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A B S T R A C T

The SOLPS-ITER code suite is used worldwide for plasma edge modeling, the interpretation of experiments, as
well as for the design of the ITER divertor. The numerical scheme of the plasma solver of the code, B2.5, is based
on the assumption of perfectly orthogonal grids in the poloidal plane, aligned with the magnetic field, while in
practice grids are often strongly distorted to match divertor target shapes. Neglecting these grid distortion leads
to qualitatively and quantitatively incorrect results for fluid neutral simulations, and may affect results in cold
(detached) divertors even when using kinetic neutral simulations. In this contribution, we present the first results
of a newly implemented 9-point stencil in B2.5 to properly handle misaligned grids. The new scheme is then
applied to fluid neutral simulations of a well-diagnosed and previously modeled Alcator C-Mod discharge.
Results are compared with the original 5-point scheme neglecting grid distortion effects, as well as with si-
mulations including a full kinetic neutral model. We conclude that the 9-point stencil is essential to correctly
model the transport of fluid neutrals on distorted grids, and to capture the effects of divertor closure on the fluid
neutral behavior.

1. Introduction

The SOLPS code suite has been used as the workhorse for the design
of the ITER divertor [1]. The latest version of the code, SOLPS-ITER
[2,3], is based on an up-to-date version of EIRENE and includes the
advanced fluid drifts model from SOLPS5.2.

One of the ongoing developments of the code aims at enabling the
use of grids extending up to the vessel wall. In this contribution, we
report on a part of this effort that involves improving the discretization
of the underlying plasma equations. Presently, the plasma solver in the
code, B2.5, assumes perfectly orthogonal grids in the poloidal plane,
aligned with the magnetic field. However, such grids are not compatible
with the strongly shaped divertor targets in most current machines, and
as foreseen on ITER. Therefore, in practice the grids are only aligned
with the magnetic surfaces, but radial lines may be far from orthogonal
to the field. While several other plasma edge codes correctly discretize
the plasma equations on misaligned grids [4–7], these distortion effects
have been neglected in B2.5 thus far. Note however that EIRENE, which
models kinetic neutral transport in SOLPS(-ITER), does correctly ac-
count for grid nonorthogonality.

Correctly accounting for grid distortion in the simulations is
especially important for fluid neutral models, because neutral
transport is isotropic. Neglecting grid distortion for fluid neutrals
leads to both qualitatively and quantitatively incorrect divertor so-
lutions [6]. The situation is somewhat less problematic for plasma
transport, because the transport is dominated by fast parallel con-
vection and conduction. Grids are still aligned in the parallel (po-
loidal) direction, hence this component of transport is correctly dis-
cretized. However, in the cold divertor conditions found in high-
recycling and detached regimes, as expected in ITER, this argument
no longer holds. Radial transport could become comparable in
magnitude to parallel transport, so its proper discretization becomes
important, especially since it is exactly in the divertor that grids are
most strongly misaligned.

In this paper, we discuss the implementation of a 9-point stencil in
B2.5 to account for grid distortion. Section 2 describes the im-
plementation of the 9-point stencil based on a generic, anisotropic
convection-diffusion equation. The new code is then applied to Alcator
C-Mod divertor simulations in Section 3. Finally, conclusions and per-
spectives are summarized in Section 4.
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2. Discretization of the governing equations on misaligned grids

The plasma transport solver in SOLPS-ITER, B2.5, solves a set of
continuity and parallel momentum equations for the ions and (atomic)
neutral species in the plasma, as well as ion and electron internal en-
ergy equations. The equation for the plasma potential is derived from
the condition that the divergence of the currents must be zero. For the
parallel direction, classical transport according to Braginskii is as-
sumed, while anomalous radial transport is approximated by a typical
diffusive ansatz, with anomalous diffusivities and conductivities de-
termined to match experimentally measured profiles. These equations
are solved in the 2D poloidal plane, assuming symmetry in the third,
toroidal direction.

In general, each of the governing equations can be regarded as a
nonlinear, anisotropic convection–diffusion equation of the form

+ =
t

S· , (1)

where ϕ is a transported quantity (density, parallel velocity, tempera-
ture or potential), Γ the corresponding flux, and S a source term in the
equation. The flux of a particular quantity can in general be decom-
posed into a convective and a diffusive piece as

= DC . (2)

The anisotropy in the equations is most naturally expressed in a cur-
vilinear poloidal-radial coordinate system {θ, r}, with respective unit
vectors b and er. The coefficient = +C CC e er r in Eq. (2) is a vector
describing the convective flux of ϕ, with components defined in the
poloidal and radial directions, and =D D D D D[ , ]r r rr a diffusive
tensor. The cross-diffusivities Dθr and Drθ are included here because
they are representative for the treatment of drift flows, see below. In
B2.5, the balance Eq. (1) are discretized using a Finite-Volume tech-
nique, which requires the evaluation of the fluxes (2) across cell faces:
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Here, = +S SS e er r is the surface vector of a face, expanded in its
poloidal and radial components.

B2.5 was originally developed with orthogonal, field-aligned grids
in mind. The equations are discretized on a topologically rectangular,
(block-)structured grid, which can be described in the curvilinear grid
coordinate system {x, y}. In this coordinate system, it is assumed that
the first coordinate direction, x, is aligned with the poloidal direction θ,
while the second coordinate direction, y, is aligned with the radial di-
rection r. A schematic representation of such a grid, indicating the co-
ordinate systems, is given in Fig. 1. In the case of such orthogonal grids,
both the {x, y} and {θ, r} coordinate systems are orthogonal, and they
coincide. In the figure, ‘poloidal’ faces or ‘x’ faces of the central cell are

indicated in blue, and ‘radial’ faces (‘y’ faces) in red. It is trivially seen
that the poloidal and radial gradients required to evaluate the fluxes in
Eq. (3) can be computed by taking derivatives along the grid directions,

= ,x (4)

= .r y (5)

Moreover, since surfaces are either aligned with or orthogonal to the
field, Eq. (3) shows that there is only a poloidal flux across ‘x’ faces
(faces with =S 0r ), and only a radial flux across ‘y’ faces (faces with

=S 0). If drifts are neglected ( = =D D 0r r ), evaluating Eq. (3) across
the four faces of a cell and taking the divergence leads to a so-called ‘5-
point stencil’ equation, in which the equation for the value of ϕi, j in cell
{i, j} depends only on the value of ϕ in the cell itself and in its neighbors
i j{ 1, }, +i j{ 1, }, i j{ , 1} and +i j{ , 1}.

In practical configurations, however, the vessel structures are al-
most never perfectly orthogonal to the poloidal projection of the field
lines. An example is shown in Fig. 3, where a strongly distorted plasma
grid (blue) is shown for the old Alcator C-Mod divertor. The y grid lines
are distorted to match the divertor target surface, while x grid lines are
kept aligned with the poloidal direction for a correct discretization of
the (fast) parallel flows. The two curvilinear coordinate systems no
longer coincide: the physical poloidal-radial system {θ, r} remains fully
orthogonal by definition, while the grid system {x, y} becomes non-
orthogonal. The latter system is easily related to the physical system by
a (local) angle γ, see Fig. 2, which shows a zoom of the grid in Fig. 3
near the inner target.

When inspecting Eq. (3), there are two important effects of such
misaligned grids. First of all, while the poloidal gradients can still be
computed by taking the derivatives along the x-direction, computation
of radial gradients becomes more involved. The relation between the
components of the gradient in both coordinate systems can be obtained
most easily by expanding the gradient in the orthogonal poloidal–radial
system, = +e e ,r r and applying the definition of the gra-
dient, = d·d for an arbitrary direction d, to the unit vectors ex and
ey:

= = +
= = +

e e e e e
e e e e e

· · · ,
· · · .

x x x r r x

y y y r r y

Noting that =e e· 1,x =e e· 0,r x =e e· siny and =e e· cos ,r y this
system can then be inverted to obtain the poloidal and radial compo-
nents of the gradient as a function of the x and y components available
on the grid:

= ,x (6)

= 1
cos

tan .r y x
(7)

Hence, computing the components of the gradient in the radial

Fig. 1. Definition of coordinate systems for aligned meshes. Grid system and
poloidal– radial system coincide.

Fig. 2. Definition of coordinate systems for misaligned meshes. Non-orthogonal
grid system, but orthogonal poloidal–radial system.
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direction not only requires taking differences along the y direction, but
also along the x direction. Computing the radial gradients now involves
also the values of ϕ defined at cell vertices, leading in general to a so-
called ‘9-point stencil’, where the balance equation for the cells depends
on the cell itself and its 8 surrounding neighbors. Note that the ex-
pressions for gradients on orthogonal grids, Eqs. (4) and (5), are just
special instances of Eqs. (6) and (7) corresponding to = 0. The second
important effect is that there are now both poloidal and radial flows
across x-surfaces (blue faces in Fig. 2), and not only poloidal flows as is
the case on purely orthogonal grids. This is particularly important for
fluid neutral simulations, as the radial flow component may completely
dominate the poloidal one, as will be illustrated below.

Finally, we comment briefly on the treatment of drifts in the 9-point
stencil code. In the balance equations, only the drift flows perpendi-
cular to a face will lead to transport across a face. Since all drift flows
have a general structure of ∇ϕ× B, they eventually appear as cross-
diffusion terms in Eq. (3), with = =D D Dr r d. The net drift flow Γd
across a face is thus of the form

= D S SS· ( ),r rd d (8)

where the term between parentheses is the product of the face area S
with the component of the gradient parallelto the face, as expected from
the physics. Thus, net drift flow across the face only depends on gra-
dients along the face, while the decomposition of the drift in its poloidal
and radial components (as needed for example for the collisions with
neutrals) requires again the correct computation of both (poloidal and)
radial gradients on the misaligned grids.

The corrections to the discretization of the basic equations described
above have now been implemented into B2.5, for the reference model
including drifts from Ref. [8]. The implementation ensures full back-
wards compatibility for existing cases.

3. Application to Alcator C-Mod simulations

In this section, we apply the new 9-point stencil code to Alcator C-
Mod divertor plasma simulations, for discharge 990429019. The dis-
charge, which has detached (cold) inner divertor and outer divertor in
high-recycling conditions, has already been subject of intense numer-
ical studies using the SOLPS-ITER code [9,10]. Moreover, C-Mod has an
ITER-relevant magnetic field, and the (old) C-Mod divertor has strong,
ITER-like, shaping, and thus provides an ideal testbed for the new code.
In the next subsection, we briefly summarize the experimental dis-
charge and the numerical setup. Then we zoom in on the simulation
results, first for simulations with a fluid neutral model without drifts,
followed by some short comments about complete simulations with
kinetic neutral model (using EIRENE [11]) and drifts.

3.1. Experiment and numerical setup

As a continuation of our previous studies, we use the deuterium,
ohmic discharge number 990429019 at 950 ms. The plasma current for
this discharge is =I 0.8p MA, with toroidal field =B 5.4T T, and a line
average density of =n̄ 1.46·10e

20 m ,3 a medium-density discharge on
C-Mod. The magnetic geometry is single-null, with lower X-point, and
the ion B×∇B drift direction pointing down. The ohmic power ob-
tained from an EFIT-reconstruction is POH∼1 MW, and radiated power
in the core measured with a diode detector is estimated at
Prad∼ 500 kW. Simulation results will be compared to outer midplane
profiles of electron density and temperature obtained with a Horizontal
Scanning Probe (HSP), and to data from Langmuir Probes (LP) em-
bedded in the divertor targets. As is typical for C-Mod discharges, the
inner target LP data shows clear detachment near the strike point, while
the outer target is in a high recycling state.

In previous work, we have already modeled this discharge ex-
tensively, first using fluid neutral models without drifts in Ref. [9], and
eventually using a complete kinetic neutral model (EIRENE) and in-
cluding plasma drifts in Ref. [10]. For details of the numerical setup and
input parameters, we refer to those publications. Here we only sum-
marize some of the most important elements. The simulations use
standard sheath boundary conditions at the divertor targets, while core
boundary conditions are imposed based on the experimental density
and power. Radial profiles of anomalous transport coefficients are de-
termined to match the profiles of electron density and temperature
measured by the HSP at the outer midplane. These transport coefficient
profiles are kept constant in the poloidal direction.

In the present paper, the focus is entirely on the effect of the 9-point
stencil on the resulting simulations. Therefore, we re-performed a few
representative simulations from our earlier study, using identical input
parameters, but adopting the improved treatment of misaligned grids.
The grid used for these simulations has 80 poloidal and 30 radial grid
cells. Fig. 3 shows a zoom of this grid in the divertor area. The blue lines
represent the grid used for the plasma, showing the strong distortion of
the radial gridlines required to match the shaped, vertical targets of the
old C-Mod divertor. The green triangles represent the grid required for
kinetic neutral simulations (not used in case of fluid neutral simula-
tions).

3.2. Fluid neutral simulations

In this section we assess the impact of the 9-point stencil on simu-
lations using a fluid neutral model, without drifts. We use the reference
case described in Ref. [9], with and without the new 9-point stencil. In
a fluid neutral model, the neutrals are modeled by a continuity and
parallel momentum equation, and are assumed to have the same tem-
perature as the ions. In the radial and diamagnetic directions, neutral
transport is modeled using a pressure diffusion assumption. The re-
sulting neutral particle flux Γn is

= n u D pb ,n n ,n
p

n (9)

with nn the neutral density, u||, n the neutral parallel velocity, and
=p n Tn n i the neutral pressure. Ti is the common ion-neutral tempera-

ture, and b the unit vector in the direction of the magnetic field. The
neutral parallel velocity is obtained by solving a parallel momentum
equation for the neutral species. It is to be noted that in contrast to the
equations for ionized species (ions/electrons), the pressure diffusion
coefficient of the neutrals, Dp, is isotropic. Especially for these fluid
neutral simulations we expect the impact of the 9-point stencil to be
large, because an incorrect treatment of grid distortion with a 5-point
treatment —– which correctly models poloidal transport, but in-
correctly captures the radial gradients —– artificially introduces ani-
sotropy in the fluid neutral model.

Fig. 3. An example of a strongly distorted mesh due to inclined divertor targets
(Alcator C-Mod).
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First, we look at the profiles of electron density and temperature at
the outer midplane, Fig. 4. They are only slightly impacted by the
change in scheme. Since the transport coefficients have been tuned to
match these profiles, the general agreement is good. Next we compare
the simulated profiles of ion saturation current jsat, electron tempera-
ture Te, and electron density ne at the inner target but mapped to the
midplane, Fig. 5. It is immediately obvious that the results of 5-point
and 9-point simulations are both qualitatively and quantitatively

different here. The profiles of ne and jsat obtained with the 5-point
stencil tend to peak close to the separatrix strike point ( = 0). In
contrast, the profiles obtained with the 9-point stencil peak around the
nose of the inner divertor, indicated with the dashed vertical line at
ρ∼3 mm. While the temperature obtained with the 5-point scheme is
low and nearly constant along the entire target, it clearly rises again
above the nose in the 9-point stencil case. We also observe that in the 5-
point case, this target is quite uniformly detached in this simulation (so
also the remaining peaks near the strike points are quite low), while in
the 9-point case we have a clear, strong suppression of jsat below the
nose, but a (small) rise of jsat above the nose. Qualitatively, the 9-point
stencil results are in much better agreement with experiment.

To further interpret these results, we also compare qualitatively to
the results of a fully coupled B2.5-EIRENE simulation, i.e. with kinetic
neutrals. The profiles obtained with the kinetic neutral simulation are
also added in Fig. 5. To be able to compare with this kinetic simulation,
care has to be taken with the geometry. Indeed, in Alcator C-Mod, a
number of pathways are available for neutral leakage from the divertor
to the main chamber, including an important leakage through the di-
vertor plenum behind the outer target [12,13]. In earlier work [10], we
pointed out that including these leakage paths is important to improve
the match with experiment. However, in the present paper we want to
achieve a qualitative comparison with a fluid neutral model. Since the
fluid neutrals are confined to the plasma grid and hence cannot escape
through the plenum, we compare to the simulation with closed plenum
geometry described in Ref. [10]. We remark that the kinetic simulation
contains a complete physics description, including molecules and neu-
tral-neutral collision, so a direct quantitative comparison is out of scope
here. However, given that the C-Mod discharge under consideration has
a high density divertor, we may expect that a fluid neutral model
should be able to capture some of the basic physics of neutral com-
pression in the divertor. While the quantitative results obtained with
the full kinetic model differ quite substantially from the fluid neutral
results, it is immediately obvious from Fig. 5 that qualitatively the
behavior of 9-point and full kinetic simulations are the same. Similar
qualitative observations hold for the outer target as well. We note,
however, that symmetric inner-outer target solutions are typically
found in simulations without drifts, see among other Ref. [10] for C-
Mod simulations with drifts. Drifts are not included in our fluid neutral
simulations, and hence we do not focus on the outer target here.

To investigate where the original 5-point scheme is failing, we
analyze the spatial distribution of the neutrals in the divertor and their
flow patterns. Fig. 6 shows the neutral density in the divertor, as ob-
tained with the 9-point and 5-point stencil codes. For comparison, also
the atom density obtained with the kinetic simulation is added here.
Again we observe an essential difference between the 9-point and 5-
point solutions. While in the 9-point solution the neutrals are strongly
compressed below the divertor throat due to the tight baffling, the fluid
neutrals in the 5-point stencil simulation seem to spread out along the

Fig. 4. Electron density and temperature at the outer midplane, as computed
with 9-point (solid lines) and 5-point (dashed lines) stencil code versions,
compared to experiment.

Fig. 5. Profiles of electron density, electron temperature and saturation current
at the inner target.

Fig. 6. Neutral density (atoms) in the divertor (log10ne [m 3]), for case with 9-point stencil (left), 5-point stencil (middle), and kinetic neutrals (right).
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entire surface of the targets towards the main chamber. This difference
in neutral behavior is then reflected in the spatial profiles of the elec-
tron temperature, Fig. 7. High neutral density regions in the divertor
correspond to cold temperatures, with an artificially low temperature
all along the targets in the 5-point stencil case. While it is not obvious
from the scale in the figures, the divertor in the 9-point case is sub-
stantially colder than in the 5-point case, which is in turn reflected in
the strong detachment below the nose already observed in Fig. 5. By
comparing qualitatively with a full kinetic simulation, we see that the
9-point case is qualitatively nearly identical to the full kinetic result.

Finally, to understand the artificial spreading of the neutrals along
the targets in the 5-point stencil solution, we look at the streamlines of
the fluid neutrals, Fig. 8. In that figure, the streamlines of fluid neutrals
originating at the inner target are red, and of those originating at the
outer target are green. The background coloring and contours indicate
the neutral pressure. In the left figure, the streamlines of the 9-point
stencil solution are shown. As expected from Eq. (9), the streamlines are
everywhere nearly perpendicular to the contours of constant neutral
pressure, since the neutral transport is dominated by pressure diffusion.
The middle figure shows the streamlines and neutral pressure for the 5-
point solution. In this case, there is a strong neutral cushion right in
front of each target, but interestingly, the streamlines simulated by the
code are not at all perpendicular to the contours of constant pressure.
Rather, due to the neglect of the second term in Eq. (7), only the gra-
dient of the neutral pressure along the target (the local y-direction) is
felt by the numerical scheme, which now artificially pushes the neutrals
nearly tangentially up along the targets instead of down the pressure
gradient of the neutral cushion. The right graph in Fig. 8 computes the
corrected streamlines using the full 9-point stencil, but on the back-
ground of the 5-point stencil solution. These are now again nearly

perpendicular to the pressure contours. These modified streamlines
strongly impact the neutral transport, and would push the solution
away from the artificial equilibrium obtained with the 5-point stencil,
to eventually reach the 9-point solution.

From these observations, we conclude that a full 9-point stencil
treatment of the fluid neutrals is absolutely essential to correctly model
their transport. The original 5-point stencil leads to qualitatively and
quantitatively incorrect results, and cannot correctly capture the effect
of target shaping on neutral transport and compression.

3.3. Kinetic neutral simulations

The new 9-point stencil scheme has also been applied to a number of
C-Mod simulations from Ref. [10], including a complete kinetic neutral
model and plasma drifts. In the interest of space, we do not show de-
tailed results but only summarize some observations. The kinetic neu-
tral model in EIRENE does not suffer from the 5-point approximations
in B2.5, hence in these simulations only the plasma transport is im-
pacted by the improved 9-point scheme. Since plasma transport is in
general strongly anisotropic and dominated by the parallel (poloidal)
flow component, it is much less sensitive to the approximations made
by the 5-point stencil in the code. Indeed, the parallel (poloidal) flows
are still properly discretized on the misaligned grids when using the
original 5-point stencil. In our C-Mod simulations, we observe no sig-
nificant changes to the target profiles near the separatrix strike points,
but some increases in electron temperature and corresponding de-
creases in density towards the baffles are observed, similar to the results
of the 9-point stencil simulation with fluid neutrals presented in Fig. 5.
The spatial distributions of electron temperature and density in the
divertor are also impacted, with changes of up to a factor two in both

Fig. 7. Electron temperature in the divertor (eV), for case with 9-point stencil (left), 5-point stencil (middle), and kinetic neutrals (right).

Fig. 8. Streamlines of the fluid neutrals, for case with 9-point stencil (left), 5-point stencil (middle), and flow calculated using the 9-point stencil on the background
obtained with the 5-point stencil (right). Coloring: neutral pressure (Pa).
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density and temperature, but again mainly towards the far Scrape-Off
Layer (SOL) regions of the targets and far into the Private Flux areas. It
remains to be investigated whether or not such changes could even-
tually impact impurity transport or far SOL flows.

4. Conclusion

In this paper, we have presented a 9-point stencil scheme for the
correct discretization of the B2.5 transport equations on grids mis-
aligned with the magnetic field. The new scheme has been applied to
fluid neutral simulations of the Alcator C-Mod divertor plasma, and the
results have been compared qualitatively to kinetic neutral simulations
using EIRENE. We conclude that the 9-point stencil is essential to cor-
rectly model the transport of fluid neutrals on distorted grids. The
original 5-point scheme cannot properly capture the impact of divertor
shaping on fluid neutral simulations, leading to qualitatively and
quantitatively incorrect results. For coupled B2.5-EIRENE simulations
the impact of the new scheme is less pronounced, since plasma trans-
port is dominated by fast parallel (poloidal) flows which are still cor-
rectly discretized by the original 5-point stencil scheme of the code.

The improved discretization opens up the way towards further code
speed-up by using advanced fluid neutral [14,15] and hybrid fluid-ki-
netic [16,17] neutral models. These models have been shown to be very
accurate compared to kinetic simulations in high recycling and de-
tached regimes, at much reduced computational cost. Also in these
models, a correct discretization of the fluid neutral solution will prove
essential. The work is also an important first step towards the devel-
opment of extended grids capabilities into B2.5, which will enable the
simulation of the plasma all the way up to the main chamber wall.
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