
IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS-I: REGULAR PAPERS 1

TROT: A Three-Edge Ring Oscillator based True

Random Number Generator with Time-to-Digital

Conversion
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Abstract—This paper introduces a new true random number
generator (TRNG) based on a three-edge ring oscillator. Our
design uses a new technique with a time-to-digital converter to
effectively acquire jitter accumulated independently by each edge.
As a part of the security evaluation, we present the stochastic
model of the TRNG’s digital noise source and estimate a lower
bound of the min-entropy per random bit. Starting from the
obtained entropy bound, we propose a procedure for selecting
and implementing an area-efficient and throughput-optimal post-
processing function based on the best known linear codes that
will increase the output min-entropy rate to more than 0.999.
The proposed TRNG exquisitely balances low design effort and
resource consumption with high throughput and a high min-
entropy rate, making it more suitable for randomness-demanding
and resource-constrained platforms than the state-of-the-art.The
complete implementation of the TRNG digital noise source and
the post-processing occupies 33 slices and achieves a throughput
of 12.5 Mbps on Xilinx Zynq-7000 FPGAs. The min-entropy
of the generated random bits is assessed by NIST SP 800-90B
entropy estimators, and the tested sequences pass the AIS-31 and
the NIST SP 800-22 test suits.

Index Terms—Entropy, hardware security, multimode ring os-
cillator, post-processing, stochastic model, True Random Number
Generator (TRNG).

I. INTRODUCTION

RANDOM number generators are indispensable compo-

nents of any modern security system. With physically

unclonable functions (PUFs), true random number generators

(TRNGs) are the only cryptographic primitives producing truly

unpredictable bits for generating secrets in symmetric- and

public-key cryptography. Random number generators are also

extensively used in various randomization-based countermea-

sures for protecting cryptographic implementations against

side-channel attacks (SCA). Among others, the low-latency

masking schemes for countering the SCA incur a high area

penalty, leaving only limited resources for random number

generation [1]. These schemes also require many random bits

per execution cycle that a TRNG often cannot provide. There-

fore, they resort to faster pseudo-random number generators
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Fig. 1. Architecture of a modern True Random Number Generator.

(PRNGs) to generate random masks [1]. Although producing

statistically perfect random bits, the output of a cryptographi-

cally secure PRNG becomes entirely predictable once its inner

state is leaked or guessed due to its deterministic nature. As

it has recently been shown by De Meyer [2], to prevent side-

channel leakage of a PRNG and avoid masking PRNG itself,

its inner state should be refreshed with truly random bits from

a TRNG much more frequently than previously required.

Due to their ubiquity in hardware security, the TRNGs

have become subject to rigorous evaluations by the US [3],

European [4] and Chinese [5] certification bodies. In addition

to passing the statistical tests, modern TRNG designs should

have an estimation of the amount of entropy they can provide.

Moreover, the TRNG designers should provide a theoretical

justification of the unpredictability of its output, as requested

by the American NIST SP 800-90B standard [3]. On the other

hand, TRNGs for cryptographic applications compliant with

the AIS-31 standard [4] should also have a stochastic model

from which a lower bound of the Shannon entropy can be

estimated.

Fig. 1 illustrates a general TRNG architecture compatible

with both the AIS-31 and the NIST SP 800-90B approaches.

The entropy source is a component with nondeterministic

behavior that exploits an inherently random physical process.

The digitization module converts the output of the entropy

source, which is often in analog form, into raw random num-

bers (bits). The entropy source and the digitization module

together constitute a digital noise source. The raw random

numbers are usually not perfectly unpredictable and need a

form of post-processing to increase the unpredictability, mea-

sured in entropy per bit, i.e., entropy rate. The random num-

bers that are output to the user application after the post-

processing are called the internal random numbers (bits). The

raw random numbers undergo online tests during the whole
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operation to detect drops in the entropy and notify the user

application. The operation of the digital noise source is closely

monitored by the total failure tests, which can immediately

detect malfunctioning of the digital noise source and prevent

future TRNG outputs. According to the AIS-31, the average

Shannon entropy rate of the internal random bits should be

higher than 0.997 for the two highest TRNG security classes.

On the other hand, NIST SP 800-90B allows claiming a min-

entropy rate of the internal random bits of up to 0.999 when

the arithmetic post-processing is used. Compared to the post-

processing based on cryptographic hash functions or block

ciphers, the arithmetic post-processing has the advantage of

much lower resource consumption and provides information-

theoretical security when used appropriately.

Although a plethora of TRNG designs have been put for-

ward in the last 20 years, merely a handful of them possess

a stochastic model and entropy estimation as a part of the

security evaluation [6], [7], [8], [9], [10], [11], [12], [13], [14].

The throughput and min-entropy estimation of some of the

TRNG designs without the stochastic model would likely sig-

nificantly degrade once their stochastic model has been built.

Most TRNG designs with the standard-compliant stochastic

models are designed either for high throughput [7], [14] or

low area [8], [9], [11]. Since modern TRNGs should not only

be used for classical and post-quantum cryptographic appli-

cations, but also for providing randomness to the protection

mechanisms against the SCA, there is a need for the designs

with simultaneously high throughput and low area which are

compliant with both AIS-31 and NIST SP 800-90B standards.

To address the lack of low area – high entropy TRNGs

with NIST SP 800-90B and AIS-31 compliant stochastic mod-

els, this work introduces a new TRNG based on a three-

edge ring oscillator with time-to-digital conversion – TROT.

Thanks to both efficient entropy generation and optimized

post-processing, the TROT offers one of the best area ver-

sus throughput trade-offs among previously reported FPGA-

compatible TRNGs with a stochastic model. Its digital noise

source couples a three-edge mode ring oscillator with a time-

to-digital converter (TDC) in a way that enables efficient ex-

traction of the independent white Gaussian jitter present in all

three edges. We introduce the stochastic model of the TROT

that accounts for the effects of the inherent hardware process

variations and employ it to estimate the lower bound on the

min-entropy contained in each raw random bit. To increase

the min-entropy rate of the internal random bits, we apply the

post-processing based on binary linear codes [15]. We propose

a throughput optimization method for selecting adequate code

and present a compact implementation of the post-processing

architecture based on the generator matrix of the chosen code.

The TROT produces internal random bits with a min-entropy

rate of at least 0.999 to fulfill both the AIS-31 and the NIST SP

800-90B entropy requirements. We opted for the min-entropy

instead of the Shannon entropy rate because the min-entropy

is the most conservative unpredictability measure. We demon-

strate the feasibility of our TRNG on a Xilinx Zynq FPGA de-

vice, where the TROT requires relative placement constraints.

Our design passes all AIS-31 [4] and NIST SP 800-22 [16]

statistical tests without any cryptographic post-processing.
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Fig. 2. TROT digital noise source and oscillation counter.

II. TROT DIGITAL NOISE SOURCE

The entropy source of the proposed TRNG is a three-edge

mode ring oscillator which consists of three inverting and three

non-inverting stages, as depicted in the upper part of Fig. 2.

Three edges are simultaneously injected by each inverting

NAND stage with enable signal Run. These edges will have an

identical mean period since they propagate through the same

stages. The propagation through identical stages significantly

reduces the influence of the global and possibly adversarial

noise sources, while the local Gaussian noise accumulates

independently by each edge. The frequency of the resulting

ring oscillator signal at the output of any of the six stages will

be three times higher than the frequency of a single-edge ring

oscillator with the same stages. Due to noise influence, the

three edges will inevitably collide, eventually compelling the

ring oscillator to a single-edge mode.

A previously proposed TRNG based on the three-edge ring

oscillator by Yang et al. [17] extracts randomness by counting

the number of oscillations until the collapse of the three-edge
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Fig. 3. Timing diagrams of the TROT digital noise source. In this example, the ordered edge triple (α, β, γ) corresponds to (2, 0, 1).

mode. Unlike [17], we use a technique based on a single time-

to-digital converter (TDC) line as a digitization element to

more efficiently exploit the independent timing jitter in each

edge. The use of TDC enables higher throughput since the

randomness extraction from the three jittery edges can happen

much earlier than waiting for the edge collapse. The TDC

consists of a delay line formed by high-speed multiplexers

and n falling-edge D flip-flops (DFFs) whose D inputs are

connected to the outputs of the multiplexers – bins. As seen

in Fig. 2, the signal from the third non-inverting stage F is

connected to input 1 of the first multiplexer in the delay line.

All multiplexers in the delay line have a select signal set to

constant 1, except the first, whose select signal comes from

the second inverting stage C. The signal from stage C is also

used as a clock signal for the DFFs. This oscillator config-

uration thus falls into a category of multimode multi-phase

oscillators, different from the previously proposed single-mode

multi-phase oscillators [18], [19].

The pulse width encoder is a combinatorial circuit that

outputs a raw bit value and a valid signal based on the DFFs’

values C0, ..., Cn−1. The raw bit depends on the parity of the

number of zeros values relative to the total number of DFFs

and can be logically represented with:

Raw Bit =

n−1
⊕

i=0

Ci, (1)

where n is always even. The raw bit valid signal is set when

the first and the last DFF in the TDC have value one, and

there is at least one DFF with value zero:

Raw Bit Valid = C0 ∧

(

n−2

∨
i=1

¬Ci

)

∧ Cn−1. (2)

We use timing diagrams of the digital noise source in Fig. 3

to demonstrate how this configuration of the digital noise

source enables capturing the timing jitter effects of all three

edges. We denote with α the last rising edge and with γ the

last falling edge at the output of stage C before the oscillations

in the ring oscillator are disabled. Similarly, we denote with

β the last rising edge at the output of stage F before disabling

the ring oscillator. Edges α, β and γ thus correspond each to

an edge of a different origin – 0, 1 or 2, as shown in Fig. 2.

The ring oscillator is enabled for time period tacc by setting

the signal Run to 1. The value of tacc is selected so that all

three edges accumulate enough timing jitter during that time,

as will be explained in Section III. The propagation of the

signal at the output of stage F through the delay line is enabled

by the edge α. Since the signals at the output of stages C and

F have approximately 90◦ phase difference, the signal at the

output of stage F will be low and bins in the delay line will

start transitioning from 1 to 0, as indicated in Fig. 3. When

the edge β appears at the output of stage F, the bins in the

delay line that were previously set to 0 by the edge α will start

transitioning to 1 so that the delay line reflects the state of the

signal at the output of stage F. Finally, the edge γ will trigger

the corresponding DFFs to sample the state of the delay line.

In this manner, the effects of all three edges α, β and γ will be
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captured by the DFFs. The sampled value of the DFFs is then

encoded to the raw bit value and the raw bit validity value by

the pulse width encoder according to (1) and (2), respectively.

After tacc, the ring oscillator is disabled for one clock cycle.

This reset clock cycle ensures independence between consec-

utive bits and leaves enough time for the pulse width encoder

to correctly evaluate the raw bit value and its validity. The

ring oscillator is re-enabled on the following rising edge of

the clock signal to produce the next random bit and transfer

the previous bit and its validity to the system clock domain.

The unavoidable variations of the bins’ propagation delays

along the delay line will influence the amount of obtainable

entropy [20]. While sampling the delay line, the setup or hold

time of some DFFs in the TDC might be violated. This event

leads to bubbles in the captured TDC code that can be dealt

with by bin reordering [7], [21]. To improve the uniformity

and minimize bubble manifestations in the TDC, we sacrifice

the sampling precision by combining the two adjacent physical

bins into one bin of the delay line.

To estimate the jitter accumulated by the three edges and

their oscillation period in the design phase, we use an m-bit

rising edge ripple counter connected to the output of stage C.

This counter can also serve as a total failure test to monitor

the number of oscillations during the accumulation time tacc.

If the edges collide before the raw random bit is generated

due to environmental influences or an attack, the counter will

have much lower values than during the regular operation.

This observation can be used to raise the alarm to the user

application.

III. SECURITY ASSESSMENT

The security assessment provides analytical assurance for

the quality of the random bits produced by the digital noise

source. Starting from the baseline assumptions about the en-

tropy source and the digitization, we build a stochastic model

of the TROT that we use to estimate the min-entropy of the

raw random bits.

A. Notations and Baseline Assumptions

We denote the probability of an event E as P(E). The

cumulative distribution function and the probability density

function of a normally distributed random variable X with

mean µX and standard deviation σX are denoted as FµX ,σX
(x)

and fµX ,σX
(x), respectively.

The ring oscillator is always sampled in the three-edge

mode and the timing jitter affects all three edges. The edges’

white Gaussian noise jitter components are mutually inde-

pendent and their individual observations are independent of

each other. Therefore, we only exploit this form of jitter to

extract the randomness. The white Gaussian jitter is inde-

pendent of other noise sources present in the circuit and its

variance for each edge grows linearly with time. This increase

is characterized by the parameter called jitter strength. Jit-

ter strength is a platform-dependent (chip-dependent) variable

and it is obtained empirically as in [21]. We do not extract

randomness from timing noise components whose outcomes

are correlated at the outputs of stages C and F or any other,

possibly correlated and adversarial noise sources, such as

power supply or flicker noise, that are present in the circuit.

We refer to these components as timing components from the

not-exploited noise sources. The not-exploited noise sources

might marginally contribute to the total entropy, but they are

not used as randomness sources in our model. Thus, the effects

of all timing components except the white Gaussian jitter are

not removed but instead acknowledged by considering them

to be completely deterministic so that a conservative entropy

estimation can be provided. However, if the timing influence

of the not-exploited noise sources on each edge individually

becomes higher than the propagation delay of a single stage

of the ring oscillator, the sampled Raw Bit value will not be

valid and the Raw Bit Valid signal will stay at 0, thereby

detecting invalid mode of operation. In the model, we further

account for the realistic non-identical propagation delays of the

delay line bins. These propagation delays are also platform-

dependent and empirically obtainable [21]. Together with the

jitter strength and the edge oscillation period, they are used as

input to the stochastic model. We adopt the standard assump-

tion that the raw random bits are independent due to the reset

between consecutively generated bits [22], but not necessarily

identically distributed.

B. Stochastic Model

Since the entropy is extracted from the timing jitter of edges

α, β and γ, we need to model the time of their occurrences

relative to the rising edge of the ring oscillator enable signal

Run. We denote these times with tα, tβ and tγ , respectively.

All three edges will have the same nominal period T1−RO

because all three edges propagate through identical stages.

Each tα, tβ and tγ can correspond to an edge of different

origin i, j, k ∈ {0, 1, 2}, depending on tacc. Thus, depending

on the edge origin, we have:

tiα = tir→C +

⌊

tacc − tir→C

T1−RO

⌋

· T1−RO + tiα,noise, (3)

tjβ = tjr→F +

⌊

tacc − tjr→F

T1−RO

⌋

· T1−RO + tjβ,noise, (4)

tkγ = tkf→C +

⌊

tacc − tkf→C

T1−RO

⌋

· T1−RO + tkγ,noise, (5)

where t
{i,j,k}
{f,r}→{C,F} is the average time needed for the edge

{i, j, k} to propagate as the falling (f ) or the rising edge (r)

to the output of stage {C,F} for the first time after enabling

the ring oscillator, and t
{i,j,k}
{α,β,γ}noise is the timing component

originating from various noise sources in the circuit. The edge

origin combination which corresponds to the ordered triple

(tα, tβ , tγ) depends on tacc and this triple can take the com-
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binations:

(tα, tβ , tγ) =



































































I) (t0α, t
1
β , t

2
γ), if tacc ∈

(t2f→C + j · T1−RO + t2γ,noise,

t0f→C + j · T1−RO + t0γ,noise);

II) (t1α, t
2
β , t

0
γ), if tacc ∈

(t0f→C + j · T1−RO + t0γ,noise,

t1f→C + (j + 1) · T1−RO + t1γ,noise);

III) (t2α, t
0
β , t

1
γ), if tacc ∈

(t1f→C + (j + 1) · T1−RO + t1γ,noise,

t2f→C + (j + 1) · T1−RO + t2γ,noise);

where j ∈ Z
+. The first two terms in (3) – (5) are not

noise dependent and we replace them with a single term

µ
{i,j,k}
nom,{α,β,γ}. The timing components originating from the

noise sources can be decomposed into a component originating

from the not-exploited noise sources and a component orig-

inating from the exploited zero-mean white Gaussian noise

sources – t
{i,j,k}
{α,β,γ},G. The not-exploited noise sources will

further be treated as deterministic – t
{i,j,k}
{α,β,γ},det, representing

the worst-case scenario. Hence (3) – (5) can be rewritten in a

consolidated manner as:

t
{i,j,k}
{α,β,γ} = µ

{i,j,k}
nom,{α,β,γ} + t

{i,j,k}
{α,β,γ},det + t

{i,j,k}
{α,β,γ},G. (6)

The expected values of the times of the occurrences of the

edges α, β and γ for a given tacc are:

µ{α,β,γ}(tacc) = E[t
{i,j,k}
{α,β,γ}] = µ

{i,j,k}
nom,{α,β,γ}+E[ti,j,k{α,β,γ},det].

(7)

Since the white Gaussian noise is independent of the not-

exploited noise sources and the not-exploited sources are con-

sidered to be deterministic, for the variances of the times of

the edge occurrences we have:

σ2
{α,β,γ}(tacc) = σ2[t

{i,j,k}
{α,β,γ}] = σ2[t

{i,j,k}
{α,β,γ},G]. (8)

Given that the variances of the white Gaussian noise increase

linearly with time and µk
nom,γ > µj

nom,β > µi
nom,α, it holds:

σ2[tkγ,G] > σ2[tjβ,G] > σ2[tiα,G]. (9)

Thus, to simplify the stochastic model, without loss in conser-

vatism, we set σ2
γ(tacc) = σ2

β(tacc) = σ2
α(tacc) = σ2

min(tacc),
where σ2

min is the lower bound on the white Gaussian noise

variance of the edge α for the accumulation time tacc. This

simplification helps us avoid using the exact values of each

stage’s rising and falling edge propagation delays, which are

usually not equal and cannot be precisely determined. The

value of σ2
min can be calculated from the knowledge of the

platform jitter strength JS , the oscillation period of a single

edge T1−RO and the smallest number of periods of the edge i
that corresponds to the edge α. This number can be obtained

from Cnt(tacc) – the value of the ripple counter after tacc.

The σ2
min value can be determined as:

σ2
min(tacc) = JS ·

(⌈

Cnt(tacc)− 1

3

⌉

− 1

)

· T1−RO. (10)

The TDC and the pulse width encoder map relative positions

of the edges α and β to the edge γ into a random bit. At the

0111 0 0 0 0 1 1

1

bin  jbin  j+i

PW =  i

Raw Bit  =  i mod 2

Fig. 4. Modeling of the digitization – determining PW = i.

sampling moment, the bins in the delay line will contain a

string of zeros encircled by bins with strings of ones – a pulse,

as illustrated in Fig. 3. If there are no 0 bins or if the first and

the last bin do not have value 1, the raw bit validity signal will

have value 0 and the raw bit value will be discarded. We refer

to the number of 0s in the delay line as the pulse width (PW).

The PW can have any value between 1 and n − 2, where n
is the total number of bins. For the odd PW values, the pulse

width encoder outputs 1, and 0 for the even values. Therefore,

we calculate the probabilities of all possible PW values to

determine the probability of each encoder output. For a given

position of the edge γ, we first calculate the probability that

the pulse with starting position in bin j will have a width of

i bins, as depicted in Fig. 4 :

P(PWj = i|tγ = x) =

P(tβ ∈ bin (j)|tγ = x) · P(tα ∈ bin (j + i)|tγ = x). (11)

To remove the condition on the starting position bin, we sum

(11) over all possible valid positions j:

P(PW = i|tγ = x) =
n−i−1
∑

j=1

P(tβ ∈ bin (j)|tγ = x) ·P(tα ∈ bin (j+ i)|tγ = x).

(12)

The condition on the position of the edge γ can be removed

by integrating out normally distributed tγ :

P(PW = i) =
+∞
∫

−∞

n−i−1
∑

j=1

P(tβ ∈ bin (j)|tγ = x)·P(tα ∈ bin (j+i)|tγ = x)

· fµγ ,σmin
(x) dx. (13)

We use df,i and dr,i to denote 1 → 0 and 0 → 1 propagation

delays of the bin i, respectively. To simplify the notation, we

also introduce dΣr,k =
∑k

i=0
dr,i and dΣf,k =

∑k
i=0

df,i. Then
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we can rewrite the bin probabilities for tα and tβ as functions

of their distances to tγ = x:

P(tα ∈ bin(j + i)|tγ = x) =

P(x− dΣf,j+i < tα < x− dΣf,j+i−1), (14)

P(tβ ∈ bin(j)|tγ = x) =

P(x− dΣr,j < tβ < x− dΣr,j−1). (15)

By substituting (14) and (15) in (13) and using the fact that ex-

ploited jitter components are normally distributed, we obtain:

P(PW = i) =
+∞
∫

−∞

n−i−1
∑

j=1

[

Fµβ ,σmin
(x− dΣr,j−1)− Fµβ ,σmin

(x− dΣr,j)

]

·

[

Fµα,σmin
(x− dΣf,j+i−1)− Fµα,σmin

(x− dΣf,j+i)

]

· fµγ ,σmin
(x) dx. (16)

Since the PW encoding to a raw random bit is used only

when the pulse is captured in the TDC, we need to calculate

the probability of a specific PW value given that a pulse of

any width has been registered in the TDC. We use the capital

letter Q to denote the event when the pulse formed by edges

α and β is captured in the TDC and its width is at least one

TDC bin. The probability of this event is:

P(Q) =

n−2
∑

i=1

P(PW = i). (17)

Finally, the probability of PW being i bins given that the TDC

correctly captured a pulse is:

P(PW = i | Q) =
P(PW = i)

∑n−2

i=1
P(PW = i)

. (18)

C. Entropy Estimation of the Raw Random Numbers

The raw random bit is obtained by XOR-ing together out-

puts of all DFFs in the TDC. Therefore, the binary probabil-

ities are computed by summing the probabilities of all odd

pulse widths for bit 1 and all even pulse widths for bit 0:

P(b = l) =

n
2 −1
∑

i=1

P(PW = 2i− l | Q), l ∈ {0, 1}. (19)

Since each bit is produced after restarting the TRNG and thus

assumed to be independent of previous and future outputs, the

min-entropy rate of raw random bits can be directly calculated

by substituting (16), (18) and (19) in:

Hraw
∞ = − log2(max(P(b = 1),P(b = 0)) ). (20)

Alternatively, the Shannon entropy rate can be calculated as:

Hraw
1 = −

1
∑

i=0

P(b = i) · log2(P(b = i) ). (21)

To make a conservative min-entropy estimation claim, besides

experimentally obtained JS , T1−RO and bin propagation de-

lays, we must make additional assumptions on the relations
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Fig. 5. Evolution of the oscillation period of the ring oscillator – T3−RO .

of the values µα, µβ and µγ in (16). These values cannot be

precisely determined at the design time due to the influence

of the operating conditions, the power supply noise and not-

exploited correlated local noise sources. From (3) – (5) and (7),

we have µk
nom,γ−µj

nom,β ≈ dRO stage and µj
nom,β−µi

nom,α ≈
dRO stage, where dRO stage is the average stage delay of the

ring oscillator. Therefore, we restrict the difference between

µα, µβ and µγ to be at least dRO stage/2 in the model. This

restriction is justified because the correlated noise sources will

have a relatively small influence compared to the white Gaus-

sian noise for small tacc and because the impact of the power

supply noise will be reduced due to its equal influence on all

three edges, as previously also observed by [8], [17], [23]. We

analyze the effects of µα, µβ and µγ on the min-entropy to

determine its conservative lower bound Hraw
∞,lb in Section IV.

IV. IMPLEMENTATION OF THE DIGITAL NOISE SOURCE

AND APPLICATION OF THE STOCHASTIC MODEL

To demonstrate the feasibility of the design and confirm the

conservativeness of the min-entropy estimation, we implement

the TROT digital noise source in a Xilinx Zynq-7000 FPGA

device. We first measure our FPGA chip platform-specific

parameters and then apply the stochastic model to determine

the lower bound on the min-entropy of the raw random bits

Hraw
∞,lb. Platform-specific parameters are the jitter strength, the

propagation delays of the bins in the delay line and the ring

oscillator’s period in the three-edge mode. Since these param-

eters are crucial for the correct entropy assessment, they have

to be correctly measured before the TRNG is implemented.

We chose the system clock period to be TCLK = 8 ns, and

we measured the white Gaussian noise jitter strength of JS =
9.7 fs on our platform using adapted on-chip differential TDC

methodology from [21] with identical routing. The dependence

of Hraw
∞,lb on the amount of accumulated jitter is used to deter-

mine the optimal post-processing construction in Section V.

A. Entropy Source

Each ring oscillator stage is implemented using one look-up

table (LUT), while the complete ring oscillator consists of six

symmetrically placed LUTs. For the design phase, we used a

9-bit ripple counter at the output of stage C to measure the

average period of the ring oscillator. We further monitor its
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Fig. 7. Characterization of bins in the delay line.

evolution with the increase of the measurement time, as shown

in Fig. 5. Measurements are performed in steps of TCLK ,

and for each step, we repeat the experiment 105 times. We

observe that for periods higher than 232 ns, the edges in the

ring oscillator start colliding, leading the ring oscillator out of

the three-edge oscillation mode. This effect can be noted by the

sharp rise of the ring oscillator period curve and the increase

of its standard deviation. Consequently, the accumulation time

tacc has to be lower than 232 ns for the correct operation of

the TROT. For the average period of the ring oscillator in the

three-edge mode we obtained T3−RO = 1042.57 ps and the

oscillation period of a single edge is T1−RO = 3 · T3−RO =
12 · dRO stage = 3127.7 ps.

B. Time-to-Digital Converter and Pulse Width Encoder

The delay line is implemented using multiplexer stages of

cascaded CARRY4 primitives. The two consecutive stages of

each CARRY4 are combined in one bin to decrease the non-

uniformity of the bins’ propagation time, which has a negative

impact on the min-entropy of the TDC-based TRNGs [20]. To

measure the propagation delays of the bins, we used the Monte

Carlo methodology proposed in [21]. As mentioned in Section

II, the captured TDC code will contain bubbles – the occur-

rences of one or more 0-bins in array of consecutive 1s or the

occurrence of one or more 1-bins in array of consecutive 0s.

During the propagation delay measurements, the bubbles are

handled on the PC by reordering the bins to obtain strings of

consecutive 0s and 1s, as depicted in Fig. 6a and Fig. 6b. This

procedure is done for every TDC code sample which contains

bubbles, but only during the measurements of the bins’ delays.

On the other hand, as shown by the example in Fig. 6c, the

pulse width encoder transforms the width of the captured pulse

into one bit, depending only on the parity of the numbers of

0-bins. Thus, the same value is output for both the unordered

and ordered TDC bins. This observation implies that the bin

reordering is unnecessary during the TDC operation in TROT

since the pulse width encoding into a raw bit is bubble-proof.

The obtained rising (dr) and falling (df ) delays of the bins

are depicted in Fig. 7. Many different calibration techniques

have been reported to improve the linearity of the delay line

based TDCs [24], [25], [26], [27]. However, these techniques

require hundreds or even thousands of additional LUTs and

DFFs. Due to these prohibitively high implementation costs,

we chose to instead include bin-to-bin non-linearities in the

stochastic model and account for their effect on the lower

bound of entropy produced by the TROT digital noise source.

Namely, we use individual bin delays in equation (16) in

Section III and do not assume that the mean edge position can

be precisely determined. The mean edge position is further

impacted by various noise sources that are always present but

not used in our design. The influence of TDC non-linearity and

imprecise mean edge assessment are examined in Subsection

IV-C. The number of bins in the delay line needs to be selected

such that the total propagation delay for both edges is at least

equal to the average period of the ring oscillator in the three-

edge mode T3−RO. This condition is satisfied when the delay

line has at least 33 bins for our implementation. Since two

bins are implemented by one CARRY4, we use 34 bins in 17

CARRY4 primitives and 34 DFFs in the corresponding slices.

The pulse width encoder is realized as a combinatorial

circuit for equations (1) and (2) in Section II, and it can be

implemented using 15 LUTs. In addition, two DFFs are used

to transfer the raw bit value and its validity signal to the system

clock domain. Our implementation of the digital noise source

required relative placement constraints for symmetrical place-

ment of the ring oscillator stages and for CARRY4 primitives

and their corresponding DFFs in FPGA slices above the ring

oscillator. The TROT digital noise source fits in 29 slices and

its FPGA placement and routing are illustrated in Fig. 8.

C. Stochastic Model Application

By applying the stochastic model and using measured

platform-specific parameters, we can numerically calculate the

min-entropy for any time difference between µα, µβ and µγ ,

and for different values of the accumulated timing jitter. In this

manner, we are also taking into consideration the influence of

the not-exploited noise sources on the estimated min-entropy.

The lower bound on the min-entropy Hraw
∞,lb is then obtained

by finding the global minimum for each value of the given

jitter. Fig. 9 presents the min-entropy estimation as a function
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on the position of the edges in the TDC line for three different values of the accumulated jitter corresponding to accumulation
times 24 ns, 32 ns and 40 ns.

of the time distances of µα and µβ to µγ for three different

amounts of the jitter, where global minima are marked with

black dots. We observe that the TDC’s non-uniformity indeed

significantly impacts the min-entropy and that the position of

the global minimum is dependent on the amount of accumu-

lated jitter, i.e., accumulation time. This observation confirms

the necessity of including individual bin propagation delays in

the stochastic model.

Fig. 10 shows the dependence of the min-entropy’s lower

bound estimation on the accumulated jitter on the lower x-axis

and corresponding accumulation times on the upper x-axis. It

can be observed that the min-entropy exhibits a rapid increase

for the accumulation times up to 40 ns. For longer accumula-

tion times, the growth tapers off because the non-uniformity

of the TDC cannot be overcome even with a considerably

higher variance of timing jitter. To confirm the validity of the

min-entropy estimations, we applied the entropy estimators

from NIST SP 800-90B [3] on the raw random bit sequences

obtained for 20 different values of tacc between 8 ns and 160
ns in steps of TCLK = 8 ns. The reported results are also

presented in Fig. 10. As expected, the min-entropy estimation

is always lower than NIST SP 800-90B estimations due to our

conservative stochastic model.

D. Comparison with the DC-TRNG

The DC-TRNG [7] is another TRNG design with a stochas-

tic model that also uses time-to-digital conversion for extract-

ing randomness from the ring oscillator jittery edge. Unlike

TROT, the DC-TRNG uses a regular one-edge ring oscilla-

tor as the entropy source and the time-to-digital converter to
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sample the ring oscillator signal by using the system clock

after enough white noise jitter has been accumulated. To show

the advantage of the TROT design over the DC-TRNG, we

estimate its lower bound on the min-entropy of the raw random

bits when the DC-TRNG is implemented using identical FPGA

resources as the TROT. The dependency of the entropy bound

estimation on the accumulation time is also shown in Fig. 10.

It can be observed that the min-entropy bound of the TROT

grows significantly faster for shorter accumulation times and

it remains constantly higher than the min-entropy bound of

the DC-TRNG for longer accumulation times.

V. POST-PROCESSING CONSTRUCTION

A. Entropy Estimation of the Internal Random Numbers

As shown in Section IV, the min-entropy of the digital noise

source very slowly approaches the desired bound of Hint
∞ =

0.999. Thus, to increase the min-entropy while maintaining

high throughput and low implementation cost, we opt to use

post-processing based on the binary linear codes [15]. This

post-processing represents a generalization of the commonly

used XOR post-processing – parity filter. To explain it, we start

with a theorem that gives the relation between the min-entropy

of the random bits post-processed by any vectorial Boolean

function and maximal one-dimensional bias of its output.

Theorem 1. (follows from [15]) Let F : F
n
2 → F

k
2

be a vectorial Boolean function with coordinate func-

tions (f0, ..., fk−1) : F
n
2 → F2 and δmax maximal

one-dimensional bias of its output, defined as δmax =

maxu∈F
k
2\{0}

∣

∣

∣
P

(

∑k−1

i=0
uifi(x) = 1

)

− 0.5
∣

∣

∣
. Then, the min-

entropy rate of the output of F is greater or equal to:

1− log2k(1 + 2k+1 · δmax). (22)

It was also proved in [15] that the min-entropy rate of the

output bits of F is at least 1− log2k(1+2k+d · ed) when F is

defined by F (x) = G ·x. Here, G is k×n generator matrix of

a [n, k, d] linear code and all n bits of x = (x0, ..., xn−1) are

independent and identically distributed (IID) with constant bias

e = |P (xi = 1)− 0.5|. In contrast to commonly used Von

Neumann’s debiasing that outputs perfectly unbiased bits but

requires IID inputs, this post-processing construction does not

require identically distributed bits. With the knowledge of the

lower bound on the min-entropy of the raw random bits pro-

duced by the TROT, the min-entropy rate of the internal ran-

dom bits obtained by post-processing with a generator matrix

of a linear code can be bounded from below. To this end, we

give and prove the following proposition based on Theorem 1.

Proposition 1. Let x = (x0, ..., xn−1) be a sequence of

independent but not necessarily identically distributed bits

produced by a digital noise source with min-entropy per bit

of at least Hraw
∞,lb. Then, for the min-entropy rate of the output

bits Hint
∞ of the post-processing function F (x) = G ·x, where

G is generator matrix of a [n, k, d] linear code, it holds:

Hint
∞ ≥ 1− log2k(1 + (21−Hraw

∞,lb − 1)d · 2k). (23)

Proof. Since the ith coordinate function of F (x) corresponds

to the inner product of the ith row of G and n-bit vector x,

every fi(x) is a modulo-2 sum of at least d bits of x, by

definition of the generator matrix G of the linear code with

minimum distance d [15]. The inner product
∑k−1

i=0
uifi(x) is

also a sum of at least d bits of x for all u ∈ F
k
2 \ {0}, since

any non-zero sum of the codewords of a linear code is also a

codeword with minimum Hamming weight d. Let Iu be a set

of all indices of x such that
∑k−1

i=0
uifi(x) =

⊕

i∈Iu
xi for

u ∈ F
k
2\{0}. Then, the one-dimensional bias of

∑k−1

i=0
uifi(x)

can be computed by applying the piling-up lemma [28]:

δu =

∣

∣

∣

∣

∣

P

(

k−1
∑

i=0

uifi(x) = 1

)

−
1

2

∣

∣

∣

∣

∣

= 2|Iu|−1 ·
∏

i∈Iu

ei,

where ei is bias of the bit xi. Given that the lower bound on

the min-entropy per input bit is known and all bits of x are

independent, ei can be bounded from above ei ≤ 2−Hraw
∞,lb− 1

2
.

By using this inequality and the fact that by the definition of

Iu, the cardinality of Iu is at least d for all u ∈ F
k
2 \ {0}, we

obtain:

δu ≤ δmax ≤ 2d−1 ·

(

2−Hraw
∞,lb −

1

2

)d

. (24)

Finally, substituting the bound on δmax from (24) in (22) of

Theorem 1 leads to (23).

B. Throughput Optimization

The final throughput of the TROT after post-processing with

the generator matrix of a linear code with code rate k/n is

computed as:

TP =
k

n
·

1

tacc + TCLK

· 1 bit, (25)

To optimize the throughput, we need to properly select the

code such that Hint
∞ ≥ 0.999 holds for given Hraw

∞,lb.

High values of (25) are obtained with codes that have both

high k/n and need low Hraw
∞,lb, i.e., low tacc. We start our

optimization procedure with a list of 32 896 best known binary

linear codes from [29]. For each code, we determine the min-

imum necessary Hraw
∞,lb needed to achieve Hint

∞ ≥ 0.999 by
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Fig. 11. Expected throughput after post-processing with the generator matrix
of a suitable linear code for different accumulation times and Hint

∞
≥ 0.999.

(23) and the code rate k/n. We then classify a code as suitable

if: (i) among all codes with the same k/n, it has the lowest

minimum necessary Hraw
∞,lb; (ii) among all codes with same

minimum necessary Hraw
∞,lb, it has the highest k/n; (iii) all other

suitable codes with higher k/n have higher minimum necessary

Hraw
∞,lb. The set of suitable codes will contain codes that best

meet both the high code rate and the low minimum necessary

Hraw
∞,lb criteria. The obtained 468 suitable codes are sorted in

descending order of their minimum necessary Hraw
∞,lb. Then,

as in Fig. 10, for 20 different tacc values between 8 ns and

160 ns in steps of TCLK , we calculate Hraw
∞,lb, and for each

value we select the first suitable code from the sorted list with

a lower minimum necessary Hraw
∞,lb. Fig. 11 presents maxi-

mum achievable throughput by (25) for different accumulation

times and obtained suitable codes. The highest throughput of

12.957Mbps is achieved for tacc = 24 ns by post-processing

with the generator matrix of [41, 17, 12] code, while the

second-highest throughput of 12.5 Mbps is achieved with the

generator matrix of the [24, 12, 8] code for tacc = 32 ns. For

tacc > 160 ns, the throughput continues to fall under 4 Mbps.

C. Custom Post-processing Architecture

The [41, 17, 12] code is not cyclic, and thus it does not

have a generator polynomial that can be used for efficient

hardware implementation. However, if we somewhat sacrifice

the throughput, an efficient hardware implementation can be

achieved with [24, 12, 8] Golay code. We first apply ele-

mentary transformations on the standard form of its generator

matrix GS :

GS =









































I12

1 1 0 1 1 1 1 0 1 0 0 0
0 1 1 0 1 1 1 1 0 1 0 0
0 0 1 1 0 1 1 1 1 0 1 0
0 0 0 1 1 0 1 1 1 1 0 1
1 0 0 0 1 1 0 1 1 1 1 0
0 1 0 0 0 1 1 0 1 1 1 1
1 0 1 0 0 0 1 1 0 1 1 1
1 1 0 1 0 0 0 1 1 0 1 1
1 1 1 0 1 0 0 0 1 1 0 1
1 1 1 1 0 1 0 0 0 1 1 0
0 1 1 1 1 0 1 0 0 0 1 1
1 0 1 1 1 1 0 1 0 0 0 1









































,

where I12 is an identity matrix of size 12. This matrix has the

form [I12 |A], where A is a circulant 12 × 12 matrix. Since

the column permutations of the generator matrix do not change

the minimum distance of the linear code, matrix GS can

be directly transformed to obtain a hardware implementation-

friendly form: G = [A | I12]. This representation and circulant

property of A enable a very compact implementation that

occupies 19 DFFs and 11 LUTs, as illustrated in Fig. 12. The

complete post-processing fits in 4 slices, and its placement and

routing are depicted in Fig. 8. During the first twelve clock

cycles, the post-processed bit valid signal has value 0 and the

raw random bits are shifted into registers Q0 − Q11. In the

subsequent twelve cycles, these registers are connected in a

circular shift register through a multiplexer at the input of Q0,

while the valid signal has value 1. At the same time, the post-

processed bits are obtained by XOR-ing the incoming raw bits

and the outputs of the circular shift register at the positions

determined by the ones in the first row of matrix A.

VI. IMPLEMENTATION COMPARISONS AND STATISTICAL

EVALUATIONS

A fair comparison of the TRNG designs on FPGAs is not a

straightforward task since most designs do not have a stochas-

tic model or an explicit statement of the achievable entropy

rate, as required by AIS-31 and NIST SP 800-90B security

standards. Further, the TRNGs with entropy estimation do

not always use the same entropy metric or are designed to

provide different entropy rates. We compare TROT with sev-

eral recent FPGA compatible TRNGs in Table I. In addition

to hardware utilization, throughput and power consumption

estimation, we report the estimated entropy rate of the output

bits, the maximum achievable throughput per slice and the

availability of the AIS-31 compliant stochastic model. Note

that for both TROT implementations - with and without the

post-processing, we use the same accumulation time of 32 ns,

which results in lower raw min-entropy than most previously

published designs. However, since TROT uses information-

theoretic post-processing for the cost of only four additional

slices, the min-entropy rate can be brought to above 0.999 with

a 50% throughput reduction. As can be seen in Table I, the

TROT has the highest entropy rate among previously reported

TRNG designs. The entropy rate of TROT is estimated from

the conservative stochastic model and thus provides higher

security level guarantees [4]. The two most recent designs - JL-

TRNG [30] and MFRO-TRNG [31] achieve higher throughput

than TROT, but they are not supported by the AIS-31 com-

pliant stochastic model. Moreover, the power consumption of

MFRO-TRNG [31] is almost 400 times higher than the power

consumption of TROT. Similarly, the smallest design in Table

I – LRO-TRNG [32] is also not supported by the stochastic

model. The stochastic model and the formal entropy estimation

based on the model are needed for the use of TRNGs in high-

end security applications [4]. Compared with a TRNG with

a stochastic model and throughput of the same order – the

DC-TRNG [7], our design is more lightweight. The design

presented in [40] is the second version of a TRNG with a

stochastic model – ES-TRNG [8]. According to Table I, this
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Fig. 12. Hardware architecture of the TROT post-processing with the generator matrix of the [24, 12, 8] code.

TABLE I
IMPLEMENTATION RESULTS AND COMPARISON WITH EXISTING FPGA TRNG DESIGNS

TRNG design
FPGA
family

Entropy

estimation
Area

Throughput

[Mbps]

Throughput /
Slice [Mbps /

Slice]

Power
[mW]

Stoch. mod.
AIS-31

JL-TRNG [30]
Spartan 6 /

Virtex 6
H∞ = 0.891a 56 LUTs / 19 FFs 100 7.142 1.15 ✗

MFRO-TRNG [31] Virtex 6 H∞ = 0.985a 24 LUTs / 2 FFs 290 48.33 3687 ✗

LRO-TRNG [32] Spartan 6 H1 = 0.999b 4 LUTs / 3 FFs 0.76 0.76 * ✗

LLRED-TRNG [33] Cyclone IV H1 ≥ 0.999 343 LUTs / 229 FFs 0.018 not applicablec 10.22 ✗

REC-TERO [34]
Zynq-7000
(Artix-7)

* 194 LUTs / 61 FFs 3.33 0.06795 * ✗

TC-TERO [35] Artix-7 H1 = 0.9993b 40 LUTs / 29 FFs 1.91 0.191 * ✓

DEP-TRNG [36] Artix-7 H∞ = 0.9942 252 LUTs / 150 FFsd 3 0.0476 79 ✓

MTB-TRNG [37] Spartan 6 * 271 slices 1 0.00369 90 ✗

EROe [9], [6] Spartan 6 H1 = 0.999b 46 LUTs / 19 FFs 0.0042 0.00035 2.16 ✓

MUROe [10], [6] Spartan 6 H1 = 0.999b 521 LUTs / 131 FFs 2.57 0.0196 54.72 ✓

COSOe [11], [6] Spartan 6 H1 = 0.999b 18 LUTs / 3 FFs 0.54 0.108 1.22 ✓

PLLe [12], [6] Spartan 6 H1 = 0.981b 34 LUTs / 14 FFs /
2 PLLs

0.44 0.0488 10.6 ✓

TEROe [13], [6] Spartan 6 H1 = 0.999b 39 LUTs / 12 FFs 0.625 0.0625 3.312 ✓

STR [14] Virtex 5 H1 = 0.99
> 616 LUTs / 616

FFsf,g 100 0.6493 * ✓

COSO-PA [38] Virtex 5 * 109 slices 4.08 0.0374 * ✗

JBA-TRNG [39]
Virtex

UltraScale+
Hraw

∞
≥ 0.429

184 slices (791
LUTs / 559 FFs /
33 CARRY8s)h

2.43 0.0132 * ✓

DC-TRNG [7] Spartan 6 H1 ≥ 0.999 67 slicesg 14.3 0.2134 * ✓

ES-TRNG [8] Spartan 6 H1 ≥ 0.997
10 LUTs / 5 FFs / 1

CARRY4g 1.15 0.2875 * ✓

ES-TRNG v2 [40] Spartan 6 H∞ = 0.815a 7 LUTs / 6 FFs / 1
CARRY4

10 2.5 * ✓i

FC-TRNG [41] Artix-7 Hint
∞

= 0.893a 62 LUTs / 21 FFs 5.102 (mean) 0.3189 * ✗

TROT
w/o post-proc.

Zynq-7000

(Artix-7)

Hraw
∞

≥ 0.770

Hraw
1

≥ 0.978

29 slices (21 LUTs /
36 FFs / 17
CARRY4)

25 0.8621 8.843

✓

TROT
w/ post-proc.

Hint
∞

≥ 0.999

Hint
1

≥ 0.99999

33 slices (32 LUTs /
55 FFs / 17
CARRY4)

12.5 0.3787 9.514

* Information not provided in the original publication a Min-entropy (H∞) estimated by NIST SP 800-90B b Shannon entropy (H1) estimated by
AIS-31 T8 test c Intel’s Cyclone IV does not use slices as logic structures d Resources without redundant blocks and entropy tests
e Reported implementation results from [6]; these designs are also implemented in Intel Cyclone V FPGAs
f Estimated minimal resources for configuration that passes NIST SP 800-22 [16] g Resources for the digital noise source, while the design also contains
post-processing h Resources for both digital noise source and post-processing i Stochastic model from [8], but entropy not derived from the model

design achieves similar throughput as TROT. However, its

entropy estimation is not supported by the stochastic model,

i.e., it is obtained by running NIST SP 800-90B black-box

estimators. The most similar design to ours is the one of [41],
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TABLE II
RESULTS OF THE NIST SP 800-90B ENTROPY ESTIMATION

Estimator H∞

Most Common Value 0.999715

Collision 0.986374

Markov 0.999866

Compression 0.960924

t-Tuple 0.945605

LRS 0.99869

Multi Most Common in Window Prediction 0.999821

Lag Prediction 0.999803

MultiMMC Prediction 0.999809

LZ78Y Prediction 0.999742

TABLE III
RESULTS OF THE AIS-31 STATISTICAL TEST SUITE

Test Pass rate Result

T0 – Disjointness test 1/1 Pass

T1 – Monobit test 257/257 Pass

T2 – Poker test 257/257 Pass

T3 – Runs test 257/257 Pass

T4 – Long run test 257/257 Pass

T5 – Autocorrelation test 257/257 Pass

Test Test statistic / Pass condition Result

T6 – Uniform distribution test
|P(1) − 0.5| = 0.00113/ < 0.025

|P(01) − P(11)| =

9.899 · 10−4/ < 0.02

Pass

T7 – Test for homogeneity
T [0] = 2.91;T [1] = 0.04; T [00] =

0.06;T [01] = 0.003;T [10] =
0.03;T [11] = 0.002; / < 15.13

Pass

T8 – Entropy estimation H1 = 7.996/ ≥ 7.976 Pass

which implements the three-edge ring oscillator TRNG on the

Artix-7 FPGA and is based on the design of [17]. Our design

has similar resource utilization, but it achieves 2.5 times higher

throughput. On the other hand, the TROT has at least an order

of magnitude higher throughput when compared with designs

with the stochastic model and lower resource consumption

– ERO [6], COSO [6], PLL [6], TERO [6] and ES-TRNG

[8]. Among the TRNGs with the stochastic model, the TROT

achieves the second-best result in throughput per slice metric,

quantifying the area versus throughput trade-off. According to

this criterion, the STR [14] is the only TRNG that performs

better. However, this TRNG has significant area requirements

and substantially higher design effort. Moreover, its entropy

rate is lower than the TROT’s and compression with 4-stage

XOR post-processing is required to obtain the random bits of

the same quality, thereby reducing the throughput per slice to

0.1623 – more than twice lower than that of our design.

To evaluate the statistical quality of the random bits pro-

duced by the TROT, we applied AIS-31 statistical test suite

[4] and non-IID track of NIST SP 800-90B [3] min-entropy

estimators.

The non-IID track of NIST SP 800-90B consists of ten

min-entropy estimators and the final estimation is the mini-

mum of all ten estimators. The obtained min-entropy value

is confirmed by running the restart tests [3]. We applied the

NIST SP 800-90B estimators on 5 · 108 internal random bits

and summarized the results in Table II, where the bold value

indicates the lowest estimate. Note that these estimators are

black-box tests and thus often underestimate the min-entropy

TABLE IV
MIN-ENTROPY ESTIMATES IN THE ON-CHIP ATTACK OPERATING

CONDITIONS

Estimator H∞

Most Common Value 0.91184

Collision 0.90506

Markov 0.91642

Compression 0.77925

t-Tuple 0.86614

LRS 0.98458

Multi Most Common in Window Prediction 0.82979

Lag Prediction 0.82980

MultiMMC Prediction 0.91518

LZ78Y Prediction 0.91518
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Fig. 13. Frequency injection attack: ring oscillator period evolution for dif-
ferent attack scenarios. In scenario 2, the locking can occur before (Scenario
2 – a) or after (Scenario 2 – b) sampling the raw bit.

[3]. To demonstrate this, we applied the same estimators on

5 · 108 of the random bits produced by NIST SP 800-90B

compliant Intel’s TRNG on Intel Core i7-107050H CPU. This

TRNG has a formal entropy justification [42] and it uses

cryptographic post-processing based on AES CBC-MAC to

produce random bits with full entropy [43]. However, NIST SP

800-90B estimators report only 0.92905 bits of min-entropy,

thus severely underestimating the actual min-entropy of Intel’s

TRNG. This result highlights the importance of not relying

only on the black-box tests for the entropy estimation and

having a viable stochastic model.

For statistical verification with the AIS-31 test suite [4],

we applied the evaluation method B for the PTG.2 class of

TRNGs, the highest security class that does not require cryp-

tographic post-processing. This method comprises nine tests

T0 − T8 that are applied to 10 MB of the internal random

numbers. Table III lists the evaluation results for all nine tests

and additional test statistics for T6 − T8 tests.

VII. RESILIENCE AGAINST THE ATTACKS, VOLTAGE AND

TEMPERATURE VARIATIONS

To examine the resilience of the TROT against the on-chip

attacks [44], we implemented 1600 one-stage ring oscillators

as power-wasting circuits. We place two ring oscillators in a

single slice and a total of 800 slices are placed around the

TROT, as close as possible to the digital noise source. All

ring oscillators are simultaneously periodically enabled at the

frequency of 25 kHz. We collect the raw random bits produced
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Fig. 14. Min-entropy of the raw random bits with varying temperature and
supply voltage.

by the TROT and estimate the min-entropy with NIST SP 800-

90B tests. The entropy estimation results are shown in Table

IV. Since the minimal estimate is above the model-predicted

0.770, we can conclude that this type of attack on the TROT

seems insufficiently effective.

We performed the frequency injection attacks equivalent to

those proposed in [45] and [46], which were proven successful

when applied on the single-edge RO-based TRNGs. For our

attacks, we inject oscillating signals in the delay line next to

the three-edge RO to induce strong interaction between the RO

signal and the injected signal. In the first scenario, the injected

signal comes from a separate single-edge RO with two stages,

placed and routed so that its frequency matches as closely as

possible to the frequency of the TROT’s RO in the three-edge

mode. This injected signal causes locking of the edges, pre-

venting the collapse of the three-edge mode in TROT, as shown

in Fig. 13. The estimated min-entropy of the raw random bits

produced during this attack is 0.79. Therefore, the jitter reduc-

tion in this scenario seems to be limited due to the very short

accumulation time and TROT reset between each generated

bit. In the second scenario, another single-edge RO with six

stages is used to create the injection signal with a frequency

equal to TROT’s RO frequency in the single-edge mode. This

injection signal affects the TROT by significantly reducing the

duration of the three-edge mode, as also depicted by two ex-

amples in Fig. 13. We observed that the duration of the three-

edge mode is not always consistent between the experiments.

In some experiments, the attack is unsuccessful since the tran-

sition from the three-edge to the single-edge mode occurs after

the raw bit has already been sampled. In other experiments, the

attack is deemed successful as the transition to the single-edge

mode occurs before sampling the raw bit. However, since the

pulse width encoder would not correctly capture the edges in

a single-edge mode when the transition occurs before the bit

sampling, the raw bit validity signal will remain low, thereby

preventing output of the compromised bits.

We examined the influence of the lower voltage supplies

and different temperatures on the entropy produced by the

TROT digital noise source. The temperature experiments are

performed in Espec SH-662 climate chamber with swiping

temperatures in [−20◦C, 70◦C] range with 10◦C step for

three different logic core supply voltages: 1 V (nominal), 0.95

V and 0.9 V. For lower logic core voltages, the communica-

tion logic stops properly functioning and reliable data collec-

tion was not feasible. We run NIST SP 800-90B estimators

with the FPGA restarted between each experiment for each

temperature-voltage operating point. The experimental results

are depicted in Fig. 14. We observe that the estimated en-

tropies are consistently above the bound given by the model

in Section III. There is no clear trend for 1 V and 0.95 V,

and the estimated min-entropies are always higher than 0.8.

On the other hand, the estimated entropies are systematically

lower when the core supply voltage is set to 0.9 V. When

combined with temperatures below 0◦C, the entropies show

a downward trend, with the lowest entropy of above 0.78

for −20◦C. Thanks to the low worst-case min-entropy bound

derived from the stochastic model, such entropy drop does not

represent a security threat since the post-processing is designed

to compensate for the raw bit min-entropies higher than 0.770.

VIII. CONCLUSION

In this paper, we presented a new true random number gen-

erator – TROT and its design method. The TROT incorporates

a three-edge mode ring oscillator with a novel TDC-based

digitization technique and optimized information-theoretically

secure post-processing to obtain a relatively compact design

with high throughput and low design effort. Additionally,

TROT achieves a min-entropy rate of more than 0.999 and it is

supported by a conservative security assessment as prescribed

by both AIS-31 and NIST SP 800-90B. These properties make

our TRNG more suitable than previously reported designs to

implement with the area- and randomness-consuming crypto-

graphic systems and SCA countermeasures. Future work will

also include the design of dedicated on-the-fly tests, achieving

full compliance with AIS-31 and NIST SP800-90B standards.
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