

Nummer 214 2006

 KATHOLIEKE

 UNIVERSITEIT

 LEUVEN

Exact and Heuristic Methodologies for Scheduling in

Hospitals: Problems, Formulations and Algorithms

FACULTEIT ECONOMISCHE EN

TOEGEPASTE ECONOMISCHE

WETENSCHAPPEN

Proefschrift voorgedragen

tot het behalen van de graad

van Doctor in de Toegepaste

Economische Wetenschappen

door

Jeroen BELIEN

Committee

Prof. dr. E. Demeulemeester (advisor) Katholieke Universiteit Leuven

Prof. dr. W. Herroelen Katholieke Universiteit Leuven
Prof. dr. M. Lambrecht Katholieke Universiteit Leuven
Prof. dr. W. Sermeus Katholieke Universiteit Leuven
Prof. dr. M. Vanhoucke Universiteit Gent

Vlerick Leuven Gent Management School
Prof. dr. E. Burke University of Nottingham

Daar de proefschriften in de reeks van de Faculteit Economische en Toegepaste
Economische Wetenschappen het persoonlijk werk zijn van hun auteurs, zijn

alleen deze laatsten daarvoor verantwoordelijk.

i

ii

Dankwoord

Het schrijven van dit dankwoord geeft me de kans om eventjes stil te staan bij de
afgelopen vier jaar. Het zijn vier mooie jaren geweest, waarin ik mezelf enorm heb
kunnen ontplooien op allerlei vlakken. Gaandeweg ben ik echt gaan houden van
onderzoek doen. Ik ben dan ook fier op dit resultaat. Maar bovenal voel ik me
dankbaar aan al diegenen die me, rechtstreeks of onrechtstreeks, in grote of kleine
mate, geholpen hebben.

Op de eerste plaats denk ik natuurlijk aan mijn promotor Professor Erik Demeu-
lemeester. Die formele titel voelt een beetje vreemd aan, want al op de eerste dag
vroeg hij me “Professor” maar achterwege te laten en hem gewoon “Erik” te noe-
men. Het typeert hem. Ik vergelijk onze relatie graag met de relatie tussen een
ridder en een schildknaap. Zoals een ridder de schildknaap leert omgaan met wa-
pens en paarden, bracht Erik me de kneepjes van het vak van de onderzoeker bij.
Hij introduceerde me op de grote tornooien (congressen) en zorgde ervoor dat ik
steeds met een indrukwekkend wapenarsenaal op het strijdperk verscheen. Maar hij
liet me ook voldoende vrijheid en creativiteit zodat ik mijn onderzoek steeds als een
boeiende uitdaging ervaarde. Ik denk over voldoende levenservaring te beschikken
om te stellen dat hetgeen Erik voor me gedaan heeft, niet iets vanzelfsprekends is.

Niet alleen had ik het geluk een goede promotor te hebben, ook kwam ik in een bij-
zonder aangename onderzoeksgroep terecht. Dit is in niet geringe mate te danken
aan Professor Willy Herroelen en Professor Marc Lambrecht. Beiden zetelen boven-
dien in mijn commissie en ik dank hen voor de interessante vragen en discussies die
mee hebben bijgedragen tot de totstandkoming van dit werk. Het formele respect
dat ik aanvankelijk voor hen had, heeft geleidelijk aan plaats gemaakt voor echte
waardering en zelfs bewondering. Ik herinner me nog levendig hoe tijdens mijn

iii

iv

eerste congres een Spaanse ober bij Willy informeerde of hij op stap was met al zijn
kinderen. We hebben er toen hartelijk om gelachen, maar in zekere zin zat de brave
man er niet zo ver naast. Willy is de wortel van een imposante wetenschappelijke
stamboom die reeds uit vier generaties bestaat. Marc was de afgelopen vier jaar de
voorzitter van ons departement. Een taak die hij met hart en ziel op zich nam. Hoe
beter ik hem leerde kennen, hoe meer raakvlakken ik met hem vond. Zo zijn we bei-
den fysiek verhinderd om te voetballen, maar supporteren we wel voor dezelfde club.

Professor Walter Sermeus heeft in vele opzichten een belangrijke bijdrage geleverd.
Al van meet af aan was hij één van de bezielers van dit project. Als tussenschakel
naar de ziekenhuizen zorgde hij herhaaldelijk voor nieuwe inspiratie, contactperso-
nen en praktijkdata. Als commissielid waakte hij tenslotte mee over de kwaliteit
van dit proefschrift. Toen ik laatst iets over hem opzocht op het Internet, kreeg ik
pas notie van zijn buitengewone staat van dienst. Toch heb ik hem altijd gekend
als een zeer vriendelijk en bescheiden man.

Professor Mario Vanhoucke is in een vorig leven ook assistent geweest van Erik en
kan aldus een beetje als mijn voorganger beschouwd worden. Ik heb altijd enorm
opgekeken naar mijn voorganger. Ik zal nooit vergeten hoe ik hem heb leren kennen
in Valencia. Als jonge snaak kwam ik toen in een nieuwe wereld terecht waarin hij
fungeerde als de gedroomde gids. Hij is één van die weinige mensen waarmee het
meteen goed klikte op allerlei vlakken (Nirvana, . . .). Ook Erik is dit niet ontgaan.
Ik heb het altijd als een enorme eer ervaren wanneer hij opmerkte dat hij blijkbaar
steeds hetzelfde type van assistenten aantrekt.

I thank Professor Edmund Burke from the University of Nottingham for the thor-
ough reading of my manuscript. It was a real honor for us to have such an expert
in automated scheduling and timetabling in my committee. His useful comments
and suggestions have undoubtedly improved both the quality and the readability
of this thesis.

Tijdens de congressen genoot ik steeds van de gemoedelijke en collegiale sfeer on-
der de assistenten (en proffen). Stijn, Robert, Roel, Kristof, Olivier, Dries, Jade,
Brecht, de mannen van Gent (Dieter en Broos): het zou niet hetzelfde geweest zijn
zonder jullie. En Stefan, hopelijk zal ik ooit met jou eens op congres gaan, want je
was het laatste jaar de motor achter onze sociale activiteiten. Ook de andere leden

v

van de vakgroepen Productie & Logistiek en ORSTAT wens ik te bedanken voor
de toffe werksfeer. Vooral tijdens de externe activiteiten zoals de departements-
kwissen, spelletjesavonden, etentjes en bedrijfsbezoeken werd duidelijk dat we een
hechte groep vormden. Anneleen, onze dagelijkse babbel tijdens het woonwerkver-
keer was voor mij een heel fijne manier om de werkdag te beginnen en af te sluiten.

Een speciale vermelding gaat uit naar mijn bureau-genoten: Peter en Dries. Wat
betreft Dries wilde het toeval dat ik ooit een Deense professor als volgt over zijn co-
auteur hoorde spreken: “My coauthor is a good guy, however it seems I will never
get rid of him. I first met him during my undergraduate studies and from then
on he kept following me. After graduation he also started a Ph.D. and thereafter
we became colleagues at the same university. In between, he married my sister.
But above all, he is a real friend of mine and I’m really proud to present you this
coauthored paper.” Ik hoop dat ik ooit precies dezelfde inleiding kan geven over
Dries. In ieder geval zijn we al goed op weg. Peter heeft me de eerste drie jaar op
vele vlakken wegwijs gemaakt, zoals bv. de organisatie van Megabike en de tekst-
verwerking in LATEX. Voor dat laatste wens ik ook Jan Adem te bedanken die me
een electronische versie van zijn proefschrift bezorgde en me alzo veel tijd deed be-
sparen. Tenslotte dank ik Professor Spieksma voor het meedenken over mijn werk,
getuige daarvan zijn talloze suggesties, en voor zijn bereidheid om als voorzitter op
te treden tijdens mijn publieke verdediging.

Verder wens ik ook Kris Vanhaecht (Centrum voor Ziekenhuis- en Verplegingswe-
tenschap, Leuven), Jenny Cristael (Oogziekenhuis Gasthuisberg, Leuven), Pierre
Luysmans en Professor Guy Bogaert (Chirurgisch Dagcentrum Gasthuisberg, Leu-
ven) en Jurgen Huygh en Geert Moechars (Virga Jesse Ziekenhuis, Hasselt) te
bedanken voor hun steun en enthousiasme voor dit project enerzijds en het bezor-
gen van praktijkdata anderzijds.

Wat het financiële aspect betreft, wens ik een woordje van dank te richten aan
elke lotto-speler en belastingbetaler wiens bijdrage op de één of andere manier bij
het Fonds voor Wetenschappelijk Onderzoek (FWO) Vlaanderen terechtgekomen
is. Uiteraard waardeer ik dan ook dat het FWO heeft besloten geld vrij te maken
voor dit project (onder contract nummer G.0463.04). Daarnaast ben ik ons wijlen
departement TEW dankbaar voor de financiële steun.

vi

Ik had enorm veel respect voor de manier waarop Chris Massie de doctoraatsstu-
denten van ons departement als een moederkloek onder haar hoede nam. Samen
met Elke en Isabelle zorgde ze ervoor dat alles altijd tot in de puntjes geregeld was.

Mama en papa, ik weet dat jullie nog veel trotser zijn dan ikzelf met dit doctoraat.
Misschien is dat ergens wel logisch, want jullie hebben er ongetwijfeld de groot-
ste verdienste aan. Dankzij jullie heb ik me nog nooit zorgen hoeven te maken
op financieel vlak. Maar nog veel belangrijker zijn de waarden die jullie aan me
doorgegeven hebben via een opvoeding waarin vrijheid steeds centraal stond. Het
is bepalend geweest voor de persoon die ik geworden ben. Zowel voor mijn studies
als voor dit doctoraat toonden jullie vaak oprechte interesse zonder ook maar één
moment bemoeizuchtig te worden.

Tim en Elke, het was me een genoegen om met jullie mijn jeugdjaren te delen. Het
ziet er naar uit dat ik moeilijk nog van jullie af ga komen. Elke zie ik opnieuw
steeds vaker via Dries. En Tim, met jou woon ik nog altijd samen onder één dak.
Ook jij zal binnenkort afdoctoreren zodat onze tweelingsband een nieuwe dimen-
sie krijgt. Ons kot van doctoraatsstudenten begint stilaan een kot van doctors te
worden. Bart en Leen hebben het ons voorgedaan; Tim, Kristien en An zullen nog
volgen. Het was fijn om mensen rondom me te hebben die weten hoe moeilijk de
bevalling van een doctoraat soms is. Onze regelmatige onderlinge aanmoedigingen
betekenden een enorme steun voor me.

Voor ontspanning waren er de wekelijkse trainingen en wedstrijden met de rolstoel-
basket. Samen winnen en verliezen, dat creëert een band. Ik dank mijn basket-
vrienden voor al die plezante onzin die ze de afgelopen jaren uitgekraamd hebben,
waardoor ze onbewust mijn geest verlichtten.

Tijdens de weekends kon ik steeds terecht bij mijn schoonfamilie in Gooik. Kan een
mens zich een zaliger ontspanningsoord indenken? Chef kokkin Martine bereidde
telkens opnieuw een maaltijd waarvoor je bij de Comme Chez Soi minstens 500 Eu-
ro neertelt. Martin zorgde af en toe voor wat afwisseling in mijn zittend bestaan en
deed me beseffen wat echt werken was. Koen, Kristien en Lieve waren soms echte
kwelduivels, maar zorgden steeds voor de welgewaardeerde animo en ontspanning.
Dankzij jullie werd mijn hoofd volledig vrij gemaakt voor een nieuwe week. En dit

vii

alles op één van de mooiste plekjes in het rustieke, glooiende Pajottenland.

Tot slot richt ik mij tot jou, Annemie, al bijna acht jaar mijn engel, steun en toe-
verlaat. De beëindiging van dit doctoraat is maar een kantlijn in vergelijking met
die andere belangrijke afspraak in 2006. Je beseft maar half hoe gelukkig je me
maakt. Trouwen met jou is voor mij een droom die werkelijkheid wordt.

Jeroen Beliën
November 2005

viii

Abstract

The scheduling of people and resources is a key issue in modern hospital man-
agement. Well-thought-out scheduling practices entail several financial and social
benefits. However, due to the increased pressure on scarce resources and the prolif-
eration in rules and regulations, scheduling is often a difficult and time consuming
task. Fortunately, the continuously growing computation power of PC’s and the
advances in database technology have opened up a treasure of opportunities to im-
prove today’s scheduling practices. This thesis deals with a number of methods
that better exploit these opportunities. More specifically, we detect a number of
challenging scheduling problems in hospitals, formulate these problems mathemat-
ically and develop algorithms that can efficiently solve them.

This thesis can be divided into three parts. The first part deals with staff schedul-
ing. We propose a new formulation and decomposition approach for a problem
that concerns building long term trainee schedules. The approach decomposes the
problem on the activities and uses column generation to find an optimal solution.
The resulting branch-and-price algorithm was embedded in a software application,
some heuristic search procedures were added and it was tested on some real life
instances of trainee scheduling problems. Our experimental results show an impor-
tant increase in efficiency compared to the traditional approaches that decompose
the problem on the staff members.

The second part of this thesis copes with operating room scheduling. First, we
present a model and software tool for visualizing the usage of various resources as
a function of the cyclic master surgery schedule. Next, we propose a number of
models and algorithms to build surgery schedules with leveled resultant bed occu-

ix

x

pancy. Our ideas have been tested on real life data by means of two case studies.

In the third part of this thesis, we combine the knowledge gained from the preceding
two parts and present an integrated model for staff and operating room scheduling.
The model is solved using a branch-and-price algorithm that repeatedly solves two
different pricing problems. The first one involves the generation of the individual
roster lines which is done using dynamic programming. In the second pricing prob-
lem, we search for a surgery schedule with a corresponding workload pattern that
appropriately fits the generated set of roster lines. To this aim, a mixed integer
programming model is solved. We have obtained some nice computational results
for this difficult problem. To end, we show how our approach can be employed for
benchmarking hospital units. Specifically, we illustrate how the results can be in-
terpreted in order to identify the sources of waste in the hospital’s human resource
management.

Samenvatting

Het plannen van mensen en hulpmiddelen is een zeer belangrijk onderdeel in het
operationele beleid van een ziekenhuis. Een weldoordachte planning kan verschil-
lende financiële en sociale voordelen met zich meebrengen. Door de toegenomen
druk op schaarse hulpmiddelen en de wildgroei in wetten en regelgevingen is het
opstellen van een planning echter vaak een complexe en tijdrovende aangelegen-
heid. Gelukkig leiden de voortdurende toename in rekenkracht van computers en
de technologische vorderingen op het vlak van gegevensbeheer tot een schat van
mogelijkheden om het hedendaags plannen te verbeteren. Deze thesis handelt over
een aantal methoden om deze mogelijkheden beter te exploiteren. Meer concreet
detecteren we een aantal interessante planningsproblemen, we formuleren deze pro-
blemen wiskundig en ontwikkelen algoritmes om ze efficiënt op te lossen.

Deze thesis kan opgedeeld worden in drie delen. Het eerste deel richt zich op per-
soneelsplanning. We introduceren een nieuwe formulering en ontledingsbenadering
voor een probleem dat het opstellen van een assistentenplanning op lange termijn
behelst. De benadering ontleedt het probleem op basis van de activiteiten en maakt
gebruik van kolomgeneratie om een optimale oplossing te bekomen. Het resulte-
rende vertak-en-prijs algoritme werd gëımplementeerd in een applicatie, aangevuld
met heuristische zoekprocedures en getest op een aantal assistentplanningsproble-
men uit de praktijk. Onze experimentele resultaten tonen een belangrijke toename
in efficiëntie aan, vergeleken met de traditionele benaderingen die het probleem
ontleden op basis van de stafleden.

Het tweede deel van deze thesis handelt over het plannen van het operatiekwar-
tier. Eerst stellen we een model en computerprogramma voor om het gebruik van
diverse hulpmiddelen in functie van de cyclische hoofdplanning van het operatie-

xi

xii

kwartier te visualizeren. Vervolgens stellen we een aantal modellen en algoritmes
voor om planningen te genereren met een afgevlakte, resulterende bedbezetting.
Onze ideeën werden getest op praktijkdata in twee gevalstudies.

In het derde deel combineren we de kennis verkregen uit de eerste twee delen in
een gëıntegreerd model voor de planning van het personeel en het operatiekwar-
tier. Het model wordt opgelost door een vertak-en-prijs algoritme dat herhaaldelijk
twee verschillende subproblemen oplost. Het eerste behelst het genereren van een
individuele planning van een personeelslid d.m.v. dynamische programmering. In
het tweede subprobleem zoeken we naar een planning van het operatiekwartier met
een bijhorende, benodigde personeelsbezetting die goed past bij de gegenereerde
set van individuele planningen. Dit gebeurt via het oplossen van een geheeltal-
lig programmeringsprobleem. We hebben mooie rekenresultaten bekomen voor dit
moeilijke probleem. Tenslotte tonen we aan hoe onze benadering gebruikt kan
worden om verschillende ziekenhuizen te vergelijken. Concreet illustreren we hoe
de resultaten gëınterpreteerd kunnen worden om de bronnen van verspilling in het
personeelsbeleid van een ziekenhuis te detecteren.

Contents

Committee i

Dankwoord iii

Abstract ix

Samenvatting xi

1 Introduction 1

1.1 Motivation . 1
1.2 Approach . 4

1.2.1 Fundamental and applied research 5
1.2.2 Exact and heuristic algorithms 5

1.3 Mathematical programming foundations 7
1.3.1 Linear programming . 8
1.3.2 Quadratic programming . 9
1.3.3 Integer programming and branch-and-bound 10
1.3.4 Column generation and branch-and-price 12
1.3.5 Dynamic programming . 14

1.4 Situating the chapters in a broader context 16
1.4.1 Staff scheduling . 16
1.4.2 Operating room scheduling 17
1.4.3 Nurse scheduling literature review 19
1.4.4 Operating room scheduling literature review 25

1.5 Summary . 28

xiii

xiv CONTENTS

2 Scheduling trainees at a hospital department using a branch-and-

price approach 29

2.1 Introduction . 30
2.2 Problem Statement . 31
2.3 A branch-and-price approach . 36

2.3.1 Decomposition of the problem 36
2.3.2 An alternative formulation 37
2.3.3 Branch-and-price algorithm overview 39
2.3.4 The pricing problem . 41
2.3.5 Column addition . 47
2.3.6 Branching . 48

2.3.6.1 Branching on column variables 48
2.3.6.2 Branching on timetable cells 49
2.3.6.3 Branching on precedence relations 49

2.3.7 Speed-up techniques . 50
2.3.7.1 Initial heuristic . 51
2.3.7.2 Lower bound calculation 51
2.3.7.3 Initial network restriction 52
2.3.7.4 Master LP optimization 52
2.3.7.5 Cost varying horizon 53
2.3.7.6 Column elimination 53

2.4 Computational results . 54
2.4.1 Real-life data sets . 54
2.4.2 Test set . 56
2.4.3 Discussion of results . 57
2.4.4 Contributions of speed-up techniques 61

2.5 Conclusions for the decomposition on the activities approach 63
2.6 Decomposition on the trainees . 65

2.6.1 Pricing problem . 67
2.6.2 Branching . 68
2.6.3 Computational results . 69

2.6.3.1 Two real-life problems 69
2.6.3.2 Extensive comparison 70

2.6.4 Modeling power . 78
2.7 Generalization of the problem . 79

2.7.1 General problem statement 79

CONTENTS xv

2.7.2 Constraint preprocessing . 82
2.7.3 Heuristic extensions . 83

2.7.3.1 Heuristic algorithm for pricing out new columns . . 83
2.7.3.2 Premature termination of column generation 85
2.7.3.3 Imbalanced branching 85
2.7.3.4 Combining depth-first and best-first search 85
2.7.3.5 Heuristically fixing xijk variables 86

2.7.4 Computational results . 87
2.8 Graphical user interface . 92
2.9 Conclusions and future research . 98

3 Visualizing the demand for various resources as a function of the

master surgery schedule: A case study 101

3.1 Introduction . 102
3.2 Underlying model . 103
3.3 Case study . 105
3.4 Graphical user interface . 106
3.5 Conclusions and future research . 113

4 Building cyclic master surgery schedules with leveled resulting bed

occupancy 115

4.1 Introduction . 116
4.2 Problem Statement . 118
4.3 Linearization of the problem . 121

4.3.1 Mean . 121
4.3.2 Variance . 123
4.3.3 NP-hardness proof of the linearized problem 127
4.3.4 Special cases . 128
4.3.5 Percentile minimization . 129
4.3.6 Stochastic ns . 130

4.4 Solving the original problem . 131
4.4.1 Objective function . 132
4.4.2 Repetitive MIP heuristic . 133
4.4.3 Quadratic MIP heuristic . 135
4.4.4 Simulated annealing . 136

4.5 Computational experiment . 137
4.5.1 Test set . 137

xvi CONTENTS

4.5.2 Tested heuristics . 138
4.5.3 Computational Results . 139

4.6 Simulation study . 144
4.7 Conclusions . 146

5 Building cyclic master surgery schedules with leveled resulting bed

occupancy: A case study 149

5.1 Introduction . 150
5.2 Theoretical background . 150
5.3 Case study . 151
5.4 Input analysis . 152
5.5 Graphical user interface . 155
5.6 Results . 162
5.7 Conclusions and future research . 166

6 Integrating nurse and surgery scheduling 169

6.1 Introduction . 169
6.2 Model description . 172

6.2.1 Visualization of the idea . 172
6.2.2 Schematic overview . 176
6.2.3 The nurse scheduling problem 176
6.2.4 Solution procedure for the nurse scheduling problem 178
6.2.5 The generalized nurse scheduling problem 179
6.2.6 Solution procedure for the generalized nurse scheduling problem181

6.3 Pricing problems . 181
6.3.1 Generating a new roster line 181
6.3.2 Generating a new workload pattern 185

6.4 Overview of the branch-and-price algorithm 187
6.5 Branching . 190
6.6 Computational performance issues 191

6.6.1 Integral versus fractional demand values 191
6.6.2 Upper bound pruning for the workload pattern pricing problem192
6.6.3 Two-phase approach for the workload pattern pricing problem 193
6.6.4 Lagrange dual pruning . 193

6.7 Results . 194
6.7.1 Test set . 194
6.7.2 Savings . 195

CONTENTS xvii

6.7.3 Interpretation of the savings 196
6.7.4 Computational results . 198

6.8 Conclusions and further research . 204

7 Conclusions and future directions 207

7.1 Trainee scheduling . 207
7.2 Operating room scheduling . 210
7.3 Integrating different scheduling areas 212
7.4 General reflections on further research 213

7.4.1 Robustness . 213
7.4.2 Persuading all people involved 213
7.4.3 Graphical user interface . 214

Appendices 215

List of Figures 223

List of Tables 225

Bibliography 227

Doctoral Dissertations from the Faculty of Economic and Applied

Economic Sciences 241

0 Contents

Chapter 1

Introduction

This first chapter provides a general introduction to the material presented in this
dissertation. This chapter is organized as follows. Section 1.1 gives an outline of
the recent evolution in the health care expenses, in which we focus on the Belgian
situation. As a motivation for this study, we discuss the importance of operations
research techniques, in particular with respect to scheduling, as a useful tool to
improve both the effectiveness and efficiency with which health care services are
provided within hospitals. In Section 1.2, we justify our working method, explaining
why we opted for certain approaches and why we left others out of consideration.
Section 1.3 gives an outline of the most important mathematical programming
techniques used in the algorithms developed for this study. Section 1.4 situates
the chapters of this dissertation in a broader context, providing, in addition, two
literature overviews: the first one on hospital staff scheduling and the second one
on operating room scheduling. Finally, Section 1.5 summarizes the material that is
presented in this chapter.

1.1 Motivation

Health care becomes very expensive. According to the 2005 report of RIZIV, the
Belgian national expenses for health care amounted to 15.38 billion Euro in 2003.
Five years earlier, in 1998, we spent no more than 11.29 billion Euro. In other
words, the total health care expenses have increased by 36% in only five years. The
annual figures indicate an average growth of 6.3% per year with a strong accelera-

1

2 1.1. Motivation

tion of 8.2% in 2003 (RIZIV, 2005).

The significance of this rise becomes even more pronounced if one compares it with
the growth of the Gross Domestic Product (GDP). Over the same period the an-
nual growth percentages of the GDP fluctuated between 2.5 and 5.2%. Hence, the
growth in health care expenses dramatically outpaces the GDP increase. Accord-
ingly, the part of the GDP spent on health care has risen from 8.3% in 1998 to
9.6% in 2003 (OECD, 2005). Moreover, the differences between both growth fig-
ures continue to widen (Assuralia, 2005).

Equally significant is the fact that the health care expenses are invariably under-
estimated. In the period 1998-2003 an average annual deficit of 128 million Euro
has been recorded (RIZIV, 2005). Also, it is a widespread belief that drugs make
up the main cost, blaming the pharmaceutical industry for this trend. However,
according to Assuralia (2005), only 16.5% of the total budget was spent on drugs,
compared to 31% on hospital care.

Obviously, the main cause of this rise lies in the ageing of the society. Ageing
populations are putting disproportionately heavy demands on health systems in
high-income countries (Brandeau et al., 2004, p. 5). The continuous technological
progression leads to new treatments that are often expensive and hence increase
the pressure on the hospitals’ budget. A possible way to keep the expenses at an
acceptable level is to introduce more responsibility into the system. Principally,
the Belgian health care system is free at the point of delivery and therefore neither
the patients nor the care providers directly feel the real cost-price of health care.
The problem of health care finance is not that the incomes are too low, but mainly
that the expenses grow too fast.

Fortunately, there is also some good news. Compared to international statistics,
the Belgian health care system performs actually quite well for its levels of cost
and quality. For instance, in the US, health care spending amounts to 15% of the
GDP in 2003, which is far above the 9.6% recorded for our country (OECD, 2005).
Kumar and Ozdamar (2004) present an international comparison of health care
systems involving a data envelope analysis on 19 industrialized countries. Data en-
velope analysis (DEA) is a mathematical evaluation method based on the concept
of Pareto-optimal organization. The comparison is conducted under five classes:

Chapter 1. Introduction 3

health care expenditure, hospital care, physician services, pharmaceutical services,
and life expectancy and infant mortality. The measurements selected for evaluat-
ing health care expenditure are percent of GDP, percent public spending, and per
capita health spending. For hospital care, the measurements chosen are beds per
one thousand population, percentage occupancy, expenditures per day and expen-
ditures per admission. Similar measurements are selected for evaluating physician
and pharmaceutical services. The Belgian health care system performs excellent
for almost all these measurements and is hence top ranked in the DEA analysis
under three of the five categories (health care expenditure, hospital services and
pharmaceutical services).

In the near future, public resources for health care will become inadequate to meet
the demand. Policy makers and health care providers must determine how to pro-
vide the most effective health care to citizens using the limited resources that are
available. Therefore, they need effective methods for planning, prioritization and
decision making. To this purpose, inspiration could be found in the field of De-
cision Support (DS), Artificial Intelligence (AI) and Operations Research (OR).
OR techniques, tools and theories have long been applied to a wide range of issues
and problems in traditional business, industrial and manufacturing environments.
Fries (1976) present an early bibliographic overview of OR applications in health
care systems that mainly deals with staff scheduling. More recently, Wiers (1997)
gives a review on the applicability of AI and OR scheduling techniques in practice
including health care applications.

In the April 2002 issue of ORMS Today Michael Carter (professor at the university
of Toronto and CEO of the Health Care Productivity Research Laboratory) started
the introduction of his article, in which he describes many possible applications for
operations research in hospitals, as follows (Carter, 2002, p. 26):

“Health care is the no. 1 domestic industry in the United States and
one of the largest industries in the developed world. Health care sys-
tems present many complex problems that could benefit from opera-
tions research-type analysis and applications. OR professionals, how-
ever, have generally neglected the field.”

Operations research techniques that have been shown to be successful in business
environments could be applied on a variety of problems in health care environ-

4 1.2. Approach

ments. Alternatively, new operations research techniques could be developed for
dealing with specific health care management problems. These include strategic
planning problems such as design of services (e.g., inclusion of neonatal intensive
care units in some hospitals), design of the health care supply chain (e.g., design
of networks of hospitals, ambulance covering, outpatient clinics, drugs supply and
laboratory services), facility planning and design (e.g., location and layout of hospi-
tals), equipment evaluation and selection, process selection and capacity planning.
Other planning problems include demand and capacity forecasting, job design, in-
ventory management (e.g., drugs, supplies and blood) and scheduling and workforce
planning (Brandeau et al., 2004, p. 8). This research addresses a variety of schedul-
ing problems that occur inside hospitals.

Scheduling is a key issue for successful health care management. Scheduling in-
volves the development of base plans for all types of resources within hospitals.
Such base plans specify which resources to use at which time instances to serve
which purposes. This research presents a number of exact and heuristic algorithms
which provide practical solutions for a number of scheduling problems encountered
at hospitals. The gain is manifold. First of all, since the algorithms assist in build-
ing the schedules, hospitals can save on (human) resources to do the job. Second,
schedules generated by well-thought-out algorithms should be qualitatively ‘better’
than manually generated schedules. With ‘better’ we mean that those schedules
result either in more output with the same input or in the same output with less
input of resources or in a combination of both. Third, better scheduling practices
might result in social benefits too like shorter waiting lists (see, e.g., Vissers et
al., 2001; Buhaug, 2002; Mullen, 2003). Also work in Psychology has shown that
better personnel schedules can have an impact on nurses’ well being and job satis-
faction (Mueller and McCloskey, 1990; Oldenkamp, 1992) and lead to safer working
environments (Wilkinson and Allison, 1989; Folkard and Tucker, 2003).

1.2 Approach

This dissertation contains both fundamental and applied research as well as both
exact and heuristic solution approaches. This section explains what we mean by
this.

Chapter 1. Introduction 5

1.2.1 Fundamental and applied research

The research presented in this work is both fundamental and applied. The study
is technical in nature: we will focus on problem formulations and algorithms. Each
scheduling problem will be defined formally, making abstraction of some case spe-
cific issues. This involves the formulation of the problem in a mathematical way.
As such, we try to generalize the problem as much as possible in order to ensure
that the developed solution approach can be applied in as many practical situa-
tions as possible. Furthermore, a formal, general problem formulation can help us
to derive some important theoretical properties such as computational complex-
ity and enables us to reduce (parts of) the problem to already solved problems in
the literature. Throughout this work, the efficiency of the algorithms is a main
issue. Accordingly, all the algorithms are extensively tested. Tests generally in-
clude a comparison with other solution approaches, an indication on how problem
dimensions influence computation times and an overview of the (computational)
contributions of the different algorithmic features. This technically oriented ap-
proach has, however, not prevented us from being inspired by and tackling real-life
scheduling problems in hospitals.

The concern about the applicability of the algorithms has been at least equal to
the attention given to their computational efficiency. Therefore, all the proposed
algorithms, with the exception of the integrated scheduling approach of Chapter
6, have been motivated by and tested on real-life data. Again with the exception
of Chapter 6, all our algorithms have been implemented in a self written software
application with a graphical user interface that could easily be used by both expe-
rienced and non-experienced schedulers.

1.2.2 Exact and heuristic algorithms

The difference between exact and heuristic algorithms is guaranteeing optimality.
Exact algorithms, also called optimal procedures, can guarantee the optimality of a
solution for a given problem, which requires some built-in mechanism for optimal-
ity proving. In contrast, heuristic algorithms, also called suboptimal procedures or,
simply, heuristics, are designed to find the best possible solution with small com-
putational efforts. Heuristics often lack a mechanism of optimality proving and,
therefore, fail to provide any information on the quality of the solution other than

6 1.2. Approach

that it is the best solution found.

When it comes to solving practical problems in real-life situations, heuristics are
undoubtedly the best choice. If the problem space is very large, which is often the
case for real-life problems, heuristics are the only option, because exact algorithms
would require endless computation times. Moreover, practitioners are rarely both-
ered by the optimality of a solution: in real-life, typically all what matters is to
have a reasonable solution as fast as possible.

Exact algorithms, on the other hand, are more appropriate to develop fundamental
insights into the mathematical complexity of the problem as well as into the man-
agerial aspects of the problem. The last is probably best illustrated in Chapter 6, in
which we present a managerial insight gained from developing an exact algorithm
for integrating the nurse and surgery scheduling process. Another example is the
search to lower bounds in minimization problems (or upper bounds in maximization
problems) to cut off large parts of the solution space in order to prove the opti-
mality of a solution. Not rarely such a bound or bounding rule is inspired by the
real-life problem, but it also happens that a theoretically found bound or bounding
rule, obtained through careful analysis of the problem structure to develop an exact
procedure, results in a new managerial insight or at least a confirmation of existing
insights. A last example of how managerial insights can be gained as side results
from the application of optimal procedures is the use of the dual prices to do a
sensitivity analysis in Linear Programming (LP).

This study copes with both exact and heuristic algorithms. It will, however, soon
become clear that the focus lies on exact algorithms. All the problems studied are
first approached using an exact solution procedure. If the exact algorithm turns
out to be too time consuming for solving real-life problems - and it usually does -
our attention shifts towards heuristic procedures. In many cases, the exact algo-
rithm can easily be turned into a heuristic by modifying certain subprocedures of
the algorithm. An alternative way of viewing this, is that we tolerate an optimality
gap in these subprocedures. The main benefit of this approach is that the resulting
exact/heuristic hybrid algorithm still provides some information on how far the
solution is from the theoretical optimum.

Chapter 1. Introduction 7

The reason why, in this dissertation, exact algorithms come more into the spot-
lights than heuristics, is twofold. First of all, it is my conviction that a researcher is
obliged, at least at first instance, to investigate whether or not an exact algorithm
can be developed for a given problem rather than immediately starting experi-
menting with different kind of heuristics, which often involves a lot of parameter
setting and testing. It seems to me more relevant to first study the structure of
the problem, find out what complicates it, discover some important properties and
use this knowledge to develop an exact procedure that could solve the problem to
optimality, if necessary using smaller problem dimensions. This way of approaching
a problem is in my view the best guarantee to gather fundamental insights into the
basics of the problem. One will never fully understand the complexity of a prob-
lem unless one has explored the borders of optimality. This research is not only
motivated by problem solving, but also by the development of new techniques. At
one side of the spectrum you have the practitioner who’s only concern is to solve
the problem at hand in a reasonable way as soon as possible. At the other side
there is the researcher who studies the problem, tries to discover certain properties
and develops solution procedures that are not only useful for the problem at hand,
but also can inspire other researchers studying similar problems and as such, make
a contribution to the global knowledge of mankind. Without underestimating the
important contribution of the basic heuristic methodologies like tabu search, simu-
lated annealing and genetic algorithms, in my personal view, exact procedures are
better suited to serve the last purpose. The second reason for the extensive atten-
tion given to exact procedures is a subjective one. Being capable of detecting the
optimal solution out of millions or billions of alternatives and, above all, proving
its optimality, is really fascinating to me. The resulting challenge makes the study,
development and coding of exact algorithms most exciting.

1.3 Mathematical programming foundations

This section provides a short introduction to the most important mathematical
programming techniques involved in the algorithms presented later in this work.
For an in-depth analysis of these techniques, the interested reader is each time
referred to a number of basic works and/or survey papers.

8 1.3. Mathematical programming foundations

1.3.1 Linear programming

Linear programming (LP) is an optimization technique in which a problem is for-
mulated as a linear function that has to be optimized, i.e., minimized or maximized,
subject to a set of linear constraints. To build such a formulation, one first translates
the real-life decisions into a set of decision variables. Next, the real-life objective is
stated as a linear function of these decision variables, called the objective function.
Finally, the real-life constraints are also expressed linearly in the decision variables.
Let us illustrate this with a simple example:

Pharma Inc. wants to produce a new drug in the cheapest way possi-
ble. The drug has a specified weight w expressed in grams and consists
of three ingredients. Each ingredient has a certain cost per gram, say
c1 for ingredient 1, c2 for ingredient 2 and c3 for ingredient 3. In order
to make the drug effective, research has indicated that the share of
ingredient 1 should not exceed twice the share of ingredient 2. Fur-
thermore, the summed shares of ingredient 2 and 3 should exceed a
target level of l1 grams. Finally, the summed shares of ingredient 1
and 3 may not surpass a target level of l2 grams.

To formulate this problem as a linear program, we first identify the decision vari-
ables. Since Pharma Inc. has to decide upon the share of the three ingredients, we
define x1, x2 and x3 as the respective shares of each ingredient in the final drug.
The problem can then be stated as follows:

Minimize c1x1 + c2x2 + c3x3 (1.1)

subject to:

x1 + x2 + x3 − w = 0 (1.2)

x1 − 2x2 ≤ 0 (1.3)

x2 + x3 − l1 ≥ 0 (1.4)

x1 + x3 − l2 ≤ 0 (1.5)

x1, x2, x3 ≥ 0 (1.6)

The objective function (1.1) is simply the minimization of total costs. Constraint
(1.2) makes sure the drug weights w grams. Constraint (1.3) ensures that the share

Chapter 1. Introduction 9

of ingredient 1 does not exceed twice the share of ingredient 2. Constraints (1.4)
and (1.5) imply the target level share restrictions. Finally, restrictions (1.6) are the
nonnegativity constraints.

To solve LP problems, several highly efficient procedures have been developed, of
which the most well-known are the primal and dual simplex algorithm and the
interior-point method. The efficiency combined with the generality of the approach
has made linear programming a real success story. Since the late fifties, linear
programming has become a well-established tool for solving a wide range of op-
timization problems in various fields production, network design, manufacturing,
routing, engineering and scheduling. This trend continues with the developments
in modeling, algorithms, the growing computational power of personal computers
and the increasing performance of commercial linear programming solvers (John-
son et al., 2000). Unfortunately, many real-life decisions, particularly in the field
of scheduling, are modeled using variables that are required to be integral; for in-
stance, you can assign 1, 2, 3,. . . , nurses to work a particular shift, but not 0.5, 1.5,
2.5 nurses. Solving these so-called mixed integer problems is generally much harder
(see Section 1.3.3) and the efficient LP procedures mentioned earlier can only be
used to solve a relaxation of the problem.

Chvátal (1983) provides an in-depth analysis on linear programming. Winston
(1993) gives an excellent introduction to the general field of operations research,
explaining linear programming in detail. The textbook of Williams (1999) includes
many examples of how to design mathematical models, including linear program-
ming formulations.

1.3.2 Quadratic programming

A quadratic program (QP) is a variant of a linear program in which the objective
function contains quadratic terms. Quadratic programming problems are frequently
encountered in finance, more specifically in portfolio selection applications, in which
one would like to spread the risk as much as possible (for a basic reference, see
Markowitz, 1959). Resource leveling is another typical application of quadratic
programming. For further reading we refer to Gill et al. (1982) and Winston
(1993) who cover, among other topics, quadratic programming. In this study,
quadratic programming problems only show up in Chapter 4 and Chapter 5 where

10 1.3. Mathematical programming foundations

we respectively develop and apply an operating room scheduling model that aims
at leveling the resultant bed occupancy.

1.3.3 Integer programming and branch-and-bound

If some of the decision variables are required to be integral, the problem becomes
a mixed integer program (MIP). This is the case for many practical applications,
including most scheduling problems. Unfortunately, the introduction of integral
variables often seriously complicates the problem, making it extremely hard to
solve. When an integer variable is restricted to the values 0 or 1, it is called a
binary variable. Mixed integer programming problems are usually solved using
a branch-and-bound approach. Branch-and-bound is an implicit enumeration ap-
proach, which, as the name suggests, succeeds in detecting the optimal solution
without having to explicitly consider (enumerate) all solutions.

The enumeration scheme involves a stepwise partitioning of the solution space. In
the scheme each partition is further analyzed and partitioned until a (better) feasi-
ble solution is found or it is determined that the partition does not contain a better
solution. The enumeration scheme can often nicely be represented by a branching
tree (see, e.g., Figure 1.1).

x
1
5 x

1
6

x
2
3 x

2
4

Figure 1.1: Branch-and-bound tree example

Chapter 1. Introduction 11

The root node of the tree represents the original problem, and has a solution space
that holds all feasible solutions to this problem. The first step entails the partition-
ing of this solution space into two or more subsets represented by two or more child
nodes. This process of partitioning the solution space, which is called branching,
is continued in the child nodes, which become parent nodes to new child nodes in
a subsequent partitioning of the solution space. Consider now a particular node in
the tree. Suppose we are able to detect the best solution in each child of this node.
The best one amongst these solutions is obviously also the best solution for the par-
ent node. If we continue in this way bottom up until the root node is reached, the
problem has been solved to optimality. It may even not be required to detect the
best solution in each child node. Indeed, whenever we know that the best solution
in a particular node will be worse than a feasible solution of an (already explored)
node anyway, this node does not have to be considered or further partitioned. Not
explicitly considering a node refers to the bounding aspect of the branch-and-bound
methodology.

The question remains of course how to efficiently partition the solution space in
order to take full advantage of this divide-and-conqueror strategy. This depends
on the problem at hand. In any case, two conflicting criteria are important in de-
signing an efficient branching scheme. On the one hand, the number of generated
nodes is best kept as small as possible. On the other hand, the nodes that are not
further partitioned should be easily solvable.

In integer programming applications the branch-and-bound algorithm involves a
standard branching scheme. In the root node a relaxation of the original problem
is being solved. A relaxation is a simplification of the problem, for instance by
leaving out one or more of the constraints. In linear integer programming prob-
lems, the root node typically corresponds to the linear relaxation, i.e., the problem
without the integrality constraints. As the algorithm progresses, the solution space
is partitioned by adding constraints to the problem in the root node, forming two
or more child nodes. Such a constraint typically cuts away a current fractional
solution, by implying a fractional variable either to be larger than or equal to the
first upper integer or to be smaller than or equal to the first integer smaller than
the current fractional value (see, e.g., Figure 1.1).

12 1.3. Mathematical programming foundations

Each node in the branch-and-bound tree is associated with a lower and an up-
per bound, which are used to fathom certain nodes from further consideration.
In minimization (maximization) problems the lower (upper) bound represents the
theoretically best possible solution value that could be found by further exploring
the node, while the upper (lower) bound is the best solution value which has so
far been shown to exist. In minimization problems a node can be fathomed, if the
lower bound in that node is larger than or equal to the current upper bound. Ob-
viously, the reverse applies in maximization problems. Branch-and-bound methods
have been successfully applied in a wide range of optimization problems includ-
ing knapsack problems (e.g., Kellerer et al., 2004) and resource constrained project
scheduling problems (e.g., Demeulemeester and Herroelen, 1992; Vanhoucke, 2001).

The recently appeared tutorial survey of search methodologies edited by Burke and
Kendall (2005) contains a comprehensive chapter on integer programming written
by Bob Bosch and Michael Trick. Widely cited references on integer programming
include Winston (1993), Wolsey (1998) and Nemhauser and Wolsey (1999). These
books explain the branch-and-bound algorithm in detail. In the description of the
branch-and-bound methodology outlined above we basically followed the exposition
of Hans (2001). Agin (1966) and Johnson (2000) also provide an excellent discus-
sion on the fundamentals of branch-and-bound.

Almost all problems dealt with in this study will be formulated as integer pro-
grams. However, only the operating room scheduling problems (extensively stud-
ied in Chapter 4 and Chapter 5 and appearing as a subproblem in Chapter 6) are
actually being solved using standard integer programming techniques. The staff
scheduling problems, on the other hand, are formulated using a huge number of
decision variables. Such formulations involving many variables entail several ben-
efits, most importantly a tighter bound relaxation and elimination of symmetry
(for more details, see Barnhart et al., 1998), but cannot be efficiently solved with
a standard, commercial MIP solver. Therefore, column generation is used to solve
the LP relaxations of these mixed integer programming problems.

1.3.4 Column generation and branch-and-price

If the number of decision variables in an LP problem is (exponentially) large, say,
in the order of one million variables or more, column generation can significantly

Chapter 1. Introduction 13

speed up the optimization process. Hans (2001) gives a short, although most un-
derstandable exposition of the column generation technique. In this technique the
LP is solved to optimality by first considering a restricted LP (RLP), where many
variables are left out. The RLP is also called the restricted master problem. The
solution of the RLP is optimal for the LP if all variables of the LP have non-negative
reduced cost. Since only a subset of the variables of the LP is explicitly available,
this cannot be checked explicitly. A so-called pricing algorithm is used to verify
optimality. This algorithm solves a pricing problem so as to find a new variable
that could improve the current LP solution. Such an improving variable is called
to price out. If the current solution is not optimal, the pricing algorithm identifies
at least one variable with non-negative reduced cost. This variable is added to the
RLP and the procedure continues. The column generation scheme terminates when
no variables with negative reduced cost exist anymore. At that point, the LP is
solved to optimality. The decision variables are often referred to as columns, which
explains the name column generation.

Column generation is especially appropriate for solving LP problems involving a
huge set of variables of which most of them will have their associated variable equal
to zero in an optimal solution anyway. Dantzig and Wolfe (1960) were the first
to propose the column generation technique. Since then it has been applied to
a wide variety of problems. The most well-known is the application to the stock
cutting problem (Gilmore and Gomory, 1961; Peeters, 2002). Other applications
in which column generation turned out to be particularly fruitful, include, e.g.,
vehicle routing problems with time windows (Desrosiers et al., 1984; Desrochers et
al., 1992) crew scheduling and rostering (Vance et al., 1997; Gamache et al., 1999)
and capacitated lot sizing (Jans, 2002).

Column generation is referred to as branch-and-price when it is used to solve the
LP relaxation in every node of a branch-and-bound tree originating from solving
a mixed integer linear programming problem. Hence, branch-and-price is basically
a combination of branch-and-bound and column generation. There are, however,
fundamental difficulties in applying column generation techniques for linear pro-
gramming in integer programming solution methods (Johnson, 1989). First of all,
conventional integer programming branching on variables (as illustrated in Figure
1.1) may not be effective because of symmetry problems and because fixing vari-
ables can destroy the structure of the pricing problem. Second, the LPs are often

14 1.3. Mathematical programming foundations

not needed to be solved to optimality in each node of the branch-and-bound tree.
A careful inclusion of rules for managing the branch-and-price tree can significantly
speed up the branch-and-price algorithm.

Barnhart et al. (1998) present a general methodology for branch-and-price which
unifies the existing literature. The book by Wolsey (1998) also contains a chapter
on the use of column generation for solving integer programming problems.

Column generation techniques will be extensively applied throughout this thesis
for solving staff scheduling problems encountered in hospitals. The pricing prob-
lems often involve the solution of a restricted shortest path problem, which will be
optimized using dynamic programming.

1.3.5 Dynamic programming

Dynamic programming is another basic mathematical programming technique that
is frequently applied in this thesis. The following exposition is largely based on
the brief, but excellent description of dynamic programming by Hans (2001). For
more extensive expositions we refer to Winston (1993) and Wolsey (1998) who both
cover dynamic programming in a separate chapter and to Dreyfus and Law (1977),
who discuss the fundamental background of dynamic programming in detail. Fi-
nally, when it comes to the implementation details, Sedgewick (1998) provides an
excellent guide to the efficient coding of dynamic programming algorithms.

Dynamic programming (DP) is a decomposition technique that first decomposes
the problem into a nested family of subproblems. One can distinguish between de-
terministic and probabilistic dynamic programming problems. In probabilistic or
stochastic DP the decisions have a stochastic outcome, and the goal is to determine
the decisions that minimize the expected cost (or maximize the expected reward),
while in deterministic DP all decision variables yield a deterministic contribution
to the objective. Since only deterministic DP is used in this work, we only discuss
this category of dynamic programming. For literature concerning probabilistic DP
we refer to Ross (1983) and Sennott (1999).

A typical dynamic programming application includes the following five character-
istics:

Chapter 1. Introduction 15

1. The problem can be divided into a number of stages t, with a decision xt

required at each stage.

2. Each stage t has a set of states {it} associated with it. At any stage a state
holds all the information that is needed to make a decision.

3. The decision taken at any stage determines how the state at the current stage
is transformed into the state at the next stage, as well as the immediately
earned reward or cost.

4. Given the current state, the optimal decision for each of the remaining stages
must not depend on previously reached states or previously taken decisions.
This is the so-called principle of optimality for dynamic programming (Bell-
man, 1957).

5. If the states for the problem have been classified into one of T stages, there
must be a recursion that relates the cost or reward earned during stages
t, t + 1, . . . , T to the cost or reward earned from stages t + 1, t + 2, . . . , T .

In a forward DP algorithm, the recursion mentioned in the fifth characteristic can
often be written as:

Ft(it) = MIN
xt∈St

{
ct(it, xt) + Ft−1(it−1(it, xt))

}
, (1.7)

where St is the set of possible decisions xt in stage t, where ct(it, xt) is the cost (or
reward in a maximization problem) function that returns the cost for moving from
state it−1(it, xt) to state it according to decision xt, where it−1(it, xt) is the state
from which it is reached, given decision xt, and where Ft(it) is the total minimum
cost (or maximum reward in a maximization problem) incurred from stage 1 to
stage t given state it in stage t.

In forward DP it is assumed that the desired state we want the system to be in, in
stage T (call it iT), can be specified. An optimal solution requires the identification
of an optimal set of decisions, one for each stage t. The algorithm to find these
decisions first applies a forward calculation pass, followed by a backward decision
determination pass. In the forward calculation pass, we first compute the F1(i1)
for all possible states in stage 1. We then apply (1.7) to calculate the F2(i2)’s in
terms of the F1(i1)’s, and continue in this fashion until FT (iT) has been reached.

16 1.4. Situating the chapters in a broader context

At this moment the forward calculation pass has been terminated. The backward
pass then starts with the determination of the optimal decision in stage T that
attains FT (iT). This decision in turn determines a state iT−1 in stage T − 1 from
which we arrive to state iT during the last stage. We then determine the optimal
stage T − 1 decision, which in turn determines a state iT−2 in stage T − 2, and
continue until the optimal stage 1 decision is found.

1.4 Situating the chapters in a broader context

For a good understanding of the material presented hereafter, it is necessary to
place it in a larger context. As an additional benefit, the reader obtains a better
view on the link between the different chapters. Basically, the considered prob-
lems fall into either the field of staff scheduling or into the field of operating room
scheduling or into a combination of both.

1.4.1 Staff scheduling

Humans undoubtedly make up the most important resource employed in hospitals.
Many operational scheduling problems encountered at hospitals can be classified
as staff scheduling problems. The fact that personnel scheduling in hospitals is
subject to specific constraints compared to other service organizations (like for in-
stance round the clock scheduling) makes the development of good staff schedules
a challenging issue. The first and most famous problem concerns the scheduling
of nursing personnel. In the nurse scheduling problem one has to determine when
nurses have to be present, taking into account a variety of hard/soft constraints
such as legal regulations, nurses’ preferences, minimal coverage requirements, per-
sonnel policies and many other restrictions that may be hospital specific.

The classic nurse scheduling problem (NSP) consists of generating a configuration
of individual schedules over a given time horizon in order to meet hospital staffing
demand. An individual’s roster line can be viewed as a sequence of days on and
days off, where each day on contains a single shift identified by a label such as
‘day’, ‘evening’ or ‘night’. Each such label coincides with a start and a finish time
of the corresponding shift. Furthermore, a day is subdivided into several demand
periods, indicating how many nurses are required to cover the work. These demand

Chapter 1. Introduction 17

periods often (but not necessarily) coincide with the shifts. The individual roster
lines are subject to a large number of constraints, further referred to as collective
agreement requirements. Examples of such constraints include shift transition con-
straints (e.g., a night shift cannot be followed by a morning shift), total workload
limitations, restrictions on the number of weekend shifts, holidays, etc.

A second important staff scheduling problem concerns the scheduling of so-called
trainees. Trainees are graduated students that wish to specialize further in a spe-
cific field of health care. The scheduling of trainees can be seen as a specific case
of nurse scheduling since it involves many similar constraints such as coverage re-
quirements and staff preferences. Trainees differ however from other nursing staff
in that they still have to complete an education. This education requires that they
have to perform a number of activities in a given time horizon. Such activities
include amongst others assisting during surgery, performing consultation or being
standby for emergency cases. Chapter 2 discusses in detail the solution approach
for solving a trainee scheduling problem. Although motivated by and tested on a
specific real-life case, the proposed solution method can easily be generalized and
is hence applicable in many situations.

Next to nurses and trainees, hospitals encounter several other types of staff schedul-
ing problems such as the scheduling of physiotherapists (e.g., Carter and Lapierre,
1999), anaesthetists (e.g., Dexter and Traub, 2000) or scheduling administrative
personnel.

1.4.2 Operating room scheduling

A critical resource in each hospital is the operating room. As pointed out by Lit-
vak and Long (2000), the operating room can be seen as the engine of the hospital.
Indeed, the activities inside the operating room have a dramatic impact on many
other activities within hospitals. For instance, patients undergoing an operation
are expected to recover during a number of days. Consequently, bed capacity and
nursing staff requirements are dependent on the operating room schedule. By well-
thought-out scheduling of the operating room, the expected variability in resource
demand can be minimized.

18 1.4. Situating the chapters in a broader context

Variability has a very negative impact on productivity and reducing it is one of
the major concerns of health care management. One can distinguish between two
types of variability: natural variability and artificial variability. Natural variability
is inherent to the uncertain world of health care. This variability arises from un-
certainty in patient show-ups (e.g., emergency cases), uncertainty in recovery time,
uncertainty in the successfulness of therapies etc. Artificial variability originates
from poor scheduling policies. A poor operating room schedule could for instance
directly be responsible for a shortage in beds each Wednesday, whereas there is
overcapacity on all other days of the week. Exact and/or heuristic algorithms can
assist in minimizing artificial variability. Although natural variability is by defi-
nition uncontrollable, its negative consequences can be minimized by developing
algorithms which aim at producing schedules with leveled resource uses.

Summarizing, what happens inside the operating room determines the demand for
various resources throughout the rest of the hospital. Altering the number of hours
preserved for certain ailments leads to important changes in the absolute demand
for several resources. The demand for services nearly always exceeds the available
capacity. As a result, an important question encountered at each hospital is which
services it should provide. In other words, what is the optimal case mix? In the
long term, this case mix determines for which ailments capacity will be preserved.
Obviously, case mix decisions depend largely on the funding of the hospital, as
indicated by Blake and Carter (2002), and these decisions have a large impact on
the quality of service. For instance, if the share of a certain ailment in the total
case mix decreases, patients suffering from this ailment will be confronted with
longer waiting times. In this dissertation, case mix decision problems are left out
of consideration. In other words, the absolute number of hours of operating room
time, allocated to each surgical group, is assumed to be fixed.

The absolute number of hours, allocated to each surgical group, is only one side of
the story though. At least of equal importance is the timing of the resource needs.
It is the operating room schedule that largely determines the time dimension of the
demand for resources. Chapter 3 presents a computer program that visualizes the
load of various resources as a function of the operating room schedule. The under-
lying model, on which the graphical user interface has been built, is very basic for
the resource consumption patterns are assumed to be deterministic. Moreover, the
software merely serves as a visualization module. It does not include automation

Chapter 1. Introduction 19

procedures, neither for the operating room scheduling, nor for those resources for
which scheduling by itself is already fairly complex (like nurses). Nonetheless, this
chapter is a good introduction for the following two chapters. By means of a case
study, the chapter provides a non-exhaustive overview of the key resources used in
hospitals. The most important amongst those are elaborated in the later chapters.
In Chapter 4 we develop a number of surgery scheduling algorithms that aim at
leveling the resultant bed occupancy. Subsequently, Chapter 5 describes a real-life
application of the models and algorithms developed in the preceding chapter.

If one mentions beds as an important resource to be considered when scheduling
the operating room, one implicitly refers to staffed beds. Indeed, a bed considered
as a physical unit by itself, is, although sometimes very sophisticated, relatively
cheap. On the contrary, a staffed bed is expensive and consequently much more
limited in capacity. We define a staffed bed as a bed for which the required care for
the occupying patient is guaranteed at each time instance by sufficient availability
of correctly skilled staff. Staff scheduling problems have already been introduced
in Section 1.4.1. As already mentioned above, Chapter 2 treats a specific staff
scheduling problem. Chapter 6 presents a model as well as a solution procedure
to integrate the operating room and the nurse scheduling process. The algorithmic
procedure was developed using knowledge gained from the staff scheduling field as
well as from the operating room scheduling field, combining several building blocks
into a beautiful integrated approach. As such, this chapter links the preceding
chapters.

1.4.3 Nurse scheduling literature review

In general nurse scheduling different approaches exist for various time horizons. In
many literature overviews the nurse scheduling problem is therefore decomposed
into different phases (3 phases in Warner, 1976a; Bradley and Martin, 1990; Sit-
ompul and Randhawa, 1990 and 5 phases in Tien and Kamiyama, 1982). Often
a distinction is made between staffing or planning and scheduling or rostering.
Staffing refers to longer term personnel planning and copes with decisions on the
number of hired nurses of the required skills in order to meet predicted demand,
defining work agreements for part time workers, deciding whether substitution of
skill categories is allowed, etc. Scheduling or rostering, on the other hand, refers

20 1.4. Situating the chapters in a broader context

to the short term timetabling of staff (with a typical time horizon of a few weeks).
Since staffing and scheduling takes place on different levels and for different time
horizons, it would be unworkable in practice to handle them simultaneously all
the time. Nevertheless, as staffing determines the input for scheduling, interaction
between the levels is certainly necessary. Venkataraman and Brusco (1996) even
present a completely integrated nurse staffing and scheduling system.

Recently, a brief but well-structured review on nurse scheduling is provided by
Cheang et al. (2003). Very recently, Burke et al. (2004) present a more extensive
and excellent survey that mainly copes with nurse rostering rather than staffing.
Ernst et al. (2004) and Blöchliger (2004) present a very comprehensive overview
of the literature on staff scheduling and rostering that they describe in general
rather than concentrating on nurse scheduling in particular. Both reviews, how-
ever, contain a category that specifically discusses health care systems and is mainly
concerned with nurse scheduling.

The paper by Warner et al. (1991) on patient-oriented and employee-oriented is-
sues in nurse management contains a description of the history of computerized
nurse scheduling in the United States. Also, Siferd and Benton (1992) provide an
overview in which they specifically deal with the factors influencing hospital staffing
and scheduling in the US. Ikegami and Niwa (2003) consider nurse scheduling prob-
lems in Japan for which rapid shift transitions are very common, i.e., nurses work
different shifts per week. Silvestro and Silvestro (2000) discuss the results of a
survey of nurse rostering practices in the UK National Health Service. For which
concerns the Belgian situation, excellent work has been done by Burke et al. (1998,
1999, 2001, 2003 and 2004) and De Causmaecker and Vanden Berghe (2003). They
developed a general model for the nurse rostering problems and refer to it as Ad-
vanced Nurse Rostering Model (ANROM). The problem dealt with in their model
is situated at the short-term timetabling level. Its main objective is to understand
and automatically generate comfortable shift schedules for personnel members in
order to meet the staff coverage while an extensive set of realistic constraints is
captured and integrated, together with explicit and implicit objectives, in a gen-
eral, flexible model. A more detailed analysis of the model and solution framework
can also be found in Burke et al. (2001a, 2001b, 2002 and 2006). A software pack-
age based on the model and the solution framework was first implemented in 1995
but the system is still evolving to cope with the new and more complex real-world

Chapter 1. Introduction 21

problems that keep appearing. So far, over 40 hospitals in Belgium have replaced
their time consuming manual scheduling by this system.

Several studies in the literature have utilized mathematical programming tech-
niques to assist in finding efficient staff schedules (see, e.g., Warner and Prawda,
1972; Abernathy et al., 1973; Warner, 1976b; Miller et al., 1976; Bailey and Field,
1985; Rosenbloom and Goertzen, 1987; Beaumont, 1997; Millar and Kiragu, 1998;
Bard et al., 2003; Isken, 2004). Mathematical programming approaches have often
been used when multiple objectives are considered (see, e.g., Arthur and Ravin-
dran, 1981; Ozkarahan and Bailey, 1988; Franz et al., 1989). These so-called goal
programming models allow for more flexibility to relative ranking assigned to vari-
ous objectives by defining target levels for different criterions and relative priorities
to achieve these goals (e.g., Azaiez and Sharif, 2005). Ozkarahan (1989) and Chen
and Yeung (1993) combine goal programming with expert systems (see further).
More recently, also heuristic procedures have been proposed for multiple objective
nurse scheduling (Berrada et al., 1996; Jaszkiewicz, 1997; Burke et al., 2002).

The main problem of integer programs lies in the large computation times needed
for many practical instances, even to obtain just a feasible solution. To overcome
this problem, heuristic approaches and techniques originating from the artificial
intelligence field have been developed and successfully applied on various nurse
scheduling problems. For specific problems, however, exact approaches that exploit
specific features of the problem structure can suffice to obtain reasonably small
computation times and as such form an alternative for standard integer program-
ming techniques. We distinguish between branch-and-bound and branch-and-price
approaches. Bosi and Milano (2001) combine constraint logic programming with
branch-and-bound techniques for scheduling problems. Trivedi and Warner (1976)
provide another example of a branch-and-bound algorithm that applies on the short-
term assignment of so-called float nurses (nurses from other units) whenever there
is a shortage of nurses in a particular unit. Ikegami and Niwa (2003) present a
branch-and-bound algorithm extended with heuristic search that generates very
promising results for 2-shift and 3-shift problems.

Examples of branch-and-price approaches for solving general staff scheduling prob-
lems can be found in Mehrotra et al. (2000) and Caprara et al. (2003). Papers
involving branch-and-price techniques that specifically deal with nurse scheduling

22 1.4. Situating the chapters in a broader context

problems include Jaumard et al. (1998), Mason and Smith (1998) and Bard and
Purnomo (2005a) and (2005b).

Artificial intelligence techniques focus on finding feasible solutions rather than op-
timizing a particular objective function. We distinguish between declarative and
constraint programming on the one hand and knowledge-based and expert systems
on the other hand. Constraint satisfaction models have been proposed by Okada
(1988), Okada and Okada (1992), Darmoni et al. (1995), Weil et al. (1995), Cheng
et al. (1997), Abdennadher and Schlenker (1999) and Musliu et al. (2000). As it
is often not possible in real-life applications to satisfy all the constraints anyway,
Meyer auf’m Hofe (1997) present a hierarchical constraint satisfaction model built
on a library of search algorithms and constraint propagation techniques. In an
advanced model of the same author (Meyer auf’m Hofe, 2001) fuzzy constraints
are introduced that can be partially violated and partially satisfied in a constraint
optimization framework. Constraint programming approaches are often combined
with other procedures. For instance, Meisels et al. (1996) and (1998) combine con-
straint networks and knowledge-based rules to solve employee timetabling problems
and Li et al. (2003) apply a hybrid constraint satisfaction/local search technique
for building personal schedules.

Expert system approaches provide the possibility for developing user-interactive,
integrated (staffing, rostering) decision support methodologies for nurse scheduling
problems (Nutt, 1984). Smith et al. (1979) developed an interactive ‘what-if’ de-
cision support system that allows users to assign and modify weights to different
objectives and to take personal preferences into account. Bell et al. (1986) present a
rather basic visual interactive decision support system for workforce scheduling. As
already mentioned earlier, Ozkarahan (1989) and Chen and Yeung (1993) combine
expert systems with goal programming. Case-based reasoning models have been
developed by Scott and Simpson (1998) and Petrovic et al. (2003). They attempt
to generate good quality solutions by mimicking the human style of reasoning in
existing manual rostering practices.

Heuristic procedures form another alternative to cope with large solution spaces
and hence long computation times. We distinguish between simple heuristic proce-
dures and metaheuristics. Simple heuristics mimic the trial-and-error manner that
the planner employs to construct the schedule by hand. Early contributions on

Chapter 1. Introduction 23

interactive heuristic procedures are presented by Smith (1976) to construct cycli-
cal schedules and by Smith and Wiggins (1977) for non-cyclical schedules. The
work of Blau (1985) is one of the earlier attempts to evenly treat personnel with
respect to workload and shift preferences. Anzai and Miura (1987) present a cyclic
descent algorithm for rostering problems with identical staff members. Blau and
Sear (1983) and Kostreva and Jennings (1991) solve the nurse scheduling problem
in two phases. Blau and Sear generate feasible shift patterns in a first step and
use a cyclic descent algorithm to assign a shift pattern to each nurse in order to
obtain an overall optimal schedule. The first step in Kostreva and Jennings (1991)
involves the generation of groups of feasible schedules that respect the minimum
staffing requirements. In the second step, the best possible solution, which is based
on the individual preferences, is calculated. Schaerf and Meisels (2000) present hill
climbing algorithms for general local search that allows partial assignments and
thus provides more flexibility towards satisfying coverage constraints.

Metaheuristic procedures are more general solution approaches since these tech-
niques are less problem dependent and hence can be applied to almost any kind of
combinatorial optimization problem. The most important metaheuristic approaches
include simulated annealing, tabu search and genetic algorithms.
Examples of simulated annealing approaches can be found in Isken and Hancock
(1991) and Brusco and Jacobs (1993). The model presented by Isken and Hancock
provides an original contribution as it does not assume fixed shifts but incorporates
flexible hours which is very common in many modern hospitals and allows for more
flexibility in staffing coverage. Brusco and Jacobs combine simulated annealing
with a simple local search heuristic to construct cyclical schedules for continuously
operating organizations (24 hours per day, 7 days per week) like hospitals, pub-
lic safety and telecommunication companies. For a short exposition on the basics
of the simulated annealing metaheuristic we refer the reader to Chapter 4, more
specifically to Section 4.4.4, in which we outline a simulated annealing procedure
for building a cyclical surgery schedule with leveled resultant bed occupancy.

Many modern attempts to solve complex scheduling problems involve tabu search
techniques. The originality of Dowsland’s (1998) contribution lies in the fact that
the search oscillates between feasible and non-feasible regions whereas other ap-
proaches tend to avoid infeasibility. Often tabu search is combined with another
search technique which results in a hybrid approach. Berrada et al. (1993), for in-

24 1.4. Situating the chapters in a broader context

stance, apply tabu search instead of mathematical programming in a multi-objective
framework. Burke et al. (1998) and (1999) hybridize a tabu search approach with
improvement techniques that simulate human reasoning. More details on the vari-
able neighborhood search approach can be found in Burke et al. (2003) and De
Causmacker and Vanden Berghe (2003). A general overview of this work is pre-
sented in Burke et al. (2004). Valouxis and Housos (2000) and Dowsland and
Thompson (2000) integrate tabu search in an integer programming model. Ikegami
and Niwa (2003) first decompose the problem into subproblems in which all but
one of the nurses’ schedules are fixed. Then, a tabu search algorithm tries to re-
peatedly satisfy the constraints on different subproblems. For this algorithm, they
only report results for 2-shift problems. However, this work also contains a branch-
and-bound method (see further) that has also been applied on 3-shift problems.
Bellanti et al. (2004) developed a tabu search method as well as an iterated lo-
cal search approach for solving a particular rostering problem in an Italian hospital.

Genetic algorithms make up the last important metaheuristic that we discuss in
this survey. Easton and Mansour (1993) and Tanomaru (1995) were among the
first to propose a genetic algorithm for employee staffing and scheduling, how-
ever their models are possibly too simple for real-life applications. Aickelin and
Dowsland (2000) use problem specific knowledge to guide the crossover operator
and extend their genetic algorithm with a hill-climbing operator. They decompose
the problem into easier to solve subproblems by taking advantage of the fact that
night and day shifts are preferably not combined in a one-week nurse schedule and
higher skilled nurses can replace lower qualified nurses but not vice versa. The
work by Aickelin and Dowsland (2004) deals with the same nurse rostering prob-
lem as in Aickelin and Dowsland (2000), but presents an indirect genetic algorithm
with a separate heuristic decoder instead of working with a direct representation
of the schedules. Also Ackelin and White (2004) tackle the same problem. Their
main contribution includes a statistical method for comparing algorithms that was
used to build a heuristic that performed better than the earlier heuristics. The
so-called population-less co-operative genetic algorithm by Jan et al. (2000) and
(2002) applies a 2-point crossover on the worst and a randomly selected schedule.
The genetic algorithm searches solutions in the feasible region only. Nevertheless,
applying crossover to nurse rostering nearly always causes problems of infeasibility.
Kawanaka et al. (2001) overcome this problem by exchanging shifts while attempt-
ing to maintain certain characteristics of the parents. Burke et al. (2001) present

Chapter 1. Introduction 25

a set of genetic as well as memetic algorithms (genetic algorithms extended with
local improvement procedures) to address some of the shortcomings of the approach
described in Burke et al. (1999). The authors show that these memetic algorithms
can handle initialization parameters and a range of instances more robustly than a
single-population approach (tabu search, see Burke et al., 1999 and 2003), at the
expense of longer computation times.

1.4.4 Operating room scheduling literature review

The literature on operating room scheduling can be structured using the three
stages that can be distinguished in developing operating room schedules. In the
first stage, often called case mix planning, it is decided how the available oper-
ating room time is divided over the different surgeons (or surgical groups). Case
mix planning problems have been studied by amongst others Hughes and Soliman
(1985), Rifai and Pecenka (1989), Robbins and Tuntiwongbiboon (1989) and Blake
and Carter (2002) and (2003).

Once the operating room time allocated to each surgical group has been chosen, the
second stage involves the development of a master surgery schedule. In the hierar-
chical framework for hospital production and control by Vissers et al. (2001) this
second stage of operating room scheduling could be positioned somewhere between
the Resource Planning & Control level and the Patient Group Planning & Control
level. The master surgery schedule is a cyclic timetable that defines the number
and type of operating rooms available, the hours that rooms will be open, and the
surgical groups or surgeons who are to be given priority for the operating room
time (Blake et al., 2002). A new master schedule is created whenever the total
amount of operating room time changes. Blake et al. (2002) propose an integer
programming model that minimizes the weighted average undersupply of operating
room hours, that is allocating to each surgical group a number of operating room
hours as close as possible to its target operating room hours (see also Blake and
Donald, 2002). Santibanez et al. (2005) present a system-wide optimization model
for block scheduling that enables managers to explore trade-offs between operating
room availability, booking privileges by surgeons, bed capacity and waitlists for
patients.

26 1.4. Situating the chapters in a broader context

After the development of the master surgery schedule, elective cases can be sched-
uled. This third stage involves the detailed planning of each elective case. This
stage has more of an operational focus as it occurs on a daily basis and includes
operational scheduling decisions like assigning the cases to operating rooms, de-
termining the order and the start and end times of the cases (e.g., Weiss, 1990;
Ozkarahan, 1995 and 2000), the reservation of specialized equipment etc. Some-
times, this third stage is integrated with longer term scheduling. For instance,
Guinet and Chaabane (2003) and Jebali et al. (2006) propose a two-step approach
for operating theatre planning. The first step involves assigning patient interven-
tions to operating rooms on a medium term horizon. The second step entails the
daily rescheduling of the patient interventions in order to integrate more charac-
teristics for human and material resource synchronization. Other interesting work
that applies on the third stage has been done by Lapierre et al. (1999), Dexter et
al. (1999) and (2001), Dexter and Traub (2002) and Marcon et al. (2003).

When building surgery schedules, several objectives could be taken into account.
Much research has focussed on the maximization of operating room utilization for
which many algorithms have been studied ranging from simple heuristics (e.g.,
earliest start time first, largest duration first, etc.) to more complex bin packing
algorithms (see, e.g., Dexter et al., 1999; Dexter and Traub, 2002). A strongly
related objective is to minimize the operating room staffing costs (e.g., Dexter et
al., 2000). An objective that receives more and more attention nowadays is the
management of uncertainty. Many studies have focussed on increasing the punctu-
ality of the schedule realized (e.g., Lapierre et al., 1999; Dexter et al., 2001; Marcon
et al., 2003). Obviously, managing uncertainty requires insight into a number of
aspects of the interaction of the planned (elective) and the emergency (non-elective)
cases. Gerchak et al. (1996) provide a stochastic dynamic programming model for
the advance scheduling of elective surgery under uncertain demand for emergency
surgery. Kim et al. (2000) describe a flexible bed allocation scheme that reserves
one or more beds for the exclusive use of elective-surgery patients to enhance the
operations of the intensive care unit. Kim and Horowitz (2002) elaborate on this
work and use a simulation model to show that the combination of this flexible bed
allocation scheme and a quota system for elective surgery greatly reduces the num-
ber of canceled surgeries. Bowers and Mould (2004) propose a policy of including
planned, elective patients within the trauma (non-elective) session and show by

Chapter 1. Introduction 27

means of simulation how substantially greater throughputs can be achieved.

The management of resources is often considered a crucial issue in operating room
scheduling. Ozkarahan (1995) proposes an expert hospital decision support system
for resource scheduling that combines mathematical programming, knowledge base,
and database technologies. Five years later, the same author (Ozkarahan, 2000)
describes a goal programming model which can produce schedules that best serve
the needs of the hospital, i.e., by minimizing idle time and overtime, and increas-
ing satisfaction of surgeons, patients, and staff. The approach involves sorting the
requests for a particular day on the basis of block restrictions, room utilization,
surgeon preferences and intensive care capabilities.

When planning a surgical procedure, one of the first things checked is whether or
not a bed is available for the patient. A good assignment of the current bed capac-
ity to incoming patients may result in the reservation of buffer capacity to absorb
peeks in emergency cases. Once again, a variety of constraints have to be taken
into account when assigning beds to patients. It is for instance not desirable that
male and female patients or people with large age differences share a room. Clerkin
et al. (1995) propose an automated expert system that assigns beds to incoming
patients. The relation between bed occupancy and the surgery schedule has been
subject to many studies (e.g., Dumas, 1984 and 1985; Harris, 1985; Wright, 1987;
Gorunescu et al., 2002; McManus et al., 2004; Santibanez et al., 2005). Also, the
importance of the relation to staff decision problems has been recognized. Dexter
and Traub (2000) determine staffing requirements for a second shift of anaesthetists
by graphical analysis of data from operating room information systems. Griffiths
et al. (2005) model the requirement for supplementary nurses in an intensive care
unit. Hamilton and Breslawski (1994) argue that the factors considered by operat-
ing room administrators to be critical to operating room scheduling are dependent
on the nature of the scheduling system. The results of their large scale survey
indicated that in block systems, which is the system used throughout this disser-
tation, the number of operating rooms, the equipment limitations, the block times
assigned and the hospital scheduling policy are considered to be important criteria.
In first come, first served systems the number of operating rooms, the estimated
room set up duration, the estimated case duration and the equipment restrictions
are considered to be essential.

28 1.5. Summary

1.5 Summary

Due to the ageing of society and the continuously growing demands, health care is
becoming increasingly expensive. Techniques originating from operations research,
decision support and artificial intelligence might provide an answer to cope with
the growing pressure on scarce resources. A key issue for successful health care
management is scheduling. The quality of the produced schedules as well as the
efficiency with which the schedules are developed have a large contribution to the
overall hospital performance. Well-thought-out scheduling procedures can lead to
many benefits, financial ones as well as social ones. Good scheduling practices result
in a more efficient use of recourses and hence reduce costs. Social benefits might
include the increase of the personnel’s satisfaction and well being, safer working
environments and a higher quality of care for the patients.

This thesis deals with algorithmic procedures for solving scheduling problems en-
countered in hospitals. Our research concerns both staff and operating room
scheduling problems. The research is fundamental as well as applied. Although
heuristic approaches are included, the main focus lies on exact solution procedures.

Almost all problems will be stated using an integer programming formulation.
While developing the different algorithms, several mathematical programming tech-
niques are considered. The techniques that are most often used in this thesis are
column generation, branch-and-price and deterministic dynamic programming.

The remainder of this thesis is organized as follows. Chapter 2 discusses in detail
the solution approach for solving a trainee scheduling problem. Chapter 3 presents
a computer program that visualizes the load of various resources as a function of the
operating room schedule. Chapter 4 then focuses on one of these resources, namely
beds, and proposes a number of operating room scheduling models, formulations
and algorithms that aim at leveling the resultant bed occupancy. Subsequently,
Chapter 5 describes a real-life application of the models and algorithms developed
in the preceding chapter. Chapter 6 provides a conjunction of the staff scheduling
techniques with the operating room scheduling procedures, as it proposes an inte-
grated approach for building surgery and nurse schedules. To end, Chapter 7 draws
some general conclusions and sketches some directions for future research.

Chapter 2

Scheduling trainees at a

hospital department using a

branch-and-price approach

Scheduling trainees is a complicated problem that has to be solved frequently in
many hospital departments. We will describe a trainee scheduling problem en-
countered in practice at the ophthalmology department of the university hospital
Gasthuisberg, Leuven. In this problem a department has a number of trainees at
its disposal, which assist specialists in their activities (surgery, consultation, etc.).
For each trainee one has to schedule the activities in which (s)he will assist dur-
ing a certain time horizon, usually one year. Typically, this kind of scheduling
problem is characterized by four types of constraints: work covering constraints,
formation requirements, non-availability constraints and setup restrictions. This
chapter describes a number of exact branch-and-price methods to solve the prob-
lem to optimality and a number of heuristic extensions to find good solutions for a
generalized version of the problem.

29

30 2.1. Introduction

2.1 Introduction

In this chapter the problem of scheduling medical trainees to perform a number of
activities over a given time horizon is addressed. Although frequently encountered
in practice, to the best of our knowledge, no papers in the literature deal with
this problem. In a broader view the trainee scheduling problem can however be
classified as a medical staff scheduling problem. It distinguishes from the classic
Nurse Scheduling Problem (NSP) in the fact that the NSP usually deals with de-
tailed shift scheduling, e.g., determining the exact hours nurses have to work during
the next month, whereas trainees are scheduled over a much longer time horizon
(usually one year). Moreover, in contrast to qualified nurses, trainees still have
to complete an education. This education requires that they have to perform a
number of widely divergent activities and the capacity of the trainee posts is often
limited. Consequently, the set covering constraints in the NSP are replaced by set
partitioning constraints. A second important difference is the undesirability of a
situation where a trainee alternates too much between the activities. Each activity
(re)start represents a discontinuity in his/her education and involves a considerable
mastering time for the trainee. Hence, when a trainee has a week-off, (s)he cannot
simply be replaced by another trainee, due to the difference in qualification and
due to the mastering time. Nurses, however, can usually exchange weeks-off rather
easily by mutual agreement.

To solve the trainee scheduling problem, we will develop two branch-and-price algo-
rithms. Branch-and-price has gained considerable attention during the last decade.
Most of the encountered scheduling problems studied in the literature are short-
term shift scheduling problems involving some kind of set covering or set parti-
tioning formulation (e.g., Caprara et al., 2003; Jaumard et al., 1998; Bard and
Purnomo, 2005a and 2005b; Mehrotra et al., 2000; Mason and Smith, 1998). Al-
ternatively, 0-1 multi-commodity flow formulations are proposed (e.g., Cappanera
and Gallo, 2001; Moz and Pato, 2003). To the best of our knowledge all branch-
and-price approaches for staff scheduling problems decompose on staff members,
i.e., generate columns per staff member. In contrast, we study a slightly simplified
version of a long-term scheduling problem for which we propose a decomposition
scheme on the tasks, further referred to as activities, instead of decomposing on
the employees. This approach enables us to find optimal solutions for real-life data
sets. The problem will be written as a 0-1 multi-commodity flow problem with

Chapter 2. Scheduling trainees at a hospital department using a
branch-and-price approach 31

side constraints, where each activity corresponds to a commodity. Afterwards, this
original approach is compared to the more common approach in which the problem
is decomposed on the staff members resulting in a set partitioning problem.

The remainder of this chapter is organized as follows. In Section 2.2 the problem
will be stated and written as an integer program. Next, Section 2.3 describes an
exact branch-and-price method in which a slightly simplified version of the problem
is solved, using a decomposition on the activities approach. Section 2.4 discusses
the computational results that are obtained. Section 2.5 draws some conclusions
with respect to the decomposition on the activities approach and introduces the
remaining part of this chapter. In Section 2.6 the developed approach is compared
with the more common solution procedure for staff scheduling problems in which
the problem is decomposed on the trainees. Subsequently, Section 2.7 describes a
generalization of the problem and proposes some heuristic extensions. Section 2.8
presents the graphical user interface that was developed on top of the algorithmic
procedures. Finally, Section 2.9 draws overall conclusions and lists some topics for
future research.

2.2 Problem Statement

Consider a hospital department in which trainees have to perform a number of
activities over a certain time horizon. The task is to schedule these trainees to per-
form the activities so that a number of constraints is satisfied. First, during each
period, each activity has to be performed by exactly one trainee out of a given set.
These trainee sets are mainly determined by the experience levels of the trainees.
Second, for each trainee the minimum and maximum number of periods (s)he has
to perform each activity is given in order to meet formation objectives. Third, for
each trainee it is known for each time period whether or not (s)he is available to be
scheduled. Finally, in order to maximize both the efficiency and the quality of the
service provided, we cannot split activities up per trainee. The efficiency decreases
with each new activity start of a trainee, because it takes (again) some time to
master the skills required for the activity. Moreover, patients have a smaller chance
to be treated by one and the same trainee, resulting in less efficient care. In the
ideal case each trainee starts each activity only once and performs it for a minimum

32 2.2. Problem Statement

number of consecutive periods.

The last two constraints are soft constraints meaning that they can be violated
at a certain cost. Since a split-up in activities is considered to be worse than the
violation of a non-availability constraint, we will concentrate on the problem solu-
tion in which we only relax the non-availability constraints. Therefore, the trainees
have to quantify their preferences for having weeks off. This happens by dividing a
number of points per trainee over the scheduling horizon. The higher the number
of points a certain period receives, the stronger the trainee feels about not being
scheduled during that period.

Let us illustrate this problem with a simple example. Suppose we have a problem
with three activities, four trainees and ten periods. Furthermore, suppose that each
assistant has to perform each activity between a minimum of two and a maximum
of three consecutive periods. This example is graphically represented in Table 2.1.
The columns represent the trainees and the rows represent the periods. The num-
bers indicate the non-availability costs for each trainee. Note that each trainee has
divided in total five points over the ten periods. It is realistic that these points are
concentrated in a small number of periods.

A possible solution for this problem is represented in Table 2.2. In this solution,
trainees 1 and 3 are both scheduled during a period in which they actually prefer
not to be scheduled, respectively period 7 and period 9 (indicated in bold), making
up for a total cost of 1+1 = 2. In practice, this means that either the trainee has to
give up his/her preference for having a period off or the trainee has to be replaced
by someone else in this period, resulting in a decrease of the quality of care. As a
final remark, observe that in this solution during four time periods no activity is
scheduled for a particular trainee although (s)he is available. During these periods,
the trainees will perform activities for which no specific skills are required and for
which consequently both the experience level and the minimal formation require-
ments are less important. An example of such an activity is consultation. Such
activities are called easy activities, in contrast with the difficult activities that were
discussed above. A two-phase approach is thus being used to solve this problem.
In the first phase, the difficult activities are scheduled. In the second phase, the
partial schedule is completed with the easy activities. The scheduling of the easy
activities is straightforward and can easily be done manually. Therefore, we will

Chapter 2. Scheduling trainees at a hospital department using a
branch-and-price approach 33

only concentrate on the scheduling of the difficult activities in the first part of this
chapter.

Table 2.1: A problem instance

Non-availability costs

Period Trainee 1 Trainee 2 Trainee 3 Trainee 4

1

2 4

3 4

4 1

5

6 2

7 1

8 4

9 1

10 3

In order to provide more insight into the problem, we will shortly describe how
this task was carried out up till now. In a first step, the responsible scheduler
collects the required data. Coverage constraints and formation requirements are
provided by the head of the department. Non-availability constraints are collected
in a hierarchical way. A list circulates in which the trainees successively indicate
during which weeks they will be absent and during which weeks they would like to
take vacation. To ensure that vacation periods are sufficiently spread, the number
of trainees having vacation at the same time is limited. Next, using pencil and
paper, the scheduler tries to find a schedule that satisfies as many constraints as
possible. She mainly concentrates on the satisfaction of the coverage constraints.
At a certain moment, typically when about 75% of the schedule is completed, she
fails to satisfy the next coverage constraints without violating one or more of the
formation, non-availability or setup constraints. At that moment, she tries to solve
the schedule conflict by making a number of assignments undone or performing a
number of switches. If she fails to solve the conflict in a limited number of tries, she
accepts the violation of one (or more) constraints and continues the construction

34 2.2. Problem Statement

Table 2.2: A solution for the problem instance

Activity schedule

Period Trainee 1 Trainee 2 Trainee 3 Trainee 4

1 act 1 act 2 act 3

2 act 1 act 2 act 3

3 act 3 act 1 act 2

4 act 3 act 1 act 2

5 act 3 act 1 act 2

6 act 2 act 3 act 1

7 act 2 act 3 act 1

8 act 2 act 3 act 1

9 act 1 act 2 act 3

10 act 1 act 2 act 3

of the schedule. Upon completion, the schedule is communicated to all the people
involved (trainees and surgeons). Since this task essentially involves the solution of
a complex combinatorial puzzle and PC’s are typically more suitable to solve such
problems than humans, we believe that a well-thought-out algorithm could save
construction time as well as generate qualitatively better schedules. First, we will
state the problem mathematically as an integer program.

If we are to state an integer programming formulation for this problem, we first have
to define a set of decision variables. Let i be the period index, j the trainee index
and k the activity index. Since we have to decide for each trainee which activity
(s)he will perform during each week, a natural choice of decision variables would be:

xijk =

{
1, if during period i trainee j is scheduled to perform activity k;
0, otherwise.

yijk =

{
1, if trainee j starts activity k during period i;
0, otherwise.

Chapter 2. Scheduling trainees at a hospital department using a
branch-and-price approach 35

Let pij be the penalty cost charged for assigning trainee j to period i. It must be
clear that pij equals 0 if trainee j is available during period i. Let ljk and ujk be the
respective minimum and maximum number of periods assistant j has to perform
activity k. We assume that ujk > 0 implies ljk > 0 although this assumption is not
necessary for our algorithm. Finally, let Sk represent the set of trainees that will
perform activity k in the given time horizon (i.e., all trainees j for which ujk > 0).
The integer linear programming model (ILP) is given below.

Minimize
n∑

i=1

p∑

k=1

∑

j∈Sk

pijxijk (2.1)

subject to:

p∑

k=1

xijk ≤ 1 ∀i = 1, ..., n and ∀j = 1, ..., m (2.2)

∑

j∈Sk

xijk = 1 ∀i = 1, ..., n and ∀k = 1, ..., p (2.3)

n∑

i=1

xijk ≥ ljk ∀k = 1, ..., p and ∀j ∈ Sk (2.4)

n∑

i=1

xijk ≤ ujk ∀k = 1, ..., p and ∀j ∈ Sk (2.5)

y1jk = x1jk ∀k = 1, ..., p and ∀j ∈ Sk (2.6)

yijk ≥ xijk − x(i−1)jk ∀i = 2, ..., n and ∀k = 1, ..., p and ∀j ∈ Sk (2.7)
n∑

i=1

yijk = 1 ∀k = 1, ..., p and ∀j ∈ Sk (2.8)

yijk, xijk ∈ {0, 1} ∀i = 1, ..., n and ∀k = 1, ..., p and ∀j ∈ Sk (2.9)

The objective function (2.1) minimizes the total schedule cost. Constraint set (2.2)
ensures that each trainee can perform no more than one activity in each period.
Constraint set (2.3) makes sure that in each period every activity is performed by
exactly one trainee. Constraint sets (2.4) and (2.5) state that each trainee performs
each activity between a minimum and a maximum number of periods. The fact
that each trainee starts each activity only once is reflected in (2.6), (2.7) and (2.8).

36 2.3. A branch-and-price approach

Finally, (2.9) defines x and y as binary variables.

A last remark concerns activities that require more than one trainee during each
period. We replace each of these activities by two or more artificial activities, divid-
ing the trainees in the original set Sk over these new activities. The total number
of resulting activities equals the number of required trainees for that activity. As
each resulting activity requires one trainee, the scheduling of this new set of ac-
tivities satisfies the original coverage constraint. The trainees having to perform
the original activity are divided over the new set of activities. This division takes
place before the start of our algorithm. Consider, for instance, an activity where
two trainees are required each time period and twelve trainees have to perform the
activity. Then, this activity will be replaced by two new activities each of which has
to be performed by six trainees. This assumption facilitates the construction of an
enumeration scheme at the cost of possibly excluding an optimal solution, since we
only consider one particular division of trainees over the newly introduced activities.

For a problem with n time periods, m trainees and p activities, this notation requires
at most 2nmp binary decision variables. For instance, a problem with 35 periods,
8 trainees and 6 activities involves at most 3360 binary decision variables in the
formulation of (1)-(9). In Section 2.4.1 we show that problems of these dimensions
require long solution times using this formulation and a commercial integer linear
programming solver. A dedicated branch-and-price procedure will be shown to be
more suitable to solve this problem.

2.3 A branch-and-price approach

2.3.1 Decomposition of the problem

Decomposition involves the division of the problem into several subproblems. An-
other way of seeing this is to introduce new decision variables, each one representing
a subset of the old decision variables, that implicitly satisfy a number of constraints.
Solving a subproblem is then analogous to finding a new decision variable or col-
umn for the ILP. The constraints that remain in the ILP can be seen as the linking
constraints. The advantage of such an approach is that the LP bound of the new
formulation is usually much stronger than that of the original formulation and
consequently the branch-and-bound tree remains smaller.

Chapter 2. Scheduling trainees at a hospital department using a
branch-and-price approach 37

2.3.2 An alternative formulation

The integer program of (2.1)-(2.9) could be formulated in a totally different way.
Observe that the problem can be seen as the scheduling of p activity patterns.
An activity pattern includes the scheduling of all trainees having to perform the
activity. For reasons that will become clear in a moment, an activity pattern will
be called a column in the rest of this chapter. Now, we can introduce new binary
decision variables that explicitly incorporate these columns. Let binary decision
variable zkt be defined as follows:

zkt =

{
1, if column t was chosen for activity k;
0, otherwise.

Let ckt be the total cost of column t for activity k and NCk the total number of
different columns for activity k. Let aijkt equal 1 if in column t trainee j is sched-
uled during period i for activity k. The model can then be formulated as follows:

Minimize
p∑

k=1

NCk∑
t=1

cktzkt (2.10)

subject to:

p∑

k=1

NCk∑
t=1

aijktzkt ≤ 1 ∀i = 1, ..., n and ∀j = 1, ..., m (2.11)

NCk∑
t=1

zkt = 1 ∀k = 1, ..., p (2.12)

zkt ∈ {0, 1} ∀k = 1, ..., p and ∀t = 1, ..., NCk (2.13)

The objective function is again the minimization of costs, but now expressed in
terms of the new zkt variables. Constraint set (2.11) states that each trainee can

38 2.3. A branch-and-price approach

perform no more than one activity at the same time. Constraint set (2.12) implies
that exactly one column has to be selected for each activity. The main drawback,
however, is that this new model can have far more variables than can be reasonably
attacked directly. Fortunately, column generation can help to overcome this diffi-
culty. This technique is well known for this type of problems (see, e.g., Jaumard et
al., 1998; Bard and Purnomo, 2005b). Column generation is based on the observa-
tion that it is not necessary to enumerate all possible columns in order to solve the
LP to optimality. The LP can be solved by using only a subset of the columns and
can generate more columns as needed.

The LP is solved to optimality when no more columns price out, i.e., no more
columns with negative reduced cost can be found. Let λij represent the dual prices
of restrictions (2.11) and let γk represent the dual prices of restrictions (2.12). The
reduced cost of a new column t for activity k is given by:

ckt − γk −
n∑

i=1

m∑

j=1

λijaijkt

= −γk +
n∑

i=1

m∑

j=1

(pij − λij)aijkt (2.14)

The master problem (2.10)-(2.13) is in fact a 0-1 capacitated multicommodity flow
problem in which each activity corresponds to a commodity and all arc capacities
and commodity requirements are equal to 1. Tests revealed that the LP relax-
ation of this formulation provides a much stronger lower bound than that from the
original formulation of (2.1)-(2.9) (see Section 2.4.1). The reason is that in the
new formulation (2.10)-(2.12) the optimization is performed over the convex hull of
feasible points of the subproblems, and not just over the relaxed feasible region of
(2.1)-(2.8). It can easily be shown that each feasible solution of the new formula-
tion (2.10)-(2.12) is also feasible in the original formulation (2.1)-(2.8). To see this,
observe that each zkt solution can be reformed to an xijk solution, which is feasible
to (2.1)-(2.8). Therefore, simply set each xijk equal to

∑NCk

t aijktzkt. The reverse
is not true when the convex hull of the subproblem constraints is not integral. The

Chapter 2. Scheduling trainees at a hospital department using a
branch-and-price approach 39

feasible solution space of (2.1)-(2.8) is much larger than that of (2.10)-(2.12). Al-
though a smaller feasible region is no guarantee to obtain a better bound, it is quite
likely that the optimal solution of (2.1)-(2.8) is not feasible in the new formulation
(2.10)-(2.12).

In the next sections the branch-and-price algorithm will be expanded upon. First,
an overview of the algorithm is given. Second, the pricing problem is discussed.
Third, three possible branching strategies are elaborated. Finally, some improve-
ments to speed up the computation time will be explored.

2.3.3 Branch-and-price algorithm overview

In Algorithm 1, an overview of the branch-and-price algorithm is given. The al-
gorithm starts with a heuristic in order to find an initial solution. This heuristic
successively generates activity patterns (columns) without violating the no-overlap
constraint. If the algorithm succeeds in finding a feasible solution, the schedule
is saved and an initial upper bound is registered. The master is initialized with
both the p columns making up the best solution found and p supercolumns (one
per activity), which are needed to ensure feasibility of the master at each level of
the branch-and-bound tree. Each iteration of the main while loop consists of two
parts: the LP optimization loop (which upon termination provides a lower bound)
and a move in the branch-and-bound search tree.

40 2.3. A branch-and-price approach

Algorithm 1 BRANCH-AND-PRICE
apply heuristic to find initial solution;

if (solution found) then

register schedule;

upper bound ← best solution found;

initiate master with p columns from initial solution and p supercolumns;

else

upper bound ← +∞;

initiate master with p supercolumns;

end if

l ← 0;

while (l ≥ 0) do

LP opt found ← FALSE;

while (LP opt found=FALSE) do

LP opt found ← TRUE;

upper bound ← SOLVE-MASTER-LP();

for (k = 1 to p) do

RCk ← FIND-NEW-COLUMN(k);

if (RCk < 0) then

add new column to master;

LP opt found ← FALSE;

end if

end for

end while

continue ← TRUE;

while (continue=TRUE) do

if (LP opt ≥ upper bound) then

while (all branches on level l explored) do

l ← l− 1; {backtrack}
end while

explore next branch on level l;

add corresponding branching restriction;

continue ← FALSE;

else if (fractional solution) then

l ← l + 1; {branch one level further}
add new branching restriction;

continue ← FALSE;

else if (integral solution) then

register schedule;

upper bound ← LP opt;

end if

end while

end while

Chapter 2. Scheduling trainees at a hospital department using a
branch-and-price approach 41

2.3.4 The pricing problem

The pricing problem for activity k can be stated as follows. Let xij equal 1 if trainee
j is scheduled to perform activity k during period i and let yij be 1 if trainee j

starts activity k at period i.

Minimize
n∑

i=1

∑

j∈Sk

(pij − λij)xij (2.15)

subject to:

∑

j∈Sk

xij = 1 ∀i = 1, ..., n (2.16)

n∑

i=1

xij ≥ ljk ∀j ∈ Sk (2.17)

n∑

i=1

xij ≤ ujk ∀j ∈ Sk (2.18)

y1j = x1j ∀j ∈ Sk (2.19)

yij ≥ xij − x(i−1)j ∀i = 2, ..., n and ∀j ∈ Sk (2.20)
n∑

i=1

yij ≤ 1 ∀j ∈ Sk (2.21)

xij , yij ∈ {0, 1} ∀i = 1, ..., n and ∀j ∈ Sk (2.22)

Objective (2.15) simply entails the minimization of the (variable part of) the re-
duced cost (2.14). Constraints (2.16)-(2.22) are just a repetition of the constraints
(2.3)-(2.9) for activity k.

The pricing problem (2.15)-(2.22) is a restricted shortest path problem. Suppose
we are searching a new column for activity k. This problem can be visualized by
a matrix. The columns in this matrix represent the trainees j ∈ Sk and the rows
represent the time horizon. Each cell of the matrix has a cost gij which equals the
corresponding non-availability cost pij minus the corresponding dual price λij . This
matrix has to be traversed from top to bottom in the cheapest way possible, while
visiting each column exactly once between a minimum and a maximum number of
rows. Table 2.3 represents the best solution and Table 2.4 represents one of the
several alternative second best solutions for an instance of a pricing problem for
an activity with four trainees that all have to be scheduled between one and two

42 2.3. A branch-and-price approach

periods in a time horizon of six periods. The found solutions are indicated in bold.
Hence, the optimal solution first schedules trainee 1 for two periods, followed by
trainee 3 for two periods, then trainee 2 for one period and finally trainee 4 for one
period.

Table 2.3: Pricing problema: optimal solution indicated in bold

gij = non-availability cost pij- dual price λij

Period i Trainee j = 1 Trainee j = 2 Trainee j = 3 Trainee j = 4

1 0 1 1 2

2 0 1 1 1

3 4 2 1 4

4 2 1 0 0

5 0 0 4 0

6 1 5 3 1

a For ease of explanation all cost values are integer. Note however that during column

generation these cost values are usually fractional due to the dual prices.

The pricing problem is solved with a dynamic programming approach (Bellman,
1957; Dreyfus and Law, 1977). Let T denote a set of trainees. The subproblem can
be described as finding the cheapest way to reach period i with all trainees in T

scheduled. Let cost(i, T) represent this cost. If gij is the cost to assign period i to
trainee j and we search a column for activity k, then cost(i, T) can be formulated
recursively as follows:

cost(i, T) = MIN
j∈T

{
MIN

ljk≤d≤ujk

{
cost(i− d, T\{j}) +

d∑

b=1

gi−d+b,j

}}
(2.23)

Chapter 2. Scheduling trainees at a hospital department using a
branch-and-price approach 43

Table 2.4: Pricing problema: 2nd best solution indicated in bold

gij = non-availability cost pij- dual price λij

Period i Trainee j = 1 Trainee j = 2 Trainee j = 3 Trainee j = 4

1 0 1 1 2

2 0 1 1 1

3 4 2 1 4

4 2 1 0 0

5 0 0 4 0

6 1 5 3 1

a For ease of explanation all cost values are integer. Note however that during column

generation these cost values are usually fractional due to the dual prices.

To solve the pricing problem, we must calculate cost(n, Sk) using (2.23) and make
sure we know which schedule it represents. The different values for cost(i|T) can
be calculated working backwards using a recursive procedure. After application of
the backward dynamic recursion to the example above, the values for cost(i, T) are
known for all possible values of i and T . These values are represented in the left
part of Table 2.5.

Obviously, values for state spaces that cannot lead to a feasible path are not cal-
culated. Nevertheless, the number of cost calculations grows exponentially with
the number of trainees that have to be scheduled. For realistic data (number of
trainees) this number is not too large which results in acceptable solution times
(¿ 1s).

Once all calculations are done, the cheapest way to reach period n can be found
easily. Observe that cost(n|Sk) = c∗ contains the cheapest cost. The schedule is
constructed backward step-by-step by searching for which trainee j ∈ Sk and for
which d = ljk to ujk the following expression holds:

c∗ = cost(n− d|Sk\{j}) +
d∑

b=1

gn−d+b,j (2.24)

44 2.3. A branch-and-price approach

If a match is encountered, trainee j is scheduled for d periods starting from the cur-
rent period to the front and both the current period and the set of already scheduled
trainees are updated. This process continues until the last trainee is scheduled at
the beginning of the scheduling horizon.

An important advantage of the pure dynamic programming approach (i.e., without
lower bound pruning) is that it can be easily extended to find the bth best solution
instead of only the optimal solution. This property is very useful in a branch-
and-price environment with branching on the column variables zkt (see 2.3.6.1).
Our algorithm to find the bth best column reflects the same idea as the algorithm

Table 2.5: State spaces for example 1
Period i T cost(i, T) 2nd best value

1 {1} 0

{2} 1

{3} 1

{4} 2

2 {1} 0 +∞
{2} 2

{3} 2

{4} 3

{1,2} 1

{1,3} 1

{1,4} 1

{2,3} 2

{2,4} 2

{3,4} 2

3 {1,2} 2

{1,3} 1

{1,4} 4

{2,3} 3

{2,4} 5

{3,4} 4

4 {1,2} 3

{1,3} 1 8

{1,4} 4

{2,3} 3

{2,4} 6

{3,4} 4

{1,2,3} 2

{1,2,4} 2

{1,3,4} 1

{2,3,4} 3

5 {1,2,3} 1 2

{1,2,4} 2

{1,3,4} 1

{2,3,4} 3

6 {1,2,3,4} 2 3

Chapter 2. Scheduling trainees at a hospital department using a
branch-and-price approach 45

proposed by Jiménez and Marzal (1999) for computing the K shortest paths in a
network. To find the second best solution one first searches for the optimal solution
as described above. Then, starting at the beginning of the time horizon all cost
values being part of the found column are adapted to represent the second cheapest
cost values. During this cost recalculation phase |Sk| cost recalculations are made.
We start with the first state of the optimal path (let j1 be the first trainee scheduled
and i1 the number of periods this trainee is scheduled):

cost(i1, {j1}) = ∞ (2.25)

Working forward all cost values of the states (i, T) on the optimal path can now be
recalculated using (2.23). After these recalculations the cost values represent the
second best value.

The second best values for these states are indicated in the right part of Table
2.5. The recalculations are as follows. First, cost(2|{1}) with initial value zero is
updated to ∞, since there is no other possibility to reach period 2 with only trainee
1 scheduled. Next, cost(4|{1, 3}) with initial value one is updated to 8 (schedule
trainee 3 during the first two periods and trainee 1 during the following two pe-
riods). The value of cost(5|{1, 2, 3}) changes from 1 to 2, since the cheapest way
to reach period 5 with trainees 1, 2 and 3 scheduled is now by scheduling trainee
1 during periods 1 and 2, trainee 3 during period 3 and trainee 2 during periods
4 and 5. Finally, cost(6|{1, 2, 3, 4}) is updated from 2 to 3 (recall that the second
best path is represented in Table 2.4). Note that the same cost can also be obtained
when scheduling trainee 2 only during period 4 and trainee 4 during periods 5 and 6.

When the |Sk| cost values are updated, the backward construction phase described
above will now generate the second best column.

The old cost values (and the partial paths represented by these values), however,
have to be saved in a list, because they could be part of the second best column
and thus could be necessary during backward construction. This will be the case if
the second best column has the same head as the optimal column but a different
tail, which is the case for the example in Table 2.4. When during backward con-
struction no trainee assignment can be found that matches (2.24), the list has to
be scanned. In this case the list always contains a matching cost value. Note that
once a cost value is retrieved from the list, the remaining trainee assignments can

46 2.3. A branch-and-price approach

also be found in the list; they occupy the immediately preceding positions. After
the recalculation phase the list contains the values of the old states, together with
the paths they represent (Table 2.6).

For the example, the list is needed when state (3, {1, 3}) is reached. From this state,
no matching cost value (state) can be found, since the needed value cost(2, {1}) = 0
now equals ∞. A scan through the list resolves the problem and completes the con-
struction of the second best path. In the recalculation phase one also has to take
into account the state spaces in the list as possible starting states for calculating
the next best state values. These states can only be taken into consideration if the
list does not already contain the same partial path as the one that would be con-
structed now, i.e., if the path represented by the start state (in the list) completed
with the last arc is not already present in the list. This condition is needed to
prevent construction of the same path twice. It is now clear why also the path has
to be saved in the list. Since the list is empty during the first recalculation phase
and this condition will never be satisfied during the second recalculation phase, the
states in the list have only to be taken into consideration from the 3rd recalcula-
tion phase (for finding the 4th best column) on. Obviously, after each recalculation
phase the list grows with |Sk| (=nr. trainees) items.

Space complexity. For each time instance we need to store at most all possible
subsets of m trainees. Hence, the space complexity is given by O(n · 2m). To find
the bth best path we also need to store a list containing (b − 1) ∗m items, so the
overall space complexity is O(n · 2m + (b− 1) ·m).

Run time complexity. Without loss of generality we assume the difference between
the minimum and maximum number of periods equal for each trainee having to

Table 2.6: List after first recalculation phase for example 1
Item i T cost(i, T) path

1 2 {1} 0 1-1
2 4 {1,3} 1 1-1-3-3
3 5 {1,2,3} 1 1-1-3-3-2
4 6 {1,2,3,4} 2 1-1-3-3-2-4

Chapter 2. Scheduling trainees at a hospital department using a
branch-and-price approach 47

perform activity k, i.e., ujk − ljk = R, ∀j ∈ Sk. The run time complexity for
finding the bth best path is analyzed for the three phases separately: backward cal-
culation pass, recalculation pass and backward construction pass. In the backward
calculation pass each state (i, S) leads to at most R∗m other states (as a matter of
fact, this maximum only holds for state (n, Sk)). The complexity of the backward
calculation pass is thus O(n · 2m · R · m). In the recalculation pass at most m

states have to be recalculated. For each of these states at most R ∗m calculations
have to be made, which gives complexity O(m2 ·R). For finding the bth best path,
one also needs to consider the (b − 1) ∗ m states in the list as starting states for
each updated state. For each of these starting states one has to verify if the new
path (start state + new trainee) is not already present in the list in order to avoid
generation of the same path twice. Hence, the complexity of the recalculation pass
is O(m2 ·R + m · ((b− 1)m(b− 1)m)) = O(m2 ·R + m3 · (b− 1)2). In the backward
construction pass each next trainee is found after visiting at most R ∗m states. In
the worst case, the last trainee cannot be found in the usual data structure, but is
located in the list, which requires one scan through the list. The complexity of the
backward pass for finding the bth best path is thus O(m2 ·R+(b−1)·m). Hence, the
total complexity is given by O(n ·2m ·R ·m+m2 ·R+(b−1)2 ·m3). Since b is often
very small, (n · 2m ·R ·m) is the dominant term in this expression. This has been
confirmed by our computational tests. The backward dynamic programming pass,
which only has to be done to search the best column, is computationally much more
expensive than the recalculation pass and the backward construction pass, which
have to be done upon detection of an already found column.

2.3.5 Column addition

An important characteristic of the branch-and-price algorithm is the number of
columns that are added after each master LP optimization. Three strategies can be
distinguished. First, we could add the most negative reduced cost column for each
activity. Second, we could add only one column for all activities, i.e., the column
with the overall most negative reduced cost. Finally, we could add the most negative
reduced cost column for activity k, re-optimize the master and search for a new
column for activity k + 1. Note that in this last strategy it is no longer possible to
prune nodes based on Lagrange relaxation (see 2.3.7.2), since the reduced costs of all
activities, needed to calculate the lower bound, are no longer available. Obviously,
for all three strategies, columns with non-negative reduced cost are never added.

48 2.3. A branch-and-price approach

2.3.6 Branching

The LP relaxation of the master problem may not have an integral optimal solution.
Branching refers to the process of partitioning the solution space to eliminate the
current fractional solution. After branching, it may be the case that there exists
a column that would price out favorably, but is not present in the column pool.
Applying standard branch-and-bound procedures to the master problem over the
existing columns is unlikely to find an optimal, or good, or even feasible solution.
To illustrate this point, a branch-and-bound algorithm was written to find the
best possible integral solution given the column pool after LP optimization. When
the algorithm was run on the problem set, it never succeeded in finding a feasible
solution, because the columns could not be combined into an integer solution. Three
binary branching schemes were implemented and extensively tested: branching on
the column variables, branching on timetable cells and branching on precedence
relations.

2.3.6.1 Branching on column variables

In this branching scheme branching happens by fixing the largest fractional vari-
able zkt either to one (left branch) or to zero (right branch). It is however well
known that direct partitioning of the solution space, i.e., by fixing (or bounding)
individual column variables, is not appropriate because of two reasons. First, it
could require significant alterations to the pricing problem and second, it yields
an unbalanced branch-and-bound tree (Vanderbeck, 2000). The first problem is
encountered along a branch, where a variable has been set to zero. Recall that
zkt represents a particular schedule for activity k. Hence, zkt equal to 0 means
that this schedule is excluded. However, it is possible (and quite likely) that the
next time the pricing problem is solved for the kth activity the optimal solution is
precisely the one represented by zkt. In that case it would be necessary to find the
second best column. At depth l in the branch-and-bound tree we may need to find
the lth best column. We already showed that the dynamic programming approach
for the pricing problem (see Section 2.3.4) can be easily extended to handle this
need and this at a negligible computational effort. The unbalanced branch-and-
bound tree remains a problem, but also involves an advantage as faster detection
of (sub)optimal integral solutions may be expected.

Chapter 2. Scheduling trainees at a hospital department using a
branch-and-price approach 49

2.3.6.2 Branching on timetable cells

Since timetable cells are represented by the original variables, this branching scheme
will also be referred to as branching on the original variables. When columns can be
associated with paths in a network, a possible branching scheme consists of fixing
single components of the arc incidence vector (Vanderbeck, 2000). If this branching
principle is applied to our problem, it results in branching on the original xijk

variables. The next xijk to branch on is found by selecting the largest fractional
column. Suppose this is a column for activity k. Then, we search for this column
the first timetable cell (i, j) for which there exists another fractional column which
schedules a different activity at timetable cell (i, j). In the left branch xijk is set to
1, in the right branch it is set to 0. It can easily be shown that this branching scheme
is complete. In other words, upon detection of a fractional solution, it is always
possible to find a pair of fractional columns to initiate a new branch. Alternatively,
this branching rule can be seen as Ryan-Foster branching (Ryan and Foster, 1981)
which was been developed for set partitioning problems. This branching scheme
first identifies two rows, say r and s, covered by different fractional columns. In the
left branch rows r and s have to be covered by the same column and in the right
branch by different columns. Observe that in our application row r corresponds to
one of the capacity constraints (2.11) and row s corresponds to one of the convexity
constraints (2.12). The main advantage of this branching scheme is that it does not
destroy the structure of the pricing problem, because the resulting modifications
simply entail amending the cost of the corresponding arc in the underlying network.
If xijk is set to 1, gij′ is set to +∞ for all j′ 6= j in the pricing problem of activity k.
For the pricing problems for activities k′ 6= k only gij is set to +∞. Else if xijk is
set to 0, gij is set to +∞ in the pricing problem of activity k. A second advantage
is the fact that this branching scheme yields a balanced branch-and-bound tree.
The main drawbacks of this branching scheme are the large number of arcs (xijk’s)
to choose from and the fact that a branching constraint that involves a single arc
might not be very restrictive.

2.3.6.3 Branching on precedence relations

In this branching scheme, branching happens on precedence relations between the
trainees performing an activity. A precedence relation for an activity k between two
trainees, say j and j′, simply states that trainee j has to perform activity k either
before or after trainee j′. Upon detection of a fractional solution, the algorithm

50 2.3. A branch-and-price approach

searches for two fractional columns for the same activity with different orderings
in trainee assignments over the scheduling horizon. Then, a precedence relation,
which is satisfied by only one of both fractional columns, is implied. If, e.g., trainee
j is succeeded by trainee j′ in one fractional column and preceded by trainee j′ in
the other fractional column, the implied branching constraint could be: “trainee
j before trainee j′ for activity k”. The main drawback of this branching scheme
is that it is not guaranteed that it drives the solution completely to integrality.
Theoretically, it is possible that an optimal fractional solution is found in which all
fractional columns for each activity have the same trainee ordering. If this would
be the case, the algorithm rounds all fractional values to 1 and verifies whether or
not the resulting solution contains an overlap. In the case of an overlap, we have
no feasible solution. The LP objective value (before rounding) provides, however, a
lower bound (for that node) which is in general much better than the LP value of the
root node, since it incorporates the constraint that fractional columns cannot have
different orderings in trainees performing the activity. This is a relaxed constraint
compared to the real constraint which states that only one column must be selected
for each activity. However, it excludes the majority of fractional solutions and hence
results in a better lower bound. Preliminary tests indicated that non-detection of an
integer solution occurs rarely. Similar to the case in which branching occurs on the
timetable cells, application of this branching scheme preserves the structure of the
pricing problem. A precedence relation can be implied easily by simply amending
the costs of certain arcs in the dynamic programming network. Compared to the
other two branching schemes, this scheme clearly yields the most balanced branch-
and-bound trees. The restrictions implied in the left branches are similar to the
ones implied in the right branches, i.e., if trainee j cannot perform activity k before
trainee j′, it means that trainee j′ has to perform activity k before trainee j.

2.3.7 Speed-up techniques

Since we have a method to generate columns and a branching scheme to cut away
fractional solutions, our branch-and-price algorithm is complete. The performance
of the algorithm is, however, strongly dependent on a number of speed-up tech-
niques, which are described below.

Chapter 2. Scheduling trainees at a hospital department using a
branch-and-price approach 51

2.3.7.1 Initial heuristic

The column pool is initialized with the columns making up an initial solution.
The heuristic works as follows. First, the activities are sorted so that the most
constrained activities are considered first. The less trainees have to perform an
activity, the more constrained the activity is. In the case of a tie, the activity with
the lowest average gap between maximum and minimum number of periods for
which the trainees have to perform the activity, is the most constrained activity.
Then, the first activity is scheduled optimally using the dynamic program of the
pricing algorithm. All occupied timetable cells receive large costs (+1000) in order
to exclude overlaps when scheduling the next activities. In addition, the timetable
cell costs just before and after the already scheduled activity are slightly decreased
(-0.05), making them more attractive for scheduling the following activities. This
prevents as much as possible the appearance of holes, i.e., blocks of timetable cells
that are too small to fit an activity. Then, the next activity is considered, taking into
account the new timetable costs. This process continues until either all activities
are scheduled or an activity cannot be scheduled any more due to an overlap. If all
activities are scheduled, the total cost is compared with a solution that was found
earlier and if lower, the upper bound is decreased. The changes to the timetable cell
costs are made undone and the process restarts with the first activity. In order to
avoid generation of the same columns as much as possible, the costs of the occupied
timetable cells in the previous iteration are increased slightly (+0.01) before starting
a new iteration. The heuristic ends if it fails to improve the current best solution
during a predetermined number of iterations. For the tested problems, this number
was set to 100, resulting in relatively small computation times, ranging from 0.05
to 2 seconds.

2.3.7.2 Lower bound calculation

Our column generation scheme exhibits the tailing-off effect, i.e., requiring a large
number of iterations to prove LP optimality. Instead of solving the linear program
to optimality, i.e., generating columns as long as profitable columns exist, we could
end the column generation phase based on bound comparisons. It is well known
that Lagrangian relaxation can complement column generation in that it can be
used in every iteration of the column generation scheme to compute a lower bound
to the original problem with little additional computational effort (see, e.g., Van den
Akker et al., 2002; Vanderbeck and Wolsey, 1996). If this lower bound exceeds an

52 2.3. A branch-and-price approach

already found upper bound, the column generation phase can end without any risk
of missing the optimum. Using the information from solving the reduced master
and the information provided by solving a pricing problem for each activity k, it
can be shown (see, e.g., Hans, 2001) that a lower bound is given by:

δ +
p∑

k=1

RCkθk (2.26)

where δ is the objective value of the reduced master, RCk is the reduced cost of a
newly found column for activity k and θk is a binary variable equal to 1 when RCk

is non-negative and set to zero, otherwise. This lower bound is referred to as the
Lagrangian lower bound, since it can be shown that it equals the bound obtained
by Lagrange relaxation. In addition with an upper bound it can also be used to
fix variables. When the reduced cost of a variable zkt is larger than UB − LB, we
know from linear programming theory that zkt = 0 in any solution with a value less
than UB. Hence, that variable can be fixed in the current node and in all nodes
below that node. Analogously, when the reduced cost is smaller than LB − UB

then zkt = 1 in any solution with a value less than UB.

2.3.7.3 Initial network restriction

Recall that, to price out a new column, a shortest path network problem is solved
by applying a forward dynamic program approach. For problems in which these
networks are very large, the pricing problems are the bottleneck of the algorithm.
We distinguish two ways of decreasing the required solution times of the pricing
problems. First, one could initially restrict these networks. Specifically, arcs with
positive non-availability costs are excluded during the early phase of each LP op-
timization loop. When no more columns can be found with negative reduced cost,
these arcs are restored. The benefits are twofold. First, the required time for the
pricing algorithm dramatically decreases during the early phase of column genera-
tion. Second, from the start on, the algorithm is forced to price out qualitatively
good columns.

2.3.7.4 Master LP optimization

An important computational issue relates to the optimization of the master linear
program. When new columns are added and the master is re-optimized, the (dual)
simplex algorithm could be started either from an empty base or from the optimal

Chapter 2. Scheduling trainees at a hospital department using a
branch-and-price approach 53

base of the previous iteration. Tests revealed that the LP is optimized fastest when
started from an advanced base.

2.3.7.5 Cost varying horizon

To limit the solution space as much as possible, we implemented the idea of a cost
varying horizon. This idea is equivalent with a time varying horizon in exact algo-
rithms for the Resource Constrained Project Scheduling Problem (Demeulemeester
and Herroelen, 2002). When implementing a cost varying horizon, one could dis-
tinguish between a maximum and a minimum bounding search strategy. Both
strategies are different with respect to the value of the upper bound. In a mini-
mum bounding search strategy the upper bound reflects the best found solution.
When it is important to prove the optimality of a solution, a maximum bounding
approach can be more effective than a minimum one. In a maximum bounding
search strategy the upper bound is set to the first integer equal to or higher than
the LP lower bound. If the algorithm succeeds in finding a solution with a total cost
equal to this upper bound, we have found an optimal solution. Otherwise, both the
upper and the lower bound are increased by one, the column pool is re-initiated
with the columns making up the LP optimum and the algorithm tries to find a
solution equal to this new upper bound. This approach corresponds to best-first
search in branch-and-bound, in the sense that the first solution obtained is also
the optimal solution. Tests indicated that the maximum bounding search slightly
decreases computation times at the expense of not providing (sub)optimal solutions
during the search process.

2.3.7.6 Column elimination

The idea of column elimination is inherent in all branching schemes except for the
column-based scheme. To fully exploit the column-based branching strategy, the
branching scheme was extended so that it also inherits the idea of column elimina-
tion. The solution time of the master LP grows strongly with the number of columns
in the master, even when their associate column variables zkt cannot be positive
in a feasible solution. After branching, an important number of already generated
columns could be excluded from the master. If a particular column, say zk′t′ , is set
to 1, all the other columns zk′t with t 6= t′ are excluded implicitly because of the
convexity constraint (2.12) in the master. To speed up the computation time of the
master, these columns can be excluded explicitly from the master (by eliminating

54 2.4. Computational results

them). Similarly, all columns having an overlap with column zk′t′ can be excluded
as well, due to the no-overlap constraints (2.11). Observe that eliminated columns
have to be saved, since they have to be reentered upon backtracking. Obviously, if
column zk′t′ is set to 0, no columns but zk′t′ can be left out.

Column elimination is inherent when branching occurs on the original variables.
Consider the situation in which xi′j′k′ is set to 1. All columns zk′t not including
timetable cell (i′, j′) (i.e., having ai′j′k′t = 0) will be left out. Similarly, all columns
zkt with k 6= k′ including timetable cell (i′, j′) (i.e., having ai′j′kt = 1) will be
removed as well. If xi′j′k′ is set to 0, the reverse applies. Column elimination is also
inherent in the precedence relation branching scheme. Columns that do not satisfy
the introduced precedence relations will be eliminated explicitly from the master.
The same reasoning leads to the artificial adaptation of dual prices when branching
occurs on the column variables. During preliminary tests of the algorithm, columns
were generated that share timetable cells with already branched-to-one columns.
Obviously, these columns can never enter the basis. The algorithm was adapted
in that the dual prices of all timetable cells making up branched-to-one columns
are increased with an artificially high value. Observe, again, that these artificial
cost adaptations are inherent when branching is done on timetable cells and on
precedence relations.

2.4 Computational results

2.4.1 Real-life data sets

First, the branch-and-price algorithm as well as the original ILP formulation of
(2.1)-(2.9) have been applied on two real-life problems. For the branch-and-price
algorithm, all above discussed speed-up techniques turned out to be useful to re-
duce computation times. The experiments were performed on a 2.4 GHz Pentium
4 PC with the Windows XP operating system. The algorithm was written in MS
Visual C++.NET and linked with the CPLEX 8.1 optimization library. Also for
the original ILP formulation of (2.1)-(2.9) we used the CPLEX 8.1 MIP solver
with standard settings. All the speed-up techniques described above were incor-
porated in the branch-and-price algorithm. We apply maximum bounding search
and distinguish between the three branching strategies. The real-life problems were
rather small. Both problems involve 35 periods and 8 trainees. All trainees have

Chapter 2. Scheduling trainees at a hospital department using a
branch-and-price approach 55

to perform 6 activities in the first and 7 activities in the second problem. The
gaps between the maximum and minimum number of periods each trainee has to
perform each activity vary between 1 and 4 for both problems. Table 2.7 contains
the computational results for both problems.

Table 2.7: Results on two real-life problems

Problem 1 Problem 2

ILP (2.1)-(2.9) Branch-and-price ILP (2.1)-(2.9) Branch-and-price

Best solution found - 16 - 10

LP relaxation 5.00 15.09 6.00 9.37

Explored nodes 453 7-100-21 390 34-24-27

Nodes left 416 0-0-0 328 0-0-0

Comp. time (s) 1800 9.59-78.73-16.53 1800 24.55-20.89-22.32

For the number of explored nodes, the number of nodes left and the computation
time we distinguished in the branch-and-price algorithm between the three branch-
ing strategies, which explains the three numbers. For ILP (2.1)-(2.9) the optimizer
was stopped after 1800 seconds of computation time. At that moment, in both
problems the number of nodes left was still growing. As one can see from these
results, our branch-and-price algorithm outperforms the original ILP formulation
(2.1)-(2.9) substantially. Whereas through ILP (2.1)-(2.9) even though no feasible
solution could be found within half an hour of computation time, the branch-and-
price algorithm could solve both problems to optimality in times ranging from 10
seconds to 80 seconds, depending on the branching scheme. The main cause of
the weak performance of ILP (2.1)-(2.9) is also indicated in the table. As one can
see, there is a huge difference between the LP relaxations of both formulations:
5 versus 15.09 for the first problem and 6 versus 9.37 for the second problem. If
we compare these bounds with the optimal solutions of 16 and 10 respectively, we
conclude that the LP relaxation of ILP (2.1)-(2.9) is dramatically weak, whereas
the LP relaxation of the branch-and-price formulation (2.10)-(2.13) is extremely
strong.

56 2.4. Computational results

2.4.2 Test set

At this point we were curious about how the algorithm would perform on larger
problems, how the different problem dimensions influence the performance of the
algorithm and how the different speed-up techniques contribute. Therefore, a test
set was generated. First, six factors that have an influence on the complexity of the
problem were identified. These are the number of periods, the number of trainees,
the number of activities, for each activity the number of trainees performing the
activity, the difference between the maximum and minimum number of consecutive
weeks (further referred to as the range) and finally the magnitude of the costs.
Table 2.8 contains a number of settings for these six factors.

Observe that the number of activities and the number of trainees having to perform
an activity is expressed as a percentage of the number of trainees. For instance,
a test problem with 10 trainees and 90% activities includes 9 activities. Note
also that the number of activities cannot exceed the number of trainees, because
otherwise not all activities can be performed. The ratio number activities over
number trainees represents the total schedule occupation percentage. Recall that
the remaining part of the schedule has to be filled up with activities for which the
consecutiveness is not important. random(x) indicates that the factor setting is
random with an average of x. For instance, the range setting random(2) means
that the ranges are generated randomly in such a way that the average amounts to

Table 2.8: Design of the experiment

Factor Nr. of Nr. of Nr. of Nr. of trainees Range Magnitude

setting periods trainees activities per activity of costs

1 18 6 60% 60% 1 1

2 35 8 75% 75% 2 U(1,5)

3 52 10 90% 90% 3

4 12 random(75%) 4

5 random(2)

6 random(3)

Chapter 2. Scheduling trainees at a hospital department using a
branch-and-price approach 57

2. If the magnitude of the costs is 1, it means that all non-available time periods,
which are generated randomly for each trainee, have a cost of 1. Alternatively, these
cost values are drawn from a uniform distribution between 1 and 5. According to
these factor settings, problem instances were generated with randomness on both
the activity-trainee assignments and the non-available periods. In order to exclude
non-feasible and trivial problems as much as possible, the trainee occupations were
kept more or less at the same level. Without loss of generality, all non-availability
costs are assumed to be integral. The total number of periods containing positive
costs equals 3, 4 or 5 for problems with respectively 18, 35 and 52 periods. If we
generate three problem instances per factor setting, we obtain 3*(3*4*3*4*6*2) =
5184 problem instances. In order to decrease this number, we decided to subse-
quently fix the first three factors and the next two factors (the fourth and fifth
factor) at an intermediate level, making us end up with 3*(4*6*2)+ 3*(3*4*3*2) =
360 problem instances.

2.4.3 Discussion of results

In this section, we summarize the most important findings from our computational
experiments. In Table 2.9, a subset of these results is represented in order to give
the reader an idea of the running times, the number of generated columns, the
number of nodes in the search tree, the lower bound of the root node, the heuristic
solution value, etc. The problem name in the second column refers to the different
factor settings for generating the problem (see Table 2.8). The first number stands
for the first factor, the second for the second factor etc. The last number (after ‘ ’)
indicates the replication number. Observe that for the last problems in our test set
the algorithm fails to find an optimal solution. These are problems with 52 periods,
10 activities and 12 trainees. For these problems, the time limit of 600 seconds does
not suffice to obtain an optimal integral solution. The root node could, however,
be solved and hence a lower bound is obtained. The reason why the computation
time was limited to 600 seconds is that the algorithms could not solve the problem
to optimality within a reasonable time limit for the larger problem instances in our
test set. A large number of the problems could however be solved within the limit
of 600 seconds. This provides sufficient data to make a detailed analysis on how
the problem dimensions influence the difficulty of the problem, on how the differ-
ent branching schemes perform and on the contributions of the different speed-up

58 2.4. Computational results

techniques.

In Table 2.10, the number of problems that could be solved to optimality within 10
minutes is given for each branching scheme together with the average computation
times. The second row (*) contains the average times for only those problems for
which all three branching schemes succeeded in finding (and proving) the optimal
solution within 600 seconds. In the third row(**), average times are calculated
based on all problems. For these calculations, 600 seconds were accounted for those
problems for which no optimal solution was found within 600 seconds.

A first important observation is that the branching scheme that is based on prece-
dence relations is clearly outperformed by the first two branching schemes. A
second observation is that, although branching on timetable cells yields more prob-
lems solved to optimality, the required computation times are generally higher
than those for the column-based branching scheme. This is a first indication of
the appearance of unbalanced branch-and-bound trees when branching occurs on
the column variables. In order to verify whether or not these results are statisti-
cally significant, the running times of the different branching strategies have been
compared using a number of paired Student T-tests (two-tailed). In Table 2.11
the results are given. The large p-values for the comparison between the first and
second branching strategy indicate that there is statistically no difference between
branching on the column variables and branching on the timetable cells. All other
differences are significant at the 5% level.
Next, the impact of the different factors in Table 2.8 on the running times has been
statistically tested. The p-values for the different factors are indicated in Table
2.12. Again, a distinction is made between the three branching strategies. The
small p-values for the first four factors indicate that each of them has a statisti-
cally significant influence on the running times. For the last two factors, range and
magnitude of costs, the impact could not be confirmed by our test set.

Chapter 2. Scheduling trainees at a hospital department using a
branch-and-price approach 59

T
ab

le
2.

9:
Su

bs
et

of
th

e
re

su
lt

s
ob

ta
in

ed
b
ra

n
ch

o
n

co
lu

m
n
s

b
ra

n
ch

o
n

ti
m

et
a
b
le

ce
ll
s

b
ra

n
ch

o
n

p
re

c.
re

la
ti

o
n
s

N
r.

P
ro

b
le

m
ro

o
t

h
eu

r
so

l
ti

m
e

co
ls

n
o
d
es

ti
m

e
co

ls
n
o
d
es

ti
m

e
co

ls
n
o
d
es

1
2
2
2
1
1
1

1
1
3

1
4

1
3

0
.2

2
6
9

1
0
.2

6
3

1
0
.2

6
3

1
2

2
2
2
1
1
1

2
1
6

2
0

1
6

0
.3

6
9
5

3
0
.2

8
8
0

2
0
.2

7
7
9

1
3

2
2
2
1
1
1

3
1
6

1
7

1
6

0
.2

6
0

1
0
.2

5
6
9

4
0
.3

1
7
8

8
4

2
2
2
1
1
2

1
3
6

4
1

3
6

0
.2

6
0

0
0
.2

5
7
3

2
0
.3

8
1
0
7

3
5

2
2
2
1
1
2

2
5
0

5
3

5
0

0
.2

2
6
9

0
0
.2

8
8
4

2
0
.4

4
1
1
6

5
6

2
2
2
1
1
2

3
4
5

4
5

4
5

0
.1

3
4
3

0
0
.1

1
3
9

0
0
.1

1
3
9

0
..
.

6
4

2
2
2
2
5
2

1
1
0
.8

1
2
7

1
3

6
0
0

1
3
2
5
2

1
1
6
3

4
5
3
.4

5
1
0
6
8
0

6
8
4

5
6
1
.5

3
1
0
1
5
4

5
9
2

6
5

2
2
2
2
5
2

2
2
2
.5

8
3
8

2
4

6
3
.9

3
4
1
0

1
4
6

9
.5

7
9
5
5

1
4

3
9
.1

5
2
2
7
5

5
8

6
6

2
2
2
2
5
2

3
1
9
.4

9
2
9

2
2

5
1
2
.8

7
9
9
1
0

5
8
9

1
7
4
.9

1
7
3
5
9

2
1
1

1
7
1
.3

7
4
9
1
6

1
9
2

6
7

2
2
2
2
6
1

1
6

1
1

6
1
8
.6

1
1
6
3
5

2
7

1
9
.7

7
1
7
2
8

2
0

1
1
.4

7
7
3
1

1
6

6
8

2
2
2
2
6
1

2
7

1
0

8
1
2
1
.4

7
3
8
0
4

1
2
7

3
6
.1

2
2
4
8
5

4
4

3
5
.1

7
1
7
5
9

4
2

6
9

2
2
2
2
6
1

3
4
.0

1
1
0

5
3
5
.3

6
2
0
3
3

1
0
8

3
0
.5

8
2
4
2
5

4
4

1
0
.5

2
6
9
3

2
3

7
0

2
2
2
2
6
2

1
1
4
.1

4
3
8

1
5

9
.7

3
8
6
0

7
1
0
.9

7
9
9
7

1
2

1
5
.1

1
1
0
0
6

1
5

7
1

2
2
2
2
6
2

2
2
0
.2

9
2
7

2
1

1
4
.2

5
1
2
5
4

1
5

2
5
.1

4
2
1
2
3

2
9

1
3
3
.0

1
3
5
0
4

7
4

7
2

2
2
2
2
6
2

3
1
3
.9

8
2
8

1
6

3
4
4
.3

6
7
6
8
7

1
1
9
8

1
1
3
.0

2
5
7
9
8

2
4
3

1
9
3
.9

6
6
0
4
1

3
1
2

..
.

1
1
2

2
2
2
4
1
2

1
2
6
.4

3
-

2
9

5
3
.3

6
2
9
5
5

3
2
8

2
4
.5

6
2
4
3
6

9
4

3
7
.7

7
2
6
4
1

1
1
0

1
1
3

2
2
2
4
1
2

2
2
4
.5

-
2
8

1
1
.8

6
1
4
4
7

7
0

1
0
.0

2
1
2
6
6

6
5

8
3
.0

3
3
9
1
1

5
6
1

1
1
4

2
2
2
4
1
2

3
3
2
.2

5
-

-
6
0
0

1
2
5
2
5

3
9
6
8

6
0
0

1
7
6
3
8

3
6
4
6

6
0
0

1
3
3
2
9

2
5
8
3

1
1
5

2
2
2
4
2
1

1
6
.5

7
1
2

7
9
.9

7
1
2
1
6

2
7

2
1
.7

2
1
9
2
8

3
3

7
.2

7
6
4
9

1
2

1
1
6

2
2
2
4
2
1

2
7
.4

1
1
3

8
4
.5

4
6
0

3
6
.6

9
6
8
7

1
3

1
3
.2

3
8
4
2

1
8

1
1
7

2
2
2
4
2
1

3
8

1
0

8
1
3
.5

9
1
1
1
9

3
7

5
.8

9
6
2
2

8
1
2
.8

4
6
2
6

1
0

..
.

2
4
1

2
2
2
2
3
1

1
6

1
1

6
1
7
.3

1
1
4
5
6

1
8

1
2
.1

9
1
0
8
9

1
0

2
7
.4

7
1
4
4
5

2
3

2
4
2

2
2
2
2
3
1

2
5
.8

2
1
2

7
1
4
7
.0

8
3
8
8
8

2
0
0

6
9
.8

3
3
2
5

8
6

1
2
1
.3

9
3
8
2
9

1
5
5

2
4
3

2
2
2
2
3
1

3
6
.4

2
1
0

7
3
6
.2

5
2
2
5
2

5
8

8
.2

5
8
4
0

1
1

4
4
9
.3

6
8
6
3

2
3
3

2
4
4

2
2
2
2
3
2

1
1
2
.3

9
2
2

1
3

5
7
.1

6
2
8
2
4

7
4

2
5
.9

8
1
7
4
2

2
1

7
1
.7

3
2
5
6
9

4
9

2
4
5

2
2
2
2
3
2

2
1
7

3
2

1
7

6
.3

1
6
1
4

6
1
4
.4

5
1
2
7
3

1
3

1
6
.4

2
1
0
8
2

1
3

2
4
6

2
2
2
2
3
2

3
1
6

3
4

1
6

1
2
.0

6
1
0
0
7

7
7
.2

2
7
0
0

4
8
.5

5
6
4
2

9
2
4
7

2
2
3
2
3
1

1
1
3
.0

9
-

1
4

4
1
.6

1
3
2
3
0

2
8

6
0
0

9
9
7
6

1
9
1

6
0
0

8
5
9
6

1
5
6

2
4
8

2
2
3
2
3
1

2
1
3

-
-

6
0
0

1
2
2
3
1

2
8
6

6
0
0

1
1
8
2
7

2
3
9

6
0
0

9
7
8
2

1
4
8

2
4
9

2
2
3
2
3
1

3
1
4
.1

7
2
1

1
5

2
4
.5

6
1
8
2
6

1
4

4
3
5
.9

2
8
0
9
1

1
1
9

4
1
.0

8
1
7
3
5

2
8

..
.

3
5
5

3
4
3
2
3
1

1
1
3
.7

8
3
0

-
6
0
0

1
0
4
1
1

1
5

6
0
0

8
0
1
2

7
6
0
0

8
0
5
9

1
0

3
5
6

3
4
3
2
3
1

2
1
1

3
4

-
6
0
0

8
5
4
6

1
0

6
0
0

6
4
8
5

8
6
0
0

7
4
9
6

9
3
5
7

3
4
3
2
3
1

3
1
3
.1

7
-

-
6
0
0

9
4
1
2

5
6
0
0

7
1
4
5

6
6
0
0

7
3
2
1

8
3
5
8

3
4
3
2
3
2

1
2
6
.4

5
-

-
6
0
0

7
8
5
6

7
6
0
0

6
5
1
2

6
6
0
0

6
9
9
9

8
3
5
9

3
4
3
2
3
2

2
2
6
.3

7
-

-
6
0
0

1
0
1
1
1

1
0

6
0
0

8
0
6
5

8
6
0
0

8
6
9
2

1
0

3
6
0

3
4
3
2
3
2

3
3
1
.6

2
9
7

-
6
0
0

9
6
4
1

7
6
0
0

7
4
2
3

6
6
0
0

7
6
7
1

1
1

60 2.4. Computational results

Table 2.10: A first comparison between branching schemes

Branch on: column variables timetable cells prec. relations

(1) (2) (4)

Nr. solved to optimality 311 319 281

Avg. comp. time∗(s) 13.5 18.2 41.5

Avg. comp. time∗∗(s) 110.5 112.1 170.7

Table 2.11: Statistical comparison between branching schemes

p-values (1) vs (2) (1) vs (3) (2) vs (3)

Total set∗(s) 0.3491 < 0.0001 < 0.0001

Limited set∗∗(s) 0.3242 < 0.0001 < 0.0001

Table 2.12: Statistical analysis of factors

Branch on: column variables timetable cells prec. relations

(1) (2) (3)

Nr. of periods 0.0001 < 0.0001 0.0006

Nr. of trainees < 0.0001 < 0.0001 < 0.0001

Nr. of activities < 0.0001 < 0.0001 < 0.0001

Nr. of trainees per activity < 0.0001 0.0035 < 0.0001

Range 0.0821 0.3315 0.0732

Magnitude of costs 0.9483 0.7669 0.2617

Chapter 2. Scheduling trainees at a hospital department using a
branch-and-price approach 61

2.4.4 Contributions of speed-up techniques

In order to gain some insight into the contributions of the different speed-up tech-
niques, an experiment was performed including all 307 problems for which an op-
timal solution was found within 600 seconds for both the first and the second
branching scheme. Besides all speed-up techniques (see 2.3.7) the influence of the
two alternative ways of column addition (see 2.3.5) was investigated. The results
are presented in Table 2.13 and visualized in Figure 2.1.

Table 2.13 contains the average computation times and p-values of the paired T-
tests (one-tailed) between the basic setting (including all speed-up techniques) and
a specific setting (all speed-up techniques but one). The first row of Table 2.13
contains the results for the basic algorithm. Rows 2 to 7 contain the average com-
putation times when the respective speed-up technique was omitted. Note that the
effects are not cumulative, i.e., the algorithm always included all but one speed-up
technique. Row 8 gives the computation times when only one column, i.e., the over-
all best (most negative reduced column), was added after each master optimization.
Finally, row 9 contains the computation times when the master was re-optimized
after the generation of only one column, instead of one column for each activity.
Recall that column elimination is inherent in the second branching scheme.

0,00

20,00

40,00

60,00

80,00

100,00

120,00

140,00

160,00

(1) (2) (3) (4) (5) (6) (7) (8) (9)

Algorithmic properties

A
v

g
.
c

o
m

p
.
ti

m
e

 (
s

)

Branching on

columns

Branching on

timetable cells

Figure 2.1: Contributions of algorithmic improvements

62 2.4. Computational results

T
ab

le
2.

13
:

C
on

tr
ib

ut
io

ns
of

sp
ee

d-
up

te
ch

ni
qu

es

B
ra

n
ch

in
g

o
n

B
ra

n
ch

in
g

o
n

co
lu

m
n
s

ti
m

et
a
b
le

ce
ll
s

A
v
g
.

p
-v

a
lu

e
A

v
g
.

p
-v

a
lu

e

ti
m

e
(s

)
ti

m
e

(s
)

B
a
si

c
a
lg

o
ri

th
m

(1
)

3
5
.0

7
3
5
.2

6

W
it

h
o
u
t

in
it

ia
l
h
eu

ri
st

ic
(2

.3
.7

.1
)

(2
)

3
7
.1

4
0
.2

2
6
9

4
0
.9

0
0
.0

1
4
4

W
it

h
o
u
t

in
it

ia
l
n
et

w
o
rk

re
st

ri
ct

io
n

(2
.3

.7
.3

)
(3

)
3
5
.8

8
0
.4

7
9
3

4
1
.5

2
0
.0

7
8
5

W
it

h
o
u
t

L
a
g
ra

n
g
e

d
u
a
l
p
ru

n
in

g
(2

.3
.7

.2
)

(4
)

4
1
.6

7
<

0
.0

0
0
1

4
9
.1

1
<

0
.0

0
0
1

M
in

im
u
m

b
o
u
n
d
in

g
se

a
rc

h
st

ra
te

g
y

(2
.3

.7
.5

)
(5

)
5
5
.3

4
<

0
.0

0
0
1

6
0
.1

7
<

0
.0

0
0
1

S
o
lv

in
g

m
a
st

er
L
P

st
a
rt

in
g

fr
o
m

em
p
ty

b
a
si

s
(2

.3
.7

.4
)

(6
)

5
4
.9

8
<

0
.0

0
0
1

6
6
.4

0
<

0
.0

0
0
1

W
it

h
o
u
t

co
lu

m
n

el
im

in
a
ti

o
n

fi
rs

t
b
ra

n
ch

in
g

st
ra

te
g
y

(2
.3

.7
.6

)
(7

)
9
2
.1

6
<

0
.0

0
0
1

-
-

S
ea

rc
h

k
co

lu
m

n
s,

a
d
d

1
co

lu
m

n
a
ft

er
ea

ch
m

a
st

er
o
p
ti

m
.

(2
.3

.5
)

(8
)

7
1
.5

3
<

0
.0

0
0
1

7
5
.3

3
<

0
.0

0
0
1

S
ea

rc
h

1
co

lu
m

n
,
a
d
d

1
co

lu
m

n
a
ft

er
ea

ch
m

a
st

er
o
p
ti

m
.

(2
.3

.5
)

(9
)

1
3
9
.4

2
<

0
.0

0
0
1

1
4
6
.3

2
<

0
.0

0
0
1

Chapter 2. Scheduling trainees at a hospital department using a
branch-and-price approach 63

We can draw two conclusions with respect to this experiment. First, the method
of column addition plays a major role in fast convergence of column generation.
Adding only one (optimal) column after each master optimization seems to be out-
performed by adding k (suboptimal) columns after each master optimization. The
main reason for the large difference between (8) and (9) is probably the impossibil-
ity in (9) to prune nodes based on Lagrange relaxation. Second, the small p-values
clearly indicate the positive impact of almost all speed-up techniques. The effect
of the initial heuristic and the initial network restrictions could not be confirmed
by our test set if one is branching on the column variables. If one is branching on
the timetable cells, no significant effect could be detected for the initial network
restrictions.

2.5 Conclusions for the decomposition on the ac-

tivities approach

In the first part, a branch-and-price approach has been proposed in which we decom-
posed on the activities. The pricing problem could be formulated as a constrained
shortest path problem and can be solved efficiently using a forward dynamic pro-
gramming approach. An important feature of this dynamic program is the ability
to find also the 2nd, 3rd, . . . , kth shortest path at a very low computational extra
cost. This property enabled us to develop a branching scheme based on the col-
umn variables. Alternatively, a branching scheme based on timetable cells and a
precedence relation based branching scheme have been elaborated. Finally, several
speed-up techniques were discussed. In the next part, extensive computational re-
sults were presented. An experiment was set up in which the influence of six factors
on the complexity of the problem was investigated and the three branching schemes
were compared.

Concerning theoretical issues, there are four main conclusions. The first one is
that the branch-and-price algorithm for the new formulation clearly outperforms
the ILP optimizer applied on the old formulation. The second is that, within the
branch-and-price algorithm, branching on the timetable cells and branching on the
column variables outperform the branching scheme based on precedence relations.
Third, the number of periods, trainees, activities and trainees per activity have an
important impact on the computation times, whereas the impact of the magnitude

64 2.5. Conclusions for the decomposition on the activities approach

of the range and the non-availability costs could not be confirmed by our results.
Finally, different speed-up techniques are useful in order to improve the perfor-
mance of the branch-and-price algorithm.

Concerning practical issues, the application makes it possible to find better solu-
tions in less time compared to previous ways of scheduling. To illustrate this, earlier
schedules were built for 18 periods. These 18 periods represent 52 weeks (16 3-week
periods and 2 2-week periods). If a trainee was not available during a certain week,
the full period was made unavailable (for scheduling the difficult activities). The
developed application is able to deal with scheduling problems for 52 periods. Also,
the formerly seniority based division of weeks off can now be replaced by an ap-
proach that takes as much as possible all preferences of all trainees into account.
Of course, senior trainees may still be given more priority by assigning to them a
larger total amount of non-availability costs.

The presented approach is different from the common column generation approaches
to solve staff scheduling problems. Indeed, in early work problems have always been
decomposed on the staff members instead of on the tasks. If the considered problem
is decomposed on the staff members, we would obtain a set partitioning problem
instead of a 0-1 multicommodity flow problem. It would be interesting, of course,
to compare our approach with the more traditional decomposition on the trainees
approach, and this both for the computational and the formulation issues. This
will be the subject of Section 2.6.

Despite all the improvements, the borders of optimality searching within reasonable
time were reached when considering problems starting from twelve trainees and
ten activities. For the real-life problems solved in this work, this was no serious
drawback. There were no trainees that have to perform more than ten different
activities within one year. We have encountered real-life problems involving twenty
to thirty trainees, however, as these trainees could easily be divided into several
subsets each having less than twelve trainees, the exact solution procedure could still
be applied on each of these subsets. Nevertheless, for larger problem dimensions,
a number of heuristic extensions have to be added to keep the computation time
within reasonable limits. We present a number of these heuristic extensions in
Section 2.7.3. Another interesting research direction would be to consider a more
general problem formulation, e.g., a formulation that includes more general coverage

Chapter 2. Scheduling trainees at a hospital department using a
branch-and-price approach 65

and formation requirements and handles setup costs explicitly. Setup costs would
occur each time a trainee (re)starts a certain activity. In this way, one could search
for the optimal trade-off between assigning preferred weeks-off and splitting up
activities within trainees. The more general problem formulation as well as the
heuristic extensions are the subject of Section 2.7.

2.6 Decomposition on the trainees

In the literature, staff scheduling problems are usually decomposed on the staff
members, in this case the trainees, instead of on the activities (see, e.g., Caprara
et al., 2003; Mason and Smith, 1998; Jaumard et al., 1998; Bard and Purnomo,
2005b; Mehrotra et al., 2000). An example of such a column for trainee 2 in the
problem instance described in Section 2.2 can be found in Table 2.14.

Table 2.14: A column for trainee 2

Activity schedule

Period Trainee 1 Trainee 2 Trainee 3 Trainee 4

1 act 1

2 act 1

3 act 1

4

5 act 3

6 act 3

7 act 3

8

9 act 2

10 act 2

66 2.6. Decomposition on the trainees

To decompose (2.1)-(2.9) on the trainees, we introduce decision variables that rep-
resent individual trainee schedules. Let binary decision variable zjt be defined as
follows:

zjt =

{
1, if column t was chosen for trainee j;
0, otherwise.

Let aijkt equal 1 if trainee j is scheduled during period i in column t to perform
activity k. Let Aj denote the set of all activities that have to be performed by
trainee j, i.e., all activities k for which ljk > 0. Let cjt be the total cost of column t

for trainee j (i.e., cjt =
∑n

i=1

∑
k∈Aj aijktpij) and NCj the total number of different

columns for trainee j. The model can then be formulated as follows:

Minimize
m∑

j=1

NCj∑
t=1

cjtzjt (2.27)

subject to:

∑

j∈Sk

NCj∑
t=1

aijktzjt = 1 ∀i = 1, ..., n and ∀k = 1, ..., p (2.28)

NCj∑
t=1

zjt = 1 ∀j = 1, ...,m (2.29)

zjt ∈ {0, 1} ∀j = 1, ..., m and ∀t = 1, ..., NCj (2.30)

The objective function (2.27) is again the minimization of costs, but now expressed
as the sum of the trainee schedules. Constraint set (2.28) states that each activity
has to be performed by exactly one trainee at each time period. Constraint set
(2.29) implies that exactly one column has to be selected for each trainee. The
master problem (2.27)-(2.30) is now a 0-1 set partitioning problem. Let πik rep-
resent the dual prices of restrictions (2.28) and let µj represent the dual prices of
restrictions (2.29). The reduced cost of a new column t for trainee j is now given
by:

− µj + cjt +
n∑

i=1

∑

k∈Aj

−πikaijkt

= −µj +
n∑

i=1

∑

k∈Aj

(pij − πik)aijkt (2.31)

Chapter 2. Scheduling trainees at a hospital department using a
branch-and-price approach 67

2.6.1 Pricing problem

Compared to the pricing problem when decomposing on the activities, which is
stated in (2.15)-(2.21), the pricing problem only differs with respect to the first
constraint when decomposing on the trainees. Since constraint (2.2) applies at the
individual trainee level, this constraint is included in the pricing problem. As the
linking constraint is now constraint (2.3), this constraint is left out of the pricing
problem. Let xik equal 1 if trainee j is scheduled to perform activity k during
period i and yik be 1 if trainee j starts activity k at period i. The pricing problem
for trainee j can be stated as follows.

Minimize
n∑

i=1

∑

k∈Aj

(pij − πik)xik (2.32)

subject to:

∑

k∈Aj

xik ≤ 1 ∀i = 1, ..., n (2.33)

n∑

i=1

xik ≥ ljk ∀k ∈ Aj (2.34)

n∑

i=1

xik ≤ ujk ∀k ∈ Aj (2.35)

y1k = x1k ∀k ∈ Aj (2.36)

yik ≥ xik − x(i−1)k ∀i = 2, ..., n and ∀k ∈ Aj (2.37)
n∑

i=1

yik ≤ 1 ∀k ∈ Aj (2.38)

xik, yik ∈ {0, 1} ∀i = 1, ..., n and ∀k ∈ Aj (2.39)

Objective (2.32) simply entails the minimization of the (variable part of) the re-
duced cost (2.31). Constraints (2.33)-(2.39) are just a repetition of the constraint
(2.2) and constraints (2.4)-(2.9) for activity k.

The pricing problem can be solved with a dynamic programming approach similar
to the one applied when decomposing on the activities. This time the columns of
the cost matrix represent the activities. Since it is possible that a trainee performs
no activity during certain time periods, an extra column has to be added which
represents ‘performing no activity’ and can be visited more than once. Obviously,

68 2.6. Decomposition on the trainees

all rows of this column have a cost equal to 0. Table 2.15 visualizes the pricing
problem for a particular trainee j which has to perform three activities all between
a minimum of one and a maximum of two periods. Each cell of the matrix has a
cost hik which is the difference between the corresponding non-availability cost pij

and the corresponding dual price πik. Note that the cost values can be negative
due to possible positive values for the dual prices πik. We also applied dynamic
programming to solve this pricing problem. The recursive algorithm is very similar
as the one outlined above.

Table 2.15: Pricing problema for trainee j: optimal solution in bold

hik = non-availability cost pij- dual price πik

Period i Activity k = 1 Activity k = 2 Activity k = 3 No activity

1 -2 1 1 0

2 -2 1 1 0

3 4 2 1 0

4 2 1 -1 0

5 0 -3 4 0

6 1 5 3 0

a For ease of explanation all cost values are integer. Note however that during column

generation these cost values are usually fractional due to the dual prices.

Suppose a trainee has to perform p activities. For each time instance we need to
store at most all possible subsets of p activities. Hence, the space complexity is given
by O(n · 2p). In the recursive algorithm each state (i, S) leads to at most R ∗ p ∗ n

other states. The added factor n, in contrast with the previous subproblem, is due
to the fact that the activities do not necessarily immediately follow each other, but
instead some periods may be left blanc. The complexity of this recursion is thus
O(n2 · 2p ·R · p).

2.6.2 Branching

Since the computational results presented in Section 2.4.3 indicated that branching
on the timetable cells provides the best and most robust results, we will use this

Chapter 2. Scheduling trainees at a hospital department using a
branch-and-price approach 69

branching scheme. The same branching scheme can be applied if we are decompos-
ing on the trainees. Here, the next xijk to branch on is also found by selecting the
largest fractional column. Suppose this is a column for trainee j. Then, we search
for this column the first time period i for which there exists a second fractional col-
umn which schedules a different activity than the first column during time period i.
Suppose that the first fractional column schedules activity k during the conflicting
time period i. Again, xijk is set to 1 in the left branch and to 0 in the right branch.
The timetable costs in the pricing problems are modified as follows. If xijk is set
to 1, hik′ is set to +∞ for all activities k′ 6= k in the pricing problem of trainee j.
Furthermore, hik is set to +∞ in the pricing problems of all trainees j′ 6= j. Else
if xijk is set to 0, hik is set to +∞ in the pricing problem of trainee j.

Since we have a method to generate columns and a branching scheme to cut away
fractional solutions, our branch-and-price algorithm is complete. This algorithm is
also extended with the speed-up techniques described in Section 2.3.7. Again, after
each master optimization exactly one pricing problem is solved for each trainee.
Hence, the dual prices are updated after the addition of at most m columns.

2.6.3 Computational results

2.6.3.1 Two real-life problems

First, the decomposition on the trainees approach has also been applied on the two
real-life problems presented in Section 2.4.1. Table 2.16 contains the computational
results for both problems. For ease of exposition the results for the original ILP
formulation (2.1)-(2.9) are repeated.

Table 2.16: Results on two real-life problems

Problem 1 Problem 2

ILP Decomp. Decomp. ILP Decomp. Decomp.

(2.1)-(2.9) on activities on trainees (2.1)-(2.9) on activities on trainees

Best solution found - 16 20 - 10 10

LP relaxation 5.00 15.09 15.00 6.00 9.37 9.30

Explored nodes 453 100 71 390 24 42

Comp. time (s) 1800 78.73 1800 1800 20.89 1036.06

70 2.6. Decomposition on the trainees

Table 2.16 shows that the best results are obtained when decomposition takes place
on the activities. In this approach the first problem could be solved in 78.73 and
the second in 20.89 seconds. When one is decomposing on the trainees only the
second problem could be solved to optimality within the given time limit.

2.6.3.2 Extensive comparison

The computational performance of both decomposition approaches is also compared
using the problem set introduced in Section 2.4.2. In this section, we summarize the
most important findings from our computational experiments. The results of the
decomposition on the activities approach have already been presented in Section
2.4.3. For ease of exposition, these results are repeated in all Tables stated below.

Table 2.17 and following contain subsets of these results. These tables have the
same format as Table 2.9. If the algorithm fails to find an optimal solution within
1800 seconds, 1800 is indicated for the computation time in Table 2.17 and follow-
ing. Obviously, without this time limit, it would be much easier to make a fair
comparison between both decomposition approaches. We could, for instance, look
to the total number of nodes or to the total computation time required by each de-
composition technique to obtain the optimum for all the instances. Unfortunately,
some problems may require days (or even weeks) of computation time, particu-
larly for the decomposition on the trainees. Therefore, we had no option but to
set a time limit within which a reasonable amount of the problem instances could
be solved by at least one of the decomposition approaches. Fortunately, a time
limit of 1800 seconds leads already to important performance differences and hence
provides us with a suitable database for comparing both decomposition approaches.

Table 2.17 gives a first indication of how the two decomposition approaches com-
pare to each other. This table contains the summarized results for 36 of the easy
instances in our test set. These are problems with 35 periods, 8 trainees and 5
activities in which each activity is performed by 4 trainees. For these dimensions
both decompositions manage to find the optimal solution for all problem instances
within the time limit. However, the computation times tend to be higher when de-
composing on the trainees. Note that one of the explanations of this performance
difference can be found in the difference between the LP relaxations. The LP re-
laxations of the decomposition on the activities approach tend to be higher than

Chapter 2. Scheduling trainees at a hospital department using a
branch-and-price approach 71

those of the decomposition on the trainees approach.

Table 2.18 contains the same information, but now for 36 problem instances in
which the number of trainees having to perform each activity increases from 4 to 6.
If we compare this table with the previous one, it becomes clear that the number of
trainees having to perform each activity is an important factor for the difficulty of
our problem. When decomposing on the trainees, only 13 problems could be solved
to optimality within 1800 seconds, compared to 35 problems when decomposing
on the activities. When the algorithm failed to solve the problem to optimality, a
computation time of 1800 seconds was accounted for the calculation of the aver-
age. Even with this underestimation of the computation times for the non-solved
problems, there is a clear difference between the average computation times of both
decomposition approaches. If we compare the average solution quality, we can con-
clude that the trainees decomposition, although frequently not capable of detecting
the optimal solution, succeeds in finding close to optimal solutions.

When we look at the problem instances with only 18 periods instead of 36 (Table
2.19), we see that all 72 problems could be solved to optimality within the time
limit of 1800 seconds when decomposing on the activities. When decomposing on
the trainees, the optimum was not found for one problem instance.

If we compare these figures with the results for the problem instances with 52 peri-
ods (Table 2.20), we can conclude that also the number of periods is an important
factor for the difficulty of the problem. For the largest problems often even no
feasible solution could be obtained. In that case the column containing the best
found solution (Sol.) reports a “-” and the average solution could not be calculated.

The complexity of the problem also grows with an increasing number of trainees,
an increasing number of activities and an increasing magnitude of the range. Com-
pare, for instance, the first six lines with the last six lines in Table 2.19 and Table
2.20.

An overall summary of the computational results is given in Table 2.21. The first
row indicates the number of problems that could be solved to optimality within
1800 seconds using each decomposition approach. The second row contains the
number of problems for which the decomposition was faster. For the remaining

72 2.6. Decomposition on the trainees

T
ab

le
2.

17
:

R
es

ul
ts

fo
r

pr
ob

le
m

s
w

it
h

35
pe

ri
od

s,
8

tr
ai

ne
es

an
d

6
ac

ti
vi

ti
es

in
w

hi
ch

ea
ch

ac
ti

vi
ty

is
pe

rf
or

m
ed

by
4

tr
ai

ne
es

D
ec

o
m

p
o
si

ti
o
n

o
n

a
ct

iv
it

ie
s

D
ec

o
m

p
o
si

ti
o
n

o
n

tr
a
in

ee
s

N
r.

P
ro

b
le

m
L
P

re
la

x
.

S
o
l.

T
im

e
C

o
lu

m
n
s

N
o
d
es

L
P

re
la

x
.

S
o
l.

T
im

e
C

o
lu

m
n
s

N
o
d
es

1
2
2
2
1
1
1

1
1
3

1
3

0
.2

0
6
3

1
1
3

1
3

6
.8

4
4
0
9
5

1
0

2
2
2
2
1
1
1

2
1
6

1
6

0
.2

8
8
0

2
1
6

1
6

1
.2

5
9
6
0

1

3
2
2
2
1
1
1

3
1
6

1
6

0
.2

5
6
9

4
1
6

1
6

5
.2

3
3
1
2
6

7

4
2
2
2
1
1
2

1
3
6

3
6

0
.2

5
7
3

2
3
6

3
6

3
.1

7
2
2
8
3

4

5
2
2
2
1
1
2

2
5
0

5
0

0
.2

8
8
4

2
5
0

5
0

2
.3

3
1
6
9
6

4

6
2
2
2
1
1
2

3
4
5

4
5

0
.1

1
3
9

0
4
5

4
5

0
.5

6
3
2
8

0

..
.

3
0

2
2
2
1
5
2

3
3
7

3
7

0
.3

3
9
4

0
3
7

3
7

4
.0

5
1
6
2
9

1

3
1

2
2
2
1
6
1

1
1
2

1
2

0
.6

7
2
3
0

2
1
2

1
2

1
9
.7

3
4
1
8
4

4

3
2

2
2
2
1
6
1

2
1
0
.5

1
1

1
.0

5
3
5
8

4
1
0
.5

1
1

5
4
.3

3
7
3
3
1

1
1

3
3

2
2
2
1
6
1

3
1
2
.5

1
3

0
.9

1
3
3
8

6
1
2
.4

1
3

3
9
.4

4
5
0
0
6

7

3
4

2
2
2
1
6
2

1
3
2

3
2

0
.9

5
3
0
3

1
3
2

3
2

3
7
.7

3
4
2
1
3

2

3
5

2
2
2
1
6
2

2
3
7

3
7

0
.4

7
1
3
4

0
3
7

3
7

4
.0

5
9
9
2

0

3
6

2
2
2
1
6
2

3
3
3
.5

6
3
5

6
.4

7
1
3
9
3

6
7

3
3
.5

1
3
5

2
8
.5

6
5
7
7
2

9

A
v
er

a
g
e

2
4
.3

5
2
4
.8

6
0
.9

1
2
7
9
.1

7
6
.8

6
2
4
.1

3
2
4
.8

6
8
0
.6

0
7
8
3
7
.0

8
1
3
.8

3

N
r.

S
o
lv

ed
to

o
p
ti

m
a
li
ty

:
3
6

N
r.

S
o
lv

ed
to

o
p
ti

m
a
li
ty

:
3
6

Chapter 2. Scheduling trainees at a hospital department using a
branch-and-price approach 73

T
ab

le
2.

18
:

R
es

ul
ts

fo
r

pr
ob

le
m

s
w

it
h

35
pe

ri
od

s,
8

tr
ai

ne
es

an
d

6
ac

ti
vi

ti
es

in
w

hi
ch

ea
ch

ac
ti

vi
ty

is
pe

rf
or

m
ed

by
6

tr
ai

ne
es

D
ec

o
m

p
o
si

ti
o
n

o
n

a
ct

iv
it

ie
s

D
ec

o
m

p
o
si

ti
o
n

o
n

tr
a
in

ee
s

N
r.

P
ro

b
le

m
L
P

re
la

x
.

S
o
l.

T
im

e
C

o
lu

m
n
s

N
o
d
es

L
P

re
la

x
.

S
o
l.

T
im

e
C

o
lu

m
n
s

N
o
d
es

3
7

2
2
2
2
1
1

1
1
3

1
3

1
.3

4
4
7
9

1
0

1
3

1
3

3
3
3
.2

4
1
3
7
6
0

1
4

3
8

2
2
2
2
1
1

2
1
4

1
4

0
.2

5
7
8

0
1
4

1
4

5
.8

8
8
0
0

0

3
9

2
2
2
2
1
1

3
1
3

1
3

1
.2

3
4
4
5

6
1
3

1
3

1
2
4
8
.6

2
3
7
1
8
2

5
6

4
0

2
2
2
2
1
2

1
3
3

3
3

1
.4

9
5
8
0

1
0

3
3

3
3

2
2
3
.4

9
8
9
0
2

6

4
1

2
2
2
2
1
2

2
3
1

3
1

1
.2

5
4
5
8

1
1

3
1

3
1

1
9
6
.3

5
1
2
4
7
0

1
4

4
2

2
2
2
2
1
2

3
2
6

2
6

1
.3

9
5
1
8

1
0

2
6

2
6

3
4
0
.7

2
1
5
6
4
2

1
6

..
.

6
7

2
2
2
2
6
1

1
6

6
1
8
.6

1
1
6
3
5

2
7

6
7

1
8
0
0

2
8
6
1
8

8
8

6
8

2
2
2
2
6
1

2
7

8
1
2
1
.4

7
3
8
0
4

1
2
7

6
.3

3
9

1
8
0
0

3
3
0
9
3

1
0
1

6
9

2
2
2
2
6
1

3
4
.0

1
5

3
5
.3

6
2
0
3
3

1
0
8

4
6

1
8
0
0

3
2
4
3
0

7
5

7
0

2
2
2
2
6
2

1
1
4
.1

3
1
5

9
.7

3
8
6
0

7
1
4

1
8

1
8
0
0

3
0
9
1
8

7
0

7
1

2
2
2
2
6
2

2
2
0
.2

9
2
1

1
4
.2

5
1
2
5
4

1
5

2
0

2
3

1
8
0
0

3
1
4
1
4

9
0

7
2

2
2
2
2
6
2

3
1
3
.9

8
1
6

3
4
4
.3

6
7
6
8
7

1
1
9
8

1
3
.5

2
0

1
8
0
0

3
2
3
6
7

7
6

A
v
er

a
g
e

1
3
.6

8
1
4
.2

8
1
2
1
.2

0
5
0
8
3
.0

8
1
1
9
.6

1
1
3
.4

7
1
5
.6

1
1
3
5
2
.0

2
2
7
2
4
4
.6

1
6
2
.0

3

N
r.

S
o
lv

ed
to

o
p
ti

m
a
li
ty

:
3
5

N
r.

S
o
lv

ed
to

o
p
ti

m
a
li
ty

:
1
3

74 2.6. Decomposition on the trainees

T
ab

le
2.

19
:

R
es

ul
ts

fo
r

pr
ob

le
m

s
w

it
h

18
pe

ri
od

s

D
ec

o
m

p
o
si

ti
o
n

o
n

a
ct

iv
it

ie
s

D
ec

o
m

p
o
si

ti
o
n

o
n

tr
a
in

ee
s

N
r.

P
ro

b
le

m
L
P

re
la

x
.

S
o
l.

T
im

e
C

o
lu

m
n
s

N
o
d
es

L
P

re
la

x
.

S
o
l.

T
im

e
C

o
lu

m
n
s

N
o
d
es

1
4
5

1
1
1
2
3
1

1
1

1
0
.1

3
7

0
1

1
0
.2

2
2
1
6

0

1
4
6

1
1
1
2
3
1

2
6

6
0
.0

1
6

0
6

6
0
.0

9
1
5
0

0

1
4
7

1
1
1
2
3
1

3
0

0
0

3
0

0
0

0
.2

3
5
4
2

2

1
4
8

1
1
1
2
3
2

1
1

1
0
.0

3
1
5

0
1

1
0
.1

4
2
5
4

0

1
4
9

1
1
1
2
3
2

2
1

2
0
.0

5
5
5

1
0
.8

2
0
.3

9
7
1
8

6

1
5
0

1
1
1
2
3
2

3
8

8
0

1
0

0
8

8
0
.1

1
1
9
9

0

..
.

1
6
9

1
2
2
2
3
1

1
3

3
1
.8

4
8
6
7

1
6

3
3

6
.3

6
4
5
1
0

2
3

1
7
0

1
2
2
2
3
1

2
2

2
1
.7

2
8
1
8

1
4

2
2

8
3
.4

1
1
9
1
3
4

7
5

1
7
1

1
2
2
2
3
1

3
1

1
1
.6

7
7
9
8

1
0

1
1

7
.0

8
4
8
3
0

2
0

1
7
2

1
2
2
2
3
2

1
9

9
2
.4

7
1
1
9
1

1
9

9
9

9
.3

6
5
5
9
6

2
5

1
7
3

1
2
2
2
3
2

2
8

8
1
.8

1
9
1
1

1
8

8
8

5
.9

4
3
6
2
2

1
3

1
7
4

1
2
2
2
3
2

3
7

7
1
.9

8
1
0
0
1

1
2

7
7

1
9
.4

2
8
9
5
6

2
9

1
7
5

1
2
3
2
3
1

1
1
1

1
1

8
.3

8
3
0
8
2

5
0

1
1

1
1

1
1
.6

3
5
6
4
6

2
4

1
7
6

1
2
3
2
3
1

2
1
1

1
1

4
.3

8
1
8
8
0

2
8

1
1

1
1

1
0
.4

8
5
3
6
2

1
9

1
7
7

1
2
3
2
3
1

3
9

9
5
.0

6
2
1
2
6

1
8

9
9

3
8
.3

8
1
3
5
7
0

4
3

..
.

2
1
1

1
4
3
2
3
1

1
6

6
5
1
.2

8
5
0
0
6

8
3

6
6

2
3
3
.3

2
3
5
5
7
2

1
0
0

2
1
2

1
4
3
2
3
1

2
8

8
5
1
.4

8
4
3
7
7

9
5

8
8

3
8
2
.7

7
5
7
2
7
2

1
4
3

2
1
3

1
4
3
2
3
1

3
1
2

1
2

3
8
.9

1
3
3
8
1

8
9

1
2

1
2

1
5
1
.4

1
2
8
6
0
0

1
0
1

2
1
4

1
4
3
2
3
2

1
2
1

2
1

6
5
.3

6
0
8
4

9
2

2
1

2
1

1
4
5
.3

1
2
1
8
5
4

8
6

2
1
5

1
4
3
2
3
2

2
1
6

1
6

4
4
.1

4
3
9
6
8

8
6

1
6

1
6

1
3
0
.8

3
2
0
0
0
2

8
1

2
1
6

1
4
3
2
3
2

3
2
3

2
3

5
5
.9

8
4
9
1
2

9
7

2
3

2
3

1
2
7
.4

9
2
1
2
3
8

8
7

A
v
er

a
g
e

8
.1

0
8
.1

3
9
.6

0
1
4
3
4
.7

2
2
7
.0

0
8
.0

8
8
.1

7
8
9
.5

0
1
0
6
8
6
.5

1
3
4
.2

9

N
r.

S
o
lv

ed
to

o
p
ti

m
a
li
ty

:
7
2

N
r.

S
o
lv

ed
to

o
p
ti

m
a
li
ty

:
7
1

Chapter 2. Scheduling trainees at a hospital department using a
branch-and-price approach 75

T
ab

le
2.

20
:

R
es

ul
ts

fo
r

pr
ob

le
m

s
w

it
h

52
pe

ri
od

s

D
ec

o
m

p
o
si

ti
o
n

o
n

a
ct

iv
it

ie
s

D
ec

o
m

p
o
si

ti
o
n

o
n

tr
a
in

ee
s

N
r.

P
ro

b
le

m
L
P

re
la

x
.

S
o
l.

T
im

e
C

o
lu

m
n
s

N
o
d
es

L
P

re
la

x
.

S
o
l.

T
im

e
C

o
lu

m
n
s

N
o
d
es

2
8
9

3
1
1
2
3
1

1
9

9
0
.0

3
9

0
9

9
0
.8

9
3
7
4

0

2
9
0

3
1
1
2
3
1

2
6

6
0
.0

3
1
0

0
6

6
0
.3

4
3
1
8

0

2
9
1

3
1
1
2
3
1

3
4

4
0
.0

3
1
2

0
4

4
0
.5

4
2
0

0

2
9
2

3
1
1
2
3
2

1
2
3

2
3

0
.0

3
8

0
2
3

2
3

0
.3

6
3
1
0

0

2
9
3

3
1
1
2
3
2

2
1
2

1
2

0
.0

5
1
3

0
1
2

1
2

0
.8

1
6
6
0

2

2
9
4

3
1
1
2
3
2

3
1
4

1
4

0
.0

5
1
3

0
1
4

1
4

0
.5

6
3
8
3

0

..
.

3
1
3

3
2
2
2
3
1

1
8
.1

5
9

6
.5

3
9
9
3

8
8

1
6

1
8
0
0

2
3
1
9
0

4
8

3
1
4

3
2
2
2
3
1

2
1
4

1
4

2
.8

1
4
0
7

0
1
4

1
8

1
8
0
0

1
0
8
7
9

1
2

3
1
5

3
2
2
2
3
1

3
9
.3

3
1
0

7
.5

4
1
5
5
1

1
9

9
.3

3
1
3

1
8
0
0

1
5
5
8
8

4
0

3
1
6

3
2
2
2
3
2

1
2
3

2
3

3
.9

8
8
0
8

4
2
3

4
6

1
8
0
0

8
1
6
0

7

3
1
7

3
2
2
2
3
2

2
2
0

2
2

4
4
9
.4

2
1
7
2
5
0

2
4
5

2
0

4
6

1
8
0
0

1
0
2
6
2

1
1

3
1
8

3
2
2
2
3
2

3
2
2
.7

9
2
5

1
8
0
0

1
6
4
6
9

1
1
0
2

2
2

3
6

1
8
0
0

1
0
1
8
2

1
4

3
1
9

3
2
3
2
3
1

1
2
2

2
2

3
6
.3

1
3
9
5
3

2
1

2
2

1
0
0

1
8
0
0

1
1
7
9
9

1
9

3
2
0

3
2
3
2
3
1

2
2
4

2
4

1
4
.0

6
2
2
4
6

1
7

2
4

3
1

1
8
0
0

1
3
6
7
5

3
1

3
2
1

3
2
3
2
3
1

3
2
3

2
3

3
7
7
.0

8
1
5
0
6
7

8
9

2
3

1
0
0

1
8
0
0

7
8
9
7

1
1

..
.

3
5
5

3
4
3
2
3
1

1
1
3
.7

8
2
6

1
8
0
0

2
1
3
9
2

2
0
6

1
3
.7

-
1
8
0
0

7
3
2
6

2
5

3
5
6

3
4
3
2
3
1

2
1
1

1
9

1
8
0
0

2
0
5
9
1

1
9
3

1
1

-
1
8
0
0

7
6
6
0

2
5

3
5
7

3
4
3
2
3
1

3
1
3
.1

7
2
0

1
8
0
0

1
5
2
5
9

8
2

1
3

-
1
8
0
0

7
9
8
7

2
1

3
5
8

3
4
3
2
3
2

1
2
6
.4

5
6
6

1
8
0
0

2
1
6
9
6

2
4
2

2
6
.4

-
1
8
0
0

7
1
0
8

1
0

3
5
9

3
4
3
2
3
2

2
2
6
.3

7
-

1
8
0
0

1
3
1
5
1

1
6

2
6

-
1
8
0
0

6
9
5
8

1
4

3
6
0

3
4
3
2
3
2

3
3
1
.6

2
5
3

1
8
0
0

1
5
1
1
4

3
1

3
1

-
1
8
0
0

6
6
3
2

1
5

A
v
er

a
g
e

1
8
.1

9
-

5
0
4
.5

5
6
3
9
3
.3

8
9
5
.0

0
1
8
.1

4
-

1
1
8
6
.1

5
1
0
0
0
0
.6

0
2
0
.0

1

N
r.

S
o
lv

ed
to

o
p
ti

m
a
li
ty

:
5
4

N
r.

S
o
lv

ed
to

o
p
ti

m
a
li
ty

:
2
7

76 2.6. Decomposition on the trainees

problems, either the computation time was the same or none of both approaches
succeeded in solving the problem within the time limit of 1800 seconds. The fourth
row indicates the average solution quality for the 340 problems for which both de-
compositions found at least a feasible solution. For the required computation time,
the number of columns and the number of nodes, a distinction is made between the
results for all problems and the results for only those problem instances for which
both decompositions found an optimal solution within the time limit.

These results clearly indicate that decomposition on the activities outperforms de-
composition on the trainees. When decomposing on the activities, more problems
could be solved to optimality, average computation times are lower, less columns
are needed to prove optimality and more nodes could be evaluated. Moreover, only
for two instances no feasible solution was found compared to 20 instances in the
trainee-based decomposition approach. If we only look at those instances for which
both decompositions found a feasible solution, the average solution quality of the
trainee-based decomposition exceeds that of the activity-based decomposition by
more than 10%.

If we only look at the problems for which both decompositions found an optimal
solution, the number of nodes evaluated in the activity-based decomposition still
exceeds those of the trainee-based decomposition. The higher number of nodes in
the activity-based decomposition is contradictory with the higher LP relaxations.
It turns out that the average is misleading at this point. The last-but-one row in
Table 2.21 indicates that the activity-based decomposition could solve more prob-
lems in less nodes than the trainee-based decomposition. Hence, there is only a
small number of problems for which the number of nodes of the activity-based de-
composition dramatically exceeds those of the trainee-based decomposition. As can
be expected, this mainly occurs in those few problems for which the LP relaxation
is lower. The last row contains the number of problems for which the LP relaxation
is lower. For only 12 instances the LP relaxation of the activity-based decompo-
sition is lower compared to 76 for the reverse case. For the other instances, both
LP relaxations were equal. 8 out of the 12 instances in which the LP relaxation
of the activity-based decomposition is lower have a random number of trainees per
activity (setting 4 for factor 4 in Table 2.8) and a small range (setting 1 for factor
5 in Table 2.8).

Chapter 2. Scheduling trainees at a hospital department using a
branch-and-price approach 77

Table 2.21: Overall summary computational

results

Decomposition on:

activities trainees

Nr. solved to optimality 329 220

Nr. times faster 315 10

Avg. solution value a 13.14 14.84

Nr. times feasible solution 358 340

Avg. comp. time (s)b 218.32 790.90

Avg. comp. time (s)c 19.92 149.24

Avg. nr. columns 4543.21 15591.94

Avg. nr. columnsc 335.38 607.14

Avg. nr. nodes 120.05 39.82

Avg. nr. nodesc 29.16 22.42

Nr. times nr. nodes is lowerc 126 40

Nr. times LP relaxation is lower 12 76

a For only the 340 problems in which both decompositions found at

least a feasible solution within 1800 seconds.

b A computation time of 1800 seconds was accounted if the algo-

rithm failed to find the optimal solution within the time limit.

c For only those 219 problems in which both decompositions found

an optimal solution within 1800 seconds.

Decomposition on the trainees resulted in a smaller computation time for only 10
instances. How can we explain this difference? First of all, as already mentioned,
the LP relaxation of the root node (thus before branching) tends to be higher if
one decomposes on the activities. Since the problem structure does not change
after branching, LP relaxations may be expected to exceed those in the trainee-
based decomposition approach throughout all nodes of the branch-and-bound tree.
Consequently, nodes can be pruned earlier in the activity-based decomposition ap-
proach. A second reason why decomposition on the activities is faster than decom-
position on the trainees lies in the difference between the master problems. The
first master contains m times n ‘lower than or equal to’ constraints, whereas the
second master contains p times n ‘equal to’ constraints. Remark that all equality

78 2.6. Decomposition on the trainees

constraints are translated into two inequality constraints. Since m ∗ n is smaller
than 2 ∗ p ∗n for all our problems, the master is often solved faster for the activity-
based decomposition approach. Third, also the networks in the pricing problems
tend to be smaller and thus can be solved faster if one decomposes on the activities.

2.6.4 Modeling power

For the problem we have described in Section 2.2, both decomposition techniques
could be applied. Would this still be the case if the problem statement slightly
changes? In this section it will be shown that decomposing on the activities can
only be applied if the problem has specific characteristics. On the contrary, decom-
posing on the staff members is a more general approach, since it can be used in a
much larger range of staff scheduling problems. This nice property of staff-based
decomposition is probably the reason why decomposing on the activities has never
been applied in the staff scheduling literature so far.

Most studies in the literature deal with short-term nurse rostering problems (see
Section 1.4.3). The demand for nurses generally fluctuates between busy shifts,
typically morning shifts, and quiet shifts, typically night and weekend shifts. Also,
as there are no formation requirements, the nurses are not required to perform a
certain set of different activities within a given time limit. Consequently, for short-
term nurse rostering problems, it is not that easy to identify activity patterns and
hence decomposition on the activities is less appropriate.

In order to successfully decompose a problem, the question one has to ask is which
constraints will be taken care of in the subproblem or similarly, which constraints
will remain in the master. The information provided by the dual prices of this last
set of constraints should be easily carried over to the subproblem without compli-
cating it too much. To make this point clear, suppose that there are precedence
constraints on the order in which the staff members perform their respective ac-
tivities, i.e., a trainee can only perform a certain activity after (s)he has already
performed another activity. This constraint would make it considerably harder to
decompose on the activities. Similarly, suppose that the holes in the individual
trainee schedules (with holes we mean periods in which no activity is scheduled),
in one way or another, contribute to the objective function (e.g., one hole of two

Chapter 2. Scheduling trainees at a hospital department using a
branch-and-price approach 79

periods is preferred to two holes of one period). Whereas this extension could be
perfectly addressed in the trainee-based decomposition scheme, it produces serious
problems in the activity-based decomposition scheme.

As a third example, observe that in our problem the formation requirement con-
straints (2.4) and (2.5) for each trainee are automatically satisfied if one selects a
schedule (column) for each activity. If it would, however, not be possible to select,
for each activity, a set of trainees so that the individual requirement constraints
are implicitly satisfied (and thus can be left out of the master), decomposition on
the activities would not be suitable. Summarizing, decomposition on the activities
is only appropriate if either no constraints (or few) apply at the individual staff
member level or, alternatively, if these constraints are automatically satisfied when
scheduling activity patterns.

2.7 Generalization of the problem

The problem addressed in this section again involves the construction of 1-year
trainee schedules at a hospital department but is a generalization of the problem
dealt with in the previous sections. It is shown how a number of additional con-
straints are easily incorporated in the column generator and how both master and
column generator could be made heuristically. Indeed, the generalized problem
has a larger solution space which cannot be searched efficiently with an exact ap-
proach. Therefore, some heuristic extensions are required to speed up the algorithm
at the cost of not guaranteeing optimality. Implementation issues and computa-
tional results are given for some real life instances for a trainee scheduling problem
encountered at the Oogziekenhuis Gasthuisberg Leuven.

2.7.1 General problem statement

First, in the previous section it was assumed that an activity is to be performed by
exactly one trainee out of set of trainees having the appropriate skills during each
time instance of the time horizon. A more general coverage constraint, however,
applies on a specific time horizon. For a particular activity, several coverage con-
straints could be specified, but each coverage constraint involves only one activity.

80 2.7. Generalization of the problem

Second, in the previous sections it was assumed that the formation requirement
constraints (2.4) and (2.5), for each individual trainee, are automatically satisfied if
one composes sets of trainees for each activity and schedules the resulting activity
patterns. In Section 2.6, this assumption has already been dropped. However, in
order to be able to make a fair comparison between both decomposition approaches,
all the tested problems still satisfied this assumption.

Third, trainee scheduling problems are often overconstrained, meaning that no fea-
sible solution can be found which satisfies all these constraints. Therefore, we have
introduced for each constraint in the ILP stated below a dummy variable except for
constraint (2.46), since this constraint can, of course, not be violated. Since we wish
to satisfy as many constraints as possible, the objective function of our ILP model
is to minimize the total sum of these dummy variables. Because some constraints
are more important than others, each dummy could be weighted with a penalty cost.

Let r−ci and r+
ci be the number of trainees scheduled too few and the number of

trainees scheduled too many in period i for coverage constraint c and p−c and p+
c

their respective associated penalty costs (these costs are assumed to be constant
over all periods of the coverage constraint horizon but this is not required for our
algorithm). Let Ljk and Ujk be the strict minimum and maximum number of peri-
ods trainee j has to perform activity k as stated in the formation requirements. Let
Fjk be the target number of periods trainee j has to perform activity k. Make f−jk

denote the positive difference between this target and the actual number of periods
in the final schedule. Similarly, let f+

jk be the difference between the scheduled
number of periods and the target number in the reverse case where the number of
actual periods exceeds the target number. Make v−jk and v+

jk denote the associated
penalty costs. Let dij denote the dummy variable forced to be 1 if trainee j is
scheduled to perform an activity at a non-available period i and let wij denote the
respective penalty cost. Finally, bjk equals the number of restarts of activity k

by trainee j and qjk is the associated penalty cost. The ILP formulation is given
below.

Min
∑

c∈C

ec∑

i=sc

(p+
cir

+
ci+p−cir

−
ci)+

m∑

j=1

p∑

k=1

(v−jkf−jk+v+
jkf+

jk+qjkbjk)+
n∑

i=1

m∑

j=1

wijdij (2.40)

Chapter 2. Scheduling trainees at a hospital department using a
branch-and-price approach 81

subject to:

∑

j∈T c

xijac
− r+

ci + r−ci = Rc ∀c ∈ C and ∀i = sc, ..., ec (2.41)

n∑

i=1

xijk − f+
jk + f−jk = Fjk ∀j = 1, ..., m and ∀k = 1, ..., p (2.42)

n∑

i=1

xijk ≥ Ljk ∀j = 1, ..., m and ∀k = 1, ..., p (2.43)

n∑

i=1

xijk ≤ Ujk ∀j = 1, ..., m and ∀k = 1, ..., p (2.44)

p∑

k=1

xijk − dij = 0 ∀j = 1, ..., m and ∀i ∈ N j (2.45)

p∑

k=1

xijk ≤ 1 ∀i = 1, ..., n and ∀j = 1, ..., m (2.46)

y1jk = x1jk ∀j = 1, ..., m and ∀k = 1, ..., p (2.47)

yijk ≥ xijk − x(i−1)jk ∀i = 2, ..., n, ∀j = 1, ..., m and ∀k = 1, ..., p (2.48)
n∑

i=1

yijk − bjk ≤ 1 ∀j = 1, ..., m and ∀k = 1, ..., p (2.49)

xijk, yijk ∈ {0, 1} ∀i = 1, ..., n, ∀j = 1, ..., m and ∀k = 1, ..., p (2.50)

In this formulation, C represents the set of coverage constraints and ac, T c, Rc, sc

and ec are respectively the activity, the trainee set having the appropriate skills,
the number of trainees required and the start and end period of the time hori-
zon of coverage constraint c. Constraint set (2.41) states the coverage constraints.
Constraints (2.42)- (2.44) contain the formation restrictions. Constraint set (2.45)
implies the non-availability restrictions. Constraint set (2.46) ensures that each
trainee performs no more than one activity during each time instance. Constraints
(2.47)-(2.49) imply the setup restrictions. The last constraint set (2.50) defines x

and y as binary variables. Obviously, the dummy variables cannot be negative.

To solve this problem one could use a decomposition scheme based on the trainees
and apply column generation to solve the resulting master LP as has been described
in Section 2.6. If the LP is solved to optimality, the solution is driven into integral-
ity using a branching scheme that branches on the timetable cells. This approach

82 2.7. Generalization of the problem

works well for the problem dimensions we have considered (no trainee has to per-
form more than eight different activities) and if activity split-ups are prohibited. If
activity split-ups have to be taken into account, the state space grows exponentially
since it requires the introduction of new states which track the number of periods
each activity is scheduled instead of merely keeping track whether or not a certain
activity is scheduled. Therefore, instead of an exact dynamic programming ap-
proach, an approximation algorithm could be applied for pricing out new columns
(see Section 2.7.3).

2.7.2 Constraint preprocessing

As has been pointed out in Section 2.6, the column generator takes care of all con-
straints but the coverage constraints. Accordingly, the master LP only contains the
coverage constraints and the added convexity constraints which ensure that exactly
one column is chosen for each trainee. Since the number of coverage constraints dra-
matically exceeds the number of convexity constraints (only one for each trainee),
this first set of constraints has a large impact on the computation times of the re-
stricted masters. As a matter of fact, each extra coverage constraint generally tends
to complicate the problem, whereas each extra trainee-specific constraint tends to
simplify the problem, since it often results in smaller pricing problem networks
and/or faster pruning in the column generator. Hence, each coverage constraint
that could be transformed into one or more trainee-specific constraints may lead
to a significant decrease in required computation time. Therefore, we implemented
some simple rules to identify such ‘transformable’ coverage constraints.

Obviously, coverage constraints that apply on a single trainee can easily be trans-
formed. Second, coverage constraints of capacity type (= or ≤) with right hand
side value equal to zero can also easily be left out of the master. In the real-life
problem we considered, first-year trainees were, for instance, not allowed to per-
form emergency-related activities during the first semester. Instead of keeping a
constraint of the form x11k + x12k + x13k · · ·+ x1mk ≤ 0 for each period 1..n

2 in the
master, it is much more efficient to remove these constraints and incorporate them
explicitly in the column generator by removing the corresponding arcs out of the
networks. This is called constraint preprocessing. Since it reduces the complexity of

Chapter 2. Scheduling trainees at a hospital department using a
branch-and-price approach 83

both master and subproblems, constraint preprocessing is an important technique
for decreasing overall computation times.

2.7.3 Heuristic extensions

Earlier tests revealed that proven optimal solutions could only be found within rea-
sonable time limits if either the total number of possible columns for each trainee
is restricted (i.e., small problem dimensions, see Section 2.6.3.2), or if only a small
subset of columns has to be explicitly generated in order to find an optimal integral
solution. The latter generally occurs if (a) the master LP relaxation is equal to
the optimal IP solution value or (b) if the total set of feasible columns could be di-
vided into two subsets, a ‘cheap’ set, containing a relatively small number of cheap
columns and an ‘expensive’ set containing all other columns, such that a feasible
solution can be found with only columns from the ‘cheap’ set and the corresponding
solution value is smaller than the cost of each column of the ‘expensive’ set. Con-
sider, for instance, the case in which (part of) the setup costs are higher than the
total cost of a feasible schedule. Then, the paths emerging from such an expensive
split-up can immediately be pruned in the column generator. If, however, both
(a) and (b) are not true, then the algorithm has to be extended with a number of
heuristic features to ensure that at least a good (not necessarily optimal) solution
will be found. We will successively deal with the following heuristic extensions:

� heuristic algorithm for pricing out new columns;

� premature termination of column generation;

� imbalanced branching;

� combining depth-first and best-first search;

� heuristically fixing xijk variables.

2.7.3.1 Heuristic algorithm for pricing out new columns

Thanks to the tremendous progress in LP optimization code, the bottleneck of
many branch-and-price implementations nowadays mostly lies in the solution of
the pricing problems. As has already been mentioned in Section 2.7.1, if activity
split-ups have to be taken into account, the state space of the dynamic programming

84 2.7. Generalization of the problem

procedure grows exponentially. Therefore, instead of an exact dynamic program-
ming approach, an approximation algorithm could be applied for pricing out new
columns. We make the following assumptions:

� each activity can only be restarted once for each trainee;

� if a trainee j restarts an activity k, or in other words, if the activity is split
up into two separate parts, then the first part has to contain at least the
minimum requirement Ljk of periods.

The first assumption can be justified since the setup penalty costs are usually much
higher than the non-availability penalty costs and consequently activities that are
started more than twice tend to occur rarely in (sub)optimal schedules. The second
assumption can also be justified since it stands for a real-life constraint in many
practical situations, namely that only an already experienced trainee can replace
another trainee to perform an activity the latter cannot perform for one or two
weeks. Moreover, it is not desirable that a trainee, who performs an activity for the
first time, already quits it after having performed it for a relatively small number
of periods. Analogously to the situation with precedence constraints, whereas this
extra constraint can easily be dealt with in the column generator, it would have
been very difficult to capture in the pure IP formulation.

Both assumptions entail two interesting properties. First of all, the total state space
of feasible schedules (columns) is dramatically reduced for each trainee. Second,
the dominance rule as well as the upper bound calculation stated above can still
be applied. Nevertheless, generating the best column for certain trainees may still
be (too) time consuming (recall that this has to be done many times). Observe,
however, that it is not necessary to find optimal columns during the early stages of
column generation. Instead, good but not necessarily optimal columns, generated
by a heuristic algorithm, can already result into an LP objective value that closely
approaches the optimal value. Therefore, the column generator outlined above will
be truncated after the exploration of a limited number of feasible paths. At each
new pricing iteration, the order in which the activities are considered is determined
at random in order to ensure that no large parts of the feasible path state space
are completely ignored. If optimality proving were the major concern, the column
generator may not be truncated upon convergence of column generation, since only
optimal columns can provide the information to determine whether or not the
master objective value is solved to optimality. If, however, optimality proving is

Chapter 2. Scheduling trainees at a hospital department using a
branch-and-price approach 85

of smaller importance, but rather a good feasible IP solution is the major concern,
then the information provided by heuristically generated columns can also be used
to determine whether or not to stop column generation and to start branching.

2.7.3.2 Premature termination of column generation

Our column generation scheme exhibits the tailing-off effect, i.e., requiring a large
number of iterations to prove LP optimality. Instead of solving the linear program
to optimality, i.e., generating columns as long as profitable columns exist, we could
end the column generation phase prematurely when the master LP value sufficiently
approximates the (theoretical) optimum. Therefore, a lower bound on the master
LP is required. Therefore we use the Lagrangian lower bound, described in Section
2.3.7.2.

2.7.3.3 Imbalanced branching

As already outlined in Section 2.3.6 branching on the xijk variables is preferred
to branching on the zjt variables when optimality proving is a major concern.
If, however, fast detection of a good, feasible solution is the main objective, a
more imbalanced (and thus more restrictive in one direction) branching scheme like
branching on the zjt variables could be more suitable. Indeed, each left branch
(zjt set to 1) fixes a full trainee schedule instead of merely a relatively small subset
of arcs in the network. Consequently, feasible integer solutions will be detected
much sooner. The counterpart is that it will almost be impossible to prove the
optimality of a solution (unless the integral solution objective value equals the
LP relaxation). To avoid entering the same column twice, each time the column
generator discovers a better column, the new column is first checked against the
columns in a forbidden list (i.e., columns set to 0 in the branch-and-bound tree).
This can be done quite efficiently since each column can be represented with only
four integers using a binary encoding scheme. If this is the case, the second best
column can be generated using the algorithm described in Section 2.3.4.

2.7.3.4 Combining depth-first and best-first search

Basically, the branch-and-bound tree is traversed in a depth-first way. The ad-
vantage of depth-first is that an integer solution is found early on in the search
and hence upper bound pruning can be applied soon. An important disadvantage,

86 2.7. Generalization of the problem

however, is that once an integer solution is found, the algorithm may waste a lot
of computation time to improve the solution only slightly. Since we track lower
bounds for each node in the search tree, we know the best possible solution value
for each node and all nodes below it. If, upon backtracking, the possible improve-
ment, measured by the difference between the nodes lower bound and the current
best found solution, is relatively small, we may opt to backtrack one or more levels
further until a node is reached for which the possible gain is worth exploring it. In
the extreme case this would be a best-first strategy (i.e., the next node to explore
is the one with the lowest lower bound). The disadvantages of a pure best-first
search are the late detection of an integer solution and the requirement of advanced
memory management and sorting capabilities. A mixed approach, combining the
advantages of both strategies, turned out to be a good choice for our application.

2.7.3.5 Heuristically fixing xijk variables

A final heuristic extension involves the fixing of a number of xijk variables before
starting the branch-and-price algorithm. More specifically, a number of ‘activity
patterns’ could already heuristically be scheduled. We refer to an activity pattern
for activity k from period i1 until period i2 as the scheduling of activity k over all
time periods between i1 and i2 such that exactly one trainee is scheduled at each
period. Activity patterns could be identified for all activities for which coverage
constraints of type (= or ≥) exist. In the previous sections it has been shown how
a restricted version of the trainee scheduling problem could be completely decom-
posed on these activity patterns and solved to optimality with column generation.
However, as indicated in Section 2.6.4, the main disadvantage of this approach is
that it could only deal with those trainee-specific constraints which are automat-
ically satisfied when scheduling the activity patterns. Moreover, if (part of) the
coverage constraints require two or more trainees to be scheduled, the optimality
of a solution could not be proven.

The idea is, however, useful to apply in this context. A number of activity patterns
could be identified and scheduled heuristically before starting the branch-and-price
algorithm. This is done using the greedy heuristic described in Section 2.3.7.1. Pre-
scheduling a number of activity patterns considerably simplifies both the master
problem (less coverage constraints) and the pricing problem (smaller networks).
The more activity patterns are scheduled (i.e., the more xijk variables are fixed)

Chapter 2. Scheduling trainees at a hospital department using a
branch-and-price approach 87

the easier the problem becomes, but also the less likely we are to find an optimal
solution. Upon completion of the branch-and-price algorithm, the best solution is
saved as an upper bound and the process restarts with either the scheduling of a
different set of activity patterns or a different schedule of the same set of activity
patterns.

2.7.4 Computational results

In this section we present computational results for a real-life trainee scheduling
problem encountered at the department Oogziekenhuis of the university hospital
Gasthuisberg, Leuven, Belgium. The number of trainees of this department varies
between 20 and 25. These trainees can roughly be divided into four skill categories
(depending on their academic phase). However, exceptions are possible and occur
frequently (e.g., a 3rd year trainee having to perform a 2nd year activity). Schedules
are built at the start of each academic year and define the workload for each trainee
for all periods in the coming year. Since coverage and non-availability constraints
apply on a weekly basis and formation requirements are expressed in terms of num-
bers of weeks, the basic scheduling unit is a week and thus the number of periods
equals 52.

In order to simplify the complicated task of the scheduler, current practice includes
the aggregation of these 52 weeks in 18 multi-week ‘blocks’ (16 3-week blocks and
2 2-week blocks). The disadvantage of this approach is that the scheduler is not
able to fully exploit all scheduling possibilities. If, for instance, a trainee is not
available during a particular week, then the whole block is made unavailable. Once
the schedule is built in terms of these blocks, the remaining week (in case of a
2-week block) or remaining two weeks (in case of a 3-week block) of non-available
blocks, are filled up with the scheduling of activities with low set-up costs and for
which there is sufficient capacity left. Similarly, formation requirements could not
be met to the same level of detail as would be the case if schedules are built on
a weekly basis. Consequently, the resulting schedules were frequently observed as
being unfair and had to go through an extended bargaining process. The total time
needed to build the schedule, bargain, rebuild, etc., could easily take about 10 days
for an experienced scheduler.

88 2.7. Generalization of the problem

Merely for illustrative purposes, we provide computational results for the 2003-
2004 academic year trainee scheduling problem. First, we consider the 18-blocks
problem, which could be solved rather easily. Next, we try to solve the 52-weeks
problem, which is much more complicated, but allows for the construction of more
detailed and qualitatively better schedules for the same problem. For this last
problem, we show how the heuristic extensions can help finding a good (better)
solution in less time. Table 2.22 summarizes the most important properties of both
problems.

Table 2.22: Real-life problem

Problem Nr. of Nr. of Avg. nr. of Nr. of coverage

periods trainees activities for constraints in

each trainee the mastera

1 18 21 6 260

2 52 21 6 720

a Exclusive the constraints removed by constraint preprocessing (=+/- 10%

of total number of constraints).

All our experiments were performed on a 2.4 GHz Pentium 4 PC with the Win-
dows XP operating system. The algorithm was written in MS Visual C++.NET and
linked with the CPLEX 8.1 optimization library. Computational results are given in
Table 2.23. The first line of this table indicates that the 18-period problem could be
solved to optimality within 2205 seconds. The gap with the optimal LP relaxation
is 2%. The gap is defined as 100 ∗ (solution − LP relaxation)�(LP relaxation).
The next lines illustrate the impact of the different heuristic extensions on the solu-
tion quality. The second column indicates the section numbers of the implemented
heuristic extensions. As can be observed, these extensions are implemented in a
cumulative way. The computation times were limited to 300 seconds. If we apply
the heuristic instead of the exact column generator, the same (optimal) solution
was detected. We note that optimality was not proven since (a) the LP relaxations
are not proven to be optimal and (b) the branch-and-bound tree still contained

Chapter 2. Scheduling trainees at a hospital department using a
branch-and-price approach 89

unexplored nodes. If we allow for an LP optimality gap of 2% in each node of the
branch-and-bound search tree, the best solution found had a gap of 3.5%.

Next, if the balanced branching scheme is replaced with an imbalanced one (branch-
ing on the column variables) the gap increases to 5%. However the time needed to
find the first integer solution was decreased significantly with almost 50% (from 40
to 23 seconds). The problem here is that the algorithm wasted a lot of time ex-
ploring nodes below a right branch (a particular column variable fixed to 0) only to
improve the solution slightly. Strong branching decisions (column variables fixed to
1) made near the root of the search tree could not be undone within the restricted
time limit.

When the depth-first search was combined with a best-first search by requiring a
minimal possible improvement for exploring a node (as outlined in Section 2.7.3.4),
a better solution was detected. Finally, if a number of activity patterns are sched-
uled heuristically (as outlined in Section 2.7.3.5) an integral solution was already
found in less than 10 seconds. However, the algorithm lacked the flexibility to find
close to optimal solutions. In the first setting (*) two activity patterns were iden-
tified and scheduled heuristically, whereas in the second setting (**) four activity
patterns were pre-scheduled (freezing approximately 10% and 20% of the schedule).
Afterwards the branch-and-price algorithm was run to solve the remaining problem
to optimality.

When the branch-and-price algorithm terminates, the process restarts with a dif-
ferent activity pattern set and/or a different scheduling of the same set. In many
cases the branch-and-price algorithm could be terminated as soon as the LP lower
bound exceeded the current best found solution. For this relatively small problem
the results indicate that the gaps tend to increase with added heuristic extensions.
However, the time needed to find a first integral solution decreases.

Let us now turn to the 52-period problem. As indicated in the eighth line of Table
2.23, this problem could not be solved to optimality by the exact branch-and-price
algorithm (i.e., without heuristic extensions) within 10 hours of computation time.
There was a gap of 18.66% between the best solution found and the optimal so-
lution of the LP relaxation. Since only a relatively small number of nodes in the
branch-and-bound tree were explored (254) and we know from experience that the

90 2.7. Generalization of the problem

LP relaxation gap is usually much smaller, there is strong indication that better
solutions should be possible. Again, we implemented several heuristic implemen-
tations and report on the gaps found. The computation times were limited to 900
seconds.

When we replaced the exact column generator with a heuristic algorithm (Section
2.7.3.1), the gap was reduced by 5.3% (from 18.7% to 13.4%). Taking into ac-
count the restricted computation time, many more nodes could be evaluated in the
search tree (111 nodes in 900 seconds compared to 254 nodes in 36000 seconds). The
main reason for this improvement is the fact that the algorithm suffered less from
the so-called ‘tailing-off effect’ observed in many column generation applications.
Tailing-off means that the algorithm keeps finding columns with negative reduced
cost, but these columns fail to improve the LP objective. In other words, upon LP
convergence, many columns are added merely to prove LP optimality, but do not
result in a decrease of the LP objective. Recall also that in the exact algorithm the
main part of the columns were generated with the heuristic column generator. Only
those needed to prove LP optimality had to be generated using the exact column
generator. The same reasoning applies if we allow for an LP optimality gap of 2%
in each node of the branch-and-bound search tree and the solution could be further
improved until 7.3% of the LP relaxation.

Next, if the balanced branching scheme is replaced with an imbalanced one (branch-
ing on the column variables), the algorithm was not able to find a better solution.
However, the time needed to find the first integer solution was again decreased with
almost 50% (from 574 to 324 seconds). When the depth-first search was combined
with a best-first search, a better solution could be detected. Finally, if a number of
activity patterns are scheduled heuristically an integral solution was already found
in respectively 46 and 18 seconds, but the gaps increase again.

Chapter 2. Scheduling trainees at a hospital department using a
branch-and-price approach 91

T
ab

le
2.

23
:

C
om

pu
ta

ti
on

al
re

su
lt

s

P
ro

b
le

m
H

eu
ri

st
ic

T
im

e
L
P

T
im

e
fi
rs

t
T
o
ta

l
L
P

N
r.

N
r.

ex
te

n
si

o
n
s

re
la

x
a
ti

o
n

(s
)

in
te

g
er

co
m

p
u
ta

ti
o
n

re
la

x
a
ti

o
n

n
o
d
es

co
lu

m
n
s

so
lu

ti
o
n

(s
)

ti
m

e
(s

)
g
a
p

1
-

2
1

5
6

2
2
0
5

2
.0

%
5
3
4

2
2
1
8
4

1
[2

.7
.3

.1
]

1
7

4
5

3
0
0

2
.0

%
1
2
2

5
5
4
1

1
[2

.7
.3

.1
],
[2

.7
.3

.2
]

1
6

4
0

3
0
0

3
.5

%
1
4
3

5
1
2
6

1
[2

.7
.3

.1
],
[2

.7
.3

.2
],
[2

.7
.3

.3
]

1
6

2
3

3
0
0

5
%

3
1
2

6
2
6
5

1
[2

.7
.3

.1
],
[2

.7
.3

.2
],
[2

.7
.3

.3
],
[2

.7
.3

.4
]

1
6

2
3

3
0
0

3
.1

%
2
7
8

5
9
6
3

1
[2

.7
.3

.1
],
[2

.7
.3

.2
],
[2

.7
.3

.3
],
[2

.7
.3

.4
],
[2

.7
.3

.5
]*

3
1
0

3
0
0

7
.6

%
3
4

2
4
9
7

1
[2

.7
.3

.1
],
[2

.7
.3

.2
],
[2

.7
.3

.3
],
[2

.7
.3

.4
],
[2

.7
.3

.5
]*

*
3

8
3
0
0

1
2
.3

%
2
5

1
8
4
2

2
-

1
8
4

9
2
2

3
6
0
0
0

1
8
.7

%
2
5
4

2
8
5
1
5

2
[2

.7
.3

.1
]

1
1
1

6
4
6

9
0
0

1
3
.4

%
1
1
1

9
4
5
6

2
[2

.7
.3

.1
],
[2

.7
.3

.2
]

1
0
5

5
7
4

9
0
0

7
.3

%
1
5
4

1
1
4
1
4

2
[2

.7
.3

.1
],
[2

.7
.3

.2
],
[2

.7
.3

.3
]

1
0
5

3
2
4

9
0
0

9
.6

%
3
7
7

1
2
4
3
8

2
[2

.7
.3

.1
],
[2

.7
.3

.2
],
[2

.7
.3

.3
],
[2

.7
.3

.4
]

1
0
5

3
2
4

9
0
0

5
.6

%
3
1
6

1
2
7
2
3

2
[2

.7
.3

.1
],
[2

.7
.3

.2
],
[2

.7
.3

.3
],
[2

.7
.3

.4
],
[2

.7
.3

.5
]*

2
6

4
6

9
0
0

1
1
.9

%
1
2
3

8
4
5
6

2
[2

.7
.3

.1
],
[2

.7
.3

.2
],
[2

.7
.3

.3
],
[2

.7
.3

.4
],
[2

.7
.3

.5
]*

*
4

1
8

9
0
0

1
5
.3

%
8
8

7
4
5
8

T
h
e

se
c
ti

o
n

n
u
m

b
e
rs

o
f
th

e
im

p
le

m
e
n
te

d
h
e
u
ri

st
ic

e
x
te

n
si

o
n
s

a
re

in
d
ic

a
te

d
.

In

p
re

m
a
tu

re
te

rm
in

a
ti

o
n

(2
.7

.3
.2

)
c
o
lu

m
n

g
e
n
e
ra

ti
o
n

is
e
n
d
e
d

if
th

e
L
P

o
p
ti

m
a
l-

it
y

g
a
p

is
sm

a
ll
e
r
th

a
n

2
%

.
In

im
b
a
la

n
c
e
d

b
ra

n
ch

in
g

(2
.7

.3
.3

)
b
ra

n
ch

in
g

o
c
c
u
rs

o
n

th
e

c
o
lu

m
n

v
a
ri

a
b
le

s
in

st
e
a
d

o
f
o
n

th
e

ti
m

e
ta

b
le

c
e
ll
s.

In
p
a
rt

ia
l
b
e
st

-fi
rs

t

se
a
rc

h
(2

.7
.3

.4
)
a

m
in

im
a
l
p
o
ss

ib
le

im
p
ro

v
e
m

e
n
t
o
f
2
%

is
re

q
u
ir

e
d

fo
r
e
x
p
lo

ri
n
g

a
n
o
d
e

in
th

e
se

a
rc

h
tr

e
e
.

In
h
e
u
ri

st
ic

fi
x
in

g
[2

.7
.3

.5
]*

,
tw

o
a
c
ti

v
it
y

p
a
tt

e
rn

s
a
re

p
re

-s
ch

e
d
u
le

d
,
fr

e
e
z
in

g
a
p
p
ro

x
im

a
te

ly
1
0
%

o
f
th

e
sc

h
e
d
u
le

,
w

h
e
re

a
s

in
h
e
u
ri

s-

ti
c

fi
x
in

g
[2

.7
.3

.5
]*

*
,
fo

u
r
a
c
ti

v
it

ie
s
w

e
re

p
re

-s
ch

e
d
u
le

d
,
fr

e
e
z
in

g
a
p
p
ro

x
im

a
te

ly

2
0
%

o
f
th

e
sc

h
e
d
u
le

.

92 2.8. Graphical user interface

2.8 Graphical user interface

In this section the graphical user interface (GUI) is presented. The GUI is described
using the general trainee scheduling problem studied in Section 2.7. Obviously, as
the trainee scheduling problem studied in the preceding sections is a special case of
this general problem, it can also be modeled using the same GUI. The language of
the GUI is Dutch. The GUI serves three important objectives.

First of all, it allows for easy data input and constraint specification. Non-available
periods for instance are specified by simply double clicking on the corresponding
timetable cell and entering the associated penalty cost. The non-available period
will be marked in red as indicated in Figure 2.2. Figure 2.3 shows how the proper-
ties of a trainee are specified. Each activity having to be performed by the trainee
is checked and the target, minimum and maximum number of periods as well as
deviation penalty costs and penalty costs for activity split-ups can easily be spec-
ified. Figure 2.4 shows an example of a coverage constraint. The corresponding
activity, time horizon, type (≤,= or ≥), required number of trainees, trainee set
(skill category) and penalty costs associated with the coverage constraint have to
be specified. The importance of easy, intuitive constraint specification is extremely
important for the acceptance of the software. If the scheduler were required to state
the constraints mathematically (like we did in this chapter), it is very likely that
(s)he would prefer the old manual way of scheduling.

A second objective is the visualization of the search process and of course of the
found solution(s). A found solution is represented in Figure 2.5. The visualization
of the search process greatly helps to understand how the algorithm works and
enables to identify certain problems at an early stage during the search. Figure 2.6
indicates how the algorithm is visualized during the run. First, each newly found
column is drawn. Second, each branching restriction is indicated by coloring the
corresponding timetable cell with the associated activity color.

A third objective of the GUI is to enable the user to fix activity assignments before
the start of the algorithm and to modify the found schedule afterwards. This
can be done very easily by clicking, dragging and dropping. In the extreme case,
the scheduler can try to build the whole schedule in this (manual) way. If at
a certain moment the scheduler encounters a schedule conflict, (s)he can make

Chapter 2. Scheduling trainees at a hospital department using a
branch-and-price approach 93

F
ig

ur
e

2.
2:

G
U

I:
no

n-
av

ai
la

bl
e

pe
ri

od
s

in
di

ca
te

d
in

re
d

94 2.8. Graphical user interface

F
ig

ur
e

2.
3:

G
U

I:
Sp

ec
ify

in
g

th
e

pr
op

er
ti

es
of

a
tr

ai
ne

e

Chapter 2. Scheduling trainees at a hospital department using a
branch-and-price approach 95

F
ig

ur
e

2.
4:

G
U

I:
Sp

ec
ify

in
g

a
co

ve
ra

ge
co

ns
tr

ai
nt

96 2.8. Graphical user interface

F
ig

ur
e

2.
5:

G
U

I:
V

is
ua

liz
at

io
n

of
a

so
lu

ti
on

Chapter 2. Scheduling trainees at a hospital department using a
branch-and-price approach 97

F
ig

ur
e

2.
6:

V
is

ua
liz

at
io

n
du

ri
ng

al
go

ri
th

m
ru

n:
th

e
ne

w
ly

fo
un

d
co

lu
m

n
an

d
th

e
br

an
ch

in
g

de
ci

si
on

s
in

di
ca

te
d

in

co
lo

r

98 2.9. Conclusions and future research

some assignments undone and run the algorithm to check whether or not a feasible
solution is still possible. This would be the case if, for instance, a trainee is required
to restart a certain activity because a particular coverage constraint can no longer
be satisfied given the partial schedule. This last feature contributes significantly to
the willingness of schedulers to accept the software, since it recognizes the fact that
they still have the last word. The software only assists in building the schedules,
i.e., it helps in solving difficult ‘combinatorial puzzles’, but the final decisions are
still made by (human) scheduler(s) and not by the PC.

2.9 Conclusions and future research

In this chapter, the problem of building long term trainee schedules has been stud-
ied. The first part of the chapter deals with a specific class of trainee scheduling
problems for which a decomposition scheme on the activities could be applied. Col-
umn generation could be applied to find the LP relaxation of the new model and
several branching schemes have been proposed to drive the solution into integrality.
Extensive computational results have indicated how the different problem dimen-
sions influence the problem difficulty and how the different speed-up techniques
contribute to the efficiency of the solution procedure.

Next, the decomposition on the activities approach has been compared with a more
traditional decomposition on the trainees approach. The computational tests re-
vealed that decomposition on the trainees is clearly outperformed by decomposition
on the activities. The modeling power of both decomposition techniques has also
been discussed. Since most staff scheduling problems have a lot of constraints that
apply at the level of individual staff members, decomposition on staff members
could be used in a wider range of problems. In the rare case that most constraints
apply at the level of the activity schedules, decomposition on the activities is more
suitable. Activity-based decomposition is also appropriate if each combination of
activity schedules automatically satisfies all individual staff member constraints.
This was the case for the considered trainee scheduling problem in the first part of
this chapter.

The following part has shown how the developed approach can easily be turned
into an effective heuristic algorithm. Therefore, five heuristic extensions have been

Chapter 2. Scheduling trainees at a hospital department using a
branch-and-price approach 99

proposed. The developed application was tested on two real-life problems and
computational results are given. These results illustrate how the different heuristic
extensions could improve the solution quality if the problem is too complex to find
a (proven) optimal solution.

Finally, a graphical user interface (GUI) has been developed. The GUI allows for
easy data input, constraint specification and modification of the algorithmic set-
tings. Moreover, certain parts of the schedule could be frozen before the algorithm
is run and proposed solutions could be easily modified.

Concerning future research topics, it would be interesting to identify other staff
scheduling problems for which decomposition on the activities could be applied.
Given the interesting computational properties, this approach could also be suitable
to calculate lower bounds for a number of staff scheduling problems for which the
above mentioned conditions do not hold. The idea is to remove a part of the
individual staff member constraints in order to optimize the relaxed problem using
activity-based column generation. Another interesting research direction includes
the study of metaheuristic approaches (like, e.g., simulated annealing, tabu search,
genetic algorithms or ant colony heuristics) for this problem and see how these
compare to the heuristic branch-and-price procedure.

100 2.9. Conclusions and future research

Chapter 3

Visualizing the demand for

various resources as a

function of the master

surgery schedule: A case

study

This chapter presents a software system that visualizes the impact of the master
surgery schedule on the demand for various resources throughout the rest of the
hospital. The master surgery schedule can be seen as the engine that drives the
hospital. Therefore, it is very important for decision makers to have a clear image
on how the demand for resources is linked to the surgery schedule. The software
presented in this chapter enables schedulers to instantaneously view the impact
of, e.g., an exchange of two block assignments in the master surgery schedule on
the expected resource consumption pattern. A case study entailing a large Belgian
surgery unit illustrates how the software can be used to assist in building better
surgery schedules.

101

102 3.1. Introduction

3.1 Introduction

The operating room can be seen as the engine that drives the hospital as the ac-
tivities inside the operating room have a dramatic impact on many other activities
within the hospital. For instance, patients undergoing surgery are expected to
recover over a number of days. Consequently, bed capacity and nursing staff re-
quirements are dependent on the operating room schedule. The software system
described in this chapter visualizes the impact of the master surgery schedule on
the demand for all kinds of resources like beds, staff (nurses, anaesthetists, etc.),
specialized equipment, radiology and so on.

It has been widely accepted that visualization is a simple yet powerful tool for man-
aging complex systems like health care service units. Strum et al. (1997) propose
a resource coordination system for surgical services (RCSS) using distributed com-
munications. They present user interfaces that are designed to mimic paper lists
and worksheets used by health care providers. These providers enter and main-
tain patient-specific and site-specific data, which are broadcasted and displayed for
all providers. The basic difference between RCSS and our system is that RCSS
is designed to work online, preventing and solving resource capacity problems by
effective communication, while our system works offline and is designed to facili-
tate the development of better long term cyclic surgery schedules. Carter (2000)
describes the successful application of a commercial package, called ORSOS, which
is an enterprise-wide surgery scheduling and resource management system. The
system autonomically manages all of the hospitals’ surgical staff, equipment and
inventory using an engine that considers all of the clinical, financial and opera-
tional criteria that must be addressed for each surgical event. The difference with
our system is that the emphasis lies on the third stage, the detailed elective surgery
scheduling, while our system is designed for the second stage.

Simulation packages are often used to analyze and visualize surgical units. Good
surveys of simulation approaches in health care clinics can be found in Klein et al.
(1993), Jun et al. (1999) and Standridge (1999). Simulation models that focus on
the bed occupancy can be found in Dumas (1984) and (1985) and Wright (1987).
A specific simulation model for predicting nursing staff requirements has been de-
scribed by Duraiswamy et al. (1981). Swisher et al. (2001) highlight the graphical
visualization features of their object-oriented simulation package for health care

Chapter 3. Visualizing the demand for various resources as a function of
the master surgery schedule: A case study 103

clinics. The advantage of simulation, compared to our system, is the capability
to analyze stochastic processes and to model more complex discrete-event like re-
lationships. The disadvantage is that building a good simulation model is often
very time and cost intensive, which makes it less suitable for quickly analyzing sim-
ple what-if scenarios, e.g., for assisting in the development of a new cyclic surgery
schedule.

In Chapter 1 we have argued that developing operating room schedules can be seen
as a three stage process. The model described in this chapter (and also the models
presented in the succeeding chapters) is situated in the second stage and as such
distinguishes itself from studies situated in the first or the third stage.

The purpose of the system presented in this chapter is threefold. First, schedulers
can use it for detecting resource conflicts and constructing workable schedules. Sec-
ond, the system can greatly assist during the master surgery schedule bargaining
process. Visualizing a resource conflict is often far more convincing than hours of
discussion with unsatisfied surgeons for not being scheduled by their preferences.
Third, the system can be of great value for persuading hospital managers to invest
in extra resource capacity. Insufficient resource capacities may not always be visi-
ble at first sight. It may, for instance, be the case that, although enough resource
capacity is available for the individually summed needs for all resources over all
surgeons, still no schedule can be found that provides enough capacity of each re-
source for each surgeon at each time instance.

The remainder of this chapter is structured as follows. Section 3.2 explains the
underlying model. Section 3.3 introduces the surgical unit that is the subject of
the case study. Section 3.4 presents the graphical user interface of the software,
providing the reader with a visualization of the surgery schedule and its impact on
the resource consumption. Finally, Section 3.5 draws conclusions and lists some
topics for future research.

3.2 Underlying model

Figure 3.1 contains the underlying model for the visualization software presented
in this chapter. On top one can see a number of ovals representing the surgeons (or

104 3.2. Underlying model

surgical groups). Each surgeon obtains a number of blocks in the schedule. Each
block allocation consumes a number of resources represented by the grey ovals.
With each resource a consumption pattern can be associated that indicates for
each time instance how many units are used. These time instances are relative to
the moment of surgery. Time instance “0” is during the period of surgery. Time
instance “-1” indicates one period earlier, e.g., certain types of surgery require
preceding tests. Time instance “1” indicates one period later, e.g., the resources
needed while the patient is waking up and recovering from surgery. These resource
consumption patterns are indicated by the two-row strings at the bottom of Figure
3.1. The first row contains the time index i, the corresponding cell in the second
row gives the required number of units dk

i for resource k.

Surgeon 1

Block 1

Resource 1 Resource 2 Resource 3

0-1-2… …321

d1
0d1

-1d1
-2… …d1

3d1
2d1

1

0-1-2… …321

d3
0d3

-1d3
-2… …d3

3d3
2d3

1

0-1-2… …321

d2
0d2

-1d2
-2… …d2

3d2
2d2

1

Block 2 Block 3

Surgeon 2

Figure 3.1: Underlying model

Chapter 3. Visualizing the demand for various resources as a function of
the master surgery schedule: A case study 105

In the field of project scheduling, one makes a distinction between renewable and
nonrenewable resources (see, e.g., Demeulemeester and Herroelen, 2002). Renew-
able resources are available on a period-by-period basis, that is the amount is
renewable from period to period. Only the total resource use at every time in-
stant is constrained. Typical examples of renewable resources include manpower,
equipment, machines, tools and space. On the contrary, nonrenewable resources do
not become repeatedly available. Instead, they have a limited consumption avail-
ability for the entire duration that the schedule is employed. Money is perhaps
the best example of a nonrenewable resource: the overall budget to span a certain
time period (e.g., one year) is frequently predetermined to a fixed amount of money.

Only renewable resources could be modeled in the visualization software presented
hereafter. The granularity of the time axis may differ from resource to resource
and is not necessarily identical to that of the surgery schedule. As non-renewable
resources tend to coincide with case mix decision issues, they are left outside the
scope of our visualization software.

Observe that the model does not deal with stochastic data: all resource consump-
tion patterns are assumed to be deterministic. In Chapter 4, a theoretical model
is proposed that can be seen as a generalization, as well as a particularization, of
the model presented in this chapter. It can be seen as a generalization, because it
also takes uncertainty into account. The model is, however, also more specific than
this one, as beds are the only resource taken into consideration. The model starts
from stochastic distributions for patient arrivals and a stochastic length of stay
(LOS) associated with each type of surgery. The objective is to obtain a leveled
bed occupancy distribution and the master surgery schedule is also the instrument
to achieve this objective.

3.3 Case study

This case study concerns the day surgery center of the university hospital Gasthuis-
berg, situated in Leuven, Belgium. As the name suggests, the day surgery center
processes only outpatient admissions. To give an idea of the size of this surgical
unit, in 2004 12,778 surgical interventions have been performed, making up for

106 3.4. Graphical user interface

more than 15,000 hours of total net operating time.

Gasthuisberg’s day surgery operating room complex consists of 8 rooms in which, in
total, 27 different surgical entities, divided over 13 surgical and medical disciplines,
have been assigned operating room time. Each operating room is open from Mon-
day to Friday from 07.45 am till 4.00 pm. No elective surgery takes place during
the weekends. Each operating room is allocated for at least half a day to the same
surgeon. The current master surgery schedule can be called cyclic since it basically
repeats each week with the exception of three block allocations that alter each week
between two surgeons.

When building the master surgery schedule one has to take into consideration the
impact on several resources. All these resources share the following properties:

� they are limited in capacity,

� they are expensive,

� their consumption pattern depends on the master surgery schedule.

In Gasthuisberg’s day surgery operating room complex, twelve such resources could
be identified. They can be distinguished in five groups: First of all, certain types
of surgery require the patient to be lying and transported in a bed (1). Second,
there are the human resources that consist of: three skill-specific groups of nurses
(2, 3 and 4), anaesthetists (5) and anaesthetist-supervisors (6). Third, some sur-
gical interventions involve expensive material resources: laporoscopic towers (7),
artroscopic towers type 1 (8) and type 2 (9) and lasers type 1 (10) and type 2 (11).
Finally, there is the radiology department (12).

3.4 Graphical user interface

In this section the graphical user interface (GUI) is presented. The GUI visualizes
the surgery schedule and the resulting bed resource use for a given master surgery
schedule. Moreover, it allows the user to modify an existing schedule and view the
impact of a change in the schedule on the use of the various resources. Data like
the schedule properties, the surgeon properties and the link between the resource

Chapter 3. Visualizing the demand for various resources as a function of
the master surgery schedule: A case study 107

utilizations and the block allocations can easily be read in and modified. Figure 3.2
shows an overview of the GUI with the current surgery schedule for the odd weeks.

The main window is divided into two views. On the left, the master surgery sched-
ule is shown. The columns in the grid represent the time periods from Monday am
to Friday pm. The eight rows represent the eight operating rooms X1-X4 and Z1-
Z4. Above the grid a legend with the surgical groups is shown. Each surgical group
has its own color and style. In this case the style refers to the type of anaesthetic.
If the patients are completely anaesthetized during surgery, the surgeon block is
colored solidly. Otherwise, when the patients are not fully anaesthetized, the block
is arced. The schedule can easily be built from scratch by dragging and dropping
the surgeons to the timetable cells.

Each assignment introduces a demand for resources in the system. A subset of
these resource utilizations is represented in the right view. Each resource has its
own color and time horizon, of which the granularity does not necessarily coincide
with that from the surgery cycle time horizon. In our case study, e.g., for the nurs-
ing resources on each day an extra time unit is added after the afternoon block.
This extra resource unit represents the late shift. Furthermore, for each resource
a capacity can be specified that is not necessarily fixed over the total time hori-
zon. In the left view, the scheduler can easily exchange two block assignments by
dragging and dropping. In the right view, it will be immediately clear how these
changes influence the need for the various resources in the time horizon. In this
way the scheduler can quickly detect possible resource conflicts and easily search
for workable schedules. Figure 3.3 provides a more detailed view on the resource
consumption patterns.

The second, third and fourth resource are groups of nurses, each having a different
speciality (respectively “Group 1 NKO”, “Group 1 TRAUMA” and “Group 2”).
Each block is colored in proportion to the capacity used. Observe that the need
for nurses from “Group 1 NKO” exceeds the indicated capacity on Tuesday and
on Friday. This, however, does not necessarily mean that there is a shortage of
nurses during these days. The indicated capacities are just leveled targets. When
the surgery schedule gives rise to peaks in the demand for nurses, it may be more
difficult to schedule the nurses accordingly. In the example shown, nurses have to
be shifted from low demand days (Wednesday and Thursday) to peak days (Tues-

108 3.4. Graphical user interface

F
ig

ur
e

3.
2:

O
ve

rv
ie

w
of

th
e

G
U

I
w

it
h

cu
rr

en
t

sc
he

du
le

in
th

e
od

d
w

ee
ks

Chapter 3. Visualizing the demand for various resources as a function of
the master surgery schedule: A case study 109

F
ig

ur
e

3.
3:

A
cl

os
er

vi
ew

on
th

e
re

so
ur

ce
ut

ili
za

ti
on

s

110 3.4. Graphical user interface

day and Friday). To obtain efficient schedules, it is very important to have a good
integration between the nurse scheduling process and the master surgery schedul-
ing process. A specific model and algorithmic solution procedure to realize this
integration is proposed in Chapter 6.

Using dialog boxes, the schedule, surgeon and resource properties could easily be
modified. As an example some of the dialog boxes for editing the surgeon properties
are presented in Figure 3.4. The left dialog box shows the surgeon basic properties
and a list of the resources that are consumed by the selected surgeon. The user
can select one of these resources to edit. The right dialog box then allows the user
to indicate how many units and at what moment in time these resources are used
by the surgeon (or surgical group). The time index 0 indicates the starting time of
the block allocated to the surgeon. In the example shown in Figure 3.4, two nurses
from “Group 1 NKO” are needed to cover the work during surgery time (time index
0) and 1/4 nurse is needed to provide services to operated patients one time period
later (pm shift for am surgery or late shift for pm surgery).

The person that is responsible for the operating room schedule of the Gasthuisberg
surgical day center evaluated the software during a couple of weeks. His main sug-
gestion for improvement was the ability to have a clear view on all the resources
used during each time period given a particular surgery schedule. Accordingly, this
feature has been added. Figure 3.5 contains the same schedule, but this time the
resource consumption is presented on a ‘per day’ view instead of on a ‘per resource’
view. The user can now easily switch between both views, dependent on the infor-
mation required.

Chapter 3. Visualizing the demand for various resources as a function of
the master surgery schedule: A case study 111

F
ig

ur
e

3.
4:

E
di

ti
ng

th
e

pr
op

er
ti

es
of

a
su

rg
eo

n

112 3.4. Graphical user interface

F
ig

ur
e

3.
5:

R
es

ou
rc

e
co

ns
um

pt
io

n
on

a
‘p

er
da

y’
vi

ew

Chapter 3. Visualizing the demand for various resources as a function of
the master surgery schedule: A case study 113

3.5 Conclusions and future research

This chapter presents a visualization system for medical surgery units. Given a par-
ticular surgery schedule, the system allows for the visualization of the consumption
patterns for a variety of resources. Changes in the schedule are immediately re-
flected in the periodic resource utilizations. The objective of the system is threefold.
First of all, it facilitates the detection of resource conflicts and helps the scheduler to
develop workable operating room schedules. Second, the system can greatly assist
during the master surgery schedule bargaining process. Third, the system can be
of great value for persuading hospital managers to invest in extra resource capacity.

The system is designed for the second stage in building surgery schedules which
involves the development of a master surgery schedule. It does not provide an on-
line visualization of available and occupied resources during the daily working of a
surgery hospital. It is neither a simulation package for analyzing the existing system
and a limited number of alternative scenarios. Instead, our system is deterministic
and simple. The extremely intuitive graphical user interface makes it very easy to
develop high-quality master surgery schedules. To this aim, schedulers can easily
switch block allocations and immediately see the consequences on the consumption
of various resources on a cyclic time axis.

The model has been extensively tested and evaluated in the surgical day center of
a major Belgian university hospital. The system is considered to be very promising
for facilitating the development of the master surgery schedule and for improving
the efficiency of resource utilization.

In the current version of our software, all resources are of the renewable type and
are treated similarly. Resources could, however, further be classified into certain
resource categories having similar characteristics. Think, for instance, of resources
that can be shared simultaneously by one or more surgeons whilst other resources
cannot. Another example are resources with deterministic utilization, that is the
load can be predicted accurately, opposed to resources of which the utilization
is subject to high uncertainty. The use of equipment is typically deterministic,
whereas the bed occupancy is in many cases difficult to predict, due to the un-
certainty in the patient’s length of stay. It would be interesting to specify several
resource categories and enhance the visualization software with dedicated features

114 3.5. Conclusions and future research

per resource category.

The remaining chapters of this dissertation further elaborate the fundamental idea
that was presented in this chapter. First, Chapter 4 presents a number of algo-
rithms that focus on the bed occupancy as a critical resource when building surgery
schedules. The rather theoretical exposition expands the current model with the
introduction of stochastic data in both the number of operated patients per block
and the patient’s length of stay. Next, in Chapter 5, these algorithms are applied on
real-life data coming from a medium-size Belgian hospital. In conclusion, Chapter
6 exploits the relation between the nurse and surgery scheduling process and pro-
poses an integrated approach to simultaneously develop operating room schedules
and nurse rosters.

Chapter 4

Building cyclic master

surgery schedules with

leveled resulting bed

occupancy

This chapter proposes and evaluates a number of models for building surgery sched-
ules with leveled resulting bed occupancy. The developed models involve two types
of constraints. Demand constraints ensure that each surgeon (or surgical group)
obtains a specific number of operating room blocks. Capacity constraints limit the
available blocks on each day. Furthermore, the number of operated patients per
block and the length of stay of each operated patient are dependent on the type
of surgery. Both are considered stochastic, following a multinomial distribution.
We develop a number of mixed integer programming based heuristics and a meta-
heuristic to minimize the expected total bed shortage and present computational
results.

115

116 4.1. Introduction

4.1 Introduction

As pointed out by Litvak and Long (2000), while non-elective cases contribute
to the huge amount of variability in hospital environments, an important part of
the variance, referred to as the artificial variance, can be controlled by applying
well-thought-out scheduling policies to elective cases. This idea has already been
mentioned in Chapter 1 where we gave an additional exposition on the difference
between natural and artificial variability. The algorithms described in this chap-
ter aim at leveling the resulting bed occupancy as a function of the cyclic master
surgery schedule.

An important difference with the framework described in Chapter 3 is that this
chapter introduces uncertainty. The developed models take into account stochastic
numbers of patients per operating room block and a stochastic length of stay for
each operated patient. The models enable to build a cyclic master surgery schedule
for which the resulting bed occupancy is leveled as much as possible and for which
performance measures as the daily expected bed occupancy, the variance on this
occupancy, the expected bed shortage and the probability of a shortage on each
day can be predicted.

To the best of our knowledge, so far no surgery scheduling models have been pro-
posed that aim at this objective. However, one can distinguish between three classes
of papers that are related to our work, but still have important differences.

A first class of papers, e.g., Carter (2002) and Litvak and Long (2000), acknowl-
edges the impact of the surgery schedule on the demand for beds but does not
propose concrete models for taking this into account.

A second class of papers deals with models for predicting these occupancies, but
does not consider the master surgery schedule as an active tool to optimize the
system performance. McManus et al. (2004), for instance, use queuing theory to
model the need for critical care resources. They compared predictions from the
model to observed performance of an intensive care unit and explored the sensi-
tivity of the model to changes in bed availability that might result from sudden
staffing shortages or from admission of patients with very long stays. Gorunescu
et al. (2002) also present a queuing model for bed-occupancy management and

Chapter 4. Building cyclic master surgery schedules with leveled resulting
bed occupancy 117

planning. Almost all simulation approaches (e.g., Klein et al., 1993; Jun et al.,
1999; Harris, 1985) fall into this second class as usually only a limited number of
scenarios are being tested. Besides the optimization component, a second impor-
tant difference between our approach and simulation approaches is the derivation
of analytical results, for instance the exact calculation of the mean and the variance
of the daily bed occupancy.

A last class of papers considers the bed occupancy as a constraint rather than an
objective when building surgery schedules. Blake and Carter (2002), for instance,
consider bed availability as a constraint in their goal programming approach to
allocate strategic resources in acute care hospitals. A second important difference
is that this last work deals with case mix planning (first stage) instead of building
master surgery schedules.

We model uncertainty by means of probabilistic distribution functions and optimize
expected performance. This way of dealing with scheduling under uncertainty is
often referred to as stochastic scheduling. Alternative ways of coping with uncer-
tainty include fuzzy scheduling and robust scheduling. An in-depth discussion on
the differences between stochastic and fuzzy approaches to multi-objective math-
ematical programming under uncertainty can be found in Slowinski and Teghem
(1990). In fuzzy scheduling, uncertainty is modeled using the concept of so-called
fuzzy sets. A fuzzy set is characterized by a membership function, which maps the
members of the universe into the unit interval [0,1]. The value 0 means that the
member is not included in the given set, 1 describes a fully included member. The
values between 0 and 1 characterize fuzzy members. In the context of uncertainty,
such a membership function models the statement of how possible it is for a certain
event to occur. A quality exposition on scheduling under fuzziness is provided by
Slowinski and Hapke (2000).

Robust or proactive scheduling is concerned with building schedules that are pro-
tected against the occurrence of unexpected events. A robust schedule is able to
absorb some level of unforeseen events without rescheduling. Accordingly, robust
scheduling aims at maximizing the stability of the schedule. Examples of robust
scheduling techniques for project scheduling can be found in Leus (2003). Hans et
al. (2005) propose several constructive and local search heuristics for the robust
surgery loading problem. The objective is to assign the surgeries by the specialties

118 4.2. Problem Statement

in such a way, that the risk of working in overtime is minimized, no surgeries are
canceled, and at the same time the operating room capacity utilization can be im-
proved.

This chapter proceeds as follows. Section 4.2 gives a general problem statement.
Next, Section 4.3 shows how the mean and variance of the daily bed occupancies
vary linearly with the decision variables. Section 4.4 develops a number of heuristic
algorithms to solve the original problem. We distinguish between algorithms based
on the linearized models, a quadratic programming approach and a simulated an-
nealing approach. Section 4.5 provides computational results, while Section 4.6
tries to validate the assumptions made in the models by means of a simulation
study. Finally, Section 4.7 states the most important conclusions of this chapter.

4.2 Problem Statement

The problem addressed in this chapter involves the construction of the master
surgery schedule. The main objective is to minimize the expected shortage of one
resource: beds. To make things clear, we will start with a simple example. We have
a surgery schedule divided into a number of time blocks and a number of surgeons.
Let us for simplicity suppose that each surgeon only performs one type of surgery.
This assumption is not necessary for the hereafter developed algorithms, but is
useful to explain the logic behind our model. Our model takes as input stochas-
tic distributions on the number of operated patients and the patients’ length of
stay. Hence, if we assume one type of surgery for each surgeon, we can associate
each surgeon with an ailment (or treatment) and directly transfer the stochastic
distributions for this ailment to the surgeon. If surgeons perform different types of
surgery we must either introduce ‘dummy’ surgeons (see Section 5.4) or work with
composed distributions having a larger variability.

Furthermore, we assume that the number of patients operated on per time block
depends on the type of surgery and that this number is deterministic (this assump-
tion will be relaxed in Section 4.3.6) and fixed for each surgeon. Whereas perfect
knowledge is assumed concerning the number of patients undergoing surgery, there
is uncertainty concerning the length of stay (LOS) for each patient. The LOS is
assumed to follow a multinomial distribution with parameters that depend on the

Chapter 4. Building cyclic master surgery schedules with leveled resulting
bed occupancy 119

type of surgery. For instance, a patient recovering from appendix surgery leaves
the hospital after 2 days with probability 20%, after 3 days with probability 50%
and, finally, after 4 days with probability 30%. If a patient leaves after d days,
(s)he occupies one bed for d days starting with the day of surgery. We are con-
cerned with building a cyclic surgery schedule for which the total expected bed
shortage (TEBS) is minimized. Cyclic schedules are schedules that are repeated
after a certain time period (referred to as the cycle time). During such a cycle
time there might be a number of time periods during which surgery cannot take
place. These periods are referred to as inactive periods, the others are active. Typ-
ically, cycle times are multiples of weeks in which the weekends are inactive periods.

To state the problem mathematically, let xis (∀i ∈ A and s ∈ S) be the number of
blocks assigned to surgeon s on day i. Here A represents the set of active periods
and S the set of surgeons. A block is defined as the smallest time unit for which a
specific operating room can be allocated to a specific surgeon (or surgical group).
Note that, due to large set-up times and costs, in real-life applications the number
of blocks per day in one operating room is usually 1 or 2, i.e each surgical group
has the operating room for at least half a day. Hence, considering more blocks can
be seen as a way of considering more operating rooms as there is no difference from
a computational point of view. Let rs be the number of blocks required by each
surgeon s. These numbers have been determined during case mix planning and are
an input for the model. Let bi be the maximal number of blocks available on day
i. Then, our problem could be stated as follows (P1):

Minimize TEBS (4.1)

subject to:

∑

i∈A

xis = rs ∀s ∈ S (4.2)

∑

s∈S

xis ≤ bi ∀i ∈ A (4.3)

xis ∈ {0, 1, 2, . . . , min(rs, bi)} ∀s ∈ S and ∀i ∈ A (4.4)

120 4.2. Problem Statement

The objective function (4.1) minimizes the expected total bed shortage. Constraint
set (4.2) says that each surgeon obtains the number of required blocks. Constraint
set (4.3) ensures that the number of blocks assigned does not exceed the available
number of blocks on each day. Finally, constraint set (4.4) defines xis to be integer.

Observe that the model does not prohibit surgeons having more blocks on the same
day. Hence, a surgeon might be required to operate at the same time in two or
more different rooms (in case these blocks overlap in time). To justify this, it is
important to keep in mind that surgeons are seen as surgical groups (consisting of
more surgeons) rather than individual persons.

Let l be the length of the cycle time. The total expected bed shortage (TEBS)
equals the sum of the expected bed shortages on each day of the cycle time:

TEBS =
l∑

i=1

EBSi (4.5)

with EBSi the expected bed shortage on day i. Let Uijs be a stochastic variable
representing the number of occupied beds on day i resulting from surgery on day
j performed by surgeon s. It can easily be shown that Uijs follows a binomial
probability distribution, referred to as f(Uijs). Now, let Zi be a stochastic variable
representing the total number of occupied beds on day i. Hence,

Zi =
∑

s∈S

∑

j∈A

Uijs (4.6)

The probability distribution of Zi is given by:

f(Zi = zi) =
∑

h∈Hzi

(
∏

Uijs∈h

f(Uijs)) (4.7)

with Hzi the set of all combinations h of Uijs’s summing up to zi. Let ci be the
capacity of beds on day i. The expected shortage on day i is then as follows:

Chapter 4. Building cyclic master surgery schedules with leveled resulting
bed occupancy 121

EBSi = E[f(zi|zi > ci)] =
∞∑

zi=ci+1

(zi − ci)f(zi) (4.8)

Given a certain schedule, we can calculate this expected value. If the total number
of combinations leading to a shortage is not too large, we could apply complete
enumeration. If complete enumeration is too time consuming, we could calculate
approximated values based on the central limit theorem which states that the sum
of many independent random variables is approximately normally distributed.

Since EBSi is not linearly dependent on the decision variables, we cannot find the
optimal solution using a mixed integer program (MIP) solver. Therefore, we will
try to substitute EBSi by an expression that is linear in the decision variables,
such that it becomes solvable with commercial MIP packages. Of course, we want
the new objective to be as equivalent as possible with the real objective.

4.3 Linearization of the problem

4.3.1 Mean

First, instead of dealing with the distribution functions f(Zi = zi), we will work
with their mean values µi. Our assumption is that the larger the difference between
ci and µi, the smaller the EBSi, the expected bed shortage on day i. Without loss
of generalization, we assume the bed capacity ci to be constant for all days i, i.e.,
ci = c, ∀i = 1, ..., l. Our objective is now to minimize the maximal µi. This hope-
fully results in a flat distribution of the expected bed occupancy over all days of
the week. In other words, the aim is to level the daily bed resource consumption as
much as possible. To state our MIP, we first show that µi is linear in the decision
variables xis. Let Dsd be a stochastic variable representing the number of patients
staying in the hospital exactly d days after one block of surgery by surgeon s. We
obtain:

122 4.3. Linearization of the problem

µi = E(Zi) (4.9)

= E
(∑

s∈S

∑

j∈A

Uijs

)
(4.10)

=
∑

s∈S

∑

j∈A

E(Uijs) (4.11)

=
∑

s∈S

∑

j∈A

(ms∑

d=dist(i,j)

E(Dsd)dd/le
)
xjs (4.12)

=
∑

s∈S

∑

j∈A

(ms∑

d=dist(i,j)

psdnsdd/le
)
xjs (4.13)

with dist(i, j) the distance between day i and day j in the week, defined as i− j +1
if day j precedes day i and l + i− j + 1 otherwise, ms the maximal number of days
a patient can stay in the hospital after surgery by surgeon s, psd the probability a
patient stays d days in the hospital after surgery by surgeon s and ns the number
of patients surgeon s can operate in one time block.

Expression (4.13) looks far more complicated than it is. We first note that the mean
number of patients of surgeon s staying exactly d days in the hospital equals psdns

(mean of a binomial distribution with probability of ’success’ psd and ns trials).
Obviously, a patient that leaves the hospital after d days occupies a bed from day
0 to day d − 1. Hence, if we consider a particular day i after the day of surgery j

we have to sum these expected values starting from the first LOS value reaching
day i. This LOS value is given by dist(i, j). For instance, if i = 3 (Wednesday)
and j = 1 (Monday) we have dist(i, j) = 3 − 1 + 1 = 3. So, all patients staying
3 days (Monday, Tuesday and Wednesday) or more make up the expected number
of patients on Wednesday resulting from surgery on Monday. Obviously, when the
LOS exceeds the cycle time l, the corresponding expected number of patients has
to be added twice (or more), which explains the factor dd/le.

Since
∑ms

d=dist(i,j) psdnsdd/le is a constant, the new objective is linear in the decision
variables. Let µ be the maximal µi. We then have the following MIP (MIP1):

Chapter 4. Building cyclic master surgery schedules with leveled resulting
bed occupancy 123

Minimize µ (4.14)

subject to:

∑

i∈A

xis = rs ∀s ∈ S (4.15)

∑

s∈S

xis ≤ bi ∀i ∈ A (4.16)

µi =
∑

s∈S

∑

j∈A

(ms∑

d=dist(i,j)

psdnsdd/le
)
xjs ∀i = 1, ..., l (4.17)

µi ≤ µ ∀i = 1, ..., l (4.18)

xis ∈ {0, 1, 2, . . . , min(rs, bi)} ∀s ∈ S and ∀i ∈ A (4.19)

µi ≥ 0 ∀i = 1, ..., l (4.20)

µ ≥ 0 (4.21)

Constraint set (4.17) defines the expected number of occupied beds on each day
i. Constraint set (4.18) imposes that µ exceeds each µi which ensures that the
objective minimizes the maximal expected bed occupancy µ.

4.3.2 Variance

MIP1 aims at a schedule for which the maximal expected bed occupancy is reduced
as much as possible over the week. We could however increase the effectiveness of
our model by also taking into account the variances of the Zi variables. Indeed, a
schedule resulting from solving MIP1 may exhibit huge differences in the variances
of the Zi’s. Figure 4.1 illustrates this point.
In this example we consider a cycle time of 1 week. The expected bed occupancy
distribution is quite level over all days of the week. However, the variance of the
bed occupancy is much larger on Thursday than on all other days. Consequently,
there is a fair chance of running out of beds each Thursday. The question thus
arises if it would be possible to include the variance in the objective function of our
MIP. Therefore, the variance of the Zi’s must be linear in the decision variables. It
can be shown that this is true. For the mathematical derivation we refer the reader
to Appendix A.

124 4.3. Linearization of the problem

Probability

Number

occupied

beds

Monday Tuesday Wednesday Thursday Friday Saturday Sunday

Capacity

µ =
average

number

occupied

beds

Figure 4.1: The role of variance

The formula is as follows:

var(Zi) =
∑

s∈S

∑

j∈A

(ms∑

d=dist(i,j)

psd(1− psd)nsdd/le

−
ms∑

d1=dist(i,j)

d1−1∑

d2=dist(i,j)

2psd1psd2nsdd2/le
)
xjs (4.22)

Let us illustrate this with a simple example. Consider the following distribution of
the LOS for each patient of surgeon s:

Table 4.1: LOS distribution for example 1

LOS (Nr. of days) 2 3 4 10 11

probability 0.2 0.3 0.1 0.3 0.1

Assume a cycle time of 1 week. For illustrative purposes, we opted for a LOS
distribution having a limited number of outcomes and a ‘tail’ exceeding the cycle

Chapter 4. Building cyclic master surgery schedules with leveled resulting
bed occupancy 125

time. Although this example may not seem to be very realistic at first sight, it
could represent a scenario in which the operated patients can be divided into two
groups: the first group having no complications and leaving the hospital within 4
days and the second group having complications and staying much longer. Assume
it is known that this surgeon can operate 10 patients per block. Now, suppose
we assign one block on Monday to this surgeon. We illustrate the calculation of
E(U3,1,s) and var(U3,1,s). Let Dsd′ denote the number of patients staying d days
in the hospital who have undergone surgery in the previous week. We obtain:

E(U3,1,s) = E(Ds3 + Ds4 + Ds10 + Ds11 + Ds10′ + Ds11′)

= E(Ds3) + E(Ds4) + E(Ds10) + E(Ds11) + E(Ds10′) + E(Ds11′)

= E(Ds3) + E(Ds4) + 2E(Ds10) + 2E(Ds11)

= 0.3 ∗ 10 + 0.1 ∗ 10 + 2 ∗ 0.3 ∗ 10 + 2 ∗ 0.1 ∗ 10

= 3 + 1 + 6 + 2 = 12

var(U3,1,s) =var(Ds3 + Ds4 + Ds10 + Ds11 + Ds10′ + Ds11′)

=var(Ds3) + var(Ds4) + var(Ds10) + var(Ds11) + var(Ds10′) + var(Ds11′)

+ 2cov(Ds4, Ds3) + 2cov(Ds10, Ds3) + 2cov(Ds10, Ds4)

+ 2cov(Ds11, Ds3) + 2cov(Ds11, Ds4) + 2cov(Ds11, Ds10)

+ 2cov(Ds11′ , Ds10′)

=var(Ds3) + var(Ds4) + 2var(Ds10) + 2var(Ds11)

+ 2cov(Ds4, Ds3) + 2cov(Ds10, Ds3) + 2cov(Ds10, Ds4)

+ 2cov(Ds11, Ds3) + 2cov(Ds11, Ds4) + 4cov(Ds11, Ds10)

=0.3 ∗ 0.7 ∗ 10 + 0.1 ∗ 0.9 ∗ 10 + 2 ∗ 0.3 ∗ 0.7 ∗ 10 + 2 ∗ 0.1 ∗ 0.9 ∗ 10

− 2 ∗ 0.1 ∗ 0.3 ∗ 10− 2 ∗ 0.3 ∗ 0.3 ∗ 10− 2 ∗ 0.3 ∗ 0.1 ∗ 10

− 2 ∗ 0.1 ∗ 0.3 ∗ 10− 2 ∗ 0.1 ∗ 0.1 ∗ 10− 4 ∗ 0.1 ∗ 0.3 ∗ 10

=8.3− 3− 2 = 3.3

We extend MIP1 so that the variance is taken into account. The objective is now to
minimize a maximal peak defined as a weighted sum of the mean and the variance

126 4.3. Linearization of the problem

of the daily bed occupancy. Let σ2
i be the variance of Zi. Let wµ and wσ2 be the

weight expressing the relative importance of respectively leveling the mean and the
variance of the bed occupancy. Consider a one unit increase in the mean occupancy
on a particular day. The ratio wµ over wσ2 indicates the number of units that the
variance of the bed occupancy on that particular day should be decreased in order
to undo this increase. Let γ be the maximal weighted sum of mean and variance.
We then obtain the following MIP (MIP2):

Minimize γ (4.23)

subject to:

∑

i∈A

xis = rs ∀s ∈ S (4.24)

∑

s∈S

xis ≤ bi ∀i ∈ A (4.25)

µi =
∑

s∈S

∑

j∈A

(ms∑

d=dist(i,j)

psdnsdd/le
)
xjs ∀i = 1, ..., l (4.26)

σ2
i =

∑

s∈S

∑

j∈A

(ms∑

d=dist(i,j)

psd(1− psd)nsdd/le

−
ms∑

d1=dist(i,j)

d1−1∑

d2=dist(i,j)

2psd1psd2nsdd2/le
)
xjs ∀i = 1, ..., l (4.27)

wµµi + wσ2σ2
i ≤ γ ∀i = 1, ..., l (4.28)

xis ∈ {0, 1, 2, . . . , min(rs, bi)} ∀s ∈ S and ∀i ∈ A (4.29)

µi ≥ 0, σ2
i ≥ 0 ∀i = 1, ..., l (4.30)

γ ≥ 0 (4.31)

Upon detection of a solution, the weights wµ and wσ2 can be adjusted in order to
obtain a better solution in terms of the (non-linear) objective under consideration.
If, for instance, the day with the highest weighted peak has a high variance, it
might be useful to slightly increase wσ2 and rerun the MIP optimizer. Preliminary
tests indicated that 0.8 and 0.2 for respectively wµ and wσ2 are good weights for
minimizing the total expected bed shortage (TEBS).

Chapter 4. Building cyclic master surgery schedules with leveled resulting
bed occupancy 127

4.3.3 NP-hardness proof of the linearized problem

In what follows an NP-hardness proof for problem MIP1 is given. The NP-
hardness is proven by means of a transformation from 3-PARTITION. This problem
can be described as follows:

3-PARTITION: Given a set T = {1, . . . , 3t} and positive integers a1, . . . , a3t and c

with
∑

j∈T aj = tc, can T be partitioned into t disjoint 3-element subsets Ti such
that

∑
j∈Ti

aj = c (i = 1, . . . , t)?

This celebrated problem was the first number problem that was proven to be NP-
complete in the strong sense. A (very) small problem instance will illustrate this
problem: the set T consists of 6 elements with corresponding values of 3, 3, 3,
4, 4 and 5. The values of t and c are obviously 2 (3*2=6 elements) and 11
(3+3+3+4+4+5 = 22 = 2*11), respectively. for this problem instance the an-
swer is positive: T1 could consist of elements 1, 2 and 6 with corresponding values
of 3, 3 and 5, whereas the second set T2 then consists of the remaining three ele-
ments 3, 4 and 5 with values 3, 4 and 4.

Given any instance of the 3-PARTITION problem, an instance of the problem MIP1
can be constructed in the following way:

� The cycle time (l) equals t; there are no inactive days (A = {1, . . . , t}).

� The number of blocks per day (bi) equals 3.

� The number of surgeons equals the number of different values in the set T .

� The number of patients each surgeon s can operate per block (ns) equals the
corresponding value.

� The number of requested blocks per surgeon (rs) equals the number of times
the corresponding value occurs in set T .

� The LOS of the patients is deterministic and equals 1 for each surgeon, i.e.
ps1 = 1,∀s, psd = 0,∀s,∀d 6= 1.

128 4.3. Linearization of the problem

We show that 3-PARTITION has a solution if and only if there exists a feasible
schedule with µ = c.

Suppose that 3-PARTITION has a solution {T1, . . . , Tt}. A feasible schedule with
value µ = c is then obtained as follows. Each set T1, . . . , Tt represents an operating
day containing 3 blocks at which the surgeons corresponding to the elements in the
set are scheduled. The number of patients occupying a bed on each day amounts to
c which is the sum of the operated patients during each day. In order to prove the
optimality of the solution, we show that µ = c equals a lower bound. Since each pa-
tient stays exactly 1 day, the total LOS over all patients equals the total number of
patients,

∑
s ns =

∑
j∈T aj = tc. If we manage to distribute all these patients per-

fectly balanced over the cycle time, we obtain a solution of (
∑

j∈T aj)/t = tc/t = c.
It follows that µ = c is a lower bound to our problem.

Conversely, suppose that there is a feasible schedule with value µ = c. First of
all, three blocks must have been assigned at each day, since the total number
of requested blocks equals the total number of available blocks (i.e.

∑
s∈S rs =∑

i=1,...,l bi = 3t). By definition, we have for each day i: µi ≤ µ. Now, since each
patient stays exactly 1 day, the total LOS over all patients equals the total number
of patients,

∑
s ns =

∑
j∈T aj = tc. Hence, if the schedule would have a day i for

which µi < µ, then there must be another day having a µi > µ. By definition,
this is not possible and thus each day must have a µi equal to µ = c. Hence, each
day i = 1, ..., t represents a set of 3 elements (surgeon-block assignments) with the
sum of their values (nr. of operated patients) equal to c. This is a solution to
3-PARTITION. Since MIP1 is a special case of MIP2, MIP2 is also NP-hard in
the strong sense. Q.E.D.

4.3.4 Special cases

In this section a number of special cases of model MIP2 are discussed. When wσ2

equals 0, the variance is ignored and model MIP1 will result. When wµ equals 0,
the mean is ignored and MIP2 will minimize the maximal variance of the daily bed
occupancy. This means that the resulting bed occupancy may exhibit peaks on cer-
tain days of the week. However, these peaks will be easily predictable. This model
is appropriate if the resource under consideration can easily be scheduled to antic-
ipate the peak demands. An example of such a flexible resource is non-specialized

Chapter 4. Building cyclic master surgery schedules with leveled resulting
bed occupancy 129

manpower or beds merely seen as physical units (material resource). In many hos-
pitals, an institution may have X beds physically available, but only (X −Y) beds
actually staffed. The number of staffed beds (involving highly skilled personnel)
is generally not adaptable at short term. The model developed in Chapter 6 that
explicitly integrates the nurse and surgery scheduling process, is more appropriate
to deal with this issue.

The relative importance of wσ2 and wµ might be dependent on the presence (or
absence) of an external stochastic process consuming the resource under consider-
ation. In our example, beds might be occupied by emergency cases. Consider first
the situation in which there is no such external process. Suppose we set wσ2 equal
to 0 and find an ’optimally’ leveled solution. However, given unevenly distributed
variances, there are certain days in which there is a fair chance of bed shortage.
We might obtain a better solution by slightly increasing wσ2 . Assume that in the
new solution, although the mean bed day occupancies exhibit larger differences, the
sum of the probabilities of bed shortages is much smaller. Hence, in this situation
a positive value for wσ2 is clearly better in the absence of external stochastic pro-
cesses. However, if we do allow for external processes to consume resources, this
conclusion might not hold any more. Since no single model will ever include all
sources of variability in hospital environments, this is certainly an interesting point
for further research.

4.3.5 Percentile minimization

The variance could be incorporated in a slightly different way. Instead of calculating
the true mean and the true variance and minimizing the maximum of the weighted
sum, one could directly calculate the contribution of each decision variable xis to
some kind of weighted measure. Therefore, we take the contribution to the mean
and add nstdev times the square root of the contribution to the variance. For
instance, the contribution for xjs would be:

130 4.3. Linearization of the problem

ms∑

d=dist(i,j)

psdnsdd/le

+ nstdev

(ms∑

d=dist(i,j)

psd(1− psd)nsdd/le −
ms∑

d1=dist(i,j)

d1−1∑

d2=dist(i,j)

2psd1psd2nsdd2/le
) 1

2

(4.32)

The model is then totally equivalent with MIP1 (4.14-4.21) except for the coeffi-
cients of constraint (4.17). Although referred to as percentile minimization, the
model does not necessarily minimize the highest percentile peak. Minimizing the
highest percentile peak is equivalent to minimizing the highest tail distribution and
is a non-linear problem. Instead, we try to measure the contribution of each vari-
able to each day’s percentile with a linear weight and solve the problem with a
linear optimizer. We choose to take the root of the variance contributions, because
standard deviations are more common when referring to distribution tails.

4.3.6 Stochastic ns

An important drawback of our model is the assumption of deterministic numbers of
patients (ns). In this section we extend our model so that it can handle stochastic
ns’s and we prove that it is still possible to express both the mean and the variance
as linear combinations of the decision variables.

Introducing stochastic ns’s following a multinomial distribution does not destroy
the linearity of both average and variance. Hence, instead of assuming deterministic
patient numbers, we can deal with uncertainty: for instance for a particular surgeon
the number of operated patients equals 7 with probability 10%, 8 with probability
20%, 9 with probability 40% and 10 with probability 30%. We show how the
expressions for both mean and variance are extended so that they incorporate this
additional stochastic information. For the mathematical derivation the reader is
referred to Appendix B. Let Ns be a stochastic variable representing the number of
patients for surgeon s. k = 1, ..., qs are the different (discrete) states of this variable
with hsk being the probability and nsk the corresponding number of patients in state
k for patient s. The formulas are as follows:

Chapter 4. Building cyclic master surgery schedules with leveled resulting
bed occupancy 131

E(Uijs) = E[E(Uijs|Ns)] (4.33)

=
qs∑

k=1

hsk

(ms∑

d=dist(i,j)

psdnskdd/le
)

(4.34)

var(Uijs) =
qs∑

k=1

hsk

(ms∑

d=dist(i,j)

psd(1− psd)nskdd/le

−
ms∑

d1=dist(i,j)

d1−1∑

d2=dist(i,j)

2psd1psd2nskdd2/le
)

+
qs∑

k=1

hsk

(ms∑

d=dist(i,j)

psdnskdd/le −
qs∑

k=1

hsk

(ms∑

d=dist(i,j)

psdnsqdd/le
))2

(4.35)

In conclusion, incorporating numbers of patients following a multinomial discrete
probability distribution preserves the linearity of both the mean and the variance of
the daily bed occupancy. Hence, the above outlined MIP’s can perfectly incorporate
this source of uncertainty.

4.4 Solving the original problem

MIP2 could be solved with a commercial MIP solver. Preliminary tests indicated
that the LP relaxation gap of MIP2 is fairly small. This suggests that it will be
difficult to develop a specific (branch-and-bound) algorithm that could solve the
problem more efficiently. Moreover, the problem is NP-hard as has been proven in
Section 4.3.3. Nevertheless, a number of interesting research questions remain:

1. Do the proposed integer programming models provide good solutions to the
original problem P1 (4.1-4.4)?

2. Would it be possible to use these models in order to develop a heuristic that
provides better results?

3. Which of the presented models/heuristics is best suited to solve the original
problem P1?

132 4.4. Solving the original problem

4. Is the best choice dependent on certain problem dimensions?

5. How do the results compare to a metaheuristic approach in which the objec-
tive function is evaluated directly?

4.4.1 Objective function

To solve P1, it is necessary to evaluate objective function (4.1). To do this, the exact
bed usage probability distributions for each day, given a particular surgery sched-
ule, must be found. Unfortunately, computing these general discrete distribution
functions involves the enumeration of an exponential number of probability states,
which is computationally very hard. Accordingly, we will employ a simplification,
making use of the central limit theorem. According to this theorem, each variable
which is the sum of a number of independent variables, is approximately normally
distributed with mean equal to the sum of the independent means and variance
equal to the sum of the independent variances. Recall that the independent means
and variances can easily be calculated exactly. Hence, for calculating the shortage
probabilities we can simply make use of the standard cumulative normal distribu-
tion functions. For calculating the expected shortages we have to apply numerical
integration. For instance, to calculate the expected shortage for day i, we compute
the following integral:

EBSi ≈
∫ +∞

ci+0.5

(zi − ci)
1

σi

√
2π

e
− (zi−µi)

2

2σ2
i dzi (4.36)

This expression sums up all shortages (zi − ci) multiplied by the corresponding
probabilities. The integral starts at ci + 0.5 (and not at ci or at ci + 1) to take
into account a continuity correction for approaching a discrete function with a con-
tinuous one. These integrals were calculated by the numerical integration routines
provided in GNU Scientific Library (GSL) version 1.3 (Galassi et al., 2003).

In what follows, three heuristics will be presented that aim at the minimization of
this objective: a repetitive MIP heuristic, a quadratic MIP heuristic and a local
search heuristic (simulated annealing).

Chapter 4. Building cyclic master surgery schedules with leveled resulting
bed occupancy 133

4.4.2 Repetitive MIP heuristic

As the name suggests, the repetitive MIP heuristic involves the successive solving
of a number of MIP’s. After each solution an extra constraint is added to the
model, which limits the search space. For the moment we will only concentrate
on the averages and thus neglect the impact of the variance. This is motivated by
the observation that the average and variance of each Zi are positively correlated
and hence low averages tend to go together with low variances and vice versa. We
implemented two repetitive MIP heuristics, to which we refer as REPMIP1 and
REPMIP2 respectively.

REPMIP1 works as follows:

1. TEBS = ∞.

2. Solve MIP1 (4.14)-(4.21). If the found schedule results in a lower total ex-
pected bed shortage, save it as being the best found. Let µ̂ be the optimal
objective value and let i be the day with the maximal peak (µi = µ̂), i.e., the
day for which the corresponding constraint in constraint set (4.18) is binding.

3. Add an extra constraint to the model: µi ≤ µ̂ + ε.

4. Make µi no longer contribute to the objective function. Therefore, delete
µi ≤ µ out of constraint set (4.18).

5. Go back to step 2. Repeat this until a certain stop criterion is met.

The idea is that after the minimization of the highest peak, the second highest peak
is to be minimized, while the peak of the highest day is kept below a certain limit.
Next, the third highest peak is minimized with constraints on the first two peaks
and so on. . . . The value of ε determines to which amount the previous peak(s) can
be exceeded. If ε equals 0, the search space is limited most from MIP to MIP. ε

can be made dependent on the progression of the algorithm. The solution of each
MIP provides a surgery schedule which could be evaluated by calculating the total
expected bed shortage (TEBS), for which we do a number of numerical integrations
(4.36). The best schedule is saved.

134 4.4. Solving the original problem

REPMIP2 works as follows:

1. TEBS = ∞.

2. Solve MIP1 (4.14)-(4.21). If the found schedule results in a lower total ex-
pected bed shortage, save it as being the best found. Let µ̌i be the lowest
bed occupancy peak and let i be the day with this minimal peak.

3. Add an extra constraint to the model: µi ≥ µ̌i + ε.

4. Solve the adapted model. If the found schedule results in a lower total ex-
pected bed shortage, save it as being the best found.

5. Increase the right hand side value of the constraint, added in step 3 with ε

over the current usage of beds on day i.

6. Go back to step 4. Repeat this until a certain stop criterion is met.

The idea is that after the minimization of the highest peak, the lowest peak is
identified. Next, the model is resolved with an extra constraint which prohibits the
current solution by implying an increase in the lowest peak. The aim is that the
overcapacity in this lowest peak is divided over all other days but the peak day. ε

determines to which amount the previous off-peak(s) has to be exceeded. A typical
value for ε is 0.01. Typical end criteria include the detection of an infeasible model
and/or the peak of the lowest day exceeding a certain limit (e.g., the overall average
bed occupancy). The solution of each MIP provides a surgery schedule which could
be evaluated by calculating the total expected bed shortage (TEBS), for which we
do a number of numerical integrations (4.36). The best schedule is saved.

The repetitive MIP models can be seen as non-archimedean (or preemptive) weighted
goal programming approaches (see, e.g., Blake and Carter (2003)). An important
difference is, however, that in these repetitive MIP models the objective function
optimized by the separate MIPs serves only as a guideline for the real (non-linear)
objective. After each MIP optimization, the solution is evaluated in terms of the
TEBS objective and only when this solution is better, the solution is being saved.
Moreover, given a strictly positive value for ε, a higher priority goal (minimizing
the highest peak) may be degraded in favor of a lower priority goal (minimizing
the second highest peak). This is the case when the best found solution contains a

Chapter 4. Building cyclic master surgery schedules with leveled resulting
bed occupancy 135

peak which is higher than the maximal peak found by solving one or more of the
individual MIPs. Hence, it might be perfectly possible that a solution found by
solving one of the early MIPs is weaker (in terms of TEBS) than a solution found
by one of the later MIPs. However, since the solution space is very complicated, it
is impossible to state that the TEBS solution value arising from solving a particular
MIP will always be dominated by a solution found by solving another particular
MIP.

4.4.3 Quadratic MIP heuristic

In this heuristic, variances are ignored and only the means are taken into account.
We solve again a MIP, however the objective function is now quadratic (QMIP):

Minimize
∑

i∈A

µ2
i (4.37)

subject to:

∑

i∈A

xis = rs ∀s ∈ S (4.38)

∑

s∈S

xis ≤ bi ∀i ∈ A (4.39)

µi =
∑

s∈S

∑

j∈A

(ms∑

d=dist(i,j)

psdns(bd/lc+ 1)
)
xjs ∀i = 1, ..., l (4.40)

xis ∈ {0, 1, 2, . . . , min(rs, bi)} ∀s ∈ S and ∀i ∈ A (4.41)

µi ≥ 0 ∀i = 1, ..., l (4.42)

µ ≥ 0 (4.43)

Since
∑

i∈A µi is constant and hence independent of the surgery schedule, this model
explicitly tries to level the peaks as much as possible. Note that the minimization
of x2

1 + x2
2, subject to x1 + x2 = a results in x1 = x2 = a

2 . Note also that∑
i∈A σ2

i is constant and hence independent of the surgery schedule, thus we might
also take into account the variances. This might be appropriate for resources for
which explicit leveling of the variances is important. For minimizing the total
expected bed shortage, which can be seen as “leveling the distribution functions”,
preliminary results indicated that leveling the variances results in poor solutions.

136 4.4. Solving the original problem

Hence, the quadratic MIP has only been tested with respect to the averages. Again,
we evaluate the resulting surgery schedule by calculating the objective function by
computing a number of integrals (4.36).

4.4.4 Simulated annealing

Simulated annealing (SA) is a technique to find a good solution to an optimization
problem by trying random variations of the current solution. A worse variation is
accepted as the new solution with a probability that decreases as the computation
proceeds. The slower the cooling schedule, or rate of decrease, the more likely the
algorithm is to find an optimal or near-optimal solution. This technique stems from
thermal annealing which aims to obtain perfect crystallizations by a slow enough
temperature reduction to give atoms the time to attain the lowest energy state.
The search tries to avoid local minima by jumping out of them early in the compu-
tation. Towards the end of the computation, when the temperature, or probability
of accepting a worse solution, is nearly zero, this simply seeks the bottom of the
local minimum. The chance of getting a good solution can be traded off with com-
putation time by slowing down the cooling schedule. The slower the cooling, the
higher the chance of finding the optimum solution, but the longer the run time.
Thus effective use of this technique depends on finding a cooling schedule that gets
good enough solutions without taking too much time. The algorithm is based upon
that of Metropolis et al. (1958), which was originally proposed as a means of find-
ing the equilibrium configuration of a collection of atoms at a given temperature.
The connection between this algorithm and mathematical minimization was first
noted by Pincus (1970), but it was Kirkpatrick et al. (1983) who proposed that
it forms the basis of a search technique for combinatorial (and other) problems.
Good theoretic expositions on simulated annealing can also be found in Huang et
al. (1986) and Van Laarhoven and Aarts (1988).

A basic SA implementation is used. Our neighborhood is defined as all solutions
which could be obtained after swapping two surgery blocks from the current solu-
tion. The first block is chosen randomly. The second block is the first encountered
block for which a swap results in an improvement (decrease) of the objective value.
If no such block can be found, the block leading to the smallest increase is chosen.
Since swaps between one surgeon and swaps between one day have no impact on
the objective function, these swaps are not taken into account. In order to decide

Chapter 4. Building cyclic master surgery schedules with leveled resulting
bed occupancy 137

whether or not to accept a worse solution, a standard Boltzman function is evalu-
ated. Let T denote the temperature and ∆f the decrease in objective function. For
swaps with negative ∆f the probability of acceptance is given by e

∆f
T . Of course,

the best found schedule is saved.

The advantage of SA over the previous two methods is that the true objective can
immediately be evaluated. In contrast, the repetitive MIP heuristic optimizes a se-
ries of linear objective functions which hopefully result in a schedule that minimizes
the true objective. Similarly, the quadratic MIP heuristic evaluates a quadratic ob-
jective instead of the true objective. The main drawback of SA is that experiments
are required to find good values for T and the temperature decrease function. The
probability of a worse solution being accepted should be large at the start of the
search and small towards the end.

4.5 Computational experiment

4.5.1 Test set

To study the computational performance of the heuristics, a test set was composed.
All test problems involve a cycle time of 7 days in which the last two days are not
available to allocate operating room time (weekend). Seven factors were identified
that could have an impact on the complexity of the problem. These are: (1) the
number of time blocks per day, (2) the number of surgeons, (3) the division of
requested blocks per surgeon, (4) the number of operated patients per surgeon, (5)
the probability of a no show as a measure of the variability in this number, (6) the
length of stay (LOS) distribution and finally (7) the bed capacity. If we consider
two settings for each factor and repeat each factor combination 3 times, we obtain
27 ∗ 3 = 384 test instances. Table 4.2 contains the settings for these seven factors.
Some of the factor settings require some further explanation.

The number of blocks per day is drawn from a uniform distribution with bounds
3 and 6 in the first setting and 7 and 12 in the second setting. The third fac-
tor indicates whether or not the requested blocks are evenly distributed among all
surgeons; e.g., if there are 20 time blocks and 5 surgeons, each surgeon requires
4 time blocks in the evenly distributed case, whereas in the unevenly distributed

138 4.5. Computational experiment

Table 4.2: Design of experiment

Factor Nr. blocks Nr. Division Nr. patients Prob. LOS Capacity

setting per day surgeons req. blocks per surgeon no show

1 3-6 3-7 evenly 3-5 5% 2-5 105%

distributed

2 7-12 8-15 not evenly 3-12 10% 2-12 110%

distributed

case huge differences can occur. Factor 5 defines the probability of a no show. The
higher this probability, the higher the variability in the number of operated patients
distribution for each surgeon. For the LOS in factor 6 we simulated exponential
distributions (made discrete by use of binomial distributions) with mean dependent
on the factor setting. Finally, the capacity was set as follows. First we calculate
the total bed occupancy, i.e., sum up all (expected) LOS days of all (expected) pa-
tients of all surgeons. This number was divided by 7 in order to obtain the absolute
minimum required capacity. Next, depending on the factor setting this capacity
was increased with 5 or 10%.

4.5.2 Tested heuristics

The heuristic algorithms summarized in Table 4.3 have been tested on these 384
test instances. Preliminary tests indicated that SA2 needs very large computa-
tion times. The reason is that the evaluation of the true objective (via numerical
integration) is very time consuming. Therefore, a third SA heuristic (SA3) was
implemented in which the objective is a weighted sum of the squared average daily
bed occupancies (as in QP) and the total shortage probability. This new objective
can be evaluated instantly and hence many more iterations of SA can take place.
Since the total squared sum of daily average bed occupancies is much larger than
the total shortage probability, this first measure is normalized so that it falls in a
range from 0 (minimum) to 1 (maximum). The end criterion of SA3 is the same
as in SA2 (1000 iterations). Additionally, a new heuristic was written in which the

Chapter 4. Building cyclic master surgery schedules with leveled resulting
bed occupancy 139

start solution is given by the solution found by the QP heuristic followed by 250
iterations of SA (QP+SA). Here, the evaluation function is again the true objective.

4.5.3 Computational Results

The heuristics were implemented in Visual C++ and linked with CPLEX 8.1
(ILOG, 2002) as a callable optimization library to perform linear and quadratic
optimization. All our experiments were performed on a 2.4 GHz Pentium 4 PC
with the Windows XP operating system. Table 4.4 contains the results of our ex-
periment. This table contains average values (over all 384 test instances) for the
total expected bed shortages (TEBS) and average values and standard deviations

Table 4.3: Tested heuristics
Abbrev. Description

MINMU Minimize average peak (=MIP1)(4.14-4.21)

MINWEIGHTED Minimize weighted peak

(=MIP2 with wµ = 0.8 and wσ2 = 0.2) (4.23-4.31)

REPMIP1 Repetitive MIP model 1 with ε=1% of previous peak

REPMIP2 Repetitive MIP model 2 with ε=0.01

QP Quadratic Programming model (4.37-4.43)

MINMUPERC Same as MINMU, but now based on percentiles (see 4.3.5)

nstdev = 0.2

REPMIP1PERC Idem for REPMIP1

REPMIP2PERC Idem for REPMIP2

QPPERC Idem for QP

SA1 Simulated annealing (4.4.4)

objective=min. total expected shortage

initial temperature=500

temperature update interval=10 iterations

temperature update function=0.95*previous temperature

end criterion=max. time all previous heuristics

SA2 See SA1

except for end criterion=1000 iterations

SA3 See SA2

except for objective=QP and total shortage probability

SA+QP SA with end criterion=250 iterations and starting solution from QP

140 4.5. Computational experiment

for the computation times (in milliseconds). The standard deviations give an indi-
cation of the variability of the computation times for each heuristic.

Figures 4.2 and 4.3 visualize this table. Note that the Y-axis in Figure 4.3 has a log-
arithmic scale. From these figures we can draw a number of conclusions. First of all,
if we look at the expected shortages, we see that SA2 and SA+QP find the best solu-
tions (no significant differences), followed by REPMIP2, REPMIP2PERC, QP and
QPPERC. Additionally, a repeated measures analysis was done with SAS to draw
well-founded conclusions. F-tests (Type III) on the different contrasts indicated
that the solutions found by SA2 were significantly (α = 0.05) better than those
found in REPMIP2, REPMIP2PERC, QP and QPPERC, between which no signif-
icant difference could be found. The results from REPMIP1 and REPMIP1PERC
are significantly worse than the previous four heuristics. Finally, MINMU, MIN-
WEIGHTED, MINMUPERC and SA1 performed significantly worse than all pre-
vious heuristics, but again no significant differences could be found between them.
SA3 performs significantly worse than all other heuristics.

With respect to the computation times, four groups can be distinguished (from
smallest to largest computation time): (1) the quadratic MIP heuristics (QP and
QPPERC), (2) the single MIP heuristics (MINMU, MINWEIGHTED and MINMU-

Table 4.4: Computational results
Heuristic Avg. exp. shortage Avg. comp. time St. dev. comp. time

(TEBS) (ms) (ms)

MINMU 9.346 76.510 228.334

MINMUPERC 9.362 78.518 405.307

MINWEIGHTED 9.219 86.174 195.423

REPMIP1 7.853 17833.776 321353.376

REPMIP1PERC 7.941 3981.865 42299.126

REPMIP2 7.278 2624.906 5145.229

REPMIP2PERC 7.278 2168.659 3888.637

QP 7.312 27.951 20.946

QPPERC 7.464 26.443 19.029

SA1 9.536 22109.503 323544.954

SA2 6.698 56808.042 20574.437

SA3 11.513 230.773 87.025

QP+SA 6.740 12386.804 4858.314

Chapter 4. Building cyclic master surgery schedules with leveled resulting
bed occupancy 141

0

2

4

6

8

10

12

14

M
IN
M
U

M
IN
M
U
P
E
R
C

M
IN
W
E
IG
H
T
E
D

R
E
P
M
IP
1

R
E
P
M
IP
1
P
E
R
C

R
E
P
M
IP
2

R
E
P
M
IP
2
P
E
R
C

Q
P

Q
P
P
E
R
C

S
A
1

S
A
2

S
A
3

Q
P
+
S
A

Heuristic

T
E
B
S

Figure 4.2: Comparison heuristics results

1

10

100

1000

10000

100000

1000000

M
IN

M
U

M
IN

M
U

P
E

R
C

M
IN

W
E

IG
H

T
E

D

R
E

P
M

IP
1

R
E

P
M

IP
1
P

E
R

C

R
E

P
M

IP
2

R
E

P
M

IP
2
P

E
R

C

Q
P

Q
P

P
E

R
C

S
A

1

S
A

2

S
A

3

Q
P

+
S

A

Heuristic

C
o

m
p

.
ti

m
e
 (

m
s
)

average

st. dev.

Figure 4.3: Comparison of heuristic computation times

142 4.5. Computational experiment

PERC) and SA3, (3) the repetitive MIP heuristics (REPMIP1, REPMIP1PERC,
REPMIP2 and REPMIP2PERC), SA1 and SA+QP and (4) SA2. Recall that the
computation time given to SA1 equals the largest of the MIP heuristics and hence,
SA1 is obviously situated in the third group. From the standard deviations it may
be concluded that the computation time of REPMIP1 and SA2 are highly variable.
Analyzing computation times in SAS yielded no significant difference between QP
and QPPERC. The quadratic MIP heuristics outperform all other heuristics, al-
though no significant differences could be found with REPMIP1, REPMIPPERC
and SA1, due to the large variability in these data.

The most important conclusion is that the SA approach outperforms the MIP ap-
proaches in terms of solution quality, but is outperformed with regard to the needed
computation time. Therefore, when both solution quality and computational ef-
fort are important, SA initiated with the solution found by a QP, seems to be the
most appropriate solution approach. A second important observation is that the
quadratic MIP heuristics dominate the repetitive MIP heuristics with regard to
both solution quality and computational effort.

The impact of the different factor settings on the computation time is dependent
on the applied heuristic. The effects have been tested using F-tests (type III). Ta-
ble 4.5 provides the p-values of the different factors for each heuristic. Significant
factors (α = 0.05) are indicated with a *.

It is possible to distinguish between five groups. For the first group, consisting of
the single MIP heuristics (MINMU, MINMUPERC and MINWEIGHTED), only
the first two factors (the number of blocks per day and the number of surgeons)
have a significant (positive) impact on the computation time. Due to the huge
variability in computation times, no significant factors could be found for REP-
MIP1 and REPMIP1PERC. Since SA1 gets the largest computation time of the
MIP heuristics, this heuristic obviously also belongs to this second group. REP-
MIP2 and REPMIP2PERC are situated in a third group for which a third factor
becomes significant: the number of patients per surgeon. Also here there is a posi-
tive influence on the computation time. For the quadratic MIP heuristics (QP and
QPPERC) yet another significant factor is added: the LOS (Length Of Stay of
the patients). The influence of this factor is however negative. Hence, the longer
the patients stay, the smaller the needed computation time to solve the quadratic

Chapter 4. Building cyclic master surgery schedules with leveled resulting
bed occupancy 143

T
ab

le
4.

5:
Im

pa
ct

of
fa

ct
or

se
tt

in
gs

:
p-

va
lu

es

Fa
ct

or
N

r.
bl

oc
ks

N
r.

D
iv

is
io

n
N

r.
pa

ti
en

ts
P

ro
b.

L
O

S
C

ap
ac

it
y

H
eu

r.
pe

r
da

y
su

rg
eo

ns
re

q.
bl

oc
ks

pe
r

su
rg

eo
n

no
sh

ow

M
IN

M
U

0.
02

33
*

<
.0

00
1*

0.
29

96
0.

39
56

0.
09

66
0.

74
56

0.
88

20
M

IN
M

U
P

E
R

C
0.

09
03

0.
00

69
*

0.
63

91
0.

11
43

0.
21

67
0.

20
60

0.
30

18
M

IN
W

E
IG

H
T

E
D

0.
01

42
*

<
.0

00
1*

0.
34

89
0.

59
62

0.
27

92
0.

15
06

0.
27

24
R

E
P

M
IP

1
0.

29
45

0.
28

26
0.

31
44

0.
31

18
0.

33
22

0.
29

87
0.

30
93

R
E

P
M

IP
1P

E
R

C
0.

10
18

0.
07

75
0.

18
08

0.
58

91
0.

50
45

0.
11

84
0.

12
39

R
E

P
M

IP
2

<
.0

00
1*

<
.0

00
1*

0.
39

77
0.

02
86

*
0.

39
31

0.
90

29
0.

17
04

R
E

P
M

IP
2P

E
R

C
<

.0
00

1*
<

.0
00

1*
0.

31
16

0.
00

30
*

0.
49

88
0.

41
52

0.
16

12
Q

P
<

.0
00

1*
<

.0
00

1*
0.

10
83

0.
00

62
*

0.
64

12
0.

01
86

*
0.

19
18

Q
P

P
E

R
C

<
.0

00
1*

<
.0

00
1*

0.
07

76
<

.0
00

1*
0.

66
30

0.
00

11
*

0.
92

45
SA

1
0.

21
74

0.
20

53
0.

26
80

0.
38

59
0.

39
45

0.
25

21
0.

25
00

SA
2

<
.0

00
1*

<
.0

00
1*

0.
00

31
*

<
.0

00
1*

0.
25

87
0.

00
06

*
0.

67
35

SA
3

<
.0

00
1*

<
.0

00
1*

0.
00

66
*

0.
02

04
*

0.
49

34
0.

23
70

0.
72

32
Q

P
+

SA
<

.0
00

1*
<

.0
00

1*
0.

00
08

*
0.

00
43

*
0.

15
45

0.
00

14
*

0.
47

48

144 4.6. Simulation study

program. The fifth group consists of the remaining SA heuristics (SA2, SA3 and
SA+QP, in which the end criterion is determined by a fixed number of SA itera-
tions). Here also factor 3 (whether or not the blocks are equally divided over the
surgeons) becomes significant. It turns out that SA can solve the problem faster
when the blocks are not equally divided, which is not surprising since the number
of possible exchanges is larger when all surgeons are equally represented and hence
more evaluations need to be done per iteration. This also explains why this factor
is not significant in SA3, for which the computationally expensive evaluation func-
tion is replaced with an easily computable one. The probability of a no show and
(over)capacity do not play any role in the complexity of the problem, no matter
which heuristic is applied.

4.6 Simulation study

Recall that in order to calculate expected shortages, the bed occupancy distribu-
tions are approached with normal distribution functions (see Section 4.4.1). Al-
ternatively, the found schedules could have been evaluated using simulation. The
reason why this was not done in the computational experiments described earlier is
that (reliable) simulation takes too much computation time. However, to verify the
accuracy of our results, a simulation experiment was done in which the predicted
values (averages, variances and shortages) are compared with simulated values. In
this part we summarize the findings of this experiment.
The experiment involved all 384 test instances. Each problem was again solved with
the quadratic programming heuristic (QP). For each problem the total average
and total variance of the bed occupancy (summed up over all 7 days) and total
bed shortage resulting from the found schedule are calculated both through the
theoretical results as outlined above and obtained through simulation:

1. Predicted values: the average and the variance are calculated using the the-
oretical formulas derived above. Expected shortages are calculated by ap-
proaching the bed occupancy distributions with normal distributions and
applying numerical integration as described above.

2. Simulated values: the average, the variance and the shortages are calculated
by simulating 1000 periods, taking into account a warm-up period in order
to reach a steady state.

Chapter 4. Building cyclic master surgery schedules with leveled resulting
bed occupancy 145

The experiment provided three series (averages, variances and expected shortages)
of predicted and simulated data. These series were compared using a paired Stu-
dent T-test (two-tailed). In the left part of Table 4.6 the results are given. The
extremely small p-values for both the variance and the expected shortage indicate
that these predicted values are different from the simulated ones. It turns out that
the predicted variances are larger and hence also the predicted shortages are larger
than the simulated ones.

The reason for this discrepancy is that the theoretical results do not take into
account autocorrelation in the data. Indeed, a subset of the patients occupying a
bed at period t will also occupy a bed at period t + 1, namely those patients that
stay longer than a cycle in the hospital. This means that the number of patients
in the hospital at period t + 1 can partly be explained by the number at period
t. In other words, both numbers are dependent. When simulating more periods,
the difference between numbers of occupied beds of subsequent periods differ less
than expected from theoretical results, making the true variance smaller than the
predicted one. In order to verify this explanation, the T-tests are repeated, but
now only including those instances having the first setting of factor 6 (i.e. with
LOS below the cycle time). The results are indicated in the right column of Table
4.6. As was expected, all p-values are now sufficiently high, indicating that the
assumption of a (structural) difference between the predicted and the simulated
data can be rejected.

Table 4.6: Predicted versus simulated data
All 384 instances Only 192 instances

with LOS < cycle time

Pred. Sim. p-value Pred. Sim. p-value

Avg. bed occupancy 967.85 967.82 0.4102 651.53 651.47 0.20

Avg. var. bed occupancy 170.02 151.24 < .0001* 130.02 129.95 0.76

Avg. total bed shortage 7.29 7.14 < .0001* 11.34 11.33 0.80

146 4.7. Conclusions

4.7 Conclusions

The purpose of this chapter is to propose and compare models and algorithms for
building cyclic surgery schedules. Compared to existing approaches this is the first
work in which concrete models are presented that aim at leveling the resulting
bed occupancy and enable to predict performance measures as the daily expected
bed occupancy, the variance on this occupancy, the expected bed shortage and the
probability of a shortage on each day. The models take into account stochastic
numbers of patients per operating room block and a stochastic length of stay for
each operated patient.

One can distinguish between two approaches: a MIP based approach and a meta-
heuristic approach. In the first approach the non-linear objective function is being
replaced with a linear (or quadratic) one and the resulting models are solved with a
state-of-the art MIP solver. Models have been proposed that aim at the minimiza-
tion of the highest expected bed occupancy peak, highest bed occupancy variance
or a combination of both. Additionally, a number of repetitive MIP solving algo-
rithms have been developed. The second approach preserves the original objective
function and searches a good solution by means of a metaheuristic (simulated an-
nealing) approach. All algorithms have been extensively tested and their results
compared. The best solutions are found with the simulated annealing approach.
However, this approach also takes the longest computation times. Concerning the
MIP based approaches, the best results are obtained with the quadratic program-
ming (QP) models in terms of both solution quality and computation time. A
hybrid approach in which a simulated annealing search is initiated with a sched-
ule found by a quadratic program yields good results with regard to both solution
quality and computation time.

The overall conclusion is that the best results are obtained by a metaheuristic ap-
proach in which the true objective is evaluated. However, MIP approaches involving
linearized and/or quadratic objective functions entail important advantages com-
pared to metaheuristic approaches. First of all, these approaches manage to find
good solutions within small computational effort. Second, a MIP model can easily
be tuned to meet specific requirements. Incorporating an extra real-life restriction
can often be done by simply adding a constraint to the MIP, whereas metaheuris-
tics usually require some extra coding in order to cope with the modified problem.

Chapter 4. Building cyclic master surgery schedules with leveled resulting
bed occupancy 147

Moreover, the different weights can easily be adapted so that the model delivers
solutions that are appropriate in specific cases. For instance, when the peak vari-
ances are the main problem, the (quadratic) MIP with the weight for the variance
equal to 1 may be appropriate. Finally, the single and quadratic MIP approaches
allow the scheduler to find answers to questions as “What is the lowest maximal
peak in the mean (variance) bed occupancy that can possibly be achieved?” or
“What is the most leveled mean bed occupancy possible?”. The answers to these
questions can provide decision-makers (schedulers) with important insights into the
characteristics of the system.

The developed models are very basic. Only two types of constraints have been
considered: surgery demand and operating room capacity constraints. For real-
life applications a number of additional constraints are required such as workforce
capacity constraints (anaesthetists, nursing staff), surgeons preference constraints
(e.g., all blocks at maximal two different days), material requirement constraints,
transition constraints (change of equipment from one surgery group to another) etc.
It would be interesting to implement these models for a real-life case to see to what
extent they can improve existing practices. This is the first and most important
item for future research. From a theoretical point of view, it would be interesting
to see which extensions could easily be handled by which solution approach and
which not. Furthermore, the impact of these extensions on both solution quality
and computation time could be researched.

148 4.7. Conclusions

Chapter 5

Building cyclic master

surgery schedules with

leveled resulting bed

occupancy: A case study

This chapter describes a real-life application of the algorithms for building cyclic
master surgery schedules with leveled resulting bed occupancy proposed in Chapter
4. The study starts from detailed information on all elective surgery interventions
during a 1-year period in a medium-sized Belgian hospital. For each surgeon-
hospitalization unit combination multinomial distribution functions are derived for
both the number of operated patients per operating room block and the length of
stay of each operated patient. These distribution functions serve as the input for
the algorithms. Leveling is achieved by either mixed integer programming tech-
niques involving the solution of a min-max optimization problem and a quadratic
optimization problem, or a simulated annealing heuristic that minimizes the total
probability of bed shortage or, alternatively, the total expected bed shortage.

149

150 5.1. Introduction

5.1 Introduction

The purpose of this chapter is to present a real-life application of the theoretical
models proposed in Chapter 4. Recall that these models enable us to build a cyclic
master surgery schedule for which the resulting bed occupancy is leveled as much as
possible and for which performance measures as the daily expected bed occupancy,
the variance on this occupancy, the expected bed shortage and the probability of
a shortage on each day can be predicted. Multinomial distribution functions are
assumed for both the number of patients per operating room block and the length
of stay (LOS) of each operated patient. The models applied in this case study
are slightly extended implementations of the theoretical ones. The most important
extension includes that more than one hospitalization unit is considered, leading to
probability distributions for each surgeon-hospitalization unit combination. Also,
block sizes may vary or, in other words, room allocations to surgeons can have vari-
able durations. This extension has some consequences for the simulated annealing
approach for which we have added a corresponding neighborhood move (see fur-
ther). Finally, a real-life constraint is added that prevents individual surgeons from
being scheduled in different rooms at the same time.

The rest of this chapter is structured as follows. Section 5.2 gives an outline of
the theoretical background of the models applied in this study. Section 5.3 gives
some more information on the hospital that has provided the data for this case
study. Section 5.4 contains a discussion of the input analysis. More specifically,
it is explained how the multinomial probability distributions are fitted for both
the number of operated patients and the LOS of each operated patient for each
surgeon-hospitalization unit combination. Section 5.5 contains a presentation of
the graphical user interface that was built on top of the algorithms to visualize the
operation and performance of the system. Section 5.6 discusses the results obtained
by applying the different approaches while Section 5.7 draws conclusions and lists
some topics for future research.

5.2 Theoretical background

The algorithms that are applied to build the master surgery schedule can be di-
vided into two classes. The first class consists of mixed integer programming ap-
proaches. A distinction is made between linear min-max optimization approaches

Chapter 5. Building cyclic master surgery schedules with leveled resulting
bed occupancy: A case study 151

and a quadratic optimization approach. The second class consists of a simulated
annealing heuristic that minimizes the total probability of bed shortage or, alterna-
tively, the total expected bed shortage. The general principle behind both the MIP
approaches and the metaheuristic approach is the same. Using the information on
the stochastic distribution functions of the number of operated patients per block as
well as the length of stay of each operated patient, both the mean and the variance
of the daily bed occupancies by the elective cases can be calculated exactly for each
hospitalization unit. To this purpose, the contribution of each surgeon-block allo-
cation to the mean and variance of the daily bed occupancy of each hospitalization
unit must be known. The respective formulas to calculate these contributions have
been derived in Chapter 4.

The way in which the mean and variance of the daily bed occupancies are used to
build a good cyclic master surgery schedule differs between the different approaches.
In the linear MIP approaches, the maximum of the daily mean (variance of the) bed
occupancies is minimized. In the quadratic MIP approach, the daily mean (vari-
ance of the) occupancies are explicitly leveled by minimizing the quadratic sum.
The models are solved by a state-of-the-art mixed integer programming optimizer.

For the simulated annealing approach, shortage probabilities are calculated by as-
suming normally distributed bed occupancies, making use of the central limit the-
orem. Additionally, by applying numerical integration techniques, expected short-
ages can be calculated. The objective function then involves the minimization of
either the total shortage probability or the total expected shortage. To achieve this
objective the algorithm iteratively explores neighbor solutions. A neighborhood
move either involves an exchange of full block allocations (this move may include
several surgeons) or involves an exchange between individual surgeon allocations to
blocks. If an exchange leads to a better solution, the change is accepted. Otherwise,
the change is rejected with an increasing probability towards the end of the search
process.

5.3 Case study

The case study presented entails the Virga Jesse Hospital, situated in Hasselt, Bel-
gium. The 2004 annual report of this medium-sized hospital shows an important

152 5.4. Input analysis

increase in activities. In 2004 the number of inpatient admissions has grown to a
historical record of 21,923. In the same year the total revenues increased with 13
million Euro up to 163 million Euro. Also the number of outpatient admissions
(referred to as day hospitalizations) has risen, while the average length of stay per
patient has decreased. The election of the Belgian HR manager of the year and the
laureate of the prestigious Belgian Tyco health care price for excellence in health
care management are the evidences of Virga Jesse’s top-class service.

Virga Jesse’s central operating room complex consists of 9 rooms in which a total of
46 surgeons have been assigned operating room time. These surgeons are classified
into 15 different surgical groups with respect to the specialism. Each operating
room is open from Monday to Friday for 8.5 hours. Up to now, no elective surgery
takes place during the weekends. The operated patients recover in one of the 25 hos-
pitalization units of which only 10 units have served more than 100 elective cases in
2004. The models applied in this study involve the development of a (cyclic) master
surgery schedule with leveled bed occupancy in these 10 major hospitalization units.

5.4 Input analysis

Both the MIP based approaches and the simulated annealing approach require as
input for each surgeon-hospitalization unit combination the probability distribu-
tions of the number of patients per block and the LOS for each operated patient.
The theoretical models assume multinomial distributions, often referred to as em-
pirical discrete probability distributions. These general probability distributions
can easily be constructed from a database containing the detailed information on
all surgical interventions that have been performed in a reasonably long time period
(e.g., one year). Table 5.1 contains a snapshot of the (relevant) fields of the input
file.

A procedure has been written that reads in these data records provided as an
ASCII text file and automatically constructs the probability distributions for both
the number of patients per block and the LOS per patient for each surgeon-
hospitalization unit combination. This procedure simply counts the number of
cases on each day for each surgeon-hospitalization unit combination. When these

Chapter 5. Building cyclic master surgery schedules with leveled resulting
bed occupancy: A case study 153

Table 5.1: Snapshot of the input file containing detailed information on all

surgical interventions in 2004

OR NR SURGEON ROOM HOSP. UNIT DATE IN DATE OUT

23005838 PUTE Operatiezaal 04 3200 2/01/2004 8:00 2/01/2004 17:00

23116828 DTRG Operatiezaal 09 3200 2/01/2004 8:00 2/01/2004 17:00

23408780 VDVG Operatiezaal 03 2150 2/01/2004 8:00 5/01/2004 15:00

23409553 BOES Operatiezaal 05 2160 2/01/2004 8:00 5/01/2004 15:19

23382108 PUTE Operatiezaal 04 3200 2/01/2004 8:05 2/01/2004 17:00

23383582 LENH Operatiezaal 08 3200 2/01/2004 8:05 2/01/2004 17:00

23409151 PUTE Operatiezaal 04 3200 2/01/2004 8:10 2/01/2004 17:00

23408550 PUTE Operatiezaal 04 3200 2/01/2004 8:15 2/01/2004 17:00

23382105 PUTE Operatiezaal 04 3200 2/01/2004 8:20 2/01/2004 17:00

23408576 VDKJ Operatiezaal 06 3200 2/01/2004 8:20 2/01/2004 17:00

...

numbers are divided by the total number of respective surgery days, the probabili-
ties for the number of operated patients per block that recover in the corresponding
hospitalization unit are obtained. Since totals are made per day, it is implicitly as-
sumed that a surgeon cannot be assigned to more than one block per day. This
assumption holds in our case study as well as for many other hospitals. The same
reasoning is applied for constructing the LOS distributions, but now obviously no
intermediate day totals have to be made.

Only elective (planned) interventions are taken into account. The reason why the
non-elective (emergency) cases are not retained is twofold. First, the occurrence as
well as the recovery period of non-elective, emergency cases is, by definition, highly
unpredictable and hence it would make little or no sense to fit a probability distri-
bution to them. Second, non-elective cases often take place in blocks not preserved
for the surgeon performing the surgery. Taking them into account would lead to a
biased distribution for the number of patients per operating room block.

Table 5.2 shows an example of the output of this procedure, i.e., the derived prob-
ability distributions, for one particular surgeon. It must be clear at this point that
the LOS distributions are specific for each surgeon-hospitalization unit combina-
tion. This is a very realistic basic assumption since the patient recovery time is

154 5.4. Input analysis

usually strongly related to this unique combination as patients operated by the
same surgeon and recovering in the same hospitalization unit often suffer from sim-
ilar ailments. Of course, surgeons can perform different surgical treatments in one
block, but the proportions of these treatments are often reasonably constant.

Before applying this procedure, the surgeons and the existing schedule have to be
read in manually. The existing schedule is needed to determine wether the case
is elective or non-elective. If the intervention takes place on a day during which a
block is preserved for the surgeon, it is considered to be an elective case. Otherwise,
it is considered to be a non-elective case. A problem arises when a surgeon is as-
signed to more blocks having different durations. In this case, a ‘dummy’ surgeon
is introduced for each different block duration. For instance, consider a surgeon
who has been assigned one block of 8.5 hours on Monday and one block of 4 hours
on Tuesday. In our approach, distributions will be derived for the Monday block as
well as for the Tuesday block by introducing a ‘dummy’ surgeon for the latter. This
implies that block durations are considered to be fixed when searching for better
schedules. It also implies that hours cannot be exchanged between blocks. Only
shifting of total blocks will be allowed.

The choice for this approach is justified as follows. First of all, a ‘block’ is probably
the best unit for deriving the probability distributions. A smaller unit (e.g., an
hour) is in our view less effective to fit the real distributions. Second, a block that
extends twice as long as another block, assigned to the same surgeon, does not
necessarily include twice the number of patients. Hence, not introducing a dummy
surgeon would lead to derived probability distributions basically representing a
mixture of two or more distributions. Third, working with fixed block durations
entails some interesting computational features. It enables us to a priori calculate
the per surgeon bed occupancy contributions. These contributions are needed as
input for the mathematical programming models. With variable block sizes on
the other hand, one could only calculate these contributions when the number
of hours assigned per block is known. This would dramatically complicate the
problem. Fourth, the graphical user interface is kept extremely simple as block
assignments and exchanges can easily be done by dragging and dropping. Finally,
from a practical point of view, most of the surgeons have no different block durations
and hence relatively few dummy surgeons have to be introduced.

Chapter 5. Building cyclic master surgery schedules with leveled resulting
bed occupancy: A case study 155

Table 5.2: Example of nr. patient and LOS distributions for three hospital-

ization units for surgeon DUPA

SURGEON HOSP. UNIT NR. PATIENTS LOS

NR. PAT. PROB. NR. DAYS PROB.

DUPA 2160 0 0.20 3 0.20

1 0.38 4 0.02

2 0.34 5 0.02

3 0.06 6 0.03

4 0.02 7 0.28

8 0.21

9 0.21

10 0.03

12 0.02

2601 0 0.56 4 0.03

1 0.34 7 0.04

2 0.06 8 0.41

3 0.04 9 0.45

10 0.07

3200 0 0.16 1 1

1 0.10

2 0.22

3 0.30

4 0.12

5 0.08

6 0.02

5.5 Graphical user interface

In this section the graphical user interface (GUI) is presented. The GUI visualizes
the surgery schedule and the resulting bed usage occupancy distributions for a given
schedule. Moreover, it allows the user to modify an existing schedule and to view
the impact of a change in the schedule on the bed occupancy. Data like the schedule
properties, the surgeon properties and the hospitalization properties can easily be
read in and modified. Automation features include the deduction of the probability
distributions for patient numbers and lengths of stay from a database (as described
in Section 5.4) and the optimization of the schedule with respect to certain objective
measures. Figure 5.1 shows an overview of the GUI with an empty surgery schedule.

156 5.5. Graphical user interface

F
ig

ur
e

5.
1:

O
ve

rv
ie

w
of

th
e

G
U

I
w

it
h

em
pt

y
sc

he
du

le

Chapter 5. Building cyclic master surgery schedules with leveled resulting
bed occupancy: A case study 157

The main window is divided into four views. In the upper left pane the (empty)
master surgery schedule is shown. The seven columns in the grid represent the
seven days of the week. The nine rows represent the nine operating rooms. Each
room is open on each weekday for 8.5 hours. A subset of the surgeons is shown
above the grid. The schedule could now be built easily from scratch by dragging
and dropping the surgeons to the timetable cells. Of course, a room can also be
assigned for a limited number of hours instead of the full 8.5 hours. Each assign-
ment introduces a patient flow in the system, which is reflected by an increase in
the bed occupancy of one or more hospitalization units on one or more days. This
is represented in the upper right pane. Schedules could also be built automatically
while aiming at certain optimization objectives. The computational results (like
solution time, solution quality, etc.) are given in the lower left pane. Finally, the
right bottom pane is a simulation pane. A simulation run could be done in order to
validate the theoretical basic assumptions (mainly the central limit theorem) of the
model. To this purpose it can be verified whether the predicted bed occupancies
(and shortages) obtained by calculation are similar to the ones obtained by sim-
ulation. Figure 5.2 shows the current master surgery schedule with resulting bed
occupancy (only three hospitalization units are shown). The small T-ending bars
on top of each colored occupancy box indicate the standard deviations of the bed
occupancy distributions on the corresponding days at the corresponding hospital-
ization units.

Using dialog boxes, the schedule, surgeon and hospitalization unit properties could
easily be modified. As an example some of the dialog boxes for editing the surgeon
properties are represented in Figure 5.3. The left dialog box shows the surgeon
basic properties and a list of the hospitalization units to which patients of the se-
lected surgeons flow. The user can select one of these units to edit. The upper
right dialog box then allows the user to choose between the number of patients
distribution or the LOS distribution for editing. The lower right dialog box finally
allows the user to edit individual distribution values (number and probability) of
the LOS distribution for this particular surgeon-hospitalization unit combination.

Concerning the automation procedures, one basically can choose between two ap-
proaches: a mixed integer programming procedure, either a linear or a quadratic
one, that aims at leveling the bed occupancy of one or more hospitalization units,
or a simulated annealing approach that directly tries to minimize the total shortage

158 5.5. Graphical user interface

F
ig

ur
e

5.
2:

C
ur

re
nt

m
as

te
r
su

rg
er

y
sc

he
du

le
w

it
h

re
su

lt
in

g
be

d
oc

cu
pa

nc
y

(o
nl

y
th

re
e

ho
sp

it
al

iz
at

io
n

un
it

s
sh

ow
n)

Chapter 5. Building cyclic master surgery schedules with leveled resulting
bed occupancy: A case study 159

F
ig

ur
e

5.
3:

E
di

ti
ng

th
e

pr
op

er
ti

es
of

a
su

rg
eo

n

160 5.5. Graphical user interface

probability or the total expected shortage. To provide additional details for the in-
teger programming procedure, the dialog box shown in Figure 5.4 is displayed. The
user can choose between the linear or the quadratic variant, specify the maximum
running time limit and provide the objective function weights of the respective hos-
pitalization units (2110, 2120, 2130,. . .) for the mean (first column) as well as the
variance (second column). The weights represent the relative importance of the
leveled bed occupancy for the respective hospitalization units; e.g., a weight of 1
(0) indicates that a particular hospitalization unit is (not) taken into account.

When the maximal time limit is reached, the dialog box displayed in Figure 5.5
pops up. The user obtains information about the optimality status and can choose
either to stop the algorithm or to continue the search for an additional time span.
The given information includes the current best found objective value, the lower
bound, the gap, that is the difference between the current solution and the lower
bound expressed as a percentage of the second, and the number of explored and
non-explored nodes in the search tree.

To start a simulated annealing (SA) procedure, the user has to specify a number of
general SA settings (initial temperature, temperature update interval and update
factor), give the stop criteria (max. nr. iterations, max. time limit), indicate the

Figure 5.4: Dialog box: Starting a MIP

Chapter 5. Building cyclic master surgery schedules with leveled resulting
bed occupancy: A case study 161

Figure 5.5: Dialog box: Upon completion of the MIP

probability of a whole block move (which automatically determines the probability
of a one surgeon move) and choose between the two objective functions. The dialog
box to provide this information is shown in Figure 5.6.

Figure 5.6: Dialog box: Starting a simulated annealing procedure

162 5.6. Results

5.6 Results

Rather than trying to find the overall best master surgery schedule for the Virga
Jesse Hospital, which is a subjective matter after all and hence makes little sense
anyway, we discuss and compare the results of a number of different algorithm runs.

As can be seen in Figure 5.2, some problems may arise at hospitalization unit 2130
(third unit, shown at the bottom), where there is a high peak occupancy on Friday
leading to a positive expected bed shortage. An optimization procedure that exclu-
sively focuses on this hospitalization unit could turn out to be useful to solve the
problem. The resulting schedule of a linear MIP, aiming at the minimization of the
maximum mean occupancy peak of unit 2130 is shown in Figure 5.7. It should be
clear that the bed occupancy in unit 2130 is now much more leveled over the week.
Also hospitalization unit 2140 suffers from large differences in the bed occupancy
peaks. This asks for a scheduling procedure that simultaneously focusses on the
leveling of the bed occupancy distributions in units 2130 and 2140. To this pur-
pose, a linear MIP procedure that minimizes the weighted maximum peak of the
bed occupancies in units 2130 and 2140 could be applied. However, as we already
presented a solution based on a linear MIP procedure (see Figure 5.7), we present
the results of a quadratic MIP with weights 1 for units 2130 and 2140 and 0 for all
other units. Figure 5.8 contains the resulting schedule.

Finally, Figure 5.9 displays the schedule that results from applying a simulated
annealing procedure with the settings shown in Figure 5.6. This procedure tries
to minimize the total expected bed shortage, taking all hospitalization units into
consideration.

It is difficult to objectively compare the quality of the generated schedules, as there
is no once and for all objective measure to make this comparison. To build a quality
schedule or at least to improve the current schedule, one has to study the current
practices and determine the most appropriate objective function and automation
procedure. For instance, if capacity problems always occur at the same hospital-
ization unit, a linear or quadratic MIP procedure that focusses on this unit will
probably render the best results. The visualization of the bed occupancies can of
course assist in determining the appropriate model. However, there might be a
different explanation for the variability in these occupancies rather than the vari-

Chapter 5. Building cyclic master surgery schedules with leveled resulting
bed occupancy: A case study 163

Figure 5.7: The results of a linear MIP to level the mean bed occupancy of

hospitalization unit 2130 (shown in the lower right)

ability in surgery admissions and LOS.

Suppose we take the expected number of bed shortages over all ten hospitalization
units included in this study as the one and only objective measure. The results of
several optimization procedures are shown in Table 5.3. The first line indicates the
total expected bed shortage in the current schedule. This number (37.82) indicates
that, over all hospitalization units, more than 5 beds per day are lacking in the
assigned hospitalization unit and hence have to be found in another hospitalization
unit. A possible explanation for this remarkably high number is as follows. Recall
that we derived the per surgeon probability distributions from the daily records of
a database containing all surgical interventions during a 1-year period. The result-
ing variability in these derived distributions is, however, probably higher than the
real-life variability. Indeed, in real life it is probably the case that a surgeon ad-

164 5.6. Results

Figure 5.8: The results of a quadratic MIP to level the mean bed occupancy

of hospitalization units 2130 and 2140

mits or rejects patients as a function of the remaining bed capacity at the relevant
hospitalization unit at that moment. In other words, an important part of the vari-
ability can be taken care of by appropriate admission of elective cases during the
third stage of the surgery scheduling process, which involves the detailed planning
of the individual elective cases in the allocated blocks. Obviously, in the concern of
both patient and surgeon the postponement of surgery is best avoided as much as
possible. Therefore, methods for a careful design of the master surgery schedule,
as presented in this study, are still valuable.

Table 5.3 shows that the total expected bed shortage drops from 37.82 to 34.44 if a
linear MIP approach is used in which the maximal mean bed occupancy of the bot-
tleneck hospitalization unit 2130 is used. The shortage decreases further to 34.12
if also the variance of the bed occupancy in this unit is taken into consideration. If

Chapter 5. Building cyclic master surgery schedules with leveled resulting
bed occupancy: A case study 165

Figure 5.9: The results of a simulated annealing algorithm that minimizes

the total expected bed shortage

Table 5.3: Minimizing the total expected bed shortage
Procedure Total exp. shortage Comp. time (s)

Current schedule 37.82 -

Lin. MIP MIN-MAX mean 2130 34.44 120

Lin. MIP MIN-MAX mean + var. 2130 34.12 120

Quad. MIP mean 2130, 2140 33.55 120

Quad. MIP mean all units 33.29 360

SA 33.12 120

a quadratic MIP procedure is applied on the two most heavily loaded units 2130
and 2140, the expected shortage decreases to 33.55 and if all units are taken into
account to 33.29. Finally, application of a simulated annealing procedure that di-
rectly aims at this objective results in a schedule with expected bed shortage equal

166 5.7. Conclusions and future research

to 33.12.

It must be clear that this result does not necessarily mean that the schedule dis-
played in Figure 5.9 is the best schedule for Virga Jesse. It is just a possible
schedule that has the best score (at least amongst the schedules resulting from the
few procedures we have tested) on one measure. The real power of the software lies
in the visualization of the schedule and the resulting bed occupancy, the ease with
which schedules can be built and the capability it provides to carry out an in-depth
analysis of the existing system. Using the software, managers can find answers to
questions like “what is the most leveled bed occupancy possible at hospitalization
unit X?” or “which schedule simultaneously levels the bed occupancy in units X
and Y?”.

5.7 Conclusions and future research

This chapter has illustrated how the models developed in Chapter 4 could be ap-
plied to a real-life case. To this purpose, the required input data, namely the
distribution functions for the number of operated patients as well as for the length
of stays, have been derived from the central database containing detailed informa-
tion on all surgical cases during a 1-year period in a medium-sized Belgian hospital.
The graphical user interface hides the algorithmic procedures and makes it easy to
build a schedule having particular features like the most leveled bed occupancy in
a certain hospitalization unit or the smallest overall bed shortage probability. De-
pending on the hospital’s situation, and in particular on the problems it is facing,
a procedure can be chosen to build a new master surgery schedule. Additionally,
the application can provide managers with important insights into the behavior of
the system.

The models make abstraction of the differences between the operating rooms, i.e.,
for the resulting bed occupancy it is completely irrelevant whether a surgeon is
allocated to room 1 or to room 2. As a consequence, the models often result in
a schedule in which surgeons from different disciplines have to share one operat-
ing room, sometimes even on the same day. However, in many cases surgeons of
the same group prefer to be scheduled in the same room for this includes several
practical benefits. Of course, shifting surgeons to other rooms within the same day

Chapter 5. Building cyclic master surgery schedules with leveled resulting
bed occupancy: A case study 167

has no impact upon the bed occupancies. Hence, the scheduler can easily swap
room allocations within the same day in order to group surgeons having a similar
discipline into the same room as much as possible. Instead of doing this manu-
ally, a post-improvement heuristic could be written to do the job. Alternatively,
room restrictions could be an integral part of the optimization model, either in the
objective function or as additional constraints. This is an interesting direction for
further research.

A second shortcoming of the proposed models is the assumption that the generated
schedule is completely repeated each cycle time. It might be more efficient for those
surgeons having assigned a small number of hours of operating time per cycle to
aggregate these hours and only operate once in two or three cycles. Obviously, a
prolongation of the cycle time would deal with this issue. However, surgeons also
like to have their schedule as simple as possible which entails as few changes as
possible from week to week. The latter is not guaranteed if we simply apply the
models described above with a longer cycle time. Blake et al. (2002) overcome
this problem as follows. In a first phase, they relax the surgery demand constraints
in their integer programming model, taking as an objective for their cycle master
surgery schedule the minimization of the undersupply of target operating room
hours (see also Blake and Donald, 2002). In a second phase, a post-improvement
heuristic is run that tries to further improve this objective by introducing some
changes in the schedule from week to week. A similar heuristic could be written to
accompany our cyclic surgery scheduling models. Alternatively, we could work the
other way around; i.e., constructing a schedule with a longer cycle time (e.g., two
or three weeks) and afterwards running an improvement algorithm (either heuristic
or exact) that tries to minimize the changes in this schedule from week to week
with no (or few) impact upon our objective function.

168 5.7. Conclusions and future research

Chapter 6

Integrating nurse and

surgery scheduling

A common problem at hospitals is the extreme variation in daily (even hourly)
workload pressure for nurses. The operating room is considered to be the main
engine and hence the main generator of variance in the hospital. It is our belief
that integrating the operating room scheduling process with the nurse scheduling
process is a simple, yet effective way to achieve considerable savings in staffing costs.
The purpose of this chapter is threefold. First of all, we present a concrete model
that integrates both the nurse and the operating room scheduling process. Second,
we show how the column generation technique approach, one of the most employed
exact methods for solving nurse scheduling problems, can easily cope with this
model extension. Third, by means of a large number of computational experiments
we provide an idea of the cost saving opportunities and required solution times.

6.1 Introduction

As already has been demonstrated in Section 1.1 of Chapter 1, cost pressures on
hospitals have increased dramatically during the last decades. This emphasis on
cost containment has forced hospital executives to run their organizations in a more
business-like manner. The constant challenge is to provide high-quality service at
ever reduced costs. In order to achieve this purpose inefficient use of resources

169

170 6.1. Introduction

should be identified and actions should be taken to eliminate these sources of waste.
Operations research techniques are increasingly being used to assist in this compli-
cated task.

As nursing services account for an important part of a hospital’s annual operating
budget, concentrating on this resource can lead to substantial savings. The situ-
ation is exacerbated by an acute shortage of nurses in all western countries, said
to be 120,000 today and expected to grow to 808,000 by 2020 in the United States
(US) alone (USDHHS, 2002). Hence, it is of vital importance that nurses are used
as much as possible at the right time and at the right place. This goal is hard to
achieve because of two reasons. The first one is inherent in service organizations for
which human resources outnumber all other types of resources. Unlike machines,
staff schedules are restricted by collective agreement requirements. These form an
important hindrance for the flexibility with which nurses are scheduled.

A second reason is the presence of variability. Variability is probably the main
obstacle to efficient delivery of health care and reducing it is one of the major
concerns in current health care management (Litvak and Long, 2000). Compared
with many industrial production environments, hospitals are much more stochastic
by nature. Indeed, human bodies are undoubtedly more complex than any other
artificially made product. Consequently, the arrivals of patients, the occurrence of
complications and the patients’ recovery times in hospitals are usually more un-
certain than the demand for products, the occurrence of machine break-downs or
product failures and the repairing times in production systems. One common prob-
lem at hospitals is the extreme variation in daily (even hourly) workload pressure
for nurses. On days when the workload is too high, the quality of care decreases
because it is too costly to staff for peak loads. On days when the workload is too
low, there is waste. Fortunately, the situation is not as chaotic as it seems to be
at first sight. As pointed out by Litvak and Long (2000), an important amount of
the variability can effectively be managed and reduced by a thorough analysis of
the existing system and by appropriate decision taking. Special emphasis is put on
the operating room since it is considered to be the main engine and hence the main
generator of variance in the hospital. It is our belief that integrating the operating
room schedule process into the nurse scheduling process is a simple yet effective
way to achieve considerable savings in staffing costs.

Chapter 6. Integrating nurse and surgery scheduling 171

Nurse scheduling problems are frequently encountered in the operations research
literature. To the best of our knowledge, all the proposed models consider the nurse
scheduling problem as a separate problem, i.e., not related to any other activity
in the hospital. In this chapter we will describe a more general approach in which
the demand constraints are dependent on the operating room schedule and hence
become a part of the decision process.

The operations research literature is replete with examples of integer programming
techniques being applied to operating room scheduling problems. As already men-
tioned, these studies can be categorized based on the stage of the scheduling process
to which it applies. The surgery scheduling part in this chapter is again situated
in the second stage, that entails the development of a master surgery schedule.

The methodology presented in this chapter has some similarities with models for
integrating the scheduling of project tasks and employees (Alfares and Bailey, 1997;
Alfares et al., 1999). Although several authors mention the interdependency be-
tween the surgery scheduling process and the development of nurse rosters, as far
as we know, no models have been proposed to integrate both areas of decision mak-
ing. Litvak and Long (2000) underline the negative impact of variability in hospital
environments. They consider the operating room as the engine that drives the hos-
pital. Consequently, the activities inside the operating room heavily determine the
fluctuations in resource demands throughout the rest of the hospital. A poor op-
erating room schedule could for instance be directly responsible for the occurrence
of (contra-productive) peaks in the demand for certain types of resources. Chapter
3 has introduced this idea by presenting a software package to visualize the use of
various resources as a function of the operating room schedule. In the subsequent
chapters we have focussed on the bed occupancy. Chapter 4 proposed a number
of integer programming models for building robust surgery schedules for which the
resulting expected bed shortage is minimized, while Chapter 5 described a real-life
application of these models. Beds are, however, not the only important resource in
hospitals. On the contrary, beds can only be called an important resource, in the
sense of expensive and thus limited, as far as it concerns staffed beds. A leveled bed
occupancy leads in many cases to a leveled workload pattern which on its turn usu-
ally leads to a favorable workload pattern for nurses. However, since the scheduling
of nurses by itself already entails a lot of constraints, one cannot really judge the
quality of a surgery schedule with respect to the resulting workload distribution,

172 6.2. Model description

without explicitly taking these constraints into account. Hence, an integrative ap-
proach of both scheduling fields is required in order to build a high-quality surgery
schedule that aims at a reduction in the staffing costs.

In this chapter the master surgery schedule is being considered as the main genera-
tor of the workload of the nurses. In order to couple both scheduling environments,
the objective in the surgery schedule process will be to construct a favorable work-
load distribution for the nurses.

This chapter is organized as follows. In Section 6.2 a general overview of the
model together with a branch-and-price solution approach is presented. Section 6.3
provides more details on both pricing problems, while a general overview of the
branch-and-price algorithm is given in Section 6.4. Section 6.5 discusses a specific
branching scheme. In Section 6.6 some computational issues are discussed and in
Section 6.7 extensive computational results are given. Finally, Section 6.8 draws
conclusions and lists some topics for further research.

6.2 Model description

6.2.1 Visualization of the idea

Consider a hospital department confronted with the nurse scheduling problem dis-
played in Figure 6.1. In this figure, the nurse scheduling problem is visualized in a
table in which the rows represent the time horizon. Assume that we have to build a
schedule for four weeks (28 days) in which each day consists of three shifts (morning,
day and night shift). For each shift the number of nurses required to do the work
is known. These demand values are indicated in the utmost right column in Figure
6.1. The other columns represent the roster lines by which an individual nurse
can be scheduled. An X indicates that the nurse is scheduled to work during the
corresponding shift. Of course, not every permutation of X’s represents a feasible
roster line, as several constraints apply on the individual roster lines. For instance,
a night shift cannot be followed by a morning shift on the next day, because the
nurses need sufficient time to rest. A second example includes a maximum limit
on the number of working shifts for a given time period, e.g., a nurse cannot work
more than 20 days out of 28. The problem from which we start our reasoning can
be formulated as follows: given a time horizon, a particular workload for each shift

Chapter 6. Integrating nurse and surgery scheduling 173

in this time horizon and a particular set of constraints on individual roster lines,
what is the minimum number of nurses needed to cover all the work and how should
we schedule these nurses?

Suppose that we found, either manually or with the help of a software package, an
optimal solution for this problem. Hence, we know the minimum number of nurses,
say N , needed to cover the demand and also how to schedule these N individual
nurses. The question that challenges us is whether it would be possible to run the
same system with less nurses. Obviously, if the problem remains unchanged, it will
be impossible to do the same amount of work with less nurses, as N , being the
optimal solution, is the minimum number of nurses needed. In order to cut down
the number of nurses, we need to change the problem, but without changing the
actual system. One possibility is to relax the individual roster line restrictions. As
this would, however, include a decline of the nurses’ social attainments and hence

Nurses

Day Shift 1 2 3 … n Demand

1 Morning x x 10

Day x 8

Night x 4

2 Morning x 12

Day x 9

Night x 5

3 Morning x 11

Day x 11

Night x x 3

… … … …

28 Morning x 10

Day x 9

Night x x 3

Figure 6.1: Example of a nurse scheduling problem

174 6.2. Model description

entails a depreciation of the nurse profession, it would not solve the nurse shortage
problem described in Section 6.1. On the contrary, less people would feel attracted
by the nursing profession, making the problem only worse. A better way to decrease
the number of nurses needed involves a rearrangement of the demand values over
the different shifts. Indeed, it may be possible that the given workload distribution
is just unfavorable to nicely fit a set of nurses to it. But how can one rearrange
these demand values? To answer this question, one has to realize where these values
come from, or, in other words, how these workload demands are determined.

The key observation for this research is that the distribution of the nurse workload
over time is directly linked to the master surgery schedule. To see this, have a look
at Figure 6.2. The left of this figure shows a particular workload pattern, while
the right contains a partial surgery schedule. In the surgery schedule the columns
indicate the time dimension, which is cyclic in days (Monday to Friday). The rows
represent the different operating rooms R1-R4. We focus on the workload of a
particular shift, e.g., the day shift of the third day in the time horizon. Assume
this is a Tuesday. In this shift, eleven nurses are needed to perform the required

Day Shift Demand

1 Morning 10

Day 8

Night 4

2 Morning 12

Day 9

Night 5

3 Morning 11

Day 11

Night 3

… … …

28 Morning 10

Day 9

Night 3

R4

R3

R2

R1

FRITHUWEDTUEMON

Dr. 3

Surgery schedule

Dr.1

Dr. 2

Dr. 4

…

TUE

Figure 6.2: The surgery schedule determines the nurses’ workload

Chapter 6. Integrating nurse and surgery scheduling 175

work. A deeper analysis of the work content in this shift clarifies that a first part
of the work goes to patients of surgeon 1, who is scheduled to operate on the same
day, namely a Tuesday. Also a second part of the work goes to patients who are
operated on this day (by surgeon 2). However, work may also go to patients who
are operated on a previous day (surgeon 3) or even during a previous cycle (surgeon
4), but who are still in the hospital to recover from surgery.

Hence, it is not difficult to see that a modification in the surgery schedule can lead
to a change in the workload distribution. Another way of viewing this is to observe
that each workload pattern corresponds to a surgery schedule as indicated in Figure
6.3.

Nurses

Day Shift 1 2 3 … 25 26 … 78 79 80 … n Demand Demand Demand

1 Morning x x x x 10 8 12

Day x x x 8 8 10

Night x x 4 4 4

2 Morning x x 12 12 10

Day x x 9 12 9

Night x x 5 4 3

3 Morning x x 11 11 10

Day x x 11 10 10

Night x x 3 3 3

… … … … … … … … … … … … … …

28 Morning x x x 10 10 11

Day x x 9 10 11

Night x x 3 3 2

95 95 95

R4

R3

R2

R1

FRITHUWEDTUEMON

R4

R3

R2

R1

FRITHUWEDTUEMON

R4

R3

R2

R1

FRITHUWEDTUEMON

Figure 6.3: Each workload pattern corresponds to a surgery schedule

176 6.2. Model description

6.2.2 Schematic overview

Figure 6.4 contains a schematic overview of the general idea outlined in this chap-
ter. First have a look at the nurse scheduling process at the right of this figure.
The input for the nurse scheduling process consists of the restrictions implied on
the individual nurse roster lines on the one hand and the workload distribution over
time on the other hand. The workload distribution itself is determined by the mas-
ter surgery schedule. In order to be able to deduce the workload from the surgery
schedule one also has to know the workload contributions of each specific type of
surgery. The dotted arrow at the bottom indicates the feedback that could be
given from the nurse scheduling process to the surgery scheduling process in order
to produce more favorable surgery schedules with respect to the resulting work-
loads. However, the freedom in modifying the surgery schedule is limited, since the
master surgery schedule itself is restricted by a set of specific surgery constraints
(e.g., capacity and demand constraints). It must be clear, however, that integrat-
ing the surgery scheduling process with the nurse scheduling process provides more
flexibility in building the nurse schedules, since one has an instrument to make the
workload distribution fit for the nurse schedules.

In what follows we will describe a mathematical model for implementing this idea.
Therefore, we start by stating the standard nurse scheduling problem and discuss
the column generation solution procedure for solving it. Then, we extend this model
with the extra decision of the nurse scheduling process and show how the column
generation solution procedure can easily cope with this extension. We focus on the
minimization of the total required number of nurses. The reason for this objective is
that it allows for a quantitative measure of the resulting benefits, i.e., the decrease
in staffing cost. Obviously, this quantitative benefit can easily be turned into a
qualitative benefit by employing the saved nurse(s) on moments when they are
most needed.

6.2.3 The nurse scheduling problem

The nurse scheduling problem (NSP) consists of generating a configuration of indi-
vidual schedules over a given time horizon (see Section 2.1). The configuration of
nurse schedules is generated so as to fulfill collective agreement requirements and
the hospital staffing demand coverage while minimizing the salary cost. Coverage
constraints state how many nurses of appropriate skills have to be scheduled for

Chapter 6. Integrating nurse and surgery scheduling 177

Workload

distribution

Collective

agreement

requirements

Contributions

surgery type to

nurse workload

Surgery

schedule

restrictions

Master

surgery

schedule

Nurse

schedule

Figure 6.4: Schematic overview of the general idea

each demand period. For ease of exposition and without loss of generalization we
consider all nurses equally-skilled throughout the remainder of this chapter.

Collective agreement requirements are rules that define acceptable schedules for
individual nurses in terms of total workload, holidays, weekends off and shift tran-
sitions (e.g., a morning shift after a night shift is not allowed). These rules cannot
be violated and dramatically reduce the set of feasible individual roster lines. Ob-
viously, when building nurse schedules also a set of individual constraints, often
called preference constraints, have to be taken into account. For instance, some
nurses prefer to do night shifts, others do not. Again, for ease of exposition and
without loss of generalization, we make abstraction of these differences in individ-
ual preferences and only consider those restrictions that are stated in the collective
agreement rules and that consequently apply to all nurses. Hence, we present an
integrated model that can be used to find optimal schedules for a homogeneous set
of nurses.

In what follows we state the standard set covering model, which is often used for
this type of problem. Let J be the set of feasible roster lines j and I be the set

178 6.2. Model description

of demand periods i. Let di ∈ {0, 1, 2, . . . }, ∀i ∈ I, denote the required number of
nurses scheduled during period i. Furthermore, let aij be 1 if roster line j contains
an active shift during period i and 0 otherwise. The general integer decision variable
xj , ∀j ∈ J , indicates the number of individual nurses that are scheduled by roster
line j. Then, the nurse scheduling problem (NSP) can be stated as follows:

Minimize
∑

j∈J

xj (6.1)

subject to:

∑

j∈J

aijxj ≥ di ∀i ∈ I (6.2)

xj ∈ {0, 1, 2, . . . } ∀j ∈ J (6.3)

6.2.4 Solution procedure for the nurse scheduling problem

The integer program (IP) (6.1)-(6.3) is solved by first solving the linear program-
ming relaxation and then using a branching scheme to drive the solution into inte-
grality. As the number of possible roster lines an individual can work is usually too
large to allow complete a-priori enumeration, column generation is often applied
to solve the LP relaxation. Typically, the pricing step involves the solution of a
dynamic programming shortest path problem (also called the subproblem) to find
the legal column with the most negative reduced cost. Let πi, ∀i ∈ I, denote the
dual price of constraint (6.2). Then, the reduced cost of a new column (roster line)
j is given by:

1−
∑

i∈I

aijπi (6.4)

A brief discussion of the solution procedure for this subproblem is given in Section
6.3.1. The process of adding new columns continues until no more columns price
out, i.e., no more columns with negative reduced cost can be found. However, at
that point the solution is not necessarily integral and applying a standard branch-
and-bound procedure to the restricted master with its existing columns will not
guarantee an optimal (or feasible) solution. Therefore, a branching scheme has

Chapter 6. Integrating nurse and surgery scheduling 179

to be applied to drive the solution into integrality. After branching, new columns
might price out favorably and hence have to be added to the model.

Since it does not lie in the scope of this work to discuss effective branching schemes
for the NSP, we will not go into details about this, but instead refer the reader
to the specialized literature. Barnhart et al. (1998) discuss appropriate branch-
ing strategies for solving a mixed integer program (MIP) using column generation.
Since NSP (6.1)-(6.3) has identical restrictions on subsets (i.e., there are no subsets
having a separate convexity constraint like in the trainee scheduling problem of
Chapter 2), developing a branching scheme is a complex issue. Conventional inte-
ger programming branching on variables is not effective for reasons of symmetry
and also because fixing variables destroys the structure of the subproblem. Van-
derbeck and Wolsey (1996) developed a general rule in which one is branching on
the constraints (see also Vanderbeck, 2000). The drawback is that the branching
constraints cannot be used to eliminate variables and have to be added to the for-
mulation explicitly. Hence, each branching constraint will contribute an additional
dual variable to the reduced cost, complicating the pricing problem.

6.2.5 The generalized nurse scheduling problem

In the NSP the right hand side values of the coverage constraints (i.e., the di’s
in formulation (6.1)-(6.3)) are considered to be fixed. Nevertheless, coverage con-
straints are based on workload estimations that entail the summations of individual
patient workload contributions. An individual patient workload contribution is de-
termined by the patient type. The patient type can generally be described by three
dimensions. The first dimension is the type of surgery the patient has undergone.
The second is the number of periods the patient has already recovered. The third is
the period to which the workload applies. For instance, some ailments may require
increased care during nights.

The number and type of the patients that are present in the hospital at each mo-
ment in time is largely determined by the operating room schedule. Obviously, due
to emergency cases and uncertainty in patient show-ups, patient recovery times etc.,
exact estimations are not possible. However, an in-depth analysis of the operating
room schedule enables hospital executives to make a quite accurate prediction of
the workload of the nurses. Moreover, they can reshape the workload distribution

180 6.2. Model description

by modifying the operating room schedule. In the long term, case mix planning
decisions determine the overall workload. In the shorter term, the cyclic master
surgery schedule determines the workload distribution over time.

The generalized nurse scheduling problem (GNSP) takes into account this extra di-
mension. Instead of assuming the demand values to be fixed, the GNSP considers
them to be dependent on the number and type of patients undergoing surgery in
the hospital at each moment. By manipulating the master surgery schedule hospi-
tal management can create (and choose between) a number of different workload
distributions, further referred to as workload patterns. Let K denote the set of pos-
sible workload patterns that could be generated by modifying the surgery schedule.
These will be obtained by enumerating all possible ways of assigning operating
blocks to the different surgeons, subject to surgery demand and to capacity restric-
tions (for more details see Section 6.3.2). Each workload pattern k is described
by a number of periodic demands dik ∈ {0, 1, 2, . . . }, ∀i ∈ I. Let zk be 1 if the
surgery schedule that corresponds to workload k is chosen and 0 otherwise. Then,
the problem can be stated as follows:

Minimize
∑

j∈J

xj (6.5)

subject to:

∑

j∈J

aijxj ≥
∑

k∈K

dikzk ∀i ∈ I (6.6)

∑

k∈K

zk = 1 (6.7)

xj ∈ {0, 1, 2, . . . } ∀j ∈ J (6.8)

zk ∈ {0, 1} ∀k ∈ K (6.9)

Constraint (6.7), further referred to as the workload convexity constraint, implies
that exactly one workload pattern has to be chosen. In a feasible solution all zk’s
but one equal 0. Hence, in constraint (6.6) only the corresponding dik’s are added
in the right hand side values. It is easy to see that the NSP is a special case of the
GNSP in which one zk is fixed to be 1.

Chapter 6. Integrating nurse and surgery scheduling 181

6.2.6 Solution procedure for the generalized nurse schedul-

ing problem

In this part we show that the column generation approach to solve the LP relaxation
of NSP can easily be extended to cope with the GNSP. Similarly to the roster
lines, the number of possible workload patterns is usually too large to allow for
complete a-priori enumeration. Also here the process starts with a limited subset
of workload patterns and new patterns (columns) are added as needed. Therefore
a second subproblem has to be solved. The generation of a new workload pattern
boils down to the construction of a new master surgery schedule. The subproblem
is constrained by a set of specific surgery schedule restrictions. Its objective is the
minimization of the reduced cost of a new workload pattern. Let γ denote the dual
price of the workload pattern convexity constraint (6.7). Then the reduced cost of
a new workload pattern k is given by:

0− γ +
∑

i∈I

πidik (6.10)

Obviously, the appropriate solution approach to price out a new workload pattern
strongly depends on the characteristics of the master surgery schedule. In this chap-
ter the workload pattern pricing problem is formulated as an IP and solved using
a state-of-the-art optimization package (CPLEX). More details on this formulation
can be found in Section 6.3.2.

6.3 Pricing problems

6.3.1 Generating a new roster line

Although the generation of a new roster line happens in a standard way (shortest
path problem solved with recursive dynamic programming) (see, e.g., Caprara et
al., 2003) and its exact implementation is not really necessary for understanding the
general idea of this chapter, we briefly discuss the procedure. First, we summarize
the restrictions that apply to a roster line.
As already mentioned earlier, this work is only concerned with collective agreement
requirements and leaves individual preferences out of consideration. Specifically,
we take into account five types of requirements when building a new roster line.
First of all, a nurse cannot work more than one shift per day. Second, the overall

182 6.3. Pricing problems

number of active days, i.e., days in which the roster line contains an active shift
(‘day ’, ‘evening ’ or ‘night ’), cannot exceed a certain limit. Third, the maximum
number of consecutive working days is also constrained. The same holds for the
maximum number of consecutive rest days. A sequence of working days is fur-
ther referred to as a block. Fourth, the number of so-called unpopular shifts (night
shifts, weekend shifts) is limited for each roster line. Fifth, in a block certain shift
transitions are not allowed. For instance, a nurse cannot switch from, say, a night
shift to a morning shift without having a rest first.

Generating a new roster line is typically done using a dynamic programming recur-
sion. To this aim, we define a table giving the minimum cost that can be achieved
in days 1 to d by a roster line that, starting from a situation in which on day d a
shift s is scheduled and in which between days d to n a certain number of active
shifts f occurred, a certain number of unpopular shifts g occurred and a number
of consecutive working or rest days h (including day d) is assigned. Formally, the
entries of the table are of the form

τ(d, f, g, s, h),

defined for d = 1..n, f = 0..fmax, g = 0..gmax, s ∈ S, h = 0..hmax where n denotes
the number of days in the scheduling horizon, fmax denotes the maximum number
of working days in a roster line, gmax is the maximum penalty in terms of unpopular
shifts, S is the set of shift types (”day”, ”evening”, ”night”, ”rest”) and hmax is
the maximum of both the maximum number of consecutive working days (hmax

1)
and the maximum number of consecutive rest days (hmax

2). Let pd,s be the penalty
cost for assigning an unpopular shift (d, s). Let A denote the set of allowed shift
transitions (s, s′) between two consecutive days on. We consider demand periods
as being subsets of the shifts, i.e., no demand period can be spread over more than
one shift. However, a shift can consist of more demand periods. Let Q(d,s) be the
set of demand periods i that fall into shift (d, s). Let λd,s be the total dual cost of
a shift (d, s), i.e., λd,s =

∑
i∈Q(d,s)

πi.

The computation of the entries in the table is done by starting at the beginning of
the time horizon and by working forward by considering an insertion of a shift type
s on the next day d of the roster line associated with an entry already computed.
Therefore, we make use of recursive algorithm 2.

Chapter 6. Integrating nurse and surgery scheduling 183

Algorithm 2 RECURSION(d, f, g, s, h)
if (d=0) then

return 0; {beginning of time horizon reached}
else if (τ(d, f, g, s, h) 6= 999999999) then

return τ(d, f, g, s, h); {state already visited, can be pruned}
else

cost ← +∞;

min cost ← +∞;

for (all shifts s̄ ∈ S\{”rest”}) do

if (g + pd−1,s̄ ≤ gmax) AND ((s̄, s) ∈ A) AND (f < fmax) then

if (s 6= ”rest”) then

if (h < h1
max) then

cost ← λd,s+RECURSION(d−1, f +1, g+pd−1,s̄, s̄, h+1); {successive active shift}
end if

else if (s = ”rest”) then

cost ←RECURSION(d− 1, f + 1, g + pd−1,s̄, s̄, 1); {start active shift}
end if

end if

if (cost < min cost) then

min cost ← cost;

end if

end for

if (s 6= ”rest”) then

cost ← λd,s+ RECURSION(d− 1, f, g, ”rest”, 1); {start rest}
else if (s = ”rest”) then

if (h < h2
max) then

cost ← RECURSION(d− 1, f, g, ”rest”, h + 1); {successive rest}
end if

end if

if (cost < min cost) then

min cost ← cost;

end if

return τ(d, f, g, s, h) ← min cost;

end if

184 6.3. Pricing problems

Before starting the recursion all entries of table τ(d, f, g, s, h) are initialized to
999999999. The minimal reduced cost of a new roster line can now easily be calcu-
lated by starting the recursion on day n and minimizing over each shift type (see
algorithm 3).

Algorithm 3 FIND-NEW-ROSTER-LINE
{initialize all entries of τ}
for (d = 1 to n) do

for (f = 0 to fmax) do

for (g = 0 to gmax) do

for (all shifts s ∈ S) do

for (h = 0 to hmax) do

τ(d, f, g, s, h) ← 999999999;

end for

end for

end for

end for

end for

cost ← +∞;

min cost ← +∞;

{start the recursion}
for (all shifts s̄ ∈ S\{”rest”}) do

if (pn,s̄ ≤ gmax) then

cost ←RECURSION(n, 1, pn,s̄, s̄, 1); {end with an active shift}
end if

if (cost < min cost) then

min cost ← cost;

end if

end for

cost ←RECURSION(n, 0, 0, ”rest”, 1); {end with a rest}
if (cost < min cost) then

min cost ← cost;

end if

Once all the calculations are done, the best new roster line can easily be constructed
backward. The overall space complexity of the dynamic programming recursion is

Chapter 6. Integrating nurse and surgery scheduling 185

O(n · fmax · gmax · |S| · hmax)

whereas the time complexity is (in the case that there are no forbidden shift tran-
sitions),

O(n · fmax · gmax · |S| · hmax · |S|)

since each entry of the table is updated by considering up to O(|S|) other entries.

6.3.2 Generating a new workload pattern

Each workload pattern corresponds to a particular surgery schedule. Hence, a new
workload pattern can be obtained by building a new surgery schedule. The capacity
preserved for the different surgeons (or, more generally, surgery groups) is already
determined by the case mix planning (first stage, long term) and considered to be
fixed in our application. Elective case scheduling (third stage) is also left out of
consideration for two reasons. First of all, the impact of each specific elective case
on the workload is rather limited. It is the type of surgery that determines the
workload contribution, not the individual case. Second, it is very hard to predict
the precise impact of the individual cases on the workload contribution at the mo-
ment that the nurse rosters have to be built. Often, at that moment, an important
part of the elective surgery scheduling is still to be done.

The master surgery schedule is considered to be the tool for manipulating the
workload distribution over time. This work is concerned with cyclic master surgery
schedules. Cyclic schedules are schedules that are repeated after a certain time
period (referred to as the cycle time). During such a cycle time there might be a
number of time periods during which surgery cannot take place. These periods are
referred to as the inactive periods, the others are active. Typically, cycle times are
multitudes of weeks in which the weekends are inactive periods.

In our application, a new surgery schedule is built by solving an integer program.
To find a new workload pattern with minimal reduced cost given the current set of
roster lines and workload patterns, the objective function minimizes the dual price
vector of the demand constraints (6.6) multiplied by the new demands. We deal
with two types of constraint. Surgery demand constraints determine how many

186 6.3. Pricing problems

blocks must be preserved for each surgeon. Capacity constraints ensure that the
number of blocks assigned during each period do not exceed the available capacity.
Let yrt (∀r ∈ R and t ∈ T) be the number of blocks assigned to surgeon r in period
t where T represents the set of active periods and R the set of surgeons. Let qr be
the number of blocks required by each surgeon r. Let bt be the maximal number of
blocks available in period t. Let wrti ∈ <+ denote the contribution to the workload
of demand period i of assigning one block to surgeon r in period t. Then, the
integer program to construct a new surgery schedule (and at the same time price
out a new workload pattern k) is as follows:

Minimize
∑

i∈I

πidik (6.11)

subject to:

∑

t∈T

yrt = qr ∀r ∈ R (6.12)

∑

r∈R

yrt ≤ bt ∀t ∈ T (6.13)

∑

r∈R

∑

t∈T

wrtiyrt ≤ dik ∀i ∈ I (6.14)

yrt ∈ {0, 1, 2, . . . , min(qr, bt)} ∀r ∈ R, ∀t ∈ T (6.15)

dik ∈ {0, 1, 2, . . . } ∀i ∈ I (6.16)

The objective function (6.11) minimizes the reduced cost of a new workload pattern.
Observe that the periodic demands dik are now an integral part of the decision pro-
cess, whereas these are merely coefficients in the master problem (6.5)-(6.9). Con-
straint set (6.12) implies that each surgeon obtains the number of required blocks.
Constraint set (6.13) ensures that the number of blocks assigned does not exceed
the available number of blocks in each period. Constraint set (6.14) triggers the
dik’s to the appropriate integer values. Finally, constraint sets (6.15) and (6.16)
define yrt and dik to be integer.

At first sight, constraint set (6.16) which requires the periodic demands dik to be
integral seems to be redundant from a formulation point of view. Indeed, due to
constraint (6.6) and the fact that aij ∈ {0, 1} and xj ∈ {0, 1, 2, . . . } fractional
demand values dik would also be covered by the upper integer number of nurses.

Chapter 6. Integrating nurse and surgery scheduling 187

The reason why we require the dik’s to be integral is to improve the computational
efficiency of the overall branch-and-price algorithm. We come back to this issue in
Section 6.6.1.

6.4 Overview of the branch-and-price algorithm

Algorithm 4 contains the pseudocode of the branch-and-price algorithm to solve
the GNSP, while Figure 6.5 gives a schematic overview. The algorithm starts with
a heuristic in order to find an initial solution. The heuristic generates only one
workload pattern. This is done by building a surgery schedule for which the sum
of the resulting quadratic demand values is minimized. The idea is to level the
workload distribution as much as possible over the time horizon and as such to
avoid the occurrence of peaks in the workload. This approach turned out to be
beneficial for the surgery scheduling problem in which the expected shortage of
beds has to be minimized (see Chapter 4).

Column generation for GNSP

Apply

heuristic

Initial

set of

columns

Generate

supercolumns

Solve

master LP

Column

prices out?

Generate new

nurse column

Add

column

Generate new

workload pattern

Column

prices out?

Add workload

pattern

yes no

yes

no

LP solved to

optimality.

Start branching

Figure 6.5: Schematic overview of the GNSP branch-and-price algorithm

188 6.4. Overview of the branch-and-price algorithm

Algorithm 4 BRANCH-AND-PRICE
apply heuristic to find initial solution;

if (solution found) then

register nurse schedule and surgery schedule;

upper bound ← best solution found;

initiate master with the columns making up the initial solution and (|I| + 1) supercolumns;

else

upper bound ← +∞;

initiate master with |I| + 1 supercolumns;

end if

lower bound ← −∞;

stop ← FALSE;

while (stop=FALSE) do

LP opt found ← FALSE;

{solve LP with column generation}
while (LP opt found=FALSE) do

LP opt found ← TRUE;

improving roster line found ← TRUE;

while (improving roster line found=TRUE) do

RCj ← FIND-NEW-ROSTER-LINE(j);

if (RCj < 0) then

add new roster line to master;

LP opt found ← FALSE;

LP opt ← SOLVE-MASTER-LP();

else

improving roster line found ← FALSE;

end if

end while

RCk ← FIND-NEW-WORKLOAD-PATTERN(k);

if (RCk < 0) then

add new workload pattern to master;

LP opt found ← FALSE;

LP opt ← SOLVE-MASTER-LP();

end if

end while{LP solved to optimality}
if (fractional z) then

expand node; {replace node by two child nodes}
else if (LP opt<best integral z) then

best integral z ← LP opt;

end if

if (no more nodes) then

stop ← TRUE;

else

explore next node; {best-first}
lower bound ← bound best node;

if (lower bound ≥ upper bound OR lower bound ≥ best integer z) then

stop ← TRUE;

end if

end if

IP opt ← SOLVE-MASTER-IP();

if (IP opt < upper bound) then

upper bound ← IP opt;

register nurse schedule and surgery schedule;

end if

end while

Chapter 6. Integrating nurse and surgery scheduling 189

The surgery schedule is built with a mixed integer program (MIP) in which the
constraints are given by (6.12)-(6.15) (replacing the dik’s by di’s) and the objective
is:

Minimize
∑

i∈I

d2
i

with di the required number of nurses in period i. To speed up the heuristic, the
di’s are not required to be integral. Instead, we round each di to the next upper
integer after solution of the quadratic MIP. Given this workload pattern, new roster
lines are added until the set of roster lines (one nurse scheduled by each roster line)
completely satisfies the coverage constraints. A new roster line is found by solving
exactly the same shortest path problem as in Section 6.3.1, but replacing the dual
prices πi by the remaining right hand side values di. As such each new roster line
cuts the peaks in the remaining workload pattern until all demand is covered.

After detection of an initial solution, the objective value is saved as an upper bound
and both the surgery schedule and the nurse schedule are registered. The columns
making up the initial solution are entered into the master together with a number
of supercolumns, which are needed to ensure feasibility of the master in each stage
of the branch-and-bound algorithm.

The algorithm starts with the LP optimization loop in which, iteratively, a number
of new roster lines and one new workload pattern are added until no more columns
price out. Observe that roster lines are added until no more lines with negative
reduced cost can be found, whereas only one workload pattern is generated, after
which the generation of new roster lines restarts. This approach turned out to be
the most successful, given the generally larger computation times to price out a
new workload pattern.

Upon detection of the LP optimum, the solution is checked for fractional zk’s (work-
load patterns). If there still are fractional zk’s, branching is applied in order to drive
the solution into an integral z solution (i.e., with only one zk equal to 1 and all
other equal to 0). The algorithm does not branch until an integral xj (roster line)
solution, because branching schemes for the xj variables are not straightforward
to implement and significantly complicate the roster line subproblem. Moreover, it
provides no extra value for the extended model, which is the subject of this chapter.

190 6.5. Branching

Instead, we report lower and upper bounds for the required number of nurses to
cover demand. The lower bound is the best possible solution with exactly one zk

equal to 1, however one for which the xj ’s are not necessarily integral. Hence, the
solution represented by the lower bound might not be interpretable in terms of the
nurse schedule (e.g., schedule 2.5 nurses following roster line j). The upper bound
on the other hand is the best found overall integer solution (with also integrality of
the xj ’s), which is fully interpretable.

In order to increase the lower bound as much as possible, the branch-and-bound tree
is traversed in a best-search way. After each move in the tree, the master problem
is solved with required integrality on both the xj ’s and the zk’s. Because the
integral master problem is often computationally very intensive, the MIP optimizer
is interrupted after a specified time interval (e.g., 10 seconds). If a better solution
is found, the upper bound decreases and as such the gap between the lower and
upper bound tightens.

6.5 Branching

For reasons that are explained earlier, this work is only concerned with a branching
scheme for driving the zk’s to integrality and leaves the xj ’s out of consideration.
We apply a constraint branching scheme (Ryan and Foster, 1981) which works as
follows.

First we search for the highest fractional zk. Let this be zk′ . Then we select another
zk > 0, say zk′′ , and take the first period i for which dik′ 6= dik′′ . If no such period
exists, both zk’s represent essentially the same workload patterns and hence one of
them can be set to 0 while its fractional value is added to the other one. Suppose
we found period i′ as the branching period with di′k′ < di′k′′ . Then, we create two
nodes in the branch-and-bound tree. In the left node we imply di′k ≤ di′k′ and in
the right node we imply di′k ≥ di′k′+1. Figure 6.6 visualizes this branching scheme.
Else if di′k′ > di′k′′ we imply di′k ≤ di′k′′ in the left node and di′k ≥ di′k′′ + 1 in
the right node.

Chapter 6. Integrating nurse and surgery scheduling 191

Parent

node

d
i’k

d
i’k’

d
i’k

d
i’k’
+1

Figure 6.6: Binary branching scheme in the case of di′k′ < di′k′′

6.6 Computational performance issues

In this section we present some techniques that helped to improve the computational
efficiency of the algorithm.

6.6.1 Integral versus fractional demand values

It has already been mentioned at the end of Section 6.3.2 that we imply the dik’s
to be integral in the workload pattern pricing problem. Although this is not nec-
essary from a formulation point of view, it has a substantially positive impact on
the overall computational efficiency of the algorithm.

Implying integrality of the dik’s affects the computation time in two ways. On the
one hand, there is a negative impact, because the pricing problem itself becomes
more complex. On the other hand, there is a positive impact as far fewer columns
can be found with negative reduced cost. Preliminary results indicate that this
positive effect dramatically exceeds the negative effect. Consequently, the master
LP is solved much faster when integrality of the dik’s is implied. Moreover, requiring
integral demand values in the workload patterns makes the LP optimal solution
substantially less fractional in terms of the xj ’s. Hence, finding a global optimum

192 6.6. Computational performance issues

(with both integrality on the zk’s and on the xj ’s) turns out to be much easier. In
our application the gap between the lower and upper bound becomes much smaller.

6.6.2 Upper bound pruning for the workload pattern pricing

problem

Basically, we are no longer interested in finding the column with the lowest reduced
cost from the moment we know that this reduced cost will be positive anyway.
Hence, we can act as if we already found a solution with reduced cost 0 by pro-
viding an appropriate upper bound. For the workload pattern subproblem, this
observation yields dramatic time savings.

The reduced cost expression (6.4) consists of a fixed part and a variable part. By
setting the upper bound equal to the fixed part with reverse sign, we act as if we
found already a new column with reduced cost equal to 0. The reduced cost of a
workload pattern is given by 0− γ +

∑
i∈I πidik. Consequently, we provide γ as an

upper bound in the integer program (6.11)-(6.16).

Note that, since generating a new roster line is done using a backward dynamic
recursion, upper bound pruning cannot be applied here. As an alternative, we
wrote an A* algorithm (an enumeration approach entailing a forward recursion
including both dynamic pruning and pruning based on bound comparisons; good
discussions of A* can be found in Nilsson, 1980 and Barr et al., 1989). Dynamic
pruning occurs if a state has already been visited at lower cost. For pruning based
on bound comparisons we need an upper and a lower bound for the best new roster
line. Since the reduced cost of a new roster line is given by 1−∑

i∈I aijπi, we can
provide -1 as an initial upper bound in the A* algorithm. Obviously, this bound
is decreased each time a better roster line is found. Starting from a certain day,
a lower bound on the minimal cost path could be obtained by selecting for each
remaining day the shift with the lowest total of corresponding dual prices, i.e:

MIN
{

MIN
s∈S\{”rest”}

{λd,i}, 0
}

∀d

and summing up only the (fmax − f) lowest values amongst these. In other words,
for calculating the lower bound, we relax all constraints but the not-more-than-
one-shift-per-day constraint and the maximum number of active days constraint.

Chapter 6. Integrating nurse and surgery scheduling 193

Preliminary tests, however, indicated that the A* algorithm is outperformed by the
backward dynamic recursion. Hence, the time saved from upper bound pruning in
the A* algorithm is inferior to the time won by visiting each state only once in the
purely dynamic backward recursion.

6.6.3 Two-phase approach for the workload pattern pricing

problem

During the LP optimization loop it is not necessary to find the column with the
most negative reduced cost, any column with negative reduced cost will do. Again,
particularly for the computationally intensive workload pattern pricing problem,
using this observation dramatically decreases the computation times. To guarantee
optimality of the LP solution, a two-phase approach is applied for the workload
pattern pricing problem. In the first phase, a certain time limit is set for the MIP
optimizer. Only if no new workload pattern is found with negative reduced cost
within this time limit, the algorithm enters the second phase. In this phase the
time limit is undone and the optimizer is required to search until a feasible solution
is found with negative reduced cost or it is proven that such a column does not
exist.

6.6.4 Lagrange dual pruning

It is well known that Lagrangian relaxation can complement column generation in
that it can be used in every iteration of the column generation scheme to compute
a lower bound to the original problem with little additional computational effort
(see, e.g., Van den Akker et al., 2002; Vanderbeck and Wolsey, 1996). If this lower
bound exceeds an already found upper bound, the column generation phase can
end without any risk of missing the optimum. Using the information from solving
the reduced master and the information provided by solving the pricing problem
for a new workload pattern k, it can be shown (see, e.g., Hans, 2001) that a lower
bound is given by δ + RCkθk where δ is the objective value of the reduced master,
RCk is the reduced cost of a newly found workload pattern k and θk is a binary
variable equal to 1 when RCk is non-negative and set to zero, otherwise. This lower
bound is referred to as the Lagrangian lower bound, since it can be shown that it
equals the bound obtained by Lagrange relaxation.

194 6.7. Results

Obviously, if the pricing procedure finds a negative reduced cost column during the
first phase and hence does not enter the second phase (see Section 6.6.3) this lower
bound cannot be used, because the workload pattern pricing problem has not been
solved to optimality. Using CPLEX, it is very easy to set upper bounds, time limits
and limits on the number of feasible solutions. Moreover, it can easily be verified if
either the problem has been solved to optimality or optimization has prematurely
ended because of an insufficient time limit.

6.7 Results

6.7.1 Test set

To test the algorithm, we generated a test set in the same way as we did in Chap-
ter 4 for testing the surgery scheduling leveling algorithms (see Section 4.5.1). All
surgery scheduling problems in this set involve a cycle time of 7 days. The last
two days are not available to allocate operating room time (weekend), which is
common practice. The problems differ with respect to five factors. These are: (1)
the number of time blocks per day, (2) the number of surgeons, (3) the division
of requested blocks per surgeon, (4) the number of operated patients per surgeon
and finally (5) the length of stay (LOS) distribution. For these five factors, we
used the same settings as in Table 4.2. If we consider two settings for each fac-
tor and repeat each factor combination 3 times, we obtain 25∗3 = 96 test instances.

Next, we generated some weights wrti defining the contributions to the workload
of period i of allocating a block to surgeon r in period t. These weights vary lin-
early with the number of patients of surgeon r operated in period t that are still in
the hospital in period i. The patient’s workload contribution generally decreases
the longer the patient has already recovered in the hospital. In our test set the
workload demand periods coincide with the shifts. Furthermore, we set the con-
tribution to a ‘day’ shift two times as large as the one to an ‘evening’ shift and
four times as large as the one to a ‘night’ shift. Obviously, although attempting
to represent realistic scenarios, these contributions are chosen somewhat arbitrarily.

Third, we composed a set of collective agreement rules that apply on individual
roster lines. The scheduling horizon amounted to 4 weeks or 28 days (= n). The
maximum number of days an active shift could be scheduled (‘day’, ‘evening’ or

Chapter 6. Integrating nurse and surgery scheduling 195

‘night’) was set to 20 (= fmax). Shifts during the weekends were marked as unpop-
ular shifts: day and evening shifts got a penalty of 1, night shifts got a penalty of 2.
The maximum number of consecutive working days was set to 6 (=hmax

1 = hmax)
and the maximum number of consecutive rest days was set to 3 (= hmax

2). Further-
more, we distinguished between two scenarios: a hard constrained scenario and a
flexible one. Collective agreement rules in the hard constrained scenario differ from
those in the flexible scenario on the following two points:

� In the hard constrained scenario there is only one shift type allowed within
each block. In other words, no shift transitions between different shift types
can occur without scheduling a rest first. In the flexible scenario all shift
transitions are allowed, except the following three: a ‘night’ shift followed by
a ‘day’ shift, a ‘night’ shift followed by an ‘evening’ shift or an ‘evening’ shift
followed by a ‘day’ shift.

� In the hard constrained scenario the maximal penalty with respect to unpop-
ular shifts is set to 4, whereas in the flexible scenario it is set to 8 (=gmax).

The branch-and-price algorithm was coded in C++ and linked with the CPLEX
callable optimization library version 8.1 (ILOG, 2002). The tests were done on a
2.4 GHz Pentium 4 PC under the Windows XP operating system.

6.7.2 Savings

Table 6.1 contains the lower and upper bounds for both the NSP and the GNSP. In
the NSP a surgery schedule is generated randomly. The resulting workload pattern
contains the (fixed) right-hand side values of the coverage constraints. Then, the
NSP is solved using column generation. In the GNSP new surgery schedules (and
hence resulting workload patterns) are generated during search if needed. We dis-
tinguish between the flexible and the hard constrained scenario. To give an idea of
the variability, the detailed bounds are provided for the first 9 and the last 9 prob-
lems of the problem set. The last line contains the average bounds over the whole
set. Observe that the name of each problem (dijklm n) contains the information
about the surgery scheduling subproblem: i stands for the setting of the first factor
in Table 4.2 (0 for the first setting, 1 for the second), j for the second one, etc.,
and n for the iteration number.

196 6.7. Results

From these results, one may conclude the following. First have a look at the upper
bounds, which are after all the solutions that will be worked with. Although it is
not guaranteed that the upper bound will be better (one might be lucky in the NSP
and find the same or even a better overall integer solution), the upper bounds for
the GNSP are generally better than those for the NSP. We compared them using
a one-tailed paired T-test. The extremely small p-values obtained indicate that
the differences are statistically significant both for the flexible and for the hard
constrained case. The same results are obtained for the lower bounds. Unlike the
upper bounds, the GNSP lower bounds are of course guaranteed to be at least as
good as the NSP lower bounds.

When comparing the lower bounds for the NSP with the upper bounds for the
GNSP, both scenarios entail different conclusions. The average lower bound for
the NSP is lower than the average upper bound for the GNSP in the flexible sce-
nario, whereas the reverse is true in the hard constrained scenario. Both differences
turned out to be significant using a one-tailed paired T-test (again extremely small
p-values). This observation can easily be explained. The stricter the collective
agreement rules, the harder it is to nicely fit the nurse rosters into the required
workload pattern in the NSP. As the workload pattern can be adapted in the
GNSP, the GNSP includes more possible savings in the case of severe collective
agreement requirements.

6.7.3 Interpretation of the savings

In the previous section we concluded that integrating the surgery scheduling process
with the nurse scheduling process may yield important savings in terms of required
nurses to hire. In this section we identify the source of these savings. Therefore, we
provide an answer to the question: “Where lies the waste if one is considering the
surgery schedule (and hence the workload distribution) as being fixed?” It turns
out that the origin of the waste is twofold.

First, an unfavorable workload pattern may contain many workload demands that
slightly exceed the workforce of x nurses, but that are dramatically inferior to the
workforce of x+1 nurses. In terms of the dik’s one could think of many dik’s having
a small decimal part, e.g., 6.1, 8.2, 4.05, etc. This type of waste is referred to as the
waste due to the workforce surplus per shift. In many hospitals this kind of waste

Chapter 6. Integrating nurse and surgery scheduling 197

is taken care of by simply scheduling x nurses instead of x + 1 nurses during those
shifts. The result is a group of overworked nurses and an almost certain decrease
in the quality of care. This illustrates how the GNSP approach can also be very
useful for optimizing qualitative instead of quantitative objectives.

Second, waste also originates from the inflexibility of the roster lines, due to strict
general agreement requirements. Because of this, no set of roster lines can be found
that perfectly fit with the workload demand. This source of waste is further referred
to as waste due to the inflexibility of roster lines.

Table 6.2 gives an overview of the importance of both sources of waste. We again
distinguish between the flexible scenario and the hard constrained scenario. For
each scenario there are three columns. The first column contains the total waste
in terms of overstaffing in the NSP compared with the GNSP. These numbers are
obtained by subtracting the upper bounds for the GNSP from those for the NSP.
The second and third columns indicate the parts of this total waste that are due to
the workforce surplus per shift and to the inflexibility of roster lines. These num-
bers can easily be calculated as follows. First, for both the NSP and the GNSP we
make the sum of the (integral) demands of the chosen workload pattern. Call this
number the total required workforce (=

∑
i∈I di for the NSP and

∑
i∈I

∑
k∈K dikzk

for the GNSP). Next, divide this number by the workforce per nurse (= fmax in
our application). This gives the minimal number of nurses that would be needed
and can be obtained in the case of fully flexible roster lines. The difference between
these numbers for the NSP and GNSP is the waste due to the workforce surplus per
shift. The difference between the total waste and the waste due to the workforce
surplus per shift is the waste due to the inflexibility of roster lines. Observe that
these wastes may be negative (e.g., the waste due to workforce surplus per shift for
problem d00000 2 is -1). This situation occurs when the gain with respect to one
source of waste is so large that the best found solution for the GNSP includes a
limited sacrifice with respect to the other source of waste.

The results in Table 6.2 clearly indicate that the importance of the source of waste
strongly depends on the strictness of the general agreement requirements. The
stricter these requirements are, the larger is the share of the waste due to the
inflexibility of the roster lines.

198 6.7. Results

6.7.4 Computational results

Table 6.3 and Table 6.4 contain the computational results for the flexible respec-
tively hard constrained scenario. For the NSP, both the computation time and
the number of generated roster lines are given. For the GNSP also the number of
generated demand patterns and the number of nodes in the branch-and-bound tree
are provided.

Obviously, the required computation times for the GNSP exceed those for the NSP.
However, taking into account the explosion of the feasible solution space for the
GNSP compared to the NSP, the increase in computation time is rather small. We
can conclude that column generation is an excellent technique for solving the GNSP.

If we compare the flexible scenario with the hard constrained scenario, a couple of
things attract our attention. First of all, observe that for the NSP the computa-
tion times for the flexible scenario surpass those for the hard constrained scenario,
whereas for the GNSP the computation times for the hard constrained scenario
exceed those for the flexible scenario. For the NSP this difference is statistically
significant (extremely small p-value for a two-tailed paired T-test) and easy to ex-
plain. In the flexible scenario, much more legal roster lines exist and hence much
more roster lines with negative reduced cost are found during the search process
(on average 207.25 versus 106.07). Moreover, the time needed to price out a new
roster line is also larger since the feasible state space contains more legal states.

For the GNSP the difference in computation time is not statistically significant at
the 5% level (p-value of 0.113 for a two-tailed paired T-test). As again the number
of generated roster lines is significantly smaller (very small p-value for a two-tailed
paired T-test), the higher computation times for the constrained scenario must
be produced by the higher number of generated workload patterns and the higher
number of nodes in the branch-and-bound tree. The differences in number of gen-
erated workload patterns and in nodes in the branch-and-bound tree are found to
be significant (very small p-values for two-tailed paired T-tests). This can easily be
explained as follows. In the flexible scenario, it is unlikely that an extra workload
pattern improves the overall solution. Thanks to the flexibility in the roster lines,
an already very good solution can be found using a limited set of workload patterns.
In the hard constrained case on the other hand, the inflexibility of the roster lines

Chapter 6. Integrating nurse and surgery scheduling 199

might obstruct the detection of a good solution. In this case, it is far more likely
that adding a new workload pattern improves the overall solution. We can conclude
that the GNSP is easier to solve if the collective agreement requirements are less
strict, whereas the reverse is true for the NSP.

As a final remark we note that a large part of the computation time goes to the
calculation of an overall feasible solution in order to detect an upper bound after
each move in the branch-and-bound tree in the GNSP and at the end of the column
generation process in the NSP.

200 6.7. Results

Table 6.1: Lower and upper bounds for the NSP and the GNSP

Flexible scenario Hard constrained scenario

NSP GNSP NSP GNSP

Nr. Problem lb ub lb ub lb ub lb ub

1 d00000 0 15 17 13 15 19 19 16 17

2 d00000 1 26 28 25 27 34 35 31 31

3 d00000 2 25 27 23 25 32 32 28 29

4 d00001 0 40 42 39 41 49 50 47 48

5 d00001 1 45 47 44 46 54 54 52 53

6 d00001 2 94 96 92 94 112 113 109 110

7 d00010 0 34 36 32 35 43 43 40 40

8 d00010 1 40 42 38 40 49 50 47 47

9 d00010 2 28 30 26 27 34 35 32 33

. .

88 d11101 0 96 98 94 96 114 115 112 113

89 d11101 1 99 102 97 99 119 120 116 116

90 d11101 2 122 125 119 121 145 146 142 143

91 d11110 0 83 85 80 82 101 102 96 96

92 d11110 1 111 113 109 111 138 139 132 132

93 d11110 2 58 60 56 58 73 74 67 68

94 d11111 0 252 254 249 252 303 304 296 297

95 d11111 1 119 122 116 119 143 144 139 140

96 d11111 2 135 137 131 133 162 163 156 157

Average 70.18 72.43 68.33 70.44 86.07 86.73 81.91 82.61

Chapter 6. Integrating nurse and surgery scheduling 201

Table 6.2: Interpretation of the savings

Flexible scenario Hard constrained scenario

Waste due to Waste due to Waste due to Waste due to

Total workforce surplus inflexibility of Total workforce surplus inflexibility of

Nr. Problem waste per shift roster lines waste per shift roster lines

1 d00000 0 2 1.2 0.8 2 1.2 0.8

2 d00000 1 1 1.2 -0.2 4 1.4 2.6

3 d00000 2 1 2 -1 3 1 2

4 d00001 0 1 1.2 -0.2 2 0.6 1.4

5 d00001 1 2 1 1 1 0.2 0.8

6 d00001 2 2 1.6 0.4 3 0 3

7 d00010 0 1 1.4 -0.4 3 1 2

8 d00010 1 1 1.6 -0.6 3 1.6 1.4

9 d00010 2 1 1.8 -0.8 2 -0.6 2.6

. .

88 d11101 0 2 1.4 0.6 2 0.6 1.4

89 d11101 1 2 1.8 0.2 4 0.2 3.8

90 d11101 2 1 2.2 -1.2 3 0.2 2.8

91 d11110 0 2 1.6 0.4 6 0.8 5.2

92 d11110 1 2 0.8 1.2 7 0.6 6.4

93 d11110 2 1 2 -1 6 1.8 4.2

94 d11111 0 2 1.2 0.8 7 0.2 6.8

95 d11111 1 2 1.8 0.2 4 -0.6 4.6

96 d11111 2 1 2 -1 6 0.6 5.4

Average 1.58 1.43 0.16 4.11 0.28 3.84

202 6.7. Results

Table 6.3: Computational results for the flexible scenario

NSP GNSP

Roster Roster Workload

Nr. Problem Time (s) lines Time (s) lines patterns Nodes

1 d00000 0 43484 150 44422 183 2 0

2 d00000 1 44063 174 51000 196 2 0

3 d00000 2 46423 235 45438 213 2 0

4 d00001 0 44078 173 46000 221 2 0

5 d00001 1 43829 167 45172 190 2 0

6 d00001 2 44844 212 48829 238 3 0

7 d00010 0 45266 211 70359 274 2 0

8 d00010 1 46311 237 185623 535 17 8

9 d00010 2 44594 208 166892 640 32 13

. .

88 d11101 0 44390 213 47984 243 2 0

89 d11101 1 44953 228 52031 257 2 0

90 d11101 2 44734 230 56438 280 2 0

91 d11110 0 46203 252 358811 555 30 15

92 d11110 1 45265 238 1765257 815 128 59

93 d11110 2 47359 200 423125 507 28 14

94 d11111 0 46360 347 69266 381 2 0

95 d11111 1 45719 243 59063 319 2 0

96 d11111 2 45048 237 251970 512 14 6

Average 44146.04 207.25 99008.57 310.31 5.93 1.95

Chapter 6. Integrating nurse and surgery scheduling 203

Table 6.4: Computational results for the hard constrained scenario

NSP GNSP

Roster Roster Workload

Nr. Problem Time (s) lines Time (s) lines patterns Nodes

1 d00000 0 453 46 66953 263 8 4

2 d00000 1 500 70 55359 304 18 6

3 d00000 2 422 64 11781 111 2 0

4 d00001 0 468 77 609 81 2 0

5 d00001 1 453 74 687 95 3 0

6 d00001 2 672 120 782 127 2 0

7 d00010 0 4250 113 216064 470 79 43

8 d00010 1 953 113 323236 448 129 47

9 d00010 2 750 80 201970 459 102 39

. .

88 d11101 0 2125 122 1656 130 2 0

89 d11101 1 1531 126 2625 146 2 0

90 d11101 2 1610 149 2109 159 2 0

91 d11110 0 1938 123 456191 439 58 17

92 d11110 1 1500 152 1228851 508 92 45

93 d11110 2 5438 101 102470 310 10 1

94 d11111 0 8000 251 12265 264 2 0

95 d11111 1 4859 143 19359 185 2 0

96 d11111 2 4922 153 1809557 600 221 83

Average 1215.52 106.07 153927.85 226.05 28.08 10.81

204 6.8. Conclusions and further research

6.8 Conclusions and further research

This chapter has presented an integrated approach for building nurse and surgery
schedules. It has been shown how the column generation technique, often em-
ployed for solving nurse scheduling problems, can easily be extended to cope with
this integrated approach. The approach involves the solution of two types of pricing
problems, the first one is solved with a standard dynamic programming recursion,
the second one by aims of a state-of-the-art mixed integer programming optimizer.
A constraint branching scheme has been proposed to drive the solution into inte-
grality with respect to the workload patterns while the integrality of the roster lines
was left out of the scope of this chapter. Finally, some techniques were presented
that helped to improve the computational efficiency of the branch-and-price algo-
rithm.

Our computational results indicate that considerable savings could be achieved by
using this approach to build nurse and surgery schedules. We simulated prob-
lems for a large range of surgery scheduling instances and distinguished between
a flexible and a hard constrained scenario with respect to the collective agreement
requirements. Our conclusions can be summarized as follows. First of all, column
generation is a good technique to deal with the extra problem dimension of modi-
fying surgery schedules. Second, the obtained gains originate from two sources of
waste: waste due to the workforce surplus per shift and waste due to the inflexibil-
ity of roster lines. Third, unlike the NSP, the GNSP turns out to become harder
to solve when the collective agreement requirements are more strict.

Obviously, in real-life hospital environments it is not so easy to modify the master
surgery schedule. As the surgery schedule can be considered to be the main engine
of the hospital, it not only has an impact on the workload distribution for nurses,
but also on several other resources throughout the hospital. Think for instance
about anaesthetists, equipment, radiology, laboratory tests and consultation. This
observation yields a negative as well as a positive note for the reasoning in this chap-
ter. The negative note is that the possible savings obtained through integrating
the nurse and the surgery scheduling process are in real-life probably much smaller,
due to the smaller flexibility with which surgery schedules can be modified. The
positive note is that not only savings in nurse staffing costs are possible, but also
in other related resource types, by integrating the scheduling of these resources

Chapter 6. Integrating nurse and surgery scheduling 205

with the surgery scheduling process. This is probably the main contribution of this
chapter. This work clearly shows the benefits of integrating scheduling processes in
health care environments and moreover proposes a methodology for implementing
the heart of a supporting ICT infrastructure.

Possible topics for further research include the application of this approach in a
real-world environment involving a detailed report on the experienced merits and
pitfalls. From a theoretical point of view, it would be interesting to develop similar
techniques for one or more of the other resource types stated above.

206 6.8. Conclusions and further research

Chapter 7

Conclusions and future

directions

This last chapter gives some general conclusions on the material that has been
presented in this thesis, states our main contributions and brings forward some ideas
for future research. Section 7.1 reviews our study on the trainee scheduling problem
that was presented in Chapter 2. Section 7.2 concludes our work concerning the
development of master surgery schedules reviewing the material that was presented
in Chapters 3, 4 and 5. The third section elaborates a little bit further on the
integration of different scheduling areas, that has been illustrated by the integrated
approach for nurse and operating room scheduling in Chapter 6. In each of these
first three sections, we briefly discuss some of the future challenges that we believe
represent promising directions for future work in these areas. The fourth and last
section states some general reflections on important issues for further research in
health care scheduling.

7.1 Trainee scheduling

Chapter 2 has described a new decomposition approach for a staff scheduling prob-
lem that, although frequently encountered in almost every hospital, has been ne-
glected in the literature so far. The problem consists of building a long term sched-
ule for advanced medical students, called trainees. Building such a schedule is often

207

208 7.1. Trainee scheduling

a complicated task: the schedule has to satisfy all the coverage constraints and for-
mation requirements, must assign the activities in a consecutive way and must take
as much as possible the individual preferences for having weeks-off into account.
The problem distinguishes from the classic nurse scheduling problem mainly in the
presence of the formation requirements, the need for consecutiveness of performing
the different activities and the longer time horizon for which schedules are built.
Based on what we have called activity patterns, we have proposed a new formula-
tion for this problem. This new formulation made it possible to develop an efficient
approach that decomposes the problem on the activities. The comparison with
a more traditional approach that decomposes the problem on the staff members
instead of on the activities, has yielded some interesting insights on the computa-
tional efficiency as well as on the modeling power of the new approach. Finally, we
have presented some heuristic extensions which made it possible to deal with more
general problem formulations and larger problem instances.

We have considered only one type of specialization for which the trainees usually can
carry out the complete internship within one particular hospital department. Other
specializations, however, require that the trainees perform internships at different
hospital departments. Think, for instance, of anaesthetists, who need to be trained
to provide assistance at different medical disciplines. Consequently, the scheduling
of anaesthetist trainees contains an extra level of hierarchy. Indeed, before building
annual schedules for each discipline, it has to be decided which trainees will serve
which disciplines. This task essentially comes down to an assignment problem in
which the trainees’ history record and individual preferences play a major role. The
problem is complicated by the fact that the different disciplines compete for the
higher skilled (typically higher years) trainees and hence also some equity measures
have to be taken into account.

Additionally, it might be interesting to investigate whether an integrated approach
for the higher level assignment problem and the lower level scheduling problem
leads to an improvement of the developed trainee schedules. We think of a decom-
position approach in which the master problem determines the composition of the
trainee sets for each discipline and the subproblem consists of building the trainee
schedules given these input sets. Within a general scientific framework, it would
again be interesting to see which problem properties complicate the problem and
how far we can go in solving the problem to optimality. If real-life problem dimen-

Chapter 7. Conclusions and future directions 209

sions turn out to be to large to tackle with an exact approach, one may come up
with (meta)heuristic approaches or hybridized exact/heuristic methods.

For which concerns general nurse scheduling, we consider problem decomposition,
the exploitation of problem-specific information and the hybridization of exact and
heuristic methodologies as important directions for further research.

Throughout this dissertation we have shown that problem decomposition, i.e., in-
telligently breaking up larger problems into smaller, easier to handle subproblems,
is a very promising approach to solve difficult problems. In general, real-life nurse
scheduling problems can be very large and consequently we believe that problem
decomposition is an important direction for further research into these kinds of
problems.

Many constraints and requirements have not been addressed (explicitly) in the nurse
scheduling literature so far. Nevertheless, specific models and algorithms that use
problem-specific information can dramatically increase the efficiency of solution
methodologies. Consider, for instance, the trainee scheduling problem of Chapter
2 in which each trainee has to perform each activity exactly once. We have used
this problem-specific information to develop an alternative, more efficient solution
approach. Since this constraint is often encountered in the development of educa-
tional schedules, we believe that the exploitation of this observation may turn out
to be advantageous for other applications as well.

Throughout this thesis, we have often started from an exact method that could solve
small instances of the problem and hybridized our approach with heuristic method-
ologies in order to cope with larger instances (see, for instance, Section 2.7.3).
Moreover, we do not believe that one method or technique is going to increase the
uptake of health care scheduling on its own. Therefore, we have experimented with
several methodologies trying to combine the strong points of different techniques.
No need to argue that we strongly believe that the hybridization of different search
techniques includes an important scope for further research.

210 7.2. Operating room scheduling

7.2 Operating room scheduling

Chapters 3, 4 and 5 have dealt with master surgery scheduling. Our study has
focussed on the impact of the cyclic master surgery schedule on the load of various
resources throughout the hospital. Chapter 3 has introduced a visualization model
to assist in the development of the master surgery schedule. Subsequently, Chap-
ters 4 and 5 have concentrated on the bed occupancy as a function of the master
surgery schedule. The proposed models aim at leveling the bed occupancy in order
to avoid the occurrence of contra-productive peaks.

When we carried out the case studies, we have noticed that an enormous amount of
data is being recorded inside hospitals, in particular with respect to the operating
room. Not only start and end times of surgery, also the usage of various resources
like the nursing personnel, the anaesthetist, the use of specialized equipment, the
preceding tests, the need for blood analysis, the succeeding tests, the hospitalization
bed, etc., are all registered. These data are saved in a central database that rep-
resents a treasure of information. Nowadays, this database already serves multiple
purposes. It is not only used to measure the efficiency with which the operat-
ing room and various resources are used. The supply and inventory management
information system and the human resource management information system are
linked to this central database. Also, modern cost accounting systems like activity
based costing rely heavily on this database. For more details on cost accounting in
hospitals, in particular with respect to activity based costing, we refer the reader
to Upda (1996) and Cardinaels et al. (2004). Often, important decisions like the
purchase of expensive, specialized equipment or the opening of a new operating
room are preceded by a profound analysis of historical data.

Unfortunately, up to the present, a lot of opportunities have still remained unex-
plored. The information extracted from the central database is currently too much
focussed on what we call the ‘a posteriori’ analysis. The replenishment of invento-
ries, the wages administration, the evaluation of personnel, the cost accounting and
the calculation of the efficiency with which resources are used, are all carried out
afterwards and do not directly contribute to an improvement of the current system.
It is our conviction that data from the central database also can be transformed to
information that can be used to actively amend the current practice. Consequently,
the information is not only used to ‘a posteriori’ respond to what has happened, but

Chapter 7. Conclusions and future directions 211

also to ‘a priori’ decision making in order to better streamline the current practice.
Chapter 5 has illustrated this point by extracting from the database the probabilis-
tic distributions of the patients’ length of stay and the number of operated patients.
We have shown how this information can be used for developing a better surgery
schedule with respect to the bed occupancy.

We believe that there are many other opportunities left unexplored. Increasingly
more data are recorded in the central database system. The continuous progress in
database technology enables us to extract a maximum of information out of these
data. The introduction of PC terminals at each corner of the hospital, even within
the operating room, has made it possible to track the patient from the first arrival
until the moment the patients leaves the hospital. This has led to a patient-oriented
view on health care management instead of a hospital-oriented view. An important
contribution to this process lies in the development of clinical pathways, also called
patient care pathways or integrated care pathways. Integrated care pathways are
multidisciplinary care plans that detail the essential steps in the care of patients
with a specific clinical problem and describe the expected progress of the patient.
They facilitate the introduction into clinical practice of clinical guidelines and sys-
tematic, continuing audit into clinical practice. They help in communication with
patients by giving them access to a clearly written summary of their expected care
plan and progress over time (Campbell et al., 1998). Clinical Pathways were intro-
duced in the early 1990s in the UK and the USA, and are being increasingly used
throughout the developed world, including Belgium (see, e.g., Sermeus et al., 2001;
Vanhaecht et al., 2002; Vanhaecht and Sermeus, 2003, Vanherck et al., 2004; De
Bleser et al., 2004). Because of their focus on the complete process rather than on
the individual steps, clinical pathways are naturally compatible with activity based
costing systems (see, e.g., Asadi and Baltz, 1996).

All this information can be used to develop models and algorithms that improve the
current scheduling practices and, as such, optimize the resource management inside
hospitals. In this dissertation, we have only dealt with the operating room, which
we have considered the heart of the system. It can be argued that the preceding
and succeeding steps in the clinical pathway are taken into account by consider-
ing the resource consumption patterns for each type of surgery (see Section 3.2),
however, a more detailed integration with these pathways needs to be addressed.
Moreover, we have only coped with long term master surgery scheduling, i.e., the

212 7.3. Integrating different scheduling areas

allocation of operating room blocks to surgeons or surgical groups in the operating
room theatre. It must be clear that there is considerable scope of research left with
respect to more detailed scheduling, that is scheduling on patient level. Think, for
instance, of determining the order in which the individual patients are operated
and the impact this order has, not only on the operating room efficiency, but also
on the resources used throughout the rest of the hospital.

7.3 Integrating different scheduling areas

Chapter 6 has presented a model and algorithm for integrating the nurse and surgery
scheduling. We have obtained very promising results concerning the computational
efficiency of this approach as well as for the gains that could be achieved by coupling
both scheduling areas. The study was however merely theoretic. The developed
model still needs to be applied on a real-life data set in order to be able to draw more
profound conclusions on the value of the integration approach. Undoubtedly, this
will raise difficulties we have not foreseen yet. First of all, usually different people
are involved in building the staff and surgery schedules. Often, the nurse and oper-
ating room scheduling at itself is already a fairly complex task and it is questionable
whether the people that build the schedules nowadays accept an extra factor to be
taken into account. It would take a clear communication of the possible profits
and a large power of persuasion to convince them that, on the contrary, integration
leads to more flexibility and hence less constraints. A second, practical difficulty
lies in the fact that the software systems that support both scheduling practices are
currently often not coupled which complicates the implementation of our algorithm.

We are convinced that many other scheduling areas within hospitals could be in-
tegrated in order to obtain overall better solutions. Too often, a scheduler must
take a number of constraints for granted as they follow from decisions that have
been made by other units within the same hospital. Good communication is a first
necessary condition. However, well-thought-out algorithms that can manage the
increased flexibility are a key issue for successful integration of different scheduling
practices. We strongly believe that there is significant scope for further research in
this direction. A specific idea is the integrated vacation scheduling of all hospital
staff who are, in one way or another, connected to each other in the sense that

Chapter 7. Conclusions and future directions 213

their work content is determined by the presence or absence of the other. Think,
for instance, of the nurses, the surgeons and the anaesthetists who all have to be
present in order to perform surgery. Sometimes, operating rooms are closed for a
number of days as a response to sparse personnel occupancy in general vacation
periods. The decisions concerning the timing of operating room close downs could
be integrated with the staff vacation planning so that the overall schedule better
meets the personnel’s preferences for having a week-off.

7.4 General reflections on further research

7.4.1 Robustness

The ability to cope with unforseen events is a key issue for scheduling in the uncer-
tain world of health care. Indeed, we wish to avoid situations where, for instance,
one person calling in sick or one patient not showing up causes a chain reaction
of disruptions throughout the hospital. Robust schedules are schedules that are
protected against these kinds of events, for instance, by considering the expertise of
staff on beforehand in order to make sure that people can easily be replaced at each
moment of time. It could be argued that the operating room scheduling models
that have been presented in Chapters 3, 4 and 5 address, in a particular sense, the
issue of robustness. Indeed, a leveled bed occupancy for the elective cases decreases
the probability of a bed shortage (due to an unexpected peak in the urgent cases)
which at its turn protects the proper execution of the schedule. Nevertheless, com-
pared to project scheduling, where robustness has recently become an important
issue (see, e.g., Leus, 2003), robustness has received little attention in health care
scheduling so far. We see a lot of opportunities for further research with respect to
this issue.

7.4.2 Persuading all people involved

A key issue in the exploitation of all the available information in order to use it
for streamlining the entire process of health care delivery is the cooperation of
all people involved. Nowadays, physicians in particular are not always convinced
of the benefits of registering all kinds of data in the central database, for they
merely consider it to be an extra administrative load. If this information is only
used to evaluate the physicians, they will not likely to change their mind on this

214 7.4. General reflections on further research

issue. Physicians often not realize that, after the patients, they gain in the first
place by improving the scheduling and management of resources. Therefore, it is
important that the benefits of the data collection are clearly communicated to all
people involved.

7.4.3 Graphical user interface

We consider the development of the graphical user interfaces that hide the techni-
cal details of the algorithms from the end user as an important enrichment for the
research that has been presented in this dissertation. Academic research on schedul-
ing is often only concerned with developing algorithms to solve different versions
of a theoretic problem. The focus lies too much on finding ‘better’ solutions in
less computational effort. Nevertheless, the ease of use is a far more crucial issue
for the acceptance of a decision support system for scheduling than the solution
optimality and the required computation time. Moreover, a user-friendly, graphical
user interface is just a necessity in order to apply the algorithms in a real-life case
and to obtain useful feedback from the people involved.

Jeroen Beliën
October 2005

Appendices

The appendices refer to the work carried out in Chapter 4. The notation is defined
in Sections 4.2 and 4.3.

APPENDIX A

In this Appendix it is shown that the variance of the Zi’s varies linearly in the
decision variables. In the derivation that follows, the next two rules are frequently
applied:

var(a0 +
n∑

i=1

aixi) =
n∑

i=1

a2
i var(xi) +

n∑

i=1

i−1∑

j=1

2aiajcov(xi; xj) (A-1)

If xi and xj are independent, then cov(xi; xj) = 0 (A-2)

For the derivation it is important to keep in mind that the number of patients stay-
ing on the same day in the hospital but having ’entered’ it via different blocks are
completely independent of each other. There is only dependency between patient
numbers coming from one and the same block in one and the same cycle. Let us
now start the derivation:

var(Zi) = var(
∑

s∈S

∑

j∈A

Uijs) (A-3)

Applying (A-1) and knowing that the covariances between the different Uijs’s are
all zero (the number of patients occupying a bed operated in different operating
room blocks are independent of each other) gives:

215

216 APPENDICES

var(Zi) =
∑

s∈S

∑

j∈A

var(Uijs) (A-4)

=
∑

s∈S

∑

j∈A

var
(bms−dist(i,j)

l c∑

f=0

xjs∑
g=1

ms∑

d=dist(i,j)+fl

Dsd

)
(A-5)

Recall that Dsd is a stochastic variable that stands for the number of patients who
stay exactly d days in the hospital after one block of surgery by surgeon s. The first
and third summations divide the Dsd variables into their cycles, i.e., the number
of patients staying in the hospital on day i after surgery by surgeon s on day j can
be divided according to the cycle in which they entered the system. For f = 0 all
patients entered in the current cycle (= 0) are added, for f = 1 all patients entered
in the previous cycle are added, etc. The second summation indicates the number
of blocks (xjs) for which patients are added. Writing this in full gives:

var(Zi) =
∑

s∈S

∑

j∈A

var
(ms∑

d=dist(i,j)

Dsd +
ms∑

d=dist(i,j)

Dsd +
ms∑

d=dist(i,j)

Dsd + . . .

+
ms∑

d=dist(i,j)+l

Dsd +
ms∑

d=dist(i,j)+l

Dsd +
ms∑

d=dist(i,j)+l

Dsd + . . .

+
ms∑

d=dist(i,j)+2l

Dsd +
ms∑

d=dist(i,j)+2l

Dsd +
ms∑

d=dist(i,j)+2l

Dsd + . . .

+ . . .
)

(A-6)

The first line indicates all patients entered in the current cycle. The different terms
in this line indicate the different blocks that ‘produce’ patients. The second line
indicates the numbers entered in the previous cycle, etc. The number of patients
occupying a bed on a particular day i having undergone surgery more than 1 cycle
ago is of course completely independent of the new patients entered in the current
cycle. In general, the number of patients operated in the same block, but in different
cycles, are independent of each other. Hence, application of again (A-1) and (A-2)
gives:

APPENDIX A 217

var(Zi) =
∑

s∈S

∑

j∈A

[
var

(ms∑

d=dist(i,j)

Dsd +
ms∑

d=dist(i,j)

Dsd +
ms∑

d=dist(i,j)

Dsd + . . .
)

+ var
(ms∑

d=dist(i,j)+l

Dsd +
ms∑

d=dist(i,j)+l

Dsd +
ms∑

d=dist(i,j)+l

Dsd + . . .
)

+ var
(ms∑

d=dist(i,j)+2l

Dsd +
ms∑

d=dist(i,j)+2l

Dsd +
ms∑

d=dist(i,j)+2l

Dsd + . . .
)

+ . . .
]

(A-7)

Within each cycle the number of patients coming from one block on a particular
day assigned to surgeon s is independent from the number coming from another
block on the same day assigned to the same surgeon s. Applying again (A-1) and
(A-2) gives:

var(Zi) =
∑

s∈S

∑

j∈A

[
var(

ms∑

d=dist(i,j)

Dsd) + var(
ms∑

d=dist(i,j)

Dsd) + var(
ms∑

d=dist(i,j)

Dsd) + . . .

+ var(
ms∑

d=dist(i,j)+l

Dsd) + var(
ms∑

d=dist(i,j)+l

Dsd) + var(
ms∑

d=dist(i,j)+l

Dsd) + . . .

+ var(
ms∑

d=dist(i,j)+2l

Dsd) + var(
ms∑

d=dist(i,j)+2l

Dsd) + var(
ms∑

d=dist(i,j)+2l

Dsd) + . . .

+ . . .
]

(A-8)

Rewriting it in the shorter summation notation:

var(Zi) =
∑

s∈S

∑

j∈A

bms−dist(i,j)
l c∑

f=0

xjs∑
g=1

var(
ms∑

d=dist(i,j)+fl

Dsd) (A-9)

Applying (A-1) gives:

var(Zi) =
∑

s∈S

∑

j∈A

bms−dist(i,j)
l c∑

f=0

xjs∑
g=1

(ms∑

d=dist(i,j)+fl

var(Dsd)

+
ms∑

d1=dist(i,j)+fl

d1−1∑

d2=dist(i,j)+fl

2cov(Dsd1 ;Dsd2)
)

(A-10)

218 APPENDICES

The covariances between the Dsd variables coming from the same block are of course
not zero, but negative. Intuitively this can be seen as follows. The more patients
that stay, e.g., exactly 1 day, the less patients will stay exactly 2, 3, etc., days and
vice versa. The total is always ns. The variance and covariance formulas for the
individual variables of a multinomial distribution are as follows:

var(Dsd) = psd(1− psd)ns (A-11)

cov(Dsd1 ; Dsd2) = −psd1psd2ns (A-12)

Alternatively, these formulas could be obtained by observing that the individual
variables of a multinomial distribution are binomial processes with probability of
’success’ psd and ns trials. Applying these formulas gives:

var(Zi) =
∑

s∈S

∑

j∈A

bms−dist(i,j)
l c∑

f=0

xjs∑
g=1

(ms∑

d=dist(i,j)+fl

psd(1− psd)ns

−
ms∑

d1=dist(i,j)+fl

d1−1∑

d2=dist(i,j)+fl

2psd1psd2ns

)
(A-13)

Since g is merely a summation index and hence does not influence the calculation,
summing up from 1 to xjs is the same as multiplying by xjs:

var(Zi) =
∑

s∈S

∑

j∈A

bms−dist(i,j)
l c∑

f=0

(ms∑

d=dist(i,j)+fl

psd(1− psd)ns

−
ms∑

d1=dist(i,j)+fl

d1−1∑

d2=dist(i,j)+fl

2psd1psd2ns

)
xjs (A-14)

This expression can be further simplified by observing that also the summation over
f can be turned into a multiplication. The summation is replaced by respectively
the factor dd/le and dd2/le indicating how many cycle times the Dsd variables
contribute to respectively the variance and the covariance:

APPENDIX A 219

var(Zi) =
∑

s∈S

∑

j∈A

(ms∑

d=dist(i,j)

psd(1− psd)nsdd/le

−
ms∑

d1=dist(i,j)

d1−1∑

d2=dist(i,j)

2psd1psd2nsdd2/le
)
xjs (A-15)

In conclusion, the variance of each Zi varies linearly in the decision variables.

220 APPENDICES

APPENDIX B

In this Appendix it is shown how the expressions for both mean and variance of
the daily bed occupancy are extended such that they incorporate stochastic patient
arrivals. For the mean, we make use of the following theorem on conditional means:

E(Y) = E[E(Y |X)] (B-1)

In words, the overall mean equals the mean of the conditional means. Applied to
our problem: let Ns be a stochastic variable representing the number of patients
for surgeon s. k = 1, ..., qs are the different (discrete) states of this variable with
hsk being the probability and nsk the corresponding number of patients in state k

for surgeon s.

E(Uijs) = E[E(Uijs|Ns)] (B-2)

=
qs∑

k=1

hsk

(ms∑

d=dist(i,j)

psdnskdd/le
)

(B-3)

For the variance, we make use of the following theorem on conditional variances:

var(Y) = E[var(Y |X)] + var[E(Y |X)] (B-4)

In words, the overall variance equals the sum of (1) the mean of the conditional
variances and (2) the variance of the conditional means. Applied to our problem:

var(Uijs) =E[var(Uijs|Ns)] + var[E(Uijs|Ns)] (B-5)

Elaborating the first term gives:

E[var(Uijs|Ns)] =
qs∑

k=1

hsk

(ms∑

d=dist(i,j)

psd(1− psd)nskdd/le

−
ms∑

d1=dist(i,j)

d1−1∑

d2=dist(i,j)

2psd1psd2nskdd2/le
)

(B-6)

APPENDIX B 221

Elaborating the second term gives:

var[E(Uijs|Ns)] =
qs∑

k=1

hsk

(
E(Uijs|Ns)− E(Uijs)

)2

=
qs∑

k=1

hsk

(ms∑

d=dist(i,j)

psdnskdd/le −
qs∑

k=1

hsk

(ms∑

d=dist(i,j)

psdnsqdd/le
))2

(B-7)

Combining all this gives us the variance of Uijs:

var(Uijs) =
qs∑

k=1

hsk

(ms∑

d=dist(i,j)

psd(1− psd)nskdd/le

−
ms∑

d1=dist(i,j)

d1−1∑

d2=dist(i,j)

2psd1psd2nskdd2/le
)

+
qs∑

k=1

hsk

(ms∑

d=dist(i,j)

psdnskdd/le −
qs∑

k=1

hsk

(ms∑

d=dist(i,j)

psdnsqdd/le
))2

(B-8)

In conclusion, incorporating numbers of patients following a multinomial discrete
probability distribution preserves the linearity of both mean and variance of the
daily bed occupancy.

222 APPENDICES

List of Figures

1.1 Branch-and-bound tree example . 10

2.1 Contributions of algorithmic improvements 61
2.2 GUI: non-available periods indicated in red 93
2.3 GUI: Specifying the properties of a trainee 94
2.4 GUI: Specifying a coverage constraint 95
2.5 GUI: Visualization of a solution . 96
2.6 Visualization during algorithm run: the newly found column and the

branching decisions indicated in color 97

3.1 Underlying model . 104
3.2 Overview of the GUI with current schedule in the odd weeks 108
3.3 A closer view on the resource utilizations 109
3.4 Editing the properties of a surgeon 111
3.5 Resource consumption on a ‘per day’ view 112

4.1 The role of variance . 124
4.2 Comparison heuristics results . 141
4.3 Comparison of heuristic computation times 141

5.1 Overview of the GUI with empty schedule 156
5.2 Current master surgery schedule with resulting bed occupancy (only

three hospitalization units shown) 158
5.3 Editing the properties of a surgeon 159
5.4 Dialog box: Starting a MIP . 160
5.5 Dialog box: Upon completion of the MIP 161
5.6 Dialog box: Starting a simulated annealing procedure 161

223

224 List of Figures

5.7 The results of a linear MIP to level the mean bed occupancy of
hospitalization unit 2130 (shown in the lower right) 163

5.8 The results of a quadratic MIP to level the mean bed occupancy of
hospitalization units 2130 and 2140 164

5.9 The results of a simulated annealing algorithm that minimizes the
total expected bed shortage . 165

6.1 Example of a nurse scheduling problem 173
6.2 The surgery schedule determines the nurses’ workload 174
6.3 Each workload pattern corresponds to a surgery schedule 175
6.4 Schematic overview of the general idea 177
6.5 Schematic overview of the GNSP branch-and-price algorithm 187
6.6 Binary branching scheme in the case of di′k′ < di′k′′ 191

List of Tables

2.1 A problem instance . 33
2.2 A solution for the problem instance 34
2.3 Pricing problem: optimal solution indicated in bold 42
2.4 Pricing problem: 2nd best solution indicated in bold 43
2.5 State spaces for example 1 . 44
2.6 List after first recalculation phase for example 1 46
2.7 Results on two real-life problems . 55
2.8 Design of the experiment . 56
2.9 Subset of the results obtained . 59
2.10 A first comparison between branching schemes 60
2.11 Statistical comparison between branching schemes 60
2.12 Statistical analysis of factors . 60
2.13 Contributions of speed-up techniques 62
2.14 A column for trainee 2 . 65
2.15 Pricing problem for trainee j: optimal solution in bold 68
2.16 Results on two real-life problems . 69
2.17 Results for problems with 35 periods, 8 trainees and 6 activities in

which each activity is performed by 4 trainees 72
2.18 Results for problems with 35 periods, 8 trainees and 6 activities in

which each activity is performed by 6 trainees 73
2.19 Results for problems with 18 periods 74
2.20 Results for problems with 52 periods 75
2.21 Overall summary computational results 77
2.22 Real-life problem . 88
2.23 Computational results . 91

225

226 List of Tables

4.1 LOS distribution for example 1 . 124
4.2 Design of experiment . 138
4.3 Tested heuristics . 139
4.4 Computational results . 140
4.5 Impact of factor settings: p-values 143
4.6 Predicted versus simulated data . 145

5.1 Snapshot of the input file containing detailed information on all sur-
gical interventions in 2004 . 153

5.2 Example of nr. patient and LOS distributions for three hospitaliza-
tion units for surgeon DUPA . 155

5.3 Minimizing the total expected bed shortage 165

6.1 Lower and upper bounds for the NSP and the GNSP 200
6.2 Interpretation of the savings . 201
6.3 Computational results for the flexible scenario 202
6.4 Computational results for the hard constrained scenario 203

Bibliography

Abdennadher, S. & Schlenker, H. (1999). INTERDIP - An interactive constraint based nurse

scheduler, Proceedings of The First International Conference and Exhibition on The Prac-

tical Application of Constraint Technologies and Logic Programming (PACLP99), London.

Abernathy, W. J., Baloff, N., Hershey, J. & Wandel, S. (1973). A three-stage manpower planning

and scheduling model - A service-sector example, Operations Research 21(3): 693–711.

Agin, N. (1966). Optimum seeking with branch and bound, Management Science 13: 176–185.

Aickelin, U. & Dowsland, K. A. (2000). Exploiting problem structure in a genetic algorithms

approach to a nurse rostering problem, Journal of Scheduling 31: 139–153.

Aickelin, U. & Dowsland, K. A. (2004). An indirect genetic algorithm for a nurse-scheduling

problem, Computers and Operations Research 31(5): 761–778.

Aickelin, U. & White, P. (2004). Building better nurse scheduling algorithms, Annals of Operations

Research 128: 159–177.

Alfares, H. & Bailey, J. (1997). Integrated project task and manpower scheduling, IIE Transactions

29: 711–718.

Alfares, H., Bailey, J. & Lin, W. (1999). Integrating project operations and personnel scheduling

with multiple labor classes, Production Planning & Control 10: 570–578.

Anzai, M. & Miura, Y. (1987). Computer program for quick work scheduling of nursing staff,

Medical Informatics 12: 43–52.

Arthur, J. L. & Ravindran, A. (1981). A multiple objective nurse scheduling model, AIIE Trans-

actions 13: 55–60.

Asadi, M. J. & Baltz, W. A. (1996). Activity-based costing for clinical paths. An example to

improve clinical cost & efficiency, Journal of the Society for Health Systems 5(2): 1–7.

Assuralia (2005). De nationale uitgaven in de gezondheidszorg. Assur info to the point, January

2005.

*www.assuralia.be

227

228 BIBLIOGRAPHY

Azaiez, M. N. & Al Sharif, S. S. (2005). A 0-1 goal programming model for nurse scheduling,

Computers and Operations Research 32: 491–507.

Bailey, J. & Field, J. (1985). Personnel scheduling with flexshift models, Journal of Operations

Management 5: 327–338.

Bard, J. F., Binici, C. & deSilva, A. H. (2003). Staff scheduling at the United States Postal

Service, Computers and Operations Research 30: 745–771.

Bard, J. F. & Purnomo, H. W. (2005a). A column generation-based approach to solve the prefer-

ence scheduling problem for nurses with downgrading, Socio-Economic Planning Sciences

39: 193–213.

Bard, J. F. & Purnomo, H. W. (2005b). Preference scheduling for nurses using column generation,

European Journal of Operational Research 164: 510–534.

Barnhart, C., Johnson, E. L., Nemhauser, G. L., Savelsbergh, M. W. P. & Vance, P. H. (1998).

Branch-and-price: Column generation for solving huge integer programs, Operations Re-

search 46: 316–329.

Barr, A., Cohen, P. R. & Feigenbaum, E. A. (eds) (1989). The Handbook of Artificial Intelligence,

Vol. 4, Addison-Wesley, Reading, Massachusetts.

Beaumont, N. (1997). Scheduling staff using mixed integer programming, European Journal of

Operational Research 98: 473–484.

Bell, P., Hay, G. & Liang, Y. (1986). A visual interactive decision support system for workforce

(nurse) scheduling, Information Systems and Operational Research 24(2): 133–144.

Bellanti, F., Carello, G., Della Croce, F. & Tadei, R. (2004). A greedy-based neighborhood

search approach to a nurse rostering problem, European Journal of Operational Research

153: 28–40.

Bellman, R. (1957). Dynamic Programming, Princeton University Press.

Berrada, I. (1993). Planification d’horaires du personnel infirmier dans un établissement hospi-

talier, Ph.D. dissertation, Université de Montréal, Canada.

Berrada, I., Ferland, J. & Michelon, P. (1996). A multi-objective approach to nursescheduling

with both hard and soft constraints, Socio-Economic Planning Science 30: 183–193.

Blake, J. T. & Carter, M. W. (2002). A goal programming approach to strategic resource allocation

in acute care hospitals, European Journal of Operational Research 140: 541–561.

Blake, J. T. & Carter, M. W. (2003). Physician and hospital funding options in a public system

with decreasing resources, Socio-Economic Planning Sciences 37: 45–68.

Blake, J. T., Dexter, F. & Donald, J. (2002). Operating room manager’s use of integer program-

ming for assigning block time to surgical groups: A case study, Anesthesia and Analgesia

94: 143–148.

BIBLIOGRAPHY 229

Blake, J. T. & Donald, J. (2002). Mount Sinai hospital uses integer programming to allocate

operating room time, Interfaces 32: 63–73.

Blau, R. (1985). Multishift personnel scheduling with a microcomputer, Personnel Administrator

20(7): 43–58.

Blau, R. & Sear, A. (1983). Nurse scheduling with a microcomputer, Journal of Ambulance Care

Management 6: 1–13.

Blöchliger, I. (2004). Modeling staff scheduling problems. A tutorial, European Journal of Oper-

ational Research 158: 533–542.

Bosi, F. & Milano, M. (2001). Enhancing constraint logic programming branch and bound tech-

niques for scheduling problems, Software Practice and Experience 31: 17–42.

Bowers, J. & Mould, G. (2004). Managing uncertainty in orthopaedic trauma theatres, European

Journal of Operational Research 154: 599–608.

Bradley, D. & Martin, J. (1990). Continuous personnel scheduling algorithms: A literature review,

Journal of the Society of Health Systems 2(2): 8–23.

Brandeau, M. L., Sainfort, F. & Pierskalla, W. P. (2004). Operations research and health care: A

handbook of methods and applications, Kluwer Academic Publishers.

Brusco, M. J. & Jacobs, L. W. (1993). A simulated annealing approach to the cyclic staff-

scheduling problem, Naval Research Logistics 40: 69–84.

Buhaug, H. (2002). Long waiting lists in hospitals - Operational research needs to be used more

often and may provide answers, British Medical Journal 324: 252–253.

Burke, E. K., Cowling, P. I., De Causmaecker, P. & Vanden Berghe, G. (2001). A memetic

approach to the nurse rostering problem, Applied Intelligence 15: 199–214.

Burke, E. K., De Causmaecker, P., Petrovic, S. & Vanden Berghe, G. (2001a). Fitness evaluation

for nurse scheduling problems, Proceedings of the Congress on Evolutionary Computation

(CEC), Seoul, Korea, May 27-30, Vol. 2, pp. 1139–1146.

Burke, E. K., De Causmaecker, P., Petrovic, S. & Vanden Berghe, G. (2001b). Variable neigh-

bourhood search for nurse rostering problems, Proceedings of the 4th Metaheuristics Inter-

national Conference (MIC 2001), Porto, Portugal, July 16-20, Vol. 2, pp. 755–760.

Burke, E. K., De Causmaecker, P., Petrovic, S. & Vanden Berghe, G. (2002). A multi-criteria meta-

heuristic approach to nurse rostering, Proceedings of the 2002 Congress on Evolutionary

Computation (CEC2002), Honolulu, Hawaii, USA, May 12-17, pp. 1197–1202.

Burke, E. K., De Causmaecker, P., Petrovic, S. & Vanden Berghe, G. (2003). Chapter 7: Variable

neighborhood search for nurse rostering problems, in M. G. C. Resende & J. P. de Sousa

(eds), METAHEURISTICS: Computer Decision-Making, Kluwer (Combinatorial Optimiza-

tion Book Series), pp. 153–172.

230 BIBLIOGRAPHY

Burke, E. K., De Causmaecker, P., Petrovic, S. & Vanden Berghe, G. (2006). Metaheuristics

for handling time interval coverage constraints in nurse scheduling. To appear in Applied

Artificial Intelligence.

Burke, E. K., De Causmaecker, P. & Vanden Berghe, G. (1998). A hybrid tabu search algorithm

for the nurse rostering problem, Selected Papers from the 2nd Asia Pacific Conference on

Simulated Evolution and Learning, pp. 187–194.

Burke, E. K., De Causmaecker, P. & Vanden Berghe, G. (1999). A hybrid tabu search algorithm

for the nurse rostering problem, Simulated Evolution and Learning, Vol. 1585, Springer,

pp. 187–194.

Burke, E. K., De Causmaecker, P. & Vanden Berghe, G. (2004). Chapter 44: Novel meta-heuristic

approaches to nurse rostering problems in Belgian hospitals, in J. Leung (ed.), The Handbook

of Scheduling: Algorithms, Models, and Performance Analysis, CRC Press, pp. 1–18.

Burke, E. K., De Causmaecker, P., Vanden Berghe, G. & Van Landeghem, H. (2004). The state

of the art of nurse rostering, The Journal of Scheduling 7: 441–499.

Burke, E. K. & Kendall, G. (eds) (2005). Search Methodologies: Introductory Tutorials in Opti-

mization and Decision Support Techniques, Springer.

Campbell, H., Hotchkiss, R., Bradshaw, N. & Porteous, M. (1998). Integrated care pathways,

British Medical Journal 316(7125): 133–137.

Cappanera, P. & Gallo, G. (2001). A multi-commodity flow approach to the crew rostering

problem, Technical Report TR-01-08, Dip. di Informatica, Univ. di Pisa.

Caprara, A., Monaci, M. & Toth, P. (2003). Models and algorithms for a staff scheduling problem,

Mathematical Programming 98: 445–476.

Cardinaels, E., Roodhooft, F. & Van Herck, G. (2004). Drivers of cost system development in

hospitals: Results of a survey, Health Policy 69(2): 239–252.

Carter, J. (2000). Timing is everything in the OR, Health Management Technology 21: 80–81.

Carter, M. (2002). Health care: Mismanagement of resources, ORMS Today 19: 26–32.

Carter, M. & Lapierre, S. (1999). Scheduling emergency room physicians, Report 99-23, University

of Toronto, Canada.

Cheang, B., Li, H., Lim, A. & Rodrigues, B. (2003). Nurse rostering problems - A bibliographic

survey, European Journal of Operational Research 151: 447–460.

Chen, J. G. & Yeung, T. W. (1993). Hybrid expert-system approach to nurse scheduling, Com-

puters in Nursing 11(4): 183–190.

Cheng, B., Lee, J. & Wu, J. (1997). A nurse rostering system using constraint programming

and redundant modeling, IEEE Transactions on Information Technology in Biomedicine

1(1): 44–54.

BIBLIOGRAPHY 231

Chvátal, V. (1983). Linear Programming, W.H. Freeman and Co, New York.

Clerkin, D., Fos, P. J. & Petry, F. E. (1995). A decision-support system for hospital bed assign-

ment, Hospital and Health Services Administration 40: 386–400.

Dantzig, G. B. & Wolfe, P. (1960). Decomposition principle for linear programs, Operations

Research 8: 101–111.

Darmoni, S. J., Fajner, A., Mahe, N., Leforestier, A., Vondracek, M., O., S. & Baldenweck, M.

(1995). Horoplan: computer-assisted nurse scheduling using constraint-based programming,

Journal of the Society for Health Systems 5(1): 41–54.

De Bleser, L., Vlayen, J., Vanhaecht, K. & Sermeus, W. (2004). Classifying clinical pathways,

Studies in Health Technology and Informatics 110: 9–14.

De Causmaecker, P. & Vanden Berghe, G. (2003). Relaxation of coverage constraints in hospital

personnel rostering, Practice and Theory of Automated Timetabling, Fourth International

Conference, Gent, Vol. 2740, Springer, pp. 129–147.

Demeulemeester, E. & Herroelen, W. S. (1992). A branch-and-bound procedure for the multiple

resource-constrained project scheduling problem, Management Science 38: 1803–1818.

Demeulemeester, E. & Herroelen, W. S. (2002). Project scheduling - A research handbook, Kluwer

Academic Publishers, Boston.

Desrochers, M., Desrosiers, J. & Solomon, M. M. (1992). A new optimization algorithm for the

vehicle routing problem with time windows, Operations Research 40: 342–354.

Desrosiers, J., Soumis, F. & Desrochers, M. (1984). Routing with time windows by column

generation, Networks 14: 545–565.

Dexter, F., Macario, A. & O’Neill, L. (2000). Scheduling surgical cases into overflow block time -

Computer simulation of the effects of scheduling strategies on operating room labor costs,

Anesthesia and Analgesia 90: 980–988.

Dexter, F., Macario, A. & Traub, R. D. (1999). Which algorithm for scheduling add-on elective

cases maximizes operating room utilization?, Anesthesiology 91: 1491–1500.

Dexter, F. & Traub, R. D. (2000). Determining staffing requirements for a second shift of anes-

thetists by graphical analysis of data from operating room information systems, Anesthesia

and Analgesia 68: 31–36.

Dexter, F. & Traub, R. D. (2002). How to schedule elective surgical cases into specific operating

rooms to maximize the efficiency of use of operating room time, Anesthesia and Analgesia

94: 933–942.

Dexter, F., Traub, R. D. & Lebowitz, P. (2001). Scheduling a delay between different surgeons’

cases in the same operating room on the same day using upper prediction bounds for case

durations, Anesthesia and Analgesia 92: 943–946.

232 BIBLIOGRAPHY

Dowsland, K. (1998). Nurse scheduling with tabu search and strategic oscillation, European

Journal of Operational Research 106: 393–407.

Dowsland, K. & Thompson, J. M. (2000). Solving a nurse scheduling problem with knapsacks,

networks and tabu search, Journal of the Operational Research Society 51: 825–833.

Dreyfus, S. E. & Law, A. M. (1977). The art and theory of dynamic programming, Academic

Press, New York, NY.

Dumas, M. (1984). Simulation modeling for hospital bed planning, Simulation 8: 69–78.

Dumas, M. (1985). Hospital bed utilization: An implemented simulation approach to adjusting

and maintaining levels, Health Services Research 20: 43–61.

Duraiswamy, N., Welton, R. & Reisman, A. (1981). Using computer simulation to predict ICU

staffing needs, Journal of Nursing Administration 11: 39–44.

Easton, F. & Mansour, N. (1993). A distributed genetic algorithm for employee staffing and

scheduling problems, Proceedings of the Fifth International Conference on Genetic Algo-

rithms, San Mateo, Morgan Kaufmann Publishers, pp. 360–367.

Ernst, A., Jiang, H., Krishnamoorthy, M. & Sier, D. (2004). Staff scheduling and rostering: A

review of applications, methods and models, European Journal of Operational Research

153: 3–27.

Folkard, S. & Tucker, P. (2003). Shift work, safety and productivity, Occupational Medicine

53: 95–101.

Franz, L. S., Baker, H. M., Leong, G. K. & Rakes, T. R. (1989). A mathematical model for

scheduling and staffing multiclinic health regions, European Journal of Operational Research

41(3): 277–289.

Fries, B. (1976). Bibliography of operations research in health-care systems, Operations Research

24: 801–804.

Galassi, M., Davies, J., Theiler, J., Gough, B., Jungman, G., Booth, M. & Rossi, F. (2003). GNU

Scientific Library Reference Manual Edition 1.3, Network Theory LTd.

Gamache, M., Soumis, M., Marquis, G. & Desrosiers, J. (1999). A column generation approach

for large scale aircrew rostering problems, Operations Research 47: 247–262.

Gerchak, Y., Guptar, D. & Henig, M. (1996). Reservation planning for elective surgery under

uncertain demand for emergency surgery, Management Science 42: 321–334.

Gill, P. E., Murray, W. & Wright, M. H. (1982). Practical Optimization, Academic Press, New

York.

Gilmore, P. C. & Gomory, R. E. (1961). A linear programming approach to the cutting stock

problem, Operations Research 9: 849–859.

BIBLIOGRAPHY 233

Gorunescu, F., McClean, S. I. & Millard, P. H. (2002). A queueing model for bed-occupancy

management and planning of hospitals, Journal of the Operational Research Society 53: 19–

24.

Griffiths, J. D., Price-Lloyd, N., Smithies, M. & Williams, J. E. (2005). Modelling the requirement

for supplementary nurses in an intensive care unit, Journal of the Operational Research

Society 56: 126–133.

Guinet, A. & Chaabane, S. (2003). Operating theatre planning, International Journal of Produc-

tion Economics 85: 69–81.

Hamilton, D. M. & Breslawski, S. (1994). Operating room scheduling: Factors to consider,

Association of Operating Room Nurses Journal 59: 665–680.

Hans, E. W. (2001). Resource loading by branch-and-price techniques, Ph.D. dissertation, Twente

University Press, Enschede, The Netherlands.

Hans, E. W., Wullink, G., van Houdenhoven, M. & Kazemier, G. (2005). Robust surgery load-

ing, Technical Report Beta-wp141, dep. Operational Methods for Production and Logistics,

University of Twente.

Harris, R. A. (1985). Hospital bed requirements planning, European Journal of Operational

Research 25: 121–136.

Huang, M. D., Romeo, F. & Sangiovanni-Vincentelli, A. (1986). An efficient general cooling

schedule for simulated annealing, IEEE International Conference on Computer-Aided De-

sign, pp. 381–384.

Hughes, W. L. & Soliman, S. Y. (1985). Short-term case mix management with linear program-

ming, Hospital and Health Services Administration 30: 52–60.

Ikegami, A. & Niwa, A. (2003). A subproblem-centric model and approach to the nurse scheduling

problem, Mathematical Programming 97(3): 517–541.

ILOG (2002). ILOG CPLEX 8.1 User’s Manual.

Isken, M. (2004). An implicit tour scheduling model with applications in healthcare, Annals of

Operations Research 128: 91–109.

Isken, M. & Hancock, W. (1991). A heuristic approach to nurse scheduling in hospital units with

non-stationary, urgent demand, and a fixed staff size, Journal of the Society for Health

Systems 2(2): 24–41.

Jan, A., Yamamoto, M. & Ohuchi, A. (2000). Evolutionary algorithms for nurse scheduling

problem, Proceedings of the 2000 Congress on Evolutionary Computation (CEC2000), San

Diego, pp. 196–203.

234 BIBLIOGRAPHY

Jan, A., Yamamoto, M. & Ohuchi, A. (2002). Search algorithms for nurse scheduling with genetic

algorithms, Operations Research/Management Science at Work, the International Series in

Operations Research & Management Science, Vol. 43, Kluwer Academic Publishers, pp. 149–

161.

Jans, R. (2002). Capacitated lot sizing problems: New applications, formulations and algo-

rithms, Ph.D. dissertation, Faculteit Economische en Toegepaste Economische Wetenschap-

pen, Katholieke Universiteit Leuven, Belgium.

Jaszkiewicz, A. (1997). A metaheuristic approach to multiple objective nurse scheduling, Foun-

dations of Computing and Decision Sciences 22(3): 169–184.

Jaumard, B., Semet, F. & Vovor, T. (1998). A generalized linear programming model for nurse

scheduling, European Journal of Operational Research 107: 1–18.

Jebali, A., Alouane, A. B. H. & Ladet, P. (2006). Operating rooms scheduling, International

Journal of Production Economics 99: 52–62.

Jiménez, V. M. & Marzal, A. (1999). Computing the K shortest paths: A new algorithm and

an experimental comparison, in J. S. Vitter & C. D. Zaroliagis (eds), Lecture Notes in

Computer Science Series, Spinger-Verlag, pp. 15–29.

Johnson, E. L. (1989). Modeling and strong linear programs for mixed integer programming, in

S. W. Walace (ed.), Algorithms and Model Formulations in Mathematical Programming,

NATO ASI Series, pp. 1–41.

Johnson, E. L., Nemhauser, G. L. & Savelsbergh, M. W. P. (2000). Progress in linear program-

ming based branch-and-bound algorithms: An exposition, INFORMS Journal on Comput-

ing 12: 1–48.

Jun, J. B., Jacobson, S. H. & Swisher, J. R. (1999). Applications of discrete event simulation in

health care clinics: A survey, Journal of the Operational Research Society 50: 109–123.

Kawanaka, H., Yamamoto, K., Yoshikawa, T., Shinogi, T. & Tsuruoka, S. (2001). Genetic algo-

rithm with the constraints for nurse scheduling problem, Proceedings of the 2000 Congress

on Evolutionary Computation (CEC2001), Seoul, pp. 1123–1130.

Kellerer, H., Pferschy, U. & Pisinger, D. (2004). Knapsack Problems, Springer-Verlag.

Kim, S.-C. & Horowitz, I. (2002). Scheduling hospital services: The efficacy of elective-surgery

quotas, Omega - the International Journal of Management Science 30: 335–346.

Kim, S.-C., Horowitz, I. & Buckley, T. A. (2000). Flexible bed allocation and performance in the

intensive care unit, Journal of Operations Management 18: 427–443.

Kirkpatrick, S., Gerlatt, C. D. J. & Vecchi, M. P. (1983). Optimization by simulated annealing,

Science 220: 671–680.

BIBLIOGRAPHY 235

Klein, R. W., Dittus, R. S., Roberts, S. D. & Wilson, J. R. (1993). Simulation modeling and

health-care decision making, Medical Decision Making 13: 347–354.

Kostreva, M. & Jennings, K. (1991). Nurse scheduling on a microcomputer, Computers and

Operations Research 18: 731–739.

Kumar, A. & Ozdamar, L. (2004). International comparison of health care systems, International

Journal of the Computer, the Internet and Management 12: 81–95.

Lapierre, S. D., Batson, C. & McCaskey, S. (1999). Improving on-time performance in health care

organizations: A case study, Health Care Management Science 2: 27–34.

Leus, R. (2003). The generation of stable project plans: Complexity and exact algorithms, Ph.D.

dissertation, Faculteit Economische en Toegepaste Economische Wetenschappen, Katholieke

Universiteit Leuven, Belgium.

Li, H., Lim, A. & Rodrigues, B. (2003). A hybrid AI approach for nurse rostering problem,

Proceedings of the 2003 SAC symposium on Applied Computing, pp. 730–735.

Litvak, E. & Long, M. C. (2000). Cost and quality under managed care: Irreconcilable differences?,

The American Journal of Managed Care 6: 305–312.

Marcon, E., Kharraja, S. & Simonnet, G. (2003). The operating theatre planning by the follow-up

of the risk of no realization, International Journal of Production Economics 85: 83–90.

Markowitz, H. M. (1959). Portfolio Selection: Efficient Diversification of Investments, John

Wiley & Sons, New York.

Mason, A. J. & Smith, M. C. (1998). A nested column generator for solving rostering problems

with integer programming, International Conference on Optimisation: Techniques and Ap-

plications, pp. 827–834.

McManus, M. L., Long, M. C., Cooper, A. & Litvak, E. (2004). Queuing theory accurately models

the need for critical care resources, Anesthesiology 100: 1271–1276.

Mehrotra, A., Murphy, K. E. & Trick, M. A. (2000). Optimal shift scheduling: A branch-and-price

approach, Naval Research Logistics 47: 185–200.

Meisels, A., Gudes, E. & Solotorevsky, G. (1996). Employee timetabling, constraint networks and

knowledge-based rules: a mixed approach, Practice and Theory of Automated Timetabling,

First International Conference, Edinburgh, Vol. 1153, Springer, pp. 93–105.

Meisels, A. & Lusternik, N. (1998). Experiments in networks of employee timetableing problems,

Practice and Theory of Automated Timetabling, Second International Conference, Toronto,

Vol. 1408, Springer, pp. 130–141.

Metropolis, N., Rosenbluth, A. W., Rosenbluth, M. N., Teller, A. H. & Teller, E. (1958). Equations

of state calculations by fast computing machines, Journal of Chemical Physics 21: 1087–

1092.

236 BIBLIOGRAPHY

Meyer auf’m Hofe, H. (1997). ConPlan/SIEDAplan: Personnel assignment as a problem of hierar-

chical constraint satisfaction, Proceedings on the 3rd International Conference on Practical

Applications of Constraint Technologies, London, pp. 257–272.

Meyer auf’m Hofe, H. (2001). Solving rostering tasks as constraint optimization, Selected Papers

from the 3rd international conference on Practice and Theory of Automated Timetabling

(PATAT-2000), Konstanz, Vol. 2079, Springer Verlag, pp. 191–212.

Millar, H. H. & Kiragu, M. (1998). Cyclic and non-cyclic scheduling of 12 h shift nurses by network

programming, European Journal of Operational Research 104: 582–592.

Miller, H. E., Pierskalla, W. P. & Rath, G. J. (1976). Nurse scheduling using mathematical

programming, Operations Research 24: 857–870.

Moz, M. & Pato, M. V. (2003). An integer multicommodity flow model applied to the rerostering

of nurse schedules, Annals of Operations Research 17: 285–301.

Mueller, C. W. & McCloskey, J. C. (1990). Nurses’ job satisfaction: A proposed measure, Nursing

Research 39: 113–117.

Mullen, P. M. (2003). Prioritising waiting lists: How and why?, European Journal of Operational

Research 150: 32–45.

Musliu, N., Gärtner, J. & Slany, W. (2000). Efficient generation of rotating workforce schedules,

Proceedings of the 3rd international conference on the practice and theory of automated

timetabling (PATAT 2000), Konstanz, pp. 314–332.

Nemhauser, G. L. & Wolsey, L. A. (1999). Integer and Combinatorial Optimization, John Wiley

& Sons, New York.

Nilsson, N. J. (1980). Principles of Artificial Intelligence, Morgan Kaufmann, San Mateo, Cali-

fornia.

Nutt, P. C. (1984). Decision-modeling methods used to design decision support systems for staffing,

Medical Care 22(11): 1002–1013.

OECD (2005). OECD health data 2005: Statistics and indicators for 30 countries.

*www.oecd.org

Okada, M. (1992). An approach to the generalized nurse scheduling problem–generation of a

declarative program to represent institution-specific knowledge, Computers and Biomedical

Research 25(5): 417–434.

Okada, M. & Okada, M. (1988). Prolog-based system for nursing staff scheduling implemented on

a personal computer, Computers and Biomedical Research 21(1): 53–63.

Oldenkamp, J. H. (1992). Investigating reasoning in maternity care scheduling, Knowledge and

Policy 5: 67–76.

BIBLIOGRAPHY 237

Ozkarahan, I. (1989). Flexible nurse scheduling support systems, Computer Methods and Programs

in Biomedicine 30: 145–153.

Ozkarahan, I. (1995). Allocation of surgical procedures to operating rooms, Journal of Medical

Systems 19(4): 333–352.

Ozkarahan, I. (2000). Allocation of surgeries to operating rooms using goal programming, Journal

of Medical Systems 24(6): 339–378.

Ozkarahan, I. & Bailey, J. (1988). Goal programming model subsystem of a flexible nurse schedul-

ing support system, IIE Transactions 20(3): 306–316.

Peeters, M. (2002). One dimensional cutting and packing: New problems and algorithms, Ph.D.

dissertation, Faculteit Economische en Toegepaste Economische Wetenschappen, Katholieke

Universiteit Leuven, Belgium.

Petrovic, S., Beddoe, G. & Vanden Berghe, G. (2003). Storing and adapting repair experiences in

personnel rostering, Practice and Theory of Automated Timetabling, Fourth International

Conference, Gent, Vol. 2740, Springer, pp. 185–186.

Pincus, M. (1970). A monte carlo method for the approximate solution of certain types of con-

strained optimization problems, Operations Research 18: 1225–1228.

Rifai, A. K. & Pecenka, J. O. (1989). An application of goal programming in healthcare planning,

International Journal of Production Management 10: 28–37.

RIZIV (2005). Evolutie van de uitgaven voor geneeskundige verzorging.

*www.riziv.be

Robbins, W. A. & Tuntiwongbiboon, N. (1989). Linear programming is a useful tool in case-mix

management, Healthcare Financial Management 43: 114–116.

Rosenbloom, E. S. & Goertzen, N. F. (1987). Cyclic nurse scheduling, European Journal of

Operational Research 31: 19–23.

Ross, S. M. (1983). Introduction to Stochastic Dynamic Programming, Academic Press, New

York, NY.

Ryan, D. M. & Foster, B. A. (1981). An integer programming approach to scheduling, in A. Weren

(ed.), Computer Scheduling of Public Transport Urban Passenger Vehicle and Crew Schedul-

ing, North-Holland, Amsterdam, pp. 269–280.

Santibanez, P., Begen, M. & Atkins, D. (2005). Managing surgical waitlists for a British Columbia

health authority, Research report, Centre for Operations Excellence, Sauder School of Busi-

ness, University of British Columbia, Canada.

Schaerf, A. & Meisels, A. (2000). Solving employee timetabling problems by generalized local

search, AI*IA ’99: Proceedings of the 6th Congress of the Italian Association for Artificial

Intelligence on Advances in Artificial Intelligence, Springer-Verlag, London, UK, pp. 380–

389.

238 BIBLIOGRAPHY

Scott, S. & Simpson, R. M. (1998). Case-bases incorporating scheduling constraint dimensions:

Experiences in nurse rostering, Advances in Case-Based Reasoning, Vol. 1488, Springer,

pp. 392–401.

Sedgewick, R. (1998). Algorithms in C++, Addisson-Wesley Publishing Company, Inc.

Sennott, L. I. (1999). Stochastic Dynamic Programming and the Control of Queueing Systems,

John Wiley & Sons, New York, NY.

Sermeus, W., Vanhaecht, K. & Vleugels, A. (2001). The Belgian-Dutch clinical pathway network,

Journal of Integrated Care Pathways 5: 10–14.

Siferd, S. P. & Benton, W. C. (1992). Workforce staffing and scheduling: Hospital nursing specific

models, European Journal of Operational Research 60: 233–246.

Silvestro, R. & Silvestro, C. (2000). An evaluation of nurse rostering practices in the national

health service, Journal of Advanced Nursing 32(3): 525–535.

Sitompul, D. & Randhawa, S. (1990). Nurse scheduling models: A state-of-the-art review, Journal

of the Society of Health Systems 2(1): 62–72.

Slowinski, R. & Hapke, M. (eds) (2000). Scheduling Under Fuzziness, Vol. 37 of Studies in

Fuzziness and Soft Computing, Springer-Verlag.

Slowinski, R. & Teghem, J. (eds) (1990). Stochastic versus Fuzzy Approaches to Multiobjective

Mathematical Programming under Uncertainty, Kluwer Academic Publishers, Dordrecht.

Smith, L. D. (1976). The application of an interactive algorithm to develop cyclical rotational

schedulies for nursing personnel, Information Systems and Operational Research 14: 53–70.

Smith, L. D., Bird, D. & Wiggins, A. (1979). A computerised system to schedule nurses that

recognises staff preferences, Hospital & Health Service Administration 24: 19–35.

Smith, L. D. & Wiggins, A. (1977). A computerbased nurse scheduling system, Computers and

Operations Research 4(3): 195–212.

Standridge, C. R. (1999). A tutorial on simulation in health care: Applications and issues, WSC

’99: Proceedings of the 31st conference on Winter simulation, ACM Press, New York, NY,

USA, pp. 49–55.

Strum, D. P., Vargas, L. G. & May, J. H. (1997). Resource coordination systems for surgical

services using distributed communications, Journal of the American Medical Informatics

Association 4: 125–135.

Swisher, J. R., Jacobson, S. H., Jun, J. B. & Balci, O. (2001). Modeling and analyzing a physi-

cian clinic environment using discrete-event (visual) simulation, Computers and Operations

Research 28: 105–125.

BIBLIOGRAPHY 239

Tanomaru, J. (1995). Staff scheduling by a genetic algorithm with heuristic operators, Proceedings

of the IEEE Conference on Evolutionary Computation, New York, pp. 456–461.

Tien, J. & Kamiyama, A. (1982). On manpower scheduling algorithms, Society for Industrial and

Applied Mathematics 24: 275–287.

Trivedi, V. M. & Warner, D. M. (1976). A branch and bound algorithm for optimum allocation

of float nurses, Management Science 22(9): 972–981.

Udpa, S. (1996). Activity-based costing for hospitals, Health Care Management Review 21(3): 83–

96.

USDHHS (2002). Projected supply, demand and shortages of registered nurses: 2000-2020, Na-

tional Center for Health Workforce Analysis. US Department of health and Human Services,

Rockville, MD.

Valouxis, C. & Housos, E. (2000). Hybrid optimization techniques for the workshift and rest

assignment of nursing personnel, Artificial Intelligence in Medicine 20(2): 155–175.

Van den Akker, M., Hoogeveen, H. & van de Velde, S. L. (2002). Combining column generation

and lagrangian relaxation to solve a single-machine common due date problem, INFORMS

Journal on Computing 14: 37–51.

Van Laarhoven, P. J. M. & Aarts, E. H. L. (1988). Simulated annealing: Theory and applications,

kluwer, Dordrecht.

Vance, P. H., Barnhart, C., Johnson, E. L. & Nemhauser, G. L. (1997). Airline crew scheduling:

A new formulation and decomposition algorithm, Operations Research 45: 188–200.

Vanderbeck, F. (2000). On Dantzig-Wolfe decomposition in integer programming and ways to

perform branching in a branch-and-price algorithm, Operations Research 48: 111–128.

Vanderbeck, F. & Wolsey, L. A. (1996). An exact algorithm for IP column generation, Operations

Research Letters 19: 151–159.

Vanhaecht, K. & Sermeus, W. (2003). The Leuven clinical pathway compass, Journal of Integrated

Care Pathways 7: 2–7.

Vanhaecht, K., Sermeus, W., Vleugels, A. & Peeters, G. (2002). Ontwikkeling en gebruik van

klinische paden (clinical pathways) in de gezondheidszorg, Tijdschrift voor Geneeskunde

58(23): 1442–1451.

Vanherck, P., Vanhaecht, K. & Sermeus, W. (2004). Effects of clinical pathways: Do they work,

Journal of Integrated Care Pathways 8: 95–105.

Vanhoucke, M. (2001). Exact Algorithms for various Types of Project Scheduling Problems.

Nonregular Objectives and time/cost Trade-offs., Ph.D. dissertation, Faculteit Economische

en Toegepaste Economische Wetenschappen, Katholieke Universiteit Leuven, Belgium.

240 BIBLIOGRAPHY

Venkataraman, R. & Brusco, M. J. (1996). An integrated analysis of nurse staffing and scheduling

policies, Omega 24: 57–71.

Vissers, J. M. H., Bertrand, J. & de Vries, G. (2001). A framework for production control in

healthcare organisations, Production Planning and Control 12(6): 591–604.

Vissers, J. M., Van Der Bij, J. D. & Kusters, R. J. (2001). Towards decision support for waiting

lists: An operations management view, Health Care Management Science 4: 133–142.

Warner, D. M. (1976a). Nurse staffing, scheduling, and reallocation in the hospital, Hospital &

Health Services Administration 21: 77–90.

Warner, D. M. (1976b). Scheduling nursing personnel according to nursing preferences: A math-

ematical programming approach, Operations Research 24: 842–856.

Warner, D. M., Keller, B. & Martel, S. (1991). Automated nurse scheduling, Journal of the Society

of Health Systems 2(2): 66–80.

Warner, D. M. & Prawda, J. (1972). A mathematical programming model for scheduling nursing

personnel in a hospital, Management Science 19: 411–422.

Weil, G., Heus, K., Francois, P. & Poujade, M. (1995). Constraint programming for nurse schedul-

ing, Engineering in Medicine and Biology Magazine, IEEE 14: 417–422.

Weiss, E. N. (1990). Models for determining estimated start times and case orderings in hospital

operating rooms, IIE Transactions 22: 143–150.

Wiers, V. C. (1997). A review of the applicability of or and ai scheduling techniques in practice,

Omega - the International Journal of Management Science 25(2): 145–153.

Wilkinson, R. & Allison, S. (1989). Alertness of night nurses: Two shift systems compared,

Ergonomics 32: 281–292.

Williams, H. P. (1999). Model Building in Mathematical Programming, John Wiley & Sons, New

York.

Winston, W. L. (1993). Operations research: Applications and algorithms, Duxbury Press, Bel-

mont, CA.

Wolsey, L. A. (1998). Integer Programming, John Wiley & Sons, Chichester.

Wright, M. B. (1987). The application of a surgical bed simulation model, European Journal of

Operational Research 32: 26–32.

Doctoral Dissertations from

the Faculty of Economic and

Applied Economic Sciences

From August 1, 1971.

1. GEPTS Stefaan (1971)

Stability and efficiency of resource allocation processes in discrete commodity spaces. Leu-

ven, KUL, 1971. 86 pp.

2. PEETERS Theo (1971)

Determinanten van de internationale handel in fabrikaten. Leuven, Acco, 1971. 290 pp.

3. VAN LOOY Wim (1971)

Personeelsopleiding: een onderzoek naar investeringsaspekten van opleiding. Hasselt,

Vereniging voor wetenschappelijk onderzoek in Limburg, 1971. VII, 238 pp.

4. THARAKAN Mathew (1972)

Indian exports to the European community: problems and prospects. Leuven, Faculty of

economics and applied economics, 1972. X,343 pp.

5. HERROELEN Willy (1972)

Heuristische programmatie: methodologische benadering en praktische toepassing op com-

plexe combinatorische problemen. Leuven, Aurelia scientifica, 1972. X, 367 pp.

6. VANDENBULCKE Jacques (1973)

De studie en de evaluatie van data-organisatiemethodes en data-zoekmethodes. Leuven,

s.n., 1973. 3 V.

7. PENNYCUICK Roy A. (1973)

The economics of the ecological syndrome. Leuven, Acco, 1973. XII, 177 pp.

241

242 DOCTORAL DISSERTATIONS

8. KAWATA T. Bualum (1973)

Formation du capital d’origine belge, dette publique et stratégie du développement au

Zaire. Leuven, KUL, 1973. V, 342 pp.

9. DONCKELS Rik (1974)

Doelmatige oriëntering van de sectorale subsidiepolitiek in België: een theoretisch onder-

zoek met empirische toetsing. Leuven, K.U.Leuven, 1974. VII, 156 pp.

10. VERHELST Maurice (1974)

Contribution to the analysis of organizational information systems and their financial ben-

efits. Leuven, K.U.Leuven, 1974. 2 V.

11. CLEMEUR Hugo (1974)

Enkele verzekeringstechnische vraagstukken in het licht van de nutstheorie. Leuven, Au-

relia scientifica, 1974. 193 pp.

12. HEYVAERT Edward (1975)

De ontwikkeling van de moderne bank- en krediettechniek tijdens de zestiende en zeven-

tiende eeuw in Europa en te Amsterdam in het bijzonder. Leuven, K.U.Leuven, 1975. 186

pp.

13. VERTONGHEN Robert (1975)

Investeringscriteria voor publieke investeringen: het uitwerken van een operationele theorie

met een toepassing op de verkeersinfrastructuur. Leuven, Acco, 1975. 254 pp.

14. Niet toegekend.

15. VANOVERBEKE Lieven (1975)

Microeconomisch onderzoek van de sectoriële arbeidsmobiliteit. Leuven, Acco, 1975. 205

pp.

16. DAEMS Herman (1975)

The holding company: essays on financial intermediation, concentration and capital market

imperfections in the Belgian economy. Leuven, K.U.Leuven, 1975. XII, 268 pp.

17. VAN ROMPUY Eric (1975)

Groot-Brittannië en de Europese monetaire integratie: een onderzoek naar de gevolgen

van de Britse toetreding op de geplande Europese monetaire unie. Leuven, Acco, 1975.

XIII, 222 pp.

18. MOESEN Wim (1975)

Het beheer van de staatsschuld en de termijnstructuur van de intrestvoeten met een

toepassing voor België. Leuven, Vander, 1975. XVI, 250 pp.

19. LAMBRECHT Marc (1976)

Capacity constrained multi-facility dynamic lot-size problem. Leuven, KUL, 1976. 165 pp.

DOCTORAL DISSERTATIONS 243

20. RAYMAECKERS Erik (1976)

De mens in de onderneming en de theorie van het producenten-gedrag: een bijdrage tot

transdisciplinaire analyse. Leuven, Acco, 1976. XIII, 538 pp.

21. TEJANO Albert (1976)

Econometric and input-output models in development planning: the case of the Philip-

pines. Leuven, KUL, 1976. XX, 297 pp.

22. MARTENS Bernard (1977)

Prijsbeleid en inflatie met een toepassing op België. Leuven, KUL, 1977. IV, 253 pp.

23. VERHEIRSTRAETEN Albert (1977)

Geld, krediet en intrest in de Belgische financiële sector. Leuven, Acco, 1977. XXII, 377

pp.

24. GHEYSSENS Lieven (1977)

International diversification through the government bond market: a risk-return analysis.

Leuven, s.n., 1977. 188 pp.

25. LEFEBVRE Chris (1977)

Boekhoudkundige verwerking en financiële verslaggeving van huurkooptransacties en verkopen

op afbetaling bij ondernemingen die aan consumenten verkopen. Leuven, KUL, 1977. 228

pp.

26. KESENNE Stefan (1978)

Tijdsallocatie en vrijetijdsbesteding: een econometrisch onderzoek. Leuven, s.n., 1978.

163 pp.

27. VAN HERCK Gustaaf (1978)

Aspecten van optimaal bedrijfsbeleid volgens het marktwaardecriterium: een risico-rendements-

analyse. Leuven, KUL, 1978. IV, 163 pp.

28. VAN POECK Andre (1979)

World price trends and price and wage development in Belgium: an investigation into the

relevance of the Scandinavian model of inflation for Belgium. Leuven, s.n., 1979. XIV,

260 pp.

29. VOS Herman (1978)

De industriële technologieverwerving in Brazilië: een analyse. Leuven, s.n., 1978. onregel-

matig gepagineerd.

30. DOMBRECHT Michel (1979)

Financial markets, employment and prices in open economies. Leuven, KUL, 1979. 182

pp.

31. DE PRIL Nelson (1979)

Bijdrage tot de actuariële studie van het bonus-malussysteem. Brussel, OAB, 1979. 112

pp.

244 DOCTORAL DISSERTATIONS

32. CARRIN Guy (1979)

Economic aspects of social security: a public economics approach. Leuven, KUL, 1979.

onregelmatig gepagineerd

33. REGIDOR Baldomero (1979)

An empirical investigation of the distribution of stock-market prices and weak-form effi-

ciency of the Brussels stock exchange. Leuven, KUL, 1979. 214 pp.

34. DE GROOT Roger (1979)

Ongelijkheden voor stop loss premies gebaseerd op E.T. systemen in het kader van de

veralgemeende convexe analyse. Leuven, KUL, 1979. 155 pp.

35. CEYSSENS Martin (1979)

On the peak load problem in the presence of rationizing by waiting. Leuven, KUL, 1979.

IX, 217 pp.

36. ABDUL RAZK Abdul (1979)

Mixed enterprise in Malaysia: the case study of joint venture between Malysian public

corporations and foreign enterprises. Leuven, KUL, 1979. 324 pp.

37. DE BRUYNE Guido (1980)

Coordination of economic policy: a game-theoretic approach. Leuven, KUL, 1980. 106 pp.

38. KELLES Gerard (1980)

Demand, supply, price change and trading volume on financial markets of the matching-

order type. = Vraag, aanbod, koersontwikkeling en omzet op financiële markten van het

Europese type. Leuven, KUL, 1980. 222 pp.

39. VAN EECKHOUDT Marc (1980)

De invloed van de looptijd, de coupon en de verwachte inflatie op het opbrengstverloop

van vastrentende finaciële activa. Leuven, KUL, 1980. 294 pp.

40. SERCU Piet (1981)

Mean-variance asset pricing with deviations from purchasing power parity. Leuven, s.n.,

1981. XIV, 273 pp.

41. DEQUAE Marie-Gemma (1981)

Inflatie, belastingsysteem en waarde van de onderneming. Leuven, KUL, 1981. 436 pp.

42. BRENNAN John (1982)

An empirical investigation of Belgian price regulation by prior notification: 1975 - 1979 -

1982. Leuven, KUL, 1982. XIII, 386 pp.

43. COLLA Annie (1982)

Een econometrische analyse van ziekenhuiszorgen. Leuven, KUL, 1982. 319 pp.

44. Niet toegekend.

DOCTORAL DISSERTATIONS 245

45. SCHOKKAERT Eric (1982)

Modelling consumer preference formation. Leuven, KUL, 1982. VIII, 287 pp.

46. DEGADT Jan (1982)

Specificatie van een econometrisch model voor vervuilingsproblemen met proeven van

toepassing op de waterverontreiniging in België. Leuven, s.n., 1982. 2 V.

47. LANJONG Mohammad Nasir (1983)

A study of market efficiency and risk-return relationships in the Malaysian capital market.

s.l., s.n., 1983. XVI, 287 pp.

48. PROOST Stef (1983)

De allocatie van lokale publieke goederen in een economie met een centrale overheid en

lokale overheden. Leuven, s.n., 1983. onregelmatig gepagineerd.

49. VAN HULLE Cynthia (1983)

Shareholders’ unanimity and optimal corporate decision making in imperfect capital mar-

kets. s.l., s.n., 1983. 147 pp. + appendix.

50. VAN WOUWE Martine (2/12/83)

Ordening van risico’s met toepassing op de berekening van ultieme rüınekansen. Leuven,

s.n., 1983. 109 pp.

51. D’ALCANTARA Gonzague (15/12/83)

SERENA: a macroeconomic sectoral regional and national account econometric model for

the Belgian economy. Leuven, KUL, 1983. 595 pp.

52. D’HAVE Piet (24/02/84)

De vraag naar geld in België. Leuven, KUL, 1984. XI, 318 pp.

53. MAES Ivo (16/03/84)

The contribution of J.R. Hicks to macro-economic and monetary theory. Leuven, KUL,

1984. V, 224 pp.

54. SUBIANTO Bambang (13/09/84)

A study of the effects of specific taxes and subsidies on a firms’ R&D investment plan. s.l.,

s.n., 1984. V, 284 pp.

55. SLEUWAEGEN Leo (26/10/84)

Location and investment decisions by multinational enterprises in Belgium and Europe.

Leuven, KUL, 1984. XII, 247 pp.

56. GEYSKENS Erik (27/03/85)

Produktietheorie en dualiteit. Leuven, s.n., 1985. VII, 392 pp.

57. COLE Frank (26/06/85)

Some algorithms for geometric programming. Leuven, KUL, 1985. 166 pp.

246 DOCTORAL DISSERTATIONS

58. STANDAERT Stan (26/09/86)

A study in the economics of repressed consumption. Leuven, KUL, 1986. X, 380 pp.

59. DELBEKE Jos (03/11/86)

Trendperioden in de geldhoeveelheid van België 1877-1983: een theoretische en empirische

analyse van de “Banking school”hypothese. Leuven, KUL, 1986. XII, 430 pp.

60. VANTHIENEN Jan (08/12/86)

Automatiseringsaspecten van de specificatie, constructie en manipulatie van beslissingsta-

bellen. Leuven, s.n., 1986. XIV, 378 pp.

61. LUYTEN Robert (30/04/87)

A systems-based approach for multi-echelon production/inventory systems. s.l., s.n., 1987.

3V.

62. MERCKEN Roger (27/04/87)

De invloed van de data base benadering op de interne controle. Leuven, s.n., 1987. XIII,

346 pp.

63. VAN CAYSEELE Patrick (20/05/87)

Regulation and international innovative activities in the pharmaceutical industry. s.l., s.n.,

1987. XI, 169 pp.

64. FRANCOIS Pierre (21/09/87)

De empirische relevantie van de independence from irrelevant alternatives. Assumptie

indiscrete keuzemodellen. Leuven, s.n., 1987. IX, 379 pp.

65. DECOSTER André (23/09/88)

Family size, welfare and public policy. Leuven, KUL. Faculteit Economische en Toegepaste

Economische Wetenschappen, 1988. XIII, 444 pp.

66. HEIJNEN Bart (09/09/88)

Risicowijziging onder invloed van vrijstellingen en herverzekeringen: een theoretische ana-

lyse van optimaliteit en premiebepaling. Leuven, KUL. Faculteit Economische en Toege-

paste Economische Wetenschappen, 1988. onregelmatig gepagineerd.

67. GEEROMS Hans (14/10/88)

Belastingvermijding. Theoretische analyse van de determinanten van de belastingontdui-

king en de belastingontwijking met empirische verificaties. Leuven, s.n., 1988. XIII, 409,

5 pp.

68. PUT Ferdi (19/12/88)

Introducing dynamic and temporal aspects in a conceptual (database) schema. Leuven,

KUL. Faculteit Economische en Toegepaste Economische Wetenschappen, 1988. XVIII,

415 pp.

DOCTORAL DISSERTATIONS 247

69. VAN ROMPUY Guido (13/01/89)

A supply-side approach to tax reform programs. Theory and empirical evidence for Bel-

gium. Leuven, KUL. Faculteit Economische en Toegepaste Economische Wetenschappen,

1989. XVI, 189, 6 pp.

70. PEETERS Ludo (19/06/89)

Een ruimtelijk evenwichtsmodel van de graanmarkten in de E.G.: empirische specifi-

catie en beleidstoepassingen. Leuven, K.U.Leuven. Faculteit Economische en Toegepaste

Economische Wetenschappen, 1989. XVI, 412 pp.

71. PACOLET Jozef (10/11/89)

Marktstructuur en operationele efficiëntie in de Belgische financiële sector. Leuven, K.U.Leuven.

Faculteit Economische en Toegepaste Economische Wetenschappen, 1989. XXII, 547 pp.

72. VANDEBROEK Martina (13/12/89)

Optimalisatie van verzekeringscontracten en premieberekeningsprincipes. Leuven, K.U.Leuven.

Faculteit Economische en Toegepaste Economische Wetenschappen, 1989. 95 pp.

73. WILLEKENS Francois (1990)

Determinance of government growth in industrialized countries with applications to Bel-

gium. Leuven, K.U.Leuven. Faculteit Economische en Toegepaste Economische Weten-

schappen, 1990. VI, 332 pp.

74. VEUGELERS Reinhilde (02/04/90)

Scope decisions of multinational enterprises. Leuven, K.U.Leuven. Faculteit Economische

en Toegepaste Economische Wetenschappen, 1990. V, 221 pp.

75. KESTELOOT Katrien (18/06/90)

Essays on performance diagnosis and tacit cooperation in international oligopolies. Leuven,

K.U.Leuven. Faculteit Economische en Toegepaste Economische Wetenschappen, 1990.

227 pp.

76. WU Changqi (23/10/90) Strategic aspects of oligopolistic vertical integration. Leuven,

K.U.Leuven, Faculteit Economische en Toegepaste Economische Wetenschappen, 1990.

VIII, 222 pp.

77. ZHANG Zhaoyong (08/07/91)

A disequilibrium model of China’s foreign trade behaviour. Leuven, K.U.Leuven, Faculteit

Economische en Toegepaste Economische Wetenschappen, 1991. XII, 256 pp.

78. DHAENE Jan (25/11/91)

Verdelingsfuncties, benaderingen en foutengrenzen van stochastische grootheden geassoci-

eerd aan verzekeringspolissen en -portefeuilles. Leuven, K.U.Leuven, Faculteit Economi-

sche en Toegepaste Economische Wetenschappen, 1991. 146 pp.

79. BAUWELINCKX Thierry (07/01/92)

Hierarchical credibility techniques. Leuven, K.U.Leuven, Faculteit Economische en Toegepaste

Economische Wetenschappen, 1992. 130 pp.

248 DOCTORAL DISSERTATIONS

80. DEMEULEMEESTER Erik (23/3/92)

Optimal algorithms for various classes of multiple resource-constrained project schedul-

ing problems. Leuven, K.U.Leuven, Faculteit Economische en Toegepaste Economische

Wetenschappen, 1992. 180 pp.

81. STEENACKERS Anna (1/10/92)

Risk analysis with the classical actuarial risk model: theoretical extensions and applications

to Reinsurance. Leuven, K.U.Leuven, Faculteit Economische en Toegepaste Economische

Wetenschappen, 1992. 139 pp.

82. COCKX Bart (24/09/92)

The minimum income guarantee. Some views from a dynamic perspective. Leuven,

K.U.Leuven, Faculteit Economische en Toegepaste Economische Wetenschappen, 1992.

XVII, 401 pp.

83. MEYERMANS Eric (06/11/92)

Econometric allocation systems for the foreign exchange market: Specification, estimation

and testing of transmission mechanisms under currency substitution. Leuven, K.U.Leuven,

Faculteit Economische en Toegepaste Economische Wetenschappen, 1992. XVIII, 343 pp.

84. CHEN Guoqing (04/12/92)

Design of fuzzy relational databases based on fuzzy functional dependency. Leuven,

K.U.Leuven, Faculteit Economische en Toegepaste Economische Wetenschappen, 1992.

176 pp.

85. CLAEYS Christel (18/02/93)

Vertical and horizontal category structures in consumer decision making: The nature of

product hierarchies and the effect of brand typicality. Leuven, K.U.Leuven, Faculteit

Economische en Toegepaste Economische Wetenschappen, 1993. 348 pp.

86. CHEN Shaoxiang (25/03/93)

The optimal monitoring policies for some stochastic and dynamic production processes.

Leuven, K.U.Leuven, Faculteit Economische en Toegepaste Economische Wetenschappen,

1993. 170 pp.

87. OVERWEG Dirk (23/04/93)

Approximate parametric analysis and study of cost capacity management of computer

configurations. Leuven, K.U.Leuven, Faculteit Economische en Toegepaste Economische

Wetenschappen, 1993. 270 pp.

88. DEWACHTER Hans (22/06/93)

Nonlinearities in speculative prices: The existence and persistence of nonlinearity in foreign

exchange rates. Leuven, K.U.Leuven, Faculteit Economische en Toegepaste Economische

Wetenschappen, 1993. 151 pp.

89. LIN Liangqi (05/07/93)

Economic determinants of voluntary accounting choices for R & D expenditures in Belgium.

DOCTORAL DISSERTATIONS 249

Leuven, K.U.Leuven, Faculteit Economische en Toegepaste Economische Wetenschappen,

1993. 192 pp.

90. DHAENE Geert (09/07/93)

Encompassing: formulation, properties and testing. Leuven, K.U.Leuven, Faculteit Eco-

nomische en Toegepaste Economische Wetenschappen, 1993. 117 pp.

91. LAGAE Wim (20/09/93)

Marktconforme verlichting van soevereine buitenlandse schuld door private crediteuren:

een neo-institutionele analyse. Leuven, K.U.Leuven, Faculteit Economische en Toegepaste

Economische Wetenschappen, 1993. 241 pp.

92. VAN DE GAER Dirk (27/09/93)

Equality of opportunity and investment in human capital. Leuven, K.U.Leuven, Faculteit

Economische en Toegepaste Economische Wetenschappen, 1993. 172 pp.

93. SCHROYEN Alfred (28/02/94)

Essays on redistributive taxation when monitoring is costly. Leuven, K.U.Leuven, Faculteit

Economische en Toegepaste Economische Wetenschappen, 1994. 203 pp. + V.

94. STEURS Geert (15/07/94)

Spillovers and cooperation in research and development. Leuven, K.U.Leuven, Faculteit

Economische en Toegepaste Economische Wetenschappen, 1994. 266 pp.

95. BARAS Johan (15/09/94)

The small sample distribution of the Wald, Lagrange multiplier and likelihood ratio tests

for homogeneity and symmetry in demand analysis: a Monte Carlo study. Leuven,

K.U.Leuven, Faculteit Economische en Toegepaste Economische Wetenschappen, 1994.

169 pp.

96. GAEREMYNCK Ann (08/09/94)

The use of depreciation in accounting as a signalling device. Leuven, K.U.Leuven, Faculteit

Economische en Toegepaste Economische Wetenschappen, 1994. 232 pp.

97. BETTENDORF Leon (22/09/94)

A dynamic applied general equilibrium model for a small open economy. Leuven, K.U.Leuven,

Faculteit Economische en Toegepaste Economische Wetenschappen, 1994. 149 pp.

98. TEUNEN Marleen (10/11/94)

Evaluation of interest randomness in actuarial quantities. Leuven, K.U.Leuven, Faculteit

Economische en Toegepaste Economische Wetenschappen, 1994. 214 pp.

99. VAN OOTEGEM Luc (17/01/95)

An economic theory of private donations. Leuven. K.U.Leuven, Faculteit Economische en

Toegepaste Economische Wetenschappen, 1995. 236 pp.

100. DE SCHEPPER Ann (20/03/95)

Stochastic interest rates and the probabilistic behaviour of actuarial functions. Leuven,

250 DOCTORAL DISSERTATIONS

K.U.Leuven, Faculteit Economische en Toegepaste Economische Wetenschappen, 1995.

211 pp.

101. LAUWERS Luc (13/06/95)

Social choice with infinite populations. Leuven, K.U.Leuven, Faculteit Economische en

Toegepaste Economische Wetenschappen, 1995. 79 pp.

102. WU Guang (27/06/95)

A systematic approach to object-oriented business modeling. Leuven, K.U.Leuven, Facul-

teit Economische en Toegepaste Economische Wetenschappen, 1995. 248 pp.

103. WU Xueping (21/08/95)

Term structures in the Belgian market: model estimation and pricing error analysis.

Leuven, K.U.Leuven, Faculteit Economische en Toegepaste Economische Wetenschappen,

1995. 133 pp.

104. PEPERMANS Guido (30/08/95)

Four essays on retirement from the labor force. Leuven, K.U.Leuven, Faculteit Economi-

sche en Toegepaste Economische Wetenschappen, 1995. 128 pp.

105. ALGOED Koen (11/09/95)

Essays on insurance: a view from a dynamic perspective. Leuven, K.U.Leuven, Faculteit

Economische en Toegepaste Economische Wetenschappen, 1995. 136 pp.

106. DEGRYSE Hans (10/10/95)

Essays on financial intermediation, product differentiation, and market structure. Leuven,

K.U.Leuven, Faculteit Economische en Toegepaste Economische Wetenschappen, 1995.

218 pp.

107. MEIR Jos (05/12/95)

Het strategisch groepsconcept toegepast op de Belgische financiële sector. Leuven, K.U.Leuven,

Faculteit Economische en Toegepaste Economische Wetenschappen, 1995. 257 pp.

108. WIJAYA Miryam Lilian (08/01/96)

Voluntary reciprocity as an informal social insurance mechanism: a game theoretic ap-

proach. Leuven, K.U.Leuven, Faculteit Economische en Toegepaste Economische Weten-

schappen, 1996. 124 pp.

109. VANDAELE Nico (12/02/96)

The impact of lot sizing on queueing delays: multi product, multi machine models. Leuven,

K.U.Leuven, Faculteit Economische en Toegepaste Economische Wetenschappen, 1996.

243 pp.

110. GIELENS Geert (27/02/96)

Some essays on discrete time target zones and their tails. Leuven, K.U.Leuven, Faculteit

Economische en Toegepaste Economische Wetenschappen, 1996. 131 pp.

DOCTORAL DISSERTATIONS 251

111. GUILLAUME Dominique (20/03/96)

Chaos, randomness and order in the foreign exchange markets. Essays on the modelling

of the markets. Leuven, K.U.Leuven, Faculteit Economische en Toegepaste Economische

Wetenschappen, 1996. 171 pp.

112. DEWIT Gerda (03/06/96)

Essays on export insurance subsidization. Leuven, K.U.Leuven, Faculteit Economische en

Toegepaste Economische Wetenschappen, 1996. 186 pp.

113. VAN DEN ACKER Carine (08/07/96)

Belief-function theory and its application to the modeling of uncertainty in financial state-

ment auditing. Leuven, K.U.Leuven, Faculteit Economische en Toegepaste Economische

Wetenschappen, 1996. 147 pp.

114. IMAM Mahmood Osman (31/07/96)

Choice of IPO Flotation Methods in Belgium in an Asymmetric Information Framework

and Pricing of IPO’s in the Long-Run. Leuven, K.U.Leuven, Faculteit Economische en

Toegepaste Economische Wetenschappen, 1996. 221 pp.

115. NICAISE Ides (06/09/96)

Poverty and Human Capital. Leuven, K.U.Leuven, Faculteit Economische en Toegepaste

Economische Wetenschappen, 1996. 209 pp.

116. EYCKMANS Johan (18/09/97)

On the Incentives of Nations to Join International Environmental Agreements. Leuven,

K.U.Leuven, Faculteit Economische en Toegepaste Economische Wetenschappen, 1997.

XV + 348 pp.

117. CRISOLOGO-MENDOZA Lorelei (16/10/97)

Essays on Decision Making in Rural Households: a study of three villages in the Cordillera

Region of the Philippines. Leuven, K.U.Leuven, Faculteit Economische en Toegepaste

Economische Wetenschappen, 1997. 256 pp.

118. DE REYCK Bert (26/01/98)

Scheduling Projects with Generalized Precedence Relations: Exact and Heuristic Proce-

dures. Leuven, K.U.Leuven, Faculteit Economische en Toegepaste Economische Weten-

schappen, 1998. XXIV + 337 pp.

119. VANDEMAELE Sigrid (30/04/98)

Determinants of Issue Procedure Choice within the Context of the French IPO Market:

Analysis within an Asymmetric Information Framework. Leuven, K.U.Leuven, Faculteit

Economische en Toegepaste Economische Wetenschappen, 1998. 241 pp.

120. VERGAUWEN Filip (30/04/98)

Firm Efficiency and Compensation Schemes for the Management of Innovative Activities

and Knowledge Transfers. Leuven, K.U.Leuven, Faculteit Economische en Toegepaste

Economische Wetenschappen, 1998. VIII + 175 pp.

252 DOCTORAL DISSERTATIONS

121. LEEMANS Herlinde (29/05/98)

The Two-Class Two-Server Queueing Model with Nonpreemptive Heterogeneous Prior-

ity Structures. Leuven, K.U.Leuven, Faculteit Economische en Toegepaste Economische

Wetenschappen, 1998. 211 pp.

122. GEYSKENS Inge (4/09/98)

Trust, Satisfaction, and Equity in Marketing Channel Relationships. Leuven, K.U.Leuven,

Faculteit Economische en Toegepaste Economische Wetenschappen, 1998. 202 pp.

123. SWEENEY John (19/10/98)

Why Hold a Job ? The Labour Market Choice of the Low-Skilled. Leuven, K.U.Leuven,

Faculteit Economische en Toegepaste Economische Wetenschappen, 1998. 278 pp.

124. GOEDHUYS Micheline (17/03/99)

Industrial Organisation in Developing Countries, Evidence from Côte d’Ivoire. Leuven,

K.U.Leuven, Faculteit Economische en Toegepaste Economische Wetenschappen, 1999.

251 pp.

125. POELS Geert (16/04/99)

On the Formal Aspects of the Measurement of Object-Oriented Software Specifications.

Leuven, K.U.Leuven, Faculteit Economische en Toegepaste Economische Wetenschappen,

1999. 507 pp.

126. MAYERES Inge (25/05/99)

The Control of Transport Externalities: A General Equilibrium Analysis. Leuven, K.U.Leuven,

Faculteit Economische en Toegepaste Economische Wetenschappen, 1999. XIV + 294 pp.

127. LEMAHIEU Wilfried (5/07/99)

Improved Navigation and Maintenance through an Object-Oriented Approach to Hyper-

media Modelling. Leuven, K.U.Leuven, Faculteit Economische en Toegepaste Economische

Wetenschappen, 1999. 284 pp.

128. VAN PUYENBROECK Tom (8/07/99)

Informational Aspects of Fiscal Federalism. Leuven, K.U.Leuven, Faculteit Economische

en Toegepaste Economische Wetenschappen, 1999. 192 pp.

129. VAN DEN POEL Dirk (5/08/99)

Response Modeling for Database Marketing Using Binary Classification. Leuven, K.U.Leuven,

Faculteit Economische en Toegepaste Economische Wetenschappen, 1999. 342 pp.

130. GIELENS Katrijn (27/08/99)

International Entry Decisions in the Retailing Industry: Antecedents and Performance

Consequences. Leuven, K.U.Leuven, Faculteit Economische en Toegepaste Economische

Wetenschappen, 1999. 336 pp.

131. PEETERS Anneleen (16/12/99)

Labour Turnover Costs, Employment and Temporary Work. Leuven, K.U.Leuven, Facul-

teit Economische en Toegepaste Economische Wetenschappen, 1999. 207 pp.

DOCTORAL DISSERTATIONS 253

132. VANHOENACKER Jurgen (17/12/99)

Formalizing a Knowledge Management Architecture Meta-Model for Integrated Business

Process Management. Leuven, K.U.Leuven, Faculteit Economische en Toegepaste Econo-

mische Wetenschappen, 1999. 252 pp.

133. NUNES Paulo (20/03/2000)

Contingent Valuation of the Benefits of Natural Areas and its Warmglow Component.

Leuven, K.U.Leuven, Faculteit Economische en Toegepaste Economische Wetenschappen,

2000. XXI + 282 pp.

134. VAN DEN CRUYCE Bart (7/04/2000)

Statistische discriminatie van allochtonen op jobmarkten met rigide lonen. Leuven, K.U.Leuven,

Faculteit Economische en Toegepaste Economische Wetenschappen, 2000. XXIII + 441

pp.

135. REPKINE Alexandre (15/03/2000)

Industrial restructuring in countries of Central and Eastern Europe: Combining branch-,

firm- and product-level data for a better understanding of Enterprises’ behaviour dur-

ing transition towards market economy. Leuven, K.U.Leuven, Faculteit Economische en

Toegepaste Economische Wetenschappen, 2000. VI + 147 pp.

136. AKSOY, Yunus (21/06/2000)

Essays on international price rigidities and exchange rates. Leuven, K.U.Leuven, Faculteit

Economische en Toegepaste Economische Wetenschappen, 2000. IX + 236 pp.

137. RIYANTO, Yohanes Eko (22/06/2000)

Essays on the internal and external delegation of authority in firms. Leuven, K.U.Leuven,

Faculteit Economische en Toegepaste Economische Wetenschappen, 2000. VIII + 280 pp.

138. HUYGHEBAERT, Nancy (20/12/2000)

The Capital Structure of Business Start-ups. Leuven, K.U.Leuven, Faculteit Economische

en Toegepaste Economische Wetenschappen, 2000. VIII + 332 pp.

139. FRANCKX Laurent (22/01/2001)

Ambient Inspections and Commitment in Environmental Enforcement. Leuven, K.U.Leuven,

Faculteit Economische en Toegepaste Economische Wetenschappen, 2001. VIII + 286 pp.

140. VANDILLE Guy (16/02/2001)

Essays on the Impact of Income Redistribution on Trade. Leuven, K.U.Leuven, Faculteit

Economische en Toegepaste Economische Wetenschappen, 2001. VIII + 176 pp.

141. MARQUERING Wessel (27/04/2001)

Modeling and Forecasting Stock Market Returns and Volatility. Leuven, K.U.Leuven,

Faculteit Economische en Toegepaste Economische Wetenschappen, 2001. V + 267 pp.

142. FAGGIO Giulia (07/05/2001)

Labor Market Adjustment and Enterprise Behavior in Transition. Leuven, K.U.Leuven,

Faculteit Economische en Toegepaste Economische Wetenschappen, 2001. 150 pp.

254 DOCTORAL DISSERTATIONS

143. GOOS Peter (30/05/2001)

The Optimal Design of Blocked and Split-plot experiments. Leuven, K.U.Leuven, Faculteit

Economische en Toegepaste Economische Wetenschappen, 2001. X + 224 pp.

144. LABRO Eva (01/06/2001)

Total Cost of Ownership Supplier Selection based on Activity Based Costing and Math-

ematical Programming. Leuven, K.U.Leuven, Faculteit Economische en Toegepaste Eco-

nomische Wetenschappen, 2001. 217 pp.

145. VANHOUCKE Mario (07/06/2001)

Exact Algorithms for various Types of Project Scheduling Problems. Nonregular Objec-

tives and time/cost Trade-offs. Leuven, K.U.Leuven, Faculteit Economische en Toegepaste

Economische Wetenschappen, 2001. 316 pp.

146. BILSEN Valentijn (28/08/2001)

Entrepreneurship and Private Sector Development in Central European Transition Coun-

tries. Leuven, K.U.Leuven, Faculteit Economische en Toegepaste Economische Weten-

schappen, 2001. XVI + 188 pp.

147. NIJS Vincent (10/08/2001)

Essays on the dynamic Category-level Impact of Price promotions. Leuven, K.U.Leuven,

Faculteit Economische en Toegepaste Economische Wetenschappen, 2001.

148. CHERCHYE Laurens (24/09/2001)

Topics in Non-parametric Production and Efficiency Analysis. Leuven, K.U.Leuven, Fa-

culteit Economische en Toegepaste Economische Wetenschappen, 2001. VII + 169 pp.

149. VAN DENDER Kurt (15/10/2001)

Aspects of Congestion Pricing for Urban Transport. Leuven, K.U.Leuven, Faculteit Eco-

nomische en Toegepaste Economische Wetenschappen, 2001. VII + 203 pp.

150. CAPEAU Bart (26/10/2001)

In defence of the excess demand approach to poor peasants’ economic behaviour. Theory

and Empirics of non-recursive agricultural household modelling. Leuven, K.U.Leuven,

Faculteit Economische en Toegepaste Economische Wetenschappen, 2001. XIII + 286 pp.

151. CALTHROP Edward (09/11/2001)

Essays in urban transport economics. Leuven, K.U.Leuven, Faculteit Economische en

Toegepaste Economische Wetenschappen, 2001.

152. VANDER BAUWHEDE Heidi (03/12/2001)

Earnings management in an Non-Anglo-Saxon environment. Leuven, K.U.Leuven, Facul-

teit Economische en Toegepaste Economische Wetenschappen, 2001. 408 pp.

153. DE BACKER Koenraad (22/01/2002)

Multinational firms and industry dynamics in host countries : the case of Belgium. Leuven,

K.U.Leuven, Faculteit Economische en Toegepaste Economische Wetenschappen, 2002.

VII + 165 pp.

DOCTORAL DISSERTATIONS 255

154. BOUWEN Jan (08/02/2002)

Transactive memory in operational workgroups. Concept elaboration and case study.

Leuven, K.U.Leuven, Faculteit Economische en Toegepaste Economische Wetenschappen,

2002. 319 pp. + appendix 102 pp.

155. VAN DEN BRANDE Inge (13/03/2002)

The psychological contract between employer and employee : a survey among Flemish em-

ployees. Leuven, K.U.Leuven, Faculteit Economische en Toegepaste Economische Weten-

schappen, 2002. VIII + 470 pp.

156. VEESTRAETEN Dirk (19/04/2002)

Asset Price Dynamics under Announced Policy Switching. Leuven, K.U.Leuven, Faculteit

Economische en Toegepaste Economische Wetenschappen, 2002. 176 pp.

157. PEETERS Marc (16/05/2002)

One Dimensional Cutting and Packing : New Problems and Algorithms. Leuven, K.U.Leuven,

Faculteit Economische en Toegepaste Economische Wetenschappen, 2002. IX + 247 pp.

158. SKUDELNY Frauke (21/05/2002)

Essays on The Economic Consequences of the European Monetary Union. Leuven, K.U.Leuven,

Faculteit Economische en Toegepaste Economische Wetenschappen, 2002.

159. DE WEERDT Joachim (07/06/2002)

Social Networks, Transfers and Insurance in Developing countries. Leuven, K.U.Leuven,

Faculteit Economische en Toegepaste Economische Wetenschappen, 2002. VI + 129 pp.

160. TACK Lieven (25/06/2002)

Optimal Run Orders in Design of Experiments. Leuven, K.U.Leuven, Faculteit Economi-

sche en Toegepaste Economische Wetenschappen, 2002. XXXI + 344 pp.

161. POELMANS Stephan (10/07/2002)

Making Workflow Systems work. An investigation into the Importance of Task-appropriation

fit, End-user Support and other Technological Characteristics. Leuven, K.U.Leuven, Fa-

culteit Economische en Toegepaste Economische Wetenschappen, 2002. 237 pp.

162. JANS Raf (26/09/2002)

Capacitated Lot Sizing Problems : New Applications, Formulations and Algorithms.

Leuven, K.U.Leuven, Faculteit Economische en Toegepaste Economische Wetenschappen,

2002.

163. VIAENE Stijn (25/10/2002)

Learning to Detect Fraud from enriched Insurance Claims Data (Context, Theory and

Applications). Leuven, K.U.Leuven, Faculteit Economische en Toegepaste Economische

Wetenschappen, 2002. 315 pp.

164. AYALEW Tekabe (08/11/2002)

Inequality and Capital Investment in a Subsistence Economy.Leuven, K.U.Leuven, Facul-

teit Economische en Toegepaste Economische Wetenschappen, 2002. V + 148 pp.

256 DOCTORAL DISSERTATIONS

165. MUES Christophe (12/11/2002)

On the Use of Decision Tables and Diagrams in Knowledge Modeling and Verification.

Leuven, K.U.Leuven, Faculteit Economische en Toegepaste Economische Wetenschappen,

2002. 222 pp.

166. BROCK Ellen (13/03/2003)

The Impact of International Trade on European Labour Markets. K.U.Leuven, Faculteit

Economische en Toegepaste Economische Wetenschappen, 2002.

167. VERMEULEN Frederic (29/11/2002)

Essays on the collective Approach to Household Labour Supply. Leuven, K.U.Leuven,

Faculteit Economische en Toegepaste Economische Wetenschappen, 2002. XIV + 203 pp.

168. CLUDTS Stephan (11/12/2002)

Combining participation in decision-making with financial participation : theoretical and

empirical perspectives. Leuven, K.U.Leuven, Faculteit Economische en Toegepaste Eco-

nomische Wetenschappen, 2002. XIV + 247 pp.

169. WARZYNSKI Frederic (09/01/2003)

The dynamic effect of competition on price cost margins and innovation. Leuven, K.U.Leuven,

Faculteit Economische en Toegepaste Economische Wetenschappen, 2003.

170. VERWIMP Philip (14/01/2003)

Development and genocide in Rwanda ; a political economy analysis of peasants and

power under the Habyarimana regime. Leuven, K.U.Leuven, Faculteit Economische en

Toegepaste Economische Wetenschappen, 2003.

171. BIGANO Andrea (25/02/2003)

Environmental regulation of the electricity sector in a European Market Framework. Leu-

ven, K.U.Leuven, Faculteit Economische en Toegepaste Economische Wetenschappen, 2003.

XX + 310 pp.

172. MAES Konstantijn (24/03/2003)

Modeling the Term Structure of Interest Rates Across Countries. Leuven, K.U.Leuven,

Faculteit Economische en Toegepaste Economische Wetenschappen, 2003. V+246 pp.

173. VINAIMONT Tom (26/02/2003)

The performance of One- versus Two-Factor Models of the Term Structure of Interest

Rates. Leuven, K.U.Leuven, Faculteit Economische en Toegepaste Economische Weten-

schappen. 2003.

174. OOGHE Erwin (15/04/2003)

Essays in multi-dimensional social choice. Leuven, K.U.Leuven, Faculteit Economische en

Toegepaste Economische Wetenschappen, 2003. VIII+108 pp.

175. FORRIER Anneleen (25/04/2003)

Temporary employment, employability and training. Leuven, K.U.Leuven, Faculteit Eco-

nomische en Toegepaste Economische Wetenschappen, 2003.

DOCTORAL DISSERTATIONS 257

176. CARDINAELS Eddy (28/04/2003)

The role of cost system accuracy in managerial decision making. Leuven, K.U.Leuven,

Faculteit Economische en Toegepaste Economische Wetenschappen, 2003. 144 pp.

177. DE GOEIJ Peter (02/07/2003)

Modeling Time-Varying Volatility and Interest Rates. Leuven, K.U.Leuven, Faculteit

Economische en Toegepaste Economische Wetenschappen, 2003. VII+225 pp.

178. LEUS Roel (19/09/2003)

The generation of stable project plans. Complexity and exact algorithms. Leuven, K.U.Leuven,

Faculteit Economische en Toegepaste Economische Wetenschappen, 2003.

179. MARINHEIRO Carlos (23/09/2003)

EMU and fiscal stabilisation policy : the case of small countries. Leuven, K.U.Leuven,

Faculteit Economische en Toegepaste Economische Wetenschappen, 2003.

180. BAESSENS Bart (24/09/2003)

Developing intelligent systems for credit scoring using machine learning techniques. Leu-

ven, K.U.Leuven, Faculteit Economische en Toegepaste Economische Wetenschappen, 2003.

181. KOCZY Laszlo (18/09/2003)

Solution concepts and outsider behaviour in coalition formation games. Leuven, K.U.Leuven,

Faculteit Economische en Toegepaste Economische Wetenschappen, 2003.

182. ALTOMONTE Carlo (25/09/2003)

Essays on Foreign Direct Investment in transition countries : learning from the evidence.

Leuven, K.U.Leuven, Faculteit Economische en Toegepaste Economische Wetenschappen,

2003.

183. DRIES Liesbeth (10/11/2003)

Transition, Globalisation and Sectoral Restructuring: Theory and Evidence from the Polish

Agri-Food Sector. Leuven, K.U.Leuven, Faculteit Economische en Toegepaste Economi-

sche Wetenschappen, 2003.

184. DEVOOGHT Kurt (18/11/2003)

Essays On Responsibility-Sensitive Egalitarianism and the Measurement of Income In-

equality. Leuven, K.U.Leuven, Faculteit Economische en Toegepaste Economische Weten-

schappen, 2003.

185. DELEERSNYDER Barbara (28/11/2003)

Marketing in Turbulent Times. Leuven, K.U.Leuven, Faculteit Economische en Toegepaste

Economische Wetenschappen, 2003.

186. ALI Daniel (19/12/2003)

Essays on Household Consumption and Production Decisions under Uncertainty in Ru-

ral Ethiopia. Leuven, K.U.Leuven, Faculteit Economische en Toegepaste Economische

Wetenschappen, 2003.

258 DOCTORAL DISSERTATIONS

187. WILLEMS Bert (14/01/2004)

Electricity networks and generation market power. Leuven, K.U.Leuven, Faculteit Econo-

mische en Toegepaste Economische Wetenschappen, 2004.

188. JANSSENS Gust (30/01/2004)

Advanced Modelling of Conditional Volatility and Correlation in Financial Markets. Leu-

ven, K.U.Leuven, Faculteit Economische en Toegepaste Economische Wetenschappen, 2004.

189. THOEN Vincent (19/01/2004)

On the valuation and disclosure practices implemented by venture capital providers. Leu-

ven, K.U.Leuven, Faculteit Economische en Toegepaste Economische Wetenschappen, 2004.

190. MARTENS Jurgen (16/02/2004)

A fuzzy set and stochastic system theoretic technique to validate simulation models.

Leuven, K.U.Leuven, Faculteit Economische en Toegepaste Economische Wetenschappen,

2004.

191. ALTAVILLA Carlo (21/05/2004)

Monetary policy implementation and transmission mechanisms in the Euro area. Leuven,

K.U.Leuven, Faculteit Economische en Toegepaste Economische Wetenschappen, 2004.

192. DE BRUYNE Karolien (07/06/2004)

Essays in the location of economic activity. Leuven, K.U.Leuven, Faculteit Economische

en Toegepaste Economische Wetenschappen, 2004.

193. ADEM Jan (25/06/2004)

Mathematical programming approaches for the supervised classification problem. Leuven,

K.U.Leuven, Faculteit Economische en Toegepaste Economische Wetenschappen, 2004.

194. LEROUGE Davy (08/07/2004)

Predicting Product Preferences : the effect of internal and external cues. Leuven, K.U.Leuven,

Faculteit Economische en Toegepaste Economische Wetenschappen, 2004.

195. VANDENBROECK Katleen (16/07/2004)

Essays on output growth, social learning and land allocation in agriculture : micro-evidence

from Ethiopia and Tanzania. Leuven, K.U.Leuven, Faculteit Economische en Toegepaste

Economische Wetenschappen, 2004.

196. GRIMALDI Maria (03/09/2004)

The exchange rate, heterogeneity of agents and bounded rationality. Leuven, K.U.Leuven,

Faculteit Economische en Toegepaste Economische Wetenschappen, 2004.

197. SMEDTS Kristien (26/10/2004)

Financial integration in EMU in the framework of the no-arbitrage theory. Leuven,

K.U.Leuven, Faculteit Economische en Toegepaste Economische Wetenschappen, 2004.

198. KOEVOETS Wim (12/11/2004)

Essays on Unions, Wages and Employment. Leuven, K.U.Leuven, Faculteit Economische

en Toegepaste Economische Wetenschappen, 2004.

DOCTORAL DISSERTATIONS 259

199. CALLENS Marc (22/11/2004)

Essays on multilevel logistic Regression. Leuven, K.U.Leuven, Faculteit Economische en

Toegepaste Economische Wetenschappen, 2004.

200. RUGGOO Arvind (13/12/2004)

Two stage designs robust to model uncertainty. Leuven, K.U.Leuven, Faculteit Economi-

sche en Toegepaste Economische Wetenschappen, 2004.

201. HOORELBEKE Dirk (28/01/2005)

Bootstrap and Pivoting Techniques for Testing Multiple Hypotheses. Leuven, K.U.Leuven,

Faculteit Economische en Toegepaste Economische Wetenschappen, 2005.

202. ROUSSEAU Sandra (17/02/2005)

Selecting Environmental Policy Instruments in the Presence of Incomplete Compiance.

Leuven, K.U.Leuven, Faculteit Economische en Toegepaste Economische Wetenschappen,

2005.

203. VAN DER MEULEN Sofie (17/02/2005)

Quality of Financial Statements : Impact of the external auditor and applied account-

ing standards. Leuven, K.U.Leuven, Faculteit Economische en Toegepaste Economische

Wetenschappen, 2005.

204. DIMOVA Ralitza (21/02/2005)

Winners and Losers during Structural Reform and Crisis : the Bulgarian Labour Mar-

ket Perspective. Leuven, K.U.Leuven, Faculteit Economische en Toegepaste Economische

Wetenschappen, 2005.

205. DARKIEWICZ Grzegorz (28/02/2005)

Value-at-risk in Insurance and Finance : the Comonotonicity Approach. Leuven, K.U.Leuven,

Faculteit Economische en Toegepaste Economische Wetenschappen, 2005.

206. DE MOOR Lieven (20/05/2005)

The Structure of International Stock Returns : Size, Country and Sector Effects in Capital

Asset Pricing. Leuven, K.U.Leuven, Faculteit Economische en Toegepaste Economische

Wetenschappen, 2005.

207. EVERAERT Greetje (27/06/2005)

Soft Budget Constraints and Trade Policies : The Role of Institutional and External Con-

straints. Leuven, K.U.Leuven, Faculteit Economische en Toegepaste Economische Weten-

schappen, 2005.

208. SIMON Steven (06/07/2005)

The Modeling and Valuation of complex Derivatives : The Impact of the Choice of the term

structure model. Leuven, K.U.Leuven, Faculteit Economische en Toegepaste Economische

Wetenschappen, 2005.

209. MOONEN Linda (23/09/2005)

Algorithms for some Graph-Theoretical Optimization Problems. Leuven, K.U.Leuven,

Faculteit Economische en Toegepaste Economische Wetenschappen, 2005.

260 DOCTORAL DISSERTATIONS

210. COUCKE Kristien (21/09/2005)

Firm and industry adjustment under de-industrialisation and globalization of the Bel-

gian economy. Leuven, K.U.Leuven, Faculteit Economische en Toegepaste Economische

Wetenschappen, 2005.

211. DECAMPS Marc (21/10/2005)

Some actuarial and financial applications of generalized diffusion processes. Leuven, K.U.Leuven,

Faculteit Economische en Toegepaste Economische Wetenschappen, 2005.

212. KIM Helena (29/11/2005)

Escalation games: an instrument to analyze conflicts. The strategic approach to the bar-

gaining problem. Leuven, K.U.Leuven, Faculteit Economische en Toegepaste Economische

Wetenschappen, 2005.

213. GERMENJI Etleva (06/01/2006)

Essays on the Economics of Emigration from Albania. Leuven, K.U.Leuven, Faculteit

Economische en Toegepaste Economische Wetenschappen, 2006.

214. BELIEN Jeroen (18/01/2006)

Exact and Heuristic Methodologies for Scheduling in Hospitals: Problems, Formulations

and Algorithms. Leuven, K.U.Leuven, Faculteit Economische en Toegepaste Economische

Wetenschappen, 2006.

