
1

Cloning your Gadgets: Complete ROP Attack
Immunity with Multi-Variant Execution

Stijn Volckaert, Bart Coppens, and Bjorn De Sutter, Member, IEEE Computer Society

Abstract—In this paper, we present Disjoint Code Layouts (DCL), a technique that complements Multi-Variant Execution [1] and W⊕X
protection to effectively immunize programs against control flow hijacking exploits such as Return Oriented Programming (ROP) [2] and
return-to-libc attacks [3]. DCL improves upon Address Space Partitioning (ASP), an earlier technique presented to defeat memory
exploits. Unlike ASP, our solution keeps the full virtual address space available to the protected program. Additionally, our combination
of DCL with Multi-Variant Execution is transparent to both the user and the programmer and incurs much less overhead than other
ROP defense tools, both in terms of run time and memory footprint.

Index Terms—return oriented programming, return-to-libc, replication, monitoring, memory exploits, overhead, protection

F

1 INTRODUCTION

Hackers keep finding new vulnerabilities in major software
packages at an astonishing rate. Coincidentally, exploit pre-
vention has been an active research topic for over a decade,
with many countermeasures being proposed.

Of the many proposed techniques, only a handful have
been successfully deployed in mainstream operating sys-
tems and compilers, i.e., the techniques that incur limited
run-time overhead and that require little to no coopera-
tion from application developers and users. These include
Address Space Layout Randomization [4] and W⊕X [5].
Additionally, nearly every modern compiler enables stack
overflow protection [6] by default. Despite their success in
terms of deployment rate, these techniques only raise the
bar for hackers. Over the years, each of them has been
bypassed or hacked.

In 2007 Shacham presented the first Return Oriented
Programming (ROP) attacks for the x86 architecture [7].
He demonstrated that ROP attacks, unlike return-to-libc
attacks, can be crafted to perform arbitrary computations
provided that the attacked application is sufficiently large.
ROP attacks were later generalized to more architectures
such as SPARC [8], ARM [9], and many others. Despite the
progress and activity on the attacker front, defense against
ROP attacks is still very much an open problem. As will
be discussed in the related work section, all of the existing
solutions come with important drawbacks and limitations.

As an alternative protection against user-space ROP
attacks, we present Disjoint Code Layouts (DCL). This tech-
nique relies on the execution and replication of multiple
run-time variants of the same application under the control
of a monitor, with the guarantee that no code segments in
the variants’ address spaces overlap. Lacking overlapping
code segments, no code gadgets co-exist in the different

All authors are with the Computer Systems Lab, Department of Electronics
and Information Systems, Ghent University, Sint-Pietersnieuwstraat
41, 9000 Gent, Belgium. E-mail: {stijn.volckaert, bart.coppens,
bjorn.desutter}@elis.ugent.be.
The authors thank the Agency for Innovation by Science and Technology in
Flanders (IWT) and the Fund for Scientific Research - Flanders.

variants to be executed during ROP attacks. Hence no ROP
attacks can alter the behavior of all variants in the same
way. By monitoring the I/O of the variants, and halting their
execution when any divergent I/O operation is requested,
the monitor effectively blocks any ROP attack before it can
cause harm. Our design and implementation of DCL offers
many advantages over existing solutions:

• DCL offers immunity against ROP attacks, rather
than just raising the bar for attackers.

• The execution slowdown incurred by our monitor
and protection is minimal, up to orders of magnitude
smaller than in some existing approaches.

• A single version of the application binary suffices to
protect against ROP attacks. Optionally, our monitor
supports the execution and replication of multiple
diversified binaries of an application to also protect
against other types of memory exploits.

• With user-space tools only, we achieve complete im-
munity against user-space application ROP attacks.
No adaptation of the underlying Linux OS is needed.

• Similarly, our solution only requires run-time inter-
vention. It is therefore compatible with existing com-
pilers and existing solutions such as stack protectors.

• Requiring no or only trivial adaptations of the soft-
ware by the developer to make his application sup-
port our monitor’s replication, the presented tech-
niques are applicable to a wide range of applications,
including multi-process multi-threaded applications
that rely on custom synchronization libraries and
that feature address-dependent behavior.

• Unlike some existing techniques, DCL causes only
marginal memory footprint overhead within the pro-
tected application’s address space. Thus, DCL can
protect programs that flirt with address space bound-
aries on, e.g., 32-bit systems. System-wide, DCL does
cause considerable memory overhead due to its du-
plication of process-local data regions such as the
heap and writable pages. Still, DCL outperforms
memory checking tools in this regard.

2

Combined, these features of our multi-variant execution
engine design make this form of strong protection much
more convenient to deploy than existing state of the art.

The remainder of this paper is organized as follows.
Section 2 discusses existing attacks and defenses for a range
of exploits. Section 3 then presents our solution’s top-level
design. Section 4 discusses how to replicate real-world pro-
grams with memory layout diversification, and Section 5
presents our approach to generate completely disjoint code
layouts in replicated programs. Our solution’s overhead is
evaluated in Section 6. Section 7 concludes.

2 RELATED WORK

We refer the reader to the excellent overview presented by
Szekeres et al. for an extensive discussion of existing attacks
that exploit memory corruption bugs in software written in
low-level languages like C or C++ [10]. Szekeres et al. also
discuss why all currently existing defenses fail.

In this section, we discuss the existing techniques more
briefly, i.e., in so far as needed to compare our own contri-
butions to the state of the art.

2.1 Memory Attacks and Defenses

Every modern operating system supports at least Address
Space Layout Randomization [4] and W⊕X [5]. Addition-
ally, nearly every modern compiler enables stack overflow
protection [6] by default. Over the years, all of these basic
mitigations have been bypassed or hacked.

Shortly after it was introduced, ASLR was shown to
be vulnerable to both information leakage attacks [11] and
brute-force attacks [12]. On 32-bit x86 platforms, it is espe-
cially weak because the 12 least significant bits of addresses
cannot be randomized due to page alignment and because
the 4 most significant bits often do not get randomized to
minimize address space fragmentation [13]. Additionally,
Bittau et al. recently demonstrated that even on 64-bit plat-
forms, ASLR brute-force attacks are feasible [14].

W⊕X has not been attacked directly. It can however be
bypassed easily. Solar Designer demonstrated return-to-libc
attacks as early as 1997 [3], long before W⊕X and its pre-
decessor, non-executable stacks [15], were even deployed.
Return-to-libc attacks leverage code already present in the
target application to seize control of the application without
code injection. Return-to-libc attacks were further improved
by Nergal to defeat W⊕X as well as ASLR [16].

In 2007, Shacham presented the first Return Oriented
Programming (ROP) attacks [7]. In these attacks, an attacker
gains control of the call stack to hijack program control
flow. He forces the execution of carefully chosen machine
instruction sequences, so-called gadgets, from the program’s
own code or linked library code, each of which typically
ends in a return instruction. It was demonstrated that ROP
attacks, unlike return-to-libc attacks, can be crafted to per-
form arbitrary computations, provided that the attacked
application is sufficiently large [17]. Return-to-libc attacks,
by contrast, are limited to executing entire functions at
once. On architectures with variable length instructions,
ROP attacks can additionally leverage code that was not
intentionally placed into the application by the compiler,

e.g., by transferring control into the middle of instruction
encodings as generated by the compiler [7].

ROP attacks were later generalized to other architectures
such as SPARC [8], ARM [9], and many others. Despite the
progress and activity on the attacker front, defense against
ROP attacks is still very much an open problem, even
though several solutions have been proposed.

2.2 Custom Code Analysis and Code Generation

Dynamic instrumentation tools such as DROP [18] and
ROPdefender [19] instrument the protected program at run
time to detect ROP attacks. Both tools intercept return in-
structions and verify the stack before allowing the program
to continue. DROP’s stack verification consists of calculating
the length of the function the program is about to return
to and calculating the amount of possible ROP gadgets on
the stack. ROPdefender maintains a shadow stack to detect
whether or not return addresses are being overwritten.
These tools do not require recompilation of the protected
program but they slow down the program with factors of
5.3 (DROP) and 2.1 (ROPdefender) on average.

TaintCheck does not specifically target ROP attacks, but
its dynamic taint analysis can protect against them and
against a wide array of other exploits [20]. TaintCheck does
however suffer from large run-time overhead up to 2500%.

Other tools based on dynamic binary translation rewrite
a program completely. Hiser et al. [21] proposed Instruction
Location Randomization (ILR), a technique implemented
in the Strata VM [22]. ILR individually randomizes the
location of every instruction within the program and can
perform re-randomization at run time. ILR achieves av-
erage performance overhead of just 13-16% on the SPEC
2006 benchmarks. It does, however, require an offline static
analysis before running a protected program.

Just recently, we’ve seen two promising tools that target
ROP attacks directly. kBouncer and ROPecker both leverage
the Last Branch Recording (LBR) facilities found in recent
Intel CPU’s [23], [24], [25] to detect suspicious control-flow
patterns. LBR keeps track of the most recently executed
branch instructions and their targets. This mechanism al-
lows the tools to identify chains of indirect branches to
short gadgets, which are often indicative of an ongoing
ROP attack. While these tools hold up quite well in terms
of performance overhead and detection of publicly avail-
able exploits, there are some fundamental issues with this
technique. First, LBR keeps track of a very limited set of
branches. In its earliest implementation, only the 4 last
branches were recorded. In recent Intel CPUs, up to 16
branches get recorded. Second, when assessing the integrity
of the LBR history, it is hard to tell whether or not a branch
target might be a ROP gadget and whether or not enough
gadgets have been chained together to raise suspicion. As
such, these tools would need to be tweaked on a per-
application basis to maximize protection while minimizing
false positive detections. Göktaş et al. provided more insight
into the extent of this problem. They also presented two
exploits that bypass both tools [26].

Other compilers attempt to immunize programs against
ROP attacks by generating gadget-free code. Li et al.
adapted their x86 LLVM compiler to compile “return-free”

3

code [27]. Their compiler never emits any of the x86 return
instructions, not even as a part of a multi-byte opcode or
instruction operand. They built a custom FreeBSD kernel
that was no more than 17.32% slower than the stock kernel.
Shortly thereafter though, Checkoway et al. presented a
Turing-complete set of ROP gadgets that does not rely on
return instructions [17], [28].

Onarlioglu et al. presented a similar but more promising
technique: G-Free [29]. Through extensive use of alignment
sleds, G-Free removes unaligned free branch instructions
from a program. Additionally, it protects the remaining
aligned free branches to prevent them from being misused.
The resulting binaries contain almost no gadgets. G-Free es-
sentially de-generalizes the threat of ROP-attacks to that of
less powerful return-to-libc attacks. Onarlioglu et al. report
only 3.1% slowdown and a 25.9% increase in binary size on
average. It is however doubtful if such performance num-
bers would hold if G-Free was more extensively evaluated.
Only a handful of (rather small) programs were tested with
a fully immunized software stack (i.e., with every library
compiled using G-Free).

By comparison, Jackson et al. [30] reported higher over-
head for their diversifying GCC and LLVM compilers. Sim-
ilar to G-Free, their compiler adds alignment sleds in front
of candidate gadgets in order to remove unintended gadgets
from the binary. Unlike G-Free however, their compiler aims
to introduce diversity rather than immunity. By adding the
alignment sleds only with an arbitrary probability, their
compiler can generate many versions of the same program.
These versions will have different gadgets, in different lo-
cations. The advantage of this approach is that any of the
ROP-attacks compiled against one version of a program
will only affect a small fraction of the entire user base. If
alignment sleds are added with a probability of 1, in which
case one would expect the resulting binary to be similar to
those generated by G-Free, the overhead on SPECint 2006
benchmarks ranged from 0 to 45%. The authors provide
a comprehensive analysis of said overhead and of the ef-
fects of NOP-alignment sleds on L1 instruction cache and
translation-lookaside buffer (TLB) misses.

Other compiler approaches do not target attacks di-
rectly. Instead they focus on enforcing the intended behav-
ior of the program. Stack protectors such as StackGuard
insert canaries on the stack to detect overwritten return
addresses [6]. LibSafe and many standard C-libraries of-
fer protection against format string vulnerabilities through
hardened versions of string functions [31]. Control-flow
integrity (CFI) techniques add checks around indirect jumps
to detect unintended branch targets [32], [33]. As shown by
Göktaş et al. [34], Davi et al. [35] and several others, even
the strictest and most fine-grained CFI policies in use do not
mitigate ROP attacks completely.

The most recent contribution to this domain is Code-
Pointer Integrity (CPI) [36]. With CPI, Kuznetsov et al.
isolate all sensitive pointers, which are defined recursively
as code pointers and pointers to sensitive pointers. All
sensitive pointers are stored in a safe memory that can only
be accessed by instructions protected with run-time checks.
Thus, guaranteed protection is provided against all attacks
that try to exploit memory corruption bugs to hijack control
flow by overwriting code pointers. Because relatively few

accesses to the sensitive pointers occur, the execution time
overhead is limited to around 10% on average. An alter-
native, more relaxed form of the protection, in which only
code pointers themselves are considered sensitive, provides
practical protection against all studied existing attacks, at
an average cost of less than 2%. As this technique is very
recent, no independent validation is available yet. So far,
two major potential issues have been raised. First, on some
programs, the execution time overhead of CPI turns out to
be over 75%. Secondly, in order to identify a conservative
overestimation of the set of sensitive pointers, a static data
flow analysis is needed, e.g., to handle conversions from
pointers to int or long variables and back. That analysis,
like all data flow analyses, suffers from aliasing [37]. While
Kuznetsov et al. provide an intraprocedural analysis that
apparently handles local conversions to int and back pretty
well, conversions to void * lead to large overestimations of
the set of sensitive pointers, and hence to larger slowdowns.
Also, it is at this point unclear whether their intraprocedural
analysis (with some interprocedural extensions) suffices to
guarantee protection in all cases, incl. legacy or obfuscated
code that might not adhere to some of the more recent
pointer conversion restrictions in C. Finally, on AMD64 plat-
forms, the protection is not guaranteed (without changes to
the OS) because of those platforms’ lack of segmentation to
isolate the safe memory from the standard memory.

Perhaps the most interesting compiler tool is Address-
Sanitizer (ASan) [38]. ASan is a memory error checker
that, unlike many other memory checkers, instruments the
protected program at compile time. ASan instruments all
loads and stores and detects a wide array of memory errors.
Among these are heap, stack and global buffer overflows.
Functionality-wise, ASan is extremely suited to detect and
prevent the memory corruption exploits at the basis of ROP
and return-to-libc attacks. However, ASan comes with high
overhead compared to some of the techniques that target
these attacks specifically. The current implementation incurs
73% execution time overhead on the SPEC 2006 benchmarks,
as well as 237% memory footprint overhead.

Not to depend on the availability of source code, Pappas
et al. proposed to diversify software post compile time [39].
Using in-place code randomization, they demonstrated ef-
fective protection against existing ROP exploits and ROP
code generators on third-party applications. However, as
their technique only provides probabilistic protection rather
than complete immunity, it is unclear whether it is future-
proof. Moreover, it is unclear whether their static rewrit-
ing of binary code is conservative when applied to code
that features atypical indirect control flow, such as heavily
obfuscated code. In that regard, it is not promising that
other recent post compile time binary rewriters, such as
SecondWrite [40] and REINS [41], are also explicitly limited
to non-obfuscated code.

2.3 Replication and Diversification Defenses
Monitoring-based tools leverage kernel or system APIs
(application programming interfaces) to monitor program
behavior. One important class of monitoring tools are the
N-Variant Systems [1] and the conceptually similar Multi-
Variant Execution Environments [42], [43], [44], [45]. N-
Variant systems run multiple versions (also referred to as

4

variants or replicae) of the same program in parallel. A
monitoring component feeds all replicae the same input and
then monitors the replicae’s behavior. Since all replicae are
required to be I/O-equivalent, any differences in behavior
trigger an alarm. N-Variant systems have been used to
defend against several types of attacks.

The strength of N-Variant systems lies in the fact that
each replica can be diversified, as long as the I/O-behavior
remains unchanged. By deploying different diversification
techniques to each replica, a wide range of attacks can be
made asymmetrical, in the sense that they may be able to
compromise one replica, but not the other. To cause harm
to the system under attack, the successfully compromised
replica has to invoke malicious I/O operations that are not
part of the intended behavior of the original program, and
that will hence not be invoked by the other replica. By
synchronizing all I/O operations in all replica, by checking
the equivalence of all I/O operations before they are passed
to the kernel, and by halting the program when the I/O
operations diverge, the monitor can then interrupt any
attack before it causes harm.

Salamat et al. demonstrated an N-Variant system that
runs replicae with stacks growing in opposite direc-
tions [42], [46]. These replicae are generated with a modified
version of GCC, with the replicae with stacks growing
upwards being only marginally slower. This technique stops
even the most advanced stack smashing attacks that do
successfully bypass other stack protectors [47].

Salamat et al. also proposed to renumber system
calls [48]. At compile time, replicae are generated that each
use randomly permutated system call numbers. The moni-
toring agent dynamically remaps each system call to its orig-
inal number using the ptrace API, this preventing hackers
from injecting code that uses inline system calls. Their use
of the ptrace API is similar to how our prototype intervenes
in system calls. We discuss this further in Section 4.

Cox et al. [1] and Cavallaro [45] proposed different forms
of Address Space Partitioning (ASP). By partitioning the
address space and giving one partition to each replica, they
ensure that all addresses at which program code or data
are stored in a replica, are unique to that replica. So any
attack involving an absolute code or data address, such as
a libc function entry point or return address, will result in
asymmetric and hence detectable replica behavior.

Cox et al. also proposed instruction set tagging as a
defense mechanism against code injection [1]. In an offline
step, a binary rewriter [49] prepends a replica-specific tag
before each instruction. At run time, a dynamic binary
translator checks whether or not each instruction is tagged
with the appropriate tag [50]. If not, an alarm is raised
and execution halts. While this technique was effective at
the time of publication, it has been rendered void by the
adaptation of W⊕X.

In 2012, we presented GHUMVEE, a N-variant
monitor that supports a wide range of diversifica-
tion between replicae, including code diversification and
ASLR [43]. These forms of diversification are supported
even for multi-threaded applications that feature address-
dependent behavior and non-deterministic thread synchro-
nization [44]. The techniques presented in this paper build
on GHUMVEE, so we will discuss its internal operation

kernel&

replica 1 replica 2 'me& 'me&

brk& brk&
monitor&

write& write&

Fig. 1: Basic operation of a MVEE

in more detail in the next section. As we previously re-
ported, N-Variant Systems can achieve a limited average
execution time overhead of 16% [43]. As the evaluation in
Section 6.3 will show, our current, more optimized version
of GHUMVEE, can replicate programs at very limited execu-
tion time overheads of only 6.37% on the AMD64 platform.

3 MULTI-VARIANT EXECUTION
WITH DISJOINT CODE LAYOUTS

As we’ve mentioned in the previous section, the technique
presented in this paper builds on GHUMVEE, our prototype
tool for Multi-Variant Execution [43], [44].

Rather than launching an application directly, a user
seeking protection against ROP and other memory-based
attacks will invoke the GHUMVEE monitor to replicate
the application. Our implementation supports the i386 and
AMD64 architectures for the GNU/Linux platform but there
are no fundamental restrictions to either the architectures, or
the platform: All design options we lifted for GHUMVEE
target applications running on top of an unmodified OS
running on a commercial off-the-shelf multi-core processor.

Upon invocation, GHUMVEE’s monitor launches two
or more replicae of the application, attaches itself to those
replicae like a debugger, and feeds them their original
arguments. The monitor is responsible for ensuring that the
replication is transparent, i.e., that with the exception of
timing, the replication does not influence the I/O behavior
of the application as observed by the user. To that end, the
monitor intercepts all I/O between the replicae and their
environment. Fig. 1 illustrates this for two system calls, brk
and write. For a call like brk, the monitor waits until both
replica have issued the call before passing them through to
the kernel to allocate memory for both replicae. After the
kernel has processed the system calls, the monitor passes
the resulting pointers back to the replicae. Of the two write
calls by the two replicae, the monitor passes only one to the
kernel, as the external world should observe only one write
operation. The result of the passed call is then replicated
by the monitor and passed to both replicae, at which point
they continue executing. During the replicae’s execution,
the monitor checks their I/O to ensure that they behave
identically. Whenever an I/O divergence is detected among
the replicae, the monitor signals this and halts execution
before the I/O operation is passed on to the environment.
For that reason, the replicae are synchronized at all I/O
operations they initiate, as shown in Fig. 1.

The core idea behind DCL is to diversify the code layouts
of the two or more replicae, such that ROP attacks become
asymmetrical. All ROP attacks we are aware of have in com-
mon that they rely on addresses of executable code, i.e., so-
called gadgets, to hijack the control over the program under

5

stack&

/bin/ls&sec-ons&

0x00000000&

0xBFFFFFFF&

heap&
replica&1& replica&2&

libc.so&sec-ons&
libm.so&sec-ons&

stack&

/bin/ls&sec-ons&

heap&

libm.so&sec-ons&

libc.so&sec-ons&

Fig. 2: Two replicae’s address spaces with disjoint code
layouts.

attack, i.e., to steer the flow of control between gadgets in
the program. These addresses are hard-coded or computed
when launching the attack, and passed to the program as
part of its input. Because MVEEs like GHUMVEE replicate
the inputs to all replicae, all of them get the same input,
including the same set of gadget addresses. So in order to
protect a replicated application from ROP attacks, i.e., to
ensure that a ROP attack leads to diverging behavior of the
replicae, it suffices to ensure that no gadgets occur at the
same addresses in multiple replica.

In theory, it can even suffice that no equivalent gadgets
occur at the same addresses in multiple replica. Since equiv-
alence is hard to prove or disprove, however, in particular
without requiring time-consuming code analyses, we opted
for the practical approach: GHUMVEE ensures that no gad-
gets occur at the same addresses in multiple replica, simply
by enforcing that at each virtual address in the replicae’s
address-spaces, at most one replica actually maps code.
Figure 2 shows possible address space layouts with disjoint
code (and statically allocated data) layouts for two replica
of a simple example command-line tool like ls.

As we will discuss in Section 4, GHUMVEE also sup-
ports other forms of diversification such as ASLR. These
can be combined with DCL to enforce diversified stack and
heap layouts, as well as disjoint code regions.

4 DIVERSIFYING MULTI-VARIANT EXECUTION

To replicate applications, GHUMVEE spawns 2 or more
replica processes to which it attaches itself using Linux’
ptrace API [51]. From then on, GHUMVEE acts as a proxy
between the replicae and the kernel as depicted in Figure 1.
In this section, we present GHUMVEE’s overall design and
concepts, focusing on those aspects that are necessary to
support diversified replicae and that enable GHUMVEE to
enforce disjoint code layouts.

4.1 Rendez-vous Points

GHUMVEE uses a master/slave model for replication.
Replicae run independently in parallel, but when they reach
so-called rendez-vous points (RVPs), the monitor suspends
them. The monitor can then interfere by inspecting and
manipulating their state. GHUMVEE only allows replicae to
pass a RVP if they are in consistent states. When all replicae
are suspended, e.g., at the entrance of a system call, their
arguments must be equivalent. If not, GHUMVEE raises

class%1 class%2 class%3 class%4
master%call sanity diversity synchronization

type system'call system'call procedure procedure'&'
macro

I/O'related yes no no no
side5effect no yes no no

examples
read,'write,'
getpid,''

gettimeofday

brk,'
mprotect

pointer5
sensitive'hash' mutex_lock

replicated'by monitor 5 master'replica master'replica
executed'by master'replica all'replicae master'replica all'replicae

technique ptrace ptrace interposer code'patching
user'transparency yes yes yes yes
developer'transparency yes yes mostly partially

transparency

disposition

functionality

TABLE 1: Classification of rendez-vous points

an alarm. Cox and Salamat provide a formal definition of
system call argument equivalence [1], [42].

GHUMVEE differentiates four types of RVPs based on
their properties and purpose. Table 1 summarizes the clas-
sification of RVPs based on their properties. RVP classes
1 and 2 serve to compare the replicae’s behavior as well
as to ensure consistent replication. Classes 3 and 4 only
serve to ensure consistent replication, for which GHUMVEE
must feed all replicae the same input and it must impose
synchronization determinism.

4.1.1 Master Calls

First, entrances and exits of I/O-related system calls are
intercepted. In this case, “I/O-related” has to be interpreted
broadly. For example, asking the OS for one’s process ID
is to be considered I/O. The execution of the replicae at
those points is intercepted with the ptrace API, which hence
requires no intervention or code patching by the application
programmer. At these RVPs, GHUMVEE ensures that only
the master replica performs the I/O, hence the name master
call. The result of the operation is then replicated to the
slave replicae. Since all replicae are I/O-equivalent, proper
handling of I/O-related RVPs suffices to replicate simple
single-threaded programs. In the context of this paper, I/O-
equivalent means that arguments at system call invocations
should be identical, unless they are pointer values or in-
dices pointing to buffers or structures, in which case their
contents should be (similarly) equivalent. For comparing
and replicating system call arguments, the ptrace API is
extremely slow. The latest versions of GHUMVEE therefore
rely on the process vm * API, which includes two system
calls that enable direct inter-process copying of arbitrarily
sized memory blocks since Linux 3.2.

4.1.2 Sanity Checks

Some system calls are not replicated by the monitor because
they have side effects that are required in all replicae. So all
replicae execute them, and the monitor intercepts them for
intrusion detection, for sanity checking, and for enforcing
consistent memory allocation behavior. This interception
is also handled fully transparently with the ptrace API.
Examples are the brk and mprotect system calls to allocate
and protect memory.

6

4.1.3 Diversity Replication
GHUMVEE does not require replicae to be fully identical, it
only requires I/O-equivalence. In some cases, this relaxed
requirement leads to behavioral differences between the
replicae, not with respect to their I/O behavior, but with re-
spect to the other RVPs that get executed. We have observed
many programs that feature such behavioral differences
based on the heap lay-out. One recurring example is the
use of heap pointer values in the computation of hash keys
for hash tables or search trees. For example, the run-time
decision to resize hash tables is often based on the number
of observed hash collisions, which depends on the actual
hash values. When the hash values diverge in the replicae,
the timing of resizing operations will diverge, as will the
involved allocation of memory, including system calls and
synchronization. Either the monitor needs to be extended
to support such differences in behavior, or the differences
have to be eliminated. Because the former would make the
monitor’s intrusion detection much more complex, and thus
result in unacceptable overhead, we opted for the second so-
lution. Using interposers, the agent intercepts the execution
of sensitive procedures in the replicae, and replicates the
behavior of the master in the slaves [52], [53]. When, e.g.,
a hash key is computed in the master replica based on the
pointer values in that replica, the procedure computing the
hash in the master is interposed to extract the computed
hash. The interposer then passes that value to the slaves’
interposers, where it replaces the hash value computed in
those slaves.

To support these RVPs, the programmer must ensure
that all address-dependent behavior is interposable and
that computed values can be identified in the replicae.
This means that the computations of, e.g., hashes should
be bound to identifiable functions that return arithmetic
values computed on the pointer values. In C code, for
example, those functions should not be declared static, but
be declared noinline instead. Furthermore, a list of those
functions should be provided to the GHUMVEE monitor.
Apart from that, no developer effort is required. We refer
to previous work for a more extensive discussion of the
replication of address-sensitive behavior and an assessment
of the required programmer effort [43], [44].

4.1.4 Synchronization Replication
GHUMVEE can also intervene on synchronization RVPs. On
commodity OSs, thread interleavings are non-deterministic
by nature. Enabling replication of multi-threaded programs
thus requires the replication agent to either enforce the
same thread interleavings among all replicae, or, in the
absence of data races, to enforce the same order in which
related critical sections are entered, locks are taken, and
atomic operations are executed. GHUMVEE can therefore
intervene in the execution of all synchronization operations.
This includes high-level operations such as pthread mutexes,
as well as low-level operations such as CAS-based spinlocks
and atomic operations. To this end, we added RVPs to
all atomic operations in eglibc (http://www.eglibc.org). At
these RVPs, the monitor forces the master replica to record
the order of all the synchronization operations it performs.
At the corresponding RVPs in the slaves’ threads, the moni-
tor forces those threads to check the recorded information

and to stall if necessary, i.e., to stall until the necessary
information is recorded by the master.

The GHUMVEE-enabled version of eglibc does not need
to replace the standard libc installed on a system. It is be
shipped with GHUMVEE itself and is injected transparently
into a replicated application by manipulating the arguments
of sys execve calls. Section 5.2 describes a similar technique
for enforcing disjoint code layouts. For a detailed overview
of the implementation of our GHUMVEE-enabled eglibc, we
refer to our other work [44].

4.2 Support for Other Forms of Non-Determinism

Many programs exhibit non-deterministic behavior, e.g., be-
cause of the synchronization-related non-determinism men-
tioned in Section 4.1.4.

There are, however, many other sources of non-
determinism, even in trivial programs. Most of these sources
can be elegantly eliminated by GHUMVEE. Salamat gave
an extensive overview of several sources including asyn-
chronous signals, file descriptors, process IDs and random
number generators [42]. On top of Salamat’s solutions, we
already proposed solutions for time stamp counters, shared
memory and reading from the /proc interface [43].

One last source of non-determinism that has not been
described in earlier work is the VDSO. Both the x86 64
version and recent i386 versions (> 3.15) of the Linux kernel
export a VDSO that contains a memory page with timing
information [54]. This memory page is shared among all
running processes and is periodically updated by the kernel
to provide every running program with a reliable source
of timing information that can be accessed at a very low
cost. At the time of writing, the x86 64 version of (e)glibc
implements gettimeofday, clock gettime and time functions
that access this timing page, thereby eliminating the need to
perform costly system calls. Unfortunately, if a replica omits
the system call invocations in these functions, GHUMVEE
cannot provide consistent input. We have therefore chosen
to hide the VDSO on platforms that contain the timing page.
We hide the VDSO by deleting the AT SYSINFO EHDR
entry from the ELF auxiliary headers when the replicae start
up. Deleting this entry is a trivial extension of the loader
program described in Section 5.3.

4.3 Limitations of Multi-Variant Execution

Even though there are many issues that arise when imple-
menting an MVEE, there are very few fundamental limi-
tations to the programs that can be run inside an MVEE.
The only fundamental problem that we see involves bi-
directional shared memory. On the Linux platform, the
kernel exposes two interfaces that may be used to map
memory pages that are shared with other processes. When
such pages are used though, programs can communicate
with each other directly, without using system calls. This
direct communication cannot be reconciled with replicat-
ing I/O at the system call level and GHUMVEE therefore
does not allow its replicae to set up shared pages. Instead,
GHUMVEE returns the EPERM error value to the replicae
as if the kernel refused to perform the requested mapping.
As we described in previous work, this is not a major

7

problem for most applications: Many applications request-
ing such shared memory can handle the fact that even on
a native system, the kernel might refuse such mappings.
These applications handle it by offering less efficient, but
working fall-back alternatives [43]. While a more elegant
solution would be desirable for GHUMVEE, it should be
clear that our current solution does not undermine the
provided security guarantees in any way: any application
requesting bi-directional shared memory under the control
of GHUMVEE will simply not get it.

5 COMPLETELY DISJOINT CODE LAYOUTS

Our technique of Disjoint Code Layouts (DCL) is imple-
mented mostly inside GHUMVEE’s monitor. Its support for
DCL is based on the following Linux features:

• In general, any memory page that might at some
point contain executable code is mapped through a
sys mmap2 call. When the program interpreter (e.g.,
ld-linux) or the standard C library (e.g., glibc) load an
executable or shared library, the initial sys mmap2
will request that the entire image be mapped with
PROT EXEC rights. Subsequent sys mmap2 and
sys mprotect calls then adjust the alignment and pro-
tection flags for non-executable parts of the image.
Section 5.1 discusses the few exceptions.

• Even with ASLR enabled, Linux allows for mapping
pages at a fixed address by specifying the desired
address in the addr argument of the sys mmap2 call.

• When a replica enters a system call, this constitutes a
RVP for GHUMVEE, at which GHUMVEE can mod-
ify the system call arguments before the system call is
passed on to the OS. Consequently, GHUMVEE can
modify the addr arguments of all sys mmap2 calls to
control the replica’s address space.

As shared libraries are loaded into memory from
user space, i.e., by the program interpreter component to
which the kernel transfers control when returning from
the sys execve system call used to launch a new process,
GHUMVEE can fully control the location of all loaded
shared libraries: It suffices to replace the arguments of any
sys mmap2 call invoked with PROT EXEC protection flags
and originating from within the interpreter. Some simple
bookkeeping in the monitor then suffices to enforce that the
code mapped in the different replicae does not overlap, i.e.,
that whenever one variant maps code onto some address in
its address space, the other ones do not map code there.

Some code regions require special handling, however.
Under normal circumstances the kernel maps those regions.
But because GHUMVEE cannot intervene in decision pro-
cesses in kernel space, it needs to prevent the kernel from
mapping them and instead have them mapped from user
space instead, i.e., by the program interpreter. GHUMVEE
can then again intercept the mapping system calls, and
enforce non-overlapping mappings of code regions.

5.1 Initial Process Image Mapping
The standard way to launch new applications is to fork off a
running process and to invoke a sys execve system call. For
example, to read a directory’s contents with the ls tool, the

shell forks and invokes sys execve(”/bin/ls”, {”ls”, ...}, ...); The
kernel then clears the virtual address space of the forked
process and maps the following components into its now
empty address space as depicted in Figure 3.

An initial stack is set up first. With ASLR enabled, the
stack base is subject to randomization. As we mentioned
before, only bits 12 through 27 are randomized on 32-bit
x86. The stack is non-executable by default but can be made
executable for legacy applications.

Then, the main executable’s image is mapped into mem-
ory. GCC generates position dependent executables by de-
fault. These may (and often do) contain absolute addresses.
However, position dependent executables must be loaded
at a fixed address, even if ASLR is enabled. One can also
generate Position Independent Executables (PIE), which
have been supported on GNU/Linux since 2003. PIE images
are loaded at a randomized address and may not contain
absolute addresses. Instead, addresses must be computed
dynamically, using PC-relative offsets. Because of the extra
register pressure that comes with dynamic address com-
putations and because of the limited amount of general-
purpose registers on the x86 architecture, GCC still doesn’t
generate PIE images by default.

Moreover, most Linux distributors will only ship PIE
executables for programs which they deem to be security-
sensitive. For example, the recently released Ubuntu 14.04
for the AMD64 architecture ships with 1019 programs in
its /usr/bin folder, of which only 107 are compiled as PIE
executables. Other contemporary distributions ship with a
similar number of PIE executables. One may wonder why
distributors are putting their users at risk when PIE was
proven to have only a marginal impact on performance [55].

If the executable is dynamically linked, the kernel then
maps an architecture-specific virtual dynamic shared object
(VDSO) into memory. The VDSO may contain specialized
code to transfer control from user space to kernel space or
specialized versions of commonly used system calls. The
VDSO is very small and never spans more than one page of
memory (even on AMD64). Its base address is randomized
if ASLR is enabled.

If the executable is dynamically linked, the kernel
will now map the program interpreter (usually called ld-
linux.so.2). The program interpreter will be the first compo-
nent to be invoked when the kernel transfers control over
the program to user space. The interpreter is responsible for
loading any shared libraries the program may depend on,
for performing the necessary load time relocations, and for
binding images.

Figure 3(a) depicts the process address space layout
after return from the sys execve call. For the sake of com-
pleteness, Figure 3(b) depicts the layout after the program
interpreter has mapped the shared libraries, and after the
application itself has allocated its initial heap.

GHUMVEE cannot override the base address of the
above components that are mapped directly by the kernel,
as there are no RVPs in kernel space. To enable disjoint code
layouts for the program image, the program interpreter, and
the VDSO, we have to take special measures. Ideally, we
want all of these components to be mapped from within
user space, where all mapping requests are RVPs, because
of which they can be subjected to DCL.

8

Stack&
VDSO&

eip& Interpreter&

0x00000000&

0xBFFFFFFF&

/bin/ls&

Stack&

Interpreter&

/bin/ls&
heap&

libc.so&

eip&

region&mapped&by&the&kernel&(from&kernel&space)&

region&mapped&by&the&interpreter&(from&user&space)&

legend:&

(a)&upon&return&from&sys_execve& (b)&upon&start&of&actual&program&

VDSO&

region&mapped&by&the&applicaFon&(from&user&space)&

Fig. 3: Address space layout for standard invocation of the
ls tool.

5.2 Disjoint Program Images
Mapping the program image from within user space is
trivial. It suffices to load a program indirectly, rather than
directly, with a slightly altered system call sys execve(”/lib/ld-
linux.so.2”,{”ld-linux.so.2”, ”/bin/ls”, argv[1], ...}, NULL);

If a program is loaded indirectly, the kernel maps only
the program interpreter, the VDSO and the initial stack into
memory. The remainder of the loading process is handled
by the interpreter, from within user space. Through indirect
invocation, GHUMVEE can override the sys mmap2 request
in the interpreter that maps the program image.

At this point, it is important to point out that GHUMVEE
does not itself launch applications through this altered
system call. Instead, GHUMVEE lets the original, just
forked-off processes invoke the standard system call, after
which GHUMVEE intercepts that system call and overrides
its arguments before passing it to the kernel. This way,
GHUMVEE can control the layout of the replicae processes
it spawns itself, as well as the layout of all the processes sub-
sequently spawned within the replicae. This is an essential
feature to provide complete protection in the case of multi-
process applications, such as applications that are launched
through shell scripts.

5.3 Program Interpreter
Even with the above indirect program invocation, we cannot
prevent that the kernel itself maps the program interpreter.
Hence the indirect invocation does not suffice to ensure that
no code regions overlap in the replicae. As mentioned in
Section 5.1, the interpreter is only mapped when the kernel
loads a dynamically linked program.

To prevent that from happening, even when launching
dynamically linked programs, we developed a statically
linked loader program, hereafter referred to as the MVEE
Loader. Whenever an application is launched under the con-
trol of GHUMVEE, it is launched by launching the MVEE
Loader, and having that loader load the actual application.
Launching the MVEE Loader is again done by intercepting
the original sys execve calls in GHUMVEE, and by rewrit-
ing their arguments as indicated on the left of the snapshot
at time T0: Startup at the top of Figure 4. In this figure,
standard fonts are used for the system calls as invoked by
the replicae; bold fonts are used for the rewritten system

calls that the GHUMVEE monitor actually passes to the
kernel. On the right, snapshots of the address space layouts
of the two replicae are shown.

In each replica launched by GHUMVEE, the copy of the
MVEE Loader is started under GHUMVEE’s control. At the
loader’s entrypoint, GHUMVEE first checks whether the
VDSOs are disjoint. If they are not, GHUMVEE restarts new
replicae until a layout as depicted in Figure 4 at time T1:
Replica Restart is obtained. GHUMVEE restarts replicae
by waiting until they reach their first system call, which
GHUMVEE then changes into a sys execve call. One minor
problem with this approach is that the original sys execve
call cannot simply be restarted. As soon as this call re-
turns, the process image will have been replaced. Conse-
quently, the arguments of the sys execve call will have been
erased from the replica’s memory. These arguments include
the command-line arguments and environment pointers.
GHUMVEE therefore has to find a writable memory page
where it can write a copy of the original arguments before
the sys execve can be repeated. Luckily, the interpreter,
which was already in the memory when the first sys execve
call returned, is guaranteed to contain a writable page.

Until recently, the Linux kernel mapped the VDSO any-
where between 1 and 1023 pages below the stack on the i386
platform. It was therefore not uncommon that GHUMVEE
had to restart one or more replicae. However, a single
restart takes less than 4 ms on our system, so the overall
performance overhead is negligible.

After ensuring that the VDSOs are disjoint, the MVEE
Loader manually maps the program interpreter through the
sys mmap2 calls shown in Figure 4 at time T2: Interpreter
Mapping. This way, GHUMVEE can override the base
addresses of the replicae’s interpreters to map them onto
regions that contain no code in the other replicae.

Next, the MVEE Loader sets up an initial stack with the
exact same layout as when the interpreter would have been
loaded by the kernel. Setting up this stack requires several
modifications to the stack that the kernel had set up for the
MVEE Loader itself. More specifically, we change the first
command-line argument from “MVEE Loader” to “/lib/ld-
linux.so.2” and set up the ELF auxiliary vectors that the
interpreter would normally get from the kernel [56]. The
result is depicted on the right in Figure 4 at time T2.

The MVEE Loader then transfers control to GHUMVEE
through a pseudo-system call, as depicted on the left of
Figure 4 at time T3: Interpreter Invocation. GHUMVEE
intercepts this call, and modifies the call number and argu-
ments so that the kernel unmaps the Loader. Upon return
from the call to GHUMVEE, it transfers control to the
program interpreter. When the replicae resume, they will
have the memory layout depicted in Figure 4 at time T3.

The interpreter will then continue to load and map the
original program and the shared libraries, all of which will
be subject to DCL, as shown on the left of Figure 4 at
time T4: Normal Indirect Loading Process. Afterwards, the
interpreter passes control to the program to end up with the
address space layout shown in Figure 4 at time T4.

Assuming that the original program stack is protected
by W⊕X, this is rather complicated, but from the user’s
perspective this completely transparent launching process
allows us to control, in user space, the exact base address of

9

Loader'Stack'

MVEE'Loader'

VDSO'

eip'

Loader'Stack'

MVEE'Loader'

VDSO'

eip'

sys_execve(“/bin/ls”,'{“ls”,'…},'…);'

sys_execve(“MVEE_Loader”,4{“/bin/ls”,4“ls”,4…},4…);4

sys_execve(“/bin/ls”,'{“ls”,'…},'…);'

sys_execve(“MVEE_Loader”,4{“/bin/ls”,4“ls”,4…},4…);4

T0:4Startup4

Loader'Stack'

MVEE'Loader'

VDSO'

eip'

Loader'Stack'

MVEE'Loader'

VDSO'

eip'

sys_execve'return'

GHUMVEE4stalls4replica414while4replica424restarts4

sys_execve'return'

sys_execve(“MVEE_Loader”,4{“/bin/ls”,4“ls”,4…},4…);4

T1:4Replica4Restart4

Loader'Stack'

MVEE'Loader'

VDSO'

eip'

Loader'Stack'

MVEE'Loader'

VDSO'

eip'

sys_mmap2(0,'…,'PROT_EXEC'…,'</lib/ldOlinux.so.2>)'

sys_mmap2(0xBEEEF000,4…,4PROT_EXEC4…,4</lib/ldVlinux.so.2>)4

sys_mmap2(0,'…,'PROT_EXEC'…,'</lib/ldOlinux.so.2>)'

sys_mmap2(0xBEEAA000,4…,4PROT_EXEC4…,4</lib/ldVlinux.so.2>)4

T2:4Interpreter4Mapping4

Interpreter'

Interpreter'

Original'Stack'

VDSO'

eip'

Original'Stack'

VDSO'

eip'sys_pseudocall(MVEE_INVOKE_LD)'

sys_munmap(<MVEE_Loader>)4

sys_pseudocall(MVEE_INVOKE_LD)'

sys_munmap(<MVEE_Loader>)4

T3:4Interpreter4Invoca]on4

Interpreter'

Interpreter'

Original'Stack'

VDSO'

eip'

Original'Stack'

VDSO'

eip'

sys_mmap2(0,'…,'PROT_EXEC'…,'</bin/ls>)'

sys_mmap2(0xBE52000,4…,4PROT_EXEC4…,4</bin/ls>)4

sys_mmap2(0,'…,'PROT_EXEC'…,'<bin/ls>)'

sys_mmap2(0xBE66000,4…,4PROT_EXEC4…,4</bin/ls>)4

T4:4Normal4Indirect4Loading4Process4

Interpreter'

Interpreter'

/bin/ls'

/bin/ls'

variant'1:'

variant'2:'

variant'1:'

variant'2:'

variant'1:'

variant'2:'

variant'1:'

variant'2:'

variant'1:'

variant'2:'

replica'1' replica'2'Xme'

Fig. 4: Address space snapshots during GHUMVEE’s DCL program launching.

every region that might contain executable code during the
execution of the actual program launched by the user.

The end result are two replicae with completely disjoint
code regions, of which any divergence in I/O behavior
caused by a ROP attack successfully attacking one replica,
will be detected and aborted by the monitor.

5.4 Disjoint Code Layout vs. Address Space Partition-
ing

As mentioned in Section 2, Cox et al. and Cavallaro indepen-
dently proposed to combat memory exploits with essentially
identical techniques they called Address Space Partitioning
(ASP) [1] and Non-Overlapping Address Spaces [45] respec-
tively. We will refer to both as ASP.

ASP ensures that addresses of program code (and data)
are unique to each replica, i.e., that no virtual address is ever

valid for more than one replica. ASP does so by effectively
dividing the amount of available virtual memory by N , with
N the number of replicae running inside the system. We
relaxed this requirement. In DCL, only code addresses must
be unique among the replicae, but data address can occur
in multiple replicae. So for real-life programs, DCL reduces
the amount of available virtual memory by a much small
fraction than N .

Another significant difference between both the pro-
posed ASP techniques and DCL is that both implementa-
tions of ASP require modifications to either the kernel or
to the program loader. Cox’ N-Variant Systems was fully
implemented in kernel space. This way, N-Variant Systems
can easily determine where each memory block should
be mapped. Cavallaro’s ASP implementation requires a
patched program loader (ld-linux.so.2) to remap the initial

10

stack and to override future mapping requests. By contrast,
GHUMVEE and DCL do not rely on any changes to the
standard loader, standard libraries or kernel installed on a
system. As such, DCL can much more easily be deployed
selectively, i.e., for part of the software stack running on a
machine, similar to how PIE is used for selected programs
on current Linux distributions as discussed in Section 5.1.

Finally, whereas DCL relies on Position Independent Ex-
ecutables (PIE) [55] to achieve non-overlapping code regions
in the replicae, both presented forms of ASP rely on stan-
dard, non-PIE ELF binaries, despite the fact that PIE support
was added to the GCC/binutils tool chain in 2003, well
before ASP was proposed. Those non-PIE binaries cannot
be relocated at load time. Enabling ASP is therefore only
possible by compiling multiple versions of the same ELF
executable, each at a different fixed address. ASP tackles this
problem by deploying multiple linker scripts for generating
the necessary versions of the executable. Unlike regular ELF
executables, PIE executables can be relocated at load time.
So our DCL solution requires only one, PIE enabled, version
of each executable. This feature can again help towards a
wide-spread adoption of DCL.

5.5 Compatibility Considerations

Programs that use self-modifying or dynamically compiled,
decrypted, or downloaded code may require special treat-
ment when run with DCL. Particularly, GHUMVEE needs
to ensure that these programs cannot violate the DCL guar-
antees. We therefore clarify how GHUMVEE interacts with
the program replicae in a number of scenarios.

Changing the protection flags of memory pages that
were not initially mapped as executable is not allowed.
GHUMVEE keeps track of the initial protection flags for
each memory page. If the initial protection flags do not in-
clude the PROT EXEC flag, then the memory page was not
subject to DCL at the time it was mapped and GHUMVEE
will therefore refuse any requests to make the page exe-
cutable by returning the EPERM error from the sys mprotect
call that is used to request the change. This will inevitably
prevent some JIT engines from working out of the box.
However, adapting the JIT engine to restore compatibility is
trivial. It suffices to request that any JIT region be executable
at the time it is initially mapped.

Changing the protection flags of memory pages that
were initially mapped as executable is allowed without
restrictions. GHUMVEE will not deny any sys mprotect
requests to change the protection flags of such pages.

Programs that use the infamous “double-mmap
method” to generate code that is immediately executable
will not work in GHUMVEE. With the double-mmap
method, JIT regions are mapped twice, once with read-
write access and once with read-execute access [57], [58].
The code is generated by writing into the read-write region
and can then be executed from the read-execute region.
On Linux, a physical page can only be mapped at two
distinct locations with two distinct sets of protection flags
through the use of one of the APIs for shared memory. As
we discussed in Section 4.3, GHUMVEE does not allow the
use of shared memory. Applications that use the double-
mmap method would therefore not work. That being said,

in this particular case we do not consider our lack of
support for bi-directional shared memory as a limitation.
Any attacker with sufficient knowledge of such a program’s
address space layout would be able to write executable
code directly, which renders protection mechanisms such
as W⊕X useless. This method is therefore nothing short
of a recipe for disaster. In practice, we only witnessed this
method being used once, in the vtablefactory of LibreOffice.

5.6 Protection Effectiveness
We cannot provide a formal proof of the effectiveness of
DCL. Informally, we can argue that by intercepting all sys-
tem calls, GHUMVEE can ensure that not a single region in
the virtual memory address space will have its protections
set to PROT EXEC in more than one replica. Furthermore,
GHUMVEE’s replication ensures that all replicae receive
exactly the same input. This is the case for input provided
through system calls and through signals.

Combined, these two features ensure that when an at-
tacker passes an absolute address to the application by
means of a memory corruption exploit, the code at that
address will be executable in no more than one replica.
The operating system’s memory protection will make the
replicae crash as soon as they try to execute code in their
non-executable or missing page at the same virtual address.

Finally, we should point out this protection only works
against external attacks, i.e., attacks triggered by external
inputs that feed addresses to the program. Artificial ROP
attacks set up from within a program itself, as is done in the
run-time intrusion prevention evaluator (RIPE) [59], will not
be prevented, because in such attacks return addresses are
computed within the programs themselves. For those return
addresses, different values are hence computed within the
different replicae, rather than being replicated and inter-
cepted by the replication engine.

6 EXPERIMENTAL EVALUATION

We evaluated our technique on two machines. The first
machine has two Intel Xeon E5-2650L CPUs with 8 physical
cores and 20MB L3 cache each. It has 128GB of main mem-
ory and runs a 64-bit Ubuntu 14.04 LTS OS with a Linux
3.13.9 kernel. The second machine has an Intel Core i7 870
CPU with 4 physical cores and 8MB L3 cache. It has 32GB
of main memory and runs a 32-bit Ubuntu 14.10 OS with a
Linux 3.16.7 kernel. On both machines, we disabled hyper-
threading and all dynamic frequency and voltage scaling
features. Furthermore, we’ve compiled both kernels with
a 1000Hz tick rate to minimize the monitor’s latency in
reacting to system calls.

6.1 Correctness
To evaluate correctness, we have tested GHUMVEE on
several interactive desktop programs that build on large
graphical user interface environments, including GNOME
tools such as gcalctool, KDE tools such as kcalc and LibreOf-
fice. For, e.g, LibreOffice we tested operations such as open-
ing and saving files, editing various types of documents,
running the spell checker, etc. We repeated tests in which
GHUMVEE spawned between one and four replicae from
the same executable, and tests were conducted with and
without ASLR enabled. All tests succeeded.

11

6.2 Usability of Interactive & Real-Time Applications
We also checked the usability of interactive and real-time
applications. Except for small start-up overheads, no signif-
icant usability impact was observed. For example, with two
replicae and without hardware support1, MPlayer was still
able to play 720p HD H.264 movies in real time without
dropping a single frame, and 1080p Full HD H.264 movies
at a frame drop rate of approximately 1%. Because none
of the dropped frames were keyframes, playback was still
fluent, however.

6.3 Execution Time Overhead
To evaluate the execution time overhead of GHUMVEE and
DCL on compute-intensive applications, we ran each of
the SPEC CPU2006 benchmarks 5 times on their reference
inputs.2 From each set of 5 measurements, we eliminated
the first one to account for I/O-cache warmup. On the 64-bit
machine we’ve compiled all benchmarks using GCC 4.8.2.
On the 32-bit machine we used GCC 4.9.1. All benchmarks
were compiled at optimization level -O2 and with the -
fno-aggressive-loop-optimizations flag. We did not use the
-pie flag for the native benchmarks. Although running with
more than 2 replicae does not improve DCL’s protection,
we have also included the benchmark results for 3 and 4
replicae for the sake of completeness.

As shown in Figures 5 and 6, the run time overhead
of DCL is rather low overall.3 On our 32-bit machine, the
average overhead across all SPEC benchmarks was 8.94%.
On our 64-bit machine, which has much larger CPU caches,
the average overhead was only 6.37%. That being said, a few
benchmarks do stand out in terms of overhead. On i386,
we see that 470.lbm performs remarkably worse than on
AMD64. We also see several benchmarks that perform much
worse than average on both platforms, including 429.mcf,
471.omnetpp, 483.xalancbmk and 450.soplex. For each of
these benchmarks though, our observed performance losses
correlate very well with the figures in Jaleel’s cache sensitiv-
ity analysis for SPEC [60].

A second factor that definitely plays its role is PIE itself.
While our figures only show the native performance for the
original, non-PIE, benchmarks, we did measure the native
performance for the PIE version of each benchmark as well.
For the most part we did not see significant differences
between PIE and non-PIE, except for the 400.perlbench and
429.mcf benchmarks on the AMD64 platform. These bench-
marks slow down by 10.98% and 11.93% resp. by simply
using PIE.

1. For using hardware support, MPlayer tries to obtain shared
memory pages with read and write permissions from the kernel. As
explained in Section 4.2, GHUMVEE can currently not support the
potential bi-directional communication through shared memory with
such permissions. As explained in our previous work [43], GHUMVEE
therefore intercepts the system call and returns an error value to
indicate that the allocation requested to the kernel failed [43]. MPlayer
then falls back on its software-only version.

2. Not a single SPEC benchmark needed to be patched for running
on top of GHUMVEE. One benchmark, 416.gamess, can trigger a false
positive intrusion detection in GHUMVEE because it unintentionally
prints a small chunk of uninitialized memory to a file. With ASLR, the
uninitialized data differs from one replica to another. In GHUMVEE,
we whitelisted the responsible system call to prevent the false positive.

3. The 434.zeusmp benchmark maps a very large code section and
therefore does not run with more than 2 replicae on our 32-bit machine.

A final contributor worth mentioning is the system call
density. As we discussed in previous work [44], system
call processing inside an MVEE can be a major bottleneck.
Because of the efficient design of our monitor and because
none of the SPEC benchmarks have a high system call
density compared to, e.g., the PARSEC benchmarks, this bot-
tleneck is only visible here for benchmarks such as 400.perl-
bench (362 syscalls/sec) and 403.gcc (1003 syscalls/sec),
albeit barely.

6.4 Memory Overhead
We examined the memory footprint of our technique on the
32-bit machine. While running benchmarks with 2 replicae,
GHUMVEE consumed 9.5MB of physical memory on av-
erage. Combined with the duplication of private, writable
pages of the first replica, this resulted in a total system-
wide memory footprint increase of almost exactly 100%. By
comparison, AddressSanitizer increases the memory foot-
print by 237% on average. Within the replicae themselves,
DCL did not introduce direct overhead: Each replica is
a separate process that has its full virtual address space
available. Each replica maps exactly as much data and code
as the native, unprotected programs. Moreover, regions in
the address space that may not contain code due to DCL
may still be used for data mappings. DCL does, however,
introduce some fragmentation, which may marginally re-
duce the replicae’s ability to allocate large blocks.

6.5 Effectiveness of the Protection
To validate the effectiveness of DCL itself, we constructed
four ROP attacks against high-profile targets. The attacks
are available at http://www.elis.ugent.be/∼svolckae.

Our first attack is based on the Braille tool by Bittau
et al. [14]. It exploits a stack buffer overflow vulnerability
(CVE-2013-2028) in the nginx web server. The attack first
uses stack reading to leak the stack canary and the return ad-
dress at the bottom of the vulnerable function’s stack frame.
From this address, it calculates the base address of the nginx
binary and uses prior knowledge of the nginx binary to set
up a ROP chain. The ROP program itself grants the attacker
a remote shell. We tested this attack by compiling nginx
with GCC 4.8 with both PIE and stack canaries enabled.
The attack succeeds when nginx is run natively with ASLR
enabled and also when nginx is run inside GHUMVEE
with only 1 replica. If we run the attack on 2 replicae,
however, it fails to leak the stack canary. While attempting to
leak the stack canary, at least one replica crashes for every
attempt. Whenever a replica crashes, GHUMVEE assumes
that the program is under attack and shuts down all other
replica in the same logical process. Despite the repeatedly
crashing worker processes, the master process manages to
restart workers quickly enough to keep the server available
throughout the attack.

While GHUMVEE manages to stop this attack, the at-
tack would probably not have worked even without DCL
enabled. After all, with more than one replica, the stack-
reading step of the attack can only succeed if every replica
uses the same value for its stack canary and the same base
address for the nginx libary. To prove that DCL does indeed
stop ROP attacks, we have therefore constructed three other

12

!"#

$!"#

%!"#

&!"#

'!"#

(!"#

)!"#

*!"#

+!"#

,!"#

$!!"#

'!
!-
./
012
/3
45
#

'!
$-
26
7.
%#

'!
&-
84
4#

'%
,-
9
4:
#

''
(-
8;
29
<#

'(
)-
59
9
/0
#

'(
+-
=>
/3
8#

')
%-
172
?@
A3
B@
9
#

')
'-
5%
)'
0/
:#

'*
$-
;9
3/
B.
.#

'*
&-
A=
BA
0#

'+
&-
CA
1A
34
29
<#

'$
!-
2D
AE
/=
#

'$
)-
8A
9
/=
=#

'&
&-
9
714
#

'&
'-
6/
@=
9
.#

'&
(-
80
;9
A4
=#

'&
)-
4A
4B
@=
FG
H
#

'&
*-
1/
=17
/&
I#

''
'-
3A
9
I#

''
*-
I/
A1
JJ#

'(
!-
=;
.1
/C
#

'(
&-
.;
E0
AK
#

'(
'-
4A
14
@1
7C
#

'(
,-
L
/9
=M
GN
G#

')
(-
B;
3B
;#

'*
!-
12
9
#

'+
$-
D
0:
#

'+
%-
=.
57
3C
&#

AE
/0
A8
/#

3AOE/#3;3PQJR# LSTHURR#V#GWX#V#QJR#Y%#EA07A3B=Z# LSTHURR#V#GWX#V#QJR#Y&#EA07A3B=Z# LSTHURR#V#GWX#V#QJR#Y'#EA07A3B=Z#

Fig. 5: Relative performance of 32-bit protected SPEC 2006 benchmarks.

!"#

$!"#

%!"#

&!"#

'!"#

(!"#

)!"#

*!"#

+!"#

,!"#

$!!"#

'!
!-
./
012
/3
45
#

'!
$-
26
7.
%#

'!
&-
84
4#

'%
,-
9
4:
#

''
(-
8;
29
<#

'(
)-
59
9
/0
#

'(
+-
=>
/3
8#

')
%-
172
?@
A3
B@
9
#

')
'-
5%
)'
0/
:#

'*
$-
;9
3/
B.
.#

'*
&-
A=
BA
0#

'+
&-
CA
1A
34
29
<#

'$
!-
2D
AE
/=
#

'$
)-
8A
9
/=
=#

'&
&-
9
714
#

'&
'-
6/
@=
9
.#

'&
(-
80
;9
A4
=#

'&
)-
4A
4B
@=
FG
H
#

'&
*-
1/
=17
/&
I#

''
'-
3A
9
I#

''
*-
I/
A1
JJ#

'(
!-
=;
.1
/C
#

'(
&-
.;
E0
AK
#

'(
'-
4A
14
@1
7C
#

'(
,-
L
/9
=M
GN
G#

')
(-
B;
3B
;#

'*
!-
12
9
#

'+
$-
D
0:
#

'+
%-
=.
57
3C
&#

AE
/0
A8
/#

3AOE/#3;3PQJR# LSTHURR#V#GWX#V#QJR#Y%#EA07A3B=Z# LSTHURR#V#GWX#V#QJR#Y&#EA07A3B=Z# LSTHURR#V#GWX#V#QJR#Y'#EA07A3B=Z#

Fig. 6: Relative performance of 64-bit protected SPEC 2006 benchmarks.

attacks against programs that do not use stack canaries and
for which we read the memory layout directly from the /proc
interface, rather than through stack-reading.

Our second attack exploits a stack buffer overflow vul-
nerability (CVE-2010-4221) in the proftpd ftp server. The at-
tack scans the proftpd binary and the libc library for gadgets
required in the ROP chain, and reads the load addresses
of proftpd and libc from /proc/pid/maps to determine the
absolute addresses of the gadgets. The gadgets are com-
bined in a ROP chain that loads and transfers control to an
arbitrary payload. In our proof-of-concept this payload ends
with an execve system call used to copy a file. The buffer
containing the ROP chain is sent to the application over
an unauthenticated FTP connection. The attack succeeds
when proftpd is run natively with ASLR enabled and also
when run inside GHUMVEE with only 1 replica. When run
with 2 replicae, GHUMVEE detects that one replica crashes
while the other attempts to perform a sys execve call.
GHUMVEE therefore assumes that an attack is in progress
and it shuts down all replicae in the same logical process.
During the attack, proftpd’s master process managed to
restart worker processes quickly enough to keep the server
available throughout the attack.

Our third attack exploits a stack-based buffer overflow
vulnerability (CVE-2012-4409) in mcrypt, an encryption pro-
gram that was intended as a replacement for crypt. The
attack loads addresses of the mcrypt binary and the libc
library from the /proc interface to construct a ROP chain,
which is sent to the mcrypt application over a pipe. The
attack succeeds when mcrypt is run natively with ASLR
enabled and also when run inside GHUMVEE with only
1 replica. When run with 2 replicae, GHUMVEE detects a

crash in one replica and an attempt to perform a system call
in the other. It therefore shuts down the program to prevent
any damage to the system.

Our fourth attack exploits a stack-based buffer over-
flow vulnerability (CVE-2014-0749) in the TORQUE resource
manager server. The attack reads the load address of the
pbs server process, constructs a ROP chain to load and
execute an arbitrary payload from found gadgets, and sends
it to the server over an unauthenticated network connection.
The attack succeeds when TORQUE is run natively with
ASLR enabled and also when run inside GHUMVEE with
only 1 replica. When run with 2 replicae, GHUMVEE detects
a crash in one replica and an attempt to perform a system
call in the other. It therefore shuts down the program to
prevent any damage to the system.

7 CONCLUSIONS

In this paper, we presented Disjoint Code Layouts (DCL).
When combined with W⊕X and our Multi-Variant Execu-
tion environment GHUMVEE, DCL provides full immunity
against most memory exploits, including Return Oriented
Programming. Unlike other solutions, our technique incurs
only a limited execution time overhead of 6.37% on our 64-
bit machine and 8.94% on our 32-bit machine. Moreover,
DCL does not require a modified compiler or operating
system support. Furthermore, programs usually require
no or only trivial modifications to enable GHUMVEE-
compatibility.

Combined, these features of GHUMVEE make multi-
variant execution much more convenient to deploy than the
pre-existing state of the art.

13

REFERENCES

[1] B. Cox, D. Evans, et al., “N-variant systems: A secretless frame-
work for security through diversity,” in Proc. 15th USENIX Security
Symp., 2006, pp. 105–120.

[2] R. Roemer, E. Buchanan, H. Shacham, and S. Savage, “Return-
oriented programming: Systems, languages, and applications,”
ACM Trans. on Information and System Security (TISSEC), vol. 15,
no. 1, p. 2, 2012.

[3] Solar Designer, “Getting around non-executable stack (and fix),”
http://seclists.org/bugtraq/1997/Aug/63, 1997.

[4] PaX Team, “Address space layout randomization,” http://pax.
grsecurity.net/docs/aslr.txt, 2004.

[5] ——, “PaX non-executable pages design & implementation,” http:
//pax.grsecurity.net/docs/noexec.txt, 2004.

[6] C. Cowan, C. Pu, D. Maier, H. Hinton, J. Walpole, P. Bakke, S. Beat-
tie, A. Grier, P. Wagle, Q. Zhang, et al., “Stackguard: Automatic
adaptive detection and prevention of buffer-overflow attacks,” in
Proc. 7th USENIX Security Symp., vol. 81, 1998, pp. 346–355.

[7] H. Shacham, “The geometry of innocent flesh on the bone: Return-
into-libc without function calls (on the x86),” in Proc. 14th ACM
Conf. Computer and Communications Security (CCS), 2007, pp. 552–
561.

[8] E. Buchanan, R. Roemer, H. Shacham, and S. Savage, “When good
instructions go bad: generalizing return-oriented programming
to RISC,” in Proc. 15th ACM Conf. Computer and Communications
Security (CCS), 2008, pp. 27–38.

[9] T. Kornau, “Return oriented programming for the ARM architec-
ture,” Master’s thesis, Ruhr-Universitat Bochum, 2010.

[10] L. Szekeres, M. Payer, T. Wei, and D. Song, “SoK: Eternal war in
memory,” in Proc. IEEE Symp. on Security and Privacy (S&P), 2013,
pp. 48–62.

[11] T. Durden, “Bypassing PaX ASLR protection,” Phrack Magazine,
vol. 59, no. 9, p. 9, 2002.

[12] H. Shacham, M. Page, B. Pfaff, E.-J. Goh, N. Modadugu, and
D. Boneh, “On the effectiveness of address-space randomization,”
in Proc. 11th ACM Conf. Computer and Communications Security
(CCS), 2004, pp. 298–307.

[13] L. Liu, J. Han, D. Gao, J. Jing, and D. Zha, “Launching return-
oriented programming attacks against randomized relocatable ex-
ecutables,” in Proc. 10th IEEE Int’l Conf. Trust, Security and Privacy
in Computing and Communications, 2011, pp. 37–44.

[14] A. Bittau, A. Belay, A. Mashtizadeh, D. Mazieres, and D. Boneh,
“Hacking blind,” in Proc. IEEE Symp. on Security and Privacy (S&P),
2014, pp. 227–242.

[15] Solar Designer, “Non-executable stack patch,” http://openwall.
com/linux/, 1998.

[16] Nergal, “The advanced return-into-lib(c) exploits: PaX case study,”
http://phrack.org/issues/58/4.html.

[17] A. Homescu, M. Stewart, P. Larsen, S. Brunthaler, and M. Franz,
“Microgadgets: Size does matter in Turing-complete return-
oriented programming,” in Proc. 6th USENIX Workshop on Offen-
sive Technologies (WOOT), 2012, pp. 64–76.

[18] P. Chen, H. Xiao, X. Shen, X. Yin, B. Mao, and L. Xie, “Drop: Detect-
ing return-oriented programming malicious code,” in Information
Systems Security. Springer, 2009, pp. 163–177.

[19] L. Davi, A.-R. Sadeghi, and M. Winandy, “ROPdefender: A detec-
tion tool to defend against return-oriented programming attacks,”
in Proc. of the 6th ACM Symp. on Information, Computer and Commu-
nications Security (ASIACCS), 2011, pp. 40–51.

[20] J. Newsome and D. X. Song, “Dynamic taint analysis for automatic
detection, analysis, and signature generation of exploits on com-
modity software,” in Proc. Symp. Network and Distributed System
Security (NDSS), 2005.

[21] J. Hiser, A. Nguyen-Tuong, M. Co, M. Hall, and J. W. Davidson,
“Ilr: Where’d my gadgets go?” in Proc. IEEE Symp. on Security and
Privacy (S&P), 2012, pp. 571–585.

[22] K. Scott, N. Kumar, S. Velusamy, B. Childers, J. W. Davidson, and
M. L. Soffa, “Retargetable and reconfigurable software dynamic
translation,” in Proc. Int’l Symp. on Code Generation and Optimization
(CGO), 2003, pp. 36–47.

[23] V. Pappas, M. Polychronakis, and A. D. Keromytis, “Transparent
ROP exploit mitigation using indirect branch tracing.” in Proc.
22nd USENIX Security Symp., 2013, pp. 447–462.

[24] Y. Cheng, Z. Zhou, M. Yu, X. Ding, and R. H. Deng, “ROPecker:
A generic and practical approach for defending against ROP
attacks,” in Proc. Symp. Network and Distributed System Security
(NDSS), 2014.

[25] Intel, “Intel 64 and IA-32 architectures software developer’s man-
ual volume 3B: System programming guide,” 2014.

[26] E. Göktaş, E. Athanasopoulos, M. Polychronakis, H. Bos, and
G. Portokalidis, “Size does matter: Why using gadget-chain length
to prevent code-reuse attacks is hard,” in Proc. 23rd USENIX
Security Symp., 2014, pp. 417–432.

[27] J. Li, Z. Wang, X. Jiang, M. Grace, and S. Bahram, “Defeating
return-oriented rootkits with ”return-less” kernels,” in Proc. 5th
European Conf. Computer Systems, 2010, pp. 195–208.

[28] S. Checkoway, L. Davi, A. Dmitrienko, A.-R. Sadeghi, H. Shacham,
and M. Winandy, “Return-oriented programming without re-
turns,” in Proc. 17th ACM Conf. Computer and Communications
Security (CCS), 2010, pp. 559–572.

[29] K. Onarlioglu, L. Bilge, A. Lanzi, D. Balzarotti, and E. Kirda, “G-
Free: defeating return-oriented programming through gadget-less
binaries,” in Proc. 26th Annual Computer Security Applications Conf.
(ACSAC), 2010, pp. 49–58.

[30] T. Jackson, A. Homescu, S. Crane, P. Larsen, S. Brunthaler, and
M. Franz, “Diversifying the software stack using randomized NOP
insertion,” in Moving Target Defense II. Springer, 2013, pp. 151–173.

[31] A. Baratloo, N. Singh, and T. K. Tsai, “Transparent run-time de-
fense against stack-smashing attacks.” in USENIX Annual Technical
Conf., General Track, 2000, pp. 251–262.

[32] M. Abadi, M. Budiu, U. Erlingsson, and J. Ligatti, “Control-flow
integrity,” in Proc. 12th ACM Conf. Computer and Communications
Security (CCS), 2005, pp. 340–353.

[33] M. Zhang and R. Sekar, “Control flow integrity for COTS bina-
ries,” in Proc. 22nd USENIX Security Symp., 2013, pp. 337–352.

[34] E. Göktas, E. Athanasopoulos, H. Bos, and G. Portokalidis, “Out
of control: Overcoming control-flow integrity,” in Proc. IEEE Symp.
on Security and Privacy (S&P), 2014, pp. 575–589.

[35] L. Davi, A.-R. Sadeghi, D. Lehmann, and F. Monrose, “Stitching
the gadgets: On the ineffectiveness of coarse-grained control-flow
integrity protection,” in Proc. 23rd USENIX Security Symp., 2014,
pp. 401–416.

[36] V. Kuznetsov, L. Szekeres, M. Payer, G. Candea, R. Sekar, and
D. Song, “Code-pointer integrity,” in Proc. 11th USENIX Symp.
Operating Systems Design and Implementation (OSDI), 2014, pp. 147–
163.

[37] G. Ramalingam, “The undecidability of aliasing,” ACM Trans. on
Programming Languages and Systems (TOPLAS), vol. 16, no. 5, pp.
1467–1471, 1994.

[38] K. Serebryany, D. Bruening, A. Potapenko, and D. Vyukov, “Ad-
dressSanitizer: A fast address sanity checker,” in Proc. USENIX
Annual Technical Conf. (ATC), 2012, pp. 309–318.

[39] V. Pappas, M. Polychronakis, and A. D. Keromytis, “Smashing the
gadgets: Hindering return-oriented programming using in-place
code randomization,” in Proc. IEEE Symp. on Security and Privacy
(S&P), 2012, pp. 601–615.

[40] P. O’Sullivan, K. Anand, A. Kotha, M. Smithson, R. Barua, and
A. D. Keromytis, “Retrofitting security in COTS software with
binary rewriting,” ser. IFIP Advances in Information and Com-
munication Technology, vol. 354. Springer, 2011, pp. 154–172.

[41] R. Wartell, V. Mohan, K. W. Hamlen, and Z. Lin, “Securing
untrusted code via compiler-agnostic binary rewriting,” in Proc.
28th Annual Computer Security Applications Conf. (ACSAC), 2012,
pp. 299–308.

[42] B. Salamat, “Multi-variant execution: Run-time defense against
malicious code injection attacks,” Ph.D. dissertation, University
of California at Irvine, 2009.

[43] S. Volckaert, B. De Sutter, T. De Baets, and K. De Bosschere,
“GHUMVEE: Efficient, Effective, and Flexible Replication,” in
Proc. 5th Int’l Symp. on Foundations & Practice of Security, 2012, pp.
261–277.

[44] S. Volckaert, B. De Sutter, and K. De Bosschere, “Replicatable
determinism for parallel programs,” 2015, Manuscript in prepa-
ration, http://users.elis.ugent.be/ svolckae/determinism/.

[45] L. Cavallaro, “Comprehensive memory error protection via diversity and
taint-tracking,” Ph.D. dissertation, Univ. Degli Studi Di Milano,
2007.

[46] B. Salamat, T. Jackson, A. Gal, and M. Franz, “Orchestra: intrusion
detection using parallel execution and monitoring of program
variants in user-space,” in Proc. 4th ACM European Conf. Computer
Systems (EuroSys), 2009, pp. 33–46.

[47] Aleph One, “Smashing the stack for fun and profit,” Phrack Maga-
zine, vol. 7, no. 49, 1996.

14

[48] B. Salamat, A. Gal, and M. Franz, “Reverse stack execution in a
multi-variant execution environment,” in Workshop on Compiler and
Architectural Techniques for Application Reliability and Security, 2008.

[49] L. Van Put, D. Chanet, B. De Bus, B. De Sutter, and K. De Bosschere,
“Diablo: a reliable, retargetable and extensible link-time rewriting
framework,” in Proc. 5th IEEE Int’l Symp. on Signal Processing and
Information Technology (ISSPIT), 2005, pp. 7–12.

[50] K. Scott and J. Davidson, “Safe virtual execution using software
dynamic translation,” in Computer Security Applications Conf., 2002.
Proceedings. 18th Annual, 2002, pp. 209–218.

[51] Linux Programmer’s Manual, “ptrace(2) - Linux Manual Page.”
[52] G. Hunt and D. Brubacher, “Detours: Binary Interception of Win32

Functions,” in Proc. 3rd USENIX Windows NT Symp., 1999, p. 14.
[53] T. W. Curry, “Profiling and tracing dynamic library usage via

interposition,” in Proc. USENIX Summer 1994 Tech. Conf., 1994, pp.
267–278.

[54] Linux Programmer’s Manual, “vdso(7) - Linux Manual Page.”
[55] G. Murphy, “Position independent executables - adoption

recommendations for packages,” https://people.redhat.com/
∼gmurphy/files/pie.odt, 2012.

[56] Linux Programmer’s Manual, “getauxval(3) - Linux Manual
Page.”

[57] J. R. Moser, “Virtual machines and memory protections,” Novem-
ber 2006, http://lwn.net/Articles/210272/.

[58] U. Drepper, “Selinux memory protection tests,” April 2006,
http://www.akkadia.org/drepper/selinux-mem.html.

[59] J. Wilander, N. Nikiforakis, Y. Younan, M. Kamkar, and W. Joosen,
“RIPE: Runtime intrusion prevention evaluator,” in Pro. 27th An-
nual Computer Security Applications Conf., 2011, pp. 41–50.

[60] A. Jaleel, “Memory characterization of workloads using
instrumentation-driven simulation–a pin-based memory
characterization of the SPEC CPU2000 and SPEC
CPU2006 benchmark suites,” VSSAD Technical Report, 2007,
http://www.glue.umd.edu/ ajaleel/workload/.

Stijn Volckaert is a Ph.D. student at Ghent Uni-
versity in the Computer Systems Lab. He ob-
tained his BEng. degree in Computer Science
from Ghent University’s Faculty of Engineering in
2008 and his Msc. degree in Computer Science
from Ghent University’s Faculty of Engineering
in 2010. His research focuses on software anti-
tampering.

Bart Coppens is a postdoctoral researcher at
Ghent University in the Computer Systems Lab.
He obtained his Ph.D. degree in Computer Sci-
ence from Ghent University’s Faculty of Engi-
neering in 2013. His research focuses on the use
of compiler techniques for software protection,
including obfuscation and diversification.

Bjorn De Sutter is a professor at Ghent Uni-
versity in the Computer Systems Lab. He ob-
tained his Msc. and Ph.D. degrees in Computer
Science from Ghent University’s Faculty of Engi-
neering in 1997 and 2002. His research focuses
on the use of compiler techniques to aid pro-
grammers with non-functional aspects of their
software, such as performance, code size, reli-
ability, and software protection.

