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Abstract. The “clinical target distribution” (CTD) has recently been introduced12

as a promising alternative to the binary clinical target volume (CTV). However,13

a comprehensive study that considers the CTD, together with geometric treatment14

uncertainties, was lacking. Because the CTD is inherently a probabilistic concept,15

this study proposes a fully probabilistic approach that integrates the CTD directly in16

a robust treatment planning framework. First, the CTD is derived from a reported17

microscopic tumor infiltration model such that it explicitly features the probability18

of tumor cell presence in its target definition. Second, two probabilistic robust19

optimization methods are proposed that evaluate CTD coverage under uncertainty.20

The first method minimizes the expected-value (EV) over the uncertainty scenarios and21

the second method minimizes the sum of the expected value and standard deviation22

(EV-SD), thereby penalizing the spread of the objectives from the mean. Both EV23

and EV-SD methods introduce the CTD in the objective function by using weighting24

factors that represent the probability of tumor presence. The probabilistic methods25

are compared to a conventional worst-case approach that uses the CTV in a worst-case26

optimization algorithm. To evaluate the treatment plans, a scenario-based evaluation27

strategy is implemented that combines the effects of microscopic tumor infiltrations28

with the other geometric uncertainties. The methods are tested for five lung tumor29

patients, treated with intensity-modulated proton therapy. The results indicate that30

for the studied patient cases, the probabilistic methods favour the reduction of the31

esophagus dose but compensate by increasing the high-dose region in a low conflicting32

organ such as the lung. These results show that a fully probabilistic approach has33

the potential to obtain clinical benefits when tumor infiltration uncertainties are taken34

into account directly in the treatment planning process.35

Keywords: proton therapy, robust optimization, probabilistic, stochastic, worst-case,36

minimax, target definition37
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1. Introduction38

In recent literature, the concept of a “clinical target distribution” (CTD) has been39

introduced in order to represent the probability of tumor cell presence away from the40

visible tumor mass (Shusharina et al. (2018), Unkelbach et al. (2020), Bortfeld et al.41

(2021)). This probabilistic definition of the target stands in clear contrast to current42

clinical practice where the binary clinical target volume (CTV) is used to encompass43

the microscopic spread of cancer cells. However, the question of how the CTD should44

be combined with the geometric treatment uncertainties remains open.45

Current clinical practice typically treats tumor infiltration and geometric46

uncertainties separately by following a linear two step approach: first, the CTV47

is defined. According to the ICRU 83 report, the CTV contains the gross tumor48

volume (GTV) and/or regions where tumor cell presence is likely (The International49

Commission on Radiation Units and Measurements (2010)). Tumor cell presence may50

be the result of microscopic tumor infiltration at the boundary of the GTV or the51

possible infiltration into whole organs such as lymph nodes, among others. In this52

study, we focus on target volumes that are associated with the first type. In this53

case, the CTV is obtained as a geometric margin expansion of the GTV, followed54

by a correction for anatomical barriers. A second margin expansion then defines the55

planning target volume (PTV), to which the dose is prescribed. For particle therapy56

treatments, the PTV is considered inadequate due to its inability to deal with range57

uncertainties (Fredriksson and Bokrantz (2016), Unkelbach et al. (2018)). Therefore,58

state-of-the-art workflows replace the CTV-to-PTV margin expansion step by a robust59

optimization process where CTV coverage is evaluated in a set of geometric uncertainty60

scenarios. Research efforts have mainly focused on two types of robust optimization61

methods: (a) a worst-case formulation that uses the worst-case scenario to guide the62

optimization solution, such as minimax and voxel-wise worst-case (Pflugfelder et al.63

(2008), Fredriksson et al. (2011), Liu et al. (2012), Unkelbach et al. (2018)), and (b)64

a probabilistic formulation that minimizes the expected value of the objective function65

(Unkelbach et al. (2008), Fredriksson (2012)).66

Stroom et al. (2014) proposed a GTV-to-PTV margin recipe that treated tumor67

infiltration and geometric uncertainties together, leading to smaller overall margins.68

However, in the context of robust optimization, tumor infiltration uncertainties remain69

largely unaddressed. In this regard, an approach that combines a fixed target volume70

(the CTV) with worst-case robust optimization holds some limitations. For instance,71

we can define the CTV with a tumor infiltration uncertainty model by following ICRU72

recommendations, which state that “a probability of occult disease higher than from 5%73

to 10% is assumed to require treatment” (The International Commission on Radiation74

Units and Measurements (2010)). However, by evaluating such a resulting CTV in75

a set of extreme geometric scenarios (e.g. a 5 mm setup error and 3% range error),76

some of these scenarios become overly conservative, when taking into account the77

probability of the combined tumor infiltration and geometric uncertainty. The overly78
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conservative nature of these scenarios can be considered analogous to the overestimation79

of conventional margins, observed by Stroom et al. (2014). In practice, this implies that80

for clinical cases where the organs-at-risk are in close proximity to the CTV, a worst-case81

optimizer will need to balance excessive conflicts among the planning objectives. Given82

that worst-case optimization algorithms already show a tendency to overemphasize a83

limited number of scenarios (Fredriksson and Bokrantz (2014), Unkelbach et al. (2018)),84

this strategy can lead to overdose in critical organs.85

An alternative approach could consist of defining a CTD according to a tumor86

infiltration uncertainty model, followed by a robust optimization process where CTD87

coverage is evaluated in a set of geometric error scenarios. As the CTD is inherently a88

probabilistic concept, we elect for an approach where the CTD is integrated in a – fully89

probabilistic – robust optimization setting. This will allow us to extend the definition of90

the objective function, using weighting factors that represent the probability of tumor91

presence, as defined by the CTD.92

The aim of this study is therefore threefold. First, we propose a procedure to93

construct a probabilistic target, i.e. the CTD. In Shusharina et al. (2018), the CTD94

was composed of several shells, for instance delineated by a physician, with each shell95

defining the probability of tumor presence. Similar to Shusharina et al. (2018), we adopt96

the notion that the CTD represents the probability of tumor presence. However, this97

study proposes a voxel-wise approach where the probability of the target voxels will98

be derived from a reported probability distribution of tumor infiltrations. Deriving the99

target from an uncertainty model will allow us to compare different treatment planning100

strategies in a statistically consistent way. Second, we extend the use of the CTD in the101

treatment planning process by developing a fully probabilistic optimization framework102

that includes the CTD, in conjunction with other geometric uncertainties. Moreover,103

a scenario-based evaluation strategy is developed that evaluates the effect of tumor104

infiltration uncertainties, together with the other considered uncertainties. Third, we105

illustrate the features of fully probabilistic optimization for five lung tumor cases, treated106

with intensity-modulated proton therapy (IMPT) using the pencil beam scanning (PBS)107

technique.108

2. Methods109

This section is organized as follows: Section 2.1 reviews the main features of the110

treatment planning system (TPS) in which the methods have been implemented. In111

Section 2.2, the uncertainty models and their assumed magnitudes are described. Section112

2.3 details the procedures to obtain the target, i.e. the CTV for worst-case optimization113

and CTD for fully probabilistic optimization. Section 2.4 introduces the robust114

optimization methods, that is, the reference method (worst-case optimization) and the115

proposed method (fully probabilistic optimization). The section focuses specifically on116

the integration of tumor infiltration uncertainties into the optimization process. Section117

2.5 features the evaluation procedure used to make comprehensive assessments of the118
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performance of each method. Finally, Section 2.6 gives an overview of the patient data119

and treatment plan characteristics.120

2.1. Treatment planning system121

Treatment plans are created with the open-source TPS MIROpt, coded in Matlab,122

MathWorks - Natick, United States (Barragán-Montero (n.d.)). MIROpt uses the Monte123

Carlo proton dose engine MCsquare, available open-source (Souris (n.d.)), for its dose124

calculations with 104 ions per spot and a 2×2×2 mm3 dose calculation grid. Plan125

optimization is performed with the large-scale nonlinear solver Ipopt (Wächter and126

Biegler (2005)), through its Matlab interface. The Ipopt solver was employed for the127

optimization of both the worst-case and probabilistic methods. Treatment plans were128

generated on a 256GB RAM system with a 2x8 Core Intel Xeon processor (E5-2667 v3)129

@3.20 GHz.130

In MIROpt, the objective function consists of several quadratic dose-fidelity131

terms which penalize deviations from the pre-defined planning objectives. During the132

optimization, the dose d in voxel i is evaluated by summing the contribution of all m133

beamlets:134

di =
m∑
j=1

Pij · wj, (1)

where P ∈ IRn×m represents the dose-influence matrix (with n the total number of voxels135

of the dose grid) and w ∈ IRm the spot weight vector.136

2.2. Uncertainty models for optimization137

In this study, the optimization methods are applied to lung tumor patients, treated138

with IMPT-PBS. We consider tumor infiltration uncertainties as well as geometric139

uncertainties with a systematic component (systematic setup errors and range errors)140

and a random component (random setup errors and respiratory motion). This section141

presents a brief overview of the way in which MIROpt models each uncertainty. More142

details can be found in Barragán-Montero et al. (2017) and Barragán-Montero (2017).143

Except for tumor motion, all uncertainties are assumed to follow Gaussian probability144

density functions (PDF).145

2.2.1. Setup errors146

Similar to other IMPT studies (for example Unkelbach et al. (2008) and Fredriksson147

et al. (2011)), systematic setup errors are modeled by rigid shifts of the spot weight grid.148

The systematic setup errors are assumed to be normally distributed with a magnitude149

of zero mean and 2.4 mm standard deviation Σs, identical in each direction x, y and z.‡150

‡ Following our institution guidelines, the magnitude of the setup errors includes the effect of baseline

shifts.
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Random setup errors are modeled by randomly shifting the incident position of each151

proton during the Monte Carlo simulation of each beamlet, according to the assumed152

probability distribution (Barragán-Montero et al. (2016)). This method resembles the153

way random errors are sometimes treated in conventional radiotherapy, i.e. by blurring154

the dose distribution (see for example Bohoslavsky et al. (2013)). However, shifting155

protons is more appropriate for proton-based dose calculation as the range variation156

associated with each shift is simulated. This method implicitly assumes that the157

treatment is delivered in an infinite number of fractions. Fredriksson (2012) reports158

that for IMPT, the infinite fraction assumption can be considered a valid approximation159

provided firstly, treatment delivery in at the minimum 30 fractions and secondly,160

the incorporation of an uncertainty on the standard deviation of the random errors.161

Both conditions are satisfied as the methods are tested for IMPT treatments of 30162

fractions (see Section 2.6), and an uncertainty on the standard deviation is considered163

by simulating random setup errors with a standard deviation of both 0 mm and 3 mm164

(see Section 2.4).165

2.2.2. Range errors166

Range errors are modeled by uniformly scaling the CT densities during the167

computation of the dose-influence matrices. Following the study of Paganetti (2012),168

range errors are assumed to follow a 1-D Gaussian distribution with zero mean and169

standard deviation of Σr = 1.6%.§170

2.2.3. Respiratory motion171

Respiratory motion is represented by 10 respiratory phases, equally spaced in time.172

The dosimetric effect is simulated by accumulating the dose along all 10 respiratory173

phases on the mid-position CT (MidP-CT) (Wanet et al. (2014)). The deformable174

registration algorithm, from the open-source platform OpenReggui (Janssens (n.d.)), is175

used in order to register all respiratory phases to the MidP-CT.176

2.2.4. Tumor infiltration uncertainties177

The tumor infiltration uncertainty is defined according to the histological study of178

Meng et al. (2012). Meng et al. (2012) report an uncertainty distribution for maximum179

tumor infiltrations of mean 3.4 mm ± 2.8 mm, for a population of non-small-cell180

lung cancer patients. Assuming this data corresponds to radial infiltration of tumor181

cells, a 1-D truncated Gaussian PDF ρ(x) is then used in order to approximate the182

probability distribution, i.e. negative values (x < 0) are removed, followed by a183

normalization of the distribution (see Fig 1a). As will be detailed in Section 2.3, tumor184

infiltration uncertainties will be incorporated in the robust optimization process through185

the definition of the target.186

§ Paganetti (2012) reports a 2.4% range uncertainty, evaluated at 1.5Σr which translates to a Σr =

1.6%.
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2.3. Target definitions187

This section presents the procedures used to define the CTD and CTV, i.e. the targets188

considered in fully probabilistic optimization and worst-case optimization, respectively.189

Both targets are derived from the tumor infiltration uncertainty model defined in Section190

2.2.4.191

2.3.1. CTD192

The clinical target distribution (CTD) represents a 3D-distribution where the value of193

each voxel defines the probability of tumor presence pt, based on a population of tumor194

infiltrations x. The CTD is constructed by first computing pt as a function of radial195

distance r from the GTV edge. pt(r) can be obtained from ρ(x), the assumed tumor196

infiltration uncertainty model (see Section 2.2.4), by integrating ρ(x) as follows:197

pt(r) =

∫ ∞
r

ρ(x)dx. (2)

In other words, pt(r) equals the probability that a tumor infiltration X will take a value198

greater than or equal to r: pt(r) = ρ(X ≥ r). Note that this approach implicitly assumes199

that the tumor cell density is constant for a given tumor infiltration. Fig. 1b illustrates200

pt(r), together with an example (in orange) of how the integration limits in Fig. 1a201

yield the corresponding value of pt(r) in Fig. 1b. A patient-specific CTD then follows202

from:203

(i) generating a 3D-Euclidean distance map where the value of each voxel represents204

the minimum distance (r) to the GTV (see Fig. 2a),205

(ii) converting the Euclidean distance map into a probability map by assigning value206

of pt,i to each target voxel i, using interpolated values of the curve pt(r), illustrated207

in Fig. 1b.208

Finally, the CTD is corrected for anatomical barriers by setting pt,i = 0 for all non-zero209

voxels that overlap with anatomical barrier masks. Anatomical barriers were identified210

and delineated for each patient by subtracting an isotropic expansion of the GTV from211

the clinically-accepted CTV (delineated by an experienced physician). For lung cancer212

patients, anatomical barriers could for example be the lung wall, the bronchus or the213

liver. A 2D example of a CTD for a lung tumor case is shown in Fig. 2b. As illustrated214

in Fig. 2b and 2c, the value of the CTD voxels vary from pt = 1 inside the GTV to215

decreasing values as one moves away from the GTV edge.216
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(a) Tumor infiltration uncertainty model.
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Figure 1: (a) Assumed tumor infiltration uncertainty model. The distribution represents

a truncated Gaussian probability density function (PDF), with mean 3.4 mm and

standard deviation 2.8 mm, analogous to the tumor infiltration data reported in the

study of Meng et al. (2012) (see Section 2.2.4). (b) Probability of tumor presence pt(r)

as a function of radial distance r from the GTV edge. pt(r) is derived by integrating the

PDF depicted in (a), according to Eq. 2. For instance, at a distance of 7.2 mm (= the

GTV-to-CTV margin), the probability of tumor presence equals 10% which corresponds

to the orange area under the curve in (a).
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Figure 2: (a) Example of a Euclidean distance map for a lung tumor case. (b) The

clinical target distribution (CTD) derived from (a) with the CTV as a reference. The

shade of the CTD represents the probability of tumor presence (value between 0 (white)

and 1 (black)). (c) Values of the voxels for each structure, along the dotted line drawn

in (b). (d) The corresponding anatomy with contours of the anatomical barriers (AB)

drawn in red.

2.3.2. CTV217

Following ICRU recommendations, the CTV is defined as the volume of all voxels with218

a probability of tumor presence larger than 10%. Therefore, the GTV-to-CTV margin219

can be derived as the cut-off point where the probability of disease presence reaches220

10%. Considering the probability curve of Fig. 1b, a 7.2 mm GTV-to-CTV margin is221

obtained. The CTV is then constructed by an isotropic expansion of the GTV with the222

specified margin, followed by a correction for anatomical barriers.‖223

‖ OpenReggui is used for this purpose. OpenReggui functions use a spherical kernel element in order

to apply a dilation filter on the image.



9

2.4. Robust optimization methods224

In this section, the reference worst-case optimization and the proposed probabilistic225

optimization method are introduced. Both methods rely on the evaluation of a discrete226

number of treatment uncertainty scenarios which are selected from a multi-dimensional227

error-space (the so-called scenario space). The differences between the methods are228

found mainly in: (1) the definition of the objective function, (2) the selection of scenarios229

in the scenario space and (3) the evaluation of the target coverage objectives.230

2.4.1. Worst-case optimization231

The robust optimization algorithm minimax, as proposed by Fredriksson et al. (2011),232

is used as the reference method. By representing S as the pre-defined set of uncertainty233

scenarios s, minimax is typically formulated as:234

min
w

max
s

f(w, s) (3)

s.t.

{
w ≥ 0

s ∈ S,

with f the objective function and w the optimization variable (i.e., spot weight vector)235

which is subject to (s.t.) a constraint in order to allow only positive solutions. Similar236

to Fredriksson et al. (2011), an auxiliary variable t is introduced in order to reformulate237

the max -operator in Eq. 3 into an equivalent constrained optimization problem:238

min
w, t

t (4)

s.t.

{
w ≥ 0

t ≥ f(w, s) ∀ s ∈ S.

The uncertainty set S is selected in order to encompass a region of scenario space,239

within a certain confidence interval. Similar to previous studies (Buti et al. (2019) and240

Buti et al. (2020)), we follow this strategy to handle the uncertainties that influence the241

treatment in a systematic fashion, i.e. systematic setup errors and range errors:242

• 90% of the 3D-systematic setup error probability distribution is considered by243

limiting the magnitude of setup errors in the range of ±α3DΣs, in each direction244

x, y and z, with α3D = 2.5 (van Herk et al. (2000)). Because intermediate setup245

errors may also yield dose errors, setup errors are selected at a 2 mm spacing in246

each direction. Given that Σs = 2.4 mm is assumed, in total, 19 systematic setup247

errors are selected (nominal scenario together with six error scenarios in ±x, ±y248

and ±z directions).249

• 90% of the 1D-range error probability distribution is considered by selecting range250

errors with a maximum value of ±α1DΣr, with α1D = 1.64. Three range error251
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scenarios are thus selected: the nominal scenario, an overshoot scenario (+1.64Σr)252

and an undershoot scenario (−1.64Σr).253

Following conventional practice, systematic errors are combined by employing a254

rectangular sampling of the scenario space. Hence, all possible combinations of255

the selected systematic setup and range errors are considered, leading to an initial256

uncertainty set of 19×3 = 57 scenarios. Following Section 2.2.1, random setup errors of257

uncertain standard deviation are considered by storing a separate set of scenarios where258

random setup errors (3 mm standard deviation) are simulated directly in the beamlet259

dose-influence matrices. Hence, the uncertainty set contains 2 × 57 = 114 scenarios260

(57 scenarios with 0 mm standard deviation and 57 scenarios with 3 mm standard261

deviation for the random setup errors). As explained in Section 2.2.3, respiratory motion262

is simulated by evaluating dose distributions with the accumulated 4D-beamlets in all263

considered scenarios. Hence, the dose evaluations of all 114 scenarios inherently account264

for respiratory motion.265

2.4.2. Probabilistic optimization266

In probabilistic optimization, the expected value (EV) of the objective function over267

the error scenarios s is minimized:268

min
w

[
E(w) =

∑
s∈S

p(s)f(w, s)

]
(5)

s.t.

{
w ≥ 0

s ∈ S.

In this study, an additional penalty term is added to the objective function of Eq. 5269

that minimizes the standard deviation (SD) over the scenarios:270

min
w

(1− λ)E(w) + λ

√∑
s∈S

p(s) (f(w, s)− E(w))2

 (6)

s.t.

{
w ≥ 0

s ∈ S,

with E(w) defined in Eq. 5 and λ a user-defined parameter that defines the importance of271

the standard deviation term in the objective function. Similar approaches can be found272

in financial asset optimization theory where a mean-variance framework is employed273

in order to capture the trade-off between the expected return (the mean) and risk274

(the variance) (Markowitz (1952)). Moreover, the standard deviation term functions275

similarly to the L1 regularization norm, which is commonly applied in machine learning276

optimization problems, with λ analogous to the regularization rate. Regularization277

terms have also been introduced to proton therapy optimization, most notably in the278



11

proton arc optimization study of Gu et al. (2020). In probabilistic planning, the aim of279

the expected value-standard deviation (EV-SD) approach is to provide an effective way280

to control the degree of robustness in probabilistic optimization.281

In Eq. 6, f(w, s) is weighted by a probability factor p(s), representing the scenario282

probability. Since all uncertainty sources are considered mutually independent, p(s) is283

computed as the product of the probability of each individual uncertainty:284

p(s) = ps(s)pr(s), (7)

where ps(s) and pr(s) are evaluated with the setup and range error uncertainty285

distributions defined in Section 2.2. Normalization is applied such that the total sum286

of the probabilities over the scenarios equals one.287

Similar to worst-case optimization, f(w, s) consists of quadratic dose fidelity288

terms. However, in probabilistic optimization, the target coverage objectives include289

the probability of tumor presence pt. This is achieved by weighting each target voxel i290

with pt,i, as defined by the CTD:291

f(w, s) ∝
∑
i∈T

pt,i (max{0, dpresc − di(w, s)})2 , (8)

with dpresc the prescription and T the volume of all voxels with non-zero value in the292

CTD. Eq. 8 represents the minimum target coverage objective, with a similar expression293

existing for the maximum target coverage.294

In principle, in probabilistic optimization, the objective function should be295

integrated over the entire space of uncertainties. However, because a discrete296

representation of the scenario space is considered, a rectangular sampling of the scenario297

space is employed in order to select the scenarios:298

• Systematic setup errors are selected at a 2 mm spacing within the [-3 Σs, +3 Σs]299

interval (minimum setup error of 2 mm), in each direction. Hence, 19 systematic300

setup errors are selected (nominal scenario together with six scenarios in each ±x,301

±y and ±z directions).302

• Five range error scenarios are selected within the [-2Σr, +2Σr] interval (nominal303

scenario, ±1Σr and ±2Σr scenarios).304

By taking the combinations of all aforementioned errors, an initial uncertainty set of305

19 × 5 = 95 scenarios is defined. Analogous to the worst-case method, a separate set306

of scenarios is stored in order to account for the random setup errors whilst respiratory307

motion is simulated in all scenarios. Therefore, the fully probabilistic method utilizes a308

final uncertainty set of 2× 95 = 190 scenarios. This particular uncertainty set is chosen309

because of the following two reasons: first, each considered uncertainty distribution310

is now approximated by coarse and discrete distribution, and second, scenarios are311

considered with a greater error magnitude in the scenario space with respect to worst-312

case optimization. Even though the combined probabilities of such extreme scenarios313
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are relatively low, the convergence towards a particular solution will determine whether314

these scenarios will influence the final dose distribution.315

The uncertainty set S is fixed throughout the optimization process. Hence, the316

optimization problems defined by Eqs. 5 and 6 are solved by evaluating f(w, s) ∀ s ∈ S317

at each iteration of the optimization. Given that the uncertainty set S is fixed over318

time, it follows that the optimization variable w is updated in a deterministic way.319

2.5. Evaluation320

Plan robustness is evaluated with the Monte Carlo dose engine MCsquare (Souris321

(n.d.)) through the open-source platform OpenReggui (Janssens (n.d.)). Details on the322

comprehensive robustness evaluation procedure employed by MCsquare can be found323

in Souris et al. (2019) and Sterpin et al. (2021). In short, at least 250 evaluation324

scenarios are randomly sampled from the respective uncertainty distributions, which325

include uncertainties of setup errors (both systematic and random), range errors and326

respiratory motion. The dose distribution is recomputed for each scenario, with a327

statistical noise level below 2%. For each treatment plan evaluation, the nominal dose328

distribution is normalized with a correction factor such that GTV D95 = dpresc. This329

correction factor is subsequently applied to the evaluation scenarios by multiplying the330

dose distributions with the correction factor.331

Two types of evaluation metrics are calculated: (1) dose-volume histogram (DVH)332

metrics in the worst case evaluation scenario, computed after discarding the 10%333

worst scenarios (based on the target D95), and (2) DVH metrics based on the average334

evaluation scenario, taking into account all sampled scenarios.335

The evaluation procedure, accessed through OpenReggui, is modified from the336

available open-source version, in order to evaluate tumor infiltration uncertainties.337

Rather than using a fixed target volume in each evaluation scenario, the effects of338

geometric errors and tumor infiltration errors are combined as follows: in each evaluation339

scenario, a tumor infiltration is randomly sampled from the assumed tumor infiltration340

distribution. A target volume “realization” is defined by following a similar procedure341

to the construction of the CTV (see section 2.3.2): the GTV is isotropically dilated with342

a target margin that is equal to the sampled tumor infiltration, followed by a correction343

for anatomical barriers. The target coverage metrics (D95 and D5) are subsequently344

calculated by evaluating the dose in the obtained target volume realization. As a result,345

each evaluation scenario features a target volume with a specific target margin that346

depends on the sampled tumor infiltration error.347

2.6. Patient cases348

Five lung tumor cases are used to test and compare the optimization methods. All349

patients had a prescription of 60 Gy (delivered in 30 fractions of 2 Gy), treated with350

the IMPT-PBS modality. An overview of the patient characteristics (GTV size, motion351

amplitude and tumor position) and treatment plan features (beam angles) are listed in352
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Table 1. The OARs considered in this study are the lungs-GTV volume, esophagus,353

heart and spinal cord.354

The goal of the present study is to demonstrate the features of the optimization355

methods when conflicts are present in the objective function. Therefore, the reference356

dose level is set at 0 Gy for all OAR planning objectives, so that all non-zero dose357

in an OAR voxel is penalized. Following clinical practice, the target and serial OAR358

(spinal cord, oesophagus and bronchus) objectives are robustified whilst the parallel359

OARs (heart and lungs) are treated in the nominal scenario only.360

To compare the optimization methods consistently, the treatment plans are361

designed to have similar target coverage between different methods while limiting the362

OAR doses as much as possible. For each patient, this is achieved by adjusting the363

target coverage objective weights of each method whilst keeping the OAR objective364

weights identical. Acceptability for target coverage is defined as D95 must be at least365

95%dpresc (D95 ≥ 57 Gy) and D5 may not exceed 105%dpresc (D5 ≤ 63 Gy), in the worst366

evaluation scenario.367

Table 1: Patient (P1-5) and treatment plan characteristics.

GTV size Motion amplitude Tumor position Beam angles

LR AP SI

[cm3] [mm] [mm] [mm] [◦]

P1 75.4 4.2 2.1 3.1 RML 0, 270, 310

P2 61.0 3.1 2.9 3.7 LLL 90, 135, 180

P3 16.0 1.4 2.9 0.8 RUL 180, 225, 270

P4 31.9 0.8 1.2 0.5 LUL 90, 135, 180

P5 68.9 2.2 1.8 6.6 RUL 180, 225, 270

Tumor motion amplitude (in left-right (LR), anterior-posterior (AP) and superior-

inferior (SI) directions). Tumor positions (right-middle lobe (RML), right-upper lobe

(RUL), right-lower lobe (RLL), left-lower lobe (LUL) and left-upper lobe (LUL)).

3. Results368

In this section, the results of the worst-case (WC) optimization method are compared369

to two probabilistic optimization methods: expected value (EV) optimization (λ = 0370

in Eq. 6) and expected value-standard deviation (EV-SD) optimization (λ > 0 in Eq.371

6). The results of the EV-SD method are presented for a λ value equal to 0.5, thereby372

giving equal importance to the mean and and standard deviation terms. In Section373

3.1, the performance of each method is assessed in terms of the obtained plan quality374

and robustness. Section 3.2 reports the computation cost of the plan optimization375

algorithms.376
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3.1. Dosimetric results377

The DVH bands illustrated in Fig. 3 display the results of the evaluation procedure for378

patients P1-5. The relevant evaluation metrics are summarized in Table 2 and Table 3.379

Table 2 reports the target coverage metrics (D95 and D5) in the worst evaluation scenario,380

together with the target DVH bandwidths (∆D95 and ∆D5). The DVH bandwidths are381

computed as the difference between the highest and lowest dose level, within the 90%382

confidence interval. DVH bandwidths provide a measure of the plan robustness, i.e. the383

narrower the band, the lower the sensitivity to the uncertainties. Note that the target384

volume is not fixed in each evaluation scenario. Rather, as explained in Section 2.5,385

the target DVH metrics D95 and D5 are calculated by evaluating the dose in a variable386

target volume “realization” that depends on the sampled tumor infiltration error.387

Except for a slightly elevated target D5 for patient P1 in the worst-case method (0.2388

Gy over the constraint), the generated treatment plans have a target coverage within the389

acceptability criteria, as defined in Section 2.6. The target robustness for all patients390

between the methods is comparable, illustrated by a similar DVH bandwidths at both391

the D95 and D5 dose level.392

Table 3 reports the OAR DVH metrics in both the worst and average evaluation393

scenarios. For OARs that received meaningful dose levels, the EV and EV-SD methods394

reduced the D2 dose of the esophagus for all patients. Most notably a reduction of worst395

case D2 dose is observed for patients P2-5 of 2.8 Gy, 7.7 Gy, 7.2 Gy and 1.2 Gy for the396

EV method and 3.0 Gy, 7.6 Gy, 11.0 Gy and 2.1 Gy for the EV-SD method. Moreover,397

for patients P2-5, the reduction of average D2 esophagus dose was 3.9 Gy, 5 Gy, 4.5 Gy398

and 3.8 Gy for the EV method and 5.0 Gy, 5.0 Gy, 5.4 Gy and 4.0 Gy for the EV-SD399

method. Minor differences are observed for the heart dose with a decrease of respectively400

0.8% and 0.7 Gy for worst V15 and Dmean, for patient P1 for the EV-SD method. For401

patient P2, the EV-SD method showed a similar heart dose as the worst case method402

whilst the EV method had a slightly increased worst Dmean of 0.5 Gy. The EV and EV-403

SD methods reduced the worst case spinal cord D2 by 4.3 Gy and 2.9 Gy, respectively404

for patient P2. Whilst an increase of 5.2 Gy and 4.9 Gy D2 spinal cord dose is observed405

for patient P5. In terms of bronchus dose, which often acts as a anatomical barrier for406

lung tumor patients, no significant differences are present between the studied methods.407

However, the lung dose was higher for both probabilistic methods for all patients, with408

maximum differences of 1.0 Gy and 1.1 Gy worst case mean lung dose for the EV and409

EV-SD method, respectively.410

Examples of the planned dose distributions produced by each method are illustrated411

in Fig. 4. Taking the dose distributions of P4 as representative example, the high-dose412

isodose lines are closer to near the most proximal OAR (the esophagus) for the worst-case413

method whilst a sharper dose fall-off is observed towards the OAR for the probabilistic414

methods (most notably the esophagus). However, the probabilistic methods display an415

increased total dose volume as compared to the worst-case method.416
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Table 2: Target DVH metrics for plans of patients P1-5, obtained using worst-case

(WC), expected value (EV) and expected value-standard deviation (EV-SD) methods.

Target coverage: D95 and D5 computed in the worst evaluation scenario; and target

robustness: ∆D95 and ∆D5, as the DVH bandwidths at the D95 and D5 dose level,

respectively.

ROI Metric Method P1 P2 P3 P4 P5

Target D95 [Gy] WC 58.6 57.6 57.8 57.4 57.5

(worst) EV 58.4 57.7 57.6 57.2 57.5

EV-SD 58.4 57.5 57.5 57.5 57.3

D5 [Gy] WC 63.2 63.0 62.6 63.0 62.9

(worst) EV 62.9 62.9 62.8 62.9 63.0

EV-SD 63.0 63.0 62.7 62.8 62.9

∆D95 [Gy] WC 1.7 2.6 2.2 2.9 2.8

EV 1.7 2.4 2.5 2.9 2.6

EV-SD 1.8 2.5 2.5 2.6 2.6

∆D5 [Gy] WC 0.8 0.5 0.8 1.0 0.9

EV 0.6 0.7 0.9 1.2 1.2

EV-SD 0.7 0.7 0.8 1.0 1.1
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Table 3: Organ-at-risk DVH metrics (lungs-GTV, esophagus, heart, spinal cord and

bronchus) for plans of patients P1-5, obtained using worst-case (WC), expected value

(EV) and expected value-standard deviation (EV-SD) methods. Metrics are reported

in the worst and average (avg.) evaluation scenarios.

ROI Metric Method P1 P2 P3 P4 P5

Lungs- V20 [%] WC 12.6 10.4 8.7 9.8 12.1
GTV (worst) EV 14.6 12.4 9.9 10.7 14.0

EV-SD 14.5 12.5 10.2 10.1 13.9

V20 [%] WC 9.9 9.5 7.7 8.1 11.1
(avg.) EV 12.5 11.3 8.6 9.0 12.2

EV-SD 12.3 11.3 8.6 8.4 12.3

Dmean [Gy] WC 6.1 4.9 4.4 5.0 5.9
(worst) EV 6.8 5.9 5.0 5.5 6.8

EV-SD 6.8 6.0 5.1 5.1 6.8

Dmean [Gy] WC 5.1 4.5 4.0 4.2 5.4
(avg.) EV 6.0 5.4 4.4 4.7 6.1

EV-SD 5.9 5.4 4.4 4.3 6.1

Esophagus D2 [Gy] WC 10.2 27.3 16.7 29.8 57.6
(worst) EV 9.7 24.5 9.0 22.6 56.4

EV-SD 6.5 24.3 9.1 18.8 55.5

D2 [Gy] WC 3.2 17.0 11.5 12.9 43.3
(avg.) EV 3.4 13.1 6.5 8.4 39.5

EV-SD 3.1 12.0 6.5 7.5 39.3

Heart V15 [%] WC 8.9 10.2 0.0 0.0 4.3
(worst) EV 8.4 11.5 0.0 0.0 4.8

EV-SD 8.1 10.2 0.0 0.0 4.5

V15 [%] WC 6.6 7.2 0.0 0.0 2.5
(avg.) EV 5.7 6.8 0.0 0.0 2.8

EV-SD 5.8 6.5 0.0 0.0 2.7

Dmean [Gy] WC 4.2 4.8 0.0 0.0 2.1
(worst) EV 3.8 5.3 0.0 0.0 2.4

EV-SD 3.8 4.7 0.0 0.0 2.2

Dmean [Gy] WC 3.0 3.4 0.0 0.0 1.3
(avg.) EV 2.5 3.1 0.0 0.0 1.4

EV-SD 2.6 3.0 0.0 0.0 1.3

Spinal D2 [Gy] WC 0.3 0.1 33.4 2.2 16.1
cord (worst) EV 0.8 0.1 29.1 3.9 21.3

EV-SD 0.4 0.1 30.5 3.3 21.0

D2 [Gy] WC 0.1 0.1 19.8 0.6 8.3
(avg.) EV 0.1 0.1 17.0 0.9 11.5

EV-SD 0.1 0.1 17.5 0.9 11.5

Bronchus D2 [Gy] WC 60.8 61.2 58.1 3.2 61.6
(worst) EV 60.3 61.8 59.0 3.4 61.6

EV-SD 60.1 61.7 58.3 4.3 61.7

D2 [Gy] WC 58.4 59.0 49.2 0.9 59.6
(avg.) EV 56.5 59.3 47.3 1.1 59.2

EV-SD 56.4 58.9 47.5 1.1 59.2
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3.2. Computational cost of the optimization algorithms417

Table 4 reports the number of beamlets, maximum number of iterations and the total418

optimization time (topt) of the WC, EV and EV-SD methods:419

Table 4: Treatment plan features including the number of beamlets, maximum number

of iterations and total optimization time for worst-case (WC), expected value (EV) and

expected value-standard deviation (EV-SD) methods (patients P1-5).

ROI Method P1 P2 P3 P4 P5

No beamlets WC 6339 5870 3855 3407 6183

EV 10483 9655 4994 6197 9675

EV-SD 10487 8857 5035 5861 9704

Max iterations WC 1768 750 616 609 1083

EV 350 350 350 300 350

EV-SD 350 350 350 300 350

topt [hours] WC 110 36 19 12 87

EV 48 54 41 20 39

EV-SD 45 52 45 18 38

The treatment plans of the WC method features more beamlets than the EV and420

EV-SD methods. Note that the number of beamlets between EV and EV-SD methods421

varies slightly due to a spot filtering step applied by MIROpt after the optimization422

process. This consists of removing the low MU spots (MU threshold = 0.011) from the423

treatment plan. The plan optimization was faster for three out of five patients (P2,424

P3 and P4) for the worst-case method. However, the significantly higher maximum425

number of iterations for patients P1 and P5 resulted in a higher optimization time for426

these cases, as compared to the EV and EV-SD method.427

4. Discussion428

This study introduces a probabilistic approach that considers microscopic tumor429

infiltration uncertainty in three areas of the treatment planning process: (1) the430

definition of the target, (2) the robust optimization process, and (3) the plan evaluation431

procedure.432

4.1. Probabilistic target433

The CTD represents a 3D-probability map of tumor presence for a given patient. This434

enables the target voxels to be weighted in the objective function according to their435
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assumed probabilities, as opposed to the binary CTV, which weights each target voxel436

equally. The probability of tumor presence was derived from a population-based tumor437

infiltration uncertainty distribution found in the literature (Meng et al. (2012)). Studies438

reporting biological models of tumor infiltration uncertainty are relatively sparse and439

generally depend on various histopathological characteristics such as the tumor site and440

tumor progression (Apolle et al. (2017)). In this study, however, the proposed CTD441

procedure is independent of the assumed uncertainty model. Hence, any uncertainty442

model can be inserted, e.g. anisotropic or manual models, given that the distribution443

of tumor infiltrations over a patient population is known.444

It must be noticed that the total volume of non-zero voxels in the CTD is445

significantly larger than the CTV. The drawback being that CTD-based treatment plans446

feature more beamlets than CTV-based plans (see Table 4). This results in a longer dose-447

influence matrix calculation process for the probabilistic methods and higher memory448

consumption in the optimization. Similarly, the computational cost of an iteration is449

higher for the probabilistic methods, given their increased number of beamlets. However,450

this is partly compensated by the lower number of iterations necessary to produce a451

probabilistic method treatment plan, indicating a faster convergence rate as compared452

to the WC method.453

The CTD could be further improved by refining the proposed procedure: in Section454

2.3.1, the probability of disease presence was associated with the Euclidean distance from455

the GTV edge. However, this approach does not consider the path that the tumor cells456

travel around the anatomical barriers. An alternative to the Euclidean distance has457

been proposed by Shusharina et al. (2020), who employed a ‘shortest path’ algorithm458

in order to compute distance maps that take into account anatomical barriers.459

4.2. Probabilistic formulation of the objective function460

Tumor infiltration uncertainties are combined with the geometric treatment461

uncertainties by incorporating the CTD into a probabilistic optimization algorithm.462

The results are subsequently compared with an approach that utilizes the CTV in a463

worst-case optimization algorithm. These options are the most statistically consistent if464

the targets are defined according to a tumor infiltration probability distribution: on the465

one hand, the CTD represents the probability of tumor presence and therefore needs466

to be evaluated in a probabilistic objective function. On the other hand, the CTV is467

especially appropriate for a worst-case approach, as it can be interpreted as a worst-468

case volume that encompasses 90% to 95% of tumor infiltrations in patient population.469

Mixing both frameworks, e.g. using the CTD in a worst-case algorithm, is statistically470

inconsistent and should therefore be avoided.471

In worst-case optimization, the plan’s robustness is defined a priori by the choice of472

the uncertainty set S which determines the fraction of covered scenarios in the scenario473

space (Fredriksson (2013)). Hence, the degree of robustness can be defined by specifying474

the scenario space integration limits, α3D and α1D, which in turn establishes a confidence475
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interval (Buti et al. (2019)). Unfortunately, in probabilistic optimization, the robustness476

can not be quantified in a similar way as the objective function is integrated over the477

entire space of uncertainties. Therefore, in this study, an additional term – the standard478

deviation – is introduced with the goal of controlling the degree of robustness. By479

increasing its relative importance (λ in Eq. 6) in the objective function, more emphasis480

is placed minimizing the spread of the objectives from the mean and hence the final481

solution will become more robust to uncertainties. Although this approach lacks the482

quantitative nature found in the worst-case optimization, the standard deviation term483

can be considered a useful tool to manage the degree of robustness in probabilistic484

optimization.485

For consistent comparison of the methods, the treatment plans were designed to486

have similar target coverage and robustness. Given that the IMPT plans value target487

coverage most of all, the DVH bandwidths are similar between the EV and EV-SD488

methods. This indicates that the standard deviation term in the EV-SD method had489

limited impact for the studied patient cases. Without the constraint of equal target490

coverage, we expect a larger difference between the EV and EV-SD method. In that491

case, λ becomes a meta-parameter of the algorithm that needs to be optimized. Further492

research is needed to investigate the clinical value of such a probabilistic framework as493

there could be a trade-off between plan quality and robustness.494

Balancing the trade-off between minimizing OAR exposure and achieving sufficient495

target coverage is the main conflict that an optimizer needs to solve. When tumor496

infiltration uncertainties are considered explicitly in the optimization process, a fully497

probabilistic approach provides an alternative method to redefine the trade-off preferred498

by the more conservative worst-case implementation. Probabilistic optimization allows499

the optimizer to mitigate conflicts in the objective function due to its following two500

features: first, the decrease in probability with distance will have as a result that501

target voxels near the surrounding ROIs, are weighted less in the objective function,502

as compared to the CTV case. Second, less importance is given to improbable scenarios503

where typically most conflicts are found. Results of Section 3 indicate that the fully504

probabilistic methods are able to generate treatment plans that reduce exposure of505

OARs that are located near the target (usually the esophagus and heart for lung506

tumor patients), whilst ensuring acceptable target coverage. The effect is negligible507

for organs that nearly overlap with the GTV, such as the bronchus, which often acts as508

an anatomical barrier in the studied patient cases.509

Without the presence of dose limiting structures around the target, a probabilistic510

optimizer can increase the extent of the high-dose volume without cost. Therefore,511

the irradiated volume can potentially increase as compared to CTV-based worst-case512

optimization. Similarly, because fully probabilistic optimization explores more extreme513

scenarios, high-doses regions can be extended in these scenarios, if planning objectives514

are not conflicting. These features of probabilistic optimization have the potential515

drawback to yield treatment plans with increased integral dose. The dosimetric results516

demonstrate that in lung tumor cases, where the target is embedded in the lung517
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structure, the mean lung dose is elevated for most patient cases as compared to the518

worst-case method. Moreover, the dose can also potentially slightly increase for OARs519

that located far away from the target, as seen in the spinal cord dose for patient P5. The520

high-dose region of the dose distribution could potentially be controlled by introducing521

a dose limiting structure around the GTV or including a dose fall-off function in the522

objective function.523

The above-mentioned findings were derived from the analysis of a set of five lung524

tumor cases. Future case-studies should involve a larger patient cohort and a variety525

of tumor locations. This study can serve as a framework for research on the possible526

clinical benefits of probabilistic treatment planning.527

4.3. Evaluating tumor infiltration uncertainties528

The aim of the evaluation procedure has been to evaluate the effects of the tumor529

infiltration uncertainties combined with the geometric uncertainties in a scenario-based530

approach. This was achieved by sampling realizations of the target volume from the531

assumed tumor infiltration uncertainty model. Therefore, the worst-case evaluation532

scenario does not necessarily feature the same target volume. Rather, the evaluation533

of the target coverage in the worst case scenario depends on how the target volume534

uncertainty combines with the other geometric uncertainties. By employing this535

evaluation procedure, the tumor infiltration uncertainties are treated together with536

other assumed uncertainties during plan evaluation. Therefore, any bias is removed537

from assumptions made in the plan optimization stage. In Shusharina et al. (2018), an538

alternative method is suggested when evaluating CTD-based plans, namely to compute539

evaluation metrics based on the expected target volume (that is, computing a DVH by540

weighting each voxel with the CTD probability). Although such an approach is valid541

for the evaluation of CTD coverage, it can be considered less adequate for evaluating542

treatment plans that use the CTV as the target, which is a part of this study.543

5. Conclusion544

This study proposes a fully probabilistic approach that incorporates a probabilistic545

target, i.e. the clinical target distribution (CTD), in a robust optimization process. The546

CTD explicitly features the probability of tumor presence in its target definition and547

is derived directly from a reported probability distribution of tumor infiltrations. By548

applying a probabilistic formulation of the objective function, the CTD is combined549

with other treatment uncertainties in a statistically sound framework. The method550

has been tested on five lung tumor patients and was benchmarked against CTV-based551

worst-case optimization. Results indicate that for the studied lung tumor patients, a552

fully probabilistic approach favours the reduction of dose levels in the esophagus, and553

compensates by extending the high-dose region in a low conflicting organ such as the554

lung. These findings demonstrate that a fully probabilistic approach can be considered555
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a promising alternative when including tumor infiltration uncertainties explicitly in the556

treatment planning process.557
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Additional figures696

Figure 3: Dose-volume histogram (DVH) bands for treatment plans produced by the

worst-case (WC), expected value (EV) and expected value-standard deviation (EV-SD)

methods, for patients P1-5. Solid lines represent the DVH of the nominal scenario.
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Figure 4: Planned dose distributions produced by the worst-case (WC), expected value

(EV) and expected value-standard deviation (EV-SD) methods, for patients P1-5. The

GTV, CTV and OARs contours are shown in turquoise, black and green, respectively.


