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ABSTRACT
In this paper, we address the problem of resource allocation
(RA) in wireless communication networks, where each user
has a dynamic data rate constraint. The objective of RA is to
maximize the sum rate (SR) of the users while satisfying the
data rate constraints in expectation. For a given set of data
rate constraints, a suitable probability distribution for the ac-
tivation of users is found iteratively with a stochastic gradient
descent (SGD) approach to satisfy the data rate constraints in
expectation. At each time instant, RA amongst the randomly
activated users is performed noniteratively by a centralized
deep neural network (DNN). Simulations show that the pro-
posed approach is convergent and not only can consider dy-
namic data rate constraints accurately, but also that it achieves
a SR higher than that of the conventional geometric program-
ming (GP) method. The proposed approach can open up a
direction of research for cross-layer RA in the current deep
learning-based RA context.

Index Terms— resource allocation, cross-layer, deep
learning, dynamic data rate constraints

1. INTRODUCTION

Resource allocation (RA) in wireless communication net-
works is a challenging task that has been studied for decades
[1, 2, 3, 4] and has been upgraded by deep learning (DL)-
based approaches in recent years [5]. These DL-based ap-
proaches try to find an optimal policy that maps time-varying
parts of an RA problem, e.g. the channel coefficients, to
the optimal allocation of resources, e.g. the transmit power,
among the users. This policy can be approximated by a deep
neural network (DNN).

Among the first attempts to make use of a DNN for RA,
one can mention [6, 7, 8]. For instance, [8] aims to train a
centralized DNN to generalize training data labeled by the
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conventional RA approaches, in a supervised manner. An-
other approach, however, consists in training a DNN whose
cost function is a weighted sum rate (WSR) of the users in the
network, in an unsupervised manner [6, 7, 9]. Moreover, the
model-free and distributed extensions are also introduced in
the literature [10, 11, 12, 13, 14, 15].

All the mentioned DL-based RA approaches in the lit-
erature consider the maximization of a utility function, e.g.
WSR, with some fixed constraints, e.g. data rate and power
constraints. However, while power constraints are mostly dic-
tated by the physical limitations of the hardware that the users
have, the data rate constraints, or the minimum demands for
the data rate, are dependent on the applications the users are
running for a period of time. Moreover, even in the case all
users have fixed data rate demands if the number of active
users changes –which is common in practice– the correspond-
ing data rate constraints should be added or eliminated to have
an optimal solution. Hence, it would be more efficient if the
DL-based RA process can also take into account the dynamic
nature of data rate constraints. Initial efforts have been made
in [16] to consider the dynamic nature of the data rate con-
straints in wired communication networks. However, they
cannot be directly applied to wireless communication net-
works, as in the wired communication networks the channel
coefficients are fixed while the channel coefficients are dy-
namic in the wireless scenario.

While the proposed methods in the literature need to re-
train their policy or DNN to address a new set of data rate con-
straints or active users, we propose an alternative approach
that can allocate resources among the users with dynamic data
rate constraints, or with a dynamic number of active users.
RA is done noniteratively by a trained DNN while satisfying
the data rate constraints is done iteratively with a stochastic
gradient descent (SGD) approach on the activation pattern of
the users.

2. SYSTEM MODEL

We consider N users, each user consisting of a transmitter
and a receiver communicating with each other in a wireless
communication network. The transmit power of user i is pi,
the ith element of the vector p ∈ RN

+ . The direct channel be-



tween the transmitter and receiver of user i is denoted by hii,
while the interference channel between the transmitter of user
j and the receiver of user i is denoted by hij . All the channel
coefficients define the full channel matrix H ∈ CN×N with
hij in its ith row and jth column. The additive white Gaus-
sian noise is assumed to be iid with power σ2 where the power
is constant and the same in all the receivers. The achievable
data rate of user i can then be written as,

Ri(H,p) = log2 (1 +
|hii|2pi

σ2 +
∑

j ̸=i |hij |2pj
). (1)

Unlike the conventional RA methods such as [3, 2], to avoid
solving an optimization problem at each time instant for each
new channel realization, we consider finding a policy that
maps each channel realization to the optimal user powers. By
this approach, the process of RA can be reduced to only the
evaluation of the policy function. We denote the output of the
policy by p(H) indicating the optimum allocated power vec-
tor given the channel matrix H . This policy can be found by
the following optimization problem,

p(H) := argmax
p

N∑
i=1

Ri(H,p)

s.t. Ri(H,p) ≥ rmin
i , ∀i ∈ [N ]

0 ≤ p ≤ pmax,

(2)

where [N ] := {1, . . . , N}, rmin
i is the data rate constraint

of user i, and pmax ∈ RN
+ is a vector containing power con-

straints. In practice, we may consider expectation of data rates
over a distribution of the channel D. This expectation may be
included as we need data rates to meet the constraints over a
period of time only. In practice, for some channel realizations
the optimization problem may become infeasible. However,
this can be tolerable for users and their running applications
as long as their data rate constraints are met on average over
a period of time. This approach is also employed by [10, 7]
to optimize the policy.

As the above optimization is a parametric optimization
with an infinite number of dimensions, we limit the policy
to be a member of a set Φ ⊂ Rn with a finite number of
dimensions. Hence, we approximate the policy p(H) with a
DNN denoted by the function ϕ(H,θ) with parameters θ ∈
Φ.

In theory, by the universal function approximation capa-
bility of DNNs [17, 18], we can train a DNN to approximate
the optimal policy for dynamic data rate constraints. How-
ever, in practice, we would need a very large DNN to do so.
Although a DNN with a reasonable size can be trained for
policies without data rate constraints or with fixed data rate
constraints [7, 6], finding such a DNN to satisfy dynamic con-
straints is prohibitive in practice, as also tested by [19]. In the
next section, we propose a remedy to this problem.

3. RESOURCE ALLOCATION WITH DYNAMIC
DATA RATE CONSTRAINTS

To be able to satisfy dynamic data rate constraints, while max-
imizing the SR of the users, we propose to detach the data
rate constraints in (2) and treat the constrained optimization
problem with only power constraints, and the data rate con-
straints, separately. In this way, the optimal policy parameter
θ∗ can be found by training the DNN to maximize the power-
constrained SR of users. Having found θ∗ in this way, the
data rate constraints can be met by an iterative procedure in
a time window in which the data rate constraints are assumed
to be fixed.

To do so, we propose the selection vector ξ = [ξ1, ξ2, . . . ,
ξN ] with random variables ξi ∈ {0, 1} that take value 1 with
probability κi meaning that user i is selected to be active, and
take value 0 otherwise, meaning that user i is selected to be
inactive. By detaching the data rate constraints and denoting
the vector R = [R1, R2, . . . , RN ]T , the policy optimization
of (2) becomes,

θ∗ =argmaxEH,ξ{ξTR(H, ϕ(Hξ,θ))}
s.t. 0 ≤ ϕ(Hξ,θ) ≤ pmax,

(3)

i.e. maximization of the SR of the active users averaged over
H and ξ for a fixed set of κis. Here, Hξ is the channel ma-
trix H with rows and columns equal to zero corresponding to
inactive users in ξ. By the optimization problem (3), we find
a policy that maps the channel realization Hξ to the optimum
powers for the active users, while the powers for the inactive
users are equal to zero.

3.1. Training the DNN

With a similar approach employed by related works in DL-
based RA, a DNN can be trained in an unsupervised manner
to maximize the SR of randomly activated users (3). The loss
function is EH,ξ{ξTR} maximized by iteratively updating
the parameter vector θ for the input matrices Hξ. In this
step, κi = 0.5 is assumed for i ∈ [N ], to make the DNN able
to address different sets of data rate constraints in the next
section. The power constraints can also be considered by the
output activation function in the output layer of DNN, or a
penalization approach described in [6].

The selection vector ξ is similar to the weight vector in
weighted sum rate (WSR) maximization problems where a
DNN with a moderate size cannot generalize the problem
when the weights are dynamic [19]. In the proposed approach
though, the selection vector ξ can be seen as a discretized
weight vector with only two values of zero and one for its el-
ements, resulting in the shrinkage of the search space to be
generalized by the DNN. The capability of the DNN to gen-
eralize this problem for different possible realizations of ξ is
shown by the numerical simulations.



3.2. Satisfying the data rate constraints

Thanks to the slower dynamics of the data rate constraints
compared to the dynamics of the channel coefficients, we as-
sume the data rate constraints are fixed in a given time win-
dow. The objective now is to optimize the probability vector
κ = [κ1, . . . , κN ] to satisfy the data rate constraints in expec-
tation. Recall that κi is the probability of user i to be active.

In the vanilla primal-dual updates for constrained opti-
mization problems, the Lagrangian function is formed as

L(λ,H,p) =

N∑
i=1

(1 + λi)Ri(H,p)− λir
min
i (4)

for each realization H and with the dual variables λi cor-
responding to the data rate constraints. Also, we have the
following updates until convergence,

p+(H,λ) = argmax
p

L(λ,H,p) (5a)

λ+ = [λ+ γ
(
rmin − EH{R(H,p+(H,λ))}

)
]+, (5b)

where [.]+ = max{0, .} is a pointwise operator, the super-
script + indicates the next iteration, and γ is the stepsize for
this update.

Using the same concept, we iteratively adjust the distri-
bution of the selection vector ξ to satisfy the data rate con-
straints. We set

κ = E{ξ} = 1+ λ (6)

and approximate R(H,p+(H,λ)) by Eξ{R(H,pξ)}where
pξ = ϕ(Hξ,θ

∗) as the primal update for each realization
H and ξ. By this approximation, we incur a suboptimal-
ity as we have approximated maxp (1+ λ)TR(H,p) =

maxp E{ξ}TR(H,p) by Eξ{maxp ξ
TR(H,p)} for each

realization H with changing the order of the operators E{.}
and max{.}.

At each time instant, a random vector ξ is generated each
of whose elements is drawn from a Bernoulli distribution with
the probability κi. Afterwards, using the trained policy from
the previous section, the RA problem corresponding to the
vector ξ is solved to obtain pξ = ϕ(Hξ,θ

∗) to address the
primal update (5a). After w time instants, the probability vec-
tor κ is updated by the SGD approach with the dual update
(5b) as,

λ+ = [λ+ γ
(
rmin − Ew{R(H, ϕ(Hξ,θ

∗))}
)
]+

κ+
i =

1 + λ+
i

maxℓ∈[N ]{1 + λ+
ℓ }

∀i ∈ [N ],
(7)

where we used (6) and normalized κ to have maximum of 1,
as we treat this vector as a probability vector. Note that nor-
malization does not change the maximization of Lagrangian
function (5a). Moreover, Ew{.} is the expectation over H
and ξ approximated by averaging over w time instants, mak-
ing the optimization nature stochastic. The whole procedure
is depicted in Algorithm 1.

Algorithm 1: Proposed RA approach
Training stage:

train the DNN using (3)
Output: the trained DNN as ϕ(.,θ∗)

Inference stage:
Initialize: γ > 0, w > 0, λi = 0, κi = 1, ∀i ∈ [N ]
for t = 1, 2, . . . , T do

for k = 1, 2, . . . , w do
randomly generate ξ according to κ
find the optimum power: pξ = ϕ(Hξ,θ

∗)

find the corresponding rate: Rk(Hξ,pξ)

end
find the average rate: R̄ =

∑w
ℓ=1 R

ℓ

update rmin (assumed fixed for some while)
update the dual: λ← [λ+ γ(rmin − R̄)]+
update κi =

1+λi

maxℓ∈[N]{1+λℓ} ∀i ∈ [N ]

end

Selecting a subset of active users before performing DL-
based RA is also addressed in [19] in a different communi-
cation setting to ensure fairness. It is not obvious how it can
be extended to satisfy dynamic data rate constraints, and also
direct application of the update rule (7) on the weights of the
users in [19] is not trivial. Moreover, the approach in [19]
needs to repeat a one-dimensional search at each time instant,
incurring a high computational complexity.

4. SIMULATIONS

In this section, we try to answer the following questions: 1)
Can the trained DNN, as a policy, generalize the RA prob-
lem with a different subset of active users? 2) Is the proposed
approach convergent to a fixed solution? 3) How fast can the
proposed approach satisfy the constraints? 4) What is the per-
formance compared with the conventional methods?

We assume N users are present in a wireless commu-
nication network. The noise variable σ2 is set to ensure a
SNR of 10 log

(
Pmax

σ2

)
= 10 dB with the maximum power

Pmax = 10. The channel coefficients are randomly and inde-
pendently generated from a normal distribution N (0, 1), and
their feasibility in the RA problem is not checked for training
of the DNN. The number of neurons per layer in our DNN is
{N2, 50, 50, N}. The relu activation function is used for hid-
den layers while the sigmoid activation function is used for
the output layer to satisfy the power constraints. Finally, the
stepsize γ and the expectation approximation length w are set
to 0.5 and 100 respectively in all simulations.

In the first set of simulations, we assume N = 5 users
have a data rate constraint rmin = [1, 1, 2, 0.4, 2] and after
some time they change their data rate constraints to rmin =
[2, 1, 0.4, 2, 1]. These data rate constraints are selected to be
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Fig. 1. Average data rates of the users with two different data
rate constraints changed at iteration 250.
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Fig. 2. Average data rates of the users with the same data rate
constraints as fig.1 when no DNN is used.

tight enough, so all the data rate constraints are active after
the RA. Moreover, in this simulation, we do not check the
feasibility of the test samples, the same scenario as we have in
practice. The user data rates are shown in expectation in Fig.
1. It can be concluded that the proposed approach can satisfy
the dynamic data rate constraints in expectation successfully,
and the convergence rate is fast enough, so the method can
converge to a new optimal point after a few iterations.

The proposed approach can be seen as a time-sharing
problem, when in each time instant only a subset of users
are allowed to be active, mitigating the interference among
the users and maximizing the SR. This time-sharing prob-
lem is considered using DNNs in recent works such as [11].
However, in the proposed approach, time-sharing and RA
problems are combined to maximize constrained RA prob-
lems. A question is if it is possible to satisfy the constraints
with the same update rule of (7), but without the use of a
DNN, so the selected active users communicate with the
maximum power pmax. As it can be seen in Fig. 2, not
only the data rate constraints cannot be met in this scenario,
but also the SR of the users is smaller than in the previous
simulation that is using a DNN. This result is justifiable, as at
each time instant a subset of users is selected, and there is no
further RA among them.

We also compare the performance of the proposed ap-

Table 1. Performance comparisons of the proposed RA ap-
proach and GP over 1000 test samples.

Sum Data Rates (bits/s/Hz)
# of users SR Constraint viol. SR by GP
5 8.06 6× 10−4 (0.12%) 6.14
10 7.29 5× 10−5 (0.02%) 5.42
15 6.97 8.4× 10−4 (0.84%) 4.42

proach in terms of SR and constraint satisfaction, with the
geometric programming (GP) method [2]. To perform the
comparison, we only include the feasible channel matrices for
the RA problem (2). In practice the channel matrix can be in-
feasible, which conventional methods like GP cannot provide
reasonable solutions for. However, as shown in Fig. 1, the
proposed method can handle infeasible samples, as another
advantage over the conventional methods. For the 5-user sce-
nario, we assume rmin = 0.5 for all users, the same con-
straint [6] used to study the ability of the DNN to satisfy the
constraints. Moreover, rmin = 0.25 and rmin = 0.1 are as-
sumed for all users when N = 10 and N = 15, respectively.
We report the constraint violation for the active constraints
as maxi

{
max{0, rmin

i − Ew{Ri}}
}

and its percentage as
100 × maxi

{
max{0, rmin

i − Ew{Ri}}/rmin
i

}
to quantify

how well the proposed approach can satisfy the constraints.
Table 1 shows that not only the data rate constraints

are met in expectation very accurately, but also that we can
achieve a higher SR with the proposed approach compared
with GP. Recall the constraints are met in expectation in
the proposed approach, allowing the approach to violate the
constraints for the inactivated users and even some activated
users at some time instants. This constraint violation allows
the approach to achieve a higher SR while satisfying the
constraints over a period of time. Note that users and their
upper-layer applications usually care about the data rate over
a period of time rather than at each time instant [7, 10].

5. CONCLUSION

In this paper, we have addressed the problem of DL-based
RA when the users have dynamic data rate constraints to be
met in expectation, i.e. over time. A subset of users at each
time instant is selected at random, with an iteratively tuned
distribution of the random selection, and the RA is done with
a trained DNN among the selected users. The proposed ap-
proach achieves even higher SR compared to the conventional
methods. The proposed approach opens up the possibility to
allocate resources in cross-layer RA scenarios when the up-
per application layer dynamically can change its data rate de-
mand. Studying the theoretical convergence properties, the
suboptimality of the method mentioned in Section 3.2, and
more advanced optimization algorithms to speed up satisfy-
ing the constraints are topics of future research activities.
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