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Human–Machine Collaboration for
Democratizing Data Science

1.1 Introduction

Data science is a cornerstone of current business practices. A major obstacle to its
adoption is that most data analysis techniques are beyond the reach of typical end-
users. Spreadsheets are a prime example of this phenomenon: despite being central in
all sorts of data processing pipelines, the functionality necessary for processing and
analyzing spreadsheets is hidden behind the high wall of spreadsheet formulas, which
most end-users can neither write nor understand (Chambers and Scaffidi, 2010). As a
result, spreadsheets are often manipulated and analyzed manually. This increases the
chance of making mistakes and prevents scaling beyond small data sets.

Lowering the barrier to entry for specifying and solving data science tasks would
help in ameliorating these issues. Making data science tools more accessible would
lower the cost of designing data processing pipelines and taking data-driven decisions.
At the same time, accessible data science tools can prevent non-experts from relying
on fragile heuristics and improvised solutions.

The question we ask is then: is it possible to enable non-technical end-users to
specify and solve data science tasks that match their needs?

We provide an initial positive answer based on two key observations. First, many
key data science tasks can be partially specified using colored sketches only. Roughly
speaking, a sketch is a collection of entries, rows, or columns appearing in a spreadsheet
that are highlighted using one or more colors. A sketch determines some or all of the
parameters of a data science task. For instance, while clustering rows, color highlighting
can be used to indicate that some rows belong to the same cluster (by highlighting them
with the same color) or to different clusters (with different colors). This information
acts as a partial specification of the data science task. The main feature of sketches is
that they require little to no technical knowledge on the user’s end, and therefore can
be easily designed and manipulated by näıve end-users (Sarkar et al., 2015).

Second, the data science task determined by a sketch can be solved using auto-
mated data science techniques. In other words, since the specification may be missing
one or more parameters, the spreadsheet application takes care of figuring these out
automatically. The output of this step is a candidate solution, e.g., a possible cluster-
ing of the target rows. The other key feature of sketches is that the result of the data
science task can also often be presented through color highlighting. For instance, row
clusters can be captured using colors only.
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These two observations enable us to design an interactive framework, Visual-
Synth, in which the machine and the end-user collaborate towards designing and
solving a data science task compatible with the user’s needs. VisualSynth combines
two components: an interaction protocol that allows non-technical people to design
partial data science task specifications using colored highlighting, and a smart frame-
work for automatically solving a partially specified data science task based on inductive
models.

In contrast to automation frameworks like AutoML (Thornton et al., 2013; Feurer
et al., 2015), VisualSynth does not assume that the data science task is fixed and
known a priori.1 We do not claim that our human-machine interaction strategy is ideal,
but we do claim that it is quite minimal and that despite its simplicity, it suffices to
guide the system towards producing useful data science results for many central data
science tasks, as shown in the remainder of this chapter.

VisualSynth only requires the end-user to check the solution and make sure
that it is as expected. This substantially reduces the expertise required of the user:
almost everybody can interact using color highlighting and check whether a solution
is compatible with his needs. The bulk of the complexity – namely figuring out the
bits that are missing from the user’s specification – is handled by the machine itself.
The intent of this setup is to combine the respective strengths of end-users, namely
their knowledge of the domain at hand, and computers, namely their ability to quickly
carry out enormous amounts of computation.

The remainder of this chapter is structured as follows. In Section 1.2.2, we moti-
vate our approach using a concrete use case. Section 1.3 discusses sketches for several
core data science tasks, including data wrangling, prediction, clustering, and auto-
completion, and details how the sketches define interaction. Section 1.3 also describes
how tasks partially defined by sketches are solved by the machine. The chapter ends
with some concluding remarks.

1.2 Motivation

1.2.1 Spreadsheets

Spreadsheets are used by hundreds of millions of users and are as such one of the
most common interfaces that people use to interact with data. The reason for their
popularity is their flexibility: 1) spreadsheets are very heterogeneous and can contain
arbitrary types of data, including numerical, categorical and textual values; 2) data
can be explicitly organized using tables and operated on using formulas; 3) the “data
generating process” is almost arbitrary, as spreadsheets can be used for anything from
accounting to financial analysis to stock management. Since our goal is enable as many
users as possible to perform data science, a natural choice is to bring data science to
spreadsheets.

This is very challenging, for two reasons. First and foremost, the vast majority
of spreadsheet users have little or no knowledge about how to perform data science.

1Indeed, VisualSynth supports explorative data science, in which the user is not sure about
the task to be performed and tries out different manipulations until it finds one that is interesting
or useful. A proper discussion of explorative data science, however, falls outside the scope of this
chapter.
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While these näıve users might have heard of data science – at least to some degree
– they are likely not technically skilled: most spreadsheet users cannot program even
one-line spreadsheet formulas, nor design small data processing pipelines (Chambers
and Scaffidi, 2010).

In order to cater to this audience, VisualSynth relies on a visual, concrete and
interactive protocol in which the user and the machine collaborate to explore the data
and design a data processing pipeline. The protocol leverages simple and intuitive
forms of interaction that require no or little supervision and almost zero technical
knowledge. This is achieved through a combination of interaction and automation.

1.2.2 A Motivating Example: Ice Cream Sales

Let us now illustrate interactive data science and VisualSynth with a classic use
case of naive spreadsheet end-users: auto-completion. Tackling this use case requires
collaboration between the user and the machine to convey the intentions and the
knowledge of the user, as shown below.

Imagine that you are a sales manager at an ice cream factory. You have data about
past sales and some information about your shops, as shown in Tables 1.1 and 1.1,
respectively.

A first difficulty is that Table 1.1 is not nicely formatted. A first task is therefore to
wrangle Table 1.1 into a format such as that listed in Table 1.2 that is more amenable
to data analysis. Through interaction, the data wrangling component can produce
the table presented in Table 1.2.

However, some past sales data are missing. To determine which shops made a profit
you need to first obtain an estimate of the missing values. To produce such estimates,
you can interact with our system in different ways. First, as the sales manager you know
that the profit of a shop depends on the type of ice cream and the characteristics of
the city. More precisely, you know that some cities have similar profitability profiles.
To convey this knowledge, you can use a coloring scheme to indicate that certain
cities belong to the same cluster. This will in turn trigger an interactive clustering
process, which not only allows you to state must-link and cannot-link constraints using
colorings but also to correct mistakes that our system might make during the clustering
process. Once the clustering is deemed correct, the machine stores this information
and displays it as a new column in the spreadsheet. From this enriched data, you can
then ask the machine to provide a first estimate of the missing values. This can
be achieved in different ways.

First, as a sales manager you could start filling the missing values yourself. After
one or two missing values are filled, the machine can infer that the remaining missing
values should also be filled. The machine will thus start suggesting values, which you
can then either accept them as is or correct them. Corrections will trigger a new auto-
completion loop, with additional constraints expressing that the user corrected some
values in the previous iteration.

Second, you could trigger the auto-completion by indicating that the machine
should fill the missing values. For this, you can use colors to indicate which values
should be predicted. Then, human-machine interaction proceeds as described above.
Additionally, the machine could provide information about some of the underlying
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model assumptions. For example, the machine can indicate which columns are used
for prediction and you could indicate whether these columns are relevant for predicting
profit.

The remainder of this chapter introduces some principles for human-machine col-
laboration in the context of auto-completion and automated data science. In particular,
we identify different levels of interaction, discuss how the machine adds user-knowledge
in its learning mechanisms, and elucidates how different data science tasks fit in our
framework.

Florence
Vanilla June 610

July 190
Aug 670
Total 1470
Profit YES

Stracciatella June 300
July 250
Aug 290
Total 860
Profit NO

. . . . . . . . .
Milan
Chocolate June 430

July 350
Aug ?
Total ?
Profit ?

City Touristic Weather Country

Florence High Hot IT
Stockholm High Cold SE
Copenhagen High Cold DK
Berlin Very High Mild DE
Aachen Low Mild DE
Brussels Medium Mild BE
Milan Medium Hot IT

Table 1.1 Left: Spreadsheet with ice cream sale numbers. The “?” values are are missing.

Right: Spreadsheet containing properties of shops

Type City June July Aug Total Profit

Vanilla Florence 610 190 670 1470 YES
Banana Stockholm 170 690 520 1380 YES
Chocolate Copenhagen 560 320 140 1020 YES
Banana Berlin 610 640 320 1570 NO
Stracciatella Florence 300 270 290 860 NO
Chocolate Milan 430 350 ? ? ?
Banana Aachen 250 650 ? ? ?
Chocolate Brussels 210 280 ? ? ?

Table 1.2 Spreadsheet with ice cream sale numbers.

1.3 Data Science Sketches

We now introduce the interaction strategy of VisualSynth, our framework for inter-
active data science.

Given a spreadsheet, a sketch is simply a set of colors (aka coloring) applied to one
or more rows, columns, or cells appearing in the spreadsheet. The key idea is that, the
colors partially define the parameters (e.g., the type, inputs, and outputs) of a data
science task. Hence, taken together, the sketch and the spreadsheet can be mapped
onto a very concrete data science task (e.g., a clustering task), which can then be
solved and and whose results (e.g., a set of clusters) can be filled into or appended to
the original spreadsheet, yielding an extended spreadsheet. This idea is captured in
the following schema:
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spreadsheet
+

sketch

 → data science task →
spreadsheet

+
model

 → new spreadsheet

When explaining the different components of VisualSynth we shall adhere to the
above scheme, i.e., our examples and figures will consist of four components: 1) the
input sketch and spreadsheet, 2) the data science problem specification, 3) the model,
and 4) the resulting spreadsheet.

The above scheme is in line with the closure property of databases and inductive
database (Imielinski and Mannila, 1996; De Raedt, 2002). For relational databases,
both the inputs and the results of a query are relations, which guarantees that the
results of one query can be used as the input for the next. In a similar vein, in our
setting, the inputs as well as the result of each operation (or data science task) are ta-
bles in a spreadsheet. The closure property guarantees that further analysis is possible
after each data science task.

VisualSynth is an example of user-guided interaction that enables the user to
convey her intentions by interacting using visual cues. Indeed, the sketches are supplied
by and end-user and are gradually refined in an interactive fashion – thus adapting
the data science task itself – until the user is satisfied with the result.

Next, we illustrate this interaction protocol using a number of key data science
tasks, namely data wrangling, concept learning, prediction, clustering, constraint learn-
ing, and auto-completion.

1.3.1 Data Wrangling

Wrangling is the task of transforming data in the right format for downstream data
science tasks. Coloring cells has already been used to help automated wranglers trans-
form data in a format desired by a user (Verbruggen and De Raedt, 2018). The user
has to indicate which cells belong to the same row by coloring them using the same
color. A wrangling sketch is therefore a set of colored cells, where each color defines
a partial example of the expected wrangling result and imposes a constraint on the
output, i.e., that the partial example should be mapped onto a single row into the
target spreadsheet.

A commonly used paradigm for data wrangling is programming by example (Lieber-
man, 2001; Cropper et al., 2015) (PBE), in which a language of transformations L is
defined and the wrangler searches for a program P ∈ L that maps the input examples
to the corresponding outputs. In the context of VisualSynth, given a wrangling
sketch and a spreadsheet, the goal is to find a program that transforms the spread-
sheet in such a way that cells with the same color end up in the same row, and no row
can contain cells with multiple colors.

An example is shown in Figure 1.3a. The data is clearly not in a suitable format
for analysis and a novice user might not be able to efficiently transform it. From a
small number of colored cells—the wrangling sketch—the synthesizer is able to learn
the program described in Figure 1.3c. This program yields the desired table from
Figure 1.3d when applied on the input table.

Finding such a program is a form of predictive program synthesis. The desired
solution is not known in explicit form, but the wrangling sketch imposes a constraint
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that the solution should at least satisfy. Additionally, syntactic and semantic properties
of the elements in rows and columns are used for heuristically determining the quality
of candidate solutions.

In addition to defining constraints on the output, the wrangling sketch can be
used to define heuristics for improving the search for a correct program. The relative
positions of cells in the same or different colors allow one to impose a strong syntac-
tic bias on the program synthesizer. For example, two consecutive columns with the
same number of vertically adjacent cells of the same color are very good candidates
for a pivot transformation, as in Table 1.3a, where the two rightmost columns fit this
description. A greedy beam search that interleaves heuristically selecting transforma-
tions and evaluating the results of these transformations was used in (Verbruggen and
De Raedt, 2018) to quickly find spreadsheet transformation programs.

Florence
Vanilla June 610

July 190
Aug 670
Total 1470
Profit YES

Stracciatella June 300
July 250
Aug 290
Total 860
Profit NO

. . . . . . . . .
Milan
Chocolate June 430

July 350
Aug ?
Total ?
Profit ?

(a) Input data and wrangling sketch
where each color indicates cells that
should end up in the same row.

Given the blue and red colorings, a spread-
sheet and a language in L in which to express
programs,
Find a wrangling program P ∈ L
such that blue cells end up in a single row,
and red cells in another single row.

(b) Wrangling problem statement.

split column 1 into two
columns based on having a
value in columns 2 and 3
forward fill column 1
forward fill column 2
pivot columns 3 and 4

(c) High-level description of
the transformation program, the
model of the data wrangling
task. These transformations are
detailed in Table 1.4.

June July Aug Total Profit
Vanilla Florence 610 190 670 1470 YES
Banana Stockholm 170 690 520 1380 YES
Chocolate Copenhagen 560 320 140 1020 YES
Banana Berlin 610 640 320 1570 NO
Stracciatella Florence 300 270 290 860 NO
Chocolate Milan 430 350 ? ? ?
Banana Aachen 250 650 ? ? ?
Chocolate Brussels 210 280 ? ? ?

(d) Expected output of the wrangling task.

Table 1.3 Input and expected output of the wrangling task.

1.3.2 Data Selection

Selecting the right data to analyse is one of the essential steps in data science processes
(Fayyad et al., 1996). Within VisualSynth we view this as the task to extract a subset
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Split(1)

Forward Fill(2)

Pivot(1,2)

Table 1.4 Examples of wrangling functions. Split creates a new column for each value of a

given column. Forward fill fills missing values in a column with the value directly above it.

Pivot uses unique values of a column as a new set of columns.

of subtables from the original spreadsheet. This is often a necessary step before the
machine learning methods (proposed in the following sections) can be applied.

Consider Table 1.5 as a running example. This table can be decomposed as 1) the
dataset given as input 1.5a, 2) the problem statement 1.5b, 3) an example of model
1.5c used to represent the selection and 3) the dataset returned as output 1.5d. The
dataset is represented by two spreadsheet tables. The sales table gathers the log of
each ice cream profits in each city and the provider table gathers the information
about the ice cream providers in each city with a discrete evaluation of the price and
quality of their products.

As an example for data selection, if the user wants to predict the missing values
for the Chocolate flavour, she could want to predict these using only the known values
for Chocolate and Vanilla without considering Banana and Stracciatella based on
her knowledge of the ice cream market. However, it would be hard for a non expert
spreadsheet user to perform the selection by hand. Therefore, the set of rows to be
used could be induced from a set of examples using a sketch. In a data selection sketch,
the user can indicate desirable examples by coloring them in blue, and unwanted or
irrelevant ones by coloring them in another color (say pink). The goal of data selection
is then to learn which part of the spreadsheet to retain. The model that is learned
will consist of queries that, when performed on the spreadsheet, returns the desired
selection of the data.

As illustrated on both tables with the columns Total and ProviderID, if a column
or a table does not contain any colored cell, this column or table will not appear
in the final selection. This is an intuitive way to represent the projection operator
from relational algebra. It ensures that the user can specify partial examples, that is,
examples that do not extend over all colored columns or tables. These partial examples
are then automatically extended over the remaining columns as to consider the full
rows in the relevant tables. An example of such a coloring extension is illustrated on the
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Type City June July Aug Total Profit

Vanilla Florence 610 190 670 1470 YES
Banana Stockholm 170 690 520 1380 YES
Chocolate Copenhagen 560 320 140 1020 YES

Banana Berlin 610 640 320 1570 NO
Stracciatella Florence 300 270 290 860 NO
Chocolate Milan 430 350 ? ? ?

Banana Aachen 250 650 ? ? ?
Chocolate Brussels 210 280 ? ? ?

Type City ProviderID Price Quality

Vanilla Florence 1 Cheap Bad
Vanilla Florence 2 Regular Good

Stracciatella Florence 1 Regular Great
Chocolate Copenhagen 3 Cheap Good

Chocolate Milan 4 Regular Good
Chocolate Milan 5 Expensive Great

Chocolate Brussels 6 Regular Good
Chocolate Brussels 6 Expensive Good

(a) Input tables describing ice cream sales and providers and containing colored examples.
The cells colored in blue and red are the relevant and irrelevant examples, respectively. The
cells colored in lighter gradient are the extension of the partial examples.

Given positive (blue) and
negative (pink) tuples in a
spreadsheet,
the schema of the tables,
Find one or more queries
that together cover all pos-
itives and none of the nega-
tives.

(b) Problem statement

?- sales(I0, Type, City, June, July, Aug, ’YES’),
provider(I1, Type, City, ’Cheap’, Quality).

?- sales(I0, Type, City, June, July, Aug, Profit),
provider(I1, Type, City, ’Regular’, ’Good’).

(c) Queries describing which rows are positive.

Type City June July Aug Total Profit

Vanilla Florence 610 190 670 1470 YES
Banana Stockholm 170 690 520 1380 YES
Chocolate Copenhagen 560 320 140 1020 YES

Banana Berlin 610 640 320 1570 NO
Stracciatella Florence 300 270 290 860 NO
Chocolate Milan 430 350 ? ? ?

Banana Aachen 250 650 ? ? ?
Chocolate Brussels 210 280 ? ? ?

Type City ProviderID Price Quality

Vanilla Florence 1 Cheap Bad
Vanilla Florence 2 Regular Good

Stracciatella Florence 1 Regular Great
Chocolate Copenhagen 3 Cheap Good
Chocolate Milan 4 Regular Good

Chocolate Milan 5 Expensive Great
Chocolate Brussels 6 Regular Good

Chocolate Brussels 6 Expensive Good

(d) Output tables corresponding to the input tables in which the relevant colors are included.
Table 1.5 Input, model and output of the data selection ice cream factory example. The

input and output are sets of colored cells from a set of tables and the output is a set of rules

representing the set of colored cells to be output.

input tables with lighter blue and red for positive and negative examples, respectively.
The data selection sketch can, thus, be decomposed in two steps. First, the coloring

of the partial examples is extended to the obtain complete examples. Each example
corresponds to a set of rows (or tuples) that can belong to multiple tables. Second, the
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examples are generalized into queries that should capture the concept underlying the
data selection process. Thus, the data selection task can be formalized as an inductive
logic programming or logical and relational learning problem (De Raedt, 2008; Mug-
gleton and De Raedt, 1994) such that: Given 1) a set of tables in a spreadsheet, 2) a
set of partial examples in two colors (representing positive and negative examples), 3)
the schema of the tables in the spreadsheet, Find one more relational queries whose
answers cover all positive examples, and none of the negative tuples. The resulting
queries are then run on the tables in the spreadsheet, and all rows that satisfy the
query are colored positively.

It will be assumed that we possess some information about the underlying relational
schema, in particular, the foreign key relations need to be known. These can be induced
by learning systems such as Tacle (Kolb et al., 2017), which is explained in more detail
below.

The use of colors to induce queries was already considered in a database setting
(Bonifati et al., 2016). However, the focus was on learning the definition of a single
relation, not on performing data selection across multiple tables as we do. Furthermore,
partial examples, which provide the user with extra flexibility, was not considered.

Processing the data. The first step is to extend the input coloring of Table 1.5a into
a set of examples. This process starts from the template and uses the foreign key
relations to indicate the joins. For our running example, the template query is:

?-sales(I0, Type, City, June, July, Aug, Profit),

provider(I1, Type, City, Price, Quality).

To select the examples, we start by detecting which rows contain at least one
color, and we expand these into the sets of facts we note Sales+ and Provider+,
and two other sets matching the irrelevant rows that we note Sales− and Provider−,
respectively. Furthermore, we omit the columns that do not contain any color, as they
are deemed irrelevant.

The next step is then to construct the positive examples by taking every ground
atom from one of the positive sets Sales+ and Provider+ and unifying it with the
corresponding atom for the same predicate in the template. The set of all answers to
the query constitutes an example. For instance, the first tuple in the Sales+ table
(having Type = V annila and City = Florence) would yield the example consisting
of that tuple and the first two tuples of the Provider table. The negative tables are
not expanded, they are only used to prune candidate generalizations.

Relational rule learning. With this setup, we can now define the inductive logic pro-
gramming problem (De Raedt, 2008). Given a set of positive examples (where each
example is a set of facts), a set of negative examples (the tuples in the negative set),
and the relational structure of the spreadsheet, Find a set of queries that cover all the
positive examples and none of the negative tuples. Such queries can in principle be
induced using standard relational learners such as GOLEM (Muggleton et al., 1990)
and FOIL (Quinlan, 1990).

What is used in VisualSynth is a simplified GOLEM; VisualSynth uses Plotkin’s
least general generalization (lgg) operator (De Raedt, 2008; Plotkin, 1970) together
with GOLEM’s search strategy. The lgg operator takes two examples and produces
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a generalized set of facts that can serve as the query. More specifically, consider the
example related to Type = V annila and City = Florence and the one related to
Type = Chocolate and City = Copenhagen. The resulting lgg would be

?- sales(I0, Type, City, June, July, Aug, "YES"),

provider(I1, Type, City, "Cheap", Quality),

provider(I2, Type, City, Price, "Good").

The strategy followed by GOLEM that we adopt here is to sample positive examples,
compute their lgg, verify that the lgg does not cover negative tuples, and if so replace
the positive examples (and other positives that are subsumed) by the lgg. This process
is continued, until further generalizations yields queries that cover negative tuples and
are too general. b Applying this strategy to our example yields the two queries shown
in Table 1.5c.c. Evaluating these queries on the original tables results in Table 1.5c.d.

Finally, the result of these rules which represent the rows to color can be easily
matched with the initial template that represents the columns to color and thus, output
the result set of colored cells.

Implementation choices. We chose for the implementation to not include GOLEM’s
assumptions in order to extract the complete set of LGGs covering our examples. This
implementation is based on the bottom-up search space strategy of GOLEM to extend
examples to LGGs until the point where they are too general and, thus, also cover
negative examples. Such approach is not a problem in our context as the number of
examples is small. Indeed, this approach is dedicated to extend a set of few examples
to a coherent subset of the whole dataset and would be meaningless to be run on an
entire dataset. Thereby, the size of the dataset itself, in terms of number of examples,
is not a limitation of our approach.

The main limitation, in terms of computation time, would appear while comparing
examples including many relations of the same type. For example, if a lot of providers
are available for the pairs ice cream type and city, it would be difficult to compare
set of providers because every combinations of providers will have to be evaluated.
Comparing hundreds of providers of chocolate ice cream with hundreds of providers
of vanilla ice cream in Florence will then lead to thousands of tuple comparison. In
such a case, the assumptions made by GOLEM may be inefficient to constrain the
complexity of the algorithm. Using θ-subsumption under object identity (Ferilli et al.,
2002) to compute the LGGs would help to constrain the number of generated tu-
ples but may be also inefficient in terms of complexity. Finally, other approaches, like
aggregation of tuples, could be used to simplify the dataset itself and, thus, extract
some partial information describing such examples. In this case, sets of provider tu-
ples could be aggregated for a given price or a given quality. For example, the term
provider_price(’Vanilla’, ’Florence’, ’Cheap’, Count) can be generated to
replace the set of providers selling vanilla in Florence at a cheap price, with Count
being the number of aggregated tuples.

1.3.3 Clustering

Clustering is the task of grouping data in different coherent clusters and is a building
block of typical data processing pipelines (Xu and Wunsch, 2005). In our use case, we
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use clustering not only as a way to learn clusters in the data, but also as a way to
generate new features. Through clustering, a user can express some of her knowledge
explicitly and this knowledge can then be used for future data science steps, such as
predicting a missing value.

Since clustering is ill-defined, recent developments in this area enable the machine
to interactively elicit knowledge from the end-user so as to guide the clustering towards
the user’s needs, cf. (Van Craenendonck et al., 2018). In the simplest case, the machine
iteratively presents pairs of (appropriately chosen) examples to the user and asks
whether they belong to the same cluster or not. The user’s feedback is then translated
into pairwise constraints, namely must-link and cannot-link constraints, which are
then used to bias the clustering process according to the elicited knowledge (Wagstaff
et al., 2001; Van Craenendonck et al., 2017).

Building on top of such techniques, colored sketches can be used to implement the
interaction: the user colors (a few) objects belonging to the same cluster using the
same color. Hence, items highlighted with the same color belong to the same cluster.
The sketch therefore consists of a set of such colorings, each identifying examples
from a given cluster. An example sketch is given in Table 1.6a. In this example, the
user colored a few rows to indicate that the city shops in Milan and Florence (both
colored in green) should belong to the same cluster, while Berlin and Seville belong
to a different cluster (colored in blue). The extra empty column at the end of each
table contains the resulting clustering. Although incomplete, this information often
suffices to guide the clustering algorithm towards a clustering compatible with the
user’s requirements (Van Craenendonck et al., 2017).

Problem setting. In section 1.3.1, we presented how data wrangling can map an ex-
ample to a single row of a table. Hence, we consider that an example in the clustering
is a table row. From this observation and the sketch described in the previous para-
graph, we get the problem setting for clustering: Given a set of set of colored rows
and a set of uncolored rows find a cluster assignment for all rows such that rows in
the same colored set belong to the same cluster and no rows in different sets belong
to the same cluster, or equivalently: find a cluster assignment for all rows such that
rows in the same colored set belong to the same cluster and the number of clusters is
equal to the number of colors.

Finding a cluster assignment. Current techniques to solve the above problem state-
ment typically start from a partial cluster assignment where all examples in the same
color set are in the same cluster. This can be achieved by using clustering algorithms
using must-link and cannot-link constraints (Wagstaff et al., 2001; Basu et al., 2004;
Van Craenendonck et al., 2017). Must-link constraints are enforced between examples
of the same color set, while cannot-link constraints are enforced between examples
from different color sets. Then, non-colored examples have to be assigned according
to a learned distance metric (Xing et al., 2003), or generalizations of existing (partial)
clusters.

The resulting cluster assignment is mapped back into a set of colored rows, as
depicted in Table 1.6d. The user can then modify the resulting cluster assignment by
adding new colors or by putting existing color on previously colorless rows. Iterative
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refinements of the cluster assignments and of the sketch are then performed, as the
user is unlikely to be able to fix all parameters of the clustering task through a single
interaction.

City Touristic Weather Nat

1 Florence High Hot IT
2 Stockholm High Cold SE
3 Copenhagen High Cold DK
4 Berlin Very High Mild DE
5 Aachen Low Mild DE
6 Brussels Medium Mild BE
7 Milan Medium Hot IT
8 Munich Medium Mild DE
9 Paris Very High Mild FR
10 Turin High Hot IT
11 Seville High Hot ES
12 Valencia High Hot ES

(a) Sketch for a clustering task. Rows of the same color
belong to the same cluster

Given the green, pink and
blue examples and the con-
straints in Table 1.6c,
find a cluster assign-
ment that satisfies the
constraints.

(b) Problem setting of the
clustering task

mustlink(1, 7), mustlink(2, 6),
mustlink(4, 11), cannotlink(1, 2),
cannotlink(1, 6),cannotlink(1, 4),
cannotlink(1, 11),cannotlink(7, 2),
cannotlink(7, 6),cannotlink(7, 4),
cannotlink(7, 11),cannotlink(2, 4),
cannotlink(2, 11),cannotlink(6, 4),
cannotlink(6, 11)

(c) Constraints passed to the clus-
tering algorithm. Arguments are row
number, starting from 1.

City Touristic Weather Nat Cluster

1 Florence High Hot IT
2 Stockholm High Cold SE
3 Copenhagen High Cold DK
4 Berlin Very High Mild DE
5 Aachen Low Mild DE
6 Brussels Medium Mild BE
7 Milan Medium Hot IT
8 Munich Medium Mild DE
9 Paris Very High Mild FR
10 Turin High Hot IT
11 Seville High Hot ES
12 Valencia High Hot ES

(d) Result of the first clustering task, where each color
represents a cluster. A light color means that the clus-
ter assignment has been performed by the clustering
algorithm.

Table 1.6 Input sketch, constraints and output sketch of the clustering task.

1.3.4 Sketches for inductive models

In this section, we present the use of sketches for learning and using inductive models
for auto-completion. In this context, inductive models refer to predictors, constraints or
a combination of the two. Learning predictors or constraints typically requires knowing
what data to learn from and what is the target to learn. From this observation, we
propose the sketch depicted in Table 1.7a.

First of all, the sketch of Table 1.7a is used to identify target cells and input
features. For instance, prior to initiating the learning of inductive models, the user
might highlight a target column containing empty cells, as in Table 1.7a (middle
right). This prompts the system to ignore other empty regions of the spreadsheet,
thus focusing the computation to the user’s needs and saving computational resources.
After a first round of learning, the system might highlight the columns that the value
of August was derived from, as in the Table (bottom left). In the example, the system
mistakenly used the Profit information to predict the sales for August. Although not
technically incorrect, as the two values are correlated, this choice does not help in
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June July Aug Total Profit

610 190 670 1470 YES
170 690 520 1380 NO
430 350 ? ? ?
250 650 ? ? ?

June July Aug Total Profit

610 190 670 B4D YES
170 690 520 1380 NO
430 350 ? ? ?
250 650 ? ? ?

June July Aug Total Profit

610 190 670 1470 YES
170 690 520 1380 NO
430 350 ? ? ?
250 650 ? ? ?

June July Aug Total Profit

610 190 670 1470 YES
170 690 520 1380 NO
430 350 ? ? ?
250 650 ? ? ?

June July Aug Total Profit

610 190 670 1470 YES
170 690 520 1380 NO
430 350 ? ? ?
250 650 ? ? ?

(a) Illustration of the inductive models sketch. Top table: simplified ice cream sale numbers.
Middle row: excluding a corrupted row from auto-completion using red (left) and selecting of
a column as target using blue (right). Bottom row: the machine decided to predict August,
in blue, from June and Profit, in green (left); the user improved the system’s choice of inputs
(right).

Given the green and blue columns
and the red rows,
find a predictive model
that predicts the blue column
from the green ones, while ignor-
ing the red rows.

(b) Problem setting of the induc-
tive model learning task. The con-
sidered sketch is the bottom left
from Table 1.7a

For predictor learning: Launch an autoML instance to
learn a model predicting August from June and July, with-
out the first row. The loss function in root mean squared
error.
For constraint learning: Learn constraints using June and
July to predict August, from the constraint template S
For auto-completion: Use inductive models in the system
to predict August from June and July, and learn constraints
if none are available and predictors if constraints cannot
predict missing values of August.

(c) Model learning step solving the problem setting in
Table 1.7b

June July Aug Total Profit

610 190 670 1470 YES
170 690 520 1380 NO
430 350 460 ? ?
250 650 540 ? ?

(d) Output sketch, where missing values for August have been filled. Predicted values are
in italic formatting to indicate that they come from an inductive model. The learned model
(constraints, predictor or a combination of both) is stored in the system and is associated
with the spreadsheet.
Table 1.7 Input sketch, problem setting and output sketch of the inductive model learning

task.

predicting the missing August sales. The user can improve the choice of inputs by de-
selecting irrelevant or deleterious inputs and by adding any relevant columns ignored
by the system. A possible result is shown in Table 1.7a (bottom right).

Next, sketches can be used to identify examples and non-examples. In Table 1.7a
(middle left), the Total is corrupted in one row. The user can mark that row (e.g.,
in red) to ensure that the software does neither use it for inferring predictors and
constraints nor for making predictions.
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In the next paragraphs, we describe how the sketch of Table 1.7a can be used to
define a prediction, a constraint learning task and an auto-completion task.

Prediction. Prediction is one of the most classic tasks in a Data Science. Prediction
can be decomposed in two steps. First, a predictor is fit on a dataset to predict targets
based on input features. Second, the fit model is used to make predictions on new
data using similar input features. A common framework to represent these two steps
is fit-predict, that is for example used in the scikit-learn library (Buitinck et al., 2013).
The fit step typically requires input data (also called training data) and target data.
The predict step only requires input data.

The prediction sketch depicted in Table 1.7a indicates the input features, the tar-
gets and the excluded examples. From the sketch, the prediction task becomes: Given
three sets of colored cells, find a predictive model using the columns of the first set
of cells to predict the columns of the second set of cells without using rows from the
third set of cells.

This prediction task is close to the AutoML task definition (Feurer et al., 2015),
with the difference that a loss function usually has to be defined in AutoML. However,
we can define default choices for this loss function depending on the type of target
feature. Hence, we can use any AutoML system, such as auto-sklearn (Feurer et al.,
2015), TPOT (Olson et al., 2016) or auto-WEKA (Kotthoff et al., 2017) to perform a
prediction task given the sketch presented in Table 1.7a.

If the first set of cells is empty, all columns not in the second set of cells are used
as input features. If the second set of cells is empty, all empty cells are automatically
added to the second set. The rationale is that we want to predict all empty cells.

Learning Constraints and Formulas. Formulas and constraints are key elements of
spreadsheets. ormulas are used by users to specify how certain cells can be computed
from other cells. For example, a formula C1 = MAX(C2, ..., Cn) specifies that col-
umn C1 is obtained by, for every row, computing the maximum of columns C2 to Cn.
Constraints can be used to verify whether the data satisfies some invariants and is
consistent. Simple constraints are often used by spreadsheet users to perform sanity
checks on the data (Hermans, 2013). For example, a constraint could test whether, in
a column Ci, the values are ordered in increasing order. However, formulas themselves
can also be seen as a type of constraints, specifying that the output values correspond
to the values computed by the formula. Therefore, learning constraints and formulas
can, in this context, be viewed as simply learning constraints.

In order to assist users in using constraints in their spreadsheets, as well as helping
them recover, for example, data exported without formulas from enterprise software
packages, existing systems such as TaCLe (Kolb et al., 2017) aim at automatically dis-
covering constraints and formulas in spreadsheets across different tables. The authors
propose a formalization of spreadsheet content into a hierarchical structure of tables,
blocks and single rows or columns. Single rows or columns are denoted as vectors to ab-
stract from their orientation and form the minimal level of granularity that constraints
can reason about. This means that a constraint such as C1 = MAX(C2, ..., Cn) can
only span over entire rows or columns. Allowing constraints over subsets of vectors
would allow for additional expressiveness at the price of decreased efficiency and a



Data Science Sketches xix

higher risk of finding spurious constraints that are true by accident. The data of every
table T is grouped into contiguous blocks of vectors that have the same type and every
vector is required to be type consistent itself, i.e., all cells within a vector – and by
extension within a block – need to have the same type. In practice, these restrictions
prohibit blocks or vectors that contain both textual and numeric cells. Mixed type vec-
tors and blocks will be excluded from the constraint search. Blocks impose a hierarchy
on groupings of vectors through the concept of sub-block containment: a block B1 is
a sub-block B2(B1 v B2) if B1 contains a contiguous subsets of the vectors in B2.

Similar to Inductive Logic Programming (ILP), constraint learning algorithms
(De Raedt et al., 2018) construct a hypothesis space of possible constraints. These
algorithms then attempt to efficiently search in the hypothesis space for constraints
that hold in the example data. TaCLe constructs a hypothesis space using a large
catalog of constraint templates, e.g., ?1 = MAX(?2). This approach is similar to Mod-
elseeker (Beldiceanu and Simonis, 2012), which uses a catalog of global constraints.
We can now define the tabular constraint problems formally:

Given a set of instantiated blocks B over tables T and a set of constraint tem-
plates S, find all constraints s(B′1, ..., B

′
n) where s ∈ S, ∀i : Bi v B′i ∈ B and

(B′1, ..., B
′
n) is a satisfied argument assignment of the template s.

We can use the sketch of Table 1.7a to instruct a constraint learning algorithm
to learn constraints for the cells of interest. Starting from the given tables T, we can
construct a new set of tables T̂ that contains all colored cells and a minimal number
of uncolored cells and no cell colored in red (the third set of colored cells). This set
of tables is computed by collapsing columns and rows that consist solely of uncolored
cells and removing cells from the third set of colored cells. The blocks B̂ of these tables
could be computed by grouping all neighboring type-consistent vectors. However, to
avoid learning constraints over blocks that are not contiguous in the original tables,
vectors that are separated in the original tables T by uncolored vectors are not grouped
within the same block. Additionally, to avoid learning constraints over partial rows
or columns, only vectors are considered that are subsets of vectors that were type-
consistent in the original set of blocks B. Finally, we can run a tabular constraint
learning such as TaCLe on blocks B̂ to obtain a set of constraints that hold on these
cells and can be mapped back to the original tables T.

We briefly note that, since formulas can also be seen as predictors, and generic
constraints – such as those learned by ModelSeeker (Beldiceanu and Simonis, 2012)
or Incal (Kolb et al., 2018) – can also be seen as binary predictors, methods that
learn these formulas or constraints can also be used specialized predictors and use the
second set of colored cells as to specify output (predicted) columns or rows.

Auto-completion. In typical spreadsheet applications, whenever the software detects
that the user is entering a predictable sequence of values in a row or column (e.g.,
a constant ID or a sequence of evenly spaced dates), the remaining entries are filled
in automatically. This is achieved using propagation rules. This elementary form of
auto-completion, while useful for automating simple repetitive tasks, is of limited use
for data science.

A much more powerful form of auto-completion is predictive spreadsheet auto-
completion under constraints, or PSA for short (Kolb et al., 2019). PSA can be defined
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as follows: Given a set of tables in a spreadsheet and a set of one or more empty
cells, find an assignment of values to the cells. The key feature of PSA is that the
missing values are inferred using one or more predictive models, often classifiers or
regressors (Bishop, 2006), while ensuring that the predictions are compatible with the
formulas and the constraints detected in the spreadsheet.

Let us illustrate predictive auto-completion using the sales data in Table 1.7a.
Some of the values for August are not yet available, hence Total cannot be computed
and no conclusion can be drawn about profitability. Intuitively, PSA auto-completes
the table by performing the following steps: 1) find a predictive model for the column
August using (some of) the sale numbers for the other months; 2) discover a formula
stating that Total is the sum of June, July, and August; 3) find a predictive model
for Profit based on both the observed and predicted values; 4) impute all missing
cells.

PSA is significantly more useful for interactive data science than standard auto-
completion, because it enables non-experts to make use of automatically extracted
formulas and constraints without typing them, and to apply predictive models without
specifying them. The assumption is, of course, that an appropriate user interface is
available.

From the sketch presented in Table 1.7a, we can derive an auto-completion task,
similar to the prediction task described above: Given three sets of colored cells, find
a predictive model using the columns of the first set of cells to predict the columns of
the second set of cells without using rows from the third set of cells.

A general strategy for solving PSA was recently proposed that combines two of
the core data science tasks considered above, namely learning predictors and learning
constraints (Kolb et al., 2019). At a high level, this strategy consists of two steps. In a
first step, a set of predictors and formulas for the target cell(s) as well as a set of con-
straints holding in the data, are learned from the observed portion of the spreadsheet.
Then, the most likely prediction consistent with the extracted constraints is computed.
This is achieved by combining the learned predictors and formulas using probabilistic
inference under constraints (Koller and Friedman, 2009). Low-performance models are
automatically identified and their predictions are ignored.

In order to solve predictive spreadsheet auto-completion, we rely on PSyChe, the
implementation introduced in (Kolb et al., 2019). For ease of exposition, we introduce
PSyChe on the simplest setting, namely auto-completing a single cell. In PSA, auto-
completing a cell amounts to determining the most likely value that is consistent
with respect to the constraints holding in the spreadsheet. If the machine knew what
observed cells determine or influence the missing value (e.g., the August sales) and
what formulas and constraints hold in the spreadsheet (Total is the sum of June,
July, and August), then the problem would boil down to prediction under constraints.
Indeed, one could train a predictive model (e.g., a linear regressor) on the fully observed
rows and use it to predict the missing value in the target row. The caveat is that values
that violate the constraints (e.g. the prediction for August might be incompatible with
the Total revenue) must be avoided. In practice, however, no information is given about
the relevant inputs and constraints.
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To side-step this issue, PSyChe extracts a set of candidate predictors and con-
straints directly from the data. We discuss this process next.

Solving predictive auto-completion under constraints. PSyChe acquires can-
didate constraints and formulas from the spreadsheet by invoking TaCLe, a third-party
learner specialized for this task (Kolb et al., 2017). As for the predictors, PSyChe
learns a small ensemble of five to ten models, including decision trees, linear regressors,
or other models. Since it is unclear which input columns are relevant, each predictor
is trained to predict the target value from a random subset of observed columns. The
intuition is that, while most input columns are likely irrelevant, some of the predictors
will likely look at some of the relevant ones. Of course, some of the predictors may per-
form poorly. The rest of the pipeline is designed to filter out these bad predictions and
retain the good ones. This is achieved with a combination of probabilistic reasoning
and robust estimation techniques, as follows.

First, in order to correct for systematic errors, the outputs of all acquired predictors
are calibrated on the training data using a robust estimation procedure. For example,
in class-unbalanced tasks – like predicting the product ID of a rare ice cream flavour
in a sales spreadsheet – predictors tend to favour the majority class. The calibration
step is designed so to redistribute probability mass from the over-predicted classes to
the under-predicted ones. The calibration is computed using a robust cross-validation
procedure (Elisseeff and Pontil, 2003) directly on the data. The resulting estimate is
further smoothed to prevent over-fitting. The outcome of this step is a calibrated copy
of each base predictor.

In the next step, PSyChe combines the calibrated predictions to determine the
most likely value for the missing cell. The issue is that multiple alternatives are avail-
able, one for each predictor. The main goal here is to filter out the bad predictions. In
the simplest case, PSyChe performs the combination using a mixture of experts (Jor-
dan and Jacobs, 1994; Bishop, 2006). At a high level, this means that each calibrated
predictor votes one or more values, where the votes are weighted proportionally on the
estimated accuracy of the predictors. PSyChe implements several alternatives which
differ in how trust is attributed to the various predictors. This produces a ranking of
candidate values for the target cell.

As a final step, the learned constraints are used to eliminate all invalid candi-
date values and a winner is chosen. This guarantees that the value is both valid and
suggested by the majority of high-quality (calibrated) predictors.

Auto-completing multiple cells requires performing the same steps. The only major
complication is that, in this case, since the cells being completed may depend on each
other (e.g. August, Total and Profit are clearly correlated), PSyChe has to find an
appropriate order in which to predict them. Since the rest of the process is intuitively
identical to the single-cell case, we do not discuss this further here. The interested
reader can find all the technical details in (Kolb et al., 2019).

Integrating the sketches. Let us now consider the effect of colored sketches. So far,
we assumed that no information about the inputs, outputs, and constraints is available
to the system. Sketches partially supply this information. In the previous Section we
discussed two types of sketches: 1) highlighting examples versus non-examples, and
2) identifying and correcting relevant inputs, cf. Table 1.7a. Both can be fit naturally
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into the design of PSyChe and greatly simplify the auto-completion process.
In particular, information about invalid examples enables PSyChe to avoid bad

predictive models. The major benefit is that more resources can be allocated to higher-
quality models, and that low-quality predictions will be less likely to influence or bias
the inference process. Relevant input information has similar consequences.

1.4 Related Work

1.4.1 Visual Analytics

Visual analytics refers to technologies that support discovery by combining automated
analysis with interactive visual means (Thomas, 2005). VisualSynth is therefore
tightly linked with visual analytics, as it combines automated data analysis with vi-
sual interaction. Visual analytics is typically used to help a user understand or solve
a complex problem. Most approaches are tailored to a specific use case or a particular
type of data, see (Hohman et al., 2018; Amershi et al., 2014; Kehrer and Hauser, 2012)
for overviews. Some processes of data science have been studied in visual analytics:
understanding a machine learning model (Krause et al., 2016), exploring data visu-
alizations (Wongsuphasawat et al., 2017) or building analysis pipelines (Wang et al.,
2016). Because these methods are task specific, a challenge in visual analytics is to
design interactions that can handle a range of tasks, through different guidance de-
grees (Ceneda et al., 2016). VisualSynth provides one way to use simple interaction
through colorings across a range of data science related tasks. VisualSynth is there-
fore a first step towards solving some of the current challenges in visual analytics in
the domain of data science.

1.4.2 Interactive Machine Learning

VisualSynth also has strong ties with the field of Interactive Machine Learning
(IML). IML aims at complementing human intelligence by integrating it with com-
putational power (Dudley and Kristensson, 2018). Some of the key challenges of IML
are similar to the challenges we are also tackling: inconsistent and uncertain users,
intuitive displaying of complex model decisions and wide range of interesting tasks. To
solve some of these challenges, most IML approaches focus on a particular type of data:
text (Wallace et al., 2012), images (Fails and Olsen Jr, 2003), or time series (Kabra
et al., 2013). In stark contrast, we focus on spreadsheets, which can store arbitrary
combinations of numerical and categorical values, text, and time series. Moreover, in
our setting the task to be solved (e.g., data wrangling, formula extraction or cluster-
ing) is not given upfront. In explorative tasks, the user herself may not know what she
is looking for in the data. Our goal is to help end-users carry out whatever task they
have in mind, and which they may have trouble fully articulating.

1.4.3 Machine Learning in Spreadsheets

Small scale user studies about bringing basic machine learning capabilities for non-
expert spreadsheet users have been conducted (Sarkar et al., 2014; Sarkar et al., 2015).
The main conclusion from these studies is that näıve end-users are able to successfully
use basic machine learning algorithms to predict missing values or assess the quality
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of existing values. The user can use one button to indicate the data that can be used
for learning (the training examples) and another button to apply the learned model to
a specific column (the target variable). Visual feedback, in the form of cell coloring or
cell annotations is added to communicate with the user. Coloring is used to indicate
cells that should be used for training or whether the values imputed by the model are
erroneous. The main difference between these two work (Sarkar et al., 2014; Sarkar
et al., 2015) and VisualSynth is that we present a general framework to perform
data science tasks using sketches, while these work focus on user studies for the use
of colors in spreadsheet for a specific data science task: prediction using k-Nearest
Neighbor.

1.4.4 Auto-completion and Missing Value Imputation

Spreadsheet applications often implement simple forms of “auto-completion” via prop-
agation rules (Gulwani, 2011; Harris and Gulwani, 2011; Gulwani et al., 2012). Clearly,
even simple predictive auto-completion is beyond the reach of these approaches.

Techniques for missing value imputation focus on completing individual data ma-
trices (Scheuren, 2005; Van Buuren, 2018) using statistics (Van Buuren, 2007) or ma-
chine learning (Stekhoven and Bühlmann, 2011). These techniques are not designed
for spreadsheet data, which usually involves multiple tables, implicit constraints, and
formulas. Several works automate individual elements of the spreadsheet workflow by,
e.g., extracting and applying string transformations (Gulwani, 2011; Gulwani et al.,
2015; Devlin et al., 2017) and acquiring spreadsheet formulas and constraints hid-
den in the data (Kolb et al., 2017). Psyche (Kolb et al., 2019) combines such tools
into a principled predictive auto-completion framework. In order to do so, it leverages
probabilistic inference (using a form of “chaining” (Van Buuren, 2007)) and learned
constraints and formulas to fill in the missing values of multiple related tables. Psyche
is an integral component of VisualSynth.

1.5 Conclusion

We presented VisualSynth, a framework for interactively modeling and solving data
science tasks that combines a simple and minimal interaction protocol based on col-
ored sketches with inductive models. The sketches enable näıve end-users to (partially)
define data science tasks such as data wrangling, clustering, and prediction. At the
same time, the inductive models allow the system to clearly capture and reason with
general data transformations. This powerful combination enables even non-experts to
solve data science tasks in spreadsheets by collaborating with the spreadsheet appli-
cation. VisualSynth was illustrated through examples on several data science tasks
and on concrete use-cases.

Building on VisualSynth, an interesting problem is predicting which sketch the
user is likely to use given the current state of the spreadsheet. This is the problem of
learning to learn, that is learning what knowledge the user would like to learn. To do
this, an interesting starting point is to observe how users are using sketches to perform
the task they have in mind. Then, learning from these interactions allows us to learn
what sketches are typically used in a given state. Finding suitable representations of
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such a spreadsheet state is a challenging task, but semantic and structural information,
as well as available knowledge are likely to play a key role.
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