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Abstract

Machine maintenance is an important operational problem, where the challenge is to apply suf-
ficient, timely maintenance jobs to avoid machine downtime and maximize its useful life. Data-
driven methods can be used to optimize maintenance conditional on the machine’s characteris-
tics. Several recent works aim to solve this in the framework of predictive maintenance, where
maintenance is planned when the machine’s predicted failure probability exceeds a certain thresh-
old. However, this predictive approach does not consider the effect of a maintenance intervention.
Therefore, this work proposes a different, prescriptive approach that optimizes maintenance based
on the estimated reduction in failure probability resulting from a maintenance intervention. The
estimated maintenance effects allow the prescription of the optimal sequence of maintenance inter-
ventions and their type during a machine’s lifetime. This way, the costs of preventive maintenance
and unplanned downtime can be minimized or production output can be maximized. We empiri-
cally validate our proposed, prescriptive approach and compare it to a predictive approach using
a real-life data set containing detailed information on more than 4,000 full-service maintenance
contracts of industrial equipment provided by an industrial partner.

Keywords: Machine maintenance, Prescriptive maintenance, Causal inference, Machine learning

1. Introduction

Machine maintenance is an essential responsibility of asset management that constitutes an
important and intricate operational problem. The challenge is to maximize the machine’s useful
lifetime and avoid expensive downtime due to machine failure, while at the same time prevent-
ing unnecessary as well as costly maintenance interventions. Recently, a variety of data-driven
solutions have been proposed that consider individual machine characteristics such as historical
information on usage and conditions to optimally schedule machine maintenance interventions.

The state-of-the art predictive machine maintenance framework schedules interventions based
on risk of failure estimates by a predictive model which makes use of information on the operation
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of a machine and machine characteristics (Carvalho et al., 2019). In the predictive framework, a
maintenance intervention is planned when the risk of failure exceeds a certain degradation thresh-
old, which balances the cost of treatment and the cost of failure (Poppe et al., 2018).

In this article, we identify a drawback of the predictive approach: it does not consider the effect
of a maintenance intervention on the risk of failure. This is an important shortcoming that may
lead to sub-optimal planning of maintenance interventions. When the predictive model predicts
the machine is at risk of failing, a routine maintenance intervention would be scheduled (such
as cleaning or oil replenishment). However, at that time, failure might no longer be able to be
prevented by a routine maintenance, but might only be remedied by means of more costly repairs
or part replacements. Because the predictive framework only considers the risk of failure and not
the effect of maintenance, maintenance can be scheduled when it is not at all effective.

This article contributes by proposing a novel prescriptive framework for machine maintenance
(Frazzetto et al., 2019; Verbeke et al., 2020; Olaya et al., 2021) that prescribes maintenance based
on the estimated effect of a maintenance intervention on the machine’s probability of failure. To
achieve this, we leverage causal machine learning methods, which can learn models from data to
estimate the causal effect of a treatment on an outcome of interest depending on the characteristics
of a particular entity, e.g., the causal effect of a maintenance intervention on the risk of failure
of an individual machine. Such estimates are called individual treatment effect (ITE) estimates.
Moreover, we formulate a prescriptive policy that uses ITE estimates to optimally schedule ma-
chine maintenance interventions so as to minimize the total cost of failures and interventions. By
assessing the effectiveness of maintenance interventions, our framework allows both to support the
development of more effective interventions and to increase the cost-efficiency of maintenance.

Empirically, we contribute by demonstrating a practical use of the presented prescriptive frame-
work and by evaluating its potential merits using a real-world use case. We present the results
of an experimental evaluation of our approach using data on more than 4,000 full-service mainte-
nance contracts of industrial equipment, and compare performance with a state-of-the-art predictive
framework.

2. Related work

Machine maintenance has been extensively studied in operations research, with a wide vari-
ety of proposed maintenance policies (Wang, 2002; Ding and Kamaruddin, 2015). For a recent
overview, we refer the reader to de Jonge and Scarf (2020). In this section, we follow a commonly
used categorization of existing work in three general strategies: corrective, preventive and predic-
tive maintenance (Susto et al., 2012, 2014; Carvalho et al., 2019). Finally, we compare these to a
new category, prescriptive maintenance, that includes our proposed methodology.

Corrective maintenance. The most elementary approach for machine maintenance is corrective
maintenance: in this strategy, maintenance interventions are scheduled as a reaction to failure, with
the goal of minimizing the failure’s severity (Sheut and Krajewski, 1994). Although this strategy
is conceptually simple and prevents unnecessary interventions, it can unavoidably entail significant
downtime. Moreover, as corrective maintenance procedures are typically more expensive than
preventive interventions, this strategy is typically not cost-efficient.

Preventive maintenance. A more sophisticated, widely studied approach is preventive maintenance
(Barlow and Hunter, 1960; Wang, 2002). In this strategy, maintenance interventions are scheduled
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(a) Corrective maintenance (b) Preventive maintenance (c) Predictive maintenance (d) Prescriptive maintenance

Figure 1: Overview of the different maintenance strategies. (a) In a corrective policy, a maintenance is scheduled as
a reaction to a machine failing. (b) Preventive maintenance schedules interventions periodically. (c) A predictive policy
monitors the failure probability and schedules interventions when the risk is too high. (d) Prescriptive maintenance
estimates the causal effects to consider the different counterfactual scenarios and optimize maintenance interventions.

periodically in time. If failure occurs, maintenance is performed at time of failure and preven-
tive maintenance is rescheduled. This way, the machine’s health does not deteriorate drastically
and expensive failures are avoided. The difficulty is finding an appropriate time period between
maintenance interventions as to avoid both unnecessary interventions and avoidable failures.

Predictive maintenance. As a consequence of recent trends, such as Internet-of-Things and sen-
sor technologies, it has become increasingly easy to measure important machine characteristics
between maintenance interventions, leading to an abundance of data at the level of the individual
machine. Especially relevant to our work are recent, data-driven approaches that use this data to
learn a predictive model (Alaswad and Xiang, 2017). This way, the machine’s health can be moni-
tored and data-driven models can predict whether a failure is imminent. When the perceived risk is
too high, e.g., exceeding a degradation threshold, an intervention can be scheduled to avoid failure
(e.g., Bey-Temsamani et al., 2009; Do et al., 2015; Matyas et al., 2017; Poppe et al., 2018; Nemeth
et al., 2018; Ansari et al., 2019).

Prescriptive maintenance. Prescriptive maintenance is a more recent line of work that uses data to
prescribe the best maintenance actions. A recent overview is given by Bousdekis et al. (2021). Sim-
ilar to predictive maintenance, this strategy relies on data-driven decision-making using predictions
from a machine learning model. However, in contrast to the predictive approach which relies on the
probability of failure to guide decision-making, the focus of these approaches is the maintenance
action itself. Existing approaches in this category typically learn a machine-dependent policy by
using reinforcement learning (e.g., Rocchetta et al., 2019; Huang et al., 2020; Lepenioti et al., 2020;
Ong et al., 2020). Conversely, the prescriptive approach presented in this article makes use of an
entirely different class of machine learning models, causal machine learning, to estimate the effect
of maintenance intervention. To the best of our knowledge, this approach has not yet been applied
in the context of machine maintenance,

3. Methodology

In this section, we introduce a prescriptive framework for optimally scheduling machine main-
tenance interventions. We start by formalizing the machine maintenance problem in Section 3.1.
Subsequently, the state-of-the-art predictive framework, as well as our own prescriptive approach
are elaborated and compared in Section 3.2 and Section 3.3. Figure 1 shows an intuitive comparison
of our own, prescriptive methodology to the existing maintenance policies detailed in Section 2.
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3.1. Problem formulation
We address the problem of scheduling machine maintenance interventions for a pool of ma-

chines. To simplify the problem, we discretize continuous time in time slots, s j for j ∈ {1, . . . ,S}.
The length of these time slots can be chosen depending on the specific problem domain. A machine
i in time slot j is described by a set of characteristics xi, j ∈Rd for i ∈ {1, . . . ,N} and j ∈ {1, . . . ,S}.
In each time slot, a binary outcome is observed for each machine, i.e., a failure occurs, yi, j = 1, or
not, yi, j = 0. Failure can generally be defined as unexpected downtime of a machine requiring an
intervention to repair it, although the exact definition can depend on the specific problem context.

The challenge for an asset manager is to decide, for each machine and time slot, whether to
schedule a maintenance intervention, ti, j = 1, or not, ti, j = 0. The key goal is to optimally schedule
maintenance interventions for each machine individually in order to minimize the total cost result-
ing from machine failures and maintenance operations, where each failure results in a cost c f and
each maintenance intervention costs ct .

To facilitate decision-making, the asset manager can leverage a historical data set with informa-
tion on M machines and maintenance interventions assumed to be drawn from the same distribution:
D = {xi, j, ti, j,yi, j}i=M, j=S

i=1, j=1 . A variety of strategies can be used. This work compares two data-driven
approaches: the state-of-the-art predictive framework and our own, prescriptive framework. A high
level overview of both approaches is presented in Figure 2.

• The predictive machine maintenance framework uses data to learn a predictive model for
estimating each individual machine’s risk of failure in future time slots based on the available
information on that machine, p(yi|xi). The predicted failure probability is used as input
to a predictive policy for scheduling interventions. Essentially, this framework frames the
problem as a cost-sensitive classification task (Elkan, 2001), where machines are classified
in the positive or negative class, i.e., to be maintained or not, based on their predicted risk of
failure, the cost of a maintenance intervention and the cost of machine failure.

• The proposed prescriptive machine maintenance framework uses data to learn an ITE model
for estimating the causal effect of a maintenance intervention on the risk of failure for each
individual machine in future time slots based on the available information on that machine,
τi = p(yi|xi, ti = 0)− p(yi|xi, ti = 1). The effect on failure probability is used as input to
a prescriptive policy for scheduling interventions. Essentially, this framework frames the
problem as a cost-sensitive causal classification task (Verbeke et al., 2020; Olaya et al., 2021),
where machines are classified in the positive or negative class, i.e., to be maintained or not,
based on the predicted decrease in their risk of failure that would be caused by a maintenance
intervention, the cost of a maintenance intervention and the cost of a machine failure.

Conceptually, the prescriptive framework improves upon the predictive framework by not just
taking into account the risk of failure, but comparing this risk in two potential scenarios, with and
without maintenance, to decide whether or not to schedule a maintenance intervention. Compared
to the predictive framework, we conjecture that the prescriptive approach is more aligned with the
key objective of machine maintenance: scheduling maintenance to prevent failure where possible.
Both frameworks are detailed in the following sections.

3.2. Predictive machine maintenance framework
Scheduling machine maintenance interventions based on failure predictions is identified in Sec-

tion 3.1 above as a cost-sensitive classification task. Classification is a common machine learning
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(a) Predictive maintenance

MACHINE MODEL ACTION

(b) Prescriptive maintenance

MACHINE MODEL ACTION

Figure 2: Comparing predictive and prescriptive maintenance. Both the predictive (a) and prescriptive approach (b)
rely on a data-driven model to leverage machine information xi in order to support decision-making, i.e, whether or not
to maintain the machine. The key difference is the estimand, which is the conditional failure probability p(yi = 1|xi)
for the predictive approach, while the prescriptive approach estimates the conditional effect of a maintenance τi.

task that concerns the assignment of machine-instances x from the instance space X ⊆Rn to a class
or outcome Y . In this article, machine failure is defined as a binary outcome, yielding a binary
classification problem with Y ∈ {0,1}.

A binary classifier can learn a binary classification model, m : X → [0,1], which maps machine-
instances x to a positive outcome probability, P(Y = 1|x). A class estimate, Ŷ ∈ {0,1}, is obtained
by setting a classification threshold φ . Machines with a positive outcome probability above the
threshold, i.e., P(Y = 1|x)> φ , are classified in the positive class, whereas machines with a positive
outcome probability below the threshold are classified in the negative class. Machines that are
classified in the positive class are expected to fail and hence are to be assigned an intervention in
the subsequent time slot.

Hence, the threshold φ embeds the predictive decision-making policy to schedule maintenance
interventions based on a risk of failure prediction by some classification model. A cost-sensitive
threshold, φcs, i.e., a cost-sensitive predictive policy, assigns an intervention to a machine if the cost
of an maintenance intervention, ct , is lower than the expected cost of failure, which is calculated
based on the cost of failure, c f and the estimated probability of failure, P̂(yi = 1|xi) (Elkan, 2001):

ct < c f P̂(yi = 1|xi) ⇐⇒ ct

c f
< P̂(yi = 1|xi),

⇐⇒ φcs < P̂(yi = 1|xi).
(1)

We find the cost-sensitive threshold for classifying machines in the positive class, i.e., for assign-
ing interventions based on the estimated risk of failure, to be equal to the ratio of the cost of an
intervention and the cost of a machine failure:

φcs =
ct

c f
. (2)

Finally, note that well-calibrated probability estimates are required so as to arrive at accurate ex-
pected cost estimates and to an optimal predictive policy for scheduling maintenance interventions.

3.3. Prescriptive machine maintenance framework
The proposed prescriptive machine maintenance is introduced in Section 3.1 as a cost-sensitive

causal classification task. Causal classification (Fernández and Provost, 2019; Olaya et al., 2021)
is defined in terms of the individual treatment effect, τ , which itself is generally defined as the
causal effect of a treatment, T , on the outcome, Y , of an instance, xi. In this study, we employ the
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Neyman-Rubin framework to estimate individual treatment effects in terms of potential outcomes,
i.e., an individual’s outcomes for different treatments (Rubin, 1974). We derive solutions for the
double binary case, i.e., with Y ∈ {0,1} and T ∈ {0,1}, which can be extended straightforward to
multi-treatment settings by performing pairwise comparisons (Haupt and Lessmann, 2022).

In line with the convention for the outcome variable, we refer to treatment T = 1 as the positive
treatment and to treatment T = 0 as the negative treatment. The potential outcome of instance xi
for treatment T = t is denoted by Y (xi,T = t). The individual treatment effect (ITE) is obtained by
contrasting the potential outcomes for the positive and the negative treatment.

τi := Y (xi,T = 1)−Y (xi,T = 0). (3)

Hence, τi ∈ {−1,0,1}, with τi = 1 in the context of machine maintenance meaning that a failure
is prevented by the maintenance intervention, τi = 0 meaning that the intervention did not change
the outcome (either failure or no failure), and τi = −1 meaning that the maintenance intervention
causes a machine failure. With class estimates P(Y = y|x,T = t) and using the expected values for
the potential outcomes, E[Y |x,T = t] = P(Y = 1|x,T = t), we obtain ITE estimates, τ̂ ∈ [−1,1]:

τ̂i := P(Y = 1|xi,T = 0)−P(Y = 1|xi,T = 1). (4)

Note that, by convention, the ITE is defined as the change in the positive outcome probability
that is caused by applying the positive treatment, reflecting the objective of minimizing the positive
outcome rate among the population, i.e., the number of failures, by means of applying the positive
treatment on a subset of the population (Fernández and Provost, 2019). In the context of machine
maintenance, the ITE is to be interpreted as the reduction in the risk of machine failure that is caused
by the maintenance intervention. Note that, at least theoretically, the ITE can have a negative value,
which would mean that the intervention increases the risk of failure.

The objective of causal classification is to identify the machines i with τi = 1, i.e., machines
where failure can be prevented with maintenance. This way, we minimize both the subset of
machine-instances that is to be assigned a maintenance intervention and the number of machine
failures, as such optimizing intervention efficiency.

Causal classification is an instance of classification (Fernández and Provost, 2019; Olaya et al.,
2021), as formally defined in Section 3.2, where the positive class is the set of instances with τi = 1
and the negative class is the set of instances with τi ∈ {−1,0}. To causally classify instances in the
positive or negative treatment class based on the estimated ITE, i.e., to decide whether to assign
an intervention to a machine, a classification threshold φ is required. Instances with τ̂ ≥ φ are
classified in the positive treatment class and with τ̂ < φ in the negative treatment class.

A threshold φ embeds the prescriptive decision-making policy to schedule maintenance in-
terventions based on ITE estimates. The cost-sensitive threshold, φcs, assigns an intervention to
a machine if the expected cost when a maintenance intervention would be carried out is smaller
than the expected cost when no maintenance intervention would be carried out. The risk of failure
estimates as produced by the ITE model allow to simulate for both scenario’s the expected cost:

1. The cost when a maintenance intervention would be carried out: c f ∗ p(yi = 1|xi, ti = 1)+cw

2. The cost when no maintenance intervention would be carried out: c f ∗ p(yi = 1|xi, ti = 0)

6



This yields the following cost-sensitive threshold, φcs:

c f ∗ p(yi = 1|xi, ti = 1)+ cw < c f ∗ p(yi = 1|xi, ti = 0) ,

⇐⇒ ct

c f
< p(yi = 1|xi, ti = 0)− p(yi|xi, ti = 1) ,

⇐⇒ ct

c f
< τ̂i.

(5)

This threshold can also be obtained by filling in the relevant costs of treatments and benefits of
outcomes given our problem formulation in the general formulation of the threshold in the cost-
sensitive causal classification framework (Equation 25 in Olaya et al., 2021).

We find the cost-sensitive threshold for causally classifying machines in the positive treatment
class, i.e., for assigning interventions based on the estimated ITE, to be equal to the ratio of the cost
of an intervention and the cost of a machine failure:

φcs =
ct

c f
. (6)

Note that, even though the cost-sensitive threshold for the prescriptive and predictive policies are
identical, the estimand that is used differs. Equation (6) embodies the proposed prescriptive policy
based on ITE estimates.

3.4. ITE estimation
Essential to the prescriptive approach is estimating the ITE. This is a well studied problem

in fields such as medicine, economics and marketing, which has also been referred to as uplift
modeling (Devriendt et al., 2021), heterogeneous treatment effect estimation (Wager and Athey,
2018) and conditional average treatment effect estimation (Shalit et al., 2017). Estimating the ITE
differs from standard supervised machine learning as the ITE is never observed in reality. This is
because, at each timestep, only a single treatment can be applied to each individual machine and,
hence, only one potential outcome, Yt,i, is observed for each machine. What would have happened
if the machine did not receive a maintenance intervention, the counterfactual scenario, is never
observed and, because of this, the ITE itself is never observed. To deal with this, estimating the
ITE relies on several standard assumptions: ignorability, common support and stable unit treatment
value (SUTVA) (Rubin, 1978; Rosenbaum and Rubin, 1983).

Various machine learning methodologies for learning causal classification models have been
proposed in the literature. In general, we can distinguish two main approaches (Olaya et al., 2021).
First, metalearners are general strategies to use standard machine learning methods for estimating
the ITE. An overview is presented in Künzel et al. (2019). Second, various classification methods
have been modified to directly estimate the ITE, such as neural networks (Shalit et al., 2017), causal
boosting (Powers et al., 2018) and causal forests (Athey et al., 2019).

In the experiments presented in the following section, we compare the predictive and prescrip-
tive frameworks using four types of machine learning methodologies: logistic regression, support
vector machines, random forests and gradient boosting. These classifiers are frequently used for
predictive maintenance (Carvalho et al., 2019). For our prescriptive framework, we adapt them to
estimate the ITE using a conceptually simple metalearner, the S-learner (Künzel et al., 2019). In
this approach, a single machine learning model is trained to predict p̂(yi|xi, ti) using all data, where
only the observed ti is used during training (i.e., ti = 1 or ti = 0). Then, the ITE can be estimated as
τ̂i = p̂(yi|xi, ti = 0)− p̂(yi|xi, ti = 1).
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Type Attribute Values

Contract data
Duration in days [0,5843]
Contract type {1,2}
Running hours [0,108508]

Machine data

ID /
Machine type {1,2, . . . ,7}
Production date {1979/11/23, . . . ,2019/07/01}
Industry 36 values
Country 9 values
Region 23 values
Postal code 771 values
Age at start contract {0,1, . . . ,39}
Hours worked at start contract [0,185987]

Maintenance data Maintenance interventions {0,1, . . . ,33}
Failures over contract period {0,1, . . . ,60}

Table 1: Data overview. We present an overview of the different variables in the data set in terms of what type of data
the variable is describing, the name of the attribute, and some information on its possible values.

4. Results

In this section, we present the empirical results of a real-world case study on full-service main-
tenance contracts where the goal is to optimize maintenance interventions for each piece of equip-
ment. This way, we compare machine maintenance using the two approaches explained in the
previous sections: the state-of-the-art predictive approach and our own, prescriptive approach.

4.1. Data
The data consists of more than 4,000 completed full-maintenance contracts for pieces of in-

dustrial equipment, which we consider to be single-unit systems. Data is available on the contract
itself, the corresponding machine, and the maintenance interventions that were performed during
the contract’s duration. Table 1 presents an overview of the data.

We simplify the problem setting in several ways. We assume there is only one time slot covering
the contract’s entire duration. Moreover, we make several adjustments to the data to tackle the
problem as a binary classification or binary causal classification task. The number of failures is
converted to two condition states, depending on whether equipment i has a relatively low (yi = 0)
or high (yi = 1) number of failures per running hours. Similarly, we also constrain the setting to two
possible treatments: a relatively low (ti = 0) or high (ti = 1) number of maintenance interventions
per running hours. For both, the cutoff point is the median value. In practice, although the exact
number of running hours would not be known at the start of the contract when maintenance needs
to be planned, an estimate would typically be available.

We assume the contract by default allows for low failure intensity and includes low maintenance
intensity without cost. An additional cost c f is only incurred in case of high failure intensity
(yi = 1) and, similarly, a cost ct in case of a high maintenance intensity (ti = 1), matching the
setting described in Section 3.1. Therefore, in the following, we refer to low maintenance intensity
as not performing a maintenance intervention and, similarly, to low failure intensity as not failing.
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4.2. Evaluation
To evaluate the decisions resulting from the different models and strategies, we need to set an

appropriate threshold φcs =
ct
c f

(see Equations 2 and 6), for which we would need to know the costs
of a maintenance intervention ct and failure c f . However, instead of assuming certain costs, we
evaluate at different thresholds φcs, corresponding to different cost ratios. Evaluation in this way
focuses on the rankings of machines and allows to compare which machines are prioritized for
maintenance by the different maintenance strategies.

We empirically evaluate the performance of each model using two types of metrics that quantify
two distinct outcomes. The first group looks at the number of failures prevented. The second group
evaluates whether failures are correctly predicted. Both are detailed in the following.
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Failures maintained machines (ti = 1)

Failures non-maintained machines (ti = 0)
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Figure 3: Uplift curve. We show an example of an
uplift curve that shows the uplift or prevented failures
as the difference in failures of maintained and non-
maintained machines in the ranking.

Failures prevented. First, we look at the number of
failures that are prevented by maintaining machines
following the priority given by a model. Evaluat-
ing the effect of maintenance is challenging, as the
ITE is never observed in reality. To deal with this,
we draw inspiration from uplift modeling and look
at the realized uplift, which, in this context, corre-
sponds to the number of failures that were prevented
due to maintenance. The Uplift@k measures how
many failures would have been prevented if the top
k% of machines would be prioritized for mainte-
nance. It is calculating by comparing the difference
between the average number of observed failures be-
tween machines that received a maintenance inter-
vention and those that did not for the first k% ranked
machines (Devriendt et al., 2021). Formally, of the
first k% ranked instances, consider the number of treated instances Nk

T (ti = 1) of which T k failed
(yi = 1), and, similarly, let Nk

C be the number of non-maintained machines (ti = 0) of which C k

failed. Then, the Uplift@k is the difference between the average number of failures in both groups:

Uplift@k =
T k

Nk
T

− C k

Nk
C

. (7)

Similarly, the uplift curve is constructed by looking at the Uplift@k for all possible thresholds
up until k = 100%. This curve is summarized by the area under the uplift curve (AUUC), which
denotes the area under this curve and compares it to a random (AUUC = 0) and perfect ranking
(AUUC = 1) (Devriendt et al., 2020).

Failures predicted. We also evaluate how a model prioritizes machines that are more likely to
fail. To do this, we rely on two common evaluation metrics in binary classification: the receiver
operating characteristics (ROC) curve and the precision-recall (PR) curve (Davis and Goadrich,
2006). For both, we present a metric that summarizes the curve obtained by a model. For the
ROC curve, we use the area under the ROC curve (AUROC). For the PR curve, we use the average
precision (AP).
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Model Estimand
Failures prevented Failures predicted

Uplift@10 Uplift@25 Uplift@50 AUUC AUROC AP

Logistic Class 0.13 0.11 0.12 -0.06 0.69 0.67
regression ITE 0.20 0.16 0.17 -0.02 0.51 0.52

SVM
Class 0.10 0.09 0.12 -0.07 0.70 0.69
ITE 0.16 0.16 0.22 0.03 0.46 0.48

Gradient Class 0.16 0.14 0.14 -0.05 0.69 0.67
boosting ITE 0.16 0.17 0.21 0.02 0.49 0.5

Random Class 0.09 0.11 0.12 -0.08 0.71 0.69
forest ITE 0.42 0.37 0.29 0.15 0.48 0.49

Table 2: Results overview. We compare results when estimating failure probability (class) and maintenance effect
(ITE) per model. For each metric, the best result overall is denoted in bold, and the best estimand per model is denoted
in green . The metrics looking at the failures prevented, uplift@k and area under the uplift curve (AUUC), indicate
that models that predict the maintenance effect lead to more prevented failures compared to models predicting failure
probability. Conversely, traditional classification metrics, such as the area under the ROC curve (AUROC) or average
precision (AP), indicate that classification models are better able to predict failure.

We perform the empirical evaluation using a 10-fold cross-validation, with each fold stratified
based on treatment information. We implement all models in sklearn and use the default pa-
rameters (Pedregosa et al., 2011). This way, the only difference between the classification models
and ITE models is the estimand. Finally, categorical variables are transformed using weight-of-
evidence encoding (Smith et al., 2002).

4.3. Empirical results
The results of the empirical analysis are shown in Table 2 and the average uplift curve is shown

in Figure 4. Models that prioritize machines based on ITE are better at preventing failures, i.e., per-
form better in terms of uplift@k and AUUC. The models predicting failure probability even prevent
less failures than a random policy (AUUC < 0). Conversely, models that prioritize machines based
on failure probability are better at predicting failures, i.e. perform better in terms of AUROC and
AP. Similarly, most models that estimate ITE perform worse than random in predicting failure
(AUROC < 0.5).

The key insight is that models that accurately predict failure do not necessarily result in pre-
vented failures and vice versa, indicating a key trade-off between the two objectives. Importantly,
this means that, even though the predictive approach is good at identifying which machines will
fail, it does not necessarily result in optimal prevention of failures or, equivalently, optimal main-
tenance. Conversely, the prescriptive approach does not identify models that are likely to fail, but
focuses on the effect of a maintenance intervention to maximize the prevention of failures.

These findings illustrate the importance of focusing machine maintenance on failure prevention
(rather than only on detection), which is the key characteristic of our prescriptive approach. To this
end, prescribing maintenance for machines with a high risk of failure but with a low estimated ITE
points towards ineffective maintenance interventions and a need for other types of interventions.
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Figure 4: Failures prevented in terms of machines maintained. We show the average uplift curves for the different
models which indicates how successful a model’s prioritization is at preventing failures. Models predicting ITE (in
dotted lines) outperform models predicting failure probability (in solid lines). The latter even perform worse than the
random model. These findings illustrate the benefit of our prescriptive framework compared to a predictive policy.

These findings imply that the frequently used approach in predictive maintenance to report
accuracy metrics (e.g., Susto et al., 2014; Goyal et al., 2016; Su and Huang, 2018; Ayvaz and
Alpay, 2021) should not be the only way of measuring performance of a maintenance strategy. The
goal is not to accurately predict machine failures but to prevent them, or similarly, to not predict
remaining useful life but to maximize it.

5. Conclusion

In this article, we addressed the important operational problem of optimally maintaining ma-
chinery. A wide range of existing work tackles this with a predictive approach and plans mainte-
nance when the machine’s predicted failure probability exceeds a certain threshold. However, this
approach does not take the effect of maintenance interventions into account, which could result in
effective maintenance planning. Therefore, this paper contributes by proposing a novel, prescrip-
tive maintenance framework that uses the estimated effects of maintenance interventions based on
individual machine characteristics, which is achieved using causal machine learning.

Empirical results indicated major differences between the predictive and prescriptive policies.
When compared with our predictive policy, a predictive policy will most urgently plan maintenance
interventions for machines with high probability of failing, whereas a prescriptive policy prioritizes
maintenance for machines that benefit most from it. Because of this, the prescriptive policy is more
effective at failure prevention, which we argue to be the main goal in machine maintenance. These
findings do not imply that failure detection is not an essential part of asset management, but rather
that it should not be used for maintenance decisions.

The proposed framework opens a range of opportunities for further research. Several degrees
of complexity could be added to the problem formulation. For example, depending on the length
of the time slots, multiple failures may occur in one time slot and, this way, the outcome of interest
would be a discrete number. Alternatively, it could also be relevant to distinguish different types of
failures, or similarly, multiple types of maintenance interventions. Moreover, we assumed failure
and maintenance costs to be known, machine-independent, static and deterministic, whereas these
may be unknown, machine-dependent, dynamic and stochastic. Finally, a limited and potentially
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Figure 5: Selection bias. The data used in this work is historical, observational data where treatment decisions were
made using an existing policy. Because of this, the low and high maintenance groups both have different treatment
propensities, i.e., probability to receive the high intensity treatment p(ti|xi). This figure shows the kernel densities
of the estimated propensities for both groups using logistic regression with L2 regularization. This illustrates that
treatment assignment was not random, i.e., there is selection bias, as is typically the case with observational data.

stochastic capacity to carry out interventions may impose a constraint on the optimization problem.
For all these limitations, extensions to the proposed framework can be conceived to refine the
solution to particular requirements or characteristics of other problem settings. One challenge for
future research, however, is that public maintenance datasets typically do not contain information
on maintenance interventions (Carvalho et al., 2019).

It should also be noted that estimating causal effects is a hard problem. This work did not yet
address the important consideration of handling selection bias (see Figure 5). In practice, learning
is typically complicated by selection bias when using observational data (Alaa and Schaar, 2018).
This is because, historically, not all machines would have been equally likely to receive mainte-
nance, as this would have been prescribed according to an existing policy. Ideally, data would
come from a randomized controlled trial where maintenance would be prescribed randomly to dif-
ferent machines, though this is often challenging or excessively expensive in practice. Nevertheless,
various methodologies have been proposed that deal with selection bias Hernán and Robins (2006).
Furthermore, model validation is challenging in causal machine learning because of the absence of
a ground truth Alaa and Van Der Schaar (2019). Finally, causal machine learning methods typically
needs to rely on strong assumptions that might be violated in practice, which could cause the causal
machine learning methodology to fail (Jesson et al., 2020).
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