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Abstract

One of the main challenges of the energy transition is the increasing need for
demand flexibility due to the intermittency of renewable energy sources. While
electrification of heating and transport further increases the need for sustainable
energy sources, it also provides a source of flexibility. Power-to-heat technologies,
such as heat pumps and electric water heaters, offer decoupled demand for heat
and power, and thus provide a source of flexibility at the residential level.

Demand Response (DR) programs aim to activate demand flexibility by
encouraging end-users to adapt their energy consumption based on grid signals.
Over the past years, many countries have started to re-organise their electricity
market(s) to activate dormant residential flexibility. For example, in the
European Union every customer is entitled to an electricity contract with
time-varying prices.

To harness this flexibility, researchers have been looking at Reinforcement
Learning (RL). The main benefit of this control paradigm is its ability to solve
complex control problems without the need for an environment model. This
property mitigates several challenges of residential DR. Unfortunately, RL is
relatively data inefficient. This manifests itself in extensive training times.
During this initial period, the RL agent shows poor performance.

Inspired by recent efforts to improve RL data efficiency, this work builds
upon transfer learning algorithms and contributes to their application in DR.
This dissertation proposes several knowledge transfer learning approaches that
increase data efficiency of RL algorithms, both in single- and multi-agent settings.
This work shows how RL agents can be pre-trained in simulation, either to
perform the same task in practice or to perform the same task for a different
appliance. Furthermore, this work presents a method to incorporate domain
knowledge into RL agents, without restricting their applicability. By means of
these approaches, RL agents show good control performance immediately after
deployment and, consequently, increased user comfort.
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Beknopte samenvatting

Reinforcement Learning met kennisoverdracht voor toepassingen van
residentiële vraagsturing

Een van de grootste uitdagingen van de huidige energietransitie is de stijgende
behoefte aan flexibiliteit langs de vraagzijde. Deze flexibiliteit is nodig omdat het
productieprofiel van hernieuwbare energiebronnen vaak moeilijk te voorspellen
is en een wisselend karakter heeft. Bovendien zorgt de stijgende graad van
elektrificatie van onze verwarming en ons transport ervoor dat we in de toekomst
meer van die hernieuwbare bronnen zullen nodig hebben. Gelukkig bieden
elektrische wagens, elektrische boilers en warmtepompen ook een grote mate van
flexibiliteit. Dit komt omdat zij, door hun energiebuffer, voor een ontkoppeling
van de warmtevraag en elektriciteitsvraag zorgen.

Door middel van verschillende signalen, en met behulp van vraagsturing, kunnen
eindgebruikers aangemoedigd worden om hun flexibiliteit actief te gebruiken
en hun verbruik aan te passen aan de noden van het elektriciteitsnet. In de
voorbije jaren zijn verschillende landen begonnen met het herorganiseren van
hun elektriciteitsmarkt. Dit met als doel het activeren van flexibiliteit die tot
op heden niet gebruikt werd. Zo werd het binnen de Europese Unie onlangs
ingeschreven dat het een recht is van elke consument om een dynamisch contract
af te sluiten met zijn energieleverancier.

Om deze flexibiliteit te kunnen exploiteren kijken onderzoekers meer en
meer naar Reinforcement Learning (RL). Het grootste voordeel van deze
regelmethodologie is de mogelijkheid om complexe regelsystemen op te lossen
zonder dit regelsysteem wiskundig te moeten beschrijven. Deze eigenschap
biedt een oplossing voor enkele van de grootste uitdagingen op het vlak van
residentiële vraagsturing. Jammer genoeg gaat RL vrij inefficiënt om met de
beschikbare data. Dit resulteert in lange perioden van slechte sturing omwille
van het onvoltooid leerproces.

Geïnspireerd door recente nieuwe ontwikkelingen die de data-efficiëntie van RL

v



vi BEKNOPTE SAMENVATTING

verhogen, bouwt dit werk voort op algoritmes die kennisoverdracht mogelijk
maken en draagt het bij aan de toepassing van deze algoritmes voor vraagsturing.
Dit proefschrift stelt enkele mogelijkheden voor om kennis over te dragen tussen
verschillende systemen en zo de data-efficiëntie van RL te verhogen, zowel voor
systemen met één enkele agent, als voor systemen met meerdere agenten. De
resultaten in dit proefschrift tonen aan dat RL-agenten in een simulatie kunnen
worden voorbereid op het regelsysteem dat ze in de praktijk zullen moeten
aansturen. Tevens kunnen agenten ook worden voorbereid op het uitvoeren van
dezelfde taak, maar voor een ander apparaat. Dit werk toont ook aan dat het
mogelijk is om domeinkennis van een expert rechtstreeks in te bouwen in de
RL-agent. En dit op een manier waarbij de toepasbaarheid niet gelimiteerd
wordt tot één enkel huishouden. Al de hierboven genoemde methoden dragen
bij aan het verhogen van de data-efficiëntie van RL-algoritmes. Door middel
van de voorgestelde werkwijzen wordt de prestatie van de RL-regeling, tijdens
de eerste weken na de installatie, sterk verhoogd. Dit resulteert in verhoogd
comfort voor de eindgebruiker en komt tegemoet aan de toenemende noden van
de energiemarkt.
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Chapter 1

Introduction

1.1 Motivation

The increasing share of renewable energy sources in the electricity grid of today
has raised major challenges. The intermittent nature of these energy sources
reduces the available flexibility at the generation side. Simultaneously, most
decarbonisation scenarios for the energy sector are built on electrification of
heating and transport. This, however, significantly increases electricity demand,
and the variability in generation is expected to increase sharply with more
renewables in the grid. Taken together, these have the potential to disrupt
stable electric grid operation [79]. These problems appear on multiple levels. For
customers, this often means increasing energy costs, while also leading to voltage
and power flow issues on the distribution grid [36]. On the transmission side, it
can lead to frequency issues caused by inertia loss and steep ramp rates [67],
as well as an increase in capacity requirements [38]. The latter is particularly
dangerous as the contracted capacity is often in the form of polluting peaking
plants, which counteracts the decarbonization objectives [22].

Batteries and Demand Response (DR) are considered enabling technologies
in the energy transition. These technologies facilitate the shift towards more
sustainable means of electricity generation and accelerate electrification of
heating and transport by mitigating the challenges related to intermittent
renewable energy sources. DR aims to exploit the flexibility potential of
consumers by controlling energy consumption of loads. In this regard,
Thermostatically Controlled Loads (TCLs) are very promising due to their
inherent possibility to shift electricity consumption in time, while still being

1



2 INTRODUCTION

Agent
Action
utReward

rt

State
xt

Environment

Figure 1.1: Agent-environment interaction in reinforcement learning.

able to satisfy heat demand. For example, an Electric Water Heater (EWH)
can provide hot water for some time after the buffer has been heated.

While the sole purpose of a residential battery can be the provision of flexibility,
TCLs only provide flexibility as a secondary goal. Their main aim is to provide
heat. However, herein also lays their strength, they inherently add a source of
flexibility to a residential consumer. There is no need for an extra investment.
Unfortunately, actively controlling TCLs is challenging, especially in residential
cases. To maximize impact on the electrical system, in this setting, large sets
of small loads have to be controlled. Modeling the dynamics of each individual
appliance in such a cluster is time-consuming and expensive [8, 70]. Therefore,
in the quest for optimizing the usage of demand flexibility, researchers have been
looking at artificial intelligence techniques. Model-free control methodologies,
like RL, seem a valuable alternative [71, 70, 38, 9]. Yet, although RL mitigates
the system-identification problem, several challenges and questions remain.

1.2 Challenges of Reinforcement Learning for De-
mand Response

DR control is a sequential decision-making problem which can best be formulated
as a Markov Decision Process (MDP). Just like existing (and future) markets
for energy and flexibility, the MDP formalism uses discrete time-steps at which
action-controlled state transitions occur. These transitions come at varying
costs and may have uncertain effects. The operator, or so-called agent, is in
charge of choosing the best action, where best is defined by a reward-function.
This function gives the agent a notion of the state transition quality. Everything
which is exogenous to the agent is called the environment. Figure 1.1 shows the
interactions between agent and environment [82].

Model Predictive Control (MPC) has been proposed multiple times to solve this
decision-making problem [40]. In DR it has been used in a variety of use cases,
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such as day-ahead scheduling of loads [5]. Moreover, in the specific case of TCL
control it has achieved promising results. For example, to reduce space heating
costs [8, 12, 26, 80]. Unfortunately, MPC has several drawbacks. By using a
model of the physical system and assuming this reflects actual dynamics, results
heavily depend on the accuracy of the model [64]. Additionally, while developing
the controller, approximately 60% of human effort is spent on modeling [8].
Grey-box models and system-identification do not mitigate this pitfall [64]. The
mentioned drawbacks all show there is potential for other approaches to solve
the MDP.

RL is a machine learning technique very well suited to optimize MDPs. An
important advantage over MPC is that it does not need models: it works
with data samples. Recent advances have made it possible to apply RL to a
large range of problems, including (residential) DR. Economically, residential
DR is only compelling when a whole cluster of flexible loads (appliances) is
managed [25]. Due to the heterogeneous nature of all these appliances the
system-identification (modeling) step is exceptionally challenging. This has
drawn DR researchers to RL. Mbuwir et al. [45] use RL in a battery management
system of a micro-grid. The same algorithm has been used by Ruelens et al. [69,
71] to control a heat pump and EWH, respectively. De Somer et al. [13], on the
other hand, use it for optimal self-consumption of local PV generation. This
proves the versatility of RL algorithms and shows RL is a promising strategy
for distributed control: by means of distributing control complexity, a whole
cluster of loads can be controlled.

Although the previous examples look promising, RL also has its deficiencies.
Arguably one of its main weaknesses is data inefficiency. State-of-the-art
methods are still sample inefficient and require, for example, 29 million games
of Go before reaching an above-human level [74]. Data is mostly not abundantly
available in residential households. Neither is it likely users will allow long
training times nor actions that disrupt their comfort heavily.

Recent advances have shown that techniques such as transfer and semi-supervised
learning can considerably improve the performance of machine learning models,
used in RL agents [2]. Such formulations allow models to leverage existing
data, domain knowledge and human expertise [9, 35]. The biggest advantage
of transfer learning is that it reduces the data complexity of machine learning
models [101]. More specifically, by leveraging domain knowledge and/or
previously gathered data, machine learning models tend to perform better
with fewer data points, learn faster as more data becomes available [56], and
achieve higher asymptotic performance than their naive counterparts [62].

Due to these benefits, transfer learning can enable large scale real-world roll-out
of automated DR programs. This ranges from improved forecast and dynamics
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models to more efficient reinforcement learning agents.

1.3 Challenges, Research Questions and Objectives

Challenges

In an effort to mitigate the challenges with respect to the human effort necessary
for manual DR, researchers have looked at control methods for increasing the
level of automation. Automated DR using model-free RL has mitigated certain
challenges with respect to the modelling effort needed in traditional optimization
techniques. However, general residential DR challenges as well as challenges
related to the usage of RL in DR remain.

• Heterogeneity: In residential DR their are two main sources of
heterogeneity: the TCLs and the users. There are a lot of different
appliances, with different power ratings and dimensions available in today’s
market and different households have different behaviour. Therefore, the
proposed solution should be generally applicable to all sorts of TCLs and
be independent of user behaviour.

• Scalability: Combined with the heterogeneous nature of residential
appliances a large-scale residential DR setting quickly becomes intractable.
The proposed solution should, therefore, be able to scale well in terms
of the amount of appliances (both in number and in type) that can be
controlled simultaneously.

• Modelling costs: Implementation of Rule-Based Control (RBC) or
model-based control requires domain experts. These rules and models
need to be adapted for specific use cases and appliances. The cost of such
domain expertise is not negligible. If a certain solution requires expert
knowledge this would tamper its cost-effective large scale implementation.

• Data-efficiency: Finally, data is relatively scarce in residential
applications. Additionally, users expect a working solution from the
start and their comfort should be guaranteed. RL always requires a
certain amount of training time. On top of this, RL algorithms trade-off
exploration and exploitation of gained knowledge. At the start, explorative
actions will be taken by the agent quite often. This is because state-of-the-
art learning algorithms always start from scratch, without any knowledge
about the problem at hand. This is not efficient and does not correspond
with our intuitive notion of learning. Furthermore, these explorative
actions can be counter-intuitive and challenge the user acceptance of the
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control approach. Therefore, the proposed solution should efficiently use
the available data and work as expected by the user, as soon as possible
after installation.

• RL algorithm design and parameter tuning: In recent years, RL
has gained a lot of attention due to promising research results. More often
than not, good results are praised while design and parameter tuning
efforts are played down. Algorithms, (hyper)parameters and reward-
functions often need to be tweaked to the problem at hand. Therefore, a
lot more domain knowledge, from both RL and the application domain,
is needed than most expect.

Research Questions

1. Which residential DR settings would benefit from RL based control and
how are consumers incentivised to participate in these DR programs?

2. How can we design cost-effective and generally applicable methods that
benefit maximally from available data before the agent is deployed at the
consumer’s site?

3. If available data is not sufficient to guarantee performance from the start
of operation, how can we incorporate domain knowledge in a general way,
i.e., without the need for extensive modelling?

Objectives

Based on the identified challenges and resulting research questions, the following
objectives have been proposed for the present work:

1. Formalise a control problem for the different DR settings that exist or
will be implemented in the near future.

2. Extend and design RL algorithms facilitating knowledge transfer from
simulation to practice.

3. Extend and design RL algorithms for efficient adaptation to changing
contexts.

4. Extend and design RL algorithms that incorporate domain knowledge in
the learning pipeline, without restricting the applicability.
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1.4 Main Contributions

Given the stated objectives, this dissertation advances the current state-of-the-
art in a variety of ways.

1.4.1 Dissertation Contributions

• This dissertations identifies different residential DR settings which will
be of practical importance in the upcoming years and formalises their
optimisation problems.

• During this work different sensory input possibilities for TCLs have been
identified. Their impact on control performance has empirically been
compared by using and benchmarking them as input for RL agents in DR
settings.

• This dissertation presents an extensive discussion on the progress and
impact of transfer learning within DR settings. Based on this discussion,
important next steps have been identified and explored.

• This dissertation shows that it is possible to pre-train RL agents in
simulation by using general hot water buffer models. It does so by
extending both Fitted Q-Iteration (FQI) and Double Q-learning (DQL),
two RL algorithms, with domain randomization. The latter is a technique
used to pre-train RL agents through randomised models. The results in this
dissertation show that domain randomization does not only vastly increase
data-efficiency of both algorithms, but also increases overall control
performance of the agent. Additionally, using domain randomization,
a pre-trained agent can generalise to unseen buffer dynamics.

• A novel multi-agent extension of FQI with experience replay (i.e., saving
and using past transitions), that allows for efficient adaptation to a
changing environment, is presented. The proposed method allows to
jumpstart performance of new agents entering the system.

• In this dissertation, Flanders’ (Belgium) recently introduced capacity tariff
is explored. An RL agent that successfully manages to exploit flexibility
potential to reduce the end-consumer’s energy bill, has been implemented.

• This dissertation shows RL agents can be pre-trained with artificially
generated datasets, based on consumer statistics. These average RL agents
are able to generalise to specific households. This allows to use readily
available climate and consumer data that is collected for other purposes.
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• In this work a novel extension of the algorithm Proximal Policy Iteration
(PPO) has been proposed. This extension allows to incorporate domain
knowledge in a non-restrictive way, by shaping the control policy
beforehand. The results show above human-level control performance.

• Although tuning RL parameters and algorithms to different applications
has shown to be one of the remaining challenges of RL. In this dissertation
multiple algorithms have been adapted for several DR applications, as
shown by the above contributions.

1.4.2 Scientific Output

The above mentioned contributions have lead to various collaborations with
colleagues and have resulted in several submitted and accepted publications at
scientific conferences and in (academic) journals.

Journals

• T. Peirelinck, C. Hermans, F. Spiessens, and G. Deconinck. “Domain
Randomization for Demand Response of an Electric Water Heater”. In:
IEEE Transactions on Smart Grid 12.2 (May 2020), pp. 1370–1379. issn:
1949-3053. doi: 10.1109/tsg.2020.3024656

• T. Peirelinck, H. Kazmi, B. V. Mbuwir, C. Hermans, F. Spiessens, J.
Suykens, and G. Deconinck. “Transfer learning in demand response: A
review of algorithms for data-efficient modelling and control”. In: Energy
and AI 7 (2022), p. 100126. issn: 2666-5468. doi: 10.1016/j.egyai.
2021.100126

• (To be submitted) T. Peirelinck, C. Hermans, F. Spiessens, G. Decon-
inck,"Combined Peak Reduction and Self-Consumption Using Proximal
Policy Optimization", 2022

Conference Proceedings

• T. Peirelinck, F. Ruelens, and G. Deconinck. “Using reinforcement learning
for optimizing heat pump control in a building model in Modelica”. In:
2018 IEEE International Energy Conference (ENERGYCON). IEEE,
2018, pp. 1–6. isbn: 978-1-5386-3669-5. doi: 10.1109/ENERGYCON.2018.
8398832

https://doi.org/10.1109/tsg.2020.3024656
https://doi.org/10.1016/j.egyai.2021.100126
https://doi.org/10.1016/j.egyai.2021.100126
https://doi.org/10.1109/ENERGYCON.2018.8398832
https://doi.org/10.1109/ENERGYCON.2018.8398832
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• C. Patyn, T. Peirelinck, and G. Deconinck. “Intelligent Electric Water
Heater Control with Varying State Information”. In: 2018 IEEE
International Conference on Communications, Control, and Computing
Technologies for Smart Grids (SmartGridComm). IEEE, 2018, pp. 1–7.
isbn: 9781538679548. doi: 10.1109/SmartGridComm.2018.8587453

• T. Peirelinck, F. Spiessens, C. Hermans, and G. Deconinck. “Double
Q-learning for Demand Response of an Electric Water Heater”. In: 2019
IEEE PES Innovative Smart Grid Technologies Europe (ISGT Europe).
IEEE, 2019. doi: 10.1109/ISGTEurope.2019.8905776

• T. Peirelinck, C. Hermans, F. Spiessens, and G. Deconinck. “Transfer
learning for Demand Response of a Multi-Agent Battery and Electric
Water Heater System”. In: 2021 IEEE PES Innovative Smart Grid
Technologies Europe (ISGT Europe). IEEE, 2021. doi: 10 . 1109 /
ISGTEurope52324.2021.9640081

Non-scientific Journals

• T. Peirelinck, "Zelflerend Systeem voor een Verwarmingsinstallatie",
Sanilec, 2018.

1.5 Outline

Figure 1.2 gives an overview of the outline of this dissertation. Chapters 2 and
3 formally present the mathematical framework and challenges of this work.
Chapter 4, 5 and 6 each present a different approach of transfer learning in DR
applications. More specifically, the organisation of this dissertation is as follows:

• Chapter 2 - Reinforcement Learning in Demand Response -
Formal presentation of the control problem and all its aspects. The models
of the appliances and the main DR tasks are presented. Important aspects
with respect to the user comfort guarantees are discussed. Additionally,
the most important aspect of the RL algorithms implemented throughout
this work are presented.

• Chapter 3 - Transfer Learning in Demand Response - Literature
review of transfer learning applications within DR. Transfer learning
and the difference with conventional machine learning is explained.
Furthermore, a formal taxonomy of transfer learning is proposed. Using

https://doi.org/10.1109/SmartGridComm.2018.8587453
https://doi.org/10.1109/ISGTEurope.2019.8905776
https://doi.org/10.1109/ISGTEurope52324.2021.9640081
https://doi.org/10.1109/ISGTEurope52324.2021.9640081
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Figure 1.2: Outline of this dissertation.

this taxonomy future research opportunities have been identified. This
work has been disseminated in a journal paper [58].

• Chapter 4 - Domain Randomization for Demand Response -
An extension of FQI and DQL, as they were presented in Chapter 2, is
presented. The benefits of domain randomization for transfer learning
are discussed. Different experiments, following the control problem and
DR tasks of Chapter 2, show that the proposed methods yield significant
performance gains, with a lasting cost reduction throughout the simulation
period. The presented extension has also been disseminated in a journal
paper [56]

• Chapter 5 - Multi-agent Transfer Learning in Demand Response
- A strategy for knowledge transfer between agents in a multi-agent DR
setting is proposed. The presented experiments show that, using this
strategy, new agents can jumpstart their performance. This strategy has
been disseminated through a conference presentation and paper [57].
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• Chapter 6 - Incorporating Domain Knowledge in Demand
Response Learning Problems - A novel method to incorporate
domain knowledge in actor-critic RL algorithms is presented. PPO, one
such algorithm, introduced in Chapter 2, is adapted following the presented
approach. The experiments show that households can successfully reduce
their peak power consumption (and thus electricity bill), using this expert
adapted version of PPO. Especially interesting is that it concerns general
expert knowledge. Once adapted the trained model can be applied to
different households, with vastly different user behaviour.

• Chapter 7 - Conclusions - Final overview of the dissertation.
Summarizes all the main conclusions and presents future research
opportunities and perspectives.



Chapter 2

Reinforcement Learning in
Demand Response

This chapter is partly based on the work presented in the following publications:

• [54] C. Patyn, T. Peirelinck, and G. Deconinck. “Intelligent Electric
Water Heater Control with Varying State Information”. In: 2018 IEEE
International Conference on Communications, Control, and Computing
Technologies for Smart Grids (SmartGridComm). IEEE, 2018, pp. 1–7.
isbn: 9781538679548. doi: 10.1109/SmartGridComm.2018.8587453

• [56] T. Peirelinck, C. Hermans, F. Spiessens, and G. Deconinck. “Domain
Randomization for Demand Response of an Electric Water Heater”. In:
IEEE Transactions on Smart Grid 12.2 (May 2020), pp. 1370–1379. issn:
1949-3053. doi: 10.1109/tsg.2020.3024656

• [57] T. Peirelinck, C. Hermans, F. Spiessens, and G. Deconinck. “Transfer
learning for Demand Response of a Multi-Agent Battery and Electric
Water Heater System”. In: 2021 IEEE PES Innovative Smart Grid
Technologies Europe (ISGT Europe). IEEE, 2021. doi: 10 . 1109 /
ISGTEurope52324.2021.9640081

2.1 Markov Decision Process

All control problems in this work are Sequential Decision making Problems
(SDPs). Therefore, they can be formulated as MDPs. MDPs represent a way
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https://doi.org/10.1109/SmartGridComm.2018.8587453
https://doi.org/10.1109/tsg.2020.3024656
https://doi.org/10.1109/ISGTEurope52324.2021.9640081
https://doi.org/10.1109/ISGTEurope52324.2021.9640081
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to formally define all problems involved with an agent that learns to achieve a
pre-defined goal from interactions with its environment [82].

The control problems considered in this work use either an EWH or a battery
as example, although they are more generally applicable to all TCLs (and
batteries). The agent has to control an EWH (battery) with the goal of
maximising cumulative reward. It can do so by shifting the EWH (battery)
energy consumption in time. For the EWH case, Domestic Hot Water (DHW)
always needs to be available when the user requests it. To comply with this
constraint, the outlet water temperature Tout of the EWH is required to stay
above a minimum temperature Tmin.

As the agent interacts with its environment, every time step t this interaction
results in a state transition, according to transition function fT (xt, ut, Putxtxt+1

),
with xt ∈ X the current state, ut ∈ U the current action and Putxtxt+1

the state
transition probabilities. Furthermore, each state transition comes with a certain
reward, as defined by the reward function r(xt, ut, xt+1). In the remainder of
this work, we assume a discrete-time (in)finite horizon MDP, with step-size
∆t = 15 minutes.

As is typical in residential DR settings, the exact transition probabilities are
unknown. The goal of the RL agent is to learn a policy π : X → U which
can cost-efficiently operate the environment, given this uncertainty. In other
words, the agent should maximise the expected discounted reward of policy
π, J(π) (2.1), with discount factor γ = 0.99, rt+1 = r(xt, ut, xt+1) and T the
optimization horizon [62]

J(π) = Eτ∼p(τ |π)

[
T−1∑
t=0

γtrt+1

]
. (2.1)

We call

V (x) = E

[
T−1∑
t=0

γtrt+1

]
(2.2)

the value function. The goal of the agent is thus to find a policy π which
maximises its expected cumulative discounted reward. The following subsections
introduce each part of the MDP.

2.1.1 State-space

Based on the environment’s current state, the agent decides which action to
execute. The agent can only observe certain values of the state features, as not
all state information is directly observable/sensable. The observed state-space is
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thus a subset of the EWH’s full state space: XO ⊂ X. Therefore, this problem
is actually a Partially Observable Markov Decision Process (POMDP) and the
Markov property does not hold [82]. This means the current observed state is
not only dependent on the previous state but also on earlier states. As proposed
in [82], adding a history h of state features will allow the agent to recover the
Markov property. The resulting augmented state xaug ∈ Xaug is described in
2.3.

xaug =
[[
xta, x

t−1
a , ..., xt−ha

]
, ...,

[
xtz, x

t−1
z , ..., xt−hz

]]
(2.3)

where xta, ..., xtz are the features assumed to be observable by the agent.

In what follows, whenever the state-space X has been mentioned, it concerns
the augmented observable state-space. Throughout this work, the state-space
varies a bit between use cases. However, the smallest common divider includes
a notion of time, an estimate of the appliance’s State of Charge (SoC) and
assumes h = 4. This configuration has empirically shown to result in the best
performance [54]. Thus, at every time-step t ∈ {0, . . . , 96} the agent observes
state xt, given by (2.4).

xt = [SoCt−3, SoCt−2, SoCt−1, SoCt, tcos, tsin] . (2.4)

With tcos and tsin the projection of the time-step onto a circle, as in (2.5).

tsin = sin (2π · t/96) (2.5a)

tcos = cos (2π · t/96) (2.5b)

Section 2.2 presents the various simulation models used and how their SoC has
been determined. Note that, while these models are needed to simulate the
system and analyse the performance of an agent, they have been used solely as a
virtual test-bed. The agent has no information about the internal formulations
whatsoever. It can only observe the state.

2.1.2 Action-space

At each time step t, the agent takes a binary control action u ∈ U = {0, 1}
in order to turn the heating element of the EWH on or off. In the physical
world this corresponds to drawing 0 or Pr kW of electric power during a period
∆t = 15 minutes, assuming rated power Pr.

2.1.3 Reward-function

The DR setting determines the reward function. Throughout this work three
different DR settings, and thus reward functions, have been considered: energy
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arbitrage, self-consumption and peak power pricing. All three tasks and their
resulting reward function are discussed in section 2.3 of this chapter.

2.2 Appliances

Appliances of most interest for DR applications are flexible and use a
considerable amount of energy relative to the overall household (electrical)
energy consumption. Therefore, TCLs have been identified to be especially
promising [70]. Throughout this work an EWH has mainly been used as an
example appliance. Additionally, the environment in Chapter 5 also includes a
small battery. The models of both appliances are presented and discussed next.

2.2.1 Electric water heater models

Throughout this work we use three buffer models. We will start by introducing
them and end with using them for calculating water temperature, which clearly
shows where each model resembles or differs from the others.

All three models rely on the heat balance equation. As a result, they share
mostly the same parameters and variables, summarised in Table 2.1 and 2.2.
The buffer has rated power Pr and tank volume V . While hot water is tapped
at the top, it is replaced by cold water at the bottom, where the heating element
is located. Total boiler capacitance Cboiler equals V · Cpw, with Cpw the specific
heat capacitance of water.

Tap demand ṁw has been obtained from hot water tap profiles at a 5 minute
resolution [15]. The daily average DHW consumption equals 189 l/day. Edwards
et al. [15] state it corresponds to an average consumption level of a household
mainly demanding hot water in the evening.

All buffers include a hysteresis controller, which preserves user comfort and
turns the heating element on when water temperature drops below Tmin and
off when it raises above Tmax. We assume this controller cannot be by-passed.
External control is only possible when the water is in between these temperature
limits. This backup controller is presented in subsection 2.2.3. Requested water
Tasked, inlet water Tiw and ambient Tamb temperature are assumed constant.

We assume the internal SoC of the buffer can be calculated from the available
measurements [90]. The SoC expresses a measure of the buffer energy content,
relative to its minimal and maximal allowed energy stored. Hence, SoC = 0
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Table 2.1: Buffer model parameters.

Name Explanation Value Unit
Cboiler Buffer capacitance 798142 J/K
U Buffer thermal transmittance 0.75 W/(m2K)
Cpw Water specific heat capacitance 4182 J/(kgK)
h Buffer height 1.2 m
d Buffer diameter 0.45 m
As Buffer side surface 1.7 m2

At Buffer top/bottom surface 0.16 m2

V Buffer volume 190.85 kg
Pr Rated power 2400 W
Tamb Ambient temperature 20 ◦C
Tiw Inlet water temperature 17 ◦C
Tmin Minimal buffer temperature 55 ◦C
Tmax Maximum water temperature 70 ◦C
Tasked Asked output water temperature 45 ◦C

Table 2.2: Buffer model variables.

Name Explanation Unit
Q̇heat Heat flow rate heating element J/s
ṁw Hot water tap demand kg/s
Ti Water temperature (of layer i) ◦C
SoC State of Charge [-]

occurs when the whole water content is at temperature Tmin and SoC = 1 when
it is at Tmax. Water colder than Tmin is not considered.

Uniform buffer model

We use the buffer model as presented by Farooq et al. [18]. This model describes
the heat balance of a mass of water, with temperature TL. It models three
processes: heat supplied by the heating element, transfer of heat by the inlet
water and losses to the environment. The model is given by

dTL
dt

= 1
Cboiler

[Q̇heat + ṁwCpw(Tiw − TL)

+ U(As + 2At)(Tamb − TL)]. (2.6)
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All symbols are defined in Table 2.1 and 2.2. Since the water content of the
buffer is assumed to have a uniform temperature, the SoC is defined as (2.7).

SoC = TL − Tmin

Tmax − Tmin
. (2.7)

Two-layer buffer model

To take into account thermal stratification we can extend the previous model
with a second water layer [76]. Sinha et al. [76] model 2 separate layers, each
with their own temperature. Th and Tc for top (hot) and bottom (cold) layer,
respectively (Tc ≤ Th).

Sinha et al. argue that a thermocline exists inside the buffer, which limits
mixing between top and bottom layer. As a consequence, they assume a hard
boundary between both layers. When both layers reach the same temperature,
they merge. Both layers diverge when hot water is tapped and, therefore, cold
water is added at the bottom. As more cold water is added, the cold (hot)
layer volume increases (decreases) and the boundary between hot and cold layer
moves up. We call mc the cold layer mass and Vc the cold layer volume. We
add another model variable M indicating if the layers are merged (M = 1) or
not (M = 0). We define the share of cold and hot water as in (2.8) and (2.9),
respectively.

Xc = Vc
V

(2.8)

Xh = V − Vc
V

= 1−Xc (2.9)

Heat balance is defined by (2.10) and (2.11), with F = 1 − (1 −M)(1 −Xc).
Thus F = Xc when M = 0 and F = 1 when M = 1.

dTh
dt

= 1
XhCboiler

[MQ̇heat +MṁwCpw(Tiw − Th) (2.10)

+ U(AsXh +At +MAt)(Tamb − Th)]

dTc
dt

= 1
FCboiler

[Q̇heat + ṁwCpw(Tiw − Tc) (2.11)

+ U((1−M)AsXc +MAs +At +MAt)(Tamb − Tc)]
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The cold layer mass and the binary variable M are then determined by (2.12)
and (2.13), respectively.

mc =
{

0 M = 1 and Q̇heat 6= 0∫
ṁwdt Q̇heat = 0

(2.12)

M =
{

1 if Th = Tc or V ≤ Vc
0 else

(2.13)

Heat balance equations (2.10) and (2.11) can more easily be interpreted by
separating them in three.

1. When the layers are merged (M = 1) and no hot water is tapped (ṁw = 0)
both layers have an equal temperature. The model reduces to the uniform
case, i.e., (2.6) with ṁw = 0.

2. When the layers are merged (M = 1), hot water is tapped (ṁw > 0) but
the heating element is on (Q̇heat ≥ 0), no thermocline is created. Again,
the model reduces to (2.6), now with Q̇heat 6= 0.

3. Otherwise, the temperature of both layers is described by (2.10) - (2.11),
with M = 0, F = Xc and mc =

∫
ṁwdt.

Using this model we define the buffer SoC as in (2.14), with L = {i ∈ {c, h}|Ti ≥
Tmin} and Vi = Xi · V for i ∈ {c, h}.

SoC =
∑
i∈L Vi(Ti − Tmin)
V (Tmax − Tmin) (2.14)

Stratified buffer model

We can take the idea of modelling separate layers of water even further. Here,
we model N = 50 different water layers in the buffer. The stratified buffer
model we use has been presented and validated in the lab by Vanthournout et
al. [90]. This model has been used in DR research several times [54, 61, 69],
and for more details we refer to Vanthournout et al. [90].

In contrast with the two-layer model’s variable layer size, here each layer has
an equal and constant volume V /N . Furthermore, the temperature Ti of each
layer i ∈ {0, . . . , N} is uniform and monotonically increasing with buffer height
(Ti ≤ Ti+1). Vanthournout’s model also considers heat exchange between layers.

Equation (2.14) can also be applied to the stratified model SoC [90], with
L = {i ∈ {1, . . . , N}|Ti ≥ Tmin} and Vi = V/N for all i ∈ {1, . . . , N}.
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Comparison

The three models have been simulated according to the same tapping pattern,
and Fig. 2.1 shows their Ti and SoC. Fig 2.1a shows the water temperature of
the uniform and stratified buffer on the left axis. At the start, temperature is
60 °C and the heating element is turned on for 40 minutes. Until hour 7, the
buffers are left idle, which shows standing heat losses to the environment. The
next 7 hours hot water is drawn at 2 ml/s. While taking hot water the stratified
model’s layers diverge. This highlights the difference between both models.
When the heating element is turned on again the stratified model’s layers heat
from bottom to top, since the heat source is at the bottom of the tank. The
right axis depicts the SoC of both models. With no water demand and when
all layers of the stratified model have an approximately equal temperature, SoC
of both models is almost identical. However, when water is drawn, the uniform
model’s SoC differs from the stratified model. This underestimation of SoC
occurs since the uniform model does not capture stratification. While in the
stratified model a large portion of layers is still relatively hot, the uniform model
assumes the whole buffer’s water temperature decreases.

This effect is mitigated by modelling a second layer. Fig. 2.1b shows SoC of
the two mass and stratified model match more closely. In the two mass model,
as soon as hot water is tapped a second layer is created with temperature
Tc = Tiw. Notice that after hour 7, while the cold layer’s temperature is
constant, its volume is increasing, resulting in SoC decrease. Fig. 2.2 visualizes
the simplification made by modelling 2 instead of 50 layers. It shows buffer
section, i.e., temperature in function of height at different times. Comparing
hour 9 and 13 shows the mentioned effect of constant cold layer temperature but
raising thermocline, when hot water is being tapped. At hour 14 the heating
element is turned on, layers are heated from top to bottom. Due to the two
mass model’s larger share of water at temperature Tiw, this results in a buffer
section as shown in the rightmost graph of Fig. 2.2 at 14h30.

2.2.2 Battery Model

An energy based battery model has been assumed for this work. The energy
balance in the battery is defined by (2.15), with energy content EB, battery
rated power PBr , (dis)charge effiency η and uBphys depending on the action as in
(2.18).

dEB

dt
= ηuBphys (2.15)



APPLIANCES 19

0 2 4 6 8 10 12 14
Time [h]

20

40

60
T i
 [°

C]

Stratified model Ti

Uniform model Ti

0.0

0.5

1.0

So
C 

[-]

Stratified model SoC
Uniform model SoC

(a) Layer temperature(s) and SoC of uniform and stratified buffer
model.

0 2 4 6 8 10 12 14
Time [h]

20

40

60

T i
 [°

C]

Stratified model Ti

Two-layer model Ti

0.0

0.5

1.0

So
C 

[-]

Stratified model SoC
Two-layer model SoC

(b) Layer temperatures and SoC of two-layer and stratified buffer
model.

Figure 2.1: Comparison between buffer models. First hour (h = 00:00 - 00:40):
heating element is turned on no tap demand (Q̇heat > 0 and ṁw = 0). Hour
0:40 to 7:00: no heating and no tap demand (Q̇heat = 0 and ṁw = 0). Hour
7:00 to 14:00: no heating and small tap demand (Q̇heat = 0 and ṁw = 2 ml/s).
Finally, h = 14:00 - 14:30: Q̇heat > 0 and ṁw = 0.
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Figure 2.2: Section of two mass and stratified buffer model at hour 9, 13 and
14:30.



20 REINFORCEMENT LEARNING IN DEMAND RESPONSE

The energy content of the battery is limited to EBmax. The battery SoC is then
given by

SoCB = EB

EBmax
. (2.16)

2.2.3 Particularities: The Backup Controller

User comfort is very important and should always be guaranteed. At first
sight, it seems reasonable to incorporate user satisfaction in the reward function.
Unfortunately, even a large penalty does not always guarantee user comfort, due
to necessary exploration steps within every RL algorithm. Therefore, Ruelens
et al. [70] proposed to incorporate a backup controller in the environment itself.
In RL literature such a backup controller is known as a shield [1]. A shield
monitors the actions of the RL agent and corrects them in case they violate
safety. Or, in this case, comfort.

The EWH’s internal (backup) controller maps the agent’s action u to a physical
action uphys (i.e., power setpoint) according to (2.17), with Tb the temperature
at the backup sensor location.

uphys = H(u) =


Pr Tb ≤ Tmin

uPr Tb > Tmin and Tb < Tmax

0 Tb ≥ Tmax

(2.17)

The battery’s backup controller overrules the battery-agent’s action when the
buffer is full, empty or the agent is not allowed to consume or produce from
the battery. These overrule actions occur because we assume it is not allowed
to perform energy arbitrage solely from the grid, i.e., one cannot discharge
energy from the battery to the grid or charge the battery directly from the grid.
The battery backup controller acts according to (2.18), with Pnet the net power
consumption of the household.

uphys
B = HB(u) =



min(0, uPBr ) EBt+1 > EBmax
max(0, uPBr ) EBt+1 < EBmin
0 Pnet · u > 0
min(|Pnet|, uPBr ) Pnet < 0, u > 0
max(−Pnet, uPBr ) Pnet > 0, u < 0

(2.18)

While H(u) and HB(u) are unknown to the agent, their effect can indirectly be
observed through the cost-function.
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2.3 Tasks

DR is a general term indicating all use cases where a certain demand is responsive
to external signals. Not all of these DR use cases bring about challenging
control problems. However, some of the most interesting and practical do. As
mentioned in the previous chapter, especially in the residential sector these
control problems quickly become intractable and thus very challenging to solve.
This thesis focuses on three major residential demand response tasks. These
three tasks require special care. Not only due to their practical interest but
also due to the challenging control problem they result in.

2.3.1 Energy Arbitrage

The concept of energy arbitrage is well understood. It is probably one of the
most intuitive forms of DR. Energy arbitrage is the act of consuming during
off-peak, or low-cost, times in order to avoid having to consume during peak, or
high-cost, times [70]. The goal is thus to shift (electrical) energy consumption to
low-cost times. Currently, dynamic pricing electricity contracts are increasingly
being introduced across the world, with the digital or smart meter as key enabler.
For example, the Clean Energy Package of the European Union states that all
European consumers with a digital meter should have at least one supplier that
offers a dynamic pricing contract in their market [17].

It is thus clear that residential energy arbitrage is becoming ever more important.
The goal of this work is to develop methods that enable residential consumers
to act on these changing prices with the flexible appliances at their disposal.
Because, from a grid point of view it is not sufficient that consumers have
such contracts. They also should (be able to) act on the incentives that these
contracts provide.

Figure 2.3 shows the mean Belgian day-ahead wholesale electricity price (dashed
line) of 2021. As an example, imagine this represents the prices included in
a dynamic pricing contract of a Belgian consumer. The full gray line depicts
a typical Belgian household’s consumption profile throughout the day. With
these prices and this consumption profile, this consumer would pay e 1.10 per
day, on average, summing up to e 402.66 for an entire year (in reality, taxes
and transmission costs should be added). If this same consumer would shift
some of its consumption from in between 6− 8h and 14− 17h to 9− 11h and
20− 22h, this would result in a cost reduction of approximately e 12 per year.
Their new consumption profile is shown by the dotted grey line in figure 2.3.
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Figure 2.3: Example of how a typical Belgian household could shift its electrical
energy consumption in an energy arbitrage scenario.

More formally, and following the MDP framework, given a Time-of-Use (ToU)
price λ and energy consumption E the reward rt (or cost ct) at time-step t for
the energy arbitrage DR setting is given by:

rt = −ct = −λEt. (2.19)

2.3.2 Self-consumption

Here, self-consumption is considered the act of changing one’s energy
consumption based on the availability of on-site (behind the meter) energy
production. While self-consumption has always been a hot topic in the Belgian
media, for residential consumers there has never been a real incentive for it. At
least not for instantaneous self-consumption. Until recently, Belgian residential
consumers all were equipped with a Ferraris disc meter. As this meter turns
backwards whenever there is net production, (instantaneous) self-consumption
is no different from consuming some energy and producing a similar amount of
energy at a later point in time. In both these cases the meter reading at the
end would be the same. However, it is clear that from the electricity grid point
of view, these two situations are completely different.

In recent years, more households have been equipped with a digital meter. Net-
metering is thus disappearing. As a result, a feed-in tariff has been introduced
[14]. This feed-in tariff is, however, lower than the energy consumption price [95].
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Figure 2.4: Example of how a typical Belgian household could shift its electrical
energy consumption to improve self-consumption.

At the same time, energy consumption also results in transmission costs and
taxes. These additional costs can be avoided with self-consumption. Therefore,
self-consumption has now become interesting for residential consumers who
invested in a photovoltaic (PV) installation.

As a visual example, Figure 2.4 again shows the typical Belgian household’s
(electrical) energy consumption. Additionally, this figure shows the production
profile of an average residential PV installation in Leuven’s climate (dashed
line). The self-consumed energy is shaded grey. To increase this amount, i.e.,
self-consumption, this household could shift some of its energy consumption to
the afternoon. An example of their new, improved, power profile is given by the
dotted line. The additional self-consumption due to this change is hatched.

While we do care about the overall self-consumption of a household, we cannot
control all aspects of the household’s energy consumption. Therefore, we assume
our agent is only able to control certain flexible appliances, e.g., an EWH. As a
result, the reward function design is based on maximising self-consumption of
this appliance alone. Mathematically, the reward function represented by self-
consumption of an EWH is given by (2.20), with EPV the PV installation energy
production, Em the inflexible energy consumption and EEWH the EWH energy
consumption. The intuition behind this reward function is to maximise the part
of the EWH energy consumption that can be covered with PV production after
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the inflexible load has been subtracted.

rt = min(max(EPVt − Emt , 0), EEWH
t ) (2.20)

2.3.3 Peak Power Pricing

A final DR task that has been considered in this work is peak power pricing.
The Belgian (or rather Flemish) use case is again used as an example. At
the time of writing (Q1/2022), grid costs in Flanders are billed according to a
household’s energy consumption, i.e., in e/kWh. The Flemish energy and gas
market regulator (Vlaamse Regulator van de Energie- en Gasmarkt (VREG))
has, however, decided this will change in the near future (Q3/2022). They argue
that grid costs are more tied to power consumption than energy consumption.
E.g., grid equipment, such as transformers and cables, dimensioning is based
on maximal power consumption, rather than energy. Therefore, residential
consumers in Flanders will soon have an incentive to reduce their power
consumption.

While peak power reduction is tied to self-consumption, it is not exactly the
same. In self-consumption one is only interested in shifting demand for energy
to time-slots when energy production is available. In a peak reduction scenario,
one is also interested in shifting power demand to times when overall demand is
lower. Figure 2.5 shows the net power consumption of the same household as the
previous two figures (dashed line). The peak of this profile, depicted by a grey
dot, can be lowered by performing the same shift as in Figure 2.4, and increase
self-consumption. This resulting net power consumption is depicted by the
dotted line. While the household might not be flexible enough to further increase
self-consumption, it could potentially still reduce its peak power consumption
by a small consumption shift from hour 18 to 20 and from hour 19 to 20, as
shown by the full line.

Intuitively, given net power consumption Pnet, an agent could be penalised for
behaviour that results in big power peaks by a cost function that is proportional
to the peak. However, as the VREG has decided a minimal tariff applies for
everyone with a peak less than 2.5 kW, there is no need to try to further reduce
power consumption. Therefore, this DR results in the following reward function:

rt = min(2.5− Pnet, 0). (2.21)

Chapter 6 presents the Flemish tariff design in more depth.
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Figure 2.5: Example of how a typical Belgian household could shift its electrical
energy consumption to reduce its power peak.

2.4 Algorithms

RL is the study of algorithms to solve SDPs, where a learner needs to discover
which actions to take in order to maximise expected reward [82]. Therefore, RL
is not a single algorithm. Rather, it is a class of solution methods. Over time
different RL algorithms have been designed and used on a variety of problems. In
the course of this work, three such algorithms have been implemented, adapted
and tested for their suitability on the above mentioned DR use cases. The
following sections each present one such algorithm.

2.4.1 Q-learning

A popular approach to solve the optimization problem as given in (2.1) is to
define the state-action value function

Q(xt, ut) = rt+1 + γmax
u

Q(xt+1, u). (2.22)

The Q-function represents the value of taking action ut when the environment
is in a certain state xt. Since we are interested in maximising our value over
time, the optimal policy is to choose the action that gives maximum expected
reward. This intuition determines policy π(x) according to (2.23).

π(x) = argmax
u

Q(x, u) (2.23)
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The basic idea behind many RL algorithms is to estimate the Q-function using
an iterative strategy. The Bellman equation (2.24) defines the iterative update
rule [82].

Qi+1(xt, ut) = E
[
rt+1 + γmax

u
Qi(xt+1, u)

]
(2.24)

Using this update rule Qi converges to the optimal policy when i→∞.

Mnih et al. [46] introduced the usage of non-linear function approximation,
such as Neural Networks (NNs), for estimating the Q-function. Throughout
this work two variations of Q-learning have been used.

Unfortunately, due to the usage of non-linear function approximation, all
convergence guarantees are lost [82]. Some exploration is necessary in order
to avoid converging to a local optimum. Here, we use an ε-greedy exploration
strategy, i.e., random actions are taken with probability ε [82]. Over time ε
decreases.

Double Q-learning (DQL)

DQL has been proposed, and later updated, by Van Hasselt et al. [88, 89]. It
incorporates two NNs: the online network, with parameters θt at time step t,
and the target network, with parameters θ−t . Van Hasselt [89] proposes the
following update rule for the online network

Yt = rt+1 + γQ(xt+1, argmax
u

Q(xt+1, u; θt); θ−t ). (2.25)

The targets Yt are calculated using uniform samples from experience replay
memory F , containing transitions of the form {xt, ut, xt+1, rt+1}. And are used
to update θt. We use update rule (2.26) [37], with τ = 0.1, for the target
network’s parameters.

θ−t = τθ−t + (1− τ)θt (2.26)

This means that both NNs are updated according to Algorithm 1.

Fitted Q-Iteration (FQI)

Due to its proven track record in DR applications, we also consider an adapted
version of FQI [69, 38, 54] in our experiments. In a discrete-time MDP with
a one day horizon (T = 96) we can reformulate the SDP as a sequence of T
control problems. Approximating the Q-function Qt(xt, ut) at each time step t
gives rise to T supervised learning problems. Assuming QT = rT+1, Q-values
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Algorithm 1 Double Q-learning (DQL)
1: Input: τ , γ, α, stop condition
2: Initialise Q(x, u; θt), Q(x, u; θ−t )
3: while not done do
4: ut = ε-greedy (argmaxuQ(xt, u; θt))
5: Observe: {(xt, ut, xt+1, rt+1)}
6: Yt = rt+1 + γQ(xt+1, argmaxuQ(xt+1, u; θt); θ−t )
7: Q(x, u; θt+1)← Q(x, u; θt) + α (Yt −Q(x, u; θt))
8: θ−t+1 = τθ−t+1 + (1− τ)θt+1

at time steps t ∈ {0, . . . , T − 1} are defined as in equation (2.27).

Qt(xt, ut) = rt+1 + γmax
u

Qt+1(xt+1, u) (2.27)

FQI distinguishes itself from other value iteration algorithms by a special form of
the experience replay technique, where all transitions seen so far are used in every
iteration [68]. Furthermore, the update is performed off-line. The combination
of these properties has shown to increase data efficiency compared to other value
iteration algorithms. We thus calculate Qt using all samples in F and represent
it with any function approximator. In this work we often use a random forest
[6] for all T Q-functions, as it has shown to be computationally more efficient
than a NN, with limited performance sacrifices [43]. Furthermore, we denote an
approximated Q-function, with regressor parameters θ, as Q(x, u; θ).

One of the main advantages of the finite optimization horizon is the ability
to divide the SDP into T supervised learning problems, as this allows for
iterative re-training of the policy. This iterative re-training of all Q-functions
inherently allows a changing ToU-price profile, as rewards can be recalculated
each iteration, which might be the case in certain DR settings.

The mentioned properties of FQI are thus a good fit for certain DR control
problems. The usage of FQI in these problems can be separated in three
steps. In a first step, the agent collects experiences, i.e., tuples in the form
(xt, ut, xt+1, rt+1). In the second step, the training batch is prepared using
the reward function valid in the next optimization period. New rewards are
calculated according to r′t+1 = r(xt, ut, xt+1). In a third step, Q-values are
calculated with the prepared batch of tuples (xt, ut, xt+1, r

′
t+1), going backwards

though time and according to (2.27). Additionally, the function approximators
are fitted using update rule (2.25). These steps have been summarized in
Algorithm 2.
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Algorithm 2 (Adapted) Neural Fitted Q Iteration (FQI)
1: Input: γ, r(xt, ut, xt+1), {λt}∞t=0, stop condition, T
2: Initialise Q0(x, u; θ0), . . . , QT (x, u; θT )
3: while not done do
4: Perform T steps, save transitions in F = {(xt, ut, xt+1, rt+1)}
5: Take {λi}t+Ti=t
6: Let QT+1 be zero everywhere on X × U
7: for N = T, . . . , 0 do
8: for k = 1, . . . , |F| do
9: rk+1 = r(xk, uk, xk+1, λN )

10: QN,k ← rk + γmaxu∈U QN+1(sk+1, u)
11: θN ← argminθ 1

2
∑
k ||QN (xk, uk; θN )−QN,k||2

2.4.2 Proximal Policy Optimisation (PPO)

Algorithm 3 Proximal Policy Optimization (PPO)
1: Input: h, γ, λ, ε, T , αa, αc, stop condition
2: Initialise θactori , θcritici , i = 0
3: while not done do
4: Perform T steps, save transitions in F = {(xt, ut, xt+1, rt+1)}
5: Sample past T time steps from F
6: for k = 1, . . . , T do
7: gk =

πθactor
i

(uk|xk)

πθactor
i−1

(uk|xk)

8: Hk = −
∑l=|U|
l=0 π(ul|xk) log π(ul|xk)

9: Lactor
k = min

(
gkÂk, clip(gk, 1− ε, 1 + ε)Âk)

)
10: Y actor

k = Lactor
k − hHk

11: Y critic
k =

∑T
j=k γrj+1

12: π(x; θactori+1 )← π(x; θactori ) + αa (Y actor
k − π(x; θactori ))

13: V (x, θcritici+1 )← V (x, θcritici ) + αc
(
Y critic
k − V (x; θcritici )

)
14: i+ +

PPO [73] can be used to obtain a stochastic policy, maximising expected total
reward, given a certain reward-function. It is an actor-critic algorithm. The
family of actor-critic algorithms has been introduced in an leffort to combine
the advantages of both policy-iteration and value-iteration algorithms. The
actor acts, i.e., it decides which action to take, and is trained based on a policy-
iteration approach. The critic informs the actor about the value of certain
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actions and how it should update its policy in the right direction. The critic is
trained with a value-iteration algorithm. Both actor and critic are parametrised
using a (separate) NN, with parameters θactor and θcritic, respectively.

At every iteration k, the actor’s objective Lactor
k (2.28) and the critic’s objective

Lcritic
k (2.29) are (approximately) minimised.

Lactor
k = Êk

[
min

(
gk(θactor)Âk,clip(gk(θactor),1−ε,1+ε)Âk)

)]
(2.28)

Lcritic
k = Êk

[(
Vθcritic

k
(xk)− V targ

k

)2
]

(2.29)

By using these update rules, an estimate of the value-function V (x) and policy
π(x) is obtained by the critic and actor, respectively. In Eq. (2.28), gk(θ)
denotes the probability ratio and is defined by (2.30) [73]. Âk denotes an
advantage estimate and is defined by (2.31) [72], with γ and λ hyper-parameters
and δVt given by (2.32). The clipping in update rule (2.28) avoids destructively
large policy updates [73]. We use a clipping value of ε = 0.2, and γ = λ = 0.99.

gk(θ) = πθ(uk|xk)
πθold(uk|xk) (2.30)

Âk =
∞∑
l=0

(γλ)(δVt+l) (2.31)

δVt = rt + γV (xt + 1)− V (xt) (2.32)

Thus, with PPO both NNs are trained following Algorithm 3.





Chapter 3

Transfer Learning in Demand
Response

This chapter is based on

• [58] T. Peirelinck, H. Kazmi, B. V. Mbuwir, C. Hermans, F. Spiessens,
J. Suykens, and G. Deconinck. “Transfer learning in demand response: A
review of algorithms for data-efficient modelling and control”. In: Energy
and AI 7 (2022), p. 100126. issn: 2666-5468. doi: 10.1016/j.egyai.
2021.100126

The supervised learning discussion has been omitted, as it is of limited
importance for the remainder of this work.

3.1 Introduction

Recent advances have shown that techniques such as transfer and semi-supervised
learning can considerably improve the performance of machine learning models
– both in supervised and reinforcement learning contexts [2]. Such formulations
allow models to leverage existing data, domain knowledge and human expertise
[35, 9]. The biggest advantage of transfer learning is that it reduces the data
complexity of machine learning models [101]. More specifically, by leveraging
domain knowledge and/or previously gathered data, machine learning models
tend to perform better with fewer tasks-specific data points, learn faster as
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more data becomes available [56], and achieve higher asymptotic performance
than their naive counterparts [62]. Due to these benefits, transfer learning can
enable large scale real-world roll-out of automated DR programs. This ranges
from improved forecast and dynamics models to more efficient reinforcement
learning agents.

3.1.1 Previous Reviews

A number of recent reviews address machine learning and DR [49, 3], as well
as how reinforcement learning relates to it [93]. However, the focus in these
reviews is typically on general techniques, and not specifically on how to use
transfer learning to operationalize them in practice. On the other hand, a
number of transfer learning surveys have been presented in recent years, both
on general transfer learning [97, 85] and on transfer within the reinforcement
learning setting. None of these focus on applications within the smart grid or
DR setting.

It is important distinguish between transfer learning and the broader field of
informed Machine Learning (ML). Informed machine learning covers a broader
range of possibilities to inform an ML agent. This can be through adding
differential equations to the loss-function, simulation results, knowledge graphs,
etc [96]. Furthermore, informed ML also incorporates what is referred to as
physics informed ML [28]. This branch of ML aims to incorporate physical
knowledge into the learning pipeline.

Transfer learning, on the other hand, focuses specifically on methods that
inform an ML agent through transfer, mostly of data, model parameters or
feature representations. In transfer learning, one thus typically distinguishes
between the source domain (or task), i.e., the source of the initial knowledge
and the target domain (or task), i.e., where the knowledge is used to improve
performance. Thus, while informed machine learning consists of all genres to
inform a machine learning agent, transfer learning is its subset, only focusing on
those methods that inform ML agents by transferring data or model parameters
from a source domain/task to a target domain/task. Very recently, Von Rueden
et al. [96] presented an extensive literature review on informed machine learning.
However, this literature review is general in its scope, and does not address
the smart grid or DR case. In a subsequent section, we make the link between
transfer and informed ML more explicit.
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3.1.2 Organisation

The following section discusses the other transfer learning reviews more in
depth and formalises a taxonomy based on the adopted definitions. The two
sections thereafter present how the different DR settings fit into the taxonomy.
Section 3.3 focuses on transfer learning in RL. Section 3.4 presents different
transfer learning applications within the DR setting. Section 3.5 identifies future
research opportunities. Finally, Section 3.6 concludes this review.

3.2 Taxonomy of Transfer Learning Algorithms

3.2.1 Conventional Machine Learning

In conventional machine learning, a functional mapping is learned between
input and output variables for a specific problem using a well-defined dataset.
The only expert or domain knowledge in this case is typically in the learning
pipeline, i.e., in the choice of learning algorithm or feature selection. Expert
knowledge can therefore enable the practitioner to identify the correct learning
algorithm or set its hyperparameters accurately. Likewise, expert knowledge is
useful in feature engineering or hand-crafting features, which are amenable to
the learning process. In all this, there is no notion of domain knowledge being
used explicitly in the machine learning process, neither is there any transfer of
knowledge across subsequent models that may be built.

3.2.2 Transfer Learning

Informally, transfer learning can be defined as the process of extracting
information from a source domain and task and using this information to
improve in a target domain and task [50]. Both Pan et al. [50] and Weiss et
al. [97] formally define transfer learning as the process of improving the target
predictive function fT (·), given target domain DT and target task TT , by using
the information of a given source domain DS with corresponding source task
TS .

Fig. 3.1 shows how transfer learning differs from conventional machine learning.
In contrast to a single learning pipeline, with a well-defined dataset, there is
no knowledge flow from a source domain/task to a target domain/task. This
allows for two learning pipelines in the overall problem. For example, in type 1
first a model is learned using available historic data. Thereafter, this model can
be used in the target domain. Furthermore, apart from domain knowledge in
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the learning pipeline, there thus arises the possibility to add domain knowledge
about the learning problem itself, this is identified as type 2 in Fig. 3.1. A
similar approach is used in type 3. However, here, a domain expert constructs a
physics-based model that can be used to guide the learner in the target domain.
Type 4 considers these transfer learning applications that extract a feature
representation from the source to initialise the target feature representation.

Fig. 3.2 illustrates how the initial and asymptotic performance of conventional
machine learning models can be improved with transfer learning algorithms,
which incorporate domain knowledge or human expertise into machine learning
models, both in the supervised and reinforcement learning contexts. It should
be noted that neither initial nor asymptotic performance increase is guaranteed.

Based on the above definition, and the applications of transfer learning, Pan et
al. [50] subdivide transfer learning in three categories; inductive, transductive
and unsupervised transfer learning. These categories can be further subdivided
based on the ML setting they are applied in. DR control applications mainly
benefit from ML in the supervised or RL setting. However, Pan et al. [50]
explicitly mention that they do not consider transfer in reinforcement learning.
Therefore, and because RL differs considerably from both supervised learning
and unsupervised learning [82], we believe transfer in reinforcement learning and
supervised learning should be dealt with separately. To date, the unsupervised
transfer learning setting has only seen limited applications within the smart
grid setting, and especially the DR setting. Consequently, a thorough discussion
of this transfer learning setting has been considered outside the scope of this
review.

Next Subsection 3.2.3 begins with a description of the different methods
to evaluate transfer learning and the differences with evaluating other ML
approaches. Thereafter, Subsection 3.2.4 describes the different categories of
transfer learning: transductive and inductive transfer learning. This is important
to understand how and when what type of transfer learning can be applied in
practice. Throughout this discussion the DR control use cases have always been
kept in mind.

3.2.3 Evaluating Transfer Learning

Reinforcement learning agents are evaluated on how much reward they accrue
over time. Likewise, supervised learning algorithms are evaluated on a predefined
loss function. When these supervised learning algorithms are applied online,
i.e., the model parameters are updated over time with newly observed data,
the evolution of this loss function over time is also an important metric to
consider. Therefore, in practice, it is not sufficient to consider how a supervised



TAXONOMY OF TRANSFER LEARNING ALGORITHMS 35

Learning algorithm

Simulation ModelHistorical data

Training data

Knowledge 
Representation

Hypothesis set

Logic rules

Target Domain
Integration

Source Domain
Knowledge

Domain expert

Model parameters

Loss-function

Exploration 
strategy

Data-Driven 
model

Physics-Based
model

Feature 
representation

Feature 
representation

Type 1

Type 2

Type 3

Type 4

Figure 3.1: Knowledge representation and integration in informed machine
learning. The knowledge is transferred from left to right and 4 archetypes of
transfer learning have been identified, which have been explained in Section
2. Full lines: research in demand response exist. Dashed lines: open research
questions.

Figure 3.2: Rationale for transfer learning in supervised and reinforcement
contexts.
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learning model or reinforcement learning agent is performing, rather it is more
relevant to track its performance over time as it gains access to increasing
amounts of data. These metrics can be summarized by the initial performance,
learning performance and asymptotic performance, as shown in Fig. 3.2 for
supervised learning. It is straightforward to extend these metrics to the case of
reinforcement learning. It is also important to note that these three metrics are
agnostic to the defined performance metric, i.e., reward or loss function.

3.2.4 Categories of Transfer Learning

There are slight variations on how different authors have categorized transfer
learning methods in the past. These different types of categories arise from
using either the feature space or the task and domains as separators. For
instance, Pan et al. [50] use differences in task (T ) and domain (D) to subdivide
transfer learning methods. In an RL setting, the task is defined by the reward
function. In contrast to Pan et al., Weiss et al. [97] subdivide transfer learning
methods based on the feature space. In an RL setting, the feature space is
defined by the state-space X . Consequently, Weiss et al. [97] use two categories:
homogeneous and heterogeneous transfer learning. In homogeneous transfer
learning, the source and target feature spaces are the same, i.e. XS = X T . On
the other hand, in heterogeneous transfer learning, source and target domains
are represented in different feature spaces.

Contrary to a focus on solution methods, Pan et al. [50] adopt a focus on the
field of transfer learning or, rather, the transfer learning problems. Naturally,
this results in a subdivision based on the task, i.e., the reward function, and the
domain D. Taylor et al. [85], whose survey of transfer learning focuses on RL, in
some sense also use this division. We have adopted this as well. In transductive
transfer learning the source and target task are the same. However, the domain
differs. Both types of transfer learning taxonomy, and their interactions, have
been visualised in Fig. 3.3. An example of transductive transfer learning within
the DR setting could be optimising local PV self-consumption with a battery in
the source domain and another device, such as an EWH, in the target domain.
Intuitively, one can see that transfer learning can be of use in such a scenario, as
the control policy will be fairly similar in source and target domain. Potentially,
transfer learning could thus provide a jump start in the target domain.

Transductive transfer learning loans its name from transduction, or transductive
learning, as introduced by Vapnik [91, 92]. They are related in the sense that
in the transductive transfer learning setting, like in transductive learning, there
is no interest in building a general model that can be transferred (as DS 6= DT )
[19, 91], i.e., there is no interest in a general model for transferring all future
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Figure 3.3: Venn diagram of different transfer learning taxonomies.

new tasks. Rather, interest lies in knowledge transfer for this specific task.
Thus, while Vapnik introduced transductive learning on the level of a single
data-point, here transductive learning is concerned with tasks and domains.

On the other hand, inductive transfer learning contains transfer learning
problems with a different task, within the same domain. Going back to the
above mentioned battery control use case, inductive transfer learning would be
to switch using the battery for a self-consumption goal to an energy arbitrage
goal. The dynamics of the battery stay the same in both cases, and, therefore,
relevant knowledge about the control problem can be transferred between these
two use cases. A more detailed treatment of how different transfer learning
techniques are applied in practice is deferred to Section 3.5.

3.3 Transfer in Reinforcement Learning

There does not exist one single method of utilising transfer learning for RL, and
different parts of a typical RL pipeline can benefit from it. This section first
summarizes the earlier introduction to RL and the terminology used. Thereafter,
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the different possibilities of transfer learning within RL are explored, with a focus
on DR applications. Fig. 3.4 summarizes the different categories of utilizing
transfer learning within RL.

Transfer in Reinforcement Learning
Transductive Transfer Inductive Transfer

DS 6= DT DS = DT
rS = rT rS 6= rT

Transfer in Model-Based Reinforcement Learning

Figure 3.4: Summary of Section 3.3

3.3.1 Background

State-of-the-art RL algorithms introduce function approximation in one or
several parts of the MDP. As a first example, consider a value iteration algorithm,
such as Q-learning. In Q-learning one aims to iteratively update Q(x, u) in
order to find the optimal Q-function, and as a result the optimal policy. With
a finite state-space, Q can be represented in tabular form. However, with a
large state-space, and in particular with an infinite one, this becomes infeasible.
Therefore, Mnih et al. [46] proposed to use a NN to approximate the Q-function.
After Mnih et al. showed the benefits of using function approximation within
RL, it has been widely used by researchers in other parts and/or other RL
algorithms. A second part where function approximation might be useful, is
in policy iteration algorithms. These algorithms aim to estimate the policy
directly, rather than through the (state-action) value function, as in Q-learning.
As a consequence, function approximation can be used to represent π(x). An
example of such an algorithm has been proposed by Schulman et al. [73]. Finally,
in model-based RL the transition function itself is approximated [27]. In almost
every instance of function approximation, it is possible to use transfer learning.
The following subsections discuss transfer learning for each of the three parts of
an RL algorithm.

Vazquez et al. [93] show in their survey of RL in DR, that almost all applications
use some form of Q-learning. Hence, our focus on Q-learning. However, many
of the algorithms subsequent to deep Q-learning [46], have been introduced in
an attempt to improve upon the sample efficiency of RLs algorithms [73]. More
recently, researchers have been looking at transfer learning to increase sample
efficiency in the target domain [62]. Furthermore, in some critical applications,
exploration, which is inherent to RL, should be avoided. In such situations,
transfer learning can be used to jump-start the agent’s performance [62]. While
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exploration might not necessarily lead to critical errors in the DR case, users can
benefit from reduced amounts of exploration in the start-phase of deployment
[9].

3.3.2 Transductive Transfer: source and target domain differ

Transductive transfer learning, as defined earlier and by Pan et al. [50],
encompasses these scenarios of transfer learning where source and target domains
differ, but source and target task coincide. In RL, transductive transfer learning
thus refers to these learning problems where source and target environment,
and thus transition function f , are different. But, the reward function remains
the same after transfer.

The idea of transferring RL agents between environments became widespread in
the ML research community when openAI launched its retro contest in 2018 [24].
This contest aimed to accelerate (transductive) transfer learning by providing
researchers with benchmark computer games. Algorithms submitted were tested
on a new set of (unseen) levels in their respective games. Good performing RL
agents should thus be able to generalise to unseen levels of the same game, i.e.,
the domain is different while the reward is the same.

In a smart grid, and more specifically in a DR context, there is vast potential
for transductive transfer learning. Different parts of the environment can alter
the underlying transition function, while the general principles of the problem
can remain the same. In DR programs there are three knowledge sources that
can be used for transfer: (1) (other) real world data, (2) domain knowledge -
including simulations, and (3) shared domain features. All three call for different
transfer strategies, which we discuss next.

1. Real world data. Transfer from real world data includes transfer from
earlier work, but also transfer from other related data sources with the
same reward-function. As a first example, consider the work of Paridari et
al. [51] and Mbuwir et al. [42]. In their work, they aim to design a plug-
and-play Home Energy Management System (HEMS) for a PV-battery
system. However, they realise user behaviour can result in differences
in the transition function and, therefore, optimal policy. To mitigate
this challenge, they cluster different households and use transfer learning
between households that end up in the same cluster. A new household
might lack enough historical data to design a tailor made HEMS, but
by using limited data it is possible to pick the right cluster and use that
cluster’s policy as an initial starting point.
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2. Domain knowledge. DR potential arises when there is a form of energy
flexibility available, such as a battery in the previous example. TCLs
provide another source of energy storage and their potential for DR has
been proven numerous times in recent literature [70, 31, 44, 55, 54, 59,
56, 60, 78]. Although RL does not strictly need a model of the control
environment, it certainly can benefit from one. Domain knowledge, for
example in the form of a dynamic model of the environment, has been
used to mitigate low data efficiency of certain RL algorithms. Lampe et
al. [35] introduced Model-Assisted Fitted Q-Iteration (MAFQI). MAFQI
is a variation of the Q-learning algorithm, in which virtual trajectories,
originating from a learned environment model, are added to the RL agent’s
training set used to update the Q-function. Their results show an improved
data efficiency, compared to regular Q-learning. Costanzo et al. [9] show
these results can also be obtained in a DR application. Consequently,
Patyn et al. [53] have expanded this idea to obtain informed FQI. In their
approach, FQI is provided with domain knowledge through the use of
models constructed by domain experts.
In the previous examples, models of the environment have been used to
provide the RL agent with an increased amount of state-transitions in the
start phase. Further research, mainly in the domain of robotics, has shown
simulations can also be used to explicitly initialise the policy π(x) [62].
Peng et al. [62] observe that there will always be discrepancies between
source, here simulated, and target domain. With domain randomization,
these discrepancies are modelled as variability in the source domain. We
have shown that domain randomization successfully provides an RL agent
with a jump-start [56].

3. Shared domain features. A third opportunity for transfer learning
lies in the nature of energy flexibility options. This is because energy
flexibility can be provided based on different technologies, yet the main
principles largely stay the same. In a lot of applications, energy flexibility
is provided by some form of energy storage, e.g., heat or chemical storage.
While it is clear that the transition function of these types of storage is
different, at a high enough abstraction layer their functionality remains
the same. It remains to be seen if, for example, RL agents trained on
battery storage applications have policies that are general enough to be
used as initial policies in an application with TCLs. But, when differences
between domains are minor, for example different rooms in the same
building, sharing features can be a successful approach. Kim et al. [32]
demonstrate this in their multi-task learning setting, by sharing features
(and transitions) between control policies for different rooms in a building.
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3.3.3 Inductive Transfer: source and target task differ

Recall that, by definition [50], inductive transfer learning is the case where the
domains are the same, but tasks differ. This is visually presented in Fig. 3.3.
In a RL scenario, this means both tasks share transition function f , but have a
different reward function r. Note however that, although the transition function
is the same, the conditional probability distribution P (xt+1, rt+1|xt, ut) in the
two domains can differ, as these probabilities are policy dependent (and the
policy depends on the reward function). Since domains are the same, methods
used for inductive transfer learning often correlate with those used for multi-task
learning [50].

In a supervised learning setting this implies labels have to be available in both
the source and target domains. Or, it needs to be possible to induce them [50].
In an RL scenario, the reward function should be available in both domains.
The different approaches for inductive transfer in RL can be divided in similar
categories as the above mentioned transductive learning scenarios.

A first intuitive approach is to transfer knowledge of instances, i.e., use source
domain instances to accelerate and jump-start target domain performance [50].
As domains are the same, it is not strictly necessary to use schemes such as
domain randomization to account for domain difference. One approach is to
weigh source and target domain samples differently in order to prioritise target
domain experience [86]. The energy arbitrage application, as presented by
Ruelens et al. [70], can be considered an example of inductive transfer with RL.
Day-ahead electricity prices are changing from day to day and, thus, rewards
of previously seen state transitions are not representative for future rewards.
Even if the exact same transition would occur in the future, the received reward
(or cost) would (likely) be different, since the electricity price will be different.
Therefore, Ruelens et al. recalculate all rewards for the new prices occurring
the next day. They thus use samples of the past (in the same domain) to train
for a new task (new day-ahead electricity prices).

Furthermore, knowledge can be transferred using feature representations [50].
If the possible tasks, i.e., reward functions, are known in advance, the RL
agent can be trained on the different tasks together [10]. When using a NN for
function approximation, this allows to share learned feature representations.

In a similar fashion, knowledge can be transferred using the knowledge
incorporated in the parameters of the RL agent [50], be it the hyperparameters
or the parameters of the regressor used to represent the policy or value-function.
In this type of setting, model-based RL comes to mind. As the domain is the
same, but the tasks differ, it is possible to learn an approximate model of the
environment, which can then be used in an optimization setting for multiple
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objective functions.

3.3.4 Transfer Learning for Model-Based RL Algorithms

It is clear RL plays a vital role in recent DR control applications. The main
benefit of model-free RL is the lack for the need of an environment model, and,
therefore, domain knowledge. In all examples presented until now, this was
achieved by directly learning a (state-action) value-function or a control policy.
It is, however, also possible to eliminate the need for a domain expert by learning
the model of the environment, using the transitions the agent experienced. With
model-based RL, there is still no need for a domain expert, as the model is
learned using a data-driven approach. The dynamic model of the environment is
learned (mostly) online, while control is active. This predictive model can then
be used to estimate the cost or reward of a certain action, when in a certain
state [27].

While model-based RL has proven to be relatively sample-efficient, compared
to model-free RL, there is still room for improvement [27, 84]. Similar to model-
free RL, model-based RL can use transitions of a source domain to jump-start
control performance in the target domain [84]. Taylor et al. [84] developed
a model-based transfer learning method where source domain transitions are
transformed to fit the target domain and task. This transformed source-data
can then be used to build an initial model in the target domain.

Recent literature has shown that transfer learning can be used to mitigate the
lack of sensing in EWHs [31]. With transfer learning Kazmi et al. accomplish
few-shot learning, both with homogeneous and heterogeneous appliances. It
thus enables all benefits of black-box modeling, while limiting the need for
extensive sensing. It is exactly in this regard that the aim of transfer learning
for model-based RL differs from general supervised learning. In model-based
RL, the model is needed for control of a certain environment, and one mostly
operates in a few-shot learning setting. Sample efficiency is therefore very
important.

3.4 Application Scenarios

Transfer learning for RL in the context of DR is still in an early stage of
development. Nevertheless, a number of case studies have appeared in the
recent past that use it to improve models or control policies.
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One of the very first applications of transfer in RL was for forecasting energy
demand of buildings with limited historical data [47]. The authors transferred
forecasting models trained using RL algorithms - SARSA and Q-learning with
deep belief networks for function approximation - and data from source buildings
to predict the energy demand in (commercial and residential) buildings with
unlabelled historical data. Similarly, Kong et al. [34] transferred knowledge
on the user’s electricity price elasticity from regions where DR has been
implemented to areas with unknown elasticity. This elasticity is used to estimate
the electricity demand of the users in the new region, which is then used to
train an RL algorithm - SARSA - that selects suitable retail electricity prices
to enforce DR in this new region.

A parallel thread of research has focused on using transfer learning to improve
reinforcement learning based control strategies of flexible assets. An early
example of using prior knowledge in an RL system using a hybrid simulation
learning control can be found in [39], where the authors adopt a two-step
approach. In the first step, they pre-train the controller using a calibrated
model of the HVAC system under consideration. Then, this controller is updated
online during the operational phase in an experimental environment. Likewise, in
the works of Costanzo et al. [9] and Ruelens et al. [70] the authors used transfer
learning in the form of expert knowledge to shape and enforce monotonicity in
a control policy previously learned from a limited number of observations.

The authors of [53] proposed using expert knowledge in the form of grey-box
model predictive control transitions for kick-starting of an informed fitted Q-
iteration-based controller. The authors used a linear grey-box model predictive
control approach as the expert and showed an increase in cost savings. Peirelinck
et al. [56] used transfer learning through domain randomization to facilitate
knowledge transfer and reduce the exploratory time of the learning agent. The
authors reported an 8.8% increase in cost savings compared to the setting
without any knowledge transfer. This approach has the added advantage of not
requiring a well-calibrated simulation model of the system under consideration.
Likewise, domain randomization in RL was also used by Kazmi et al. [29]
to control batteries in order to solve voltage problems in the low voltage
grid. Control agents were trained offline using randomly sampled load and PV
generation profiles in many different simulated topologies of the distribution
grid. The authors showed that by employing domain randomization more grid
violations were resolved compared to the case without.

In the work of Mbuwir et al. [42], the authors used cluster-based transfer
learning to transfer knowledge in the form of control policies amongst buildings
with similar energy usage patterns. A control policy learned using data from a
data-rich building in a cluster is used to initialise learning in a target building
belonging to the same cluster. The authors showed a faster convergence to a
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near optimal policy compared to when no knowledge was transferred. Similarly,
Paridari et al. [51] proposed a plug-and-play planning and control framework for
control energy storage devices in buildings with PV installations. In their work,
knowledge was transferred in the form of a policy function approximation to new
end users with no historical data – from which a control policy could be learned –
leading to a 29% increase in cost savings. Likewise, in [32] the authors exploit the
structural similarities in the control policies across rooms in a building by sharing
features (and transitions) to obtain a policy that can set the suitable energy
levels for lighting and air-conditioning units. To avoid excessive use of cloud
resources and speed up the training process when training RL-based control
agents from scratch in DR applications, Tao et al. [83] transferred weights of the
control policies between batteries and Heating, Ventilation and Air Conditioning
(HVAC) units. The authors showed: a significant cost savings in a homogeneous
setting (knowledge transferred between two battery control agents), and a slight
cost savings in a heterogeneous setting (knowledge transferred from a battery to
an HVAC control agent) compared to training an entirely new policy. Moreover,
the authors showed that knowledge can be transferred between different DR
programs (price-based to direct load control).

Even though the above applications have shown the positive impact of transfer
learning on the target domain learner, the effectiveness of the knowledge
transfer is not always guaranteed. Knowledge transfer can also lead to reduced
performance in the target domain/task. This is termed negative transfer and
can occur due to source and target tasks being unrelated or the domain data
distributions being too different. For example, a 1.36% reduction in prediction
accuracy was reported in [98] due to negative transfer. Several approaches
exists in the literature for mitigating negative transfer as summarised in [99].
In the context of demand response, negative transfer has been tackled by
selecting appropriate source tasks using a Gaussian process-based selection
algorithm [100] or using the TrAdaBoost algorithm [98], which decreases the
weights of source instances with distributions different from that of the target.
Establishing the similarity between source and target tasks, and performing
optimization to determine the appropriate number of source tasks – a large
number of source task could increase the computational time while too few
tasks might not provide sufficient supplementary information – also mitigates
negative knowledge transfer [98].

3.5 Future Directions

The presented review shows that transfer learning has gained considerable
traction in recent years, and is currently the subject of intensifying research
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efforts in DR. This attention can mainly be attributed to the success of transfer
learning methods in other domains, and early indications that the methods
hold enormous potential for DR applications as well. The review also shows
that major research opportunities remain untapped, with most research to
date being concentrated on improving demand forecasts using transfer learning.
This section explores and elaborates the identified limits and resulting research
opportunities of transfer learning within a DR setting. Table 3.1 summarises all
applications that have been reviewed in the preceding section, and provides an
overview of the research gaps that remain within transfer learning applications
in DR.

A first observation made based on Table 3.1 is that most of the reinforcement
learning based transfer learning applications within the DR setting focus on
utilising domain knowledge to increase control performance. An example of this
is controllers trained using simulators.

Furthermore, from Table 3.1, it is clear that in every area of transfer learning
within DR there remain research opportunities. But, especially inductive
transfer learning and transductive learning with feature sharing between
different domains remain open challenges. Although inductive transfer within
reinforcement learning has seen few research applications, it could be a promising
field in the near future. For example, one can think of a DR setting where
a flexibility provider offers different services to the market, e.g., frequency
response and peak shaving. At different times, this provider would then have
to switch between reward-functions, transferring as much relevant information
about the underlying system dynamics as possible. Likewise, transductive
learning with feature sharing has relevant applications in practice but has seen
relatively little research interest. For example, energy storage devices can be
based on multiple technologies. However, at a high enough abstraction level
they have similar dynamics. Therefore, features could be shared among different
storage appliances. Transfer could then be used to jump-start performance of a
new storage technology entering a flexibility provider’s set of appliances. This is
something we will explore in chapter 5. It could also be used to increase overall
performance of the flexibility pool among all active appliances.

Finally, it is interesting to revisit Fig. 3.1. It is now clear that almost all
applications considered represent the knowledge of the source domain in the
form of data. Either from Simulation Results or from Historic Data. Yet, other
representations of knowledge are possible. Simultaneously, most knowledge
of the source domain and task is integrated in the target domain and task
by incorporating it in the agent’s training set. Taking the broader field of
informed ML into account, it is also possible to integrate knowledge through
other means. For example, one could restrict the hypothesis set by a pre-defined
model structure of the NN, or by modifying the loss function of the model.
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Table 3.1: Classification of transfer learning applications in demand response.

Reinforcement Learning
Transductive transfer

Domain knowledge [35, 9, 53, 56]
Real-world data [51, 42, 47]
Shared features [32], [34]

Inductive transfer [70, 69]

As far as the reinforcement learning algorithm goes, our review clearly shows
Q-learning is widespread and well-used in DR applications. Many researchers
seem to agree that Q-learning is promising, as it has shown good results in past
research and in other domains. However, in other domains, such as robotics,
state-of-the-art policy iteration algorithms have proven to handle challenging
tasks better [73]. Therefore, it is important to follow-up on the advances that
have been made elsewhere and investigate their applicability to DR, especially
in the context of transfer learning. This might be necessary for such algorithms
to become sophisticated enough to handle real-world challenges, which arise as
much from sparse data as they do from other limitations such as poor quality
data, and ill-defined and often conflicting objectives. In Chapter 6 we will take
a look combining PPO, the current state-of-the-art RL algorithm, with transfer
learning in a DR context.

3.6 Conclusion

The recent adoption of machine learning-based techniques in demand response
applications has been influenced by the availability of data through smart
metering and the smart grid in general. However, using these techniques in
newly constructed systems remains challenging due to their lack of (sufficient)
historical data. Transfer learning has the potential to solve this challenge and
improve generalizability of machine-learning based models and control policies
as seen in this review. This is evident in the performance gains we have observed
in the papers reviewed herein. In many cases, this can be the difference between
machine learning models that can learn from the available limited data vs. those
that fail to converge to an accurate solution. However, to date, a majority of
articles has focused on transfer learning for forecasting energy demand, with
only limited attention paid to renewable energy generation and electricity price
forecasting. A few, but increasing number of, articles on modelling system
dynamics and control of electric water heaters and batteries for energy storage
have also appeared in the very recent past.
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In transfer learning literature, a wide variety of methods – ranging from data and
parameter sharing to learned representations have been explored. Although a
plurality of the articles reviewed in this paper have considered knowledge transfer
in the form of pre-trained weights from the source model to initialise learning
in the target, a few articles have looked into sharing feature representations.
In the context of reinforcement learning, knowledge transfer in the form of
domain/expert knowledge has been explored with the literature showing how
domain knowledge can accelerate learning of adequate control policies.

A critical shortcoming we have identified is that almost half the articles reviewed
do not provide any quantification of gains attributed to transfer learning.
Furthermore, even when such numbers are included, they mostly do not provide
a complete representation of the gains that could be associated with transfer
learning. These include improvements to initial and asymptotic performance
as well as the rate of improvement (Fig. 3.2). These concerns are further
exacerbated by the fact that most studies do not open-source their data or
codebase, often due to privacy concerns, and are consequently not reproducible.
A recommendation for future research is therefore to quantify all of these three
metrics, especially against strong baselines, and open-source the trained models
in a responsible manner when sharing code and data is not possible.

While research on transfer learning for demand response applications is still in
its infancy, we have found that most of the use cases have only been tested in
simulation environments. Consequently, in order to prove the effectiveness of
transfer learning for demand response applications, more real-world experiments
need to be conducted. This is especially true due to the added challenges
that can arise while deploying models that use transfer learning. Moreover, in
the context of reinforcement learning in DR, we have observed only limited
applications of transfer learning despite its promising potential.





Chapter 4

Domain Randomization for
Demand Response

This chapter is largely based on:

• [56] T. Peirelinck, C. Hermans, F. Spiessens, and G. Deconinck. “Domain
Randomization for Demand Response of an Electric Water Heater”. In:
IEEE Transactions on Smart Grid 12.2 (May 2020), pp. 1370–1379. issn:
1949-3053. doi: 10.1109/tsg.2020.3024656

The first section gives an introduction to domain randomization and its
application within DR. Section 4.2 recapitulates the different buffer models used
throughout this chapter, presents the problem formulation and, subsequently,
looks at the RL algorithms used for this part of the work. Section 4.3 presents
the methodology. Consequently, Section 4.4 presents the experiments and
findings. Section 4.5 draws some conclusions.

4.1 Introduction

While the idea of transfer learning is intuitive and straightforward, a naive
application of the concept might not give the best results. Differences between
source and target environment (or domain), for example due to modelling error,
can lead to sub-optimal results or, in worst case, negative transfer. Therefore,
methods need to be developed that take into account these differences. Domain
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randomization is such a method. This chapter shows how domain randomization
can be applied in a DR setting and investigates if it is beneficial.

Recent breakthroughs in RL indicate we can avoid learning a model from
observations in case we have prior knowledge about the system dynamics.
Tobin et al. [87] showed it is possible to transfer NNs from simulation (source
domain) to practice (target domain). They proposed domain randomization,
here one randomizes the source domain in certain parameters. The general idea
is that through this randomization the agent can simultaneously be trained
on a multitude of source domains. As a result, the agent will perform better
when applied in the target domain. Further research [62] has shown that
domain randomization greatly reduces target domain training time and policies
are capable of adapting to unfamiliar target-system dynamics. In another
example, Andrychowicz et al. [2] have shown a robotics use case where an
agent was trained to perform dexterous in-hand manipulations in simulation.
In these simulations different parameters, such as friction coefficients and object
appearance, were randomised. This allowed the agent to generalise to unseen
(real-life) manipulations. It is unclear if these results are applicable to the DR
setting.

A wide variety of EWH buffer models has recently been presented [18, 76,
90]. We aim to exploit both the modelling and RL research. Our objective
is two-fold: apply RL for EWH control and minimise initialization time. Our
main contribution consists of combining the usage of these buffer models with
domain randomization, in order to reduce initialization time when applying RL
in a DR setting. The aim of this work is thus to verify that the combination of
buffer models, domain randomization and RL is fruitful for DR. As a first step,
both our source and target domain are simulated. However, as the lab-validated
target domain model is more elaborate than the source domain model(s), this
results in a clear modelling difference.

To explore the suitability of domain randomization for transfer from simulation
to practice in DR applications, this chapter looks into transfer from the uniform
or two-layer model to the stratified EWH model. Earlier in this text the clear
modelling difference between these EWH models has been shown. Therefore,
we believe our results can indicate if domain randomization should be applied
in DR settings.
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4.2 Environment Models and Reinforcement Learn-
ing Algorithms

4.2.1 The Markov Decision Process

This chapter follows the typical MDP considered throughout this work, as
presented in Section 2.1. An MDP can be defined based on its transition
probabilities, its state-space, action-space and cost-function. The transition
probabilities are considered to be unknown in the target domain. The other
MDP properties are defined below.

State-space

The augmented observable state-space X incorporates SoC and time information.
State x ∈ X at every time step t is given by

xt = [SoCt−3, SoCt−2, SoCt−1, SoCt, tcos, tsin] . (4.1)

Action-space

As presented earlier, a binary action-space U has been considered. Action u = 1
implies the EWH’s heating element is turned on its at rated power Pr, u = 0
turns the heating element off. Note that the comfort controller H(ut) can
overrule this action when necessary to ensure user comfort, according to (2.17).

Cost-function

An energy arbitrage DR setting with ToU pricing has been considered in this
chapter. Given energy price λt and energy consumption Et = H(ut)Pr∆t, the
reward at time-step t is given by

rt+1 = −λtuphys,tPr∆t = −λtEt. (4.2)

Experiments have been conducted with two different price profiles, defining λt.
These two profiles are presented together with the respective experiment and
results in Section 4.4.
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4.2.2 Electric Water Heater Models

All three models presented in Section 2.2.1 are used throughout this chapter.
The stratified model has been validated in a lab and proven to behave in a
similar fashion as a real stratified buffer [90]. Therefore, the stratified model,
the model which most closely represents reality, has been considered as the
target domain. The goal of the experiments is thus to show that it is faster to
fine-tune a control policy in this domain than it is to learn one from scratch.

Section 2.2.1 shows there is a clear modelling difference between all three EWH
models. Therefore, different experiments have been conducted both with the
uniform and the two-mass model acting as source domain. This could give an
indication of the complexity needed for successful transfer of control policies.
For example, the uniform model completely disregards all notion of stratification.
At this point, it is not clear if a policy trained using the uniform model as
source domain would provide a significant benefit over directly training in the
target domain

4.2.3 Reinforcement Learning Algorithms

The experiments have been conducted with both value iteration algorithms,
DQL and FQI. Both NNs used in DQL consist of two hidden layers, each with
64 neurons. Each hidden layer has a ReLu activation function. In contrast,
random forests are used for the sake of computation speed in FQI. The iterative
re-training of all Q-functions within FQI has the advantage that it inherently
allows for changing price ToU-price profiles. However, its main disadvantage
is the increased computational complexity, compared with DQL. Research has
shown, however, that using random forests instead of NNs with FQI strikes a
good balance between computation speed and performance [43].

Due to their differences each of the two algorithms requires a distinct transfer
learning approach. The transfer methodology for both algorithms is explained
in the next section.

4.3 Methodology

Our objectives are two-fold. We want to keep all benefits of a model-free
approach when controlling an EWH in energy arbitrage DR settings, and we
want to exploit the limited a priori available information to reduce learning time.
The main hypothesis is that pre-training can be used for policy initialization
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Figure 4.1: Policy π(x) and experience replay memory F transfer approach.
Training phase model is a distribution ρ over the source domain. The agent
observes stratified model dynamics (p (xt+1|xt, ut)) during test phase.

despite the presence of modelling errors, and that it reduces initialization time.
In this work, we know the RL agent is going to be applied on an EWH to
minimize operating cost when energy consumption is charged with a (given)
ToU price. The stratified model presented in Section 2.2.1, with parameters as
given in Table 2.1, represents the target domain. This implies we can only use
it as a virtual test-bed. The uniform and two mass model represent the source
domain, i.e., simplified (or approximated) models of the target domain. Our
objectives then translate to training policies that can control the EWH under
the stratified model dynamics p(xt+1|xt, ut), while reducing learning time using
its approximate dynamics p̂(xt+1|xt, ut).

All experiments consist of a training and test phase, as illustrated in Fig. 4.1.
During training, the agent samples from p̂(xt+1|xt, ut), by interacting with the
source domain. It saves the samples in F and updates π(x) using either DQL
or FQI. To account for discrepancies between source and target domain, i.e.,
modelling differences, we include variability in the former [62]. We use domain
randomization and expose the agent to a distribution ρ over environments
p̂(xt+1|xt, ut) ∼ ρ [87]. We draw samples from this distribution once, at the
start of the training phase, and train the agent through iteration over the
sampled models. Tobin et al. [87] state that with enough variability during the
training phase, the RL agent will be able to generalize to dynamics seen in the
test phase. Instead of training a policy that can perform the EWH control task
under one dynamics model, we train a policy that can perform the task over a
variety of models.

In the remainder of this work, we assume the EWH’s height h, diameter d
and rated power Pr are known in the training phase and equal to the value
in Table 2.1. Furthermore, the thermal transmittance of the target domain U
equals 0.75 W/(m2K). In the training phase, we assume a normal distribution
over U ∼ N (µ, σ2) in the source domain, with the value of µ and σ depending
on the experiment. During this phase, the agent’s objective is then to maximize
expected return across a distribution of dynamics models ρ [62]. The agent learns
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a control policy using DQL or FQI. The training phase lasts for Ttrain = 15T
simulation days. We assume a separate tap water profile ṁw of 15 days is
available for this phase. Both in the training and test phase we use an ε-greedy
exploration policy [82]. After pre-training, the policy π and/or the replay
memory F are transferred, as shown in Fig. 4.1. The transfer approach differs
slightly for DQL and FQI.

4.3.1 DQL

The parameters θ of the two NNs are iteratively updated during training phase
according to Algorithm 1. They encapsulate information about the MDP.
The target domain uses the final source domain’s θ and θ− as initial values
and further updates these parameters (also) according to Algorithm 1. The
experience replay memory’s maximum size |F|max is 35 days, or |F|max = 35 ·96
state-transitions. Each time step t, we perform one update of online and target
NN according to (2.25) and (2.26), with a batch of size 3T = 288, uniformly
sampled from F .

4.3.2 FQI

At each iteration the whole set of random forests is refitted, rather than updated.
Therefore, we only transfer the replay memory F from source domain to target
domain. This is an extension of the MAFQI [35, 9] idea. While Riedmiller
and Lampe [35] propose to train a NN to approximate the state-transition
function and add virtual tuples to F , we use a physics-based approximate
model with domain randomization to (initially) populate F . Again, |F|max =
35T . This is sufficiently large, as Costanzo et al. [9] show that FQI converges
after approximately 20 days. As a result of this limitation, source domain
state-transitions start to be removed from F after 20 simulated test days
(|F|max − Ttrain = 20T ). Both in the source and target domain, Algorithm 2 is
used.

4.4 Experiments and Results

The experiments aim to verify our main hypothesis: is it faster to fine-tune a
DR controller learned on an approximate model rather than learn one from
scratch? All simulation set-ups and their results are presented next. The same
experiment has been run 20 times, in order to account for the variability present
in the training and test phase. We drew new samples U ∼ N (µ, σ2) each of
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Figure 4.2: Sinusoidal price profile (full line) and a one day example of the
Belpex price profile (dashed line).

the 20 times. The two ToU price profiles divide the experiments into two main
categories. First, we present the experiments which use a sinusoidal price profile.
Thereafter, we display the ones using the Belgian day-ahead wholesale electricity
prices (of 2018) [16].

4.4.1 Sinusoidal price profile

Fig. 4.2 shows the sinusoidal price profile. We have based this tariff both on the
Belgian day-ahead prices and on the ToU price profile which has been proposed
to one of the Belgian energy regulators (VREG) [11]. Prices vary throughout
the day, but the same profile occurs every day.

Double Q-Learning: direct vs. pre-training

In a first experiment we have applied DQL directly in the target domain, and
compare it with the pre-training approach as presented in Section 4.3.1. We
employed the two mass model, presented in Section 2.2.1, in the source domain,
as this resembles the target domain (stratified model) most closely. Each
simulation run we sampled five two mass models, with U ∼ N (0.75, 0.12).

Fig. 4.3 shows the cumulative cost of three control approaches over 35 days. The
most expensive control approach, with a final cost of e 23.9, is the hysteresis
controller. This controller acts according to H(u) (2.17), with u = 0. The
dotted and dashed line show the cumulative cost of the direct and pre-training
approach. The bars depict the 95% confidence bound (over 20 simulation
runs). As known from previous research [69, 54, 61], RL (without pre-training)
manages to reduce cost compared to a hysteresis controller. Here, cost has been
reduced by 23.4%. With DQL and given this price profile, pre-training reduces
cost 8.8% further, and has a total cost reduction of 32.2% compared to the
hysteresis controller.
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Figure 4.3: Cumulative cost comparison: DQL-sin experiment. Mean of 20
simulations, vertical bars indicate 95% confidence interval.

Table 4.1: Total cost and p-values for intervals of 7 days: DQL-sin experiment.

Days [0,6] [7,13] [14,20] [21,27] [28,34] [0,34]
p-value 2e−6 0.029 0.007 2.1e−5 4.9e−4 3e−9

Fig. 4.4 compares performance of both approaches. It separates the simulation
days in 5 intervals of 7 days and shows the mean total cost and standard
deviation (of 20 simulation runs). Table 4.1 shows the t-test’s p-value for the
mean of these costs, i.e., the probability that these two distributions have an
identical average. The table shows total cost of all intervals differs significantly
for this experiment. Additionally, the whole simulation run’s total cost differs
significantly, as the p-value is close to zero. While cost between days within
one approach can vary because of tap water demand, the same days have the
same tap demand across all approaches.

Fig. 4.5 shows the policy in the target domain for both DQL approaches. The
top row visualizes the policy learned from scratch, after 5 and 35 days. The
bottom row shows the same after pre-training. To create this figure, snapshots
of the target domain policy NN were saved during simulation at the given
time steps. Afterwards, random state-space samples were fed through these
snapshots. As is clear from (6.7), each state x consists of four SoC values. Thus,
given a certain value for SoCt, the policy outcome can be either u = π(x) = 0
or u = π(x) = 1, depending on the other three SoC values. Fig. 4.5 is a
two-dimensional representation of the policy, i.e. states with the same value
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Figure 4.4: Cost comparison of intervals of 7 days: DQL-sin experiment.

for SoCt and t are depicted on the same point in this two-dimensional space,
although they might have different values for SoCt−1, SoCt−2, SoCt−3. Black
indicates the EWH is turned on (π(x) = 1) for that particular time-step t and
SoCt, for all state-space samples. Lighter shades indicate energy consumption
only for certain samples with the same SoCt and t (but possibly different values
for SoCt−1, SoCt−2, SoCt−3).

The top left figure shows that only a limited amount of the state-space has been
explored in the direct approach, and the policy is initialized only in this part.
After pre-training, the policy is already initialized over a larger part of X . After
5 days, the pre-trained agent has learned a basic policy, turning the EWH on
when prices are low. After 35 days, the RL agent that started from scratch has
also learned this behaviour. Additionally, when SoC turns out to be low before
the highest peak, the agent turns the EWH on. We see the policy learned after
35 days and with pre-training is similar, but the big charging cycle has moved
to the afternoon price drop. This results in a cheaper policy, as most of the
DHW consumption occurs in the evening [15]. In the morning it is sufficient to
charge to ±50%.

Fitted Q-Iteration: direct vs. pre-training

The same figures are shown, now for the FQI approach. Fig. 4.6 shows the
cumulative cost of the compared control approaches. Again, the hysteresis
controller is the most expensive, while the pre-training approach is the cheapest.
Table 4.2 shows that the difference between pre-training or not is significant
for all but the last interval. Which is to be expected, since by then most
pre-training samples have disappeared from the experience replay memory F .
Although learning from scratch already reduces total cost with 27.6%, compared
to hysteresis control, pre-training reduces cost with 35.1%. Fig. 4.7 compares
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Figure 4.5: Policy comparison: DQL-sin experiment. Top row: policy without
transfer learning, bottom row: policy with transfer learning. Left column:
snapshot of policy after 5 days, right column: snapshot of policy after 35 days.
Back indicates ut = π(xt) = 1
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Figure 4.6: Cumulative cost comparison FQI-sin experiment. Mean of 20
simulations, vertical bars indicate 95% confidence interval.

all three controllers in this experiment. It shows both FQI-based RL approaches
are already cheaper than the hysteresis controller in the first interval. The
figure also shows pre-training results in additional cost gains, starting from the
first interval.
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Table 4.2: Total cost and p-values for intervals of 7 days: FQI-sin experiment.

Days [0,6] [7,13] [14,20] [21,27] [28,34] [0,34]
p-value 3e−4 6.3e−8 2.5e−5 0.04 0.88 4e−7

[0, 6] [7, 13] [14, 20] [21, 27] [28, 34]
Interval [da s]

0.0

2.5

5.0

En
er
g 
 co

st 
[€
]

no pre€training pre€training h steresis

Figure 4.7: Cost comparison of intervals of 7 days: FQI-sin experiment.

Comparison with Model Predictive Control

Of the three presented buffer models, the uniform model is the only one that is
linear. For this case, the source domain control problem can thus be formulated
as a Mixed Integer Linear Problem (MILP), given in (4.3). Therefore, it is
possible to use MPC. This experiment compares MPC with both transfer
learning approaches, when using the uniform model. With MPC, the target
domain’s (observable) state is sampled at time step t. Here, the target domain
(stratified buffer) backup sensor temperature at that time step (Tb,t) is used as
initial state (for the temperature TL) in the source domain (uniform model), as
shown in (4.3e), and U = 0.75 W/(m2K) in both source and target domain. The
MILP solution is a vector of length T with the source domain optimal control
actions for period [t, t+ T ]. After applying action ut in the target domain, the
procedure is repeated, and this for every time step t. For a more elaborate
explanation of MPC we refer to other literature [65]. We solve the MILP using
the Gurobi solver [21].
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min
uk

t+T∑
k=t

λkukPr∆t (4.3a)

subject to TLk = TLk−1 + ∆t 1
Cboiler

[ukPr

+ ṁwCpw(Tiw − TLk−1) (4.3b)

+ U(As + 2At)(Tamb − TLk−1)]

TLk ≥ Tmin (4.3c)

TLk ≤ Tmax (4.3d)

TL0 = Tb,t (4.3e)

Fig. 4.8 shows the cumulative cost of all 4 controllers (MPC, pre-trained FQI,
pre-trained DQL and hysteresis control). Pre-trained DQL final cost is e 15.6,
and thus 26% cheaper than MPC, with a final cost of e 21.2. Pre-training FQI
with the uniform model results in a total cost of e 16.1. It is thus clear it does
matter to capture the non-linearities of the stratified model, which a RL agent
is able to do. Although RL manages to capture relevant information from the
uniform model, the model does not seem to be sufficiently accurate for MPC.
Furthermore, this figure also shows there is only a small performance difference
between FQI and DQL.

U out of distribution

In a last experiment with this price profile, we investigated the effect of a
bad distribution over U , both for DQL and FQI. Apart from sampling U
from N (0.55, 0.12) the procedure is equal to the first and second experiment.
The target domain thermal transmittance U is now 2σ away from the source
domain’s mean value.

Table 4.3 shows the results. For both algorithms, the performance with a good
guess for the distribution over U (target domain value equal to source domain
mean) and with a bad guess is very similar. This indicates that pre-trained
policies are indeed able to generalize over different buffer model parameters,
and that we can use RL to further fine-tune policies in the target domain.
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Figure 4.8: Cumulative cost comparison: FQI and DQL vs. MPC experiment
(uniform model). Mean of 20 simulations, vertical bars indicate 95% confidence
interval.

Table 4.3: Results for different distribution parameters over U .

U N (0.75, 0.12) N (0.55, 0.12)
FQI [e] µ 15.49 15.25

σ 0.79 0.97
DQL [e] µ 16.20 16.08

σ 1.04 1.02

4.4.2 Belpex price

In a final experiment, we have used the Belgian day-ahead electricity prices
[16] (dashed line in Fig. 4.2), and compared performance difference between
the use of pre-training or not. Belpex is an hourly-varying price profile which
differs every day. E.g., Fig. 4.2 shows the first day of the test-set prices. FQI
separates the SDP in T supervised learning problems and refits the regressor
for every control step t. Ruelens et al. [69] propose to exploit this property
when dealing with a time-varying ToU price profile, which is different every day,
by recalculating all rewards in F at every step. As DQL is an online learning
algorithm, adapting it in a similar way is non-trivial, as information of previous
rewards is encapsulated in the NN’s weights. Another possibility, as explored
by Cao et. al. [7], is to add future prices to the state. Thus, for the FQI-based
controller no additional adaptations are needed to the state, but every training
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Figure 4.9: Cumulative cost comparison: FQI-Belpex experiment. Mean of 20
simulations, vertical bars indicate 95% confidence interval.

day the rewards in F need to be recalculated. For the DQL-based controller on
the other hand, this recalculation step is unnecessary, but the observed state at
time step t is now given by (4.4).

xt = [SoCt−3, . . . , SoCt, tcos, tsin, λt, . . . , λt+24] (4.4)

First, all FQI results are presented. Fig. 4.9 shows the cumulative cost over the
simulation period for all considered FQI controllers. While their order stays
constant, the difference between them reduces. With this price profile, direct
RL is 5.5% cheaper than the hysteresis controller and the transfer learning
approach is another 4.4% cheaper. Compared to the same experiment with the
sinusoidal price profile, the cost gains are smaller. This can be explained by the
smaller valleys and peaks in the price profile, as is clear from Fig. 4.10. This
figure shows the target domain’s final five simulation days, for the pre-trained
case. The top graph depicts Belpex price on the right axis and the buffer’s
SoC on the left axis. The grey areas indicate if the EWH is consuming power
(uphys = 1) or not (uphys = 0). The bottom graph depicts DHW consumption.
The control policy turns the EWH mostly on when prices are relatively low.
However, completely avoiding energy consumption during higher priced hours
is not always possible due to hot water consumption.

Table 4.4 divides the simulation period in 5 intervals, each of 7 days. The table
shows that each group’s mean cost for direct FQI is larger than the group’s cost
with pre-trained FQI. The difference is, again, significant for all but the last
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Figure 4.10: Final five simulation days: FQI-Belpex experiment.

Table 4.4: Total cost and p-values for intervals of 5 days: FQI-Belpex experiment.
Mean of 20 simulations, vertical bars indicate 95% confidence interval.

Days [0,6] [7,13] [14,20] [21,27] [28,34] [0,34]
No pre-training µ 5.19 6.02 4.34 4.17 3.95 23.67∑
λtEt [e] σ 0.40 0.16 0.25 0.32 0.19 0.46

Pre-trained µ 4.90 5.90 4.09 3.84 3.84 22.56∑
λtEt [e] σ 0.45 0.18 0.15 0.22 0.22 0.49

p-value 0.04 0.03 7e−4 6e−4 0.11 1.2e−8

group. As expected since F is almost only filled with target domain transitions
at that time.

With pre-trained DQL, and using states as defined in (4.4), the Belpex price
profile resulted in a mean total cost of e 23.22 with a standard deviation of
0.64. These results seem to indicate FQI is more suited in a setting with daily
varying prices. Additionally, with the Belpex price profile, MPC resulted in
a total cost of e 25.5. This result indicates that, with this price profile, more
system-identification effort is needed to get satisfactory MPC performance.

4.5 Conclusion

We demonstrated the use of pre-training with domain randomization in a
residential DR setting for two different RL algorithms and with two ToU
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price profiles. We show adapting a pre-trained policy to the target domain is
significantly faster than starting from scratch. Pre-trained policies allow for cost
savings immediately at the start of operation, which, in the considered cases,
results in a significant price reduction throughout the simulated period. Using
DQL, pre-training results in 8.8% cost reduction compared to starting from
scratch and a 32.2% reduction compared to a hysteresis controller. Although the
pre-training approach differs slightly between DQL and FQI, both algorithms
benefit very similarly from it. Moreover, despite the two mass model’s more
accurate SoC estimate, compared to the uniform model, the RL agent manages
to benefit from pre-training almost equally. Average total cost with the two
mass model is e 16.2 while it is e 15.6 with the uniform model, for the DQL
agent. Our experiments also showed pre-trained RL agents, with domain
randomization, show similar cost savings when there is a larger discrepancy
between source domain and target domain. This discrepancy can be caused
by modelling (uniform model) or by system-identification (bad guess of model
parameter U ).

Finally, we showed it is relevant to use a non-linear policy which adapts to
the target domain, as this results in 26% cheaper operation than applying
optimal source domain control actions in the target domain, i.e. MPC. While
state-of-the-art MPC might result in better performance, our results indicate
that the uniform model suffices for RL but does not suffice for MPC.

It is not certain that dissimilarity between uniform / two mass model and
stratified model is as large as the dissimilarity between the stratified model and
a real buffer. Therefore, future work is directed towards verifying the presented
approach for transfer from simulation to practice. Additionally, we aim to
investigate other methods of including prior knowledge in the policy as we have
showed this can result in better policies.



Chapter 5

Multi-agent Transfer Learning
in Demand Response

This chapter is based on

• [57] T. Peirelinck, C. Hermans, F. Spiessens, and G. Deconinck. “Transfer
learning for Demand Response of a Multi-Agent Battery and Electric
Water Heater System”. In: 2021 IEEE PES Innovative Smart Grid
Technologies Europe (ISGT Europe). IEEE, 2021. doi: 10 . 1109 /
ISGTEurope52324.2021.9640081

5.1 Introduction

In recent years, some multi-agent RL applications have gained attention. For
example, Reymond et al. [66] show that independent agents at household level
perform better than a centralised grid agent. Furthermore, Kazmi et al. [30]
use model-based RL in a large scale field test in The Netherlands. Their work
shows multi-agent settings can accelerate learning of TCL behaviour. Thus,
in addition to showing the possibilities of multi-agent settings, Kazmi et al.’s
work also shows tranfer learning can be used to achieve higher data efficiency
in DR applications that use RL. The same conclusion can be drawn from our
earlier work. The previous chapter (and Peirelinck et al. [56]) show that transfer
learning, with domain randomization, can be used to jumpstart RL control
performance. All these results are promising, as data inefficiency has until
recently been considered to be the greatest drawback of RL methods [62].

65

https://doi.org/10.1109/ISGTEurope52324.2021.9640081
https://doi.org/10.1109/ISGTEurope52324.2021.9640081


66 MULTI-AGENT TRANSFER LEARNING IN DEMAND RESPONSE

In transfer learning one aims to use the knowledge extracted from a source
domain or task to increase (learning) performance in a target domain or task [50].
This work aims to further develop transfer learning applications in the DR and
smart grid domain. Additionally, it builds upon previous multi-agent settings.
Similar to Kazmi et al. [30], other agents’ experience is used to accelerate
training time. But, additionally, this occurs in a multi-agent setting. In contrast
to other multi-agent work [66, 30], we consider a two agent system, where one
agent is part of the environment of the other. The experiments conducted
consider a household equipped with an EWH and a rooftop PV installation,
with only a rudimentary forecast. The electricity consumption of the household
is charged based on a ToU-pricing mechanism, without a feed-in tariff. There is
thus a clear incentive for self-consuming locally generated PV power. A first
agent controls the EWH for this purpose, using FQI. Later, a battery, with a
second FQI agent, is added to the system. The goal of the battery agent is to
further reduce the household electricity bill. The EWH-agent already holds
information about the household inflexible load, and the EWH consumption
pattern. Therefore, the experiments aim to investigate if it is worthwhile to use
this experience to pre-train the battery agent. The household with EWH will
thus act as the source domain and the household with EWH and battery will act
as the target domain. Furthermore, the experiments aim to show that a scenario
where one agent is part of the environment of the other is feasible. In order
to do so, we assume that the EWH agent has priority over the battery agent,
as the EWH can be considered the least flexible appliance. By imposing this
priority, the EWH-agent’s state and action can be part of the battery agent’s
state. The main hypothesis of this work is that it is possible to combine two
RL agents, with the same cost-function, and use the experience replay memory
of the former, to pre-train the latter.

The second section of this chapter recapitulates the presented control problem
as an MDP. The third section presents the experiments and results. The section
thereafter concludes this part of the work and explores future research directions.

5.2 Environment Models and Reinforcement Learn-
ing Algorithms

Both agents, with their respective state- and action-spaces, are deployed in an
MDP. It has been assumed the EWH model is not known a priori and the agent
solely relies on its experiences to learn a control policy. In contrast, a very
rudimentary battery model is assumed to be available to the agent for offline
pre-training. However, none of the exogenous data is assumed available. These
data sources can only be read online, during simulation.
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This section quickly recapitulates the MDP, models and algorithms used
throughout this chapter.

5.2.1 The Markov Decision Process

As typical in residential DR settings, the exact transition probabilities are
unknown. The goal of the RL agent is to learn a policy π : X → U which can
cost-efficiently operate in the environment, given this uncertainty. The following
subsections introduce each part of the MDP.

State-space

The agent perceives battery and EWH state as xB ∈ XB and xEWH ∈ XEWH,
respectively. This is only a partial observation of their respective internal state.
The observed state is augmented with history h = 4, in order to recover the
Markov property [70, 23].

Because the states of both environments are used by both agents, they need to
be transferable. Therefore, SoC is used to describe the energy content of EWH
and battery. The EWH and battery states, as observed by the agent, are given
by equation (5.1) and (5.2), respectively.

xEWH
t = [SoCEWH

t , . . . , SoCEWH
t−h , RPVt , tcos, tsin] (5.1)

xBt =[SoCBt ,. . . ,SoCBt−h,uEWH
t ,SoCEWH

t ,RPVt ,tcos,tsin] (5.2)

Furthermore, by defining the states like this, it is clear that the EWH has
priority over the battery. That is, the EWH-agent always decides its action
first, after which the action is included in the battery agent’s observed state.

The goal is to minimise the need for forecasting. In order to get a practical
scenario, only a forecast of the peak power production of the current day FPVt
is assumed available. We assume a perfect forecast. And thus, the agent only
observes this forecast combined with power production and consumption of
the previous time step, PPVt−1 and Pmt−1, respectively. All this is incorporated in
RPV , as defined by

RPVt =
PPVt−1 − Pmt−1

FPVt
. (5.3)
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Figure 5.1: Time-of-Use price profile.

Action-space

The action-spaces of both agents differ slightly, as it is impossible to discharge
an EWH. Or rather, it can only be discharged by consuming hot water, which
is a decision made by the users. Therefore, the EWH-agent has a binary action-
space UEWH = {0, 1} indicating if the heating element should be turned on or
off, with rated power PEWH

r .

Additional to charging and turning off, the battery agent can also decide
to discharge the battery. The battery action-space therefore equals UB =
{−1, 0, 1}.

Cost-function

From the DR setting described earlier, it is clear the agent’s main aim is to
reduce operating costs and, therefore, increase self-consumption. There is no
feed-in tariff present and the consumed electrical energy is charged based on
a ToU-pricing mechanism, with price λt at time step t. In what follows, a
sinusoidal price profile, as shown in Fig. 5.1 [61], has been assumed. The
remaining load of the (typical Belgian) household Emt and the PV generation
EPVt are assumed uncontrollable to the agents. However, they do influence the
cost. The cost at time step t is defined by (5.4).

ct = λt max(EEWH
t + EBt + Emt − EPVt , 0)

= λt max(Enet
t , 0) (5.4)
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5.2.2 Electric Water Heater and Battery Model

Electric Water Heater Model

A two-mass buffer model has been used, as presented in Chapter 2 and by Sinha
et al. [56, 75]. The model is based on heat-balance equations between the hot
layer (denoted by subscript h) and cold layer (subscript c). A hard thermocline
has been assumed between both layers. There are thus two temperatures inside
the boiler, the hot water layer temperature Th and the cold layer temperature Tc.
The layers have a variable volume Vc and Vh, which always adds up to the buffer
volume V = Vc + Vh = 203 l. A Canadian tap-demand profile with 5-minute
granularity has been used. The average DHW demand per day equals 189 l [15].
The temperature measurement inside the buffer Tb is located in the middle. At
this location, water has a minimal allowed temperature of Tmin = 45°C and
maximal allowed temperature of Tmax = 55°C.

Battery Model

The energy based battery model, as presented in Chapter 2, has been used for
this use case. The energy balance inside the battery is given by (2.15). The
energy content of the battery is limited to EBmax = 2.4 kWh. Furthermore, a
charge and discharge efficiency of η = 95 % is assumed.

5.2.3 Reinforcement Learning Algorithm

This chapter aims to show FQI can be used in a multi-agent setting and
its performance can be improved by adding transfer learning. Our adapted
version of FQI, as presented in Algorithm 2, separates the SDP in T = 96
supervised learning problems, one for every time step t, assuming a granularity
of 15 minutes. The RL agents considered here use T random forests [6] to
approximate each time step’s Q-function. Using this Q-function, the EWH- and
battery agent’s policies are defined by (5.5) and (5.6), respectively.

πEWH(xt, t) = argmax
u

QEWH
t (xt, u) (5.5)

πB(xt, t) = argmax
u

QBt (xt, u) (5.6)
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5.3 Experiments and Results

5.3.1 Experiment Set-up

The experiment consists of three steps. During the first and third step, new
data is seen by the respective agent. In the second step, the battery agent is
pre-trained using earlier experienced transitions. Fig. 5.2 visually represents
the different steps of the experiment.

First, the EWH-agent has been assumed to be in operation for two months.
This MDP is visually represented in the top of Figure 5.2. During these two
months, the EWH-agent learns a control policy that minimises EWH operating
cost, using FQI. As Ruelens et al. [70] show, one month of data suffices to
learn a near-optimal control policy with FQI. Therefore, after these two months
of training, the training process stops and every step t the agent evaluates
πEWH(xEWH, t) to decide upon action uEWH

t , which is then mapped onto a
power signal uEWH

phys,t according to (2.17).

Second, after two months, the battery agent has been added to the system. As
mentioned, the battery agent’s environment thus incorporates battery, EWH
and EWH-agent. Each time step, the battery agent waits for the EWH-agent’s
decision before evaluating its own policy πB(xB , t). Therefore, uEWH

t can be
part of xB , as given in (5.2).

This set-up has been simulated using two different approaches. In a first, naive,
approach, the battery agent has been added without any prior information,
i.e., in a complete model-free fashion. This means the middle (gray) step of
Fig. 5.2 is omitted. In a second approach, the battery agent is pre-trained
using the battery model described earlier, in combination with the transitions
that are experienced by the EWH-agent. More precisely, there is one off-line
training sweep through the transitions of the EWH-agent, as if the battery
agent has already been added and is experiencing these transitions. Using the
battery model, rewards can be recalculated as if the battery agent had taken its
action. Only after this pre-training phase, visually represented by the middle
of Figure 5.2, the battery agent and EWH-agent are operating together and
experience unseen state-transitions, as depicted in the bottom of Figure 5.2.
Comparing the performance of these two approaches allows us to verify our
main hypothesis: pre-training the battery agent leads to cheaper operating cost
of the combined system. All experiments have been performed five times, to
incorporate variability. Results shown are always the mean over these five runs.

The results have also been compared with Rule-based Control (RBC). This
controller always charges both appliances when net power consumption is
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Figure 5.2: Visual representation of the different experiment phases. Top figure:
first phase of the experiment, only the EWH-agent is active and learning. Middle
figure: second phase of the experiment, the battery agent is learning with the
data saved by the EWH-agent during the first phase (this part is omitted in the
naive approach). Bottom figure: third phase of the experiment, both agents are
active and controlling their respective appliance.
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negative, i.e., EPVt > Emt . Both backup controllers also internally overwrite
this control signal to keep the appliances within operable bounds. A second
rule always discharges the battery when EPVt < Emt .

5.3.2 Results

Fig. 5.3 shows an overview of the experiment where FQI has been combined
with pre-training (FQI+PT). The figure aims to show how the different agents
affect overall power consumption. The figure visualizes power consumption of
the final three days, i.e., when both agents have been deployed. The grey area
depicts net power consumption without battery and EWH power consumption
(Pmt − PPVt ). The blue dotted line is net power consumption with EWH power
consumption added (Pmt + PEWH

t − PPVt ). It is clear that the EWH added
some major power peaks to the overall profile. The EWH-agent has shifted
those peaks to times when overall consumption is rather low. However, due
to DHW consumption, this is not always possible. But, for example in the
final day shown (day 61), EWH power consumption occurs early morning and
late evening, rather than during times with high inflexible load. The full black
line depicts overall net power consumption (Pmt + PEWH

t + PBt − PPVt ). The
battery has an overall flattening effect to the power profile. For example, early
morning of the first shown day, the battery agent has successfully reduced the
first power peak as a result of EWH power consumption. Additionally, it has
reduced the whole evening inflexible power consumption to zero. It is also clear
from this figure that the battery charges during the day, and discharges during
the morning and evening.

Fig. 5.4 shows SoC of both energy buffers, together with the price profile λ and,
again, net inflexible power consumption. The figure shows that the battery
agent charges the battery when net power consumption is negative, as it is only
allowed to do so at these times. Contrary to this behaviour, the EWH-agent
mainly schedules charging times when prices are low. Intuitively, this can be
explained because the hot water consumption of the household occurs mainly
early morning and evening. Due to the limited buffer capacity of an EWH, it is
not possible to charge many hours in advance.

The following two tables aim to compare the performance of the three studied
control paradigms: RBC, FQI and FQI with pre-training (FQI+PT). Table 5.1,
compares all cost-related performance metrics of the simulations. It shows
FQI+PT is the overall cheapest control method in terms of cost. It is 8.6%
cheaper than FQI and 28.5% cheaper than RBC. The first column shows that
cost reductions starts at the first week of battery agent operation. This confirms
the hypothesis that pre-training does allow a jump start. Furthermore, the
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Figure 5.3: Power consumption of three example days (FQI+PT experiment).
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Table 5.1: Summary of main cost performance indicators.∑7·96
t=0 ct[e]

∑
ct[e]

RBC 4.57 34.53
FQI 3.76 27.03
FQI+PT 3.11 24.7

Table 5.2: Summary of main energy consumption performance indicators.∑
Enet[kWh] SC-rate Eoff-take[kWh] Eλ<µλoff-take[kWh]

RBC 57.41 0.60 459.41 111.99
FQI 61.83 0.54 516.20 302.80
FQI+PT 64.60 0.57 496.41 311.61

second column shows the total cost. This gives an indication that cost gains
are achieved for the whole simulation period.

Table 5.2, shows all energy consumption related performance metrics. The
first column gives the net energy consumption over the whole two month
period Enet =

∑
tE

net
t . The second column shows the household’s overall Self-

Consumption (SC) rate, i.e., the amount of locally consumed PV production.
Since, with RBC almost all consumption is shifted to times with local PV
production, it is expected that this performs best, taking only this metric
into account. However, from the previous table it is clear that the lowest cost
is achieved using FQI+PT. Both RL-agents have thus managed to learn a
trade-off between consuming power when electricity prices are low or consuming
power when local production is available. The two last columns of Table 5.2
confirm this. Eoff-take gives the summed net consumption per quarter, i.e.,
Eoff-take =

∑
t max(Enet

t , 0). And Eλ<µλoff-take gives this measurement, but only
taking into account quarters with a price lower than the mean price µλ. Thus,
shifting energy consumption to low-priced hours does increase overall energy
consumption (compared to RBC). However, due to smart shifting (to quarters
with low prices) overall operating costs turns out to be lower. We observe
that the total energy consumption of FQI is higher than that of FQI+PT, but
consumption during relatively cheap hours is lower. It can be concluded that,
by being pre-trained, an RL-agent can better find the balance between keeping
additional energy consumption low, while still shifting energy consumption to
low-priced quarters.
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5.4 Conclusions

In this chapter, FQI has been used in a multi-agent setting. The setting
consisted of an EWH- and battery agent, both having the goal of decreasing
electricity cost in a ToU-princing scenario. By imposing a strict priority amongst
the two agents, it was possible to give valuable information about the EWH
agent’s behaviour to the battery agent. This allowed to successfully incorporate
the EWH agent into the battery agent’s environment. Furthermore, transfer
learning has been used to jumpstart the performance of the battery agent.
Simulations confirm the main hypothesis set out in the introduction of this
chapter: it is possible and beneficial to use experience gained by the EWH agent
to pre-train the battery agent. Pre-training is performed by re-iterating over
the EWH agent’s training data, with a battery model. For a combined system
of EWH, battery, PV and inflexible load, over a period of two months, our
results show a 28.5% decrease in final operating cost comparing pre-training
with RBC and a 8.6% decrease comparing to a scenario without pre-training.
This is especially promising as our pre-training approach holds no additional
complexity, but merely uses the already available data sources efficiently. We
show that a pre-trained battery agent’s control policy better maintains the
balance between an overall increase in energy consumption and energy arbitrage.

Future research directions will aim to extend this research to scenarios with real
electricity prices, and, potentially, a feed-in tariff. Furthermore, extending this
work to multiple agents is also considered. For example, in a fully electrified
residential heating system for spatial heating and DHW, there is room for three
agents: a DHW buffer-, a heat pump- and a battery agent.





Chapter 6

Incorporating Domain
Knowledge in Demand
Response Learning Problems

6.1 Introduction

Renewable Energy Sources (RES) are reshaping the energy sector landscape.
Due to their decentralised and intermittent nature, market and tariff designs
are challenged. In the Flemish region of Belgium the energy regulator (VREG)
has recently announced a change of distribution fee design [94]. Previously,
Flemish residential electricity distribution fees were energy-based. The rise of
residential PV installations and net-metering meant a reduction in income for
the Distribution Network Operator (DNO). With the introduction of digital
metering, the regulator takes the opportunity to introduce a capacity tariff,
starting from 2022 [94]. The regulator motivates its decision by arguing that
the main costs of the DNO are capacity-based rather than energy-based [94].

By tying the distribution grid fees to power rather than energy consumption,
the VREG encourages consumers to reduce their peak power consumption.
This offers an interesting application for DR. TCLs are considered excellent
appliances for DR, as they have an inherent energy buffer [59, 55]. In other
DR applications with TCLs, RL has shown promising results. For instance,
Ruelens et al. [70] showed that FQI can reduce energy consumption cost of a
heat pump by 19%, compared to a default controller, in an energy arbitrage

77



78 INCORPORATING DOMAIN KNOWLEDGE IN DEMAND RESPONSE LEARNING PROBLEMS

scenario. Mbuwir et al. [44] apply the same algorithm for local optimisation
in their transactive control framework. Their methodology manages to reduce
grid congestion using flexibility available in the microgrid’s heat pumps.

Additionally, multiple examples exist of successful EWH control with RL [70, 54,
59, 30, 56]. Reducing peak power consumption can (partly) be accomplished by
local PV self-consumption. Self-consumption is a DR application in itself, and
earlier work has applied RL for maximising residential self-consumption. Soares
et al. [77, 78] use a model-based RL algorithm to control residential batteries
and heat pumps. In their field test, they achieve a 68% average self-consumption
rate. This means, on average, 68% of heat pump energy is covered by local PV
generation. In a similar field test, using the same model-based RL approach, but
only scheduling the EWH heat cycle, De Somer et al. [13] manage to increase
PV self-consumption with 20%. The DR application considered in this chapter
differs from Soares et al. [77, 78] and De Somer et al. [13] as the goal is not to
maximise self-consumption. Rather, maximising self-consumption is an implicit
goal when minimising peak power consumption. In the past, we have already
touched upon a capacity tariff scenario [61]. However, the capacity tariff treated
here is different, and is as proposed by the Flemish regulator in Belgium, i.e.,
VREG [94].

State-of-the-art RL has improved over time. Since its introduction, policy
gradient methods [81] have gradually gained interest. Compared to value
iteration methods, the policy gradient approach uses a function approximator
that explicitly represents the policy [81]. To further improve the policy gradient,
which updates the approximator of the policy, an estimate of the expected
future reward can be used [33]. This is achieved by the introduction of a critic
[33]. These actor-critic methods thus combine the advantages of value iteration
and policy iteration [33]. PPO [73] is the latest introduced family of actor-critic
methods and now widely used in RL research. PPO has proven to work well in
different domains [73]. Consequently, we have opted to use PPO in this work.

Here, PPO has been adapted for automated DR when a consumer with an
EWH is billed, at least partly, based on quarter hourly peak power consumption.
The RL controller’s aim is to minimise final energy cost by turning the EWH
on or off. Cost can be minimised by avoiding energy consumption when other
(inflexible) loads are already using power or by self-consuming locally generated
PV power. To achieve this goal, the agent is first pre-trained based on readily
available consumption [15, 4] and production [63] data. The main contribution
of this work is the modification of PPO to this setting and a state-space design
that explicitly takes into account transfer learning. Additionally, the state-space
inherently includes the dynamic nature of the environment, i.e., its seasonality.
Given that local load and PV forecasts are difficult to obtain, we aim to reduce
the need for forecasting. Furthermore, while other work [77, 78, 13, 61] focusses
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on either load flattening or self-consumption, we implicitly account for both
objectives. We test our approach on data from real households, obtained from
a field-test in The Netherlands [13, 20].

A naive implementation of the capacity tariff, as designed by the VREG, results
in (very) sparse rewards because the final power cost of Flemish households will
be billed once a year, based on the past 12 months’ Mean Month Peak (MMP)
(as discussed next in Section 6.2). RL is known to be less effective in sparse
reward scenarios [41]. Mataric [41] proposes reward shaping for accelerated
learning in such sparse reward tasks. The reward shaping methodology can
be used to incorporate domain knowledge in the reward function, and thus
guide the learner to perform better. Although reward shaping seems promising,
altering the reward function can possibly alter the resulting optimal policy [48].
However, PPO does not guarantee optimality. As such, one can never be sure to
have found to optimal policy, even without reward shaping [73]. The considered
reward function aims to guide the learner to the intuitive goals of the considered
control problem, i.e., minimising power peaks and maximising self-consumption.
However, final performance is assessed based on the final electricity bill of the
considered household.

This chapter is divided in four sections. Section 6.2 gives a more detailed
formulation of the capacity tariff design, formulates the MDP and lays out the
RL algorithm and its modifications. The chapter then goes on to Section 6.3,
presenting the experiments and discussing their results. Finally, Section 6.4
concludes this part of the work and gives some future work directions.

6.2 Problem Formulation

The first part of this section elaborates on the capacity tariff, as designed by
the Flemish electricity and gas regulator (VREG). The second part defines the
SDP, and formulates it as an MDP. The final part presents the algorithm used
to solve the MDP.

6.2.1 Tariff Design

A current Flemish residential electricity bill approximately consists of three parts:
(i) the energy cost [e/kWh], (ii) the distribution costs [e/kWh] and (iii) taxes
and levies (depends partly on energy or power consumption). In the remainder
of this work, we assume this simplified decoupling of the Flemish electricity
bill. Traditionally, residential consumers only have a Ferraris meter installed,
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which is limited to metering of net energy consumption. The introduction of
residential PV installations caused the DNO to see its income reduced, as so-
called prosumers have relatively low net energy consumption and, as mentioned,
distribution costs are energy-based. To compensate for this loss, a prosumer-
tariff was introduced. This tariff is charged based on the power inverter capacity
of the PV installation [e/kWinverter] [94].

With the introduction of digital metering comes the ability to measure electricity
consumption and production separately, and have finer grained measurement
points. Together with the observation that distribution grid investment cost is
mainly tied to grid capacity (and not energy transported), the regulator opted
for a capacity-based distribution fee, from 2022 onwards. This approximately
results in the second part of the earlier mentioned electricity bill being capacity-
based [e/kW] [94].

The peak power to calculate the bill is based on the quarter-hourly measurements
of the digital meter. The capacity fee of a residential consumer will be calculated
based on the running MMP of the past 12 months. It only takes into account net
off-take, i.e., there is no capacity fee based on grid injection. Thus, assuming
Pmt is the quarter-hourly power consumption time-series of the current month
m in kW, i.e., the digital meter output, and λP is the price per kW in euro, the
capacity fee F of a residential consumer is calculated by Eq. (6.2).

MMP =
∑m
i=m−12 max(2.5,maxt(P it ))

12 (6.1)

F = λP ·MMP (6.2)

Eq. (6.1) implies a minimal capacity fee based on a monthly peak power
consumption of 2.5 kW, as in the tariff design [94]. The main aim of this work
is to minimise the final energy bill, i.e., including the parts related to energy
consumption and taxes. The total energy bill is calculated by

Ccapacity = λE · E + λP ·MMP + λEtax · E + λtax, (6.3)

with λE the energy price, E the total energy consumption of considered year,
λEtax the taxes charged based on energy consumption and λtax the fixed taxes
payable per year. Eq. (6.3) is used to judge agent performance.

In RL, the reward function can be used to direct the agent to optimal parts of
the solution space, based on expert knowledge. For example, here we know self-
consumption of locally generated PV will be beneficial for both reducing energy
consumption cost and reducing the MMP. Furthermore, λtax is independent of
MMP and E. As a consequence, neither equation (6.2) nor equation (6.3) are
used as the MDP’s reward-function. The following part of this section formulates
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the control problem as MDP by presenting the state-space, action-space and
reward-function.

6.2.2 Markov Decision Problem

The problem is formulated as a discrete-time MDP with time steps of length
∆t = 15 minutes. The MDP consists of state-space X , action-space U , reward-
function r : (X ,U)→ R and state-transition probabilities p(·|x, u), given by the
EWH model. The agent is unaware of these transition probabilities.

With the setting as mentioned in the previous section, the main objective of this
work is to reduce peak power consumption. Intuitively, reducing peak power
consumption goes hand in hand with increasing self-consumption.

Our reward-function aims at formalising this intuition. Following the MDP
framework, this objective is translated to reward-function (6.4).

r1(xt, ut) =
{

min(P c − Pnett , 0) + P sct PEWH
t 6= 0

0 PEWH
t = 0

(6.4)

Where P c is 2.5 kW, PEWH
t is the electrical power consumed by the EWH,

Pnett is the net power consumption and P sct is the self-consumed EWH power,
at quarter t. Given PDt is the household’s other inflexible electrical energy
demand and PPVt is the electrical power produced by the PV installation, the
net power consumption Pnett and the EWH self-consumption P sct are calculated
by equations (6.5) and (6.6), respectively.

Pnett = PEWH
t + PDt − PPVt (6.5)

P sct = min(max(0, PPVt − PDt ), P r) (6.6)

An additional challenge considered here is the aim of reducing the need for
extensive local PV and demand forecasts. On top of that, the policy will
be applied to different residential buildings and households. Therefore, to
facilitate policy transfer, the state-space is designed to be independent of
environment parameters. For instance, the learned policy should preferably be
independent of inverter capacity, as different households will have different PV
installations. Preference for policy independence on environment parameters
can be illustrated by imagining a simple policy that turns the EWH on whenever
PV power production is above 2 kW. When this policy would be transferred to
a different household, this absolute number does not apply anymore. Moreover,
even within one single household this number would have to change between
seasons.
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At time-step t ∈ {0, . . . , 95}, state xt ∈ X is defined by

xt = {µTt , µTt−1, . . . , µ
T
t−3,∆T bt −Tmin , F

E
PV ,

PPVt
FPPV

, tcos, tsin, t}, (6.7)

with µTt the mean temperature inside the buffer at time-step t, ∆T t
b
−Tmin the

difference between the sensor measurement and the minimal allowed water
temperature, tcos and tsin the projection of the time-step on a circle [56]. Two
state features are dependent on a forecast of the local PV production: FEPV
and FPPV . They are defined by equations (6.8) and (6.9), respectively. FEPV
is the forecast of the current day’s energy consumption, scaled with an upper
bound of the possible energy production given the inverter power Pinv. FPPV is
a forecast of the peak power production of that same day. The agent has no
(explicit) information on local power demand.

FEPV =
bt/96c+96∑
i=bt/96c

EPVi
96/2 ·∆t · Pinv

(6.8)

FPPV =
bt/96c+96

max
i=bt/96c

(
EPVi
∆t

)
(6.9)

This work considers a binary action-space. Every quarter t, the agent chooses
an action ut ∈ U = {0, 1}, turning the EWH on or off. When temperature
constraints are violated, the backup controller overrules the agent’s action
according to Eq. (2.17).

A two-layer EWH model, similar to earlier work [13, 77, 78, 56] and as presented
in Chapter 4, is used as a virtual test-bed.

6.2.3 Algorithm

We use PPO [73] to obtain a stochastic policy, maximising expected total reward,
given reward-function (6.4). Both actor and critic are parametrised using a
(separate) NN, with parameters θactor and θcritic, respectively. The update rules
have been presented in Chapter 4.

To improve convergence speed and policy transfer capabilities, the actor-NN
is tailored to the task at hand, i.e., expert knowledge is incorporated into the
actor NN design. The domain knowledge is included in such a way that it does
not restrict the applicability to one household or one type of TCL. The actor’s
NN has been designed based on three main observations:
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µt FEPV P stt 1− P st

P (ut = 1)

T bt

Figure 6.1: Actor sub-NN architecture, with P st = PPVt /FPPV .

• Time-steps close to each other have a similar policy.

• If the current net consumption is close to the forecasted maximum PV
output of the day, it’s quite likely beneficial to heat water.

• The backup controller affects the policy and can be incorporated into the
actor.

More specifically, the actor is divided in 24 subnetworks, i.e., one for every hour
of the day. Each of these networks has 5 layers, of which the first is a feature
extraction layer. The subnetwork architecture is shown in Fig. 6.1. The output
of subnetwork T ∈ {0, . . . , 23}, with parameters θactorT , equals the probability
of choosing action ut = 1. The final neuron of each subnetwork implements Eq.
(2.17), assuring temperature stays within comfort bounds. The actor thus uses
only part of the observable state and, so does the critic. The full observable
state is given in (6.7). The part used by the actor and critic is defined by (6.10)
and (6.11), respectively. The time-step is not omitted in xactort , as it is needed
to determine if it is better to turn the EWH on at night or not.

xactort = {T bt , µTt , FEPV ,
PPVt
FPPV

, t} (6.10)

xcritict = {µTt , µTt−1, . . . , µ
T
t−3,∆T bt −Tmin , F

E
PV ,

PPVt
FPPV

, tcos, tsin} (6.11)

The critic’s NN has a conventional fully-connected architecture, with two layers
of 28 neurons. Apart from the neuron representing the backup controller, every
neuron uses a ReLu activation function. All NNs have been implemented in
PyTorch [52].
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Table 6.1: General metrics of training- and test data, for 1 year.

DHW cons. [l/day]
∑
ED [kWh]

∑
EPV [kWh]

Training 188.93 3781.55 3766.76
House 1 57.7 2929.57 7894.09
House 2 116.06 5966.85 8269.54
House 3 33.03 3627.04 7467.20
House 4 29.05 3761.71 8296.90
House 5 185.98 5335.82 7920.31

6.3 Experiments and Results

6.3.1 Experiment Set-up

In earlier chapters we have shown transfer learning increases performance for
agents applied in a DR setting [56]. Hence, the task is separated in a pre-training
and test phase. The pre-training phase only uses readily available data. Three
data streams are needed. First, simulated PV production data is taken from
the ninja tool developed by Pfenninger and Staffell [63]. Second, electrical load
data is generated using Strobe [4]. Third, training phase simulations use DHW
consumption data from Edwards et al. [15]. These three sets contain data of one
year and pre-training lasts 15 simulation-years. After the initial pre-training
phase, the obtained parameters θactor and θcritic are used as initial values for
the test phase. During the test-phase, which lasts one simulation-year, we use
real residential PV, load and DHW data, from five houses, obtained from a
field test in The Netherlands [13, 20]. Data is available starting from the first
of October. Each experiment is conducted 10 times to account for variability
in both phases. Table 6.1 gives some general metrics of the training- and test
data. Clearly, a variety of households has been considered. Algorithm 4 shows
the complete training pipeline.

Algorithm 4 Pre-training with PPO
1: Input: h, γ, λ, ε, T
2: Initialise θactor, θcritic
3: while time < 10 years do
4: Act according to Algorithm 3, with training household data
5: Use obtained θactor, θcritic
6: while time < 1 year do
7: Act according to Algorithm 3, with household i data

The presented approach has been compared with three other control approaches:
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Hysteresis Control (HC), Rule-based Control (RBC) and a non-expert version of
RL (PPO). The hysteresis controller assures user comfort and turns the EWH
on or off according to Eq. (2.17). Like RL, RBC adds an additional layer on
top of this hysteresis controller. The implemented rule-based controller turns
the EWH on for four hours, at a fixed time tRBC. While the choice of tRBC may
affect control performance, its optimal value is unknown beforehand. Therefore,
all RBC simulations have been run four times, with tRBC ∈ {10, 11, 12, 13}
hour. The non-expert version of RL also uses PPO as a training algorithm.
However, the actor has a more traditional fully connected NN with two layers
of 10 neurons each. This allows to confirm if the tailor made actor increases
performance.

In the next section we show different result metrics, such as the final energy
bill of the considered household, calculated by (6.3). The Flemish regulator has
published capacity tariff values λP for different DNO regions. We have chosen
the average value λP = 47.78e/kW.

6.3.2 Results

This part presents the results of the simulations. We start with a visualisation
of the three main control approaches (HC, RBC, (expert) RL). Thereafter,
we compare their performance differences more thoroughly. For the sake of
simplicity, only expert RL has been considered at the start. It will be referred to
as RL from now on. Only at the final detailed comparison of the main metrics,
non-expert RL is included.

Fig. 6.2 shows several test-phase days for the three considered control approaches.
In each subfigure, the grey area depicts net uncontrollable load, i.e., inflexible
load PDt minus PV production PPVt . The EWH power demand PEWH

t for
each control approach is depicted by different line-styles. As explained earlier,
simulations have been conducted with several values for tRBC. In all subfigures
of Fig. 6.2, results of the tRBC value which resulted in the best final RBC
performance for the considered house has been shown.

Fig. 6.2a shows the three days immediately succeeding pre-training. At first
sight, RBC seems to be a good initial control approach, consuming power
when local PV production is high. This is, however, as expected, as the choice
for RBC is the result of expert domain knowledge. These three shown days
further suggest RL has resulted in similar behaviour as RBC. This confirms the
observation that RBC is a rather good initial approach.

Fig. 6.2b shows three winter days, which illustrate how RL further improves
upon RBC. On the second and third day, the RL agent turns the EWH on at
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night, thus avoiding a heating cycle in the afternoon (during RBC hours), when
PV production is low and consumption high. Clearly, HC performs worse than
the other approaches, as it does not take into account net consumption at all.

Finally, Fig. 6.2c presents three spring days. All have quite a lot of PV
production and, therefore, clear negative consumption in the afternoon. However,
PV production is intermittent and has certain drops during the day. While the
RL agent has no forecast of PV production in the next quarter, it has current
net consumption as an input. As a result, and contrary to RBC, it temporarily
interrupts heating when PV output suddenly drops. This is illustrated by the
third day (day 242) of Fig. 6.2c.

Fig. 6.3 gives a more extensive overview of the results. It presents an entire
test-phase simulation year for house 3. The bottom graph shows total PV
energy production

∑
EPV , total inflexible load

∑
ED and average DHW

consumption for each month. These measures are useful for interpretation
of control performance. Second, the middle graph shows self-consumption ratio
of each month. For RBC and RL it shows mean and standard deviation of all
simulation runs. The self-consumption ratio is the share of total EWH power
consumption which has been locally produced by the PV installation. Intuitively,
it is clear that this has to be maximised. The graph shows slightly better RL
performance, compared to RBC, for all months. Especially in months with
low PV production, RL manages to capture more of the scarce local renewable
energy for own consumption. Finally, the top figure shows Pmax, i.e., the month
peak, for each month and for all three control approaches, with mean and
standard deviation for RBC and RL. Remembering our final goal, Pmax should
be minimised. RL outperforms the other control approaches for all months,
except November, in this household.

In the end, the main goal is reducing the final yearly energy bills of households
in Flanders, which are prone to a capacity tariff. Fig. 6.4 shows all interesting
metrics for the whole test-phase year and for all houses. The top figure shows the
MMP, calculated by (6.1). (Expert) RL outperforms RBC, HC and non-expert
RL for each household. More precisely, on average over all houses, RL reduces
the MMP by 16.85% compared to HC, and by 6.84% compared to RBC. In
absolute numbers, this is a reduction of 0.90 kW and 0.33 kW, respectively.

As in Fig. 6.3, the middle graph of Fig. 6.4 shows the EWH’s self-consumption
ratio. This figure shows that, for each household, RL manages to shift EWH
power consumption better to quarters in which local energy production is
available. Compared to HC and RBC, expert RL captures 192.34% and 9.93%
more PV production, respectively. This means that, over the year on average,
495.21 kWh more EWH energy consumption is locally produced, compared to
HC, or 57.24 kWh compared to RBC. Of further interest is that expert RL
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(a) House 3: 1 - 3 October (tRBC = 11h).
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(b) House 1: 9 - 11 January (tRBC = 10h).
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(c) House 2: 29 - 31 May (tRBC = 11h).

Figure 6.2: Example days of three controllers and three houses, with best choice
for tRBC.
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Figure 6.3: Test-year monthly performance metrics (house 4).

manages to greatly reduce variability of the final performance, compared to
non-expert RL.

The bottom bar chart shows the final (electrical) energy bill of each household,
defined by (6.3). (Expert) RL is 14.51% cheaper than HC and 4.59% cheaper
than RBC. For these households and the considered capacity cost, this thus
results in an average reduction in cost of e78.07 and e22.13 compared to HC
and RBC, respectively. Moreover, by incorporating domain knowledge into
the RL algorithm, we have managed to reduce costs with 6.68% or e32.96.
Additionally, the performance variability has decreased.

The training-phase is an important step in the design and implementation of this
RL set-up for DR. RL is known to be data inefficient [73]. A pre-training-phase
mitigates this drawbacks as data is less scarce in this phase. Fig. 6.2a has
illustrated that, because of the pre-training-phase, the RL agent performs its
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Figure 6.4: Final (test-phase) results for all houses.

task well immediately at the start of the test-phase. Fig. 6.5 aims to inspect if
final pre-training performance affects test-phase performance. This figure shows
that, although pre-training’s final year mean reward varies between simulation
runs, test-phase mean reward is always rather similar. This result suggests
that, while it is important to pre-train the agent, it might not be necessary to
somehow find the best pre-trained agent, as the average Pearson correlation
coefficient between the mean reward of the final year of pre-training and the
mean test-phase reward is 0.23.

6.4 Conclusions

We adapted state-of-art RL, based on PPO, to the DR setting and have applied
it for EWH control in a capacity tariff use case. The considered setting is
highly relevant in Belgium, as the (Flemish) regulator has decided to introduce
a capacity tariff for residential consumers as of 2022. In this scenario, the
identified goal was two-fold: (i) reduce the EWH peak power consumption and
(ii) increase self-consumption of local rooftop PV production. In our test-phase,
we have used real-life data from five houses, all with different consumption
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Figure 6.5: Scatter plot of mean pre-training-phase reward versus mean test-
phase reward.

patterns, but equipped with the same EWH. Beforehand, the agent had been
trained with readily available data. The setting is particularly challenging as
the agent has no forecast of residential load and limited knowledge on future
PV production. Furthermore, we proposed an extension of PPO where domain
knowledge is incorporated into the actor’s design. The results indicate that,
using this approach, above human-level control performance is achieved.

In our experiments, we compared the RL controller with RBC and HC. The
experiments showed, for all considered houses, expert RL outperforms both
these two other control approaches. Self-consumption ratio was increased by
192.34% compared to HC, and by 9.93% compared to RBC. This resulted in a
final energy bill reduction of 14.51% and 4.59% compared to HC and RBC,
respectively. In absolute numbers, this translates to an average reduction of
e78.07 and e22.13, respectively, in the yearly energy bill of the considered
households. One should note that, while RBC performs relatively well, it is
the result of expert knowledge and the best choice of tRBC differs for each
house. Tuning this parameter needs expert knowledge, which comes at a cost.
In contrast, once deployed, expert RL automatically adapts to its environment.
This has been shown in our experiments by the low correlation coefficient
between pre-training and final mean reward.

We believe with the introduction of the capacity tariff there is an opportunity
for Flemish residential consumers to adopt smart control approaches for EWHs
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(and other TCLs). Aggregators can potentially provide the necessary technology.
Therefore, our future work is directed towards incorporating local control for
reducing the MMP within an aggregator framework.





Chapter 7

Conclusion

7.1 Overview and Answers to the Research Ques-
tions

DR can facilitate the shift towards more sustainable means of generating
power for our society. Not only does DR mitigate the challenges related to
the intermittent nature of (most) sustainable power sources, it also enables a
more efficient operation of the grid and the electric appliances connected to it.
We believe DR can facilitate a shift towards a more sustainable future, while
also providing more comfort to end-users. Unfortunately, residential DR is
challenging. A high degree of automation is requested from the users, as it is
impractical to manually monitor different grid signals at all times. Traditional
control approaches struggle with the variability of the control problem, the
heterogeneous nature of the appliances and the required scalability. RL has
proved to help mitigating these challenges. One of the main drawback of RL,
however, is its data inefficiency. This work has presented different approaches
to improve data efficiency of RL algorithms and has succesfully implemented
them in pratical residential DR use cases.

7.1.1 Summary and Discussion

TCLs account for a relatively large portion of a household’s energy consumption.
At the same time, users consider these appliances mostly as a black-box. They
require the service of, for example, hot water. Furthermore, the service (e.g.,

93
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heat) TCLs offer and the energy they consume (e.g., electricity) are somewhat
decoupled. Meaning that TCLs are a source of demand flexibility. Therefore,
these applliances have been identified to be very promising for DR applications.
Throughout this work, an EWH with DHW buffer has been used as a guiding
example.

Chapter 2 explains how the DR control problem is an SDP, i.e., at discrete
time steps a decision about the next control action has to be taken, based on
the current state of the environment. Thereafter, this chapter formalises the
SDP as an MDP. The MDP framework is used as a guide throughout this
work. It allows to incorporate RL into DR settings. By means of the MDP
framework, the state space, action space and reward functions have been defined.
Furthermore, the particularities with respect to the boundary conditions, i.e.,
comfort guarantees, have been presented. Throughout this work different EWH
models have been used. Some have only been used as a source domain in transfer
learning settings, others have been used as a virtual test-bed. All these models
have been presented in Chapter 2. Additionally, the three major DR tasks
that have been identified through the course of this work, and their practical
relevance, are discussed. Finally, the chapter presents the core of the used RL
algorithms.

In Chapter 3 the fundamentals of transfer learning for DR applications have
been presented. While the transfer learning space is large, no single taxonomy
exists. This makes it difficult for researchers and practicioners to recognise
potential applications and to know which methods to use in which settings.
Therefore, this chapter proposes a transfer learning taxonomy. Based on an
extensive literature review, we propose three categories: transductive transfer
learning, inductive transfer learning and transfer learning for model-based
RL. Finally, transfer learning applications within DR have been reviewed
and categorized. This allows to draw the conclusion that transfer learning
has the potential to increase both performance and generalizability of RL
agents. Domain knowledge can accelerate training. However, in DR, transfer
learning is still in its infancy and requires more research. Most work considers
(naive) sharing of NN weights. Moreover, especially transductive learning with
feature sharing and inductive learning remain open challennges. Therefore, the
remaining chapters can be interpreted as an exploration and feasability study
of transfer learning techniques within DR.

Chapter 4 extends DQL and FQI with domain randomization. Domain
randomization is a technique used to pre-train RL agents, such that they are
able to generalise to unseen dynamics. Using this technique, the experiments
show that fine-tuning a pre-trained agent in the target domain is significantly
faster than training one from scratch in the target domain. This is the case
even when the source domain is not sufficiently accurate for MPC. The RL
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agent thus generalises to unseen dynamics, as it outperforms optimal source
domain actions applied in the target domain. Furthermore, the results indicate
that domain randomization is robust against distribution changes in the source
domain, something which is not achieved when naively sharing weights between
agents.

A two-agent learning setting has been presented in Chapter 5. The setting
involves an agent entering the environment. Both agents share features by
means of a priority between them. Additionally, transfer learning using the
experience replay memory and a virtual pre-training phase has been presented.
The proposed approach allows to jumpstart performance of the additional agent,
while only using data that has already been gathered by the first agent.

Previous chapters focused on using data sources for transfer learning, be it in the
form of simulation models or previously gathered data. Chapter 6 focuses on
incorporating domain knowledge directly into the learning pipeline. Of course,
the transfer learning possibilities of different data sources are not neglected.
Therefore, the proposed methodology also pre-trains the RL agent with readily
available data sources, collected for other purposes. The experiments show
an agent that has been pre-trained with average household and climate data
can generalise to unseen households. Additionally, domain expert knowledge is
included in the PPO actor NN design. This allows to incorporate general rules
about the control problem. Furthermore, this additional step only needs to be
done once, in the design phase of the agent.

7.1.2 Answering the Research Questions

Every chapter has helped towards answering the research questions defined at
the start of this work. These questions are answered below.

1. Which residential DR settings would benefit from RL based control and
how are consumers incentivized to participate in these DR programs?

There are a lot of potential DR applications and tasks within a residential setting.
Energy arbitrage, self-consumption and peak power reduction have been identified
as the most promising. These settings are of practical relevance because they
have already been implemented in real electricity markets or will be implemented
in the near future. Furthermore, these settings are customer-centric, fitting well
with RL. Customers are incentivized via their general electricity bill. Therefore,
good performing RL agents can directly decrease the user’s costs.
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2. How can we design cost-effective and generally applicable methods that
benefit maximally from available data before the agent is deployed at the
consumer’s site?

Chapter 4 and 5 both answered this question from a different point of view.
First, Chapter 4 looked at an approach to pre-train agents such that they
are generally applicable in all types of households thereafter. The proposed
approach, using domain randomization, allows to pre-train an agent with a
general and simplified buffer model. The same pre-trained agent can then be
applied in different households. This results in a cost-effective approach, as the
training step is only required once. The results show it is faster to fine-tune this
general policy to each individual household, than it is to learn an individual
household’s policy from scratch. All pre-training can be done off-site. As a
result, the impact of RL exploration on the final households is decreased. Users
will, therefore, experience relatively good control behaviour from the agent
immediately after its installation. Secondly, Chapter 5 considered a two-agent
system. After one agent has been active in the environment for quite a while, a
second enters. This Chapter then looked at an approach to maximally exploit
information which has already been captured from the considered household.
It proposed a novel approach to use the experience replay memory of the first
agent to pre-train the second (new) agent. As a result, initial performance
of the second agent increased. Thus, while Chapter 4 examined a strategy to
initialise a general agent which will have the same task in different households,
Chapter 5 examined an approach to initialise an agent which will have the same
task in the same household, with an additional appliance.

3. If available data is not sufficient to guarantee performance from the start
of operation, how can we incorporate domain knowledge in a general way,
i.e., without the need for extensive modelling?

Chapter 6 proposes a novel method to incorporate domain expertise in the
learning pipeline of a PPO agent. By designing a NN layout, tailored to the
task at hand, it is possible to include general behaviour guidelines within the
agent’s policy. As the domain knowledge can be described in a general way,
independent on the household, a domain expert is only required once. Thereafter,
the same agent can be applied to different households. The tailor-made agent
can then still be pre-trained to even further enhance initial performance. This
has also been shown by the experiments. The agent is pre-trained with publicly
available data and applied to households with different user behaviour. In all
cases, performance gains were observed, compared to a naive PPO agent and
compared to RBC.
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7.2 Challenges of Transfer and Reinforcement Learn-
ing in Demand Response

While many challenges of RL have been mitigated over the past years, many
remain. Some of the main challenges, such as data inefficiency, can be mitigated
by means of transfer learning. However, transfer learning introduces its own set
of challenges. The discussion here starts with some of the remaining challenges
for applying RL in DR settings.

First of all, many RL researchers have already pointed out in the past that RL
algorithm performance depends on the values of its hyperparameters. While
RL manages to reduce the need for DR and modelling experts, it introduces
the need for RL experts. In recent years, important steps have been set in the
right direction. For example, experience shows that PPO is less dependent on
hyperparameters than DQL. Unfortunately, throughout this work it has become
clear that in order to adapt and tune RL algorithms to DR contexts, quite some
domain expertise from both the RL and energy domain is necessary. It is not
likely that transfer learning will change this.

A second challenge lays in the design of the reward function. Chapter 6 has
shown that it is not always straightforward to match a practical setting to the
MDP framework. Additionally, several goals, such as self-consumption and peak
power reduction, should sometimes be achieved at the same time. This creates
to need to design tailor-made reward functions, which again requires expert
knowledge from both the RL and energy domain.

A third challenge arises due to the dependence on data. This challenge presents
itself both for general RL and for transfer learning. Every timestep an RL
algorithm requires a certain input from the environment, i.e., the state. In this
work, a 15 minute interval has been chosen. Earlier work has indicated that this
seems to be an interval that is achievable. Even though the feed forward pass
of an RL algorithm is computationally relatively cheap, it is not unlikely that
computation or communication performance is too slow to reach this deadline.
Algorithms, therefore, need to be robust against data loss. Additionally, the
quality of exogenous data used as an input, e.g. weather information, might
be reflected in the quality of the learned control policy, just as the quality of
source domain data might be reflected in the initial control policy. This can
thus reduce initial performance in the target domain.

A fourth challenge presents itself in the dimensioning of the considered TCLs.
While throughout this work conventional industry rules-of-thumb have been
used to guide the sizing of the DHW buffer and its rated power, it has become
clear these rules may have to change. When local energy production is cheap and
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households start focusing more on harnessing their flexibility, the conventional
trade-off between comfort and cost can change.

Finally, within transfer learning it is not clear how close of a match the source
and target domain need to be. In the worst case scenario, when both domains
are too unrelated, this can result in negative transfer. Fortunately, our work has
indicated that, for example by using domain randomization, the performance
in the target domain is robust against major distribution changes in the source
domain.

7.3 Future opportunities

Throughout the different chapters of this dissertation several future research
opportunities have been identified. A more general research direction that has
not yet been explored is the effect of these control strategies on the electricity
grid. In recent years, more regulation with respect to demand aggregators
has been put in place, as the goals of grid operators and aggregators might
not necessarily align. Although all considered DR settings in this work are
customer-centric and could be achieved behind the meter at the customers’s
site, it can be interesting to investigate the dynamics of a distribution feeder
with a high penetration of DR.

Secondly, as proposed in Chapter 2, future work is necessary to explore the
possibility to combine and change different DR objectives. As customers change
contract or preference, their trained agents should adapt. Transfer learning
techniques for quick adaption to new scenarios can potentially mitigate some of
the related challenges.

This dissertation has focussed on adapting, implementing and investigating the
feasability of different RL algorithms for different DR applications. In Chapter
4, a method for transfer from simulation to practice has shown promising results.
Future work could aim to verify this in a real-life setting and transfer a control
policy learned in simulation to a real EWH.

Chapter 5 explored multi-agent learning in a specific setting. In this setting,
transfer learning has shown its benefits. The results indicate that RL agents
can use each others experience memory to jumpstart their own performance.
An interesting future work direction is to explore bigger multi-agent settings.
As an initial step, one could explore a household which also includes a heat
pump for space heating.

Finally, an aggregator could potentially act as a service provider to a household,
providing the presented DR services. At the same time, this aggregator could
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then cluster all its customer for other DR purposes, such as frequency control.
It remains to be seen how RL agents can balance the goals of the aggregator
and the individual household. Furthermore, not all agents necessarily have to
act upon a signal from the aggregator. For example, if the cluster contains
1MW of flexibility and the aggregator only requires 500 kW, only 50% has to
alter its default behaviour. Researchers have only started looking at methods
to distribute a signal across a cluster of RL agents.
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