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A B S T R A C T   

Coupled usage of remote sensing and geotagged social media data responds to the growing interest in the 
spatially explicit operationalisation of cultural ecosystem services (CES). However, synergies of integrated usage 
of these data sources have not yet been unveiled to improve CES accessibility. This study aimed at applying the 
integrated remote sensing-social media framework to analyse the suitability of landscape pattern for CES use and 
explore CES availability in Estonia. We first spatially analysed the demand for selected CES—landscape 
watching, outdoor recreation, and wildlife watching—depicted in geotagged photographs. Second, we modelled 
CES supply as relative environmental suitability for the presence of CES related photographs, performing a proxy 
to the potential capacity of landscapes to provide opportunities for CES use. Third, we estimated the population 
density in spatial clusters of relatively low and high CES supply. We revealed the discrepancies between pop-
ulation density and accessibility of CES supply and CES providing areas within this integrative framework. As a 
result, we detected populated areas requiring in-depth CES assessment and prioritisation to restore, preserve, 
and, where necessary, enhance CES stocks. Our replicable and spatially explicit methodology improves rapid CES 
assessment across scales, given the nearly global character of remote sensing and social media data.   

1. Introduction 

Cultural ecosystem services (CES) are, in the words of Chan et al. 
(2012; 2016), everywhere and nowhere at once. Due to their unique 
intangible character, CES have always been standing out among other 
ecosystem services. Since the first pivotal papers (Costanza et al., 1997; 
Daily, 1997) and Millennium Ecosystem Assessment (MAE, 2005), CES 
operationalisation has progressed across several comprehensive assess-
ment frameworks (TEEB, 2010; SEEA EEA, 2012; UK-NEAFO, 2014; 
IPBES, 2019; Maes et al., 2020). Notwithstanding the numerous exam-
ples of spatially explicit CES assessment, authors report a systematic 
overlooking of the relational values of nature, underlying CES, in envi-
ronmental decision-making compared to its instrumental and intrinsic 

values (Klain et al., 2017; Blahna et al., 2020). In practice, this means 
that even in the most recent EU-wide report, a spatially explicit CES 
assessment remains limited to a single CES (i.e. nature-based recreation) 
that is assessed simply by visitation numbers – in contrast to material ES 
that were assessed with a much higher level of details (Maes et al., 
2020). Therefore, research is needed to develop a cost-effective, repli-
cable and regular CES assessment methodology that works over large 
areas. 

To address this issue, the use of quantitative models of CES supply 
has become a central topic in CES assessment studies since the (e) 
valuation of the state of the environment is needed for assessing global 
progress towards achieving United Nations’ Sustainable Development 
Goals by 2030, including Goals 11 and 15. Therefore, CES assessment 
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benefits from including the spatial dimension (Potschin and Haines- 
Young, 2011; Burkhard and Maes, 2017) relying on environmental in-
dicators and map-based methodologies (Richards and Friess, 2015; 
Hermes et al., 2018; Albert et al., 2019). 

Up to date, there is a solid body of knowledge on how landscape 
morphology shapes landscape experience, values and preferences, un-
derlying CES use (Tveit et al., 2006, 2018; Fry et al., 2009; Potschin and 
Haines-Young, 2011; Zandersen et al., 2017). Despite the crucial 
importance of remote sensing information about environmental condi-
tions and landscape morphology (Rose et al., 2015; Pettorelli et al., 
2018; Kugler et al., 2019; Ramirez-Reyes et al., 2019), the spatially 
explicit models of CES supply often do not realise the full potential of 
remote sensing methods (Vaz and Santos, 2018). Remote sensing data 
used in CES research are often limited to categorical models such as land 
cover maps or basic vegetation indices. For example, a systematic review 
of urban ecosystem services revealed that “the most cited methodology 
was the LULC (75%) [LULC refers to land use/land cover – our note], 
followed by the normalized difference vegetation index (NDVI) with 
15.91%” (Tavares et al., 2019). 

Publicly available social media data (such as geotagged photographs 
and metadata, text posts) contain a wealth of information on the 
whereabouts of millions of Flickr, Twitter, VK.com and other applica-
tions’ users. They provide a proxy to assess the people-nature in-
teractions and landscape experience (Calcagni et al., 2019; Ghermandi 
and Sinclair, 2019; Zhang et al., 2020). Social media data have been 
widely used as evidence for CES use, primarily for detecting all kinds of 
outdoor activities and landscape appreciation (Richards and Tunçer, 
2018; Ghermandi et al., 2020; Havinga et al., 2020; Muñoz et al., 2020). 
Social media provide evidence of CES use in areas where insufficient, 
unsystematic or sporadic statistical data are available (Ilieva and 
McPhearson, 2018; Toivonen et al., 2019; Moreno-Llorca et al., 2020). 

As evidenced from social media, the presence of particular CES use 
can be explained by using spatial remote sensing-based indicators of 
landscape conditions and attributes in statistical modelling frameworks 
(Vaz et al., 2020; Alemu et al., 2021). In this way, remote sensing pro-
vides a unique opportunity to quantify demanded landscape conditions, 
supplying valuable landscape experience (Ayad, 2005; Ozkan, 2014; 
Karasov et al., 2019; Chmielewski et al., 2020; Sowińska-Świerkosz and 
Michalik-Śniezek, 2020) yet unknown in the context of CES sup-
ply–demand relationships. 

Since social media data are a growing and comprehensive, but still 
incomplete source of data on people-nature interactions (Muñoz et al., 
2020), we operationalise selected CES under several assumptions: 

1) the presence of geotagged photographs, collected from open social 
media sites, is a proxy for CES flows, or actual CES use events (Lange-
meyer et al., 2018); the total number of photographs, representing CES 
use events within some area, combined with the remoteness of the 
respective geolocations relative to populated areas was considered as a 
proxy for CES demand (Wolff et al., 2015); 

2) CES supply can be measured using the environmental suitability 
model for taking photographs, representing CES demand (Peña et al., 
2015; Vallecillo et al., 2019); and 

3) some CES beneficiaries living within the areas of lower opportu-
nities for CES use (Ala-Hulkko et al., 2016; Bing et al., 2021) have, 
respectively, also less equitable CES access (Burkhard and Maes, 2017; 
Vallecillo et al., 2019). 

This research aims to demonstrate the feasibility of diverse remote 
sensing-based techniques for the country-wide analysis of landscape 
pattern suitability and distributional justice for three selected CES: (i) 
landscape watching, (ii) wildlife watching, and (iii) active outdoor 
recreation. For this purpose, we explore the demand for the selected CES 
through the social media photographs representing cases of respective 
CES use. We also analyse the accessibility of the demanded locations 
from the populated areas and estimate CES opportunities for populated 
areas related to population density. 

Using this framework for the territory of Estonia, we aimed at 

answering the following questions:  

i) What are the locations of higher CES demand, as evident from 
social media data?  

ii) How can remote sensing data be used to provide a spatially 
explicit and area-covering assessment of CES supply?  

iii) What is the accessibility of CES use in Estonia? 

2. Data and methods 

2.1. Study area 

We demonstrated the supply–demand CES mapping framework in 
Estonia, located in Northern Europe. The Baltic Sea influences its 
temperate climatic conditions. Postglacial landforms, abundant lakes, 
wetlands, coastlines, and forests make Estonian landscapes picturesque 
and unique. Due to its low population density, many relatively un-
touched natural areas have become popular among local and interna-
tional tourists (Saluveer et al., 2020). In addition, Estonia has a high 
Internet penetration rate, and 57% of Estonians are active users of 
various social media sites (Kemp and Kepios Team, 2019), thus 
rendering it a good case study. 

2.2. CES demand mapping 

We reused the existing dataset on CES flows in Estonia for CES 
analysis, based on combined non-private Flickr and VK.com geolocated 
user-generated photographs from 2015 to 2018 (Karasov et al., 2020a). 
Flickr is the US-based repository for photographs, launched in 2004, and 
VK.com is the Russia-based social network, launched in 2006 and pop-
ular among the Slavic communities. Flickr and VK.com photographs 
were collected via respective automated programming interfaces. We 
removed all the Flickr and VK.com photographs located inside buildings 
according to OpenStreetMap (OpenStreetMap contributors, 2021), i.e., 
spatially indoor photographs. Then, this pre-processed social media 
dataset (21,242 photographs) was processed via the Clarifai platform 
(Clarifai Inc., Wilmington, DE, U.S) for image content recognition. Each 
photograph from the dataset was automatically tagged according to its 
content (up to 20 tags with prediction confidence score > 90%), and 
photographs with non-relevant tags (fashion, architecture, indoors, etc.) 
were removed. The resulting 9,983 photographs were then automati-
cally classified – using the Latent Dirichlet Allocation algorithm, 
implemented in Orange software (Demšar et al., 2013) into three cate-
gories: landscape watching, outdoor recreation, and wildlife watching 
(Fig. S1). 

Landscape watching photographs depict outdoor scenes with no or 
minor people’s presence in the shot frame. Outdoor recreation photo-
graphs explicitly represent people. Wildlife watching photographs de-
pict biodiversity at organism and community levels: plants, animals, and 
mushrooms. The final dataset contains 6,153 geotagged photos for 
landscape watching, 2,345 for outdoor recreation, and 1,484 for wildlife 
watching (Fig. S1) from 1,120 unique users. We used all the photographs 
per user to predict all CES events’ occurrence regardless of visitation. 

For the CES use, we assumed that locations more distant from 
populated areas (Fig. 1A) require more significant efforts for visiting 
(Paracchini et al., 2014), while frequently photographed areas indicate a 
higher number of CES experiences (Yoshimura and Hiura, 2017; Bing 
et al., 2021). The populated areas were identified based on population 
density per km2) (Statistics Estonia, 2020). We aggregated photographs 
representing CES demand within 10-km grid cells (Fig. 2). We used 10- 
km grid cells as optimal for generalising local photographing variability 
and the most visually plausible for the country scale of analysis 
compared to 1- and 5-km cells upon initial testing. For these grid cells, 
we calculated the median travelling distance from centroids of the 
population density grid cells via roads using the OpenStreetMap road 
network and Iso-Area as Interpolation algorithm implemented in 
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QNEAT3 QGIS plugin (Raffler, 2021). 

2.3. CES supply modelling 

To model CES supply, we used remote sensing and other spatial data 
from several sources:  

• Cloudless summertime Landsat 8 mosaic (original spatial resolution 
30 m, surface reflectance, compiled using Google Earth Engine 
(Gorelick et al., 2017), Fig. 1B) for 2018 to coincide with the social 
media dataset for the 2015–2018 period;  

• A radar-based Digital Elevation Model NASA SRTM Digital Elevation 
30 m, provided by NASA / USGS / JPL-Caltech, original spatial 

Fig. 1. Selected data used for mapping CES demand and supply: population density, people per square km in 2018 (A); cloudless summertime year 2018 Landsat 8 
mosaic, surface reflectance, RGB composite (B), the Land Cover Map of Europe 2017 from S2GLC project (Malinowski et al., 2020) (C). Panel (B) also shows the major 
protected areas (UNEP-WCMC and IUCN, 2020) and cities (Estonian Land Board, 2020). 

Fig. 2. CES demand detected in Flickr and VK.com photographs: landscape watching (A), outdoor recreation (B), wildlife watching (C). The number of photographs 
is aggregated within 10-km grid cells and median distance to the urban areas. Increasing distance to the urban areas corresponds to increasing travel efforts; photo 
counts indicate the density of CES experiences. 
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resolution 30 m (Google Earth Engine image “USGS/ 
SRTMGL1_003′′); 

• A radar-based Digital Surface Model ALOS DSM: Global 30 m pro-
vided by the JAXA Earth Observation Research Center, original 
spatial resolution 30 m (Google Earth Engine image collection 
“JAXA/ALOS/AW3D30/V3_2′′);  

• Land Cover Model of Europe 2017 from the project “S2GLC”, original 
spatial resolution 10 m (Fig. 1C) (Malinowski et al., 2020). 

We utilised the set variables measuring the spatial landscape pattern 
in Estonia to predict the probability of taking CES-related social media 
photographs. We calculated a set of 526 predictor variables (Table S1, 
Supplementary materials) based on previous studies (Ozkan, 2014; 
Vukomanovic and Orr, 2014; Van Berkel et al., 2018; Sottini et al., 2019; 
Karasov et al., 2020b; Vaz et al., 2020) and expert knowledge. All the co- 
occurrence and occurrence indices were calculated using the square 
kernels of 7 and 21 pixels, following Hall-Beyer (2017) to detect the 
optimal landscape representation for textural metrics across scales. All 
the calculations except for three patch shape indices from White-
boxTools (Lindsay, 2019) were performed via the Google Earth Engine 
platform to ensure reproducibility of the analysis. 

To model the CES supply, we applied the statistical models imple-
mented in USGS Software for Assisted Habitat Modeling–SAHM version 

2.0.1 (Morisette et al., 2013), a part of VisTrails software (Freire et al., 
2006). In total, 21 (out of 526) uncorrelated spatial predictors were 
selected: 10 the best predictors for each CES class (Table 1, Figs. S2 and 
S3). Using the change in Area Under Curve (AUC) when each predictor is 
permuted, we estimated the relative importance of each used predictor 
for the CES supply models (Fig. S2). Further, only variables with Pear-
son, Spearman, or Kendall correlation coefficients ≤ 0.70 were retained 
using a pairwise approach. We used the percent deviances explained 
from a univariate generalized additive model, provided in the Covariate 
Correlation and Model Selection SAHM module and expert knowledge 
on plausible environmental settings to decide which highly collinear 
variables should be removed. 

Using different statistical models, we used the 21 retained covariates 
to model the probability of taking CES-related social media photographs 
as a proxy for the CES flows. Boosted Regression Trees (Elith et al., 
2008), Generalized Linear Model (Hosmer and Lemeshow, 2000), 
Multivariate Adaptive Regression Spline (Elith and Leathwick, 2007), 
Maximum entropy—Maxent (Phillips et al., 2004), and Random Forest 
(Breiman, 2001) models were executed as common in environmental 
niche modelling (West et al., 2017; Young et al., 2020). We applied 
default SAHM settings (Talbert and Talbert, 2012) for geolocations of 
CES-related photographs as presence data and randomly generated 
10,000 geolocations as pseudo-absence data. We used 10-fold cross- 

Table 1 
Description of 21 remote sensing-based indicators of CES, selected for CES supply modelling. GLCM stands for Grey Level Co-Occurrence Matrix. In indicator aliases, l8 
refers to Landsat 8, s2glc – to S2GLC land cover model, s1 – to Sentinel-1, alos – to ALOS digital surface model, 7 and 21 – to the kernels of 7 and 21 pixels.  

Indicator Model Description. GLCM stands for Gray Level Co- 
Occurrence Matrix 

Landscape attribute interpretation Formula 
reference 

l8tcap_brightness_gearys_7 Landscape watching, outdoor 
recreation 

Local Geary’s C index of spatial autocorrelation of 
the Tasseled Cap Brightness 

Local dissimilarity of the soil brightness 
intensities in landscape 

(Anselin, 
1995) 

l8sat_dent_7 Landscape watching, outdoor 
recreation, wildlife watching 

GLCM-based difference entropy of the colour 
saturation 

The randomness of land cover colour 
intensities 

(Haralick 
et al., 1973) 

l8nir_mean_21 Landscape watching Mean focal statistics for the near-infrared band Mean vegetation biomass (Haralick 
et al., 1973) 

s2glc_prom_21 Landscape watching GLCM-based cluster prominence of land cover 
classes 

Uniformity of land cover classes (Conners 
et al., 1984) 

l8lumi_prom_21 Landscape watching, outdoor 
recreation, wildlife watching 

GLCM-based cluster prominence of the luminance (a 
grayscale derivative of RGB band combination) 

Uniformity of land cover reflectance 
intensities 

(Conners 
et al., 1984) 

s2glc_corr_21 Landscape watching GLCM-based correlation of land cover designations Spatial autocorrelation of land cover 
patches 

(Haralick 
et al., 1973) 

s1ratio_prom_21 Landscape watching, outdoor 
recreation, wildlife watching 

GLCM-based cluster prominence of VV and VH 
backscatter ratio 

Uniformity of vegetation types and built 
structures 

(Conners 
et al., 1984) 

l8nir_sd_7 Landscape watching Standard deviation focal statistics for near-infrared 
band 

Dispersion of NIR pixel intensities 
indicates patch edges in the landscape  

s1ratio_dent_7 Landscape watching, outdoor 
recreation 

GLCM-based difference entropy of VV and VH 
backscatter ratio 

The randomness of vegetation types and 
built structures 

(Haralick 
et al., 1973) 

s2glc_contrast_7 Landscape watching, outdoor 
recreation 

GLCM-based contrast of land cover classes Drastic land cover changes (Haralick 
et al., 1973) 

l8ndvi_dvar_21 Outdoor recreation GLCM-based difference variance of NDVI Indicates patch edges in the landscape (Haralick 
et al., 1973) 

l8tcap_greenness_mean_21 Outdoor recreation Mean focal statistics of Tasseled Cap Greenness Smoothed greenness of vegetation and 
interior of vegetated patches  

l8hue_ent_7 Outdoor recreation GLCM-based entropy of landscape hues The randomness of landscape hues (Haralick 
et al., 1973) 

l8tcap_brightness_sd_21 Outdoor recreation Standard deviation focal statistics for Tasseled Cap 
Brightness 

Dispersion of soil brightness intensities 
in landscape  

s2glc_contrast_21 Wildlife watching GLCM-based contrast of land cover classes Drastic land cover changes (Haralick 
et al., 1973) 

s2glc_prom_7 Wildlife watching GLCM-based cluster prominence of land cover 
classes 

Uniformity of land cover classes (Conners 
et al., 1984) 

alos_imcorr1_7 Wildlife watching GLCM-based information measure of correlation 1 
calculated for heights of the digital surface model 

Indicates wetlands and water bodies in 
the landscape 

(Haralick 
et al., 1973) 

s2glc_dent_7 Wildlife watching GLCM-based difference entropy of land cover 
designations 

The randomness of land cover classes in 
landscape 

(Haralick 
et al., 1973) 

l8nir_gearys_7 Wildlife watching Local Geary’s C index of spatial autocorrelation of 
the near-infrared band 

Local dissimilarity of vegetation and 
edges of landscape patches 

(Anselin, 
1995) 

l8swir1_gearys_7 Wildlife watching Local Geary’s C index of spatial autocorrelation of 
the shortwave infrared band 

Local dissimilarity of moisture 
conditions and edges of landscape 
patches 

(Anselin, 
1995) 

l8tcap_brightness_sd_7 Wildlife watching Standard deviation focal statistics for the Tasseled 
Cap Brightness 

Dispersion of soil brightness intensities 
and edges of landscape patches   
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validation to compare the performance of the models (Table S2, Sup-
plementary materials). Since different modelling algorithms demon-
strated discrepancies in their outputs (Fig. S4, Supplementary 
materials), we combined the model outputs for each CES (with AUC >
0.7) into an ensemble model of relative environmental suitability to 
reduce individual model errors (West et al., 2016). 

2.4. CES accessibility mapping 

To estimate the availability of CES supply for the Estonian popula-
tion, we detected spatial aggregation of median values of modelled CES 
supply per population density cell using Getis-Ord Gi* statistics with the 
Optimized Hot Spot Analysis ArcGIS 10.6 tool. Hot spots encompass the 
cells of the population density grid of high CES supply, surrounded by 
similarly high values. Cold spots, by contrast, correspond to the cells of 
the population grid of lower CES supply, surrounded by similarly low 
values, which decrease the accessibility of CES supply. Based on the 
confidence scores provided, we distinguished between CES hot spots as 
those populated areas with ≥95% confidence in hot spot determination 
and cold spots as the populated areas with ≥95% confidence in cold spot 
determination. 

Also, we modelled the distance between CES-related social media 
photographs using the Iso-Area as Interpolation algorithm implemented 
in the QNEAT3 QGIS plugin (Raffler, 2021) and calculated the median 
distance within the population density grid cells. QNEAT3 algorithm 
produces the interpolated distance raster for the point dataset of loca-
tions via road network, using QgsTinInterpolator interpolation method, 
available in QGIS3. Then we identified cold and hot spots (high acces-
sibility and low accessibility) of CES use proximity using the same Getis- 
Ord Gi* statistics with the Optimized Hot Spot Analysis ArcGIS 10.6 
tool. 

3. Results 

3.1. CES demand mapping 

Fig. 2 suggests that Southern Estonia, the coastal areas of Northern 
Estonia and remote parts of the Estonian islands of Saaremaa and 
Hiiumaa are the most demanded CES-related destinations. These regions 
have higher concentrations of photographs, and social media users 
visited these areas despite higher travel efforts and expenses. These re-
gions are well-known “anchor points” with natural monuments (cliffs, 
hills, valleys, peninsulas), historical monuments (manor houses) and 
vacation sites (beaches, ski and hiking tracks). 

3.2. CES supply modelling with remote sensing data 

According to Table S2 (Supplementary materials), the single envi-
ronmental niche models generated for landscape watching photographs 
prior to stacking to ensemble have the best performance (AUC for 
Random Forest cross-validation models > 0.9). Overall, Random Forest 
and Boosted Regression Trees algorithms perform better than Maxent in 
most cases; notably, Random Forest also has a lower ΔAUC value (up to 
0.003 among train and validation data split). The most important pre-
dictors of landscape watching represent the randomness of landscape 
colour intensities and green vegetation (l8sat_dent7 and l8nir_mean_21). 
The most important variable for outdoor recreation also indicates 
randomness of colour intensity (l8sat_dent7), followed by randomness 
and uniformity of vegetation types (s1ratio_dent_7 and s1ratio_-
prom_21). The most important explanatory variables for wildlife 
watching relate to land cover diversity (s2glc_dent_7 and 
s2glc_contrast_21). 

The diversity of colour saturation (l8sat_dent_7) showed a positive 
relationship with the landscape watching, meaning that landscapes with 
varying colours are preferred for this CES (Fig. S3A). At the same time, 
the uniformity of landscape structure (l8lumi_prom_21, 

s1ratio_prom_21) suggests that less fragmented landscapes composed of 
large patch clusters are more often photographed. Also, the importance 
of landscape diversity (s2glc_contrast_7) indicates that landscapes with 
larger spatial variability in land cover are preferred. In contrast, densely 
vegetated (l8nir_mean_21) areas of the highest biomass classes are less 
preferred for landscape watching. Spatial autocorrelation metrics 
(s2glc_corr_21, l8tcap_brightness_gearys_7) show non-uniform relation-
ships with landscape watching. 

Outdoor recreation demand is also positively associated with higher 
colouristic diversity (l8sat_dent_7, l8hue_ent_7, Fig. S3B). This finding is 
also supported by the dissimilarity of soil brightness values (l8tcap_-
brightness_gearys_7) and a land cover diversity (s2glc_contrast_7), 
which positively affect outdoor recreation. By contrast, landscapes 
composed of high biomass production (l8tcap_greenness_mean_21) 
negatively affect outdoor recreation, suggesting that large homogeneous 
vegetated areas are less suitable for recreational purposes. 

The diversity of land cover (s2glc_dent_7 and s2glc_contrast_21) is 
positively related to wildlife watching occurrence (Fig. S3C). Moreover, 
fragmented landscapes with a high edge density (l8swir1_gearys_7), 
clear clusters of vegetation and built structures (s1ratio_prom_21, 
l8lumi_prom_21), and the presence of water bodies (alos_imcorr1_7) 
support higher environmental suitability for wildlife watching. 

Fig. 3 represents the ensemble map of environmental suitability for 
CES classes as the indicator of CES supply. Spatial patterns of high CES 
supply are similar among CES classes: they encompass lakes and 
seashore areas, river valleys, cities, hilly areas in Southern Estonia, post- 
industrial mining landscapes of Northern-Eastern Estonia. 

3.3. CES accessibility mapping 

Maps in Fig. 4 represent the spatially aggregated areas of high (hot 
spots) and low (cold spots) median CES supply values per 1 square km 
(cells of population grid) using the Getis-Ord Gi* statistics. These maps 
rank populated places in Estonia according to their CES supply. Land-
scape watching, outdoor recreation, and wildlife watching supply 
demonstrate rather similar spatial distribution patterns: hot spots occur 
in the largest cities (Tallinn, Tartu, Pärnu, Narva, Viljandi, etc.) and 
settlements spread along the coastlines of the Baltic Sea and Lake Peipus 
suggesting a good match between CES supply and population density in 
these areas. In contrast, settlements in the cold spot zones are predom-
inantly concentrated in the inner areas of Estonia. According to the 
spatial statistics on population density in Estonia, the total Estonian 
population is 1,35 million people. Our analysis showed that most Esto-
nians reside in the CES supply hot spots. More specifically, 69.4% reside 
in landscape watching hot spots (95% confidence), and 5.5% of the 
population reside in landscape watching cold spots. These numbers are 
70.4% and 3.1% for outdoor recreation and 67.1% and 7.3% for wildlife 
watching, respectively. 

The spatial pattern of relationships between CES supply and popu-
lation density (Fig. 4) is similar to relationships between transport 
accessibility of CES use and population density (Fig. 5). Highly popu-
lated urban centres and suburban zones, coastal areas, border areas are 
also close to the demanded geolocations. At the same time, many inner 
settlements seem to have low opportunities for CES use. In contrast to 
CES supply accessibility, CES accessibility via road network shows larger 
discrepancies with local population density: 50.3% of the population 
resides in the spatial clusters of high proximity of landscape watching 
events. In comparison, 15.0% of the population resides in the spatial 
clusters of remote access to landscape watching (about 2 km and further, 
corresponding to approximately 30 min of walking). These percentages 
are 46.6% and 21.1% for outdoor recreation, and 24.9% and 18.7% for 
wildlife watching, respectively. 
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Fig. 3. Modelled CES supply based on ensemble environmental suitability (unitless): landscape watching (A), outdoor recreation (B), and wildlife watching (C). High 
CES supply is detected in Southern Estonia, coastal areas and major cities. 

Fig. 4. Spatial clusters of median CES supply within populated areas in Estonia: landscape watching (A), outdoor recreation (B), wildlife watching (C). Areas of 
higher CES supply occur predominantly in the main cities, Southern Estonia and along the coastlines; areas of lower CES supply tend to concentrate in the central 
parts of continental Estonia and islands. Darker purple colours indicate an increasing mismatch between CES supply and population density. 
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4. Discussion 

4.1. Landscape context 

This study demonstrated the importance of different remote sensing 
and social media data for CES assessment from complementary bird’s- 
eye and horizontal landscape perspectives (Antrop and Van Eetvelde, 
2017). In short, CES-related photographs tend to prevail in locations of 
diverse colours and complex land cover composition and clusters of 
small landscape patches with the presence of water bodies or wetlands. 
These landscape characteristics are plausible and align with the existing 
body of literature on valuable landscape attributes (Tveit et al., 2006; 
Fry et al., 2009; Ode and Miller, 2011; Bell, 2012; Dronova, 2017; 
Swetnam et al., 2017). People are more likely to recreate in diverse 
areas, promising more high-quality views (Ode and Miller, 2011; Tveit 
et al., 2018). However, landscape diversity should have optimum values 
for the highest quality of landscape experience (Kaplan and Kaplan, 
1989; U.S. Forest Service, 1995; Bell, 2012), and usage of spatial in-
dicators of landscape diversity may result in non-uniform relationships 
with landscape preferences (Uuemaa et al., 2013). This finding is 
coherent with the compactness of patches as a factor of more diverse 
and, therefore, preferable landscapes (Rieb and Bennett, 2020). 

Our country-wide results significantly extend the paradigmatic shift 
in CES supply modelling with remote sensing data, initiated by Vaz et al. 
for the protected areas in Portugal and Spain (Vaz and Santos, 2018; Vaz 
et al., 2019, 2020). Complementing these papers, we would like to lay a 
foundation for a high-resolution and further long-term (Landsat 5–8 
archives date back to 1984, Sentinel 2 archives – to 2015) CES supply 
monitoring across scales. For these purposes, we identified the most 
relevant remote sensing-based indicators. In addition to LULC-based 
indicators of diversity, we unexpectedly revealed that colouristic di-
versity (namely variations in saturation of colours, not in their hues or 
lightness) is the strongest predictor for landscape watching demand. 
This finding reinforces the evidence about the role of colour in landscape 
preferences (Arriaza et al., 2004; Schirpke et al., 2013; Vaz et al., 2020). 
However, the extent of greenness, indicated by NDVI and other 

vegetation indices in our study, displayed a negative relationship with 
CES use, contrary to the findings of other studies (Vukomanovic et al., 
2018; Alemu et al., 2021). In line with previous studies, our results 
highlight the presence of water bodies (Tieskens et al., 2018; Gosal and 
Ziv, 2020) and urban areas (Langemeyer et al., 2018) as a positive factor 
of CES supply. 

In the context of distributional justice, our findings enrich previous 
results on the accessibility of public green spaces. We provided a piece of 
replicable and objective evidence on the existence of relationships be-
tween nature and people in the form of three CES flows. Our results can 
be used to mitigate the shortening supply of high-quality outdoor 
landscapes in Estonian cities (Lõhmus, 2020; Orru et al., 2020; Sepp and 
Lõhmus, 2020) with blue and green infrastructure interventions. We 
suggest that the areas of high CES supply, derived from our study, can be 
considered to expand protected areas further and correct their delinea-
tion based on CES use (Rose et al., 2015). 

4.2. Methodological constraints and advancements 

Our results provide a marked novelty to CES supply modelling, 
which until now predominantly relied either on land cover-driven GIS- 
analysis (Langemeyer et al., 2018; Vallecillo et al., 2019) or Maxent 
models (Richards and Friess, 2015; Yoshimura and Hiura, 2017; Sottini 
et al., 2019; Alemu et al., 2021). In particular, we revealed that Maxent 
models of CES supply might not be the most accurate models for CES 
supply assessments. Maxent modelling may need to be complemented or 
replaced by other environmental niche models, such as Boosted 
Regression Trees or Random Forest, which are robust to non-linear re-
lationships. However, the quality of the resulting models primarily de-
pends on the quality of the input data. For example, the low modelled 
CES supply in some regions does not necessarily indicate a low land-
scape quality. It means that no sufficient evidence of CES flow is found in 
social media materials due to sampling bias or the lack of evidence of 
visitation. Therefore, our social media-based research should be treated 
with caution. 

The joint usage of social media and remote sensing data is not free 

Fig. 5. Spatial clusters of the median distance between CES-representing social media photographs via the transport network taken within the populated areas: from 
highly populated areas and proximity of CES use cases (high opportunity of CES use, reddish colours) to highly populated areas and remoteness of CES use (purple 
colours). Panel A shows the accessibility of landscape watching; B – outdoor recreation; C – wildlife watching. 
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from biases and methodological constraints. First of all, we recognize a 
population representation bias as not all age, sex, national and cultural 
groups are equally represented in the social media user community 
(Karasov et al., 2020a). Moreover, the spatial accuracy of our analysis 
might be limited by the relatively low reference precision of GPS re-
ceivers embedded in modern smartphones, and the moderate resolution 
of remote sensing data increase the spatial uncertainties. We addressed 
this accuracy bias by analysing photographs within the grid cells. We 
conducted this research in compliance with EU General Data Protection 
Regulation requirements to avoid deanonymisation of the social media 
users. 

Notwithstanding these limitations, the remote sensing data com-
bined with social data have significant strengths, such as the potential 
for frequent updates, which enables the operative assessment of CES in 
rapidly changing environments (Vaz et al., 2019, 2020; Alemu et al., 
2021). Remote sensing has already significantly boosted the assessment 
of landscape aesthetics (Ayad, 2005; Ozkan, 2014), but remote sensing 
applications in the CES domain are in their infancy (Rose et al., 2015; 
Vaz and Santos, 2018). Complementary usage of time-series of remote 
sensing and social media data opens the possibility of nearly global 
monitoring of status and trends in CES budgets (Liu et al., 2015). 

5. Conclusions 

In this study, we proposed a novel integrated mapping of the CES 
(landscape watching, outdoor recreation, and wildlife watching) sup-
ply–demand relationships based on remote sensing (Landsat 8 optical 
data) and social media data (Flickr, VK.com) in Estonia. We obtained 
good performance of remote sensing-based indicators for mapping the 
relative environmental suitability for the flow of three selected CES 
types. Also, we mapped those areas where many people live but where 
access to CES remains limited. We recommend prioritising these areas 
for a more in-depth CES supply valuation and potential land manage-
ment actions: green and blue infrastructure development, promoting 
local tourism, analysis of synergies and trade-offs with other ecosystem 
services. 

We conclude that the synergy of remote sensing- and social media- 
based approaches are highly relevant for a spatially explicit assess-
ment of CES supply and demand with a sufficient level of accuracy at the 
national level. Further research should be focused on social media 
datasets of higher quantity and quality: from social media beyond Flickr 
and VK.com; this would also include Twitter, Strava, and Instagram 
data, where possible. The impact of landscape dynamics (e.g., land cover 
transitions) on the diversity and quality of CES flows was beyond the 
scope of this study and should be addressed in future studies. In addi-
tion, there is a high potential of this methodology being used to identify 
the impact of landscape development and modifications on CES supply. 
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Zandersen, M., Perez-Soba, M., Scholefield, P.A., Bidoglio, G., 2014. Mapping 
cultural ecosystem services: A framework to assess the potential for outdoor 
recreation across the EU. Ecol. Indic. 45, 371–385. https://doi.org/10.1016/j. 
ecolind.2014.04.018. 

Peña, L., Casado-Arzuaga, I., Onaindia, M., 2015. Mapping recreation supply and 
demand using an ecological and a social evaluation approach. Ecosyst. Serv. 13, 
108–118. https://doi.org/10.1016/j.ecoser.2014.12.008. 

Pettorelli, N., Schulte to Bühne, H., Glover-Kapfer, P., C. Shapiro, A., 2018. Satellite 
Remote Sensing for Conservation. WWF Conserv. Technol. Ser. 10.13140/ 
RG.2.2.25962.41926. 

Phillips, S.J., Dudik, M., Schapire, R.E., 2004. Maxent software for species distribution 
modeling. Proc. Twenty-First Int. Conf. Mach. Learn. 

Potschin, M.B., Haines-Young, R.H., 2011. Ecosystem services: exploring a geographical 
perspective. Prog. Phys. Geogr. https://doi.org/10.1177/0309133311423172. 

Raffler, C., 2021. QNEAT3 – QGIS Network Analysis Toolbox 3 [WWW Document]. URL 
https://root676.github.io/ (accessed 5.22.21). 

Ramirez-Reyes, C., Brauman, K.A., Chaplin-Kramer, R., Galford, G.L., Adamo, S.B., 
Anderson, C.B.C., Anderson, C.B.C., Allington, G.R.H., Bagstad, K.J., Coe, M.T., 
Cord, A.F., Dee, L.E., Gould, R.K., Jain, M., Kowal, V.A., Muller-Karger, F.E., 
Norriss, J., Potapov, P., Qiu, J., Rieb, J.T., Robinson, B.E., Samberg, L.H., Singh, N., 
Szeto, S.H., Voigt, B., Watson, K., Wright, T.M., 2019. Reimagining the potential of 
Earth observations for ecosystem service assessments. Sci. Total Environ. https:// 
doi.org/10.1016/j.scitotenv.2019.02.150. 

Richards, D.R., Friess, D.A., 2015. A rapid indicator of cultural ecosystem service usage 
at a fine spatial scale: Content analysis of social media photographs. Ecol. Indic. 53, 
187–195. https://doi.org/10.1016/j.ecolind.2015.01.034. 

Richards, D.R., Tunçer, B., 2018. Using image recognition to automate assessment of 
cultural ecosystem services from social media photographs. Ecosyst. Serv. 31, 
318–325. https://doi.org/10.1016/j.ecoser.2017.09.004. 

Rieb, J.T., Bennett, E.M., 2020. Landscape structure as a mediator of ecosystem service 
interactions. Landsc. Ecol. 35, 2863–2880. https://doi.org/10.1007/s10980-020- 
01117-2. 

Rose, R.A., Byler, D., Ron Eastman, J., Fleishman, E., Geller, G., Goetz, S., Guild, L., 
Hamilton, H., Hansen, M., Headley, R., Hewson, J., Horning, N., Kaplin, B.A., 
Laporte, N., Leidner, A., Leimgruber, P., Morisette, J., Musinsky, J., Pintea, L., 
Prados, A., Radeloff, V.C., Rowen, M., Saatchi, S., Schill, S., Tabor, K., Turner, W., 
Vodacek, A., Vogelmann, J., Wegmann, M., Wilkie, D., Wilson, C., 2015. Ten ways 
remote sensing can contribute to conservation. Geol. Surv. Earth Resour. Obs. Sci. 
54, 350–359. https://doi.org/10.1111/cobi.12397. 

Saluveer, E., Raun, J., Tiru, M., Altin, L., Kroon, J., Snitsarenko, T., Aasa, A., Silm, S., 
2020. Methodological framework for producing national tourism statistics from 
mobile positioning data. Ann. Tour. Res. 81, 102895 https://doi.org/10.1016/j. 
annals.2020.102895. 

Schirpke, U., Tasser, E., Tappeiner, U., 2013. Predicting scenic beauty of mountain 
regions. Landsc. Urban Plan. 111, 1–12. https://doi.org/10.1016/J. 
LANDURBPLAN.2012.11.010. 

Eea, S.E.E.A., 2012. System of Environmental-economic Accounting: A Central 
Framework. White cover publication, United Nations, New York.  
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