantities. This as
well is an undesirable effect though since it is unphysical to have fluctuations at
scales smaller than a gyro-radius in the drift-reduced fluid approach followed
in TOKAM2D. The viscous dissipation in the model equations should inhibit
the direct cascade to these scales. The commonly used cell sizes and time steps
(∆x = ∆y = ρ0, ∆t = 1/Ω0)[109, 116] will be used in the remainder of chapter
4, despite the error that they seem to cause, because we found no significant
impact on the underlying physics interpretation or saturation behavior of the
turbulence at present. However, for a detailed analysis of the forward and
inverse turbulence cascades[92, 36, 71, 34], this implied subgrid model might
play an important role, and requires further investigation.

It is also interesting to compare the slightly different behaviour of k⊥ and ζ⊥
during the refinement. Clearly, the error on the turbulent enstrophy equation is
much larger than that on the turbulent kinetic energy equation. The turbulent
enstrophy also increases more strongly as the grid is refined. This is most likely
a result of the enstrophy being concentrated on the smaller scales which suffer
more from the discretization, while the kinetic energy is more strongly present
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Figure E.1: Relative error on the turbulent kinetic energy 4.16 and enstrophy
4.27 equations as a function of the number of grid cells. Time step is refined
during grid refinement as well
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Figure E.2: Turbulent kinetic energy and enstrophy as a function of the number
of grid cells. Time step is refined during grid refinement as well
.
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on larger scales. Alternatively, it could be argued that since more enstrophy
is present on the small scales, resolving the turbulence on finer grids affects
this quantity more. The difference in length scale is probably the reason why
viscous dissipation is much more important for the ζ⊥ than it is for k⊥. These
explanations are in accordance with the understanding of hydrodynamic 2D
turbulence and its dual cascade picture. [4, 71, 169].

Lastly, it is worth mentioning that isothermal SOL TOKAM2D simulations at
the regular grid size (∆x = ∆y = 1[ρ0] and ∆t = 1[Ω−1

0 ]) with the viscosity set
to zero (ν0 = D0 = 0) were also run to further check this subgrid behaviour.
These simulations ran without issues and the results seem comparable to those
of the simulations with ν0 6= 0. While the exact numerical values differed of
course, the general trends in the profiles and behaviour of the simulation seem
unchanged. This does indeed seem to imply that some form of subgrid model is
present, stabilising the simulations and limiting the direct cascades to length
scales smaller than the grid size as the physical viscosity is intended to do.



Appendix F

Supplementary information
and derivations for the
TOKAM3X slab cases

This appendix provides detailed information and derivations regarding the
isothermal TOKAM3X slab cases to support the discussion in section 7.1.
Sections F.1 and F.2 derive the kinetic energy and enstrophy equations for the
TOKAM3X code specifically. Next, section F.3 presents the detailed simulation
parameters of the available TOKAM3X slab cases.

F.1 Derivation of the kinetic energy equations

In this section, the kinetic energy equations for TOKAM3X equation set 7.1-
7.7 specifically are derived. Section F.1.1 derives the equations for the total
perpendicular kinetic energies defined as

EE∗ =
V2

0,⊥

2 , Em,E∗ =
V̄2

0,⊥

2 , kE∗ =
V′20,⊥

2 , (F.1)

where the perpendicular velocities in the kinetic energy are those considered for
the inertia, i.e. V0,⊥ = VE + V∗,i. Then, section F.1.2 derives the equations
for the E×B-only kinetic energies defined as
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EE = V2
E

2 , EE,m = V̄2
E

2 , kE = V′2E
2 . (F.2)

Note that we do not use density weighing in the definition of these kinetic
energies and work with the regular Reynolds decomposition (see equation 2.7)
instead of the Favre decomposition we used before. The reason for this is that
there is no no density weighing of the inertia in the LHS of the charge balance
equation 7.2. If we would want to construct equations for the density weighed
equations, the RHS of the charge balance equation would have to be multiplied
with the (normalised) density, and this is deemed to be nonphysical. Moreover,
this would hinder the comparison of terms with the general case. Remark also
that all equations in this appendix are written in normalised TOKAM3X units
(see section 7.1).

Next, section F.1.1 derives the equations for the parallel kinetic energies defined
as

Ek,|| =
V2
||

2 , Ek,m,|| =
Ṽ2
||

2 , n̄k|| =
nV′′2||

2 . (F.3)

Note that since the density is taken into account in the TOKAM3X parallel
momentum equation 7.3, density weighing and Favre averages are used for the
parallel kinetic energy as in chapter 3 for the general case.

F.1.1 Total perpendicular kinetic energy equations

Perpendicular kinetic energy equations can be derived in a way similar to section
3.2.1, although the density weighing can now be left out of the derivations.

The LHS of the charge balance 7.2 equation can be rewritten as

∂W

∂t
+∇ ·VCW

= −∇ ·Vp,0 −∇ · (
U0

B
· ∇VC)−∇ · (U0

B

D lnB
Dt

) (F.4)

where we defined the inertial part of the TOKAM3X polarisation current as

Vp,0 = − 1
B

(∂U0

∂t
+∇ ·VCU0). (F.5)
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Note that the term ∇ · ( U0
B · ∇VC) = ∇VC : ∇U0 + U0 · ∇(∇ ·VC), which

is effectively neglected in TOKAM3X, is similar to the term neglected in
TOKAM2D in equation B.30.

The inertia in the polarisation velocity can again be related to the kinetic
energy:

−(∇⊥φ+ ∇⊥pi

n
) ·Vp,0 = ∂EE∗

∂t
+∇ · EE∗VC + EE∗∇ ·VC . (F.6)

Multiplying equation F.4 with φ, adding ∇pi · Vp,0 to both sides, and then
rewriting yields

∂EE∗
∂t

+∇ · (EE∗VC + φVp,0) = −φ(∂W
∂t
−∇ ·VCW )− ∇pi

n
·Vp,0

−φ∇ · (U0

B

D lnB
Dt

)− φ∇ · (U0

B
· ∇VC)− EE∗∇ ·VC ,(F.7)

Finally, the RHS of equation 7.2 is filled out for the first on the RHS of equation
F.7, yielding

∂EE∗
∂t

+∇ · (EE∗VC + φJ|| + φVp,0)

= ∇||φ · J|| − φ∇ · J∇B −DWφ∇2
⊥W −

∇pi

n
·Vp,0

−φ∇ · (U0

B

D lnB
Dt

)− φ∇ · (U0

B
· ∇VC)− EE∗∇ ·VC , (F.8)

Comparing to the original Ek,⊥ equation 3.10, it can be seen that in all terms
related to the polarisation current or the inertia, the (normalised) density
has dropped. This is a logical consequence of the Boussinesq approximation
by which the (normalised) density had been neglected in the TOKAM3X
charge balance equation 7.2. Furthermore, the definition of Vp,0 is slightly
different in both cases. In addition, the terms on the third line of equation
F.8 appear because of the approximations made in the TOKAM3X charge
balance equation. This is evident from the last two terms in equation F.4.
These terms can also be linked to the terms not accounted for in the general
charge balance equation 2.53. The last term in that equation is effectively
included in the definition of the TOKAM3X polarisation velocity, and the
Boussinesq term does not appear because the density is ignored altogether by
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a stronger Boussinesq approximation in TOKAM3X. Furthermore, realising
that ∇ · ( U0

B · ∇VC) = ∇VC : ∇U0
B + U0

B · ∇(∇ ·VC), the other terms can also
be traced back. Lastly, it can be noted that due to the assumption made by
leaving out the density, ∇ ·VC replaces the particle source in the equations.

A mean-field perpendicular kinetic energy equation can be derived following
an analogous derivation using mean-field quantities instead. In particular, the
equivalent to equation F.6 is obtained by multiplying V̄p,0 with ∇⊥φ̄+∇pi/n.
This yields

∂Em,E∗
∂t

+∇ · (Em,E∗V̄C + V′CV′0 · V̄0,⊥ + φ̄J̄|| + φ̄V̄p,0)

= ∇||φ̄ · J̄|| − φ̄∇ · J̄∇B −DW φ̄∇2
⊥W̄ −

∇pi

n
· V̄p,0

+V′CV′0,⊥ : ∇V̄T

0,⊥ − φ̄∇ · (
U0

B

D lnB
Dt

)

−φ̄∇ · (U0

B
· ∇VC)− Em,E∗∇ · V̄C , (F.9)

The difference between the average equation F.8 and equation F.9 then provides
an equation for k⊥:

∂kE∗
∂t

+∇ · (kE∗VC +
V′20,⊥V′C

2 + φ′J′|| + φ′V′p,0)

= ∇||φ′ · J′|| − φ′∇ · J∇B −DWφ′∇2
⊥W

′ − ∇pi

n
·V′p,0

−V′CV′0,⊥ : ∇V̄T

0,⊥ − φ′∇ · (
U0

B

D lnB
Dt

)− φ′∇ · (U0

B
· ∇VC)

−kE∗∇ · V̄C −
V′20,⊥∇ ·V

′
C

2 − V̄0,⊥ ·V′0,⊥∇ ·V
′
C , (F.10)

F.1.2 E×B-only kinetic energy equations

E×B-only kinetic energy equations can be derived from the E×B contribution
to the polarisation current as in section 3.2.2. Following the definition of E×B
and ion diamagnetic vorticity in equation 3.47, we split the LHS of the charge
balance equation in an E×B part and an ion diamagnetic contribution:
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∂W

∂t
+∇ ·WVC =

(
∂WE

∂t
+∇ ·WEVC

)
+
(
∂W∗
∂t

+∇ ·W∗VC

)
(F.11)

In analogy with equation F.4, the E×B-only contribution can can be rewritten
as

∂WE

∂t
+∇ ·VCWE = −∇ ·Vp,E −∇ · (

UE

B
· ∇VC)−∇ · (UE

B

D lnB
Dt

)(F.12)

where we defined the E×B part of the TOKAM3X polarisation current as

Vp,E = − 1
B

(∂UE

∂t
+∇ ·VCUE). (F.13)

The product φ∇·Vp,E can now be associated with the E×B-only kinetic energy
as

φ∇ ·Vp,E = −∇⊥φ ·Vp,E +∇ · φVp,E

= ∂EE

∂t
+∇ · (EEVC + φVp,E) + EE∇ ·VC . (F.14)

Combining expressions F.11, F.12, and F.14 and filling out charge balance
equation 7.2 then provides an equation for the TOKAM3X E×B-only kinetic
energy as

∂EE

∂t
+∇ · (EEVC + φJ|| + φVp,E)

= ∇||φ · J|| − φ∇ · J∇B −DWφ∇2
⊥W + (∂W∗

∂t
+∇ ·W∗VC)

−φ∇ · (UE

B

D lnB
Dt

)− φ∇ · (UE

B
· ∇VC)− EE∇ ·VC , (F.15)

The mean-field E×B-only kinetic energy equation can be derived following the
same methodology. In this case, the average of ∂W̄E

∂t +∇ ·WEVC is multiplied
by φ̄. This then leads to
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∂EE,m

∂t
+∇ · (EE,mV̄C + V′CV′E · V̄E + φ̄J̄|| + φ̄V̄p,E) = ∇||φ̄ · J̄||

−φ̄∇ · J̄∇B −DW φ̄∇2
⊥W̄ + V′CV′E : ∇V̄T

E + φ̄(∂W̄∗
∂t

+∇ ·W∗VC)

−φ̄∇ · (UE

B

D lnB
Dt

)− φ̄∇ · (UE

B
· ∇VC)− EE,m∇ · V̄C ,(F.16)

The difference between the average equation F.15 and equation F.16 again
provides an equation for kE :

∂kE
∂t

+∇ · (kEVC + V′2EV′C
2 + φ′J′|| + φ′V′p,E) = ∇||φ′ · J′||

−φ′∇ · J∇B −DWφ′∇2
⊥W

′ −V′CV′E : ∇V̄T

E

+φ′(∂W∗
∂t

+∇ ·W∗VC)− φ′∇ · (UE

B

D lnB
Dt

)− φ′∇ · (UE

B
· ∇VC)

−kE∇ · V̄C −
V′2E∇ ·V

′
C

2 − V̄E ·V′E∇ ·V
′
C ,(F.17)

F.1.3 Parallel kinetic energy equations

Parallel kinetic energy equation for TOKAM3X can readily be derived following
the methodology applied for the general case in section 3.2.4. This yields the
following equations:

∂nEk,||

∂t
+∇ · (nEk,||VC) = −V|| · ∇||p+D||V||∇2

⊥nV|| − Ek,||Sni , (F.18)

∂n̄Ek,m,||

∂t
+∇ · (n̄Ek,m,||ṼC + nV′′CV′′|| · Ṽ||)

= nV′′CV′′|| : ∇ṼT

|| − Ṽ|| · ∇||p̄+D||Ṽ||∇2
⊥n̄Ṽ|| − Ek,m,||S̄ni , (F.19)
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∂n̄k||

∂t
+∇ · (n̄k||ṼC + 1

2nV′′2|| V′′C) = −nV′′CV′′|| : ∇Ṽ||
T

−V′′|| · ∇||p+D||V
′′
|| ∇

2
⊥nV|| − (Ek,||Sn − Ek,m,||S̄n). (F.20)

These equations are not be investigated in more detail in this thesis though.

F.2 Derivation of enstrophy equations

Enstrophy equation (both total and E×B-only) can be derived following a
methodology analogous to that applied for the general case in section 3.3. For
TOKAM3X, we define the total enstrophies as

ζtot ,
W 2

2 , ζmean ,
W̄ 2

2 , ζturb ,
W ′2

2 , (F.21)

and the ExB-only enstrophies as

ζtot,E ,
W 2
E

2 , ζmean,E ,
W̄ 2
E

2 , ζturb,E ,
W ′2E

2 . (F.22)

Note that again, it seems most sensible to leave away the density weighing here
and use simple Reynolds averages in the derivations because the density scaling
has been neglected in the LHS of the TOKAM3X charge balance equation.

F.2.1 Total enstrophy equations

Multiplying the TOKAM3X charge balance equation 7.2 with W and rewriting
yields an equation for the total enstrophy as

∂ζtot
∂t

+∇ · ζtotVC = W∇ · J∇B +W∇ · J|| +DWW∇2
⊥W − ζtot∇ ·VC .(F.23)

Multiplying the average charge balance equation with the average vorticity
provides an equation for the mean-field enstrophy as

∂ζmean
∂t

+∇ · (ζmeanV̄C +W ′V′CW̄ ) = W̄∇ · J̄∇B + W̄∇ · J̄||

+DW W̄∇2
⊥W̄ +W ′V′C · ∇W̄ − ζmean∇ · V̄C . (F.24)
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The difference of the these two equations yields an equation for the turbulent
enstrophy:

∂ζturb
∂t

+∇ · (ζturbV̄C + W ′2V′C
2 ) = W ′∇ · J′∇B +W ′∇ · J′||

+DWW ′∇2
⊥W

′ −W ′V′C · ∇W̄ − (ζtot∇ ·VC − ζmean∇ · V̄C). (F.25)

F.2.2 E×B-only enstrophy equations

To derive E×B-only enstrophy equations for TOKAM3X, we again make use
of the decomposition of the LHS of the TOKAM3X charge balance equation
F.11. Applying the exact same manipulations as in the previous section, but
only multiplying with WE leads to the following equations:

∂ζtot,E
∂t

+∇ · ζtot,EVC = WE∇ · J∇B +WE∇ · J||

+DWWE∇2
⊥W − ζtot,E∇ ·VC −WE

(
∂W∗
∂t

+∇ ·W∗VC

)
, (F.26)

∂ζmean,E
∂t

+∇ · (ζmean,EV̄C +W ′EV′CW̄E)

= W̄E∇ · J̄∇B + W̄E∇ · J̄|| +DW W̄E∇2
⊥W̄ +W ′EV′C · ∇W̄E

−ζmean,E∇ · V̄C − W̄E

(
∂W̄∗
∂t

+∇ ·W∗VC

)
, (F.27)

∂ζturb,E
∂t

+∇ · (ζturb,EV̄C + W ′2E V′C
2 )

= W ′E∇ · J
′
∇B +W ′E∇ · J

′
|| +DWW ′E∇2

⊥W
′ −W ′EV′C · ∇W̄E

−(ζtot,E∇ ·VC − ζmean,E∇ · V̄C)−W ′E
(
∂W∗
∂t

+∇ ·W∗VC

)
. (F.28)

The enstrophy equations derived in this appendix will not be investigated in
more detail in this thesis though.
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F.3 TOKAM3X simulation parameters

The data available TOKAM3X data solved equation set 7.1-7.7 in a slab
geometry. This geometry has radial, poloidal and toroidal dimensions Lx =
150ρ0, Ly = 100ρ0, Lz = 8000ρ0, with ρ0 the reference gyro-radius. A uniformly
distributed, Cartesian grid is used with Nx = 192, Ny = 128 and Nz = 64 cells
in the radial, poloidal and toroidal directions. A time step of ∆t = 0.1Ω−1

0 is
used, with Ω0 the reference ion gyro-frequency.

The magnetic field is purely toroidal and decays in the radial direction from
Bz = 1.06 to Bz = 0.90. This magnetic field is uniform in the toroidal and
poloidal directions. A particle source is applied which is also uniform in the
poloidal and toroidal directions, with a (half) Gaussian profile in the radial
direction. This particle source has an amplitude 0.4449× 10−3 and a standard
deviation of 4 gyro-radii. A pure deuterium plasma is simulated with uniform
ion and electron temperatures Te = Ti = 1. Furhtermore, a uniform parallel
resisitivity η|| = 2.6580 × 10−5 and uniform classical transport coefficients
DN = D|| = DW = 0.0027 are used.

In Bayesian inference results and in the figures of section 7.1.3, only the part
of the domain in the centre of the SOL is used. This data corresponds to cells
120 ≤ ix ≤ 180 in the radial x direction and cells 10 ≤ iz ≤ 55 in the toroidal z
direction. In this region, the immediate influence of the target plates, the core
region and the flow shear around the separatrix is presumably very small.
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