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ABSTRACT

High  temperature  oxidic  systems  are  encountered  in  nature  (magma  chambers)  and

pyrometallurgical processes. In these systems, the solidification of the oxidic liquids influences

the flow, the cooling after tapping, the viscosity and rheological behaviour within the reactor

and also the freeze lining behaviour. On the mesoscale, the phase field concept has proved to

be a very powerful tool for modeling crystallizing microstructures. However, application of the

method to slag solidification is still challenging. In this work, we present a phase field model to

simulate the faceted crystallization of Fe3O4 in a quaternary FeO-Fe2O3-Cu2O-SiO2 melt under

different partial pressures of oxygen to solve certain problems  encountered related to more

realistic  simulations  in  oxidic  systems.  The  ratio  of  FeO/Fe2O3 at  the  upper  boundary  is  in

equilibrium with the oxygen fugacity of the atmosphere, while conserving Fe. Two-dimensional

simulations are performed with different varying oxygen fugacity in the atmosphere. For the

considered  composition  range,  the  growth  velocities  of  the  spinel  crystals  increase  with

decreasing oxygen fugacity. One of the focus points in creating more realistic phase field models

is the incorporation of the thermodynamic driving forces in multicomponent multiphase-field

models by coupling to thermodynamic databases. The first  part  of this  work used a tabular

method.  However,  as  the  number  of  components  in  the  system  increases,  the  number  of

thermodynamic  data  points  also  increases  exponentially,  and  so  do  the  computational  and

memory requirements. A possible solution for this might be the use of a canonical  polyadic

decomposition of the tensors containing the thermodynamic data. In this way, the huge tensors

are  approximated  well  by  compact  multilinear  models  or  decompositions.  This  promising

solution has been applied in the second part of this work on the same oxidic liquid-solid system. 
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1 INTRODUCTION

Crystallization of silicate melts takes place in geology [1], pyrometallurgy and glass making. In

pyrometallurgy,  the  solidification  of  slags  influences  the  slag  cooling  after  tapping  [2],  the

decantation behaviour  [3], the viscosity and rheological behaviour within the reactor  [4,5] as

well  as the freeze lining behaviour  [6].  Modeling of  silicate melt crystallization is frequently

done on the macroscopic level, using thermodynamic equilibrium calculations to determine the

fractions  of  all  phases  as  a  function  of  temperature.  The  Factsage  software  and  database

package  [7] already  proved  its  usefulness  in  pyrometallurgical  applications,  for  example  to

model the phase mixture after solidification of a stainless steel slag [2]. 

Crystallization  of  phases  typically  results  in  complex  morphologies  on  the  mesoscale,  e.g.

dendrites or faceted growth. On this mesoscale, the phase field concept has proved to be a very

powerful tool  [8,9] for modeling crystallizing microstructures, because it  can treat arbitrarily

complex interface shapes with minimal mathematical complexity.  In contrast to macroscopic

models,  the  diffusion  profiles  and  crystallization  kinetics  can  be  described  as  well  as  the

morphology of individual crystals. First, Kobayashi [10] simulated a growing dendrite in a pure

undercooled metallic liquid. 

A number of phase-field model types have been proposed for binary alloy systems and may be

divided into groups depending on the construction of the local free-energy functions. [11] The

first type is a model by Wheeler, Boettinger, and McFadden (WBM) [12]. In this type of model,

points within the interfacial region are assumed to be a mixture of solid and liquid both with the

same composition. Consequently, problems can arise when upscaling the diffuse interface width

for computational efficiency. [13,14] The second type is a model by Steinbach et al. [15] which

assumes the interfacial region to be a mixture of solid and liquid with different compositions,

fixed by a quasi-equilibrium condition.  This multiphase system framework was further extended

by  Tiaden  et  al.  [16] to  a  framework  with  coupled  diffusion  and  phase  field  equations  in

multicomponent systems.  Kim et al.  [17] showed later that the quasi-equilibrium condition is

equivalent to  the equality of the phase diffusion potentials for locally coexisting phases and

developed a more general version of this type of phase-field model, usually abbreviated as the

KKS model.

The phase field method was mostly applied for metallic systems previously, until Heulens et al.

[19] developed a multicomponent phase field model for the crystallization in slags, which was

based on the KKS model.  However,  application of  the method to slag solidification remains

challenging. This work aimed at solving certain problems encountered related to more realistic

simulations in oxidic systems. First, the peculiarities of oxidic systems have been investigated:

the anisotropy, the influence of oxygen fugacity and then the thermodynamic data coupling for

quaternary systems.

For oxide systems, the thermodynamic functions and diffusion data are expressed as a function

of oxide components and not as a function of the elements. The model can be coupled with a

thermodynamic database for oxides (FTOxid, from Factsage via Chemapp) to obtain the bulk

thermodynamic properties of the liquid slag as a function of composition. The slag is described
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in this database with the Modified Quasi-Chemical Model. Similar as previously described by Hu

et al.  [20], the model of Heulens et al.  [19] modelled the stoichiometric solid phases with a

paraboloid Gibbs energy with specific constraints to ensure correct phase equilibria and minimal

solubility in the stoichiometric phase. The model was able to describe both crystallization and

dissolution of  the stoichiometric  phase.  The interfacial  mobility  and interfacial  energy  were

modelled with anisotropy, as both faceted and dendritic crystallization can take place in oxide

systems. Anisotropic interfacial energies are encountered frequently, as illustrated by  [19,21–

26] and the references therein. The anisotropy in interfacial energy was described similarly as by

Kobayashi  [10].  However, for growing spinel crystals,  such as Fe3O4,  crystallizing in a silicate

melt, it is often accepted that the faceted growth is a consequence of a strong anisotropy in the

solid–liquid interface kinetics. This is in contrast with most of the previous work considering

anisotropy in surface energy. This kinetic anisotropy was introduced by Heulens et al. [19] and

was  based  on  the  work  of  Uehara  and  Sekerka  [27]. This  will  be  investigated  for  a

multicomponent system in the current work, focussing on the growth of the solids. 

The local oxidation state of multivalent ions in slags, such as iron (i.e. ferrous (Fe 2+) and ferric

(Fe3+) cations) is important for the slag properties, such as the potential of the slag to oxidize. If

an iron-bearing silicate melt is  not in thermodynamic equilibrium with its oxygen-containing

atmosphere, the melt is subjected to a redox reaction. The ratio of FeO/Fe 2O3 at the upper

boundary is in equilibrium with the oxygen fugacity of the atmosphere, while conserving Fe.

Two-dimensional simulations can be performed with different varying oxygen fugacity in the

atmosphere.  In this model, the diffusion is assumed to be much slower than the redox reaction

kinetics, and the redox ratio of FeO/Fe2O3 is thus locally in equilibrium with the oxygen activity

in the melt. [19] 

The biggest drawback of the model of Heulens et al.  [19]was its limitation to only three oxidic

components.  In  this  work,  the  implementation  of  the  model  is  adapted  to  extend  the

applicability  to  actual  multicomponent  systems,  which  is  more  relevant  for  realistic

metallurgical  oxidic  systems.  This  was  done  in  two  different  ways.  First,  through  a  similar

coupling to the thermodynamic database as proposed by Heulens  [19], but considering more

elements, which happened through a tabulation method. The influence of the anisotropy and

the partial pressure of oxygen on the faceted spinel growth was investigated in this way. The

constructed model is used to simulate faceted growth of Fe3O4 in a FeO-Fe2O3-Cu2O-SiO2 system

assuming different partial pressures of oxygen in the atmosphere above the melt.

However, we experienced that the coupling to a thermodynamic database becomes increasingly

intricate as the number of components in the system increases. The exponential dependency of

the amount of data on the number of components is called the curse of dimensionality [28]. To

solve this problem, alternatives were also investigated in this work for the storage and handling

of the thermodynamic data required for the phase field simulations. A possible solution was

found in a canonical polyadic decomposition of the tensors containing the thermodynamic data.

This method was already applied to metallic systems [29] before, but it is, in this work, applied

for the first time to oxidic systems. With this method, the huge tensors are approximated well

3



by  compact  multilinear  models  or  decompositions.  In  this  work,  a  fourth-order  canonical

polyadic decomposition (CPD) of the original tensors is implemented in the phase field code.

2 MODEL AND IMPLEMENTATION

2.1 FREE ENERGY FUNCTIONAL

The total free energy of a heterogeneous isothermal system with p phases and c components is

formulated as a functional of the non-conserved phase field variables  i and the conserved

concentration fields  xk (i.e. the mole fractions of the different components). The current work

considered two phases, i.e. solid precipitate and liquid slag, even though the model can describe

multiple solid precipitates growing or dissolving in the liquid. The presence of multiple solids

was investigated by Heulens et al. [30]. 

The free energy functional decreases monotonously during microstructural evolution towards

thermodynamic  equilibrium and consists  of  interfacial  and bulk  Gibbs free energies,  but  no

elastic or magnetic contributions were considered:

F=∫ f (ηi , ∇⃗η i , xk)dV=∫ [ f ¿ (ηi , ∇⃗η i)+ f b (η i , xk )]dV (1)

In this model, the interfacial free energy density is represented by: 

f ¿=m f 0 (ηi )+
κ
2
∑
i=1

p

(∇⃗ηi )
2

(2)

With f0 a fourth order Landau polynomial of the order parameters, representing a homogeneous

free energy of the double-well type:

f 0 (ηi )=∑
i=1

p

[ η i
4

4
−
ηi
2

2 ]+γ∑
i=1

p

∑
j>i

p

ηi
2η j
2
+
1
4

(3)

Each term in the first set of summations is a double-well potential with minima located at -1 and

+1 for i. The cross term (i²j²) was added to make it energetically unfavourable to have two

order parameters different from zero at the same position in the system because it  gives a

positive contribution to the local free-energy density for each extra phase field variable with a

value different from 0. Therefore, within the grains only one of the phase field variables differs

from  0  and  at  a  grain  boundary  and  multi-junctions,  only  those  phase  field  variables

representing the adjacent  grains  are  different  from zero  [31,32].  The parameter  γ is  taken

constant and equal to 1.5 because the phase field profiles are symmetrical and cross each other

at 0.5 in the interface in this case, as investigated previously by Moelans et al.  [31]. With this

constant value, ij and mij define the physical properties of an interface between phases i and j,

such as the interfacial energy ij and the diffuse interface width lij [21,31]. The local values of the

model parameters ((r), m(r) and L(r) with r representing the space) are defined as a weighted

sum of the interfacial parameters ij, mij and Lij [21,31,33], as illustrated for  below:
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κ (r )=

∑
i=1

p

∑
j>i

p

κ ijηi (r )
2
η j (r )

2

∑
i=1

p

∑
j>i

p

ηi (r )
2η j (r )

2

(4)

The interfacial energy ij of the phase boundary between the phases i and j can be calculated

analytically for symmetrical phase field profiles (if γ =1.5) [21,31,33]:

σ ij=
√2
3

√mijκ ij (5)

Moreover, the interfacial width can be calculated as [21,31,33]: 

lij=√
8κ ij
mij

(6)

The bulk energy density part of the total free energy of the system is derived from the Gibbs

energies of all phases as a function of temperature and composition, Gm(xk,T), but divided by the

molar volume to get the energy density per phase (fi). 

f b=∑
i

hi f i(x1
i ,…, xk

i ,…, xC−1
i

) (7)

The following interpolation function was used:

hi=ϕi=
η i
2

∑
i

ηi
2 (8)

Where  i represents the phase field variable and  i represents the local phase fraction. Note

that the local  phase fractions sum up to one, but there is no restriction on the phase field

variables i. As proposed by Kim et al. [34], every phase has its own set of composition variables

xk
i,  called  the  phase  compositions.  These  differ  from  the  local  composition  xk but  are

unambiguously defined at each point by the requirement of equal phase diffusion potentials for

all components in all coexisting phases, due to the thin-interface approach, and a mass balance

equation (at constant molar volume) for each component to relate the overall composition of a

component k to the phase compositions: 

~μk=
∂ f 1 ( xk)

∂ xk
1 =…=

∂ f p (xk )

∂xk
p ,∀ k (9)

xk=∑
i

hi xk
i

(10)

The diffusion potential of  component k in phase i  is  defined as the difference between the

chemical potential of that component and the chemical potential of a reference component (say

component 0): 

5



~μk=
~μk
i
=μk

i
−μ0

i , k=1…c−1 (11)

Actually,  the  difference  between  the  chemical  potentials  of  a  certain  component  and  the

chemical potential of the reference component in the same phase, i.e. the diffusion potential,

equals  the  derivative  of  the  molar  Gibbs  free  energy  of  that  phase  to  the  mole  fraction.

However, for constant molar volumes, an assumption usually made in phase field models, these

relations are equivalent for Gibbs energies and chemical potentials per volume.

2.2 PHASE FIELD EQUATIONS

The  evolution  of  each  phase  field  variable  is  assumed  to  be  linear  with  its  driving  force,

according to the linear non-equilibrium thermodynamics theory of Onsager. Every change in the

phase field variables should decrease the total energy F of the system. The evolution equation

of  i,  is  thus  written  as  a  time-dependent  Ginzburg-Landau  equation  for  non-conserved

variables: 

∂ηi
∂t

=−L(m
∂ f 0
∂ηi

+
∂ f b
∂ηi

−∇x (
∂ f
∂∇ xηi )−∇ y (

∂ f
∂∇ y ηi )) (12)

Where the ∇ x and ∇ y operators are equivalent to the one-dimensional partial derivatives ∂/∂x

and ∂/∂y. The expansion of these terms depends on whether or not anisotropy is taken into

account. For the isotropic derivation, both terms can be replaced by a single term of −κ ∇2η i.
The  anisotropic  case  is  derived  in  the  following  section.  The  other  terms  in  (12)  have  the

following expressions: 

∂ f 0
∂ηi

=η i
3
−ηi+2 γ ηi(∑

j≠ i

p

η j
2) (13)

∂ f b
∂ηi

=∑
j=1

p ∂ϕ j
∂ηi ( f j−∑

k=1

C−1
~μk xk

j) (14)

∂ϕ j
∂ηi

=

−2ηiη j
2
+2δij ηi(∑

r=1

p

ηr
2)

(∑
r=1

p

ηr
2)
2 (15)

Where  δ ij represents the Kronecker  delta,  being  1  if  i=j  and 0 if  not.  Because of  the cross

products, ghost fields (i.e. other phase fields than those representing the neighbouring phases

but contributing at the phase boundaries) always result in an increase of the local free energy

and are accordingly unstable. Therefore, expressions for the grain boundary properties derived

for  two-grain  structures  remain  valid  for  individual  grain  boundaries  in  polycrystalline

structures, except for very small grains [21]. 
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2.3 DIFFUSION EQUATIONS

Each  C-1 independent component evolves in time according to a diffusion equation, derived

from a time-dependent Ginzburg-Landau equation for conserved variables: 

∂xk
∂ t

=∇ ∙[∑i=1
p

ϕi(∑
l=1

C−1

M kl
i ∇ ~μl

i)] (16)

where  the  gradients  in  the  diffusion  potential  are  the  driving  forces  for  multicomponent

diffusion  because  cross-terms  are  included.  This  mobility  is  equivalent  to  the  Onsager

coefficient, that can be linked to the interdiffusion coefficient.

2.4 ANISOTROPY

The morphology of a growing crystal depends on the properties of the solid-liquid interface, i.e.

the anisotropy of  the interfacial  energy  and mobility.  The degree of  anisotropy will  have a

significant effect on the growth morphology and equilibrium shape of particles  [35]. For two-

dimensional systems, the normal to the interface  n⃗=(n1 , n2 ),  which is in fact the normal to

contours of constant value of a phase field variable i, is given by

(n1, n2 )=
1

√(
∂ηi
∂x )

2

+(
∂ηi
∂ y )

2 (
∂ηi
∂ x
,
∂ηi
∂ y )

(17)

and the angle θ between the normal to the interface between phases i and j and the x-axis is 

tan(θij−θ0)=
|∇ηi−∇ η j|y
|∇ηi−∇ η j|x

(18)

With θ0 a reference orientation from which the orientation of the interface is measured. When

considering  a  single  crystal  orientation,  the  choice  of  θ0 is  arbitrary,  as  Heulens  already

demonstrated the rotation-invariance of the model  [36]. In all simulations, it was set to zero,

meaning that the orientation of the boundary is given as the angle θij between the normal to the

interface  and  the  x-axis.  For  faceted  crystal  growth  in  oxide  systems,  the  orientation

dependence is characterized by strong anisotropy in the interface kinetics and thus the phase

field mobility Lij is incorporated to have cusps at slow growth directions that define the growth

geometry of the crystal. In this model, focussing on the growth of the solids, faceted growth

with  sharp  cusps  at  the  facet  plane  orientations  is  described  by  the  following  orientation-

function for the kinetic coefficient L [27]: 

λ ij (θij )=1−β ij+2 β ij tanh(
rij

|tan (aij θij )|) (19)

With β ij a measure for the depth of the cusps (i.e. the difference in mobility between the fast

and slow crystal planes),  r the sharpness of the cusps (influencing the corner formation at the
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edges of two crystal planes) and 2aij the mode of symmetry of the anisotropy (mostly a value of

4 or 6 for minerals such as spinel or corundum). 

2.5 BOUNDARY IN CONTACT WITH ATMOSPHERE AT A CERTAIN PO2

As implemented by Heulens [30] the FeO/Fe2O3 ratio in an FeOx-SiO2 melt can be linked to the

local  oxygen  potential  in  the  melt.  If  the  melt  is  in  contact  with  an  oxygen-containing

atmosphere, the melt will be oxidized or reduced, depending on whether the oxygen fugacity in

the atmosphere is higher or lower than its activity in the melt. At this boundary, representing

the  contact  with  an  oxygen-containing  atmosphere,  there  is  only  an  exchange  possible  for

oxygen, but not for the other elements. For this, the atmosphere is assumed to be an ideal gas

(thus  the  activity  of  a  gaseous  component  equals  its  partial  pressure  and  its  fugacity)  and

diffusion is assumed to be much slower than the redox reaction, which are present in the melt

when  it  is  not  in  thermodynamic  equilibrium  with  the  oxygen-containing  atmosphere.

Moreover, the melt is assumed to be in local equilibrium with the gaseous atmosphere at the

interface with the atmosphere. From these assumptions, the FeO/Fe2O3 ratio can be used as a

direct measure for the oxygen activity within the atmosphere. However, one should note this is

generally not the case.  Thus, the FeO/Fe2O3 ratio can be varied, but the amount of Fe should

remain constant.  Linearly  interpolating the mole  fractions of  FeO and Fe2O3 between ghost

nodes and the border, together with the conservation of mass for Fe, yields the following set of

equations at the boundary:

( xFeO
border

−x FeO
g host

∆ z )(∆ z2 )+xFeOghost=ω[( xFe 2O3
border

−xFe2O3
ghost

∆ z )( ∆z2 )+x Fe2O3ghost ]
xFeO
ghost

+2 xFe2O3
ghost

=x FeO
border

+2xFe 2O3
border

(20)

With  ω the FeO/Fe2O3 ratio determined with the help of Factsage. pO2 values of 2 10∙ -3 atm,

2.5185 10∙ -3 atm (the natural pO2 of the slag); 5 10∙ -3 atm; 10-2 atm and 10-1 atm were simulated

and correspond to the following xFeO/xFe2O3 ratios, respectively: 1.059, 1.014, 0.891, 0.781 and

0.506. This set of equations is solved for the values of the global compositions of FeO and Fe 2O3

in the ghost nodes for this boundary. 

2.6 TABULAR COUPLING TO THERMODYNAMIC DATABASE

There  is  a  constant  drive  to  perform  more  complex  simulations  which  would  allow  for

quantitative kinetic predictions of microstructural evolution in multicomponent materials. Such

simulations require the input of thermodynamic data. In this model, in equation (7), the bulk

chemical  energy  density  is  calculated as  a weighted sum of  the Gibbs free energies  of  the

different phases,  fi. However, the thermodynamic and kinetic descriptions used in phase field

simulations are often simple and idealized as the use of a proper CALPHAD database would

drastically increase simulation time. [37] 

As summarized by Coutinho et al. [29], coupling to a thermodynamic database has been done in

various ways in the past:
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 The  Gibbs  free  energy  expressions,  as  well  as  the  expressions  for  the  chemical

potentials and their  derivatives,  as a  function of  the composition variables are used

directly. This seems a very straightforward idea and it is indeed straightforward if all

phases show the behaviour of a substitutional solution. 

However,  most  solid  phases  are  described  using  a  sublattice  model,  for  which  the

coupling is  already called complex.  Moreover,  in oxidic  systems, the thermodynamic

functions are expressed as a function of oxide components and not as a function of the

elements. Furthermore, the model for the liquid slag in the thermodynamic database

for oxides (FTOxid, from Factsage) is the Modified Quasi-Chemical Model [38–40]. This

model  is  more  realistic  than  the  ideal  or  regular  models  and  looks  at  a  random

distribution  of  atom  pairs.  This  results  in  the  presence  of  pair  fractions  in  the

expressions of the enthalpy, entropy and hence the Gibbs energy. These pair fractions

can be determined by a minimization procedure and thus, results in a globally iterative

procedure. Hence, it is not possible to get one equation to describe the Gibbs energy of

a liquid oxide solution described by this kind of models.

 A paraboloid expression fitted to data calculated with the CALPHAD method can also be

used to approximate the composition dependence of the Gibbs free energy. This is for

example used to describe stoichiometric solid phases.

The stoichiometric phases were treated to ensure that a correct Gibbs free energy value

is found at the stoichiometric composition. Moreover, all components have the same

chemical  diffusion potential  as  the solution phases  from the start  of  the simulation

onwards.  Furthermore,  the  curvature  of  the  parabolic  Gibbs  free  energy  should  be

sufficiently high (at least 10 times that of the liquid) to minimize the deviation from the

expected equilibrium compositions in the coexisting solution phases and to minimize

the solubility in the stoichiometric phase. Note that a too high value for the curvature

will yield an ill-conditioned set of equations, which becomes unsolvable. The expression

of Gibbs free energy of the stoichiometric compound as a function of  the complete

composition domain is described as: 

F=
A
2
x
1

2

+
B
2
x2
2
+
C
2
x3
2
+Dx1+E x2+F x2+G (21)

With x1, x2 and x3 the mole fractions of the components within the stoichiometric phase

and xS
1, x

z
2 and xz

3 corresponding to the stoichiometric composition. A-G are constant for

all phase concentrations. The previously mentioned constraints yield a set of equations

which can provide values for these constants. Here, the chemical diffusion potential of

the liquid is evaluated at a liquid composition in equilibrium with the stoichiometric

phase. However, the liquid interface composition is not known before the simulation.

However, Heulens et al. [19] already investigated the influence of this initial equilibrium,

used to construct the paraboloid, and found that this does not affect the steady state

growth of the stoichiometric phase if the paraboloid is taken at least 10 times steeper

than the Gibbs energies of the solution phases.  In this  work, the solid precipitate is

implemented as a steep parabola with the following composition (mole fractions) 0.005
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Cu2O – 0.495 FeO – 0.495 Fe2O3 –  0.005 SiO2  for numerical  reasons,  i.e. to ensure

correct  phase  equilibria  and  minimal  solubility  in  the  stoichiometric  phase.  The

composition and description of such a solid phase was not the focus of this work and

was already briefly touched Heulens et al. [19,41].

However,  this  paraboloid  approximation  can  only  describe  the  Gibbs  free  energy

accurately  over  limited  compositional  ranges  and  is  thus  not  generally  usable.

Moreover,  for  higher-order  systems,  the  molar  fractions  typically  start  taking

nonphysical fractions values below 0 or above 1. 

 External software can also be used to evaluate thermodynamic quantities as required by

the  phase-field  simulation.  For  the  Factsage  software,  this  is  the  Chemapp  library

[42,43]. The time spent in the communication between software is huge and is thus the

main disadvantage of this approach, making it far less efficient. Some small simulation

tests for such a coupling type of only 1100 and 1500 time steps took 35 and 47 days,

respectively.  Note,  furthermore,  that this  programming interface typically  requires a

dongle to be present, which is not compatible with domain parallelization for speed-up

of the simulations.

 However,  this  thermodynamic software can still  be used for  sampling the data as a

function of composition and saving them into lookup tables that are consulted in the

phase-field  simulation.  This  method  was  first  used  in  this  work  to  describe  the

thermodynamics of the liquid phase. 

With the latter method, the developed phase field model does not rely on a specific

type of thermodynamic software or database.  [33] The Gibbs energies of the different

phases  are  approximated  by  a  second-order  Taylor  approximation  f̂ i around

x̂ i=( x̂1
i ,…, x̂k

i ,…, x̂C−1
i ). 

f̂ i=∑
k=1

C−1

( Akk
i

2
( xk
i
− x̂k

i )
2

)+∑
k=1

C−1

(∑
l> k

C−1

(Akli (xk
i
− x̂k

i )( x l
i
− x̂ l

i )))+∑
k=1

C−1

(Bki ( xki− x̂ki ))+C i (22)

The  parameters  A,  B and  C are  retrieved  at  every  concentration  x̂ i from  a

thermodynamic  database.  The  FToxid  database  was  used  to  retrieve  the

thermodynamic data. The composition domain was first discretized on a square grid

with a grid spacing of 0.005 and then A,  B and C are calculated at every grid point as

∂~μk
i

∂ x l
i , 

~μk
i
 and 

Gm
i

V m
, respectively, with Chemapp [42]. This kind of multidimensional arrays

are also called tensors. The order of a tensor is the number of dimensions, in this case

the  number  of  independent  components.  These  tensors  are  retrieved  from  the

thermodynamic databases before the start of the phase field simulations and the same

set of thermodynamic tensors can be used to perform several phase field simulations

considering the same system. So there is no need to retrieve all thermodynamic data for

each phase field simulation. 
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Within the phase field simulation, the thermodynamic data are calculated at the local

phase composition using a multilinear  interpolation and the  x̂k
p values of  the Taylor

expansion are actually the xk
p
 values from the previous time step. This is in accordance

with the condition for Taylor expansions that the point around which the expansion is

taken, lies close enough to the point in which the actual value will be calculated.

2.7 TENSORIAL COUPLING TO THERMODYNAMIC DATABASE

The pre-calculation of thermodynamic data tensors is a feasible option to be used in phase-field

simulations.  However,  computing  all  entries  in  these  tensors  becomes  challenging  as  the

number  of  entries  grows  exponentially  in  the  order  of  the  tensor,  i.e.,  in  the  number  of

components. In particular, if each of the N (=C-1) independent molar fractions is equidistantly

discretized  into  I  grid  points,  the  number  of  tensor  entries  grows  exponentially  as  I N.  The

computational difficulties caused by this exponential dependence are known as the curse of

dimensionality  [28].  While  the number of  grid  points per  mode can be used to reduce the

number  of  entries  and  therefore  the  computational  cost,  a  grid  that  is  too  coarse  would

negatively impact the simulation results due to the low accuracy of interpolated points.

The original thermodynamic data consisted of third-order tensors with I=201 grid points in each

dimension. As molar fractions always sum to 1, only tensor entries inside a regular tetrahedron

are feasible; see  Figure 1. Outside this tetrahedron, the sum of the molar fractions is greater

than 1 by construction. For the thermodynamic data tensors studied in this paper, the distance

between  grid  points  is  0.005  which  is  chosen  to  provide  sufficient  accuracy  while  keeping

memory  requirements  feasible.  This  way,  ten  tensors  with  dimensions  201×201×201  are

obtained: one for Gibbs energy, three for diffusional potentials and six for the derivatives of the

diffusional potentials. Each tensor contains already 1 373 700 feasible entries. Thus, it is clear

that  scanning  the  complete  compositional  domain  would  become  impractical  for  larger

numbers of components.

To make working with fine grids and many components feasible, the curse of dimensionality has

to be broken. To achieve this, we follow the strategy outlined in Coutinho et al.  [29], where

thermodynamic databases are coupled and used in phase field simulations for liquid Ag-Cu-Ni-

Sn alloys. Instead of using all entries inside the feasible tetrahedron in each tensor, a limited

amount of entries is sampled randomly, and a constrained canonical polyadic decomposition

(CPD) of the resulting incomplete tensor is computed. This way, the temperature-dependent

Gibbs energy, the potentials and their derivatives were modelled over the entire composition

domain without loss in simulation accuracy  [29]. Vervliet et al.  [28]. used a similar method to

accurately model the melting temperature of a ten-compound alloy using only 100 000 samples,

while approximately 1018 samples would be required when using all data in a naive way.

A polyadic decomposition (PD) writes a tensor as a sum of R rank-1 terms, each of which is an

outer product of N non-zero factor vectors ar
(n). These factor vectors can be collected into factor

matrices: A(n)=[a1
(n), a2

(n), …, aR
(n)]. Mathematically, each entry of a tensor T is given by:
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t i1i2…iN=∑
r=1

R

ai1 r
(1)ai2 r

(2)…ai Nr
N

(23)

If R is minimal, the decomposition is called canonical, hence the nomenclature ‘CPD’. Compared

to  matrix  decompositions,  the  CPD  is  unique  under  mild  conditions  which  is  useful  in

applications where terms are interpreted or when having a single best solution is required; (see

[44] for more detail). Additional constraints can be imposed onto the factor matrices. In this

paper, we assume that each factor can be written as the matrix product of a known basis matrix

B(n) and an unknown coefficient matrix C(n), i.e., A(n) = B(n)C(n). This CPD with linearly constrained

factors  can  be  computed  efficiently  from  incomplete  tensors,  i.e.,  tensors  have  only  few

sampled entries [45].

Each thermodynamic  data  tensor  contains  samples  from an underlying  smooth multivariate

function in the molar fractions f(x1 , x2 ,…, xN). In this paper, we follow [29,45] by modelling this

function by a sum of separable functions, which are the product of functions in a single variable:

f (x1 , x2 ,…,x N )=∑
r=1

R

ar
(1)

(x1 )ar
( 2)

(x2 )…ar
N

(xN ) (24)

This is exactly the continuous variant of equation (25). By expressing these univariate functions

as the sum of basis functions bd
(n)(xn), e.g., for a monomial basis bd

(n)(xn) = xn
d, d=0,…, D, with D

the maximal degree and by sampling the function on a grid,  the formulation of a CPD with

linearly constrained factors is obtained: the jth row in A(n) contains the R univariate functions ar
(n)

evaluated at the jth grid point  for xn,  and each ar
(n) = Σ bd

(n)(xn)  cdr
(n),  i.e.,  the product of  the

evaluated  basis  functions  and  some  coefficients  cdr
(n).  As  the  basis  functions  are  chosen

beforehand, only the coefficients collected into D×R matrices C (n), need to be computed, e.g.,

using the algorithm in [45].

Using  a  CPD,  a  continuous  model  for  the  entire  domain  is  obtained,  which  has  several

advantages.  In  contrast  to  local  quadratic  interpolation,  there  is  no  need  to  have  a  small

distance between grid points and hence sampling on a fine grid is not needed. Moreover, by

strategically  placing  more  samples  in  regions  where  the  function  varies  a  lot,  e.g.,  at  the

boundaries  of  the  interval,  the  number  of  samples  can  be  reduced  significantly.  Once  the

coefficient matrices C(n) have been found, the function value can be obtained for every point in

the  domain  by  evaluating  the  basis  functions  at  the  desired  molar  fractions,  computing

A(n)=B(n)C(n)and  using  equation  (25).  Finally,  the  relation  between  Gibbs  energy,  diffusion

potentials and its derivatives can be exploited by replacing a basis function with its derivative.

From equation (26), it is clear that the derivative with respect to x1 only affects aj
(1)(x1) and not

aj
(n)(xn) for n≠1. Moreover, as only B(1)(x1) depends on x1,  the coefficient matrix C(1) does not

change. Therefore, the different thermodynamic data tensors can analyzed together by coupling

the coefficient matrices C(n); see [29] for more details. 

In this paper, we investigate whether this approach outlined in [29] for liquid alloys is feasible

here as well. In oxidic systems, however, the dependence on the molar fractions is far more

intricate,  not  only  because  of  the  consideration  of  the  oxidic  components  instead  of  the
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elements,  but  also the more intricate  nature  of  the Modified Quasi-chemical  Model,  which

describes the liquid slag.

Figure 1 Visualisation of a canonical polyadic decomposition (CPD), adapted from [29]

3 NUMERICAL METHODS  

The numerical implementation of this model was done in Fortran 90. The system is divided into

a two-dimensional grid with equal distances between grid points in both the x- and y-axis. The

evolution equations for both the conserved and non-conserved field variables are solved with

spatial central finite differences and temporal forward finite differences. To be able to account

for different boundary conditions for the system, ghost nodes were introduced next to the outer

rim of the system grid points.

The program starts by reading the input and initializing the system. Then a loop considers the

evolution over the various time steps and in every time step, the following happens: 

 Computation of the phase fractions  ϕi from its definition and the computation of the

phase  compositions  xk
p
 from  the  mass  balance  equation  and  the  quasi-equilibrium

condition.
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 Computation of the local κ (r ), m (r ) and L (r ) values. For this, first the interface angle is

determined and the gradients herein are calculated with a higher accuracy nine-point

stencil:

∇ xηr i , j=
1
8 (
η ri+1 , j−1−ηr i−1 , j−1

2 Δx )+ 68 (
ηri+ 1, j−ηri−1 , j

2Δx )+ 18 (
ηri+1 , j+1−ηri−1 , j+1

2 Δx )

∇ yηri , j=
1
8 (
ηr i−1 , j+1−ηri−1 , j−1

2 Δy )+ 68 (
ηri , j+1−ηri , j−1

2 Δy )+ 18 (
ηr i+1 , j+1−ηri+1 , j−1

2 Δy )
(25)

This nine-point stencil is required to reduce the effect of the grid anisotropy and provide

a stable solution for the orientation dependence. The orientation dependence for the

phase field mobility is implemented with a weighed sum between the isotropic mobility

and faceted growth (interface controlled growth) according to (19). 

 Computation of f i and ~μk
i
 at the local phase concentrations using a bilinear interpolation

between the values of C and B, respectively, which were tabulated. 

 Computation of the phase field and concentration gradients. 

o The temporal differential in the diffusion equations is discretized with a forward

finite difference, i.e. the mole fraction at time step n+1 is calculated with the values

of  the  previous  time  step  n.  The  gradient  can  also  be  split  up  into  its  two

components, yielding: 

(xk )i , j
n+1

=(xk )i , j
n

+∆ t (∇ ∙[∑i=1
p

ϕi(∑
l=1

C−1

M kl
i (∇ x

~μl
i
+∇ y

~μl
i ))])

n

(26)

These gradients are discretized as: 

(xk )i , j
n+1

=(xk )i , j
n

+∆ t ( ξx ,i , j
n

−ξ x, i−1 , j
n

∆ x
+
ξ y, i , j
n

−ξ y ,i , j−1
n

∆ y )
(27)

With

ξ x, i , j
n

=[∑i=1
p (ϕ i )i+1 , j

n
+(ϕi )i , j

n

2 (∑
l=1

C−1

M kl
i (~μ l

i )i+1, j
n

−(~μl
i )i , j
n

Δx )]
ξ y ,i , j
n

=[∑i=1
p (ϕ i )i , j+1

n
+(ϕ i )i , j

n

2 (∑
l=1

C−1

M kl
i (~μ l

i)i , j+1
n

−(~μ l
i )i , j
n

Δy )]
(28)

o The gradients in the phase field equations were computed in a more elaborate way

to  take  the  anisotropy  correctly  into  account.  The  temporal  differential  is

discretized with a forward finite difference, i.e. the phase field at time step n+1 is

calculated with the values of the previous time step n, yielding:
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(η r )i , j
n+ 1

=(ηr )i , j
n

+∆ t [−L(m ∂ f 0∂ηr+
∂ f b
∂η r

−
ξx ,i , j
n

−ξ x, i−1 , j
n

∆ x
−
ξ y ,i , j
n

−ξy , i , j−1
n

∆ y )]
n

(29)

The first two terms in the large brackets are evaluated at time step n. The last two

terms in the large brackets are the gradient parts of the phase field equation and

are  numerically  solved  according  to  equation  (20)Error:  Reference  source  not

found.Moreover, ξ  in equation (31) is defined as

ξ x, i , j
n

=¿

With ∇ xηr=
1
8 ( (ηr )i+1 , j+1

n
−(ηr )i , j+1

n

Δx )+ 68 ( (ηr )i+1 , j
n

−(ηr )i , j
n

Δx )+ 18 ( (ηr )i+1 , j−1
n

− (ηr ) i, j−1
n

Δx ) 

and ∇ yηr=( (ηr )i , j+1
n

+(ηr )i+1 , j+1
n

−(ηr )i , j−1
n

−(ηr ) i+1 , j−1
n

4 Δy )
and θrs determined with these gradients.

(30)

An  analogous  expression  for  ξ y ,i , j
n

 was  used;  The  only  difference  is  that  the

numerators  in  the  first  two  terms  contain  +(∇¿¿ xη r−∇x ηs)¿ instead  of

−(∇¿¿ y ηr−∇ y ηs)¿. 

 Step evolution in the phase field and diffusion equations. The phase field equations are

only solved in proximity of interfaces to increase the numerical  efficiency, while the

diffusion equations are solved everywhere.

 Updating the values of the conserved and non-conserved variables on the ghost nodes

according  to  the  boundary  conditions  (no-flux  or  for  the  conserved  variable:

corresponding to an atmosphere with a certain pO2). 

4 INPUT PARAMETERS

In this work, the diffuse interface between the liquid slag and the solid spinel equals l 12 = 10-7 m.

The interface contains eight grid points, yielding a system discretization with Δx = 0.125 10∙ -7 m.

The size of the time discretization is restricted by stability of the diffusion equations and equals

Δt = 2.0 10∙ -7 s. To obtain the interface width, the following model parameters were used: 12 =

0.225 10∙ -7 J/m and m12 = 1.8 10∙ 7 J/m³, according to the following equation

lij=√
8κ ij
mij

(31)

Moreover,  the  next  equation  gives  the  relation  between  the  model  parameters  and  the

interface energy. 
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σ ij=
√2
3

√mijκ ij (32)

This yields an interface energy of 12 = 0.3 J/m². The molar volume was calculated from literature

previously [30,33]: Vm = 23.6 10∙ -6 m³/mol.

The mobilities are calculated based on the diffusion coefficients and the thermodynamic factors.

The most elaborated mobility databases nowadays are part of the DICTRA software package and

include  data  for  iron,  nickel,  aluminium,  titanium  and  silicon  based  alloys,  but  no  kinetic

database has been developed yet for oxide systems. [46] Therefore, we used the previously [30]

determined mobilities for FeO and Fe2O3, estimated from literature for a Fe2O3-CaO-SiO2 melt at

1400°C [47], where CaO is replaced by FeO. To find a diffusion coefficient for Cu2O in the slag,

the Stokes-Einstein equation was used as an estimation. The ionic radii of the different cations

can be used as an inverse measure for the diffusion coefficient [48]: Cu+ has 0.077 nm as ionic

radius, Fe2+ 0.070 nm and Fe3+ 0.060 nm. Despite the fact that the Fe3+ ion has a smaller ionic

radius, it has a lower diffusion coefficient than Fe2+ [49], because a larger valence number will

yield slower diffusion. Thus, the following values were used for the mobilities in the slag: MCu2O-

Cu2O = 0.02 10∙ --19 m5/ (J s); MFeO-FeO = 0.1 10∙ -19 m5/ (J s) and MFe2O3-Fe2O3 = 0.05 10∙ -19 m5/ (J s). 

For the mobilities in the solid, the same order of magnitude as in the liquid was used to avoid

solute trapping effects and the off-diagonal elements of the mobility matrix were set to zero. In

this respect, it should be noted that Liu et al. [50] observed that the mobility matrix of the solid

does not affect the growth of that solid, because there is no diffusion in the solid as the solid

crystallizes with its equilibrium composition. The kinetic coefficient  L12 was chosen to ensure

diffusion-controlled growth, as obtained by the following equation

Lcrit=
4mij
3κ ijζ

(33)

Where 

ζ=∑
k=1

C−1

(xslag , eq, k−xstoich , eq,k ) ∑
m=1

C−1

mkm (xslag ,eq ,m−x stoich ,eq,m ) (34)

With mkm the elements of inverse of the diffusion mobilities matrix (which contains the averages

of the two mobility matrices). Lcrit in this case is 4.1779 10∙ -5. If L12 = Lcrit, the growth is diffusion-

controlled; If L12 < Lcrit, the eta-profiles will move slower than the composition profiles and if L12 >

Lcrit, the composition profiles will be slower than the eta-profiles. However, anisotropy is also

present in the kinetic coefficient according to the following equation [27]: 

Lij=Lij(1−β ij+2 β ij tanh(
rij

|tan (aijθij )|)) (35)

With β ij a measure for the depth of the cusps (i.e. the difference in mobility between the fast

and slow crystal planes),  r the sharpness of the cusps (influencing the corner formation at the
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edges of two crystal planes) and 2a ij the mode of symmetry of the anisotropy (mostly a value of

four for spinel minerals). Moreover, Lij should be calculated in such a way that the value of L12

for  the  fast  moving/faceted  interfaces  equals  Lcrit.  In  this  case,  Lij should  be  2.7853 10∙ -5.

Moreover,  a ij = 2 to yield a 4-fold crystal growth symmetry and β ij = 0.5 to give a sufficiently

high difference between the fast growing (faceted) interfaces and the slow interfaces. 

The simulations are executed for a 100 x 100 domain (= 1.25 × 1.25 µm²) for 10 6 time steps (=

0.2s). The solid was initialised at its equilibrium composition (0.005 Cu2O – 0.495 FeO – 0.495

Fe2O3 – 0.005 SiO2) and the slag started as a supersaturated oxide mixture (0.1 Cu2O – 0.4 FeO –

0.4 Fe2O3 – 0.1 SiO2). According to Factsage such a supersaturated slag should decompose into

solid spinel and a slag with the equilibrium composition of 0.151 Cu2O – 0.354 FeO – 0.344 Fe2O3

– 0.151 SiO2. 

For the two-dimensional isotropic simulations, the system is initialized with one quadrant of a

circle with a radius of 12 grid points in the lower left corner, hence focussing on 1/4 th of a solid

particle.  This  configuration  with  the  nucleus  in  the  lower  left  corner  of  the  system  is

representative for a 200x200 system due to symmetry. The presence of this initial quadrant

influences the phase fractions expected from the thermodynamic calculations with the Factsage

software to a minor extent, but does not influence the expected equilibrium concentrations. 

The description of the stoichiometric phase ensured that the diffusion potential is the same as

for the equilibrium composition of the slag.  However, the thermochemical software Factsage

considers formation of a solid spinel with a composition of FeO.Fe2O3 (also known as magnetite

Fe3O4). Numerical reasons in the phase field simulations require the solid to be described by a

slight shift away from the edge of the compositional domain. Hence, the solid in the phase field

simulations contains a minor amount of Cu2O and SiO2. This shifts the parabola describing this

phase away from the edge of the compositional domain, but this in turn has a slight effect on

the equilibrium fractions and compositions. In this work, the solid precipitate is implemented as

a steep parabola with the following composition (mole fractions) 0.005 Cu2O – 0.495 FeO –

0.495 Fe2O3 – 0.005 SiO2  to ensure numerical soundness in the phase field method and minimal

solubility in the stoichiometric phase. 

The thermodynamic data of the slag were extracted from the database with Chemapp with a

discretization  of  0.005  in  the  compositional  domain.  A  smaller  discretization  resulted  in

encountering memory limits during the phase field simulation when the thermodynamic data is

loaded in a first stage of the calculation. 

5 RESULTS AND DISCUSSION 

5.1 ISOTROPIC GROWTH OF SPINEL IN QUATERNARY OXIDE SYSTEM

A first simulation was performed assuming isotropic interfacial energy, using the standard value

L12 = 4.1779 10∙ -5, so that no facets are expected to form. The contours of the 0.5-level of the
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solid in the system domain for every 100 000th time step are shown in Figure 2, as well as the

phase fraction as a function of time.
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Figure  2 Left: Contours  of the 0.5-level  of the solid in the system domain for  every 100 000th time step in a  2D-
simulation with isotropic growth kinetics for the solid phase. Right: Phase fraction of the isotropic growth as a function
of time.

The last couple of contours are clearly located closer together than the first contour lines. The

corresponding concentration profiles of Cu2O, FeO and Fe2O3 at a height of 10 grid points are

shown in Figure 3.
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Figure 3 Concentration profiles for every 100 000th time step in the x-direction of the system domain in a 2D-simulation
with isotropic growth kinetics for the solid phase.

As the spinel solid grows, the slag is enriched in Cu2O: the concentration goes from 0.1 to more

than 0.25. The FeO and Fe2O3 profiles are very similar, except for a slightly faster diffusion in the

slag of FeO. In the concentration profiles, it also becomes apparent that the last couple of lines

lay closer to each other than the first. A reason for this slower movement of the interface after a

while is probably the fact that the slag gets saturated with Cu2O and depleted in the iron oxides. 
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5.2 FACETED GROWTH OF SPINEL IN QUATERNARY OXIDE SYSTEM

For the faceted growth of the solid spinel phase, several r-values in the anisotropy function,

determining the sharpness of the cusps in the kinetic factor,  were used.  The corresponding

polar plots are shown in Figure 4. A larger r will yield only a limited range of angles at which the

growth is slower, due to a lower  L12-value. A smaller r-value, on the other hand, has a larger

range of angles at which the growth is slower. Thus, a larger r-value clearly would result in

‘rounder’ corners of the spinel particle, but faster overall growth.
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Figure 4 Polar plot of anisotropy function for four r -values with βij =0.5 and aij=2

With r = 1, for example, it is expected from the plot in Figure 4 that the corners of the spinel

solids are not too round. The results of the simulations as contour plots and as phase fractions

as a function of time for r = 0.1, 1, 10 and 100 are shown in Figure 5.
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Figure 5 Left: Contours of the 0.5-level of the solid in the system domain at the final time step in a 2D-simulation
assuming strong anisotropy in the solid-liquid interface kinetics with r = 0.1, 1, 10 and 100, resulting in faceted growth

of the solid phase. Right: Phase fractions of the isotropic and anisotropic growth as a function of time.

It is clear from the contour plot that the growth of the spinel solid was slower than without the

faceted growth. Because the anisotropy is added to the kinetic coefficient L12, the fastest moving

interfaces have an angle of 0 or 90° with the x-axis. The slowest moving interfaces are located at

an angle of 45°. But even the fastest moving interface positions, corresponding to the x- and y-

direction,  are  slower  than  the  non-faceted  interface  movement.  It  seems  as  if  the  slower

moving interfaces at 45° restrict the fast movement of the well-oriented interfaces. For a larger

r-value, i.e. a sharper cusp in the anisotropy plot, the growth is less limited than for the r=1-

case.  This  is  because the kinetic  coefficient is  limited for  only  a very  small  range of  angles

around 45°, resulting in slower growth in that direction. For an even larger r-value, the growth

seems to be even faster as compared to the isotropic growth in the fast-growing directions of 0

and 90°. 

The way the spinel grows is determined by the anisotropy in the kinetic coefficient L12, but the

final form of the solid is determined by the interfacial energy. In these simulations, the growth

of  the  solid  particles  was  mainly  investigated  and  thus,  no  anisotropy  was  used  for  the

interfacial energy (through the parameters  m and  κ). The r-value, which was varied in these

simulations,  influences  the  range  of  angles  for  which  the  kinetic  coefficient  will  be  at  its

maximum value of Lcrit. A larger r will yield only a limited range of angles at which the growth is

not favoured, due to a lower L12-value. Thus, a larger r-value clearly results in ‘rounder’ corners

of  the  spinel  solid,  but  faster  growth,  which  was  clearly  observed  in  the  simulations.  In

experiments, both the sharp and round corners can be observed as illustrated in Figure 6. Note

that the presence of multiple solids was investigated by Heulens et al. [30] and that the current

work focussed on a single solid particle and phase and that we investigated 1/4 th of it. 

 

Figure  6 SEM micrographs of an experimentally obtained microstructure of solid oxide particles in a slag that was
quenched to ‘freeze’ its high temperature condition [51–53]

The rounded corners  also appear in  the experimental  system, but the sharp corners  in  the

experiments are much sharper than for the simulations with the lowest r-value. These could
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probably  be  obtained  with  a  simulation  considering  a  different  kind  of  anisotropy  in  the

interface mobility. 

5.3 INFLUENCE OF PO2 ON FACETED GROWTH OF SPINEL IN SYSTEM WITH OPEN

BOUNDARY

It  is  generally  accepted  that  the  chemical  activity  of  oxygen,  i.e.  the  oxygen  fugacity,  may

control the oxidation state of iron in liquid oxide mixtures and thus can influence the phase

equilibria, rheology and density [54,55].  At the upper boundary of the system, a certain  pO2 is

fixed,  which  can  be  implemented  by  imposing  a  certain  xFeO over  xFe2O3 ratio.  This  ratio  is

determined by the pO2 and can be obtained using Factsage. 

The equilibrium composition of the slag (0.151 Cu2O – 0.354 FeO – 0.344 Fe2O3 – 0.151 SiO2) has

a ‘natural’ pO2 of 2.5185 10∙ -3 atm or 10-2.60 atm, i.e. this is the partial pressure of oxygen in the

gas  phase  that  would  not  result  in  any  oxidation  or  reduction  of  the  slag  phase.  Several

simulations  with  various  pO2-values  at  the  upper  boundary  of  the  system  were  executed.

Faceted growth of the spinel solid through anisotropy in the kinetic coefficient was used with an

r-value of 10. pO2 values of 2 10∙ -3 atm, 2.5185 10∙ -3 atm (the natural pO2 of the slag); 5 10∙ -3 atm;

10-2 atm; 10-1 atm were simulated. The resulting contour plots and phase fractions as a function

of time for these different boundaries, can be found in Figure 7.
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Figure 7 Left: Contour plots of the 0.5-level for the final time step in the system domain in a 2D-simulation assuming
strong anisotropy in the solid-liquid interface kinetics with r=10, resulting in faceted growth of the solid phase, for
several pO2-values at the upper boundary Right: . Phase fractions as a function of time

A decreasing  pO2 clearly yields faster growth. As the partial pressure of oxygen increases, the

concentration  of  FeO  and  Cu2O  at  the  bottom  of  the  system  decreases,  whereas  the

concentration of Fe2O3 increases,  as is  expected by the imposed boundary condition on the

upper  boundary.  Previous results  of  Heulens  [33] also  showed that  the  crystallization  of  a

ternary melt (with two possible oxidation states for Fe) has a larger effect on the oxidation state

than the oxygen fugacity of the atmosphere. Furthermore, the growth velocities of the spinel

crystals increase with decreasing oxygen fugacity. However, their results were for simulation
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times of 105 time steps. In this study, we conducted 10 times longer simulations, indicating very

clearly the influence of the oxygen atmosphere on the growth of the spinel solid and possible

inhibition of this growth by the pO2-value. 

5.4 MORE EFFICIENT THERMODYNAMIC DATABASE COUPLING:  CANONICAL

POLYADIC DECOMPOSITION OF TENSORS 
In this paper, we investigate whether the use of the canonical polyadic decomposition for the

thermodynamic data tensors, as outlined in [29] for liquid alloys, is feasible in oxidic systems as

well.  In  such  systems,  however,  the  dependence  on  the  molar  fractions  of  the  oxidic

components  are  considered instead  of  the elements  and furthermore,  the Modified  Quasi-

chemical Model, describing the liquid slag, has a far more intricate nature. Two approaches of

the canonical polyadic decomposition have been tested and compared to the previously used

tabulation method for coupling to a thermodynamic database. 

First,  a  fourth-order  tensor  is  created  for  each  of  the  ten  datasets  by  using  both  the

independent  and  dependent  molar  fractions  as  modes  of  a  tensor,  resulting  in  ten

201×201×201×201 tensors with of which we sampled between 50 000 and 100 000 entries per

tensor. A more involved sampling procedure had to be used compared to [29]: we selected all

points close to boundaries, i.e., for which any xn≤ 0.01, and then sampled an additional 10 000

points per tensors. Then a logarithmic term of the form RTTΣxnlog(xn), with RT the universal gas

constant  and  T  the  temperature,  or  the  derivatives  thereof  is  subtracted,  and  the  data  is

normalized.  For  each  of  the  resulting  tensors,  a  CPD  with  R=10  terms  is  computed  using

Tensorlab [56] and the CPDLI NLS function [45] (All parameters are determined using validation

data). The same monomial basis functions 1 , x , x2 , x3,…, x6 and the function xlog(x) are used to

form the basis matrix B(n)=B for each n. As a result,  four factor matrices of size 201×10 are

obtained by evaluating the result on an equidistant grid with steps 0, 0.005, 0.010,…,1. This way,

all datasets can be described compactly using 10⋅4⋅201⋅10 = 80400 values in the factor matrices,

while the original data required storage for 13 737 000 values.

Second, third-order tensors were created from Gibbs energy and the diffusion potentials using

only the independent molar fractions. A coupled model similar to [29] was computed, with the

sampling  strategy  outlined above and additional  normalization steps.  We used R=10 rank-1

terms per tensor and monomials  up to degree 6 as well  as a xlogx term. As a result, three

coefficient matrices C(n) containing only 3⋅8⋅10=240 values in total were obtained. From these

coefficient matrices, we again created factor matrices A(n) for each tensor. Using the coupled

approach, we therefore can represent all data using only 10⋅3⋅201⋅10 = 60300 values, or 240

values if only coefficients are stored. Note that the number of values that need to be stored only

increases linearly in the number of components, which makes this approach feasible for many-

component systems.

For both approaches, the error relative to the range of the data is computed for each point in

the original dataset, i.e., containing both training and validation data, and subsequently the 99%

quantile is taken. For the Gibbs energy, the models achieve an accuracy of at least 0.4% for 99%
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of the points, while the accuracy is 4% for the potential data. The points with the largest errors

are located at the domain boundaries, which is expected due to the presence of logarithmic

terms and their derivatives which quickly become large near zero. 

Furthermore,  the  decomposition  data  were  used  as  input  for  the  phase  field  model  to

investigate the influence on the final microstructure. For this purpose, the growth of solid Fe 3O4

within a supersaturated liquid was simulated in a smaller 20x20 system. Starting from a solid

nucleus on the left hand side of the system, i.e.,  a quasi-1D system. The comparison of the

phase fractions  resulting from the original  tensorial  data  and  the  decomposed data  sets  is

shown in Figure 8. It is clear that the correspondence is very good. 
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Figure 8 Comparison of phase fractions as a function of time for the growth of solid Fe3O4 in a super-saturated liquid
slag from phase field simulations using the original tensorial dataset (10 tensors with 1 373 700 feasible entries each)
and the decomposed data sets (4th order CPD has 10 times 8040 input data values  and the 3rd order CPD has 10 times

6030 input data values)

6 CONCLUSIONS AND FUTURE WORK

To our knowledge, this is the first time that a realistic quaternary oxide system was modelled.

We investigated the faceted growth and how the depth of the cusps in the anisotropy of the

kinetic  coefficient,  influences the faceted growth of  the spinel  and the concentration levels

within  the remaining  slag.  Comparison to experimentally  observed microstructures for  solid

spinel particles, however, showed that only anisotropy for the kinetic coefficient probably does

not suffice to obtain completely similar microstructures of the solid particles. Moreover, the

upper boundary was set to be in contact with an atmosphere with a certain pO2. This illustrated

that an oxidative pO2-value can inhibit the growth of the solid spinel particle.

We also showed that we can obtain an extremely compact but still accurate representation of

the composition dependence of thermodynamic quantities, and that the decomposed tensor

representation  can  be  used  effectively  in  microstructural  simulations.  The  number  of
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coefficients and the computational cost to evaluate a CPD depend only linearly on the number

of  components  in  the  system,  in  contrast  to  an  exponential  increase  of  the  amount  of

thermodynamic data represented.  It is, however, not fully clear whether the addition of more

elements will lead to a substantial increase of the complexity for oxidic systems. This technique

will allow for more realistic simulations of solidification or dissolution in oxidic systems, which is

relevant for refractory degradation, freeze lining, etc.

An alternative would be to start from incomplete tensors. In this case, for oxidic systems, the

sampling for data points should happen carefully and with more attention than the metallic

systems, due to the special behaviour near the edges. Also, if sharp transitions are expected,

extra  sampling  points  should  be  taken  there  to  describe  the  behaviour  in  those  regions

correctly. Unfortunately, such sharp transitions are not always known beforehand, making it still

required to sample almost the full compositional domain. 

Note that not only the number of data points increases as the number of components increases,

also  the  equilibrium  calculations  with  the  thermodynamic  software  will  take  longer  as  the

number of components becomes higher. This was illustrated by Roos and Zietsman [57] and is

also shown in Figure 9. 

Figure  9 Non-linear relationship between the number of system components and a single equilibrium calculation’s
solving time. [57]

Until now, we mainly focused on thermodynamic data coupling. But note that to obtain more

realistic simulations in oxidic  systems, we also need extra information on different types of

kinetic data:

 Diffusion  data:  at  the  moment  we  used  orders  of  magnitude  for  the  diffusion

coefficients, because there is not much diffusion data available for oxidic systems. 

 To investigate the influence of the partial pressure of oxygen, also more data on the

ratios of Fe3+ over Fe2+ [58,59] are very relevant in various slag matrices. 
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 Furthermore,  reaction and solidification kinetics  are  required  to make it  even more

realistic, since at the moment, a diffusion-limited system is assumed, while the growth

rates may be affected by reaction kinetics at the interface. 
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