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Abstract—Quantitative ultrasound methods aim to estimate
the acoustic properties of the underlying medium, such as the
attenuation and backscatter coefficients, and have applications in
various areas including tissue characterization. In practice, tissue
heterogeneity makes the coefficient estimation challenging. In this
work, we propose a computationally efficient algorithm to map
spatial variations of the attenuation coefficient. Our proposed
approach adopts a fast, linear least-squares strategy to fit the
signal model to data from pulse-echo measurements. As opposed
to existing approaches, we directly estimate the attenuation map,
i.e., the local attenuation coefficient at each axial location by
solving a joint estimation problem. In particular, we impose a
physical model that couples all these local estimates and combine
it with a smoothness regularization to obtain a smooth map.
Compared to the conventional spectral log difference method and
the more recent ALGEBRA approach, we demonstrate that the
attenuation estimates obtained by our method are more accurate
and better correlate with the ground-truth attenuation profiles
over a wide range of spatial and contrast resolutions.

I. INTRODUCTION

THe technique of ultrasound imaging aims to provide a
qualitative representation of the tissue of interest. This is

complemented by the field of quantitative ultrasound (QUS)
[1], [2], where the goal is to obtain a quantitative mapping of
the underlying tissue by estimating its acoustic properties from
the backscattered ultrasound signal. The QUS techniques have
gained attention by showing the potential for cancer imaging
[3], cancer therapy monitoring and assessment [4], and kid-
ney function monitoring [5], among various other application
areas. Of primary importance in QUS are the attenuation
and backscatter coefficients. Various studies have shown these
coefficients to be invaluable for tissue characterization and
diagnostic studies, such as in liver [6]–[8], bone [9], thyroid
[10], breast [11], uterine cervix [12], placenta [13] and muscle
[14]. These promising results have not only increased interest
in QUS, but have also focused attention towards improving
the existing methodologies to get even more accurate results.

A challenge in attenuation coefficient estimation relates to
the heterogeneity of the signal propagation path from the
transducer to the depth of interest. An accurate mapping of
such a spatially variant attenuation coefficient is of relevance
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for quantitative examination of the medium, in order to show
contrast between regions that otherwise would appear the same
in a standard B-mode image.

In this context, the conventional techniques relying on
spectral analysis of the backscattered radiofrequency (RF)
signal include the spectral shift method [15], which measures
the centre frequency downshift of the spectrum, and, the
spectral difference and spectral log-difference (SLD) methods
[7], [16], [17], which measure the amplitude decay in the
backscattered signal. A hybrid method was also proposed in
[18], which is based on a combination of the spectral shift
and spectral difference methods. The accuracy of the estimates
obtained by these techniques is reported to be improved
by recent methods. One such approach, developed in [19],
employed a linear least-squares formulation to simultaneously
estimate the attenuation and backscatter coefficients. Rather
than an independent treatment of the attenuation coefficients
at each axial position, other techniques in the literature added
mechanisms to impose spatial smoothness of the attenuation
coefficients across neighboring axial locations. A core in-
gredient in these methods was to regularize the coefficients
along the depth dimension. The conventional SLD method
was improved upon by the authors in [20], using a isotropic
total variation (TV) regularization for attenuation estimation,
under the assumption of a piece-wise homogeneous medium
and the resulting problem was solved using the alternating
direction method of multipliers algorithm [21]. Similarly, a
TV based strategy solved using iteratively reweighted least
squares was adopted in [22], indicating the potential of their
approach to deal with heterogeneous tissues. The work in
[23] further proposed a spatially weighted TV regularization
scheme to deal with tissue heterogeneity. Another method
based on dynamic programming (DP) exploited piece-wise
continuity of the target coefficients using an `2 [24] and `1
regularization [25] strategy. It was shown to provide more
accurate estimates than [19].

The aforementioned methods come with several drawbacks
which hamper their use in practice. One of the main issues is
the high computational complexity, in particular for the DP-
based methods. Furthermore, their accuracy is highly variable,
and in the case of DP strongly depends on the availability
of good priors, i.e., a-priori known intervals that contain the
actual attenuation coefficient, in order to narrow down the
search space. These problems have recently been alleviated by
the use of much faster linear least-squares (LLS) estimators,
which result in an analytical solution, allowing to compute the
relevant coefficients in a single shot by means of a simple inner
product between a pre-computed matrix and the data [26],
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[27]. Such a fast approach was first proposed in [26] for the
case of piece-wise homogeneous regions. A similar approach,
which also allows fully heterogeneous media, was indepen-
dently proposed in [28], where it was termed ‘ALGEBRA’.
Not only are these methods much faster, they also substantially
outperform DP-based methods, as demonstrated in [27], [28].
The existence of an analytical closed-form solution also makes
them amenable to a real-time implementation [29].

When dealing with a heterogeneous medium, the previously
mentioned DP, ALGEBRA and TV based methods estimate
the effective (i.e. accumulated) attenuation coefficient, from
the transducer to each axial depth point separately, possibly
in combination with a smoothness regularizer. In practice, the
actual local attenuation coefficient might be more relevant,
e.g., for generating attenuation maps to distinguish between
different intervening tissues. In such scenarios, these tech-
niques must extract the local coefficient from the correspond-
ing estimated averaged coefficient, e.g., by taking weighted
differences between the effective attenuation coefficients at
neighbouring depth points, which might again result in noisy
estimates. On the other hand, the performance of existing local
attenuation estimators, such as SLD, is reported to be severely
impacted by the chosen data block size for which a local
attenuation coefficient is estimated as well as the heterogeneity
of the medium within that block [30]. In practice, a large
data block size is needed to obtain an acceptable estimation
accuracy with sufficiently low variance. However, such large
data block sizes severely impact the spatial resolution of the
resulting attenuation map, while at the same time increasing
the risk of having tissue heterogeneity within the block itself.

Keeping the above points in mind, in the current work,
we propose a fast LLS-based estimator, which directly es-
timates the attenuation map, i.e., it explicitly estimates the
local attenuation coefficients at each depth point in the axial
direction, with a low variance and high accuracy. This strategy
comes with two advantages. First, it avoids the aforementioned
post-processing to transform the effective (average) attenuation
coefficients into local attenuation coefficients, which generates
additional estimation noise that is not explicitly taken into
account in the optimization process of the estimator itself.
Second, it allows to impose a physical model which describes
the interaction between the local attenuation coefficients to-
wards the attenuation profile of the ultrasound wave over
the entire axial depth. Such a coupling through a physical
model is not included in the previously discussed methods.
The regularized approaches, such as ALGEBRA, only link the
(effective) attenuation coefficient estimates at different depths
through a generic (model-free) spatial smoothing mechanism
based on an `2-norm regularization.

As a starting point, we use the fast LLS framework reported
in [26], [27]. While [27] only covers the case of homogeneous
tissue, [26] also considers piece-wise homogeneous media, but
requires prior knowledge of the locations of the boundaries
between the different homogeneous layers. Our method does
not require such prior knowledge, nor does it explicitly impose
the attenuation profile to be piece-wise homogeneous. Instead,
we divide the propagation medium in thin slices and model
the per-slice attenuation through a joint physical propagation

model over the full axial direction. The latter intrinsically
results in a model-based coupling between all the attenuation
estimates at different depths. To further guide the estimates
towards a smooth attenuation map, we also add a (weighted)
`2-norm regularization. We provide a performance evaluation
of our proposed method and compare it with two state-of-
the-art benchmarks (SLD and ALGEBRA) on both simulated
and tissue-mimicking phantom data. Furthermore, we study
the trade-off between the estimation accuracy on the one hand,
and the spatial (axial) resolution and contrast resolution on the
other hand.

The rest of the manuscript is organized as follows. We
describe the proposed signal model and the approach devel-
oped for the attenuation coefficient estimation in section II.
The studies performed and the datasets used for the method’s
validation are detailed in section III. We then present the
results obtained in section IV, followed by their discussion
in section V. Section VI provides the concluding remarks.

II. ESTIMATION OF THE ATTENUATION MAP

A. Acoustic Signal Model

Consider an acoustic wave, transmitted by a transducer and
propagating through a weakly scattering medium of interest.
The magnitude spectrum at frequency f of the signal backscat-
tered from a region at depth z can be modelled as [19], [17]:

|S(f, z)| = |P (f)|D(f, z)A(f, z)B(f, z), (1)

where P (f) stands for the transducer related effects, includ-
ing the electrical signal’s spectrum used for the transducer
excitation as well as other coupling effects. P (f) can be
experimentally obtained as P̃ (f) from a pulse-echo reflector
measurement in water, up to an unknown scaling G accounting
for the uncertainty in the actual energy transmitted to the
medium. Therefore, we define P (f) = GP̃ (f).

The term D(f, z) incorporates the diffraction effects. Con-
sidering plane wave propagation, these effects can be ne-
glected, i.e., D(f, z) ≈ 1. This assumption, however, does not
limit the applicability of our method. In case of non-negligible
diffraction effects, they can be compensated for by means of
a reference phantom measurement, similar to [19], [27].
A(f, z) in (1) denotes the cumulative attenuation of the

sample. In the case of soft tissues, the typical power-law
frequency dependence of the attenuation reduces to a linear
frequency dependence [31], [32] and under this assumption,
we have A(f, z) = exp(−2α(z)fz), where α(z) is the
effective (accumulated) attenuation coefficient over a distance
z in the axial direction. The factor 2 represents a forward and
backward path, as we assume a pulse-echo recording.

Finally, B(f, z) in (1) is the backscatter coefficient (BSC)
as a function of frequency and depth. Using a power law
frequency dependence model, we get B(f, z) = B′0(z) fµ(z),
where, for a depth z, B′0(z) and µ(z) represent the BSC at
1 MHz and the associated frequency dependence, respectively.

Combining all this together, the backscattered signal model
can be expressed as

|S(f, z)| = G |P̃ (f)| e−2α(z)fz B′0(z)fµ(z). (2)
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In the current work, we consider a medium with spatially
varying attenuation and/or backscatter characteristics. Such a
spatially variant region can be modelled as a concatenation
of thin slices forming a multi-layered region with each layer
having a constant value of the target coefficient. By making
the slices thin enough, we can model any profile up to a pre-
selected spatial resolution. Let us assume the region of interest
be divided in L slices, each with a thickness Z. Every lth

slice, with l ∈ {1, . . . , L}, is probed at a depth location zl
(we typically choose zl to be the centre coordinate of the lth

slice) and αl is the associated local attenuation coefficient of
the lth slice. Similarly, denoting the BSC terms at depth zl by
(B′0)l and µl, the backscattered signal from a depth zl can be
modelled as

|S(f, zl)| = G |P̃ (f)| e−2α1fZ e−2α2fZ . . . e−2αl−1fZ

e−2αlf(zl−(l−1)Z) (B′0)lf
µl . (3)

It is straightforward to see that our model draws a relationship
between the backscattered signal at any depth zl and the
medium’s local attenuation coefficients at all previous posi-
tions. This is clearly in contrast with other approaches in the
literature that link the signal with an effective (accumulated)
attenuation coefficient, in which all the exponentials in (3)
collapse into a single exponential [24], [28].

B. Proposed approach

The signal model in (3) exhibits a non-linear relation
between the measured signal and the coefficients to be es-
timated. For computational efficiency, we propose to apply a
logarithmic transform on both sides of the equation to obtain
a linear model [26], [27]. This results in

log |S(f, zl)| = log |GP̃ (f)(B′0)l|−2α1fZ−2α2fZ− . . .
− 2αl−1fZ − 2αlf(zl − (l − 1)Z) + µl log f. (4)

Defining Q(f, zl) = log |S(f, zl)| − log |P̃ (f)|, the above
equation becomes

Q(f, zl) = log |(B0)l|− 2α1fZ− 2α2fZ− . . .− 2αl−1fZ

− 2αlf(zl − (l − 1)Z) + µl log f, (5)

where (B0)l = G(B′0)l. Q(f, zl) on the left-hand side captures
quantities that can be measured from actual recorded data, i.e.,
the spectrum of the backscattered pulses S(f, zl) as well as
the spectrum P̃ (f), which was already assumed to be known
from a pulse-echo reflector measurement. Our goal is then to
find the unknown parameters in the right-hand side of (5), i.e.,
B0, α and µ values, such that the equation is satisfied as well
as possible. As we are only interested in the attenuation map,
the values B0 and µ are viewed as byproducts in order to make
the model complete as well as to cope with spatially varying
acoustical properties within the medium. Note that the variable
B0 is not purely related to backscatter as it also absorbs the
gain calibration factor G, which is assumed unknown.

Let us stack the measurements Q(f, zl) for all the L slices
into a column vector q(f) of size L× 1. We thus obtain

q(f) = [Q(f, z1), Q(f, z2), . . . Q(f, zL)]T , (6)

where (.)T denotes transpose of its argument. The right-
hand side terms of (5) can be rearranged in the same
manner to get the matrix A(f) as given in (7), and
θ = [log |(B0)1|, . . . , log |(B0)L|, α1, . . . , αL, µ1, . . . , µL]T .
Corresponding to (5), the matrix equation for all the L
slices thus becomes q(f) = A(f) θ. Further, the spectrum,
computed over a predefined window length that is centred at
each slice’s depth location, is analysed for N frequency points
within the relevant bandwidth. The equations associated with
each of the frequency points can be stacked together to get
the matrix equation for the whole measurement process:

q = A θ, (8)

where q = [q(f1) . . .q(fN )]T and A = [A(f1) . . .A(fN )]T .
This corresponds to a linear system of equations with the un-
knowns gathered in the vector θ. An estimate of the unknowns
can be obtained by solving these equations in least squares
sense [33], i.e., by minimizing the total squared error between
both sides of the equation as will be explained further on.

It is important to note that our adopted formulation intrin-
sically couples the different α values through a joint physical
model, i.e., for every l ∈ {1, . . . , L}, αl appears in multiple
equations. This is different from the existing approaches such
as SLD and ALGEBRA, where the attenuation coefficient is
estimated separately at each depth point. In this case, the
physical model does not impose an interaction between the
attenuation estimates at different depth points. Nevertheless,
regularization based methods, such as ALGEBRA impose
some interaction between the different attenuation estimates
by applying a standard spatial smoothness regularization to
enforce that the attenuation estimates at neighbouring depth
points are similar. Such regularization procedures are standard
practice in estimation theory in case an estimator exhibits a
large variance. Although the α-interactions enforced by our
physical model (5) result in a smaller bias on the estimator,
we empirically observed that a regularization is still required
to achieve an estimator with a sufficiently low variance.

The choice of the regularization term depends on the under-
lying attenuation profile. Similar to [20], [24], [28], we assume
that the attenuation coefficients spatially exhibit smooth varia-
tion in their values and thus, a suitable Tikhonov regularization
term enforcing this continuity could be exploited. In line
with these works, similar regularization strategies were used
for BSC (B0 and µ) as well. For instance, for a gradually
varying profile, `2 regularization applied on the differences
between the target coefficient values at consecutive depths is
a good choice in general. On the other hand, for a profile
where the coefficient values are fairly constant but undergo a
sudden change at an unknown position, a sparsity imposing
regularization, such as `1 regularization, on the consecutive
coefficient differences might be more suitable. However, these
`1 based regularizations do not have a closed form solution
and therefore, typically have a higher computational cost than
estimators based on `2 regularization. It has been reported
in the literature that iteratively re-weighted `2 regularization
could be considered as a good approximation to the `1 based
regularizations [34]. We thus only explore the `2 norm and
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A(f) =


1 0 . . . 0 −2fz1 0 . . . 0 log f 0 . . . 0
0 1 . . . 0 −2fZ −2f(z2 − Z) . . . 0 0 log f . . . 0
...

...
...

...
...

...
...

...
...

...
...

0 0 . . . 1 −2fZ −2fZ . . . −2f(zL − (L− 1)Z) 0 0 . . . log f


L×3L

(7)

the re-weighted `2 norm regularization given its low compu-
tational cost.

In this respect, we propose to obtain estimates of the
target coefficients by solving the following linear least-squares
minimization problem with Tikhonov regularization:

minimize
θ

‖q− Aθ‖22 +

3∑
i=1

λi‖WiΓiθ‖22, (9)

where the first term is the data-fidelity term and the second
term is the `2 based regularization term for each of the
parameters of interest as indexed by i (i = 1, 2 and 3 for
B0, α and µ, respectively), associated with the regularization
parameter λi > 0. For every i ∈ {1, 2, 3}, Wi represents the
weight matrix in the re-weighted `2-norm approach, which will
be defined later on. The matrix Γ1 is designed to compute the
differences between the neighbouring backscatter coefficients
B0 in θ. Mathematically, Γ1 = [∆ 0 0], where ∆ is the
difference-computing matrix given by

∆ =


1 −1 0 . . . 0 0
0 1 −1 . . . 0 0
...

...
...

...
...

0 0 0 . . . 1 −1


(L−1)×L

, (10)

0 is the zero matrix of size L − 1 × L. Similarly, these
differences for the neighbouring α and µ values are computed
by Γ2 (= [0 ∆ 0]) and Γ3 (= [0 0 ∆]), respectively.

Equation (9) has a closed form solution given by [33]

θ̂ = (AT A +

3∑
i=1

λi(WiΓi)
T (WiΓi))

−1 ATq. (11)

Concerning the weight matrix, when considering simple `2
regularization, the weights are set to unity, i.e., for i ∈
{1, 2, 3}, Wi = I and the resulting problem has the afore-
mentioned closed-form solution. We refer to this approach as
LLS-l2. If weighted `2 regularization needs to be applied, the
estimates θ̂ are first obtained by the LLS-l2 approach. Using
these estimates, each Wi is built as a diagonal matrix where
the j-th diagonal entry is defined as (wi)jj = 1/((Γiθ̂)j + ε),
where (Γiθ̂)j is the j-th entry in the vector (Γiθ̂), and ε > 0
is typically a small value, used for stability purposes [35],
[36]. The problem is then again solved using the closed form
solution in (11) using the new weighting matrix. We only apply
one such re-weighting iteration for computational efficiency,
and because additional iterations were empirically found to
not improve the result. We refer to this approach as LLS-wl2.

It is worth highlighting here that our proposed approach,
whether LLS-l2 or LLS-wl2, can also be applied when the
reference phantom measurements are available to correct for
system-dependent diffraction effects [17]. It basically involves

taking the ratio of the magnitude spectrum of the signal
backscattered from the same depth of the target and reference
medium, using the signal model (3). The logarithmic transform
and the matrix formulation is then computed using this ratio
and the rest of the approach follows. The coefficient values
for the reference medium are known, and hence, those of the
target medium can be extracted from the solutions obtained
using the adopted approach. For the interested reader, we refer
to [27], [28] for a more detailed explanation.

C. Computational complexity

The closed form solution in (11) can be rewritten as θ̂ =
Vq, where V = (AT A +

∑3
i=1 λi(WiΓi)

T (WiΓi))
−1 AT

is data independent. For LLS-l2, with weights Wi set to unity,
the matrix V can be computed a-priori. As a result, the esti-
mator (11) boils down to a single matrix-vector multiplication,
thereby facilitating an efficient real-time computation [29]. In
the case of LLS-wl2, the weights Wi become data-dependent,
in which case the matrix V needs to be computed at run-time.
The pre-computed matrices A (and thus, ATA andAT ) and
Γis can, however, still be used.

The computation of the data vector q requires the compu-
tation of the RF spectra at different axial depths, which scales
linearly with the number of slices L. This computation can
make use of efficient algorithmic routines based on the fast
Fourier transform (FFT) [37].

III. MATERIALS & METHOD

A. Data generation

The performance of the proposed method was assessed on
both simulated and tissue-mimicking phantom data, the details
of which are provided below.

1) Synthetic data: We considered several 90 mm thick
mediums with spatially varying α values. The backscattered
signal from a one-dimensional uniform distribution of point
scatterers, placed in a flat, unfocused single element trans-
ducer’s far field, was modelled based on (3), which was then
coherently summed up across all point scatterers in the time
domain to generate the RF lines [27]. A total of 500 RF
lines were generated by considering different realization of
the random scatterers positions in the medium. Using these
lines, 10 datasets were obtained, where each dataset included
50 randomly picked RF lines from the total lines. The speed
of sound in the propagation medium was considered to be
1500 m/s. The transmitted pulse had a Gaussian spectrum,
with 1.36 mm pulse length, centre frequency of 3 MHz and
fractional bandwidth of 80%.

Focusing on mapping the spatial variations of the attenu-
ation coefficient, the first tests considered a fixed value of
the backscatter coefficient, i.e., for every l ∈ {1, . . . , L},



5

TABLE I
Acoustic properties of the sample phantoms used in the reference phantom

measurement experiments. α is in units of dB/cm/MHz, B̄0 in
(cm-sr-MHzµ̄)−1 and B̄ = B̄0f µ̄ in (cm-sr)−1. The BSC values are given

with respect to the backscattered signal’s power spectrum model.

Phantom Layer α B̄0(= B′20) µ̄ B̄ (at 8.9MHz)

A (uniform 1st & 3rd 0.510 1.60e-06 3.52 3.52e-03
BSC) 2nd 0.779 3.22e-06 3.13 3.02e-03

B (uniform 1st & 3rd 0.554 4.82e-07 3.80 3.52e-03
attenuation) 2nd 0.58 3.94e-06 3.38 6.37e-03

(B′0)l = 10−4(cm-sr)−1 and µl = 0.5 . For the spatially
varying α values, we studied two attenuation profiles. The first
one resembles a step-function profile, characterized by sharp
changes in the attenuation values and illustrated in fig. 1 (left)
as a blue line, referred to as the step profile hereafter. Such a
profile can be observed in clinical applications, for instance,
when the wave traverses a soft-tissue, followed by bone [38].
The second attenuation profile is simulated as a trapezoidal-
shaped function as indicated by the blue line in fig. 1 (right).
In this case, the α values change more smoothly, e.g., as in
the boundary between fat and muscle layers [39].

We further investigated the axial spatial and contrast reso-
lution achievable by our method. For spatial resolution evalu-
ation, the mid-layer thickness of both profiles was varied from
30 to 5 mm while keeping the α values of the layers fixed. For
the step profile, this corresponded to α = 0.7 dB/cm/MHz for
the two outermost/background layers and α = 1 dB/cm/MHz
for the mid-layer. For the trapezoidal profile, the layers over
the first 30 mm had an α value linearly increased from 0.6
to 1 dB/cm/MHz, followed by a mid-layer with constant α
= 1 dB/cm/MHz and then a gradual descent such that it hits
0.6 dB/cm/MHz at both edges of the profile. The two regions
with α = 0.6 dB/cm at the two edges will be referred to as
the background/outermost layers. For contrast evaluation, the
α contrast was defined as the ratio of the difference between
the α values of the mid-layer and the background, and the α
value of the background. The mid-layer α value was varied to
have contrast values ranging from 100 to 5%, while keeping
the thickness of the mid-layer fixed to 30 mm.

Finally, to examine the accuracy of the estimated attenuation
map in a medium with varying BSC, we generated a dataset
with backscattered signals from a three-layered medium, each
layer being 30mm thick, where the backscatter term behaves
as a step function in the axial direction. The mid-layer had a 10
dB higher BSC (B0 = 9× 10−4(cm-sr)−1, µ = 1.2) than the
other two layers (B0 = 2×10−4(cm-sr)−1, µ = 1.5), whereas
the attenuation coefficient was nearly the same for the three
layers (α (in dB/cm/MHz) = 0.7, 0.75 and 0.7, respectively
for the three layers).

2) In-vitro data: Data acquired from two tissue-mimicking
phantoms were used for further evaluation, as used previously
and described in detail in [19], [28], [40]. Both phantoms were
three-layered phantoms, composed of a mixture of ultrafiltered
milk and water-based gelatin, exhibiting scattering properties
due to the presence of solid glass-beads of 5-43 µm diameter
thickness. The first phantom had a uniform backscatter, but

with a substantially higher attenuation in the second layer by
varying the milk’s amount in the mixture. On the contrary, the
second phantom represents the case of uniform attenuation,
but with a higher backscatter in the second layer as achieved
by varying the glass-beads concentration.

For both phantoms, 10 uncorrelated RF data frames were
acquired using a linear array 18L6 transducer, Siemens Acu-
son S2000 scanner and a center frequency of 8.9 MHz.
The spectrum P̃ (f) was not known and reference phantom
measurements were made using the same settings from the
phantoms’ top layers. The phantoms’ ground truth α and BSC
values were obtained using single-element transducers for the
narrowband substitution and broadband pulse-echo techniques,
respectively and are listed in Table I.

B. RF data processing

For the proposed method’s implementation and performance
evaluation, MATLAB was used. The given time-domain RF
signal was divided into several overlapping windows, with
adjacent windows having their centres separated by 25% of
the window length (∼ 3 mm, i.e., two pulse lengths) for
the simulated data and 15% of the window length (4 mm)
for the phantom data. The magnitude spectrum of the RF
data in each window, corrected for spectral leakage using
a Hanning window, was computed and then averaged over
the considered RF lines. Moreover, the computed magnitude
spectrum was considered only over a range of frequencies in
order to remove the frequency regions that mostly consist of
noise. This threshold determining the usable bandwidth was set
to be 10 dB below the peak of the spectrum for both synthetic
and phantom data. The choice of these parameters (window
length, window overlap and usable bandwidth) was based on
the results from [27], where an extensive parameter sensitivity
study was performed to analyse the effect of these parameters
on the estimates’ accuracy.

Note that each center point of a window conceptually
corresponds to a center point of a slice as defined in (3).
Overlap between the windows then implies that a spectrum
is computed over multiple slices. While this overlap improves
the frequency resolution (i.e. the number of frequency points
N ), it will reduce the axial resolution of the attenuation map.
However, this is acceptable because of the intrinsic smoothness
assumption. Furthermore, the weighting with the Hanning
window emphasizes the data points that are closest to the
center of the current slice, such that the effect of overlap is
reduced.
C. Benchmark methods

We used two methods for comparison: the standard SLD
approach for local attenuation estimation and the more recently
proposed ALGEBRA method.

The SLD approach relies on computing the log difference
of the power spectrum obtained from the proximal and distal
windows of the chosen data block size within the field of view
(also sometimes referred to as the region of interest). Under
certain assumptions on the BSC, the α value of the data block
is obtained by fitting a straight line to the computed spectral
log difference plotted as a function of frequency. The data
block size needs to be tuned and has to be large enough to
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obtain a reliable estimate. In our experiments, we found that a
data block of 15 pulse lengths in the axial direction with 85%
overlap gave reasonable results. For the phantom data, in the
absence of exact pulse length knowledge, the data block length
was selected to be 60 times the wavelength. The considered
values were empirically found to provide a reasonable tradeoff
between the spatial resolution and variance of the obtained
solution and is in line with other works in the literature [20],
[30].

Since ALGEBRA is designed to estimate the total or
averaged attenuation up to a location zl (instead of the local
attenuation at zl), the obtained averaged estimates αavg(l) were
transformed to the local attenuation domain as [28]

αlocal(l) =
αavg(l)zl − αavg(l − 1)zl−1

zl − zl−1
, (12)

which were used for comparison with our proposed approach’s
estimates. It can be seen that retrieval of a local attenuation
coefficient at a given depth relies on the estimated total
attenuation at neighbouring depth points. This requires a
subtraction of two estimated quantities, which leads to an
increase in the estimation noise. ALGEBRA was applied on
the considered data sets based on its proposed implementation
in [28]. The algorithmic parameters, window length, window
overlap and usable bandwidth, were set to be the same as
for our proposed method to obtain a fair comparison. The
regularization parameter was set differently for each method,
as all methods require a different amount of smoothing. For
ALGEBRA, the regularization parameters were set the same
as in [28] when applied on the phantom data (as we employ the
same data set here). For the simulated data, the regularization
parameters were optimized for each method separately based
on a parameter sweep in order to maximize performance.

D. Quantitative metrics for evaluation

The relative error of the estimated α in the mid-layer (α rel-
err) was used as an accuracy metric. To quantify the overall
reconstruction performance of the entire attenuation profile,
we used the Normalized cross-correlation (Ncc) between the
true (αtrue) and estimated (α̂) attenuation profiles defined as

Ncc =

∑L
l=1(α̂l −mean(α̂)) ((αtrue)l −mean(αtrue))

L(
√

var(α̂) var(αtrue))
.

(13)
The higher the value of Ncc, the higher is the correlation
between the estimated and the ground truth profile. Fur-
thermore, since the full width at half maximum (FWHM)
is a characteristic of the underlying profile, indicating its
sharpness/degree of smoothness, we used the relative error of
FWHM of the estimated α profile (FWHM rel-err) as a third
metric. Note that for α rel-err and FWHM rel-err, lower is
better, while for Ncc higher is better.

While examining the contrast resolution, an additional
metric in the form of the relative error of the estimated α
contrast was considered. For this purpose, median values of
the estimates obtained in the mid-layer and the two outermost
layers were used for contrast calculation.

IV. RESULTS

A. Comparison of different methods

1) Synthetic data results: Fig. 1 depicts the α profiles esti-
mated by the considered methods when applied on the step and
trapezoidal profiles. The ground truth profile in both cases is
also shown. It can be seen that our proposed methods (LLS-l2,
LLL-wl2) outperformed SLD and ALGEBRA, having a mean
α rel-err < 10% and mean Ncc of ∼ 90% vs. respectively
17% and 60% for SLD, and 15% and < 75% for ALGEBRA.
The FWHM rel-err was also lower for LLS-(w)l2 (< 10%)
than that of SLD and ALGEBRA.

The relative error for µ estimation was around 10% for the
proposed methods and ALGEBRA. Since this study focuses
on the attenuation map estimation, we report only the results
of the α estimation hereafter.

2) Phantom data results: The α profile estimation re-
sults on Phantom A with attenuation step are presented in
Fig. 2, showing superior performance of our methods over the
benchmark methods. This was in line with the quantitative
assessment, with mean α rel-err (computed over the whole
depth) of 15% (LLS-l2), 16% (LLS-wl2) compared to 43%
for SLD and 19% for ALGEBRA. Along the same lines, the
corresponding mean values for Ncc were 74% and 77% for
LLS-l2 and LLS-wl2, respectively vs. 40% for SLD, 57%
for ALGEBRA. Similarly, the observed mean values for the
FWHM rel-err were the least for LLS-wl2 (14%).

B. Study on spatial and contrast resolution

a) Spatial resolution: The results obtained by varying the
mid-layer thickness to probe the α profiles’ spatial resolution
are shown in figs. 3-4 for the estimated profiles representation
and the quantitative assessment, respectively, for the step
profile. It can be observed that as the mid-layer became
narrower, the estimation performance degraded for all the
methods. Overall, our methods (both LLS-l2 and LLS-wl2)
exhibited superior performance, obtaining lower errors. The
results suggest that they are able to estimate the layer down
to 10 mm reasonably well, keeping mean α rel-err ≤ 10%
till 10 mm, beyond which it increased. Ncc also decreased
rapidly, from ∼85% at 10 mm mid-layer thickness to 20% for
2 mm mid-layer thickness. FWHM-rel err results supported
these findings with a sharp increase in the error below 10 mm.
SLD and ALGEBRA showed, for instance, only a small value
of Ncc (40%) at 10 mm, with high FWHM-rel err.

Similar observations can be made for the trapezoidal profile
results in figs. 5- 6. While performing better than the bench-
mark methods, having almost 10 − 15% lower α rel-err and
40% higher Ncc, the proposed methods were able to estimate
profiles even with 5 mm thick mid-layer.

b) Contrast resolution: Figs. 7 and 8 show the results
when the α value of the step profile’s mid-layer is varied. The
qualitative representation of the estimated profiles indicates
good performance of the methods in recovering the profiles for
all contrast values. The quantitative plots in fig. 8, however,
highlight a deterioration in the estimation quality for α contrast
below 20%, except for the α rel-err, which exhibited a decreas-
ing trend as the α contrast decreased. Overall, our methods
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Fig. 1. Results of attenuation coefficient (α) profile estimation obtained by various methods on the simulated data with step profile (left) and trapezoidal
profile (right). In each case, the mean estimated values are plotted, with the error bars denoting the standard deviation of the estimated values for 10 repetitions
of the experiment.
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Fig. 2. Results of attenuation coefficient (α) profile estimation obtained by
various methods on Phantom A with varying attenuation. In each case, the
mean estimated values are plotted, with the error bars denoting the standard
deviation of the estimated values for 10 RF data frames.

outperformed SLD and ALGEBRA, both qualitatively and
quantitatively. For instance, unlike SLD and ALGEBRA, the
mean α rel-err was below 10% for both LLS-l2 and LLS-
wl2 for all contrast values. Similarly, our methods had lower
FWHM-rel err and α contrast relative errors, which were <
20% from 100% till 20% contrast value.

The results in figs. 9 and 10 for the trapezoidal profile also
show better performance of our methods in estimating the
α profiles than SLD and ALGEBRA. Moreover, the various
metrics exhibited an almost flat trend when the contrast was
decreased from 100% to 20%, compared to 50% reduction in
mean Ncc for SLD and ALGEBRA. For contrast values <
20%, Ncc and FWHM-rel err in particular deteriorated by ∼
30% and ∼20%, respectively for the proposed methods.

C. Performance evaluation for spatially varying BSCs

Fig. 11 shows the results obtained for the case with varying
BSC (and nearly uniform attenuation coefficient) for the
phantom and simulated data in the left and right columns,
respectively. While the α profiles estimated by LLS-l2, LLS-
wl2 and ALGEBRA are close to the true ones, the estimated
profile of SLD shows large deviations specifically at the points
where the BSC changes. Quantitatively, for the simulated
data, LLS-l2 and LLS-wl2 had relative α estimation errors
(computed over the whole depth) of 3% and 7%, respectively,

vs. 39% for SLD and 20% for ALGEBRA. Similarly, for the
phantom data, LLS-l2 and LLS-wl2 had relative α estimation
errors (computed over the whole depth) of 6% and 5%,
respectively, vs. 50% for SLD and 23% for ALGEBRA.

We also illustrate the estimated BSC profile for the LLS-l2
approach (the other methods’ estimations are not shown for the
sake of clarity of the figure) as a function of both frequency
and depth. The estimated BSC profile can be seen to capture
the spatial variations in BSC as present in the underlying
ground-truth BSC profile.

V. DISCUSSION

We presented a regularized LLS approach to map the local
attenuation variations in a heterogeneous medium of interest.
Our method is based on a physical model that intrinsically
incorporates the local attenuation coefficients and thus pro-
vides an implicit coupling between the different α estimates.
Employing the LLS method to solve the underlying problem
further provided a fast implementation of the estimator. We
have thus proposed a methodology for accurate and fast
estimation of the local attenuation coefficients.

The performance of the proposed approach was evaluated
against the traditional spectral log difference (SLD) method
and the more recently proposed ALGEBRA technique. The
results demonstrated that our method outperformed the bench-
mark methods, providing local attenuation estimates with
higher accuracy and lower variance. Here, it is noted that the
total attenuation coefficients estimated by ALGEBRA were
converted to local attenuation values at each depth position
using a post-processing step, which makes it intrinsically prone
to additional estimation noise. A notable difference between
our method and the benchmark methods is that the latter rely
on an isolated physical model for each depth point separately.
For ALGEBRA, the different estimates are only coupled
through a generic spatial smoothing regularization scheme.
Our method, on the other hand, couples the estimated coeffi-
cients via both a smoothness regularization and the employed
physical model itself, resulting in a superior performance.
Our proposed approach was also tested on phantom data,
estimating profiles in good agreement with the true profile.

A particular point of concern for the SLD method is the
requirement of a sufficiently large data block size (of the
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Fig. 3. Results of attenuation coefficient (α) profile estimation by various methods on the simulated data with step profile, varying the mid-layer thickness
from 30 to 5 mm. In each case, the mean estimated values are plotted and the error bars denote the standard deviation of the estimated values for 10 repetitions
of the experiment.
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Fig. 4. Evaluation metric results for α profile estimation on the simulated data by various methods, as a function of mid-layer thickness of the step profile.
From left to right, the relative error of the estimated mid-layer α, normalized cross-correlation between the true and estimated α profiles, and the relative
error of the estimated FWHM are plotted. In each case, the respective mean metric values are plotted, with the error bars denoting the standard deviation of
the values when the experiment is repeated 10 times.

order of tens of pulse lengths) to achieve reasonable estimation
results. On the contrary, our approach is able to obtain good
estimates with much smaller data block size, set equal to the
window length and can be as small as twice the pulse length.

We further investigated the spatial and contrast resolution
that can be achieved by these approaches on two types of α
profiles - step and trapezoidal profiles characterizing sudden
and gradual change in α values, respectively. In all cases,
our approach outperformed the benchmark methods. For the
spatial resolution study, it was observed that LLS-(w)l2 is able
to estimate the layers well down to a thickness of 10 mm for
the step profile, whereas it performed fairly well for all con-
sidered mid-layer thicknesses of the trapezoidal profile. This
is expected as this smoothly varying profile is much easier to
estimate than detecting sudden jumps in α values for the step

profile. Moreover, `2 based regularizations are generally well-
suited to promote smoothness of its argument. Nevertheless,
abrupt changes in the α value were still detectable in very thin
step profiles with a thickness < 10 mm, although α is strongly
underestimated in this case.

Concerning the contrast resolution, the proposed LLS-(w)l2
method was seen to perform well in recovering α profiles
ranging from high (100%) to low (5%) contrast, with the mid-
layer thickness of 30 mm. The quantitative metrics also main-
tained a high accuracy level until 20% α contrast, below which
the errors started to increase for the step profile. This could,
however, be due to the definition of the metrics. For instance,
FWHM is in practice well-defined for the distributions with
large peaks. This is not actually true for low contrast, where
slight differences in the profile can significantly impact the
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Fig. 5. Results of attenuation coefficient (α) profile estimation by various methods on the simulated data with trapezoidal profile, varying the mid-layer
thickness from 30 to 5 mm. In each case, the mean estimated values are plotted and the error bars denote the standard deviation of the estimated values for
10 repetitions of the experiment.
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Fig. 6. Evaluation metric results for α profile estimation on the simulated data by various methods, as a function of mid-layer thickness of the trapezoidal
profile. From left to right, the relative error of the estimated mid-layer α, normalized cross-correlation between the true and estimated α profiles, and the
relative error of the estimated FWHM are plotted. In each case, the respective mean metric values are plotted, with the error bars denoting the standard
deviation of the values when the experiment is repeated 10 times.

computed FWHM. An interesting observation pertained to the
decreasing α rel-err over the entire contrast range for the step
profile. With reduced contrast and thus, reduced height of the
edges between the layers, the estimation within the whole mid-
layer, specifically at the near-edge regions, matches the true
values well, which could explain the decrease in α rel-err.

The focus of the current work was to provide an accurate
α mapping for a medium with spatially varying acoustic
properties. We thus also examined the attenuation estimation
performance of our method and the benchmark methods in the
case when the underlying medium exhibited spatial variations
in the BSC. It was observed that while SLD estimations
suffered specifically in the regions where the BSC changed,
i.e. where the method’s underlying assumption of uniform
BSC within a single data block was violated, our method and

ALGEBRA performed fairly well in estimating the α profile.
We further illustrated that the model in our proposed method
is able to model the changes in the BSC without wrongfully
attributing these discontinuities to changes in attenuation.

While LLS-l2 and LLS-wl2 were observed to have similar
performances, slight differences can be noticed. The profiles
estimated by LLS-wl2 were closer to the true profile, es-
pecially in the mid-layer and near the initial depth region,
where estimates by LLS-l2 were slightly pulled down. Quan-
titatively also, LLS-wl2 scored metric values ∼ 1-5% better
than that of LLS-l2. These observations were made for the
step profile in each of the considered case studies. This
is expected since the purpose of weighted `2 regularization
is to approximate the sparsity promoting `1 regularization,
which is more representative for a profile like the step profile
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Fig. 7. Results of attenuation coefficient (α) profile estimation by various methods on the simulated data with step profile, varying the α contrast from 100
to 5%. In each case, the mean estimated values are plotted and the error bars denote the standard deviation of the estimated values for 10 repetitions of the
experiment.
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Fig. 8. Evaluation metric results for α profile estimation on the simulated data by various methods, as a function of α contrast of the step profile. The
following are plotted: (top left) the relative error of the estimated mid-layer α, (top right) normalized cross-correlation between the true and estimated α
profile; (bottom left) the relative error of the estimated FWHM and (bottom right) the relative error of the estimated α contrast. In each case, the respective
mean metric values are plotted, with the error bars denoting the standard deviation of the values when the experiment is repeated 10 times.
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Fig. 9. Results of attenuation coefficient (α) profile estimation by various methods on the simulated data with trapezoidal profile, varying the α contrast from
100 to 5%. In each case, the mean estimated values are plotted and the error bars denote the standard deviation of the estimated values for 10 repetitions of
the experiment.
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Fig. 10. Evaluation metric results for α profile estimation on the simulated data by various methods, as a function of α contrast of the trapezoidal profile.
The following are plotted: (top left) the relative error of the estimated mid-layer α, (top right) normalized cross-correlation between the true and estimated α
profile; (bottom left) the relative error of the estimated FWHM and (bottom right) the relative error of the estimated α contrast. In each case, the respective
mean metric values are plotted, with the error bars denoting the standard deviation of the values when the experiment is repeated 10 times.
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due to the sparse nature of the changes in α. Although
with more weighting iterations, the approximation of the `1
norm would become better, preliminary results indicated no
further improvement in the estimation accuracy and hence,
we used only one weighted iteration. Note that performing the
weighting iteration increases the computational cost as now,
two iterations (one with LLS-l2, another with the computed
weights for LLS-wl2) need to be performed.

In subsection II-C, we argued that the final solution (11)
can be computed very efficiently in a real-time setting as all
matrices involved (except the data vector q) are independent
of the data and thus, most of the matrix manipulations can
be done a-priori. The computation of q is dependent on the
number of slices, L, requiring L fast Fourier transforms (FFTs)
to compute the spectra at each depth point. For instance, for
the simulated datasets with 90 mm thick medium, L = 128,
and in each of these cases, our MATLAB code provided the
final solution using equation (11) in the order of seconds
(∼ 2-3 seconds). Smaller L values can further reduce the
computational time, but at the cost of spatial resolution. Our
first test with a real-time implementation of our previous
LLS approach [27], i.e., for a homogeneous medium, has
also shown promising results in experimental settings [29]. To
enable translation of the proposed approach in clinical settings,
even faster implementations can still be achieved by using C
as the programming language, which is beyond the scope of
the current study.

We further note that the extension of the proposed approach
to generate 2D parametric α maps can be performed, similar
to the 2D approach in [28], in which case a lateral spatial
smoothing can be added. Finally, the promising results ob-
tained by our proposed method motivates its more extensive
testing in-vitro as well as in-vivo. This is, however, expected
to come with its own set of challenges primarily due to a
potential mismatch between the adopted model and the actual
physical signal behaviour in real tissue. For instance, the
current model assumes a linear frequency dependence of the
attenuation coefficient, instead of a more general power law
model. To mimick the latter, a possibility could be to apply
the proposed approach over narrow frequency bands, where the
linear approximation of the attenuation coefficient’s frequency
dependence could still be valid, and then combining these
estimates [41]. Concerning BSC, currently a power law model
is considered. For in-vivo application, the proposed approach
will need to be adapted to a more generalized representation
of BSC in terms of the form factor, which can be done along
similar lines as reported in [42].

VI. CONCLUSION

A fast, regularized linear least-squares method was proposed
for spatially varying local attenuation coefficient estimation.
Our method differs from previous approaches in the literature
as it couples the coefficients at all depth points via the
adopted physical model. We further proposed two regular-
ization schemes - `2 and weighted `2 regularization, with
corresponding approaches being referred to as LLS-l2 and
LLS-wl2, respectively. Their performances were tested on

synthetic data, including both sharply and gradually chang-
ing α profiles, as well as on phantom data. Further, both
synthetic and phantom data were considered for testing their
performance when a spatially varying backscatter coefficient
was introduced. Overall, while LLS-wl2 provided only slightly
better estimates than LLS-l2 (specifically for the sharply
varying α profile), both LLS-l2 and LLS-wl2 were shown to
outperform the traditional spectral log difference method and
the recent ALGEBRA method in terms of both accuracy and
variance of the obtained estimates. The proposed methods also
achieved a robust performance while recovering attenuation
profiles with varying spatial as well as attenuation contrast
resolution in the axial direction.
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Fig. 11. Results of attenuation (α) and backscatter coefficient (BSC) estimation in a medium with varying BSC and nearly uniform α on the phantom data
(subplots (a) and (c)) and simulated data (subplots (b) and (d)) in the left and right columns, respectively. Top row: α profile estimation results are shown. In
each case, the mean estimated values are plotted, with the error bars denoting the standard deviation of the estimated values for 10 RF data frame/experimental
trials. Bottom row: BSC profile estimation by LLS-l2 is plotted as a function of frequency and depth.
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